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Abstract—The problem of navigation in a spatially variable
current is reviewed, and for a certain class of mathematically-
describable functions, solved for minimum time in closed form.

NOMENCLATURE

θ̇ rate of change of heading (angular velocity)
ẋ x-directed component of vehicle velocity
ẏ y-directed component of vehicle velocity
F n-dimensional constraint vector
λ n Lagrange multipliers
θ vehicle course or heading (control input) θ ∈ U
U m-dimensional control input, decision vector
~ı unit vector
~ unit vector
~c velocity of current
X n-dimensional state vector
g(x, y) x-directed component of current
h(x, y) y-directed component of current
J a scalar functional
L performance index
m number of control inputs
n number of components of state vector
r representative length
V vehicle velocity relative to the water
x Cartesian component (abscissa) x ∈ X
y Cartesian component (ordinate) y ∈ X

I. INTRODUCTION

To optimise navigation with current in two-dimensional
space is known as Zermelo’s problem, from [5]. The ability
to compensate for current is a vital tool for Autonomous Un-
derwater Vehicles (AUVs). Waypoints, docks and other quasi-
stationary targets need to be reached by the AUV in minimum
time, if its range is to be maximised under conditions of
constant velocity. The solution to this problem is available
under certain conditions in closed form, which allows the
validation of algorithms designed to govern the navigation of
these vehicles. One alternate means to specify the problem
that will not be investigated here is that the energy consumed
by the AUV be minimised over the trajectory from A to B.
Another unexplored option in the same current field is to
control the velocity in order to ensure a straight-line course.

This last option is not recommended for practical applications
because under some circumstances the current may exceed the
maximum velocity of the vehicle.

Zermelo’s problem is solved optimally here by means of the
Pontryagin maximum principle [2] with the methodology of
Bryson and Ho [1, §2.7]. Extensions to this class of problem
were published by Zlobec [6]. The paper is subdivided into
an abstraction, an analysis, and the case of linear current
distribution is solved.

Smith et al. [3] have recently investigated the use of the
three-dimensional current predictions of the JPL OurOcean
portal and found that an unscented Kalman filter (UKF) algo-
rithm seems reliable to predict vehicle paths over a 2km range.
The 2km range is here taken as a representative measure;
the AUV is tasked with minimum time rendez-vous with the
waypoint.

II. ABSTRACTION

The functional that is minimised here is just

J =
∫ tB

tA

L(X(t), U(t))dt (1)

which must be a stationary point in the two hyperplanes, X
and U , of the Hamiltonian, κ:

δJ =
∂κ
∂U

δU +
∂κ
∂X

δX (2)

The vector X represents the state (position) vector, while U
represents the control input vector. The function L(X,U) ≡ 1,
which implies

J = tB − tA (3)

and allows the statement of a minimum-time navigation prob-
lem, subject to constraints

Ẋ ≡ dX

dt
= F (X,U) (4)

where the overdot notation is employed to indicate the time
derivative, and optimality conditions

0 = FTu λ (5)

obtain. Subscripts, in general, denote differentiation. Here, the
Hamiltonian

κ = L+ FTu λ (6)
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is comprised of the performance index, L, and the Lagrange
multipliers, λ, compounded by the constraint functions, F ,
transposed. This abstraction maps onto the navigation problem
in what follows with [x, y] ∈ X and [θ] ∈ U . That is, the state
vector is identical to the position of the vehicle, while the
heading angle is the only control variable.

III. ANALYSIS

The current field is of known magnitude and direction,

~c = g(x, y)~ı + h(x, y)~ (7)

in the Cartesian plane. Vehicle velocity relative to the water
is V , and constant in magnitude, and as a result the equations
of motion can be written

ẋ = V cos θ + g(x, y) (8)
ẏ = V sin θ + h(x, y) (9)

where overdot notation is written for the time derivative and
θ represents the vehicle course with respect to an earth-fixed
orthogonal coordinate frame. The Hamiltonian of the system
is

κ = λx (V cos θ + g) + λy (V sin θ + h) + 1 (10)

so

λ̇x = −∂κ
∂x

= −λx
g

x
− λy

h

x
(11)

λ̇y = −∂κ
∂y

= −λx
g

y
− λy

h

y
(12)

0 =
∂κ
∂θ

= V (−λx sin θ + λy cos θ) (13)

where Eq. 13 implies that

tan θ =
λy
λx

(14)

The Hamiltonian is time invariant. Moreover, it equates to zero
because an extremal (minimum-time) solution is desired. The
system of equations 11 and 12 is solved1 for λx and λy:

λx (V cos θ + g) + λy (V sin θ + h) = −1 (15)
λx (−V sin θ) + λy (V cos θ) = 0 (16)

to obtain

λx =
− cos θ

V + g cos θ + h sin θ
(17)

λy =
− sin θ

V + g cos θ + h sin θ
(18)

and an equation for the rate of change of heading angle is the
result:

θ̇ = sin2 θ
∂h

∂x
+ sin θ cos θ

(
∂u

∂x
− ∂h

∂y

)
− cos2 θ

∂g

∂y
(19)

The three rate equations, Eqs. 8, 9 and 19, will determine
the minimum-time paths through a terminal point B when the
initial coordinates A and course, θA, are set. What follows
will place the destination at the origin (0, 0) of the coordinate
axes, and the initial point A somewhere in the domain.

1see Appendix

IV. LINEAR CURRENT DISTRIBUTION

The case of a linear current distribution, g = −V/ry, h = 0
is addressed here. This current is irrotational and meant to
model a shear flow in y. The terminal heading angle θB is
assumed to be known and collinear with the terminal velocity.

cos θ =
cos θB

1 + y/r cos θB
(20)

cos θ +
y

r
cos θB cos θ = cos θB (21)

y

r
cos θB cos θ = cos θB − cos θ (22)

y

r
=

1
cos θ

− 1
cos θB

(23)

y

r
= sec θ − sec θB (24)

The rate equation for θ is solved next:

θ̇ = sin2 θ
∂h

∂x
− cos2 θ

∂g

∂y
+ (25)

sin θ cos θ
(
∂g

∂x
− ∂h

∂y

)
(26)

θ̇ = − cos2 θ
∂g

∂y
(27)

dθ

dt
= cos2 θ

V

r
(28)

dt

dθ
=

r

V
sec2 θ (29)∫ B

A

V

r
dt =

∫ θB

θA

sec2 θdθ (30)

V

r
(tB − tA) = tan θ − tan θB (31)

Equation 31, which encodes the functional J from Eq. 3, is
also known as the performance index.

The rate equation for x is solved last:

dx

dt
= V cos θ + g (32)

= V cos θ − V y
r

(33)

dx

dθ

dθ

dt
= V cos θ − V sec θ + V sec θB (34)

dx

dθ
= [V cos θ − V sec θ + V sec θB ]

dt

dθ
(35)

dx

dθ
= [V cos θ − V sec θ + V sec θB ]

r

V
sec2 θ (36)

dx

dθ
=
V cos θ − V sec θ + V sec θB

V/r cos2 θ
(37)

dx =
[
r sec θ − r sec3 θ + r sec θB sec2 θ

]
dθ (38)

x

r
=
∫ θA

θB

[
sec θ − sec3 θ + sec θB sec2 θ

]
dθ (39)

= −1
2

[sec θB(tan θB − tan θA)−

log
tan θB + sec θB
tan θA + sec θA

−

tan θA(sec θB − sec θA)] (40)
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V. RESULTS

Equations 24 and 40 constitute an implicit system for θA
and θB , and are solved by numerical methods. Suppose an
AUV desires to travel from (xA/r, yA/r) = (3.66,−1.86) to
the origin, then

yA
r

= −1.86 = sec θA − sec θB (41)

xA
r

= 3.66 = −1
2

[sec θB(tan θB − tan θA)−

log
tan θB + sec θB
tan θA + sec θA

−

tan θA(sec θB − sec θA)] (42)

This system of equations is intractable because it is composed
of the trigonometric tangent and secant functions, both of
which are in places unbounded. Equations 41 and 42 are
modified to equate to zero, and the map of the L2-norm is
derived over a Cartesian solution plane composed of θA and
θB . The map is generated on every odd-numbered degree in
order to avoid the infinities, and then scrutinised in regions
which contain small values. The algorithm, although robust,
can be said to be in want of refinement. The solution, which
requires at most 32,400 iterations of two cosines, two tangents,
one logarithm and one square root function, is found to be for
this example,

θA = 105◦ θB = 240◦ (43)

VI. CONCLUSIONS AND FUTURE WORK

Although one is unlikely to meet a well-ordered linear shear
current in nature, the present result can be employed off-line to
validate algorithms for navigation in a current. The abstraction
needs to be automated in order to introduce the ability to
navigate in regions with arbitrary current distributions.
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APPENDIX

A. Isolation of λx, λy
The system of equations is solved as follows. Isolate from

Eq. 16 λx

λx = −V cos θ
−V sin θ λy (44)

= cos θ
sin θ λy (45)

and substitute the result into Eq. 15:

−1 = λy

(
cos θ
sin θ

)
[V cos θ + g] + λy [V sin θ + h] (46)

− sin θ = λy cos θ [V cos θ + g] + λy
[
V sin2 θ + h sin θ

]
(47)

− sin θ = λy
[
V cos2 θ + g cos θ + V sin2 θ + h sin θ

]
(48)

− sin θ = λy [V + g cos θ + h sin θ] (49)

λy =
− sin θ

V + g cos θ + h sin θ
(50)

Isolate from Eq. 16 λy

λy = λx
sin θ
cos θ

(51)

and substitute the result into Eq. 15:

0 = λx [V cos θ + g] + λx
sin θ
cos θ

[V sin θ + h] + 1 (52)

−1 = λx

[
V cos θ2 + g cos θ + V sin θ2 + h sin θ

cos θ

]
(53)

−1 = λx

[
V + g sin θ + h sin θ

cos θ

]
(54)

λx =
− cos θ

V + g cos θ + h sin θ
(55)

B. Integration of Equation 39

The integral is split into its additive components. The
observation was made by Stewart [4] on page 122 that

d

dx
tanx = sec2 x (56)

On the inside back cover of Stewart [4] it is observed that
Eq. 71 of his Table of Integrals has∫

sec3 udu =
1
2

secu tanu+
1
2

log | secu+ tanu|+C (57)

Finally it is known that∫
secxdx = log | secx+ tanx| (58)

The logarithmic term in Eq. 57, the integral of the cube of
the secant, is subtracted from the last-mentioned integral, and
this results in Eq. 40.
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Fig. 1. Figures for ‘Autonomous Underwater Vehicle Minimum-Time Navigation in a Current Field’.
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