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Abstract— Autoregulation refers to the automatic adjustment 

of blood flow to supply the required oxygen and glucose and 

remove waste, in proportion to the tissue’s requirement at any 

instant of time. For the brain, cerebral autoregulation is an 

active process by which cerebral blood flow is controlled at an 

approximately steady level despite changes in the arterial blood 

pressure. Robust assessment of the cerebral autoregulation by 

a model that characterizes this system has been the goal of 

many studies, searching for techniques that can be used in 

clinical scenarios to detect potentially dangerous impairment of 

control. Multiple input, single output (MISO) models can be 

used to assess autoregulation, and system parameters can be 

estimated from spontaneous  beat-to-beat variations in arterial 

blood pressure (ABP) and breath-by-breath end-tidal carbon 

dioxide (PETCO2) as inputs, and cerebral blood flow velocity 

(CBFV)  as the output .In this study a non-linear, multivariate 

approach, based on Volterra-type kernel estimation models is 

employed. The results are compared with linear models as well 

as nonlinear single-input single-output (SISO) models. The 

normalized mean squared error was used as the criteria of 

performance of each model in assessing cerebral 

autoregulation. Our simulation results indicate that for 

relatively short signals (around 300 sec), nonlinear, multiple-

input models based on Volterra systems performed best, 

though the benefit varied considerably between subjects. When 

using a fixed model for all recordings, a linear SISO model with 

ABP as input provided the smallest average modeling error.  

Keywords- Cerebral Autoregulation, Non-linear analysis, 

physiological systems, Blood pressure, CO2, Blood flow, 

Volterra Kernel Models, Laguerre- Volterra networks (LVNs). 

I. INTRODUCTION 

erebral autoregulation (CA) refers to the ability of the 

brain to control the diameter of small blood vessels to 

maintain cerebral perfusion relatively constant, despite 

changes in blood pressure (BP), in order to protect the brain 

from injury due to insufficient or excessive blood flow 

resulting from a sudden drop or surge in arterial blood 

pressure (ABP) [1] 

Over the past two decades most of the studies carried out 

on cerebral autoregulation have used non-invasive methods 

to measure cerebral blood flow velocity (CBFV- employing 

Transcranial Doppler ultrasound) in response to transient 

changes in ABP [2]. This is known as dynamic cerebral 

autoregulation (dCA), in contrast to static cerebral 
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autoregulation, where steady-state responses following 

changes in baseline level of pressure are measured. 

In order to assess dCA a few methods to induce large, 

rapid changes in ABP have been proposed in the literature:  

thigh cuff release produces a sudden step decrease in BP [2], 

lower body negative pressure can give sinusoidal variation 

in CBFV [3], the valsalva maneuver provokes characteristic 

change in BP and CBFV [4], and periodic breathing, 

squatting and head-up tilt [5], [6], [7] have all been used. 

Spontaneous variations in blood pressure and pCO2 (an 

example is shown in fig 1) may also provide sufficient 

excitation to assess autoregulation, while minimizing 

interference with the patient which is clearly desirable for 

clinical studies. 

After inducing changes in BP and CBFV, the relationship 

between these variables has to be quantified. Dynamic 

cerebral autoregulation is a frequency dependent 

phenomenon and non-linear behavior has been noted [8]. 

However most of the work done in this area is based on the 

assumption of linearity, and hence the frequency and 

impulse responses have been used to characterize the 

dynamic relationship between ABP and CBFV [1]. The 

phase shift and gain between spontaneous variation of ABP 

and CBFV from transfer function analysis (TFA) have 

shown the high-pass filter characteristics of cerebral 

autoregulation [1], [9]. In the time domain, IIR 

(autoregressive (AR), autoregressive moving average 

(ARMA)) and FIR linear filters have been used to model the 

system. Methods such as the ARi (autoregulatory index) [4] 

have been proposed to assess autoregulation, using a set of 

10 pre-defined linear filters , grading the responses from 

excellent (‗9‘) to absent (‗0‘). Although linear models can 

provide relatively good results, evidence suggests the 

existence of nonlinearity in the autoregulatory system [8].  

Apart from nonlinearity, there are other physiological 

variables, including pCO2, brain metabolic activities, 

haematocrit and sympathetic tone that affect the blood flow 

and its regulation [1], [10]. pCO2 can be measured non-

invasively by breath-to-breath measurements of end-tidal 

CO2 concentrations. Hypercapnia causes vasodilatation, 

while hypocapnia provokes vasoconstriction. In addition, 

hypercapnia causes impairment of autoregulation. In recent 

studies it has been shown that the spontaneous variation of 

CO2 has a significant effect in the very low frequency band 

(<0.04 Hz) of CBFV, as determined by applying nonlinear 

methods [11], [12]. However, the benefit of non-linear 

modeling, and which model might be most appropriate when 

data is relatively short, as is commonly the case in research 
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and clinical studies, has not been firmly established. 

In order to address these issues, in this work the dynamic 

relationship between CBFV, MABP, and pCO2 is 

investigated through non-linear models, using Wiener 

Laguerre estimation methods. The results obtained from 

these multivariate, nonlinear models are compared to single 

input (just MABP) linear and nonlinear models, and 

multivariate linear models. Recommendations are provided 

for selecting optimal model orders. 

 
Fig.1. Representative segments of ABP, CBFV and CO2, for one 
measurement. Top: Cerebral Blood Flow Velocity (CBFV) and Arterial 

Blood Pressure (ABP), Bottom: CO2. The phase lead characteristics of 

cerebral autoregulation can be seen in the top figure. 

II. DATA COLLECTION AND PRE-PROCESSING 

The data used in this study was kindly provided by Profs. 

D.H. Evans and R. Panerai, and Dr. S.T. Deverson and was 

collected at the Leicester Royal Infirmary (Leicester, UK). 

Fifteen healthy volunteers (age 32 ± 8.8 years) were 

involved in this study and the study was approved by the 

Leicestershire Research Ethics Committee. All the 

measurements were collected with the volunteers in the 

supine position with their head elevated. Transcranial 

Doppler Ultrasound (Scimed QVL-120,) was used to 

measure middle cerebral artery velocity using a 2MHz 

transducer, held in position by an elastic headband. 

Simultaneously arterial blood pressure (ABP) was non-

invasively measured using a finger cuff device (Ohmeda 

2300 Finapress monitor). 

The signals were pre-processed off-line. The maximum 

velocity envelope from the spectra of the Doppler signal was 

extracted using a microcomputer-based analyzer that 

performs a fast Fourier transform (FFT) every 5 ms. The 

ABP signals were digitized at 200 Hz. Short periods of 

evident artefact as well as any spikes on the signals were 

removed by linear interpolation and the signals (ABP, CBF) 

were low pass filtered with an eighth-order Butterworth 

digital filter (applied forward and reverse to give zero phase 

shift) with a cut-off frequency of 20 Hz. The start of each 

heart cycle was automatically identified (with visual 

correction) from the ABP signal, after which the average 

ABP and CBFVs from the right and left MCA were 

calculated for each heartbeat. This time series was then 

interpolated with a third-order polynomial, and sampled at a 

constant rate of 5 Hz. 

A. Data Analysis 

For each measurement, data segments of approximately 

300 s in duration were available. The recordings were 

converted to a percent change with respect to the mean value 

of each data segment, in order to remove the dependence on 

inter-individual variations in mean level. The pre-processed 

(% change) ABP, CBFV and pCO2 are referred to as P(t), 

V(t) and CO2(t), respectively, from  this point on. 

B. Mathematical modeling  

The Volterra-Wiener modeling has been widely used in 

nonlinear modeling of physiological systems. In this work, a 

multi-input, general Volterra-Laguerre model of cerebral 

autoregulation is used to get an understanding of the effects 

of both MABP and pCO2 changes on CBFV variations: 
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Where (1) and (2) refer to the inputs P(t) and CO2(t) 

respectively at time 𝑡. The unknown 

parameters 𝑘𝑛 𝜏1, 𝜏2, … , 𝜏𝑚+𝑛 ,   𝑐𝑚,𝑛 𝑗1, … , 𝑗𝑚+𝑛 ,𝑏𝑗𝑚 +𝑛
 𝜏𝑚+𝑛  in 

above equations are the Volterra kernels (to be estimated 

from input-output data), the expansion coefficients of 𝑘𝑚,𝑛  

and the 𝑗𝑡ℎ basis function respectively. The first order 

Volterra kernels 𝑘1,0, 𝑘0,1 are the linear components of the 

system dynamics, whilst the higher order kernels 

(𝑘1,1, 𝑘2,0, 𝑘0,2, …) are the nonlinear components of the system. 

In most physiological systems the second or third order 

Volterra models are considered sufficient to describe the 

system [13]. In this work only kernels of up to second order 

(𝑘0,0, 𝑘1,0, 𝑘0,1, 𝑘2,0, 𝑘0,2, 𝑘1,1) are used due to the size of 

available data segments. With higher orders, the number of 

parameters increases rapidly and quickly exceeds the 

number of samples in any reasonable length recording. It has 

to be noted that the 𝑘2,0, 𝑘0,2 are called the self-kernels and 

𝑘1,1 is known as the cross-kernels. 

There are different methods for estimating the discretized 

Volterra kernels and amongst them the Volterra-equivalent 

network in the form of the Laguerre-Volterra Network 

(LVN) has shown to be the most efficient [14] of the kernel 

expansion approaches and provides the best model of 

nonlinear systems with short segments of data available 

[10].The Laguerre-Volterra network (LVN) is a combination 

of artificial neural networks with the Laguerre expansion 

technique (LET) [8]. The LVN for bivariate models consists 

of one input layer with two separate Laguerre filter banks 

(may be the same set of filters) and a hidden layer with H 

hidden units using polynomial activation functions (see fig 

2). The LVN model consists of individual dual-input static 

nonlinearities associated with each input-output pair. 
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Fig.2. The Volterra Equivalent network with two-inputs, with each input 

pre-processed through a different filter bank(𝑏𝑗
(𝑖)

) and respectitive filter 

bank outputs are fed into the hidden units of te hidden layer with 

polynomial activation functions (𝑓ℎ), and the output is calculated as the 

summation of the outputs of the hidden units (𝑧ℎ (n)) and and offset 𝑦0[13]. 

The output of the j
th

 filterbank is given by the convolution: 

𝑣𝑗
(1)

(n)= 𝑏𝑗
 𝑖  𝑚 𝑥𝑖(𝑛 − 𝑚)𝑀−1

𝑚=0                                             (3)                                                 

𝑦(𝑛) = 𝑦0 +  𝑧ℎ(𝑛)𝐻
1                                                             (4)                                                                  

𝑧ℎ 𝑛 = 𝑓ℎ 𝑢ℎ 𝑛  =  𝑐ℎ,𝑞𝑢ℎ
𝑞

(𝑛)
𝑄
𝑞=1                                     (5) 

 

Where M is the memory (length of the impulse response) 

and 𝑏𝑗
 𝑖 

(Discrete Laguerre function (DLF)) denotes the basis 

function that is the impulse response of the jth filter in the 

ith filterbank, 𝑄 is the order of nonlinearity and 𝑓ℎ  is the 

polynomial static nonlinearity [13]. An important parameter 

in calculating DLF is the positive 𝛼 value which determines 

the rate of exponential decline of these functions. This value 

was chosen for each measurement based on the number of 

filterbanks for each kernel (if they exist) and the length of 

the impulse response. 

For each set of data and each model, the predicted output 

(CBFV) was compared to the measured output and the 

performance was evaluated using the normalized mean 

square error (NMSE; the difference between the predicted 

and measured velocity normalized by the mean square of the 

measured velocity). Evaluation was carried out using cross-

validation, in which model parameters were estimated on 

one data segment (training set), and NMSE then calculated 

on a second segment (validation set) from the same 

recording; both segments were 150 s long. The procedure 

was then repeated, swapping training and validation 

segments. The memory M of the filters for each set of 

measurements was evaluated using NMSE between the 

response of CBFV to changes in ABP as a linear system 

(just 𝑘0,0, 𝑘1,0, in eq. 2.) and this value was then used in the 

multivariate and nonlinear models. For LVN to estimate the 

kernels precisely the number of filterbanks should be large 

enough. In other words, a reduced of filterbanks would 

results in LVN being a small sub-set of the solution. In this 

work we test all the possible combinations of filterbanks for 

each kernels (1 to 15 for linear kernels and 0 to 3 for 

nonlinear kernels) to ensure the validation of the results 

based on the criteria of NMSE.  

III. RESULTS  

Based on the sequence of CO2 levels (normo, hyper and 

normo-capnia), three recordings from fifteen volunteers 

were analyzed, and the model that generated the best 

prediction in the validation set for each measurement was 

identified. The impulse response length for each recording 

was calculated individually from the single-input linear 

model (ABP-CBFV) and then, this impulse response was 

used to estimate the filterbank orders for each of the models. 

In each model the filterbanks for each kernels varied from 

‗0‘ (absence of that kernel) to the maximum number of 

filterbanks for that kernel (thirty for linear and 3 for 

nonlinear kernels). It was found that the maximum number 

of filterbanks for the nonlinear kernels was two and for 

linear kernels this was twenty.  

The average output prediction achieved in the training and 

validation sets for linear, nonlinear single-input (ABP), and 

linear, nonlinear two-input (ABP,pCO2) LVN models are 

presented in Table 1. For all measurements better 

performance was observed for training data, as expected 

from theory [13]. The results show that by adding pCO2 the 

NMSE of the LVN model prediction in the validation data 

reduces compared to single-input linear and nonlinear 

models. The average reduction in NMSE% from the single-

input, linear model and single-input, nonlinear model to two-

input nonlinear models are 10.38% and 9.0% in validation 

respectively, indicating the multivariate and nonlinear 

natures of cerebral regulation. However, the results 

suggested that for 8 measurements in the first half training, 

and 3 measurements in the second half training, linear 

single-input (ABP) gave the best performance in terms of 

the NMSE. 

The first order (linear), second-order (nonlinear) kernels 

and cross-kernels for one subject are shown in fig 3. The 

results shows that the effect of CO2 is slower compared to 

ABP, as expected [10], probably due to transport 

phenomena. 

 The second-order self and cross-kernels showed that 

nonlinearity exists in the system and from literature [10] we 

know it affects mostly the low frequency band (below 0.1 

Hz. Further analysis indicates that the cross-kernels 

(interaction between ABP and CO2) had a stronger effect on 

the NMSE than either of the second order self-kernels.  

In practice it is probably desirable to choose a fixed order 

for all recordings. In the current study, the lowest average 

NMSE across all recordings was obtained for the 4
th

 order 

SISO linear model with impulse response length of 5.4 

seconds, with only ABP as input.  

 



 

 

 

 
Fig.3. Top row: First order Kernel estimated for 1 measurement set for ABP 

and CO2 (𝑘10 , 𝑘01), Second row, left: Second-order self-kernel ABP 

estimated (𝑘20), right: Second-order self-kernel CO2 estimated (𝑘02), 

Bottom row: Second-order cross-kernel ABP-CO2 estimated (𝑘11) with 

filterbanks of 7, 7,2,2,2 respectively. It can be seen that CO2 has much 
slower response compared to ABP (top row impulse responses). 

TABLE 1 Different Model NMSE% comparison 

IV. CONCLUSION 

In this work the contribution of pCO2 and ABP to 

spontaneous changes to CBFV fluctuation with LVN models 

were studied, by estimating the minimum error with 

different model orders. It was found that, by adding CO2 as a 

secondary input to ABP, somewhat superior predictive 

performance and more accurate models of CBF regulation 

can be achieved. This work illustrates the importance of the 

multivariate characteristics of CBF regulation and of the 

cross-kernels between the inputs (ABP and CO2). However, 

the benefit of non-linear modeling was not evident in all 

cases, which may be due to inter-individual differences in 

brain blood flow control. Furthermore, the best average 

performance was obtained by a 4
th

 order (number of 

filterbanks) linear SISO model with impulse response length 

of 5.4 seconds, with only ABP as input. 
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Model 

 

Training 

NMSE% 

 

Validation 

NMSE% 

 

p-value 

Average 

number 

of 
paramete

rs used 

 

𝑘10 (linear, 
single-input) 

 
16.2105

±8.5186 

 

16.2825±7.
0809 

 
0.0035 

 
6 

 

𝑘10,𝑘01(linear 
two-input) 

 

14.4922

±7.3073 

 

15.2837±6.
4416 

 

0.0009
6 

 

7 

 

𝑘10,𝑘20(nonline
ar; self-kernels, 

single-input) 

 

15.1327

±7.4408 

 

16.1878±7.
1721 

 

0.0024 

 

6 

 

𝑘10,𝑘11(nonline
ar; cross-
kernels, two-

inputs) 

 

15.1780

±7.4861 

 

16.1458±6.
9756 

 

0.0049 

 

6 

𝑘10,

𝑘01 , 𝑘20 , 𝑘02 , 𝑘11

(nonlinear; 

self-kernels, 
cross-kernels, 

two-inputs) 

 
14.1697

±7.7042 

 

14.5993±6.
1290 

 
0.0032 

 
9 


