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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

THEQRY OF SOUND GENERATION IN DUCTED COMPRESSIBLE FLOWS,

WITH APPLICATIONS TO TURBOMACHINERY

by Christopher Leonard Morfey

Theoretical results relating to sound in subsonic flows are obtained in
part (A), and used in part (B) to estimate the sound power output of
axial—-flow machines. Topics covered in (A) are acoustic energy conserva—
tion in nonuniform flows, nonlinear séurces of sound, and the generation
of sound in ducts. The applications discussed in (B) include discrete—
frequeﬁcy sound generation due to rotor-stator interaction, and the
radiation of sound from a subsomic rotor in turbulent Fflow. Finally,
shock-wave radiation from supersonic rotors is described in terms of a
simple theoretical model, and the predicted shock strengths are compared

with measurements.
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CHAPTER I

INTRODUGTION

1.1 HISTORICAL BACKGROUND

Lord Rayleigh, the founder of modern acoustic theory, died in 1919.
For the last ten years of his life he had presided over the newly-formed
Advisory Committee on Aeronautics - later to become the Aeronautical
Research Council - and had seen aviation develop from Bleriot's cross-
channel flight to the point where aircraft could cross the Arlantic, The
association between acoustics and aerodynamics seems:to have ended with
Rayleigh's death, however; over the next twenty years the science of
acoustics was developed by telecommunications engineers, and was largely
neglected by natural philosophers in favour of electromagnetism and atomic
physics.

During these years the growth of the aircraft industry was slow, at
least compared with the immediately preceding period. Regular trans-
atlantic flights had only just been inaugurated when the situation was
transformed by World War II with the need to produce military aircraft on
a large scale. As a result, civil aviation has grown rapidly in the
post-war years and with it, the need to control the noise of aircraft.

Fortunately when the need became apparent, there was a certain amount
of acoustical theory to turn to, largely as a result of wartime efforts in
Russia and Germany to understand sound generation by ships and aircraft

for detection purposes. With this background, and with the imminent



introduction of jet-powered aircraft threatening a rapid increase in noise
levels around airports, research was begun in this country in 1949 into the
sources of agircraft noise.

The result has been the emergence of aercacoustics, dealing with sound
generated aerodynamically, as a new and important branch of acoustics. By
1959, when the Boeing 707 entered airline service, enough was known about
jet noise for exhaust nozzles to be designed which achieved some improvement,
and more importantly Rolls-Royce were developing the bypass engine to take
advantage of the strong dependence of jet noise on exhaust veldeity. Further
impetus to the new science came from the military sphere, where rocket launch
noise and combustion instability raised similar fundamental problems involving
a combination of acoustics and aerodynamics.

During the 1960%s engine machinery - primarily turbojet compressors and
fans - has become recognized as a source of aircraft noise comparable in
importance with the exhaust jet; while there remains a number of unsolved
problems in connection with jet noise at exhaust velocities below 0.4, or
above 1.4, times the ambient speed of sound. The past twenty years! growth
in the study of aeronautical acoustics seems likely to continue through the

1970!s,

1.2 SCOPE OF THESIS

The feollowing chapters are a theoretical study of one aspect of air-
craft noise, namely the internal generation and transmission of sound in

turbomachinery. The connecting theme is sound power, as the most important



single property of the various sources studied. Thus it is necessary
to begin by considering such fundamental questions as the extent to which
acoustic energy is conserved in high-speed flows, and the modifying effects
of flow and a surrounding duct on different types of acoustic source.
Specific applications of the resulting acoustic theory are made to
each in turn of the discrete-frequency source mechanisms in axial-flow
machines, at subsonic and supersonic speeds. The acoustic analysis for
ducted source distributions is combined for this purpose with simplified
models of the unsteady aerodynamic flows responsible for sound generation,

the aim in each case being to predict the acoustic power spectrum.

1.3 OUTLINE OF PRESENTATION

The acoustic theory basic to the present work is developed in the
following three chapters, which make up part A of the thesis. Chapter 2
reviews and extends the use of acoustic energy conservation in moving
media, and Chapter 3 does the same for aerodynamic sound generation with

emphasis on second-order interactions as a source of sound. Chapter 4

develops a theoretical framework for analysing sound sources in duets,

and again flow effects are included.
Part B, consisting of the next four chapters, contains applications

of the basic theory to turbomachinery noise. Periodic rotor-stator

interaction, interaction of a rotor with turbulence, and radiation from
steady blade loading and thickness are all considered quantitatively for

subsonic machines. Finally shock-wave radiation from supersonic ducted



rotors is discussed in Chapter 8, and measurements of shock strength shown
to agree with a simplified theory.

Previous relevant work is reviewed at the beginning of each chapter,
and its relation to the present work discussed at the end of the chapter
where appropriate. The thesis ends with a review in Chapter 9 of the main

conclusions, and suggestions for further research.



CHAPTER 2

ACOUSTIC ENERGY IN NONUNIFORM FLOWS

In an ideal acoustic medium at rest, the sound power crossing any

closed surface 8 is defined as

W= Jr I, dS, , (L)

where Ii = <p'vi> are the components of the acoustic intensity. The
usefulness of sound power derives from its continuity property: if S1
and 82 are two surfaces enclosing the same sources of sound (Fig. 2.1),
the same value of W is found for both surfaces.

This property is so useful that the question arises whether in a
more general situation, such as a moving medium, a quantity can be found
analogous to sound power in the classical situation. Two approaches
are possible.

{(a) For small-amplitude acoustic disturbances in an ideal fluid at rest,

W is equal to the mean flow of energy across S+, and the continuity

of sound power appears as a consequence of energy conservation. A

generalized acoustic intensity may therefore be defined in terms of

the total energy flux N in the flow as

I =<N - N (without sound)> (2)

on the grounds that Ii in (1) represents the mean energy flux in the

t X .
Provided on average no fluid enters or leaves the enclosed region.
Cf. section 2.1.3.



ith direction due to the acoustic disturbance. This is the defin-

ition of acoustic intensity adopted, for example, by Morse and Ingard

in [11 .

(b} Alternatively a vector intensity I may be sought which is based on
first-order estimates of the sound field, and reduces to the classical
expression <p'v> in an ideal fluid at rest, but differs from this
expression in that div I vanishes {(to second order in fluctuating
quantities) over a wider range of conditions than div<p'v>. The
wider the range of conditions, the more general is the continuity
property and the more useful the definition.

The second approach, although it makes the definition of I to some
extent arbitrary,TL has an important advantage over the first where linear
acoustic theory is concerned. The intensity defined by (2) cannot in
general be found from a solution of the linear acoustic equations, since
it is of second order in fluctuating quantities - first-order terms dis-
appear in the time-averaging operation., Thus while approach (b) spec-
ifically requires only first-order solutions, the energy flux approach
(a) requires the eguations of motion to be solved to second-order accuracy.

This difficulty has been pointed out by Andreev (who reviews the
problem in [3]) and emphasized by Markham [4,5]. Andreev concludes from
a second-order analysis that the classical intemsity expression I = <p'y>
is not generally valid in the sense of equation (2). Even for isentropic
disturbances in a medium otherwise at rest, the energy flux interpresation

of <p'v> holds only under certain boundary conditions.

+ ) . . . T .
A similar situation arises D} in the theory of power flow in electron
beams.



The classical intensity expression does, on the other hand, satisfy

the continuity equation

—= =0 {to 2nd order) (3)

in an ideal uniform fluid at rest, as Schoch [6] points out. Moreover
generalized versions of (3), following approach (b) above, have been
found by Bergmann [7] for a noﬁuniforﬁ fluid at rest, by Blokhintsev [B]
in the geometric-acoustics approximation, and by Cantrell and Hart [9]
for irrotational uniform-entropy flows. The present study+ adopts the
definition of I given by Cantrell and Hart and applies it to an arbitrary
nonuniform flow, in order to demonstrate the conditions under which

acoustic energy is in fact conserved in the sense of equation (3).

+Parts of which first appeared in [10] in abbreviated form.



2.1 RELATION BETWEEN SOUND POWER AND MEAN ENERGY FLOW

The generalized definition of acoustic intensity used in thé'analysis
is introduced below by an energy argument. Its usefulness in linear
acoustics, however, is ultimately determined by the extent to which the
continulty property (3) is valid, and the energy interpretation is

dropped when this aspect is discussed in section 2.2.

2.1.1 TIdeal uniform fluid at rest

If the time-averaged displacement of any fluid particle is zero,
the mean energy flux across a fixed surface S may be estimated as the
mean energy flux across a material surface, consisting of fluid particles
whose mean position coincides with S. Any discrepancy will be of
higher than second order in fluctuating quantities, and is therefore
negligible for present purposes.

If p, Vn are tﬁe fluid pressure and velocity normal to 8, defined
for a particle of fluid, the instantaneous energy flux normal to S is

Nn = an (for an inviscid nonconducting fluid), whose time-average value
ig

<Nn> = <ptvn> (4)
since the fluid is at rest on average, i.e. <Vn> = 0. Reinterpreting
p! and v, as fluctuating field quantities, defined on the fixed surface
5, gives the classical expression for acoustic intensity. It follows
that under the conditions specified, the classical intensity expression -
based on field variables which need be estimated only to first-order

accuracy - equals the local mean energy flux to second order.



The same result may be derived without considering a material surface,
in a way which leads on naturally to the Cantrell and Hart generalizatipn.
In terms of field wvariables, the normal energy flux crossing a fixed sur-
face 5 is

Nn = Jmn s (5)

where J is the stagnation enthalpy (h + %Viz) and m is the normal com-

ponent ¢V of the mass flux. Time-averaging (5) and noting “m > =0

gives
= tyt = 1
<Nn> <J'm 0 <p'v_> (to 2nd order) (6)
provided there are no entropy fluctuations so that J' may be estimated
to first order as (p'/p). This last assumption is justified since we

are restricted to an ideal fluid free from entropy gradients; so the-

equivalence of <p'vn> and the mean energy flux follows as before.

2.1,2 Acoustic energy dissipation

It is interesting to consider the extension of the above argument
to non-ideal fluids, since it leads to a useful result relating acoustic
energy dissipation to irreversible entropy production. Although the
result is well-known, the derivation given in textbooks{jl, 12] overlooks
the fact that it is not wvalid locally but only in a space-average sense.
An outline of the standard derivation, with emphasis on the assumptions
involved, is given below; the result is compared in section?22with that

obtained from a more rigorous approach.



The production of entropy by irreversible processes in the fluid

is characterized by a uniformly distributed mean production rate <PS>

per unit 'w:;lutme.*F Thus in order to maintain a steady state, it would
be necessary to extract heat from the fluid at a mean rate of approx-

imately <T><P_> per unit volume; cf. [13], section 5. Alternatively,

S
the rate at which energy is fed into the entropy mode (represented here

by gradual changes in mean entropy <s>, density <p> etc.+5, at constant

mean pressure, is given by

3<h> . J<s> <T% <p > (8)

2 3 <p> S
E <p> = const. t g

per unit mass of fluid.

In either case, the rate of energy loss from the acoustic mode is
approximately <T><Ps>per unit volume. If it is further assumed that
the mean energy flux associated with the acoustic mode is given by the

same expression, I = <p' v> as in an ideal fluid, it follows that

div I = -<T><P.> . (9)

Equation (9) expresses the mean energy balance for the acoustic
mode. Clearly the idea of weakly-coupled modes of disturbance [14]
is basic to the present approach, and it breaks down if the viscosity

or thermal conductivity is too large. Nevertheless the result is

..f..
i.e. details of the local distribution of mean entropy changes, and

the redistribution of entropy by heat transfer between fluid elements,
are cmitted from the model.

ttShort-time averages are implied, as the fluid is no longer necessarily
in a stationary state. Mean fluid properties such as <s> are there-
fore slowly-varying functions of time. )

10



useful for estimating the space-average dissipation over regions com-
parable with the sound wavelength or larger, for example in weakly-
attenuated sound waves ﬁl], weak shock waves [15, 16}, and acoustic

boundary layers [L1, 12].

2,1.3 Irrotational uniform-entropy flow

The energy flux expression (5) is valid for any inviscid, non-
conducting fluid flow, However, its estimation to second order in
fluctuating quantities poses the general difficulty mentioned earlier,
that linearized solutions for these quantities are inadequate except
in certain special cases.+

Cantrell and Hart [9] have shown how the difficulty may be aveided
for irrotational, uniform-entropy flows by going directly to the total
energy flow across a closed surface, rather than working out the local
energy flux and subtracting its unperturbed value. The total energy
flow, as shown below, has a time-average value which can be expressed
to second-order accuracy in terms of first-order fluctuations; more-
over its continuity is ensured by energy comservation.

For any closed surface S fixed in the flow, the total outward
energy flow is

E = f N, d8, = [ Jm, d5, . {(10)
i i i i
S S

If the flow is irrotational and of uniform entropy over S, it follows

TRibner [17] has studied one such case; see section 2.3.

11



that the time-average value <J> is also uniform over S. If in addition

the amount of fluid enclosed by S remains constant on average, so that

< > =

;[ m> d§. =0 (11)
S

equation (10) gives the time-average energy flow out of S as

. {
<E> :J <eril> dsi . (12)

S
Finally, if the specific entropy does not fluctuate with time on 5,
the quantity <J'mi'> appearing in (12) may be written in terms of the
velocity fluctuation components v, = Vi - <Vi> and the pressure
fluctuation pt. To second order in fluctuating quantities,
Vi ViV.
<eri1> = <ply,> + —— <p'2> + 2J <pvvj> + pvj<vivj>' (13)

i
Dc2 c

The assumption st = 0 is justified provided the fiow over 5 is free
from any entropy gradients.

The main point of interest here is that the collection of second-
order terms on the right-hand side of (13) meets all the requirements
for a generalized definition of acoustic intensity, as listed for
approach (b) in the introduction. In particular, defining sound power
as the surface integral in (12) extends the continuity property of
sound power to all irrotational uniform-entropy flows, provided diffusion

effects are negligible and the flow is statistically stationary in time.

12



2.2 CONTINUITY EQUATION FOR ACOUSTIC ENERGY IN GENERAL FLOWS

A continuity equation for acoustic energy, which covers the previous
situations as special cases, can be derived from the linearized equatioms
for unsteady flow as follows. A quantity corresponding to acoustic

energy flux is defined by
N, %= J%m % (14)
1 1

where

* - % _ 2
J Vjuj + (Ypdp' 5, my Pu, (Vi/c p' (15)

are first-order quantities which coincide with (J',mi') in a region of

irrotational flow free from entropy fluctuations; here

U=y -9 (16)

is the irrotational velocity field obtained by subtracting the fluctuating
velocity field w induced by vo;ticity (div w o= 0) from the total velocity
fluctuation y. The above definition of Nf is chosen in the light of the
previous section, and is a straightforward generalization of the gquantity
J'mi' appearing in Cantrell and Hart's analysis for irrotational uniform-
entropy flows.

2.2.1 Linearized equations of motion

The full equations of motion for a viscous heat-conducting fluid may

be written as

3(pV,) DV, 5
3 4 17 _ -y _Ll2_ Ds _
at 9x, O T Rj D ij * Dt s/ . (17)

13



The quantities (Rj’ 8) include the effects of viscosity and thermal
conductivityy; thus Rj contains the viscous force component

(- 1/p) a/axi (Pij - pGij) on a fluid element per unit mass, in addition
to any external force field. Likewise S8 represents the rate at which

a fluid element gains entropy, per unit volume of the flow, and includes

a term

1 99,
Sdiff =-7 [%(P.. - ps, de,, + — (18)

due to diffusion effects.

If the equation of state for the fluid is taken as
in p = 0(p,s) , (19)

the fluctuating parts of equations (17) are given to first order by

om, *

gp' . 1 3 '
ot %, Bx Cow, + oV,8.8') (20)

v
. 3J* ds Sp
ot ax, clJ Y 7 (GS/Q) (Bx, p' - ox, s')
J 1
v,
-l — v Bwj
ox, i i e + R, ) (21)
i ; ]
Ds' . J
Do = - v, t S/ . (22)

1

14



2.2.2 The acoustic energy eguation

Equation (20) can be further expanded using (19), (22) and the
time-averaged continuity and entropy equations from (17). If the
resulting equation is then multiplied by J¥*, and equation (21) by mj*,

the sum of the resulting second-order equations can be put in the form

%
IE* i _
9t + ox . P ' (23)
i
Here E* represents a generalized acoustic energy density, and Ni*

are the components of a generalized acoustic energy flux, given res-

pectively by

Vv,
Bt = L(p12) + dpru ) + kp(u.2) (24)
2§—C2 02 ] J
and
V. V.V,
N & = (p'u,) + —(p'?) + —22(pru.) + pV.(u,u,) ; (25)
1 1 oc? ) ] Joig

(note that c¢2 = lloep in terms of the state equation - cf.Appendix I).
It should be emphasized that these quantities do not in general corres-
pond to any actual energy density or flux in the fluid flow.

On the right-hand side of (23), P represents the rate of acoustic

energy production per unit volume, and is given to second-order accuracy

by

15



a8
= (0 9 - p8é 1 § —— .u.
Py ( > Ssvi P pCijVj)(p ui) +p sngxi (uluJ)

’l 2 ap 1ot
+ |=(08<-8 4+ (8 e -0 p— ]
5(85-8,508 + ( s ps)viaxi] (p's’)

L

r 3p 3p ‘
4 92_p Y SE.+ 5 ZE2] (u.s!
[(03-0,)8V, = P8 V.V 3 * 9. -ale (uss")

_ po - - - *®
o p(EijVj+Ri)(p'wi) {g;;l Desnggz (ujwi) mj T
(26)

The significance of these terms is discussed in detail in the following
section.

The main conclusion to be drawn from equations {23-26) is that in
a nonuniform flow, defining acoustic energy according to (24) and (25)
leads in general to a nonzero production term in the energy balance.
This holds both instantaneously and in the time-average; taking the

time-average of equation (23) for a statistically stationary flow gives

Q2
far}
s

= <p> (27)

o]

X

He

where I_i = <Ni*> are the components of the generalized acoustic
- - 1‘
intensity.
It follows that the sound power W = J Ii dSi crossing two surfaces
S

S1 and S2 (Fig. 2.1) is in general different by an amount

fThe intensity as defined here differs from that given by (13} only in
that u replaces v; the flow was assumed irrotational in section 2.1.3.

16



W, - W, = <P> dV s (28)

corresponding to the generation or loss of acoustic energy in the
intervening space V. The volume integral in (28) can be estimated
from a knowledge of the sound field in V, as the analysis below

demonstrates.

2.2.3 Acbustic energy production terms

In equation (26), the production rate P per unit volume is divided
into two parts. For sound waves in a uniform fluid at rest, only the
first part (Po) remains; 1t accounts for the losses due to viscosity
and heat conduction which occcur under these conditions. The second
part (Pl) represents the additional production of acoustic energy which
occurs when sound travels through a rotational mean flow, or through a
medium in which mean entropy gradients are combined with mean pressure
gradients or flow. Ag expected, both P0 and Pl vanish in an irrotatiomal
uniform-entropy flow which is free from diffusion effects or external
sources.

For the simple case of plane sound waves in a uniform fluid at
rest, it is interesting to compare the acoustic energy dissipation given
by (26) with the usual result based on an energy argument (section 2.1.2).
The wave motion is taken in the Xy direction, with velocity components
{ul(xl,t), 0, 0}, The acoustic energy loss rate per unit volume is then
given by (26) as

- Po - _ml*th 4 GSJ*Sl , (29)
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In equation (30), the expression for 5' in terms of T' and the thermal
conductivity k follows from (18). Neglecting any contribution of s!

to T' - which would lead to a k* term in the dissipation - then gives

Tt = »(eslp)p' (cf. Appendix 1},

Since ml* = Oy, and J* = (1/p)p! in this case, it follows from (29)

1
that
. 4 32u, k8 2 2
- = L = 3 1
P FHY 1 2s p! p2 :
2
Bxl p<T Bxl

or, using Appendix I to substitute for 0 and writing ¢ u/k =Pr ,
g App & P

By, 2
_po= 4 ( l) + y-1 {QE'_)
° 3 BXl p2Zpr Bxl

2

32 I’% ulz _}._Y:_.]:.__prz)
Bx12 02c?pr

1
- Su
(31)
The time-average of (31) is the mean rate of acoustic energy dissipationm,
per unit volume, at any point in the fluid.

This result differs from that obtained by the entropy-production

approach, equation (9), since the latter gives only the space-average

dissipation and the 32/8x12 term does not appear. For weakly-atEQHUQEEd
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waves, the two approaches give the same total dissipation of acoustic
energy over a region large compared with the acoustic wavelengths in-
volved, Finally, for weakly-attenuated progressive waves the 82/8x12
term in (31) is zero in the present approximation, and only the first

term remains - c¢f. Lighthill [181.

2.3 COMPARISONS WITH PREVIQUS WORK

Acoustic-energy equations of the same form as (23) have been
developed by several authors, using various expressions for the energy
density E* and energy flux components Ni*. In some cases the short-
time averages <E*> = D and <Ni*> = Ii are used to formulate a mean
acoustic energy equation, on the understanding that any change in these
quantities over a typical fluctuation period is negligible.

It is convenient to review this earlier work under three headings,
in order of increasing generality. Section 2.3.1 covers classical
acoustics, where sound waves travel through a uniform medium at rest.
Section 2.3.2 progresses to geometric acoustics, where gradual variations
in the medium are permitted. Section 2.3.3 deals with small disturbances
in a general nonuniform flow. Where approériate, comparisons are made

with the results developed in this paper.

2.3.1 (Classical acoustics

For small perturbations in a fluid otherwise at rest - the situation
of classical acoustics - it has been usual to regard the acoustic energy
equation as a direct result of the conservation of energy. The difficulties
associated with this view have already been discussed in the introduction.

Bergmann [7] and Blokhintsev [?1, on the other hand, use the
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linearized equations of motion to derive the classical acoustic-energy
equation for an inviscid, nonconducting fluid. The energy density and

flux are

¥ = 3 (32)

L] P

2y 42 4 L 7] % = 1
(1/¢pc?) p +2pvj . NF=pv,

the production rate P is zero to second order under these conditions

(see section 3 of &{h Energy and energy flow in Acoustics). Bergmann's
analysis furthermore shows that density (or entropy) gradients leave the
acoustic-energy balance unaffected in a stationary medium, in agreement
with equation (26).

Schoch ]}] likewise shows that this classical result - while not a
complete expression of energy conservation in the fluid - provides a
valid second-order relationship between the quantities of linear acoustics.
While it is convenient, and traditional, to use the names Macoustic-
energy density' and "acoustic-energy flux" for the quantitive E¥* and Nf
given by equation (32), Schoch makes it clear that a true statement of
energy conservation would have to contain additional terms to be accurate

to second ocrder.

2.3.2 Geometric acoustics

The theory of geometric acoustics applies only in media whose state
changes little over one wavelength, and is based on the assumption of
quasi plane-wave propagation at any point in the sound field.

Within this approximation, Blokhintsev [B, section 7] derives a

time-averaged acoustic-energy equation in which the mean energy density
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T .
D and acoustic intensity I are (in the present notation)

)
I

(l/PCZ)(1+Vn/c)<p'2> )
(33)

i
il

(1+VH/C){@p'E> + (V/ee?)<pr?>}

the production term is zero to second order, as in the classical-
acoustics case. Here, Vn is the flow velocity component normal to
the local wavefronts; note that the concept of a wavefront direction
applies only under quasi plane-wave conditions.

The velocity fluctuation y is related to p', in geometric acoustics,

by

pecu =p' , U 7 0 , (34)

(where n and t denote normal and tangential components referred to a
wavefront). This fact allows Blokhintsev's expressions, equation (33),

to be rearranged in several different ways. One such arrangement is
2 n n 2 n ?
= ' + 2 r2s 4 2ept + <y 2
1 <p'u > (Vn/pc J<pte> (Vn/c) <p'u > an u >,
= 2 12 2 )
I (Vt/pc Y<pte> + (VtVn/c J<p u > . (35)

t

A comparison of equation (35) with (24) and (25) shows that

Blokhintsev's D and Ii are time averages of the quantities E* and Nf

.1.

The mean flow makes it necessary to specify the irrotational velocity
fluctuation u, in equation (33); this ensures that the vorticity mode
does not contribute to the acoustic intensity defined above.
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defined in Section 2.2.2. In other words, the mean energy density
and intensity of geometric acoustics are obtainable from the analysis

of that section as a special case.

2.3.3 General nonuniform flow

Apart from the work of Cantrell and Hart (outlined in Section
2.1.3), which is restricted to irrotational, uniform-entropy flows,
the acoustic energy concept has previously been limited to geometric
and classical acoustics. In view of this limitation, Ribner [?01
proposed that equations (33) for mean energy density and intensity
be carried over from geometric acoustics to the general situation.
There is no reason to suppose, however, that the mean production rate
would vanish in the resulting acoustic energy balance. Moreover, it
is not clear how Vn would be interpreted.

Although the use of acoustic energy in moving media has generally
involved a restriction to geometric acoustics, omne exception'occurs in
an earlier paper by Ribner [17]. By limiting the mean flow to a
uniform stream Ribner derived an expression that gave the cross-stream
component of the mean energy flux to second order, without requiring
second-order solutions of the equations of motion. No assumptions
were made about the structure of the sound field.

If vorticity fluctuations are excluded, the mean energy flux found in

this case by Ribner coincides with the acoustic intensity given in

*Hayes' generalization [19] of Blokhintsev's acoustic energy equation,
for a moving medium whose undisturbed motion varies slowly with time,
follows in the same way 1f D, Ii are defined as short-time averages.
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Section 2.2.2. In general, however, the approach which starts from
an overall energy balance and seeks to extract an acoustic-energy
balance does not lead to useful results.

Examples of the latter approach are provided by Ryshov and Shefter
[21] and Guiraud [22]. Without restricting the flow any more than is
done in Section 2.2.2 of the present analysis (except to omit the
diffusion terms Rj’ S), they arrived at a form of second-~order energy-~-
balance eqﬁation; Their energy-flux term, for example, takes the

form

1 2 2 1 2
*: —— —
Ly p’vi + Vi [2 (1/0c“) p? +'2 pvj , (36)

which has a certain intuitive appeal; for, if the first term is
interpreted as the flux of energy relative to the fluid, then the
second term appears to represent the convected energy density (potential
plus kinetic).

The difficulty with this type of equation is the production term
in the energy balance. Included in the energy production rate, for

instance, are terms like

v |
0 =3 v.v
9 i

1

which wvanish only where the mean velocity is uniform.+ The approach
of Section 2.2.2, on the other hand, leads to an energy production rate
that vanishes (apart from diffusion effects) wherever the flow is

irrotational and of uniform specific entropy.

+In the papers mentioned I?l, 22] this was no disadvantage, since the
energy balance was used only within the framework of geometric
acoustics, where flow gradients are assumed small.
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Finally, it is necessary to point out that Pridmore-Brown's
calculation [}3] of streamwise energy Flux in a one-dimensional flow
omits certain second-order terms (as Cantrell and Hart ]P] have
shown). What the calculation does, in effect, is to derive a mean
acoustic energy balance equation in which the intensity is given by
the time-average of (36):; but as with all equations of this type, it
is incorrect to identify the intensity with the local mean energy flux
(or its increase due to the acoustic perturbation) except in special

clircumstances.

2.4 CONCLUSIONS

(a) The concept of acoustic energy is extended to nonuniform fluid
flows. Acoustic energy density and energy flux are defined for
this purpose by equations (24) and (25).

(b) An important consequence of this definition is that in an irrotatiomal
uniform-entropy flow, there is no production or dissipation of
acoustic energy (apart from molecular diffusion effects such as
viscosity).

(¢) 1In general the resulting energy balance equation exhibits acoustic
energy production within the flow, at a rate given by equation (26).

(d) The acéustic energy equations used in classical and geometric
acoustics appear as special cases of the general acoustic energy

balance given in section 2.2.2.
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(e) Although there are other ways of generalizing Rayleigh's classical

(£)

definition of acoustic energy (equation 32) to moving media, the
present approach - based on the work of Cantrell and Hart - has the
advantage of leading to conclusion (b).

The acoustic energy balance can be expressed in spectral density
form by the standard procedure of inserting a variable time delay

in the analysis.
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CHAPTER 3

SECOND-ORDER ANALYSIS OF SOUND S5QURCES

In the previous chapter the concept of acoustic energy was
generalized for use in compressible flows, the aim being to identify
the sound power associated with a specified sound field in a moving
medium, The question of how the sound field is generated is taken up
in this chapter.

The analysis follows Lighthill [24] in representing the fluid
density field - or in this case the pressure perturbation - as a
linear sound field in a uniform fluid, free from viscosity and heat
conduction. The main differences are:

(1) The idealized reference fluid is here taken as moving with a
uniform steady velocity ?, whereas Lighthill's acoustic analogy refers
to a uniform fluid at rest. In this way the reference fluid is
identified as closely as possible with the actual mean flow without the
need for moving axis transformations. The advantage becomes apparent
in Chapter 4 when ducted flows with fixed boundary conditions are con-
gsidered.

(2) The equivalent acoustic source terms are found to second order by
expanding the equations of motion about the unperturbed reference fiow,
as was done by Chu and Kovasznay 114]. This process leads to explicit
expressions for other second-order sources besides the vivj interaction

on which Lighthillt's analysis focuses.
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(3) Nonlinear interactions between external sources and flow perturba-
tions are included among the second-order source terms studied.
The final aim is an acoustic wave equation for the dimensionless

pressure perturbation, p* = (p—po)/Pocoz, of the form

L(p*) = Q (1)

where L is the convected wave operator (f)let2 - cozvz). The left-
hand side is linear with constant coefficients, so if Q is given the
equation can be solved analytically; Chapter 4, which concludes the
part of the thesis concerned with general theory, studies the solution

of (1) for sources contained in ducts.

3.1 EQUATIONS OF MOTION WITH EXTERNAL SOURCES

The inclusion of external sources in the flow model has three uses.
First, it provides a physical interpretation of the acoustic source
terms due to fluid motion; Chu and Kovasznay discuss this aspect in
detail, and it will not be pursued further here. Second, there may
actually be body forces (for example) acting on the fluid, which are
represented by external source terms in the equations of motion. Third,
the flow may include regions in which the equations of motion used else-
where do not apply (for exampbe, foreign bodies or boundary layers);
it is sometimes desirable to regard the equations as applicable through-
out ;hese regions, in which case their effect on the surrounding flow
can be modelled by means of source distributions. The source dis-
tributions are applied within each region in such a way as to match

the boundary conditions at the interface with the surrounding fluid.

28



Examples of the last application are Curle's theory of aerodynamic
sound in flows with fixed boundaries [?5], and Ffowes Williams! extension
to arbitrarily moving boundaries [26]. These theories permit, in
principle, the replacement of any shape or size of boundary by an equiva-
lent acoustic source distribution over the surface in question; equivalent
here means that the resulting density field cutside the boundaries is
identical to that in the actual flow.

With this type of application in mind (see Chapters 5 and 6), dis-

tributed sources are introduced as follows:

Volume displacement z (per unit volume)
External force field og (per unit volume)
Entropy input rate H {per unit volume)

Combinations of these three types of input can in principle produce any
desired modification of the flow field, since they influence the continuity,
momentum and energy equations of the fluid. In the analysis which
follows, =z, g and H are regarded as perturbations which have only a
first-order effect on the flow (i.e. the order of magnitude of any
perturbed quantity is unaltered.)

Introduction of the volume displacement z leads to a two-fluid
continuum model, in which unit volume of space contains mass p(l-z)
of the real fluid. The dynamics of the fictitious fluid occupying
the displaced volume are of no interest; it is simply necessary to

specify continuity of pressure with the surrounding real fluid (here

assumed inviscid and nonconducting).
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The equations of motion of the real fluid are conveniently
formulated on a mass basis, by considering the volume, momentum and
energy of a fluid mass element. The volume occupied per unit mass

of real fluid is l/[p(1~z)}, so the equations per unit mass are:

v

- p 1 1 Moo ola o, a
> 1 °p_
(momentum) 5= = o(1-2) (~ axj + Ogj] 5 (3
epV g.V
D oy _ -1 PYy D =z ., %3, TH
2. 1 Sy S 2
(energy) o (e + 2Vj ) 5 (1-2) 3Xi Tp Dt o(1-2) + 1-2z + o(l-z) °

(4)
The energy eqﬁation has been included explicitly, to show how the input
terms affect the energy balance. The terms on the right-hand side of
(4) account for, respectively, (i) the energy input to the fluid element
via stresses on the external boundary; {(ii) the energy input due to
expansion of the displaced volume within the element; (iii) the work
done by external forces pgj per unit volume acting on the fluid element;
(iv) the energy input as heat, TH per unit volume.

Equations (2) through (4) may be rearranged as follows:

Ds _. H .
Dt o(l-z) °’ (5)
av . ]
Dt s Dt p Dt Bxi i-z Dt o
DV. .
i__ -1 3p &5 7)

Dt o (1-%) ij * 1-z
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These equations provide the basis of the present analysis. The next
stage is to comsider perturbations about a uniform mean flow, with the

aim of finding an equation for p* in terms of other quantities.

3.2 SECOND-ORDER INTERACTIONS AS A SOURCE OF SOUND

In a uniform flow, perturbations im vorticity (turbulence), entropy
(hot spots) and pressure (sound) are to a certain extent propagated
independently [14]. The only coupling, in fact, arises from viscosity
and heat conduction (here neglected) and from second-order interactions.

Of interest here are pressure perturbations due to nonlinear inter-
actions among the following first-order flow disturbances: velocity
(vi =V, - ?i), entropy (s' = s - so), pressure (p' = p - po) and the
external source terms 2z, g. Any pair of these quantities is regarded
as a possible source of sound, except that second-order products of the
external source terms are not considered .

With this simplification, the divergence of (7) is subtracted from
D/Dt (6) to give a wave-type equation for the case H = 0.

DZp 1 a2 Yy Dpy 1 98 3p
8P > o(l-z) > ox, dx, epp (Dt) T p(l-z) 5x, °x
Dt Ix, j i i

1 3z 9p ]
+ = + - .
p 9x, 9%, (8)
J J
The source term Q in (1) is found by noting that the above
equation reduces to L(p#*) = 0, in the idealized case of infinitesimal

perturbations to a uniform, steady, source-free flow. Equation (8)

TThe_entropy input H is omitted for simpliéity,aﬁﬂthis stage, since it
is not required in subsequent chapters.  The corresponding acoustic
source terms are:guoted faorscompleteness-at the end of the chapter.
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is therefore expanded in terms of (p', s', v, 2, g), and all terms other

than L(p*) taken over to the right-hand side. Two further approx-

imations are made at this stage:

(a) Source terms which contain the pressure perturbation (either
explicitly or in the form avilaxi) are approximated to second
order in perturbed quantities.

(b) Source terms which explicitly involve z or g are also approx-
imated to second order.

These approximations affect all the terms in (8) except nglaxj and

t
(3Vi/3xj)(3Vj/3xi). They lead to the following result for the source

term in (1)..

-2 a- |-
. O I
A Grem 7 o5 o (9)

where I represents a series of second-order interaction terms.

azviv. 5 52 ]32
I=—=2-l .%o +02) =— (p'p') - (8__+ 686 ) =— (p's')
axiaxj PP ° n2 ps P s'o .2

8g.

85' 8 ! :D2 D2 3

~(8 /o) =—Ea T (prz) + 8 —— (s'2) - 8 —(p'g.)- 8 _ s'—
s’ "o ij 8xj PO 542 S0 .2 po ij ] 50 ij

-

(10)

Since turbulent velocity fluctuations occur independently, to first

order, of p! and s', the only source term in (10) which involves turbulent

iTheranalysis makes use of the linearized equations corresponding to (5),
(6) and (7).
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velocities is azvivj/axiaxj. This result justifies Lighthill's
treatment of jet noise at high subsonic Mach numbers, in which sound
radiation is attributed to a quadrupole distribution vivj in a fluid
at rest.

On the other hand, turbulent velocities in the presence of solid

surfaces - e.g. blades - can give rise to fluctuating forces and hence

to sound radiation, as shown by the agjlaxj term.
The thermodynamic derivatives occurring in the equations above are

given for a perfect gas with constant specific~heat ratio vy by

p 2 TP s P

(11)

5 8
PP 2 bs
as shown in Appendix I.

3.3 ANALYSTIS OF THE ACOUSTIC SOQURCE DISTRIBUTION

The source distribution Q given by (9) may be rearranged in the

form

3Q,  94Q, .
Q=ql®) o Eg L , (12)

9x . ix. 9% .
i i3

where Q(o) i5 a distribution of monopole order, BQiIBXi is of dipole
order and 32Qij/3x13xj is of quadrupole order. Explicit recognition
of the different orders of source distribution is required in Chapter 4,
where the basic solution of the wave equation is given in terms of an

actuator-disk source region whose thickness tends to zero.
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The following values of Q(o)

s Qi’ Qij are obtained from equations
(9) to (12) for the case of a perfect gas with Y constant. As in
Chapter 2, the irrotational velocity perturbation y is defined by

U““‘Y-'Tf-

2 2 2 1
o0 =222 12y L ey - @)

- T By
‘at2 0c? 92 p a2 Cp Yox, i
-1 92 32 3Zg1
+y L2 iy + L2 (s1pr) - 5%5 —pr , (13)
p2e™ Be? C_pc? at? p 8x, 2
p 1
. - Oz Vi 3 Vi 3
= — - — s t ——— e 5~
Q 2V, 57 - 2~ 5 (p'e) T 257 g (s72)
pc p
1 1
pe p
\ v
1 1
- (v-1) 214 g..E. (p'p') - 2 —= _g_t_ (s'p') - 1. (%f?" p')
pec G pc? G o i
P p
(14)
o V.V, V.V,
Q.. év.v.zl +______.l (plz) T (Slz)
ij i3 2 ¢
oc P
(AR IAS
+ (eow,) 4 2(uw,) F (ugu,) + E(y-1) ==L (prpr) + -1 (s'pr). (15)
ij 177 i7] 02ch ¢ pc?
P

These are accurate to second order, within the limitations noted.
Equations (13) to (15) are used to identify sources of turbomachinery

noise in Chapter 5.
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3.4 SOUND SOURCES ASSOCTATED WITH THE ENTROPY INPUT H

If the above analysis is repeated with H # 0, additional acoustic

source terms are found as follows. A linear term

] = -
Q= _E_i Dy , = DHéD; (perfect gas, Y const.) (16)
D )0 Dt pO P

describes the generation of sound by the direct heating effect; a

set of second-order terms,

]

%, Bpt 1 5 sy 9
= o(B8) By _ 2162 +9 2 (sm) + [B) S
Q 2( p ] Dt i ) ( s + ss) Dt (s'H) (p ) 3%, (ViH) :
o o i
. 1 .2 @' v, 1D ., 3
Cop {Dcz [Dt H] - o ot (s'H) + 3;; (viH)} (perfect gas,Y const.)

(17)

describes the generation of sound by interaction between the entropy
input H and the (independent) flow perturbations p', s', v. Equations
(16) and (17) involve exactly the same approximations as (9) and (10);

they are included here for completeness, but are not used in subsequent

chapters.

3.5 CONCLUSIONS

A convected wave equation is derived for the pressure, in a uniform
steady flow with superimposed perturbations in pressure, specific entropy
and velocity. Additional perturbations arise from external sources of

volume, momentum and entropy. The resulting source terms in the wave
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equation are evaluated to second order in the perturbations, neglecting
molecular diffusion effects and second-order interactions among the

external forcing terms.

36



CHAPTER 4
- _© "SOUND TRANSMISSION AND GENERATION IN DUCTS

The sim of this chapter is toprovide a theoretical framework for estimating
the sound power oubtput of ducted gources. The theory hasg been developed for
application to turbomachinery nolse sources in aircraft turbofan engines; it is
presented here in general terms, however, since the results obtained are valid
for any type of acoustic source whose environment may be represented one-
dimensionally, as a uniform duect with specified end conditioms.

The present chaperis an extension of earlier work by the author [27]
which considered sound generation in the absence of flow. Emphasis 18 placed
on the effects of axial flow on the transmission and generation of a single
duct mode; the model adopted for this purpose consists of a uniform straight
duct of arbitrary cross section, with rigid impervious walls, containing &
mwiform flow. In the particular case where the duct sectlon is axisymmetric,
swirl effects are modelled by & uniform solid-body rotation of the flow.

Additional assumptions made in the analysis are that the fluid ig
inviscid and non—conducting, and that relative density changes due to pressure
fluctuations are small. This last requirement may be expressed as
p* = p'/pocog“<< 1 (1)

" it implies that linearized theory may be used as a first approximation in
deseribing the unsteady pressure fleld.

A typical solution for p' is therefore studied in the single-frequency,
single-mode form

ik x - wt
e V' x

p' = Re(P) ; P =4y ) B, (¥) (2)

which has the advantage that separate factors express the dependence of the

complex pressure P on time (t), axial position (x) and transverse position (X)-
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Any pressure distribution p‘(x,t) over the duct cross—~section may be duillt
up by superposition of distributions of this type; section 4.1 considers the
transmission along the duct of a single modal component as given by (2).

The question of sound generation is taken up in section 4.2 and a
general solution for the pressure field is given in terms of axial moments
of the source distribution. This is a generalizsbtion of an approach used by
Mani [?2§] in a paper on axial flow fan noise generated by unsteady blade forces.

The -chapterconcludes with an application of the theory to a three-

dimensional version of Mani's problem, and an outline of an alternative

approach which can be applied to sources situated at a mean-flow discontinuity.
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4.1 TRANSMISSION OF FORWARD AND REFLECTED WAVES

Under the conditions described above, the propagation of gound in a

reglon free from sources is governed by the linear convected wave eguation:

Lp* = 0, (3)

vhere L = { %E-+ i ' V)2 -c 2 ve is the convected wave operator.

For uniform axial flow along a duct, the mean velocity i = (

COMX, Os O)
with ¢ s M constant.
o’ Tx

Substitution of equation (2) for the pressure field gives the following

equation for the axial wavenumber kx corresponding to a single mode and
frequency:

Q 2 W 2 2 2
(—c—) -2Mx(g—)kx-(1—Mx)kX=kN,(N=o,1,2etc.), (L)
C Q

Here the kN are a set of discrete values characteristic of the duct section,

such that the corresponding functions E

N given by
P 2
v + =
(vi ke ) By 0 (5)
also meet the wall boundary conditions.

It follows from equation (k) that

kx = to - MX ) = k=

- - [}

1 M2 co X
X
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4.%,1. The cut—off condition

Equation (6) shows that the axial wavenumber of any nodel may be
either real or complex, depending on whether the frequency is above or

below the cut—off value given by

=

o= -0 )E

LN x (1)
For real values of & (i.e. above cutoff), it is worth noting that the +
and - signs: in equation (6) do not necessarily correspond to positive and
negative phase velocities in the x direction. What they do correspond to,
as will be shown below, is the direction of energy transmission along the
duct.

4,1.2 Forward and roflected wave combinations

When wave systems in the same mode travel in both directions along a
duct, the associabed sound pressures in the forward (k; ) and reflected

(k; )} waves may be written as

o
1l

. +
A (3) et (kx x -ut) ,
PT o g () otUEE -t ) (8)

. o=t . . .
The complex ratio P B is ealled the reflection factor; its value at any

"

axial position x is given by

PT = B i(k -k ) x
P+ Ae X X
= B exp (—“——e—ili&kﬁ)
A x (x = w/e,), (9)

Footnote: Other than the plane-wave mode, for which kN =0,
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If the reflection phase ¥ (x) is defined by:

P 21y B - 2iy
= Te 5 o e o |, (10)
then egquation (9) gives
_ _ % kx
Vo= l’bo 1-M 2 (11)
pd

Finally, the resultant sound pressure at any position can be conveniently

expressed in terms of ¥ as T
. - Mk .
P = (P +%® ) = 28 expi( ¢O - IoE - @) cos P (12)
- .

£.1.3 Axial admittance of duct modes

The axial velocities U+, U corresponding to the forward and reflected

waves are found from the linearized momentum equation:

P+ o —M P o+ M

+ _ . X - _ - X
U= o T - U= S T, (13)
o0 x 0 o x

It is useful to express the axial velocity U (=U+ + U ) in terms of the
modal pressure P at the same point. The complex ratio U/P is the modal

sdmittence in the axial direction, and is independent of position y in the

duct cross-section.

+ Footuote: Compare the zero-flow result in [1], equation (3.3)
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In non-dimensional form, the modal admittance ratio B (x) is given by

- -ia(1l - M2) tan ¢ - MX(l - ag)
B = p ¢ — = =S . (1h)
P 2 2
1L -0 Mx

as follows from equations (10) and (13) above. Once § is known at any position

in the duct, its value at other positions can be calculated using equation (1h4).

&.1.%4 Sound power transmitied along the duct

In calculating the sound power transmitted by the modal pressure field
described above, it is necessary to take account of the mean flow in the duct.
A generalized definition of acoustic intensity, which preserves the continuity
property of sound power in any flow which is isentropic and jrrotational, is

given in Chapter 2:

1 1 1 J -
L= < S . <pipt> + e <nTy.> L <Ly
Il P vl " p'p - Z D VJ +p o VJ VlVJ . (15)

0

Tn the present case ;{gi} = (COMX, 0, 0); and the pressure and axial-

velocity fluctuations are expressed in complex form as p' = Re(P), v, = Re(U},

with U and P related by equation (14) for a single mode. It follows that

the modal acoustic intensity in the axial direction is

2
o= AEE Taemessu (alsl®)] (16)
(&3]

The total sound power 1g found by integrating-IX over the duct cross-—

gsection 8. For this purpose the modal pressure P is written as:
- ) - t
P(x, ys 8) = P () B (g) e an
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and the mode shape functions are understood to be normalized so that

% s (§' =0N)
E_, das{y} = (18)
o By By X

o (N*#N) .,

This gives the sound power W in a single mode, in terms of the modal

pressure amplitude D

=2
W o= s [p[* [(1+M}2C)Re6 + Mx(l+|812)] . (19)

2P 5%

The power in different modes at the same frequency can be added,

because of the orthogonality of the mode shape functions.+

4,1.5 Energy transmission coefficient

Above the mode cut—off frequency, the sound power W transmitted along
the duct is simply the difference, (W+ - W_), between the forward- and
packward-transmitted sound powers associated with the separate wave systems
P+, P . Tt is convenient to define an energy transmission coefficient g
as the ratic between the actual and forward-wave sound powers, or intensities,

under these conditions:

Wo= i 3 I = qI:;, (sbove cut-off) , (20)

The forward and backwsrd-wave intensities at any frequency fodlow from

equations (13) and (19). These give

T Footnote: This no longer applies if the eigenvalues k§ are complex,
as cccurs with non-rigid duct walls.
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+ |Pi|2 i- M:zc 2
I; =t 5T ( T ) {above cut-off;oreal)
[93NN»] X . : (
21)
+ . .
I, = 0 (below cut—offjaimaginary

+ ..
Clearly the P wave system corresponds above cubt—off to energy transmission
in the +x direction, and the P system to cnergy transmission in the =x
direction. This distinction applies at all frequencies for which o is real.

The combined intensity in gemeral is given by:

>
+,2 1 - M2

_ [P ] b
I, = 290 c_ la] 2 Tl ' (22)

The modulus signs in equation (22) generalize the definition of g to cover
the whole freguency range above and helow cut=-off, although equation (20}
and the physical interpretation in terms of forward-wave intensity are
valid oniy above cut-off.

The value of q ab eny position in the duct U may be related to the
reflection phase y (= £ + in ) at the same position, by comparing equations
(16) and (22). With the aid of equations (10) and (il4), it now follows that:

above cut~off

-2n
= 2 2 . .
q = [ {1 +a7) sh: + 20 M_ch: ]

' 2
(1 + mMﬁ)

2
I_2 1 aMk (23)

T
X

where r = e-2n is the modal reflection coefficient;

i Footnote: In comparing the results of this section with equations
{3.9) and (3.10) of reference?7, it should be noted
that. the transmission coefficient T defined in [?7
corresponds to q at x = 0. Below the cut—off frequency,

g (x) # a(0).
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below cut—off

g = 2g 2N - [ —Ia[% f'Mf{) s =~ 2 |:dlMXc: J. (24)
i +|a1 Mi

In the expressions above

sin 2

H

ginh 2n 83

sh:
(25)

cos 2&

ch: cosh 20 c:

Compariscns of equations (23) and (24) shows that whereas the energy
transmission coefficient g above cut=off is independent of x = n being
constant in this case, as follows from (11) = the same is not true below

cut=cff. Equation (11) then gives n = n, T ile|k=x/{(1 - Mi), so that:

:

alz) = q(0) exp (below cut=-off) . (26)

N

l_

However, the intensity Ix in either case is independent of x, as follows
from acoustic energy conservation.

In many cases of practical importance, the duct is terminated by an
open end, and it is useful to know the modal transmission coefficient of the
opening as a function of frequency and flow Mach number. In the high-
frequency limit — which means well above the cut-off frequency of the mode
concerned | 29] - q will spproach 1 for all subsonic Mach numbers (i.e. r> 0).

Information is lacking on the behaviour of q with Mﬁ at lower frequencies

1..

around cut—off and below.

+ Footnote: Carrier [30°] nas constructed a theoretical model in which the
duct iz surrounded by a uniform flow at the sasme Mach number as
inside. His results for transmission of an incident plane wave
out through a circular opening may be stated in terms of the
zero~flow transmission coefficient q' at a frequency (1-M 2)
times higher than the actual frequency: x

1-M 2 LM

o . o o X x (M >0, outlet),
q=q (MX< 0, duct inlet); g = g 3 +M&) +(1+Mx)d

-1
2

Quslitstive support for these predictions is provided by Mechel,
Schilz and Dietz Bﬂ whe report measurements of the plane~wave
reflection fector (and hence q) for a baffled circular opening in
the frequency range 0 <ka < 1.5. Except in the low frequency
limit, the measurenments sRow somewhat larger effects due to
flow than are predicted.
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The problem is complicated by the coupling betwean modes which occurs at
an opening, although in practice this can often be neglected [2?].

For the frequency range above cut—off, working hypotheses - as to the
flow dependence of g are put forward in section 4.2;3.

4.1.6 Relation between transmisgion coefficient ané admittance ratio

In scme cases it may be possible to estimate the modal admittance
ratio B at a given cross-—-section, and it is then useful to have an explicit
expression for ¢ in terms of B. Such an expression can be foun 4 from

(14), (23) and (24) with the sid of the relations:

tan 2 &

]

o Re (o2WWy =X

1-x2 v? Q12 e (27)

n

where X + iY=tan (£ + in ). The result, for frequencies above or

below cut—off,is:

_ bl (0 + M) (1L +ol) +Ms 2
1T : = = ng : (8=c+i¢). (28)

[{a + MK) + p{1 + aMX)

In the high-frequency limit o+ 1, o+l and ¢+ 0, so g+ 1 as
expected. Another check is provided by the zero—-flow case, for which

{28) gives

g (M =0) = bk |alo

o +8]°

This sgrees with eguation (3.10) of [ 27].
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4.2 SOUND GENERATION IN DUCTS

The duct-mode approach developed in the previous section is applied
below to describe the excitastion of sound by source distributions inside
a duct. Provided the mean flow is uniform as previously, the linear wave
equation (3) still applies with the addition of a source term Q (%) or the
right-=haend side; @ is of second order in fluctuating guantities, except in
regions where external sources are applied (e.g. volume displacement,
applied forces [:32]).

The resulting inhomogenecus wave equation may be written formally as:

2
Ip¥ = Q = Ql®) - 5% 4 2 i - ... i (30)
% . 9%. 9x.
1 1773
The inclusiorn of speeifically higher—order scurce distributicns
BQi agQij ete, is a reminder that these distributions require special
s I
X . 3%X.9X.
i 1777

treatment, if the source region is to be approximated as compact in terms
of the sound wavelength.

4.2,1 Actuator-disk source representation

The following analysis considers the excitation of sound by source
distributions which are acoustically compact in the x direction. Such
distributions may be represented as area source-distributions over the

duct cross—section; thus:

(o) _ _(o)
Q% = §'° §(x - XS) (31)

.f.

is a volume source-distribution of monopole order' confined to the duct

cross section x = X and similarly

+ Footnote: In the sense of having zero dipole and higher-order moments
in the x directicn.
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Q= s &6(x =x.), Qe = Sy §{x - xS) (32)

represent the axial componenits of dipole= and quadrupole—type distributions

in the actuator-disk limit. These area distributions s(o), 8.5 Sy, MY in

fact be interpreted as the successive axial moments of the corresponding

volume source distribution § (ef. [ 33_] Sec.1.5):

3 X2Q dx. (33)

w0
i
&£
3
w
10!
It
ol
&
3
42}
il
ol

Once g solutlon has Dbeen found for the sound field set up in a uniform

(o)

duct by an s source distribution, the solutions for higher—order axial

moments follow by differentiation I?7,34,35‘].The- immediate aim of the

(o)

analysis is therefore to find the basic s gsolution. A method applied
by Mani [28;] to a similar problem is adopted here, in which the jumps
in p* and 3p¥/0x across the source plane are related to the source

distribution through eguation (1).

4.42,2 Single=freguency modal response function

(o)

(o)

The first step is to replace s vy a complex source amplitude 8

(proportional to e_lwt), whose spatial variation over the duct cross-—

section corresponds to one of the normal modes of the cross—section. The

(o}

coupling between S5 and the sound pressure P in the same mode then turns
out to have a particulaerly simple form, namely:
p) = 59 olex) (34)
Ir order to find the single-frequency modal response function G,

equation (30) is integrated twice in the x direction through the source

plane, with Q given by (31): thus
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The dominant terms in LP are those involving the axial gradients 8P/8x
and. 82P/3x2, since the scurce plane represents a discontinuity in the

sound field. Eguation (35) therefore reduces to:
. T+ AP 9+ _ (o) +
&M%EP]_ (1—1@)[3X o =5 Led. = o, (36)

. + . .
where the nctation [ ]_ denctes the jump in value from x_ = to xs+.
The sxial pressure gradient on either side of the source plane follows
from equation (12) as:
P o iM &k
( )

— = P tan ¢ = X

K
. l‘Mi 1-1F
%

H (37)

_!_
different values of ¥ ( =w; - akx) apply on the two sides ( x < xs), 50

the Jump in pressure gradient is:

aP + a k + -
[‘"— _ =P (tan ¢ - tan ¢ ), (38)
dx = l_Mi s s

Here PS is written for the pressure at the source plane, which is the same
at x_~ and x_+ by virtue of equation (36).

Combining (36) and (38) gives:

P = 9 + — ) (39)
ak (tan b, = tan ws) _
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and the mode response functicn at the source plane feollows from

equation {34):

+ - i k 1 - M2
G (x., %) = =p fok (ban v* = tan 97) =P/ ) T (40)
s? Tg o) 8 8 .
8 - 1 = Zy2)
+ - o x
The value of G (x, xs) for any field point x in the duct can be found by
using equastion (12) for the axial pressure variation. The final result,
for the +x side of the source plane, is:
¢ (x, xs) = Po 1 cos ¥¥ exp iM k (xq=x) (x > x )
k + - + ’ s’
o -
tan ¢S tan ¢S cos ¢S 1 - Mi
(41)

Equation (hl) gives the response, in any duct mode, to a single-
frequency source distribution in that mode. The duct pressure field may
therefore be ealculated for an arbitrary source distribution over the
duct cross—section by superposition of different modes and frequencies.

In addition, the sound field due to a source distribution of Tinite extent
in the x direction may be found by summing the effects of elemental area
distributions spread along the duct [:36_].

The response to the higher—order source moments Sx’ Sxx - again
confined to a single mode and frequency — may be expressed in terms of

equivalent zero~order moments defined as follows [35 Appendix II ].

o
]

o¢ gl (L2)

w
A

1
|
[9)]

il
][]

[« 3]

w M
g‘ém

+ Footnote The expression in terms of the modal admittance ratios
B+ , derived from equatlon (14), permits comparison with
the zero—flow result given in reference 27, section 6.2,
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Further discussion of dipole and guadrupole excitation is deferred to
seetion 4.3 which also considers a parbicular application of the above

results in detail.

4.2.3 Special case: 1o reflected waves on -x side of source plane
This situation corresponds to case {b) of reference 27, section 6;
it would occur, for example, if the duect were of infinite length on the
-x side of the source, or (more reslistically) at freguencies well below
and above cut-off in an open-ended duct.
The vanishing of the reflected wave implies Im $ + == in equation
(41), and hence tan w; = =i. The mode response function on the +x side

thersefore beconmes:

G(x,xs) = 5 cos P . ell‘DS exp IMk(xg = %)
ak
1 -
x

: i
= o cos y. expi Gy, - By | Vs (x s x) (43)
ak l"M2
X
where the + superscript has been dropped from U ¢; and w; on the
understanding that from now on, all values of the reflection phase refer

to the region x ~ X

Equation (L43) gives:

@i

3G _ _.t . 1 3G _ _,he2 L
o T T 537 ) (x > x,) . (1)
Under the present conditions, therefore, axial dipole and gquadrupole

distributions Sx’ Sxx produce the same sound field in the region x > X,

. . . . . +
as simple=scurce distribubions -1k+S , -k )28 .
X X X XX
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The modal intensity in the +x direction can be caleculated by evaluating
equation (23) at the source plane. This requires a knowledge of the forward-

wave amplitude PZ excited at the source plane. For a simple-source

(o)

distribution 8 .

. s (o) Sl x) (15)
s oet¥s cos P 2e¥s gos ¢

in the present case with G given by equation (L3),

+
Ps = S(O) lpo .
20k (46)
The axial gound intensity corresponding to each of the source
distributions S(o), SX, Sxx is therefore related to the modal transmission
coefficient a4 at the source plane az follows:
a pcc 1l - M? 2
. _ 1 %s Yoo pd (0),2

simple source I = = [8*77] :

* 8 la| o | 1-om

e
axial—dipole source - M 2
7dip our I =1 EE. EE. o " ‘ 5| 5
-
8 [al c 1 - aM x
o) X
2 2 2
axial-quadrupole source L= 1 s ¥ P (o -M) 5 !2
8 |u! 03 (1 - Mi)(l - oM )} *x .
(L7)

These results give the sound intensity transmitted forward from the
source plane, i.e. into the region x > X, - They are valid (as the moduius
signs imply} for all frequencies above or below cut—off; the high-frequency
limiting ecase is of particular interest since it provides a rough
approximation to the whole frequency range above cut-off, where the

mode is able to radiate efficiently.
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High-frequency limit (a -+ 1} t

I 1q Fo% |S(o)12

>

2
(1+MX )
(48)

For higher-order modes, eguation (48} becomes valid at frequencies
well above cut=off, and under these conditions q.> 1 for an open-ended

duct. It follows that an S(O)

distribution, for example, radiates less
sound from the inlet than from the exit end, in the presence of a subsonic
mean flow.

At frequencies which are above cut-off, but not far enocugh above for
(48) to be valid, a rough estimate of the energy transmission coefficient
d for an open-ended duct may be obtained from either of the following

assumptions:

Assvmption (a) q, = o (%9)

This is an extrapolation from the zero-flow case. When M& = 0,
qo/u varies from hTo at cutroff (where T, = Re l/BO; cf. equation 29)
to 1 in the high-frequency limit, and may be approximated by 1 over the
whole range. The same approximetion is assumed to hold in the presence
of flow.
(50)

Assumption (b) BO =1

Calculations for the zero-flow case in[:zgj suggest that for high—
order modes at axisymmetric openings, tom 1 over the whole range above
cub=off. If the reactance of the opening is neglected equation (50) is

obtained, which when extrapolabed to the general case (MX # Q) gives:

from equation (28).

+ Footnote: TFor the plane-wave mode,a = 1 at all freguencies.
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It should pe emphasized that both these assumptions are speculative.
The main merit of eguations (49) and (51) is thabt they are correct in
the high-frequency limit, give plausible results gt cut-off and vary
monotonically in between. The main difference between the equations
is that (L49) implies T, = %. at cub-off, while (51) is based on the
assumptién T, = 1; the Tormer is perhaps therefore more suitable for
iow—order modes — cf. [29] - and the latter for high-order modes.

Neither is realistic for the plane-wave mode, but here Carrier's solution

gives some guidance (see Section 4.1.5.
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4,3 EXAMPLE: SOUND GENERATED BY A FLUCTUATING FORCE DISTRIBUTION

To illustrate the application of the foregoing theory, it 1s used
in the present section to calculate the sourd power generated in a duct
by a force distribution applied at one cross—section. Such a situation
has practical significance in connection with axial~flow fan noise,
as it provides a model of sound excitation by blade forces.

The calculation is preceded by a discussion of model anzlysis
tectnigues needed for the source moment distributions of section 4.2.1.

4.3.1 Modsl snalysis of axial source moments

The first step in the modal approach to sound gerneration is to
analyse the axial moments s(o), S0 Sy ete. of the volume source
distribution Q into normal-mode components. This is accomplished by the

usual process of multiplying by the conjugate mode function Eﬁ and

integrating over the duct cross—section; for example,

{o) _
500 = F sy (52)

where

]

s(o) EN J s(o) E¥ gs (53)
S

Although eguation (53) gives the modal components for any zeroth-—
(o)

moment distribution s , it is convenient to treast separately the special

(o)

cagses where s contains derivatives with respect to the transverse

co=ordinates v Area distributions of the form

-3 2
(o) 5; % 844 ete. (54)

s = s
3¥: dy.8Y,
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in fact arige from volume source distributions of the form

q =2 1 Ll ete. (55)

(o) }
as Tollows from the definition of the source moment s in equation {33).

Equation (53) gives the modal components corresponding to (5k4) as

2
3 R a B#
£ B | oo g B | N s, ese(56)
5 s Vi s g MRREAES

these results are cobtained on integrating by parts, and noting that the

distributions s. = 1Q. dx, s..
i i ij

crogss-section and wvanish outside. Exactly similar results apply to the

= EQ.j dx, etc., are confined to the duct
i

higher—order axial moments 8.3 Siyo ete. (cf. [;35:] , Appendix TI),

In the present application, a fluctuating force distribution
£ (X= t) per unit area is specified over the duct cross-section x = X, -
The axiel (x) and transverse (yi) components of f are denoted by fX, f..

1

The corresponding force distribution g rer unit mass therefore has
components:

gx = o} X S i

fi §(x - Xs), (57)

and the acoustic source distribution in equation (30) is:

- %, _ 3d&
Q = =divg = BXX 55% (58)
i

It follows from (57) and (58) that the axial moments of @ may

be written as:
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(o)

. d .
8 = é;f (fi/po) , (i.e, 55 fi/po)

* (59)

and 8 = fx/po .

(o)

The normal-mode compeonents of s and S, are then given by

equations such as (53) and (56).

4,3.2 Fguivalent source distribution for single-frequency excitation

If any higher-order source moment, for example B> is confined to s
single frequency and duct mode, the response function G can be used to
define sn equivalent zero—order source moment distribution {eguation L42).

Thus if fX in the pregent case is given by:

-3 Wt
£ = Re () ; F = et B, (@) (60)

as follows from equations (59) and (L42).

(x) (o)

The total Nth-mode excitation is represented by the suwm S + 3

of the axial and transverse contributions. Equations (56) and (59) show

(o)

that © is not related to the modal components of the transverse force

JE®
distribution itself, but rather to the modal components of (ig- N) .y

By oy~ 1

s0 to proceed further it is necessary ‘o specify the variation of fi over

the duet cross—-section.
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4.3.3 kxial and tangential forces in an axisymmetric duct

For an axisymmetric duct bounded by the cylinders r = a, (outer wall)

and r = a. (inner wall), the mode shape functions EN are hest expressed

1

in polar co-ordinates:

E_ (r6) = o0 R (z). (62)

The two mode numbers m and n replace the single index N used above; m is
the circumferential mode nimber, and n iz the radial order of the mode ™.

A force distribution with the following compcohnents is assumed to act
over the cross—gection x = x :

Axial force/unit area = £ ,2s given by (60) with By =E 5

Tangential force/unit area fe = (Eg-) an. (63)

o)

Physically,e is related to the angle 50 between the resultant force

(at r = ao) and the x direction by e = tan 60.

The corresponding eguivalent source distributions in the (m,n) mode

are given by (61) for the axizl contribution, and by:

for the tangential contribution. The latter follows from (56) on noting

that Fx is proportional to E o .

Equations (61) and (64) together give the total (m,n) mode excitation
for the particular force distribution assumed sbove., No restriction has so
far been placed on the modal admittances either side of the source; for
purposes of illustration it is now assumed that the duct on the -x side
provides a non-reflecting termination for the mode in guestion.

+ Footnote: The propertles of ax1 etrlc-duct modes are discussed
in detail in [37 l and .

58



The same assumpbion was shown in section 3.3 to give

3

on the 4x side of the scurce; so the combined source distribution becomes
(x) (o) _ . + me x
S + 8 = =i (kX + =) = (x > xs) . (66)

At this stage the problem is solved in principle, since the sound
field in the duct and the radisted sound power can be found by the methods
of segtions 2 and 3. It is of same interest, however, to work out the
sound power explicitly for the special case where the duct provides a
non~reflecting termination on both sides of the source; this ig a rough
approximation to the situation in an open—ended duct for frequencies above
eut=off., (Compare the slightly more sophisticated approximations discussed
in section 4..2.3).

4.3.4 Upstream and downstream sound power in a rotating mean flow

The preceding analysis has implicitly assumed the mean flow in the
duct to be axial. If there ig in addition a solid-body rotation, with a
peripheral Mach number Me = an/cO such that M§ << 1, this can
be allowed for according to Appendix II by treating &« as the radian
frequency relative to the swirl; i.e.

woo=w o -nl o, (67)

where w is the sbsolute radian freguency. The sound power expressions

a3s0 have to be multiplied by a factor

(from Appendix II) , (68)

PO s 8 3
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Putting q, =1 in equation (47) and using (66) gives the sound power

radiated to the +x side of the force distribution as:

W = 1 wo E.I._E (l—o},M)-g (&—M)+%'(1'M2)2 (69)
+ 8 w ap e x x kao X . 9

Here Fx is the normal-mode coefficient of the axial force distribution, so
that Fx = fXEmn(r,e). Eguation (69) shows that the modal power radiated

t0 the 4x side can be made to vanish by an appropriate choice of & (so that
the factor in brackets is zero). However, the same choice of & does not make
the power vanish on the other side of the source, because the expression

for W_ differs from W+ {(equation 69) by having =a in place of a .

The ratio of the sound powers on the two sides is

2

= 1 + ol (me/ka )(1F) +a - M
X Q X X

- ST x
- 1- aMi (me/kao)(l-Mi) - o= M ’

(70)

which tends to 1 in the high-frequency limit (cf. eguation 48). ' Gmparison
with Mani's two-dimensional result [28] shows agreement for the case

Mé = 0 {(no swirl), but there appears to be an error in Mani's analysis
for the sound intensity with swirl (cf.. ppendix II).
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4.4 JSE OF JUMP CONDITIONS FOR SQUND GENERATION AT A FLOW DISCONTINUITY

An alternative approach to finding the sound excited by a fluctuating force
distribution is to consider the jump conditions across the source plane.  If the
specific entropy of the fluid is the same on both sides, as assumed below, the
reamining jump conditions are determined by continuity of mass and momentum flow.

The following znalysis demonstrates the approach by using it to calculate
the gsound Field due to an axial fluctusting—force distribution in an axial mean
flow. This is a case already considered by the scurce-moment approach, which in
fact gives the same answer with less trouble. The advantage of the present method
is that it remains valid when there is a discontinuity. in the mean flow across the
actuator diskT, as well as in the fluctuating flow.

4.4.1 Linearized jump conditions

The jump conditions across an actuator disk normal to the duct axis are
obtained from continuity of mass and axial momentum across the disk in the x

directicn. Thus:
[w]l = o : (210 + w[v 10 = £, (72)

where m = pVX is the mass flux, and fX is the applied force ver unit disk
area in the x direction. These equations are next linearized and expressed in
phasor form, on the understanding that a single frequency and duct mecde are belng
considered; this means that fX is also restricted to a single mede. If the

mean flow is the same on both sides,

+ Footnote: The source—moment method no longer applies in this situation,
since the wave eguation on which it is based is not uniformly
valid through the disconuity. Mani's results using this approach
[:Qﬁﬂ are therefore valid only when the mean-flow discontinuity
vanishes.
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I+
o
—
—]

[A®]

+ +
w [ 217+ o [u + u,]l

and

+ .
(210 + ppe, M [Uu+u I = F . (73)

In equations (72) and (73}, the axial velocity U = BP/pocO
due to the acoustic mode is distinguished from the axial velccity U, induced

by vorticity in the flow. Even if the upstream flow is irrotational, vorticity

is produced downstream of the actuabtor disk by nonuniformities in the force
distribution fx'

An equation due to Berndt [39,eq,(ll)‘] gives the Jump in vortiecity due to
an arbitrary axial-force distribution fx,_based on consideration of the
transverse fluid momentum on the two sides of the disk. If £ is the vorticity,

[5 10 = & < CLWAD vm - g lellim) - Lgxvr). ()

t
Here pn 1s the unit vector in the axial direction (normal to the disk), and
; is the acceleration of a point moving with the transverse fluid velocity
i,
Xt ;3 thus
= - + + v y -

R (5% Twv) X (75)

If the mean flow is axial and uniform over the actuator disk, linearization

of the vorticity jump equation (Th4) gives:

o g
- (_EL;;_;L) %x at (76)

. 1- 1
[l = s *v 16 B 2y

where Pys P, are the densities on the -x and +x sideg of the discontinuity.
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Finally, if there is no discontinuity in the mean flow, Py = Py

and eguation (76} is simplified considerably. Expressed in phasor form in

the same way as equations (72) and (73), the vorticity jump is
(77)

+ . _ -1
[ % ]" - (9 c M
oo X

Bquations (72), (73) and (77) are the basic equabtions from which the

sound field is derived below; they apply only to a uniform axial flow which

is subjected to axial fluctuating forces. More general jump conditions msay

be obtained by returning to equations (T1) and (T4), although for non-axial

force distributions it is necessary to use Berndt's full equation for the

vorticity Jump.

4.4.2 Solubtion for the vorbticity field
agssociated with the vorticity 4 ig defined by

The velocity field Yo

{78)

div V = 0
Ny

& 3

url V
¢ oy

and may be represented by the curl of a vector potential:

Xv = curl k = V x k

¥
.

FEquations (78) and (79) give an equation for b

(div. b = 0 cf. [ 40], section 2.4)., (80)
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In the present case,

2
]
t ?
dx
. (81)
where
[ N
BXB c2 M2 3t2 J
0 X

sin ce the vorticity field consists of perturbations which are convected at the
mean Tlow velocity. If the solution is specialized to a single frequency
( 3/3t = -iw ) and duct mode ( Vi = —k; ), {80) and (81) combine to give

the phasor equation

2

( gmMg + k§ )R = %

cC

or, in terms of the axial wavenumber parameter (equation 6),

Bf{(l"M}e{) (_ci(_)_)2

R e (82)
o Tx

In order to eliminate the axial velocity U, from the jump eguations

(72) and (73), what is needed is an expression for the jump

o 1* = (v x[31D) (cf. equation 79) (83)

- X

in terms of the force distribubicn FX. Such an expression is provided by (77)

and (82), which give

[Iﬂ]+ = n xV_G
u - n, t
(84)
where ¢ F M (l-M?) &
o o= o0 X X X .
m2po 1l - agN?
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It follows from (83) and (8k4) that

2
+ 2 2 1l -
(v, ] = v, ¢ = -(9)° & —
s 1 - M
i.e. g M (1 - ug)
(v 1% = —% . 2 .
v o= N 1—a2M§ (85)

This is the required solution.

4.4.3 Solution for the pressure field

If the velocities U, U, are eliminsted from equetions (72) and (73),
by expressing the acoustic component U in terms of the admittance ratios
@_, ﬁ+ on the two sides of the actuator disk and using (85) for the vorticity.

component, the following result is obtained:

P; = —-]:MX(2—a2-—M}2C) + B, (l—mgMi)] ; .
2 b4 3
(1-2£) (3 -® i) (8, - 8))
FX.
P, - P = .
¥ - R (86)
X

Equation (86) éives the sound pressure on each side of the actuator disk. It

nay alternatively be written in terms of the reflection phase y for waves either
side, by using equation (14) to express 8 in terms of ¢ . For the special
case treated in section»§}zghwhere +there are no reflected waves on the -x side,

the pressure at any position on the +x side is given by the present method as
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> - e 2 —
P (x Xs) o F, cos b.exp i ( b7 o Mi

-

(87)

this agrees with the value (BG/‘c‘fo) Fx/po found by the method of section 4.2

(where Sx is given by Fx/po)'
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4.5 CONCLUSIONS

The theory of soundtransmission and generation in hard-walled ducts

has been extended to include axisl and swirling mean flow. Situations

previously considered by Davies and Ffowes Williams (sound generated by

turbulence in an infirnite duct of square cross—-section, Ref.41) and Mani

(fluctuating forces in a narrow annular duct, Ref.ﬁﬂ appear as particular

applications of the present theory, which is based on the idea of a single-

frequency mede response functicon rather than a Green function as used in [;41'].

(a}

The main conclusions are summarized below.

The effect of an axial mean flow on the sound power transmitted by a
single mode, at frequencies well above cut—off, is to multiply the
power by (1 + Mx)2 for a given pressure amplitude. The + signs refer
to waves travelling in the + x directions. This is the same factor

as predicted by geometric{ acoustics, and corrects the result

given in [-23'] .

Solid-body rotation of the flow in an axisymmetric duct further
modifies the modal sound power by a factor wo/m , Where o is
the radian frequency in fixed co-ordinates and w is the frequency
in co-ordinates rotating with the flow. It is assumed that the
rotaticn is subsonic with angular velocity € <w_, 80 that the
sound propagates relative to the swirl in the same way as in a

non~-robating flow.
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(a)

In s duct with non-reflecting terminations, the sound power radiated

upstream and downstresam from a fixed monopole source—distribubion is

proportional to (1 + MZX)2 under the conditions given in (a).

=
The corresponding factors for axial—-dipole and axial-quadrupole

. . . . . -2
source-distributions are 1 (i.e. no convective effect) and (1 + MX) .

This last result differs from the one given in [41 ] because the sound

power in that paper was defined relative to the mean flow.

The effects of finite duct length are incorporated in the general
theory, since axial standing waves are allowed for. However, there
is very little information on the modal reflection factors at the
open end of a duct in the presence cf flow.

In turbomachinery applications the axial gradients of the mean Tlow
may not be negligible. A possible model to include this effect
would be an actuator disk across which both the mean and unsteady
components of the flow were discontinuous. The problem of sound
generation by unsteady forces applied at a mean-flow discontinuity
has been studied by Mani [:28], but without considering the downstreanm
vorticity. An cutline solution which takes account of the vorticity

ip this situation is presented in section #.4.
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CHAPTER 5

IDENTIFICATION OF SOUND SOURCES 1IN
SUBSONIC TURBOMACHINERY

In the last eight years our understanding of the sound generated in
turbomachinery, as a by-product of unsteady internal aerodynamic flows,
has greatly increased. GConsequently we may shortly expect to see, in
airline service, aircraft engines which have been designed from the out-
set with some knowledge of factors affecting noise.

These advances, however, are still not sufficient to ensure acceptably
quiet airport operations in the face of increasing air traffic. Two
main difficulties stand in the way of quietening aircraft propulsive
machinery.

The first difficulty is one of finding which design parameters have
a significant effect on the sound output of a fan or compressor. That
is, for a machine with a given mass flow and pressure rise, what means
are available for controlling the noise? As a result of empirical
investigations combined with fundamental research, there is a growing
list of qualitative answers to this question [421.

A more serious difficulty remains. In the absence of any break-
through, engine noise reductions will have to be achieved by a combin-
ation of several techniques. An optimum engine design can then be
reached only from a knowledge of how each item in the combination affects

(1) the sound output, and (ii) the aerodynamic performance.
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Here the existing knowledge is inadequatéf, and it is the purpose of
the following chapters to review and extend the theory of turbomachinery
Toise sources so as to provide explicit relations between sound output and
aerodynamic parameters. Analytical relations of this type, however
approximate, provide a basis for interpreting experimental data in a
systematic way. Hopefully, further advances in understanding will follow

which will indicate methods of noise reduction at source.

5.1 PREVIOQUS STUDIES OF TURBOMACHINERY NOISE GENERATION

Central to most early studies of turbojet engine noise was the idea of
fluctuating blade forces as the primary source of sound, Thus Hetherington
Eﬂ], discussing the discrete-frequency radiation from a rotor-stator com-
bination, used the work of Kemp and Sears Bﬁ, 45, 46] to estimate the
unsteady loading - and hence radiated sound - due to aerodynamic interaction
between the blade rows. This same approach was followed up by Bragg and
Bridge [ﬁ?], and was also developed independently by Slutsky, in work only
recently published @8]. Studies by Lilley @9] and Sharland [50] of
broadband noise generation likewige attributed the sound radiated from a
rotor to fluctuating forces.

The analysis which follows differs in two respects from these papers.
First, certain new mechanisms of sound generation afe identified in additiomn

to fluctuating blade forces. One such mechanism has already been described

1-The-. authort's review [35] of published methods for predicting fan and com-
pressor noise shows that errors of over 10 dB can cccur, when any of these
methods is applied to a new machine.
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by Ffowecs Williams [51] and shown to account for appreciable sound
radiation from subsonic multibladed rotors.
Second, once the source mechanisms have been identified, the
calculation of sound power is based on the theory of Chapter 4. It
is interesting in this context to notice that all of the papers men-
tioned use different acoustic models to calculate the sound power output
from given blade forces. These are listed below.
‘[50] Blades replaced by point forces in free field. Effects
Broadband g of motion neglected
BS] As above, but approximate correction made for blade
rotation

BJ] As [5@ , but allowance made for cancellation between

blades
Discrete &6] Blades replaced by line forces in free field. No
frequency allowance for cancellation

@8] Blades replaced by line vortices in infinite axisymmetric

duct. Correct phase relations included.

The present study concentrates on discrete-frequency sources, so
that phase relationships between different blades have to be taken into
account as indicated by Slutsky [481 and Tyler and Sofrin I??]. The
point-force representation is inadmissible, as the blade span is not
generally small compared with the sound wavelength, Finally, Slutsky's
line-vortex representation does not correctly account for vorticity shed

downstream of a blade row.
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5.2 TIDENTIFICATION OF SOURCE MECHANISMS

The general theory of Chapter 3 makes it possible to identify all
of the various sound-producing mechanisms in subsonic turbomachinery.
Equations (3.9) and (3.10) show that apart from the classical mechanisms
of fluctuating volume velocity (D?z/Dt?) and fluctuating forces
(nglaxj), sound is generated by certain nonlinear interactions between
flow perturbations.

Three types of nonlinear interaction source are expected on the basis
of equation (3.10).

(a) Nonlinear sources due to pressure-field interaction between blade
TOWS. The first two terms of (3.10) account for interaction between the
pressure fields; the fifth and seventh terms account for interaction
between the pressu?e field of one biade row and the thickness or loading
of the other.

(b) VNonlinear terms associated with turbulence or velocity wakes.
The first term of (3.10) includes both interaction between turbulent
velocity components, and interaction of turbulence with the potential
field of a blade row.

(c) Nonlinear terms associated with hot spots or entropy wakes.

The third and fourth terms of (3.10) account for interaction between
pressure and entropy perturbations; such interactions may be particularly
important in turbines, where the flow entering a rotor may contain

appreciable temperature gradients arising from combustion. Finally, the
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sixth and eighth terms account for interactions between entropy pertur-
bations and the thickness and loading of a blade row.

A classification of the acoustic source terms according to multipole
order is shown below, for each of the mechanisms identified above. The
numbers in each column of the table refer to terms in equatioms (3.13),

(3.14) and (3.15) respectively; for example, Qi(4) denotes the g, term

1
in (3.14).
TABLE
Source Q(O) Qi Qij Spectrum
type:

(1) (1,4) (1>
Linear "Propeller’ mechanisms-steady load & thickness Discrete
source ‘
terms (4) Discrete or

Fluctuating blade loads continuous

(2) (2) (2)
Nonlinear |Pressure-field interaction with rotor blade
terms thickness
due to
pressure- (5)
field Pressure field/rotor Discrete
interaction loading
between
blade rows |(5) (7) (6,7)

Interaction between two pressure fields

_ (4)
Nonlinear Turbulence/
terms turbulence Discrete
associated (wake
with (5) profile in-
turbulence Turbulence/ teractions)
potential field

3) @) Gy o
Nonlinear |[Entropy interaction with rotor blade thickness
terms
associated i(4) {(6) Continuous
with Entropy/rotor loading (random dis-
entropy turbances)
fluctuations (6,7) (8,9) (8)
(turbine) Entropy/rotor pressure field
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Each of the sound-generating mechanisms in the table is investigated
in detail in the two following chapters. Chapter 6. considers the spatially
periodic flow disturbances due to blade-row wakes and pressure fields as a
source of interaction noise; the flow disturbances themselves are related
to the lift and drag forces on the blade row. Interaction of a rotor
with incident turbulence is studied in Chapter 7, and the radiated sound
power is compared with that radiated from the steady blade loading in an

undisturbed flow.
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CHAPTER 6

PERIODIC ROTOR-STATOR INTERACTION A5 A
SOURCE OF SOUND

In this chapter, the general theory set out in the first part of
the thesis is applied to rotor-stator interaction noise. Specifically,
the discrete-frequency sound power output due to blade-row interaction
is estimated for am axial compressor or turbine stage. Some of the
results are then generalized in Chapter 7 to describe sound generation
by a rotor in turbulent £low. Subsonic flow is assumed throughout;
the question of sound radiation from a supersonic rotor is taken up in

Chapter 8.

6.1 PERIODIC DISTURBANCE FIELD OF A BLADE ROW

Before the sound output can be calculated, it is necessary to define
the unsteady flow components in terms of the geometry and operating
parameters of a fan or turbine. The complexity of the problem makes
it desirable to begin with the simplest possible model relevant to the
situation; the present section aims to provide such a model.

The blade row is represented by a two-dimensional cascade of thin
airfoils, and compressibility effects are neglected. The flow deflection
through the blade row is assumed small, so that the pressure field can
be estimated by the same linearized theory as is used for the radiated
sound field. For practical applications, as in section 6.2, the rotor
and stator flow angles 8,0 are given their values on the side nearer the

interacting blade row,
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Spatial harmonic components of the rotor and stator fields are
characterized by tangential wavenumbers 27p/d_, 21Ts/dS in the direction

of rotor motion {y). This implies spatial factors exp i(Zﬂpy/dR),

exp i(Zﬁsy/dS).

6.1.1 Rotor pressure field

Particularly simple results are obtained for the two extreme cases

of low and high solidity.

(a) Low solidity ('rr|plcR << 1)

The following expressions give the pressure and velocity harmonic
components in the rotor plane+, due to rotor 1oading++ (blade lift
coefficient = W¢R). Here as elsewhere, the harmonic index p may take
+ve or -ve values (p = 1, *2 etec.) Where results are quoted for

p > 0, replacement of i by -i gives the result for p < 0.

P P- .

—EE = % GR¢§MXZ'SeC26 ; §$j= e"21B (p>0) (1)

pe P

U i -

EB =7z oRd:RMX . sech H ﬁ—PF =1 . (2)
Y

T . . . C s
The axial extent of the rotor is neglected in the low-solidity approx-
imation; thus the rotor is regarded as an actuator disk.

T ' -44
For rotor thickness pressure field, ¢R +'4pORER and Pﬁng = e 418.

Here €n is the mean thickness/chord for the rotor blade.
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The transversevelocity component is given, on either side of the rotor,

by

i (x < x)

" » (P > O) . (3)
-1 (x> XR)

'_dC: lfd<:
I

A1l quantities have a wavenumber in the x direction of

-ik {x < XR)
kx = P (decay constant kp = EWPVdR); ()

ik (x> x;)
D *R
thus at distance x either side of the rotor plane,

‘Up/ﬁ§|i e—EkPX = K. (5)

For a stator with blade angle o, exactly similar expressions apply

except that PE/PE = e-zla($>OXThe decay constant is k, = 21T|s|/dS for

the s th spatial harmonic of the pressure field.

(b) High solidity (exp ench >> 1)
The pressure fields either side of the rotor in this case are equivalent
to those produced by an actuator disk in the LE plane, the pressure and

velocity in that plane being given by (for p >0)

— 4
Pp EUR Z ) . P- g
= |- M .4 . B -1
pct i p ¢R x 4% I Pﬁ te (6)
- i
UP EGR z Ei ig
—_— = it _L s = >
= > chRMX > sec f3 3 Ug i e . (1)
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In other respects the description given in (z) above applies here.

For a stator, the phase changes through the actuator disk are (for $>0)
Pg/PE ==1 e-iu; U;/Ug = =1 eia. Equations (6) and (T} apply to a
rotor or stator with a Tlat—plate steady 1ift distribution over the blade

chord.

6.1.2 Rotor velocity wake (Figure 6.1)

At low Mach numbers, the rotor wake momentum thickness R {measured

in the tangential direction) is related to the rotor loss coefficient

LN by [52]

<< ]_), (8)

Here ﬂR is based on the dynamic pressure downstream of the rotor; and
; ig measured~l chord downstream of the trailing edge where the pressure
is almost uniform, but adjacent wakes have not begun to merge.

The wake displacement thickness eR at this position (X = 1) can be

estimated from (8) by assuming a form parameter H = 1; thus

v dy (evaluated at X = 1) = %ﬁR, (2
R =R wake

and in general, if gR(X) « £{X) defines the downstream variation of

displacetert thickness,

eRGC) = 1. £(X) (10)
dp 'R £(1)
The harmonic components of the wake velocity field at any downstream

[ position
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follow from (10), provided the wake is thin enough to be approximated by

delta funciion (ke < 1}.
a de ( o )

Thus

2
(11)

Vv
1,202 . L = = ta
KW . “ﬂRMx T tan

U
B
c
P

gives the axial and transverse velocity components downstream of tIe rotor.

The wake decay Ffactor KW ig defined as

Kw = ]:;E‘(X)/f(l)]2 , {c.f. equation 10}. (12)

Because of this decay in the. downstresm direction, the axial wavenumber

of each harmonic component is complex:

- : ~ _ Bec B .
Re(kx) ptan 83 Im(kx) 1/be e (0<X<1) (13)

6.1.3.Rotor entropy wake

On the assumption that pressure varistions through the wake in the
transverse direction are negligible, specific~entropy perturbations s'
are related to temperature perturbations by

(1h)

gt = (CP/T)T' , {to lst order).

Harmonic components of the wake temperature profile, at any downstream

position, will be dencted by TP. For thin wakes, these may be estimated
from the integrated temperature defect in a wake {(c.f. use of displacement

thickness for velocity wake).
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If we define & temperature defect parsmeter = by analogy with (9) - as

ot N
BR - Tdg { Tt dy (evaluated at X = 1), (15)
wake

and a wake decay factor KW is applied as before to give the temperature

defect at other values of X, then the result is

| % K, % (enep <L) (16)

Finally, the axial wavenumber of each harmonic component is given by

Re(k ) =k_ tan B; Im(kx) - O(l/be), (decay assumed of (17)
X P gsome order ag for

velocity wakes).

A special case relevant to compressors is that of isoenergetbic wekes,

where thesbagnation enthalpy is uniform through the wake in the transverse
direction. The temperature-~defect paraméter BR is then related to the

pressure-loss coefficient L by

—_ T
(v - l)MRZ. %(eR + eR)/dR {for perfect gas, to order M%)';

@
]

3y = 1) ﬂRMXZ sec?g 3 (Prm §arameter % 1 in wake at (18)
X=1),

D
-

F For a general fluid, (y = 1) is replaced by (cz/CpT) .
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6.2 BESTIMATES OF INTERACTION TONE INTENSITY

The particular case of a rotor-stator stage (Figure 6.2), of
medium to high solidity, is studied in detail in the present section.
The aim is to provide estimates of the sound power output associated with
the more important of the mechanisms which operate in such a situation.
For this purpose the various mechanisms are considered independently,
without regard to phase; it will be seen that cancellation can occur
only under special circumstances.

Three types of periodic rotor—stator inmteraction are considered:
(1) interaction mechanisms which depend on the pressure field of either
plade row for bridging the gap between the rows; (2) those which depend
on the velocity weke from the upstream row entering the downstream rows;

(3) those which depend on the entropy wake entering the downstream blade

TOW.

6.2v1 Pressure—field interaction mechanisag

If both rotor and stator have a flat-plate steady lift distribution
and & solidity of order 1 or more, section 6.l.1 shows that the pressure
field is much weaker at the trailing edge than in the inlet plane. The
only mechanism under this heading which is not affected is the rotor 1lift
filuctuation due to the pressure field upstream of the stator; all other
pressure-field interaction mechanisms are wesker by an order of magnitude,
equivalent to the decay of the pressure field in the axial width of a
blade row. This mechanism is analysed below.
(a) Rotor 1lift fluctuations due to stabor potential velocity field:

The relationship between sound intensity Isp’ radiated in either

direction from the rotor., and the axial component Lxs of the 1ift fluctuation
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on & rotor blade, ~follows from equations (4:48) and (4.61).

1 F2
XS

%

T 1
sP 2pc

, (well above cutoff); (19)

here ISP refers to sound radiated at |p]x blade-passing frequency; through
interaction with the s th spatial harmonic of the stator velocity field.
Equation (19 assumes that the chordwise distribution of the unsteady blade
loading is compact in terms of the radiated sound wavelength.

The fluctuating blade force LXS at s x vane-passing frequency 1is
dominated by the upwash component VR of the velocity at the rotor trailing

edge (Appendix, III, equation 12)

= 1 n . .
L wbRpcMX tan8, (KL VR)S, (KL referred to trailing edge). (20)

The upwash VR is related to the axial and transverse velocity fluctuations

U, V by

_iB
ot . 2 -
VR = —=(U sin 62 + V cos 82) ie U, (s >0) (21)

since V/U = i for each spatial harmonic of the stator field on the upstream
side.
The 1ift response function can be approximated as follows, in terms

of the reduced freguency n and reduced wavenuliber g for the rotor (see

Appendix II11).

1-nf  —ijr

K£ = Toag )% © (n) > 1) (22)

The corresponding mode s given by wm = jPI(B + -‘-‘;; V) , with the
convention that wm s + ve -Fmr mode s Sp«'nning in the same direction
as the vobor. The contribubions For ( b, s) and  (~p, -s ) have been combined

to give the  modal intensity Isp'
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where

n= =T 8 (bR/dS). Mt/MR (23)
and

Fib, > ,
g = -iﬂ|sl(bR/dS) e (s < 0). (24)

Equations (23) and (24) give

cos?p

- 2 2 2 ¢)
11 - n/q] cosTa, : (25)

If the stator potential velocity field is caused by the steady -state
blade loading, eguation 7(7) may be used to estimate US. Combining this

result with eguations (19) through (25) gives the sound intensity, for each

interaction wuode above cutoff ( |s|V #[gB).
I, K . sin 28 ,
+_p ¥ 5 , y
(a) pe 32p2 B UROS¢SMX cos ul ' (26)

The decay factor Ké accounts for the decay of the stator {(or rotor)
pressure field over the distance E'separating adjacent blade rows. It
leads to a much more rapid fall-off of sound power with axial separation than

oceurs for sny of the remaining mechanisms (b) through (f).

6.2.2 Velocity wake interacticn mechapisms
The periodic wake pattern downstream of the rotor interacts with the
stator to produce three sources of sound. These are described below
(mechanisms b, ¢, d).

(t) Stator 1ift fluctuations due to rotor wake:
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Corresponding to equation (19)

L 2
O N <] '
IPS Zoc |ag (well sbove cutoff) (27)

relates the sound intensity for a single mode ]p|(B-+§“VJ1- to the
1ift fluctuation on a stator blade at p x blade-passing frequency. In

terms of the unsteady-1ift response functionsHi and K£ referred to the

leading edge,

L = 1b Mt . ! '+ v T 28)
o T Spc L bemo (HL/KL S/US)(KLUS)p (28)

1

where US,VS are the longitudinal and upwash components of the rotor-wake
velocity perturbation entering the stator. Figure 6.3 gives the following
relations between velocity components:

cos(82+al

u,=u0U ————= 3 V_ /U

s cos 62 s’'7s )- (29)

= +
~tan G32 0y

For reduced frequencies|n} > 1, the unsteady-1lift response functions

may be approximated by

. 1
|gr|?2 2 =—=— ; H'/K' # ¢, (frozen gust convected over stator
K 2| L/ T % blade )
(30)
where
b, M b
n = 7p B 5 . TP H§ (tl +t ) cos Gy - (31)

% % R 2

Combining equstions (27) through (31)with equafion (11) " for Up gives

t Made up of contributions from the ( b, s) and (... P, __s)

interackions.
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mﬂ(6+u)mnu

H

-1

X
W 1 -
73 [¢Scot(82+al)—1]%

—
o’
—
113]
0.

v 2 It
A M H(t + b
B 'R S x (t,+ 2p)

o
[

cosé cos?
5 %1

(32)

{¢) TInteraction of rotor and stator wake profiles:
Interaction of the p th harmonic component of the rotor wake pattern

with the sth spatial harmonic of the stator wake gives a quadrupole source

distribution

(s ) = 2 J U U ax (retarded time neglected) (33)
xx ps P s :

*g

over the stator disk. The axial variation of UpUs may be represented

approximately by a complex wavenumber K {see rotor wake description, equation

(13).

iKx

UpUs « e s (x> xg)

Re ¥ = kp(tl + tg) (using ks & kP and tan o, = tan ul),
+ . )

Im K ~ (l/bXR l/bXS) (34)

. 2 - _
Since (kp bx) " (217)2 is a large quantity, the exact value of Im K has

1ittle effect on the modulus of the source integral. Thus
Eln 2
XX 'ps X T
= — (4. +t.) K ;_'ﬂzﬁqu (35)
k% 1 2 w' 16 RS x’
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where the wake description in terms of pressure-loss coefficients has been used,
and Kw allows for the decay of the rotor wake before it reaches the stator.

The sound intensity follows from Section 4.3.3; combining the (p,s) and (~p,-5)

interoctions gives

I 2
g . 1 w fre
= - — S 2 =
pe 2 b | Xx[ps (w oMy kp)’
i.e.
(C) ! S EE 22016
o T B R (36)

Although %his result is apparently = independent of harmonic number |pl, 1t will
generally overestimate the higher harmonics, for swhich the wakes can no
longer be regarded as delta functions.

{(d) Interaction of rotor wakes with stator potential velocity field:

The dominant source is again the axial quadrupole Qxx = Vka, with one
velocity factor derived from the rotor wake and the other from the stator
potential field. The axial wavenumber of the source distribution either
side of the stalor — - for the Uﬁ wake component and the US potential

veloeity component = = is given by -
Rek 2 Xk ten g, (p>0) ;

lm x| = k o+ 0(1/b ) 2 x (positive dcwnstream of stator,
xR negative upstream). 37)

If the source distribution is integrated on the ipstream side of the

stator only, the resultant source strength is given by
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21 -
2 S == .
| xxlps - (UPUS)S (provided kpx > 1)
u |2 |u |2
_ zlu:L+ 5 *JQ =1 (38)
kp sec 62 ¢ Ig c

The omission of the downstream contribution from (38) may be justified
on the grounds that for a high-solidity stator, the pressure field down-
stream of the trailing edge will bhe weak compared with that upstream of

the leading edgef. On the other hand if OS << 1, equation (38) should

2iB 2
be multiplied by |1 + e 21" < 4 cos? 82 to allow for the downstream

contribution (as follows from (37) and the continuity of Us through the
stator disk in this case, where the velocity is that due to stator loading).

In the high-solidity case, the stator potential velocity ﬁé is given
by eguation (7), while the rotor wake is specified by section 6.1.2.

Substitution in (38) gives the sound intensity associasted with each inter-

action meode as in (36),
i.e.
{a) I K cos?B
s + W ¥ 9,0 .6 2 2
~Eg = = M + ——— . 39
oe 16 B "r's%s x (6, + %,) cos? o, (39)

. 6.2.3 Entropy Wake Interaction Mechanisms

In view of the restriction to low Mach numbers, only the lowest—order

source of each type (in terms of M dependence) will be considered here,
x

+  This still leaves the pressure field actually within the stator row
unaccounted for.
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The present model provides two types of rotor=-stator interaction which

involve entropy wakes, as shown by the table in Chapter 5.

(N2 3
(Entropy/stator pressure field:) source term Q(O) = - E;E-[%E%Q p'| (40)
p” T
\
1
(Entropy/stator loading:) source term Q(O) = - %— [gi— g; A41)
p i

The sound cutput from each of these mechanisms is estimated below, assuming

a stator solidity of order 1 or more.
(e) Entropy wake/stator pressure field interaction:

An analysis exactly parallel to the velocity wake case gives, from

( 40) above,

'g(o) = c¥k2 sec?g 392 ——ES 2 (42)
ps j3 2 |T 5 pc? '

where, as before, only the contribution from upstream of the rotor has
peen included. Substituting for TP (from equation . 16) and ?S(from
equation 6) gives the interaction source amplitude, in terms of the
coefficients BR and ¢S.

Finally, the sound intensity associated with each interaction mode

folliows from

PSS 1 =
= a e
s 022 | ps| (43)
thus
(e) I K (4. +1t)7°
5 2 X Y 52425 M2 L2 (48)
pec 16 B RS S x cos 82 Cos ml
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(f) Entropy wake/stator loading interaction:
Since in this case the source distribution is confined to the stator
blades, it is convenient to integrate first over each blade secticn to
obtain a line source distribution.T The stator row is then regarded as
a series of liane sources, whose relative phase must be taken into account
when the spatial harmonic components of the source distribution are calculated.
(Compare the representation of rotor and stator by fluctuating line forces,
in mechanisms (a) and (b) respectively.)
Integration over a blade section gives, from (41),

Q(O) dS = A =- C;l J (Bs'/axn) g, ds, (45)

Jblade
section

where subscript n denotes the component in the 1lift direction (normal to the
stator chord). The entropy perturbation can be expressed in terms of the

t emperature perturbation using equation  (14), and Figure 6.3 gives the
angle between the stator 1ift direction and the rotor wake normal as

(B, + 0.). Thus the contribution from the p th harmonic component of the

2 1

rotor wake 1is

ik cos(ﬁg+al) [

= B
- as
A T cosB,, ] Tp &, (2 > 0)
blade
section
ikp cos(Bg+ul) 1
. ; .
- T cosB, COSa, * 2 bSch Tp k{g) 4a& ; (46)
-1

T The chorédwise loading distribution is assumed compact in terms of the
radiated sound wavelength.
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here k{f)} is the steady-state circulation distributionT over the stator
chord, and & is the chordwise coordinate normalized by half the blade chord.

The integral in (46) i1s of the same form as the unsteady-1ift integral
for longitudinal gust velocities. It may therefore be expressed in terms
of the response function HL(n), where n = wbs/2cM is the stator reduced

]
B
freguency -

(L ZHCM%
P k{g) dg = - H'(n). (T.) (B! referred to leading
oS L >
-1 P cosay P'S L edge) . (477

An approximation valid for the present model (n2 »>> 1) is

() [2 = o2/ 2. (48)

Finally, the spatial harmonic components eexp i{pB + sV)§of the source

distribution in the stator disk are given by
={0) .
SPS = Ap/ds. (49)

The sound intensity produced by this mechanism follows from eqguations

(43) and {46) through (49), with the temperature perturbation entering the

tIn (46), the integral over the blade thickness has been estimated holding

Tp constant: J g, dx = (1/p) » (pressure difference across blade)=

k x (free-stream velocity).
T+ Here, as for velocity wakes, the wake pattern is taken as being convected

with the free-stream veloeity, i.e. ¢ = n.
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stator given by (16). Thus for each interaction wmode above cutoff,

(r) I K 024625 M2 _ cos? (B +a. )
EE% =-2; éig r?5%5x (tl + tg) 3 2 15 ) (50)

22
cos 82 coS oy

In fans and compressors, entropy variations associated with the
rotor wakes may be estimated on the assumption that the pressure and stag-

nation enthalpy are uniform. The parameters 8_ and HR are then related

R
by (18}, and equations (44) and (50) become
-2
{(e)IS. KW‘ ('tl'l'”b)
‘“Q§ £ (y=1)% ¢ 3 T (51)
pe 64 B &% S x cos S cost o, 2
Tsoener=
getic
wakes
L) I K. cos?(B_+a..)
S o= Y- 2 6 + =3 2 71
es = (1) g |p[B TRog0gy (8170 ,) costh, cosSa,” (52

Thege results may be compsred with mechanism (d), equation (39).
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6.3 CONCLUSIONS

{a) From the results given in section 6.2,the discrete-frequency sound
power output of a subsonic rotor—~stator stage can be estimated in terms of
steady—flow operating parameters.

Six different mechanisms are identified as being significant.

(b) For interaction bhetween a stator and downstream rotor,mechanisms

(a) through (f) of section 6.2 are modified as follows:

B,V interchanged; also subscripts R,S

82 - -a2 (t2 -+ tan 32); al -> -Bl(tl+ tan Bl)

Harmonic number p + pB/V.

(c) The results are quoted in the form of sound intensity per
propagating mode. The number of such modes, for a given blade-passing
harmonic, depends on the interacting blade and vane numbers and the rotor
tangential Mach number; it is not likely to be largei, but msy be zero = =
in which case the sound power is still finite, but the present results do
not apply.

{d) The model on which the estimates are based is two-dimensional
and assumes low Mach number flow. The sound power results are therefore
expected to become inaccurate at low hub-tip ratios arnd Mach numbers approach-
ing 1. In addition, the estimates for higher harmonics qp|> 1) will be less
accurate than that for the fundamental blade-passing frequency.

(e) In fans and compressors at sufficiently low Mach numbers, the

tPor example, if M, <0.5 and V>%B, not more than two modes can propagate
at blade passing “frequency.
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dominant mechanisms of tone genera?iqn are those assoeciated with 1lift
fluctuations on one of the blade rows (sound power per mode = M;). The
relative significancé of pressure field interaction Gnéchanism a) and
velocity wake interaction (mechanism b} depends largely on the blade-
row separation; if the separation is large enough, mechanism (b) will
always predominsate.

(f) The effect on mechanism (b) of 1ift fluctustions due to
longitudinal gusts is generally to increase the sound cutput from a rotor-
stator stage.+ However, as Horlock [53jhas pointed out, the longitudinal |

end upwash contributions are able to cancel Ffor an IGV stator followed by

rotor: the condition 1is
cot = 7.
¢R (a2 + Bl)

(g) In turbines, the presence of temperature gradients in the flow
entering a blade row leads to additional sound generation (mechanisms
e,f). Estimation of the sound output requires a knowledge of wake temper-

ature profiles.

(h) Finally, although .explicit regulte are derived only for discrete-
freguency sound, each of the wake interaction mechanisms (b) through (f) cen
give rise to broadband sound if the steady  wake pattern is replaced

by & randomly fluctuating flow entering either rotor or stator.

+Specifically, if §2 + Gy > %7, the sound is increased; otherwise it is
decreased.
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Fig. 61 Rotor wakes.
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CHAPTER 7

SOUND QUTPUT FROM A SUBSONIC ROTOR QOPERATING IN
UNIFCRM MEAN FLOW

A rotor can generate blade-pagsing tomnes in at least three different
ways apart from the rotor-stator interaction mechanisms discussed in the
previous chapter. These are

(a2) Interaction with low-frequency turbulence in the incident flow;

(b) Radiation from the steady blade loading and thickness at sub-

sonic speeds;

(c) Shock-wave radiation at supersomic speeds.

The present chapter is concerned with (a) and (b); radiation from a super-
somnic rotor is studied in Chapter 8.

Strictly, the frequency spectrum associated with mechanism (a) is not
discrete, but consists of a series of narrow peaks at the blade-passing
harmonics. The width of the spectral peaks depends on the bandwidth of
the incident turbulence, and in the analysis which follows the latter will
be assumed small compared with the blade-passing frequency.

Similarly, if the rotor blades are unevenly spaced around the disk,
the radiated spectrum will not be confined to the blade-passing harmonics
but will contain other multiples (n) of the disk rotational frequency.
This is particularly important, for different reasonms, in mechanisms (b)

and (c).
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In case (b), the radiation efficiency of a subsonically rotating
pattern falls off rapidly with increasing n. It follows that multiples
n < B which are weakly present in the source spectrum may radiate as much
sound as the blade-passing component (n = B).

In the supersonic case (c¢), the decay rate associated with a repeated
shock pattern is less for widely-spaced shocks than for closely-spaced
shocks. This suggests that low-order multiples (n < B) corresponding to
blade nonuniformity will again be accentuated, in terms of radiated power,
relative to the blade-passing frequency.

The following analysis and Chapter 8 assume a rotor with identical
equally-spaced blades, the aim being to estimate the blade-passing harmonic
content of the sound power spectrum for each of the three mechanisms. A
fourth possible mechanism, in which turbulent boundary layers on each blade
contribute to the low-frequency loading fluctuations, is similar in some

respects to mechanism (a) and will not be considered here.

7.1 INTERACTION OF A ROTOR WITH LOW-FREQUENCY TURBULENCE

Turbulent velocity fluctuations incident on a subsonic rotor will
generate sound in exactly the same way as the velocity wake profiles
described in Chapter 6. The following assumptions will be made in order
to estimate the sound output.

(a) The turbulent velocity spectrum is confined to frequencies

less than Mt times the blade-passing frequency.

2 <
(b) Mt < 1.



(¢) The rotor disk is large compared with the wavelength of the
radiated sound.
Within these limitations, the spectrum of the radiated sound may be
approximated by a series of discrete frequencies, . and a criterion analogous
to cutoff determines the range of turbulence wavenumbers which comtribute
to the radiation at a particular frequency:

2y 2 .
(k, ky)Z +k2< (5, (k, = 2r|p|/dy) - (1)

Here ky (tangential) and kz(radial) are the turbulence wavenumber components

in the rotor disk. The left-hand side of (1) is therefore a two-dimensiomal

approximation to the square of the source wavenumber, where the source arises
. , th . .

from interaction between the p  harmonic component of the rotor field

(wavenumber cdmponents ikp,O) and the turbulent velocity field (ky,kz).

7.1.1 Analogy with periodic-wake theory

Components of the turbulence (ky,kz) spectrum which satisfy condition
(1) are equivalent to the wake harmonic components considered in Chapter 6,
in that the resulting source pattern has a high radiation efficiency. it
was assumed in Chapter 6 that the wake velocity decayed slowly in the stream-
wise direction, and a corresponding assumption will be made in the present
analysis:

(d) The streamwise length scale of the turbulence is large enough for

turbulent velocities to remain well-correlated, over a streamwise

separation of up to a blade space.
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The validity of this assumption is assured in practice py (a) and (b)
above.

It follows under these conditions that the analysis of Chapter 6 for
low-Mach-number interaction with a periodic velocity wake may be applied
directly to the present problem, provided the mean square axial wake velocity
in the sinusocidal case is replaced by

i
_JJ P, (kok,) dicdk (2)
Here Fu is the (ky’kz) spectrum of the axial turbulent velocity component
(u), and the integration is between the limits set by conditiom (1).  The
contribution of non-axial velocity perturbations is neglected, as in

Chapter 6.

7.1.2 Evaluation of the wavenumber integral

Viewed as a restriction on ky for given kz, (1) gives (for ky > 0)

% w

2 .
I )

@
k- k| < [:J
-] <]
w2 2 2
If (E) << kP (i.e. Mt << 1), the integral over ky for a given kZ may be

approximated by

PG sk ) Bk (%)

(see Fig. 7.1).

The wavenumber spectrum is assumed in the form
.25 28
F (k ,k ) =—"—. = LEL ; (5)
v m2 (1+Hk222) (1+k222)
y ¥ %z

100



~2 L]
corresponding to a spatial cross-correlation coefficient (=0} of e s x

_£'1|c| _
e . The length scales Ry,ﬂz are left unspecified at this stage.

With this model of the turbulence, the ky integration in (2) gives

approximately, from (3) and (4),

1

2 %

w2

rr, 2l -kl

2
<
fF (k_,k, ) dk = A A < z H (6)

vy 4 T Lk 1422
Py z 2

note that contributions from ky v -kp are included in (6), as well as from
kK Vk.
y P

The second integration, over kz, is simplified by substituting

_LU 1 - 3 1 =_.1.T. E
kz = 5ind ], range of integration © 3 to 7 {(7)

dk, = 2 cose.dé'
Z c

Thus
T
'2 2 2 - 2
HF (k) dk_ dk =% <2, (9 Xz, Jz cos 6. df .
uty’ 2z y oz 2 ST {292 T wh 2
. 2
Py -5 1H(==) sin“6
c
(8)
Evaluating the & integral in (8) leads to the final result
1
4 L 4R w2g? 2
“Fu de dk =2 <> L2 ({1 +—%) -1}, (9)
! v 1222 c?

The expression abowe represents that part of the turbulent-velocity wave-

h \ .
number spectrum which interacts with the pt spatial harmonic of the rotor
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field to produce radiating acoustic waves. It is therefore the equivalent
h .

in the wake interaction problem of ZIUSIZ, where US is the st spatial

harmonic of the wake velocity field entering the rotor.

Equation (9) may be written in terms of the dimensionless parameters

=

k L =2m|pl == ,
oty Zﬂlp}

%R

and

Since %— =M., it follows that

£’
p

5

k % (14k222) -1
<u?> M —BL, “ . (10)
b o222 k2
P Y

e

JJF dk dk_ =
u oy Z
z

The functions of kpﬂy and kﬁz appearing in (10) are sketched in

Fig. 7.2. For k§2§ << 1 and k;ﬂi << 3/Mi, equation (l0) reduces to

Alrs

<y?> Mi.kﬁ%yzz : (11)

JJF dk dk_ =
iJu Ty Tz
while the largest possible value of (10) occurs when kpﬁy = 1 and

kéﬂi >> 3/M§ , and is

(JJFu d dk)  =Z< M | (12)

L
maXx
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7.1.3 Estimates of sound power output

In the periodic interaction analysis of Chapter 6, the stator wake

harmonic components US are represented by

_ 1 2.2
=K, .z "M . (13)

It follows that the substitution

Kwﬂ§ = 2 J
c M2
X

u

F dky dkZ (14)

permits the stator-rotor interaction results of that chapter - in particular
mechanisms (b), (c¢) and (d) - to be used for estimates of rotor noise
generation in low-frequency turbulence.

Estimates are presented below for a rotor in an axial mean flow
(a2 = 0), in the special case where the turbulence length scales in

, ; . th .
equation (5) are chosen to give maximum sound output at the lpl harmonic

of the blade-passing frequency. Equations (12) and (14) then give

2 é 2
KWT% T Iturb Mt (15)

to be substituted in equations (32), (36) and (39) of Chapter 6; the

[

dimensionless quantity Iturb = <u2> /cMX is the turbulence intensity in
the axial flow entering the rotor.
The results for the three different mechanisms are:

Rotor liftc fluctuations due to turbulence

1 2
—Rg = Z;%ET I%urb o Mﬁ cqszgl sin451(1-¢R cot Bl) . (16)
pe
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Interaction of turbulence with rotor wake pattern

. 1 . )
—B;-= Eﬁ.léurb W% M; c05681 81n81 . o {(17)
ol

Interaction of turbulence with rotor potential velocity field

| 2 2 7 2 .3
B¢ T Thuas oaih R ooty sins, as

These equations give the sound intensity radiated to either side of the
rotor, in a frequency band centred on the ]p|th blade-passing harmounic.
Equation (16) is based on unsteady airfoil theory for high reduced
frequencies, while equation (18) is based on a high-solidity model of
the rotor potential field; both approximations are valid provided

exp 2W|p|0R >> 1, except that if 0, is much greater than 1, the isolated-

R
airfoil approximation to the unsteady lift will break down.

It is sometimes useful to express the sound outpﬁt as a fraction of
the power required to drive the rotor. This will be done for the
turbulence-potential velocity interaction, which is a mechanism inevitably

associated with the development of a steady lift om the rotor blades in

turbulent flow. The acoustic efficiency

n, = Ip/(%ﬂGquRDcSME sing; cos8;) , (19)

th
which compares the |pl ~-harmonic sound power and the rotor power

associated with lift, is given by (18) as

o 1 2 L . 2
np ;;ET;T Iturb ¢R My cosB1 sin 81 . (20)

For example, a rotor running in "optimum-scale! turbulence of 2% intensit
P ¥

with a relative Mach number = 0.7 and the typical values ¢_(=C_/m)=1,
R L
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has an acoustic efficiency according to (20) of order

Wl

P2 _
cosBl sin 81 =
2.10-6 at blade-passing frequency. This is certainly the same order of

2

magnitude as found experimentally [54] when care is taken to avoid rotor-
stator interactions of the type described in Chapter 6, but definite con-

clusions cannot be drawn without knowing the turbulence properties.

7.2, SUBSONIC ROTOR: RADIATION FROM STEADY LOADING AND THICKNESS

A rotor placed in a steady uniform flow (i;gl free from turbulence)
can still radiate a certain amount of sound power at multiples of the blade-
passing frequency, even if the tip speed is less than the speed of sound.
This is the situation considered in the present section.

An immediate consequence of the subsonic tip speed is that for a
ducted rotor, each acoustic mode associated with the steady blade loading
and thickness is below cut-off. The radiation of sound under these con-
ditions is controlled by the three-dimensional nature of the rotor; a
two-dimensional model, as used previously for modes above cut-off, would
predict zero sound power below cut-off. In the following analysis, the
radial variation of blade profile area and loading is assumed to take a
particular form which leads to the idea of a quasi-two-dimensional model.

Further assumptions made in the analysis are that the mean flow is
axial, and that the rotor solidity is low enough for a blade-line model to
apply (ﬁ|p|UR << 1l; cf. section 7.1.3).  The theory of Chapter 4 is then
used to derive, for this model, the equivalent source strength and radiated
power due to both thickness and loading. To obtain corresponding estimates
for the high-solidity case, it is simply necessary to multiply the equivalent

i
source strength by a factor (2/W2|p1q22 and to locate the source plane at
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the rotor leading edge, as indicated in section 6.1.1.
The sound power output from-a rotor in a free field is obtained from

the present analysis by setting the duct length equal to zero.

7.2.1 Quasi-two-dimensional model

The acoustic duct modes associated with the |p|th blade-passing
harmonic of a B-bladed rotor have modal orders (|p|B,n), if the excitation
is due to steady loading or thickness and the blades are evenly spaced.

Although the source pattern for a given harmonic ]p] will in general
consist of several modes, with radial orders n = 0, 1, 2 etc., the total

power radiated from a radially uniform distribution is controlled by the

n = 0 mode if the rotational tip speed of the pattern is subsonic. This
is proved in Appendix IV for the case of a circular source distribution,
and is expected to remain valid for an annular distribution of any hub-tip
ratio.

It is also shown in Appendix IV that the free-field sound power
radiated from an annular source distribution with zero radial wvariation
can be estimated quite simply, for subsonic rotation of the source pattern.
Adoption of such a source distribution as a model for the rotor blade
loading and thickness therefore has the following advantages:

(a) Simplified radiation calculation in the short-duct limit, for

any hub-tip ratio;

(b) Decay of the rotor field in a finite duct can be estimated as

for a pure n = 0 mode, since the more rapid decay of the higher
radial modes has negligible effect on the sound power radiated

from the end of the duct.
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Spanwise distributions of steady loading and thickness along each

rotor blade are accordingly assumed as follows:

Cross-sectional area of blade profile « radius (tip value = a) ;
Axial (thrust)component of blade loading <« radius (tip value = o) ;

Tangential (torque) component of blade loading = (radius)? (tip value = Qe) .

(21)

Each of the blade-line distributions defined by (21) can be analysed
spatially into a series of circumferential harmonic components proportional
to eime (m=pB). The equivalent acoustic source distribution (cf. Chapter 4)
which corresponds to each eime component is radially comstant. The essential
three-dimensional nature of the sound radiation is thén accounted for in the
radiation efficiency T of each eime gsource component, as calculated in
Appendix IV.

While the above source description leads to a straightforward analysis
in the case MX = 0, the presence of a mean flow through the rotor complicates
the situation, to the extent that a two-dimensional approximation to the
sound field in the duct becomes desirable. Fortunately this is possible
without much loss of accuracy, provided the approximation is based on rotor

tip conditionsT, and the resulting two-dimensional (m,0) mode is assigned

the radiation efficiency T mentioned above.

TFor large m values, such as are found with a multibladed rotor, the
(m,0) duct-mode shape function is concentrated at the outer radius.
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This last step is essentially a geometrical approximation, of the same
type as was used in Chapter 6 for modes above cut-off. The only differ-
ence is that the two-dimensional model of Chapter 6 was based on mean-radius
conditions, while the outer radius is used here - on the grounds that higher-
order radial modes in the rotor duct now make negligible contribution to the

radiated power, as compared with the (m,0) mode.

7.2.2 Blade thickness radiation

In terms of the quasi-two-dimensional model, the blade-section dis-
tribution given by (21) leads to a displacement distribution in the plane
of the rotor of

d=17 a 8(y-y ) (22)
q

here yq =Y, + q dR is the tangential position of the qth blade at time
t, and the summation is over all blades.
The displacement per unit area given by (22) may be analysed into

spatial Fourier components :

d=p,+] D (p = %1, £2 ete.) (23)
P
where
_a . = y-
Dp = & exp 1(2ﬂpy‘/dR) (y' =y YO) ’
i.e. ) fut ikyy _
Dp = Dp e e (DP =ald) . (24)

In equation (24), 7, = tht relates the Oth blade position at time t to

the tip Mach number Mt of the rotor blades; the radian frequency is
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w = thky, and ky = 2'rrp/dR is the wavenumber in the tangential direction
{positive in the direction of blade motion).

The spatial Fourier components Dp are also normalized mode components
(m = pB, n = 0) in the present two~dimensional model. The theory of
Chapter 4 gives the equivalent source coefficient gp’ corresponding to the
mede coefficient ﬁp’ as

1=-oM
X

J w2 D (x > XS) (25)

P 1 - M2
X
for radiation to the +x side of the source plane., Equation (25) is based
on the assumption that reflected waves on the —x side may be neglected,
which is reasonable since all modes are below cut—off.

The axial wavenumber parameter m, estimated on a two-dimensional basis,

is 5} ~
1-M=242 (I—MR)2
_ _ X _ s R
a—[ Mz]—l M M < 1), (26)
t
where

1
= 2 Nz
MR (Mt + MX) (27)
is the flow Mach number relative to the rotor tip. Finally, the sound

intensity radiated in the +x direction at |p| times blade—passing frequency

is related to these guantities by

1 1-M2 |2
P 1‘_. qs 1 X |§ IZ : (28)
R 1 P |1-om P

the p and -p source components have been combined to give egquation (28),
gince the source distributions Sp’ S‘P are identical.

In order to estimate the modal energy transmission coefficient q  at
the source plane, the theory of Chapter 4 is used to relate qg to the value

a4 at the duct opening.
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q R
-2 = K = ex gjﬁiﬁi& (% = length of duct measured from source plane)
Clo P 1_M2

be

2)15 '
(1-
- g
= exp { 4ﬂipl . MR } . (29)
R 1-Mi

Physically, the factor Kp accounts for the decay of the sound field between
the rotor plane and the end of the duct.

It remains to estimate the value of qolla|, which as a first approx-
imation will be calculated from the zero-flow theory of reference 27

(equation 3.10). For frequencies below cut-off, this gives

qa, B 4 To

= > L 4 X (radiation efficiency of opening) ,
ol rlelx ) + (lefi)?

(30)

since |G|To,and |OL|X0 are small for frequencies below cutoff. The
radiation efficiency of the duct opening, as mentioned earlier, is to be
taken as the value calculated in Appendix IV for an m-cycle phase variation

around the opening; thus

—— = 4K T ; m=pB . (31)

Equation (31) must be regarded as a tentative estimate of the transmission

coefficient in the presence of axial flow, although it reduces to the correct

value when MX -+ 0.
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Combining equations (25) to (28) with (31) gives the sound intensity

in the quasi-two-dimensional model as

IE ' wz‘ a )2 l-qu ’ | |
= K . — |==) (n = |p|B)
pC3 pn C2 dR ].-M}z{
g
= 8r? p2 K, e2 o - T (a = eb2) 3 (32)
1-M
x

the parameter £y is the mean thickness-chord ratio of the rotor blade
tip section. Equation (32) gives the intensity in either direction
from the rotor, since the factor (l—Mi)—1 which accounts for axial Mach
number effects is an even function of Mx'

In terms of the acfual rotor dimensions (tip radius a s hub-tip

ratio y), Appendix IV gives the following zero-flow approximation to

T, (noting kao % th).

2nt2 M2 20"
. 2 (m )™ " "t 4 t 2
Tn i 5 (Z) (Mg << 1, p << 1).
e (n+2)2 (2n+1)}
This may be written as
= —2 F). G(a,M) (33)
t
1-F
Wwhere
3.2n 2ﬁ+§
F(n}) = (3) n [ (nt2)2(2ntl )1 (34)

is a slowly-varying function of n, plotted in Fig. 7.3, and
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1-M2

2n t
(g) Mt2“+2 (G=1 when M =1) (35)

E
G(n,Mt) = in °
contains the dependence on tip Mach number Mt.

From equations (32) and (33), it follows that the ]p[th-harmonic
sound power due to blade thickness, radiated in either direction from

a ducted subsonic rotor, is approximately

W .
Pt g6r2 p2 K e262M2(1-M2) 7L FG M2 << 1), (36)
pc33 P ER9R X t t

o]

where 5,7 ﬁag is the area of the complete rotor disk. It is interesting
to note that the sound power is unaffected by the hub-tip ratio u, provided

nk:
(as assumed above) y° 2 ia negligible.

7.2.3 BSteady blade loading radiation

Again in terms of the quasi-two-dimensional model, the blade-loading
distribution given by (21) leads to a force distribution in the plane of

the rotor of the form
fi = g % (y-yq) s (37)

where Ri = (gx,ze) are the blade force components per unit span at the
rotor tip.

Spatial Fourier analysis gives, as in the preceding section,

£, = (F) + ] (F) (p = *1, *2 etc.) (38)

where

F) = F) e T, (39)
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and the Fourier coefficients are given by (Fi) = Ei/dR.
p
The acoustic source distribution equivalent to the above distribution
of forces is found by the methods of Chapter 4. If the steady force

on the blade is perpendicular to the relative flow direction (so that

L =12 sinB , & = & cosB where &
X R

5 " r 18 the resultant blade loading at

. th . . : .
the outer radius), the p  harmonic component of the force distribution

leads to a source coefficient §p for which

1-M2 2.2' 2
yg ‘2 Rk (L) (40)
P 1-m2 m2  eedp
X ot

An argument exactly parallel to the preceding section gives the
following estimate for the sound intensity in the quasi-two-dimensional

models

I
2 s 1 2 0 2 201wl
i k) o2 02 ML) T (41)

Here CLR is the steady lift coefficient at the rotor tip, defined by

2R = %CLR DczMébR. Equation (41), like (32), gives the intensity on
either side of the rotor; the compressibility factor (1—M§) reduces the
sound power equally iﬁ both directions.

If the radiation efficiency Tn is estimated from equation (33) as
before, it follows that the [p|th-harmonic sound power due to steady

blade loading, radiated in either direction from a ducted subsonic rotor,

is approximately
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W
P = 2 ¢ 2 M2(1-M2 i 2
e K,p UR_GLR,MR(l MR)FG {pure lift, Mt << 1}, (42)
o

7.2.4 Comparison with previous work

Equation (42), which is the main result df section 7.2, applies to
rotors in which the steady blade loading acts predominantly in the lift
direction. While this is a reasonable assumption for an aerodynamically
designed rotor, the only previous analytical result available for comparison
is the expression given by Embleton.[SBL which refers to the opposite case
of pure drag forces.

When the steady loading analysis of section 7.2.3 is repeated using
the assumption that the blade forces areparallel to the relative flow
direction (i;_. RX = —Ré cosB, 29 = ﬂﬁ sinf), an expression similar to
(42) is found in which Cjp is replaced by the tip drag coefficient G,

and the compressibility factor I-Mé no longer appears:

W
_bP = 2 2 g2 2 cx
% KpOR Chp My FG (pure drag, M 1) . (43)
o]

Embleton's resuit, on the other hand, is based on Gutin's calculation
EG] of the sound field radiated from an unducted rotor, which involves
two assumptions not made in the foregoing analysis:

(a) The mean flow through the rotor disk is neglected (MX = 0) ;3

(b) The distributed loading on each blade is replaced by a point

force acting at an effective radius.
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These lead to the following expression for the lplth—harmdnic sound
power radiated either side of the rotor plane (total power = ZWb), in
terms of the total torque Q acting on the rotor; the effective radius

is taken as the tip radius a (¢.£. Appendix IV).

W 2
P .. Q .

pc S Br2p2cta® t
o 0

jzn(ant) (Embleton [55]). (44)

!Zl:j

For the torjue force distribution assumed in the present calculation

(equation 21), Q is given by
. .
Q = 7 C pczMs as(l-uq) (MX =0) . (45)

Combining (44) and (45), and noting the approximation for jZn(x) given
in Appendix IV, shows that Embleton's expression for Wb based on the

Gutin model differs by a factor

%ZCI-ﬁH)Z E;Biiii.z , E= (Egg g unless 1 is close to 1, (46)
from the value given by equation (43) with no flow (MX = 0) and zero
duct length (Kp =1).

There are two reasons for this discrepancy. First, the assumption
of zero reflection, i.e. outgoing waves, on the backward side of the
source in the ducted-rotor analysis becomes inaccurate as the duct length

tends to zero. This accounits for the factor of % which remains in (46)

as the hub-tip ratio tends to 1l.
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Second, and more important for large values of n = |p|B, is the
error involved in the effective radius assumption. As explained in
Appendix IV, treating a uniform circular source distribution as a ring
concentrated at the outer radius overestimates the sound power output
by a factor (1 +—%n)2. This accounts for the remaining difference

between the two calculations.

7.3 GONCLUSIONS

{a)} At low vaiues of relative Mach number Mﬁ, a rotor operating in
low-frequen;y turbulence as described in section 7.1 generates
a tone power output proportional to Mﬁ. The sound is generated
by fluctuating blade forces. At the blade-passing frequency, the

sound output can be as high as

¥y 2 2 5

~o10 I
pcSS turb MR

for turbulence length scales of the same order as the blade chord
and Op v 1.

(b) If Mﬁ is not small, two other turbulence interaction mechanisms
become of comparable importance. These are interaction of tur-
bulence with the rotor wake pattern, and interaction with the rotor
potential velocity field.

(c) The turbulence-potential velocity iﬁteraction mechanism has an

acoustic efficiency proportional to M%land given by equation (20),

for turbulence length scales of the same order as the blade chord
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and GR Y 1. This result for a subsonic rotor becomes invalid as

MR approaches 1. On the other hand the inverse Mach number

deﬁendence found for this mechanism by Ffowes Williams and Hawkings

[51] is based on an approximation which becomes invalid when MR is

less than 1, so the two estimates cover different ranges of operation.
(d) The sound power radiated from steady blade loading in the absence

of turbulence is given by equation (42), for a rotor of low solidity.

This may be compared with equation (18) for turbulent flow entering

a high-solidity rotor, if (42) is divided by w2|pI0R and (18) expressed

in terms of rotor-tip (rather than mean-radius) conditions.+ Putting

K =1 (zero duct length) gives the ratio, for any blade-passing

harmonic, as

. G(n,M_)/M>
dir _ K t t (M§ << 1)
Weurb (u fu )2
turb’ "blade
where the constant K, = L67F , is of order 1.

(LHu2) (1-u*)

It follows that the factor

i i l"Mi n-2
( G }2 I N 2 _ .
— = |n (5) Mt (Mt = blade tip Mach number)
M
£

may be interpreted as the ratio of r.m.s. turbulent velocity to blade

+Equation (18) -is- 4 two-dimensional approximation and probably best
evaluated at the r.m.s. rotor radius. Since the expression given
varies approximately as (radius)* for a constant blade chord, it

42,2 . ]
should be multiplied by E*%E*} if tip values of Mt etc. are to be
used. )
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tip speed which makes the sound power wéurb’ due to interaction

with turbulence, roughly equal to the power W&ir radiated directl

from the steady loading in smooth flow. A plot of (G/MS)% as a

function of Mt and rotational harmonic number n is given in Fig. 7.4.
(e) In smooth flow, the ratio of the sound power due to blade thickness

and that due to blade loading is

Wﬁ(thickness)
W?(loading)

2
= 16122 E{f] (Mé << 1).

rotor tip

it follows that thickness néise becomes réiatively more important
at high harmonics of the blade-passing frequency. On the other
hand turbulence interaction noise tends in practice to overwhelm
both these mechanisms as the rotational bharmonic number n increases
(Fig. 7.4).

(f) Compressibility effects introduce a factor (l-Mi)_l'in the thick-
ness noise estimate and a factor (l—Mé) in the steady-loading
noise estimate, for a subsonic rotor in smooth flow. _The latter
corresponds to the quadrupole dorrection introduced in [51],
although the order-of-magnitude estimate given there is incorrect:
the effect of the mean flow is actually to reduce the sound power

radiated by steady lift forces on the rotort.

iWith steady drag forces there is no mean-flow effect, as equation
{43) shows.
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CHAPTER 8

SHOCK RADIATION FROM A SUPERSONIC ROTOR

Over the subsonic speed range considered in the preceding chapter,
the pressure field of a ducted rotor decays rapidly with distance away
from the rotor. It is possible to calculate the rotational speed above
which this decay no longer occurs, by using the linearized theory of
Chapter 4. What the linearized acoustic theory is unable to predict is
the amplitude of the pressure field above the critical speed.

The aim of the following analysis is to estimate the rotor pressure
field and sound power output under these conditions. Attention is
restricted, as in Chapter 7, to the blade-passing harmonic content of the
frequency spectrum; the rotor blades are accordingly assumed to be
identical and equally spaced. As a further simplification, three-
dimensional effects are meglected and the rotor with its duct replaced
by a two-dimensional model. However, the equivalent two-dimensional
rotdr is arranged so that its pressure field propagates under the same

conditions as the pressure field of the actual rotor.

8.1 EQUIVALENT TWO-DIMENSIONAL MACH NUMBER

The blade-passing pressure field of the actual rotor begins to
propagate along the rotor duct, according to the linearized theory of

Chapter 4, when

: 2 1
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In equation (1), N is the rotational speed of the rotor and kBO is the
cut-off wavenumber for the (m = B, n = 0) duct mode. For the funda-
mental blade-passing frequency of g B-bladed rotor, this is the lowest-
order mode and is therefore the first to propagate as the speed is
increased.

Equation (1) as it stands assumes axial flow in the rotor duct.
If the duct contains a swirling flow, with solid-body rotation at angular
velocity Q in the rotor direction, a first approximation to the cut-off

criterion is obtained from (1) by substituting

w ~+ (w - BR), i.e. 27N -+ 27N - Q. : (2)

In other words, the propagation relative to the swirl is unaffected by
the swirl, for small swirl Mach numbers (cf. Appendix II). However,
the mean flow is assumed to be axial in the following analysis.

The cut-off criterion (1) can be expressed in terms of an equivalent

two-dimensional relative Mach number MR’ as

M, =1 . (2)

MR,iS defined by the relation

2
2 =2 4 (. 2 = M2 .. (BT y2
Mp = M2 (ZTEBN/CkBO) M (go] M2 s (3)

where Mt is the tip Mach number of the rotor blades, and 8, kBO g
is the dimensionless cut-off parameter for the (B,0) duct mode. In

the limit as p -~ 1 (two-dimensional rotor), =3 -+ B and MR reduces to the
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actual relative Mach number.

In what follows, it is assumed that MR - 1. Because according to
linearized theory the blade-passing pressure field travels without
attenuation along the rotor duct, and is of high amplitude close to the
rotor, a dominant role is played by nonlinearity and shock formation.

A simplified model of the rotor pressure field is therefore comnstructed

in terms of repeated shock waves.

8.2 SHOCK AMPLITUDES UPSTREAM OF A SUPERSONIC ROTOR

Figure 8.1 showsa system of parallel shocks attached to the leading
edge of a two-dimensional rotor. Because the shocks are non-uniform
(being strongest near the rotor plane), they do not propagate in a truly
one-dimensional manner. Nevertheless, the similarity is sufficiently
close for one-dimensional theory to be illuminating.

The first-order theory of one-dimensiomal finite-amplitude waves
[58, 59, 60] predicts that if a periodic waveform, of wavelength ;,
has a sufficiently large initial amplitude to develop into a sawtooth
shape within a distance x, its peak-to-peak amplitude at that distance
is approximately

AS = &}%%U"% (perfect gas, v constant). (4)

T

Equation (4) sets an upper limit to the shock strength Ap/po at distance
x, regardless of the initial amplitude. It suggests that beyond a

certain distance from the rotor leading edge, the shock strength will

he significance of the (B,0) cut-off condition was pointed out by
McCune |}7 in the context of transonic flow through axial-compressor
blade rows.
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decay inversely with upstream distance, and will be insensitive to details
of the blade shape and loading. A more detailed examination of the shock
propagation, given below, supports the 1/x decay prediction; while com-
parison with experimental results indicates that shock amplitudes can be

predicted, within a factor of 2, without knowing the blade profile geometry.

8.2.1 Two-dimensional analysis of shock propagation

Fig. 8.2 shows a sawtooth pressure waveform, assumed to be rotating
with the rotor in the plane x = X, (starting plane). It is assumed in
this analysis that the shocks are fairly weak and symmetrical about the
mean pressure p _, SO that

(a) The shocks propagate relative to the mean flow at speed <, normal
to the shock fromt, corresponding to pressure Pys

(b) Other points on the waveform propagate in the same relative
direction, but with an additional velocity B z-io 3 the coeificient

oo
B = %5(y+l) for a perfect gas with v constant (Appendix I).

Consider points P and ¢ on the initial waveform (Fig. 8.2). P will
eventually overtake the shock ahead of it, and Q will be overtaken by the
same shock. We wish to find at what distance upstream this occurs.

P starts at a perpendicular distance

4y [l - <ip;5} cos? )

from the shock front. The time taken to overtake the shock is therefore
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C

‘ £
=2 00 . -2pt
t? =1 Tt 5d, cosd. {} (Ap>s

poco 2

_ _ 1 __2
=W dR cosd ‘;' - (Ap)s} . (6)

Similarly, point Q is overtaken after a time

c
p00

"= S
t s d, cosg [P” - (ﬁp)51 ‘ (7)

from starting at x = X e

The corresponding upstream distances x', x" (from x = xs) at which

P and Q combine with the shock are given by

xt ::cot?(sin¢ - Mx) + %dR sin¢ cos¢ |1 - ?%5%; H (8)
X" = cot"(sin¢ - MX) - %dR sind cos¢ |1 h-?%ggg . 9

The first term is the distance travelled by the shock; the second term
allows for the motion of P, Q relative to the shock.
We are concerned with the situation where P and Q coincide on meeting

the shock. A necessary condition for this to occur is that

xt = x" 3 (10)
the other condition, that P and @ should arrive at the shock simultaneously,

determines the departure-time interval at x = xsrwhich is not required here.
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Equations (8), (9) and (10) give

co(tn_tv) (sin¢—MX) = éR sing cos¢ {} - %%g%g} 3

so from (6) and (7),

2

b c
o o . 1 | piip!
I (sin¢-M_) (ET - Eﬁ) sing {} - (AP)S} . (11)

Equation (11) gives the required relation between p' and p". If
it is satisfied, the actual upstream distance may be taken as the average
of the values x', x" given by (8) and (9); i.e.

% = %co(t'+t") (sin¢-MX) - %dR sing cosd. %%;%— s

s
or, from (6) and (7),
R . 14 2 . pl-p”
X = =97 dR cos¢.(81n¢-Mx) ’;p'p" - (Ap)s] - %dR sing coso. (AP)S .
(12)
The substitutions
p'+p" = dp,  p'-p"=dp
give
pt = k(hpHop); p" = 5(Ap-8p)s p'p" = 2[(4p)2-(3p)7] . (13)

Equation (11) may therefore be written in terms of Ap and Sp as

0% . 4 Sp Sp 2 . Ap
_§1I_(Sln¢'Mx)' PPRY; ’}.%(Ap] +...} = 51n¢.[1 - (AP)S} s
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2
i.e. if (%} is negligible compared with 1,

Sp . ¥l sing 1 Ap Ap (14)
" - " ~ - T -
ip 4  sind Mx (Ap)s I
A 2
Equation (14) shows that we are neglecting terms of order (—E;) .
0%
To the same accuracy, equations (12) and (l4) give
- 2
x = %% (sing-M_) 2 _2_
dp cos ¢ 1 T | (AP)S
. ¥l sin ¢ Ap A A
+ %¥sin g —— ————— |1 - AP P_ (15)
4 sm.nqb-MX [ (AP)S:I (Ap)s pocoz

The above equation relates :-cid.R, the shock strength z = gﬂ at a position
o (4p)
X upstream of the starting plane, and the shock strength z = 2 at

Po

the plane x = X e It may be written in terms of these variables as

3
_ 2y . 1 1 Y+l sind 2 g
RS cosdJ(s:.ncb-MX)(E - Z) {1+ [Zy— ——__sin¢-Mx) z} . (16)

& 2
The second term in brackets is of order (T:‘E] , and must therefore be

neglected in the present approximation. It follows that to an accuracy

of (Ip/ Docoz), the relation between shock strength z and upstream distance

x is

_avd 1
Y1 oz T

) FaL,M) . (17)

N

£

S
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The function F(MR,MX) = cos@.(sin¢-MX) is determined by the relative Mach
number MR entering the rotor and its axial component Mx’ and is evaluated
in the following section.

Equation (17) may also be written as

1 -
5z = /(1 + 2 el (n = Pd /%) (18)

3

which gives the shock strength z explicitly in terms of the parameter
n o= FdR/Q. This result shows that for small n (large distances), z
varies.linearly with n and is independent of Z . At small distances,

as expected, z tends to the starting value Z .

8.2.2 The shock-propagation function F(Mn,MA)

The shock-front inclination ¢ (Fig. 8.1) may be calculated from the

relation

B+oe ~u= wm , (19)
- -1 . .
where B = cos (Mx/MR) is the flow angle relative to the rotor,
and H = sin_l(l/MR) is the Mach angle. It follows that

cosé =L T 02-1)F] ,  simo = 2 [ 02-1)7] (20)

1
where Mt = CM§~M2)2 is the tangential Mach number of the rotor.
Values of the function F(MR,MX) = cos¢.(sin¢~Mx) obtained from

equation (20) are plotted in Fig. 8.3. Physically, FdR is the distance

travelled upstream in the axial direction by a point on the shock, as the

tThe value of z_ in the leading-edge plane of a supersonic rotor may be
roughly estimafed as the strength of a normal shock corresponding to an
upstream Mach number MR'
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shock front advances by one "wavelength" dR cos¢ relative to the fluid.

Thus when Mx approaches 1, F becomes small because a point on the shock

is swept downstream almost as fast as it advances relative to the fluid.
When M; >> 1, ¢ approaches 7/2 and F is given approximately by

(1-Mx)2/Mﬁ’ as may be checked from Fig. 8.3.

8.2.3 Comparison of simplified theory with measurements

Shock measurements from two experimental supersonic fan rotors
[61, 62], of widely different hub-tip ratios (approx. 0.8 and 0.3) are
plotted in Fig. 8.4, in the form suggested by equation (18). The initial
shock strength z_ was taken for this purpose as the normal-shock strength
for a Mach number MR' Values of MR in the tests ranged from 1.16 to 1.37.

The four sets of datra points correspond to upstream measuring
positions whose distances from the leading-edge plane ranged from 2.2% to
90% of the rotor blade space.T In every case the measurements fall within
a factor of 2 of the simplified theory, which is represented in Fig. 8.4
by a straight line of unit slope.

Considerably closer agreement is found when the simplified theory
is compared with exact calculations based on a two-dimensional isentropic
model, for a rotor of similar geometry to the W = 0.8 design. This
suggests that assumptions common to both calculations - such as two-
dimensional flow and exact uniformity of the shock pattern - are a more
serious source of error in predicting the shock strength than any sub-

seqjuent assumptions used in obtaining equation (18).

.f_
A value of corresponding to the effective radius, i.e. (B/g ) times
the casing radius, is used throughout the calculations.
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8.3 S50UND POWER RADIATED UPSTREAM AT BLADE-PASSING FREGQUENCY

A supersonic rotor running in an open-ended duct will radiate an
amount of sound power governed by the strength of the shock patterns at
the upstream and downstream ends of the duct. This is because nonlinear
effects are comparatively unimportant once the sound has left the duct
and is able to spread three-dimensionally. If the theory of section 8.2
is used to estimate the pressure field at, say, the inlet end of the duct,
the corresponding sound power can be calculated provided the energy trans-
mission coefficient for the inlet opening is knownj

Attention is concentrated here on the sound radiated at blade-passing
frequency. For this purpose we require the fundamental Fourier component
of the sawtooth pattern assumed in the previous section, which gives a
pressure amplitude Ap/m. The corresponding upstream sound power, which

for a two-dimensional rotor is confined to the (B,0) mode, is given by

equation (4.22) as

W 2 1-M2 2
1 _ 1 Ap X
s ZDOCO (ﬂ J DLqo [1+aMx) 2 (Mx > 0). (21)

Provided the shock strength at the inlet face is small compared with
the initial strength leaving the rotor - as will generally be the case for
duct lengths & > %dR - equation (18) can be simplified to give Ap at the

end of the duct as

tIt is assumed that the pressure field reflected back to the rotor from
the inlet will not affect the shock pattern generated at the rotor.
In view of the axial decay of the shock pattern, this is reasonable for
duct lengths of order dR or greater.
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F
Ap o r2Y _EE
18 (Y+1) (22)

It follows from (21) that

W, d 2

pocé’s Trz(w-l)zi (9‘)

R,

where (23)

F2 .,

Ro= dqo [1+uMXJ

A realistic estimate of the transmission coefficient dg in this
situation is obtained by assuming a modal admittance ratio of unity at
the inlet opening, i.e. Bo =1 (cf. section 4.3.3). This gives

q = —2%_ (28)
°  (1te)2

which tends to 1 as required for high rotational Mach numbers, and is
zero at cut-off (where a = Q).

The relative sound power function R(MR,MX) given by (23) and (24)
is plotted in Fig. 8.5. The upstream gound power depends strongly on
the axial Mach number of the flow; at high rotor Mach numbers, the power
is proportional to (l-MX)GlMRZ.

Also shown in Fig. 8.5 is a scale of absolute sound intensity WI/S’
calculated for 3 duct lemgth % = dR. If the fluid stagnation properties

are taken as those of air at standard sea-level conditions, equation (23)
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gives the intensity as

W 6
_l 1.7 . 10 2
5 — R(MR,MX) watt/m . (25)

2L
(140.2M2)

The coefficient of R does not vary much over the range MX =0 to 1, and

has been approximated by 10° watt/m® in Fig. 8.5.

8.4.

(a)

(b)

(e)

(d)

CONCLUSTONS

If a rotor is operating supersonically according to the definition
given in equation (3), its associated pressure field is expected to
form shock waves and cannot be described by linearized theory.

A simplified weak-shock theory has been developed to predict shock
strengths upstream or downstream of a supersonic rotor, om the basis
of a two-dimensional model.

The theory has been compared with shock measurements on two different
rotors, at upstream positions within one blade space of the rotox
leading-edge plane. The measurements fall within a factor of 2 of
the predicted shock strengths, and are mostly below the predicted
value.

The sound power radiated upstream at blade-passing frequency, from

a supersonic rotor with identical blades and spacing, has been
estimated from the theory. There is a rapid fall-off as the axial

Mach number approaches 1 (Fig. 8.5).
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CHAPTER 9

REVIEW AND SUMMARY OF CONCLUSIONS

The preceding chapters have brought together acoustic and aerodynamic

theory with the primary goal of estimating, from first principles, the

sound power output of axial-flow machines. Among the practical situations

to which the theory is relevant - in addition to the jet-engine noise

problem which motivated the work - are heating and ventilating systems,

nuclear reactor coolant circuits, and the noise of helicopter rotors,

heat-exchanger fans and propellers.

The main conclusions are outlined below, together with suggestions

for further research in the area of turbomachinery noise.

(A) - Basic Theory

1.

The continuity property of sound power can be extended to non-
dissipative irrotational flows, if the classical definitions of
acoustic energy flux and energy density are modified. For more
general types of flow, use of the modified definitions given in
Chapter 2 leads to an acoustic energy balance equation which exhibits
acoustic energy production within the flow. The production rate
(which may be negative) is determined by certain local correlations
between fluctuating quantities.

The generalization of acoustic energy mentioned above finds its

main use in situations where the production of acoustic energy is
negligible, In certain other cases the production rate is significant,

but can be estimated; £for this purpose a description of the sound
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field is required in the production region.

The excitation of sound in ducted flows is conveniently described
by a convected wave equation for the pressure. Chapter 3 shows
that perturbations to a uniform steady flow give rise to source
terms in the wave equation, and these are evaluated to second order
in the perturbations. Among the acoustic source terms identified
in this way are second-order interactions between the flow perturba-

tions (pressure, entropy, velocity) and external forcing terms

A linearized theory is developed in Chapter 4 to deseribe the trans-
mission and generation of sound in hard-walled ducts with flow.

Given the spatial and time dependence of an acoustic source distribu-
tion contained in a finite duct, together with the modal reflection
properties of the duct terminations, it is possible to calculate the
sound power radiated from the source. Mode coupling at the termina-

tions is neglected, and the duct is assumed uniform between the

3.
(volume, momentum and entropy input to the flow).
&,
terminations.
(B) - Applications to Turbomachinery
1.

Several different sound-generating mechanisms in subsonic turbo-
machinery involve the interaction of a blade row with a disturbance
field which is unsteady relative to the blades. These interaction
mechanisms, identified in Chapter 5 and evaluated in Chapter 6,
supplement and often outweigh the direct radiation of sound from

steady rotor loading and thickness which occurs in an undisturbed

flow,
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4,

The interaction of a subsonic rotor with turbulent velocity dis-
turbances can radiate either a broad-band or an almost-discrete
spectrum of sound frequencies, depending on the frequency spectrum
of the turbulence as viewed in a fixed reference frame, For low-
frequency turbulence (compared with the blade-passing frequency)
the radiated spectrum is concentrated around multiples of the blade-
passing frequency; Chapter 7 compares the interaction sound output
in this caseswith the steady-loading sound output in the absence of
turbulence. It is found that when the radiated frequency exceeds
twice the rotor revolution rate, the steady-loading sound power is
negligible at low rotor Mach numbers. As the frequency ratiois
increased @gbove 2 ),the break-even point moves to higher tip Mach
numbers.

Sound radiation from a supersonic ducted rotor is dominated by
shock-wave formation and decay within the duct. The l-dimensional
theory of weak sawtooth wave propagation predicts shock strengths
upstream of two different rotors within a factor of 2 of the measured
values, if applied at an effective radius which accounts for the
cylindrical geometry of the rotor duct. The same theory predicts
that the upstream sound power at blade-passing frequency should vary
with the approach-flow Mach number MX approximately as (l-MX)6.

The theory of turbomachinery noise is still at a primitive stage,

in that very few successful comparisons have been made with measure-

ments. Further analytical work is needed to fill gaps in the theory,
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together with more detailed aerodynamic measurements than are avail-

able at present. Some of the particular topics which require in-

vestigation are listed below.

Refinement of unsteady airfoil theory for incompressible flow, to account
for viscous boundary layer effects.

Computer solutions for unsteady compressible flow in cascades, for
cases where incompressible isolated-airfoil theory breaks down.

Simplified theoretical models for sound transmission through blade
TOWS.

Propagation of nonuniform rotor shock patterns.

Measurements of temperature inhomogeneities in turbine flows.

Measurements of turbulence spectra and scales in multi-stage
turbomachinery.

Experimental verification of theory for rotor noise generation in

turbulent flow.
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eR, eR
F (M, )

F(n)

LIST OF SYMBOLS

cross—sectional area of blade profile, equation (7.21)
outer, inner radii of annulus

number of rvotor blades

phasor vector potential

blade chord, axial chord

vector potential for velocity field induced by vorticity
steady-state lift coefficient

constant—pressure specific heat of fluid

sound speed in fluid

mean acoustic emnergy density

spatial Fourier components of displacement distribution
displacement distribution in rotor plane (Chapter 7)
tangential spacing of blades

acoustic energy density

duct-mode shape functions (normalized):
[ Exfiy* d8 =8

internal energy of fluid per unit mass

L v,
components of rate-of—strain tensor, 5§i1+ 3;3
i .

1

displacement, momentum thickness of rotor wake in
tangential direction

shock propagation function cos¢(sin¢tM%) (- upstrean,
+ downstream)

defined by equation (7.34)
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Fu(ky’kz) wavenumber spectrum of axial turbulent velocities

FX phasor force component in x direction, per unit area.
£3 fi force distribution over duct section; cartesian
components
G(n,Mt) defined by equation (7.35)
G(x,xs) single-frequency mode response function
g Re(q) (Appendix III)
g mode eigenvalue k a
o mn o
g5 85 force applied to fluid per unit mass; cartesian
~ components
H entropy input rate per unit volume
h enthalpy of fluid per unit mass
h Im(q) (Appendix III)
I interaction source terms in wave equation
I; Ii acoustic intensity vector; cartesian components
I total sound intensity due to interaction between
P turbulence and rotor at |p| x blade-passing frequency
I S,IS modal sound intensity due to interaction between blade
P P rows at Ipl x blade-passing frequency (radiated from
stator, rotor)
Iturb turbulence intensity entering rotor
J stagnation enthalpy per unit mass
J* defined by equation (2.153)
K.p pressure—field decay factor, equations (6.5) and (7.29)
KW wake decay factor, equation (6.12)
k thermal conductivity of fluid (Chapter 2)
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k(&)

circulation distribution over blade chord
acoustic wavenumber (w/ec); axial wavenumber in duct

mode characteristic wavenumbers (cut—off value
for no flow)

2ﬂ|pl/dR

tangential, radial wavenumber components in rotor
disk (2—-dimensional model)

unsteady blade 1lift per unit span, axial component
length of duct between source and open end
resultant steady loading-on rotor blade

thrust, torque components of steady blade loading,
equation (7.21)

turbulence length scales in tangential, radial
directions (2-dimensional model)

Mach number of flow relative to rotor, stator
tangential Mach number of rotor, MX(tl + t2)
componentg of flow Mach number in duct

mass flow per unit disk area (Chapter 4)

circumferential mode number (number of cycles round
disk)

components of mass flux, pVi

defined by equation (2.15)

rotor revolution rate

energy flux vector; cartesian components

components of acoustic energy flux, J* mi
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n radial mode number

n reduced frequency in fluctuating lift calculation

n ratio of sound frequency to rotor revolution rate, |p[B
n unit wvector normal to disk

P rate of acoustic energy productiom per unit volume

p; p*

Ap

ép

(Chapter 2)

phasor sound pressure; modal coefficient
components of fluid stress tensor

entropy production rate per unit volume
Prandtl number of fluid

pressure; dimensionless fluctuation p'/pc2

rotor spatial harmonic number (p = +1, *2 etc.):
]p| = blade-passing harmonic number

pressure rise across shock wave

defined by equation (8.13)

three-dimensional acoustic source distribution
total torque on rotor (Chapter 7)

define source distributions of monopole, dipole,
guadrupole order

modal energy transmission coefficient

reduced chordwise wavenumber in fluctuating lift
calculation

blade index number (Chapter 7)
components of heat flux vector

sound power function, equation (8.23)
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s(°),s ,S
X XX

 (®) (&%)

>

§(D)

defined by equation (2.17)

radial mode shape function (normalized)
radial co—ordinate

modal pressure reflection coefficient
defined by equation (2.17)

area of annulus or duct cross-section
area of complete rotor disk

(o)

phasor axial source moments corresponding to s etc.

equivalent zero—order axial moments corresponding to

5 , 8
x’ xx

(o)

modal coefficient of S ; similarly for other source
moments

entropy of fluid per unit mass

spatial harmonic number for stator vane disturbances
(s = 1, £2 etc.)

distance from source (Appendix IV)

successive axial moments of acoustic source
distribution Q

defined by equation (4.54)
absolute temperature
time

tan o tan 32

1’
phasor axial velocities (sound field, vorticity
field)

amplitude of longitudinal velocity fluctuations at
mid—-chord, stator LE

spatial r.m.s. value of velocity amplitude

axial component of turbulent velocity fluctuation
(Chapter 7)
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H

r.m.s. axial component of turbulent velocity

“turb

us ug v-w; cartesian components

v number of stator vanes

v phasor tangential wvelocity (Appendix II)

VO, VS’ VR amplitude of upwash fluctuation at mid—-chord, stator LE,
rotor TE

Vs Vi fluid velocity; cartesian components

V3 ﬁi velocity in unperturbed flow; cartesian components

v v, fluid velocity perturbation; cartesian components

W sound power

W sound power radiated to either side of a ducted rotor,

P at |p| x blade-passing frequency

W3 oW, vorticity-induced wvelocity perturbation; cartesian
components

X wake coordinate X/bX (x = 0 at TE)

X : axial co-ordinate in duct

X blade~row separation (Chapter 6)

x axial distance from starting plane (Chapter 8)

X, Xj cartesian coordinates (i, = 1,2,3)

v tangential co-ordinate in two~dimensional rotor model

75 V3 positi?n vector in duct cross—section;
cartesian components

%‘ phasor vortieity field

z volume displacgment per unit volume

z shock strength Ap/p0 (Chapter 8)
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G12%

axial wavenumber parameter
stator inlet, exit flow angles
thermal expansion coefficient

modal admittance ratio im x direction, value at
duct opening

nonlinearity coefficient (Appendix T)
rotor inlet, exit relative flow angles
specific~heat ratio

ratio fe/fx at outer radius r = a

mean thickpess—chord ratio at blade tip

vortielty

av. oV,

. . i
components of vorticity tensor, 5§l e
; .

K|
Imy {(Chapter &)
shock distance parameter, equation (8.18)

acoustic efficiency defined by equation (7.19)

Inp: derivatives with respect to pressure,
entropy

angle in cylindrical co—-ordinates
temperature defect paiameter for rotor wake
wavelength of periodic pattern

viscoéity of fluid (Chapter 2)

radius ratio al/a0 for annmular duct; hub-tip

ratio of rotor
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Subscripts

i,]

P,s

Mach angle (Chapter 8)

Ret (Chapter 4)

dimensionless chordwise coordinate
stagnation—-pressure loss coefficient of rotor, stator
fluid density

Axial conductance ratio, Re ]

blade-row selidity

modal radiation efficiency at duct opening

radiation efficiency of annular source with zero
radial variation

radiation efficiency of annular source in (m,n) mode
Axial susceptance ratio, ImB

CL/ﬂ {(2-dimensional model)

shock angle (Fig. 8.1)

modal reactance ratio at duct opening

reflection phase, value at x = 0

angle to disk axis (Appendix IV)

angular velocity of mean swirl

radian frequency (relative to mean swirl,
absolute wvalue)

cartesian compopents (i,j= 1, 2, 3 ; repeated
subscripts indicate summation)

general mode index
normal to chord (Chapter 6)
normal to surface or wavefront

harmonic components of rotor, stator disturbances
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Superscripts

Functions
C(n)

D/Dt, D/Dt

—-iwt ik.x
e , @~

JqCXJ

EQCX)

qth blade around disk

rotor, stator

source position

value in starting plane {(Chapter 8)
transverse component (normal to axis)
tangential to wavefront (Chapter 2)
component due to vorticity
unperturbed value

+x, —% side of source plane

perturbation
simple gource
value just downstream, upstream of actuator disk

indicates direction of progressive waves along
duct (Chapter 4)

Theodorsen function

(a/at + V. 3/3x.), (3/ot + x'ri 3/9x.)

time, space factors corresponding to radian

‘frequency w and wavenumber k

Bessel function of order g
X

Bessel function integral f Jq(t) dt
o
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KL(n,q)

Re,Im

Kemp—Sears lift response function

D2/De? — 272

real, imaginary part
delta function
gradient operator, transverse component

time average
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APPENDIX I : THERMODYNAMIC RELATIONSHIPS

The thermodynamic properties of any homogeneous substance
are determined by an eguation for the specific enthalpy in
the form h=h(p,s), provided the only means available for
transferring energy to the substance (under equilibrium con-
ditions) are compression work and heat transfer. Such an
equation of state 1s expected to hold for a fluid which is
free from chemical or electromagnetic effects.

Under these conditions, the thermodynamic properties

at equilibrium are linked by ‘the differential relationship

gh = ptdp + T ds ;

it follows that the partial differential coefficients of

h{p,s) are given by

Differentiation with respect to s gives:

ap™? (BT
T, = h_ _ = h = = |==
s as 83 0
¥ D D s o
_ [3p7? 3T .
= ( 3T )p as)p - T/Cp >
Gy T
= L . - (eh}
ey 3 where Cp = (BT) 5
b p
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licre,

_ fap~!
Op = PLTET

is the coefficient of thermal expansion. Alternatively,

1f
c°C
) o D

where Y=Cp/CV is the ratio of specific heats.
From the basic relationships given above, the following

partial differential coefficients of 8(p,s)=1ln p are obtained:

Gy T
ep = i—- ; eS = g
pc? P
' £y
8 = (1-28) 82 y=1)T 4
3
pp p CZ Cp

where B 1is a "nonlinearity" coefficient given by

1 3 4
= = c h =
=3¢ ppp

O |

apc
P

8

For 'a perfect gas, aTT=l, SO 83=—(1/Cp). If the gas has
constant specific heats, it follows that

eps = 0, 955 =0

The nonlinearity coefficient B for such gas is B = % (y+1).
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APPENDIX II : EFFECT OF MEAN SWIRL ON SOUND TRANSMISSION IN AXISYMMETRIC
DUCTS

If the mean swirl is represented by solid-body rotation of the flow
at angular velocity & , a first approximation to the sound field in the
duct is obtained by applying the zero—swirl solution to a co-ordinate system
rotating with the flow.

However, this procedure neglects the coupling of the unsteady pressure
and vorticity fields caused by the mean vorticity in the flow ( @ effect),
as well as the presence of radial density and sound-speed gradients in the
mean flow (rotational Mach number effect). The continuity property of
acoustic energy moreover ceases to hold when the mean-flow vorticity becomes
comparable with the radian frequency (cf. sectiom 2. ).

The range of validity of the robating-co—ordinate approximation is
explored below, by examining the effect of solid-body rotation on mode cut-
of I frequencies. An expression for acoustic intensity is then derived on

the assumption that this approximation can be applied.

Cut=~off frequencies in a rotating flow

Sozou [ 63_] has calculated (m,n) mode cut—off fregquencies in a fluid
with solid-body rotation bounded by a hard-walled circuler duct, for modes with
m 3.1. The fluid was baken as a perfect gas, with y = 1.4t and uniform mean
entropy. In additicn, Salant [,Gdgj has calculated {0,n) cut-off freguencies
under similar conditions except that y was taken as 1.

From these numerical results it ig clear that the cut-off frequencies
® o0 relative to the rotating fluid are influenced by the rotation, particularly

for the (1, 0) mode, However, provided the fluid robates at subsonic speeds,
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and this mode is excludedj it appears that the ratio wmn(ﬂ)/wmn(O) always
lies between 1 and 1 - Q/mo. Heretno is the cut-off frequency in fixed

co—ordinates, and Q is taken as positive if the fluid isrrctating in the
same direction as the acoustic WaveTT. The zero-swirl cut—-off fregquency

mmn(O) is calculated using the sound speed in the rotating fluid at the

r.m.s. radius, for purposes of comparison,

Sozou and Swithenhank [65] have Subsequentiy extended these
calculations to study the effect of non—uniform rotation on the (1,0) and
(2,0) modes. A Rankine vortex is assumed, which reduces to the previous
case when the core fills the cylinder. Exactly the same conclusions may
be drawn as before concerning the effect of fluid rotation on cut-off
freguencies, provided the uniform angular veloecity @ 1s replaced by a

mean value
Q = fale). r3dr/fr3dr (1)

in the ealeunlations. Eguation (1) would correspond to an angular—
momentum average of G(r) if the fluid density were uniform; it is introduced

here as a convenient definition, in order to generalize the uniform-

rotation results.

FootnotesS: + The upper bound is slightly exaeded when the (1,0) mode
rotates in the direction cpposite to the fluid. The same
applies in the Rankine vortex case; but the discrepancy
does not exceed 10% provided the flow is locally subsonic
over the whole cross-section.

Tt Form =0, Q@ 1is taken as negative (the cut—off frequencies
are increased by fluid rotation).
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It follows that

0 << w (w
o o

radian frequency in fixed co—ordinates) {(2)

is a sufficient condition for mode cut-off fregquencies, relative to a

subsonically rotating fluid, to be approximated by neglecting the

rotation and using a typical sound speed as described above. The same

condition ensures the continuity of acoustic energy., and is assumed to

hold in the analysis which follows.

Acoustic intensity in a uniformiy rotating flow

In terms of {x, &, r) velocity components, equation (2.13) gives

the axial component of the acoustic intensity as

<p'p'> + <ptv > +p V <v v >
PP P % po x

(65



For a single frequency and duct mode, the tangential velocity

fluctuations vy = Re(V) corresponding to waves travelling in the

+x and -x directions are

2 2
+ 1i-M - 1 -M
mP ( X Yy, v = mP ( X _)
p wr 1 - aM p wr 1+ alM,
o X o) X

(2« o,); (4)

these follow from the linearized momentum equation in the © direction
(cf. equation#l3 ). The radian frequency w is measured relative to the

mean swirly 1.e.

w = o, T me (3)
where is the frequency in fixed co-ordinates.

Adding the forward and backward wave components,and using equations@4«§0)

g (&.14), gives the combined tangential velocity as

v o= B (1+pn) .
p_wr X
o)
If the wvalues 3

¥ = ¢ , V. = Qr,
X o X 9 s (6)

s n £ - x J
v, = Re = A Re|; ur (1 + 8 )

0 o o} .

are substituted in (3), the intensity is obtained as

L1 L ? ) 2
R R {1 +m") Rep+ My (T +[8[7) 1. ()

Comparison with equation (4.16) shows that to the present approximation
(Q<<wo, subsonic flow), the effect of the mean swirl is to multiply the

axial intensity in each mode by the factor

wo = 1+ mp = (1-@_@)_1 , (8)

W
o]

£
e

~
~



APPENDIXII: RESULTS FROM UNSTEADY ATRFOIL THEORY

A theory due to Kemp [ﬁﬁﬂ gives the fluctuating lift response of a
stationary two—dimensional airfoil to small upwash-velocity fluctuations
superimposed on the mean free-stream velocity vo- Effects of airfoil
thickness, camber, and interference from neighboring blades are all
neglected; the theory is restricted to incompressible inviscid flow, and
the Kutta condition is applied at the trailing edge (i.e. the pressure
is assumed continuous)

A basic upwash distribution is teken in the form

v = Re [Vo ei(qg—mt{] . (1)

where & is the distance rearward from the mid-chord point normalized

by the half-chord (b/2).

The correspending complex 1lift L per unit span is given by

L= wowv, ¥ e T . X (n,q). (2)

Here KL is the Kemp—Sears 1ift funciion, related to the Thecdorsen

function C{n) by
' 3
K (n,a) = |:Jo(q) + iJl(q):I ¢(n) - i[p- I (a) » (3)

and n is the reduced frequency w_b/2VOo .

Typically n is of order 3 throughout the operating range of a compressor.
. ' . 1
The Theodorsen function G(n) can then be cleosely approximated by 5

In addition to the upwash-induced 1lift fluctuations described above,
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the airfoil will respond to longitudinal (i.e. chordwise) velocity
fluctuations u in 8 similar manner. The 1lift response is no longer
frequency—dependent, but is goveraned by q. It may he calculated for air-
foils of negligible éamber by noting that the steady-state distribution
of circulation over the blade chord is unaltered by longitudinal gusts of
small amplitude, in contrast to the upwash case analysed by Kemp.

The calculétion for an alrfoil with a flat-plate steady 1ift distribution,

gubjected to a longitudinal gust pattern

w=ze [y, ei(q‘z‘“’t’] , ()

gives

TpbV U e_lwt n(a)s (5)
® Q0 L

L
+

the unsteady=1ift response function in this case is

c
L .
== [J - .
H (a) =52 [I.(0) - 13,(0)] (6)
The function HL, unlike KL, depends on the steady lift coefficient

of the airfoil.

Approximation to longitudinal response Ffunchbion

For |g!? >> 1, equation (6) gives approximately

. CL/W h i(%ﬁ"g) .
HL(q) = zzgajg- e e , (g=g+ih ; |aj? »>> 1);
i.e.
-1 itw
Hﬂ(q) = (2rq) ° ¢ e ¢ (referred to leading edge; ¢ = CL/W). (7)

+ Equation (6) can be shown to agree with Horlock's caleulation [53] , if
his gust parzllel to the mainstream is resolved into longitudinal and

upwash components.



Approximations to upwash response function

Three particular cases are of interest.

(2) Frozen convected gust pattern

Here g = n, h = 0, If we further assume n > 1 so that C(n) = %,

equation (3} gives

K (nn) £3[5 (0) =19, ()] = (/e (n) , (> 1);  (8)

or from (T)

Ki(n,n)

(v) Pattern decaying towards trailing edge

Ol

- L
(2mn) "2 M7 (referred to leading edge; n? >>1}. (9)

11

If the upwash disturbances decay strongly, so thsat eh >> 1, then

(3) can be approximated at high reduced frequencies by

. n i(lm-g) . B h :
KL(H’Q) £ T e Llmg) 4 q(l/¢)HL(Q),(e >> 1l,n > 1); (10)
(eng?®):z
i.e.
1 LE. _% i%'ﬁ +
KL(H=Q) = q(2ﬁq) e (referred to leading edge). (11)
(c¢) Pattern amplifying towards trailing edge
Tf o' << 1 and n > 1, equation (3) gives
: -n =h i(g'lﬁ) h
i (nsa) # TE$E37¥"G e, (n>1, e <<1);
i.e.

s n -1 =i -
KE(H,Q) = (l“a) (2nq) e LET (referred to trailing edge). (12).

It follows in this case that

K (n,a) >> H(a). (13)



Conclusions

If the disturbance has a much greater velocity amplitude at the
trailing edge than at the leading edge, the fluctuating 1lift is dominated
by the upwash component and can be estimated (for n > 1) from {(12).

Otherwise, the upwash and longitudinal velocity contributions are
comparable.  Equations(8) and (10) indicate the following spproximate relation-
ship for this case:

HL(q)

&(nscﬂ

éd’-%: (Il>l)‘;

£
the absolute value of Ki‘follows from (10) or (11).'

t The errors involved in using (11) or (12) for IKL[are in fact of order

-2 Z2h . . .
e s € respectively at high reduced frequencies, so that the modulus

is given more accurately than the phase by these expressions.
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APPENDIX 1V

SOUND RADIATION FROM AN ANNULAR SOURCE DISTRIBUTION

WITH LINEAR PHASE VARIATION CIRCUMFERENTIALLY.

The following analysis provides an estimate of the radiation efficiency
for a subsonically rotating source pattern, either in a free field or in a
duct. The source is taken as being uniformiy distributed over an annular
region of arbitrary radius ratio, with a circumferential phase variation
around the annulus. A feature of the analysis is that no appeal is made

to the effective radius concept.

Circular source distribution: radiation efficiency for (m,n) modes

Consider a source distribution confined to a circular disk of radius
a s with volume velocity 2U per unit disk area. The quantity U corres-

ponds to the normal velocity of each face of the disk. If U is taken as

U=0E (o). T L @) )

where Emn is the normalized (m,n) mode shape function for a circular

cross-section and U is the spatial r.m.s. value of the velocity amplitude,

the far-field radiation can be obtained from reference 29 (see Appendix).
The result for the far-field pressure amplitude, at angle ¥

to the disk axis and distance s, is

_ouw[UCa )]s e (z.)
IP B 2ns

, (zO = ka_ siny) (2)

2_p2
go ZO
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where U(ao) is the modal velocity at the outer radius (xr = ao). The

function
Gm(x) = qué(x) = 2me(x) - ZXJm+l(X)
may be approximated for small wvalues of x by

6, (x) = 23 (x) (x2 << 3m? + im) , (3)

Thus provided kzag << 4m? (which implies that the frequency is below the
mode cut-off value), equation (2) can be approximated by neglecting zz
in comparison with gi and using (3).

It follows that

. pm]U(ao)|S m . 2.2 1.2
IPI = *"T . é‘z‘ Jm(kao siay) 3 (k ao << Fme). (4)

o}

Comparison of (4) with equation (5.18) of [27] gives the power radiated

from each side of the disk as

pwlU(ao)!Z SZ 2

mn 2na
o

= . 2.2 L2
Jom (Zkao) , (k as << sm ) (5)

& |3

X
where jq(x) stands for J Jq(t) dt. (The total power radiated from the

0
modal volume-velocity distribution 2U is Zwmn.)

The outer-radius velocity amplitude is related to the spatial mean

square amplitude by

u(a)|2 = [5]2/C1 - T—“S) ) (6)

&5
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It follows from (5) and (6) that the modal radiation efficiency Ton?

defined by

= mi2
wmn speT lU f S . (7)

is approximately

T = ka0mz 2.2 2
= - 1
mn " sz(Zkao) (k al << ’jm . (8)
m 4
(1-7) ¢
9’ Sg
8o

For (m,0) modes, an approximation to (8) which is accurate to within

5% form 2 1 is

) -4/3 -
T % 0.53 (mi2) / ke 3, (2ka)) (kzaj << 4m?y, (9)

Radiation efficiency T for annular source with zero radial variation

Consider next the radiation from a volume-velocity distribution 2U

such that

U= eri(mﬂ—wt) m31) , (U = const.) (10)

over an annulus of arbitrary radius ratiOnal/a0 = U, The far-field
pressure amplitude is given by equation (5.16} of @7] as

a
o]

puﬁo
|P| = *g——J T Jm (kr siny). dr . {i1)

a3
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As before, the analysis is restricted to low frequencies, such that

kzag << m2 : (12)

this implies that all (m,n) modes are excited below their cut-off

frequency. The integral in (11) may then be estimated using the

asymptotic approximation to the variation of Jm :

Jm(x) o R (index approximately valid for x2 << mz). (13)

It follows that

a )
. % m+2)
r Jm(kr sin?)}. dr = vy (1 -y Jm(ka0 sin?) . (14)
%1
From (11) and (14),
pm|Uo is Wy
|2} = (mt2)ms ° g IJm(kaoSinw)l’ (kzag << m?). (15)

1-y

This result may be compared with the narrow-annulus approximation given
by equation (5.17) of [27]. The equations coincide when u -+ 1, as
expected, and also when m = 0 (radiation from an annular piston). In
general, however, the effect of finite annulus width on the radiated

sound power is represented by the factor
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b 2
2 1_Em-i-Z

= . ) ;
w7 TS

(+1as y 1) (16)

which is the ratio of the actual power, given by (15), to the power
radiated from a ring source of radius a, having the same value of the
radially integrated source strength jao Ur.dr (i.e. the power is compared
with the limiting case U > 1, holdingaﬁos constant).

For annular distributions of finite width (p not close to 1), and
m 2z 1, it is clear from (16) that to concentrate the whole source in a
ring at the outer radius is generally a poor approximation. In the
extreme case Wherg u = 0, for example, the power is thereby overestimated
by a factor (1 +-%m)2.

Equation (15) gives the sound power radiated from each side of the
disk as |
2

2 g2
Dw]UOI S o

m2 J

W 3, (2ka) )

232
2wao(1 ue)

so the corresponding radiation efficiency is

ka m+2 2

o 22 () 5 (2ka ) (ka2 << m?), (18)

mt2

"
for any radius ratio yu. In practice the quantity Um 2 can often be

neglected compared with 1.

Power radiated from (m,0) component of uniform circular distribution.

The radially-uniform source distribution studied above may be

regarded as a sum of (m,n) modal distributioms, all values of n being



present to some extent. It is relevant to inquire how much of the
radiated power given by (17) is accounted for by direct radiation from
the (m,0) component alone, under the present low-frequency restriction
(12) which ensures that all modes are radiated below cut-off. If this
is the dominant contribution - as in fact turns out from the following
analysis - then the presence of the higher-order radial modes is evidently
immaterial as far as the radiated power is concerned. It follows that
equation (17) may be used to estimate the sound power, even if the modal
components n 2z 1 of the original uniform distribution have been suppressed
(e.g. by placing the source in a duct.)

For simplicity a circular source distribution (M = 0) is assumed;
this is expected to maximize the higher-mode contribution to Wﬁ. The
normalized (m,n) mode coefficient of the radially-uniform distribution

(10) is then given by

a

Q
0s = 2mU J r R dr N (19)
o] mn
[a]
where
J (g rfa )
Rmn(r) = = z 2 . (20)
m2 1
(1-—5} J (.2
&o

a

o
Evaluation of the integral I = J r R dr,for n = 0 and a
I mn

1
o2
O o

~range of m values (m = 1),leads to the approximation
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-1/3

= 0.85 (mt&) (within 5% for m 3 1). (21)

i

ImO

Hence

§=1.7 (o) L3 U (m z 1) (22)

is the approximate spatial r.m.s. value of the (m,0) component of (10).
Combining this result with the radiation-efficiency estimate (9) gives

the power radiated directly from the (m,0) component as

2
pw|U0| g2

wa
o)

-4/3 -2/3 =

J2m(2kao), (kga% << 5m’, my 1) ,

=
I
B

{m+2) (m+4)

(23)

The ratio of this power to the total radiated power, as given by

(17) for u= 0, is

2/3

Ez
O

fle

EEI

which lies between 1 and 1.5. At frequencies low enough for all modes
to be below cut-off, therefore, a radially uniform source distribution
as given by (10) radiates energy predominantly through the (m,0) mode

component. This is in contrast to the high-frequency situation, where

several modes contribute to the radiated power when m is large.

Approximation to the Bessel function integral

The integral jZm appearing in (8) and (18) is difficult to evaluate
for large m (cf. [27}, Sec. 5.2). The following approximations are use-

ful when rough estimates are required.



For small values of the argument, the asymptotic value of jq(x) is

g+l

q (1)1 (x* << q+3) . (25)

The small-argument limitation in (25) is unduly restrictive for present
purposes, however; condition (12) requires only x? << q® for the

radiation efficiency estimate (18) to be valid. By noting that jq(jéo)

is approximately independent of q and lies between 0.7 and 0.8 (where

jéo is the smallest positive root of J&(x) = 0), the following modification

of (25) is arrived at:

2 x*
S q gtl
& ) (26)

This reduces to (25) when x? << 4, as required, and agrees well with
published values given by Embleton |66, Fig. 8] and Lowson (67, Fig. 10].

The corresponding value of Ty from (18), neglecting um+2 compared
with 1, is

(ka )?/2m? 3 2(ka )2/m
= 2 m ° (Z) ° 2mtZ
(ka ) . (kzag << m2),

o
(27)

(m+2)2 (2m+1)!

Application of results to radiation from an annular opening

Equations (18) or (27) may be used directly to give the radiation
efficiency for a radially-uniform distribution of fluctuating normal
velocity, corresponding to (10), over a baffled annular opening., If
there is no baffle, or the baffle is small compared with the wavelength,

T, may be overestimated by a factor of up to 2,
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