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DWe consider the Schrodinger operator H s y q q in a bounded domain D¨ 2
d dŽ . Ž .in R , d G 3, with q in the Kato class KK D and finite gauge g x s

w t Ž . x Ž .E exp H q X ds , where X is a Brownian motion and t is the first exit time ofx 0 s t
Ž .the Brownian motion X from the domain D. Let K and G denote the Greent

Doperators in D for H and , respectively. We prove that there is a positive2

constant a such that

1
Gf , f F Kf , f F a Gf , f ,Ž . Ž . Ž .

a

Ž < < < <.where f is a real, measurable function for which G f , f is finite. As a direct
consequence of this double inequality, we have that the potential Gf is in the

1Ž . 1Ž .Sobolev space H D if and only if Kf g H D . Q 2000 Academic Press0 0

1. NOTATION AND PRELIMINARIES

Let d G 3 and q be a measurable function on Rd. We say that q
belongs to the Kato class KK d if

< <q yŽ .
lim sup dy s 0. 1Ž .H dy25 5a x0 �5 5 4 x y yxyy Fax

d dŽ .For a bounded domain D in R , d G 3, we say q belongs to KK D if
q1 g KK d, with 1 the indicator function of the set D.D D

DWe consider the Schrodinger operator H s y q q, where the Lapla-¨ 2
d Ž 2 2 .cian operator D s Ý ­ r­ x is understood in the weak or distribu-is1 i

tional sense and q is in the Kato class.
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� 4 dLet X s X , t G 0 be the standard Brownian motion process in R ,t
d G 3, with continuous paths; P and E are the probability and expecta-x x
tion for the paths starting at x. The first exit time of the Brownian motion
X from the domain D is defined to be

� 4t s inf t ) 0; X f D . 2Ž .t

For the Feynman]Kac multiplicative functional we use the notation

t
e t s exp q X ds, t ) 0. 3Ž . Ž . Ž .Hq s

0

The class of real, Borel measurable functions on a set D is denoted by
Ž .BB D ; the subscript b denotes the subclass of bounded functions.
We will need a theorem called by Chung the Gauge Theorem. It was

w xfirst proved by Chung and Rao in 2 for an arbitrary bounded domain D
and bounded q.

d dŽ .THEOREM 1.1. Let D be a bounded domain in R , d G 3, and q g KK D .
Ž .The following conditions on D, q are equï alent to each other:

Ž . Ž .i E e t k ` in D.x q

Ž . Ž .ii sup E e t - `.x x q

Ž . Ž .iii E e t is continuous on D.x q

Ž . t Ž .iv sup E H e t dt - `.x x 0 q

Ž .v There exists a continuous function u on D such that

D
q q u x s 0, x g D ,Ž .ž /2

Ž . Ž .and 0 - inf u x - sup u x - `.x g D x g D

w xProof. Ref. 15 .

Ž . Ž . Ž .REMARK 1.2. If D, q satisfies one of the conditions i ] v abo¨e, then
the Dirichlet boundary ¨alue problem for Schrodinger equation¨

D
q q u x s 0, x g D ,Ž .ž /2 4Ž .

u x s g x , x g ­ D , g g C ­ D ,Ž . Ž . Ž .

has the unique solution which can be expressed by

u x s E e t g X , x g D. 5Ž . Ž . Ž . Ž .g x q t
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w xProof. Ref. 15 .

Throughout this paper we assume that D is a bounded domain in Rd,
dŽ . Ž . Ž .d G 3, q g KK D , and the gauge g x [ E e t is bounded in D.x q

For each t G 0, we introduce the operators S and T as follows: fort t
Ž .f g BB D ,b

S f x s E e t f X ; t - t , x g D , 6Ž . Ž . Ž . Ž .t x q t

and

T f x s E f X ; t - t , x g D. 7Ž . Ž . Ž .t x t

� 4 Ž .The family of operators S , t G 0 forms a semigroup on BB D , calledt b
the Feynman]Kac semigroup, and for q ' 0 the Feynman]Kac semigroup

� 4reduces to the semigroup of the killed Brownian motion T , t G 0 .t
� 4We define the potential operator K of the semigroup S ; t G 0 byt

`

K s S dt. 8Ž .H t
0

The potential operator K is also called the Green operator for Schrod-¨
w xinger operator H in D. Zhao has shown in 15 under some smoothness

assumptions on the boundary ­ D that the operator K is an integral
Ž .operator with nonnegative, symmetric kernel K ?, ? which is extended

continuous and finite off the diagonal. By Kf we denote the K-potential of
Ž .f. Since the gauge g is bounded, for f g BB D the integralb

t

E e t f X dt 9Ž . Ž . Ž .Hx q t
0

is finite according to Theorem 1.1, and we have

` t

Kf x s S f x dt s E e t f X dtŽ . Ž . Ž . Ž .H Ht x q t
0 0

s K x , y f y dy , x g D.Ž . Ž .H
D

In the case when q ' 0, the Feynman]Kac semigroup is reduced to the
semigroup of killed Brownian motion

T f x s E f X , t - t , t ) 0, x g D ,Ž . Ž .t x t

and the potential operator K is reduced to the potential operator G of this
Dsemigroup, also called the Green operator for in D.2
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It is well known that the operator G is an integral operator with a
Ž .symmetric kernel G ?, ? extended continuous and finite off the diagonal.

Ž .We denote by Gf the G-potential of f. For f g BB D , the integralb

t

E f X dt 10Ž . Ž .Hx t
0

is finite and so we have

` t

Gf x s T f x dt s E f X dt s G x , y f y dy.Ž . Ž . Ž . Ž . Ž .H H Ht x t
0 0 D

Ž . Ž .With the kernels G ?, ? and K ?, ? , or corresponding potentials, we
connect the notion of energy. More generally, we say that a signed
measure m, or its potential Gm, has finite G-energy if

5 5 2 5 5 2m [ Gm s Gm , m s Gm x dm x - `, 11Ž . Ž . Ž . Ž .e e H
D

5 5and call m the G-energy of m or of its potential Gm. For an absolutelye

continuous measure m with density f , we use the notation as above,
Ž .namely Gf for G-potential and Gf, f for G-energy. It can be shown using

integration by parts that

5 5 2 < < 2Gm s Gm x dm x s =G m x dx , 12Ž . Ž . Ž . Ž .e H H
D D

with = denoting the gradient operator.
Analogously, we say that a signed measure m, or its potential Km, has

finite K-energy if

< < < <K m x d m x - `. 13Ž . Ž . Ž .H
It is well known that the completion of the set of all G-potentials Gm of

5 5finite G-energy with respect to the energy norm is the Sobolev spacee
1Ž . Ž w x w x.H D Rao 9 or Landkof 8 .0
We will show that on the space of K-potentials Km with finite K-energy,

5 5we can define a norm # by

5 5 2Km # [ Km x dm x 14Ž . Ž . Ž .H
5 5and the completion of this space of functions with respect to # is again

1Ž .the Sobolev space H D .0
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2. MAIN RESULT

It is well known that the operator G satisfies the strong maximum
Ž Ž ..principle. We will show that the operator K or its kernel K ?, ? satisfies

w xthe weak maximum principle as defined in Landkof 8 ; that is, if for a
nonnegative, measurable function f on D

Kf F 1 on supp f : D ,

then

Kf F h everywhere on D ,

Ž .where h is a certain positive constant h G 1 . In order to prove the weak
maximum principle for the operator K, we will need a simple lemma.

d dŽ .LEMMA 2.1. Let D ; R , d G 3, be a bounded domain, q g KK D , and
the gauge g is bounded. Then for a stopping time T , the function

h x s E e T ; T - t 15Ž . Ž . Ž .x q

is a bounded function on D.

Proof. Using the strong Markov property and Jensen’s inequality, for
x g D we have

t T tH qŽ X . d s H qŽ X . d s H qŽ X . d s0 s 0 s 0 sw xE e ; T - t s E e E e ; T - tx x XT

T tH qŽ X . d s E H qŽ X . d s0 s X 0 sTG E e e ; T - tx

T tH qŽ X . d s yE H < q <Ž X . d s0 s X 0 sTG E e e ; T - t .x

w t < <Ž . x Žw x.Since E H q X ds is a bounded function of x on D 4, Theorem 3.2 ,x 0 s
h is bounded.

Now we are ready to prove the weak maximum principle.

PROPOSITION 2.2. The potential operator K satisfies the weak maximum
principle.

Proof. Let f : D ª R be a nonnegative function with supp f : D such
that

� 4Kf F 1 on f ) 0 .

� 4Let F be compact subsets of f ) 0 such that f s f 1 increase to f a.e.n n Fn

Thus f ) 0 on F and f s 0 outside; i.e., f has support in F . Thenn n n n n
Kf ­ Kf everywhere.n
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Let T be the stopping time defined byn

� 4T s inf t ) 0; X g F , t - t .n t n

For x g D, simple calculations and the strong Markov property give

t

Kf x s E e t f X dt ; T - tŽ . Ž . Ž .Hn x q n t n
Tn

F E e T Kf X ; T - tŽ . Ž .x q n T nn

F E e T ; T - t F M .Ž .x q n n

The last inequality follows from Lemma 2.1. Now taking the limit, we have
the claim.

Ž .REMARK 2.3. By the same proof, replacing f X dt by dA , where A is thet t
additï e functional of a measure m on D, we get the weak maximum principle

Ž Ž ..for K or its kernel K ?, ? ; i.e., if for a positï e measure m, Km F 1 on the
Ž .support of m, then Km F M e¨erywhere, where M is some constant M G 1 .

REMARK 2.4. For a nonnegatï e measure m, the potential Gm is lower
semicontinuous relatï e to the measure m. That means if

lim f x dm x s f x dm x , f g C` D ,Ž . Ž . Ž . Ž . Ž .H Hn c p
nª` D D

then

Gm x F lim inf Gm x , x g D. 16Ž . Ž . Ž .n
nª`

� 4Additionally, if m is monotonically increasing, thenn

Gm x s lim Gm x , x g D. 17Ž . Ž . Ž .n
nª`

w xProof. Ref. 8 .

Note that the potential Km is lower semicontinuous as well since K has
a lower semicontinuous kernel.

PROPOSITION 2.5. The operator K has a positï e definite character; that is,
the inequality

Kf , f G 0 18Ž . Ž .

Ž < < < <.holds for any real, measurable function f on D such that K f , f - `.



ENERGY INEQUALITIES 431

Proof. Using symmetry of S, we have

`

Kf , f s S f , f dtŽ . Ž .H t
0

`

s S f , S f dtŽ .H tr2 tr2
0

`
25 5s S f dt G 0.H 2tr2

0

From the positive character of the operator K, we have that the energy
inequality for K holds, i.e.,

1r2 1r2Kf , q F Kf , f Kq, q . 19Ž . Ž . Ž . Ž .
d dŽ .REMARK 2.6. Let D be a bounded domain in R , d G 3, and q g KK D .

Ž < < < <. Ž < < < <.Then the energies G q , q and K q , q are finite.

Proof. The claims of the remark follow directly since the potentials
< < < < w x 1Ž .G q and K q are bounded functions 4 , and q g L D for a bounded

domain D.

In order to prove our main result, we will need an important relation
between K- and G-potential which is given in the next proposition.

PROPOSITION 2.7. Let D be a bounded domain in Rd, d G 3, and
dŽ .q g KK D with finite gauge.

Ž . Ž < < < <.i Let f : D ª R be a measurable function such that G f , f - `.
Ž < < < <.Ž .Then for almost all x, K q G f x - `, and for each such x,

Kf x s Gf x q K qGf x . 20Ž . Ž . Ž . Ž . Ž .
Ž . Ž < < < <.ii Let f : D ª R be a measurable function such that K f , f - `.

Ž < < < <.Ž .Then for almost all x, G q K f x - `, and for each such x,

Kf x s Gf x q G qKf x . 21Ž . Ž . Ž . Ž . Ž .
Ž . Ž < < < <. Ž < < < <.Proof. i If G f , f - `, then q , G f - `. Indeed, by the energy

inequality for the operator G and Remark 2.6, we have

1r2 1r2< < < < < < < < < < < <q , G f F q , G q f , G f - `.Ž . Ž . Ž .
Further,

< < < < < < < <K q G f , 1 s q G f , K1Ž . Ž .Ž .
5 5 < < < <F K1 q G f , 1 - `,Ž .`
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5 5where the first equality follows by the symmetry of K, and K1 is fin-`

Ž .ite because of finite gauge Theorem 1.1 . So for each x such that
Ž < < < <.Ž .K q G f x - `, we have by the Markov property

t
< < < < < < < <K q G f x s E e t q X G f X dtŽ . Ž . Ž . Ž .Ž . Hx q t t

0

t t
< < < <s E e t q X f X du dt - `.Ž . Ž . Ž .H Hx q t u

0 t

It follows that Fubini’s theorem applies, and for such x we have

t

K qGf x s E e t q X Gf X dtŽ . Ž . Ž . Ž . Ž .Hx q t t
0

t t

s E e t q X f X du dtŽ . Ž . Ž .H Hx q t u
0 t

t u
s E f X e t q X dt duŽ . Ž . Ž .H Hx u q t

0 0

t

s E f X e u y 1 duŽ . Ž .Ž .Hx u q
0

s Kf x y Gf x .Ž . Ž .
Ž < < < <.Ž .Thus, for each x such that K q G f x - `, we have

Kf x s Gf x q K qGf x .Ž . Ž . Ž . Ž .
Ž . Ž .ii Similarly repeating the arguments as in i , we have the claim.

Ž .REMARK 2.8. As the proof shows, the relation 20 holds almost e¨ery-
where if

< < < <q x G f x dx - ` 22Ž . Ž . Ž .H
D

Ž .and the relation 21 holds almost e¨erywhere if

< < < <q x K f x dx - `. 23Ž . Ž . Ž .H
D

Ž .Recall that K ?, ? is a kernel satisfying a weak maximum principle for
w xK. So from 11 we have for each measure m,

2Km F cK m Km , 24Ž . Ž . Ž .

where c is a positive constant.
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� 4THEOREM 2.9. Let m be a sequence of measures on D such that then
� 4corresponding sequence of potentials Km is bounded in energy. Then theren

� 4 � 4exist a measure m and a subsequence m : m such that m ª mn n ni i

¨aguely.

w x � 4Proof. According to Theorem 0.6 in 8 , it is enough to show that mn
is bounded on compacts; that is, for any compact set C : D, there exists a
constant M such thatC

m C F M , for every n g N. 25Ž . Ž .n C

Let w : D ª R be a positive, bounded function. Then, since Kw is lower
semicontinuous and strictly positive, we have

inf Kw x ; x g C ) 0 26� 4Ž . Ž .

for any compact set C : D. The energy inequality

1r2 1r2
w , Km F Kw , w Km , mŽ . Ž . Ž .n n n

Ž .and symmetry of K give that Kw, m is a bounded sequence. Usingn
simple calculation, we obtain

0 - inf Kw x ; x g C m C� 4Ž . Ž .n

F Kw x dm x F Kw x dm x ,Ž . Ž . Ž . Ž .H Hn n
C D

and the assertion follows.

� 4THEOREM 2.10. Let m be a sequence of measures supported in D suchn
� 4that Km is bounded in energy and m ª m ¨aguely. Then Km ª Kmn n n

weakly in energy.

w xProof. Ref. 8 .

THEOREM 2.11. Let n be a signed measure of finite K-energy. There exists
a measure m of finite K-energy such that

Ž . < <i Kn F Km a.e.
Ž . Ž . Ž .ii Km, m F 16 Kn , n .

Proof. Let

a [ inf K n y l , n y l ; l a measure of finite energy . 27� 4Ž . Ž .Ž .
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Let m G 0 such thatn

K n y m , n y m ª a . 28Ž . Ž .Ž .n n

Ž .Then Km , m is bounded.n n
We use the previous two theorems to extract a measure mX such that

m ª mX vaguely and Km ª KmX weakly in energy as n ª `. Then, sincen n
K has a lower semicontinuous kernel, we have

lim inf Km , m G KmX , mX 29Ž . Ž . Ž .n n
nª`

and

K n y mX , n y mX s Kn , n q KmX , mX y 2 Kn , mXŽ . Ž . Ž . Ž .Ž .
F Kn , n q lim inf Km , m y 2 Kn , mŽ . Ž . Ž .Ž .n n n

nª`

s lim inf K n y m , n y m .Ž .Ž .n n
nª`

Ž Ž X . X.Thus a s K n y m , n y m . This implies that, for any positive measure
e and t ) 0,

K n y mX y te , n y mX y te G K n y mX , n y mX . 30Ž . Ž . Ž .Ž . Ž .

Expanding, dividing by t, and letting t ª 0, we obtain

K n y mX , e F 0. 31Ž . Ž .Ž .
Hence, clearly

Kn F KmX a.e. 32Ž .

Again from the definition of the measure mX, we have

K n y mX , n y mX F K n y e , n y e 33Ž . Ž . Ž .Ž . Ž .

for any measure e of finite K-energy. Especially for e ' 0 we obtain

K n y mX , n y mX F Kn , n . 34Ž . Ž . Ž .Ž .

Ž .Using symmetry of K and the Cauchy]Schwarz inequality, Eq. 34 leads
to

KmX , mX F 4 Kn , n . 35Ž . Ž . Ž .

Similarly, replacing n by yn , there is a measure mY such that

yKn s K yn F KmY a.e. and KmY , mY F 4 Kn , n . 36Ž . Ž . Ž . Ž .
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Now, it is easy to see that the measure m s mX q mY satisfies the properties
of the theorem.

COROLLARY 2.12. Let n be a signed measure of finite G-energy. There
exists a measure m such that

Ž . < <i Gn F Gm a.e.
Ž . Ž . Ž .ii Gm, m F 16 Gn , n .

Proof. The claim follows directly from Theorem 2.11 with q ' 0.

In the next theorem are given important inequalities for a signed
measure of finite energies.

dŽ .THEOREM 2.13. For q g KK D and a signed measure m of finite G- and
K-energy, there exists a constant c such that

2< <q x Km x dx F c Km , m 37Ž . Ž . Ž . Ž . Ž .H
D

and

2< <q x Gm x dx F c Gm , m . 38Ž . Ž . Ž . Ž . Ž .H
D

Proof. According to Theorem 2.11, we can find a positive measure n
such that

< < XKm F Kn a.e. and Kn , n F c Km , m ,Ž . Ž .
X Ž .with c a positive constant. Then, using in addition the inequality 24 ,

< <symmetry of K, and the fact that K q is bounded, we have

2 2< < < <q x Km x dx F q x Kn x dxŽ . Ž . Ž . Ž . Ž . Ž .H H
D D

< <F c q x K n Kn x dxŽ . Ž . Ž .H0
D

< <s c Kn x K q x dn xŽ . Ž . Ž .H0
D

F c Kn x dn xŽ . Ž .H1
D

F c Km , m ,Ž .2

where c , c , and c are positive constants. Similarly, we prove the other0 1 2
inequality.
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The K- and G-energy are equivalent. This equivalence is the main result
of this paper and it is given in the next theorem.

d dŽ .THEOREM 2.14. Let D be a bounded domain in R , d G 3, q g KK D ,
and let the gauge g be finite for some x g D. Then there exists a positï e
constant a such that, for any real measurable function f on D with finite

Ž < < < <.energy G f , f , we ha¨e

1
Gf , f F Kf , f F a Gf , f . 39Ž . Ž . Ž . Ž .

a

Ž < < < <. Ž < < < <.Proof. Assume both K f , f and G f , f are finite. Using the
Ž .relation 21 of Proposition 2.7 between G- and K-potential, symmetry of

G, the Cauchy]Schwarz inequality, and the last theorem, we have

Kf , f s Gf , f q G qKf , fŽ . Ž . Ž .Ž .
s Gf , f q qKf , GfŽ . Ž .

1r2 1r2< < < <F Gf , f q q Kf , Kf q Gf , GfŽ . Ž . Ž .
1r2 1r2F Gf , f q c Kf , f Gf , f ,Ž . Ž . Ž .

with some positive constant c. From this inequality it follows easily that
Ž . Ž 2 .Ž .Kf, f F 1 q 2c Gf, f . Using similar manipulations as above, we prove
the second inequality.

� Ž < < < <. 4 5 5 2REMARK 2.15. Let EE s Kf ; K f , f - ` and define Kf # s
Ž . 5 5Kf, f . Then # defines a norm on EE.

COROLLARY 2.16. Let f be a real, measurable function on D and assume
1Ž .that Gf is in the Sobolë space H D . Then Kf is in the Sobolë space0

1Ž . Ž < < < <.H D . Con¨ersely, if K f , f - `, then Gf is in the Sobolë space0
1Ž .H D .0

Proof. We have to prove that

­ Kf
2g L D , j s 1, 2, . . . , d , 40Ž . Ž .

­ x j

where the partial derivatives are taken in the sense of distributions. Using
Ž .ii of Proposition 2.7, that is,

Kf s Gf q G qKf a.e. on D , 41Ž . Ž .

w x 2Ž .and the Minkowski]Riesz inequality 6 , =K f is in L D if =G f and
Ž . 2Ž . Ž . 1Ž .=G qKf are in L D . Equation 12 gives that for Gf g H D , the0
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Ž . 2Ž .energy Gf, f is finite. Since =G f g L D according to the assumption, it
Ž . 2Ž .remains to prove that =G qKf g L D . First, we define

2 < < < < 2L D , q s f : D ª R; q x f x dx - ` . 42Ž . Ž . Ž .Ž . H½ 5
D

From Theorem 2.13 and Theorem 2.14, it follows that for a function f
Ž . 2Ž < <.such that Gf, f is finite, the potential Kf is in L D, q . Consequently,

2Ž < <.it is enough to show that for c g L D, q , the integral

< < < < < < < <q x c x G q c x dx 43Ž . Ž . Ž . Ž .Ž .H
D

is finite.
2Ž < <.For c g L D, q , let

< <c x [ c n n x , x g D. 44Ž . Ž . Ž .Ž .n

By The Cauchy]Schwarz inequality, we have

< < < <q x c x G q c x dxŽ . Ž . Ž .Ž .H n n
D

1r2 1r2
22< < < < < <F q x c x dx q x G q c x dx , 45Ž . Ž . Ž . Ž . Ž .Ž .Ž .H Hn nž / ž /D D

Ž .and by the inequality 38 of Theorem 2.13, we have

2
< < < < < < < <q x G q c x dx F c q x c x G q c x dx 46Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .H Hn n n

D D

for some positive constant c.
Ž . Ž .Thus from Eqs. 45 and 46 , we obtain

< < < <q x c x G q c x dxŽ . Ž . Ž .Ž .H n n
D

1r2 1r2
2< < < < < <F c q x c x dx q x c x G q c x dx .Ž . Ž . Ž . Ž . Ž .Ž .H Hn n nž / ž /D D

47Ž .

Further, we have

< < < < 2 < < < <0 - q x c x G q c x dx F n q x G q x dx. 48Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .H Hn n
D D
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Ž .The expression on the right-hand side of the inequality 48 is finite since
dŽ .q g KK D has finite G-energy, and so dividing both sides of the inequal-
Ž .ity in 47 by

1r2

< < < <q x c x G q c x dx ,Ž . Ž . Ž .Ž .H n nž /D

we obtain

1r2 1r2
2< < < < < <q x c x G q c x dx F c q x c x dx . 49Ž . Ž . Ž . Ž . Ž . Ž .Ž .H Hn n nž / ž /D D

From the definition of c , the integral on the right-hand side is dominatedn
by

< < 2q x c x dx ,Ž . Ž .H
D

2Ž < <.which is finite since c is in L D, q . So, we have

< < < < X < < 2q x c x G q c x dx F c q x c x dx - `. 50Ž . Ž . Ž . Ž . Ž . Ž .Ž .H Hn n
D D

Now, applying Lebesgue’s dominated convergence theorem and Remark
Ž .2.4, we have shown that the integral in Eq. 43 is finite and so we have

shown the first part of the corollary. The second part follows directly using
the first part and Theorem 2.14.

Further interesting result considering K-potential is given in the next
theorem.

1Ž . dŽ .THEOREM 2.17. For f g L D and q g K D , the operator T defined
by

Tf s f q qKf 51Ž .
1Ž .is one-to-one and onto L D .

Proof. The theorem will be proved in a few steps.
1Ž . 1Ž .Step 1. First we note that T : L D ª L D . This follows from

< <symmetry of K, Fubini’s theorem, and the fact that K q is bounded.
Step 2. T is one-to-one. Indeed, suppose

Tf s f q qKf s 0. 52Ž .
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w x 1Ž . < <Ž . < <Ž .Then G f q qKf s 0. If f g L D , then H q x K f x dx - ` and so,D
as Remark 2.8 shows,

w xKf s G f q qKf ,

Ž .and hence Kf s 0. So from Eqs. 52 , f ' 0. Thus T is one-to-one.
1Ž .Step 3. The range of T is dense in L D . Otherwise there exists

`Ž .0 k g g L D such that

f q qKf , g s 0 for every f g L1 D . 53Ž . Ž . Ž .

Ž .From Eq. 53 it follows

f , g q Kqg s 0 for every f g L1 D , 54Ž . Ž . Ž .

which leads to

g q Kqg s 0, 55Ž .
dŽ .and so for q g KK D we obtain

qg q qKqg s 0. 56Ž .
1Ž .But since qg g L D , we get as before qg s 0, which implies Kqg s 0 and

so g ' 0.
� < < < < 5 5 4Step 4. The set q K f ; f F 1 is uniformly integrable. To see1

this, first note that

< < < < < < < < 5 < < 5q x Kf x dx F f x K q x dx F K q . 57Ž . Ž . Ž . Ž . Ž .H H `
D D

Ž < < .Second, if A has small measure, then because q is in the Kato class
Ž < < .K q 1 is uniformly small. SoA

< < < < < < < < < <q x Kf x dx F f x K q 1 x dx F K q 1 58Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H A A `
A D

is small. This proves uniform integrability.
1Ž . Ž . Ž .Step 5. Let f ª f weakly in L D , i.e., H f x g x dx ªn D n

Ž . Ž . `Ž . 1Ž .H f x g x dx for every g g L D . Then qKf ª qKf strongly in L D .D n

To see this, suppose first that f G 0. Since K has a lower semicontinu-n
ous kernel,

lim inf Kf G Kf . 59Ž .n
nª`
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1Ž .Also since f ª f weakly in L D , we haven

lim Kf x dx s lim f x K1 x dxŽ . Ž . Ž .H Hn n
nª` nª`D D

s f x K1 x dx s Kf x dx.Ž . Ž . Ž .H H
D D

We conclude

lim Kf s Kf a.e. 60Ž .n
nª`

It follows that qKf converges to qKf a.e. Since qKf is uniformly inte-n n
grable, we have

qKf ª qKf strongly in L1 D . 61Ž . Ž .n

Splitting f into fq and fy , we get the general case.n n n

�5 5 5 5 4Step 6. inf Tf ; f s 1 ) 0. If not, we can find f such that1 1 n
5 5f s 1 and1n

5 5 ynTf F 2 . 62Ž .1n

5 5But, as Step 4 shows, qKf is uniformly integrable, and since f q qKf 1n n n
ª 0, we see that f is uniformly integrable. By choosing a subsequence ifn

1Ž .necessary, we may assume f ª f g L D weakly.n
5 5From Step 5 we get that qKf ª qKf strongly. Since f q qKf ª 0,1n n n

we get f ª f strongly andn

f q qKf s 0. 63Ž .

5 5Now using Step 2, we get f ' 0. This contradicts f s 1 and f ª 01n n
strongly.

Step 7. Step 6 says that the range of T is closed, and from Step 3 the
1Ž . 1Ž .range of T is dense in L D . Thus T is onto L D , proving the theorem.
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