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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Mar Yah Said

UML-B is a UML-like graphical front end for Event-B that provides support for object-
oriented modelling concepts. In particular, UML-B supports class diagrams and state
machines, concepts that are not explicitly supported in plain Event-B. In Event-B,
refinement is used to relate system models at different abstraction levels. The same
abstraction-refinement concepts can also be applied in UML-B. This work introduces
the notions of refined classes, refined state machines and extended classtypes to en-
able refinement of classes and state machines in UML-B. This work makes explicit the
structures of class and state machine refinement in UML-B. This work also introduces
seven refinement techniques which are, adding new attributes and associations, adding
new classes, elaborating state, elaborating transition, moving a class event (or a state
machine transition), adding new attributes and associations, and adding new classtypes.

In Event-B, decomposition is used to decompose a system into components. The same
decomposition concepts can be applied in UML-B. This work introduces the techniques
of flattening state machines and state grouping to facilitate a decomposition of a UML-B
machine. This work also introduces the notion of composed machine which composes
the component machines. The composed machine refines a machine which is being
decomposed. The composed machine is used to ensure the composition of the component
machines is a valid refinement. Together with the composed UML-B machine, the
notions of included machine, composed event and constituent event are introduced.

The UML-B drawing tool and Event-B translator are extended to support the new
refinement and decomposition concepts. A case study of an auto teller machine (ATM)
is presented to validate the extensions of UML-B with regards to the above notions. The
ATM case study also demonstrates the above techniques introduced in refinement and
decomposition. In addition, this work provides guidelines for performing refinement and
decomposition in UML-B and presents a number of generic invariants that may be used
when refining a middleware. The middleware is a component via which a requesting
component such as an ATM and a responding component such as bank interact in a
distributed system.
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Chapter 1

Overview of Research Project

1.1 Introduction

This chapter gives an overview of this thesis. The remainder of this chapter includes
sections on problem statement, objectives, methodology, tools, research questions, the
summary contributions and thesis structure.

1.2 Problem Statement

UML-B [96, 95, 97] is a graphical formal modelling notation that has some resemblance
with UML [2, 39] and is based on Event-B [69]. UML-B is defined precisely by its
metamodel [96] which is an abstract syntax of the structure of the UML-B language. The
UML-B notation is supported by the UML-B tool which is a plug-in extension feature
to the Rodin Event-B verification tool [4, 22]. The UML-B tool (U2B translator [94])
generates Event-B models corresponding to a UML-B development and the Rodin tool is
then used to discharge proof obligations associated with the generated Event-B models.
The Rodin Event-B tool supports Event-B which is a new variant of the B method.

The B method [5, 84] is based on stepwise refinements and decomposition of a problem.
An abstraction is made to capture the most essential properties of a system after initial
informal specification of requirements. This abstract specification is made more concrete
and detailed in steps at each refinement or decomposition step, proof obligations are
generated and must be discharged in order to prove that the outputs of the step are a
valid refinement of the previous level. At each step when more detailed requirements
are introduced or implementation steps are taken, it is proved that they respect all the
previous levels. This method ensures that the developed program obeys the properties
expressed in all the levels of specification from which it is derived. Such proof is not
always easily achieved. The form and style of the formal B specification can greatly affect

1
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the ease of achieving these proof obligations. Hence a primary criterion for developing
specifications in B is ease of proof. This is why refinement and decomposition are
significant mechanisms in building a B specification.

Since the B-method and Event-B method are reflected in UML-B, the abstraction-
refinement concepts must also be catered for in UML-B. However, an effective style
of performing refinement in UML-B had not yet being determined when starting our re-
search. Also, the UML-B tool still has limitations with modelling refinement. Likewise,
UML-B does not support decomposition.

The purpose of the research is to study and propose an effective methodology of refine-
ment and decomposition in UML-B. We believe that the result of our research will be
a methodology of refinement and decomposition in UML-B which will assists modelling
in UML-B.

1.3 Objective

The objectives of this research are:

• To extend UML-B to support refinement and decomposition.

• To produce a set of refinement and decomposition styles for UML-B models.

• To test the effectiveness of the UML-B extensions and, UML-B refinement and
decomposition styles through experiments with case studies.

1.4 Methodology

Methodology is the methods, procedures and techniques used to collect and analyse
information in a research process. The methodology for this research is listed as follows:

• Case studies by using the Rodin Event-B tool and UML-B tool.

• Create a proposal for extending the UML-B metamodel to support refinement and
decomposition in UML-B based on experiences with case studies.

• Extend the UML-B tool by implementing the new (extension) features proposed
in the UML-B metamodel.

• Evaluate the existing and extended features of the UML-B tool through the case
studies.

All the four activities listed above were performed in an iterative manner.
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1.5 Tools

Several tools or application software are used during the duration of this research and
they are listed as follows:

• ProB
ProB is a model checker and animation tool for the B method. It is used to gain
understanding and feedback in modelling the B method.

• Rodin Event-B
The Rodin Event-B tool is used in modelling the ATM case study to gain experi-
ence in modelling and performing refinement in plain Event-B.

• Rodin UML-B
Rodin UML-B is a tool which integrates UML and B. It is used to gain understand-
ing and experience in modelling and performing refinement in UML-B. This tool
was extended in this study to support modelling refinement and decomposition in
UML-B.

• Eclipse
Eclipse is used as a Java Integrated Development Environment (IDE) in imple-
menting the extensions to the UML-B tool.

• IBM Rational Software Architect (RSA)
Rational Software Architect provides integrated design and development support
for model-driven development with the Unified Modelling Language (UML). RSA
is used as an editing tool in order to make the UML-B metamodel more presentable
in this report.

• Java
Java is the programming language used to implement the U2B translator.

1.6 Research Questions

• What are the extensions that can be made to the UML-B language and tool to
support refinement and decomposition?

• What are ways or styles for performing refinement and decomposition in UML-B?

• How effective are the language and tool extensions?
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1.7 Summary of Contributions

In this research study, we intended to provide a way of performing refinement in UML-B.
In Chapter 4 we introduce a notion of refined class, a notion of refined state machine and
a notion of extended classtype which are the intended contributions. Several refinement
techniques are introduced in conjunction with the notions. The techniques are listed as
follows:

• adding new attributes and associations to refined classes

• adding new classes in a refinement

• elaborating refined states into sub-states

• elaborating transitions

• moving events or transitions to refined classes or new classes in a refinement

• adding new attributes and associations to extended classtypes

• adding new classtypes in a refinement

We also intended to provide a way of performing decomposition in UML-B. In Chapter 7
we introduced a notion of composed machine, included machine, composed event and
constituent event. These notions allow a modeller to compose a number of decomposed
machines. The composition is done to ensure that the decomposed machines are valid
refinements. We also introduce two techniques involving structuring the hierarchy of
state machines which are flattening state machines and state grouping.

The contributions of this work involved the extensions made to the UML-B metamodel
and tool to support refinement and decomposition in UML-B.

Further contribution of this work is a development of the case study in UML-B. The case
study is done to validate the extensions to the UML-B. The case study also demonstrates
the use of the above mentioned techniques.

Other contributions are the guidelines for performing refinement and decomposition in
UML-B and the generic invariants in the refinement of a middleware component are
discussed.
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1.8 Thesis Structure

The remainder of this thesis is organized as follows:

Chapter 2 describes a background study on related domain knowledge including the
foundation of formal methods, B method, Event-B, refinement, decomposition, Rodin
tools, UML, MDA, UML-B, other formal methods and related work.

Chapter 3 describes a case study of an auto teller machine (ATM) developed using Rodin
Event-B. There are seven machine levels of the development. At the end of the chapter,
a section on the experience of the development is included.

Chapter 4 introduces the notion of refined classes, refined state machines and extended
classtypes. The chapter discussed a section on the limitations of UML-B. Then, the
notions of refined classes, refined state machines and extended classtypes are described
with simple examples. The refinement techniques listed in Section 1.7 are described.

Chapter 5 describes the extensions to the UML-B metamodel and the extensions to the
UML-B drawing tools to support the introduced notions in Chapter 4.

Chapter 6 describes the development of the ATM case study using UML-B. The case
study applies and validates the notions of refined classes, refined state machines, ex-
tended classtypes and the techniques which are mentioned in Chapter 4.

Chapter 7 introduces the techniques of flattening state machines and state grouping
in UML-B. These techniques may be performed preceding decomposition of a refine-
ment machine. This chapter also introduces the notions of composed machine, included
machine, composed event and constituent event. These notions are described with a
number of simple examples. This chapter also describes the extensions to the UML-B
metamodel and the extensions to the UML-B drawing tool to support these notions.

Chapter 8 is a continuation of the development of the ATM case study in UML-B. The
case study applies and validates the techniques and the notions introduced in Chapter 7.
The guidelines for performing refinement and decomposition in UML-B are put forward.
This chapter also put forward a set of patterns for constructing invariants when refining
a middleware component.

Chapter 9 concludes the thesis. The contributions of the thesis and limitations of the
work are summarized. Comparisons of UML-B with other work on the integration of
UML and B are put forward. Comparison of this work with other work on the class
and state machine refinements are provided. Comparisons of modelling in Event-B and
UML-B are discussed. Comparisons of the goal diagram and event refinement diagram
with this work are presented. This chapter also outlines some future work.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a description of the related background studies of the research
topic. The topics include formal methods, B, Event-B, refinement, the Rodin Event-
B tool, UML-B, Unified Modelling Language (UML) and Model Driven Architecture
(MDA). This chapter also contains topics about other formal specification languages
like Z [98], VDM [52], Larch [43] and JML [42] and related work.

A background study of formal method is included in this chapter because the research
is concerned with UML-B that integrates semi-formal and formal modelling concepts.
The B and Event-B methods are included because the research is concerned with them.
Clearly, topics on refinement and Unified Modelling Language (UML) are included be-
cause the research is directly related to them. A section on the Rodin Event-B tool is
included because it is the main tool used during the research. Model Driven Architecture
(MDA) [70] is concerned with modelling and model transformation. MDA is relevant
to the research because model transformation is related to refinement. Z and VDM are
similar to the B method which means they merit investigation. Whereas Larch and JML
are different from B method, they are also included to gain wider knowledge of different
kinds of formal methods. JML utilizes the object-oriented principles and this is an-
other reason it is included in this chapter as the UML-B also utilizes the object-oriented
principles.

2.2 Formal Methods

Formal methods [68, 45, 102] are methods that based on mathematical notation for
specifying, developing and verifying software and hardware systems. Formal methods
is a sub field of software engineering. Formal methods are used to uncover ambiguity,

6
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incompleteness and inconsistency in a system. Using formal methods early in the system
development process, can help reveal design faults which would otherwise perhaps be
discovered during costly testing and debugging phases.

A formal specification is an actual outcome of applying a formal method. A formal
specification is a description of software and hardware using mathematical notation
that may be used to develop an implementation. It express what the system should do.
The advantage of formal specification is that it can be verified using formal verification
techniques to show that a candidate design is correct with respect to the specification.
Formal specifications are expressed in languages with formally defined syntax and se-
mantics. Examples of formal specification languages are Z, Vienna Development Method
(VDM), Larch, JML and the B-method.

Formal specification languages can be categorised into two kinds which are model-
oriented and property-oriented. For model-oriented methods, a system’s behaviours
are defined directly by constructing a model of the system in terms of mathematical
structures such as tuples, relations, functions and sets. For property-oriented methods,
a system’s behaviours are defined indirectly by stating a set of properties, usually in the
form of a set of axioms that the system must satisfy. Z, VDM and B are model-oriented
methods for specifying the behaviours of sequential programs and abstract data types.
Larch and JML are property-oriented methods.

Much more specification, design and documentation is written using informal methods
like natural language and diagrams compared to formal methods. This maybe because
informal methods are easier to comprehend and learn whereas the formal notations are
difficult to understand. However, informal methods tend to be ambiguous compared to
formal methods. Specifications written using formal methods are precise and unambigu-
ous. The critics believe that formal methods are difficult. However, formal method’s
supporters believe that formal methods can revolutionise development. Nevertheless,
there is not much published evidence to support either side [45].

2.3 B-Method

B is a method for the specification, design and implementation of software systems and is
originated by Abrial [5]. The B method supports formally verified software development
from a specification through refinements which lead to an implementation.

The B method is based on the Abstract Machine Notation (AMN) and set theory. Set
notation is important in B in which it is used for data modelling. State modifications
are described using generalised substitutions. The B method uses the set theoretic
constructs such as sets and relations in expressing specifications. Functions which are a
particular kind of relations are used extensively in the B method.
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The B method emphasises simplicity. Complicated programming constructs are pur-
posely excluded so the designers are forced to use clear and well-understood statements.
The structuring mechanisms provided by the B-Method are also characterised by sim-
plicity and are designed particularly with verification in mind. A basic building block
of a specification is the abstract machine. Shown in Figure 2.1 is the structure of an
abstract machine written in the B method.

MACHINE
SETS
CONSTANT
PROPERTIES
VARIABLES xx
INVARIANT xx ⊆ N
INITIALISATION xx:=0
OPERATIONS
END

Figure 2.1: A Structure of B Method Abstract Machine

A description of clauses in Figure 2.1 is as follows:

• The MACHINE clause introduces the name of the machine.

• The SETS clause introduces the sets which are used in the machine.

• The CONSTANT clause introduces the constants which are used in the machine.

• The PROPERTIES clause contains the definition of constants.

• The VARIABLES clause introduces the variables of the state of the machine. In
the example there is only one variable, xx.

• The INVARIANT clause introduces the invariant property of the state of the ma-
chine. The invariants consist of predicates separated by the conjunction operator.
The example constrained the variable xx to be any natural number.

• The INITIALISATION clause defines the initial state of the machine. For example,
the state variable xx is initially 0.

• The OPERATIONS clause describes the operation that can cause state changes
in the machine.

The B method was used successfully to develop the software for several industrial appli-
cations [8], such as, Line 14 of Paris Subway [79] and Shuttle at Roissy airport [14].
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2.4 Event-B

Event-B [6] is a new variant of the B method and is based on Action Systems [12]. An
action system is a collection of actions on some set of state variables. An action system
describes the state space (the set of possible assignment values to the state variables)
of a system and the possible actions that can be executed in the system. Event-B
aims to overcome the limitation of the B method in modelling a system that consists of
both software and hardware components. A limitation of the B method is that at the
highest level of abstraction, the (component) interface is fixed, that means it cannot be
refined later [96]. When modelling systems, an observation of a closed system with no
inputs and outputs is made. This closed system has state that is altered by spontaneous
occurrence of events. As the state is refined to have more detailed state, correspondingly
more events are observed occurring during that state.

In contrast to classical B, Event-B distinguishes between contexts and machines [4, 34].
A context contains definitions and properties of types and constants. A machine contains
state variables, invariants and events that update the variables. A machine may see
several contexts. Operations are called events in Event-B. Each event has guards and
actions. The guards are a predicates formed on constants or variables which represent
the necessary conditions for the event to happen. The actions define the state variable
changes that happen as the event occurs.

2.5 Refinement

Refinement [5, 7, 72] is a technique which is used to alter the abstract model of a software
system, i.e., its specification, into another mathematical model that is more concrete,
i.e., its refinement, while maintaining the same abstract properties. Refinement is an
important technique for managing the complexity of a system being developed. It is
important to have an abstract model of a system so that the core functions of a system
can be focused on. Further refinements of the abstract model allows the specifier to
focus on different aspect of the system at different refinement levels.

Two main styles have been proposed for refinement which are “posit-and-prove” and
“transformational” [27, 60]. Posit-and-prove is where a refinement of a specification is
proposed and then justified against its abstract specification via the verification of a set
of proof obligations. That is, in order to verify model M1 is refined by model M2, a tool
is used which generates proof obligations from both M1 and M2 that can be verified
using theorem provers or possibly checked using model checkers. On the other hand,
transformational refinement is where algorithms or rules are applied to a specification
to generate a more concrete specification. That is, a transformation is applied to all
or part of M1 that automatically constructs M2 in a way that guarantees refinement.
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MACHINE Team
SETS ANSWER={in,out}
VARIABLES team
INVARIANT team ⊆1..22 ∧ card(team)=11
INITIALISATION team:=1..11
OPERATIONS

aa ←− query(pp) ,
PRE pp ∈ 1..22
THEN

IF pp ∈ team
THEN aa:=in
ELSE aa:=out
END

END
END

Figure 2.2: The Team Machine: Abstract Specification

Transformation might result in occurrence of side conditions which need to be verified
but discharging them should be less effort than proving M1 is refined by M2 in the
posit-and-prove style.

There are two ways a refinement model can be more concrete. First, it can contain
more requirements by adding variables and events. Second, it can be closer to an im-
plementation by replacing abstract variables by concrete variables. The former is called
superposition refinement and the later is called data-refinement refinement.

An example of data refinement is illustrated in Figure 2.2 from the B method book of
Schneider [84]. The figure shows a specification of a football team where the machine
Team maintains the set of players during a football game. There are 22 players, num-
bered from 1 to 22 (represents by team ⊆1..22) and 11 players will be formed in the team
from these (represents by card(team)=11). These properties are stated in the INVARI-
ANT clause. The team is initialised as the first 11 players. The machine consists an
operation query that tells whether a particular player (pp) is in the team. The output
(aa) of query operation is from the enumerated set ANSWER.

The machine Team can be refined by the refinement machine TeamR in Figure 2.3. The
state variable teamr refines its abstract variable team and it is a function from an array of
size 11 to the set of players 1..22. The ½ represents an injective function that means all
the players in the array are different players. The gluing invariant, team = ran(teamr)
represents the members of the team by the array’s elements. The INITIALISATION
clause initialises the initial state in which teamr is assigned the function in which the
players appear in the array in numerical order. The condition of the operation query is
evaluated on teamr.

The refinement process often can reduce nondeterminism of the abstract specification,
replace abstract mathematical data structures by data structures implementable on a
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REFINEMENT TeamR
REFINES Team
VARIABLES teamr
INVARIANT teamr ∈1..11 ½ 1..22 ∧ team = ran(teamr)
INITIALISATION teamr:=h nn.(nn ∈ 1..11 | nn)
OPERATIONS

aa ←− query(pp) ,
IF pp ∈ ran(teamr)
THEN aa:=in
ELSE aa:=out
END

END

Figure 2.3: The TeamR Machine: Concrete Specification

computer, and eventually, gradually introduce implementation decisions.

2.5.1 Refinement and Proof Obligations in Event-B

A development in Event-B is done through refinement. A development in Event-B is
accompanied by a number of proof obligations that justify its correctness. At the most
abstract model, it is required to form an invariant that defines the static properties of
the data being modelled. This will create a number of proof obligations relating to the
model consistency in order to ensure that the invariant is preserved in all the events
of the model. Each refinement in the Event-B development will add further invariants
relating the abstract model and the refined model.

Refinement in Event-B is done by refining both its state and its events. This is essentially
done by extending the list of state variables (possibly suppressing some of them), by
refining each abstract event into a corresponding concrete version, and by adding new
events. The abstract state variable, x, and the concrete state variable, y, are linked
together by a predicate called a gluing invariant J(x, y). The gluing invariant is used
to create a number of refinement proof obligations which are needed to ensure that each
abstract event is correctly refined by its concrete version, each new event refines skip, no
new event take control for ever (live-lock free) and there is always at least one enabled
event (no dead-lock) [28, 47, 100]. There are three status of events namely convergent,
anticipated and ordinary. The new events which satisfy live-lock freeness are convergent.
In cases where the convergence of some events can only be shown in later refinement,
their convergence is anticipated. Ordinary events mean the events are not convergent.

The convergent property of an event is proved by having a variant. The variant needs
to be decrease every time the event is triggered but no lower than zero. When it reaches
zero, this means the event will stop which preserves the live-lock freeness and allow other
events to be triggered.
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There are two main differences between Event-B and classical B with regards to re-
finement of events. In Event-B, several events may refine an abstract event whereas in
classical B, only one event can refine an abstract event. The other difference is that
in Event-B, we may have new events that refine skip whereas in classical B, this is not
allowed.

2.5.2 Records Extension in Event-B

Work by Evans and Butler [34] has introduced a method to structure data by records in
Event-B by stepwise development through refinement. This method for structuring data
is used in the fourth refinement of the ATM case study in Section 3.3.5, Section 3.3.6
and Section 8.7.1.

The method does not involve changes to the semantics of Event-B but adds an extension
to its syntax. The record syntax uses the SETS, CONSTANTS and AXIOMS clauses.
Consider an example where there is a record R with two fields r1 and r2 of type A and
B respectively. Using the SETS clause, three deferred sets R, A and B are declared,
where the sets R represents the record type and the sets A and B correspond to the
types of the fields r1 and r2. A VDM composite-like declaration for a record has been
proposed which can be seen in Figure 2.4 using the given example.

CONTEXT Func
SETS

R::r1 :A; (1)
r2 :B ;

END

Figure 2.4: Syntactic Sugar for Record Types

CONTEXT Func
SETS

R
A
B

CONSTANTS
r1
r2

AXIOMS
r1 ∈ P(R)
r2 ∈ P(R)
r1 ∈ R −→ A
r2 ∈ R −→ B

END

Figure 2.5: Event-B Context for Record Types

Figure 2.5 shows the Event-B specification corresponding to the syntactic sugar in Fig-
ure 2.4. The declaration (1) specifies the R record as having the field r1 of type R and
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links the messages with their corresponding A. This syntax implicitly types the r1 as:

r1 ∈ R −→ A

In UML-B, the record R is represented by a classtype.

Two forms of record refinement been introduced which are record extension and record
subtyping. For a record extension, the following syntax is proposed:

EXTEND R WITH r3:C (2)

The declaration (2) specifies that the record R is extended with the field r3. In the
corresponding Event-B, a constant r3 is introduced and (2) implicitly types r3 as

r3 ∈ R −→ C

For subtyping,

Q SUBTYPES R WITH r3:C

where R and Q are the record type and r3 is a field of type C. In the corresponding
Event-B, the record type Q is a constant and it is a subset of the record type R. The
field r3 is of type Q and links the messages with their corresponding C.

An example of record extension is described using an electronic mail delivery system
where users can send and receive messages. The context, called Context is shown on
Figure 2.6. It declares two sets User and Message, and one record type Send interface
with fields dest and mess, of type User and Message respectively.

CONTEXT Context
SETS

User ;Message;
Send interface::dest :User ;

mess:Message;
END

Figure 2.6: Abstract Context

The Context is refined to introduce more detail and realistic architecture in which each
user is associated with a mail server that is responsible for forwarding and retrieving
mail from the middleware. This can be seen in Figure 2.7. In Context2, the record
Send interface is extended to add a new field source that contains the identities of the
senders. Also, a record type Package is declared with fields destination, recipient and
contents. Additionally, a new set Server is declared to represents the different mail
servers and a function address which returns the server hosting a particular user.
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CONTEXT Context2
REFINES Context
SETS

Server ;
Package::destination:Server ;

recipient :User ;
contents:Message;

EXTEND Send interface WITH source:User
CONSTANTS

address;
PROPERTIES

address ∈ User → Server
END

Figure 2.7: Refined Context

2.6 Decomposition in Event-B

Decomposition is where an Event-B machine is separated into a number of smaller
components which are easier to manage. These decomposed components can be refined
independently from one another. There are two kinds of decomposition which may be
used in Event-B namely, event-based and state-based.

Event-based decomposition is proposed by Butler in [23, 24] based on a parallel com-
position method developed for action systems. Event-based decomposition decomposes
a model into separate components on its events. That means, events are split between
the components. The variables are encapsulated in the separate components and the
events that affect the variables are specified in that component model. The events that
have been split need to be synchronised to form the original functionality of the model.
Figure 2.8 illustrates the event-based decomposition. The lines connecting the ovals
(indicating events) and the box (indicating variables) represent the dependencies. For
example, event e1 may read from or assign value to variable v1. M1 and M2 are the de-
composed components which are sharing the event e2. Component M1 contains events
e1 and e2 and variable v1. M2 contains events e2 and e3 and variable v2.

State-based decomposition is proposed by Abrial and Hallerstede in [7]. State-based
decomposition splits and shares some variables between the components. Events are
added to components to simulate the shared variables in other components. Figure 2.9
is an illustration of the state-based decomposition showing the decomposition of the two
components M1 and M2. M1 contains the events e1 and e2 and variables v1 and v2.
M2 contains events e3 and e4 and variables v2 and v3. From the figure, it can be seen
that the events e2 and e3 may read from or assign to the variable v2. The reason for
this is, when refining component M1, any new invariant involving the variable v2, it is
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Figure 2.8: Illustration of the Event-based decomposition

needed to proof that the invariant holds for not just all events in M1 but also holds for
event e3. This is because e3 has a dependency with v2. Therefore in the component
M1, event e3 is added. Similarly in M2, event e2 is added.

Figure 2.9: Illustration of the State-based Decomposition

2.7 Rodin Event-B Tool

Rodin Event-B tool [4, 22] is an open tool set for Event-B development which is built
on top of the Eclipse platform. The aim of Rodin is to allow the integration of multiple
tools by various parties in order to support rigorous development methods. These tools
are integrated into the Rodin tool as plug-ins. This extensibility feature is one of the
two main features of the Rodin tool.

The Rodin tool consists of a database that stores the models under development and
several other main plug-ins. These plug-ins are the static checker, proof obligation gener-
ator and provers. The static checker analyses Event-B contexts and machines and gives
feedback to users about syntactical and typing errors. The proof obligation generator
produces proof obligations from the Event-B models. The provers compute proofs for the
proof obligations. The Rodin Event-B tool includes automatic and interactive provers.
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The interactive prover requires users to interact with the tool in order to discharge the
proof obligations.

2.8 Unified Modelling Language

The Unified Modelling Language (UML) is a standard modelling language for visualising,
specifying and documenting the artifacts of a software system. A modelling language is a
language whose vocabulary and rules focus on the conceptual and physical representation
of a system. The UML has been used effectively for such domains as enteprise informa-
tion systems [73], telecommunications [46], transportation [57], defense/aerospace [33]
and distributed web-based services [31].

2.8.1 Diagrams in the UML

The UML includes nine diagram types:

• Class diagram
A class diagram shows a set of classes, interfaces and collaborations and their
relationships. These diagrams are the most common diagrams found in modelling
object-oriented systems. Class diagrams address the static view of a system.

• Object diagram
An object diagram shows a set of objects and their relationships. Object diagrams
represent static snapshots of instances of the things found in class diagrams. These
diagrams address the static design view of a system as class diagrams, but from
the perspective of real cases.

• Use case diagram
A use case diagram shows a set of use cases and actors and their relationships.
Use case diagrams address the static use case view of a system. These diagrams
are used for organising and modelling the behaviour of a system.

• Sequence diagram
A sequence diagram is an interaction diagram (shows an interaction, consisting
of a set of objects and their relationships) that emphasises the time-ordering of
messages. It address the dynamic view of a system.

• Collaboration diagram
A collaboration diagram is an interaction diagram that emphasises the structural
oganization of the objects that send and receive messages. It address the dynamic
view of a system.
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• Statechart diagram
A statechart diagram shows a state machine, consisting of states, transitions,
events and activities. Statechart diagrams address the dynamic view of a system.
They are used for modelling the behaviour of an interface or class and emphasise
the event-ordered behaviour of an object which is especially useful in modelling
reactive systems.

• Activity diagram
An activity diagram is a special kind of statechart diagram that shows the flow
from activity to activity within a system. Activity diagrams address the dynamic
view of a system. They are used for modelling the function of a system and
emphasise the flow of control among objects.

• Component diagram
A component diagram shows the organisations and dependencies among a set of
components. Component diagrams address the static implementation view of a
system. They are related to class diagrams since a component typically maps to
one or more classes or interfaces.

• Deployment diagram
A deployment diagram shows a configuration of run-time processing nodes and
the components that are used on them. Deployment diagrams address the static
deployment view of an architecture. They are related to component diagrams
given that a node typically encloses one or more components.

2.8.2 Classes

This sub-section gives an overview of UML classes. A class represents a set of objects
that have the same attributes, operations and relationships.

An attribute is a property of a class that describes a value that instances of the property
may hold. An operation is a definition of a service that is provided by any object of the
class. A class may or may not have operations. A class can connect to another class
with a relationship. Three common relationships are dependencies, generalization and
associations. A dependency is a using relationship. For example, pipes depend on the
water heater to heat the water they carry. A generalization is a relationship between a
general thing and a more specific kind of that thing. For example, rectangle and circle
are more specific kind of a shape. An association is relationship that specifies objects
of one thing are connected to objects of another. For example, a person works for a
company.
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2.8.3 State Machines

This sub-section gives an overview of UML state machines. A state machine models the
behaviour of an object. It specifies the sequences of states that an object goes through
its life time in response to events together with its reactions to those events.

A state is a situation during an object’s life time. An event is a stimulus that can trigger
a state transition. A transition is a relationship between two states indicating that an
object in the first state may perform certain actions and enter the second state when a
certain event occurs and specified conditions are satisfied. An initial state indicates the
starting place for the state machine whereas a final state indicates the execution of the
state machine has complete. A self-transition is the transition that leaves and reenters
the same state. Sub-states are an advanced feature of states to simplify the modelling
of complex behaviours. A sub-state is a state that is nested inside another state called
composite state.

UML has been revised leading to the current UML 2.0 release. One of the major motiva-
tions for the move to UML 2.0 was to add the ability for models to capture more system
behaviour and increase tool automation. A technique called Model Driven Architecture
(MDA) offers the potential to develop executable models that tools can link together
and to raise the level of abstraction above traditional programming languages. UML 2.0
is vital to the MDA effort [80].

2.9 Model Driven Development Architecture (MDA)

Model Driven Architecture (MDA) [17, 21, 70, 88, 101] is a framework adopted by the
Object Management Group (OMG) in 2001. The purpose of MDA is to make software
designs easily portable between different operating platforms. The general idea is to
develop an abstract business model for the problem domain of a software system using a
modelling notation such as UML, which is independent of any operating platform. This
allows the designer to focus on the business model that will still be valid as the operating
platforms technologies evolve. The objective is to represent the software system which
can be transform to a specific operating platform with minimal customization.

Figure 2.10 outlines the MDA approach. The OMG envisages MDA to include a full
range of large scale services. At its core is the OMG modelling standards: UML, the
Meta-Object Facility (MOF) [77], that provides a standard repository of a model and
the Common Warehouse Metamodel (CWM) [76], the standard for integration of data
repositories. The layer next to the core layer is the middleware environment. The
outermost layer represents various domain of applications of MDA.

MDA provides a conceptual framework for using models and applying transformations
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Figure 2.10: OMG’s Model Driven Architecture

between models. A specific set of layers and transformations that provide a conceptual
framework and vocabulary for MDA has been defined by OMG. Four types of models
classified by OMG are Computation Independent Model (CIM), Platform Independent
Model (PIM), Platform Specific Model (PSM) described by a Platform Model (PM),
and an Implementation Specific Model (ISM).

A set of metamodels is important to the model representations and in supporting the
transformations. The ability to analyze, automate, and transform models requires a
clear, unambiguous way to describe the semantics of the models. The OMG acknowl-
edges the importance of metamodels and formal semantics for modelling, so the MOF
is defined as a set of metamodelling levels as well as a standard language for expressing
metamodels. The MOF is used by a metamodel to define the abstract syntax of a set
of modelling constructs.

The models and the transformations between them are specified using open standards.
The OMG has defined a number of important industry standards for specifying systems
and their interconnections. Through standards such as CORBA, UML and CWM, a
level of system interoperability that was impossible in the past, can be achieved by the
software industry.

Figure 2.11 shows a schematic view of how MDA works in practice. The key process
is an incremental refinement, that starts with an abstract specification and works on
producing a more detailed specification. A refinement definition which is maintainable
and can be updated, is controlling the translation process. This process can be repeated
many times, with the detailed specification becoming the abstract specification.
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Figure 2.11: Controllable Incremental Refinement

2.10 UML-B

UML-B [96, 95, 97] is work that integrates UML and B. The purpose of integration is to
address the lack of formal semantics of UML and to make B method more approachable.
There are old and new versions of UML-B.

The old or previous version of UML-B is a profile of the UML that defines a subset and
specialisation of UML. It is a subset of the UML which includes packages, class diagrams
and state charts. The UML-B profile uses stereotypes to specialise the meaning of UML
entities. The UML-B profile defines tagged values, which are UML-B clauses, that are
used to attach details such as invariants and guards. UML-B provides a diagrammatic,
formal modelling notation where B’s infrastructure is hidden and mathematical con-
straints and action specifications are packaged into small sections which are presented
in the context of its owning UML entity. This previous version was implemented using
the Rational Rose UML tool. A U2B translator was included to generate ‘classical B’.

The new or current version of UML-B is a UML-like formal modelling language based
on Event-B. UML-B provides four kind of diagrams. They are package, class and state
machine diagrams. A package diagram is a top-level diagram that shows the structure
and relationships between components (machines and contexts) in a project. A context
is described in a context diagram which is similar to class diagram but has only constant
data and structured types. Axioms (given properties about the constants) and theorems
(assertions requiring proofs) may be attached to classtypes in a context diagram. A
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machine is specified by a class diagram and state machine diagram(s) representing data
structures that may be changed by events or transitions. Events may be attached to
classes in a class diagram. Events can also be represented by the transitions on a
state machine diagram. Each UML-B context gives rise to an Event-B context (i.e.,
the UML-B tool generates a corresponding Event-B context). Each UML-B machine
gives rise to both an implicit Event-B context and an Event-B machine. The implicit
context is used to define types for the classes and states in the UML-B machine. In
the generated Event-B machine classes, attributes and associations become variables.
Events and transitions in classes and state machines become events in the generated
Event-B machine. Invariants and theorems maybe attached to classes and states.

Micro B (µB) is used as a notation for textual constraints and action. µB borrows from
the Event-B notation. µB used an object-oriented style dot notation to show ownership
of entities, i.e attributes and operations, by classes. Variables used in an expression
can represent owned features using the dot notation. For example, i.x refers to the
value of the variable x which belongs to instance i. When an expression is attached to
a feature belonging to a class, the owning instance for the current contextual instance
is referenced using the reserved word self. This new version is implemented in Eclipse
and closely integrated with the Rodin Event-B tool. A U2B translator is included to
generate Event-B specifications.

2.10.1 UML-B Modelling Environment

This section describes UML-B modelling diagrams which consists of package, context,
class and state machine diagrams [96]. Figure 2.12 shows the user interface of the
UML-B drawing tool. The left part is the project explorer view which lists the UML-B
projects and the diagrams in the projects. The middle part is the drawing canvas for
drawing the UML-B model elements. The right part is the tool palette which contains
the creation tools for creating UML-B model elements on the drawing canvas. The
bottom part is the properties view which contains information about the selected model
element on the drawing canvas and reports error messages.

A package diagram defines the structure and relationships between UML-B machines and
contexts in a project. Figure 2.12 shows an example of a package diagram. The package
diagram consists of the machines M1 and M2, and refinement relationships between
them. It also contains the contexts CX1 and CX2, and the extension relationships
between them and which contexts are seen by machines. The properties view shows
information about the selected machine M1.

A context diagram defines the static part of a model. A context diagram may have
classtypes. Each classtype may has attributes and associations. Association is a rela-
tionship between two classtypes and it is a special case of an attribute. The multiplicity
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Figure 2.12: Example of Package Diagram

properties for attributes are described using mathematical terminology (surjective, injec-
tive, total, functional) and also with the UML style multiplicity annotated automatically
on the diagram (for associations). Figure 2.13 shows an example of a context diagram.
The classtype CUSTOMER has an attribute, ident and an association accounts with
the classtype BANK. The multiplicity of the association accounts indicates that it is a
total function. Axioms and theorems may be attached to a classtype. Classtypes are
used to define types and also to define constant attributes of those types. The attribute
ident and the association accounts are translated as constants. Apart from the exam-
ple of a context diagram, Figure 2.13 also shows its generated translation to Event-B.
Each Event-B statement is preceded by its label which defines its purpose. For example,
ident.type is a label for the Event-B statement ident ∈ CUSTOMER ↔ N.

In UML-B, another kind of association between two classtypes, subtyping, changes the
identity of a class. Figure 2.14 shows an example of subtyping the classtype Account into
CurrentAccount and SavingAccount classtypes that changes the identity of an account
into current account or saving account. In an Event-B machine, the subtyping associ-
ation will give a type of the CurrentAccount and SavingAccount classtypes as Account
i.e., CurrentAccount ⊆ Acc and SavingAccount ⊆ Account. The sub-classtypes Cur-
rentAccount and SavingAccount give rise to constants in the generated Event-B context.

A class diagram is used to describe the behavioural part of a model. A class diagram may
contain classes. Each class may have attributes, associations, events and state machines.
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Figure 2.13: Examples of Context Diagram and Event-B Translation

Figure 2.14: Subtyping a Classtype in UML-B

Classes may represent subsets of the classtypes in a context diagram. An attribute
defines a data value of an instance of a class. An association is a special case of an
attribute that defines a relationship between two classes. Class events replace traditional
object oriented methods. An event defines operations of a class and involves modification
to some or all the attributes of a class. A state machine defines the behaviour of a class
in terms of transition between discrete states. Associations and attributes of a class
are similar to those in the context but instead of constants, they become variables in
the generated Event-B machine. Figure 2.15 shows an association accounts between the
account class and bank class. This association will be translated to Event-B as a variable
of type bank ↔ account and initialised to {}. Class account consists of attributes odLim
and balance. The invariant in class account specifies that the account’s balance must be
greater than its overdraft limit, odlim.

Similar to the subtyping association between classtypes, a class my also subtype an-
other class. The difference is the classes give rise to variables in the generated Event-B
machine.

A state machine diagram may be attached to a class. The state machine bal state in
Figure 2.16 shows its two states, black and red and the transitions. The solid circle
is the initial state, whereas, the solid circle with an outer circle is the final state. A
transition can be triggered when the instance is at its source state, and changes the
instance state to the target state. For example, the transition or event withdraw can
be triggered when the instance is at state black and move to state red. A transition
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Figure 2.15: Example of Class Diagram

may have parameters, guards and actions which are define explicitly in the properties.
Figure 2.17 show the properties for the transition withdraw showing its parameter,
guards and actions. The translation to Event-B for a state machine can either be

Figure 2.16: Example of a State Machine Diagram

a disjoint sets representation or state function representation. These two styles are
introduced in [26] and they are supported in the UML-B tool. UML-B allows modellers
to switch between these two representation. For a disjoint sets representation, a disjoint

Figure 2.17: Properties of the withdraw Transition

sets of account are introduced as variables as follows:

black ∈ P(account)
red ∈ P(account)
black ∩ red = ∅
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That is, variable black represents the set of instances of account that are in the state black
and similarly for red. An invariant specifying that the states are disjoint is generated
in the Event-B machine. For a state function representation, a variable bal state (i.e.,
the state machine belonging to the class account) is introduced representing a function
mapping account to an enumerated set of states, bal state STATES as follows:

bal state STATES = {black,red}
bal state ∈ account −→ bal state STATES

That is, bal state maps each instance of account to its state. The generated Event-B
machine for M1 using the state function representation is shown in Figure 2.18. The
transitions represent events with additional behaviour associated with the change of
state implied by the transition. An instance of account changes its state when a tran-
sition fires. For each transition there is a guard that specifies an instance source state
(labeled as .. isin ..) and action that specify its target state (labeled as .. enterState ..).
The parameter, self, indicates an instance of a class. A transition from an initial state
such as open, defines a constructor for the class. The translation of open selects an
unused instance and adds it to the set of account (labeled self.type). A transition to
a final state such as closed is a destructor which removes an instance from current in-
stances and from the domain of all the class variables. Figure 2.19 shows a translation

Figure 2.18: Generated Event-B for the Events Using State Function Representation

of the withdraw event using the state sets representation. The difference between the
state sets representation with the state function representation can be seen at the state-
ment labeled .. isin .. that defines the current state of an instance and at the statement
.. enterState .. that defines the target state of an instance. With the state sets represen-
tation, an additional action is generated for the event withdraw to specify the departure
of an instance from the state black (labeled as .. leaveState ..).
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Figure 2.19: Generated Event-B for the withdraw Event Using State Sets Represen-
tation

2.10.2 UML-B Metamodel

The UML-B metamodel [96] is using UML class diagrams to defined the abstract syntax
of the structure of the UML-B language. The UML-B metamodel is described using a
small subset of UML’s class diagram features that corresponds to the OMGs Meta Object
Facility (MOF). Generalisation is used extensively which ensures that common attributes
in UML-B model elements are defined. The metamodel is an exact description of the
abstract syntax of the UML-B language and is used to generate automatically repository
and editing utility code using the Eclipse modelling Framework (EMF) technology. The
Eclipse Modelling Framework (EMF) [36] is a framework and code generation facility
for building applications based on a model. Another Eclipse framework, the Graphical
Modelling Framework (GMF) [37], is used to generate automatically the code for UML-
B graphical modelling tool from the EMF model. Any constraints are modelled on the
corresponding metaclasses as operations but have to be populated with Java bodies after
code generation. These constraints are added to prevent creating invalid models.

Figure 2.20 shows part of the UML-B metamodel. There are three kinds of relationship
used between classes in the metamodel that are, subtyping or specialisation, associa-
tion and containment. An example of a subtyping (a link with triangle arrowhead) is
between the class UMLBPredicate and UMLBelement. This relationship indicates that
the metaclass UMLBPredicate inherits all the attributes of the metaclass UMLBelement.
An example of an association (a link with arrow) is from the class UMLBMachine to
itself. This association specifies that a machine may refine at most one machine and a
machine may be refined by many machines. An example of a containment (a link with
solid diamond arrowhead) is between the class UMLBContext and UMLBClassType.
The containment relationship specifies that a context may contain many classtypes.

The class UMLBelement is a base class and its provides a name and error marking to
all model elements. UMLBconstrainedElement is a subtype of UMLBelement and it
provides a base for elements that own constraints and theorems. Another subtype of
the base class is UMLBPredicate which has a string attribute, predicate, representing
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Figure 2.20: UML-B Metamodel (part of)

the syntax of predicates. The definition of this syntax depends on that of Event-B
with a few changes to adapt the UML-B object oriented features. UMLBMachine and
UMLBContext are subtypes of UMLBConstruct and they reflect the main modelling
components of Event-B. UMLBMachine can have UMLBClasses and UMLBContext
can have UMLBClassType. Figure 2.20 leaves out many features of the metamodel such
as statemachines, variables and events.

2.11 Other Modelling Languages

This section gives an overview of Z and VDM modelling languages which are similar to
the B method.
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2.11.1 Z Specification Language

Z [20, 19, 64, 98] was initiated by Abrial in France and has been developed at Oxford
University since late 1970s by members of the programming Research (PRG), lead by
Hoare. Z is a typed language based on set theory and first order predicate logic. Com-
pared to B, Z is designed mainly for specification and proof, whereas, B is a tool-based
formal method for software development.

The Z notation consists of mathematical language and schema language. The math-
ematical language is used to describe states, properties and operations. The schema
language is used for structuring the specification. A schema can be written horizontally
as follows

Schema name , [Declaration | Predicate]

or vertically as shown in Figure 2.21 [87]. The declaration part contains variables and
the predicate part specify values of variables.

Figure 2.21: Schema Definition

Schemas are used to model states (state schema) and operations (operation schema) in
Z. State schemas describe the states types and relationship between states and restric-
tion on the states. Operation schemas describe the changes of these states before and
after the execution of the operations. Schema Calculus is used to construct a large Z
specification from a number of schemas. This is done by using the schema operators
such as conjunction, disjunction, composition and others.

The specification of a football team in Figure 2.2 which is modelled using the B method
is used as an example for state schema and operation schema. A set ANSWER consists
of the elements in and out is declared as follows:

ANSWER ::= in | out
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Figure 2.22: A Z Specification of the Team Schema

The state schema is shown in Figure 2.22(a) and the operation schema is shown in
Figure 2.22(b). The state schema specified that a set team is a subset of a sequence
integer from 1 to 22 and the total elements of the set team is 11. The operation query
tells whether a particular player is in the team or not. The Xi notation in the first line
of the operation schema means that the schema query extended the schema Team and
the schema query does not change the state data team. The symbol ? after the variable
pp indicates that pp is an input to the operation and the symbol ! after aa indicates
that aa is an output from the operation.

2.11.2 Vienna Development Method (VDM)

VDM [52, 87] was invented at the IBM Vienna laboratory carried out by a number of
different researchers in the general areas of programming language definition.

VDM provides a language as a notation for modelling specifications. Similar to B,
VDM also is a tool-based formal method for software development. There exists an ISO
standard [50] of the VDM-SL specification language.

VDM specification are represented by a module. Shown in Figure 2.23 is the simplest
form of a module. The main components of a VDM specification are listed below:

• type definitions - which introduces the various types to be used in the specification.
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module VDM-module
definitions
types
.
.
values
.
.
state
.
.
functions
.
.
operations
.
.
end VDM-module

Figure 2.23: VDM Module

• values definitions - are used to introduce global constants into the specification
and also to give values to variables.

• state definitions - represents the mechanism by which a module retains a knowledge
of the history of operation calls.

• operation definitions - specifies the behaviour of a system.

• functions definitions - a way of defining a rule for obtaining a result from zero or
more arguments.

The specification of a football team in Figure 2.2 which is modelled using the B method is
used as an example for VDM module shown in Figure 2.24. The specification maintains
the set of players during a football game where there are 22 players and there are 11
players in a team. The operation query tells whether a particular player is in the team
or not. The second line states that ANSWER is a set with two elements in and out.
The keyword inv defines the invariant that 11 players will be formed into a team. The
keyword init initialised the set team to the first 11 players. The keyword ext after the
operation query means the operation will access the component team of the state Team.
The keyword rd indicates that the component team is to be read only by the operation
query. The keyword post indicates the post-condition of the operation.
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Figure 2.24: A VDM Specification of the Team Module

2.11.3 Comparison between B, Z and VDM

This section gives a comparison of Z and VDM with B in terms of the structuring
mechanism, the treatment of precondition, invariants and proof obligations, tool support
and refinement.

Structuring Mechanism B and VDM have a clear structuring mechanism which is
very different from Z which uses schema. VDM models are structured in modules
and B models are structured in machines. B has the notion of layered development
which allows a decomposition of a complex development.

Preconditions, Invariants and Proof Obligations The treatment of preconditions
and invariants in B, Z and VDM are different. In B and VDM, the preconditions
are explicit whereas in Z, preconditions are calculated from the delta schema def-
initions. B and VDM differ with their treatment of the invariant. In VDM, an
invariant is assumed to be an implicit part of every pre and post condition. Be-
cause of this, the only proof obligation that has to be discharged with respect to
an operation is one of feasibility. In B, an invariant is not assumed to be part of
the post condition of operations. The statement of an invariant is redundant with
the operation and does not change the meaning of the operation. The operations
have to be defined in a way that they preserves the invariant. Because of this
redundancy, proving that every operation preserves the invariant is necessary.

Tool support B, VDM and Z are supported by a number of tools. For B, there are tools
called B-Toolkit, AtelierB, ProB and Rodin. VDM tools are such as VDMTools
and Overture. Example of tools for Z are Proofpower and Z/Eves.
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uses TaskQueue;
mutable type queue;
immutable type task;
task *getTask(queue q){

modifies q;
ensures

if isEmpty(q∧)
then result = NIL ∧ unchanged(q)
else (*result)’ = first(q∧) ∧ q’=tail(q∧);

Figure 2.25: LCL Interface Specification

Refinement B, VDM and Z have a one-to-one relationship between refinements for
event refinement. In contrast, Event-B has a many-to-one relationship between
refinements. Also, Event-B refinement may have new events.

B, Z and VDM are similar in that they are based on the construction of models and
they are not used with any programming language, as opposed to Larch and JML which
support the use of formal specifications in programming languages.

2.12 Programming Specification Languages

This section gives an overview of Larch and JML as examples of programming specifi-
cation language.

2.12.1 Larch

Larch [43] is a family of languages which support two-tiered specification style and is
adapted to several programming languages. A Larch specification is written in two lan-
guages. One language is designed for a specific programming language which is called the
Larch interface language. Another language which is independent of any programming
language is called the Larch Shared Language (LSL). There are Larch interface languages
for C [44], C++ [59], Modula-3 [53], Ada [82], ML [103], Smalltalk [29], CLU [48].

The interface language is used to specify the interfaces between program components.
How the components communicate across the interface is a critical part of each inter-
face. Methods of communication from programming language to programming language
are different. Writing the interface specification language that reflects a particular pro-
gramming language makes it easier to be precise about the communication. Generally,
a specification written in such interface language is shorter that specification written in
a “universal” interface language.
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An example of an interface specification for a small portion of a scheduler for an operating
system can be seen in Figure 2.25. The specification is written in LCL which is a
Larch interface language for C programming language. The mutable clause means the
abstract value of an object queue can change over time. The immutable clause means
the abstract value of an object task cannot be changed. The clause ensures specified a
postcondition which is typically a predicate that is defined on the pre-state and post-
state of a procedure call. The clause modifies specifies a list of objects that can be
modified by an execution of the specified procedure. The specification consists of two
abstract types queue and task and a procedure for selecting a task from a task queue,
named getTask. The symbol * represents a pointer as in C, result is the value returned
by the procedure getTask, the symbol ∧ represents the value in a location when the
procedure is called (pre-state) and the symbol ’ represents the value when the procedure
returns (post-state).

2.12.2 Java Modelling Language (JML)

JML [40, 42, 41, 78] is a notation for formally specifying the behaviour and interfaces
of Java classes and methods. It is a behavioural interface specification language for Java
that builds on the Larch family of interface languages. JML adds annotations to Java
code that allows designers to specify the functions of methods without specifying how
it is to be implemented. JML adopts many Java’s expression syntax and also attempts
to have similar semantics to Java.

Figure 2.26: A JML Specification of the Interface Gendered

Figure 2.26 shows an example [41] of a JML specification of the interface Gendered. The
JML annotations are written in comments start with at-sign (@). The modifier model
means the field gender is not used in Java code but is only used for specification as an
abstraction of concrete states. The modifier instance means the field gender is a non-
static field in all classes that implements the Gendered interface. Omitting the modifier
instance will make the field gender static and final like the default fields in Java. Method
specifications are written before the header of the Java method being specified. In the
example, the clause ensures specifies the postcondition of the method isFemale. The
postcondition says that the method return value (represented by \return) is equivalent to
“female”. The clause pure means a correct implementation of the method isFemale has
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no side effects. The clause pure implicitly includes the specification assignable \nothing
which means there is no assignment made to any fields.

Figure 2.27 shows part of class Animal that implement the interface Gendered. The
class Animal inherits the abstract field gender via its concrete state gen. The represents
clause represents the expression for the value of the field gender so that whenever gender
occur in specification, its value is given by the expression of this represent clause. JML

Figure 2.27: A JML Specification of the Class Animal (part of)

specifications also contain invariants, which are predicates that must be hold in the pre-
state and post-state of each method execution. The example in Figure 2.28 shows two
invariant clauses. Both invariants are declared as public instances. The first invariant
indicates the value of field age is between 0 and 150. The second invariant indicates that
all elements of the List history are instances of type String. The spec public modifier
in the declaration of history is similar to the concept of model field. The rep keyword
represents ownership. For example in the declaration of history, it means history is
owned by the Patient object. The clause requires in the constructor specification of
Figure 2.28 specify precondition. The precondition indicates that the argument g must
be either “female” or “male”.

Figure 2.28: A JML Specification of the Class Patient (part of)
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2.13 Other Work on the Integration of Formal Methods

with UML

The work of integrating UML with formal methods has been investigated for the past
few years. Related work on integration of UML with B method is by Lano et al [54].
They have extended the RSDS method [10]. In RSDS, a small subset of UML state chart
diagrams was used as specification and from the specifications, B, Java and SMV are
generated. But the RSDS is not suitable for a big control system where a larger subset
of UML is required. [54] extends RSDS by: (1) Translating UML class diagram in to B
(2) Translating a subset of OCL into B (3) Synthesizing the code of methods from OCL
contraints. In the paper, a translation from UML class diagrams and a subset of OCL
into B is defined. They have presented the translation from UML-RSDS model into B
for types, classes and associations, inheritance, constrained attached to a class (class
invariants), association constraints. They have described the synthesis of event code in
B from the constraint written in the language LOCA which is a variant of OCL 2.0.

Integration between UML and B also has been investigated by Ledang et al [62, 63].
They have described their approach for deriving B specifications from use case diagrams,
class operations and state-chart diagrams. Each use case is modelled as a B operation.
Each use case and its involved classes are modelled in the same B abstract machine.
The B operations of the included and extended use cases refines or implements the
operations of the use cases being includes and extends. Each class operation is modelled
as a B operation in an abstract machine. The B operation of the called operation (from
interaction or activity diagrams) is called in the refinement of the B operation of the
calling operation, i.e., the abstract machine for the called operation is imported in the
refinement machine for the calling operation. Their approach of translating the state
chart diagrams are in two stages: (1) Each event in the state chart is translated as a B
abstract operation and the data are derived from the states in the state chart. (2) The
abstract B operation in (1) is refined by calling B operations for the triggered transition
and actions. A prototype has been developed AgroUML+B which transform a class
diagram and state chart diagrams into a B specifications.

Idani et al [49] have investigated the reverse approach in which they propose an approach
and its tool support for the construction of UML class diagrams from B specifications.
They have introduced a notion of pertinent context. This notion ensures that each class
and each operation appears only once in the class diagram. They have presented an
algorithm to identify a set of pertinent contexts. The paper also describes the trans-
formation rules that transform the contexts into classes. A tool has been developed to
generate the class diagrams.

Laleau and Mammar [56] have worked on translating UML diagrams to B specifications
for database applications. Translations into B have been presented from class diagrams,
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state diagrams and collaboration diagrams including the basic update operations of
database applications. Each class and association class are translated as B machines.
Each state machine which is attached to a class is also translated as a B machine. A
collaboration diagram is translated as one B machine. They have suggested a three level
architecture of B models which consists of B machines and their relationship using the
uses and includes clauses. This architecture is transform from the three kinds of UML
diagrams in a UML model. OCaml language [104] was used to implement the automatic
translator from the UML models into B models.

Integration of UML with Z has also been investigated. Moller et al [66] have inte-
grated the formal method, namely CSP-OZ [35] into UML and Java. A UML profile for
CSP-OZ is developed. A UML profile contains an extension mechanism that consists
of stereotype and tag definitions. This profile which integrates UML and CSP-OZ is
similar to the UML-B profile [97] of previous version of UML-B. In this work, class dia-
gram, state machine and the UML-RT [86] structure diagrams are translated to CSP-OZ
specifications. Each UML class is translated to CSP-OZ class where the attributes and
methods are obtained from class diagrams. The CSP part is obtained by translating
the state machine associated with the classes. The architecture of the system modelled
in the structure diagrams is translated into a CSP part involving parallel composition.
The specification in CSP-OZ is used to generate JML and CSPjassda [71] specification.
Then, the final hand-written Java program is checked against the assertions in JML and
CSPjassda to preserve the precision of the formal specification in the implementation.

Amalio et al [74] also have investigated an integration between UML and Z. They have
introduced a framework called UML+Z for building, analysing and refining models bases
on UML and Z. UML+Z models consists of class, state and object diagrams. An impor-
tant feature of the framework is a catalogue of templates and meta-theorems. Templates
are the generic representation of sentences of formal languages that when instantiated,
produced the actual language sentences. They have developed the formal template lan-
guage (FTL) to express the framework templates. FTL enables an approach to proof
with template representation of Z and to produce meta-theorems. Example of meta-
theorem is formulation of a pre-condition. The meta-theorems may reduce the proof
effort. In the reported work, the process of instantiating templates is manual.

The integration work of UML and VDM has been done by Frey [38]. Frey has listed
two drawbacks of modelling using UML. One of the drawbacks is the lack of precision
and ambiguity of the use case notation and the other drawback is the difficulty in
finding a suitable set of classes using the entities found in the use case alone. Frey has
introduced a methodology where UML and VDM-SL are used together in modelling
to take advantage of both notations. Frey has outlined a step by step approach that
combines both notations and presented the case study Seating Arrangement System
(SAS) to describe the concept of combining UML and VDM-SL. The case study starts
with a list of twenty one user requirements. Based on the that requirements, eight are
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considered as the functional requirements and a use case was built. Next is creating the
VDM specifications. During creating the specifications, some user requirements need to
be changed because of their inadequacy exposed by VDM-SL. In the paper, Frey has
claimed that the gap between a use case diagram and the task of finding a set of classes
was easier using the data models of the VDM-SL specification.

Lausdahl et al [55] have work on a bi-directional translation between UML class diagram
and VDM++. The translation of the sequence diagram is done from UML to VDM++.
The translations are implemented as a plug-in to the Overture [58] toolsets. The object-
orientation features of both languages made them easier to be translated to each other
compared to B. The translation of sequence diagram is intended to automate test input
into VDM++. The sequence diagrams are transformed to VDM++ trace definitions.
This traces of VDM++ enable to define a set of test cases.

2.14 Summary

This chapter presented the related background studies of the research. The background
studies on the Event-B, UML, UML-B, refinement and decomposition provides the mo-
tivation for the notions introduced in this research which will be described in the fol-
lowing chapters. Other related background studies included in this chapter were formal
methods, classical B, Rodin tool, MDA, Z, VDM, Larch, JML and other work on the
integration of UML and formal methods.



Chapter 3

An ATM Case Study in Event-B

3.1 Introduction

This chapter contains a description of the development of an auto teller machine (ATM)
case study in Event-B using the Rodin Event-B tool. This development provides insight
into modelling and refinement in Event-B that helps to understand what is required in
UML-B to support refinement.

3.2 Case Study: Auto Teller Machine System

This section gives a description of an ATM system and a summary of the cash withdrawal
requirements.

3.2.1 Description of the ATM system

The auto teller machine is a machine that allows bank customers to do some of the
banking transaction 24 hours per day. It allows bank customers to withdraw cash, check
account balance, print mini statement and others. In order to perform these functions
through an auto teller machine, bank customers need to use their ATM cards which are
provided to them by the bank. The case study focused only on the requirements for
cash withdrawal so only the requirements for this function are focused on in this case
study.

3.2.2 Summary of the ATM Requirements for cash withdrawal

The cash withdrawal function allows a user to withdraw money if the withdrawal amount
is less than the account balance. During a withdrawal, a possible exception is that a

38
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withdrawal amount is more than account balance. For this exception the bank will
not permit the transaction and will respond with a failure status. The development in
Event-B for the case study is based on the requirements document in Appendix A.

3.3 Event-B Model for ATM

This section describes the development of the ATM system that includes the abstract
machine and six refinement machines. The summaries for each machine are as follows:

Abstract Machine This level models the cash withdrawal function.
First Refinement This level introduces a mechanism of achieving the cash withdrawal
function through an ATM machine using an ATM card.
Second Refinement This level models the communication between an ATM and the
bank as a single system state.
Third Refinement This level refines the communication between an ATM and the
bank as two separate states.
Fourth Refinement This level introduces a form of communication between an ATM
and the bank using message passing and is modelled using a record style. In this refine-
ment, the passing of messages are via two channels for request and response messages.
Fifth Refinement This level extends the record of the fourth refinement by adding
more fields and also subtyping the record type into two subtypes for request only and
response only messages.
Sixth Refinement This level refines the two channels communication for request and
response messages into one channel in order to reflect the actual implementation.

The abstract machine was refined into six refinement levels in order to achieve more
concrete model. These refinements used a set of patterns proposed by Ball and Butler
as described in [16]. Each refinement has a small gap between itself and its abstract
machine in order for the refinement to be proved easily.

There are two kinds of refinement which were applied in modelling refinements of ATM,
that is, superposition refinement and data refinement. Superposition refinement means
incrementally adding ATM requirements in successive refinements whereas data refine-
ment introduces design or implementation detail in successive refinements. The first,
second and third refinements are superposition refinements whereas the fourth, fifth and
sixth refinements are data refinements. In this work we focus on safety-preserving re-
finement and do not deal with liveness. In this development, it is assumed that within
the system there are many auto teller machines (ATMs) and there is only one bank.

The Event-B specification for the abstract machine will be shown in the following section.
The Event-B specifications for the refinement machines are in Appendix C.
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CONTEXT ATMC
SETS

ACCOUNT

Figure 3.1: ATM Context

3.3.1 ATM Abstract Machine

The ATM abstract machine named ATMM modelled one of the core functionalities of
banking transaction which is cash withdrawal. Machine ATMM sees the context ATMC
shown in Figure 3.1. The context contains only one set which is ACCOUNT that
differentiates accounts in a bank. Figure 3.2 shows the abstract machine for the ATM
system. The abstract machine has two state variables account and bal. The variable
account represents the set of accounts that currently exist in the system. The variable
bal represents the balances of accounts. The abstract machine has two invariants which
specified that account is a subset of the set ACCOUNT (inv1) and that specifies balance
is defined for all account (inv2). The cash withdrawal specification is specified in the
event withdraw. The withdraw event can only be triggered if all the guards are met.

3.3.2 First Refinement

The first refinement of the ATMM abstract machine is where a mechanism of using an
ATM card is added to perform cash withdrawal.

The ATMC context is extended by ATMC E1 which consists of three sets namely,
CARD, PIN and ATM which defines the types that are going to be used in ATM R1.
These types are introduced to differentiate ATM cards, pin numbers and machines re-
spectively.

A control state for an ATM was defined to impose an order of events and states. The
state diagram can be seen in Figure 3.3. An ATM can be in one of the following five
states: idle, validating, transactionOption, performWithdrawal or endWithdrawal. An
ATM which is not being used is in the idle state. From the idle state, an ATM may
go to the validating state when the event insertCard which represents an ATM card
been inserted to the ATM machine is triggered. From the validating state, an ATM
may go to the transactionOption state on successful ATM card validation (represents
by the event validateCardOK ). The event validateCardOK will check that the inserted
card is valid based on the pin number. For simplicity, it is assumed that there is no
exception regarding card validation. From the transactionOption state, an ATM may go
to the performWithdrawal state when the event withdrawBankOK or event withdrawFail
is triggered. withdrawBankOK is an event which deducts the withdrawal amount from
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MACHINE ATMM

SEES ATMC

VARIABLES

account
bal

INVARIANTS

inv1 : account ∈ P(ACCOUNT )
inv2 : bal ∈ account→ N

EVENTS

INITIALISATION

BEGIN
act1 : account := ∅
act2 : bal := ∅

END

EVENT withdraw

ANY
ac
am

WHERE
grd1 : ac ∈ account
grd2 : am ∈ N
grd4 : am ≤ bal(ac)

THEN
act1 : bal(ac) := bal(ac)− am

END
END

Figure 3.2: ATM Machine in Event-B
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Figure 3.3: ATM System State

the bank account provided that all the conditions are fulfilled. withdrawFail is the
event which handles the exception when the balance in the account is less than the
withdraw amount which prevents the withdraw transaction from happening. From the
performWithdrawal state, an ATM may go to the endWithdrawal state when the ATM
dispenses cash (represents by event withdrawATM ). Finally, from the endWithdrawal
state, an ATM may go to idle state when ejectCard event is triggered which will eject
the ATM card from the ATM.

A variable atm ∈ P(ATM ) is introduced to model the set of ATM that have been created.
Another variable active atm ⊆ atm is introduced to model the set of ATM which are
being used, that is an ATM which has an ATM card in it. The states of an ATM are
modelled using the disjoint sets representation as outlined in Section 2.10.1 where the
states are defined as disjoint sets of atm.

In the first refinement, the two abstract variables are kept and some new variables are
added. Five new events are added namely insertCard, validateCardOK, withdrawFail,
withdrawATM and ejectCard. In this refinement, the event withdrawBankOK refines
the abstract event withdraw.

3.3.3 Second Refinement

The second refinement models the communication between the ATMs and the bank
for accessing the cash withdrawal function. In this refinement, the communication is
modelled as a single system state where the two states (transactionOption and per-
formWithdrawal) of the ATM system state in Figure 3.3 are refined into the diagram
shown on Figure 3.4. The state transactionOption is refined into sub-states trans and
waiting while performWithdrawal state is refined into sub-states processingBank and
complete.

The communication is modelled by adding the two new events namely, request and
response, which represent a transaction request to the bank and also the response to
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Figure 3.4: Sub-states of the States transactionOption and performWithdrawal

the ATM respectively. The sequence of the events is controlled by adding the ATM
into the sets that represent states. The events are triggered by the state changes. The
event request can be triggered when the ATM is in trans state and the ATM state is
changed into the waiting state. The withdrawBankOK or withdrawFail event can then
be triggered and the state is changed into processingBank state. When the request has
been processed, the responseOK/responseNOTOK event can be triggered and the ATM
state is moved into complete state.

3.3.4 Third Refinement

The third refinement refines the communication of the single system state into two
separate states to distribute the control between ATMs and the bank. An ATM is
responsible for most of the events including request and response events and the bank is
responsible for processing the withdrawBankOK or withdrawFail event. An ATM is in
the state conversation while the bank is processing (represented by state bprocessing) the
withdrawal request. A new event receiveRequest is added in this refinement to model the
bank receiving a request. The ATMs and the bank communicate via two new variables
req and rsp.

The distributed states of the ATM and bank are shown in Figure 3.5. The request event
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Figure 3.5: Distributed States

creates a new request and adds the request to the req variable. The bprocessing state
can be entered when the receiveRequest event is triggered. When the request has been
processed, a response is added to the rsp variable. When the response is in the rsp
variable, the response event can be triggered and is received by the ATM.

3.3.5 Fourth Refinement

The fourth refinement introduces message passing as the form of communication. The
messages sent within the system are modelled using a record style of specification using
the syntax proposed in [34]. To model this record style, the context ATMC E1 is ex-
tended where a record type MSG is introduced to model the messaging medium between
an ATM and bank as follows:

CONTEXT ATMC E2
REFINES ATMC E1
SETS

MSG::msg atm:ATM (1)
END

The declaration (1) specifies a MSG record as having the field msg atm of type MSG
and links the messages with their corresponding ATMs. This syntax implicitly types
the msg atm as:

msg atm ∈ MSG −→ ATM

In this refinement level, two new variables, namely, reqmsg and rspmsg are introduced.
These variables are of types MSG and they represent the two uni-directional channels
for sending the request and the response messages respectively.



Chapter 3 An ATM Case Study in Event-B 45

3.3.6 Fifth Refinement

The fifth refinement models the addition of information which needs to be sent during
request to the bank and is received during response by the ATMs. The information
includes the ATM card, the withdrawal amount, the status of transaction and the ac-
count balance. The information about the ATM card is send during both request and
response events. The withdrawal amount is only sent during request event while the
information about the transaction status and the account balance are sent only during
response event. To model this additional information, an extension and specialisation
to the record type MSG are done using the syntax proposed in [34] as follows:

CONTEXT ATMC E3
REFINES ATMC E2
SETS

EXTEND MSG WITH msg card:CARD; (1)
REQ MSG SUBTYPES MSG WITH reqmsg wdAmount:N; (2)
RSP MSG SUBTYPES MSG WITH rspmsg status:STATUS ;rspmsg bal:N (3)

END

In the above declarations, the syntax (1) extends the MSG record as having another
field, msg card which is of type CARD and the record links messages and their cards.
This syntax implicitly types msg card as:

msg card ∈ MSG −→ CARD

The syntax (2) and (3) specialised MSG using subtyping. The syntax (2) declares
REQ MSG as a subtype of MSG to specify messages that are sent during request from
the ATMs to the bank only. A record REQ MSG has the field reqmsg wdAmount which
is of type N. This field represents information about the withdrawal amount which is
sent during request to the bank.

The syntax (3) declares RSP MSG another subtype of MSG to specify messages that
are received during response from the bank only. A record RSP MSG has the field
rspmsg status which is of type STATUS and it contains the status information after the
withdrawal request has been processed to indicate whether the withdrawal is successful
or not. STATUS is an enumerated set with the elements OK and NOT OK. The record
RSP MSG has another field rspmsg bal which is of type N to represents the balance of
account.

The fifth refinement refines the existing events related to processing the withdrawal
request by adding more guards related to the additional fields to the MSG record.
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3.3.7 Sixth Refinement

The sixth refinement models the communication as a single channel instead of two
uni-directional channels. A new variable msg is introduced to represent the concrete
communication channel. The abstract variables reqmsg and rspmsg are removed. These
abstract variables represent the request and response messages. The gluing invariants
are define as follows to differentiate between the request and response messages:

reqmsg = msg ∩ REQ MSG (1)
rspmsg = msg ∩ RSP MSG (2)

The invariant (1) says that in this refinement level, the messages in the variable msg
which are of types REQ MSG are the messages in the variable reqmsg of its abstract
model. The invariant (2) says that in this refinement level, the messages in the variable
msg which are of types RSP MSG are the messages in the variable rspmsg of its abstract
model.

Merging of the messages send and receive between ATM and bank is done to represent
the actual implementation.

3.3.8 Experience modelling the ATM system in Event-B

This section gives an assessment of the experience of modelling using Event-B. Based
on the experience, it is true, as stated by the guidelines in [16], that keeping a small
difference between an abstract model and its refinement makes the proof of obligations
easy to discharge.

Some of the invariants are constructed by using the provers in Rodin Event-B tool. One
of them is the gluing invariant in the fifth refinement, that is ATM R5 in Appendix C.
An attempt to construct the gluing invariant is done by using the interactive prover.
The ATM R5 was run in a proving perspective without having any gluing invariant
which result in three undischarge proof obligations. The interactive prover lists several
hypotheses in order to achieve a goal. The hypotheses and the goal for one of those
obligations are as follows:

Hypotheses:
m ∈ reqmsg

msg atm(m)=at

msg card(m) = c

reqmsg wdAmount(m) = am

msg atm(m) ∈ conversation

msg card(m)∈ cards

reqmsg wdAmount(m)∈ N
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The goal:
atm card(msg atm(m))=msg card(m)

From the hypotheses and the goal, it is deduced that a gluing invariant is needed to say
that for all m where m is in reqmsg, the goal is implied. The goal only concerns with
the parameter m. Therefore, from the list of hypotheses, the hypotheses m ∈ reqmsg

is selected forming the gluing invariant. The gluing invariant is represented in B as:

∀ m · m ∈ reqmsg ⇒ atm card(msg atm(m))=msg card(m)

When this invariant is added in the model, the three previously undischarged proof
obligations are proved without introducing any new proof obligations.

Another matter related to the ease of discharging a proof of obligation is using the dis-
joint sets representation rather that the state function representation in representing
the states of the ATM system as described in Section 2.10.1. With the disjoint sets rep-
resentation style, the constructed gluing invariants were simpler which makes the proof
obligations easier to discharge. For example, in the third refinement, a gluing invariant
is needed to specify that if an ATM is in the bprocessing state, then at the second re-
finement, the ATM must be in the waiting state. Using the disjoint sets representation,
the gluing invariant is expressed simply as follows

bprocessing ⊆ waiting

With the state function representation, the gluing invariant is expressed as follows:

∀ a · (a ∈ active atm ∧ rstatus(a)=bprocessing ⇒ astatus(a)=waiting)

where rstatus and astatus are functions from active atm to a set of enumerate values.
Clearly, the gluing invariant using the disjoint sets representation is simpler which helps
to ease the proof effort.

All the proof obligations for all seven levels of refinements were generated and proved
using Rodin provers. The statistics for all the refinement levels are outlined in Table 3.1.
In the table, The POs column represents the total number of proof obligations generated
for each level. The inter POs column represents the number of those proof obligations
that had to be proved interactively. The auto POs column represents the number of
those proof obligations that were proved automatically by the prover. Thus, we see that
of almost 500 POs, most were discharged automatically using the prover.
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LEVEL POs auto POs inter POs
MM 4 4 0
R1 97 97 0
R2 82 82 0
R3 165 165 0
R4 61 60 1
R5 38 38 0
R6 50 50 0

Total 497 496 1

Table 3.1: Statistics from the Proof Effort

3.4 Event-B and UML-B Refinement

This section give an overview of refinement in Event-B and then based on that, a set of
desirable requirements on UML-B are outlined.

In Event-B refinement, a machine that refines a more abstract machine may keep vari-
ables of an abstract machine, may drop some of the old variables and may introduce
new variables. Also, a refinement machine may introduce new sets and constants. In
a refinement machine, one or more events may refine an abstract event and may also
introduce new events which refine skip. In Event-B refinement, invariants need to be
devised to relate the refinement model and its abstract model. The Rodin interactive
prover can help devise these invariants.

Based on refinement in Event-B we outline a set of desirable requirements for refinement
in UML-B as follows:

1. Class refinement
In order to reflect the refinement of variables in Event-B into UML-B refinement,
class refinement is required. The keep and drop abstract variables and introduce
new variables in Event-B refinement can be reflected in UML-B refinement by
keeping the classes of an abstract machine, by dropping the abstract classes and
introducing new classes. In addition, these Event-B refinements can be reflected
in UML-B refinement by keeping the attributes of an abstract class, dropping the
attributes and introducing new attributes.

2. State machine refinement
State machine refinement is required in UML-B in order to reflect events refinement
in Event-B. Events refinement in Event-B can be reflected in UML-B by having
the transitions of a state machine refining corresponding abstract transitions of
an abstract state machine. New events introduced in Event-B refinement can be
reflected by introducing new transitions in UML-B refinement.
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3. Classtype extension
Classtype extension is required in UML-B refinement in order to reflect the addi-
tional constants of an extended context in Event-B where the constants are based
on the sets that are introduced in the corresponding abstract context. Introducing
new constants in Event-B refinement can be reflected in UML-B refinement by
introducing new attributes.

We have outlined here a set of desirable requirements on UML-B. The next chapter
(Chapter 4) explains the extensions made to the UML-B in order to meet these require-
ments.

3.5 Summary

This chapter presented the Event-B development of the ATM case study. The develop-
ment provides understanding of modelling and refinement in Event-B. An overview of
refinement in Event-B is provided in this chapter. A set of desirable requirements for
refinement in UML-B are outlined based on the refinement in Event-B.
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Refinements in UML-B

4.1 Introduction

This chapter describes the extensions to the UML-B language and the translation
scheme. An introduction to UML-B and the general translation of Event-B was given
in Section 2.10. This chapter and Chapter 6 formed a proceeding [83] of the Formal
Method 2009 international conference. First, the limitations with the previous UML-B
are described. Then, we describe the notion of refined classes, refined state machines
and extended classtypes. Several refinement techniques are also described with exam-
ples. The refinement techniques are listed below:

1. Add new attributes and associations to a refined class. This reflects adding vari-
ables in Event-B refinement in a pattern where the type of the variable is a rela-
tionship from a set of instances.

2. Add new classes in a refinement. This reflects adding variables in Event-B refine-
ment in a pattern where the type of the variable is a set of instances.

3. State elaboration. This reflects adding variables and new events in Event-B re-
finement.

4. Transition elaboration. This reflects event refinement in Event-B.

5. Move event or transition to a refined class or a new class in a refinement. This
reflects event refinement in Event-B.

6. Add new attributes and associations to an extended classtype. This reflects adding
constants in Event-B refinement in a pattern where the type of the constants is a
relationship from a set of instances.

7. Add new classtypes in a refinement. This reflects adding sets in Event-B refine-
ment.

50
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The techniques (1) and (2) are described in Section 4.3. The techniques (3) and (4)
are described in Section 4.4 whereas technique (5) is described in Section 4.5. The
techniques (6) and (7) are described in Section 4.6.

4.2 Limitations of the previous UML-B

Let’s refer to the version of UML-B before the extensions as UML-B Version 1 and
after the extension as UML-B Version 2. The UML-B Version 1 has limitations with
modelling refinement. The limitations arise when refining classes, state machines and
extending classtypes. The explanation of these limitations are described in the following
subsections.

4.2.1 Limitations in Refining Classes

In UML-B Version 1, the requirement for class refinement as in Section 3.4 was done by
having copies of classes in a refinement machine. The U2B translator generates Event-B
implicit contexts and machines from classes in UML-B. The limitations when refining
classes are as follows:

• In the generated Event-B implicit contexts, the carrier sets introduced in a context
are repeated in its extended context causing static checker errors.

• In the generated Event-B machines, the type invariants which have been devised
in a machine are repeated in its refinement machine. This does not cause any error
but it is unnecessary complication.

For example, Figure 4.1(a) shows the machine M1 is refined by machine M2. M1 and
M2 have a class C with an attribute x of type natural number as in Figure 4.1(b). Each
UML-B machine gives rise to both an implicit Event-B context and an Event-B ma-
chine. Figure 4.1(c) shows the generated Event-B implicit contexts M1 ImplicitContext
and M2 ImplicitContext. For the given UML-B models, there is an error indicat-
ing there exist ambiguity of the carrier set C SET in the refinement implicit context
M2 ImplicitContext. This error is shown at the bottom of Figure 4.1(c). In the gen-
erated Event-B machine in Figure 4.2, the type invariants labelled C.type and x.type

generated in M1 are repeated in the refinement machine M2.

4.2.2 Limitations in Refining State Machines

In UML-B Version 1, the state machine refinement requirement as in Section 3.4 was
done by having a copy of a state machine in a refinement machine. Then, the copied state
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Figure 4.1: Package Diagram, Class Diagram and Generated Implicit Contexts

machine may be refined by refining its states into sub-states. This is done by adding a
nested state machine to a state forming a hierarchy of state machines. UML-B Version
1 allows modelling nested state machine however refinement is not well supported. The
limitations when refining state machines are as follows:

• For a disjoint set translation, the type invariants and disjointness invariants gen-
erated from the states are repeated in a generated Event-B refinement machine.

• For a state function translation, the carrier sets generated from the state machine
and the constants generated from the states are repeated in the generated Event-B
implicit context.

• The initial transition (transition with an initial state) and the final transition
(transition with a final state) of a nested state machine were not properly supported
since they could not be associated with the parent transitions i.e., the incoming
and outgoing transitions of the super-state.

We give here an example of state machine refinement. Assume that the state machine
Csm in Figure 4.3(a) is attached to the class C of M1. The state machine Csm in
Figure 4.3(b) refines the state machine in Figure 4.3(a) where the state B is added a state
machine Bsm that consists of three sub-states namely B1, B2 and B3 (Figure 4.3(c)).
Figure 4.4 shows the generated Event-B invariants for M1 and M2 using the disjoint sets
representation. The invariants labelled A.type, B.type and disjointState B,A in machine
M1 should not be repeated in the refinement machine M2. This is one of the limitations
when performing state machine refinement. The other limitation is duplication of events
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Figure 4.2: Generated Event-B Machines

Figure 4.3: Example of State Machine Refinement
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Figure 4.4: Generated Event-B Machine from UML-B State Machines

generated in a refinement machine. For example the events t2, t3 and t4 are duplicated
in machine M2. Errors of event duplication, i.e., ambiguous event label are shown at
the bottom of the Figure 4.4. These duplicated events are generated from the incoming
and outgoing transitions of the state B in Figure 4.3(b) and also from the transitions
with an initial source states i.e., the transitions t2 and t3 and the transition with a
final target state i.e., the transition t4 in the nested state machine Bsm. The errors are
reported because the modeller attempts to associate the initial and final transitions of
the nested state machine with the incoming and outgoing transitions of the super-state
by giving them the same name. What is required in the translation is that only one
each of t2, t3 and t4 events are generated. It means, we want to be able to specify in
UML-B model that t2 in Figure 4.3(c) is the same as t2 in (b). Similarly for t3 and t4.
But this cannot be specified in UML-B Version 1.

4.2.3 Limitations in Extending Classtypes

In UML-B Version 1, the classtype extension as in Section 3.4 was done by having a copy
of classtypes in an extended context. The U2B translator generates Event-B contexts
from classtypes in UML-B. The limitations when extending classtypes are as follows:

• The carrier sets and constants introduced in a context are repeated in its extension
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Figure 4.5: Package Diagram, Context Diagram and Generated Contexts

context causing errors to be reported by the static checker.

• The type axioms which have been generated in a context are repeated in its ex-
tension context. This does not cause any error but it is unnecessary complication.

For example, Figure 4.5(a) shows the context cx1 is extended by context cx2. cx1 and
cx2 has a classtype C1 with an attribute x of type natural number as in Figure 4.5(b).
Figure 4.5(c) shows the generated Event-B contexts cx1 and cx2. For the given UML-B
models, there are errors indicating there exist ambiguity of carrier set C1 and constant x
in the extension context cx2. These errors are shown at the bottom of Figure 4.5(c). In
the generated Event-B contexts in Figure 4.5(c), the axioms labelled x.type and x.total
generated in cx1 are repeated in the extension context cx2.

Part of our work involved extending UML-B in order to overcome the limitations of class
refinement, state machine refinement and classtype extension outlined here. Class re-
finement is described in Section 4.3, state machine refinement is described in Section 4.4
and classtype extension is described in Section 4.6.

4.3 Refinement of Classes in UML-B

In this section, the refinement techniques concerning the notion of refined classes and
inherited attributes are described.
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The motivation for refined classes and inherited attributes comes from performing re-
finement in Event-B. The notion of refined classes and inherited attributes in UML-B
reflects the refinement of variables in Event-B. A refined class is one that refines a more
abstract class and an inherited attribute is one that inherits an attribute of the abstract
class. A notion of refined classes is needed in UML-B because some elements of an
abstract UML-B model need to be retained by the refinement.

In Event-B refinement, a machine that refines a more abstract machine may keep vari-
ables of an abstract machine, may drop some of the old variables and may introduce new
variables. In UML-B refinement, a machine that refines a more abstract machine may
contain refined classes where each refined class refines a class of its abstract machine (i.e.,
keeps variables of its abstract machine). In UML-B refinement, a machine may drop
some refined classes (i.e., drop some variables). Also in UML-B refinement, a machine
may introduce new classes (i.e., new variables) in a class diagram. Hence, a refined class
indicates that the variable representing the set of instances of the class will be retained
in the refinement. However, it has a further use since it provides a mechanism for the
modeller to indicate the refinement features that were (or are) based on that variable.

In UML-B refinement, a refined class may inherit attributes of its abstract class (i.e.,
keeps variables of its abstract machine). A refined class may drop some of the attributes
of its abstract class (i.e., drop some variables of its abstract machine) and a refined
class may introduce new attributes (i.e., new variables). The following schematic table
illustrates a refined class that inherits and drops abstract attributes and introduces new
attributes. The table lists out the attributes for class C and a refined class C. Class C
contains attributes a1, a2 and a3. In refinement, the refined class C inherits attributes
a1 and a2, drops attribute a3 and has new attributes a4 and a5. In the generated
Event-B machine, both a class and a refined class give rise to variables. A type invariant
is generated for an abstract class i.e., Class C but not for a refined class because its
type is already defined in the abstract Event-B machine. Similarly both the inherited
attributes and new attributes give rise to variables and a type invariant is generated for
each new attributes but not for the inherited attributes.

Class C Refined Class C

a1 a1 (inherited)
a2 a2 (inherited)
a3 a4 (new)

a5 (new)

We describe here an example of performing refinement in UML-B using the notion of
refined classes and inherited attributes. Consider a refinement where machine M2 refines
machine M1.

Figure 4.6 shows an example of a package diagram (a) that contains machine M1 which
has a class diagram(b) containing classes CA and CB. These classes give rise to the
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Figure 4.6: Package Diagram and UML-B Specification of Machine M1

sets CA SET and CB SET in the generated Event-B implicit context. In the generated
Event-B machine the classes CA and CB give rise to variables. The class CA consists
of the attribute x of type N and also the association a b of type CB. The multiplicity
property for the association a b shown in Figure 4.6(c) specifies a many-to-one rela-
tionship (i.e., total function). The attributes x and a b also represent variables in the
generated Event-B machine. For each class, attribute and association, a type invariant
will be generated in the Event-B machine. For example, the class CA corresponds to
the type invariant which specifies that CA is a subset of CA SET (CA ∈ P (CA SET )).
Attribute x corresponds to the type invariant x ∈ CA → N that specifies x is defined
for all CA. The self name property of the class CA is shown in Figure 4.6(d). The class
CA has an event ev1. The event is executed when x is less than 100 and its action is to
increase x by 1. The guard and action of the event is shown in Figure 4.6(e).

Figure 4.7(a) shows an example of a package diagram that manages a refinement re-
lationship between machines. The package diagram shows that machine M2 refines
machine M1. The class diagram of M2 is shown in Figure 4.7(b) where it consists of
refined classes CA and CB which refine the classes CA and CB of machine M1 respec-
tively. The refined class CA of machine M2 inherits attribute x and association a b of
the class CA of machine M1. The refined class CB of machine M2 has a new association
cb cc. Machine M2 has a new class, CC which corresponds to a new set (CC SET ) in
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Figure 4.7: Package Diagram and Class Diagram of Machine M2

the generated Event-B implicit context (which extends the previous implicit context).
In the generated Event-B machine for machine M2, the variables CA, CB, x and a b are
retained. The machine M2 has new variables CC and cb cc with their type invariants
CC ∈ P (CC SET ) and cb cc ∈ CB ↔ CC respectively. The refined class CA has an
event ev1 which refines the abstract event ev1 of machine M1. The refinement property
is shown in Figure 4.7(c).

In Event-B refinement, a machine that refines another machine (i.e., abstract machine)
must provide a refinement of each abstract event. This can be either that one event
refines one abstract event, or many events refine one abstract event. New events may
be introduced in the refinement. Similarly, in UML-B refinement, at least one concrete
event must refine each abstract event and new events may be introduced. These concrete
events can either be attached to refined classes or state machines of a refined classes. In
UML-B refinement, we can also define additional invariants and theorems by attaching
them to refined classes and states that reflect adding invariants and theorems in Event-B
refinement.

4.4 Refinement of State Machines in UML-B

In this section, the refinement techniques concerning the notion of refined state machines
and refined states are described.

The motivation for refined state machines and refined states come from combining the
state machine hierarchy in UML-B with refinement in Event-B. The essential concept is
that state machines are refined by elaborating an abstract state with nested sub-states.
A refined state machine is one that refines a more abstract state machine and a refined
state is one that refines a more abstract state.

In UML-B refinement, a refined machine may contain refined state machines and refined
states of its abstract machine. We describe first an example of performing refinement
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Figure 4.8: Refinement of State Machine (Machine M2 refines Machine M1)

in UML-B using the notion of refined state machines and refined states. We will then
describe the general rules. Figure 4.8 shows an example of refinement of a state machine.
Assume that the state machine SM of Figure 4.8(a) belongs to a class CA of machine
M1. Similarly, assume that the state machine of Figure 4.8(b) belongs to refined class
CA of machine M2. The state machine 4.8(b) refines that of 4.8(a). The states of
refined state machine SM are the state A, that refines state A of machine M1 and the
state B, that refines state B of machine M1. The refined state machine SM contains the
transitions t1, t2a, t2b, t3 and t4 which refine the corresponding abstract transitions of
machine M1. In Figure 4.8(b), the abstract transition t2 is replaced with transitions
t2a and t2b which refine the abstract transition t2 of machine M1. This refinement of
transition t2 reflects the refinement in Event-B where many events refine one abstract
event. The transitions t2a and t2b have different source sub-states (i.e., representing
different guards in Event-B) which are defined in the nested state machine SM A.

The nested state machine SM A (Figure 4.8(c)) elaborates the refined state A (Fig-
ure 4.8(b)) of machine M2. The nested state machine, SM A has three states A1, A2
and A3. The transition t1 of the nested state machine SM A in Figure 4.8(c) elaborates
the incoming transition t1 of the refined super-state A. It means, in the refinement, the
target state of the transition t1 is the state A1. The transitions t2a and t2b of the
nested state machine SM A elaborate the outgoing transition t2a and t2b of the refined
super-state A. In Figure 4.8(b) we do not see a distinction between transitions t2a and
t2b. In Figure 4.8(c) we can see a distinction: t2a has sub-state A1 as a source while t2b
has A3 as source. The transition t3 of the nested state machine SM A elaborates the
self loop transition of the refined super-state A specifying its source state as the state
A1 and its target state as A2. In the nested state machine SM A, the transition t5 is a
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new transition that represents a new event in the generated Event-B machine.

In the generated Event-B machine using a disjoint sets representation, type invariants
are created for all sub-states, where their types are their super-state, for example A1
∈ P (A) is a type invariant for the state A1. An additional invariant is generated to
specify that all sub-states constitute their super-state. For example, A = A1 ∪ A2 ∪
A3. Other generated invariants are a number of disjointness invariants that specified all
sub-states are disjoint.

In the next successive paragraphs, we give a general definition of state machine refine-
ment based on the example given above. A refined state machine refines a more abstract
state machine. The structure of a refined state machine is an elaboration of the structure
of its abstraction in two possible ways:

• Each transition is replaced by one or more transitions.

• An abstract state may be elaborated by a nested state machine (see below).

In the given example, we used the techniques of state elaboration and transition elab-
oration. In UML-B refinement, a refined state may be elaborated to sub-states which
are contained in a nested state machine forming a state machine hierarchy. State elab-
oration enables more transitions to be added to a nested state machine. Some of these
transitions elaborate the incoming and outgoing transitions of the super-state (i.e., the
abstract state). Some of these transitions are new transitions (i.e, reflects introducing
new events in Event-B).

In UML-B, nested state machines are modelled in a separate state machine diagram from
their parent state machine diagram. Therefore, the transition elaboration technique is
needed so that transitions in a nested state machine can elaborate the incoming and
outgoing transitions of the super-state. In a nested state machine, a transition with an
initial source state elaborates at most one incoming transition to the super-state and
a transition with a final target state elaborates at most one outgoing transition from
the super-state. The restriction of the elaborate property is made to at most one so
that it is explicit on the state machine diagram which sub-transitions are elaborating
the respective parent transitions.

In future, we will explore a case where the same transition may occur when an object is
in any sub-state. Let us refer to the example in Figure 4.8 to describe this case. Using
UML-B Version 2, this case can be model by replacing the abstract parent transition t2
with three parent transitions t2a, t2b and t2c in the refined state machine (Figure 4.8(b)).
The abstract transition will be replaced by three transitions because there are three
sub-states in the nested state machine (Figure 4.8(c)). In the nested state machine,
each sub-state will have an outgoing transition (to a final target state). Each outgoing
transition will elaborate a different parent transition. However, this may clutter the
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state machine diagram as there are too many transitions. An alternative way is to keep
the parent transition t2 in the refinement and not model the outgoing transitions from
all sub-states. This means it is implicit that the same transition may occur when an
object is in any of the sub-states.

An abstract state may have a self loop transition. In UML-B refinement, when the state
is elaborated into sub-states, the self loop transition may be elaborated as one of the
sub-transitions between any two of the sub-states. The sub-transition defines the state
changes from a sub-state to another sub-state when the transition fires. When refining
a self loop transition, the occurrence of the transition can either be many times or can
be restricted to once. Restriction to once means removing looping behaviour and this is
a valid refinement since we focus on preserving safety, not liveness, in our work.

An alternative way of modelling a nested state machine is to have a nested state machine
in the same editor with the parent diagram. An example of this is illustrated in Figure 4.9
which models an alternative of Figure 4.8(b) and (c). However we prefer not to use this
alternative because it will result in scalability problems when there are many levels of
state machine hierarchy and a nested state machine has many states. The advantage of
this alternative way is that it does not need the transition elaboration technique which
was described previously. Whereas when using different editors for nested state machine
and its parent state machine, the transition elaboration technique is essential.

The general definitions described here of the refined classes and refined state machines
are made more precise in Chapter 5 where we define the extension to the UML-B meta-
model.

4.5 Event/Transition Movement

This section describes the technique of moving class events or state machine transitions
in UML-B refinement. There are two methods of moving a class event or a state machine
transition in a refinement. The methods are as follows:

1. Move a class event to a refined class as a state machine transition or, move a state
machine transition to a refined class as a class event.

2. Move a class event to a new class in a refinement either as a class event or a
state machine transition or, move a state machine transition to a new class in a
refinement either as a class event or a state machine transition.

Method (1) does not need any new UML-B language feature. However, method (2)
creates a motivation for the need to be able to change the default self name in UML-B.
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Figure 4.9: An Alternative of Modelling a Nested State Machine

Figure 4.10: Example of the UML-B Specification with an Event in a Class CA of an
Abstract Machine
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Figure 4.11: Example of the UML-B Refinement for the First Method

We describe both methods by giving first an example of an abstract machine upon which
a refinement is based. Figure 4.10(a) shows a class CA with attribute x and event ev1.
Figure 4.10(b) shows the properties of the event ev1 showing its parameter y, a guard
and an action. The action is defined using µB notation and uses a default identifier self
i.e., the self name property which represents an instance of a class CA. The self name
property becomes a parameter in the e1 event in the corresponding Event-B machine.
The generated Event-B specification for the event ev1 is shown in the Figure 4.10(c).

Figure 4.11 is an example of a refinement for the first method of event movement. In
the refinement, the event of the class CA is moved as a transition ev1 between the
states A1 and A2 of the state machine CAsm (Figure 4.11(b)) belong to the refined
class CA (Figure 4.11(a)). The generated Event-B specification for the transition ev1
is in Figure 4.11(c) showing additional guard specifying the current state A1 for the
transition to take place (self ∈ A1) and also additional actions specifying an instance
move to the state A2 (A2 = A2 ∪ {self}) and an action specifying an instance leaves
the current state A1 (A1 = A1 \ {self}). The effect of this refinement is to constrain
when the event can occur.

For the second method, in a refinement, a class event may be moved to a new class as a
class event or as a transition in a state machine. We describe here the event movement
technique when a class event is moved to a new class as a transition in a state machine.
Assume that the UML-B specification in Figure 4.12 is a refinement of the abstract
machine in Figure 4.10. In the refinement, a new class CC is introduced and the event
ev1 is moved to the class CC (Figure 4.12(a)). The event ev1 becomes a transition
between the two states C1 and C2 of state machine CC sm (Figure 4.12(b)). In the
refinement machine, a parameter, ca, of type CA is added to the ev1 transition as shown
in the properties view in the Figure 4.12(c). Also, a witness property is defined for the
event e1 which specified that ca in the refinement represents self of its abstract level
(i.e., ca = self ).
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Figure 4.12: Example of the UML-B Refinement for the Second Method

The witness property is adapted from Event-B. In Event-B, a witness is used when
replacing a parameter of an abstract event with a different parameter in a concrete
event in the refinement. The witness is defined by a predicate involving the abstract
parameter.

Figure 4.12(d) shows the generated Event-B specification for the event ev1. The param-
eter selfCC is generated from the self name property specified for the class CC. The
self name property of the class CC is changed to selfCC from a default self to avoid
conflicts with the default self name property of the refined class CA which is used in the
witness. Figure 4.12(d) also shows an additional guard specifying the current state C1
for the transition to take place and also additional actions specifying an instance move
to the state C2 and an action specifying an instance leaves the current state C1.

For both methods, the movement of state machine transitions as class events (or as
state machine transitions for the second method) is also possible and the techniques are
similar to the above examples.

Section 6.4 of the ATM case study will demonstrate the usefulness of moving events
from one class to another in refinement. In the first refinement of the ATM case study,
the withdraw event of the Account class is moved to the ATM class as a transition
in a state machine of the class ATM. Section 8.7.3 will demonstrate the usefulness of
moving transitions as refined class events in refinement. In the second refinement of
the middleware component, the request and response transitions are moved as the msg

refined class events.
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4.6 Extension of Classtypes in UML-B

In this section, the techniques concerning the notion of extended classtypes are described.

The motivation for extended classes comes from performing record extension in Event-
B. An extended classtype is one that extends a more abstract classtype. A notion of
extended classtypes is needed in UML-B because some classtypes of an abstract UML-B
context need to be retained by the extension when new attributes are required to be
added to the classtypes.

In Event-B context extension, a context that extends a more abstract context will keep
the sets and constants of an abstract context and may introduce new sets and constants.
In UML-B context extension, a context that extends a more abstract contexts may also
contain extended classtypes where each extended classtype extends a classtype of its
abstract context. In UML-B context extension, a context may introduce new classtypes
(i.e., new sets) with its attributes (i.e., new constants based on the sets) in a context
diagram. Also, new attributes may be introduced in an extended classtype in UML-B
context extension.

We describe here an example of performing context extension in UML-B using the notion
of extended classtypes. Figure 4.13(a) shows an example of a package diagram that shows
context cx1 is extended by cx2. Figure 4.13(b) shows the context diagram of cx1 that
contains a classtype C1 with attribute x. This classtype give rise to the sets C1 in the
generated Event-B context. Attribute x of C1 give rise to constant x in the generated
Event-B context. For attribute of a classtype, a type axiom is generated in Event-B.
For example, the axiom x ∈ C1 → N is generated for attribute x. Figure 4.13(c) shows
context diagram of cx2 that contains the extended classtype C1 and new classtype C2.
A new attribute y of type BOOL is added to the extended classtype C1. Classtype C2
has an association c1c2 with the extended classtype C1. Similar to associations in class
diagram, associations in context diagram are special case attributes. The attributes
y and c1c2 give rise to constants y and c1c2 in the generated Event-B context. In
addition, the axioms y ∈ C1 → BOOL and c1c2 ∈ C2 → C1 are generated from the
attributes y and c1c2 respectively.

4.7 Summary

This chapter introduced the notions of refined class, refined state machine and extended
classtype for UML-B. These notions are used to describe the following seven refinement
techniques:

1. Add new attributes and associations to a refined class.
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Figure 4.13: Package Diagram and Context Diagram

2. Add new classes in a refinement.

3. State elaboration.

4. Transition elaboration.

5. Move event or transition to a refined class or a new class in a refinement.

6. Add new attributes and associations to an extended classtype.

7. Add new classtypes in a refinement.

The UML-B metamodel has been extended to support these new techniques. Chapter
5 describes the extensions to the UML-B metamodel.



Chapter 5

UML-B Metamodel Extension

5.1 Introduction

This chapter contains a description of the extensions to the UML-B Version 1 metamodel
and the implementation of the extensions. The description of the extensions is divided
into four sections. Section 5.2 describes the metamodel extensions corresponding to the
notion of refined classes in Section 4.3. Section 5.3 describes the metamodel extensions
corresponding to the notion of refined state machines in Section 4.4. Section 5.4 de-
scribes the metamodel extensions corresponding to the notion of extended classtypes in
Section 4.6. Section 5.5 describes the extensions to the UML-B drawing tools which
use the metamodel extensions. These tasks were done in order to support refinement in
UML-B.

5.2 Extending the UML-B Metamodel and Tool to Sup-

port Class Refinement

The limitations of refining a class in the UML-B Version 1 explained in Section 4.2.1,
occur because the tool treats the refined class as another new class. This is because
there are no metaclasses in the UML-B Version 1 metamodel which explicitly represent
refined classes and inherited attributes.

Changes were made to the UML-B Version 1 metamodel described in Section 2.10.2.
The changes to the metamodel in Figure 2.20 have been made to support class refine-
ment. The changes involve additional classes, some changes in attributes of the existing
metaclass and also changes to some of the association between existing and new classes.

In UML-B development, a class diagram consists of a number of classes where each
class contains attributes. A class diagram of a refinement machine may contain classes

67
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from its abstract class diagram. These classes should appear as refined classes that
inherit attributes of their abstract classes. The extension of the UML-B metamodel
involves adding a metaclass which represents these refined classes and a metaclass which
represents these inherited attributes.

There are seven new metaclasses being introduced in the extensions which are UML-
BabstractClass, UMLBRefinedClass, UMLBabstractAttribute, UMLBInheritedAttribute,
UMLBnamedElement, UMLBnameConstrainedElement and UMLBname. The first four
metaclasses are for the purpose of realizing the notion of refined classes. The other three
metaclasses are for naming elements which will be described later.

Figure 5.1: UML-B Metamodel Extensions for Classes

Figure 5.1 shows the changes to the metamodel corresponding to the notion of refined
classes where Figure 5.1(a) is part of the UML-B Version 1 metamodel which speci-
fied that a UML-B machine may have a number of classes. We extend this part of the
metamodel by replacing Figure 5.1(a) with Figure 5.1(b) that adds two new classes (high-
lighted by yellow colour). The metaclass UMLBabstractClass is an abstract metaclass
which allows its common properties to be shared by its sub-metaclasses, i.e., UMLBRe-
finedClass and UMLBClass (existing class). The metaclass UMLBabstractClass does
not represent any UML-B modelling object. UMLBRefinedClass represents a refined
class whereas UMLBClass represents a class. Figure 5.1(b) specifies that a UML-B re-
finement machine may have a number of classes and/or refined classes. This corresponds
to Event-B refinement where a refinement machine may have a number of new variables
and/or old variables from its abstract machine. The one-to-one refines association be-
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tween UMLBRefinedClass and UMLBabstractClass specifies that a refined class may
refine exactly one class or refined class.

Figure 5.2 shows the changes to the metamodel corresponding to the notion of inher-
ited attributes where Figure 5.2(a) is part of the UML-B Version 1 metamodel which
specified that a UML-B class may has a number of attributes. We extend this part of
the metamodel by replacing Figure 5.2(a) with Figure 5.2(b) that consists of two new
classes. UMLBabstractAttribute is an abstract metaclass which does not represent any
UML-B modelling object. UMLBInheritedAttribute represents an inherited attribute
whereas UMLBAttribute represents an abstract attribute. Figure 5.2(b) specifies that
a UML-B class or refined class may have a number of attributes or/and inherited at-
tributes. Similar to the concept of class, this corresponds to Event-B refinement where
a refinement machine may have a number of new variables or/and old variables from its
abstract machine.

Figure 5.2: UML-B Metamodel Extensions for Attributes

A refined class and an inherited attribute do not have names since they refer to the
abstract class and the abstract attribute which have names. Therefore, three metaclasses
are added (and also attributes of the existing metaclass in the metamodel are changed)
in order to support this naming feature.

The three added metaclasses are UMLBnamedElement, UMLBnameConstrainedElement
and UMLBname. Since UMLBRefinedClass and UMLBInheritedAttribute should not in-
herit name but still needs to inherit error marking from the UMLBelement. The naming
property was separated so that it can be inherited independently by those metaclasses
that need it. Figure 5.3(a) shows the UML-B Version 1 metamodel that is replaced by
Figure 5.3(b) .
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Figure 5.3: UML-B Metamodel Extensions for Name Elements

5.3 Extending the UML-B Metamodel and Tool to Sup-

port State Machine Refinement

The UML-B Version 1 also has limitations in refining a state machine. The limitations
explained in Section 4.2.2 occur because the tool treats the refined state machine as
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another new state machine which results in duplication of some elements in the generated
Event-B specification.

Changes to the UML-B Version 1 metamodel in Figure 2.20 have been made to overcome
the limitation of refining a state machine. The changes involve additional classes and
changes to some of the associations between existing and new classes.

Figure 5.4(a) is part of the UML-B Version 1 metamodel that defines the abstract meta-
class UMLBstatemachineCollection may own many state machines. This is replaced
by Figure 5.4(b) that defines that the abstract metaclass UMLBstatemachineCollection
consists of state machines and refined state machines. The new metaclasses added are
UMLBabstractStatemachine and UMLBRefinedStatemachine. The metaclass UMLBab-
stractStatemachine is an abstract metaclass which allows its common property to be
shared by its sub-metaclasses. The new class UMLBRefinedStatemachine represents
refined state machines and the existing class UMLBStatemachine represents state ma-
chines. The new metaclass UMLBabstractStatemachine is only a generalization class
which does not represents any UML-B modelling object.

Figure 5.4: Changes to UML-B Metamodel for State Machine

Figure 5.5(a) is part of the UML-B Version 1 metamodel that defines a state machine
may have many states. This is replaced by Figure 5.5(b) that defines a state machine
may have many states which are of two kinds, i.e., state and refined state. The new meta-
classes added are UMLBabstractState and UMLBRefinedState. Similar to the metaclass
UMLBabstractStatemachine, the metaclass UMLBabstractState is an abstract metaclass
which allows its common property to be shared by its sub-metaclasses. The new class
UMLBRefinedState represents refined states and the existing metaclass UMLBState rep-
resents states. The new metaclass UMLBabstractState is only a generalization metaclass
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which does not represent any UML-B modelling object.

Figure 5.5: Changes to UML-B Metamodel for State

A state may have a nested state machine and in UML-B the nested state machine is
modelled as a separate diagram from its super-state. A nested state machine will consist
of transitions with an initial source state and a final target state. The transitions whose
source states are initial states, elaborate the incoming transitions to the super-state while
the transitions whose target states are final states, elaborate the outgoing transitions
from the super-state. A nested state machine may contain a transition between two
sub-states that may elaborate a self loop transition of the super-state. In order to model
the elaboration property of a transition, the associations elaborates and IsElaboratedBy
are added to the class UMLBTransition in the metamodel. These extensions can be
seen in Figure 5.6.

Figure 5.6(a) is part of the UML-B Version 1 metamodel that defines how a state ma-
chine may contain many transitions. The metamodel also specified that a transition may
refine one or more transitions. This metamodel is replaced by Figure 5.6(b) that de-
fines how both state machines and refined state machines may contain many transitions
and a refinement. The new metamodel also specifies that a transition may elaborate
a transition and a transition may be elaborated by at most by two transitions. The
maximum cardinality of the association isElaboratedBy is defined as two so that the
source and target states of a transition can be strengthened to sub-states in two nested
state machines. The four methods of the metaclass UMLBTransition are the model
validator which prevent the translation to Event-B when any of the errors specifying the
elaborates property occurs. The method noElaborateIncomingToFinal validates that a
sub-transition with a final target state is not elaborating an incoming parent transi-
tion. The method noElaborateOutgoingFromInitial validates that a sub-transition with
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an initial source state is not elaborating an outgoing parent transition. The methods
noElaborateIncomingByNotInitialNotFinal and noElaborateOutgoingByNotInitialNotFi-
nal validate that a parent transition which is not a self loop transition is not elaborated
by a sub-transition where its source and target states are normal states i.e., neither
initial nor final state.

Figure 5.6: Changes to UML-B Metamodel for Transition

5.4 Extending the UML-B Metamodel and Tool to Sup-

port Classtype Extension

The limitations of extending a classtype in UML-B refinement explained in Section 4.2.3
occur because the tool treats the extended classtype as another new classtype. This is
because there are no metaclasses in the existing UML-B metamodel which explicitly
represent extended classtypes.

Changes were made to the UML-B Version 1 metamodel described in Section 2.10.2.
The changes to the previous metamodel have been made to overcome the limitation of
classtypes extension. The changes involve additional metaclasses and changes to some
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Figure 5.7: UML-B Metamodel Extensions for Classtypes

of the associations between existing and new metaclasses.

In UML-B development, a context diagram consists of a number of classtypes where
each classtype may contain attributes. A context diagram of an extension context may
contain all extended classtypes from its abstract context diagram. The extension of the
UML-B metamodel involves adding a metaclass which represents these extended classes.

There are two new metaclasses that have been introduced in the metamodel, UMLBab-
stractClassType and UMLBExtendedClassType, for the purpose of realizing the notion
of extended classes. Figure 5.7 shows the changes to the UML-B Version 1 metamodel
corresponding to the notion of extended classtypes where Figure 5.7(a) is part of the
UML-B Version 1 metamodel which specified that a UML-B context may have a num-
ber of classtypes. We extend this part of the metamodel by replacing Figure 5.7(a)
with Figure 5.7(b) that consists of two new metaclasses. UMLBabstractClassType is the
base metaclass for UMLBExtendedClassType and UMLBClassType (existing metaclass).
UMLBExtendedClassType represents extended classtypes whereas UMLBClassType rep-
resents classtypes. UMLBabstractClassType is a generalization metaclass which does not
represent any UML-B modelling object. Figure 5.7(b) specifies that a UML-B context
may have a number of new classtypes and/or extended classtypes.

5.5 Extending the UML-B Drawing Tools

The drawing tools of the class diagram and state machine diagram editors were extended
to support the refinement of classes and state machines. The extensions involved the
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Figure 5.8: Drawing Tool Extensions for a Class Diagram Editor

following:

• adding figures for refined classes, refined state machines, inherited attributes and
refined states.

• adding creation tools for the above figures to the diagram palette.

• adding properties views for the above figures.

Figure 5.8(a) shows a figure for refined classes which is a white round rectangle. Attached
to it is a figure for a refined state machine which is a white rectangle. Also attached is an
inherited attribute. The inherited attributes are simply text labels attached to refined
classes. Figure 5.8(b) is a figure for a refined state machine which is not attached to
a class. The figure in Figure 5.8(b) is to model behaviour of a system which does not
involve a set of instances. Figure 5.8(c) is the tool palette which contains the creation
tools corresponding to a class diagram editor. Those which are highlighted by yellow
boxes are added to create the new figures on the drawing canvas of a class diagram
editor.

The refined classes and refined state machines have a refines property. Modellers can
specify this property by choosing from the combo box list provided by the tool. For
the refined classes, the list contains all the classes of the abstract machine which have
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Figure 5.9: Drawing Tool Extensions for a State Machine Diagram Editor

not being refined so far. For the class-level refined state machines, the list contains
all the state machines of the abstract class which have not been refined so far. For
the machine-level refined state machines, the list contains all the state machines of the
abstract machine which have not been refined so far. The inherited attributes of refined
classes have an inherited property. The property can be specified by choosing from a
combo box list which contains all the attributes of the abstract class which have not
been inherited so far.

The extensions also involved adding figures for refined states in the state diagram editor.
There are three figures that have been added to the drawing tool. These are for initial
refined states (Figure 5.9(a)), final refined states (Figure 5.9(b)) and normal refined
states (Figure 5.9(c)). A refined state machine figure may be attached to a refined state
as in Figure 5.9(c).

Figure 5.9(d) shows the tool palette corresponding to a state machine diagram editor.
The creation tools highlighted with yellow boxes are the added tools for creating the
new figures on the drawing canvas. The three figures of refined states have a refines
property which can be chosen from the combo box list. The list contains the states of
the abstract state machine which have not been refined so far.

5.6 Summary

This chapter described the extensions to the UML-B metamodel which gives precise
definitions of the notions of refined class, refined state machine and extended classtype.
This chapter also described the extensions to the UML-B drawing tools which use the
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metamodel extensions. The metamodel extensions also were used to extend the U2B
translator. With the extensions, the UML-B Version 2 supports class refinements, state
machine refinements and classtype extensions. Chapter 6 evaluates the extensions to
the metamodel using the ATM case study which is modelled in UML-B.



Chapter 6

Modelling The ATM Case Study

in UML-B

6.1 Introduction

This chapter and Chapter 8 contain a description of the ATM case study modelled using
the UML-B Version 2 tool. This chapter contains the first five machine levels of the ATM
development. These machine levels are an incremental development of the case study
where a new requirements are added in each machine level. Later in the development,
a refined machine is decomposed into three sub-machines. Chapter 8 will describe the
development of the ATM case study regarding decomposition. The purpose of this
chapter is to validate the notions of refined classes, refined state machines and extended
classtypes in Chapter 4. In the case study, all the refinement techniques described in
Chapter 4 are applied.

6.2 ATM Case Study: An overview

The UML-B development of the ATM system is based on the requirements in Ap-
pendix B. The requirements document contains more complete requirements than the
requirements document in Appendix A which were modelled in the plain Event-B de-
velopment of Chapter 3. The additional requirements are added to model closely the
application of ATMs system. These additional requirements will be highlighted in the
following sections. The package diagram in Figure 6.1 shows the contexts, the first five
level of machines and their relationships where a machine sees a context, a context ex-
tends another context and a machine refines another machine. The summary of the first
five machine levels are given here.

Abstract machine (ATM A): Models bank accounts and operations on accounts.

78
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Figure 6.1: ATM Package Diagram

First Refinement (ATM R1): Introduces ATMs as a medium to withdraw money
and check balances.

Second Refinement (ATM R2): Introduces explicit validation for cards.

Third Refinement (ATM R3): Introduces the request and response communication
between an ATM and the bank and splits withdrawal into a bank transition and an
ATM transition.

Fourth Refinement (ATM R4): Introduces the send and receive for the request and
response events in the communication between an ATM and the bank and introduces
instances of ATM being processed at the bank.

The abstract machine corresponds to the abstract machine of the Event-B development
in Section 3.3.1. The first refinement does not correspond to any of the Event-B refine-
ments. It is added in order to model the highest level state machine of an ATM. The
second refinement of ATM modelled in UML-B is corresponds to the first refinement
of the Event-B development in Section 3.3.2. The third refinement corresponds to the
second refinement of the Event-B development in Section 3.3.3. The fourth refinement
does not corresponds to any of the Event-B development.

The Event-B specifications for all machine levels are generated automatically when the
UML-B models are saved. The generated Event-B specifications are in Appendix D.

6.3 Abstract Machine

The abstract machine models the accounts in a bank and a number of operations that
may be performed on the accounts. Figure 6.2 shows a UML-B specification of the
ATM abstract model. The abstract model is specified by a machine ATM A which sees
a context ATM CXA. The context diagram (Figure 6.2(a)) consists of only one classtype
named Account. The machine ATM A consists of a class account (Figure 6.2(b)) with its
attribute bal and four events namely, createAccount, deposit, withdraw and checkBalance.
The class account is a subtype of the classtype Account. The account class represents
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Figure 6.2: UML-B Specification of ATM Abstract Machine

the set of accounts that currently exist in the system. The attribute bal represents the
balance of an account. The withdraw event has one added parameter, am of type natural
number. The parameter is shown in the property view in Figure 6.2(c) including the
guard and action. self is the self name property defined for the class account. The
withdraw event can only occur if the amount, am, is less than or equal to the balance
in the account. The withdraw event will result in decreasing the balance of the account
by am amount.

Compared to the Event-B development in Section 3.3.1, the additional events being
modelled in the UML-B development are the events checkBalance, createAccount and
deposit. However, in the next refinement level, the events createAccount and deposit
were not considered in the development. This is because in this work, we assumed the
ATMs could not be used to create accounts or to deposit cash.

6.4 First Refinement

The first refinement introduces a set of ATMs which may be used for cash withdrawal or
to check an account balance. A number of new events or transitions are also introduced
which will be described later in this section.

This refinement introduces a new class atm which represents the sets of ATMs. The
UML-B specification is shown in Figure 6.3. The context diagram (Figure 6.3(a)) of
context ATM CXR1 contains four new classtypes namely ATM, Card, ValidCard and
InvalidCard and the extended classtype Account. The classtypes ValidCard and In-
validCard subtyping the classtype Card. The classtype ValidCard is a set of valid card
for ATMs whereas the classtype InvalidCard is a set of invalid cards. The classtype
ValidCard has an association card account with the extended classtype account. This
association gives information about each valid card and a respective account in the bank
that it represents. The context also contains two constants and one axiom. The constant
MIN CASH represents a constant value of the minimum cash in an ATM. The constant
MAX CASH represents a constant value of the maximum cash in an ATM. The axiom
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constrains the constant MAX CASH value to be greater than MIN CASH.

The class diagram (Figure 6.3(b)) of machine ATM R1 contains the new class atm and
a refined class account that refines the account class of ATM A. The class atm has
three attributes which are atm acbal, atm cash and atm card. The attribute atm acbal
represents an account balance after each withdraw cash or check balance transaction via
an ATM. The attribute atm cash represents a stock of cash in an ATM. The attribute
atm card represents a card in an ATM.

The refined class account inherits the bal attribute and refines the two events, namely,
createAccount and deposit of the abstract account class of machine ATM A. The other
two events of its abstract class namely, withdraw and checkBalance are moved to the
new class atm in this refinement level as transitions in the state machine ATM SM of
the class atm. At the abstract level, we specify the effect of a withdrawal on the account
balance. In the refinement, we further specify that the withdrawal takes place via an
ATM. At the abstract level it is natural to specify the withdrawal as an event of the
account class while in the refinement it is natural to specify it as an event of the atm
class.

The state machine ATM SM in Figure 6.3(c) partitions the behaviour of an ATM into
either an idle state, (i.e., not being used/not active) or active atm state (i.e., is being
used). An ATM changes its state when it is triggered by a transition. The transition
start creates an instance of ATM and adds it to the set atm card, initialises its stock
of cash as MAX CASH and changes its state to idle. The insertCard transition can
occur when an ATM is in the idle state and the card inserted is a valid ATM card.
When it occurs it changes an ATM state from idle to active atm. The reloadCash
transition can occur when an ATM is in the idle state and the ATM cash amount is
less than the MAX CASH. The reloadCash transition will top up the ATM cash to the
maximum amount MAX CASH. The ejectCard transition changes an ATM state from
active atm to idle and removes the ATM from the set atm card. While an ATM is
in active atm state, it means, an ATM user can use it for withdrawal or checking an
account balance (i.e., checkBalance transition). The withdrawOK transition represents
a successful withdrawal transaction, whereas, the withdrawFail transition represents a
failure possibly because the withdrawal amount exceeds the account balance.

Compared to the Event-B development in Chapter 3, the additional transitions which
were modelled in the UML-B development are the transitions start, reloadCash and
checkBalance.

Figure 6.3(d) shows the properties of the withdrawOK transition with the parameters,
witness, guards and action. The witness specifying that the parameter ac represents
the self parameter of the abstract withdraw event. In this refinement, the guards are
strengthened so that the withdrawOK transition can only occur when an ATM card is
inserted (selfATM.atm card=c), the card in the ATM is a valid card for the account
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Figure 6.3: UML-B Specification of ATM First Refinement
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whose balance is being modified (selfATM∈ dom(atm card) and c.card account=ac), a
withdraw amount is less than or equal to the cash in the ATM (selfATM.atm cash≥am)
and the balance of the account is more than the withdraw amount (ac.bal≥am). The
actions of the withdrawOK transition are reducing the account balance by the withdraw
amount (ac.bal := ac.bal - am), set the value of the variable account balance at an ATM
to be the value of the account balance (selfATM.atm acbal := ac.bal) and reducing the
ATM cash by the withdraw amount (selfATM.atm cash := selfATM.atm cash - am).
Figure 6.3(e) shows the refines property of the withdrawOK transition.

6.5 Second Refinement

The second refinement introduces a concept of PIN number and models an explicit
validation transition for cards. This is achieved by elaborating the active atm state
into sub-states. The context diagram (Figure 6.4(a)) of ATM CXR2 contains a new
classtype Pin and the extended classtypes ValidCard. The classtype ValidCard has an
association card pin with the classtype Pin that represents a function that maps a set
of valid cards to pin numbers. The class diagram (Figure 6.4(b)) of ATM R2 contains
the two refined classes that refine the account and atm classes of ATM R1 machine.
The refined class atm of ATM R2 contains the refined state machine ATM SM which
contains the two refined states that refine the states idle and active atm of the state
machine ATM SM of ATM R1 (Figure 6.4(c)).

A new state machine named active atm SM is added to the refined state active atm
of ATM R2. It contains four sub-states, namely, validating, invalidCard, transOption
and performTrans (Figure 6.4(d)). The state machine has a transition insertCard which
elaborates the incoming transition to the refined super-state active atm of ATM R2.
The outgoing transitions ejectCard1, ejectCard2 and ejectCard3 from the states invalid-
Card, transOption and performTrans respectively elaborate the outgoing transitions
of the refined super-state active atm of ATM R2. The transitions withdrawOK, with-
drawFail and checkBalance elaborate the self loop transitions of the refined super-state
active atm. The transitions validateCardOK, validateCardFail, retry and doAnother are
new transitions.

The refined state machine ATM SM of machine ATM R2 represents a more detailed
system state of an ATM. An ATM changes its state from idle to validating when an
ATM card is inserted (represent by transition insertCard ). From the validating state,
an ATM may go to the transOption state on successful ATM card validation (repre-
sented by transition validateCardOK ) or an ATM may move into the state invalidCard
(represented by transition validateCardFail). The transition validateCardOK can occur
if a user entered a correct pin number for a valid card. Otherwise, the transition validate-
CardFail will occur. An ATM may move back into the state validating from the state val-
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Figure 6.4: UML-B Specification of ATM Second Refinement

idateCardFail when a user re-enters the pin number (represent by the transition retry).
From the transOption state, an ATM may go to the state performTrans when either
the transition withdrawOK, withdrawFail or checkBalance occurs. From performTrans

state, an ATM may go to idle state when the transition ejectCard3 is triggered which
will eject the ATM card from the ATM or an ATM may go back to transOption state
when the transition doAnother occurs. Optionally, an ATM user can terminate an activ-
ity by ejecting the card while an ATM is in the state invalidCard(represent by transition
ejectCard1 ) and transOption (represent by transition ejectCard2 ).

The refined state machine ATM SM of machine ATM R2 in (Figure 6.4(c) and (d))
closely correspond to the ATM system states in Figure 3.3. In this level of UML-B de-
velopment, the transition withdrawATM is not yet introduced. It is introduced in the
next refinement machine so that the structure of state machine hierarchy becomes sym-
metric i.e., when introducing the transition request since the transition withdrawATM
is an effect of the transition request. The additional state and transitions in the UML-B
development includes the invalid state of an ATM when the event invalidCard occurs
and also the UML-B development includes the transition for checkBalance, the retry
transition for re-entering the pin number and the transition to repeat a request (tran-
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sition doAnother). Another difference is that in the UML-B development, we model
three options that an ATM user can use to terminate an operation (i.e., the transitions
ejectCard1, ejectCard2 and ejectCard3 ). These additional state and transitions were
added to the UML-B development in order to closely model the application of ATM
system which were not modelled in the plain Event-B development in Section 3.3.2.

6.6 Third Refinement

The third refinement models the transitions request and response, and splits a withdrawal
into a bank transition and an ATM transition. Figure 6.5(a) is the class diagram of
ATM R3 showing the refined classes and invariants. Three new attributes are introduced
in the refined class atm. The attribute atm wdam represents a requested withdrawal
amount at each ATM. The attribute atm acbalA represents an account balance at an
ATM which is notified to a user. The attribute atm cashA represents the stock of cash
of an ATM which replaces the attribute atm cash of ATM R2. This is done because a
new transition withdrawATMOK is introduced in this refinement. The action which set
the attribute atm cash by the transition withdrawOK of ATM R2 is moved to the new
transition. The movement is done to separate the transitions happening at a bank and
ATMs.

Figure 6.5(b) is a refined state machine active atm SM of machine ATM R3 which shows
that the refined state transOption and the refined state performTrans have nested state
machines. The request event is achieved by elaborating the refined states transOption
into sub-states. The refined state transOption has a state machine transOption SM
(Figure 6.5(c)) which contains the states trans, reqWD and reqCB. The transitions val-
idateCardOK and doAnother elaborate the incoming transitions to the refined super-
state transOption of ATM R3. The transitions ejectCard2, withdrawOK, withdrawFail
and checkBalance elaborate the outgoing transitions from the refined super-state tran-
sOption of ATM R3. The transitions requestWD and requestCB are new transitions
which represent transition requests from an ATM to the bank.

The following table shows the explicit parameter, guards and action of the transition
requestWD. These are added as the properties of the transition which give rise to the
parameter, guards and action of the Event-B event. The implicit parameter selfATM,
guard and actions which involve the source and target states of the transition are gen-
erated automatically from the class and state machine. The transition requestWD can
be triggered when an ATM is in state trans, there is an ATM card in the ATM (grd1 ),
the amount of cash in the ATM is greater than the constant minimum cash (grd2 ) and
the withdrawal amount is less or equal to the minimum cash (grd3 ). The transition
requestWD will move an ATM from the state trans into the state reqWD and it will set
the value of the withdrawal amount variable (act1 ).
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Figure 6.5: UML-B Specification of ATM Third Refinement
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Transition: requestWD

Parameters:
am (type: N)

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: atm cashA(selfATM) > MIN CASH

grd3: am ≤ MIN CASH

Actions:
act1: atm wdam(selfATM) := am

The transition requestCB can be triggered when an ATM is in the state trans and there
is an ATM card in the ATM. It will move an ATM from the state trans into the state
reqCB.

The effect of the request is modelled in the refined state performTrans. The refined state
performTrans has a state machine performTrans SM (Figure 6.5(d)) which contains the
states processedWDOK, processedWDFail, processedCB, rspWDOK, rspWDFail, rspCB
and endTrans. The transitions withdrawOK, withdrawFail and checkBalance elaborate
the incoming transitions to the refined super-state performTrans of ATM R3. The tran-
sitions ejectCard3 and doAnother elaborate the outgoing transitions from the refined
super-state performTrans of ATM R3. The transitions responseWDOK, responseWD-
Fail, responseCB, withdrawATMOK, withdrawATMFail and checkBalATM are new tran-
sitions.

The transition responseWDOK can be triggered when an ATM is in the state processed-
WDOK, there is an ATM card in the ATM (grd1 ) and there is an account balance
associated with the ATM (grd2 ). The transition responseWDOK will move an ATM
from the state processedWDOK into the state rspWDOK and it will make a copy of the
account balance (act1 ).

Transition: responseWDOK

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: selfATM ∈ dom(atm acbal)

Actions:
act1: atm acbalA(selfATM) := atm acbal(selfATM)

The transitions responseWDFail and responseCB will behave similar to the transition
responseWDOK. But the states when they occur and the state changes after their oc-
currences are different. These state changes can be seen in the state machine in Fig-
ure 6.5(d).
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Transition: withdrawOK

Parameters:
par1: c (type: V alidCard)
par2: am (type: N)
par3: ac (type: account)

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: selfATM ∈ dom(atm wdam)
grd3: atm card(selfATM) = c

grd4: bal(ac) ≥ am

grd5: atm wdam(selfATM) = am

grd6: card account(c) = ac

Actions:
act1: bal(ac) := bal(ac) - am

act2: atm acbal(selfATM) := bal(ac) - am

In this refinement, the abstract transition withdrawOK is split between the transi-
tion withdrawOK which refines the abstract transition and the new transition with-
drawATMOK. This is done to separate the transitions at the bank and ATMs. The
withdrawOK is a transition at the bank where it will deduct an account balance by
a withdrawal amount (act1 ) and set the value of the account balance (act2 ). In this
refinement grd2 and grd5 are added to the transition withdrawOK constraining that the
withdrawal amount must exist in an ATM (grd2 ) and the withdrawal amount (grd5 ) is
less or equal to an account balance (grd4 ).

The transition withdrawATMOK is a transition at an ATM where it will reduce the cash
in the ATM (act1 ). The transition withdrawATMOK is triggered when an ATM is in a
state rspWDOK, the ATM holds a valid card (grd1 ), am is a withdrawal amount (grd2
and grd5 ) and is less or equal to the cash in the ATM (grd6 ), and the ATM has the
value of an account balance to notify a user (grd3, grd4 and grd7 ).

Similarly, the transitions withdrawATMFail and checkBalATM will notify the value of
an account balance to an ATM user. However, there are no guard and action related to
a withdrawal amount.
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Transition: withdrawATMOK

Parameters:
am (type: N)

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: selfATM ∈ dom(atm wdam)
grd3: selfATM ∈ dom(atm acbalA)
grd4: selfATM ∈ dom(atm acbal)
grd5: atm wdam(selfATM) = am

grd6: atm cashA(selfATM) ≥ am

grd7: atm acbalA(selfATM) = atm acbal(selfATM)

Actions:
act1: atm cashA(selfATM) := atm cashA(selfATM) - am

This refinement relies on the three invariants in Figure 6.5(a). The invariant

∀ a· a∈ (rspWDOK ∪ processedWDOK) ∧ a∈ dom(atm wdam) ⇒ atm cash(a) +
atm wdam(a) = atm cashA(a)

specifies that for all ATMs which are in a state rspWDOK or processWDOK, the cash
amount in the refinement is the same as the summation of the cash amount at the
abstract level and the withdrawal amount. This invariant is needed because changes to
account balances and cash in ATMs are split into separate events.

The invariant

∀ a· a∈ atm ∧ a/∈ rspWDOK ∧ a/∈ processedWDOK ⇒ atm cash(a) = atm cashA(a)

specifies that for all ATMs which are not in the states rspWDOK or processWDOK, the
cash amount in the refinement is the same as the cash amount at the abstract level.

The invariant

∀ a· a∈ reqWD ∧ a∈ dom(atm wdam) ⇒ atm cash(a) ≥ atm wdam(a)

is needed because when replacing the abstract variable atm cash with the new vari-
able atm cashA to preserve the guard atm cash(a) ≥ am in the event withdrawOK of
ATM R2. This invariant specifies that when ATMs are in the state reqWD, the value of
an ATM cash is more than or equal the value of a withdrawal amount.

The invariants are discovered by using the Rodin interactive provers. Examples of using
the provers to construct invariants are given in Section 6.8.

The state machines transOption SM (Figure 6.5(c)) and performTrans SM (Figure 6.5(d))
correspond to the sub-states in Figure 3.4 of the Event-B development. The differences
are the additional states and transitions in the UML-B development which model the
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Figure 6.6: Class Diagram of the Fourth Refinement

check balance transaction that is not modelled in the Event-B development. Another
difference is the introduction of the transitions withdrawATMOK, withdrawATMFail and
checkBalATM in the refinement of the UML-B development.

6.7 Fourth Refinement

The fourth refinement models the send and receive events of the request and response
communication between ATMs and the bank. This is done by adding a receive event
for each request and adding a send event for each response. The send event for request
refines the abstract request event. The receive event for response refines the abstract
response event. The fourth refinement also introduces a set of requesting ATMs whose
requests are being processed by the bank.

The class diagram of the fourth refinement can be seen on Figure 6.6. The two refined
classes account and atm refine the abstract class of ATM R3. The new class atmB repre-
sents ATMs as the bank. It has attributes atm wdamB and atm cardB. As mentioned in
the introduction of this chapter, it is our intention to decompose the machine into three
machine components i.e., ATM, bank and middleware which model the states and tran-
sitions at ATM, bank and middleware respectively. The transitions of these machines
should not share attributes among them. The transition withdrawOK, withdrawFail and
checkBalance are the transitions at the bank. In the third refinement, the transition
withdrawOK is sharing the attributes atm card and atm wdam with the other transi-
tions occur at ATMs. Therefore in this refinement a copy of these attributes is made.
The attribute atm cardB is a copy of the attribute atm card made when a bank receives
a request, i.e., recvdReqWD and recvdReqCB transitions. The attribute atm wdamB is
a copy of the attribute atm wdam made when a bank receives a request.

The receive request events are achieved by elaborating the refined states reqWD and
reqCB of the nested state machine transOption SM. The sending response events are
achieved by elaborating the refined states processedWDOK, processedWDFail and pro-
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Figure 6.7: UML-B Specification of the Fourth Refinement: Request Event

cessedCB of the nested state machine performTrans SM.

Figure 6.7(a) shows the refined state machine transOption SM. The transitions vali-
dateCardOK and doAnother elaborate the incoming transition to the state transOption
that own the state machine transOption SM. The transitions ejectCard2, withdrawOK,
withdrawFail and checkBalance elaborate the outgoing transitions from the state tran-
sOption. Attached to the state reqWD is the state machine reqWD SM. The incoming
transition sendReqWD refines the transition requestWD of ATM R3. Attached to the
state reqCB is the state machine reqCB SM. The incoming transition sendReqCB refines
the transition requestCB of ATM R3.

Figure 6.7(b) shows the nested state machine reqWD SM with a new transition recvRe-
qWD which represents a withdrawal request receipt event at the bank. The transition
sendReqWD elaborates the incoming transition of the refined super-state reqWD. It
means the target state for the transition sendReqWD is the state sentReqWD. The
transitions withdrawOK and withdrawFail elaborate the outgoing transitions of the re-
fined super-state reqWD. It means the source state for the transitions withdrawOK and
withdrawFail is the state recvdReqWD. Figure 6.7(c) shows the nested state machine
reqCB SM with a new transition recvReqCB that represents a check balance request re-
ceipt event at the bank. The transition sendReqCB elaborates the incoming transition of
the refined super-state reqCB. It means the target state for the transition sendReqCB is
the state sentReqCB. The transitions checkBalance elaborate the outgoing transition of
the refined super-state reqCB. It means the source state for the transition checkBalance
is the state recvdReqCB.

The new transition recvReqWD is triggered when an ATM is in the state sentReqWD,
the ATM has a withdrawal amount (grd1 ) and holds a valid ATM card (grd2 ). The
transition will move the ATM from the state sentReqWD into recvdReqWD, it will add
the ATM into the set atmB (act1 ), make a copy of the ATM card (act2 ) and make a
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copy of the withdrawal amount (act3 ).

Transition: recvReqWD

Guards:
grd1: selfATM ∈ dom(atm wdam)
grd2: selfATM ∈ dom(atm card)

Actions:
act1: atmB := atmB ∪ {selfATM}
act2: atm cardB(selfATM) := atm card(selfATM)
act3: atm wdamB(selfATM) := atm wdam(selfATM)

Similar to the transition recvdReqWD, transition recvdReqCB will make a copy of the
ATM card.

The transitions withdrawOK, withdrawFail and checkBalance occur at the bank and
they refine their corresponding transition of ATM R3. In this refinement, for the tran-
sitions withdrawOK, withdrawFail and checkBalance, the new attributes atm cardB and
atm wdamB replace the attributes atm card and atm wdam respectively in the guards.

This refinement relies on the following four invariants. The invariant

∀ a· a∈ (recvdReqWD ∪ recvdReqCB) ⇒ a∈ dom(atm card)

specifies that each instance of ATMs which is either in the states recvdReqWD or recv-
dReqCB, has an ATM card associated with it.

The invariant

∀ a· a∈ (recvdReqWD ∪ recvdReqCB) ∧ a∈ dom(atm card) ∧ a∈ dom(atm cardB)
⇒ atm card(a) = atm cardB(a)

specifies that each instance of ATMs which is in the states recvdReqWD or recvdReqCB,
the ATM card that is associated with the ATMs at the ATM is the same as the ATM
card associated with the ATMs at the bank.

The invariant

∀ a· a∈ recvdReqWD ⇒ a∈ dom(atm wdam)

specifies that each instance of ATMs which is in the state recvdReqWD, has a withdrawal
amount associated with it.

The invariant
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∀ a· a∈ recvdReqWD ∧ a∈ dom(atm wdam) ∧ a∈ dom(atm wdamB)⇒ atm wdam(a)
= atm wdamB(a)

specifies that each instance of ATMs which is in the state recvdReqWD, the withdrawal
amount that is associated with the ATMs at the ATM is the same as the withdrawal
amount associated with the ATMs at the bank. In practice, the above invariants are
specified as machine invariants in the UML-B class diagram.

Figure 6.8(a) shows the refined state machine performTrans SM. The transitions with-
drawOK, withdrawFail and checkBalance elaborate the incoming transition to the re-
fined super-state performTrans. The transitions ejectCard3 and doAnother elaborate
the outgoing transitions from the refined super-state performTrans. The transitions
recvRspWDOK, recvRspWDFail, recvRspCB, withdrawATMOK, withdrawATMFail and
checkBalATM refine their corresponding transitions of ATM R3. Each of the states
processedWDOK, processedWDFail and processedCB has a nested state machine pro-
cessedWDOK SM, processedWDFail SM and processedCB SM respectively.

Figure 6.7(b) shows the nested state machine processedWDOK SM with a new tran-
sition sendRspWDOK which represents a send response event from a bank approving
a withdrawal request. The transition withdrawOK elaborates the incoming transition
of the refined super-state processedWDOK. It means the target state for the transition
withdrawOK is the state processWDOK. The transitions recvRspWDOK elaborates the
outgoing transition of the refined super-state processedWDOK. It means the source state
for the transitions recvRspWDOK is the state sentRspWDOK. Figure 6.7(c) shows the
nested state machine processedWDFail SM with a new transition sendRspWDFail that
represents a send response event from a bank disapproving a withdrawal request. The
transition withdrawFail elaborates the incoming transition of the refined super-state
processedWDFail. It means the target state for the transition withdrawFail is the state
processWDFail. The transition recvRspWDFail elaborates the outgoing transition of the
refined super-state processedWDFail. It means the source state for the transition recvR-
spWDFail is the state sentRspWDFail. Figure 6.7(d) shows the nested state machine
processedCB SM with a new transition sendRspCB which represents a send response
event from a bank notifying an account balance. The transition checkBalance elabo-
rates the incoming transition of the refined super-state processedCB. It means the target
state for the transition checkbalance is the state processCB. The transition recvRspCB
elaborates the outgoing transition of the refined super-state processedCB. It means the
source state for the transition recvRspCB is the state sentRspCB.

The new transition sendRspWDOK is a transition at the bank which occurs when a
requesting ATM is in the state processWDOK, the ATM is in the class atmB (grd1 )
and there is an account balance associated with the ATM (grd2 ). The transition will
move the ATM from the state processWDOK into sentRspWDOK and it will remove
the ATM from the class atmB (act1 ) and from the domain of the attributes atm cardB
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Figure 6.8: UML-B Specification of the Fourth Refinement: Response Event

(act2 ) and atm wdamB (act3 ). In this level, act1, act2 and act3 are explicitly added as
the actions. Later in the development when applying decomposition as in Section 8.6.2,
the transition sendRspWDOK is modelled as a destructor. In this case, the three actions
are generated automatically.

Transition: sendRspWDOK

Guards:
grd1: selfATM ∈ atmB

grd2: selfATM ∈ dom(atm acbal)

Actions:
act1: atmB := atmB \ {selfATM}
act2: atm cardB := { selfATM} ¢− atm cardB

act3: atm wdamB := { selfATM} ¢− atm wdamB

The guards of the transitions sendRspWDFail and sendRspCB are similar to the tran-
sition sendRspWDOK except the guard and action regarding the states of the ATMs
are different. The transition sendRspWDFail occurs when an ATM is in the state pro-
cessWDFail. This transition will move an ATM into the state sentRspWDFail. The
transition sendRspCB occurs when an ATM is in the state processCB. This transition
will move an ATM into the state sentRspCB.

Compared to the Event-B development in Chapter 3, the additional transitions which
were modelled in the UML-B development are the transitions recvReqCB, sendRspCB,
sendRspWDOK and sendRspWDFail.
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Machines POs aPOs iPOs
ATM A 4 4 0
ATM R1 47 47 0
ATM R2 68 68 0
ATM R3 167 160 7
ATM R4 149 142 7

Total 435 421 14

Table 6.1: Statistics from the Proof Effort

6.8 Experiences from the ATM system in UML-B

This section gives an assessment of the experience of modelling using UML-B Version 2.

All the proof obligations (POs) for the five machines of the ATM case study were gener-
ated and proved using the Rodin tool provers [4]. The statistics are outlined in Table 8.1
showing the total POs for each level (POs), the number of POs which are automatically
discharged (aPOs) and the number of POs which are interactively discharged (iPOs).

In ATM R3, there are seven interactively discharged POs. Three POs are discharged
manually by proving that two related states are disjoint and another four are proved by
rewriting the partition invariant into its definition. A similar way is used to prove the
seven interactively POs in ATM R4. Two POs are discharged by manually proving that
two states are disjoint and the other five POs are discharged by rewriting the partition
invariant.

The state machine refinement in the second (ATM R2 ), third (ATM R3 ) and fourth
(ATM R4 ) refinements introduces additional levels in the state machine nesting hier-
archy. This supports modular reasoning, since refinement invariants are only required
for the states that are being elaborated, so it localizes proof effort. For example, for
the fourth refinement (ATM R4 ), the refined states reqWD, reqCB, processedWDOK,
processedWDFail and processedCB are elaborated into sub-states. The gluing invari-
ants required are only for these states and their sub-states. Thus, the generated proof
obligations only concern with the events that occur during these states.

Similar to the experience in Event-B, some of the invariants are constructed by us-
ing the provers of the Rodin tool. One of them is the gluing invariant in the third
refinement (ATM R3 ). An attempt to construct the invariant is done by using the in-
teractive prover. The ATM R3 was run in a proving perspective without having any
gluing invariant which result in a number of undischarge proof obligations. The first
undischarged PO is given here as an example. The prover cannot discharge the guard
atm cash(selfATM) ≥ am of the event withdrawOK. The hypotheses and the goal are
as follows:
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Hypotheses:
selfATM ∈ atm

selfATM ∈ reqWD

selfATM ∈ dom(atm card)
atm card(selfATM) = c

selfATM ∈ dom(atm wdam)
atm wdam(selfATM) = am

atm card(selfATM) ∈ V alidCard

card account(msg card(m))=ac

card account(msg card(m))∈ account

atm wdam(selfATM) ∈ N
bal(card account(atm card(selfATM)) ≥ atm wdam(selfATM)

The goal:
atm cash(selfATM) ≥ atm wdam(selfATM)

From the hypotheses and the goal, it is deduced that an invariant is needed to say
that for all selfATM where selfATM is in reqWD, the goal is implied. The invariant
represented in Event-B as:

∀ selfATM · selfATM∈ reqWD ∧ selfATM∈ dom(atm wdam)⇒ atm cash(selfATM)
≥ atm wdam(selfATM)

6.9 Summary

This chapter presented the use of seven techniques of Chapter 4 in the ATM case study
which was modelled using the UML-B tool. The approach of elaborating states with
sub-states in refinement supports an incremental refinement approach. The hierarchical
structure of nested state machines also supports modular reasoning by localising the
invariants required for refinement proofs into the relevant state and its sub-states. The
ATM case study has evaluated that the extensions of the metamodel in Chapter 5 are
working as expected.



Chapter 7

Decomposition and Composition

in UML-B

7.1 Introduction

In a UML-B development, we may want to decompose a refined machine into a number of
machines (or components). These decomposed machines can then be refined individually.
This is done to reduce the complexity of modelling and proving a system.

Our goal is to support the decomposition of a single UML-B model into a distributed sys-
tem which consists of requesting components, responding components and middleware
component. The middleware synchronizes the communication between the requesting
and responding components. Figure 7.1 illustrates an example of a decomposition of a
distributed system where a UML-B machine is decomposed into three machines. In the
example, the state machine SM of machine M is decomposed into four state machines:
state machine SMa of machine M1, state machines SMb and SMc of machine M2 and
state machine SMd of machine M3. M1 represents a requesting component that sends
a request to the responding component M3. M2 represents a middleware and it has
two state machines, one is for synchronizing requests and another is for synchronizing
responses.

This chapter introduces two techniques of state machine refinement preceding a decom-
position of a refined machine as in Figure 7.1. The two techniques of refining state
machines are

• Flattening state machines

• State grouping

97
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Figure 7.1: Decomposition of State Machines

The decomposition in this work is based on the event-based or shared-event decom-
position. The shared-event decomposition approach splits an event between two com-
ponents. This kind of decomposition is suitable for use in a distributed system using
message passing.

Silva and Butler have introduced the notion of composed machine in [89] for composing
several machines (decomposed machines) to support the event-based decomposition in
Event-B. Their work is described in Section 7.4. The advantage of the composition
is that the decomposed machines can then be refined individually. Proving that the
composed machine is a refinement of the abstract machine is performed by discharging
all the proof obligations of the composed machine.

The decomposed machines M1, M2 and M3 in Figure 7.1 are abstract machines which
are not refinements of other machines. Our intention is to have a composed machine
which refines machine M and composes the machines M1, M2 and M3 to ensure that
their composition are valid refinement of M. Therefore, the decomposed machines may
be refined individually and this should reduce the complexity of modelling and proving
a complex system.

UML-B Version 2 did not have support for composing several machines. This chapter
describes the notions of composed machines, included machines, composed events and
combined events in UML-B. These notions are the extension to the UML-B language
to support composition and decomposition. This chapter also describes the extensions
to the UML-B metamodel which give a precise definition of the notions. These notions
correspond to the notion of a composed machine and its structure in Event-B. A section
on the extensions to the UML-B drawing tool to support composition is also included
in this chapter.
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Figure 7.2: Example of State Machine Refinement (Nested State Machine)

7.2 Flattening State Machines

This section introduces the technique of state machine flattening in order to decompose
a UML-B machine. This technique is introduced as part of a decomposition in order to
use the state grouping technique later.

A UML-B model may consist of several machines that are linked by a refinement re-
lationship. As described in Section 4.4, a state machine refinement may be performed
by elaborating the structure of a state machine to have nested state machines in any of
the super-states. This means, there are a number of nested state machines in a partic-
ular machine level. Flattening a state machine means to refine the structure of a state
machine that consists of nested state machines into a state machine without any nested
state machines.

The techniques of flattening and grouping are first described based on a simple example
of a client-server system. The UML-B model consists of four machines where EX1 is
refined by EX2, EX2 is refined by EX3 and EX3 is refined by EX4. In the example,
the flattening of state machines is done at the third machine level i.e., machine EX3.
State grouping is performed at the fourth machine level i.e., machine EX4 and will be
described in Section 7.3. The state machines of machines EX1 and EX2 are shown in
Figure 7.2. We describe first an example of flattening state machines in UML-B. We
will then describe the general rules.
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Figure 7.2(a) is the state machine SM of a machine EX1. The state machine SM consists
of two states, Request and Response and three transitions choose, process and end.
Machine EX2 refines machine EX1 by refining the state machine SM. The state machine
refinement in machine EX2 is done by extending the state machine hierarchy of SM into
nested state machines in the states Request and Response (Figure 7.2(b)). Figure 7.2(c)
is the nested state machine ReqSM contained in the state Request. Figure 7.2(d) is the
nested state machine RspSM contained in the state Response.

Figure 7.3(a) shows the refined state machine SM of machine EX3. Machine EX3 refines
machine EX2 by flattening the state machines of EX2 (Figure 7.2(b,c,d)). By flattening,
the super-states Request and Response of the state machine SM are removed together
with their nested state machines ReqSM and RspSM respectively. The sub-states of the
super-states Request and Response are lifted to the top level. The transitions between
the lifted sub-states also are lifted together with the states to the top level. The target
state of the incoming transition choose to the super-state Request is replaced by the sub-
state option. The source state of the outgoing transition process from the super-state
Request is replaced by the sub-state receivedRequest. The target state of the incoming
transition process to the super-state Response is replaced by the sub-state processed. The
source state of the outgoing transition end from the super-state Response is replaced by
the sub-state receivedResponse.

In this paragraph, we give an informal general definition of the flattening technique.
Later in this section we define the technique more formally. The structure of a hierarchy
of state machines may be flattened by:

• removing the super-state structures and lifting their sub-states and the transitions
between the sub-states to the top level.

• the target state of each incoming transition to the super-state is replaced by the
sub-state which has the corresponding incoming transition in the abstract machine.

• the source state of each outgoing transition from the super-state is replaced by the
sub-state which has the corresponding outgoing transition in the abstract machine.

The flattening technique has been automated in the UML-B tool. The simple model of
Figure 7.2 and 7.3 has been modelled and proved using the Rodin provers. All the proof
obligations are proved. This is because in Event-B terms, a super-state is redundant
w.r.t. its sub-states as it is a union of all sub-states. For example, the following predicate

Request = option ∪ sentRequest ∪ receivedRequest

specifies that the state Request is a union of the sub-states option, sentRequest and
receivedRequest. Thus, the flattening technique is a valid refinement. Our work deals
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Figure 7.3: Example of Refinement by Flattening and Grouping State Machines

with the state set representation and does not deal with the state function representation
of state machines translation. In future, the use of this technique with the state function
representation will be explored.

7.2.1 Formal Definition of Flattening

In this section, we define the flattening technique using Event-B notation. We refer to
the state machine model to be flattened as M1 and the resulting flattened state machine
as M2.

First, we define the data structures to be used in both MI and M2. Let ELEMENT
be the set of UML-B elements. UML-B elements include machines, classes and state
machines (including states and transitions).

STATES represents the set of states in both M1 and M2 and it is a subset of ELEMENT :

STATES ⊆ ELEMENT
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The set STATES is partitioned into three subsets. The subset initial represents the
initial states, final represent the final states and normal represent the states which
neither initial nor final:

partition(STATES,initial,final,normal)

TRANSITIONS represents the set of transitions in both M1 and M2 and it is a subset
of ELEMENT :

TRANSITIONS ⊆ ELEMENT

Next, we define the components of M1 which are states, transitions and their contain-
ment relationships.

S1 represents the set of states of M1 :

S1 ⊆ STATES

containmentS1 is the function which maps the states S1 of M1 into their container or
owner of type ELEMENT :

containmentS1 ∈ S1 → ELEMENT

Let s be the S1 state whose sub-states are to be flattened:

s ∈ S1

In order for state s to be flattened it must be a UML-element that contains sub-states:

s ∈ ran(containmentS1)

containmentS1(s) is the UML-B element in which the super-state s is itself contained.

containmentS1−1 [{ s}] is the set of sub-states contained in s.

T1 represents the set of transitions of M1 :

T1 ⊆ TRANSITIONS

The transitions T1 are partitioned into two subsets; elaborateT1 represents a set of
elaborating transitions and nonelaborateT1 represents a set of transitions which do not
elaborate any transition:
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partition(T1,elaborateT1,nonelaborateT1)

containmentT1 is the set which maps each transition of M1 into its container of type
ELEMENT :

containmentT1 ∈ T1 → ELEMENT

transSourceStateT1 maps each transition of M1 into its source state:

transSourceStateT1 ∈ T1 → S1

transTargetStateT1 maps each transition of M1 into its target state:

transTargetStateT1 ∈ T1 → S1

elaborateOutgoingT1 maps elaborating transitions of M1 into the outgoing transitions
of super-states:

elaborateOutgoingT1 ∈ elaborateT1 7½ T1

elaborateIncomingT1 maps the elaborating transitions of M1 into the incoming transi-
tions of super-states:

elaborateIncomingT1 ∈ elaborateT1 7½ T1

Note: The functions elaborateOutgoingT1 and elaborateIncomingT1 are partial and in-
jective. They are injective because each elaborating transition can elaborate at most
one parent transition. They are partial because the domains contain both incoming and
outgoing elaborating transitions. If an elaborating transition t’ elaborates the transition
t as both incoming and outgoing, this means t is a self loop transition. In this case, the
domains of the functions are not disjoint. Otherwise, the domains are disjoint.

Elabs is the set of transitions of the super-state s which elaborate the parent transitions:

Elabs = containmentT1−1 [{ s} ] ∩ elaborateT1

NonElabs is the set of transitions of the super-state s which are not elaborating any
parent transition:

NonElabs = containmentT1−1 [{ s} ] ∩ nonelaborateT1
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Now that we have defined the components of M1, we now define the components of M2,
representing the result of flattening super-state s in M1.

S2 represents the set of states of M2 :

S2 ⊆ STATES

containmentS2 maps each state of M2 into its container:

containmentS2 ∈ S2 → ELEMENT

T2 represents the set of transitions of M2 :

T2 ⊆ TRANSITIONS

The transitions T2 are partitioned into two subsets; elaborateT2 represents a set of
elaborating transitions and nonelaborateT2 represents a set of transitions which do not
elaborate any transition:

partition(T2,elaborateT2,nonelaborateT2)

containmentT2 maps each transition of M2 into its container.

containmentT2 ∈ T2 → ELEMENT

transSourceStateT2 maps each transition of M2 into its source state.

transSourceStateT2 ∈ T2 → S2

transTargetStateT2 maps each transition of M2 into its target state:

transTargetStateT2 ∈ T2 → S2

elaborateOutgoingT2 maps elaborating transitions of M2 into the outgoing transitions
of super-states:

elaborateOutgoingT2 ∈ elaborateT2 7½ T2

elaborateIncomingT1 maps elaborating transitions of M2 into the incoming transitions
of super-states:
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elaborateIncomingT2 ∈ elaborateT2 7½ T2

The rules defining the elements of M2 components are as follows:

Rule 1: States of M2

M2 has all the states of M1 but excluding the super-state s and excluding the initial
and final sub-states of s:

S2 = (S1 \ { s} ) \ (containmentS1−1 [{ s} ] \ normal)

Rule 2: Containment of the states of M2

The states containment containmentS2 of M2 has all the elements of containmentS1
but excluding the elements associated with the super-state s. In addition, the container
of s becomes the container of each normal sub-state of s:

containmentS2 = ({s}¢− containmentS1 ¤− {s}) ∪
((containmentS1−1[{s}] ∩ normal)× {containmentS1(s)})

Rule 3: Transitions of M2

M2 has all the transitions of M1 but excluding the elaborating transitions of the super-
state s:

T2 = T1 \ Elabs

Rule 4: Containment of the transitions of M2

The transitions containment containmentT2 has all the elements of containmentT1 but
excluding the elements associated with the elaborating transitions of s. Also, for each
transition of containmentT1 whose container is the super-state s, its container is changed
to container of s:

containmentT2 = (Elabs ¢− containmentT1) ¢− ( NonElabs × { containmentS1(s)} )

Rule 5: Source states of M2 transitions

The source states of each transition of M2 are the same as those of M1 but excluding
the elaborating transitions of the super-state s. In addition, in M2, each of the transition
t whose source state is s (i.e., t is an outgoing transition of s), the source state of t is
replaced by the source state of the sub-transition which elaborates t :

transSourceStatesT2 = (Elabs ¢− transSourceStatesT1) ¢−
{ t· t∈ T1 ∧ transSourceStatesT1(t) =s |
( t 7→ (transSourceStatesT1(elaborateOutgoingT1−1 (t))))}

Note: From well definedness of UML-B model,
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transSourceStatesT1(t) = s ⇒ t ∈ dom(elaborateOutgoingT1−1)

Rule 6: Target states of M2 transitions

The target states of each transition of M2 are the same as those of M1 but excluding the
elaborating transitions of the super-state s. In addition, in M2, each of the transition t
whose target state is the super-state s (i.e., t is an incoming transition of s), the target
state of t is replaced by the target state of the sub-transition which elaborates t :

transTargetStatesT2 = (Elabs ¢− transTargetStatesT1) ¢−
{ t· t∈ T1 ∧ t∈ ∧ transTargetStatesT1(t) =s |
( t 7→ (transTargetStatesT1(elaborateIncomingT1−1 (t))))}

Note: From well definedness of UML-B model,

transTargetStatesT1(t) = s ⇒ t ∈ dom(elaborateIncomingT1−1)

Rule 7: Elaborating transitions of M2

The elaborating transitions of M2 are all the elaborating transitions of M1 but excluding
the elaborating transitions of the super-state s:

elaborateT2 = elaborateT1 \ Elabs

Rule 8: Non-elaborating transitions of M2

The transitions of M2 which do not elaborate any transition are all the non-elaborating
transitions of M1 :

nonelaborateT2 = nonelaborateT1

Rule 9: Outgoing elaborating transitions of M2

The outgoing elaborating transitions of M2 are the outgoing elaborating transitions of
M1 but excluding the elaborating transitions of s:

elaborateOutgoingT2 = Elabs ¢− elaborateOutgoingT1

Rule 10: Incoming elaborating transitions of M2

The incoming elaborating transitions of M2 are the incoming elaborating transitions of
M1 but excluding the elaborating transitions of s:

elaborateIncomingT2 = Elabs ¢− elaborateIncomingT1
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7.3 State Grouping

This section introduces the technique of state grouping in the refinement chain preceding
a machine decomposition. This technique may be used after flattening a state machine.
Grouping states means adding a new structure (state) in a state machine and nesting
some of its states within the new structure.

We describe first an example of grouping states in UML-B. We will then describe the
general rules. Figure 7.3(b) shows an example of grouping the flattened state machine
in Figure 7.3(a). In the figure, a new super-state waitingResponse is added and the
refined states sentRequest, receivedRequest, processed and sendResponse together with
the transitions between them are grouped and nested in the state machine of the state
waitingResponse. The target state sentRequest of the incoming transition sendReq is
replaced with the new super-state waitingResponse. In the nested state machine of
the super-state, the state sentRequest has an incoming transition which elaborates the
transition sendReq and initiates from an initial state. The source state sentResponse
of the outgoing transition recvRsp is replaced with the new super-state. In the nested
state machine of the super-state, the state sentResponse has an outgoing transition
which elaborates the transition recvRsp and terminates at a final state.

The grouping technique is used to facilitate the decomposition by partitioning the states
of a requesting component, i.e., the client, the states of a middleware and the states of a
responding component i.e., the server. The states which are grouped in the state wait-
ingResponse are the states of middleware and responding component. The states which
are not in the new state waitingResponse are the states of the requesting component.

In this paragraph, we give an informal general definition of the grouping technique.
Later in this section we define the technique more formally. The structure of a state
machine may be grouped by:

• adding a super-state structure and bringing some states and the transitions be-
tween them to a lower level by nesting them in the super-state structure.

• the target state of each incoming transition (the source state of the transition
is outside the super-state) to the sub-state which is nested in the new super-
state structure is replaced by the super-state. The sub-state has an incoming
transition (the source state of the transition is an initial state) which elaborates
the corresponding incoming transition to the super-state.

• the source state of each outgoing transition (the target state of the transition
is outside the super-state) from the states which are nested in the new super-
state structure is replaced by the super-state. The sub-state has an outgoing
transition (the target state of the transition is a final state) which elaborates the
corresponding outgoing transition to the super-state.
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The grouping technique has been automated in the UML-B tool. The simple model of
Figure 7.3 has been modelled and proved using the Rodin provers. All the proof obli-
gations are proved. This is because in Event-B terms, adding a super-state structure
is a superposition refinement [13]. Superposition refinement allows a development of a
system by incrementally adding new requirements in refinements. In Event-B, adding
new variables and (or) new events which modify only new variables is a superposition
refinement. Thus, the grouping technique is a valid refinement. Similar to the flattening
technique, at the moment the grouping technique can be used with the state set repre-
sentation. The use of grouping technique with the state function representation will be
explored in future.

The refined state machine in Figure 7.3(a) has a different structure from its abstract
state machine (Figure 7.2(b)). Similarly the refined state machine in Figure 7.3(b) has
a different structure from its abstract state machine (Figure 7.3(a)). This is contrary to
the hierarchical refinement where the structure of the abstract state machine is retained
in a refinement. However, refactoring a state machine by removing a super-state struc-
ture of an abstract state machine and lifting the sub-states to a top level in a refinement
can facilitate the decomposition of UML-B machines. Similarly, adding a super-state
structure and nesting some states at the top level in the super-state structure can facili-
tate the decomposition of UML-B machines. In future, we will enforce in the metamodel
that a structure of abstract state machines can be refactored in the refinement only when
using the flattening and grouping techniques.

The movement of the transition process to a different hierarchy as in Figure 7.3(b)
illustrates why re-grouping is required. Hierarchical refinement (Section 4.4) would not
give rise to this structuring from Figure 7.2(b). Is the refinement using the flattening or
grouping technique a bad idea? No, because it facilitates easy refinement, and flattening
and grouping have a negligible proof overhead. For the example, all the proof obligations
(POs) are discharged automatically when using the flattening technique. When using
the grouping technique, only two from sixteen POs are manually discharged. These two
POs are discharged by manually rewriting the partition invariants in the hypotheses and
goal. These proving steps are simple and could be easily automated in the prover.

7.3.1 Formal Definition of Grouping

In this section, we define the grouping technique using Event-B notation. Let us refer a
state machine model to be grouped as M1 and the resulting grouped state machine as
M2.

The sets defined in Section 7.2 of the flattening technique are used in defining the
elements of M2 for grouping technique.

First, we assume the following states and transitions of M1 to be grouped:
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Let subStates be the states of M1 to be grouped:

subStates ⊆ S1

Let container be of type ELEMENT :

container ∈ ELEMENT

and let all the elements of subStates share the same parent container :

containmentS1[subStates] = container

Let subTransitions be the transitions of M1 to be grouped:

subTransitions ⊆ T1

The set subTransitions contains the transitions whose source and target states are the
elements of the set subStates.

subTransitions = {t|t ∈ T1 ∧ transSourceStateT1(t) ∈ subStates ∧
transTargetStateT1(t) ∈ subStates}

We now define the components of M2, the result of grouping the states subStates in M1.

When grouping, a new super-state will be added in M2. Let assume that ns is the new
super-state of M2 i.e., ns is a ’fresh’ state and not an element of S1 :

ns /∈ S1

The container (i.e., the parent of subStates in M1 ) is defined to be the container of ns.

When grouping, the subStates and subTransitions are nested in the new super-state ns.
Additionally, a number of initial and final states, and their associated transitions will
be added in ns. In the following paragraph, we define these initial states, final states,
outgoing transitions of the initial states and incoming transitions of the final states:

Let subInitialFinalStates be the set of initial and final states of the super-state ns:

subInitialF inalStates ⊆ STATES

The set subInitialFinalStates contains a set of ’fresh’ states and they are disjoint from
S1 :
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subInitialF inalStates ∩ S1 = {}

The states of subInitialFinalStates are partitioned into subInitialSt and subFinalSt.
subInitialSt is the set of initial states of ns. subFinalSt is the set of final states of
ns:

partition(subInitialF inalStates,subInitialSt,subF inalSt)

Let inTransNs be the set of all incoming transitions into the new super-state ns, i.e.,
those transitions of M1 whose source state is not in subStates and whose target state is
in subStates:

inTransNs = { t | t∈ T1 ∧ transSourceStateT1(t)/∈ subStates ∧
transTargetStateT1(t)∈ subStates}

Let outTransNs be the set of all outgoing transitions from the new super-state ns, i.e.,
those transitions of M1 whose target state is not in subStates and whose source state is
in subStates.

outTransNs = { t | t∈ T1 ∧ transTargetStateT1(t)/∈ subStates ∧
transSourceStateT1(t)∈ subStates}

The number of initial states of ns corresponds to the number of incoming transitions
into ns:

card(subInitialSt) = card(inTransNs)

The number of final states corresponds to the number of outgoing transitions from ns:

card(subF inalSt) = card(outTransNs)

Let elabTransNs be the transitions of ns which elaborate parent transitions (i.e., the
incoming and outgoing transitions of ns):

elabTransNs ⊆ TRANSITIONS

The set elabTransNs contains a set of ’fresh’ elaborating transitions and they are disjoint
from T1 :

elabTransNs ∩ T1 = {}
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The elaborating transitions of ns are partitioned into two sets. subInTransNs is the set
of incoming transitions and subOutTransNs is the set of outgoing transition:

partition(elabTransNs,subInTransNs,subOutTransNs)

Each incoming elaborating transition in the set subInTransNs elaborates one incoming
parent transition in the set inTransNs:

elaborateInNs ∈ subInTransNs ½³ inTransNs

Each outgoing elaborating transition in the set subOutTransNs elaborates one outgoing
parent transition in the set outTransNs:

elaborateOutNs ∈ subOutTransNs ½³ outTransNs

Each incoming elaborating transition in the set subInTransNs has a distinct source state
from the set subInitialSt :

subInTransSourceStateNs ∈ subInTransNs ½³ subInitialSt

Each outgoing elaborating transition in the set subOutTransNs has a distinct target
state from the set subFinalSt :

subOutTransTargetStateNs ∈ subOutTransNs ½³ subF inalSt

The rules defining the elements of the resulting regrouped model M2 are as follows.

Rule 1: States of M2

M2 has all the states of M1, the super-state ns and a number of initial and final sub-
states:

S2 = S1 ∪ { ns} ∪ subInitialF inalStates

Rule 2: Containment of the states of M2

The states containment of M2 has all the elements of containmentS1 but the container
of each regrouped states subStates is changed to the new super-state ns. containmentS2
also has ns and its container as its element. The other elements of containmentS2 are
the initial and final sub-states associated with their container ns:

containmentS2 = (containmentS1 ¢− (subStates × { ns} )) ∪
{ ns 7→ container} ∪ (subInitialF inalStates × { ns})

Rule 3: Transitions of M2

M2 has all the transitions of M1 as well as the elaborating transitions of the new state
ns:
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T2 = T1 ∪ elabTransNs

Rule 4: Containment of the transitions of M2

The transitions containment containmentT2 of M2 has all the elements of contain-
mentT1 but the container of each regrouped transition subTransitions becomes the new
super-state ns. Also, containmentT2 includes the containment elements of the elabo-
rating transitions whose container are ns:

containmentT2 = (containmentT1 ¢− (subTransitions × { ns} )) ∪
(elabTransNs × { ns} )

Rule 5: Source states of M2 transitions

The source states of the transitions of M2 has all the elements of transSourceStateT1.
But the source states of the outgoing transitions outTransNs are ns. Additionally,
transSourceStateT2 includes the elements that associate each new incoming sub-transitions
of ns, subInTransNs with an initial state as its source state.

transSourceStateT2 = (transSourceStateT1¢− outTransNs × { ns}) ∪
subInTransSourceStateNs

Rule 6: Target states of M2 transitions

The source states of the transitions of M2 has all the elements of transTargetStateT1.
But the target states of the incoming transitions inTransNs are ns. Additionally,
transTargetStateT2 includes the elements that associate each new outgoing sub-transitions
of ns, subOutTransNs with a final state as its target state.

transTargetStateT2 = (transTargetStateT1¢− inTransNs × { ns}) ∪
subOutTransSourceStateNs

Rule 7: Elaborating transitions of M2

The elaborating transitions of M2 are all the elaborating transitions of M1 and including
the elaborating transitions of the super-state ns:

elaborateT2 = elaborateT1 ∪ elabTransNs

Rule 8: Non-elaborating transitions of M2

The transitions of M2 which do not elaborate any transition are all the non-elaborating
transitions of M1 :

nonelaborateT2 = nonelaborateT1

Rule 9: Outgoing elaborating transitions of M2

The outgoing elaborating transitions of M2 are the outgoing elaborating transitions of
M1 and including the outgoing elaborating transitions of ns:
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elaborateOutgoingT2 = elaborateOutgoingT1 ∪ elaborateOutNs

Rule 10: Incoming elaborating transitions of M2

The incoming elaborating transitions of M2 are the incoming elaborating transitions of
M1 and including the incoming elaborating transitions of ns:

elaborateIncomingT2 = elaborateIncomingT1 ∪ elaborateInNs

An alternative formalisation would be to model the structures in Section 7.2.1 and 7.3.1
with machine variables and the flattening and grouping (i.e., the elements of the M2
components) as events. The constraints could be modelled as invariants giving rise to
proof obligations for verifying that the flattening and grouping maintain the constraints.
This approach could be investigated in future work.

7.4 Composed Machines in Event-B

The extension to Event-B to support event-based composition and decomposition has
been introduced by Silva and Butler [89, 90]. They have introduced the composed
machine notion. A plug-in extension to the Rodin to support the composed machine
notion has been developed. Based on this Event-B composed machine notion, the notion
of composed machine and related notions are introduced in UML-B and are described
in Section 7.5.

The composed machine notion allows a number of Event-B machines to be composed.
The composed machine may be used in an Event-B development as a refinement of an
abstract machine. Figure 7.4 shows an example of the structure of a composed machine
named CM.

COMPOSED MACHINE CM
REFINES M
INCLUDES

mC1
mC2

INVARIANT inv1
EVENTS

ev refines M .ev
Combines Events mC1.ev || mC2.ev

END

Figure 7.4: A Structure of Event-B Composed Machine

The composed machine has six clauses. The refines clause indicates a more abstract
machine which is refined by a composed machine. The includes clause indicates the
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machines which are being composed. For the included machine, there is an invariant
option property which allows the modeller either to include its invariants or not. The
invariant clause contains the invariants of the composed machine. The invariants can
refer to variables of all included machines. The events clause represents the events of
the composed machine which are being composed from the included machines and they
must refine all the events of the abstract machine. For each of these events, the combines
events clause needs to be defined. The combines events clause indicates which event(s)
of the included machine(s) is(are) being composed.

In Figure 7.4 the composed machine CM refines the machine M. The composed machine
CM includes the two machines mC1 and mC2. It has only one composed event ev
and this event refines the abstract event ev of machine M. The event is defined by
combining the events ev of the included machine mC1 and ev of the included machine
mC2. Combining two events means forming a single event from the guards and actions
of both events.

7.5 Composed Machine, Included Machine, Composed Event

and Constituent Event

This section introduces the notions of composed machine, included machine, composed
event and constituent event into UML-B. The motivation for introducing these notions
comes from performing event-based decomposition in Event-B [24] as described in Sec-
tion 7.4.

In general, a composed machine is similar to a UML-B machine in terms of its rela-
tionships with other UML-B elements. In particular, a composed machine may refine a
machine, may see a number of contexts and it may contain invariants and theorems. In
contrast to a machine, a composed machine may include a number of included machines
and a number of composed events. An included machine represents some machines in
the UML-B model.

The composed events of a composed machine are a composition of transitions that are
contained in all the included machines. Each composed event refines a transition of
the machine being refined by the composed machine. A composed event may contain a
number of constituent events. A constituent event is a transition of an included machine.

We describe an example of modelling a composed machine. The following example is
based on the client-server system in Section 7.2 and in particular the machine EX4 in
Figure 7.3(b). We want to decompose the machine M4 into three machines which model
the client, middleware and server components. Figure 7.5 shows the partitioning of the
states in the state machines of machine EX4 . The states option and receivedResponse
which are not grouped in the state waitingResponse are the states of the client component
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Figure 7.5: Partitioning of the State Machines for Decomposition

i.e., machine mC. The nested state machine in the state waitingResponse is partitioned
into three state machines which are highlighted by three boxes. We want to place the
states sentRequest and sentResponse in the middleware component i.e., machine mMW
and into two state machines. The states receivedRequest and processed are the states
of a state machine of the server component i.e., machine mS. Figure 7.5 has additional
grouping compared with Figure 7.3(b).

Figure 7.6 shows a UML-B model for a composed machine. The composed machine
CM (a) consists of three included machines: mC, mS and mMW and seven composed
events: choose, sendReq, recvReq, process, sendRsp, recvRsp and end. Figure 7.6 (b)
shows the denotes property for the included machine mC. This property indicates that
the included machine is representing the machine mC. Figure 7.6 (c) shows a table
listing the two constituent events of the composed event sendReq. The first row is the
transition sendReq of mC. The second row is the transition sendReq of mMW.

The included machines denote the machine mC, mS and mMW respectively. The ma-
chine mC models the client component. The machine mS models the server component.
The machine mMW is the middleware component which synchronizes the communica-
tion between the client and server components. The UML-B models of these machines
are shown in Figure 7.7, 7.8 and 7.9. These state machines are derived by partitioning
the state machine in Figure refgroupingDecom.
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Figure 7.6: UML-B Model of the Composed Machine

Figure 7.7 contains the state machine of a client component showing its states and
transitions. The states and transitions of a server component can be seen in Figure 7.8.
Figure 7.9 shows the two state machines of the middleware component. The transition
sendReq of the middleware is synchronized with the transition sendReq of the client
component. The transition recvReq is synchronized with the transition recvReq of the
server component. The middleware component also contains the transitions sendRsp
and recvRsp for synchronization with the client and server components.

Figure 7.10 shows the Event-B specification for the event sendReq. Each guard and
action has a label indicating its container machine. For example, the first guard is
labelled as mC/self.type indicates that the guard is contained in the machine mC. The
Event-B specification is generated by the Event-B composition plug-in. This plug-in
is an extension made to the Rodin Event-B tool and supports the Event-B composed
machine described in Section 7.4. The Event-B specification is generated from the Event-
B composed machine. In this case, this Event-B composed machine is created by the
UML-B composed machine CM .

7.6 Extending the UML-B Metamodel and Tool to Sup-

port Composition

This section describes the extension to the UML-B Version 2 metamodel to support com-
position. The extensions involve adding a number of metaclasses and the relationships
between them and the existing metaclasses.

There are four metaclasses which are added to the metamodel namely UMLBComposed-
Machine, UMLBIncludedMachine, UMLBComposedEvent and UMLBCombinedEvent.
Two enumerations are also added namely extendClause and invariantOption.
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Figure 7.7: State Machine of the Client Component

Figure 7.8: State Machine of the Server Component

Figure 7.9: State Machines of the Middleware Component
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Figure 7.10: Generated Event-B Machine for Composed Event

Figure 7.11 shows part of the extension that focused on the metaclass UMLBComposed-
Machine and its relationship to other new metaclasses (UMLBIncludedMachine and
UMLBComposedEvent) and the existing metaclasses (UMLBMachine and UMLBCon-
text). The association refines from the metaclass UMLBComposedMachine to UMLB-
Machine means a composed machine may refine a machine. The association contexts
with the metaclass UMLBContext means a composed machine may see many contexts.
The containment includedMachines with the metaclass UMLBIncludedMachine means
a composed machine may contain a number of included machines. The containment
composedEvents with the metaclass UMLBComposedEvent means a composed machine
may contain a number of composed events.

Figure 7.11: UML-B Metamodel Extensions for Composed Machine

Figure 7.12 shows part of the extension that focused on the metaclass UMLBIncluded-
Machine and its relationship to the existing metaclass UMLBMachine. The association
denotesMachine specifies that an included machine must denotes a machine (Note that
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UMLBIncludedMachine represents a placeholder for a reference to a machine, rather
than an actual machine). The metaclass UMLBIncludedMachine has two attributes
namely label and invariant. The attribute label is derived from the name of the ma-
chine being denoted. The attribute invariant is of type invariantOption. The type
is given by the new enumeration invariantOption which has two enumeration literals
namely, no invariant for not including the invariants of the denoted machine and in-
clude invariant, for including the invariants.

Figure 7.12: UML-B Metamodel Extensions for Included Machine

Figure 7.13 shows part of the extension that focused on the metaclass UMLBCom-
posedEvent and its relationship with the new metaclass UMLBCombinedEvent and the
existing metaclass UMLBguardedAction. The association refines with the metaclass
UMLBguardedAction specifies that a composed event refines a number of events. The
containment combinedEvents with the metaclass UMLBCombinedEvent specifies that a
composed event may contain a number of constituent events. Similar to the metaclass
UMLBguardedAction, the metaclass UMLBcomposedEvent has an attribute convergence
which is either ordinary, convergent and anticipated. Another attribute of a composed
event is extended which is either not extended, for not extending an abstract event, or
extended for extending an abstract event. Both the extended and not extended options
will retain the guards and actions of an abstract event in the refinement. The difference
is, the extended option will not allow the guards and actions to be modified therefore,
they are hidden in the Rodin tool editor. In contrast, the not extended option will allow
the guards and actions to be modified.

Figure 7.14 shows part of the extension that focused on the metaclass UMLBCom-
binedEvent and its relationship with the new metaclass UMLBIncludedMachine and
the existing metaclass UMLBguardedAction. The metaclass UMLBCombinedEvent rep-
resents the constituent events of a composed event( Note that UMLBCombinedEvent
represents a placeholder for a reference to an event, rather than an actual event). The
association includedmachine specifies that a constituent event refers to an included ma-
chine. The association denotesEvent specifies that a constituent event denotes an event.
The drawing tool (Section 7.7) restricts this event to be one of the events of the included
machine.
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Figure 7.13: UML-B Metamodel Extensions for Composed Event

Figure 7.14: UML-B Metamodel Extensions for Combined Event

7.7 Extending the UML-B Drawing Tool

The drawing tool of the package diagram editor was extended to support composition.
The extensions involved the following:

• adding figures for composed machine, included machines, composed events, sees
links and refines links.

• adding creation tools which enable creation of the above figures and links.

• adding properties of the above figures.

Figure 7.15(a) shows a figure for composed machines which is a blue rectangle. Attached
to it are included machines and composed events which are simply text labels. Machine1
and Machine2 are examples of included machines and ev is an example of composed
event. Another added figure is the sees figure which is an arrow linking the composed
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Figure 7.15: Drawing Tool Extensions for a Package Diagram Editor

machines and contexts. Also added is the refines figure which is an arrow linking the
composed machines and machines.

The tool palette of UML-B is extended with additional creation tools for creating com-
posed machines, composed events, included machines, sees links and refines links on the
drawing canvas. The tool palette is shown in Figure 7.15(b). The yellow box highlights
the new creation tools.

Each included machine has a denotes property. This property is specified by choosing
from a combo box provided by the tool. The list contains all the machines in a UML-B
package diagram. Each composed event has a refines property. This refines property can
be chosen from a list box containing all the class events and transitions of the abstract
machine. Each composed event is a combination of events (constituent events) of the
included machines. These constituent events are added using a table.

7.8 Summary

This chapter has described the extensions to the UML-B language to support event-
based composition and decomposition. The techniques of flattening and grouping state
machines which facilitate decomposition in UML-B have been described. This chapter
then introduced the notions of composed machines, included machines, composed events
and combined events. These correspond to the notion of composed machine and its
structures in Event-B. The extension to the UML-B metamodel which gives precise
definitions of these notions are also described. The metamodel extensions were used to
extend the UML-B drawing tool to support composition. The Event-B translator was
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extended to support the flattening and grouping techniques. Chapter 8 evaluates the
extensions to the metamodel in the ATM case study.



Chapter 8

Modelling The ATM Case Study

in UML-B ((De)composition)

8.1 Introduction

This chapter contains a description of the ATM case study modelled using the UML-B
Version 2 tool which incorporates the composition and decomposition. The purpose of
the task is to validate the techniques of flattening state machines and state grouping
defined in Chapter 7. Also, the case study is done to validate the notions of composed
machine, included machine, composed event and constituent event in Chapter 7.

8.2 ATM Case Study: An overview

The UML-B development of the ATM system describes in this chapter is a continuation
of the development in Chapter 6. There are thirteen machines (including decomposed
machines) and one composed machine in the ATM UML-B development. The package
diagram in Figure 8.1 shows the contexts, machines and a composed machine and their
relationships. Chapter 6 describes the first five machines. This chapter describes the
rest of the machines that involve composition and decomposition. The summaries for
each machine are as follows:

Fifth Refinement (ATM R5): Flattening the state machines hierarchies by removing
the super-state structures.

Sixth Refinement (ATM R6): Grouping states by adding a super-state structure
and nesting some of the states in the super-state.

Seventh Refinement (ATM R7): Introducing instances of ATM as a middleware.

123
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Figure 8.1: ATM Package Diagram

Eighth Refinement (ATM R8): Introducing a composed machine that composes
the machine mATM, mBank and mMW. The machines mATM and mBank are the
decomposed machines based on the seventh refinement (ATM R7 ).

Abstract ATM component (mATM ): Models the behaviour of ATMs.

Abstract Bank component (mBank): Models the behaviour of a bank.

Abstract Middleware component (mMW ): Models the behaviour of a middleware.
The middleware sychronizes the sending and receiving communication between ATMs
and the bank.

The machine mMW R1 introduces a form of communication using message passing
via five channels corresponding to different requests and responses (withdrawal request,
check balance request, successful withdrawal response, unsuccessful withdrawal response
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and check balance response). The machine mMW R2 refines the five communication
channels into one channel in order to reflect the actual implementation.

The fifth and sixth refinement are the refinement machines preceding the decomposition.
In the Event-B development of Chapter 6, decomposition is not being modelled, therefore
these two machine levels do not correspond to any of the Event-B refinements. Similarly,
the seventh and eight refinements do not correspond to any of the Event-B refinements as
they relate to decomposition. The machine mMW R1 which models the message passing
partly corresponds to the fourth and the fifth refinements of the Event-B development
in Sections 3.3.5 and 3.3.6. The middleware machine mMW R2 partly corresponds to
the sixth refinement of the Event-B development in Section 3.3.7.

The generated Event-B specifications are in Appendix D.

8.3 Fifth Refinement

The fifth refinement changes the state machines of ATM R4 by flattening the nested
state machines in the fourth refinement. This is done in order to systematically decom-
pose events into events at an ATM and events at a bank. This refinement retains all the
three classes of the machine ATM R4. Which means the class diagram of ATM R5 con-
sists of three refined classes atm, atmB and account. All these classes have the inherited
attributes that inherit their corresponding classes in ATM R4.

Figure 8.2 is the refined state machine ATM SM that has been flattened. All the super-
states and their nested state machines have been removed. The highest level of super-
state in the hierarchy which has been removed is the super-state active atm. The second
level of super-states which are removed are transOption and performTrans. At the third
level hierarchy, within the super-state transOption, the super-states reqWD and reqCB
are removed. Within the super-states performTrans, the super-states processedWDOK,
processedWDFail and processedCB are removed. The sub-states of these super-states
are lifted to the top level. The transitions between the lifted sub-states are also lifted
together with the states to the top level. The transitions refine the respective abstract
transitions of ATM R4. It can be seen from the figure that only the inner-most sub-
states are retained with all the transitions. The target states of the incoming transitions
to the super-states which are removed are replaced by the corresponding innermost sub-
states. The source states of the outgoing transitions from these super-states are replaced
by the innermost sub-states.
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Figure 8.2: Flattening the State Machine ATM SM in the Fifth Refinement

8.4 Sixth Refinement

Similar to the fifth refinement, this refinement does not introduces any new classes or
new attributes. The sixth refinement refines the fifth refinement by using the state
grouping technique. The grouping technique is used to partition the states and transi-
tions between ATM, middleware and bank components. In this refinement, a new state
waitingResponse is introduced in the refined state machine ATM SM. The states and
transitions at the top level hierarchy of the refined state machine ATM SM including
the new state waitingResponse are the states and transitions occur at ATMs. The states
and transitions occur at the bank and middleware are nested in the state machine of the
new state.

Figure 8.3 is the refined state machine ATM SM showing the transitions, the refined
states and the new state waitingResponse. Attached to the state waitingResponse is the
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Figure 8.3: The Refined State Machine ATM SM of the Sixth Refinement

nested state machine waitingResponseSM. In this refinement, the transition sendReqCB
will change an ATM state from trans into the state waitingResponse. Similarly, the
transition sendReqWD will change an ATM into the state waitingResponse. While in
the state waitingResponse, either the transition recvdRspWDOK, recvdRspWDFail or
recvdRspCB may occur. These three transitions will place an ATM into the state rsp-
WDOK, rspWDFail or rspCB respectively.

The states and transitions of the nested state machine waitingResponseSM can be seen
in Figure 8.4. The transitions from initial states and end at final states elaborate the
incoming and outgoing transitions of the super-state waitingResponse. All other transi-
tions refine the respective abstract transitions of ATM R5.

8.5 Seventh Refinement

The seventh refinement introduces instances of ATM as a middleware. We intend to
decompose the machine into three machine components i.e., ATM, bank and middleware.



Chapter 8 Modelling The ATM Case Study in UML-B ((De)composition) 128

Figure 8.4: The State Machine waitingResponseSM of the Sixth Refinement

The middleware will synchronize the communication between ATM and bank by sharing
the transitions send and receive for both request and response. These components cannot
share variables. Therefore attributes which duplicate the attributes sent by ATMs to
the bank and the attribute sent by the bank to ATMs are introduced in the middleware.

Figure 8.5 shows the classes of the seventh refinement. The classes are the refined
classes account, atm, atmB and a new class atmM. The refined class atm represents
a set of ATMs as the requesting part. The refined class atmB represents the ATMs
set as the bank, which is the responding part. The refined class atmB has a new
attribute atm acbalB and the attribute atm acbal is removed from the refined class atm.
The attribute atm acbalB represents an account balance at the bank. Sending a request
involves copying request attributes (e.g., withdrawal amount) from ATM to middleware.
The class atmM is used to model this. Similarly sending a response involves copying
response attributes (e.g., account balance) from bank to middleware. Again, atmM is
used to model this. The class atmM has three attributes atm cardM, atm wdamM and
atm acbalM which represent copies of the set of ATM cards, withdrawal amounts and
accounts balance of ATMs at the middleware respectively.

In this refinement the attribute atm acbal is replaced by atm acbalB and moved to
the class atmB. This is because the atm acbal represents the account balance which
is updated at the bank by the event withdrawOK, withdrawFail or checkBalance. The
movement of the account balance attribute to atmB is postponed until the middleware
is introduced. This is because when sending a response to an ATM, the account balance
is removed from the set atm acbal at the bank. However, a copy of the updated account
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Figure 8.5: Classes of the Seventh Refinement

balance by bank is needed at an ATM to display to the user. Therefore a copy of the
account balance needs to be made at the middleware so that it can be send to the ATM.

In this refinement, only the refined class atm has state machines (including the nested
state machine). This means all the transitions belong to the refined class atm until the
decomposition is done. Decomposition will be explained later. The explicit parameter,
guards and actions of the transition sendReqWD are shown in the following table. These
are added as the properties of the transition which give rise to the properties of the Event-
B event. The implicit parameter selfATM, guard and actions relating to the source and
target states of the transition are generated automatically. The transition sendReqWD
will add an instance of ATM to the class atmM (act2 ), copy the withdrawal amount at
the ATM to the attribute atm wdamM (act3 ) and copy the identity of the card in the
ATM to the attribute atm cardM (act4 ).

Transition: sentReqWD

Parameters:
am (type: N)

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: atm cashA(selfATM) > MIN CASH

grd3: am ≤ MIN CASH

Actions:
act1: atm wdam(selfATM) := am

act2: atmM := atmM ∪ { selfATM}
act3: atm wdamM(selfATM) := am

act4: atm cardM(selfATM) := atm card(selfATM)
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Similarly the transition sendReqCB behaves like the transition sendReqWD except it
will not copy a withdrawal amount.

For the transition recvReqWD, the attributes atm cardM and atm wdamM replace the
attributes atm card and atm wdam in the guards (grd1 and grd2 ) and actions (act1 and
act4 ). The transition recvReqWD will remove an ATM instance from the class atmM
(act3 ) and from the domain of all attributes of atmM (act5, act6 and act7 ).

In this level, act2, act3 and act5..act7 are explicitly added as the actions. Later in the
development when applying decomposition, the transition recvReqWD is shared by the
bank and middleware components. In the bank component described in Section 8.6.2,
the transition recvReqWD is modelled as a constructor. In this case, act2 is generated
automatically. In the middleware component described in Section 8.6.3, the transition
recvReqWD is modelled as a destructor. In this case, act3 and act5..act7 are generated
automatically. Similarly for the above transition sentReqWD, the send response and
receive response transitions are added which will be described later in this section. All
these transitions have some actions which are constructors and destructors which will
be generated automatically in the decomposition.

Transition: recvReqWD

Guards:
grd1: selfATM ∈ dom(atm cardM)
grd2: selfATM ∈ dom(atm wdamM)

Actions:
act1: atm wdamB(selfATM) := atm wdamM(selfATM)
act2: atmB := atmB ∪ { selfATM}
act3: atmM := atmM \ { selfATM}
act4: atm cardB(selfATM) := atm cardM(selfATM)
act5: atm acbalM := { selfATM} ¢− atm acbalM

act6: atm cardM := { selfATM} ¢− atm cardM

act7: atm wdamM := { selfATM} ¢− atm wdamM

The specification of the transition recvReqCB is similar to the transition recvReqWD
except that grd2 and act1 are irrelevant. This refinement relies on the following invari-
ants.

The invariant

∀ a· a∈ (sentReqWD ∪ sentReqCB) ⇒ a∈ dom(atm card)

specifies that each instance of ATMs which is either in the states sentReqWD or sen-
tReqCB, has an ATM card associated with it.
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The invariant

∀ a· a∈ sentReqWD ⇒ a∈ dom(atm wdam)

specifies that each instance of ATMs which is in the state sentReqWD, has a withdrawal
amount associated with it.

The invariant

∀ a· a∈ (sentReqWD ∪ sentReqCB) ∧ a∈ dom(atm card) ∧ a∈ dom(atm cardM) ⇒
atm card(a)=atm cardM(a)

specifies that for all ATMs which are in the states sentReqWD or sentReqCB, the ATM
card associated with the ATMs at the ATM is the same as the ATM card associated
with the ATMs at middleware.

The invariant

∀ a· a∈ sentReqWD ∧ a∈ dom(atm wdam) ∧ a∈ dom(atm wdamM) ⇒
atm wdam(a)=atm wdamM(a)

specifies that for all ATMs which are in the states sentReqWD, the withdrawal amount
at the ATM is the same withdrawal amount at middleware.

In this refinement, for the transitions sendRspWDOK, sendRspWDFail and sendRspCB,
the attribute atm acbalB replaces the attribute atm acbal (grd1 ). The transition will
remove the ATM from the variable atm acbalB (act2 ). It also will add the ATM instance
into the class atmM (act6 ), copy the value of account balance at a bank to a variable
at a middleware (act4 ) and copy the ATM card at middleware (act7 ).

Transition: sendRspWDOK, sendRspWDFail or sendRspCB

Guards:
grd1: selfATM ∈ dom(atm acbalB)
grd2: selfATM ∈ dom(atmB)

Actions:
act1: atmB := atmB \ {selfATM}
act2: atm acbalB := { selfATM} ¢− atm acbalB

act3: atm cardB := { selfATM} ¢− atm cardB

act4: atm acbalM(selfATM) := atm acbalB(selfATM)
act5: atm wdamB := { selfATM} ¢− atm wdamB

act6: atmM := atmM ∪ { selfATM}
act7: atm cardM(selfATM) := atm cardB(selfATM)

For the transitions recvRspWDOK, recvRspWDOK and recvRspCB, the attribute
atm acbalM replaces the attribute atm acbal of the abstract transitions (grd1 and act1).
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It will remove an ATM from the class atmM (act2 ) and from the domain of all attributes
of the class atmM (act3, act4 and act5 )

Transition: recvRspWDOK, recvRspWDOK or recvRspCB

Guards:
grd1: selfATM ∈ dom(atm acbalM)
grd3: selfATM ∈ dom(atmM)
grd4: selfATM ∈ dom(card)

Actions:
act1: atm acbalA(selfATM) := atm acbalM(selfATM)
act2: atmM := atmM \ { selfATM}
act3: atm cardM := { selfATM} ¢− atm cardM

act4: atm acbalM := { selfATM} ¢− atm acbalM

act5: atm wdamM := { selfATM} ¢− atm wdamM

This refinement relies on the following invariants:

The invariant

∀ a· a∈ (rspWDOK ∪ rspWDFail ∪ rspCB) a∈ dom(atm acbal) ∧ a∈ dom(atm acbalA)
⇒ atm acbalA(a)=atm acbal(a)

specifies that for all ATMs which are in the states rspWDOK, rspWDFail or rspCB, the
account balance associated with the ATM of the variable atm acbalA is the same as the
account balance associated with the ATM of the variable atm acbal.

The invariant

∀ a· a∈ (processWDOK ∪ processWDFail ∪ processCB) ⇒ a∈ dom(atm acbal)

specifies that each instance of ATMs which is either in the state processWDOK, process-
WDFail or processCB, has an account balance associated with it.

The invariants

∀ a· a∈ processWDOK ∧ a∈ dom(atm acbal) ∧ a∈ dom(atm acbalB) ⇒
atm acbal(a)=atm acbalB(a)

∀ a· a∈ processWDFail ∧ a∈ dom(atm acbal) ∧ a∈ dom(atm acbalB) ⇒
atm acbal(a)=atm acbalB(a)

∀ a· a∈ processCB ∧ a∈ dom(atm acbal) ∧ a∈ dom(atm acbalB) ⇒
atm acbal(a)=atm acbalB(a)

specifies that for all ATMs which are in the states processWDOK, processWDFail or
processCB, the account balance associated with the ATM of the variable atm acbal is
the same as the account balance associated with the ATM of the variable atm acbalB.
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The transitions recvRspWDOK, recvRspWDFail, recvRspCB, withdrawATMOK, with-
drawATMFail and checkBalATM refines the corresponding transitions of ATM R6. The
guards and actions of these transitions involving the attributes atm acbal are replaced
with the attributes atm acbalM. The refinement relies on the following invariants:

The invariant

∀ a· a∈ (sentRspWDFail ∪ rspWDFail ∪ sentRspWDOK ∪ rspWDOK ∪ sentRspCB

∪ rspCB) ⇒ a∈ dom(atm acbal)

sepcifies that each instance of ATMs which is either in the states sentRspWDOK, rsp-
WDOK,sentRspWDFail, rspWDFail, sentRspCB or rspCB, has an account balance as-
sociated with it.

The invariants

∀ a· a∈ (sentRspWDFail ∪ rspWDFail) ∧ a∈ dom(atm acbal) ∧ a∈ dom(atm acbalM)
⇒ atm acbal(a)=atm acbalM(a)

∀ a· a∈ (sentRspWDOK ∪ rspWDOK) ∧ a∈ dom(atm acbal) ∧ a∈ dom(atm acbalM)
⇒ atm acbal(a)=atm acbalM(a)

∀ a· a∈ (sentRspCB ∪ rspCB) ∧ a∈ dom(atm acbal) ∧ a∈ dom(atm acbalM) ⇒
atm acbal(a)=atm acbalM(a)

specifies that for all ATMs which are in the states sentRspWDOK, rspWDOK, sentR-
spWDFail, rspWDFail, sentRspCB or rspCB, the account balance associated with the
ATM of the variable atm acbal is the same as the account balance associated with the
ATM of the variable atm acbalM.

In practice, the above invariants are specified as machine invariants in the UML-B class
diagram. The invariants are discovered by using the Rodin interactive prover. Examples
of using the prover to construct invariants are given in Section 8.10.

The model of this refinement level can be improved by attaching a state machine to each
class atm, atmM and atmB rather than attached the state machines only to the class
atm. The state machine of atm will be the state machine as in Figure 8.3 but without the
nested state machine waitingResponseSM of the state waitingResponse. Figure 8.6 shows
the partitioning of the nested state machine waitingResponseSM into six state machines
which are highlighted by six boxes. The box labelled atmB will be the state machine of
the class atmB. The other five boxes labelled atmM will be the state machines of the
class atmM. This separation of state machines is done the same way when performing
machine decomposition in Section 8.6.

The current model does not separate the state machines this way because previously
the translator (U2B) did not support the separation of state machines. However, the
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Figure 8.6: Partitioning of the Nested State Machine

translator has been updated to support modelling this separation of state machines into
several classes. The translator will merge transitions with the same label in different state
machines as one event in the generated Event-B machine. For example, the transitions
sentReqWD of the state machine of atm and atmM classes will be translated as one
event sentReqWD in Event-B machine. The event is a combination of both transitions.
Separating the state machines into respective classes gives an advantage to the modeller
by automatically generating the actions of adding instances (eg. act2 of the sentReqWD
and act2 of the recvReqWD) and removing instances from classes and attributes (eg.
act3, act5, act6, act7 of the recvReqWD).

8.6 Decomposition of the Seventh Refinement and Com-

position (Eight Refinement)

The seventh refinement is decomposed into three machines: mATM, mBank and mMW.
Machine mATM represents a model of ATMs which sends requests to the bank and
receives responses from the bank. Machine mBank represents a model of a bank which
receives requests from ATMs and sends responses to the ATMs. These two machines do
not communicate with each other directly but they communicate indirectly via a middle-
ware. This middleware is modelled in the machine mMW. This form of communication
based on message passing is described in [25].
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Figure 8.7: Architectural Illustration of Decomposition

Figure 8.7 illustrates the decomposition into the three machines. The classes of the
seventh refinement are split between the machines mATM, mBank and mMW based
on the transitions that update or use them. The class atm and its attributes belong to
mATM, the classes account, atmB and their attributes belong to mBank and the class
atmM and its attributes belong to mMW. The lines that join the machines represent the
shared transitions between them. The lines are drawn to separate the send and receive
transitions to make them easy to read and do not represent anything else.

The states of the state machines in the seventh refinement are partitioned into the three
machines mATM, mBank and mMW. The structure of state machines of the seventh
refinement is the same as in the sixth refinement therefore, the state machines of the
sixth refinement in Figure 8.3 and 8.6 apply. The states of the state machine ATM SM
(Figure 8.3) occur at ATMs, therefore, they are the states of machine mATM. As ex-
plained in Section 8.5, in the nested state machine waitingResponseSM (Figure 8.6), the
states within the boxes labelled atmM occur at the middleware, therefore, they are the
states of machine mMW. The states within the box labelled atmB occur at the bank,
therefore, they are the states of machine mBank. The incoming and outgoing transition
of the partitioned states are the transitions of the respective machine.

The requesting component, mATM interacts with the middleware, mMW by sharing
the send request transitions (transitions sendReqWD and sendReqCB) and receive re-
sponse transitions (transitions recvRspWDOK, recvRspWDFail and recvRspCB). The
responding component, mBank interacts with the middleware, mMW by sharing the
receive request transitions (transitions recvReqWD and recvReqCB) and send response
transitions (transitions sendRspWDOK, sendRspWDFail and sendRspCB).

The three decomposition machines are described in the following three sub-sections.
The shared transitions are described in Section 8.6.4. The composition is described in
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Figure 8.8: UML-B Machine for ATM Component

Section 8.6.5.

8.6.1 ATM Component: Machine mATM

Machine mATM is a model of the requesting component, the ATMs. Figure 8.8 shows
the class diagram (a) and state machine diagram (b) of ATMs. The class diagram con-
tains a class atm which represents a set of ATMs with attributes atm cashA, atm acbalA,
atm wdam and atm card.

The state machine of ATM SM is the state machine as in Figure 8.3 but without the
nested state machine waitingResponseSM of the state waitingResponse. The state ma-
chine ATM SM shows the states changes of an ATM when a transition is triggered.
In particular, when an ATM is in a state trans, a withdrawal request (sendReqWD) or
check balance request (sendReqCB) may be triggered and is send to a bank. A request
will place an ATM in a waiting state (waitingResponse), that is waiting for the request
to be processed by bank. A receive response transition i.e., either a success withdrawal
(recvRspWDOK ), unsuccessful withdrawal (recvRspWDFail) or check balance (recvR-
spCB) may be triggered when an ATM is in a waiting state.
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Figure 8.9: UML-B Machine for Bank Component

8.6.2 Bank component: Machine mBank

The bank component is modelled in machine mBank as shown in Figure 8.9. The class
diagram (a) contains two classes, i.e., account and atmB. The class account has an
attribute bal. The class atmB has attributes atm acbalB, atm wdamB and atm cardB.
Attached to the class atmB is a state machine bankSM which model the behaviour of a
bank with respect to a requesting ATM.

Figure 8.9(b) shows the state machine of the bank component. It is the partitioned state
machine in Figure 8.6 which is labelled as atmB. The state machine bankSM shows the
states changes of an ATM when a transition is triggered. A bank may receive a with-
drawal request (transition recvReqWD) or check balance request (transition recvReqCB)
and will place the bank in the state recvdReqWD and recvdReqCB respectively. After
the bank has process a request (transitions withdrawOK, withdrawFail or checkBalance),
it will send the result to an ATM (transitions sendRspWDOK, sendRspWDFail and
sendRspCB).
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Figure 8.10: UML-B Machine for Middleware Component

8.6.3 Middleware component: Machine mMW

The middleware component is modelled in machine mMW. It synchronizes the send and
receive transitions between ATM and bank components.

Figure 8.10(a) shows the class diagram for machine mMW with a class atmM and
its attributes atm acbalM, atm wdamM and atm cardM. Attached to the class atmM
are the five state machines reqWD SM, reqCB SM, rspWDOK SM, rspWDFail SM and
rspCB SM. All these state machines have only one state (excluding initial and final
states) and two transitions, i.e., send and receive transitions. These state machines are
the partitioned state machines in Figure 8.6 which are labelled as atmM. Figure 8.10(b)
shows the state machine reqWD SM.

8.6.4 Shared Transitions

The send request transitions (sendReqWD and sendReqCB) and receive response transi-
tions (recvRspWDOK, recvRspWDFail and recvRspCB) are shared by machines mATM
and mMW. The receive request transitions (recvReqWD and recvReqCB) and send re-
sponse transitions (sendRspWDOK, sendRspWDFail and sendRspCB) are shared by
machines mBank and mMW. The guards and actions of these shared transitions are par-
titioned between the machines correspond to the splitting of the classes and attributes.
For example, the sendReqWD transition of the machine mATM includes the guards and
actions from the seventh refinement involving the class atm and its attributes atm card,
atm cashA and atm wdam. The rest of the guards and actions are in the sendReqWD
transition of the machine mMW.

When splitting the transitions, a number of parameters may be introduced in the transi-
tions in both machines mATM and mMW or in both machines mMW and mBank. For
an example, consider the transition sendReqWD of the seventh refinement. We want to
split the transition into the machines mATM and mMW. The parameter am is shared
by both machines. The guards grd1..grd3 are the guards of machine mATM. The action
act1 is the action of machine mATM. The actions act2..act4 are the actions of machine



Chapter 8 Modelling The ATM Case Study in UML-B ((De)composition) 139

mMW. However, this is not possible since the action act4 refers to an attribute atm card
of machine mATM. The action assigns the value of the attribute atm card to the at-
tribute atm cardM. To overcome this, a new shared parameter c is introduced in the
transition sendReqWD in both machines. Additionally, grd4 is added in the machine
mATM which specifies the parameter c as the value of the the attribute atm card. Then,
act2 of mMW assigns c to the attribute atm cardM.

Transition: sentReqWD of ATM R7

Parameters:
am (type: N)

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: atm cashA(selfATM) > MIN CASH

grd3: am ≤ MIN CASH

Actions:
act1: atm wdam(selfATM) := am

act2: atmM := atmM ∪ { selfATM}
act3: atm wdamM(selfATM) := am

act4: atm cardM(selfATM) := atm card(selfATM)

Transition: sendReqWD of mATM

Parameters:
par1: am (type: N)
par2: c (type: V alidCard)

Guards:
grd1: selfATM ∈ dom(atm card)
grd2: atm cashA(selfATM) > MIN CASH

grd3: am ≤ MIN CASH

grd4: atm card(selfATM) = c

Actions:
act3: atm wdam(selfATM) := am

Transition: sendReqWD of mMW

Parameters:
par1: am (type: N)
par2: c (type: V alidCard)

Actions:
act1: atm wdamM(selfATM) := am

act2: atm cardM(selfATM) := c
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Figure 8.11: UML-B Composed Machine ATM R8

8.6.5 Eighth Refinement: Composed Machine

The composed machine ATM R8 in Figure 8.1 composes the three component ma-
chines mATM, mBank and mMW. The composed machine ATM R8 refines the machine
ATM R7 and it gives rise to the generated Event-B machine ATM R8. The composed
machine ensures that the composition of the three decomposed machines are valid re-
finement machine. Thus, they can be refined separately from one another which can
reduce the complexity of modelling and proving a system being modelled.

Figure 8.11(a) shows the composed machine ATM R8. In the IncludedMachine compart-
ment is a list of include machines. Each of the included machine denotes the decomposed
machine mATM, mBank and mMW correspondingly. Example of a denote property is
in Figure 8.11(b) for the included machine mATM.

In the ComposeEvent compartment of ATM R8 is a list of composed events. These
compose events are all the constituent events from the machines mATM, mBank and
mMW. Each of the composed events refines its corresponding abstract event of the ma-
chine ATM R7. For each composed event, it is necessary to specify which machine(s) it
composed of together with the event of the machine(s). Figure 8.11(c) shows the prop-
erty for the composed event sendReqWD that combines the sendReq events of machines
mATM and mMW.
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8.7 Refinement of The Middleware Component

The refinement of the middleware machine involves introducing message datatypes and
message variables. The datatypes are modelled in the context ATM CXR3 which ex-
tends the context ATM CXR2.

In the refinement, a class of type message and a number of different message types
replace the class of the abstract machine and the class’s attributes. The extension of
the context and refinement machines is described in the following subsections.

8.7.1 Context ATM CXR3

The sets and properties of the message types used in the middleware component are
defined in a context ATM CXR3 which extends the context ATM CTXR2 (Figure 8.1).
Figure 8.12 shows the context diagram of ATM CXR3 which contains two extended
classtypes namely ATM and ValidCard and nine new classtypes which declare the types
of messages that are used in the machines.

The classtype MSG is linked with the classtype ATM by the association msg atm.
This association identifies which ATM sends or receives a message. It also associate
with the classtype ValidCard by the association msg card which links a message with
a card. These associations are also shown as the attributes of the classtype MSG. The
classtype MSG has two disjoint subtypes which are REQ MSG and RSP MSG. These
subtype relationships are translated into Event-B as subsets as outlined in Chapter 2.
For example, the set REQ MSG is a subset of the set MSG.

The classtype REQ MSG represents a request message type and has two subtypes. The
subtype REQ WD MSG specializes a request message as a withdrawal request message
type and the subtype REQ CB MSG specializes a request message as a check balance
request message type. The classtype REQ WD MSG has an attribute msg wdAmount
of type N that links a withdrawal request message with a withdrawal amount.

The classtype RSP MSG represents a response message type and has an association
msg status with the classtype STATUS which has two elements OK and NOT OK. This
association links a response message with a status of a processed request. The classtype
RSP MSG also has an attribute msg bal of type N which links a response message
with an account balance. The classtype RSP MSG has three subtypes. The subtype
RSP WDOK MSG is a specialization for a successful withdrawal response message type.
The subtype RSP WDFAIL MSG specializes a response message as an unsuccessful
withdrawal response message type and RSP CB MSG specializes a response message as
a check balance response message type.

Three partition axioms are constructed which specify the supertype is a union of its
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Figure 8.12: UML-B Context with Message Types and Properties

subtypes and the subtypes messages are disjoint. These axioms are shown in the Fig-
ure 8.12. All the three component machines mATM, mBank and mMW sees the context
ATM CXR3 which means these machines can use the message types and its properties.

8.7.2 First Refinement of Middleware: Machine mMW R1

The first refinement of the middleware replaces the states of the middleware with respect
to ATMs with the states of type messages. These message states implicitly represent
the requesting ATMs. Figure 8.13(a) shows the class msg for machine mMW R1. The
class msg is of type MSG which represents instances of messages at the middleware.
These messages are partitioned into five kinds of messages which are modelled in the
state machines reqwd SM, reqcb SM, rspwdok SM, rspwdfail SM and rspcb SM. Similar
to the abstract middleware mMW, all the state machines are simple with only one state
and two transitions representing the send and receive events.

An example of state machine is shown in Figure 8.13(b). The example is the state
machine reqwd SM which consists of a state reqwdmsg of type REQ WD MSG. It rep-
resents a set of withdrawal request messages. The state machine reqcb SM consists
of a state reqcbmsg of type REQ CB MSG which represents a set of check balance
request messages. The state machine rspwdok SM consists of the state rspwdokmsg
of type RSP WDOK MSG which represents a set of successful withdrawal response
messages. The state machine rspwdfail SM consists of the state rspwdfailmsg of type
RSP WDFAIL MSG which represents a set of unsuccessful withdrawal response mes-
sages. The state machine rspcb SM consists of the state rspcbmsg of type RSP CB MSG
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Figure 8.13: UML-B Machine for the First Refinement of the Middleware

which represents a set of successful check balance response messages.

The class msg replaces the class atmM of the abstract machine mMW. The states
reqwdmsg, reqcbmsg, rspwdokmsg, rspwdfailmsg and rspcbmsg respectively replace the
states sentReqWD, sentReqCB, sentRspWDOK, sentRspWDFail and sentRspWDOK of
mMW.

The send transitions such as the transition sendReqWD of the state machine reqwd SM
is a constructor that selects an unused instance of message and adds it to the class msg
and the state reqwdmsg. The transition can be triggered when a new message selfMsg is
of type MSG and is not a member of the set msg, it is specifically of type REQ WD MSG
(grd1 ), the ATM is not in the set msg (grd2 ), the value of the ATM field of the message
is selfATM (grd3 ), the value of the card field of the message is c (grd4 ) and the value
of the withdrawal amount field of the message is am (grd5).

Transition: sendReqWD

Parameters:
par1: selfATM (type: ATM)
par2: am (type: N)
par3: c (type: V alidCard)

Guards:
grd1: selfMsg ∈ REQ WD MSG

grd2: selfATM /∈ msg atm[msg]
grd3: msg atm(selfMsg) = selfATM

grd4: msg card(selfMsg) = c

grd5: msg wdAmount(selfMsg) = am

The transition recvReqWD is a destructor that will remove a message from the class
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msg and the state reqwdmsg. Similar to the sendReqWD, the three guards (grd1..grd3 )
specify the respective message field to its value are added.

Transition: recvReqWD

Parameters:
par1: selfATM (type: ATM)
par2: am (type: N)
par3: c (type: V alidCard)

Guards:
grd1: msg atm(selfMsg) = selfATM

grd2: msg card(selfMsg) = c

grd3: msg wdAmount(selfMsg) = am

The transitions of the other four state machines behave similar to the state machine
reqwd SM. A check balance request message consists of the fields about an ATM and an
ATM card. A response message consists information about an ATM, an ATM card, a
status (msg status) and an account balance (msg bal).

The first refinement machine relies on a number of invariants. In practice, the invariants
are specified as machine invariants in the UML-B class diagram. Five of the invariants
specialize the type of the states in the state machines as follows:

reqwdmsg ∈ P(REQ WD MSG)

defined the state reqwdmsg as type withdrawal request message.

reqcbmsg ∈ P(REQ CB MSG)

defined the state reqcbmsg as type check balance request message.

rspwdokmsg ∈ P(RSP WDOK MSG)

defined the state rspwdokmsg as type successful withdrawal response message.

rspwdfailmsg ∈ P(RSP WDFAIl MSG)

defined the state rspwdfailmsg as type unsuccessful withdrawal response message.

rspcbmsg ∈ P(RSP CB MSG)

defined the state rspcbmsg as type check balance response message.

The other invariants are described in Section 8.10.
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Figure 8.14: Class Diagram of the Second Refinement for the Middleware Component

8.7.3 Second Refinement of Middleware: Machine mMW R2

The machine mMW R2 is the second refinement for the middleware component. It
models a single message channel which merges the five channels of messages. This is
done to reflect an implementation: Instead of having five separate channels, we have a
single channel that can carry five different kinds of message.

Figure 8.14(a) shows a class diagram containing the refined class msg. In this refinement,
all the five kinds of messages are removed. That means, the five refined state machines
are dropped. All the transitions of machine mMW R1 are moved as the class events of
the refined class msg. All the send transitions such as sendReqWD are specified as a
constructor in the event kind property (Figure 8.14(b)). All the receive transitions such
as recvReqWD is specified as a destructor event kind.

There is no additional guard added to the send events. For each receive event, a guard
which specifies a specific type of the message corresponds to the type of message that
the send event is sending is added. For example, for recvReqWD, the guard selfMsg ∈
REQ WD MSG is added.

In this refinement, no gluing invariant is required. This is because, the class msg which
represents the single channel has been introduced in the abstract machine together with
the five specific channels (represented by the five states in the state machines of msg
class).
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Machines POs aPOs iPOs
ATM R5 72 47 25
ATM R6 125 109 16
ATM R7 229 222 7
ATM R8 63 63 0
mATM 108 108 0
mBank 89 89 0
mMW 108 108 0

mMW R1 194 188 6
mMW R2 24 24 0

Total 1012 958 54

Table 8.1: Statistics from the Proof Effort

8.8 Statistics of Proof Obligations

All the proof obligations (POs) for the machines were generated and proved using the
Rodin tool provers [4]. The statistics are outlined in Table 8.1 showing the total POs
for each machine (POs), the number of POs which are automatically discharged (aPOs)
and the number of POs which are interactively discharged (iPOs).

In ATM R5, 25 POs are proved manually or interactively with the Rodin prover by
rewriting the partition invariant in the hypothesis and the goal into its definition. Then
the POs are discharged by calling ML prover. Similarly the sixteen POs in ATM R6
are discharged manually by rewriting the partition invariant in the hypothesis and goal.
In ATM R7, there are seven interactively discharged POs. Four POs are discharged
manually by splitting cases, two POs are discharged by first split cases, followed by
proving that two states are disjoint and one PO is discharged by proving that two states
are disjoint. In mMW R1, there are six interactively discharged POs. These POs are
discharged manually by splitting cases.

8.9 Guidelines for Refinement and Decomposition

This section outlines some guidelines for refinement and decomposition in a UML-B
development. These guidelines are based on experience in modelling the ATM case
study in UML-B.

• Create classtypes in a context diagram instead of the generating sets in an im-
plicit context from an early stage in the development because one or more of the
classtypes may be extended later in the refinement.

For the ATM case study, initially all the sets ATM, Card and Pin are generated
from the classes in the class diagram. These sets are contained in the machine
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Figure 8.15: Example of a Bad State Machine

implicit context. However, this implicit context could not be extended graphically.
In the case study, we wanted to extend the context to introduce the message
types. Therefore, the ATM model is modified so that the sets ATM, Card and Pin
are generated from the classtypes in the contexts instead of classes in the state
machines.

• Get the sequences of events in the same state machine hierarchy level.

For example the effect of withdrawal request at an ATM is that the ATM dis-
patches the requested cash. In the initial UML-B development of the ATM case
study, the withdrawATM transition is introduced in ATM R2. Figure 8.15 shows
the state machine of the initial development. However, this is not reasonable be-
cause the transition withdrawal request is not yet introduced in ATM R2. The
event withdrawal request (transition requestWD) is introduces in the machine
ATM R3, therefore, it is more reasonable to introduce the transition withdrawATM
in ATM R3. By doing this, the effect of request is symmetry with the response(s).
Figure 8.16 is the state machine showing a better state machine. Both the tran-
sitions requestWD and withdrawATM are introduced in the same hierarchy level
i.e., in the nested state machines (b and c). Figure 8.15 is considered as a bad
state machine because the transitions withdrawATM and checkBalATM exist in
it. They should not exist because the request transitions (i.e., the requestWD
and requestCB) which causes the transitions withdrawATM and checkBalATM to
exist, do not exist in the same state machine.

• When introducing the responding part (the component which respond to requests),



Chapter 8 Modelling The ATM Case Study in UML-B ((De)composition) 148

Figure 8.16: Example of a Good State Machine

duplicate the sending part attributes which are sent to the responding part.

The initial development of the ATM case study has introduced messages and de-
composition at the same time. A copy of withdrawal request message is made
when bank receiving a request (reqwdmsgB := reqwdmsgB ∪ {m}). However,
this approach results in a new invariant needing to be introduced in the com-
posed machine which relate the message reqwdmsgB and the abstract attribute
atm wdam. And also further invariants need to be added to prove the invari-
ant. Similarly for the abstract attribute atm card. The additional invariants in
the composed machine made it difficult to understand. To overcome this, the



Chapter 8 Modelling The ATM Case Study in UML-B ((De)composition) 149

attribute atm wdam is duplicated by the attribute atm wdamB. Similarly, the at-
tribute atm card is duplicated by the attribute atm cardB. These duplications are
done before decomposition.

• When introducing middleware, duplicate the sending part attributes which are
sent to the responding part and duplicate the responding part attributes which
are sent to the sending part.

For the ATM case study, initially there is atm cardM, atm wdamM and atm acbalM
in the seventh refinement (ATM R7 ) which represents the data send from a send-
ing component to responding component (atm cardM, atm wdamM ) and the data
send from a responding component to requesting component (atm acbalM ). Ini-
tially, the message variables reqwdmsg and other messages are introduced when
introducing the decomposed machines mATM, mBank and mMW. This resulted
in many invariants being constructed when modelling the composed machine which
composed the machines mATM, mBank and mMW. In other words, the composed
machine is complicated to understand because we were modelling two things in
one machine which are composition and introducing messages at the same time.

8.10 Patterns for Invariants when Introducing Messages

in the Refinements of the Middleware

This section outlines some pattern of invariants when introducing message variables
of the first refinement of middleware component. In future, these invariants could be
generated automatically by the UML-B tool.

Pattern 1: Invariants that specify a replacement of the state variables of an abstract
middleware with the new state variables representing a set of messages in the refinement.

For instance, the invariant

sentReqWD = msg atm[reqwdmsg]

where sentReqWD is a state variable in an abstract middleware machine and reqwdmsg
is a state variable in a refinement that represents a set of withdrawal request messages.
msg atm is one of the fields in a message that links a message with an ATM.

The above invariant is identified by using the Rodin interactive prover when the proof
obligation of the guard selfATM ∈ sentReqWD in the event recvReqWD was not dis-
charged. The hypotheses and the goal are as follows:

Hypotheses:
m ∈ msg
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m ∈ reqwdmsg

The goal:
msg atm(m) ∈ sentReqWD

The invariant can also be written as ∀m.m∈reqwdmsg ⇒ msg atm(m) ∈ sentReqWD.
We prefer sentReqWD = msg atm[reqwdmsg] because it is proved automatically.

Similarly for check balance requests where the state variable reqcbmsg replaced the ab-
stract state variable sentReqCB. For successful withdrawal responses, the state variable
rspwdokmsg replaced the abstract state variable sentRspWDOK. For unsuccessful with-
drawal responses, the state variable rspwdfailmsg replaced the abstract state variable
sentRspWDFail. For check balance responses, the state variable rspcbmsg replaced the
abstract state variable sentRspCB.

Pattern 2: An invariant that specifies a replacement of an abstract relation of a mid-
dleware with a set of messages in the refinement.

For examples,

The invariant

∀ m· m∈ msg ⇒ msg atm(m) 7→ msg card(m) ∈ atm cardM

specifies for each m in msg, there is a mapping from the ATM field of the message to
the card field in atm cardM . The invariant replaces the following abstract relation

atm cardM ∈ atmM → V alidCard

Another invariant with the same pattern is the following invariant

∀ m· m∈ reqwdmsg ⇒ msg atm(m) 7→ msg wdAmount(m) ∈ atm wdamM

which specifies for each m in reqwdmsg, there is a mapping from the ATM field of the
message to the withdrawal amount field in atm wdamM . The invariant replaces the
following abstract relation

atm wdamM ∈ atmM 7→ N

The following invariant also is the same pattern as the above two invariants.

∀ m· m∈ (rspwdokmsg ∪ rspwdfailmsg ∪ rspcbmsg) ⇒ msg atm(m) 7→ msg bal(m)
∈ atm acbalM
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which replaces the following abstract relation

atm acbalM ∈ atmM 7→ N

The above invariants are identified by using the Rodin interactive prover. For instance,
the invariant ∀ m· m∈ msg ⇒ msg atm(m) 7→ msg card(m) ∈ atm cardM was con-
structed when the proof obligation of the guard atm cardM(selfATM) = c in the
abstract event recvReqWD was not discharged. The hypotheses and the goal are as
follows:

Hypotheses:
m ∈ msg

m ∈ reqwdmsg

The goal:
atm cardM(msg atm(m))=msg card(m)

From the hyphotheses, we chose msg because it is the superset so we do not need to
have five similar invariants for all five subset of messages i.e., reqwdmsg, reqcbmsg, rspw-
dokmsg, rspwdfailmsg and rspcbmsg. The invariant can also be written as ∀m.m∈msg ⇒
atm cardM(msg atm(m))=msg card(m). We prefer msg atm(m) 7→ msg card(m) ∈
atm cardM because it is easier to understand where it clearly defines that the mapping
of the relations is an element of the set atm cardM .

This pattern of invariant gives rise to the next pattern of invariant because these invari-
ants are not proved with the receive transition.

Pattern 3: Invariants that prevent multiple messages corresponding to the same ab-
stract element.

In the ATM case study, there cannot be multiple messages for the same ATM. The
following invariant

∀ m, m0· m∈ msg∧ m0∈ msg∧ msg atm(m)=msg atm(m0) ⇒ m=m0

specifies that each ATM associates with only one message in the set msg.

This invariant is constructed when the proof obligation of the invariant ∀ m· m∈ msg

⇒ msg atm(m) 7→ msg card(m) ∈ atm cardM is not discharged against the event
recvReqWD.

The undischarged invariant defines that the elements in the set msg are the elements of
the abstract set atm cardM . When a message m is removed from the set msg, it means
the ATM (for instance atm1) and card associated with the message m is also removed
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from the set atm cardM . However, there is no constraint which restricts that there
cannot be another message in msg which associated with atm1. Thus, the invariant is
constructed.

8.11 Summary

This chapter presented the use of the flattening and grouping techniques which facilitate
decomposition in the ATM case study. The case study has applied the shared-events
decomposition between the three components: ATM, middleware and bank. Then, the
notions of composed machine, included machine, composed event and constituent event
of Chapter 7 are used in the case study to composed the decomposed machines. The
development of the ATM case study has evaluated that the extensions of the metamodel
described in Chapter 7 are working as expected.



Chapter 9

Conclusion

UML-B is a UML-like formal modelling language that integrates UML and B. This inte-
gration aims to make B more approachable while addressing the problem of ambiguity
of UML. In this thesis, we have investigated a methodology to perform refinement and
decomposition in UML-B. The motivation for this work comes from performing refine-
ment and decomposition in Event-B. In this thesis, we have presented a brief background
study on work related to this research. The later part of this report presented experi-
ence of modelling the ATM case study using the Rodin Event-B tool, followed by the
notions of refined classes, refined state machines and extended classtypes. These no-
tions are used to describe the techniques of refinement in UML-B. Then extensions of
the UML-B metamodel and its implementation to support these notions are described.
This chapter is followed by the ATM case study which validates the notions. This work
also presented the notions which enable the composition of machines in UML-B. The
techniques of flattening and grouping state machines which facilitate decomposition in
UML-B are presented. The ATM case study which is used to demonstrate and validate
the introduced notions and techniques is presented.

The following sections give a summary of the thesis contributions and limitations. Then
we present a section on the comparison of our work to other work on translating UML
diagrams to B. This section is followed by a section on the comparison to related work
on the class and state machine refinements. A section on the comparison of modelling in
UML-B to plain Event-B is also discussed. Finally, we present a comparison of UML-B
to goal diagram and event refinement diagram.

9.1 Contributions

The main contributions on this work are extending the UML-B language and tool to
support refinement and decomposition. In more detail, the contributions are as follows:

153
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• Introducing the following techniques involving refinement of class and state ma-
chines:

– Add new attributes and associations to a refined class.

– Add new classes in a refinement.

– State elaboration.

– Transition elaboration.

– Move events (or transitions) to a refined class or a new class in a refinement.

– Add new attributes and associations to an extended classtype.

– Add new classtypes in a refinement.

• Introducing the following techniques involving refinement of state machines which
facilitate decomposition:

– Flattening state machines.

– State grouping.

• The development of the ATM case study which validates and demonstrates the
extensions made to the UML-B and also the above techniques. The case study has
established that the extensions to the UML-B metamodel, drawing tools and U2B
translator are working as expected.

• Provides guidelines for performing refinement and decomposition in UML-B.

• Provides generic invariants in the refinement of a middleware component.

9.2 Limitations

Limitations of this work are as follows:

• The extensions to UML-B do not support parallel state machines.

• The decomposition work does not cater for the state function representation, in
the techniques of flattening state machines and grouping states. It only deals with
the disjoint sets representation.

9.3 Comparison to Other Work on Translating to B

There is much work on combining UML with formal notations and we now outline some of
this. However, unlike our work, none of this work supports refinement or decomposition
in UML to the best of our knowledge.
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Lano, Clark and Androutsopoulos [54] present the translation of UML-RSDS into clas-
sical B. The work focused on translating class diagrams into B. Each class is translated
into a respective B machine. Unlike UML-B, where all classes in a class diagram are
translated into one Event-B machine. The constraint language used is OCL whereas we
use µB.

Ledang and Souquiéres have introduced an approach for translating UML state machine
diagrams into classical B in [61]. They have introduced the modelling of deferred events
and the communication between UML state machines. Deferred events are events whose
occurrence is responded to at a later time. These deferred events occur at inconvenient
times where a state machine is in the state which cannot handle the events. Thus, these
events are postponed until the state machine is in the state which can handle the events.
The translations use the state function representation whereas UML-B supports both
state function and state sets representations. In their work the UML notation is central
which is different from UML-B where the Event-B notation is central.

Sekerinski [85] has worked on translating statecharts into classical B. He also used the
state function representation. His work includes hierarchical state machines but did not
combine hierarchical state machines and refinement as in our work. Another difference
is that his work treated a statechart independently from a class diagram unlike our work
where it is a sub-notation to a class diagram.

Mammar and Laleau [3] have presented an approach to developing database applications.
The approach starts with specifying the data structures and transactions using class
diagrams, state diagrams and collaboration diagrams. These diagrams are translated
into B abstract models. This translation is supported by a tool. The B abstract models
are then refined until the implementation phase. The B implementation models are then
automatically generated into database schemas and java classes. Their work is suitable
for a development of data-oriented applications in contrast to our work which is suitable
for process-oriented applications. Another difference is that the refinements involve the
generated abstract B models and there is no concept of refinement in UML whereas, in
our work the refinements involve the class and state machine diagrams.

Compared to our work, all the above mentioned work integrates subsets of UML dia-
grams into classical B. Our work integrates UML-like diagrams with Event-B. Another
difference is that in the other work the UML notation is central as B is only used as an
analysis tool for property checking. On the contrary, in our work Event-B is central as
the UML notation is used as a graphical medium which gives additional complementary
structuring of Event-B models.
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9.4 Comparison to Other Work on the Class and State

Machine Refinements

In this section we outline some of the work related to refinement of UML diagrams.

The work on state machines refinement has been introduced by Snook and Walden in [93].
Their work is based on the old version of UML-B which was based on classical B and has
been extended to include translation to an event “style” of B (which was a precursor to
Event-B). They introduced state elaboration and transition elaboration techniques. The
semantics of the state machine refinement are given by Event-B. However, we provide a
more precise definition of refined state machine and we provide tool support based on
UML-B giving a different model visualisation from the UML diagram symbol used in
[93]. We also introduce class refinement techniques which are not dealt with in [93].

Plaska et al [67] have introduced a process for state machines refinement. The process
involved the application of refinement patterns that are based on the techniques intro-
duced in [93]. One of the applied refinement patterns is flattening the hierarchical states.
This flattening is similar to our technique of flattening state machines. They applied
the flattening technique in their work to make the state machines more readable than
hierarchical state machines. We introduced the flattening technique to facilitate decom-
position in UML-B. In addition, we provide tool support for the flattening technique
based on UML-B.

Simons [91] has presented four informal refinement rules of state machines. The rules
in the refinements are: (1) New states must be sub-states nested in the abstract states
(super-states), (2) New transitions must only connect between the sub-states, (3) The
incoming and outgoing transitions of the super-states must be preserved, and (4) The
self transitions of the super-states must be preserved. Rules (1) and (2) must also be
followed in UML-B state machine refinement. These two rules are achieved by applying
the state elaboration technique. Rule (3) must also be followed in UML-B for a state
machine refinement to be valid. In contrast to Rule (4), in our work, when refining
self transitions, the occurrence of the transitions can either be many times or can be
restricted to once. Restriction to once means removing looping behaviour and this is a
valid refinement since we focus on preserving safety, not liveness, in our work. Unlike
our work, Simon’s work does not involve any formal notion.

The techniques of adding new attributes and associations to a class and adding new
classes to a class diagram have been introduced in an informal way for refinement of
UML class diagram [18] but no formal notation nor formal refinement concept is used.
Templates are introduced for attributes and associations to specify the translation of
model elements to low level design and implementation. Also, the technique of state
elaboration has been introduced in a refinement of UML state diagram [1] again without
a formal notion of refinement.
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Schönborn and Kyas [51] have extended their formal language which defines the seman-
tics of UML state machines. The language is using the mathematical notation of Davey
and Priestley [32]. The language extension was done to ensure that state machine re-
finements are valid. They have defined a redefinable property when adding sub-states
in a hierarchical state machine refinement. The sub-state is redefinable w.r.t. to an
event e and a transition emitting it. In the abstract state machine, the event e triggers a
transition emitting the super-state. Thus, in the refinement, there exists two transitions
triggered by the same event e. This causes a conflict when event e occurs and the prior-
ity is that the transition with the deeper source state is selected. In contrast to UML-B,
any transition emitting from a super-state is elaborated by a transition emitting from
one of the sub-state. Thus, there are no conflicting transitions. They have suggested
some refinement patterns for hierarchical state machines. One of the refinement pat-
terns is that transitions emitting from a super-state may be removed or added as long
as there exists a transition emitting from a sub-state triggered by the same event. This
refinement is similar to a refinement in UML-B of removing an abstract transition and
replacing it with a number of transitions each of which is elaborated by a transition
emitting from a sub-state. This kind of refinement is explained in Section 4.4.

Knapp et al [9] have investigated the validity of UML state machine refinements by
formalizing with MTLA [99]. In contrast to our work, their work does not consider state
machine hierarchy in refinements. New transitions and states may be introduced in a
refined state machine by replacing old states with new states and transitions. We prefer
our approach because the relationship between abstract state machines and refinements
is clearer. In UML-B, new transitions and states may be added in nested state machines.
UML-B is more restrictive but this makes the refinement pattern simple and clear.
Similar to our work, refining self transitions may be restricted to once as the work does
not focus on liveness properties.

Pons [30] has investigated mapping the refinement of classes in Object-Z [92] into UML
class diagrams. Pons suggests the object decomposition pattern. This pattern defines
a refinement of a class by decomposing it to several classes. Pons suggests that this
refinement pattern can be realized in UML class diagrams. The OCL [75] has been used
to specify the pre and post conditions of operations. In UML-B, this kind of refine-
ment has not been investigated. However, we believe that it works well in UML-B since
UML-B allows an abstract class to be removed and replaced it with several classes which
preserved the abstract data and behaviours. Another refinement pattern introduced is
the non-atomic refinement pattern. This pattern refines a class by refining an abstract
operation with several operations. This pattern is applied in UML-B however, we fo-
cus on refining a transition of a state machine by several transitions in a nested state
machine. Unlike our work, this work does not aim to formalize UML diagrams but to
discover possible refinement patterns which are not considered as refinement in UML
based on the refinements in Object-Z. Our work has formalized and customized UML
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class and state machine diagrams based on Event-B.

9.5 Comparison of UML-B to Plain Event-B

This section compares UML-B and Event-B. UML-B provides a front-end graphical
tool to Event-B and supports object-orientation. In particular, UML-B supports class
diagrams and state machines. As in [95], the motivation for introducing UML-B is
because industrial users find the UML-like language and tool attractive. Secondly, UML-
B provides additional complementary structuring of Event-B models in the form of
classes and state machines.

Modelling in UML-B does not mean hiding the Event-B notation. The modeller needs
to know Event-B in order to model in UML-B. Modelling in UML-B gives the advantage
of generating many lines of Event-B specification from the diagram editors. In particu-
lar, the generation of the type invariants, the partition invariants, axioms, an instance
parameter, guards and actions of events. We believe that this helps modellers to save
time from having to specify them manually as in plain Event-B.

UML-B may attract people to Event-B because of it’s resemblance to UML. UML-B
is easy to learn compared to plain Event-B as suggested by Razali et al [81]. They
have done an empirical assessment that compares the comprehensibility of UML-B and
Event-B by conducting two controlled experiments. The results indicate that UML-B
accelerates the participants of the experiments in understanding a model.

Based on experience modelling the ATM case study, the visualisation in UML-B dia-
grams helps in understanding what is going on in a refinement. For instance, when
modelling a refinement in plain Event-B, a variable is dropped and a new attribute is
introduced. An invariant is constructed to relate these attributes using the Rodin in-
teractive prover. However, a modeller might not really understand what the invariant
means. Or the modeller may understand the invariant but they may not realise that the
refinement is difficult to understand by other people. But, when the same refinement
is modelled in UML-B, the diagrams may become an aid for the modeller to visualize
what is going on by modelling graphically the new states and relating them with the old
states of the more abstract machine.

For example, for the ATM case study, in the initial development, the decomposed compo-
nents ATM, bank and middleware were based on the sixth refinement machine ATM R6
where the states of the state machines are partitioned between the ATM and bank com-
ponents except for the states sentReqWD, sentReqCB, sendRspCB, sendRspWDFail and
sentRspWDOK. These states do not belong to either the ATM or the bank component.
These states were also not in the middleware component. The middleware component
contains five message classes reqwdmsg (represents withdrawal request messages), re-
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qcbmsg (check balance request messages), rspwdokmsg (successful response messages),
rspwdfailmsg (unsuccessful response messages) and rspcbmsg (check balance response
messages). The intention was to model the communication between components using
message passing. The three components are composed in a composed machine and the
composed machine refines the machine ATM R6. Using the Rodin interactive prover,
one of the invariants which needed to be added is

∀ m· m∈ reqwdmsg⇒ msg atm(m)∈ sentReqWD

The invariant specified a replacement of the state sentReqWD of the abstract machine
ATM R6 in the composed machine (i.e., refinement machine). However, it is difficult to
understand how the states sentReqWD, sentReqCB, sendRspCB, sendRspWDFail and
sentRspWDOK suddenly were removed from the state machines in the refinement(i.e.,
middleware component). The refinement is a valid refinement but it is difficult to un-
derstand because of the refinement gap is quite big. After reviewing the state machine
diagrams of the more abstract machine and the class diagram in the refinement, we
realised that we have skipped modelling the states of the middleware with respect to the
ATM as in Section 8.6.3. The machine mMW is then refined by mMW R1 which intro-
duces the states of types messages that replace the states in mMW. With the refinement
gap filled, it is easier to describe the development of the ATM case study.

9.6 Comparison of UML-B to Goal Diagram and Event

Refinement Diagram

This section describes and compares related work on visualisation for Event-B refinement
which are goal diagrams and event-refinement diagrams with UML-B.

Ball has introduce the incremental development process of a multiagent systems in her
thesis [15]. She introduced the goal diagram and relationships goals to be used in the
incremental process. The goal diagram is based on KAOS [11] method of goal oriented
requirement engineering. The goal diagram is a visual abstraction of the Event-B models
as an informal representation of Event-B models to aid understanding. A goal diagram
will have a root goal which may be elaborated into more goals producing a tree structure.
The goals are related by four relationships which are THEN, AND, OR and XOR. In a
goal diagram, there might be endpoint goals which represent early terminations. The
goal diagrams and goal relationships are based on the concepts of goals and interactions
of agent-based systems.

The goal diagrams show ordering of the states of a system from left to right. Each goal
in a goal diagram is translated as an event and a state variable in Event-B. In UML-B,
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a transition in a state machine diagram is translated as an event and a state in a state
machine diagram is translated as a state variable in Event-B.

The THEN relationship specifies an order of the states of a system. In UML-B, a state
machine diagram models a sequence or an order of the states of a system. The XOR
relationship represents an exclusive choice between goals. Exclusive means either one of
the goals need to be fulfilled and only one of them can be fulfilled in each interaction. In
UML-B, this XOR relationship is similar to having more than one outgoing transitions
from a state.

The AND relationship specifies that all the related goals are required to be fulfilled
before the next goals can be fulfilled. The inclusive OR specifies that either one of the
goals or both of the goals can be fulfilled before the next goals can be fulfilled. The
AND and OR relationship are not represented in the state machines of UML-B.

Figure 9.1 shows an example of a goal diagram for an ATM transactions. The first level
of elaboration model a sequence of interactions with an ATM and also models options.
The THEN relationship specifies that the start goal must be fulfilled before insertCard
and is followed by an option either to withdraw, checkBalance or ejectCard. The option
is represented by labelling with XOR among the option goals. In the next level, the
insertCard, withdraw and checkBalance goals are elaborated. The insertCard subgoal is
followed by an option where either the card validation is successful(validateCardOK ) or
not(validateCardFail). If the card validation is successful, then the user can proceed with
one of the options of withdrawal, check balance or eject card. If the card validation fails,
the next goal is to terminate the interaction with the ATM (ejectCard1 ). ejectCard1 is
an example of an endpoint goal and is highlighted by a circle with inner filled circle. Both
the withdraw and checkBalance goals are elaborated by the respective subgoals withdraw
and checkBalance. Then, these subgoals are followed by the subgoals ejectCard2 or
ejectCard3 respectively.

The first elaboration level of a goal diagram corresponds to an abstract Event-B ma-
chine. Each subsequent level corresponds to each subsequent refinement in Event-B.
Likewise, the first level of a goal diagram corresponds to the top level hierarchy of a
state machine diagram in UML-B. Each subsequent level of a goal diagram corresponds
to each subsequent level of nested state machines in UML-B.

Butler has introduced the event refinement diagram in [24]. The diagram notation is
based on the JSD diagram by Jackson [65]. The event refinement diagram is a tree
structure diagram similar to the goal diagram. The diagram consists of a rounded
rectangle and a line that links to rectangles in subsequent levels. The round rectangle
represents an event and the line represents the refinement relationship between any two
subsequent levels. The line can either be a dashed or solid line. A dashed line means
the bottom event refines skip. A solid line means the bottom event refines the top event.
Any event which may occur repeatedly will have an oval with the keyword par above it.
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The event refinement diagram is read from left to right indicating a sequential control.

Figure 9.1: Example of Goal Diagram

Figure 9.2 shows an example of an event refinement diagram. The root is an abstract
event withdraw. The next level is a refinement which models the cash withdrawal via an
ATM. start and insertCard are the two new events which refine skip. withdraw event
refines the abstract event. The order of events starts by the start event followed by
insertCard and then withdraw. The next level is a refinement which introduces two new
events validateCardOK and ejectCard.

Figure 9.2: Example of Event Refinement Diagram

The root of an event refinement diagram corresponds to an abstract Event-B machine.
This corresponds to the class event in UML-B. Each subsequent level of an event refine-
ment diagram corresponds to each subsequent refinement in Event-B. The first refine-
ment level of an event refinement diagram corresponds to the top level hierarchy of a
state machine diagram in UML-B. Each subsequent level of an event refinement diagram
correspond to each subsequent level of nested state machines in UML-B.

The difference between the goal diagrams and event refinement diagrams is that, the goal
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Figure 9.3: State Machine of ATM in UML-B

diagrams provide facilities to model choices explicitly using the OR or XOR relationships
whereas for the event refinement diagrams, a choice is modelled by separate diagrams.
Another difference is that, the event refinement diagrams explicitly model the refinement
relation of events between subsequent levels.

The goal diagram and event refinement diagram give an additional structuring to Event-
B models like the state machine diagrams in UML-B. Compared to UML-B, both of
the diagrams provide an overall visualization of a model. This gives an advantage of
showing the refinement relationships between events in different refinement levels which
is not available in UML-B. However, the state machine diagrams of UML-B explicitly
model the flow of events and the states associated with them. This allows a number
of events to merge into a state. For example, in the first refinement level of the goal
diagram example, after fulfilling either the goals withdraw or checkBalance, respectively
the goals ejectCard2 and ejectCard3 can be fulfilled. In UML-B (Figure 9.3), both of
the transitions withdraw and checkBalance end at the state performTrans. From this
state the transition ejectCard3 may be triggered. In other words, the ejectCard3 follows
either the withdraw or checkBalance transition.

9.7 Future Work

There are more tasks which could be completed in the future. An overview of future
tasks are as follows:

• Extend the UML-B metamodel to support parallel state machines. The UML-B
Version 1 partly has support for parallel state machines where a state can contain
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a number of state machines. However, it does not have support for modelling the
transitions. Thus, the UML-B metamodel can be extended in order to support the
transitions for multiple parallel state machines in a single state.

• Extend the UML-B tool to support the state function representation of state ma-
chines. This work here which supports decomposition focused on the state sets
representation of state machines. The other representation i.e., state function has
not been catered for in UML-B.

• Add requirements to the ATM case study. The requirement of the ATM case study
may evolve. For example, the guards for cash withdrawal may be strengthened to
check for overdraft and direct-debit apart from just checking the current account
balance. The goal is to see how good is a UML-B model to cope with requirement
changes for example how many proofs need to be redone.

• More case studies may be done to validate the extensions and also to explore
further extensions to UML-B.

• Add support for managing the traceability of a state machine hierarchy when
elaborating a state machine to nested state machines.

• Enhance the composed machine by modelling it graphically showing the included
machines and the constituent events.
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Requirement Document of the

ATM System for Event-B

Development

1. Description of the ATM system

The auto teller machine is a machine that allows bank customers to do some of the
banking transaction 24 hours per day. It allows bank customers to withdraw cash, check
account balance, print mini statement and others. In order to perform these functions
through an auto teller machine, bank customers need to use their debit cards which are
provided to them by the bank. The case study focused only on the requirements for
cash withdrawal.

2. Definitions

Customer - The holder of one or more accounts in the bank.
Debit card - A card provided to a bank customer which authorize access to an account
using an ATM.
Account - An account in the bank.
ATM - A machine that allows customers to do cash withdrawals.
Bank - A financial institution that holds accounts for customers and issues debit card

3. Assumptions

There is many ATMs and only one bank.

4. Functional Requirements

4.1 Requirement 1

164
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Description: Customer may insert a debit card to an ATM.

Pre-condition:
1) The ATM is available to use.

Post-condition:
1) The debit card is successfully inserted in the ATM.
2) The ATM prompt a customer to enter a PIN number.

4.2 Requirement 2

Description: The ATM has to check if the entered card is a valid debit card against the
entered pin.

Pre-condition:
1) A debit card is in the ATM.
2) The entered pin number is valid.

Post-condition:
1) The ATM will response giving options of transactions.

4.3 Requirement 3

Description: A customer requests a cash withdrawal.

Pre-condition:
1) A debit card is in an ATM.

Post-condition:
1) An ATM will send the withdrawal request to the bank.

4.4 Requirement 4

Description: The withdrawal request is received by the bank.

Pre-condition:
1) The request contains a debit card information.
2) The request contains a withdrawal amount.

Post-condition:
1) The request is added to the bank request list.

4.5 Requirement 5

Description: A cash withdrawal request processed at the bank is successful.

Pre-condition:
1) A debit card is in the ATM.
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2) A withdrawal amount is less than or equal to an account balance.

Post-condition:
1) The account balance is deducted by the withdrawal amount.
2) A response information is added to the response list.

4.6 Requirement 6

Description: A successful response is send/receive.

Pre-condition:
1) The response contains an account balance, debit card and successful status informa-
tion.

Post-condition:
1) The response information is removed from the response list.

4.7 Requirement 7

Description: A cash withdrawal processed at an ATM is successful.

Pre-condition:
1) A debit card is in the ATM.
2) A withdrawal amount is less than or equal to the cash in an ATM.

Post-condition:
1) The cash stored in an ATM is is deducted by the withdrawal amount.

4.8 Requirement 8

Description: A cash withdrawal is not successful.

Pre-condition:
1) A withdrawal amount is more than an account balance.

Post-condition:
1) A response information is added to the response list.
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Requirement Document of the

ATM System for UML-B

Development

1. Description of the ATM system

The auto teller machine is a machine that allows bank customers to do some of the
banking transaction 24 hours per day. It allows bank customers to withdraw cash, check
account balance, print mini statement and others. In order to perform these functions
through an auto teller machine, bank customers need to use their debit cards which are
provided to them by the bank. The case study focused only on the requirements for
cash withdrawal and check account balance functions.

2. Definitions

Customer - The holder of one or more accounts in the bank.
Debit card - A card provided to a bank customer which authorize access to an account
using an ATM.
Account - An account in the bank.
ATM - A machine that allows customers to do cash withdrawals and checking accounts
balance.
Bank - A financial institution that holds accounts for customers and issues debit card

2. Abbreviation

MIN CASH - The minimum amount of cash stored in an ATM.
MAX CASH - The maximum amount of cash stored in an ATM.

167



Appendix B Requirement Document of the ATM System for UML-B Development 168

3. Assumptions

There is a notion of a valid and invalid card. Valid card is a card which is issued by
the bank and is valid to use for ATM transactions (i.e., ATM card). Invalid card is a
card which is not issued by the bank and cannot be used with an ATM. There is many
ATMs and only one bank.

4. Functional Requirements

4.1 Requirement 1

Description: Initialisation of cash in the ATM.

Input: ATM is loaded with MAX CASH amount of cash.

Post-condition:
1) The amount of cash in an ATM is set to MAX CASH.

4.2 Requirement 2

Description: Reload stock cash in the ATM.

Pre-condition:
1) The ATM is available to use.
2) The stock cash is less than the MIN CASH.

Post-condition:
1) The amount of cash in an ATM is set to MAX CASH.

4.3 Requirement 3

Description: Customer may insert a debit card to an ATM.

Pre-condition:
1) The ATM is available to use.

Post-condition:
1) The debit card is successfully inserted in the ATM.
2) The ATM prompt a customer to enter a PIN number.

4.4 Requirement 4

Description: The ATM has to check if the entered card is a valid debit card against the
entered pin.

Pre-condition:
1) A debit card is in the ATM.
2) The entered pin number is valid.
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Post-condition:
1) The ATM will response giving options of transactions.

4.5 Requirement 5

Description: The debit card inserted in an ATM is validated as failed.

Pre-condition:
1) An ATM card is in an ATM.
2) The entered pin number is invalid.

Post-condition:
1) An ATM will respond giving options to eject card or retry entering a pin.

4.5 Requirement 6

Description: A customer requests a cash withdrawal.

Pre-condition:
1) A debit card is in an ATM.
2) The amount of cash in an ATM is greater than the MIN CASH.
3) A withdrawal amount is less than or equal to the MIN CASH.

Post-condition:
1) An ATM will send the withdrawal request to the bank with the withdrawal amount.

4.7 Requirement 7

Description: A customer requests to check an account balance.

Pre-condition:
1) A debit card is in an ATM.

Post-condition:
1) An ATM will send the check balance request to the bank.

4.8 Requirement 8

Description: The withdrawal request is received by the bank.

Pre-condition:
1) The request contains a debit card information.
2) The request contains a withdrawal amount.

Post-condition:
1) The bank will copy the debit card information.
2) The bank will copy the withdrawal amount.
3) The request is added to the bank request list.
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4.9 Requirement 9

Description: The check balance request is received by the bank.

Pre-condition:
1) The request contains a debit card information.

Post-condition:
1) The bank will copy the debit card information.
2) The request is added to the bank request list.

4.10 Requirement 10

Description: The bank sends a successful withdrawal, failure withdrawal or check balance
response.

Pre-condition:
1) The response contains an account balance.

Post-condition:
1) The response information is removed from the bank’s list.
2) The response information is added to the middleware’s list.

4.11 Requirement 11

Description: The ATM receive a successful withdrawal, failure withdrawal or check
balance response.

Pre-condition:
1) A debit card is in the ATM.
2) The response contains an account balance.

Post-condition:
1) The ATM copy the account balance.

4.12 Requirement 12

Description: A cash withdrawal request is successful.

Pre-condition:
1) A debit card is in the ATM.
2) A withdrawal amount is less than or equal to the account balance.
3) A withdrawal amount is less than or equal to the cash in an ATM.

Post-condition:
1) The account balance is deducted by the withdrawal amount.
2) The cash stored in an ATM is is deducted by the withdrawal amount.
4) The ATM will display the account balance.
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5) The ATM will prompt an option either to do another transaction or ejects the ATM
card.

4.13 Requirement 13

Description: A cash withdrawal is not successful.

Pre-condition:
1) A debit card is in the ATM.
2) A withdrawal amount is more than an account balance.

Post-condition:
1) The ATM will display the account balance.
2) The ATM will prompt an option either to do another transaction or ejects the ATM
card.

4.14 Requirement 14

Description: A check account balance is successful.

Pre-condition:
1) A debit card is in the ATM.

Post-condition:
1) The ATM will display the account balance.
2) The ATM will prompt an option either to do another transaction or ejects the ATM
card.

4.15 Requirement 15

Description: User can choose to cancel a transaction if the PIN entered is invalid or the
PIN is valid but the user do not want to proceed with a transaction.

Pre-condition:
1) A debit card is in the ATM.

Post-condition:
1) The ATM ejects the ATM card.
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ATM Case Study: Using Rodin

Event-B

A.1 First Refinement

MACHINE ATM R1

REFINES ATMM

SEES ATMC E1

VARIABLES

account

bal

cards

card account

pin

pinNo

atm

atm card

atm cash

active atm

idle

validating

transactionOption

performWithdrawal

endWithdrawal
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INVARIANTS

inv2 : cards ∈ P(CARD)
inv3 : card account ∈ cards ½ account

inv4 : pin ∈ P(PIN)
inv5 : pinNo ∈ cards→ pin

inv6 : atm ∈ P(ATM)
inv13 : active atm ⊆ atm

inv7 : atm card ∈ active atm→ cards

inv11 : atm cash ∈ atm→ N

inv1 : idle ⊆ atm

inv8 : validating ⊆ active atm

inv9 : transactionOption ⊆ active atm

inv10 : performWithdrawal ⊆ active atm

inv19 : endWithdrawal ⊆ active atm

inv12 : idle ∩ validating = ∅

inv14 : idle ∩ transactionOption = ∅

inv15 : idle ∩ performWithdrawal = ∅

inv20 : idle ∩ endWithdrawal = ∅

inv16 : validating ∩ transactionOption = ∅

inv17 : validating ∩ performWithdrawal = ∅

inv21 : validating ∩ endWithdrawal = ∅

inv18 : transactionOption ∩ performWithdrawal = ∅

inv22 : transactionOption ∩ endWithdrawal = ∅

inv23 : performWithdrawal ∩ endWithdrawal = ∅

EVENTS

Initialisation

begin

act1 : account := ∅

act2 : bal := ∅

act7 : cards := ∅

act8 : card account := ∅

act9 : pin := ∅

act10 : pinNo := ∅
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act11 : atm := ∅

act12 : atm card := ∅

act16 : atm cash := ∅

act18 : active atm := ∅

act3 : idle := ∅

act4 : validating := ∅

act5 : transactionOption := ∅

act6 : performWithdrawal := ∅

act13 : endWithdrawal := ∅

end

Event insertCard =̂

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ idle

then

act1 : atm card(at) := c

act3 : active atm := active atm ∪ {at}
act2 : validating := validating ∪ {at}
act4 : idle := idle \ {at}

end

Event validateCardOK =̂

any

c

at

p

where

grd1 : c ∈ cards

grd2 : at ∈ validating

grd7 : p ∈ pin

grd8 : pinNo(c) = p

grd3 : atm card(at) = c

then
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act2 : transactionOption := transactionOption ∪ {at}
act1 : validating := validating \ {at}

end

Event withdrawBankOK =̂

refines withdraw

any

ac

am

c

at

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd9 : c ∈ cards

grd10 : at ∈ transactionOption

grd4 : am ≤ bal(ac)

grd3 : atm card(at) = c

grd6 : card account(c) = ac

then

act1 : bal(ac) := bal(ac)− am

act3 : performWithdrawal := performWithdrawal ∪ {at}
act2 : transactionOption := transactionOption \ {at}

end

Event withdrawFail =̂

any

ac

am

c

at

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd3 : c ∈ cards

grd4 : at ∈ transactionOption
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grd5 : am > bal(ac)

grd6 : atm card(at) = c

grd7 : card account(c) = ac

then

act1 : performWithdrawal := performWithdrawal ∪ {at}
act2 : transactionOption := transactionOption \ {at}

end

Event withdrawATM =̂

any

ac

am

c

at

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ performWithdrawal

grd8 : atm cash(at) ≥ am

grd9 : atm card(at) = c

grd10 : card account(c) = ac

then

act1 : atm cash(at) := atm cash(at)− am

act2 : performWithdrawal := performWithdrawal \ {at}
act3 : endWithdrawal := endWithdrawal ∪ {at}

end

Event ejectCard =̂

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ endWithdrawal

grd5 : atm card(at) = c
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then

act2 : atm card := atm card \ {at 7→ c}
act3 : endWithdrawal := endWithdrawal \ {at}
act1 : idle := idle ∪ {at}
act4 : active atm := active atm \ {at}

end

END
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A.2 Second Refinement

MACHINE ATM R2

REFINES ATM R1

SEES ATMC E1

VARIABLES

account

bal

cards

card account

pin

pinNo

atm

atm card

atm cash

active atm

idle

validating

processingBank

complete

trans

waiting

endWithdrawal

INVARIANTS

inv4 : trans ⊆ active atm

inv5 : waiting ⊆ active atm

inv1 : processingBank ⊆ active atm

inv2 : complete ⊆ active atm

inv6 : transactionOption = trans ∪ waiting

inv7 : performWithdrawal = processingBank ∪ complete

inv9 : trans ∩ waiting = ∅

inv10 : processingBank ∩ complete = ∅

inv3 : waiting ∩ complete = ∅
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inv8 : waiting ∩ processingBank = ∅

inv11 : trans ∩ processingBank = ∅

EVENTS

Initialisation

begin

act1 : account := ∅

act2 : bal := ∅

act7 : cards := ∅

act8 : card account := ∅

act9 : pin := ∅

act10 : pinNo := ∅

act11 : atm := ∅

act12 : atm card := ∅

act16 : atm cash := ∅

act18 : active atm := ∅

act3 : idle := ∅

act4 : validating := ∅

act14 : processingBank := ∅

act15 : complete := ∅

act19 : trans := ∅

act20 : waiting := ∅

act5 : endWithdrawal := ∅

end

Event insertCard =̂

refines insertCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ idle

then

act1 : atm card(at) := c

act3 : active atm := active atm ∪ {at}
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act2 : validating := validating ∪ {at}
act4 : idle := idle \ {at}

end

Event validateCardOK =̂

refines validateCardOK

any

c

at

p

where

grd1 : c ∈ cards

grd2 : at ∈ validating

grd7 : p ∈ pin

grd8 : pinNo(c) = p

grd3 : atm card(at) = c

then

act2 : trans := trans ∪ {at}
act1 : validating := validating \ {at}

end

Event request =̂

any

at

c

am

where

grd1 : at ∈ trans

grd3 : c ∈ cards

grd2 : atm card(at) = c

grd4 : am ∈ N
then

act1 : trans := trans \ {at}
act2 : waiting := waiting ∪ {at}

end

Event withdrawBankOK =̂
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refines withdrawBankOK

any

ac

am

c

at

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd9 : c ∈ cards

grd10 : at ∈ waiting

grd4 : am ≤ bal(ac)

grd3 : atm card(at) = c

grd6 : card account(c) = ac

then

act1 : bal(ac) := bal(ac)− am

act3 : processingBank := processingBank ∪ {at}
act2 : waiting := waiting \ {at}

end

Event withdrawFail =̂

refines withdrawFail

any

ac

am

c

at

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd3 : c ∈ cards

grd4 : at ∈ waiting

grd5 : am > bal(ac)

grd6 : atm card(at) = c

grd7 : card account(c) = ac

then
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act1 : processingBank := processingBank ∪ {at}
act2 : waiting := waiting \ {at}

end

Event responseOK =̂

any

at

where

grd1 : at ∈ processingBank

then

act1 : processingBank := processingBank \ {at}
act2 : complete := complete ∪ {at}

end

Event withdrawATM =̂

refines withdrawATM

any

ac

am

c

at

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ complete

grd8 : atm cash(at) ≥ am

grd9 : atm card(at) = c

grd10 : card account(c) = ac

then

act1 : atm cash(at) := atm cash(at)− am

act2 : complete := complete \ {at}
act3 : endWithdrawal := endWithdrawal ∪ {at}

end

Event ejectCard =̂

refines ejectCard
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any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ endWithdrawal

grd5 : atm card(at) = c

then

act2 : atm card := atm card \ {at 7→ c}
act3 : endWithdrawal := endWithdrawal \ {at}
act1 : idle := idle ∪ {at}
act4 : active atm := active atm \ {at}

end

Event responseNOTOK =̂

any

at

where

grd1 : at ∈ processingBank

then

act1 : processingBank := processingBank \ {at}
act2 : complete := complete ∪ {at}

end

END
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A.3 Third Refinement

MACHINE ATM R3

REFINES ATM R2

SEES ATMC E1

VARIABLES

account

bal

cards

card account

pin

pinNo

atm

atm card

atm cash

active atm

idle

validating

complete

trans

endWithdrawal

conversation

bprocessing

req

rsp

INVARIANTS

inv1 : conversation ⊆ active atm

inv8 : req ⊆ active atm

inv2 : bprocessing ⊆ active atm

inv9 : rsp ⊆ active atm

inv10 : rsp ∩ complete = ∅

inv3 : bprocessing ∩ trans = ∅

inv4 : bprocessing ∩ complete = ∅
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inv5 : bprocessing ∩ validating = ∅

inv7 : bprocessing ⊆ waiting

inv11 : req ⊆ waiting

inv12 : req ∩ trans = ∅

inv14 : req ∩ validating = ∅

inv13 : trans ∩ validating = ∅

inv15 : rsp ∩ bprocessing = ∅

inv16 : req ∩ rsp = ∅

inv17 : trans ∩ rsp = ∅

inv18 : validating ∩ rsp = ∅

inv19 : idle ∩ rsp = ∅

inv20 : bprocessing ∩ idle = ∅

inv21 : req ∩ idle = ∅

inv22 : trans ∩ idle = ∅

inv23 : rsp ⊆ processingBank

inv24 : endWithdrawal ∩ conversation = ∅

inv25 : trans ∩ endWithdrawal = ∅

inv26 : complete ∩ conversation = ∅

inv27 : trans ∩ complete = ∅

EVENTS

Initialisation

begin

act1 : account := ∅

act2 : bal := ∅

act7 : cards := ∅

act8 : card account := ∅

act9 : pin := ∅

act10 : pinNo := ∅

act11 : atm := ∅

act12 : atm card := ∅

act16 : atm cash := ∅

act18 : active atm := ∅

act3 : idle := ∅

act4 : validating := ∅
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act15 : complete := ∅

act19 : trans := ∅

act5 : endWithdrawal := ∅

act6 : conversation := ∅

act13 : bprocessing := ∅

act17 : req := ∅

act20 : rsp := ∅

end

Event insertCard =̂

refines insertCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ idle

then

act1 : atm card(at) := c

act3 : active atm := active atm ∪ {at}
act2 : validating := validating ∪ {at}
act4 : idle := idle \ {at}

end

Event validateCardOK =̂

refines validateCardOK

any

c

at

p

where

grd1 : c ∈ cards

grd2 : at ∈ validating

grd7 : p ∈ pin

grd8 : pinNo(c) = p

grd3 : atm card(at) = c
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then

act2 : trans := trans ∪ {at}
act1 : validating := validating \ {at}

end

Event request =̂

refines request

any

at

c

am

where

grd1 : at ∈ trans

grd3 : c ∈ cards

grd2 : atm card(at) = c

grd4 : am ∈ N
then

act1 : trans := trans \ {at}
act2 : conversation := conversation ∪ {at}
act3 : req := req ∪ {at}

end

Event receiveRequest =̂

any

at

c

where

grd1 : at ∈ req

grd3 : c ∈ cards

grd2 : atm card(at) = c

then

act3 : bprocessing := bprocessing ∪ {at}
end

Event withdrawBankOK =̂

refines withdrawBankOK
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any

ac

am

c

at

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd9 : c ∈ cards

grd10 : at ∈ bprocessing

grd4 : am ≤ bal(ac)

grd3 : atm card(at) = c

grd6 : card account(c) = ac

then

act1 : bal(ac) := bal(ac)− am

act3 : rsp := rsp ∪ {at}
act2 : bprocessing := bprocessing \ {at}
act4 : req := req \ {at}

end

Event withdrawFail =̂

refines withdrawFail

any

ac

am

c

at

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd3 : c ∈ cards

grd4 : at ∈ bprocessing

grd5 : am > bal(ac)

grd6 : atm card(at) = c

grd7 : card account(c) = ac

then
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act1 : rsp := rsp ∪ {at}
act2 : bprocessing := bprocessing \ {at}
act3 : req := req \ {at}

end

Event responseOK =̂

refines responseOK

any

at

where

grd1 : at ∈ rsp

then

act1 : rsp := rsp \ {at}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

Event withdrawATM =̂

refines withdrawATM

any

ac

am

c

at

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ complete

grd8 : atm cash(at) ≥ am

grd9 : atm card(at) = c

grd10 : card account(c) = ac

then

act1 : atm cash(at) := atm cash(at)− am

act2 : complete := complete \ {at}
act3 : endWithdrawal := endWithdrawal ∪ {at}
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end

Event ejectCard =̂

refines ejectCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ endWithdrawal

grd5 : atm card(at) = c

then

act2 : atm card := atm card \ {at 7→ c}
act3 : endWithdrawal := endWithdrawal \ {at}
act1 : idle := idle ∪ {at}
act4 : active atm := active atm \ {at}

end

Event responseNOTOK =̂

refines responseNOTOK

any

at

where

grd1 : at ∈ rsp

then

act1 : rsp := rsp \ {at}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

END
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A.4 Fourth Refinement

MACHINE ATM R4

REFINES ATM R3

SEES ATMC E2

VARIABLES

account

bal

cards

card account

pin

pinNo

atm

atm card

atm cash

active atm

idle

validating

complete

trans

endWithdrawal

conversation

bprocessing

reqmsg

rspmsg

INVARIANTS

inv1 : reqmsg ⊆ REQ MSG

inv2 : rspmsg ⊆ RSP MSG

inv3 : ∀m·m ∈ reqmsg⇒ msg atm(m) ∈ req

inv4 : ∀m·m ∈ rspmsg⇒ msg atm(m) ∈ rsp

inv5 : ∀m·msg atm(m) ∈ idle⇒ m /∈ rspmsg

inv6 : ∀m, m0·m ∈ reqmsg ∧ m0 ∈ reqmsg ∧ m 6= m0⇒ msg atm(m) 6= msg atm(m0)

inv7 : ∀m, m0·m ∈ rspmsg ∧ m0 ∈ rspmsg ∧ m 6= m0⇒ msg atm(m) 6= msg atm(m0)
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inv8 : reqmsg ∩ rspmsg = ∅

EVENTS

Initialisation

begin

act1 : account := ∅

act2 : bal := ∅

act7 : cards := ∅

act8 : card account := ∅

act9 : pin := ∅

act10 : pinNo := ∅

act11 : atm := ∅

act12 : atm card := ∅

act16 : atm cash := ∅

act18 : active atm := ∅

act3 : idle := ∅

act4 : validating := ∅

act15 : complete := ∅

act19 : trans := ∅

act5 : endWithdrawal := ∅

act6 : conversation := ∅

act13 : bprocessing := ∅

act14 : reqmsg := ∅

act21 : rspmsg := ∅

end

Event insertCard =̂

refines insertCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ idle

then

act1 : atm card(at) := c
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act3 : active atm := active atm ∪ {at}
act2 : validating := validating ∪ {at}
act4 : idle := idle \ {at}

end

Event validateCardOK =̂

refines validateCardOK

any

c

at

p

where

grd1 : c ∈ cards

grd2 : at ∈ validating

grd7 : p ∈ pin

grd8 : pinNo(c) = p

grd3 : atm card(at) = c

then

act2 : trans := trans ∪ {at}
act1 : validating := validating \ {at}

end

Event request =̂

refines request

any

at

m

c

am

where

grd1 : at ∈ trans

grd2 : m ∈ REQ MSG

grd5 : c ∈ cards

grd3 : msg atm(m) = at

grd4 : atm card(at) = c

grd6 : am ∈ N
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then

act1 : trans := trans \ {at}
act2 : conversation := conversation ∪ {at}
act3 : reqmsg := reqmsg ∪ {m}

end

Event receiveRequest =̂

refines receiveRequest

any

at

m

c

where

grd2 : m ∈ reqmsg

grd1 : at ∈ conversation

grd4 : c ∈ cards

grd3 : msg atm(m) = at

grd5 : atm card(at) = c

then

act3 : bprocessing := bprocessing ∪ {at}
end

Event withdrawBankOK =̂

refines withdrawBankOK

any

ac

am

c

at

m

m0

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd9 : c ∈ cards

grd10 : at ∈ bprocessing
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grd4 : am ≤ bal(ac)

grd3 : atm card(at) = c

grd6 : card account(c) = ac

grd8 : m ∈ reqmsg

grd11 : msg atm(m) = at

grd5 : m0 ∈ RSP MSG

grd13 : msg atm(m0) = at

then

act1 : bal(ac) := bal(ac)− am

act2 : bprocessing := bprocessing \ {at}
act5 : reqmsg := reqmsg \ {m}
act3 : rspmsg := rspmsg ∪ {m0}

end

Event withdrawFail =̂

refines withdrawFail

any

ac

am

c

at

m

m0

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd3 : c ∈ cards

grd4 : at ∈ bprocessing

grd5 : am > bal(ac)

grd6 : atm card(at) = c

grd7 : card account(c) = ac

grd8 : m ∈ reqmsg

grd9 : msg atm(m) = at

grd10 : msg atm(m0) = at

grd11 : m ∈ RSP MSG

then

act1 : bprocessing := bprocessing \ {at}
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act2 : reqmsg := reqmsg \ {m}
act3 : rspmsg := rspmsg ∪ {m0}

end

Event responseOK =̂

refines responseOK

any

at

m0

where

grd1 : at ∈ conversation

grd2 : m0 ∈ rspmsg

grd3 : msg atm(m0) = at

then

act1 : rspmsg := rspmsg \ {m0}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

Event withdrawATM =̂

refines withdrawATM

any

ac

am

c

at

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ complete

grd8 : atm cash(at) ≥ am

grd9 : atm card(at) = c

grd10 : card account(c) = ac

then

act1 : atm cash(at) := atm cash(at)− am
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act2 : complete := complete \ {at}
act3 : endWithdrawal := endWithdrawal ∪ {at}

end

Event ejectCard =̂

refines ejectCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ endWithdrawal

grd5 : atm card(at) = c

then

act2 : atm card := atm card \ {at 7→ c}
act3 : endWithdrawal := endWithdrawal \ {at}
act1 : idle := idle ∪ {at}
act4 : active atm := active atm \ {at}

end

Event responseNOTOK =̂

refines responseNOTOK

any

at

m0

where

grd1 : at ∈ conversation

grd2 : m0 ∈ rspmsg

grd3 : msg atm(m0) = at

then

act1 : rspmsg := rspmsg \ {m0}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

END
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A.5 Fifth Refinement

MACHINE ATM R5

REFINES ATM R4

SEES ATMC E3

VARIABLES

account

bal

cards

card account

pin

pinNo

atm

atm card

atm cash

active atm

idle

validating

complete

trans

endWithdrawal

conversation

bprocessing

reqmsg

rspmsg

INVARIANTS

inv1 : >
inv2 : ∀m·m ∈ reqmsg⇒ atm card(msg atm(m)) = msg card(m)

EVENTS

Initialisation

begin

act1 : account := ∅
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act2 : bal := ∅

act7 : cards := ∅

act8 : card account := ∅

act9 : pin := ∅

act10 : pinNo := ∅

act11 : atm := ∅

act12 : atm card := ∅

act16 : atm cash := ∅

act18 : active atm := ∅

act3 : idle := ∅

act4 : validating := ∅

act15 : complete := ∅

act19 : trans := ∅

act5 : endWithdrawal := ∅

act6 : conversation := ∅

act13 : bprocessing := ∅

act14 : reqmsg := ∅

act21 : rspmsg := ∅

end

Event insertCard =̂

refines insertCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ idle

then

act4 : idle := idle \ {at}
act3 : active atm := active atm ∪ {at}
act2 : validating := validating ∪ {at}
act1 : atm card(at) := c

end

Event validateCardOK =̂

refines validateCardOK
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any

c

at

p

where

grd1 : c ∈ cards

grd2 : at ∈ validating

grd7 : p ∈ pin

grd8 : pinNo(c) = p

grd3 : atm card(at) = c

then

act2 : trans := trans ∪ {at}
act1 : validating := validating \ {at}

end

Event request =̂

refines request

any

at

m

am

c

where

grd1 : at ∈ trans

grd2 : m ∈ REQ MSG

grd5 : c ∈ cards

grd8 : atm card(at) = c

grd3 : msg atm(m) = at

grd4 : am ∈ N
grd6 : msg card(m) = c

grd7 : reqmsg wdAmount(m) = am

then

act1 : trans := trans \ {at}
act2 : conversation := conversation ∪ {at}
act3 : reqmsg := reqmsg ∪ {m}

end
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Event receiveRequest =̂

refines receiveRequest

any

at

m

am

c

where

grd2 : m ∈ reqmsg

grd1 : at ∈ conversation

grd3 : msg atm(m) = at

grd4 : am ∈ N
grd5 : c ∈ cards

grd6 : msg card(m) = c

grd7 : reqmsg wdAmount(m) = am

then

act3 : bprocessing := bprocessing ∪ {at}
end

Event withdrawBankOK =̂

refines withdrawBankOK

any

ac

am

c

at

m

m0

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd9 : c ∈ cards

grd10 : at ∈ bprocessing

grd4 : am ≤ bal(ac)

grd6 : card account(c) = ac

grd8 : m ∈ reqmsg
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grd5 : m0 ∈ RSP MSG

grd11 : msg atm(m) = at

grd13 : msg atm(m0) = at

grd14 : msg card(m) = c

grd15 : reqmsg wdAmount(m) = am

grd3 : msg card(m0) = c

grd12 : rspmsg status(m0) = OK

grd16 : rspmsg bal(m0) = bal(ac)

then

act1 : bal(ac) := bal(ac)− am

act2 : bprocessing := bprocessing \ {at}
act5 : reqmsg := reqmsg \ {m}
act7 : rspmsg := rspmsg ∪ {m0}

end

Event withdrawFail =̂

refines withdrawFail

any

ac

am

c

at

m0

m

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd3 : c ∈ cards

grd4 : at ∈ bprocessing

grd5 : am > bal(ac)

grd6 : card account(c) = ac

grd7 : m ∈ reqmsg

grd15 : m0 ∈ RSP MSG

grd8 : msg atm(m) = at

grd10 : msg card(m) = c

grd11 : reqmsg wdAmount(m) = am

grd9 : msg atm(m0) = at
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grd12 : msg card(m0) = c

grd13 : rspmsg status(m0) = NOT OK

grd14 : rspmsg bal(m0) = bal(ac)

then

act1 : bprocessing := bprocessing \ {at}
act2 : reqmsg := reqmsg \ {m}
act3 : rspmsg := rspmsg ∪ {m0}

end

Event responseOK =̂

refines responseOK

any

at

m0

c

ac

where

grd1 : at ∈ conversation

grd2 : m0 ∈ rspmsg

grd3 : msg atm(m0) = at

grd5 : c ∈ cards

grd9 : ac ∈ account

grd7 : msg card(m0) = c

grd6 : rspmsg status(m0) = OK

grd8 : rspmsg bal(m0) = bal(ac)

then

act1 : rspmsg := rspmsg \ {m0}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

Event responseNOTOK =̂

refines responseNOTOK

any

at

m0
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c

ac

where

grd1 : at ∈ conversation

grd2 : m0 ∈ rspmsg

grd3 : c ∈ cards

grd4 : ac ∈ account

grd5 : msg atm(m0) = at

grd6 : msg card(m0) = c

grd7 : rspmsg status(m0) = NOT OK

grd8 : rspmsg bal(m0) = bal(ac)

then

act1 : rspmsg := rspmsg \ {m0}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

Event withdrawATM =̂

refines withdrawATM

any

ac

am

c

at

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ complete

grd8 : atm cash(at) ≥ am

grd9 : atm card(at) = c

grd10 : card account(c) = ac

then

act1 : atm cash(at) := atm cash(at)− am

act2 : complete := complete \ {at}
act3 : endWithdrawal := endWithdrawal ∪ {at}



Appendix C ATM Case Study: Using Rodin Event-B 205

end

Event ejectCard =̂

refines ejectCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ endWithdrawal

grd5 : atm card(at) = c

then

act2 : atm card := atm card \ {at 7→ c}
act3 : endWithdrawal := endWithdrawal \ {at}
act1 : idle := idle ∪ {at}
act4 : active atm := active atm \ {at}

end

END



Appendix C ATM Case Study: Using Rodin Event-B 206

A. Sixth Refinement

MACHINE ATM R6

REFINES ATM R5

SEES ATMC E3

VARIABLES

account

bal

cards

card account

pin

pinNo

atm

atm card

atm cash

active atm

idle

validating

complete

trans

endWithdrawal

conversation

bprocessing

msg

INVARIANTS

inv1 : msg ⊆ MSG

inv2 : reqmsg = msg ∩ REQ MSG

inv3 : rspmsg = msg ∩ RSP MSG

EVENTS

Initialisation

begin

act1 : account := ∅
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act2 : bal := ∅
act7 : cards := ∅
act8 : card account := ∅
act9 : pin := ∅
act10 : pinNo := ∅
act11 : atm := ∅
act12 : atm card := ∅
act16 : atm cash := ∅
act18 : active atm := ∅
act3 : idle := ∅
act4 : validating := ∅
act15 : complete := ∅
act19 : trans := ∅
act5 : endWithdrawal := ∅
act6 : conversation := ∅
act13 : bprocessing := ∅
act23 : msg := ∅

end

Event insertCard =̂

refines insertCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ idle

then

act1 : atm card(at) := c

act3 : active atm := active atm ∪ {at}
act2 : validating := validating ∪ {at}
act4 : idle := idle \ {at}

end

Event validateCardOK =̂

refines validateCardOK

any
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c

at

p

where

grd1 : c ∈ cards

grd2 : at ∈ validating

grd7 : p ∈ pin

grd8 : pinNo(c) = p

grd3 : atm card(at) = c

then

act2 : trans := trans ∪ {at}
act1 : validating := validating \ {at}

end

Event request =̂

refines request

any

at

m

am

c

where

grd1 : at ∈ trans

grd2 : m ∈ REQ MSG

grd3 : msg atm(m) = at

grd4 : am ∈ N
grd5 : c ∈ cards

grd6 : msg card(m) = c

grd7 : reqmsg wdAmount(m) = am

grd8 : atm card(at) = c

then

act1 : trans := trans \ {at}
act2 : conversation := conversation ∪ {at}
act3 : msg := msg ∪ {m}

end

Event receiveRequest =̂
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refines receiveRequest

any

at

m

am

c

where

grd2 : m ∈ msg

grd8 : m ∈ REQ MSG

grd1 : at ∈ conversation

grd3 : msg atm(m) = at

grd4 : am ∈ N
grd5 : c ∈ cards

grd6 : msg card(m) = c

grd7 : reqmsg wdAmount(m) = am

then

act3 : bprocessing := bprocessing ∪ {at}
end

Event withdrawBankOK =̂

refines withdrawBankOK

any

ac

am

c

at

m

m0

where

grd1 : ac ∈ account

grd2 : am ∈ N
grd9 : c ∈ cards

grd10 : at ∈ bprocessing

grd4 : am < bal(ac)

grd6 : card account(c) = ac

grd8 : m ∈ msg
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grd3 : m ∈ REQ MSG

grd12 : m0 ∈ RSP MSG

grd11 : msg atm(m) = at

grd13 : msg atm(m0) = at

grd14 : msg card(m) = c

grd15 : reqmsg wdAmount(m) = am

grd17 : msg card(m0) = c

grd18 : rspmsg status(m0) = OK

grd19 : rspmsg bal(m0) = bal(ac)

then

act1 : bal(ac) := bal(ac)− am

act2 : bprocessing := bprocessing \ {at}
act3 : msg := (msg \ {m}) ∪ {m0}

end

Event withdrawFail =̂

refines withdrawFail

any

ac

am

c

at

m

m0

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ bprocessing

grd6 : m ∈ msg

grd15 : m ∈ REQ MSG

grd16 : m0 ∈ RSP MSG

grd9 : am > bal(ac)

grd10 : card account(c) = ac

grd11 : msg atm(m) = at

grd12 : msg atm(m0) = at

grd13 : msg card(m) = c
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grd14 : reqmsg wdAmount(m) = am

grd17 : msg card(m0) = c

grd18 : rspmsg status(m0) = NOT OK

grd19 : rspmsg bal(m0) = bal(ac)

then

act2 : bprocessing := bprocessing \ {at}
act1 : msg := (msg \ {m}) ∪ {m0}

end

Event responseOK =̂

refines responseOK

any

at

m0

c

ac

where

grd1 : at ∈ conversation

grd2 : m0 ∈ msg

grd4 : m0 ∈ RSP MSG

grd3 : msg atm(m0) = at

grd5 : c ∈ cards

grd9 : ac ∈ account

grd7 : msg card(m0) = c

grd6 : rspmsg status(m0) = OK

grd8 : rspmsg bal(m0) = bal(ac)

then

act1 : msg := msg \ {m0}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

Event responseNOTOK =̂

refines responseNOTOK

any

at
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m0

c

ac

where

grd1 : at ∈ conversation

grd2 : m0 ∈ msg

grd8 : m0 ∈ RSP MSG

grd7 : msg atm(m0) = at

grd3 : c ∈ cards

grd4 : ac ∈ account

grd5 : msg card(m0) = c

grd6 : rspmsg status(m0) = NOT OK

grd9 : rspmsg bal(m0) = bal(ac)

then

act1 : msg := msg \ {m0}
act2 : complete := complete ∪ {at}
act3 : conversation := conversation \ {at}

end

Event withdrawATM =̂

refines withdrawATM

any

ac

am

c

at

where

grd2 : ac ∈ account

grd3 : am ∈ N
grd4 : c ∈ cards

grd5 : at ∈ complete

grd8 : atm cash(at) ≥ am

grd9 : atm card(at) = c

grd10 : card account(c) = ac

then

act1 : atm cash(at) := atm cash(at)− am
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act2 : complete := complete \ {at}
act3 : endWithdrawal := endWithdrawal ∪ {at}

end

Event ejectCard =̂

refines ejectCard

any

c

at

where

grd1 : c ∈ cards

grd2 : at ∈ endWithdrawal

grd5 : atm card(at) = c

then

act2 : atm card := atm card \ {at 7→ c}
act3 : endWithdrawal := endWithdrawal \ {at}
act1 : idle := idle ∪ {at}
act4 : active atm := active atm \ {at}

end

END



Appendix D

ATM Case Study: Using Rodin

UML-B

B.0 Generated Event-B Abstract Machine

MACHINE ATM A

SEES ATM A implicitContext

VARIABLES

account // class instances

bal // attribute of account

INVARIANTS

account.type : account ∈ P(Account)
bal.type : bal ∈ account→ N

EVENTS

Initialisation

begin

account.init : account := ∅

bal.init : bal := ∅

end

Event checkBalance =̂

any

self // contextual instance of class account

214
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b

where

self.type : self ∈ account

b.type : b ∈ N
checkBalance.Guard1 : b = bal(self)

then

skip

end

Event deposit =̂

any

self // contextual instance of class account

where

self.type : self ∈ account

then

skip

end

Event createAccount =̂

any

self // contextual instance of class account

where

self.type : self ∈ account

then

skip

end

Event withdraw =̂

any

self // contextual instance of class account

am

where

self.type : self ∈ account

am.type : am ∈ N
withdraw.Guard1 : bal(self) ≥ am

then
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withdraw.Action1 : bal(self) := bal(self)− am

end

END
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B.1 Generated Event-B First Refinement

B.1.1 Context

CONTEXT ATM CXR1

EXTENDS ATM CXA

SETS

ATM ClassType

Card ClassType

CONSTANTS

ValidCard classType instances

InvalidCard classType instances

MIN CASH utility constant

MAX CASH utility constant

card account attribute of ValidCard

AXIOMS

ValidCard.type : ValidCard ∈ P(Card)

InvalidCard.type : InvalidCard ∈ P(Card)

MIN CASH.type : MIN CASH ∈ N
MAX CASH.type : MAX CASH ∈ N
card account.type : card account ∈ ValidCard ½³ Account

Axiom1 : MAX CASH > MIN CASH

END

B.1.1 Machine

MACHINE ATM R1

REFINES ATM A

SEES ATM R1 implicitContext

VARIABLES

account refined class instances

atm class instances

bal inherited attribute of account
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atm acbal attribute of atm

atm cash attribute of atm

atm card attribute of atm

idle state from statemachine, ATM SM

active atm state from statemachine, ATM SM

INVARIANTS

atm.type : atm ∈ P(ATM )

atm acbal.type : atm acbal ∈ atm 7→ N

atm cash.type : atm cash ∈ atm → N

atm card.type : atm card ∈ atm 7→ValidCard

idle.type : idle ∈ P(atm)

active atm.type : active atm ∈ P(atm)

ATM SM partitions atm : partition(atm, idle, active atm)

EVENTS

Initialisation

begin

account.init : account := ∅

atm.init : atm := ∅

bal.init : bal := ∅

atm acbal.init : atm acbal := ∅

atm cash.init : atm cash := ∅

atm card.init : atm card := ∅

idle.init : idle := ∅

active atm.init : active atm := ∅

end

Event start =̂

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
atm.atm cash initialise : atm cash(selfATM ) := MAX CASH
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ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event reloadCash =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cash(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cash(selfATM ) := MAX CASH−atm cash(selfATM )

end

Event insertCard =̂

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM leaveState idle : idle := idle \ {selfATM }
ATM SM enterState active atm : active atm := active atm ∪ {selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event withdrawOK =̂

refines withdraw

any

selfATM contextual instance of class atm

c

am

ac
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where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin active atm : selfATM ∈ active atm

withdrawOK.Guard1 : selfATM ∈ dom(atm card)

withdrawOK.Guard2 : atm card(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : atm cash(selfATM ) ≥ am

with

self : ac = self

then

withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbal(selfATM ) := bal(ac)

withdrawOK.Action3 : atm cash(selfATM ) := atm cash(selfATM )− am

end

Event withdrawFail =̂

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin active atm : selfATM ∈ active atm

withdrawFail.Guard1 : selfATM ∈ dom(atm card)

withdrawFail.Guard2 : atm card(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac

withdrawFail.Guard4 : bal(ac) < am

then

withdrawFail.Action1 : atm acbal(selfATM ) := bal(ac)
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end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atm

c

ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

ATM SM isin active atm : selfATM ∈ active atm

checkBalance.Guard1 : selfATM ∈ dom(atm card)

checkBalance.Guard2 : atm card(selfATM ) = c

checkBalance.Guard3 : card account(c) = ac

with

self : ac = self

then

checkBalance.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event ejectCard =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin active atm : selfATM ∈ active atm

ejectCard.Guard1 : selfATM ∈ dom(atm card)

ejectCard.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState active atm : active atm := active atm \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard.Action1 : atm card := atm card \ {selfATM 7→ c}
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end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

END
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B.2 Generated Event-B Second Refinement

B.2.1 Context

CONTEXT ATM CXR2

EXTENDS ATM CXR1

SETS

Pin ClassType

CONSTANTS

card pin attribute of ValidCard

AXIOMS

card pin.type : card pin ∈ ValidCard ³ Pin

END

B.2.2 Machine

MACHINE ATM R2

REFINES ATM R1

SEES ATM R2 implicitContext

VARIABLES

account refined class instances

atm refined class instances

bal inherited attribute of account

atm card inherited attribute of atm

atm acbal inherited attribute of atm

atm cash inherited attribute of atm

idle state from refined statemachine, ATM SM

active atm state from refined statemachine, ATM SM

validating state from statemachine, active atm SM

transOption state from statemachine, active atm SM

invalidCard state from statemachine, active atm SM

performTrans state from statemachine, active atm SM
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INVARIANTS

validating.type : validating ∈ P(active atm)

transOption.type : transOption ∈ P(active atm)

invalidCard.type : invalidCard ∈ P(active atm)

performTrans.type : performTrans ∈ P(active atm)

active atm SM partitions active atm : partition(active atm, validating ,

transOption, invalidCard , performTrans)

EVENTS

Initialisation

begin

account.init : account := ∅

atm.init : atm := ∅

bal.init : bal := ∅
atm card.init : atm card := ∅

atm acbal.init : atm acbal := ∅

atm cash.init : atm cash := ∅

idle.init : idle := ∅

active atm.init : active atm := ∅
validating.init : validating := ∅

transOption.init : transOption := ∅

invalidCard.init : invalidCard := ∅

performTrans.init : performTrans := ∅

end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
atm.atm cash initialise : atm cash(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end
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Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cash(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cash(selfATM ) := MAX CASH−atm cash(selfATM )

end

Event insertCard =̂

refines insertCard

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM enterSuperState active atm : active atm := active atm∪{selfATM }
ATM SM leaveState idle : idle := idle \ {selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event validateCardOK =̂

any

selfATM contextual instance of class atm

c

p

where
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p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c

validateCardOK.Guard3 : card pin(c) = p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState transOption : transOption := transOption ∪

{selfATM }
end

Event validateCardFail =̂

any

selfATM contextual instance of class atm

c

p

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

p.type : p ∈ Pin

active atm SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event retry =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard
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selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

retry.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }

end

Event ejectCard1 =̂

refines ejectCard

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

ejectCard1.Guard1 : selfATM ∈ dom(atm card)

ejectCard1.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event ejectCard2 =̂

refines ejectCard

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin transOption : selfATM ∈ transOption
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ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
active atm SM leaveState transOption : transOption := transOption\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin transOption : selfATM ∈ transOption

withdrawOK.Guard1 : selfATM ∈ dom(atm card)

withdrawOK.Guard2 : atm card(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : atm cash(selfATM ) ≥ am

then

active atm SM leaveState transOption : transOption := transOption\{selfATM }
active atm SM enterState performTrans : performTrans := performTrans∪

{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbal(selfATM ) := bal(ac)

withdrawOK.Action3 : atm cash(selfATM ) := atm cash(selfATM )− am

end

Event withdrawFail =̂
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refines withdrawFail

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin transOption : selfATM ∈ transOption

withdrawFail.Guard1 : selfATM ∈ dom(atm card)

withdrawFail.Guard2 : atm card(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac

withdrawFail.Guard4 : bal(ac) < am

then

active atm SM leaveState transOption : transOption := transOption\{selfATM }
active atm SM enterState performTrans : performTrans := performTrans∪

{selfATM }
withdrawFail.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atm

c

ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

active atm SM isin transOption : selfATM ∈ transOption

checkBalance.Guard1 : selfATM ∈ dom(atm card)

checkBalance.Guard2 : atm card(selfATM ) = c
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checkBalance.Guard3 : card account(c) = ac

then

active atm SM leaveState transOption : transOption := transOption\{selfATM }
active atm SM enterState performTrans : performTrans := performTrans∪

{selfATM }
checkBalance.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event doAnother =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin performTrans : selfATM ∈ performTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

doAnother.Guard3 : atm card(selfATM ) = c

then

active atm SM leaveState performTrans : performTrans := performTrans\
{selfATM }

active atm SM enterState transOption : transOption := transOption ∪
{selfATM }

end

Event ejectCard3 =̂

refines ejectCard

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin performTrans : selfATM ∈ performTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)

ejectCard3.Guard2 : atm card(selfATM ) = c
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then

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
active atm SM leaveState performTrans : performTrans := performTrans\

{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

END
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B.3 Generated Event-B Third Refinement

MACHINE ATM R3

REFINES ATM R2

SEES ATM R3 implicitContext

VARIABLES

account refined class instances

atm refined class instances

bal inherited attribute of account

atm card inherited attribute of atm

atm acbal inherited attribute of atm

atm cashA attribute of atm

atm wdam attribute of atm

atm acbalA attribute of atm

idle state from refined statemachine, ATM SM

active atm state from refined statemachine, ATM SM

validating state from refined statemachine, active atm SM

transOption state from refined statemachine, active atm SM

invalidCard state from refined statemachine, active atm SM

performTrans state from refined statemachine, active atm SM

trans state from statemachine, transOption SM

reqWD state from statemachine, transOption SM

reqCB state from statemachine, transOption SM

processedWDFail state from statemachine, performTrans SM

processedCB state from statemachine, performTrans SM

processedWDOK state from statemachine, performTrans SM

endTrans state from statemachine, performTrans SM

rspWDOK state from statemachine, performTrans SM

rspWDFail state from statemachine, performTrans SM

rspCB state from statemachine, performTrans SM

INVARIANTS

atm cashA.type : atm cashA ∈ atm → N

atm wdam.type : atm wdam ∈ atm 7→ N
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atm acbalA.type : atm acbalA ∈ atm 7→ N

trans.type : trans ∈ P(transOption)

reqWD.type : reqWD ∈ P(transOption)

reqCB.type : reqCB ∈ P(transOption)

processedWDFail.type : processedWDFail ∈ P(performTrans)

processedCB.type : processedCB ∈ P(performTrans)

processedWDOK.type : processedWDOK ∈ P(performTrans)

endTrans.type : endTrans ∈ P(performTrans)

rspWDOK.type : rspWDOK ∈ P(performTrans)

rspWDFail.type : rspWDFail ∈ P(performTrans)

rspCB.type : rspCB ∈ P(performTrans)

transOption SM partitions transOption : partition(transOption, trans, reqWD , reqCB)

performTrans SM partitions performTrans : partition(performTrans, processedWDFail ,
processedCB , processedWDOK , endTrans, rspWDOK , rspWDFail , rspCB)

Invariant1 : ∀a ·a ∈ atm∧a /∈ rspWDOK∧a /∈ processedWDOK⇒atm cash(a) =
atm cashA(a)

Invariant2 : ∀a ·a ∈ (rspWDOK ∪ processedWDOK ) ∧ a ∈ dom(atm wdam)⇒
atm cash(a) + atm wdam(a) = atm cashA(a)

Invariant3 : ∀a ·a ∈ reqWD∧a ∈ dom(atm wdam)⇒atm cash(a) ≥ atm wdam(a)

EVENTS

Initialisation

begin

account.init : account := ∅

atm.init : atm := ∅

bal.init : bal := ∅

atm card.init : atm card := ∅

atm acbal.init : atm acbal := ∅

atm cashA.init : atm cashA := ∅

atm wdam.init : atm wdam := ∅

atm acbalA.init : atm acbalA := ∅

idle.init : idle := ∅

active atm.init : active atm := ∅

validating.init : validating := ∅

transOption.init : transOption := ∅

invalidCard.init : invalidCard := ∅
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performTrans.init : performTrans := ∅

trans.init : trans := ∅

reqWD.init : reqWD := ∅

reqCB.init : reqCB := ∅

processedWDFail.init : processedWDFail := ∅

processedCB.init : processedCB := ∅

processedWDOK.init : processedWDOK := ∅

endTrans.init : endTrans := ∅

rspWDOK.init : rspWDOK := ∅

rspWDFail.init : rspWDFail := ∅

rspCB.init : rspCB := ∅

end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event insertCard =̂

refines insertCard

any
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selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM enterSuperState active atm : active atm := active atm∪{selfATM }
ATM SM leaveState idle : idle := idle \ {selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH−atm cashA(selfATM )

end

Event ejectCard1 =̂

refines ejectCard1

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

ejectCard1.Guard1 : selfATM ∈ dom(atm card)
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ejectCard1.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin reqWD : selfATM ∈ reqWD

withdrawOK.Guard1 : selfATM ∈ dom(atm card)

withdrawOK.Guard2 : atm card(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : selfATM ∈ dom(atm wdam)

withdrawOK.Guard6 : atm wdam(selfATM ) = am

then

active atm SM enterSuperState performTrans : performTrans := performTrans∪
{selfATM }

active atm SM leaveSuperState transOption : transOption := transOption\
{selfATM }

transOption SM leaveState reqWD : reqWD := reqWD \ {selfATM }
performTrans SM enterState processedWDOK : processedWDOK := processedWDOK∪

{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbal(selfATM ) := bal(ac)− am
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end

Event withdrawFail =̂

refines withdrawFail

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin reqWD : selfATM ∈ reqWD

withdrawFail.Guard1 : selfATM ∈ dom(atm card)

withdrawFail.Guard2 : atm card(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac

withdrawFail.Guard4 : bal(ac) < am

withdrawFail.Guard5 : selfATM ∈ dom(atm wdam)

withdrawFail.Guard6 : atm wdam(selfATM ) = am

then

active atm SM enterSuperState performTrans : performTrans := performTrans∪
{selfATM }

active atm SM leaveSuperState transOption : transOption := transOption\
{selfATM }

transOption SM leaveState reqWD : reqWD := reqWD \ {selfATM }
performTrans SM enterState processedWDFail : processedWDFail := processedWDFail∪

{selfATM }
withdrawFail.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atm

c
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ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

transOption SM isin reqCB : selfATM ∈ reqCB

checkBalance.Guard1 : selfATM ∈ dom(atm card)

checkBalance.Guard2 : atm card(selfATM ) = c

checkBalance.Guard3 : card account(c) = ac

then

active atm SM enterSuperState performTrans : performTrans := performTrans∪
{selfATM }

active atm SM leaveSuperState transOption : transOption := transOption\
{selfATM }

transOption SM leaveState reqCB : reqCB := reqCB \ {selfATM }
performTrans SM enterState processedCB : processedCB := processedCB∪

{selfATM }
checkBalance.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event ejectCard2 =̂

refines ejectCard2

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin trans : selfATM ∈ trans

ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveSuperState transOption : transOption := transOption\
{selfATM }

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
transOption SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
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ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}
end

Event ejectCard3 =̂

refines ejectCard3

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

performTrans SM isin endTrans : selfATM ∈ endTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)

ejectCard3.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveSuperState performTrans : performTrans := performTrans\
{selfATM }

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event validateCardFail =̂
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refines validateCardFail

any

selfATM contextual instance of class atm

c

p

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

p.type : p ∈ Pin

active atm SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event validateCardOK =̂

refines validateCardOK

any

selfATM contextual instance of class atm

c

p

where

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c

validateCardOK.Guard3 : card pin(c) = p

then

active atm SM enterSuperState transOption : transOption := transOption∪
{selfATM }

active atm SM leaveState validating : validating := validating\{selfATM }
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transOption SM enterState trans : trans := trans ∪ {selfATM }
end

Event retry =̂

refines retry

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }

end

Event doAnother =̂

refines doAnother

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin endTrans : selfATM ∈ endTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM enterSuperState transOption : transOption := transOption∪
{selfATM }

active atm SM leaveSuperState performTrans : performTrans := performTrans\
{selfATM }

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event requestWD =̂

any

selfATM contextual instance of class atm
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am

where

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

transOption SM isin trans : selfATM ∈ trans

requestWD.Guard1 : selfATM ∈ dom(atm card)

requestWD.Guard3 : atm cashA(selfATM ) > MIN CASH

requestWD.Guard5 : am ≤ MIN CASH

then

transOption SM leaveState trans : trans := trans \ {selfATM }
transOption SM enterState reqWD : reqWD := reqWD ∪ {selfATM }
requestWD.Action1 : atm wdam(selfATM ) := am

end

Event requestCB =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

transOption SM isin trans : selfATM ∈ trans

requestCB.Guard1 : selfATM ∈ dom(atm card)

then

transOption SM leaveState trans : trans := trans \ {selfATM }
transOption SM enterState reqCB : reqCB := reqCB ∪ {selfATM }

end

Event responseWDFail =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin processedWDFail : selfATM ∈ processedWDFail

responseWDFail.Guard1 : selfATM ∈ dom(atm card)

responseWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

performTrans SM leaveState processedWDFail : processedWDFail := processedWDFail\
{selfATM }
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performTrans SM enterState rspWDFail : rspWDFail := rspWDFail∪{selfATM }
responseWDFail.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event responseCB =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin processedCB : selfATM ∈ processedCB

responseCB.Guard1 : selfATM ∈ dom(atm card)

responseCB.Guard2 : selfATM ∈ dom(atm acbal)

then

performTrans SM leaveState processedCB : processedCB := processedCB\
{selfATM }

performTrans SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
responseCB.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event responseWDOK =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin processedWDOK : selfATM ∈ processedWDOK

responseWDOK.Guard1 : selfATM ∈ dom(atm card)

responseWDOK.Guard2 : selfATM ∈ dom(atm acbal)

then

performTrans SM leaveState processedWDOK : processedWDOK := processedWDOK\
{selfATM }

performTrans SM enterState rspWDOK : rspWDOK := rspWDOK∪{selfATM }
responseWDOK.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event withdrawATMOK =̂

any

selfATM contextual instance of class atm
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am

where

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDOK : selfATM ∈ rspWDOK

withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

withdrawATMOK.Guard2 : selfATM ∈ dom(atm wdam)

withdrawATMOK.Guard3 : selfATM ∈ dom(atm acbalA)

withdrawATMOK.Guard5 : atm wdam(selfATM ) = am

withdrawATMOK.Guard8 : atm cashA(selfATM ) ≥ am

withdrawATMOK.Guard4 : selfATM ∈ dom(atm acbal)

withdrawATMOK.Guard6 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDOK : rspWDOK := rspWDOK\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }
withdrawATMOK.Action1 : atm cashA(selfATM ) := atm cashA(selfATM ) −

am

end

Event withdrawATMFail =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDFail : selfATM ∈ rspWDFail

withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

withdrawATMFail.Guard3 : selfATM ∈ dom(atm acbal)

withdrawATMFail.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDFail : rspWDFail := rspWDFail\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event checkBalATM =̂

any

selfATM contextual instance of class atm
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where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspCB : selfATM ∈ rspCB

checkBalATM.Guard1 : selfATM ∈ dom(atm card)

checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

checkBalATM.Guard3 : selfATM ∈ dom(atm acbal)

checkBalATM.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspCB : rspCB := rspCB \ {selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

END
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B.4 Generated Event-B Fourth Refinement

MACHINE ATM R4

REFINES ATM R3

SEES ATM R4 implicitContext

VARIABLES

account refined class instances

atm refined class instances

atmB class instances

bal inherited attribute of account

atm card inherited attribute of atm

atm cashA inherited attribute of atm

atm wdam inherited attribute of atm

atm acbalA inherited attribute of atm

atm acbal inherited attribute of atm

idle state from refined statemachine, ATM SM

active atm state from refined statemachine, ATM SM

validating state from refined statemachine, active atm SM

transOption state from refined statemachine, active atm SM

invalidCard state from refined statemachine, active atm SM

performTrans state from refined statemachine, active atm SM

trans state from refined statemachine, transOption SM

reqWD state from refined statemachine, transOption SM

reqCB state from refined statemachine, transOption SM

sentReqWD state from statemachine, reqWD SM

recvdReqWD state from statemachine, reqWD SM

sentReqCB state from statemachine, reqCB SM

recvdReqCB state from statemachine, reqCB SM

processedWDFail state from refined statemachine, performTrans SM

processedWDOK state from refined statemachine, performTrans SM

processedCB state from refined statemachine, performTrans SM

endTrans state from refined statemachine, performTrans SM

rspWDOK state from refined statemachine, performTrans SM
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rspWDFail state from refined statemachine, performTrans SM

rspCB state from refined statemachine, performTrans SM

processWDFail state from statemachine, processedWDFail SM

sentRspWDFail state from statemachine, processedWDFail SM

processWDOK state from statemachine, processedWDOK SM

sentRspWDOK state from statemachine, processedWDOK SM

processCB state from statemachine, processedCB SM

sentRspCB state from statemachine, processedCB SM

atm cardB attribute of atmB

atm wdamB attribute of atmB

INVARIANTS

atmB.type : atmB ∈ P(atm)

sentReqWD.type : sentReqWD ∈ P(reqWD)

recvdReqWD.type : recvdReqWD ∈ P(reqWD)

sentReqCB.type : sentReqCB ∈ P(reqCB)

recvdReqCB.type : recvdReqCB ∈ P(reqCB)

processWDFail.type : processWDFail ∈ P(processedWDFail)

sentRspWDFail.type : sentRspWDFail ∈ P(processedWDFail)

processWDOK.type : processWDOK ∈ P(processedWDOK )

sentRspWDOK.type : sentRspWDOK ∈ P(processedWDOK )

processCB.type : processCB ∈ P(processedCB)

sentRspCB.type : sentRspCB ∈ P(processedCB)

atm cardB.type : atm cardB ∈ atmB →ValidCard

atm wdamB.type : atm wdamB ∈ atmB 7→ N

reqWD SM partitions reqWD : partition(reqWD , sentReqWD , recvdReqWD)

reqCB SM partitions reqCB : partition(reqCB , sentReqCB , recvdReqCB)

processedWDFail SM partitions processedWDFail : partition(processedWDFail ,
processWDFail , sentRspWDFail)

processedWDOK SM partitions processedWDOK : partition(processedWDOK ,

processWDOK , sentRspWDOK )

processedCB SM partitions processedCB : partition(processedCB , processCB , sentRspCB)

Invariant1 : ∀a ·a ∈ (recvdReqWD ∪ recvdReqCB)⇒ a ∈ dom(atm card)

Invariant2 : ∀a ·a ∈ (recvdReqWD ∪ recvdReqCB) ∧ a ∈ dom(atm card) ∧ a ∈
dom(atm cardB)⇒ atm card(a) = atm cardB(a)
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Invariant3 : ∀a ·a ∈ recvdReqWD ⇒ a ∈ dom(atm wdam)

Invariant4 : ∀a ·a ∈ recvdReqWD∧a ∈ dom(atm wdam)∧a ∈ dom(atm wdamB)⇒
atm wdam(a) = atm wdamB(a)

EVENTS

Initialisation

begin

account.init : account := ∅

atm.init : atm := ∅

atmB.init : atmB := ∅

bal.init : bal := ∅

atm card.init : atm card := ∅

atm cashA.init : atm cashA := ∅

atm wdam.init : atm wdam := ∅

atm acbalA.init : atm acbalA := ∅

atm acbal.init : atm acbal := ∅

idle.init : idle := ∅

active atm.init : active atm := ∅

validating.init : validating := ∅

transOption.init : transOption := ∅

invalidCard.init : invalidCard := ∅

performTrans.init : performTrans := ∅

trans.init : trans := ∅

reqWD.init : reqWD := ∅

reqCB.init : reqCB := ∅

sentReqWD.init : sentReqWD := ∅

recvdReqWD.init : recvdReqWD := ∅

sentReqCB.init : sentReqCB := ∅

recvdReqCB.init : recvdReqCB := ∅

processedWDFail.init : processedWDFail := ∅

processedWDOK.init : processedWDOK := ∅

processedCB.init : processedCB := ∅

endTrans.init : endTrans := ∅

rspWDOK.init : rspWDOK := ∅

rspWDFail.init : rspWDFail := ∅

rspCB.init : rspCB := ∅

processWDFail.init : processWDFail := ∅
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sentRspWDFail.init : sentRspWDFail := ∅

processWDOK.init : processWDOK := ∅

sentRspWDOK.init : sentRspWDOK := ∅

processCB.init : processCB := ∅

sentRspCB.init : sentRspCB := ∅

atm cardB.init : atm cardB := ∅

atm wdamB.init : atm wdamB := ∅

end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event insertCard =̂

refines insertCard

any

selfATM contextual instance of class atm

c

where
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selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM enterSuperState active atm : active atm := active atm∪{selfATM }
ATM SM leaveState idle : idle := idle \ {selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH

end

Event ejectCard1 =̂

refines ejectCard1

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

ejectCard1.Guard1 : selfATM ∈ dom(atm card)

ejectCard1.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
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active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawOK.Guard7 : selfATM ∈ atmB

withdrawOK.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawOK.Guard2 : atm cardB(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : am = atm wdamB(selfATM )

then

performTrans SM enterSuperState processedWDOK : processedWDOK := processedWDOK∪
{selfATM }

active atm SM enterSuperState performTrans : performTrans := performTrans∪
{selfATM }

transOption SM leaveSuperState reqWD : reqWD := reqWD \ {selfATM }
active atm SM leaveSuperState transOption : transOption := transOption\

{selfATM }
reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDOK SM enterState processWDOK : processWDOK := processWDOK∪

{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbal(selfATM ) := bal(ac)− am
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end

Event withdrawFail =̂

refines withdrawFail

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawFail.Guard7 : selfATM ∈ atmB

withdrawFail.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawFail.Guard2 : atm cardB(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac

withdrawFail.Guard4 : bal(ac) < am

withdrawFail.Guard5 : am = atm wdamB(selfATM )

then

performTrans SM enterSuperState processedWDFail : processedWDFail :=
processedWDFail ∪ {selfATM }

active atm SM enterSuperState performTrans : performTrans := performTrans∪
{selfATM }

transOption SM leaveSuperState reqWD : reqWD := reqWD \ {selfATM }
active atm SM leaveSuperState transOption : transOption := transOption\

{selfATM }
reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDFail SM enterState processWDFail : processWDFail := processWDFail∪

{selfATM }
withdrawFail.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event checkBalance =̂

refines checkBalance
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any

selfATM contextual instance of class atm

c

ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

reqCB SM isin recvdReqCB : selfATM ∈ recvdReqCB

checkBalance.Guard4 : selfATM ∈ atmB

checkBalance.Guard2 : atm cardB(selfATM ) = c

checkBalance.Guard3 : card account(c) = ac

then

performTrans SM enterSuperState processedCB : processedCB := processedCB∪
{selfATM }

active atm SM enterSuperState performTrans : performTrans := performTrans∪
{selfATM }

transOption SM leaveSuperState reqCB : reqCB := reqCB \ {selfATM }
active atm SM leaveSuperState transOption : transOption := transOption\

{selfATM }
reqCB SM leaveState recvdReqCB : recvdReqCB := recvdReqCB\{selfATM }
processedCB SM enterState processCB : processCB := processCB∪{selfATM }
checkBalance.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event ejectCard2 =̂

refines ejectCard2

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin trans : selfATM ∈ trans

ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then
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active atm SM leaveSuperState transOption : transOption := transOption\
{selfATM }

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
transOption SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event ejectCard3 =̂

refines ejectCard3

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

performTrans SM isin endTrans : selfATM ∈ endTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)

ejectCard3.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveSuperState performTrans : performTrans := performTrans\
{selfATM }

ATM SM leaveSuperState active atm : active atm := active atm\{selfATM }
performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
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atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event validateCardFail =̂

refines validateCardFail

any

selfATM contextual instance of class atm

c

p

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

p.type : p ∈ Pin

active atm SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event validateCardOK =̂

refines validateCardOK

any

selfATM contextual instance of class atm

c

p

where

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c
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validateCardOK.Guard3 : card pin(c) = p

then

active atm SM enterSuperState transOption : transOption := transOption∪
{selfATM }

active atm SM leaveState validating : validating := validating\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event retry =̂

refines retry

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }

end

Event doAnother =̂

refines doAnother

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin endTrans : selfATM ∈ endTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM enterSuperState transOption : transOption := transOption∪
{selfATM }

active atm SM leaveSuperState performTrans : performTrans := performTrans\
{selfATM }

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }
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end

Event sendReqWD =̂

refines requestWD

any

selfATM contextual instance of class atm

am

where

selfATM.type : selfATM ∈ atm

am.type : am ∈ N
transOption SM isin trans : selfATM ∈ trans

sendReqWD.Guard3 : selfATM ∈ dom(atm card)

sendReqWD.Guard1 : atm cashA(selfATM ) > MIN CASH

sendReqWD.Guard5 : am ≤ MIN CASH

then

transOption SM enterSuperState reqWD : reqWD := reqWD ∪ {selfATM }
transOption SM leaveState trans : trans := trans \ {selfATM }
reqWD SM enterState sentReqWD : sentReqWD := sentReqWD∪{selfATM }
sendReqWD.Action1 : atm wdam(selfATM ) := am

end

Event sendReqCB =̂

refines requestCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

transOption SM isin trans : selfATM ∈ trans

sendReqCB.Guard1 : selfATM ∈ dom(atm card)

then

transOption SM enterSuperState reqCB : reqCB := reqCB ∪ {selfATM }
transOption SM leaveState trans : trans := trans \ {selfATM }
reqCB SM enterState sentReqCB : sentReqCB := sentReqCB ∪ {selfATM }

end

Event recvReqWD =̂



Appendix D ATM Case Study: Using Rodin UML-B 258

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqWD SM isin sentReqWD : selfATM ∈ sentReqWD

recvReqWD.Guard1 : selfATM ∈ dom(atm wdam)

recvReqWD.Guard2 : selfATM ∈ dom(atm card)

then

reqWD SM leaveState sentReqWD : sentReqWD := sentReqWD \{selfATM }
reqWD SM enterState recvdReqWD : recvdReqWD := recvdReqWD∪{selfATM }
recvReqWD.Action1 : atmB := atmB ∪ {selfATM }
recvReqWD.Action2 : atm cardB(selfATM ) := atm card(selfATM )

recvReqWD.Action3 : atm wdamB(selfATM ) := atm wdam(selfATM )

end

Event recvReqCB =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqCB SM isin sentReqCB : selfATM ∈ sentReqCB

recvReqCB.Guard1 : selfATM ∈ dom(atm card)

then

reqCB SM leaveState sentReqCB : sentReqCB := sentReqCB \ {selfATM }
reqCB SM enterState recvdReqCB : recvdReqCB := recvdReqCB∪{selfATM }
recvReqCB.Action2 : atm cardB(selfATM ) := atm card(selfATM )

recvReqCB.Action1 : atmB := atmB ∪ {selfATM }
end

Event recvRspWDFail =̂

refines responseWDFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin sentRspWDFail : selfATM ∈ sentRspWDFail
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recvRspWDFail.Guard1 : selfATM ∈ dom(atm card)

recvRspWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

performTrans SM leaveSuperState processedWDFail : processedWDFail :=
processedWDFail \ {selfATM }

processedWDFail SM leaveState sentRspWDFail : sentRspWDFail := sentRspWDFail\
{selfATM }

performTrans SM enterState rspWDFail : rspWDFail := rspWDFail∪{selfATM }
recvRspWDFail.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event recvRspWDOK =̂

refines responseWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin sentRspWDOK : selfATM ∈ sentRspWDOK

recvRspWDOK.Guard1 : selfATM ∈ dom(atm card)

recvRspWDOK.Guard2 : selfATM ∈ dom(atm acbal)

then

performTrans SM leaveSuperState processedWDOK : processedWDOK := processedWDOK\
{selfATM }

processedWDOK SM leaveState sentRspWDOK : sentRspWDOK := sentRspWDOK\
{selfATM }

performTrans SM enterState rspWDOK : rspWDOK := rspWDOK∪{selfATM }
recvRspWDOK.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event recvRspCB =̂

refines responseCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin sentRspCB : selfATM ∈ sentRspCB



Appendix D ATM Case Study: Using Rodin UML-B 260

recvRspCB.Guard1 : selfATM ∈ dom(atm card)

recvRspCB.Guard2 : selfATM ∈ dom(atm acbal)

then

performTrans SM leaveSuperState processedCB : processedCB := processedCB\
{selfATM }

processedCB SM leaveState sentRspCB : sentRspCB := sentRspCB\{selfATM }
performTrans SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
recvRspCB.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event withdrawATMOK =̂

refines withdrawATMOK

any

selfATM contextual instance of class atm

am

where

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDOK : selfATM ∈ rspWDOK

withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

withdrawATMOK.Guard2 : selfATM ∈ dom(atm wdam)

withdrawATMOK.Guard3 : selfATM ∈ dom(atm acbalA)

withdrawATMOK.Guard5 : atm wdam(selfATM ) = am

withdrawATMOK.Guard7 : atm cashA(selfATM ) ≥ am

withdrawATMOK.Guard4 : selfATM ∈ dom(atm acbal)

withdrawATMOK.Guard6 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDOK : rspWDOK := rspWDOK\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }
withdrawATMOK.Action2 : atm cashA(selfATM ) := atm cashA(selfATM ) −

am

end

Event withdrawATMFail =̂

refines withdrawATMFail

any
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selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDFail : selfATM ∈ rspWDFail

withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

withdrawATMFail.Guard3 : selfATM ∈ dom(atm acbal)

withdrawATMFail.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDFail : rspWDFail := rspWDFail\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event checkBalATM =̂

refines checkBalATM

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspCB : selfATM ∈ rspCB

checkBalATM.Guard1 : selfATM ∈ dom(atm card)

checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

checkBalATM.Guard3 : selfATM ∈ dom(atm acbal)

checkBalATM.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspCB : rspCB := rspCB \ {selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event sendRspWDFail =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin processWDFail : selfATM ∈ processWDFail

sendRspWDFail.Guard1 : selfATM ∈ dom(atm cardB)
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sendRspWDFail.Guard3 : selfATM ∈ atmB

sendRspWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDFail SM leaveState processWDFail : processWDFail := processWDFail\
{selfATM }

processedWDFail SM enterState sentRspWDFail : sentRspWDFail := sentRspWDFail∪
{selfATM }

sendRspWDFail.Action1 : atmB := atmB \ {selfATM }
sendRspWDFail.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDFail.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

Event sendRspWDOK =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin processWDOK : selfATM ∈ processWDOK

sendRspWDOK.Guard3 : selfATM ∈ atmB

sendRspWDOK.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDOK SM leaveState processWDOK : processWDOK := processWDOK\
{selfATM }

processedWDOK SM enterState sentRspWDOK : sentRspWDOK := sentRspWDOK∪
{selfATM }

sendRspWDOK.Action1 : atmB := atmB \ {selfATM }
sendRspWDOK.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDOK.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

Event sendRspCB =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin processCB : selfATM ∈ processCB

sendRspCB.Guard3 : selfATM ∈ atmB
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sendRspCB.Guard2 : selfATM ∈ dom(atm acbal)

then

processedCB SM leaveState processCB : processCB := processCB\{selfATM }
processedCB SM enterState sentRspCB : sentRspCB := sentRspCB∪{selfATM }
sendRspCB.Action1 : atmB := atmB \ {selfATM }
sendRspCB.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspCB.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

END
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B.5 Generated Event-B Fifth Refinement

MACHINE ATM R5

REFINES ATM R4

SEES ATM R5 implicitContext

VARIABLES

account refined class instances

atm refined class instances

atmB refined class instances

bal inherited attribute of account

atm card inherited attribute of atm

atm cashA inherited attribute of atm

atm wdam inherited attribute of atm

atm acbalA inherited attribute of atm

atm acbal inherited attribute of atm

idle state from refined statemachine, ATM SM

validating state from refined statemachine, ATM SM

trans state from refined statemachine, ATM SM

sentReqWD state from refined statemachine, ATM SM

recvdReqWD state from refined statemachine, ATM SM

sentReqCB state from refined statemachine, ATM SM

recvdReqCB state from refined statemachine, ATM SM

invalidCard state from refined statemachine, ATM SM

processWDFail state from refined statemachine, ATM SM

sentRspWDFail state from refined statemachine, ATM SM

rspWDFail state from refined statemachine, ATM SM

processWDOK state from refined statemachine, ATM SM

sentRspWDOK state from refined statemachine, ATM SM

rspWDOK state from refined statemachine, ATM SM

processCB state from refined statemachine, ATM SM

sentRspCB state from refined statemachine, ATM SM

rspCB state from refined statemachine, ATM SM

endTrans state from refined statemachine, ATM SM
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atm cardB inherited attribute of atmB

atm wdamB inherited attribute of atmB

INVARIANTS

ATM SM partitions atm : partition(atm, idle, validating , trans, sentReqWD , recvdReqWD ,

sentReqCB , recvdReqCB , invalidCard , processWDFail , sentRspWDFail , rspWDFail ,
processWDOK , sentRspWDOK , rspWDOK , processCB , sentRspCB , rspCB , endTrans)

EVENTS

Initialisation

begin

account.init : account := ∅
atm.init : atm := ∅
atmB.init : atmB := ∅
bal.init : bal := ∅
atm card.init : atm card := ∅
atm cashA.init : atm cashA := ∅
atm wdam.init : atm wdam := ∅
atm acbalA.init : atm acbalA := ∅
atm acbal.init : atm acbal := ∅
idle.init : idle := ∅
validating.init : validating := ∅
trans.init : trans := ∅
sentReqWD.init : sentReqWD := ∅
recvdReqWD.init : recvdReqWD := ∅
sentReqCB.init : sentReqCB := ∅
recvdReqCB.init : recvdReqCB := ∅
invalidCard.init : invalidCard := ∅
processWDFail.init : processWDFail := ∅
sentRspWDFail.init : sentRspWDFail := ∅
rspWDFail.init : rspWDFail := ∅
processWDOK.init : processWDOK := ∅
sentRspWDOK.init : sentRspWDOK := ∅
rspWDOK.init : rspWDOK := ∅
processCB.init : processCB := ∅
sentRspCB.init : sentRspCB := ∅
rspCB.init : rspCB := ∅
endTrans.init : endTrans := ∅
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atm cardB.init : atm cardB := ∅

atm wdamB.init : atm wdamB := ∅

end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event insertCard =̂

refines insertCard

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then
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ATM SM leaveState idle : idle := idle \ {selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH

end

Event validateCardFail =̂

refines validateCardFail

any

selfATM contextual instance of class atm

c

p

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

p.type : p ∈ Pin

active atm SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event validateCardOK =̂
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refines validateCardOK

any

selfATM contextual instance of class atm

c

p

where

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c

validateCardOK.Guard3 : card pin(c) = p

then

active atm SM leaveState validating : validating := validating\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event sendReqWD =̂

refines sendReqWD

any

selfATM contextual instance of class atm

am

where

selfATM.type : selfATM ∈ atm

am.type : am ∈ N
transOption SM isin trans : selfATM ∈ trans

sendReqWD.Guard3 : selfATM ∈ dom(atm card)

sendReqWD.Guard1 : atm cashA(selfATM ) > MIN CASH

sendReqWD.Guard5 : am ≤ MIN CASH

then

transOption SM leaveState trans : trans := trans \ {selfATM }
reqWD SM enterState sentReqWD : sentReqWD := sentReqWD∪{selfATM }
sendReqWD.Action1 : atm wdam(selfATM ) := am

end
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Event sendReqCB =̂

refines sendReqCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

transOption SM isin trans : selfATM ∈ trans

sendReqCB.Guard1 : selfATM ∈ dom(atm card)

then

transOption SM leaveState trans : trans := trans \ {selfATM }
reqCB SM enterState sentReqCB : sentReqCB := sentReqCB ∪ {selfATM }

end

Event ejectCard2 =̂

refines ejectCard2

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin trans : selfATM ∈ trans

ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then

transOption SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event recvReqWD =̂

refines recvReqWD

any

selfATM contextual instance of class atm

where
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selfATM.type : selfATM ∈ atm

reqWD SM isin sentReqWD : selfATM ∈ sentReqWD

recvReqWD.Guard1 : selfATM ∈ dom(atm wdam)

recvReqWD.Guard2 : selfATM ∈ dom(atm card)

then

reqWD SM leaveState sentReqWD : sentReqWD := sentReqWD \{selfATM }
reqWD SM enterState recvdReqWD : recvdReqWD := recvdReqWD∪{selfATM }
recvReqWD.Action1 : atmB := atmB ∪ {selfATM }
recvReqWD.Action2 : atm cardB(selfATM ) := atm card(selfATM )

recvReqWD.Action3 : atm wdamB(selfATM ) := atm wdam(selfATM )

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawOK.Guard1 : selfATM ∈ dom(atm cardB)

withdrawOK.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawOK.Guard2 : atm cardB(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : am = atm wdamB(selfATM )

then

reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDOK SM enterState processWDOK : processWDOK := processWDOK∪

{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbal(selfATM ) := bal(ac)− am
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end

Event withdrawFail =̂

refines withdrawFail

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawFail.Guard1 : selfATM ∈ dom(atm cardB)

withdrawFail.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawFail.Guard2 : atm cardB(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac

withdrawFail.Guard4 : bal(ac) < am

withdrawFail.Guard5 : am = atm wdamB(selfATM )

then

reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDFail SM enterState processWDFail : processWDFail := processWDFail∪

{selfATM }
withdrawFail.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event recvReqCB =̂

refines recvReqCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqCB SM isin sentReqCB : selfATM ∈ sentReqCB

recvReqCB.Guard1 : selfATM ∈ dom(atm card)
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then

reqCB SM leaveState sentReqCB : sentReqCB := sentReqCB \ {selfATM }
reqCB SM enterState recvdReqCB : recvdReqCB := recvdReqCB∪{selfATM }
recvReqCB.Action1 : atmB := atmB ∪ {selfATM }
recvReqCB.Action2 : atm cardB(selfATM ) := atm card(selfATM )

end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atm

c

ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

reqCB SM isin recvdReqCB : selfATM ∈ recvdReqCB

checkBalance.Guard1 : selfATM ∈ dom(atm cardB)

checkBalance.Guard2 : atm cardB(selfATM ) = c

checkBalance.Guard3 : card account(c) = ac

then

reqCB SM leaveState recvdReqCB : recvdReqCB := recvdReqCB\{selfATM }
processedCB SM enterState processCB : processCB := processCB∪{selfATM }
checkBalance.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event ejectCard1 =̂

refines ejectCard1

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard
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ejectCard1.Guard1 : selfATM ∈ dom(atm card)

ejectCard1.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event retry =̂

refines retry

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }

end

Event sendRspWDFail =̂

refines sendRspWDFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin processWDFail : selfATM ∈ processWDFail

sendRspWDFail.Guard1 : selfATM ∈ atmB

sendRspWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDFail SM leaveState processWDFail : processWDFail := processWDFail\
{selfATM }

processedWDFail SM enterState sentRspWDFail : sentRspWDFail := sentRspWDFail∪
{selfATM }

sendRspWDFail.Action1 : atmB := atmB \ {selfATM }
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sendRspWDFail.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDFail.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

Event recvRspWDFail =̂

refines recvRspWDFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin sentRspWDFail : selfATM ∈ sentRspWDFail

recvRspWDFail.Guard1 : selfATM ∈ dom(atm card)

recvRspWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDFail SM leaveState sentRspWDFail : sentRspWDFail := sentRspWDFail\
{selfATM }

performTrans SM enterState rspWDFail : rspWDFail := rspWDFail∪{selfATM }
recvRspWDFail.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event withdrawATMFail =̂

refines withdrawATMFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDFail : selfATM ∈ rspWDFail

withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

withdrawATMFail.Guard3 : selfATM ∈ dom(atm acbal)

withdrawATMFail.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDFail : rspWDFail := rspWDFail\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event sendRspWDOK =̂



Appendix D ATM Case Study: Using Rodin UML-B 275

refines sendRspWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin processWDOK : selfATM ∈ processWDOK

sendRspWDOK.Guard1 : selfATM ∈ atmB

sendRspWDOK.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDOK SM leaveState processWDOK : processWDOK := processWDOK\
{selfATM }

processedWDOK SM enterState sentRspWDOK : sentRspWDOK := sentRspWDOK∪
{selfATM }

sendRspWDOK.Action1 : atmB := atmB \ {selfATM }
sendRspWDOK.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDOK.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

Event recvRspWDOK =̂

refines recvRspWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin sentRspWDOK : selfATM ∈ sentRspWDOK

recvRspWDOK.Guard1 : selfATM ∈ dom(atm card)

recvRspWDOK.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDOK SM leaveState sentRspWDOK : sentRspWDOK := sentRspWDOK\
{selfATM }

performTrans SM enterState rspWDOK : rspWDOK := rspWDOK∪{selfATM }
recvRspWDOK.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event withdrawATMOK =̂

refines withdrawATMOK



Appendix D ATM Case Study: Using Rodin UML-B 276

any

selfATM contextual instance of class atm

am

where

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDOK : selfATM ∈ rspWDOK

withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

withdrawATMOK.Guard2 : selfATM ∈ dom(atm wdam)

withdrawATMOK.Guard3 : selfATM ∈ dom(atm acbalA)

withdrawATMOK.Guard5 : atm wdam(selfATM ) = am

withdrawATMOK.Guard7 : atm cashA(selfATM ) ≥ am

withdrawATMOK.Guard4 : selfATM ∈ dom(atm acbal)

withdrawATMOK.Guard6 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDOK : rspWDOK := rspWDOK\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }
withdrawATMOK.Action2 : atm cashA(selfATM ) := atm cashA(selfATM ) −

am

end

Event sendRspCB =̂

refines sendRspCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin processCB : selfATM ∈ processCB

sendRspCB.Guard1 : selfATM ∈ atmB

sendRspCB.Guard2 : selfATM ∈ dom(atm acbal)

then

processedCB SM leaveState processCB : processCB := processCB\{selfATM }
processedCB SM enterState sentRspCB : sentRspCB := sentRspCB∪{selfATM }
sendRspCB.Action1 : atmB := atmB \ {selfATM }
sendRspCB.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspCB.Action2 : atm wdamB := {selfATM }¢− atm wdamB
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end

Event recvRspCB =̂

refines recvRspCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin sentRspCB : selfATM ∈ sentRspCB

recvRspCB.Guard1 : selfATM ∈ dom(atm card)

recvRspCB.Guard2 : selfATM ∈ dom(atm acbal)

then

processedCB SM leaveState sentRspCB : sentRspCB := sentRspCB\{selfATM }
performTrans SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
recvRspCB.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event checkBalATM =̂

refines checkBalATM

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspCB : selfATM ∈ rspCB

checkBalATM.Guard1 : selfATM ∈ dom(atm card)

checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

checkBalATM.Guard3 : selfATM ∈ dom(atm acbal)

checkBalATM.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspCB : rspCB := rspCB \ {selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event ejectCard3 =̂

refines ejectCard3

any
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selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

performTrans SM isin endTrans : selfATM ∈ endTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)

ejectCard3.Guard2 : atm card(selfATM ) = c

then

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event doAnother =̂

refines doAnother

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin endTrans : selfATM ∈ endTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

then

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
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atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end

END
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B.6 Generated Event-B Sixth Refinement

MACHINE ATM R6

REFINES ATM R5

SEES ATM R6 implicitContext

VARIABLES

account refined class instances

atm refined class instances

atmB refined class instances

bal inherited attribute of account

atm card inherited attribute of atm

atm cashA inherited attribute of atm

atm wdam inherited attribute of atm

atm acbalA inherited attribute of atm

atm acbal inherited attribute of atm

idle state from refined statemachine, ATM SM

validating state from refined statemachine, ATM SM

trans state from refined statemachine, ATM SM

invalidCard state from refined statemachine, ATM SM

rspWDFail state from refined statemachine, ATM SM

rspWDOK state from refined statemachine, ATM SM

rspCB state from refined statemachine, ATM SM

endTrans state from refined statemachine, ATM SM

waitingResponse state from statemachine, ATM SM

sentReqWD state from refined statemachine, waitingResponseSM

recvdReqWD state from refined statemachine, waitingResponseSM

sentReqCB state from refined statemachine, waitingResponseSM

recvdReqCB state from refined statemachine, waitingResponseSM

processWDFail state from refined statemachine, waitingResponseSM

sentRspWDFail state from refined statemachine, waitingResponseSM

processWDOK state from refined statemachine, waitingResponseSM

sentRspWDOK state from refined statemachine, waitingResponseSM

processCB state from refined statemachine, waitingResponseSM
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sentRspCB state from refined statemachine, waitingResponseSM

atm cardB inherited attribute of atmB

atm wdamB inherited attribute of atmB

INVARIANTS

waitingResponse.type : waitingResponse ∈ P(atm)

sentReqWD.type : sentReqWD ∈ P(waitingResponse)

recvdReqWD.type : recvdReqWD ∈ P(waitingResponse)

sentReqCB.type : sentReqCB ∈ P(waitingResponse)

recvdReqCB.type : recvdReqCB ∈ P(waitingResponse)

processWDFail.type : processWDFail ∈ P(waitingResponse)

sentRspWDFail.type : sentRspWDFail ∈ P(waitingResponse)

processWDOK.type : processWDOK ∈ P(waitingResponse)

sentRspWDOK.type : sentRspWDOK ∈ P(waitingResponse)

processCB.type : processCB ∈ P(waitingResponse)

sentRspCB.type : sentRspCB ∈ P(waitingResponse)

ATM SM partitions atm : partition(atm, idle, validating , trans, invalidCard , rspWDFail ,
rspWDOK , rspCB , endTrans,waitingResponse)

waitingResponseSM partitions waitingResponse : partition(waitingResponse, sentReqWD ,

recvdReqWD , sentReqCB , recvdReqCB , processWDFail , sentRspWDFail ,
processWDOK , sentRspWDOK , processCB , sentRspCB)

EVENTS

Initialisation

begin

account.init : account := ∅

atm.init : atm := ∅

atmB.init : atmB := ∅

bal.init : bal := ∅

atm card.init : atm card := ∅

atm cashA.init : atm cashA := ∅

atm wdam.init : atm wdam := ∅

atm acbalA.init : atm acbalA := ∅

atm acbal.init : atm acbal := ∅

idle.init : idle := ∅

validating.init : validating := ∅
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trans.init : trans := ∅

invalidCard.init : invalidCard := ∅

rspWDFail.init : rspWDFail := ∅

rspWDOK.init : rspWDOK := ∅

rspCB.init : rspCB := ∅

endTrans.init : endTrans := ∅

waitingResponse.init : waitingResponse := ∅

sentReqWD.init : sentReqWD := ∅

recvdReqWD.init : recvdReqWD := ∅

sentReqCB.init : sentReqCB := ∅

recvdReqCB.init : recvdReqCB := ∅

processWDFail.init : processWDFail := ∅

sentRspWDFail.init : sentRspWDFail := ∅

processWDOK.init : processWDOK := ∅

sentRspWDOK.init : sentRspWDOK := ∅

processCB.init : processCB := ∅

sentRspCB.init : sentRspCB := ∅

atm cardB.init : atm cardB := ∅

atm wdamB.init : atm wdamB := ∅

end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where
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self.type : self ∈ account

then

skip

end

Event insertCard =̂

refines insertCard

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM leaveState idle : idle := idle \ {selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH

end

Event validateCardFail =̂

refines validateCardFail

any
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selfATM contextual instance of class atm

c

p

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

p.type : p ∈ Pin

active atm SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event validateCardOK =̂

refines validateCardOK

any

selfATM contextual instance of class atm

c

p

where

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c

validateCardOK.Guard3 : card pin(c) = p

then

active atm SM leaveState validating : validating := validating\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event ejectCard2 =̂

refines ejectCard2
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any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin trans : selfATM ∈ trans

ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then

transOption SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event sendReqWD =̂

refines sendReqWD

any

selfATM contextual instance of class atm

am

where

selfATM.type : selfATM ∈ atm

am.type : am ∈ N
transOption SM isin trans : selfATM ∈ trans

sendReqWD.Guard3 : selfATM ∈ dom(atm card)

sendReqWD.Guard1 : atm cashA(selfATM ) > MIN CASH

sendReqWD.Guard5 : am ≤ MIN CASH

then

ATM SM enterSuperState waitingResponse : waitingResponse := waitingResponse∪
{selfATM }

transOption SM leaveState trans : trans := trans \ {selfATM }
reqWD SM enterState sentReqWD : sentReqWD := sentReqWD∪{selfATM }
sendReqWD.Action1 : atm wdam(selfATM ) := am

end

Event sendReqCB =̂

refines sendReqCB
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any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

transOption SM isin trans : selfATM ∈ trans

sendReqCB.Guard1 : selfATM ∈ dom(atm card)

then

ATM SM enterSuperState waitingResponse : waitingResponse := waitingResponse∪
{selfATM }

transOption SM leaveState trans : trans := trans \ {selfATM }
reqCB SM enterState sentReqCB : sentReqCB := sentReqCB ∪ {selfATM }

end

Event ejectCard1 =̂

refines ejectCard1

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

ejectCard1.Guard1 : selfATM ∈ dom(atm card)

ejectCard1.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event retry =̂

refines retry

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm
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active atm SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }

end

Event withdrawATMFail =̂

refines withdrawATMFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDFail : selfATM ∈ rspWDFail

withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

withdrawATMFail.Guard3 : selfATM ∈ dom(atm acbal)

withdrawATMFail.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDFail : rspWDFail := rspWDFail\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event withdrawATMOK =̂

refines withdrawATMOK

any

selfATM contextual instance of class atm

am

where

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDOK : selfATM ∈ rspWDOK

withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

withdrawATMOK.Guard2 : selfATM ∈ dom(atm wdam)

withdrawATMOK.Guard3 : selfATM ∈ dom(atm acbalA)

withdrawATMOK.Guard5 : atm wdam(selfATM ) = am
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withdrawATMOK.Guard7 : atm cashA(selfATM ) ≥ am

withdrawATMOK.Guard4 : selfATM ∈ dom(atm acbal)

withdrawATMOK.Guard6 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspWDOK : rspWDOK := rspWDOK\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }
withdrawATMOK.Action2 : atm cashA(selfATM ) := atm cashA(selfATM ) −

am

end

Event checkBalATM =̂

refines checkBalATM

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspCB : selfATM ∈ rspCB

checkBalATM.Guard1 : selfATM ∈ dom(atm card)

checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

checkBalATM.Guard3 : selfATM ∈ dom(atm acbal)

checkBalATM.Guard4 : atm acbalA(selfATM ) = atm acbal(selfATM )

then

performTrans SM leaveState rspCB : rspCB := rspCB \ {selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event ejectCard3 =̂

refines ejectCard3

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

performTrans SM isin endTrans : selfATM ∈ endTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)
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ejectCard3.Guard2 : atm card(selfATM ) = c

then

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event doAnother =̂

refines doAnother

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin endTrans : selfATM ∈ endTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

then

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event recvRspWDFail =̂

refines recvRspWDFail

any
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selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin sentRspWDFail : selfATM ∈ sentRspWDFail

recvRspWDFail.Guard1 : selfATM ∈ dom(atm card)

recvRspWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

ATM SM leaveSuperState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

processedWDFail SM leaveState sentRspWDFail : sentRspWDFail := sentRspWDFail\
{selfATM }

performTrans SM enterState rspWDFail : rspWDFail := rspWDFail∪{selfATM }
recvRspWDFail.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event recvRspWDOK =̂

refines recvRspWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin sentRspWDOK : selfATM ∈ sentRspWDOK

recvRspWDOK.Guard1 : selfATM ∈ dom(atm card)

recvRspWDOK.Guard2 : selfATM ∈ dom(atm acbal)

then

ATM SM leaveSuperState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

processedWDOK SM leaveState sentRspWDOK : sentRspWDOK := sentRspWDOK\
{selfATM }

performTrans SM enterState rspWDOK : rspWDOK := rspWDOK∪{selfATM }
recvRspWDOK.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event recvdRspCB =̂

refines recvRspCB

any
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selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin sentRspCB : selfATM ∈ sentRspCB

recvdRspCB.Guard1 : selfATM ∈ dom(atm card)

recvdRspCB.Guard2 : selfATM ∈ dom(atm acbal)

then

ATM SM leaveSuperState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

processedCB SM leaveState sentRspCB : sentRspCB := sentRspCB\{selfATM }
performTrans SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
recvdRspCB.Action1 : atm acbalA(selfATM ) := atm acbal(selfATM )

end

Event recvReqWD =̂

refines recvReqWD

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqWD SM isin sentReqWD : selfATM ∈ sentReqWD

recvReqWD.Guard1 : selfATM ∈ dom(atm wdam)

recvReqWD.Guard2 : selfATM ∈ dom(atm card)

then

reqWD SM leaveState sentReqWD : sentReqWD := sentReqWD \{selfATM }
reqWD SM enterState recvdReqWD : recvdReqWD := recvdReqWD∪{selfATM }
recvReqWD.Action1 : atmB := atmB ∪ {selfATM }
recvReqWD.Action2 : atm cardB(selfATM ) := atm card(selfATM )

recvReqWD.Action3 : atm wdamB(selfATM ) := atm wdam(selfATM )

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atm

c
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am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawOK.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawOK.Guard2 : atm cardB(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : am = atm wdamB(selfATM )

then

reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDOK SM enterState processWDOK : processWDOK := processWDOK∪

{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbal(selfATM ) := bal(ac)− am

end

Event withdrawFail =̂

refines withdrawFail

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawFail.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawFail.Guard2 : atm cardB(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac
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withdrawFail.Guard4 : bal(ac) < am

withdrawFail.Guard5 : am = atm wdamB(selfATM )

then

reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDFail SM enterState processWDFail : processWDFail := processWDFail∪

{selfATM }
withdrawFail.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event recvReqCB =̂

refines recvReqCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqCB SM isin sentReqCB : selfATM ∈ sentReqCB

recvReqCB.Guard1 : selfATM ∈ dom(atm card)

then

reqCB SM leaveState sentReqCB : sentReqCB := sentReqCB \ {selfATM }
reqCB SM enterState recvdReqCB : recvdReqCB := recvdReqCB∪{selfATM }
recvReqCB.Action1 : atmB := atmB ∪ {selfATM }
recvReqCB.Action2 : atm cardB(selfATM ) := atm card(selfATM )

end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atm

c

ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

reqCB SM isin recvdReqCB : selfATM ∈ recvdReqCB

checkBalance.Guard6 : selfATM ∈ dom(atm cardB)
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checkBalance.Guard2 : atm cardB(selfATM ) = c

checkBalance.Guard3 : card account(c) = ac

then

reqCB SM leaveState recvdReqCB : recvdReqCB := recvdReqCB\{selfATM }
processedCB SM enterState processCB : processCB := processCB∪{selfATM }
checkBalance.Action1 : atm acbal(selfATM ) := bal(ac)

end

Event sendRspWDFail =̂

refines sendRspWDFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin processWDFail : selfATM ∈ processWDFail

sendRspWDFail.Guard1 : selfATM ∈ atmB

sendRspWDFail.Guard2 : selfATM ∈ dom(atm acbal)

then

processedWDFail SM leaveState processWDFail : processWDFail := processWDFail\
{selfATM }

processedWDFail SM enterState sentRspWDFail : sentRspWDFail := sentRspWDFail∪
{selfATM }

sendRspWDFail.Action1 : atmB := atmB \ {selfATM }
sendRspWDFail.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDFail.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

Event sendRspWDOK =̂

refines sendRspWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin processWDOK : selfATM ∈ processWDOK

sendRspWDOK.Guard1 : selfATM ∈ atmB

sendRspWDOK.Guard2 : selfATM ∈ dom(atm acbal)
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then

processedWDOK SM leaveState processWDOK : processWDOK := processWDOK\
{selfATM }

processedWDOK SM enterState sentRspWDOK : sentRspWDOK := sentRspWDOK∪
{selfATM }

sendRspWDOK.Action1 : atmB := atmB \ {selfATM }
sendRspWDOK.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDOK.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

Event sendRspCB =̂

refines sendRspCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin processCB : selfATM ∈ processCB

sendRspCB.Guard1 : selfATM ∈ atmB

sendRspCB.Guard2 : selfATM ∈ dom(atm acbal)

then

processedCB SM leaveState processCB : processCB := processCB\{selfATM }
processedCB SM enterState sentRspCB : sentRspCB := sentRspCB∪{selfATM }
sendRspCB.Action1 : atmB := atmB \ {selfATM }
sendRspCB.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspCB.Action2 : atm wdamB := {selfATM }¢− atm wdamB

end

END
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B.7 Generated Event-B Seventh Refinement

MACHINE ATM R7

REFINES ATM R6

SEES ATM R7 implicitContext

VARIABLES

account refined class instances

atm refined class instances

atmB refined class instances

atmM class instances

bal inherited attribute of account

atm card inherited attribute of atm

atm cashA inherited attribute of atm

atm wdam inherited attribute of atm

atm acbalA inherited attribute of atm

idle state from refined statemachine, ATM SM

validating state from refined statemachine, ATM SM

trans state from refined statemachine, ATM SM

invalidCard state from refined statemachine, ATM SM

rspWDFail state from refined statemachine, ATM SM

rspWDOK state from refined statemachine, ATM SM

rspCB state from refined statemachine, ATM SM

endTrans state from refined statemachine, ATM SM

waitingResponse state from refined statemachine, ATM SM

sentReqWD state from refined statemachine, waitingResponseSM

recvdReqWD state from refined statemachine, waitingResponseSM

sentReqCB state from refined statemachine, waitingResponseSM

recvdReqCB state from refined statemachine, waitingResponseSM

processWDFail state from refined statemachine, waitingResponseSM

sentRspWDFail state from refined statemachine, waitingResponseSM

processWDOK state from refined statemachine, waitingResponseSM

sentRspWDOK state from refined statemachine, waitingResponseSM

processCB state from refined statemachine, waitingResponseSM
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sentRspCB state from refined statemachine, waitingResponseSM

atm cardB inherited attribute of atmB

atm acbalB attribute of atmB

atm wdamB inherited attribute of atmB

atm cardM attribute of atmM

atm wdamM attribute of atmM

atm acbalM attribute of atmM

INVARIANTS

atmM.type : atmM ∈ P(atm)

atm acbalB.type : atm acbalB ∈ atmB 7→ N

atm cardM.type : atm cardM ∈ atmM →ValidCard

atm wdamM.type : atm wdamM ∈ atmM 7→ N

atm acbalM.type : atm acbalM ∈ atmM 7→ N

Invariant3 : ∀a ·a ∈ (processWDOK∪processWDFail∪processCB)⇒a ∈ dom(atm acbal)

Invariant9 : ∀a ·a ∈ (sentRspWDFail ∪ rspWDFail)∧ a ∈ dom(atm acbal)∧ a ∈
dom(atm acbalM )⇒ atm acbal(a) = atm acbalM (a)

Invariant5 : ∀a ·a ∈ processWDFail∧a ∈ dom(atm acbal)∧a ∈ dom(atm acbalB)⇒
atm acbal(a) = atm acbalB(a)

Invariant7 : ∀a ·a ∈ (sentRspWDOK∪rspWDOK∪sentRspWDFail∪rspWDFail∪
sentRspCB ∪ rspCB)⇒ a ∈ dom(atm acbal)

Invariant8 : ∀a ·a ∈ (sentRspWDOK ∪ rspWDOK )∧ a ∈ dom(atm acbal)∧ a ∈
dom(atm acbalM )⇒ atm acbal(a) = atm acbalM (a)

Invariant4 : ∀a ·a ∈ processWDOK∧a ∈ dom(atm acbal)∧a ∈ dom(atm acbalB)⇒
atm acbal(a) = atm acbalB(a)

Invariant10 : ∀a ·a ∈ (sentRspCB∪rspCB)∧a ∈ dom(atm acbal)∧a ∈ dom(atm acbalM )⇒
atm acbal(a) = atm acbalM (a)

Invariant6 : ∀a ·a ∈ processCB ∧a ∈ dom(atm acbal)∧a ∈ dom(atm acbalB)⇒
atm acbal(a) = atm acbalB(a)

Invariant1 : ∀a ·a ∈ (rspWDFail ∪rspWDOK ∪rspCB)∧a ∈ dom(atm acbalA)∧
a ∈ dom(atm acbal)⇒ atm acbalA(a) = atm acbal(a)

Invariant2 : ∀a ·a ∈ (sentReqWD ∪ sentReqCB)⇒ a ∈ dom(atm card)

Invariant11 : ∀a ·a ∈ sentReqWD ⇒ a ∈ dom(atm wdam)

Invariant12 : ∀a ·a ∈ (sentReqWD ∪ sentReqCB) ∧ a ∈ dom(atm card) ∧ a ∈
dom(atm cardM )⇒ atm card(a) = atm cardM (a)

Invariant13 : ∀a ·a ∈ sentReqWD∧a ∈ dom(atm wdam)∧a ∈ dom(atm wdamM )⇒
atm wdam(a) = atm wdamM (a)
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EVENTS

Initialisation

begin

account.init : account := ∅
atm.init : atm := ∅
atmB.init : atmB := ∅
atmM.init : atmM := ∅
bal.init : bal := ∅
atm card.init : atm card := ∅
atm cashA.init : atm cashA := ∅
atm wdam.init : atm wdam := ∅
atm acbalA.init : atm acbalA := ∅
idle.init : idle := ∅
validating.init : validating := ∅
trans.init : trans := ∅
invalidCard.init : invalidCard := ∅
rspWDFail.init : rspWDFail := ∅
rspWDOK.init : rspWDOK := ∅
rspCB.init : rspCB := ∅
endTrans.init : endTrans := ∅
waitingResponse.init : waitingResponse := ∅
sentReqWD.init : sentReqWD := ∅
recvdReqWD.init : recvdReqWD := ∅
sentReqCB.init : sentReqCB := ∅
recvdReqCB.init : recvdReqCB := ∅
processWDFail.init : processWDFail := ∅
sentRspWDFail.init : sentRspWDFail := ∅
processWDOK.init : processWDOK := ∅
sentRspWDOK.init : sentRspWDOK := ∅
processCB.init : processCB := ∅
sentRspCB.init : sentRspCB := ∅
atm cardB.init : atm cardB := ∅
atm acbalB.init : atm acbalB := ∅
atm wdamB.init : atm wdamB := ∅
atm cardM.init : atm cardM := ∅
atm wdamM.init : atm wdamM := ∅
atm acbalM.init : atm acbalM := ∅
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end

Event createAccount =̂

refines createAccount

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of refined class account

where

self.type : self ∈ account

then

skip

end

Event insertCard =̂

refines insertCard

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM leaveState idle : idle := idle \ {selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }
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insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}
end

Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH

end

Event validateCardFail =̂

refines validateCardFail

any

selfATM contextual instance of class atm

c

p

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

p.type : p ∈ Pin

active atm SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

active atm SM leaveState validating : validating := validating\{selfATM }
active atm SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event validateCardOK =̂

refines validateCardOK
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any

selfATM contextual instance of class atm

c

p

where

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

active atm SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c

validateCardOK.Guard3 : card pin(c) = p

then

active atm SM leaveState validating : validating := validating\{selfATM }
transOption SM enterState trans : trans := trans ∪ {selfATM }

end

Event ejectCard2 =̂

refines ejectCard2

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

transOption SM isin trans : selfATM ∈ trans

ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then

transOption SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event sendReqWD =̂

refines sendReqWD
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any

selfATM contextual instance of class atm

am

where

selfATM.type : selfATM ∈ atm

am.type : am ∈ N
transOption SM isin trans : selfATM ∈ trans

sendReqWD.Guard3 : selfATM ∈ dom(atm card)

sendReqWD.Guard1 : atm cashA(selfATM ) > MIN CASH

sendReqWD.Guard5 : am ≤ MIN CASH

then

ATM SM enterSuperState waitingResponse : waitingResponse := waitingResponse∪
{selfATM }

transOption SM leaveState trans : trans := trans \ {selfATM }
reqWD SM enterState sentReqWD : sentReqWD := sentReqWD∪{selfATM }
sendReqWD.Action1 : atm wdam(selfATM ) := am

sendReqWD.Action2 : atm cardM (selfATM ) := atm card(selfATM )

sendReqWD.Action3 : atmM := atmM ∪ {selfATM }
sendReqWD.Action4 : atm wdamM (selfATM ) := am

end

Event sendReqCB =̂

refines sendReqCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

transOption SM isin trans : selfATM ∈ trans

sendReqCB.Guard1 : selfATM ∈ dom(atm card)

then

ATM SM enterSuperState waitingResponse : waitingResponse := waitingResponse∪
{selfATM }

transOption SM leaveState trans : trans := trans \ {selfATM }
reqCB SM enterState sentReqCB : sentReqCB := sentReqCB ∪ {selfATM }
sendReqCB.Action1 : atm cardM (selfATM ) := atm card(selfATM )

sendReqCB.Action3 : atmM := atmM ∪ {selfATM }
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end

Event ejectCard1 =̂

refines ejectCard1

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

ejectCard1.Guard1 : selfATM ∈ dom(atm card)

ejectCard1.Guard2 : atm card(selfATM ) = c

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event retry =̂

refines retry

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

active atm SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

then

active atm SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
active atm SM enterState validating : validating := validating∪{selfATM }

end

Event withdrawATMFail =̂

refines withdrawATMFail

any

selfATM contextual instance of class atm
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where

selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDFail : selfATM ∈ rspWDFail

withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

then

performTrans SM leaveState rspWDFail : rspWDFail := rspWDFail\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event withdrawATMOK =̂

refines withdrawATMOK

any

selfATM contextual instance of class atm

am

where

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

performTrans SM isin rspWDOK : selfATM ∈ rspWDOK

withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

withdrawATMOK.Guard2 : selfATM ∈ dom(atm wdam)

withdrawATMOK.Guard3 : selfATM ∈ dom(atm acbalA)

withdrawATMOK.Guard5 : atm wdam(selfATM ) = am

withdrawATMOK.Guard7 : atm cashA(selfATM ) ≥ am

then

performTrans SM leaveState rspWDOK : rspWDOK := rspWDOK\{selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }
withdrawATMOK.Action2 : atm cashA(selfATM ) := atm cashA(selfATM ) −

am

end

Event checkBalATM =̂

refines checkBalATM

any

selfATM contextual instance of class atm

where
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selfATM.type : selfATM ∈ atm

performTrans SM isin rspCB : selfATM ∈ rspCB

checkBalATM.Guard1 : selfATM ∈ dom(atm card)

checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

then

performTrans SM leaveState rspCB : rspCB := rspCB \ {selfATM }
performTrans SM enterState endTrans : endTrans := endTrans∪{selfATM }

end

Event ejectCard3 =̂

refines ejectCard3

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

performTrans SM isin endTrans : selfATM ∈ endTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)

ejectCard3.Guard2 : atm card(selfATM ) = c

then

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event doAnother =̂

refines doAnother

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

performTrans SM isin endTrans : selfATM ∈ endTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

then

performTrans SM leaveState endTrans : endTrans := endTrans\{selfATM }
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transOption SM enterState trans : trans := trans ∪ {selfATM }
end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event recvRspWDFail =̂

refines recvRspWDFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin sentRspWDFail : selfATM ∈ sentRspWDFail

recvRspWDFail.Guard1 : selfATM ∈ dom(atm card)

recvRspWDFail.Guard2 : selfATM ∈ dom(atm acbalM )

recvRspWDFail.Guard3 : selfATM ∈ atmM

then

ATM SM leaveSuperState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

processedWDFail SM leaveState sentRspWDFail : sentRspWDFail := sentRspWDFail\
{selfATM }

performTrans SM enterState rspWDFail : rspWDFail := rspWDFail∪{selfATM }
recvRspWDFail.Action1 : atm acbalA(selfATM ) := atm acbalM (selfATM )

recvRspWDFail.Action4 : atmM := atmM \ {selfATM }
recvRspWDFail.Action5 : atm acbalM := {selfATM }¢− atm acbalM

recvRspWDFail.Action6 : atm cardM := {selfATM }¢− atm cardM

recvRspWDFail.Action7 : atm wdamM := {selfATM }¢− atm wdamM
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end

Event recvRspWDOK =̂

refines recvRspWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin sentRspWDOK : selfATM ∈ sentRspWDOK

recvRspWDOK.Guard1 : selfATM ∈ dom(atm card)

recvRspWDOK.Guard2 : selfATM ∈ dom(atm acbalM )

recvRspWDOK.Guard3 : selfATM ∈ atmM

then

ATM SM leaveSuperState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

processedWDOK SM leaveState sentRspWDOK : sentRspWDOK := sentRspWDOK\
{selfATM }

performTrans SM enterState rspWDOK : rspWDOK := rspWDOK∪{selfATM }
recvRspWDOK.Action1 : atm acbalA(selfATM ) := atm acbalM (selfATM )

recvRspWDOK.Action4 : atmM := atmM \ {selfATM }
recvRspWDOK.Action5 : atm acbalM := {selfATM }¢− atm acbalM

recvRspWDOK.Action6 : atm cardM := {selfATM }¢− atm cardM

recvRspWDOK.Action7 : atm wdamM := {selfATM }¢− atm wdamM

end

Event recvdRspCB =̂

refines recvdRspCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin sentRspCB : selfATM ∈ sentRspCB

recvdRspCB.Guard1 : selfATM ∈ dom(atm card)

recvdRspCB.Guard2 : selfATM ∈ dom(atm acbalM )

recvdRspCB.Guard3 : selfATM ∈ atmM

then
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ATM SM leaveSuperState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

processedCB SM leaveState sentRspCB : sentRspCB := sentRspCB\{selfATM }
performTrans SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
recvdRspCB.Action1 : atm acbalA(selfATM ) := atm acbalM (selfATM )

recvdRspCB.Action4 : atmM := atmM \ {selfATM }
recvdRspCB.Action5 : atm acbalM := {selfATM }¢− atm acbalM

recvdRspCB.Action6 : atm cardM := {selfATM }¢− atm cardM

recvdRspCB.Action7 : atm wdamM := {selfATM }¢− atm wdamM

end

Event recvReqWD =̂

refines recvReqWD

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqWD SM isin sentReqWD : selfATM ∈ sentReqWD

recvReqWD.Guard1 : selfATM ∈ dom(atm wdamM )

recvReqWD.Guard2 : selfATM ∈ dom(atm cardM )

then

reqWD SM leaveState sentReqWD : sentReqWD := sentReqWD \{selfATM }
reqWD SM enterState recvdReqWD : recvdReqWD := recvdReqWD∪{selfATM }
recvReqWD.Action1 : atmB := atmB ∪ {selfATM }
recvReqWD.Action2 : atm cardB(selfATM ) := atm cardM (selfATM )

recvReqWD.Action3 : atm wdamB(selfATM ) := atm wdamM (selfATM )

recvReqWD.Action4 : atmM := atmM \ {selfATM }
recvReqWD.Action5 : atm acbalM := {selfATM }¢− atm acbalM

recvReqWD.Action6 : atm cardM := {selfATM }¢− atm cardM

recvReqWD.Action7 : atm wdamM := {selfATM }¢− atm wdamM

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atm
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c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawOK.Guard1 : selfATM ∈ atmB

withdrawOK.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawOK.Guard2 : atm cardB(selfATM ) = c

withdrawOK.Guard3 : bal(ac) ≥ am

withdrawOK.Guard4 : card account(c) = ac

withdrawOK.Guard5 : am = atm wdamB(selfATM )

then

reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDOK SM enterState processWDOK : processWDOK := processWDOK∪

{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbalB(selfATM ) := bal(ac)− am

end

Event withdrawFail =̂

refines withdrawFail

any

selfATM contextual instance of class atm

c

am

ac

where

am.type : am ∈ N
ac.type : ac ∈ account

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

reqWD SM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawFail.Guard1 : selfATM ∈ atmB
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withdrawFail.Guard6 : selfATM ∈ dom(atm wdamB)

withdrawFail.Guard2 : atm cardB(selfATM ) = c

withdrawFail.Guard3 : card account(c) = ac

withdrawFail.Guard4 : bal(ac) < am

withdrawFail.Guard5 : am = atm wdamB(selfATM )

then

reqWD SM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
processedWDFail SM enterState processWDFail : processWDFail := processWDFail∪

{selfATM }
withdrawFail.Action1 : atm acbalB(selfATM ) := bal(ac)

end

Event recvReqCB =̂

refines recvReqCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

reqCB SM isin sentReqCB : selfATM ∈ sentReqCB

recvReqCB.Guard1 : selfATM ∈ dom(atm cardM )

then

reqCB SM leaveState sentReqCB : sentReqCB := sentReqCB \ {selfATM }
reqCB SM enterState recvdReqCB : recvdReqCB := recvdReqCB∪{selfATM }
recvReqCB.Action1 : atmB := atmB ∪ {selfATM }
recvReqCB.Action2 : atm cardB(selfATM ) := atm cardM (selfATM )

recvReqCB.Action4 : atmM := atmM \ {selfATM }
recvReqCB.Action5 : atm acbalM := {selfATM }¢− atm acbalM

recvReqCB.Action6 : atm cardM := {selfATM }¢− atm cardM

recvReqCB.Action7 : atm wdamM := {selfATM }¢− atm wdamM

end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atm

c
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ac

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ac.type : ac ∈ account

reqCB SM isin recvdReqCB : selfATM ∈ recvdReqCB

checkBalance.Guard1 : selfATM ∈ atmB

checkBalance.Guard2 : atm cardB(selfATM ) = c

checkBalance.Guard3 : card account(c) = ac

then

reqCB SM leaveState recvdReqCB : recvdReqCB := recvdReqCB\{selfATM }
processedCB SM enterState processCB : processCB := processCB∪{selfATM }
checkBalance.Action1 : atm acbalB(selfATM ) := bal(ac)

end

Event sendRspWDFail =̂

refines sendRspWDFail

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDFail SM isin processWDFail : selfATM ∈ processWDFail

sendRspWDFail.Guard1 : selfATM ∈ dom(atm acbalB)

sendRspWDFail.Guard2 : selfATM ∈ atmB

then

processedWDFail SM leaveState processWDFail : processWDFail := processWDFail\
{selfATM }

processedWDFail SM enterState sentRspWDFail : sentRspWDFail := sentRspWDFail∪
{selfATM }

sendRspWDFail.Action1 : atmB := atmB \ {selfATM }
sendRspWDFail.Action2 : atm acbalB := {selfATM }¢− atm acbalB

sendRspWDFail.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDFail.Action4 : atm acbalM (selfATM ) := atm acbalB(selfATM )

sendRspWDFail.Action5 : atm wdamB := {selfATM }¢− atm wdamB

sendRspWDFail.Action6 : atmM := atmM ∪ {selfATM }
sendRspWDFail.Action7 : atm cardM (selfATM ) := atm cardB(selfATM )
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end

Event sendRspWDOK =̂

refines sendRspWDOK

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedWDOK SM isin processWDOK : selfATM ∈ processWDOK

sendRspWDOK.Guard1 : selfATM ∈ dom(atm acbalB)

sendRspWDOK.Guard2 : selfATM ∈ atmB

then

processedWDOK SM leaveState processWDOK : processWDOK := processWDOK\
{selfATM }

processedWDOK SM enterState sentRspWDOK : sentRspWDOK := sentRspWDOK∪
{selfATM }

sendRspWDOK.Action1 : atmB := atmB \ {selfATM }
sendRspWDOK.Action2 : atm acbalB := {selfATM }¢− atm acbalB

sendRspWDOK.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspWDOK.Action4 : atm acbalM (selfATM ) := atm acbalB(selfATM )

sendRspWDOK.Action5 : atm wdamB := {selfATM }¢− atm wdamB

sendRspWDOK.Action6 : atmM := atmM ∪ {selfATM }
sendRspWDOK.Action7 : atm cardM (selfATM ) := atm cardB(selfATM )

end

Event sendRspCB =̂

refines sendRspCB

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

processedCB SM isin processCB : selfATM ∈ processCB

sendRspCB.Guard2 : selfATM ∈ dom(atm acbalB)

sendRspCB.Guard1 : selfATM ∈ atmB

then

processedCB SM leaveState processCB : processCB := processCB\{selfATM }
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processedCB SM enterState sentRspCB : sentRspCB := sentRspCB∪{selfATM }
sendRspCB.Action1 : atmB := atmB \ {selfATM }
sendRspCB.Action2 : atm acbalB := {selfATM }¢− atm acbalB

sendRspCB.Action3 : atm cardB := {selfATM }¢− atm cardB

sendRspCB.Action4 : atm acbalM (selfATM ) := atm acbalB(selfATM )

sendRspCB.Action5 : atm wdamB := {selfATM }¢− atm wdamB

sendRspCB.Action6 : atmM := atmM ∪ {selfATM }
sendRspCB.Action7 : atm cardM (selfATM ) := atm cardB(selfATM )

end

END
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B.8 Generated Event-B Eight Refinement

MACHINE ATM R8

REFINES ATM R7

SEES mATM implicitContext, mBank implicitContext, mMW implicitContext

VARIABLES

atm class instances

atm cashA attribute of atm

atm wdam attribute of atm

atm card attribute of atm

atm acbalA attribute of atm

idle state from statemachine, ATM SM

validating state from statemachine, ATM SM

trans state from statemachine, ATM SM

invalidCard state from statemachine, ATM SM

waitingResponse state from statemachine, ATM SM

rspCB state from statemachine, ATM SM

rspWDOK state from statemachine, ATM SM

rspWDFail state from statemachine, ATM SM

endTrans state from statemachine, ATM SM

account class instances

atmB class instances

bal attribute of account

atm acbalB attribute of atmB

atm cardB attribute of atmB

atm wdamB attribute of atmB

recvdReqCB state from statemachine, bankSM

recvdReqWD state from statemachine, bankSM

processCB state from statemachine, bankSM

processWDOK state from statemachine, bankSM

processWDFail state from statemachine, bankSM

atmM class instances

atm acbalM attribute of atmM
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atm wdamM attribute of atmM

atm cardM attribute of atmM

sentReqWD state from statemachine, reqWD SM

sentReqCB state from statemachine, reqCB SM

sentRspWDOK state from statemachine, rspWDOK SM

sentRspWDFail state from statemachine, rspWDFail SM

sentRspCB state from statemachine, rspCB SM

EVENTS

Initialisation

begin

mATM/atm.init : atm := ∅
mATM/atm cashA.init : atm cashA := ∅
mATM/atm wdam.init : atm wdam := ∅
mATM/atm card.init : atm card := ∅
mATM/atm acbalA.init : atm acbalA := ∅
mATM/idle.init : idle := ∅
mATM/validating.init : validating := ∅
mATM/trans.init : trans := ∅
mATM/invalidCard.init : invalidCard := ∅
mATM/waitingResponse.init : waitingResponse := ∅
mATM/rspCB.init : rspCB := ∅
mATM/rspWDOK.init : rspWDOK := ∅
mATM/rspWDFail.init : rspWDFail := ∅
mATM/endTrans.init : endTrans := ∅
mBank/account.init : account := ∅
mBank/atmB.init : atmB := ∅
mBank/bal.init : bal := ∅
mBank/atm acbalB.init : atm acbalB := ∅
mBank/atm cardB.init : atm cardB := ∅
mBank/atm wdamB.init : atm wdamB := ∅
mBank/recvdReqCB.init : recvdReqCB := ∅
mBank/recvdReqWD.init : recvdReqWD := ∅
mBank/processCB.init : processCB := ∅
mBank/processWDOK.init : processWDOK := ∅
mBank/processWDFail.init : processWDFail := ∅
mMW/atmM.init : atmM := ∅
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mMW/atm acbalM.init : atm acbalM := ∅

mMW/atm wdamM.init : atm wdamM := ∅

mMW/atm cardM.init : atm cardM := ∅

mMW/sentReqWD.init : sentReqWD := ∅

mMW/sentReqCB.init : sentReqCB := ∅

mMW/sentRspWDOK.init : sentRspWDOK := ∅

mMW/sentRspWDFail.init : sentRspWDFail := ∅

mMW/sentRspCB.init : sentRspCB := ∅

end

Event start =̂

refines start

any

selfATM constructed instance of class atm

where

mATM/selfATM.type : selfATM ∈ ATM \ atm

then

mATM/atm constructor : atm := atm ∪ {selfATM }
mATM/atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

mATM/ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event reloadCash =̂

refines reloadCash

any

selfATM contextual instance of class atm

where

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin idle : selfATM ∈ idle

mATM/reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

mATM/reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH

end

Event insertCard =̂

refines insertCard
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any

selfATM contextual instance of class atm

c

where

mATM/selfATM.type : selfATM ∈ atm

mATM/c.type : c ∈ ValidCard

mATM/ATM SM isin idle : selfATM ∈ idle

mATM/insertCard.Guard1 : selfATM /∈ dom(atm card)

then

mATM/ATM SM leaveState idle : idle := idle \ {selfATM }
mATM/ATM SM enterState validating : validating := validating∪{selfATM }
mATM/insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end

Event validateCardOK =̂

refines validateCardOK

any

selfATM contextual instance of class atm

c

p

where

mATM/c.type : c ∈ ValidCard

mATM/p.type : p ∈ Pin

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin validating : selfATM ∈ validating

mATM/validateCardOK.Guard1 : selfATM ∈ dom(atm card)

mATM/validateCardOK.Guard2 : atm card(selfATM ) = c

mATM/validateCardOK.Guard3 : card pin(c) = p

then

mATM/ATM SM leaveState validating : validating := validating\{selfATM }
mATM/ATM SM enterState trans : trans := trans ∪ {selfATM }

end

Event validateCardFail =̂

refines validateCardFail

any
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selfATM contextual instance of class atm

c

p

where

mATM/c.type : c ∈ ValidCard

mATM/p.type : p ∈ Pin

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin validating : selfATM ∈ validating

mATM/validateCardFail.Guard1 : selfATM ∈ dom(atm card)

mATM/validateCardFail.Guard2 : atm card(selfATM ) = c

mATM/validateCardFail.Guard3 : card pin(c) 6= p

then

mATM/ATM SM leaveState validating : validating := validating\{selfATM }
mATM/ATM SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event retry =̂

refines retry

any

selfATM contextual instance of class atm

c

where

mATM/c.type : c ∈ ValidCard

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin invalidCard : selfATM ∈ invalidCard

mATM/retry.Guard1 : selfATM ∈ dom(atm card)

mATM/retry.Guard2 : atm card(selfATM ) = c

then

mATM/ATM SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
mATM/ATM SM enterState validating : validating := validating∪{selfATM }

end

Event sendReqWD =̂

refines sendReqWD

any

selfATM contextual instance of class atm
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c

am

where

mATM/c.type : c ∈ ValidCard

mATM/am.type : am ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin trans : selfATM ∈ trans

mATM/sendReqWD.Guard1 : selfATM ∈ dom(atm card)

mATM/sendReqWD.Guard2 : atm card(selfATM ) = c

mATM/sendReqWD.Guard5 : atm cashA(selfATM ) > MIN CASH

mATM/sendReqWD.Guard7 : am ≤ MIN CASH

mMW/am.type : am ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ ATM \ atmM

then

mATM/ATM SM leaveState trans : trans := trans \ {selfATM }
mATM/ATM SM enterState waitingResponse : waitingResponse := waitingResponse∪

{selfATM }
mATM/sendReqWD.Action1 : atm wdam(selfATM ) := am

mMW/atmM constructor : atmM := atmM ∪ {selfATM }
mMW/reqWD SM enterState sentReqWD : sentReqWD := sentReqWD∪{selfATM }
mMW/sendReqWD.Action2 : atm wdamM (selfATM ) := am

mMW/sendReqWD.Action1 : atm cardM (selfATM ) := c

end

Event sendReqCB =̂

refines sendReqCB

any

selfATM contextual instance of class atm

c

where

mATM/c.type : c ∈ ValidCard

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin trans : selfATM ∈ trans

mATM/sendReqCB.Guard1 : selfATM ∈ dom(atm card)

mATM/sendReqCB.Guard2 : atm card(selfATM ) = c

mMW/c.type : c ∈ ValidCard
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mMW/selfATM.type : selfATM ∈ ATM \ atmM

then

mATM/ATM SM leaveState trans : trans := trans \ {selfATM }
mATM/ATM SM enterState waitingResponse : waitingResponse := waitingResponse∪

{selfATM }
mMW/atmM constructor : atmM := atmM ∪ {selfATM }
mMW/reqCB SM enterState sentReqCB : sentReqCB := sentReqCB∪{selfATM }
mMW/sendReqCB.Action1 : atm cardM (selfATM ) := c

end

Event recvReqWD =̂

refines recvReqWD

any

selfATM contextual instance of class atmM

c

am

where

mMW/c.type : c ∈ ValidCard

mMW/am.type : am ∈ N
mMW/selfATM.type : selfATM ∈ atmM

mMW/reqWD SM isin sentReqWD : selfATM ∈ sentReqWD

mMW/recvReqWD.Guard1 : atm cardM (selfATM ) = c

mMW/recvReqWD.Guard2 : selfATM ∈ dom(atm wdamM )

mMW/recvReqWD.Guard3 : atm wdamM (selfATM ) = am

mBank/c.type : c ∈ ValidCard

mBank/am.type : am ∈ N
mBank/selfATM.type : selfATM ∈ ATM \ atmB

then

mMW/reqWD SM leaveState sentReqWD : sentReqWD := sentReqWD\{selfATM }
mMW/atmM destructor : atmM := atmM \ {selfATM }
mMW/atmM.atm acbalM destructor : atm acbalM := {selfATM }¢−atm acbalM

mMW/atmM.atm wdamM destructor : atm wdamM := {selfATM }¢−atm wdamM

mMW/atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

mBank/atmB constructor : atmB := atmB ∪ {selfATM }
mBank/bankSM enterState recvdReqWD : recvdReqWD := recvdReqWD∪{selfATM }
mBank/recvReqWD.Action2 : atm cardB(selfATM ) := c

mBank/recvReqWD.Action3 : atm wdamB(selfATM ) := am
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end

Event recvReqCB =̂

refines recvReqCB

any

selfATM contextual instance of class atmM

c

where

mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ atmM

mMW/reqCB SM isin sentReqCB : selfATM ∈ sentReqCB

mMW/recvReqCB.Guard1 : atm cardM (selfATM ) = c

mBank/c.type : c ∈ ValidCard

mBank/selfATM.type : selfATM ∈ ATM \ atmB

then

mMW/reqCB SM leaveState sentReqCB : sentReqCB := sentReqCB\{selfATM }
mMW/atmM destructor : atmM := atmM \ {selfATM }
mMW/atmM.atm acbalM destructor : atm acbalM := {selfATM }¢−atm acbalM

mMW/atmM.atm wdamM destructor : atm wdamM := {selfATM }¢−atm wdamM

mMW/atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

mBank/atmB constructor : atmB := atmB ∪ {selfATM }
mBank/bankSM enterState recvdReqCB : recvdReqCB := recvdReqCB∪{selfATM }
mBank/recvReqCB.Action2 : atm cardB(selfATM ) := c

end

Event withdrawOK =̂

refines withdrawOK

any

selfATM contextual instance of class atmB

c

ac

am

where

mBank/c.type : c ∈ ValidCard

mBank/ac.type : ac ∈ account

mBank/am.type : am ∈ N
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mBank/selfATM.type : selfATM ∈ atmB

mBank/bankSM isin recvdReqWD : selfATM ∈ recvdReqWD

mBank/withdrawOK.Guard1 : selfATM ∈ dom(atm wdamB)

mBank/withdrawOK.Guard4 : bal(ac) ≥ am

mBank/withdrawOK.Guard2 : card account(c) = ac

mBank/withdrawOK.Guard7 : atm cardB(selfATM ) = c

mBank/withdrawOK.Guard5 : atm wdamB(selfATM ) = am

then

mBank/bankSM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
mBank/bankSM enterState processWDOK : processWDOK := processWDOK∪

{selfATM }
mBank/withdrawOK.Action1 : bal(ac) := bal(ac)− am

mBank/withdrawOK.Action2 : atm acbalB(selfATM ) := bal(ac)− am

end

Event withdrawFail =̂

refines withdrawFail

any

selfATM contextual instance of class atmB

c

ac

am

where

mBank/c.type : c ∈ ValidCard

mBank/ac.type : ac ∈ account

mBank/am.type : am ∈ N
mBank/selfATM.type : selfATM ∈ atmB

mBank/bankSM isin recvdReqWD : selfATM ∈ recvdReqWD

mBank/withdrawFail.Guard1 : selfATM ∈ dom(atm wdamB)

mBank/withdrawFail.Guard5 : bal(ac) < am

mBank/withdrawFail.Guard2 : card account(c) = ac

mBank/withdrawFail.Guard7 : atm cardB(selfATM ) = c

mBank/withdrawFail.Guard4 : atm wdamB(selfATM ) = am

then

mBank/bankSM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
mBank/bankSM enterState processWDFail : processWDFail := processWDFail∪

{selfATM }
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mBank/withdrawFail.Action2 : atm acbalB(selfATM ) := bal(ac)

end

Event checkBalance =̂

refines checkBalance

any

selfATM contextual instance of class atmB

c

ac

b

where

mBank/c.type : c ∈ ValidCard

mBank/ac.type : ac ∈ account

mBank/b.type : b ∈ N
mBank/selfATM.type : selfATM ∈ atmB

mBank/bankSM isin recvdReqCB : selfATM ∈ recvdReqCB

mBank/checkBalance.Guard5 : b = bal(ac)

mBank/checkBalance.Guard2 : card account(c) = ac

mBank/checkBalance.Guard6 : atm cardB(selfATM ) = c

then

mBank/bankSM leaveState recvdReqCB : recvdReqCB := recvdReqCB\{selfATM }
mBank/bankSM enterState processCB : processCB := processCB∪{selfATM }
mBank/checkBalance.Action2 : atm acbalB(selfATM ) := bal(ac)

end

Event sendRspWDOK =̂

refines sendRspWDOK

any

selfATM contextual instance of class atmB

c

b

where

mBank/b.type : b ∈ N
mBank/selfATM.type : selfATM ∈ atmB

mBank/c.type : c ∈ ValidCard

mBank/bankSM isin processWDOK : selfATM ∈ processWDOK
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mBank/sendRspWDOK.Guard5 : selfATM ∈ dom(atm acbalB)

mBank/sendRspWDOK.Guard3 : atm acbalB(selfATM ) = b

mBank/sendRspWDOK.Guard1 : atm cardB(selfATM ) = c

mMW/b.type : b ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ ATM \ atmM

then

mBank/bankSM leaveState processWDOK : processWDOK := processWDOK\
{selfATM }

mBank/atmB destructor : atmB := atmB \ {selfATM }
mBank/atmB.atm acbalB destructor : atm acbalB := {selfATM }¢−atm acbalB

mBank/atmB.atm cardB destructor : atm cardB := {selfATM }¢−atm cardB

mBank/atmB.atm wdamB destructor : atm wdamB := {selfATM }¢−atm wdamB

mMW/atmM constructor : atmM := atmM ∪ {selfATM }
mMW/rspWDOK SM enterState sentRspWDOK : sentRspWDOK := sentRspWDOK∪

{selfATM }
mMW/sendRspWDOK.Action1 : atm acbalM (selfATM ) := b

mMW/sendRspWDOK.Action2 : atm cardM (selfATM ) := c

end

Event sendRspWDFail =̂

refines sendRspWDFail

any

selfATM contextual instance of class atmB

c

b

where

mBank/b.type : b ∈ N
mBank/selfATM.type : selfATM ∈ atmB

mBank/c.type : c ∈ ValidCard

mBank/bankSM isin processWDFail : selfATM ∈ processWDFail

mBank/sendRspWDFail.Guard5 : selfATM ∈ dom(atm acbalB)

mBank/sendRspWDFail.Guard3 : atm acbalB(selfATM ) = b

mBank/sendRspWDFail.Guard1 : atm cardB(selfATM ) = c

mMW/b.type : b ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ ATM \ atmM
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then

mBank/bankSM leaveState processWDFail : processWDFail := processWDFail\
{selfATM }

mBank/atmB destructor : atmB := atmB \ {selfATM }
mBank/atmB.atm acbalB destructor : atm acbalB := {selfATM }¢−atm acbalB

mBank/atmB.atm cardB destructor : atm cardB := {selfATM }¢−atm cardB

mBank/atmB.atm wdamB destructor : atm wdamB := {selfATM }¢−atm wdamB

mMW/atmM constructor : atmM := atmM ∪ {selfATM }
mMW/rspWDFail SM enterState sentRspWDFail : sentRspWDFail := sentRspWDFail∪

{selfATM }
mMW/sendRspWDFail.Action1 : atm acbalM (selfATM ) := b

mMW/sendRspWDFail.Action2 : atm cardM (selfATM ) := c

end

Event sendRspCB =̂

refines sendRspCB

any

selfATM contextual instance of class atmB

c

b

where

mBank/b.type : b ∈ N
mBank/selfATM.type : selfATM ∈ atmB

mBank/c.type : c ∈ ValidCard

mBank/bankSM isin processCB : selfATM ∈ processCB

mBank/sendRspCB.Guard4 : selfATM ∈ dom(atm acbalB)

mBank/sendRspCB.Guard7 : atm acbalB(selfATM ) = b

mBank/sendRspCB.Guard1 : atm cardB(selfATM ) = c

mMW/b.type : b ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ ATM \ atmM

then

mBank/bankSM leaveState processCB : processCB := processCB\{selfATM }
mBank/atmB destructor : atmB := atmB \ {selfATM }
mBank/atmB.atm acbalB destructor : atm acbalB := {selfATM }¢−atm acbalB

mBank/atmB.atm cardB destructor : atm cardB := {selfATM }¢−atm cardB

mBank/atmB.atm wdamB destructor : atm wdamB := {selfATM }¢−atm wdamB
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mMW/atmM constructor : atmM := atmM ∪ {selfATM }
mMW/rspCB SM enterState sentRspCB : sentRspCB := sentRspCB∪{selfATM }
mMW/sendRspCB.Action1 : atm acbalM (selfATM ) := b

mMW/sendRspCB.Action2 : atm cardM (selfATM ) := c

end

Event recvRspWDOK =̂

refines recvRspWDOK

any

selfATM contextual instance of class atmM

b

c

where

mMW/b.type : b ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ atmM

mMW/rspWDOK SM isin sentRspWDOK : selfATM ∈ sentRspWDOK

mMW/recvRspWDOK.Guard1 : selfATM ∈ dom(atm acbalM )

mMW/recvRspWDOK.Guard2 : atm acbalM (selfATM ) = b

mMW/recvRspWDOK.Guard3 : atm cardM (selfATM ) = c

mATM/c.type : c ∈ ValidCard

mATM/b.type : b ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin waitingResponse : selfATM ∈ waitingResponse

mATM/recvRspWDOK.Guard1 : selfATM ∈ dom(atm card)

mATM/recvRspWDOK.Guard2 : atm card(selfATM ) = c

then

mMW/rspWDOK SM leaveState sentRspWDOK : sentRspWDOK := sentRspWDOK\
{selfATM }

mMW/atmM destructor : atmM := atmM \ {selfATM }
mMW/atmM.atm acbalM destructor : atm acbalM := {selfATM }¢−atm acbalM

mMW/atmM.atm wdamM destructor : atm wdamM := {selfATM }¢−atm wdamM

mMW/atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

mATM/ATM SM leaveState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

mATM/ATM SM enterState rspWDOK : rspWDOK := rspWDOK ∪{selfATM }
mATM/recvRspWDOK.Action1 : atm acbalA(selfATM ) := b
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end

Event recvRspWDFail =̂

refines recvRspWDFail

any

selfATM contextual instance of class atmM

b

c

where

mMW/b.type : b ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ atmM

mMW/rspWDFail SM isin sentRspWDFail : selfATM ∈ sentRspWDFail

mMW/recvRspWDFail.Guard1 : selfATM ∈ dom(atm acbalM )

mMW/recvRspWDFail.Guard2 : atm acbalM (selfATM ) = b

mMW/recvRspWDFail.Guard3 : atm cardM (selfATM ) = c

mATM/c.type : c ∈ ValidCard

mATM/b.type : b ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin waitingResponse : selfATM ∈ waitingResponse

mATM/recvRspWDFail.Guard1 : selfATM ∈ dom(atm card)

mATM/recvRspWDFail.Guard2 : atm card(selfATM ) = c

then

mMW/rspWDFail SM leaveState sentRspWDFail : sentRspWDFail := sentRspWDFail\
{selfATM }

mMW/atmM destructor : atmM := atmM \ {selfATM }
mMW/atmM.atm acbalM destructor : atm acbalM := {selfATM }¢−atm acbalM

mMW/atmM.atm wdamM destructor : atm wdamM := {selfATM }¢−atm wdamM

mMW/atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

mATM/ATM SM leaveState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

mATM/ATM SM enterState rspWDFail : rspWDFail := rspWDFail∪{selfATM }
mATM/recvRspWDFail.Action1 : atm acbalA(selfATM ) := b

end

Event recvdRspCB =̂

refines recvdRspCB



Appendix D ATM Case Study: Using Rodin UML-B 328

any

selfATM contextual instance of class atmM

b

c

where

mMW/b.type : b ∈ N
mMW/c.type : c ∈ ValidCard

mMW/selfATM.type : selfATM ∈ atmM

mMW/rspCB SM isin sentRspCB : selfATM ∈ sentRspCB

mMW/recvRspCB.Guard1 : selfATM ∈ dom(atm acbalM )

mMW/recvRspCB.Guard2 : atm acbalM (selfATM ) = b

mMW/recvRspCB.Guard3 : atm cardM (selfATM ) = c

mATM/c.type : c ∈ ValidCard

mATM/b.type : b ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin waitingResponse : selfATM ∈ waitingResponse

mATM/recvRspCB.Guard1 : selfATM ∈ dom(atm card)

mATM/recvRspCB.Guard2 : atm card(selfATM ) = c

then

mMW/rspCB SM leaveState sentRspCB : sentRspCB := sentRspCB\{selfATM }
mMW/atmM destructor : atmM := atmM \ {selfATM }
mMW/atmM.atm acbalM destructor : atm acbalM := {selfATM }¢−atm acbalM

mMW/atmM.atm wdamM destructor : atm wdamM := {selfATM }¢−atm wdamM

mMW/atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

mATM/ATM SM leaveState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

mATM/ATM SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
mATM/recvRspCB.Action1 : atm acbalA(selfATM ) := b

end

Event withdrawATMOK =̂

refines withdrawATMOK

any

selfATM contextual instance of class atm

c

am

b
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where

mATM/c.type : c ∈ ValidCard

mATM/am.type : am ∈ N
mATM/b.type : b ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin rspWDOK : selfATM ∈ rspWDOK

mATM/withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

mATM/withdrawATMOK.Guard2 : selfATM ∈ dom(atm acbalA)

mATM/withdrawATMOK.Guard3 : atm cashA(selfATM ) ≥ am

mATM/withdrawATMOK.Guard4 : atm acbalA(selfATM ) = b

mATM/withdrawATMOK.Guard5 : selfATM ∈ dom(atm wdam)

mATM/withdrawATMOK.Guard6 : atm wdam(selfATM ) = am

then

mATM/ATM SM leaveState rspWDOK : rspWDOK := rspWDOK \ {selfATM }
mATM/ATM SM enterState endTrans : endTrans := endTrans ∪ {selfATM }
mATM/withdrawATMOK.Action1 : atm cashA(selfATM ) := atm cashA(selfATM )−

am

end

Event withdrawATMFail =̂

refines withdrawATMFail

any

selfATM contextual instance of class atm

c

b

where

mATM/c.type : c ∈ ValidCard

mATM/b.type : b ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin rspWDFail : selfATM ∈ rspWDFail

mATM/withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

mATM/withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

mATM/withdrawATMFail.Guard3 : atm acbalA(selfATM ) = b

then

mATM/ATM SM leaveState rspWDFail : rspWDFail := rspWDFail\{selfATM }
mATM/ATM SM enterState endTrans : endTrans := endTrans ∪ {selfATM }
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end

Event checkBalATM =̂

refines checkBalATM

any

selfATM contextual instance of class atm

c

b

where

mATM/c.type : c ∈ ValidCard

mATM/b.type : b ∈ N
mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin rspCB : selfATM ∈ rspCB

mATM/checkBalATM.Guard1 : selfATM ∈ dom(atm card)

mATM/checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

mATM/checkBalATM.Guard3 : atm acbalA(selfATM ) = b

then

mATM/ATM SM leaveState rspCB : rspCB := rspCB \ {selfATM }
mATM/ATM SM enterState endTrans : endTrans := endTrans ∪ {selfATM }

end

Event doAnother =̂

refines doAnother

any

selfATM contextual instance of class atm

c

where

mATM/c.type : c ∈ ValidCard

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin endTrans : selfATM ∈ endTrans

mATM/doAnother.Guard1 : selfATM ∈ dom(atm card)

mATM/doAnother.Guard2 : atm card(selfATM ) = c

then

mATM/ATM SM leaveState endTrans : endTrans := endTrans \ {selfATM }
mATM/ATM SM enterState trans : trans := trans ∪ {selfATM }

end
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Event ejectCard1 =̂

refines ejectCard1

any

selfATM contextual instance of class atm

c

where

mATM/c.type : c ∈ ValidCard

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin invalidCard : selfATM ∈ invalidCard

mATM/ejectCard1.Guard1 : selfATM ∈ dom(atm card)

mATM/ejectCard1.Guard2 : atm card(selfATM ) = c

then

mATM/ATM SM leaveState invalidCard : invalidCard := invalidCard\{selfATM }
mATM/ATM SM enterState idle : idle := idle ∪ {selfATM }
mATM/ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event ejectCard2 =̂

refines ejectCard2

any

selfATM contextual instance of class atm

c

where

mATM/c.type : c ∈ ValidCard

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin trans : selfATM ∈ trans

mATM/ejectCard2.Guard1 : selfATM ∈ dom(atm card)

mATM/ejectCard2.Guard2 : atm card(selfATM ) = c

then

mATM/ATM SM leaveState trans : trans := trans \ {selfATM }
mATM/ATM SM enterState idle : idle := idle ∪ {selfATM }
mATM/ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event ejectCard3 =̂

refines ejectCard3
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any

selfATM contextual instance of class atm

c

where

mATM/c.type : c ∈ ValidCard

mATM/selfATM.type : selfATM ∈ atm

mATM/ATM SM isin endTrans : selfATM ∈ endTrans

mATM/ejectCard3.Guard1 : selfATM ∈ dom(atm card)

mATM/ejectCard3.Guard2 : atm card(selfATM ) = c

then

mATM/ATM SM leaveState endTrans : endTrans := endTrans \ {selfATM }
mATM/ATM SM enterState idle : idle := idle ∪ {selfATM }
mATM/ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event createAccount =̂

refines createAccount

any

self contextual instance of class account

where

mBank/self.type : self ∈ account

then

skip

end

Event deposit =̂

refines deposit

any

self contextual instance of class account

where

mBank/self.type : self ∈ account

then

skip

end

END
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B.9 Generated Event-B of the Machine mATM

MACHINE mATM

SEES mATM implicitContext

VARIABLES

atm class instances

atm cashA attribute of atm

atm wdam attribute of atm

atm card attribute of atm

atm acbalA attribute of atm

idle state from statemachine, ATM SM

validating state from statemachine, ATM SM

trans state from statemachine, ATM SM

invalidCard state from statemachine, ATM SM

waitingResponse state from statemachine, ATM SM

rspCB state from statemachine, ATM SM

rspWDOK state from statemachine, ATM SM

rspWDFail state from statemachine, ATM SM

endTrans state from statemachine, ATM SM

INVARIANTS

atm.type : atm ∈ P(ATM )

atm cashA.type : atm cashA ∈ atm → N

atm wdam.type : atm wdam ∈ atm 7→ N

atm card.type : atm card ∈ atm 7→ValidCard

atm acbalA.type : atm acbalA ∈ atm 7→ N

idle.type : idle ∈ P(atm)

validating.type : validating ∈ P(atm)

trans.type : trans ∈ P(atm)

invalidCard.type : invalidCard ∈ P(atm)

waitingResponse.type : waitingResponse ∈ P(atm)

rspCB.type : rspCB ∈ P(atm)

rspWDOK.type : rspWDOK ∈ P(atm)

rspWDFail.type : rspWDFail ∈ P(atm)
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endTrans.type : endTrans ∈ P(atm)

ATM SM partitions atm : partition(atm, idle, validating , trans, invalidCard ,waitingResponse,

rspCB , rspWDOK , rspWDFail , endTrans)

EVENTS

Initialisation

begin

atm.init : atm := ∅

atm cashA.init : atm cashA := ∅

atm wdam.init : atm wdam := ∅

atm card.init : atm card := ∅

atm acbalA.init : atm acbalA := ∅

idle.init : idle := ∅

validating.init : validating := ∅

trans.init : trans := ∅

invalidCard.init : invalidCard := ∅

waitingResponse.init : waitingResponse := ∅

rspCB.init : rspCB := ∅

rspWDOK.init : rspWDOK := ∅

rspWDFail.init : rspWDFail := ∅

endTrans.init : endTrans := ∅

end

Event insertCard =̂

any

selfATM contextual instance of class atm

c

where

selfATM.type : selfATM ∈ atm

c.type : c ∈ ValidCard

ATM SM isin idle : selfATM ∈ idle

insertCard.Guard1 : selfATM /∈ dom(atm card)

then

ATM SM leaveState idle : idle := idle \ {selfATM }
ATM SM enterState validating : validating := validating ∪ {selfATM }
insertCard.Action1 : atm card := atm card ∪ {selfATM 7→ c}

end
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Event reloadCash =̂

any

selfATM contextual instance of class atm

where

selfATM.type : selfATM ∈ atm

ATM SM isin idle : selfATM ∈ idle

reloadCash.Guard1 : atm cashA(selfATM ) < MIN CASH

then

reloadCash.Action1 : atm cashA(selfATM ) := MAX CASH

end

Event start =̂

any

selfATM constructed instance of class atm

where

selfATM.type : selfATM ∈ ATM \ atm

then

atm constructor : atm := atm ∪ {selfATM }
atm.atm cashA initialise : atm cashA(selfATM ) := MAX CASH

ATM SM enterState idle : idle := idle ∪ {selfATM }
end

Event validateCardOK =̂

any

selfATM contextual instance of class atm

c

p

where

c.type : c ∈ ValidCard

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

ATM SM isin validating : selfATM ∈ validating

validateCardOK.Guard1 : selfATM ∈ dom(atm card)

validateCardOK.Guard2 : atm card(selfATM ) = c

validateCardOK.Guard3 : card pin(c) = p

then
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ATM SM leaveState validating : validating := validating \ {selfATM }
ATM SM enterState trans : trans := trans ∪ {selfATM }

end

Event validateCardFail =̂

any

selfATM contextual instance of class atm

c

p

where

c.type : c ∈ ValidCard

p.type : p ∈ Pin

selfATM.type : selfATM ∈ atm

ATM SM isin validating : selfATM ∈ validating

validateCardFail.Guard1 : selfATM ∈ dom(atm card)

validateCardFail.Guard2 : atm card(selfATM ) = c

validateCardFail.Guard3 : card pin(c) 6= p

then

ATM SM leaveState validating : validating := validating \ {selfATM }
ATM SM enterState invalidCard : invalidCard := invalidCard∪{selfATM }

end

Event sendReqCB =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin trans : selfATM ∈ trans

sendReqCB.Guard1 : selfATM ∈ dom(atm card)

sendReqCB.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState waitingResponse : waitingResponse := waitingResponse∪

{selfATM }
end
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Event sendReqWD =̂

any

selfATM contextual instance of class atm

c

am

where

c.type : c ∈ ValidCard

am.type : am ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin trans : selfATM ∈ trans

sendReqWD.Guard1 : selfATM ∈ dom(atm card)

sendReqWD.Guard2 : atm card(selfATM ) = c

sendReqWD.Guard5 : atm cashA(selfATM ) > MIN CASH

sendReqWD.Guard7 : am ≤ MIN CASH

then

ATM SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState waitingResponse : waitingResponse := waitingResponse∪

{selfATM }
sendReqWD.Action1 : atm wdam(selfATM ) := am

end

Event ejectCard2 =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin trans : selfATM ∈ trans

ejectCard2.Guard1 : selfATM ∈ dom(atm card)

ejectCard2.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState trans : trans := trans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard2.Action1 : atm card := atm card \ {selfATM 7→ c}

end
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Event retry =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin invalidCard : selfATM ∈ invalidCard

retry.Guard1 : selfATM ∈ dom(atm card)

retry.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState invalidCard : invalidCard := invalidCard \{selfATM }
ATM SM enterState validating : validating := validating ∪ {selfATM }

end

Event ejectCard1 =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin invalidCard : selfATM ∈ invalidCard

ejectCard1.Guard1 : selfATM ∈ dom(atm card)

ejectCard1.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState invalidCard : invalidCard := invalidCard \{selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard1.Action1 : atm card := atm card \ {selfATM 7→ c}

end

Event recvRspCB =̂

any

selfATM contextual instance of class atm

c

b
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where

c.type : c ∈ ValidCard

b.type : b ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin waitingResponse : selfATM ∈ waitingResponse

recvRspCB.Guard1 : selfATM ∈ dom(atm card)

recvRspCB.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

ATM SM enterState rspCB : rspCB := rspCB ∪ {selfATM }
recvRspCB.Action1 : atm acbalA(selfATM ) := b

end

Event recvRspWDOK =̂

any

selfATM contextual instance of class atm

c

b

where

c.type : c ∈ ValidCard

b.type : b ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin waitingResponse : selfATM ∈ waitingResponse

recvRspWDOK.Guard1 : selfATM ∈ dom(atm card)

recvRspWDOK.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

ATM SM enterState rspWDOK : rspWDOK := rspWDOK ∪ {selfATM }
recvRspWDOK.Action1 : atm acbalA(selfATM ) := b

end

Event recvRspWDFail =̂

any

selfATM contextual instance of class atm

c
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b

where

c.type : c ∈ ValidCard

b.type : b ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin waitingResponse : selfATM ∈ waitingResponse

recvRspWDFail.Guard1 : selfATM ∈ dom(atm card)

recvRspWDFail.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState waitingResponse : waitingResponse := waitingResponse\
{selfATM }

ATM SM enterState rspWDFail : rspWDFail := rspWDFail ∪ {selfATM }
recvRspWDFail.Action1 : atm acbalA(selfATM ) := b

end

Event checkBalATM =̂

any

selfATM contextual instance of class atm

c

b

where

c.type : c ∈ ValidCard

b.type : b ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin rspCB : selfATM ∈ rspCB

checkBalATM.Guard1 : selfATM ∈ dom(atm card)

checkBalATM.Guard2 : selfATM ∈ dom(atm acbalA)

checkBalATM.Guard3 : atm acbalA(selfATM ) = b

then

ATM SM leaveState rspCB : rspCB := rspCB \ {selfATM }
ATM SM enterState endTrans : endTrans := endTrans ∪ {selfATM }

end

Event withdrawATMOK =̂

any

selfATM contextual instance of class atm

c
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am

b

where

c.type : c ∈ ValidCard

am.type : am ∈ N
b.type : b ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin rspWDOK : selfATM ∈ rspWDOK

withdrawATMOK.Guard1 : selfATM ∈ dom(atm card)

withdrawATMOK.Guard2 : selfATM ∈ dom(atm acbalA)

withdrawATMOK.Guard3 : atm cashA(selfATM ) ≥ am

withdrawATMOK.Guard4 : atm acbalA(selfATM ) = b

withdrawATMOK.Guard5 : selfATM ∈ dom(atm wdam)

withdrawATMOK.Guard6 : atm wdam(selfATM ) = am

then

ATM SM leaveState rspWDOK : rspWDOK := rspWDOK \ {selfATM }
ATM SM enterState endTrans : endTrans := endTrans ∪ {selfATM }
withdrawATMOK.Action1 : atm cashA(selfATM ) := atm cashA(selfATM ) −

am

end

Event withdrawATMFail =̂

any

selfATM contextual instance of class atm

c

b

where

c.type : c ∈ ValidCard

b.type : b ∈ N
selfATM.type : selfATM ∈ atm

ATM SM isin rspWDFail : selfATM ∈ rspWDFail

withdrawATMFail.Guard1 : selfATM ∈ dom(atm card)

withdrawATMFail.Guard2 : selfATM ∈ dom(atm acbalA)

withdrawATMFail.Guard3 : atm acbalA(selfATM ) = b

then

ATM SM leaveState rspWDFail : rspWDFail := rspWDFail \ {selfATM }
ATM SM enterState endTrans : endTrans := endTrans ∪ {selfATM }
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end

Event doAnother =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin endTrans : selfATM ∈ endTrans

doAnother.Guard1 : selfATM ∈ dom(atm card)

doAnother.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState endTrans : endTrans := endTrans \ {selfATM }
ATM SM enterState trans : trans := trans ∪ {selfATM }

end

Event ejectCard3 =̂

any

selfATM contextual instance of class atm

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atm

ATM SM isin endTrans : selfATM ∈ endTrans

ejectCard3.Guard1 : selfATM ∈ dom(atm card)

ejectCard3.Guard2 : atm card(selfATM ) = c

then

ATM SM leaveState endTrans : endTrans := endTrans \ {selfATM }
ATM SM enterState idle : idle := idle ∪ {selfATM }
ejectCard3.Action1 : atm card := atm card \ {selfATM 7→ c}

end

END
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B.10 Generated Event-B of the Machine mBank

MACHINE mBank

SEES mBank implicitContext

VARIABLES

account class instances

atmB class instances

bal attribute of account

atm acbalB attribute of atmB

atm cardB attribute of atmB

atm wdamB attribute of atmB

recvdReqCB state from statemachine, bankSM

recvdReqWD state from statemachine, bankSM

processCB state from statemachine, bankSM

processWDOK state from statemachine, bankSM

processWDFail state from statemachine, bankSM

INVARIANTS

account.type : account ∈ P(Account)

atmB.type : atmB ∈ P(ATM )

bal.type : bal ∈ account → N

atm acbalB.type : atm acbalB ∈ atmB 7→ N

atm cardB.type : atm cardB ∈ atmB →ValidCard

atm wdamB.type : atm wdamB ∈ atmB 7→ N

recvdReqCB.type : recvdReqCB ∈ P(atmB)

recvdReqWD.type : recvdReqWD ∈ P(atmB)

processCB.type : processCB ∈ P(atmB)

processWDOK.type : processWDOK ∈ P(atmB)

processWDFail.type : processWDFail ∈ P(atmB)

bankSM partitions atmB : partition(atmB , recvdReqCB , recvdReqWD ,

processCB , processWDOK , processWDFail)

EVENTS

Initialisation

begin
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account.init : account := ∅

atmB.init : atmB := ∅

bal.init : bal := ∅

atm acbalB.init : atm acbalB := ∅

atm cardB.init : atm cardB := ∅

atm wdamB.init : atm wdamB := ∅

recvdReqCB.init : recvdReqCB := ∅

recvdReqWD.init : recvdReqWD := ∅

processCB.init : processCB := ∅

processWDOK.init : processWDOK := ∅

processWDFail.init : processWDFail := ∅

end

Event createAccount =̂

any

self contextual instance of class account

where

self.type : self ∈ account

then

skip

end

Event deposit =̂

any

self contextual instance of class account

where

self.type : self ∈ account

then

skip

end

Event recvReqCB =̂

any

selfATM constructed instance of class atmB

c

where
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c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ ATM \ atmB

then

atmB constructor : atmB := atmB ∪ {selfATM }
bankSM enterState recvdReqCB : recvdReqCB := recvdReqCB∪{selfATM }
recvReqCB.Action2 : atm cardB(selfATM ) := c

end

Event checkBalance =̂

any

selfATM contextual instance of class atmB

c

ac

b

where

c.type : c ∈ ValidCard

ac.type : ac ∈ account

b.type : b ∈ N
selfATM.type : selfATM ∈ atmB

bankSM isin recvdReqCB : selfATM ∈ recvdReqCB

checkBalance.Guard5 : b = bal(ac)

checkBalance.Guard2 : card account(c) = ac

checkBalance.Guard6 : atm cardB(selfATM ) = c

then

bankSM leaveState recvdReqCB : recvdReqCB := recvdReqCB \ {selfATM }
bankSM enterState processCB : processCB := processCB ∪ {selfATM }
checkBalance.Action2 : atm acbalB(selfATM ) := bal(ac)

end

Event withdrawOK =̂

any

selfATM contextual instance of class atmB

c

ac

am

where

c.type : c ∈ ValidCard
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ac.type : ac ∈ account

am.type : am ∈ N
selfATM.type : selfATM ∈ atmB

bankSM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawOK.Guard1 : selfATM ∈ dom(atm wdamB)

withdrawOK.Guard4 : bal(ac) ≥ am

withdrawOK.Guard2 : card account(c) = ac

withdrawOK.Guard7 : atm cardB(selfATM ) = c

withdrawOK.Guard5 : atm wdamB(selfATM ) = am

then

bankSM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
bankSM enterState processWDOK : processWDOK := processWDOK∪{selfATM }
withdrawOK.Action1 : bal(ac) := bal(ac)− am

withdrawOK.Action2 : atm acbalB(selfATM ) := bal(ac)− am

end

Event withdrawFail =̂

any

selfATM contextual instance of class atmB

c

ac

am

where

c.type : c ∈ ValidCard

ac.type : ac ∈ account

am.type : am ∈ N
selfATM.type : selfATM ∈ atmB

bankSM isin recvdReqWD : selfATM ∈ recvdReqWD

withdrawFail.Guard1 : selfATM ∈ dom(atm wdamB)

withdrawFail.Guard5 : bal(ac) < am

withdrawFail.Guard2 : card account(c) = ac

withdrawFail.Guard7 : atm cardB(selfATM ) = c

withdrawFail.Guard4 : atm wdamB(selfATM ) = am

then

bankSM leaveState recvdReqWD : recvdReqWD := recvdReqWD\{selfATM }
bankSM enterState processWDFail : processWDFail := processWDFail ∪

{selfATM }
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withdrawFail.Action2 : atm acbalB(selfATM ) := bal(ac)

end

Event recvReqWD =̂

any

selfATM constructed instance of class atmB

c

am

where

c.type : c ∈ ValidCard

am.type : am ∈ N
selfATM.type : selfATM ∈ ATM \ atmB

then

atmB constructor : atmB := atmB ∪ {selfATM }
bankSM enterState recvdReqWD : recvdReqWD := recvdReqWD∪{selfATM }
recvReqWD.Action2 : atm cardB(selfATM ) := c

recvReqWD.Action3 : atm wdamB(selfATM ) := am

end

Event sendRspCB =̂

any

selfATM contextual instance of class atmB

c

b

where

b.type : b ∈ N
selfATM.type : selfATM ∈ atmB

c.type : c ∈ ValidCard

bankSM isin processCB : selfATM ∈ processCB

sendRspCB.Guard4 : selfATM ∈ dom(atm acbalB)

sendRspCB.Guard7 : atm acbalB(selfATM ) = b

sendRspCB.Guard1 : atm cardB(selfATM ) = c

then

bankSM leaveState processCB : processCB := processCB \ {selfATM }
atmB destructor : atmB := atmB \ {selfATM }
atmB.atm acbalB destructor : atm acbalB := {selfATM }¢− atm acbalB

atmB.atm cardB destructor : atm cardB := {selfATM }¢− atm cardB



Appendix D ATM Case Study: Using Rodin UML-B 348

atmB.atm wdamB destructor : atm wdamB := {selfATM }¢− atm wdamB

end

Event sendRspWDOK =̂

any

selfATM contextual instance of class atmB

c

b

where

b.type : b ∈ N
selfATM.type : selfATM ∈ atmB

c.type : c ∈ ValidCard

bankSM isin processWDOK : selfATM ∈ processWDOK

sendRspWDOK.Guard5 : selfATM ∈ dom(atm acbalB)

sendRspWDOK.Guard3 : atm acbalB(selfATM ) = b

sendRspWDOK.Guard1 : atm cardB(selfATM ) = c

then

bankSM leaveState processWDOK : processWDOK := processWDOK\{selfATM }
atmB destructor : atmB := atmB \ {selfATM }
atmB.atm acbalB destructor : atm acbalB := {selfATM }¢− atm acbalB

atmB.atm cardB destructor : atm cardB := {selfATM }¢− atm cardB

atmB.atm wdamB destructor : atm wdamB := {selfATM }¢− atm wdamB

end

Event sendRspWDFail =̂

any

selfATM contextual instance of class atmB

c

b

where

b.type : b ∈ N
selfATM.type : selfATM ∈ atmB

c.type : c ∈ ValidCard

bankSM isin processWDFail : selfATM ∈ processWDFail

sendRspWDFail.Guard5 : selfATM ∈ dom(atm acbalB)

sendRspWDFail.Guard3 : atm acbalB(selfATM ) = b

sendRspWDFail.Guard1 : atm cardB(selfATM ) = c
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then

bankSM leaveState processWDFail : processWDFail := processWDFail\{selfATM }
atmB destructor : atmB := atmB \ {selfATM }
atmB.atm acbalB destructor : atm acbalB := {selfATM }¢− atm acbalB

atmB.atm cardB destructor : atm cardB := {selfATM }¢− atm cardB

atmB.atm wdamB destructor : atm wdamB := {selfATM }¢− atm wdamB

end

END
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B.11 Generated Event-B of the Machine mMW

MACHINE mMW

SEES mMW implicitContext

VARIABLES

atmM class instances

atm acbalM attribute of atmM

atm wdamM attribute of atmM

atm cardM attribute of atmM

sentReqWD state from statemachine, reqWD SM

sentReqCB state from statemachine, reqCB SM

sentRspWDOK state from statemachine, rspWDOK SM

sentRspWDFail state from statemachine, rspWDFail SM

sentRspCB state from statemachine, rspCB SM

INVARIANTS

atmM.type : atmM ∈ P(ATM )

atm acbalM.type : atm acbalM ∈ atmM 7→ N

atm wdamM.type : atm wdamM ∈ atmM 7→ N

atm cardM.type : atm cardM ∈ atmM →ValidCard

sentReqWD.type : sentReqWD ∈ P(atmM )

sentReqCB.type : sentReqCB ∈ P(atmM )

sentRspWDOK.type : sentRspWDOK ∈ P(atmM )

sentRspWDFail.type : sentRspWDFail ∈ P(atmM )

sentRspCB.type : sentRspCB ∈ P(atmM )

partitions atmM : partition(atmM , sentReqWD , sentReqCB ,

sentRspWDOK , sentRspWDFail , sentRspCB)

EVENTS

Initialisation

begin

atmM.init : atmM := ∅

atm acbalM.init : atm acbalM := ∅

atm wdamM.init : atm wdamM := ∅

atm cardM.init : atm cardM := ∅
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sentReqWD.init : sentReqWD := ∅

sentReqCB.init : sentReqCB := ∅

sentRspWDOK.init : sentRspWDOK := ∅

sentRspWDFail.init : sentRspWDFail := ∅

sentRspCB.init : sentRspCB := ∅

end

Event sendReqWD =̂

any

selfATM constructed instance of class atmM

am

c

where

am.type : am ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ ATM \ atmM

then

atmM constructor : atmM := atmM ∪ {selfATM }
reqWD SM enterState sentReqWD : sentReqWD := sentReqWD∪{selfATM }
sendReqWD.Action2 : atm wdamM (selfATM ) := am

sendReqWD.Action1 : atm cardM (selfATM ) := c

end

Event recvReqWD =̂

any

selfATM contextual instance of class atmM

c

am

where

c.type : c ∈ ValidCard

am.type : am ∈ N
selfATM.type : selfATM ∈ atmM

reqWD SM isin sentReqWD : selfATM ∈ sentReqWD

recvReqWD.Guard1 : atm cardM (selfATM ) = c

recvReqWD.Guard2 : selfATM ∈ dom(atm wdamM )

recvReqWD.Guard3 : atm wdamM (selfATM ) = am

then
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reqWD SM leaveState sentReqWD : sentReqWD := sentReqWD \{selfATM }
atmM destructor : atmM := atmM \ {selfATM }
atmM.atm acbalM destructor : atm acbalM := {selfATM }¢− atm acbalM

atmM.atm wdamM destructor : atm wdamM := {selfATM }¢− atm wdamM

atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

end

Event sendReqCB =̂

any

selfATM constructed instance of class atmM

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ ATM \ atmM

then

atmM constructor : atmM := atmM ∪ {selfATM }
reqCB SM enterState sentReqCB : sentReqCB := sentReqCB ∪ {selfATM }
sendReqCB.Action1 : atm cardM (selfATM ) := c

end

Event recvReqCB =̂

any

selfATM contextual instance of class atmM

c

where

c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atmM

reqCB SM isin sentReqCB : selfATM ∈ sentReqCB

recvReqCB.Guard1 : atm cardM (selfATM ) = c

then

reqCB SM leaveState sentReqCB : sentReqCB := sentReqCB \ {selfATM }
atmM destructor : atmM := atmM \ {selfATM }
atmM.atm acbalM destructor : atm acbalM := {selfATM }¢− atm acbalM

atmM.atm wdamM destructor : atm wdamM := {selfATM }¢− atm wdamM

atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

end
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Event sendRspWDOK =̂

any

selfATM constructed instance of class atmM

b

c

where

b.type : b ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ ATM \ atmM

then

atmM constructor : atmM := atmM ∪ {selfATM }
rspWDOK SM enterState sentRspWDOK : sentRspWDOK := sentRspWDOK∪

{selfATM }
sendRspWDOK.Action1 : atm acbalM (selfATM ) := b

sendRspWDOK.Action2 : atm cardM (selfATM ) := c

end

Event recvRspWDOK =̂

any

selfATM contextual instance of class atmM

b

c

where

b.type : b ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atmM

rspWDOK SM isin sentRspWDOK : selfATM ∈ sentRspWDOK

recvRspWDOK.Guard1 : selfATM ∈ dom(atm acbalM )

recvRspWDOK.Guard2 : atm acbalM (selfATM ) = b

recvRspWDOK.Guard3 : atm cardM (selfATM ) = c

then

rspWDOK SM leaveState sentRspWDOK : sentRspWDOK := sentRspWDOK\
{selfATM }

atmM destructor : atmM := atmM \ {selfATM }
atmM.atm acbalM destructor : atm acbalM := {selfATM }¢− atm acbalM

atmM.atm wdamM destructor : atm wdamM := {selfATM }¢− atm wdamM
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atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

end

Event sendRspWDFail =̂

any

selfATM constructed instance of class atmM

b

c

where

b.type : b ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ ATM \ atmM

then

atmM constructor : atmM := atmM ∪ {selfATM }
rspWDFail SM enterState sentRspWDFail : sentRspWDFail := sentRspWDFail∪

{selfATM }
sendRspWDFail.Action1 : atm acbalM (selfATM ) := b

sendRspWDFail.Action2 : atm cardM (selfATM ) := c

end

Event recvRspWDFail =̂

any

selfATM contextual instance of class atmM

b

c

where

b.type : b ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atmM

rspWDFail SM isin sentRspWDFail : selfATM ∈ sentRspWDFail

recvRspWDFail.Guard1 : selfATM ∈ dom(atm acbalM )

recvRspWDFail.Guard2 : atm acbalM (selfATM ) = b

recvRspWDFail.Guard3 : atm cardM (selfATM ) = c

then

rspWDFail SM leaveState sentRspWDFail : sentRspWDFail := sentRspWDFail\
{selfATM }

atmM destructor : atmM := atmM \ {selfATM }
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atmM.atm acbalM destructor : atm acbalM := {selfATM }¢− atm acbalM

atmM.atm wdamM destructor : atm wdamM := {selfATM }¢− atm wdamM

atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

end

Event sendRspCB =̂

any

selfATM constructed instance of class atmM

b

c

where

b.type : b ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ ATM \ atmM

then

atmM constructor : atmM := atmM ∪ {selfATM }
rspCB SM enterState sentRspCB : sentRspCB := sentRspCB ∪ {selfATM }
sendRspCB.Action1 : atm acbalM (selfATM ) := b

sendRspCB.Action2 : atm cardM (selfATM ) := c

end

Event recvRspCB =̂

any

selfATM contextual instance of class atmM

b

c

where

b.type : b ∈ N
c.type : c ∈ ValidCard

selfATM.type : selfATM ∈ atmM

rspCB SM isin sentRspCB : selfATM ∈ sentRspCB

recvRspCB.Guard1 : selfATM ∈ dom(atm acbalM )

recvRspCB.Guard2 : atm acbalM (selfATM ) = b

recvRspCB.Guard3 : atm cardM (selfATM ) = c

then

rspCB SM leaveState sentRspCB : sentRspCB := sentRspCB \ {selfATM }
atmM destructor : atmM := atmM \ {selfATM }
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atmM.atm acbalM destructor : atm acbalM := {selfATM }¢− atm acbalM

atmM.atm wdamM destructor : atm wdamM := {selfATM }¢− atm wdamM

atmM.atm cardM destructor : atm cardM := {selfATM }¢− atm cardM

end

END
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B.12 Generated Event-B of the Context ATM CXR3

CONTEXT ATM CXR3

EXTENDS ATM CXR2

SETS

MSG ClassType

STATUS ClassType

CONSTANTS

REQ MSG classType instances

RSP MSG classType instances

REQ WD MSG classType instances

REQ CB MSG classType instances

RSP WDOK MSG classType instances

RSP WDFAIL MSG classType instances

RSP CB MSG classType instances

OK enumeration constant

NOT OK enumeration constant

msg atm attribute of MSG

msg card attribute of MSG

msg status attribute of RSP MSG

msg bal attribute of RSP MSG

msg wdAmount attribute of REQ WD MSG

AXIOMS

REQ MSG.type : REQ MSG ∈ P(MSG)

RSP MSG.type : RSP MSG ∈ P(MSG)

REQ WD MSG.type : REQ WD MSG ∈ P(REQ MSG)

REQ CB MSG.type : REQ CB MSG ∈ P(REQ MSG)

RSP WDOK MSG.type : RSP WDOK MSG ∈ P(RSP MSG)

RSP WDFAIL MSG.type : RSP WDFAIL MSG ∈ P(RSP MSG)

RSP CB MSG.type : RSP CB MSG ∈ P(RSP MSG)

OK.type : OK ∈ STATUS

NOT OK.type : NOT OK ∈ STATUS

msg atm.type : msg atm ∈ MSG →ATM
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msg card.type : msg card ∈ MSG →ValidCard

msg status.type : msg status ∈ RSP MSG → STATUS

msg bal.type : msg bal ∈ RSP MSG → N

msg wdAmount.type : msg wdAmount ∈ REQ WD MSG → N

Axiom1 : partition(MSG ,REQ MSG ,RSP MSG)

Axiom2 : partition(REQ MSG ,REQ WD MSG ,REQ CB MSG)

Axiom3 : partition(RSP MSG ,RSP WDOK MSG ,RSP WDFAIL MSG ,RSP CB MSG)

partition enumeration of STATUS : partition(STATUS , {OK}, {NOT OK})

END
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B.13 Generated Event-B of the Machine mMW R1

MACHINE mMW R1

REFINES mMW

SEES mMW R1 implicitContext

VARIABLES

msg class instances

reqwdmsg state from statemachine, reqwd SM

reqcbmsg state from statemachine, reqCB SM

rspwdokmsg state from statemachine, rspwdok SM

rspwdfailmsg state from statemachine, rspwdfail SM

rspcbmsg state from statemachine, rspcb SM

INVARIANTS

msg.type : msg ∈ P(MSG)

reqwdmsg.type : reqwdmsg ∈ P(msg)

reqcbmsg.type : reqcbmsg ∈ P(msg)

rspwdokmsg.type : rspwdokmsg ∈ P(msg)

rspwdfailmsg.type : rspwdfailmsg ∈ P(msg)

rspcbmsg.type : rspcbmsg ∈ P(msg)

partitions msg : partition(msg , reqwdmsg , reqcbmsg , rspwdokmsg , rspwdfailmsg , rspcbmsg)

Invariant1 : reqwdmsg ∈ P(REQ WD MSG)

Invariant2 : reqcbmsg ∈ P(REQ CB MSG)

Invariant3 : rspwdokmsg ∈ P(RSP WDOK MSG)

Invariant4 : rspwdfailmsg ∈ P(RSP WDFAIL MSG)

Invariant5 : rspcbmsg ∈ P(RSP CB MSG)

Invariant6 : ∀m ·m ∈ msg ⇒msg atm(m) 7→ msg card(m) ∈ atm cardM

Invariant7 : ∀m ·m ∈ reqwdmsg⇒msg atm(m) 7→ msg wdAmount(m) ∈ atm wdamM

Invariant8 : ∀m ·m ∈ (rspwdokmsg∪rspwdfailmsg∪rspcbmsg)⇒msg atm(m) 7→
msg bal(m) ∈ atm acbalM

Invariant9 : sentReqWD = msg atm[reqwdmsg ]

Invariant10 : sentReqCB = msg atm[reqcbmsg ]

Invariant11 : sentRspWDOK = msg atm[rspwdokmsg ]

Invariant12 : sentRspWDFail = msg atm[rspwdfailmsg ]
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Invariant13 : sentRspCB = msg atm[rspcbmsg ]

Invariant14 : ∀m,m0 ·m ∈ msg ∧m0 ∈ msg ∧msg atm(m) = msg atm(m0 )⇒
m = m0

EVENTS

Initialisation

begin

msg.init : msg := ∅

reqwdmsg.init : reqwdmsg := ∅

reqcbmsg.init : reqcbmsg := ∅

rspwdokmsg.init : rspwdokmsg := ∅

rspwdfailmsg.init : rspwdfailmsg := ∅

rspcbmsg.init : rspcbmsg := ∅

end

Event sendReqWD =̂

refines sendReqWD

any

selfMsg constructed instance of class msg

selfATM

c

am

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

am.type : am ∈ N
sendReqWD.Guard1 : selfMsg ∈ REQ WD MSG

sendReqWD.Guard2 : selfATM /∈ msg atm[msg ]

sendReqWD.Guard3 : msg atm(selfMsg) = selfATM

sendReqWD.Guard4 : msg card(selfMsg) = c

sendReqWD.Guard5 : msg wdAmount(selfMsg) = am

then

msg constructor : msg := msg ∪ {selfMsg}
reqwd SM enterState reqwdmsg : reqwdmsg := reqwdmsg ∪ {selfMsg}

end
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Event recvReqWD =̂

refines recvReqWD

any

selfMsg contextual instance of class msg

selfATM

c

am

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

am.type : am ∈ N
reqwd SM isin reqwdmsg : selfMsg ∈ reqwdmsg

recvReqWD.Guard1 : msg atm(selfMsg) = selfATM

recvReqWD.Guard2 : msg card(selfMsg) = c

recvReqWD.Guard3 : msg wdAmount(selfMsg) = am

then

reqwd SM leaveState reqwdmsg : reqwdmsg := reqwdmsg \ {selfMsg}
msg destructor : msg := msg \ {selfMsg}

end

Event sendReqCB =̂

refines sendReqCB

any

selfMsg constructed instance of class msg

selfATM

c

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

sendReqCB.Guard1 : selfMsg ∈ REQ CB MSG

sendReqCB.Guard2 : selfATM /∈ msg atm[msg ]

sendReqCB.Guard3 : msg atm(selfMsg) = selfATM

sendReqCB.Guard4 : msg card(selfMsg) = c
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then

msg constructor : msg := msg ∪ {selfMsg}
reqCB SM enterState reqcbmsg : reqcbmsg := reqcbmsg ∪ {selfMsg}

end

Event recvReqCB =̂

refines recvReqCB

any

selfMsg contextual instance of class msg

selfATM

c

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

reqCB SM isin reqcbmsg : selfMsg ∈ reqcbmsg

recvReqCB.Guard1 : msg atm(selfMsg) = selfATM

recvReqCB.Guard2 : msg card(selfMsg) = c

then

reqCB SM leaveState reqcbmsg : reqcbmsg := reqcbmsg \ {selfMsg}
msg destructor : msg := msg \ {selfMsg}

end

Event sendRspWDOK =̂

refines sendRspWDOK

any

selfMsg constructed instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
sendRspWDOK.Guard1 : selfMsg ∈ RSP WDOK MSG
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sendRspWDOK.Guard2 : selfATM /∈ msg atm[msg ]

sendRspWDOK.Guard3 : msg atm(selfMsg) = selfATM

sendRspWDOK.Guard4 : msg card(selfMsg) = c

sendRspWDOK.Guard5 : msg bal(selfMsg) = b

then

msg constructor : msg := msg ∪ {selfMsg}
rspwdok SM enterState rspwdokmsg : rspwdokmsg := rspwdokmsg∪{selfMsg}

end

Event recvRspWDOK =̂

refines recvRspWDOK

any

selfMsg contextual instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
rspwdok SM isin rspwdokmsg : selfMsg ∈ rspwdokmsg

recvRspWDOK.Guard1 : msg atm(selfMsg) = selfATM

recvRspWDOK.Guard2 : msg card(selfMsg) = c

recvRspWDOK.Guard3 : msg bal(selfMsg) = b

then

rspwdok SM leaveState rspwdokmsg : rspwdokmsg := rspwdokmsg\{selfMsg}
msg destructor : msg := msg \ {selfMsg}

end

Event sendRspWDFail =̂

refines sendRspWDFail

any

selfMsg constructed instance of class msg

selfATM

c
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b

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
sendRspWDFail.Guard1 : selfMsg ∈ RSP WDFAIL MSG

sendRspWDFail.Guard2 : selfATM /∈ msg atm[msg ]

sendRspWDFail.Guard3 : msg atm(selfMsg) = selfATM

sendRspWDFail.Guard4 : msg card(selfMsg) = c

sendRspWDFail.Guard5 : msg bal(selfMsg) = b

then

msg constructor : msg := msg ∪ {selfMsg}
rspwdfail SM enterState rspwdfailmsg : rspwdfailmsg := rspwdfailmsg ∪

{selfMsg}
end

Event recvRspWDFail =̂

refines recvRspWDFail

any

selfMsg contextual instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
rspwdfail SM isin rspwdfailmsg : selfMsg ∈ rspwdfailmsg

recvRspWDFail.Guard1 : msg atm(selfMsg) = selfATM

recvRspWDFail.Guard2 : msg card(selfMsg) = c

recvRspWDFail.Guard3 : msg bal(selfMsg) = b

then

rspwdfail SM leaveState rspwdfailmsg : rspwdfailmsg := rspwdfailmsg \
{selfMsg}
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msg destructor : msg := msg \ {selfMsg}
end

Event sendRspCB =̂

refines sendRspCB

any

selfMsg constructed instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
sendRspCB.Guard1 : selfMsg ∈ RSP CB MSG

sendRspCB.Guard2 : selfATM /∈ msg atm[msg ]

sendRspCB.Guard3 : msg atm(selfMsg) = selfATM

sendRspCB.Guard4 : msg card(selfMsg) = c

sendRspCB.Guard5 : msg bal(selfMsg) = b

then

msg constructor : msg := msg ∪ {selfMsg}
rspcb SM enterState rspcbmsg : rspcbmsg := rspcbmsg ∪ {selfMsg}

end

Event recvRspCB =̂

refines recvRspCB

any

selfMsg contextual instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard



Appendix D ATM Case Study: Using Rodin UML-B 366

b.type : b ∈ N
rspcb SM isin rspcbmsg : selfMsg ∈ rspcbmsg

recvRspCB.Guard1 : msg atm(selfMsg) = selfATM

recvRspCB.Guard2 : msg card(selfMsg) = c

recvRspCB.Guard3 : msg bal(selfMsg) = b

then

rspcb SM leaveState rspcbmsg : rspcbmsg := rspcbmsg \ {selfMsg}
msg destructor : msg := msg \ {selfMsg}

end

END
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B.14 Generated Event-B of the Machine mMW R2

MACHINE mMW R2

REFINES mMW R1

SEES mMW R2 implicitContext

VARIABLES

msg refined class instances

EVENTS

Initialisation

begin

msg.init : msg := ∅

end

Event sendReqWD =̂

refines sendReqWD

any

selfMsg constructed instance of class msg

selfATM

c

am

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

am.type : am ∈ N
sendReqWD.Guard1 : selfMsg ∈ REQ WD MSG

sendReqWD.Guard2 : selfATM /∈ msg atm[msg ]

sendReqWD.Guard3 : msg atm(selfMsg) = selfATM

sendReqWD.Guard4 : msg card(selfMsg) = c

sendReqWD.Guard5 : msg wdAmount(selfMsg) = am

then

msg constructor : msg := msg ∪ {selfMsg}
end

Event sentReqCB =̂
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refines sendReqCB

any

selfMsg constructed instance of class msg

selfATM

c

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

sentReqCB.Guard1 : selfMsg ∈ REQ CB MSG

sentReqCB.Guard2 : selfATM /∈ msg atm[msg ]

sentReqCB.Guard3 : msg atm(selfMsg) = selfATM

sentReqCB.Guard4 : msg card(selfMsg) = c

then

msg constructor : msg := msg ∪ {selfMsg}
end

Event sentRspWDOK =̂

refines sendRspWDOK

any

selfMsg constructed instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
sentRspWDOK.Guard1 : selfMsg ∈ RSP WDOK MSG

sentRspWDOK.Guard2 : selfATM /∈ msg atm[msg ]

sentRspWDOK.Guard3 : msg atm(selfMsg) = selfATM

sentRspWDOK.Guard4 : msg card(selfMsg) = c

sentRspWDOK.Guard5 : msg bal(selfMsg) = b

then

msg constructor : msg := msg ∪ {selfMsg}
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end

Event sentRspWDFail =̂

refines sendRspWDFail

any

selfMsg constructed instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
sentRspWDFail.Guard1 : selfMsg ∈ RSP WDFAIL MSG

sentRspWDFail.Guard2 : selfATM /∈ msg atm[msg ]

sentRspWDFail.Guard3 : msg atm(selfMsg) = selfATM

sentRspWDFail.Guard4 : msg card(selfMsg) = c

sentRspWDFail.Guard5 : msg bal(selfMsg) = b

then

msg constructor : msg := msg ∪ {selfMsg}
end

Event sentRspCB =̂

refines sendRspCB

any

selfMsg constructed instance of class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ MSG \msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
sentRspCB.Guard1 : selfMsg ∈ RSP CB MSG
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sentRspCB.Guard2 : selfATM /∈ msg atm[msg ]

sentRspCB.Guard3 : msg atm(selfMsg) = selfATM

sentRspCB.Guard4 : msg card(selfMsg) = c

sentRspCB.Guard5 : msg bal(selfMsg) = b

then

msg constructor : msg := msg ∪ {selfMsg}
end

Event recvReqWD =̂

refines recvReqWD

any

selfMsg contextual instance of refined class msg

selfATM

c

am

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

am.type : am ∈ N
recvReqWD.Guard1 : selfMsg ∈ REQ WD MSG

recvReqWD.Guard2 : msg atm(selfMsg) = selfATM

recvReqWD.Guard3 : msg card(selfMsg) = c

recvReqWD.Guard4 : msg wdAmount(selfMsg) = am

then

msg destructor : msg := msg \ {selfMsg}
end

Event recvReqCB =̂

refines recvReqCB

any

selfMsg contextual instance of refined class msg

selfATM

c

where

selfMsg.type : selfMsg ∈ msg
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selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

recvReqCB.Guard1 : selfMsg ∈ REQ CB MSG

recvReqCB.Guard2 : msg atm(selfMsg) = selfATM

recvReqCB.Guard3 : msg card(selfMsg) = c

then

msg destructor : msg := msg \ {selfMsg}
end

Event recvRspWDOK =̂

refines recvRspWDOK

any

selfMsg contextual instance of refined class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
recvRspWDOK.Guard1 : selfMsg ∈ RSP WDOK MSG

recvRspWDOK.Guard2 : msg atm(selfMsg) = selfATM

recvRspWDOK.Guard3 : msg card(selfMsg) = c

recvRspWDOK.Guard4 : msg bal(selfMsg) = b

then

msg destructor : msg := msg \ {selfMsg}
end

Event recvRspWDFail =̂

refines recvRspWDFail

any

selfMsg contextual instance of refined class msg

selfATM

c

b
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where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
recvRspWDFail.Guard1 : selfMsg ∈ RSP WDFAIL MSG

recvRspWDFail.Guard2 : msg atm(selfMsg) = selfATM

recvRspWDFail.Guard3 : msg card(selfMsg) = c

recvRspWDFail.Guard4 : msg bal(selfMsg) = b

then

msg destructor : msg := msg \ {selfMsg}
end

Event recvRspCB =̂

refines recvRspCB

any

selfMsg contextual instance of refined class msg

selfATM

c

b

where

selfMsg.type : selfMsg ∈ msg

selfATM.type : selfATM ∈ ATM

c.type : c ∈ ValidCard

b.type : b ∈ N
recvRspCB.Guard1 : selfMsg ∈ RSP CB MSG

recvRspCB.Guard2 : msg atm(selfMsg) = selfATM

recvRspCB.Guard3 : msg card(selfMsg) = c

recvRspCB.Guard4 : msg bal(selfMsg) = b

then

msg destructor : msg := msg \ {selfMsg}
end

END
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