The University of Southampton
University of Southampton Institutional Repository

The robust stability of iterative learning control

The robust stability of iterative learning control
The robust stability of iterative learning control
This thesis examines the notion of the long term robust stability of iterative learning control (ILC) systems engaged in trajectory tracking, using a robust stability theorem based on a biased version of the nonlinear gap metric. This is achieved through two main results:

The first concerns the establishment of a nonlinear robust stability theorem, where signals are measured relative to a given trajectory. Although primarily motivated by ILC, the theorem provided is applicable to a wider range of problems. This is due to its development being made independently of any particular signal space, provided the space is furnished with a definition of causality. The theorem's formulation therefore permits its implementation on single- or multi-dimensional problems in a variety of different settings. Necessitated by an ILC constraint concerning reference signals, the trajectory that stability is measured relative to must often lie outside the signal space that is chosen. The robust stability theorem is therefore devised to address signals that lie in extended signal spaces throughout. Additionally, the theorem is applicable to nonlinear systems, and it is shown that the biased gap measure collapses to the standard nonlinear gap measure when the bias is set to zero. It is also shown to collapse to the classical linear gap when restricting the analysis to certain linear systems.

The second result applies the robust stability theorem to ILC using a 2D signal space. Initially the subject of ILC is reviewed and some of the problems associated with controllers are described; in particular the issues of long-term stability and the criteria for convergence. ILC algorithms expressed in the 'lifted system' or 'supervector' formulation are discussed and then analysed using the biased robust stability theorem. Results are presented regarding the use of filtering in ILC algorithms to aid robustness, and also the robustness of inverse model-based techniques. The robust stability tool applied to ILC in this thesis is not restricted in its analysis to algorithms which are 'causal' (in an ILC sense); and is based on a general unstructured uncertainty model in contrast to the existing literature, whereby uncertainties are typically constrained to additive, multiplicative or parametric models.
Bradley, Richard Stephen
0561c1e5-525a-4aca-aeca-8b56adff2da7
Bradley, Richard Stephen
0561c1e5-525a-4aca-aeca-8b56adff2da7
French, Mark
22958f0e-d779-4999-adf6-2711e2d910f8

Bradley, Richard Stephen (2010) The robust stability of iterative learning control. University of Southampton, School of Electronics and Computer Science, Doctoral Thesis, 174pp.

Record type: Thesis (Doctoral)

Abstract

This thesis examines the notion of the long term robust stability of iterative learning control (ILC) systems engaged in trajectory tracking, using a robust stability theorem based on a biased version of the nonlinear gap metric. This is achieved through two main results:

The first concerns the establishment of a nonlinear robust stability theorem, where signals are measured relative to a given trajectory. Although primarily motivated by ILC, the theorem provided is applicable to a wider range of problems. This is due to its development being made independently of any particular signal space, provided the space is furnished with a definition of causality. The theorem's formulation therefore permits its implementation on single- or multi-dimensional problems in a variety of different settings. Necessitated by an ILC constraint concerning reference signals, the trajectory that stability is measured relative to must often lie outside the signal space that is chosen. The robust stability theorem is therefore devised to address signals that lie in extended signal spaces throughout. Additionally, the theorem is applicable to nonlinear systems, and it is shown that the biased gap measure collapses to the standard nonlinear gap measure when the bias is set to zero. It is also shown to collapse to the classical linear gap when restricting the analysis to certain linear systems.

The second result applies the robust stability theorem to ILC using a 2D signal space. Initially the subject of ILC is reviewed and some of the problems associated with controllers are described; in particular the issues of long-term stability and the criteria for convergence. ILC algorithms expressed in the 'lifted system' or 'supervector' formulation are discussed and then analysed using the biased robust stability theorem. Results are presented regarding the use of filtering in ILC algorithms to aid robustness, and also the robustness of inverse model-based techniques. The robust stability tool applied to ILC in this thesis is not restricted in its analysis to algorithms which are 'causal' (in an ILC sense); and is based on a general unstructured uncertainty model in contrast to the existing literature, whereby uncertainties are typically constrained to additive, multiplicative or parametric models.

Text
Richard_Bradley_-_PhD_Thesis.pdf - Other
Download (3MB)

More information

Published date: 21 September 2010
Organisations: University of Southampton, ISIS

Identifiers

Local EPrints ID: 165393
URI: http://eprints.soton.ac.uk/id/eprint/165393
PURE UUID: d0e44d9e-e132-4323-b26e-7653e1756b0e

Catalogue record

Date deposited: 21 Oct 2010 14:09
Last modified: 14 Mar 2024 02:10

Export record

Contributors

Author: Richard Stephen Bradley
Thesis advisor: Mark French

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×