The University of Southampton
University of Southampton Institutional Repository

Small area estimation via m-quantile geographically weighted regression

Salvati, N., Tzavidis, N., Pratesi, M. and Chambers, R. (2010) Small area estimation via m-quantile geographically weighted regression , Southampton, GB Southampton Statistical Sciences Research Institute 26pp. (S3RI Methodology Working Papers, M10/12).

Record type: Monograph (Working Paper)


The effective use of spatial information, that is the geographic locations of population units, in a regression model-based approach to small area estimation is an important practical issue. One approach for incorporating such spatial information in a small area regression model is via Geographically Weighted Regression (GWR). In GWR the relationship between the outcome variable and the covariates is characterised by local rather than global parameters, where local is defined spatially. In this paper we investigate GWR-based small area estimation under the M-quantile modelling approach. In particular, we specify an M-quantile GWR model that is a local model for the M-quantiles of the conditional distribution of the outcome variable given the covariates. This model is then used to define a bias-robust predictor of the small area characteristic of interest that also accounts for spatial association in the data. An important spin-off from applying the M-quantile GWR small area model is that it can potentially offer more efficient synthetic estimation for out of sample areas. We demonstrate the usefulness of this framework through both model-based as well as design-based simulations, with the latter based on a realistic survey data set. The paper concludes with an illustrative application that focuses on estimation of average levels of Acid Neutralizing Capacity for lakes in the north-east of the USA.

PDF s3ri-workingpaper-M10-12.pdf - Other
Download (2MB)

More information

Submitted date: 5 October 2010
Keywords: borrowing strength over space, environmental data, estimation for out of sample areas, robust regression, spatial dependency


Local EPrints ID: 164935
PURE UUID: 93fa8c6b-66a9-48b1-b72c-f40228e9d6f7

Catalogue record

Date deposited: 07 Oct 2010 09:01
Last modified: 18 Jul 2017 12:28

Export record


Author: N. Salvati
Author: N. Tzavidis
Author: M. Pratesi
Author: R. Chambers

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.