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Abstract— Terrain Based Navigation (TBN) is a method rooted
to the early cruise missile navigation systems, when GPS was
not yet available. For decades, TBN has been applied as a
complementary system to INS navigation for Unmanned Aerial
Vehicles (UAV). In the field of Autonomous Underwater Vehicles
(AUVs), it has the potential to bound the drift inherent to dead
reckoning navigation, based on INS and/or Doppler Velocity Log
(DVL) sensors, as well as to make the navigation beyond the areas
of coverture of the acoustic transponder networks, a reality. This
paper overviews the main concepts related to TBN and present
an exhaustive survey of the works reported in the literature.
As a main contribution, a table comparing the motion and the
measurement models, as well as the probabilistic framework used
for the estimation is reported. An effort has been put on unifying
the diverse nomenclature used across the surveyed works. We
aim this paper to become an starting point for the researchers
interested in this technology, with pointers to the most interested
works in the area.

I. INTRODUCTION

The Terrain Based Navigation (TBN) problem, also named
terrain aided navigation (TAN) is the name used by the
marine and aerial robotics communities to refer to the more
general problem of mobile robot localization with a known
map. In particular, TBN solves for the robot pose given an
a priori known map, fusing information from dead reckoning
navigation with map referenced observations. The principle is
the same as has been used for centuries: Localize the vehicle
based on observations of known characteristics of the map.

TBN has been mainly applied to aerial and underwater
vehicles. During the last years the accuracy and extension of
the maps has been increased considerably, and TBN has been
adopted as a method to complement INS navigation, as an
alternative to when GPS is not available. In other fields of ap-
plication, like underwater, TBN is still at a research stage, not
having evolved into a commercial product. During the last two
decades, the scientific community working with mobile robots,
has pushed forward the boundaries of the knowledge facing an
even more challenger problem: the Simultaneous Localization
and Mapping ( see [9]). Recently, these techniques have start
to be slowly adapted to underwater environments (see [17]).
Both SLAM and TBN have a great potential to improve the
autonomy of the underwater vehicles, allowing AUVs to freely
move abroad the areas of coverage of the acoustic transponder
networks.

In this paper we focus on the review of the TBN techniques
considering SLAM out of scope of this work. Although our
interest AUV navigation, because TBN is a mature technique

for aerials vehicles, representative works of this area hav been
included in our study. The paper is organized as follows:
First the problem of the autonomous navigation is presented,
then, in chapter two, the TBN problem is solved in a general
form for UUV and AUV, the seminal work of TERCOM is
described in chapter three, followed by a selection of the most
representative Bayesian estimation TBN techniques carried
out so far, grouped by their main filters in chapter four, to
complement this survey a equations table comparing the main
components of each technique presented so far is provided, to
finalize some conclusions are presented.

II. THE TERRAIN BASED NAVIGATION PROBLEM

Using navigation sensors it is possible to measure the robot
velocity, acceleration and attitude, to be used as the input for
the dead reckoning equations needed to compute the robot
pose. Due to the noisy measurements and the position estimate
will rapidly grow without bounds. In some applications GPS
can be used to provide absolute fixes to bound the drift.
However other domains like underwater, covert operations,
or out space applications the GPS is not available. Absolute
positioning fixes can be provided underwater by acoustic
positioning like the Long Baseline System (LBL), the Short
Baseline (SBL), the Ultra Short Baseline (USBL) or the GPS
eqquiped intelligent Buoys (GIB). However, these systems
require time for deployment. Moreover they constrain the
vehicle operation to a certain area of coverage. TBN has a
potential to become an alternative to satellite navigation and
acoustic transporter networks.

TBN takes advantage of existing digital terrain maps of
target area, where the vehicle shall navigate. Conventional
dead reckoning navigation methods provide an a prior estimate
of the robot pose within the map. Then, using exteropceptive
sensors, terrain observations are obtained to be correlated to
the a priori known map in order to compute the robot pose.

A. Problem statement

Let
• {E} be a inertial earth-fixed frame.
• {B} be the robot fixed frame.
• ηt = [x y z φ θ ψ] be the robot pose at time t referenced

to {E}.
• υt = [u v w p q r] be the robot velocity referenced to {B}.
• Let M(η) be a digital elevation map of the environment,

assumed to be known a priori.



• xt be the state vector, usually containing the robot pose
ηt or its bias εηt .

• zt be the vector of observations coming from exterocep-
tive sensors like:

– st,i: range measurements at bearing i measured from
the radar, the sonar altimeter (i = 0), or the multi-
beam sonar profiler (0 ≤ i ≤ N).

– rt,i: projection of the range measurement st,i on
the z vertical axis of the E-frame. For the sake of
simplicity the origins of the sensor and the robot
frames are chosen to be coincident.

– dt: the depth of the UUV measured with respect to
the sea level, usually provided by a pressure sensor.

– at: the altitude of an aerial vehicle measured with re-
spect to the sea level, usually provided by a pressure
sensor.

Then the TBN consist on estimating the robot velocity υt,
referenced to the vehicle B-frame, and/or the robot pose ηt,
referenced to the inertial E-frame, by matching the measured
depth dt (altitude at for UAVs) and ranges st,i with the terrain
elevation map stored in M.

B. Motion model

A nonlinear kinematics motion model can be used to relate
the robot velocity expressed in the B-frame to the robot pose
referenced to the E-frame:

ẋ = J(η)υ; J(η) = diag{R(η); J2(η)} (1)

where R(η) is the Roll, Pitch and Yaw rotation matrix and
J2(η) (see [10]) is the velocity transformation matrix, which
translates the B-referenced angular velocity vector into the
Euler angles derivatives. For AUVs, the linear velocity is
commonly provided by a Doppler Velocity Log (DVL) sensor,
while the angular velocity is commonly provided from Fiber
Optical (FOG) or Ring Laser Gyros (RLG).

C. Measurement model

For an AUV (Figure 1) the measurement model is given by:

rt,i = Mi(ηt)− dt + vt, ∀0 ≤ i ≤ N (2)

where vt is the measurement noise and N = 0 when a sonar
altimeter is used. If a multi-beam sonar profiler is used, N
is the number of beams. When a vertical sonar altimeter is
used, rt,i = st,i. It is worth noting that Mi(ηt) is the map
elevation at the point where the sonar i beam intersects the
terrain surface. For an aerial vehicle (Figure 2), the equation
becomes:

st = at −M(ηt) + vt (3)

Note that in both cases the map M, also known as terrain
function, is a nonlinear function of ηt. Then, the nonlinear
observation equation can be formulated as follows:

zt = h(xt) + vt; (4)

h(xt) = [h(xt) ... hN (xt)]
T (5)

hi(xt) = Mi(ηxyt)− ηzt + vt (6)

where ηzt = dk and zt is a vector containing the ground
clearance measurements corresponding to each sonar beam,
and xt contains at least the robot pose:

zt = [rt,0 ... rt,N ]T ; xt = [ηt ... ]
T (7)

Fig. 1. Echo radar TBN diagram for UAV

Fig. 2. Multi beam sonar TBN diagram for UUV

D. Sonar Profile to Map Correlation

An alternative method to formulate the observation equation
consist on correlating the measured profile zt to the stored
elevation map M to evaluate a degree of similarity of each
candidate pose xt within the map domain, and select the one
which maximizes the correlation. Several methods have been
used in the literature to compute the correlation: 1) the cross-
correlation (COR), 2) The Absolute Square Distance (ASD),
3) the Mean Absolute Difference (MAD) and 4) the Minimum
Square Distance (MSD):

COR(xt) = 1/N

N∑
i=1

(zt,i − hi(xt)) (8)

ASD(xt) =

N∑
i=1

(zt,i − hi(xt))2 (9)

MSD(xt) = 1/N

N∑
i=1

(zt,i − hi(xt))2 (10)



MAD(xt) = 1/N

N∑
i=1

|(zt,i − hi(xt))| (11)

These methods are O(n2), since they explore the complete
map. Hence, some research has been carry out to accelerate
the process. [3] use a dead reckoning estimate to bound the
area where the correlation is computed and [14] has designed
a dedicated high speed hardware based on FPGAs to face the
problem. When correlation is used, a simple linear observation
equation is need where zt = argmax

xt

{COR(xt)}.

III. THE SEMINAL WORK OF TERCOM

TBN can be traced back to 50 years ago, when terrain
contour matching (TERCOM) was successfully developed as a
navigation method for cruise missiles. TERCOM evolved after
some years, in many similar approaches (LACOM, RACOM,
SAMSOM, ... (see [23])). TERCOM is a batch oriented
algorithm which periodically correlates the measured bottom
profile with the elevation map (see Figure 3). The algorithm
operates in three phases. First, digital maps of the terrain to
be traversed are selected. At this step, is crucial to select a
terrain with a profile rich enough. This can achieve by means
of computing the terrain roughness (see Equation 12), as the
standart deviation of the terrain function M(ηi) with respect
to the desired flight altitude ai (Figure 1):

σ =

√√√√1/N

N∑
i=1

(M(ηi)− ai)2 (12)

Then, the path with highest standard deviation of the terrain
function is selected. Periodically, during the flight, at intervals
related to the size cells, the altitude with respect to the bottom
is acquired. During this phase, the aircraft is not allowed to
maneuver. Finally, at the last step, the patches of the digital
map are correlated with the profile acquired by the altimeter
using the Mean Absolute Difference (MAD).

Fig. 3. The principle of Terrain Based Navigation.

IV. BAYESIAN ESTIMATION TECHNIQUES FOR
TBN

Let us assume xt to be a Markovian state and
• p(xt−1) be the probability density function (pdf) describ-

ing the probability of the robot of being at a certain pose
at time t− 1,

• p(xt|xt−1, ut) be the state transition probability, also
known as motion model, which allows to predict the robot
pose after certain input ut,

• p(zt|xt) be the measurement probability which given a
map M(x) provides the probability of observing ~zt when
being at state xt,

then, the TBN problem consists on solving for p(xt),
given p(xt−1), p(xt|xt−1,ut) and p(zt|xt). In the context of
bayesian estimation this can be done through the Bayes filter
(BF):

p(xt) =

∫
p(xt|xt−1,ut)p(xt−1)dxt (13)

p(xt) = ηp(zt|xt)p(xt) (14)

In the most general case, the BF cannot be implemented
because it relies on the close form solution of the integral
shown in (13). Under some conditions, the BF can be imple-
mented using parametric filters like the Kalman Filter (KF),
the Information Filter (IF) or their non-linear counter parts like
the Extended Kalman Filter (EKF), the Extended Information
Filter (EIF) or the Unscented Kalman Filter (UKF); or non
parametrics filters like the Point Mass Filter (PMF), the
Particle Filter (PF) or the Rao-blackwellised Particle Filter
(RBPF) (see [26]). During the last years, these probabilistic
approaches have become dominant in TBN applications. The
popularity of those Bayesian estimation techniques has grown
because these probabilistic algorithms explicitly deal with
the uncertainties in both, the motion and the measurements
models. It is well known that these uncertainties play an
important role to solve the robot navigation and mapping
problems. In the following subsections we review the main
works using bayesian estimation techinques for TBN.

A. KF based Solutions to the TBN

It is well known that the Bayes Filter (BF) can be optimally
implemented as a Kalman Filter (KF) when the following
conditions hold:
• The probability density function describing the robot

position p(xt) and the measurement probability p(zt|xt)
are both Gaussian.

• The state transition probability p(xt|xt−1, ut) can be
represented by means of a linear stochastic equation.

• The measurement models are driven by mutually uncor-
related zero mean white noise sequences.

Some authors like [21] and [4] have proposed the use of a
KF to estimate the position posterior. The vector state contains
the robot position referenced to the earth fixed frame E (see
[21]) and sometimes includes also the robot velocity and



even the acceleration, both referenced to the E−frame (see
[4]). Depending on the available sensors for dead reckoning,
different methods have been proposed for motion prediction.
[21] used an INS for estimating the robot displacement and
performed a reset after each motion step. [4] studied different
motion models including: 1) constant velocity, 2) constant
acceleration, 3) constant acceleration with maneuvering de-
tection to increase/decrease the uncertainty of the prediction,
and 4) the use of colored noise for modeling the exponential
auto-correlated accelerations due to the robot maneuvers.

The most used sensor to perceive the terrain is the multi-
beam echo-sounder. The measured terrain profiles are corre-
lated to the stored map to find the robot pose to update the filter
by means of a linear measurement model. [21] proposed to use
the Absolute Square Distance (ASD) (see table I) for profile to
map correlation. Under the assumption of large time between
measurements, the author argues that the position prior has
a large variance and hence the problem becomes a ML-
estimation problem. For this case, the asymptotic covariance
matrix is known to be the inverse of the fisher information
matrix which can be computed as the Hessian of the like-
lihood function. An alternative method is proposed in [4]
who proposed to use a matching strength function (f ) based
on an Exponential Normalized Squared Absolute Distance
(ENSAD) for profile to map correlation. First, a validation
gate is defined over the Mahalanobis distance of the position
innovation. It defines a region where the candidate measure-
ments statistically compatible with the predicted measurement
should lay. The position maximizing the f -function within this
region is chosen as the measurement. Next a grid of certain
resolution is defined within the validation region and the f -
function is evaluated so the Relative Measurement Covariance
Matrix (RMCM) is computed to be used later for the KF
update. A different approach was used by [7] who proposed
to use a Probability Data Association Filter with amplitude
information (PDAFAI), a variation of the Probability Data
Association Filter (PDAF) rooted in the KF framework. In
this case, the robot velocity is used as a control input of a
linear motion model to predict the robot position. Again a
validation gate is defined where the sonar profile is matched
against the map using the MAD criterion obtaining a list
of matching candidates each one with a certain probability
of being the correct one. As a difference with respect to
a conventional KF which would probably use the nearest
neighbor criteria to select one of them, the PDAF combines all
of them, through a probabilistic weight average, into a unique
matching candidate which is then used for the update. While
in PDAF the MAD criteria is only used for validating the
measurements, in PDAFAI the MAD is also used to evaluate
the matching probability of each measurement.

When the motion and/or the measurement model are non-
linear, an Extended Kalman Filter (EKF) should be used. The
EKF uses a first order Taylor expansion to approximate the
nonlinear functions. The accuracy of such expansion depends
on the nonlinearity of the system, and the width of the
posterior. EKF tend to obtain good results if the state of the

system is known with relatively high accuracy, so that the
remaining covariance is small. The larger the uncertainty the
higher the error introduced by the linearization.

In the feature based map matching method presented by
[24], the common features founded in the observed map
and the stored one, are matched and used to find the best
transformation between them, thus this information is used
as a measurement to refine the heading and position of the
vehicle using an EKF.

B. Multi Model Adaptative Estimation Techniques

EKFs are known to work well when the uncertainty of
the estimate is small. When the uncertainty is very large the
linear Gaussian approximation fails and the filter diverges.
For this reason several authors have proposed to use Multi
Model Adaptative Estimator (MMAE) techniques following a
classical “Divide and conquer” approach. Instead of using a
unique estimate with a large uncertainty, MMAE techniques
used a cloud of estimates, each one with its own uncertainty
to cover the large uncertain region. [13] used a bank of
KFs initialized at positions biased with respect to the INS
estimate. The filter for which the Average Weighted Residual
Squared (AWRS) between the predicted ground clearance and
the ground clearance measured by the altimeter is chosen as
the navigation output.

Similarly [6], proposed the Sandia Inertial Terrain-Aided
Navigation (SITAN) where a bank of three error state KFs is
used to estimate the north, east and vertical channel biases
of the INS. SITAN distributes uniformly the set of KFs
covering the area of uncertainty of the current INS estimate.
If a set of fix decision rules are satisfied, the bias estimates
from the best candidate filter in the bank are added to the
reference navigation systems position to form an estimate of
the aircraft’s current position. Otherwise, the system is reset
to the initial uniform distribution, and the process starts again.
This algorithm was later adapted to helicopters becoming
Heli/SITAN [12] which uses a bank of one error estate KFs
to estimate the vertical channel bias. In this case, each EKF
represent fixed x-y bias around the INS estimate. Hence, each
static KF uses the same measured altitude, but compared
against a different region of the elevation map. In order to
estimate the true position bias, the 3 by 3 neighborhood
cells around the best candidate are conveniently merged into
a unique bias estimate to be used to reset the INS. Other
authors [15] have recently used the same approach. In [22]
a MMAE method together with a PCA based navigation
algorithm has been proposed. In this case, the navigation
output is a probabilistic weigh average of the set of estimates
based on the filter residuals, as an application of the seminal
work of [1].

C. MCL Solutions to the TBN

PFs, also called sequential Monte-Carlo (SMC) methods,
are recursive filters for solving the Bayesian estimation prob-
lem which can deal with nonlinear motion and/or measurement
models without relying on linearization techniques. PFs use a



point mass representation of the density function to approxi-
mate the robot pose posterior. Hence a set of random samples,
“particles”, are used to represent the probability density. This
non parametric representation of a pdf is able to represent
a much broader space of distributions than Gaussians, like
for instance multi modal pdfs. A Similar approach to the PF
is the Point Mass Filter (PMF) presented by [8]. The PMF
computes a discrete approximation of the probability density
function of the vehicle position and recursively updates it
with each new measurement from the mapping and navigation
sensors. While PF represent the probability according to the
density of the particles laying in a certain region, in PMF the
particles are distributed according a static mesh, representing
the probability through the weight of the particles.

In order to improve the accuracy, the grid mesh resolution
is dynamically adapted. Low weight particles are deleted and
when the number of particles is bellow a threshold, the mesh
resolution is increased duplicating the current set of particles.
[2] compared the PMF against the PF achieving slightly
better results for the PMF, but at a higher computational cost.
For high dimensional spaces this cost is prohibitive for real
time applications therefore, the same author prosposed to use
submaps to overcome this problem.

1) The SIR Particle Filter.: A widely used variant of the
PF is the Sampling Importance Resampling PF (SIR-PF) (see
[11]). The Sequential Information Sampling PF (SIS-PF) is
known to suffer from a strong degeneracy problem where
after a while all but one particle will have negligible weight.
To reduce this effect the SIR filter introduces a resampling
step to eliminate particles with small weight while duplicating
particles with high weight. A SIR-PF TBN method using
an INS for measuring the robot displacement and an echo
sounder for measuring the altitude has been presented in [16].
This work was later extender to surface vessels using radar
measurements ([2]). In their work the authors carry out an
analysis of the navigation performance based on the study of
Cramer Rao Lower Bound (CRLB), presenting an analytical
expression under the stationary assumption. Through Monte
Carlo simulation but using a real map, authors conclude that
it is possible to achieve a RMSE of the SIR-PF TBN system
close to the CRLB but at the cost of using a high number of
particles (> 10000).

In ([18]) a SIR-PF TBN system is proposed where the robot
displacement is measured with a FOG-DVL navigation system
and the range-altitude as well as range profiles acquired with
a Mechanical Scanning Profiling Sonar are used to sense the
terrain. Authors propose to inject random particles during the
re-sampling process in order to allow the system to recover
from possible wrong convergence situations. A similar method
was formerly described in the Augmented-MCL algorithm of
[26]. The proposed system has been tested in 3D through
simulation, and in 2D in water tank as well as in a Marina
Environment ([19]), succesfully solving the TBN problem in
those environments.

2) The Rao Blackwellised Particle Filter.: The PF solution
to the TBN which relies on solving for posterior p(x0:t|z1:t)

through sampling based methods, needs a very large number
of particles to deal with high dimensional state spaces of x.
When the state variable can be divided into two groups x0:t =
[x′0:t,x

′′
0:t]

T and p(x′0:t|z1:t,x′′0:t) is analytically tractable it is
possible to use a Rao-Blackwellised Particle Filters (RBPF)
([8]) using the chain rule to decompose the posterior:

p(x′0:t,x
′′
0:t|z1:t) = p(x′0:t|z1:t,x′′0:t)p(x′′0:t|z1:t) (15)

A common case appears when p(x′0:t|z1:t,x′′0:t) is a linear-
Gaussian system. In this case each particle includes a KF
(mean & covariance) to estimate x′ (from now on xkf ) and
a sample representation of x′′ (from now on xpf ) . In this
way RBPF reduces the dimensionality of the problem being
able to achieve faster and more accurate results. For an aerial
vehicle, and describing the altitude by means of a KF, [20]
have used a RBPF in a simulated TBN application. The RBPF
has been compared with a standard SIR-PF, using the same
three dimensional state vector. As expected, authors show that
the number of particles needed to estimate the position is larger
when the PF is used. Surprisingly the accuracy of the RBPF is
worse than the accuracy of the PF, fact that the authors attribute
to a wrong modeling of the altitude noise. The radar sometimes
observes the top of the trees and some times the floor, being the
noise a bi-modal distribution. In underwater applications [25]
used a RBPF to merge measurements of range to the bottom
(sonar altimeter, forward looking echo sounder , and side look-
ing echo sounder) with dead-reckoning data (DVL+MRU). In
their approach the state vector contains the 2D robot position
and a 2D velocity bias due to unknown ocean currents. A
simple kinematics model using velocity, heading and depth
inputs is used together with mutually independent Gaussian
white process noise. Due to the linear nature of the bias model,
a rao-blackwellization process allows to estimate the robot
pose using a PF while estimating the velocity bias using a KF.
The two main contribution of Teixeira consist on proposing
the Smoothed Kernel Particle Filter (SKPF) to obtain more
consistent results and an improved robustness to outliers and
the complementary use of Geophysical Navigation to improve
the navigation results in flat terrains.

V. SUMMARY

A summary of the most representative techniques is grouped
by filtering technique in (Table I). In order to produce a useful
comparative, the same nomenclature has been used, and is
presented below.

VI. CONCLUSION

This paper has introduced the TBN problem. To the best of
the author’s knowledge, the most representative works in the
field have been described and classified. To allow for a more
simple comparative, a table with an unified nomenclature has
been presented, detailing: the principal sensor, the state and
the input vectors, the measurement, the motion and the mea-
surement models, with the aim of highlighting the fundamental
similarities as well as to strength their main singularities.
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ẋ
t

=
A
x
t

+
B

1
w
t

z
t

=
x
t

+
v
t

... x
t
≡

w
t

=
N

(0
,Q

t
)

A
=

[ D
1

0 3
x
3

0 3
x
3

D
1

] ;
D

1
=

 0
1

0
0

0
1

0
0

0

  ;B
1

=

       0
0

0
0

1
0

0
0

0
0

0
1

       
x
t

=
[x
ẋ
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