The University of Southampton
University of Southampton Institutional Repository

Editorial. The next photonic revolution

Editorial. The next photonic revolution
Editorial. The next photonic revolution
This special section on Nanophotonics and Metamaterials is a follow-up to the second European Topical Meeting of the NANOMETA series of meetings (see www.nanometa.org) which took place on 5-8 January 2009, in Seefeld, Austria.

The main idea of the first NANOMETA meeting held in 2007 was to bring together the mature community of microwave electrical engineers with the emerging community of photonics researchers interested in the physics of light coupled to nanostructures.

In recent years the research landscape has shifted dramatically. A wider proliferation of nanofabrication techniques such as electron beam lithography, nanoimprint and focused ion beam milling, diagnostics techniques such as near-field scanning imaging, cathodoluminescence with nanoscale resolution and micro-spectrometry, and the availability of affordable broadband and ultrafast optical sources, have moved the research focus of the NANOMETA community to the optical domain. Quite naturally the ideas of the nonlinearity of materials and the coherency of light in the nanoscale realm have been widely discussed. Driven by the dream of untapped device and material functionality, nonlinear and switchable nanophotonic devices and photonic metamaterials, along with the concept of tailoring the electromagnetic space with metamaterials, appear to be the main avenues along which the subject will develop in the coming years.

Indeed, in the last 20 years photonics has played a key role in creating the world as we know it, with enormous beneficial social impact worldwide. It is impossible to imagine modern society without the globe-spanning broadband internet and mobile telephony made possible by the implementation of optical fibre core networks, optical disc data storage (underpinned by the development of compact semiconductor lasers), modern image display technologies and laser-assisted manufacturing.

We now anticipate that the next photonic revolution will continue to grow, explosively fuelled by a new dependence upon active and switchable photonic metamaterials and nanophotonic devices. This revolution will lead to dramatic new science and applications on a global scale in all technologies using light, from data storage to optical processing of information, from sensing to light harvesting and energy conversion.

Five plenary talks at the conference outlined its topical boundaries. They were given by Sir Michael Berry, Bristol University, UK, who spoke on the new topic of optical super-oscillations; Harry A Atwater, California Institute of Technology, USA, who gave an overview of recent developments in plasmonics; Christian Colliex, Université Paris-Sud, France, who presented the concept of electron energy-loss spectroscopy for the study of localized plasmons; Xiang Zhang, University of California at Berkeley, USA, who talked about recent achievements in the optical super-lens, and Antoinette Taylor, National Laboratory, Los Alamos, USA, who discussed recent work on tunable terahertz metamaterials. In the specially assigned 'breakthrough' talks Steven Anlage, University of Maryland, USA, introduced the emerging field of superconducting meta-materials, Tobias Kippenberg, Max-Planck-Institut, Garching, Germany, talked about cavity optomechanics on a chip, while Misha Lukin, Harvard University, USA, explored the field of quantum plasmonics and Victor Prinz, Russian Academy of Science, Russia, introduced a novel class of metamaterials based on three-dimensional semiconductor nanostructures.

The topical scope of this special section, to a great extent, echoes the paradigm shift in the NANOMETA community and includes papers on nanofabrication of plasmonic structure, transformation optics and invisibility, mapping of fields in nanostructures, nonlinear and magnetoplasmonic media, coherent effects in metamaterials, loss compensation in nanostructures, slow light and ultrafast switching of plasmon signals, and many other topics.

The Guest Editor of this special section and the co-chairs of NANOMETA-2009, on behalf of the conference organising committee and the European Physical Society, would like to thank the Nature Publishing Group for sponsoring the meeting and IOP Publishing for supporting and putting together this follow-up special section. We would like to take this opportunity to invite members of the nanophotonics and metamaterials communities to take part in the next NANOMETA conference to be held in Seefeld, Austria, 3-6 January 2011.
1741-3567
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6
Zheludev, Nikolay I.
32fb6af7-97e4-4d11-bca6-805745e40cc6

Zheludev, Nikolay I. (2009) Editorial. The next photonic revolution. Journal of Optics A: Pure and Applied Optics, 11 (11). (doi:10.1088/1464-4258/11/11/110202).

Record type: Editorial

Abstract

This special section on Nanophotonics and Metamaterials is a follow-up to the second European Topical Meeting of the NANOMETA series of meetings (see www.nanometa.org) which took place on 5-8 January 2009, in Seefeld, Austria.

The main idea of the first NANOMETA meeting held in 2007 was to bring together the mature community of microwave electrical engineers with the emerging community of photonics researchers interested in the physics of light coupled to nanostructures.

In recent years the research landscape has shifted dramatically. A wider proliferation of nanofabrication techniques such as electron beam lithography, nanoimprint and focused ion beam milling, diagnostics techniques such as near-field scanning imaging, cathodoluminescence with nanoscale resolution and micro-spectrometry, and the availability of affordable broadband and ultrafast optical sources, have moved the research focus of the NANOMETA community to the optical domain. Quite naturally the ideas of the nonlinearity of materials and the coherency of light in the nanoscale realm have been widely discussed. Driven by the dream of untapped device and material functionality, nonlinear and switchable nanophotonic devices and photonic metamaterials, along with the concept of tailoring the electromagnetic space with metamaterials, appear to be the main avenues along which the subject will develop in the coming years.

Indeed, in the last 20 years photonics has played a key role in creating the world as we know it, with enormous beneficial social impact worldwide. It is impossible to imagine modern society without the globe-spanning broadband internet and mobile telephony made possible by the implementation of optical fibre core networks, optical disc data storage (underpinned by the development of compact semiconductor lasers), modern image display technologies and laser-assisted manufacturing.

We now anticipate that the next photonic revolution will continue to grow, explosively fuelled by a new dependence upon active and switchable photonic metamaterials and nanophotonic devices. This revolution will lead to dramatic new science and applications on a global scale in all technologies using light, from data storage to optical processing of information, from sensing to light harvesting and energy conversion.

Five plenary talks at the conference outlined its topical boundaries. They were given by Sir Michael Berry, Bristol University, UK, who spoke on the new topic of optical super-oscillations; Harry A Atwater, California Institute of Technology, USA, who gave an overview of recent developments in plasmonics; Christian Colliex, Université Paris-Sud, France, who presented the concept of electron energy-loss spectroscopy for the study of localized plasmons; Xiang Zhang, University of California at Berkeley, USA, who talked about recent achievements in the optical super-lens, and Antoinette Taylor, National Laboratory, Los Alamos, USA, who discussed recent work on tunable terahertz metamaterials. In the specially assigned 'breakthrough' talks Steven Anlage, University of Maryland, USA, introduced the emerging field of superconducting meta-materials, Tobias Kippenberg, Max-Planck-Institut, Garching, Germany, talked about cavity optomechanics on a chip, while Misha Lukin, Harvard University, USA, explored the field of quantum plasmonics and Victor Prinz, Russian Academy of Science, Russia, introduced a novel class of metamaterials based on three-dimensional semiconductor nanostructures.

The topical scope of this special section, to a great extent, echoes the paradigm shift in the NANOMETA community and includes papers on nanofabrication of plasmonic structure, transformation optics and invisibility, mapping of fields in nanostructures, nonlinear and magnetoplasmonic media, coherent effects in metamaterials, loss compensation in nanostructures, slow light and ultrafast switching of plasmon signals, and many other topics.

The Guest Editor of this special section and the co-chairs of NANOMETA-2009, on behalf of the conference organising committee and the European Physical Society, would like to thank the Nature Publishing Group for sponsoring the meeting and IOP Publishing for supporting and putting together this follow-up special section. We would like to take this opportunity to invite members of the nanophotonics and metamaterials communities to take part in the next NANOMETA conference to be held in Seefeld, Austria, 3-6 January 2011.

Full text not available from this repository.

More information

Published date: November 2009

Identifiers

Local EPrints ID: 163629
URI: https://eprints.soton.ac.uk/id/eprint/163629
ISSN: 1741-3567
PURE UUID: 6d6481e7-4067-4573-ac4a-6153170013d6
ORCID for Nikolay I. Zheludev: ORCID iD orcid.org/0000-0002-1013-6636

Catalogue record

Date deposited: 10 Sep 2010 13:21
Last modified: 05 Nov 2019 02:05

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×