The University of Southampton
University of Southampton Institutional Repository

Acoustic initiation of powder flow in capillaries

Acoustic initiation of powder flow in capillaries
Acoustic initiation of powder flow in capillaries
Second generation solid freeforming devices will have the capability to render both shape and the spatial arrangement of composition directly from a computer file. In order to build three-dimensional functional gradients in selective laser sintering it is necessary to have a computer-controlled mixing and dispensing system. We report such a system based on the horizontal acoustic vibration of vertical capillary tubes that provides both switching and flow rate control. An orchestra of such tubes can be constructed to deposit a multi-component system onto a building platform. Our concern is the initiation of flow. It requires an “attack” waveform to break the domes that provide flow arrest and release the potential energy of powder above the dome. The intensity of attack also influences the mass that flows out before a new dome forms, i.e., the response time of the valve. Neither the extension to vibration caused by ringing nor the wave amplitude account for the over-run of the valve. Much better correlation is obtained with acceleration and with calculated kinetic energy of horizontally vibrating particles.
powder flow control, solid freeforming, acoustic vibration
0009-2509
413-421
Yang, Shoufeng
e0018adf-8123-4a54-b8dd-306c10ca48f1
Evans, Julian R.G.
4eee463a-4dd3-4ef2-b9bc-784246b68ad2
Yang, Shoufeng
e0018adf-8123-4a54-b8dd-306c10ca48f1
Evans, Julian R.G.
4eee463a-4dd3-4ef2-b9bc-784246b68ad2

Yang, Shoufeng and Evans, Julian R.G. (2005) Acoustic initiation of powder flow in capillaries. Chemical Engineering Science, 60 (2), 413-421. (doi:10.1016/j.ces.2004.07.124).

Record type: Article

Abstract

Second generation solid freeforming devices will have the capability to render both shape and the spatial arrangement of composition directly from a computer file. In order to build three-dimensional functional gradients in selective laser sintering it is necessary to have a computer-controlled mixing and dispensing system. We report such a system based on the horizontal acoustic vibration of vertical capillary tubes that provides both switching and flow rate control. An orchestra of such tubes can be constructed to deposit a multi-component system onto a building platform. Our concern is the initiation of flow. It requires an “attack” waveform to break the domes that provide flow arrest and release the potential energy of powder above the dome. The intensity of attack also influences the mass that flows out before a new dome forms, i.e., the response time of the valve. Neither the extension to vibration caused by ringing nor the wave amplitude account for the over-run of the valve. Much better correlation is obtained with acceleration and with calculated kinetic energy of horizontally vibrating particles.

Text
published.pdf - Version of Record
Restricted to Registered users only
Download (502kB)
Request a copy

More information

Published date: January 2005
Keywords: powder flow control, solid freeforming, acoustic vibration
Organisations: Engineering Mats & Surface Engineerg Gp

Identifiers

Local EPrints ID: 165075
URI: http://eprints.soton.ac.uk/id/eprint/165075
ISSN: 0009-2509
PURE UUID: 9f6662db-a826-4c7d-bfc4-78dc5727bfb8
ORCID for Shoufeng Yang: ORCID iD orcid.org/0000-0002-3888-3211

Catalogue record

Date deposited: 07 Oct 2010 13:33
Last modified: 14 Mar 2024 02:09

Export record

Altmetrics

Contributors

Author: Shoufeng Yang ORCID iD
Author: Julian R.G. Evans

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×