Podoliak, Nina, Buchnev, Oleksandr, D'Alessandro, Giampaolo, Kaczmarek, Malgosia and Sluckin, Timothy J. (2010) Large effect of a small bias field in liquid-crystal magnetic transitions. Physical Review Letters, 82 (3), 1-4, [030701]. (doi:10.1103/PhysRevE.82.030701).
Abstract
Most liquid crystals show low sensitivity to magnetic field. However, in this paper we show that a small bias magnetic field not only breaks the symmetry of the ground state, but also plays a crucial role in facilitating the reorientation induced by a large test magnetic field. In particular, a small bias field may alter significantly the strength of the test field needed to observe a given reorientation of the liquid crystal. Moreover, the bias field interacts with other symmetry breaking features of the cell, e.g., pretilt, to change also the qualitative features of the equilibrium state.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
University divisions
- Faculties (pre 2011 reorg) > Faculty of Engineering Science & Maths (pre 2011 reorg) > Physics & Astronomy (pre 2011 reorg) > Quantum, Light & Matter Group (pre 2011 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Physics and Astronomy > Physics & Astronomy (pre 2011 reorg) > Quantum, Light & Matter Group (pre 2011 reorg)
School of Physics and Astronomy > Physics & Astronomy (pre 2011 reorg) > Quantum, Light & Matter Group (pre 2011 reorg) - Current Faculties > Faculty of Social Sciences > School of Mathematical Sciences > Applied Mathematics and Theoretical Physics
School of Mathematical Sciences > Applied Mathematics and Theoretical Physics - Faculties (pre 2018 reorg) > Faculty of Physical Sciences and Engineering (pre 2018 reorg) > Physics & Astronomy (pre 2018 reorg) > Quantum, Light & Matter Group (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Physics and Astronomy > Physics & Astronomy (pre 2018 reorg) > Quantum, Light & Matter Group (pre 2018 reorg)
School of Physics and Astronomy > Physics & Astronomy (pre 2018 reorg) > Quantum, Light & Matter Group (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.