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DETERMINING LATERAL RIVER CHANNEL ACTIVITY WITH RESPECT TO 

SAFETY OF PIPILENE GROSSINGS 
 

by Sergey Yurievich Krasnoshchekov 
 

When oil and gas pipelines cross rivers they are often buried in the ground 

beneath the floodplain and river bed. There is a risk that river will expose the pipe by 

lateral bank erosion, as well as bed erosion, and then there is a risk that the pipe will 

break. Pipe failure can cause loss of revenue, repair and reparation costs, political 

difficulties and adverse environmental impacts. Buried pipeline crossings correctly 

located and engineered do not affect the flow hydraulics and river regime. Therefore, 

pipeline crossing projects should be based on the study of natural processes including 

those which lead to lateral movement of the channel. 

This study deals with the scientific knowledge of a variety of channel types and 

their evolution by lateral movements. The literature review and statistical analysis reveal 

that the rates of bank erosion depend on the type of river channel pattern. Data from 

different channel types are obtained from the literature with reference to a variety of 

parameters which are then grouped depending upon the scale of the problem under 

consideration (catchment, reach and local scales). These data for bank erosion rates are 

analyzed to develop general relationships with such factors as size of river system, shape 

of channel, bed type, gradient, riparian vegetation etc. Statistical examinations show that 

there is strong correlation between bank erosion rate and the catchment area and with 

channel geometry. Weak correlations with water discharge and with flow variability 

suggest that bank erosion rates will not be changed significantly in the near future if 

discharge and/or its variability alter under climate change. Results are used to provide 

science-based recommendations to estimate lateral activity applicable to many regions of 

the world. 
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CHAPTER 1: INTRODUCTION 
 

1.1. BACKGROUND 
 

On 25 May 2005 the BBC announced that the BTC (Baku-Tbilisi-Ceyhan) 1600 

km pipeline from Baku (Azerbaijan) through Tbilisi (Georgia) to Ceyhan (Turkey) had 

been opened. After a year, in July 2006, an official inauguration took place in Ceyhan. 

This project was carried out by many specialists and had taken more than ten years to 

finish. The pipeline crosses 1500 river reaches, climbs to a height of 2800 m, and has 

220,000 welded pipe joints (Guliyeva, 2006). 

Among many challenges for the pipeline project there were some for specialists 

of fluvial geomorphology. At river crossings problems had occurred with the Northern 

Route Pipeline in Georgia which had been commissioned in the 1990’s. By 1999 some 

sections of the pipeline had been exposed by lateral channel migration at river crossings. 

Lateral shifting of a river could result in exposure of the pipeline and thus significantly 

reduce safety. In 1999 Prof. Paul Carling from Lancaster University (currently of the  

University of Southampton) and Dr. Roger Bettess from HR Wallingford were 

encouraged by BP to investigate this problem. By visiting all the pipeline crossings in 

Georgia it was seen that the problem may occur at aerial crossings (Fig. 1.1) and at 

buried crossings as well. The main reason for the problem was that in some instances the 

recommendations of consultant fluvial geomorphologists had not been sought or 

accepted, and instead the pipeline was installed by straight alignment, supposedly by the 

most economical route. However, as practice showed, a straight alignment is not 

necessarily the most economical, and also is not necessarily the safest route. The 

problem was managed retrospectively by the construction of riprap revetments at 

pipeline crossings. These works led to additional expenditures for the Northern Route 

Pipeline project. In some cases the expenditures were minor as shown in the first 

photograph of Fig. 1.2; in others cases the expenditures were significant (see the second 

photograph of Fig. 1.2). Subsequently BP commissioned this doctoral study. 
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Figure 1.1: Aerial pipeline exposure due to bank erosion, the Kvirila River 

near to Zestaphoni, Georgia. Photograph has been taken in 1999 by 

Prof. P.A. Carling. 

 

 

Figure 1.2: Riprap revetment constructed to prevent bank erosion at buried 

pipeline crossings, Georgia. Photographs have been taken in 1999 by 

Prof. P.A. Carling. 
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Figure 1.3: Riprap revetment constructed to prevent bank erosion in a reach 

of the Middle Fork Koyukuk River, Trans Alaska Pipeline, Alaska. 

The dashed line locates a buried pipeline. Date of photograph is September 

2001, from Veldman and Ferrell, 2002. 

 

The situation with lateral movement of rivers at pipeline crossings in Georgia is 

not isolated and examples of the problem can be found elsewhere. An example is shown 

in Fig. 1.3. After several years of the Trans Alaska pipeline operation some rivers eroded 

their banks by such distance that it was necessary to construct riprap revetment to 

prevent bank erosion and to increase the safety of the pipeline. The site shown in Fig.1.3 

is only one example described by Veldman and Ferrell (2002). Another example is 

reported by Lawler and Milner (2005), who reviewed reports for the Sakhalin Pipeline 

Project (Far East Russia) in regards to river crossings. They pointed out that at some 

crossing sites, lateral stability and bank protection were not considered at all or 

arguments for site selection were poor and not supported by evidence. Thus the problem 

of lateral stability is common and occurs in different parts of world. Also the problem of 
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lateral stability is an important consideration in the planning stage of projects and as well 

as during the operational life-time of a pipeline. 

 

1.2. RESEARCH AIMS AND SCOPE 
 

In general terms, channels can be divided into bedrock, semi-alluvial and alluvial 

(Ashmore and Church, 2001). Bedrock channels are defined as reaches along which a 

substantial proportion (more than 50%) of the boundary is exposed bedrock, or is 

covered by an alluvial veneer which is largely mobilized during high flows such that 

underlying bedrock geometry strongly influences patterns of flow hydraulics and 

sediment movement (Tinkler and Wohl, 1998). Morphological changes, including bank 

erosion, in bedrock channels are generally extremely slow compared with those in 

alluvial channels because of the substrate resistance (Richardson and Carling, 2005). 

Therefore, in further consideration within this thesis, bedrock rivers will be eliminated 

since they are characterized as stable in respect to lateral movement. To the contrary, 

alluvial river channel form is determined predominantly by the action of water flow and 

alluvial channels are formed in the sediment that they have transported and deposited, 

i.e. such channels are self-formed (Church, 2006). Thus the objects of this study are 

alluvial rivers, their forms and processes. However, the study is limited to those rivers 

which do not have a tidal regime. 

The crossing of alluvial rivers with buried or aerial pipelines is one of the more 

challenging and critical design issues in pipeline projects. When a pipeline crosses a 

river, several questions should be considered by a fluvial geomorphologist. These 

questions were outlined by Doeing and Williams (1996): 

 

1) will the river bed scour during the design life of the pipeline and expose the 

pipe or reduce the cover enough to cause positive buoyancy of the pipeline? 

2) will the channel banks erode, shift laterally, or migrate longitudinally and 

expose the pipeline in the overbank areas where depth of cover is less? 

3) if the pipeline is carried by a bridge or other support structures over the river, 

is the structure safe from scour during construction, pier scour, abutment 

scour, or other hazards to structure in the river environment? 

4) if water is being diverted during the construction phase, has the level of 

protection of the diversion structures been adequately determined? 
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In addition, in the list should be included the following questions (in the order of 

continuation): 

5) will the channel pattern change its form during the design life of the 

pipeline?” Despite the fact that there are methods to predict river bank 

erosion, changes of environmental factors often are not taken into account 

during pipeline operation. Changes of environmental factors affect channel 

form (such that the channel type may be changed) and as a consequence the 

rates of erosion and accumulation may vary. An incorrect prediction of bank 

erosion or shortcomings in methods can lead to additional expenditure for rip-

rap construction as shown by examples earlier or even to pipeline damage or 

rupture and the ensuing negative effects. 

6) By trench laying of a pipeline a geomorphologist should eastimate bed 

sediment transport for filling rate of a trench by sediment which is delivered 

from upstream. 

7) During construction by trench laying of a pipeline disturbance of pavement 

layer occurs and more fine underlying sediment could be transported 

downstream. What is impact of additional amount of fine sediment on 

geomorphology and fish fauna of downstream river reaches? 

8) What is influence of bedrock outcrops in a channel on pipeline location? This 

question is related to previous two questions as there is change in hydraulics 

and as a consecuence in sediment transport at reaches with bedrock outcrops 

comparing with alluvial river reaches. 

9) Will be the erosional processes more intensive on area of pipeline 

constraction with vegetation removal at river banks (lateral river erosion) and 

at catchment area (soil erosion)? 

10) What is influence by other constructions which are located upstream and 

downstream from a pipeline crossing? For instance, there should be bridges 

of a road which is used for pipeline maintenance. 

11) In permafrost area how pipeline constraction will impact on initialization and 

intensity of geomorphological processes under possible thawing of 

permafrost? 

 

This list of questions does not claim to be exhaustive. The list could be 

broadened depending on local conditions of pipeline construction and assigned tasks for 

pipeline safety from impact of geomorphological processes. 
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The purpose of the current study is to find answers for the second and fifth 

questions in the list outlined above.Accroding these questions, the main goals of this 

study are formulated as following: 

• Quantify rates of bank erosion for different channel types 

• Predict change of channel type during the design life of the pipeline 

• Produce engineering guidelines 

In order to achieve these goals, comprehensive descriptions of channel types, 

factors and controls on channel types and bank erosion were completed reflecting the 

current knowledge of fluvial geomorphology. 

Chapter 2 presents a review of existing alluvial channel classifications with some 

details for meandering, braiding and anabranching of channels. Afterward available 

methods for bank erosion estimation and prediction are considered in an overview. These 

methods are conventionally divided into (i) empirical methods, (ii) kinematic modelling 

and (iii) dynamic modelling. Due to the particularities of this study the last two methods 

are reviewed without details. In chapter 3 the methodology for the present study is 

detailed with a discussion of the use of regression analysis and methods for ordinal data 

analysis. Also in that chapter, variables are presented that may control bank erosion rate; 

methods to define these variables and some problems in measurement and collection of 

them are reviewed. Chapter 4 focuses on the results and statistical significance of the 

findings. In Chapter 4 comparisons of the resultant relationships with previous studies 

are also given. The remaining part of this thesis (Chapter 5) focuses on discussion of the 

results and presents the conclusions and derived recommendations for engineers 

regarding lateral stability at pipeline crossings. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1. INTRODUCTION 
 

Despite the vast number of publications concerning channel stability and bank 

erosion in general and for different regions around the world, there are only a few 

publications about channel stability at sites of pipeline crossings. Only one (Anonymous, 

1985) specifically focuses on the problems of bank erosion at proposed pipeline 

crossings. However, this report is regarded as “grey literature” and is written in Russian 

and therefore is not available for wide international usage. Moreover, in that report the 

most detailed section considers only meandering rivers (where a kinematic model is 

suggested for bank erosion prediction) and for other channel types only general 

recommendations are given without details. In other publications concerned with 

pipeline construction and routing somewhat different problems are discussed. For 

examples, environmental issues, different engineering methods to effect crossings and 

some issues of legislation are the major focus in ASCE Manual (1998) and Anonymous 

(1996) with minor description of channel stability. The question of channel stability was 

elaborated more fully in the related engineering discipline of highway construction (e.g. 

Brice, 1982; Lagasse et al., 2004), where channel classifications based on channel 

stability and methods to estimate bank erosion rates at proposed river crossings by 

highways are the focus. Approaches from these studies are reviewed further in this 

chapter. 

In according with the assigned main goals of this study, below a review of river 

channel classifications, controls on channel pattern, more detailed description of main 

channel types and methods, which are in exisance for prediction and estimation of bank 

erosion rate is given. 

In a review of river channel classifications along with well-known classifications 

also classifications are marked out, which are based on lateral channel activity and 

stability, as such classifications are particularly relevant to this study. 

Transition of one channel type to another is controlled by changes of channel-

forming factors. These factors and methods are reviewed in section 2.3. A review is 

presented in chronological sequence to trace progress history of scientific and practical 

approaches. 
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Main channel types are reviewed in section 2.4. As there is a vast number of 

literature about channel types, a review is limited by considering (a) theories of channel 

form existance, from which initial conditions and sufficient conditions to maintain a 

channel form are revealed and (b) geometrical characteristics and schemes of channel 

evolutions, which could be used for estimation of lateral stability. 

Finally, methods for bank erosion rate estimation are reviewed. Advantages and 

limitations of methods are given to select a method, which is used further in the current 

study. 

 

2.2. CLASSIFICATIONS OF RIVER CHANNELS 
 

There are many river channel classifications. In general, most are based on a 

consideration of the channel planform. Several river channel classifications have been 

reviewed by Mosley (1987) and Kondolf (1995). In some classifications, authors have 

attempted to allocate types according to metrics of the plan characteristics, notably the 

sinuosity and braiding index (e.g. Rust, 1978; Brice, 1975), while in others the schemes 

are based on the factors which control these types, for example material load, valley 

slope, water discharge (e.g. Mollard, 1973; Schumm, 2005; Church, 2006). Some authors 

distinguish several stages of channel development, i.e. they attempt to present the 

continuum of channel planform by distinguishing some intermediate forms (e.g. Hooke, 

1995). In fact, as noted by Kondolf (1995), each of the channel classifications in common 

use has advantages and disadvantages in geological, engineering and ecological 

applications. No single classification can satisfy all possible purposes, nor is it likely to 

encompass all possible channel types (Montgomery and Buffington, 1998). 

The earliest classification of river channel pattern (Leopold and Wolman, 1957) 

discerned three essential types: straight, meandering and braided. This classification is 

used still, mainly in diagrammatic form, where channels are distinguished by the main 

controlling factors: dominant discharge and valley slope. Subsequently scientists 

introduced additions and further specifications. In addition to the three types of channel 

planform noted above, in more recent research it has been suggested that anabranched 

channels should be recognized as distinct from braided channels (e.g. Knighton and 

Nanson, 1993; Nanson and Knighton, 1996). For multiple channels, Dury (1969) has used 

the terms reticulate and deltaic-distributary but these terms have not been used widely. 

Kondratiev (2001) pointed out that most existing classifications are incomplete because it 

is not always possible to take into account all factors and therefore in some case studies 
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new names may appear for specific channel types. In the following text only the most 

well known and widely used classifications are considered; they are conventionally 

divided into three groups: 1) classifications based on planform alone; 2) classifications 

based on underlying processes and 3) classifications where lateral channel activity and 

stability are used to distinguish types. However, first of all, definitions are given of terms 

such as “meandering”, “braided”, “anabranched” and others frequently in use throughout 

the text. 

 

2.2.1. Definitions of channel types 
 

Straight channels are single-thread channels which follow a straight course for a 

significant distance (Thorne, 1997). Truly straight reaches with distances exciding ten 

times the channel width are rare in nature (Leopold and Wolman, 1957). Within a straight 

alignment of the banks it is usually found that the paths of maximum velocity and thalweg 

(line of deepest points) have a sinuous form because of an inherent property of channels 

to have pool-riffle sequences (Thorne, 1997). Pools are deep reaches and riffles are 

shallow reaches. Points of inflection on the thalweg path correspond to shallow reaches, 

i.e. to riffles. Usually straight channels are distinguished from meandering ones by a 

measure of the sinuosity. However, the value of sinuosity to distinguish straight from 

meandering is assigned arbitrary values in various studies. For example, Leopold and 

Wolman (1957) suggested using the value of sinuosity of 1.5, while van den Berg (1995) 

has used the value of 1.3. 

Meandering channels are usually defined as single-thread channels that follow a 

winding, more or less sinuous course (Chebotarev, 1970; Thorne, 1997; Mayhew, 2004). 

The river Menderes (known to the Greeks as the Maiadros) in Anatolia, in what is now 

southwest Turkey, was well known for its sinuosity and has given its name to the 

meandering form (Twidale, 2004). As noted by Leopold and Wolman (1957) and 

Callander (1978) with reference to Russell (1954), this river has reaches where its 

windings are irregular, others where it is relatively straight and some places where it is 

braided; it exemplifies the continuum of river channels. Nevertheless, meandering is the 

most prevailing pattern for lowland rivers (Chebotarev, 1970). For instance, Kondrat’yev 

(1968) with reference to Pinkovskiy (1967) cited that 42% of the rivers of the former 

USSR are freely meandering. Also it is noted that meandering is the predominant channel 

pattern in North America (Leopold, 1994) and in the UK (Hooke, 1995). The process of 
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meandering is studied by scientists of various disciplines and so there is a considerable 

literature describing the subject (see section 2.4.1). 

For braided river channels, various authors have used definitions which have 

somewhat different meanings. In his comprehensive review, Bridge (1993) has cited 

papers with definitions of braided rivers, notably those of Leopold and Wolman (1957), 

Lane (1957), Brice (1964, 1984) and Schumm (1977). Following Schumm (1977), 

Ferguson (1984b), and Kamenskov (1987), among others, a braided river can be 

characterized as a wide single-channel with numerous shifting channel bars which are 

inundated at high flows and are not significantly vegetated. At low flow, the channel is 

therefore divided by these numerous channel bars. Braided rivers occur in a wide range of 

environments, from proglacial to semi-arid and at a large range of scales, from small 

streams on sandy beaches to the largest continental rivers, e.q. the Brahmaputra River 

(Knighton, 1998). Compared to meandering rivers, much less is known about the 

morphology and dynamics of braided rivers, because they are much more complicated 

(Thorne, 1997) and due to the difficulties involved in undertaking field measurements in 

the rapidly changeable braided river environment (Bristow and Best, 1993). 

Anabranched rivers are defined as rivers consisting of multiple channels separated 

by vegetated semi-permanent alluvial islands excised from existing floodplain or formed 

by accretion within the channel or via deltaic accretion (Nanson and Knighton, 1996). 

Thus the distinct features of these rivers are vegetated islands which are not inundated at 

bankfull conditions. Following Nanson and Knighton (1996) within this group all 

multiple channel rivers with vegetated island are considered. Based on stream energy, 

sediment size and morphological characteristics, Nanson and Knighton (1996) recognized 

six subtypes of anabranched rivers. With respect to lateral stability two end members in 

this set of channels can be distinguished: anastomosing and wandering rivers. 

The term ‘anastomosing’ comes from medicine and is used to describe a 

distributary system of arteries in the body at locations such as the back of hand (Thorne, 

1997). As noted by Leopold and Wolman (1957) and Smith and Putnam (1980) this term 

was initially applied to streams by Jackson (1834) and later by Peale (1879). The term 

came into wide usage following works by Miall (1977), Rust (1978) and Smith and Smith 

(1980). Recently, Knighton and Nanson (1993), Nadon (1994), and Makaske (2001) have 

reviewed the literature on anastomosed rivers. These authors proposed definitions for 

anastomosed rivers and outlined the differences between anastomosed rivers and other 

types. Knighton and Nanson (1993) formulated that “braided rivers consist of flow 

separated by bars within channel, whereas an anastomosing river consists of multiple 
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channels separated by islands which are usually excised from the continuous floodplain 

and which are large relative to the size of the channels”. Makaske (2001) proposed the 

following definition based on channel pattern and floodplain geomorphology: “an 

anastomosing river is composed of two or more interconnected channels that enclose 

floodplain”. By these definitions there is no difference between the definitions given 

above for anabranch rivers and those for anastomosing rivers. Indeed, in some cases 

authors consider the anastomosed and the anabranched rivers as synonyms (e.g. Bridge, 

1993, 2003). However, in widely cited studies, e.g. Smith and Putnam (1980), Smith and 

Smith (1980), Makaske (2001) among others, the term “anastomosing” is used for low-

energy rivers with stable banks, which distinguishes them from other multi-channel 

rivers. Thus following Nanson and Knighton (1996) anastomosing rivers are considered 

as a subset of anabranching rivers characterized by low gradients, low stream power and 

stable banks composed of cohesive sediment. 

The term “wandering” was used by Leopold and Wolman (1957) to describe the 

process of thalweg migration between channel banks. In contrast to anastomosing rivers, 

wandering rivers are laterally active, gravel-dominated rivers (Nanson and Knighton, 

1996). According to the classification of Nanson and Knighton (1996), wandering rivers 

are largely discriminated from other anabranching types by greater specific stream power, 

larger sediment size and less cohesive banks. Such rivers commonly flow in irregularly 

sinuous, single-thread channels but are frequently split around large wooded islands, even 

at peak flows (Ham, 2005). Single-thread sections are characterized as narrower, stable 

‘transport zones’, while anabranched sections accumulate coarse sediments and are 

characterized as unstable ‘sedimentation zones’ (Church, 1983). 

From definitions of channel types it is clear that terms initially are based on 

channel form. Therefore, there is no wonder that early and relatively simple 

classifications are based on channel form or parameters of channel form (e.q. sinuosity 

and braiding index). 

 

2.2.2. Classifications based on channel form 
 

One of the simplest classifications has been proposed by Miall (1977) and Rust 

(1978) (Fig. 2.1.A). This classification is based on sinuosity and braiding parameters and 

initially was used for the purpose of interpreting ancient alluvial deposits. An advantage 

of the proposed classification is that it has the simple form of a two-by-two matrix. The 

classification defines four morphological channel types: the two most abundant are 
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meandering (single-channel, high-sinuosity) and braided (multi-channel, low-sinuosity) 

and the others are straight (single-channel, low-sinuosity) and anastomosing (multi-

channel, high-sinuosity) (Rust, 1978). However, Knighton and Nanson (1993) have 

argued that a consideration of sinuosity alone is probably not a sufficiently robust 

characteristic to discriminate anastomosing rivers. Moreover, more recent studies (e.g. 

Nanson and Knighton, 1996) have argued that anastomosing channels are a subset of 

anabranched channels which represent a broader class of channels. 

Another classification based on planform characteristics is the one produced by 

Brice (1975) (Fig. 2.1.B). This scheme defines three basic types of channels characterized 

by degrees of sinuosity, braiding and anabranching. Sinuosity is defined as the ratio of 

channel length to valley length or valley slope to channel slope. The degree of braiding is 

expressed as the percent of reach length that is divided by one or more islands or bars. 

Thus if a reach is 5% braided, 95% of it is not divided. Finally, anabranching is defined as 

the division of a river by vegetated islands whose width is greater than three times the 

water width at average discharge (Brice et al., 1978). Thorne (1997) has recommended 

this classification for use in engineering geomorphological studies. Perhaps this 

recommendation is based on the fact that depicted classes were derived from analysis of 

air photographs and that the classification covers a wide variety of possible channel 

forms. 
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Figure 2.1: Classifications based on planform characteristics. (A) End 

members of the continuum of channel patterns after Miall (1977) and Rust 

(1978) (redrawn from Ferguson, 1987); (B) Types of channel patterns 

devised by Brice (1975) according to morphologic properties observable on 

air photographs. 
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A further classification based on channel form is used widely in the former USSR 

(Fig. 2.2). This classification has been elaborated in Moscow State University and 

presented most recently by Alabyan and Chalov (1998). They distinguish three structural 

levels: (i) low water channel, (ii) flood channel and (iii) valley bottom (in order of 

increasing structural level rank). Chalov et al. (1998) also define limiting conditions that 

distinguish (i) incised rivers from (ii) rivers with wide, essentially unconfined floodplains 

(wide-floodplain rivers) and (iii) transitional types of rivers with confined channels. Each 

of these classes could be subdivided to contain channels that are straight, meandering or 

branched. Thus, Alabyan and Chalov (1998) suggest that anabranched channels should be 

considered at a higher structural level than straight, meandering and braided channels. 

Although the classification presented in Fig. 2.2 provides enough flexibility to describe 

the planform of most rivers, it is not sufficient to characterize the behaviour of rivers 

(Jagers, 2003). 

 

 
Figure 2.2: A classification of river channel patterns according to Alabyan 

and Chalov (1998) (redrawn from Jagers, 2003). 

 

Thorne (1997) has noted that for completeness, cross-sectional and longitudinal 

dimensions should also be considered in classifications. Rosgen (1994) has used such 

parameters and developed probably the broadest classification of channels. He divided 

rivers into seven common types that are further divided into six subtypes each. Common 

types are dependent on entrenchment and width/depth ratio (cross-section 

characteristics), sinuosity (a planform characteristic) and channel slope (a longitudinal 
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characteristic) (Fig. 2.3); subtypes are dependent on dominant bed material (Fig. 2.4). As 

pointed out by Thorne (1997) concerning Rosgen’s classification “it is at present too 

early to judge the usefulness and reliability of Rosgen’s method when applied by 

engineers and managers with only a limited background in fluvial geomorphology, 

although indications are that users can gain the knowledge required through intensive, 

short-course training”. Some government agencies in the USA, particularly those 

funding restoration projects, have adopted this classification as a “standard” (e.g. see an 

evaluation of the classification by Simon et al., 2007). However, Montgomery and 

Buffington (1998) noted that the main shortcoming of Rosgen’s classification is that it is 

not process-based. Recently, Simon et al. (2007) critically reviewed Rosgen’s 

classification and by numerous examples showed inconsistencies in the classification. 

These inconsistencies mainly related to problems with bankfull level definition and 

classification of the dominant type of channel material. Moreover, as practice shows the 

classification is used for rivers from which information is used to develop this 

classification, i.e. Rosgen’s classification has territorial limitation and is not verified for 

other areas in the world. 

 

 
Figure 2.3: Longitudinal, cross-sectional and plan views of major stream 

types (from Rosgen, 1994). 
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Figure 2.4: Cross-sectional configuration, composition and delineative 

criteria of major stream types (from Rosgen, 1994). 
ENTRH. – entrenchment ratio is the ratio of the width of the flood-prone area to the bankfull 

surface width of the channel; SIN. – sinuosity; W/D – width to depth ratio. 

 

Overall, classifications, which are based on channel form, are widely used 

because they allow scientists and engineers to communicate. It is specifically important 

to define common terms in research and projects which involve specialists with different 

background (Kondolf, 1995). However, channel form is only one aspect in channel 

classifications. The main disadvantage of classification based on channel form alone is 

that one may not relate a certain class to underlying processes. Therefore it is difficult to 

predict the behaviour of a channel when physical factors change. In addition, there is a 

considerable question – what is the length of river reach should be under consideration 

for classification? That question is faced with the necessity of developing classifications 

which take into account channel processes. In result it is recommended to take under 

consideration the length of river reach along which controlling factors remain constant or 

changes in controlling factors are gradual and insignificant. Therefore such river reaches 

are called “homogeneous” or “uniform” reaches. These reaches are objects of research to 

develop classifications, which are based on channel processes. 

 

2.2.3. Classifications based on channel processes 
 

Perhaps a classification developed by Schumm (1985) is the most cited 

classification in textbooks (Fig. 2.5). It was suggested that classification of alluvial 
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channels should be based also on the variables that influence channel morphology. He 

argued that such classifications are more meaningful because they are based on cause-

and-effect relations and illustrate the differences to be expected when factors differ 

among rivers. By this classification channels with material which move mostly as 

suspended load, are relatively stable with banks resistant to erosion. Schumm (1985) 

included in this ‘Suspended Load’ class, straight channels and meandering channels with 

an absence of point bars (types 1 and 3a in Fig. 2.5). These channels are also 

characterized by fine sediment, low velocities and low stream power. Schumm’s ‘Mixed 

Load’ streams are characterized by more dynamic straight channels with alternate bars 

and meandering channels with point bars (types 2 and 3b in Fig. 2.5). These channels are 

characterized by more mobile bed sediments, greater sediment supply and somewhat 

more erodible banks. Finally, streams with a high proportion of material which moves as 

bed-load include meandering channels with point bars, meandering channels with mid-

bars due to frequent chute cutoffs and detachment of point bars and braided channels 

(types 4 and 5 in Fig. 2.5). ‘Bed Load’ channels tend to have high width to depth ratios 

and steep slopes. Such rivers are characterized by high stream power, coarse bed material 

and relatively low lateral stability. As seen in Fig. 2.5 channel types are arranged along 

qualitative axes without abrupt breaks following the idea of Leopold and Wolman (1957) 

of a continuum of planform patterns. 

However, in Schumm’s (1985) classification there are some disadvantages. Only 

three ‘classic’ channel types are considered, which eliminates another main channel type 

– anabranched channels. Also a large braided river such as the Brahmaputra is 

characterized by a dominance of suspended load (Coleman, 1969) which does not 

coincides with Schumm’s (1985) classification where braided rivers are associated with 

bed-load dominance. 
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Figure 2.5: Channel classification based on pattern and sediment load, 

showing types of channels and some associated variables 

(from Schumm, 1985) 

 

Another process-based classification was developed in the State Hydrological 

Institute (Russia) and presented in final form by Kondratiev et al. (1982). In the English 

language literature this classification was described by Popov (1964) and later by 

Raynov et al. (1986). Originally this classification was developed in the 1950s to predict 

lateral channel migrations but subsequently was elaborated further. This classification 

marks out seven types of channel process (Fig. 2.6): 

1. Transverse bar process – downstream movement of transverse bars separated 

from each other by four to eight channel widths. 

2. Alternate bar process – asymmetrical movement of alternate side bars. 

3. Limited meandering – downstream shifting of undeveloped, loosely sinuous 

meanders along a narrow valley. 

4. Free meandering – meanders increasing in curvature through all stages from a 

slightly curved channel to omega forms without any limit of horizontal 

migration. 

5. Incomplete meandering – chute cut-off occurs before a meander reaches the 

maximum curvature. 

1a. Channel multibranching – corresponds to ‘classic’ braiding. 
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5a. Floodplain multibranching – corresponds to anabranching. 

 
Figure 2.6: Classification of channel processes. The arrow indicates 

increasing in transport capacity (after Kondratiev et al., 1982) 

 

These classes depend on the capacity of a stream to transport bedload. Thus 

anabranched channels in this classification have the lowest transport capacity, while 

braided channels have the highest transport capacity. Therefore, Fig. 2.6 can be used for a 

tentative prediction of channel change with changes in such variables as sediment calibre 

and supply, discharge and water speed through a reach as these variables define the 

transport capacity. This classification was criticized by Chalov (1983), who argued that it 

fails to distinguish the structural levels of fluvial relief: side bars and meanders, mid-

channel bars and floodplain islands are all treated as comparable forms in terms of their 

role in the classification. The authors of this classification noted that the classification 

was developed for lowland rivers and it is not complete, especially for mountain rivers 

and for areas of permafrost. 

Mollard (1973) proposed another classification, in which the relationship between 

channel patterns and various controlling factors is presented (Fig. 2.7). This classification 

was developed on the basis of interpretation of fluvial features from aerial photography 
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and analysis of field data. Channel types were grouped into series. On one hand this 

integration helps to see distinct differences between the groups. On another hand, it may 

lead to difficulty in trying to neatly fit every reach of a river to the groups presented in the 

classification. The significance of various factors influencing channel type varies from 

stream to stream, and from one reach of a stream to an adjoining one. Therefore, channel 

types tend to intergrade from one “classical end member” to another under changes of the 

factors. The classification by Mollard (1973) is the most detailed process-based 

classification among others available in the literature. Moreover, Mollard (1973) 

summarized the main distinguishing features, derived from aerial photography, for each 

type (Table 2.1). Although, the summary was performed decades ago, the information 

presented in the table is still valuable nowadays. This information could help for 

prediction of channel changes and bank erosion rate estimation based on correct 

interpretation of features seen on aerial photographs. Only one note should be made about 

the terminology for “anastomosing” used in Fig. 2.7 and in Table 2.1. In recent studies the 

term “anastomosing” is mostly used to characterise multi-thread channels with vegetated 

islands, a low-energy pattern with insignificant rates of bank erosion, whereas in Fig. 2.7 

“anastomosing” is located between “braided” and “wandering” as a laterally active type. 

By the description given by Mollard (1973) in Table 2.1 type “anastomosing” fits with 

type 5 of the anabranched channel classification by Nanson and Knighton (1996). Nanson 

and Knighton (1996) characterized anabranched channels as “gravel-dominated, laterally 

active anabranching channels”. Beechie et al. (2006) have used the term “island-braided” 

for such channels. Indeed, the “anastomosing” type in Fig. 2.7 is laterally active but has 

distinct differences from term “anastomosing” which is accepted for use in subsequent 

studies (e.g. Smith and Putnam, 1980; Makaske, 2001). 
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Figure 2.7: Classification by planform of river types, and their relationship to controlling variables (from Mollard, 1973) 
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Table 2.1: A summary of airphoto distinguishing features of various stream channel and floodplain types1) (from Mollard, 1973) 

Principal river types 

Non-alluvial types 
(channels eroded in till, 
bedrock, or other non-
alluvial materials) 

Dominantly alluvial types2) 

Classical channel 
patterns3) 

Straight v. entrenched 
(vertically incised) v. 
ingrown (asymmetrical 
slipoff and undercut 
valley-wall slopes) 

Classically braided patterns Integrading braided and meandering patterns Classically meandering patterns Straight patterns 

Some stream channel 
and adjoining floodplain 
types 

Straight v. crooked (e.g., 
inherited and 
superimposed 
meanders) reaches 

Braided 
(gravelly and sandy types) 

Anastomosing 
(wooded island type) 

Wandering 
(shifting meandering) 

Truncated meandering 
(confined meanders) 

Scroll meandering 
(unconfined meanders) 

Tortuous meandering 
(crooked meanders 
confined by fan and 
slopewash deposits) 

Tortuous meandering 
(underfit streams in large 

glacial spillways and streams 
cut into level clay plains) 

Straight reaches of stream 
channel 

Dominant fluvial 
processes 

Erosion, often with a 
coarse lag concentrate 
in the channel bed 

Lateral (sideway) erosion and accretion with vertical bed-
load accretions to the channel bottom 

Slow vertical accretion of the floodplain with alternate lateral erosion of channel banks and lateral accretion of pointbars Mainly vertical accretion of the floodplain, principally with 
suspended sediments 

Stream channel and 
floodplain stratigraphy 

Shallow gravel, cobbles, 
boulders over till, 
bedrock, or other non-
alluvial materials 

Stream channel and floodplain substratum mainly clean gravel and/or sand, often gap-
graded, and with coarser streambed armour. Bank materials composed mainly of 
cohesionless material, and representing a small part of the channel perimeter. 
Floodplain topstratum4) mainly organic silt and fine sand. Wandering streams often have 
cobbly beds 

Mainly fine to medium sand with minor silt, coarse sand, 
and fine gravel in the bed and floodplain substrarum. 
Stream banks and topstratum4) consist mainly of cohesive 
organic silt and silty fine sand with minor clay sizes 

Mainly stratified mixtures of clay, silt and fine sand. Coarsest in 
the bed and finer in banks. Flat featureless backswamps may 
be underlain by thick (15 to 30 m) highly plastic organic clays.4) 
Coarser (silt, sand) substrata occur below abandoned meander 
scrolls and footslopes of alluvial fans 

Mainly silt, clay and 
organic matter; minor fine 
sand 

Common environments 
in sediment-source 
terrain 

Stream downcutting 
commonly caused by 
lowered base level, 
locally or regionally 

Proglacial, periglacial, semiarid, and arid environments. Generally little clay and sparse 
vegetation in sediment-source areas. Braided gravelly beds often associated with 
mountain, piedmont, and foothill regions; braided sandy beds associated with plains 
areas and lowlands 

Mainly sandy outwash and sandy glaciolacustrine-deltaic 
plains and derived sand dunes. Locally, minor sandy 
alluvial fan and slopewash deposits on lower valley sides. 
Often formerly arid to semiarid landscapes that are now 
vegetated 

Fine-textured marine and lake plains, and wide glacial-spillway 
valleys with small underfit streams. Vegetated environments. 
Often swampy or marshy unless drained. 

Fine-textured paludal 
(swampy), lacustrine, and 
deltaic environments 

Common distinguishing 
features in airphotos. 
Individual features, 
when isolated and 
considered by 
themselves, are seldom 
diagnostic. Includes 
fluvial features of stream 
channels, floodplains, 
and low alluvial terraces. 
Only a few or perhaps 
all of the features listed 
may occur at any given 
reach of river. The 
significance of individual 
distinguishing features 
varies from place to 
place, and from one 
environment to the next. 
Considerable 
experience may be 
necessary in order to 
give proper weight to 
the relative importance 
to these features when 
carrying out airphoto 
interpretation studies  

Straight channel 
segments with 
occasional irregular 
bends. Entrenched 
meanders often appear 
inherited from stream 
originally eroding an 
alluvial veneer. Hard, 
non-mobile, difficult-to-
erode materials in bank 
and bed. Low terraces, 
fans, landslides. Often 
absence of wide 
floodplain. May see 
rapids and waterfalls in 
bed at low-flow stages. 
Channels trends may be 
irregular sinuous 
(crooked), controlled by 
underlying bedrock 
structure (e.g., joints, 
faults, foliation) and thus 
show angular bends, 
often with near-
orthogonal (rectangular) 
intersections of straight 
reaches. Also, deep, 
narrow valley cross-
sections alternating with 
wider sections and 
possibly channel 
splitting 

Gravelly variety: Interacting 
multiple channels 
(anabranches). Pools and 
riffles and diagonal flow over 
and around bars seen at low-
flow stages. Unstable caving 
banks with scalloped outlines. 
Low steps and scarps. 
Longitudinal bars. Dull grey 
photo tones. Braided channel 
scars (braid scars) on 
floodplain. Usually distinct 
microrelief on relict bars and 
channels on floodplain. Sandy 
variety: Dunes on vegetated 
floodplain suggest sandy 
substratum and streambed. At 
low-water stages, braided 
channels in sands are often 
shallow, have wavy (i.e., 
scalloped) caving riverbank 
outlines, and show more 
numerous, smaller braid bars 
with less relief than channel 
bars on gravelly stream-beds. 
Darker streaks suggest wet 
(high water table) or finer 
(silty) channel-bottom 
materials. Dry sand bars 
generally photograph lighter 
(nearly white) than gravel bars. 
Sand bed forms can 
sometimes be seen on low-
level airphotos 

Vegetated elongate 
islands. Branching, 
interconnecting 
(reticulate) drainage 
pattern. Vestigial (relict) 
gently curving, braided 
channel markings on 
lower-lying floodplains. 
Narrow, broadly 
sweeping cutoff 
channels (commonly 
back channels 
shoreward of wooded 
islands). Infrequent, 
open, U-shaped 
abandoned meander 
segments. Common 
absence of classic 
meander scrolls and 
oxbows. Distinct bars on 
exposed channel bed at 
low-flow stages. Local 
converging of channels 
at nodes. Channel 
trends may alternate 
from relatively straight to 
wandering to irregularly 
meandering 

Often appears as a 
two-phase system: 
meandering channel 
at high flows and a 
faintly braided, point-
bar-forming channel at 
low-flow stages. 
Unstable-looking 
channel bed and 
banks. Irregular-
shaped pointbars and 
channel-bank outlines. 
Variable channel  
width. Frequent chute 
cutoffs but infrequent 
neck cutoffs. Narrow 
wandering, 
semipermanent back-
channels on wooded 
floodplain. Usually no 
dunes on floodplain. 
Large alluvial fans 
locally. Low-sinuosity 
meander scars 
suggest coarser 
substrata. May also 
appear braided with a 
dominant narrow 
meandering low-water 
channel 

Low-sinuosity abandoned 
meander scrolls dominate 
the valley-bottom pattern. 
Truncated (flattened) ends 
of meander spurs. 
Trunceted upstream ends 
of old meander scrolls. 
Assymmetrical-shaped 
meander spurs with 
angular upstream and 
gently curvilinear 
downstream bends. Few 
oxbows. Floodplain occurs 
in straight or gently curving 
steep-walled glacial stream 
trenches having relatively 
uniform valley width. 
Scimitar-shaped pointbars 
seen at low-flow stages. 
Sloughs in bar-and-swale 
microrelief may be 
accentuated by ponded 
overbank floodwaters 

Simmetrical sinuous 
pattern suggests uniform, 
easily eroded (sandy) 
beds. Light tones on thin 
organic silt and silty fine 
sand topstratum on 
abandoned pointbars. 
Darker tones on thicker 
organic silt in swales. 
Overlapping ("stacked") 
oxbows and abandoned 
concentric meander scrolls 
("swirl" pattern). Water-
filled swales (sloughs). 
Oxbows frequently both 
symmetrical and 
asymmetrical and are 
numerous. Whitish 
crescentic and sickle-
shaped pointbars seen at 
low-flow stages. Frequent 
neck cutoffs and infrequent 
chute cutoffs. Mainly 
unconfined meanders 

Meander belt often 
extends to base of fans 
and slopewash slopes. 
Locally stacked meanders; 
may be caused by some 
local anomaly or 
heterogeneity in bed or 
banks (fans, landslides, 
masses of roots, resistant 
clay plugs; also above 
tributary confluence, or 
above mouth of stream). 
Poorly developed 
pointbars. Meanders often 
appear contorted, kinky, 
buckled (double) 
meanders. Slender, 
elongate irregular lobate 
meander spurs having a 
low-water channel of 
varying width (lacine 
meanders). Few to usually 
numerous oxbows. 
Proportionately small area 
of flat valley floor (uniform 
tones) not covered by 
fans, colluvium, meander 
scrolls, and oxbows 

Tiny underfit streams in large 
former glacial spillways. Stable 
banks usually composed of 
non-mobile cohesive materials. 
Poorly developed pointbars 
and weakly developed (faint) 
meander scrolls on narrow 
spurs. Extensive marshy or 
swampy floodplains 
("backswamps", "backlands"), 
with or without stagnant 
ponded overbank floodwaters. 
Silty and fine sandy natural 
levees and crevasse splays 
usually only evident in photos 
taken during flood and flood 
recession. Usually few to many 
oxbows, often with organic clay 
plugs. Fewer oxbows and more 
symmetrical sinuous 
(serpantine or sine-generated) 
meanders occur where thick, 
uniform, cohesive deposits 
form the stream banks, 
including undercut valley walls 
and floodplain. Small meanders 
within large meanders, the 
latter swinging irregularly from 
one valley side to the other. 
Widespread uniform tones on 
clayey floodplains, especially 
where cultivated 

Usually occur in locally 
very flat areas (reduced 
gradient) of valley bottoms 
and extensive lake basins, 
often where an increase in 
clay content is suspected 
in the bed and banks. 
Ponded floodwaters in 
backswamp and backland 
marshes often flank 
straighter reaches of 
channel, bordered by low 
natural levees. Straight 
channel reaches also often 
occur in valley bottoms 
opposite large low-gradient 
alluvial fans. Straight 
reaches are generally 
short and alternate with 
meandering ones. 
Relatively straight 
channels may also occur 
along steep, braided 
streams 

1) The table prepared by Mollard (1973) based on Fig. 2.7 and from other references - mainly Mollard, 1972, and Lueder, 1959. 4) 

2) Streams in channels described as "alluvial" flow mainly in sediments deposited by the modern (postglacial) river. Locally, however, the 
river may erode into non-alluvial materials, which may form part or all of the channel bed and banks  

3) Channel patterns are transitional and tend to intergrade. Only slight changes in one factor influencing stream behaviour may cause a 
stream channel to change from a braiding to a meandering habit, and vice versa; or a meandering channel to a straight one, and vice 
versa 

  

Thickness of cohesive topstratum (mainly overbank suspended load) over coarse deposits in floodplains and low terraces is seldom over 6 m and is often 
thin (0.3 to 1 m) except for some tortuous and straight stream types, where fine-grained deposits may reach 30 m, in which case the topstratum may be 
partly alluvial and partly lacustrine in origin. Landscape expressions used to help predict dominant grain sizes in the substratum tend to fade and become 
progressively fainter with thicker overbank deposits. These features may not be discernible when the fine-grained topstratum becomes about 3 to 6 m 
thick. Vestigial braid scars, usually indicating gravelly alluvial substrata, and abandoned meander scrolls (subparallel bar-and-swale microrelief), usually 
indicating sandy alluvial substrata, tend to be easily identified when the cohesive (stratified clay, silt, fine sand, and organic matter of varying proportions) 
topstratum is less than about 1.5 m thick. Most older and higher-level floodplains and low alluvial terraces usually have a thicker silty topstratum and more 
uniform tones than do younger lower-lying floodplains 
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Recently, Church (2006) reviewed the association of bed material transport with 

morphology of alluvial channels. Combining the concepts used to classify rivers by 

Schumm (1985) and Mollard (1973), Church (2006) presented an evolved version of 

their classifications (Fig. 2.8). To illustrate the continuum of channel types, Church 

(2006) has used a qualitative model for graded rivers developed by Lane (1955). The 

model of Lane (1955) represents a relationship between water discharge, sediment 

supply, gradient and sediment calibre. The relation states that, for given flow power, a 

given quantity of sediment of some specified size can be transported. Water discharge 

chiefly determines the scale of the channel and gradient determines the rate of energy 

expenditure, whereas, for the given scale and gradient, the character of alluvial 

morphology is chiefly determined by the calibre and quantity of sediment delivered to 

the channel (Church, 2006). Thus to represent the classification, channel morphology 

was related to the conditions of sediment transport. From this classification, the braided 

channel type is unlikely to be observed in rivers with silt-clay channel composition. As 

with many channel classifications, the classification shown in Fig. 2.8 is a simplification 

of the variety of channels, which could be observed in nature. Also Church (2006) noted 

that the associations in the figure have not been placed on a physically firm foundation. 

Nevertheless, this diagram is the most powerful tool to study “cause-effect” relations 

available so far. 

In addition, Church (2006) distinguished “threshold”, “labile” and “transitional” 

channels. The “threshold” channels were defined as river channels in which the limit of 

competence for bed material transport is characteristically exceeded by only a modest 

amount, i.e. the transport of bed material occurs only at high flow. These channels are 

characterized by partial transport (only some of the grains on the bed are in motion at 

any time) and size-selective transport and typically are composed of coarse gravel or 

cobbles. Morphological changes for “threshold” channels are slow. The “labile” 

channels are defined as river channels in which the bed sediments are relatively easily 

and frequently entrained by the flow. Typically these channels are composed of sand and 

morphological changes may be relatively rapid. However, lateral instability is often 

strongly constrained by strong banks reinforced by vegetation. The “transitional” 

channels are river channels with characteristics intermediate between those of 

“threshold” channels and “labile” channels. Typically these channels are sandy channels 

with low energy or fine gravel-bed channels. Sediment transporting events that mobilize 

most of the bed material occur moderately frequently, along with associated 

morphological changes (Church, 2006). These three transport regimes are equivalent to 

Schumm’s three categories (bed load, suspended load and mixed load). 



 24

 

 
 

Figure 2.8: Diagram showing the association of alluvial river channel form 

and the principal governing factors (modified by Church (2006) after Church 

(1992), based on the concept of Mollard (1973) and Schumm (1985)). 

Classically named channel types are located at appropriate positions within 

the diagram. Shading is intended to reflect sediment character 

(from Church, 2006) 
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Above reviewed classifications are based on underlying processes and are the 

most scientifically grounded. Considering controlling factors by simplified examination 

turning into equation of equilibrium, presented by Lane (1955): 

dQs  ∼ QS , 
where 

sQ  - is the quantity of sediment; 

d – is the particle diameter or size of the sediment; 

Q – is the water discharge; 

S – is the slope of the stream. 

The description of this equation is given in page 23. 

The necessity and further development of such classifications are obvious as by 

study of channel processes it is possible to give qualitative prediction of channel type 

changes. 

Although the process-based classifications are useful for qualitative predictions of 

channel evolution and changes in channel stability, there are more simple classifications 

for lateral activity and stability. In these classifications underlying processes are taken 

indirectly into account. In the same time, classifications for lateral activity and stability 

are simple in the sence of use as are based on channel form and are developed 

empirically. 

 

2.2.4. Classifications by lateral channel activity and stability 
 

Particularly relevant to this study is a classification based upon the lateral activity 

of river channels proposed by Kellerhals et al. (1976) (Fig. 2.9). Actually this is not a 

classification of river channels rather; it is classification of lateral processes which could 

be observed in rivers. 

Description of these processes is given by Kellerhals et al. (1976) as follows: 

1. Downstream progression – the whole meander pattern moves downstream 

without forming cutoffs; frequently associated with confined regular meanders 

but also possible in steep gravel-bed channels. 

2. Progression and cutoffs – common on well-developed flood plains of 

meandering rivers. 

3. Mainly cutoffs – typical for low-gradient streams with a flood plain consisting 

mainly of vertical accretion deposits. 



 26

4. Entrenched loop development – rivers working downwards and sideways into 

relatively easily erodible materials. 

5. Irregular lateral activity – no clear pattern is detectable. Active gravel-bed 

channels frequently fall into this group. The occurrence of side channels, 

chutes, and sloughs, indicating shifts in the main channel position, is typical. 

6. Avulsion – aggrading streams may break out of levées or former channel 

zones completely and adopt an entirely new course. In deltaic areas, breached 

levées and crevasse splays induce partial or total redirection of flow. 

 

The first four processes are attributed to meandering rivers, whereas the last two 

could be observed in braided and anabranched rivers. To assign a river to types of lateral 

activity the presence or absence of the following features are used: meander scrolls 

(scroll bars, point bar deposits), meander scars, linear vegetation patterns, cutoffs and 

oxbows, and former channel or channel bar patterns on the present floodplain (Kellerhals 

et al., 1976). An additional type, which is not shown in Fig. 2.9, was distinguished by 

Kellerhals et al. (1976). This type does not have signs of lateral movement and as 

Kellerhals et al. (1976) noted such channels are generally deeply entrenched. 
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Figure 2.9: Lateral activity of river channels (from Kellerhals et al., 1976) 

 

Another approach to classify channels by stability is based on some distinctive 

features of channels such as the presence of point-bars and/or mid-channel bars and 

width variability along a river reach. One early attempt at such an approach to classify 

channels by channel stability was performed by Neill (1973). The classification was used 

in a study of the hydraulic geometry of sand-bed rivers in Alberta, Canada. Neill (1973) 

assigned qualitative stability categories subjectively and used the following criteria: 

presence of mid-channel bars, regularity of channel width and bed-load contribution in 

the total load (Fig. 2.10). By using the last criterion the classification by Neill (1973) 

coincides with the classification presented by Schumm (1985), i.e. it predicts decreasing 

in-channel stability with increasing of bed-load portion in total sediment load. In the 

results of his analysis, Neill (1973) outlined the following in associating the 

characteristics of channel geometries and the stability categories: 1) there is no clear 
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association between channel width and the stability categories, because suspended load 

may have a significant influence on the channel width; and 2) “low stability” channels 

tend to be shallow, and otherwise “high stability” channels tend to have greater channel 

depths. However, at the same time Neill (1973) warned that these findings were 

preliminary and should be clarified with more extensive data analysis. 

 

 
Figure 2.10: Channel stability categories assigned using subjective criteria 

by Neill (1973) 

 

Brice (1981) assembled a more extensive database for rivers in the USA. The 

types are distinguished by various channel features. These features are uniformity of 

channel width and presence or absence of bars. The “equiwidth point-bar” channels are 

defined by Brice (1981) as channels with narrow point-bars and banks which tend to be 

well vegetated. Uniformity of width is designated to a channel if average width at the 

widest places is not greater than 1.5 times the average width at the narrowest places. 

Usually the widest places are observed at bends, whereas the narrowest places occur at 

straight reaches. Thus “wide-bend point-bar” channels have average width at the widest 

places greater than 1.5 times the average width at narrowest places. Also for this type, 

point-bars are more conspicuous at normal stage than for “equiwidth point-bar” 

channels. In “braided point-bar” channels point-bars tend to be irregular and marked 

with a braided pattern but a continuous thalweg tends to meander within a broad sinuous 

channel. Finally “braided, no point-bars” channels are defined by Brice (1981) as 

channels with many mid-channel bars and lateral bars and no continuous thalweg. These 

channels tend to be broad and shallow but the bars lie within well defined banklines of a 

single channel. 
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By plotting bank erosion rate for channel types with different features, Brice 

(1981) revealed that “braided point-bar” channels tend to have high bank erosion rates, 

whereas “equiwidth” channels are either stable or have low bank erosion rates. Between 

these counterparts, with low to moderate lateral stability, “wide-bend” channels were 

placed (Fig. 2.11). Other channels, which Brice (1981) classified as “braided, no point 

bars”, show a wide range of lateral stability. In various geomorphological settings this 

type was found to be laterally stable with changes occurring mainly in the position of 

mid-channel bars, and with relatively stable banks. However, in some rivers of this type 

in Brice’s (1981) study there were channel relocations owing to significant lateral 

instability. Some properties, as seen in Fig. 2.11, display gradients from one channel 

type to another. Almost all of them are presented as ratios, e.g. channel width related to 

discharge, ratio of bed load to suspended load. 

 

 
Figure 2.11: Alluvial stream types and associated lateral stability (from 

Brice, 1981) 

 

The classification presented in Fig. 2.11 is similar to the Neill’s (1973) 

classification but is broader with the addition of “anabranched” channels. The features of 

a channel are easy recognizable from maps and air photography and therefore this 

classification can be applied in the assignment of lateral stability to different channel 

types without observing the channel during a site visit. 

Another one classification of such type is accepted as a basis in the current study. 

This classification is presented by Lagasse et al. (2004) and in more details is given in 
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section 4.2.1, where a relationship between channel types and bank erosion rate is 

considered. 

From a review of different kind of river channel classifications it is concluded 

that there is no universal classification which is suetable for all problems of fluvial 

geomorphology. Indeed, Montgomery and Buffington (1998) have concluded the same 

that any classification simply provides one of a variety of tools that can be applied to 

particular problems and it is not a panacea. In the scope of cuurent study the most 

suitable clasiifications those which are elaborated for estimation of lateral channel 

activity and stability. 

In summary, the first step is performed concerning one of research goals – “to 

quatify rates of bank erosion for different channel types”. Channel types are reviewed 

and a classification is selected for basis to create river bank erosion database and for 

further calculations. To achieve the second goal of study – “predict change of channel 

type during the design life of a pipeline” – in the next section a review of methods to 

analyse controls on channel form is presented. 

 

2.3. CONTROLS ON CHANNELS PATTERN 
 

Numerous methods are in existence to analyse the controls on channel pattern. 

Routine methods are empirical diagrams and theoretical equations, which consider 

equilibrium. Below, only methods which have been applied in a quantitative sense to 

distinguish different channel type by their main factors are considered. 

The first empirical diagrams were defined by Leopold and Wolman (1957), and 

Lane (1957). They employed so-called QS-diagrams to discriminate channel types 

depending on slope and discharge (the discriminatory equations of various authors are 

listed in Table 2.2; QS-functions are combined in Fig. 2.12). In general form the 

equation can be written as: 
baQS −= ,     2.1 

where S = slope (m m-1), Q = water discharge (m3 s-1), a = empirical coefficient and b = 

exponent. 

Differences between the diagram of Leopold and Wolman (1957), and the 

diagram of Lane (1957) are that bankfull discharge is used by Leopold and Wolman 

(1957) whereas mean annual discharge is employed by Lane (1957). Furthermore, the 

data of Leopold and Wolman (1957), in general, concerns gravel-bed rivers, whereas 

Lane’s (1957) data concerns sand-bed rivers. Hence different empirical coefficients and 
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exponents of equation (2.1) were obtained in the two studies. On the diagram of Leopold 

and Wolman (1957), straight channels plot either side of a meandering–braided 

transition. Straight and meandering channels are distinguished by these authors by a 

sinuosity parameter (P=1.5). As pointed out by Leopold and Wolman (1957), this value 

of 1.5 is arbitrary but in their experience where the sinuosity is 1.5 or greater the stream 

is a true meander. In both studies it was shown that braided channels plot above 

meandering ones. Leopold and Wolman (1957) concluded: “For given discharge, 

meanders, as one would expect, will occur on the smaller slopes. At the same slope a 

braided channel will have a higher discharge than a meandering one”. 
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Table 2.2: Controls of channel patterns (from Bridge, 1993 with additions) 
# Author Equation Commentsa 

1 Lane (1957) 

25.00007.0 −= mQS  
25.00041.0 −= mQS  

Meandering, sand-bed channels [1] 
 
Braided, sand-bed channels [2] 
Range 0.0028<Q<25535 

2 Leopold and Wolman (1957) 44.00125.0 −= bfQS   Meandering-braided [3]. Range 1.4<Q<85118 

3 Henderson (1961) 44.014.1000196.0 −= bfQDS   Meandering-braided (see Fig. 2.14) 

4b Chien (1961) 5
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3.045.06.0
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 Transitional-braided. First term is dimensional, units days-1 

5b Chien and Zhou (1965) 44.0100 −= bfQS  Meandering-braided 

6 Romashin (1968) 

135.0 −= mafv QS  
14.1 −= mafv QS  

Free meandering-incomplete meandering [4] 
 
Incomplete meandering-braided [5] 
Range 28<Q<133000 

7 Ackers and Charlton (1970) 

12.0001.0 −= QSv  
12.00014.0 −= QSv  

Straight-shoaled 
 
Shoaled-meandering [6] 
Range 0.006<Q<0.09 

8 Antropovskiy (1972) Various  See Table 2.3. Range 71.7<Q<34700 

9b Ikeda (1973, 1975) 
31

*

* 4.1 ⎟
⎠
⎞

⎜
⎝
⎛=

d
wS

U
U

c

 Meandering-braided. Non-dimensional criterion 

10 Parker (1976) S/F ≈ d/w  Meandering-braided (see Fig. 2.15) 

11b Muramoto and Fujita (1977) 
( ) 7.6

)/(
/ 32

=
Dd

Dw
 for 121 0 << cττ  Meandering-braided. Non-dimensional criterion 

12 Fredsøe (1978) w/d ≈ 50  Meandering-braided. Weak dependence on θ  and f 

13 Osterkamp (1978) 

25.0−= maQS   Meandering-braided 
[7] – for D50<0.1 mm; 
[8] – for So>10, SC<50%; 
[9] – for D50=0.1-2 mm, So ≥ 3.0; 
[10] – for D50=0.1 mm, So<3.0; 
Range 0.03<Q<200 

14b Snishchenko (1979) Only graph w;wv; S; Sv  See Table 2.4 and Fig. 2.16 
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Table 2.2 (Continued) 
# Author Equation Commentsa 

15 Hayashi and Ozaki (1980) ( ) FdwS ≈5.0/2   Meandering-braided 

16 Begin (1981a) 327.00016.0 −= mQS   
Meandering-braided for a standard channel with avgττ =  [11] 

Range 0.672<Q<25200 

17 Bray (1982) 44.0
207.0 −= fQS  Meandering-braided for gravel-bed rivers [12] 

Range 5.52<Q<8920 

18 Ackers (1982) 21.00008.0 −= QS  
Straight-meandering for sand-bed flumes and rivers [13] 
Range 10-4<Q<105 

19 Ferguson (1984b) 

09.0
50

49.0042.0 DQS −=   Meandering-braided for gravel-bed rivers 
[14] – for D50=2 mm 
[15] – for D50=16 mm 
[16] – for D50=64 mm 
[17] – for D50=256 mm 
Range 3<Q<17000 

20 Chang (1985) 5.05.0 DaQS −≈   Meandering-braided 

21 Struiksma and Klaasen (1988) ( )θf
d
w

F
S 2

2 ⎟
⎠
⎞

⎜
⎝
⎛

=constant Meandering-braided 

22 Fujita (1989) 

( ) 5.3
)/(

/ 32

=
Dd

Dw
 to 7.6  

( ) 32
32

32 7.6
)/(

/2.2 m
Dd

Dwm <<  

Meandering-braided 
m is mode (degree of braiding) 

23 Fukuoka (1989) ≈dwS /2.0 10 to 20  Meandering-braided. Weak dependence on cθθ /  

24 Robertson-Rintoul and Richards 
(1993) 

( ) 44.0
84

38.052.51 −+=∑ DQSP v  and 

( ) 14.0
84

4.064.21 −+=∑ DQSP v   

Meandering-braided for gravel-bed rivers 
 
Meandering-braided for sand-bed rivers 

25 van den Berg (1995) 42.0
50900D=ω  Single-thread channels-braided channels(Fig. 2.17) 

26 Xu (2004) 44.154.2 −= wS  Meandering-braided 
a – numbers in square brackets correspond to numbers of lines on QS-diagrams (Fig. 2.12); 

b – equations were taken from other sources: 4; 9 and 11 from Bridge (1993); 5 from Xiaoqing (2003); 14 from Popov (1982) 
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Figure 2.12: QS-diagrams by various authors. Numbers of lines in accordance with Table 2.2. (See column “Comments”) 
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The physical meaning of QS-diagrams lies in the equation of stream power: 

QSgQS 9810≈=Ω ρ ,    2.2 

where Ω  = total stream power (W m-1), ρ  = water density (1000 kg m-3), g = 

gravitational acceleration (9.81 m sec-2). Therefore, on the diagrams of Leopold and 

Wolman (1957), and Lane (1957), braided channels correspond to higher stream power 

values than meandering ones. However, on both diagrams there is considerable scatter of 

data points for the channel types, which led Leopold and Wolman (1957) to conclude 

that a continuum of channel types in fact exist. 

During the ensuing years other authors have attempted to modify and improve 

QS-diagrams and have given the physical interpretation of parameters in equation (2.1). 

One way to improve the method is to take into account the grain size of bed material. In 

general form, the equation can be written as: 
bcQDaS −= * ,     2.3 

where D = size of bed material (mm), *a  = an empirical coefficient, c and b are 

exponents. The first work of this type was developed by Henderson (1961). Considering 

Type B channels as derived in threshold theory (the theory of stable channel profile 

developed at the United States Bureau of Reclamation Dept. of Interior along the lines 

laid down by Lane, 1955, see Fig. 2.13), Henderson (1961) obtained the parameters in 

equation 2.3 that give the value of slope at which the limiting channel shape (Type B) 

would be stable. Henderson obtained parameter values of b=0.46 and c=1.15. If the slope 

is greater than the limiting value, the wide Type A channel of less scouring capacity is 

required. If the slope is less than the limiting value then a Type C channel apparently is 

required (Fig. 2.13). 

 
Figure 2.13: Alternative types of stable channel profile 

(from Henderson, 1961) 
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Henderson (1961) concluded that the resulting value of the exponent for 

discharge is very nearly equal to the exponent given by Leopold and Wolman (1957); 

and “if transporting power is to be the criterion that distinguishes braided from 

meandering channels then the size of the bed material, as well as the slope and discharge, 

ought to be taken into account”. Using data for S, Qbf and D given by Leopold and 

Wolman (1957), he attempted to refine their equation by empirical means. As a result 

Henderson (1961) derived an equation with parameters: *a =0.000196, b=0.44 and 

c=1.14 (Fig. 2.14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14: S-D-Q relationship modified from Henderson (1961) 

However, the scatter of points was not significantly reduced. The number of 

points in Fig. 2.14 for braided rivers is only five, and two of them lie above and three lie 

below the line of discrimination. Bridge (1993) pointed out that “Henderson’s approach 

is based on the stability of channels at the threshold of bedload motion and therefore 

cannot be correct in view of the requirement of sediment transport for channel bars to 

form.” Moreover, application of Henderson’s (1961) equation by Chitale (1973) did not 

give satisfactory results. Chitale (1973) used extensive data and he pointed out that “… 

values of slope estimated by Henderson’s (1961) formula were found to be much flatter 

than the actual slope for both braided and non-braided rivers.” Subsequently 

Henderson’s method was not applied for a long time. Much later Carson (1984) gave an 
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explanation of the inconsistency between Henderson’s (1961) equation and Chitale’s 

(1973) data: Chitale (1973) in general used data from rivers of India with sand-bed 

channels, whereas Henderson (1961) derived the equation based on data from rivers with 

gravel-bed channels. 

Quite to the contrary to Henderson’s (1961) approach, Romashin (1968) pointed 

out that taking into account the grain size of bed material is difficult, because data about 

grain size may be unrepresentative. Romashin (1968) constructed a QS-diagram using 

valley slope and median flood discharge for freely developing channels, i.e. unconfined 

by valley walls and rock outcrops. His results coincide with the conclusions of Leopold 

and Wolman (1957) and Lane (1957) in general but the slope of the discriminant line 

between meandering and braided rivers is more than twice as steep on his chart (see Fig. 

2.12). Perhaps this difference is caused by using different data definitions in the work of 

Romashin (1968) compared with Leopold and Wolman (1957) (i.e. valley slope instead 

of channel slope and median flood discharge instead of bankfull discharge). 

Romashin (1968) examined more than 250 river reaches. The following 

preconditions were obeyed: 1) proximity to a gauging station with enough data for 

discharge calculation; 2) absence of limiting conditions for channel changes; 3) only 

relatively large rivers were examined. There is a clear differentiation of points from 

different channel types on his diagram. Romashin (1968) derived equations in the form 

of (2.1) which distinguish free meandering, incomplete meandering and multibranching 

(in terms of the classification by Kondratiev et al. (1982)). Antropovskiy (1972) adduced 

values of stream power from Romashin’s discriminant function (assuming that the slope 

of the water surface is equal to the slope of the valley floor): the transition from free to 

incomplete meandering occurs when the stream power equals ≈ 3.4 kW m-1 and 

incomplete meandering to floodplain multibranching occurs when the stream power 

equals ≈ 14 kW m-1. As Chalov et al. (1998) have noted, Romashin’s (1968) analysis is 

the most reasonable, because he used valley slope (independent of channel form) rather 

than channel slope (dependent upon channel form). 

Ackers and Charlton (1970) performed laboratory studies with the purpose of 

analyzing meandering processes. They described stages of channel evolution from 

initially straight to meandering and braided channels. From the results of their studies 

conclusions were made that an initially straight channel becomes meandering only if 

there is a certain sediment supply (greater than critical). When the slope is too low to 

transport the supplied sediment, accumulations of alluvium arise in the channel. On the 

basis of these studies they derived equations in the form of (2.1), which distinguish 

straight, shoaled (straight channels with prominent shoals) and meandering channels. On 
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their diagram straight channels plot below meandering ones. For straight channels water 

surface slopes were used and for meandering channels – valley slopes were used. For 

comparison, meandering points with values of channel slope also were shown. In the 

latter case all points plotted below points obtained using the valley slope and it is 

impossible to derive a line that distinguishes straight and meandering channels clearly. 

The conclusion was that there is a limiting gradient below which channels in alluvium 

may remain straight, but above which meandering will occur. The same conclusion was 

made by Schumm and Khan (1972). In laboratory studies they showed that the transition 

from one channel type to another depends on valley slope, discharge and sediment 

supply. It should be noted that channels may be relatively straight at the transition to 

meandering and again relatively straight at the transition from meandering to braided. 

Further, braided streams are sometimes reported as being straight as their major 

planform is less sinuous than meandering rivers. Thus great care is required in the 

definition, selection and treatment of ‘straight’ channel data (see Section 4.2.1). 

Later Ackers (1982), using further data from field and laboratory sources, refined 

the equation. For this analysis a steeper line was obtained (exponent b=0.21). He also 

concluded that “meandering is associated with steeper slopes and higher sediment 

transport rates than can remain stable in a straight channel with erodible banks, and that 

this limiting slope is dependent on the water discharge”. Edgar (1973) had earlier 

obtained a similar exponent to that obtained by Ackers (1982) for a lower range of 

experimental discharges.  

These flume studies are useful to understand the process of channel transition 

from one type to another. Besides, in the laboratory it is possible to study and control 

changeable parameters (slope, discharge, bedload). However, in laboratory studies data 

are limited in terms of the range of values of discharge, and grain size often is imposed 

as a constant. For these reasons, the results of such studies often can be used only in a 

qualitative manner. 

Antropovskiy (1972) suggested considering shear stress (τ ), and the resistance 

of the channel to this force. He pointed out that grain size should not be used as a 

measure of resistance, because it is possible to represent grain size by other parameters. 

He suggests that such parameters could be the coefficient chC  in the Chezy formula and 

the width to depth ratio. His results showed that the highest values of chC  and width-to-

depth ratio for the same τ  value relate to braided channels and channels with incomplete 

meandering; the lowest values are associated with free meandering channels. Moreover, 

Antropovskiy (1972) also derived equations with other parameters (Table 2.3) which can 
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be used to distinguish different channel types. He pointed out that “different types of 

channel processes can be easily separated if the slope, or an expression containing it, is 

plotted along one of the axes of the graph”. Also, Antropovskiy (1972) carried out an 

analysis of the following nondimensional parameters: 

)(Sf
g

Cch = , )(Sf
d
w

=  and )(Ff
g

Cch = , )(Ff
d
w

= . 

However, in this case the results showed more scatter of points which belong to reaches 

with different types of channel processes. 

In his analysis Antropovskiy (1972) used data from 70 gauging stations which 

were located in greatly differing regions of the former Soviet Union, except the 

Caucasus. For rivers in Central Asia with intense channel changes a poor relationship 

between water surface slope and discharge was obtained and sometimes a total lack of 

such a relationship occurred. On a diagram, using data with the slope of the valley floor 

from 150 gauging stations, Antropovskiy plotted the following expression: 
g

VE

c 2

2

=
α

, 

where E is specific kinetic energy, cα  is the Coriolis coefficient, and concluded that for 

the same water discharge, braided and anabranching channels have the highest kinetic 

energy, streams with incomplete meandering have a lower energy, and streams with free 

meandering have the lowest kinetic energy”. 

On one hand the study by Antropovskiy (1972) are interest as there is a try to 

analyse all possible parameters. However, on another hand, there is no any physical 

explonations for obtained relationships. Moreover, unreasonably the Coriolis coefficient 

( cα ) was used without interpretation. A relationship or any influence of the Coriolis 

coefficient up to now does not find any convincing evidences in nature. 
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Table 2.3: Criterial relations describing the transition of the channel process from one type to another (from Antropovskiy, 1972) 

 

Coefficient a and exponents b, c, d in criterial relations Percentage of points falling into zone of 
for transition from free to 
incomplete meandering 

for transition from incomplete 
meandering to channel braiding 

Form of criterial 
relation 

a b c d a B c d 

free 
meandering 

incomplete 
meandering 

channel 
braiding 

bbb
ch SadaC == τ  1,87 -0,44 2,85 -0,44 85 85 83 

bbb Sadaw == τ  0,013 -1,4 0,041 -1,4 90 75 90 
baSd =  0,046 -0,51 0,084 -0,51 70 75 80 

bbb SadaQ == τ  0,095 -1,3 0,93 -1,3 85 80 83 
c

ch
bCaVw =  0,013 -2,8 2,8 0,041 -2,8 2,8 85 80 86 

cbb dnaVw =  0,013 -2,8 0,46 0,041 -2,8 0,46 85 80 86 
cbb SnaVw =  0,013 -2,1 -0,35 0,041 -2,1 -0,35 90 80 90 

cbSawQ =  0,0695 0,24 -1 0,255 0,24 -1 85 80 80 
b

ch SaCQ =  0,01 -0,96 0,032 -0,96 90 80 93 
bbb SadaV == τ  1,87 0,06 2,85 0,06 90 85 86 

baSV =  2,72 0,08 3,57 0,08 100 85 86 
bbb Sada == τλ  5,6 0,88 2,4 0,88 80 85 92 

baSQ =  0,13 -1,1 0,4 -1,1 90 80 90 
cb

ch SdaCQ =  0,013 0,1 -0,9 0,041 0,1 -0,9 90 80 83 

dwaCQ b
ch=  0,21 0,64 0,32 0,64 95 80 90 

dcb SdanQ =  0,013 -1 0,27 -0,9 0,041 -1 0,27 -0,9 90 80 83 
dcb dwanQ =  0,21 -1 0,64 1,17 0,7 -1 0,64 1,17 95 80 90 

b

g
Vad ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

2

 0,025 -2,2 0,14 -2,2 98 85 80 
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Somewhat different approach is used by Parker (1976). He described a stability 

analysis of meandering and braiding and derived an analytical description to obtain a 

parameter 
0

* 1
d
B

F
S

π
ε = . According to the theory, meandering occurs for BdFS 0<< , 

braiding occurs for BdFS 0>>  and a transition between the two occurs for 

BdFS 0~ . This theory does not indicate any conditions for a straight channel, so on 

the basis of previous studies (Chang et al., 1971 and Vincent, 1967) Parker (1976) 

suggested the following condition for the maintenance of a straight channel: 
1

0 10−>Bd . He plotted in a diagram (Fig. 2.15) data from 75 laboratory flume 

experiments, 22 irrigation canals and reaches of 53 natural rivers. In addition, on the 

basis of stability theory Fredsøe (1978) indicated that the major control on braiding is the 

width to depth ratio. 

 

 
Figure 2.15: Meandering/braided/straight regime diagram 

(from Parker, 1976) 

 

However, theoretical methods such as Parker’s (1976) and Fredsøe’s (1978) have 

some disadvantages. As reported by Bridge (1993) their criteria do not agree very well 

with field data. Furthermore, parameters in these criteria are require more field data, such 

as flow velocity to define, e.g. the Froude number: gdU / . 
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Going back to the classical QS-approach Osterkamp (1978) carried out an 

analysis of river reaches in Kansas and suggests an equation of the form of (2.1) with an 

imposed exponent. This exponent equals b=0.25. The coefficient a is suggested to be 

dependent on median grain size and a sorting index. During the process of analysis, data 

sets were subdivided by sinuosity, grain size and sorting index. Then regression analysis 

of these samples was performed. The results of the regression analysis provided values 

of exponents, which are nearly equal to the exponent given by Lane (1957). Therefore 

Osterkamp (1978) imposed an exponent value as a constant in all equations. Perhaps 

nearly equal exponents were obtained because the same parameters were used, i.e. 

channel slope and mean annual discharge. It was noted by Osterkamp (1978) that 

because the equation of Leopold and Wolman (1957) is based on discharges at bankfull 

stage, it is not directly comparable to the equations presented in his paper. Moreover, he 

argued out that bankfull discharge is an inappropriate parameter for regression analysis. 

He added the following comment about bankfull discharge: “Bankfull discharge at a site 

is dependent on channel conveyance at the bankfull stage for the time of measurement, 

which in turn can be a function of recent erosive flow events. The result is a wide range 

of possible cross-sectional areas at bankfull discharges for streams of similar mean 

discharges. The problem is acute when the data represent a diverse range of climatic and 

geologic conditions, as do the data of Leopold and Wolman (1957).” 

For samples grouped by sinuosity, Osterkamp (1978) obtained unsatisfactory 

results. Satisfactory results were obtained for samples grouped by median-grain size and 

sorting index. Perhaps such satisfactory results are determined by the regional character 

of study, admitting little variation in parameter values. 

Snishchenko (1979) suggested using relative rather than absolute values of slope, 

discharge and width, because he argued that the use of absolute values induce statistical 

inhomogeneity within samples. He used a relationship between valley slope and channel 

slope SSv , valley width and channel width wwv  and their product. (Table 2.4 and 

Fig. 2.16). Snishchenko (1979) made the conclusion: “according as width of valley 

decrease, channel types vary from free meandering to incomplete meandering, to 

floodplain multibranching, to limited meandering, to channel multibranching” (channel 

types terminology in accordance with the classification by Kondratiev et al. (1982)). 

Chalov et al. (1998) criticized this method. They noted that the relation of valley 

slope and channel slope is sinuosity, so diagrams show the well-known fact that 

meandering channels have higher sinuosity than braided ones. Also they suggested that 

is better to use absolute values of variables but did not provide any explanation for that 

statement. 



 43

 

Table 2.4: Relative values of valley slopes and widths under various types of 

channel processes according to Snishchenko (1979) (from Popov, 1982) 
Average/standard σ  

Type of channel 
process Sv/S wv/w 

Multiplication 
of Sv/S and 

wv/w 

Relationship of channel 
slope (S) to valley slope 

(Sv) 
Free meandering 2.0/0.22 18.3/4.6 36.6/11.5 S=0.50Sv 
Incomplete 
meandering 1.4/0.02 10.39/5.7 14.6/4.05 S=0.71Sv 

Floodplain 
multibranching 1.2/0.09 6.5/1.8 7.9/2.4 S=0.82Sv 

Limited meandering 1.2/0.06 5.1/1.1 5.9/1.3 S=0.86Sv 
Alternate bar process 1.07/0.04 2.4/0.5 2.6/0.6 S=0.93Sv 
Channel 
multibranching 1.03/0.03 1.9/0.6 1.97/0.6 S=0.97Sv 

 

 
Figure 2.16: Channel pattern types according to relationship between valley 

width and channel width wwv  (A) and relationship between valley slope and 

water surface slope SSv  (B) as proposed by Snishchenko (1979). 

1 – free meandering; 2 - incomplete meandering; 3 - floodplain multibranching; 4 - limited 

meandering; 5 - alternate bar process; 6 - channel multibranching. (Terminology according to the 

classification by Kondratiev et al. (1982)) 

 

Begin (1981a) produced a physical interpretation of the coefficient a in equation 

(2.1) by combination of the equation for mean shear stress gDSρτ =0  and the 

relationship of depth and annual discharge bQad **= suggested by Leopold and 

Maddock (1953). In general, the coefficient a in (2.1) is not a constant value and 
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depends on mean shear stress and the coefficient **a . On the basis of extensive data 

Begin (1981a) derived an average value of the mean shear stress avgτ , which may be 

used as standard. Next he determined values of the relative shear stress avgττ 0  thus 

eliminating the unknown value of **a . The resulting diagram was plotted with a family 

of lines, which relate to different values of avgττ 0 . The conclusion is made that, in 

general, braided streams have higher values of avgττ 0  than meandering streams. 

However, this diagram shows that there is no clear-cut division between braided and 

meandering channels. From this Begin (1981a) concluded that “…the passage from one 

pattern to another is gradual, and the geomorphic thresholds, defined by relative shear 

stress, are fuzzy ones”. 

Bray (1982) for gravel-bed rivers in Alberta, Canada developed regime equations 

using the 2-year flood flow ( fQ2 ). He plotted channel slope against fQ2  and derived an 

equation in the form of (2.1), which distinguishes channels with sinuosity greater and 

less than 1.25. Channels with sinuosity greater than 1.25 lie below this line. Selection of 

the 2-year discharge was based on the following criteria. Firstly, for the Alberta gravel-

bed river data the adopted discharge resulted in the highest coefficient of determination 

and the lowest standard error, when computing the simple hydraulic geometry 

relationship of Leopold and Maddock (1953). Secondly, the adopted discharge was of 

sufficient magnitude that it was near or somewhat above the flow at which the bed 

material commenced to move in the channel. 

Ferguson (1984b) by empirical analysis revealed that the threshold slope for 

braided depends on bed material size, with gravelly braided rivers having steeper slopes 

than do sandy ones at the same discharge. Ferguson constructed a graph of gravel 

braided and sand braided channels differentiated on a slope-discharge plot with median 

grain size (D50). 

van den Berg (1995) differentiated between braided channels and single-thread 

sinuous channels (P>1.3) in a plot of specific stream power against median grain size 

(Fig. 2.17). This diagram show that as boundary resistance increases through either more 

cohesive banks or coarser bed material, a greater stream power is required for the onset 

of braiding. van den Berg (1995) defined specific stream power as: 

 

ω =2.1SvQbf
0.5 for sand-bed rivers    2.4 

ω =3.3SvQbf
0.5 for gravel-bed rivers    2.5 
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Figure 2.17: Channel pattern in relation to grain size and unit stream power 

(from van den Berg, 1995) 

 

These two different equations (2.4 and 2.5) for specific stream power reflect the 

different cross-sectional geometry for the same discharge in sand-bed and gravel-bed 

rivers (Thorne, 1997). Although Thorne (1997) has concluded that for the van den Berg 

approach “a discriminant function of this type may well represent the logical endpoint of 

the line of investigation into the meandering/braiding threshold begun by Lane and by 

Leopold and Wolman nearly 40 years ago”, Lewin and Brewer (2001) argued by the 

same data that the analysis of van den Berg (1995) is invalid, because he applied the two 

regime-based width estimates on meandering and braided rivers, rather than actual 

width. Bledsoe and Watson (2001) have used SvQ0.5 instead of specific stream power and 

a logistic regression approach, which provide a probabilistic version of van den Berg’s 

(1995) threshold. In these papers (van den Berg, 1995; Lewin and Brewer, 2001; 

Bledsoe and Watson, 2001) and following discussions (van den Berg and Bledsoe, 2003 

and Lewin and Brewer, 2003) has risen the question of whether sand-bed rivers and 

gravel-bed rivers should be analysed separately or not. Xu (2004) has concluded that 

there is significant difference in the hydraulic geometry among sand-bed and gravel-bed 

rivers with different channel patterns. This conclusion was derived from a comparison 

between hydraulic geometry of sand-bed and gravel-bed rivers, based on data from 

alluvial rivers around the world. 

From the methods cited above, in most cases braided river reaches correspond to 

higher stream power, which is defined by the product of slope and discharge raised to 

some power. Various authors used different indices of the flow discharge: e.g. mean 
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annual, median flood, or dominant discharge. Also different slopes have been used, e.g. 

valley, channel and water surface slope. Usually channel and water surface slopes are 

accepted as the same. Also generally accepted, is that appropriate parameters are the 

valley slope and the dominant (channel-forming) discharge. Valley slope should be used 

instead of channel slope to avoid biasing the plotting position of sinuous rivers that have 

a lower channel slope than valley slope. A channel-forming discharge should be used 

because it does not depend on a reference to channel geometry (Bridge, 2003) (see a 

definition of the channel-forming discharge in section 3.3.1.). However, there is a 

contradiction between field and laboratory data: in most cases from natural rivers 

braided river reaches correspond to higher power. But within laboratory studies as slope 

is decreased with constant discharge and bedload (i.e. under decrease of power), the 

channel can be transformed from meandering to braided because bed material 

overloading is occuring. 
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2.4. MAIN RIVER TYPES 
 

2.4.1. Meandering rivers 
 

2.4.1.1. Why do rivers meander? 
 

This question is still not resolved. There are numerous theories and hypotheses 

explaining causes of meandering more or less for some initial (sometimes idealized) 

conditions but no single one has been developed that can be applied for all varieties of 

settings wherein meandering rivers are known to exist. The majority of the theories and 

hypotheses are reviewed by Yang (1971), Sakalowsky (1974), Callander (1978), Shen 

(1979), Chang (1988), and more recently by Knighton (1998), Chalov et al. (1998) and 

Da Silva (2006). 

An early hypothesis stated that the Earth’s rotation is responsible for flow 

deviation and initiation of meandering form. However, as reported by Shen (1979), there 

is no convincing evidence that streams in the northern hemisphere have more 

pronounced erosion on their right banks than on their left banks. That hypothesis 

nowadays has only historical interest in the science of fluvial geomorphology. 

Subsequently other hypothesis and theories which have a more reasonable basis and 

convincing evidence were put forward. The main theories and hypothesis may be 

grouped as: (i) theory of most probable path, (ii) bank erosion due to local disturbance, 

(iii) unstable response initially of the bed and afterward of the banks to a small-

amplitude perturbation (stability theory), (iv) theories of energy dissipation, (v) initiation 

due to large-scale horizontal turbulence, alternate bars, etc. Sometimes disputes about 

causes of meandering are similar to the dispute concerning whether an egg or a hen came 

first. Obviously, for meandering initiation there must be certain initial conditions and 

later conditions, which support meander development. Considering an idealized straight 

channel (with parallel stream flow lines to the banks) to initiate a sinuous form a 

perturbation should occur to deviate the flow from the straight alignment and the banks 

should be erodible to change the channel form. The occurrence of a perturbation is 

germaine to the hypothesis relating bank erosion to local disturbance (e.g. Friedkin, 

1945) and latteral stability theory (e.g. Engelund and Skovgaard, 1973; Parker, 1976; 

Callander, 1978) with a difference of the scale of perturbation. Following stability 

theory, and assuming that low-amplitude perturbation on a bank instead of the bed could 
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lead to the same results, it could be concluded that an erodible bed is not a necessary 

initial condition for meander formation. Evidence of channels with sinuous flow and 

alternate bars within a straight channel (probably because the banks are not erodible for 

certain conditions) suggest that erodible banks are a necessary initial condition for 

meander formation, though the bank erodibility as a property is not a cause of 

meandering. After initiation due to perturbation, conditions for further development and 

supporting meander formation should occur. These conditions lead to formations of 

secondary currents or large-scale horizontal turbulence (e.g. Da Silva, 2006) and 

alternate bars (e.g. Nagata et al., 2000). As seen from this discussion many hypothesis 

and theories interlace one with another or follow on. This situation led Shen (1979) to 

conclude that the basic causes and explanations of meandering are possibly numerous. 

 

2.4.1.2. Geometrical characteristics of meandering channels 
 

Any attempt to predict and explain meander development is dependent on an 

adequate definition of the plan geometry of river meanders (Hey, 1984). Various 

characteristics have been used to define the plan geometry of meandering channels. 

Some of these characteristics were assembled by Leopold et al. (1964), Popov (1965, 

1982), Kondrat’yev (1968), Hey (1984) and Allen (1984) and include the following (see 

definition sketches in Fig. 2.18): 

 

• Wavelength ( λ ) – the repeating length of the meander pattern measured 

along the centreline of the meander belt between one inflection point and 

the next but one downstream. Variants include the measurement of the 

straight line distance through the axis of the meander pattern. 

• Radius of curvature (r) - the radius of the circle defining the curvature of 

an individual bend and measured at the channel centreline. 

• Sinuosity (P) - the ratio of channel length to meander belt axis length. 

Sinuosity is usually measured over a reach including several bends. 

• Meander path length (lm) – the distance along the axial line of the channel 

between neighbouring inflection points. 

• Meander spacing (Lm) – the straight line distance connecting 

neighbouring inflection points. 

 

 



 49

 

 

 

Length of cutoff

Meander path length

Aplm

Lm

IA
mγ

β

α

1α
2α

thalweg

oxbow
lake width of

floodplain

channel
centreline

w

meander
belt axis

concave
(outer)
bank

convex
(inner)
bank

width of
meander belt

r
inflexion

point

λ

A

B C

Length of cutoff

Meander path length

Length of cutoff

Meander path length

Aplm

Lm

IA
mγ

β

α

1α
2α

thalweg

oxbow
lake width of

floodplain

channel
centreline

w

meander
belt axis

concave
(outer)
bank

convex
(inner)
bank

width of
meander belt

r
inflexion

point

λ

thalweg

oxbow
lake width of

floodplain

channel
centreline

w

meander
belt axis

concave
(outer)
bank

convex
(inner)
bank

width of
meander belt

r
inflexion

point

λ

A

B C
 

 

 

 

Figure 2.18: Definition sketches for geometrical characteristics of 

meandering rivers. Explanations in text. 
(A – modified partly from Allen, 1984, partly from Kamenskov, 1987; B – from Popov, 1982; 

C – from Luchsheva, 1976) 
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• Angle of incidence ( 1α ) – the angle, formed by the spacing line and the 

ray tangent to the axial line at the upper inflection point of a meander and 

directed downstream. 

• Angle of departure ( 2α ) – the angle, formed by the continuation of the 

spacing line and a similar ray at the lower inflection point of the meander. 

• The sum of these angles is an angle of turn of the meander ( 21 ααα += ). 

The angle α , as well as the ratio of meander path length to meander 

spacing, can be regarded as indices of the degree of development of a 

meander. 

• The mutual arrangement of two neighbouring meanders can be defined by 

the angle β , formed by the continuation of the spacing line of the 

neighbouring upper meander and the spacing line of the lower meander. 

The absolute magnitude of this angle is equal to the difference between 

the angle of incidence of the lower meander and the angle of departure of 

the upper meander. 

• Apex of the meander (Ap) – a point on the axial line which is most remote 

from the midpoint of the spacing line. 

• Meander height (IA) – distance between the midpoint of the spacing line 

and the apex of the meander. 

• Index of meander skewness =ε tg mγ , where mγ  - the angle, formed by 

the meander height line and a line which is normal to the spacing line in 

its midpoint. Thusε  is the tangent of the angle mγ . 

In addition, as a characteristic of incomplete meandering, the ratio of meander 

path length between the beginning and the end of a cutoff (lb) to the length of the cutoff 

measured along a straight line (lc) is used (Fig. 2.18 C). The value of this ratio indicates 

that the cutoff formed at an early stage of meander development when it is roughly equal 

to unity, and that the cutoff formed at a later stage of meander development when it is 

about equal to zero. 

The above listed characteristics define the form and size of meanders in plan 

view. In addition, such characteristics as channel width, width of the meander belt and 

floodplain width, depths in pools and riffles and the height of the floodplain are used. As 

reported by Hey (1984) for mathematical models of directional change characteristics 

such as azimuth, amplitude meander spectra and others are used. These characteristics 

are applied for various modelling techniques which are reviewed by Ferguson (1973). 

However, there are some practical and interpretative problems in the application of these 
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techniques to river meanders (Hooke, 1984). Moreover, they do not relate in a predictive 

way to the processes responsible for meander development and are essentially 

descriptive techniques applied to suites of meanders rather than individual examples. 

The simpler geometric characteristics offer a more practical solution to the problem of 

defining the plan shape of river meanders (Hey, 1984), especially if few meanders are 

considered in a group. 

The geometric characteristics of meanders are probably the simplest and most 

widely used but their exact definition and details of methods employed often vary 

between users and these details are also often not given in papers (Hooke, 1984). This 

applies particularly to wavelength, radius of curvature, sinuosity, meander belt width and 

meander amplitude. Therefore it can be difficult to compare the results of analyses 

presented by different authors. 

 

2.4.1.3. Schemes of meander evolutions 
 

According to Hooke (1977, 1984) meandering rivers change their position by 

primary elements of movement (extension, translation and rotation) and double or triple 

combination of these elements (Fig. 2.19). Each type of adjustment is uniquely defined 

by the vector of movement of points of inflexion and the apex and by the change in 

orientation of the apical line (Hooke, 1977). Statistical treatment of data from streams in 

East Devon, UK by Hooke (1977) resulted in the observation that 55% of studied bends 

involved some combination of extension and translation. Rotation is relatively infrequent 

but development of a secondary lobe is quite common. Also Hooke (1977) has 

concluded, that for the streams considered, in general, change around bends tends to be 

gradual and consistent in time, taking place by progressive erosion and deposition rather 

than by catastrophic change causing cut-offs or complete alteration of the direction of 

movement. These results were obtained via analysis of cartographic evidence of 

movement of channels. The classification of possible change of meander form on the one 

hand is detailed and shows wide variety of possible meander change but, on another 

hand, it does not give any conditions under which specific types of change will occur. In 

other words, it is not clear how to use the classification to predict meander change, rather 

it is useful to describe changes of meander form in the near past time. 

 



 52

 
 

Figure 2.19: Models of meander planform change (from Hooke, 1984) 

 

Another descriptive scheme is proposed by Brice (1974) for the evolution and 

classification of meander loops (Fig. 2.20). This scheme is defined by circle 

combinations and analysis of sequences of change. The common sequence is an increase 

in height of a simple symmetrical loop, then the development of asymmetry via growth 

of a second arc, prior to evolution into a compound loop. From the description of Brice 

(1974) it could be emphasized that incision and vegetation are factors of influencing 

cutoff and elongation. Both incision and vegetation inhibit cutoffs and thus permit the 

elongation of meander loops. Elongated simple loops correspond to E and F within the 

Brice (1974) scheme. 
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Figure 2.20: Meander loop evolution and classification scheme proposed by 

Brice (1974). Flow direction from left to right. 

 

More practical is Hickin’s (1974) investigation of meander scrolls on the Beatton 

River. By studying the surface configuration of floodplains, notably meander scrolls and 

the inferred erosion pathlines obtained from them, he considered the development of 

typical meander patterns (Fig. 2.21). Erosion pathlines provide information about the 

direction in the development of a meander, while the distance between ridges and 

dendrochronological methods can provide important information about the absolute ages 

of the ridges and previous hydrological conditions. In Fig. 2.21 channel types D, E, and 

F are the upstream-oriented counterparts of types A, B, and C. 
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Figure 2.21: The development of typical meander patterns 

(from Hickin, 1974) 

 

Hickin (1974) proposed four general principles of meander development. 

However, he noticed that the principles were developed for the Beatton River and might 

therefore not be generic. One general principle of meander development is based on the 

relationship between the ratio r/w and the rate of lateral migration. Three other general 

principles given by Hickin (1974) are as follows: 

1. During the early stages of meander development, the points of channel 

inflection are essentially fixed, and lateral migration of the channel bend 

invariably results in a reduction of the radius of channel curvature along 

the principal erosion-axis. 

2. The radii of curvature of adjacent meander loops tend to be inversely 

related; that is, an increase in the radius of curvature of a given bend often 

results in a decrease in the radius of the adjacent meander bend. 



 55

Consequently the rate and direction of lateral erosion on a given channel 

bend are not independent of the erosional activity in adjacent bends. 

3. Although it is generally accepted that a maximum rate of concave bank 

erosion occurs just downstream of the axis of symmetry of a point bar, it 

should nevertheless be recognized that, in many cases, a channel will 

respond to a critical curvature condition by eroding the concave banks on 

the upstream limb of a channel bend. 

Kondrat’yev (1968) provided explanations of meander development on the basis 

of changes in the angle of turn and the symmetry of meander (Fig. 2.22). In the early 

stages of development the angle of turn is close to 90o. In this case the pool hollow is 

shifted somewhat downstream. The symmetry is disturbed with a further increase in the 

angle α . The further development of a meander, and an increase in the angle of turn, are 

accompanied by the splitting of the pool, as shown at position 3 in Fig. 2.22. At positions 

4, 5, and 6 two neighbouring meanders, located above and below, draw together and the 

end result is a breach of the neck connecting them. 

 

 
 

Figure 2.22: Development of a meander in free meandering 

(from Kondrat’yev, 1968) 
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On the basis of long term investigations of meandering rivers in Britain, Hooke 

(1995) has proposed a scheme describing the sequence of change in meander form (Fig. 

2.23), which is similar to the scheme of Kondrat’yev (1968). 

 

 
 

Figure 2.23: Qualitative model of sequence of change in meander form 

(from Hooke, 1995) 

 

Hooke (1995) proposed the following description of meander stages: 

1. New bends – these develop from straight reaches; the current becomes 

directed against the bank and the bend develops rapidly. 

2. Migrating bend – after a certain stage, a moderately curved bend is 

formed. It usually has a riffle symmetrically across the channel at the 

entrance to the bend and flow is direct against the bank just downstream 

of the apex. 

3. Growth bends – many exhibit a later stage of growth. These bends are 

often smoothly curved and the main current hugs the outer bank for much 

of its length. 

4. Double-headed bends – the flow becomes deflected against the bank 

upstream of the original apex and erosion is initiated there, leading to 
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development of a lobe. The bends become too long for sediment to be 

carried right through the pool and a second riffle is deposited in the 

central zone. 

5. Cutoff – this occurs by continuation of erosion in the lobes such that 

neighbouring lobes intersect. 

Chalov et al. (1998) have given the following description of the stages of 

meander evolution, based on using the criterion lm/Lm, which was proposed by 

Makkaveev (1955). If lm/Lm>1.6 then the hydraulic prerequisites occur for either cutoff 

or transformation to another meander form. Free meanders in their evolution pass several 

stages, which are characterized by specific features of lateral migration (Fig. 2.24). 

 

 
 

Figure 2.24: Scheme of evolution for free meandering channel 

(from Chalov et al., 1998) 
I-V – stage of meander evolution; 1, 2, 3 – schemes of evolution when lm/Lm >1.6; а, b, c – 

variants of evolution of folded meanders; А, B – variants of evolution of elongated meanders. 

Thick lines refer to zones of bank erosion. 

 

At stage I a meander is weakly curved, the degree of development is 

1.15<lm/Lm<1.30; and in general a meander migrates due to downstream progression. 

Because the curvature of the channel and the transverse slope are small, secondary flow 

is poorly developed and so lateral erosion is slow. The second stage of the meander 
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(1.30<lm/Lm<1.50) is noted by activation of both sideways and lengthwise migration. At 

the third stage the degree of development is about lm/Lm~1.6. The rates of migration then 

attain their maximum values. When the degree of development is greater than 1.6, the 

fourth stage is obtained. Evolution of meanders at this stage may vary. The first variant 

is cutting off. Cutoffs form along the lowest part of floodplains, where the maximum 

slope is located. This maximum value sometimes exceeds the slope in the meandering 

channel by two to three times. In this case the last and fifth stage is either when the old 

channel becomes abandoned or the old channel becomes a branch, thereby forming 

floodplain multibranching. The latter planform is characteristic for rivers in which the 

dominant discharge occurs when the floodplain is submerged (Chalov, 1979). When 

lm/Lm>1.6, vegetation, incision into the floodplain and clay soils can inhibit cutoff. 

Further meander evolution occurs according to second or third schemes (Fig. 2.24). A 

second scheme of evolution is the transformation of meanders into meanders with a 

folded form in the fourth stage. In this case development is the same as the 4, 5 and 6 

positions in Fig. 2.22 of Kondrat’yev (1968). When banks consist of clay, due to their 

high resistance to erosion, meanders can acquire an elongated form (Fig. 2.24 3). 

Channel reaches between two adjacent apices have straight, relatively stable banks. In 

the apex of the meander, the zone of erosion is localized along a short section. After this 

stage three variants are possible. First stabilization of the channel and banks may occur, 

the second possibility is chute cutoff, and the third is neck cutoff. The type of cutoff is 

determined by the conditions of dominant (channel forming) discharge flow and also by 

the height, relief, vegetation and structure of the floodplain (Chalov, 1979). In all cases 

when lm/Lm>1.6, rates of migration gradually decrease. Therefore, the first period of 

evolution is two to three times less than the second period – until either cutoffs occur or 

the stabilization of elongated meanders is obtained. (Chalov, 2000) 
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2.4.2. Braided rivers 
 

2.4.2.1. Why do rivers become braided? 
 

Lane (1957) reported that there are two main causes of river braiding. The first is 

overloading, that is when the river is supplied with more sediment than it can carry, such 

that sediment is deposited from the flow. The second cause is due to a steep slope. With 

steep slope bars and islands readily form in a wide and shallow channel. Indeed, studies 

of natural rivers, flume and theoretical studies (e.g. Leopold and Wolman, 1957; 

Schumm and Khan, 1972; Parker, 1976) confirm that braiding develops when the slope 

is above a threshold value (see section 2.3.). Also theoretical studies (e.g. Parker, 1976; 

Chang, 1979) suggest that with increasing slope the degree of braiding increases. 

However, braiding may occur with low slopes (e.g. the Brahmaputra River 

(Coleman, 1969)). Possibly the critical factor is a high stream power or high specific 

stream power rather than simply a steep slope (Knighton, 1998). In addition, highly 

erodible banks and a highly variable discharge have been suggested as key factors. Shen 

and Vedula (1969) suggested that the basic cause of braiding is the following principle: 

in a narrow stream, the entire bed can act as a unit to aggrade or degrade according to the 

difference between the sediment supply and capacity of the flow for transport. When a 

stream cross section becomes too wide (due to excess bank erosion during a high flow, 

or weak bank resistance, or both), the entire channel cross section cannot act as a single 

unit, and thus part of the wide channel may be covered by numerous small channels and 

a braided stream occurs. Indeed, theoretical analyses (Engelund and Skovgaard, 1973; 

Karasev, 1975; Fredsøe, 1978; Fukuoka, 1989) indicate that braiding occurs when the 

width to depth ratio > 50. 

As noted by Knighton (1998), none of these conditions appears by itself to be 

sufficient to produce braiding, although overloading, erodible banks and a relatively high 

stream power are probably necessary. Where these factors occur in conjunction, as in 

proglacial areas, braiding tends to be most prevalent. 

 

2.4.2.2. Geometrical characteristics of braided channels 
 

Bridge (1993) summarized some of the most widely used measures of the degree 

of braiding (braiding index) (Table 2.5). He divided them into two general categories. 

The first category considers the mean number of active channels or braid bars per 
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transect across the channel belt. The second category considers the ratio of the sum of 

channel lengths in a reach to a measure of reach length. Bridge (1993) noted that 

classifications of the first type are more desirable, because firstly, they are related to the 

‘mode’ of alternate bars and secondly, measurements of the second type are a combined 

measure of channel-segment sinuosity and degree of braiding. Consequently, it is 

preferable to determine separately the braiding index and average sinuosity. 

In comparison with meanders, the geometrical properties of braided channels 

have received little attention from geomorphologists. In fact, the braiding index is not 

necessarily constant in the short term and tends to decrease at high stages (Thorne, 

1997). Thorne (1997) has reviewed two types of braiding indices and concluded that 

ideally, both a measure of flow division and a measure of total sinuosity should be used 

to define the planform morphology of a braided reach. 

 

Table 2.5: Braiding indices (from Bridge, 1993) 

sum of mid-channel lengths
of all channels in reach

Braid channel ratio = 
length of mid-line

of widest channel

Friend and Sinha (1993)

Mean number of active channels per transect.
Mean number of active channel links in braided network.

Ashmore (1991)

total active channel length
Total sinuosity = 

valley length

Richards (1982),
Robertson-Rintoul and 
Richards (1993)

total length of bankfull channels
distance along main channel

Mosley (1981)

Length of channel segments
Total sinuosity = 

channel belt length

Hong and Davies (1979)

Number of braids per mean curved channel wavelength = 
mode – 1 (see above)

Rust (1978)

Mode = number of rows of alternate bars (and sinuous flow 
paths) = 2 times the number of braid bars and number of side 
(point) bars per transect

Engelund and Skovgaard (1973), 
Parker (1976), Fujita (1989)

Average number of anabranches bisected by several transects 
perpendicular to flow direction

Howard et al. (1970)

2 (sum of lengths of bars or islands in a reach)
centreline reach length

Brice (1960, 1964)

Braiding indexAuthor

sum of mid-channel lengths
of all channels in reach

Braid channel ratio = 
length of mid-line

of widest channel

Friend and Sinha (1993)

Mean number of active channels per transect.
Mean number of active channel links in braided network.

Ashmore (1991)

total active channel length
Total sinuosity = 

valley length

Richards (1982),
Robertson-Rintoul and 
Richards (1993)

total length of bankfull channels
distance along main channel

Mosley (1981)

Length of channel segments
Total sinuosity = 

channel belt length

Hong and Davies (1979)

Number of braids per mean curved channel wavelength = 
mode – 1 (see above)

Rust (1978)

Mode = number of rows of alternate bars (and sinuous flow 
paths) = 2 times the number of braid bars and number of side 
(point) bars per transect

Engelund and Skovgaard (1973), 
Parker (1976), Fujita (1989)

Average number of anabranches bisected by several transects 
perpendicular to flow direction

Howard et al. (1970)

2 (sum of lengths of bars or islands in a reach)
centreline reach length

Brice (1960, 1964)

Braiding indexAuthor
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Another way to characterize the geometry of braided rivers is ordering of 

channels and bars. There are various schemes to assign such orders which are 

summarized by Bridge (1993) (Fig. 2.25). As Bridge (1993) noted the existing channel 

and bar ordering schemes are difficult to apply and are not defined consistently. 

Williams and Rust (1969) proposed a system of braided channel classification with three 

levels of channels and bars (Fig. 2.25 A). First order channels formed the main 

anabranches of a braided system that flow around first order islands or bars. Second and 

third order channels in the approach by Williams and Rust (1969) dissect these first 

order bars to form second and third order segments of bars. The distinction between the 

second and third order channels is unclear (Bridge, 1993). The second and third order 

bars that they form are actually only dissected segments of first order bars, and these 

second and third order channels may well contain mid-channel bars of their own. 

 
Figure 2.25: Channel and bar ordering schemes of (A) Williams and Rust 

(1969), (B) Bristow (1987), (C) Bridge (1993). (Redrawn from Bridge, 1993) 
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Bridge (1993) put forward a two level channel and bar hierarchy system, in 

which the largest scale of bars or islands in a system and their adjacent channels are first 

order, but unlike Williams and Rust's (1969) scheme, all of the channels cutting across 

first order bars are second order. However, the dissected segments that the second order 

channels form are not themselves second order bars. Second order bars are defined as 

those which form in and at the termination of second order channels (Fig. 2.25 C). 

In a study of channel migration and deposition on the Brahmaputra River, 

Bangladesh, Bristow (1987) defined a three level channel hierarchy system (Fig. 2.25 B). 

The entire river system makes up the first order channel, with the channel margin being 

defined by the outermost river banks. First order channels may be comprised of several 

second order channels that form the main anabranches of the system, and were observed 

on the Brahmaputra River to display a variety of channel patterns. These second order 

channels may themselves contain third order channels such as cross-bar channels. 

Bristow (1987) found that the bars around which the channels divide and rejoin, scale 

with the bankfull depth and width of each channel. Further work on the Brahmaputra 

River by Thorne et al. (1993) confirmed the existence of Bristow's (1987) channel 

hierarchy system. Thorne et al. (1993) went on to describe in more detail the nature of 

the hierarchy system and the way in which islands, bars and various bed features were 

scaled by the various channel orders. 

 

2.4.2.3. Bar types and their evolution 
 

Various types of bars and islands have been identified in the literature with an 

accompanying proliferation and confusion of terminology (Hooke, 1997). Reviews are 

provided by Miall (1977), Church and Jones (1982) and Bridge (2003). One early and 

simple scheme was proposed by Popov (1965) where three types of bars are presented. 

Popov (1965) distinguish A) detached alternate bars; B) mid-channel bars and C) 

detached point bars (Fig. 2.26). Detached alternate bars have forms that are triangular in 

plan (Fig. 2.26 A). Their surface is weakly fixed and is composed of fine alluvium. In 

some cases it is possible that bars remain in the same position for a long time, allowing 

the formation of floodplain alluvium on their surfaces. The elevation of bars increases 

downstream and from the bank to the axis of flow. The height of the bars is lower than 

the height of the banks. Mid-channel bars (Fig. 2.26 B) frequently have a tear-shaped 

planform. Shifting of these bars may occur either downstream or upstream and also 

sideways. The flat part of the bar is depositional and steep parts are eroded. For an 
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estimation of bar shifting overlay maps could be used. Detached point bars and islands 

occur under conditions of incomplete meandering and sometimes under free meandering. 

These bars and islands have crescent-shaped planforms (Fig. 2.26 C). 

 

 
 

Figure 2.26: Types of bars, proposed by Popov (1965): (A) detached 

alternate bars; (B) mid-channel bars; (C) detached point bars. Adapted 

from Kamenskov (1987) 

 

For gravel-bed rivers, Church and Jones (1982) distinguished three main bar 

types: ‘hydraulic element’ bars, ‘storage element’ bars and bars produced by non-fluvial 

effects. The first type is produced by river bed deformation and that type constitutes 

important flow resistance elements but may store relatively little sediment. In contrary, 

the second type of bars comprises the main volume of stored sediment. Although the 

third type is produced by non-fluvial effects, it may be incorporated into the channel 

pattern. In nature, combinations of these main types may occur with compound form 

(Church and Jones, 1982). Church and Jones (1982) further distinguished the following 

bar types by such basic criteria as location within a channel, degree of elongation, 
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symmetry and presence or absence of distal avalanche faces: longitudinal and crescentic, 

transverse, medial, point and diagonal bars. The main evolutionary transformation from 

one type to another was presented as a scheme (Fig. 2.27) with a direction of stability 

change. As noted by Church and Jones (1982), the most common transformation is 

towards the diagonal form, although transformation from the diagonal form to the 

longitudinal form may also occur. Regarding stability, the attached diagonal bar is apt to 

be stable and therefore it is an important, stabilizing feature of the channel (Church and 

Jones, 1982) 

 

 
 

Figure 2.27: The main evolutionary transformations of gravel bars 

(from Church and Jones, 1982) 
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2.4.3. Anabranched rivers 
 

2.4.3.1. Why do rivers anabranch? 
 

Huang and Nanson (2007) noted that until recently a convincing theoretical 

explanation of anabranched rivers has remained elusive. They explained the formation of 

anabranches on the basis of the principle of the maximum flow efficiency of alluvial 

channels. The maximum flow efficiency is defined as the maximum amount of sediment 

that can be transported per unit stream power. In self-adjusting systems, when a river 

must transport supplied sediment load with available energy, the slope could be adjusted 

to maintain equilibrium, but in the case when the slope can not be increased because the 

valley slope is particularly low, a river should increase its efficiency in order to transport 

supplied sediment load. This increasing of flow efficiency could be achieved by 

developing in-channel islands and ridges to reduce channel width/depth ratios in 

accordance with the quantitative theory proposed by Huang and Nanson (2007). 

However, in that theory the relationship between the width/depth ratio and the transport 

capacity is complex because, beyond a certain point, an increase in the number of 

anabranches can cause a decrease in the transport capacity. Therefore anabranching is 

usually dominated by one or two major anabranches that achieve most of the transport 

efficiency (Huang and Nanson, 2007). Such interpretation could be applied also for 

braided river formation when braiding occurs at low slopes. Therefore, in regard to 

anabranching, Huang and Nanson (2007) have noted that the adjustment can lead to 

anabranching only with the aid of suitable riparian vegetation, and with associated 

deposition of relatively cohesive sediments on the channel banks and islands. 

There are such processes as accretion and avulsion which are essential for forming 

and maintaining multiple anabranch channels (Nanson and Knighton, 1996; North et al., 

2007). Avulsion, as defined by Allen (1965), is the relatively rapid abandonment of a part 

or the whole of the river channel for some new course at a lower part on the floodplain. 

Causes of avulsion were reviewed by Jones and Schumm (1999), Makaske (2001), Bridge 

(2003), Slingerland and Smith (2004), and Stouthamer and Berendsen (2007). Jones and 

Schumm (1999) organized the causes of avulsion into four groups (Table 2.6). Also they 

introduced the concept of the avulsion threshold, i.e., a state of extreme channel 

instability resulting in avulsion. The closer a channel is to the avulsion threshold, the 

smaller the event needed to trigger the avulsion. Triggers may determine the time, as well 

as the location of avulsion (Makaske, 2001). From their overview of the causes of 
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avulsion Jones and Schumm (1999) concluded that the processes which lead to the 

attainment of the avulsion threshold (sinuosity increase, delta growth, natural levee 

growth, alluvial fan growth and increase in delta convexity) are integral (intrinsic) to the 

river and appear to be related to sedimentation. If the rate at which those processes 

proceed is a predictable function of sedimentation rate, then a relationship between 

avulsion frequency and sedimentation rate may exist in some settings. Other processes 

(tectonism, sea- or lake-level change, mass failure, aeolian dune migration, log jams, 

vegetative blocking and presence of animal trails) are the result of external (extrinsic), 

non-fluvial influences. In settings where these types of processes occur, avulsion 

frequency may be less predictable and may be unrelated to sedimentation rate (Jones and 

Schumm, 1999). 

 

Table 2.6: Causes of avulsion. (from Jones and Schumm, 1999). 

* Sa is the slope of the potential avulsion course, Se is the slope of the existing channel. 
† In settings where the up-river gradient is greater than the gradient of the lake floor or shelf 
slope, base-level fall may result in river flow across an area of lower gradient. 

 

The somewhat different process of channel relocation is described by 

North et al. (2007) which they refer as channel obtrusion. The difference between 

obtrusion and avulsion is that obtrusion is a gradual formation of an alternative channel. 

By examples from dryland anabranching rivers, North et al. (2007) showed that in some 

rivers there is no evidence of abrupt avulsions. Anabranches instead seem to occur 

Processes and events that create instability and lead toward 
an avulsion threshold, and/or act as avulsion triggers 

Can act 
as 

trigger? 

Ability of channel to 
carry sediment and 

discharge 
a. Sinuosity increase (meandering) No Decrease 
b. Delta growth (lengthening of 
channel) No Decrease 

c. Base-level fall (decreased slope†) No Decrease 

Group 1. Avulsion 
from increase in 
ratio, Sa/Se*, owing 
to decrease in Se 

d. Tectonic uplift (resulting in decreased 
slope) Yes Decrease 

a. Natural levee/alluvial ridge growth No No change 
b. Alluvial fan and delta growth 
(convexity) No No change 

Group 2. Avulsion 
from increase in 
ratio, Sa/Se, owing to 
increase in Sa c. Tectonism Yes No change 

a. Hydrological change in flood peak 
discharge Yes Decrease 

b. Sediment influx from tributaries, 
increased sediment load, mass failure, 
aeolian processes 

Yes Decrease 

c. Vegetative blockage No Decrease 
d. Log jams Yes Decrease 

Group 3. Avulsion 
with no change ratio, 
Sa/Se 

e. Ice jams Yes Decrease 
a. Animal trails No No change Group. 4. Other 

avulsions b. Capture (diversion into adjacent 
drainage) - No change 
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incrementally over a great number of flood events by the slow expansion of selected 

floodplain-surface channels until they become large enough to capture bankfull flows 

(North et al., 2007). 

 

2.4.3.2. Geometry and evolution of anabranched channels 
 

To describe the geometry of an anabranched system one could use braiding 

indices similar to those for braided rivers (see Table 2.5 for various ways to define 

braiding indices). For example, Burge and Lapointe (2005) have used a braiding index for 

the wandering section of the Renous River (Canada) and Nanson and Knighton (1996) 

have used the ratio of island length to channel width for types and subtypes of 

anabranching rivers. Tooth and Nanson (2004) as a measure of the degree of 

anabranching used the number of channels across a section. However, they noted that 

defining the number of channels involves a degree of subjectivity. 

Chalov (2000) has proposed a scheme of erosion and accumulation locations in 

anabranched rivers on the basis of geometrical characteristics. If the form of islands 

satisfies the condition li=3-4wi (li – length of island, wi – width of island), then the 

locations of erosion correspond to those as in a slightly widening meander (Fig. 2.28 A). 

Usually erosion occurs in the upstream parts of islands and opposite downstream banks. 

However, in gravel-bed rivers and in rivers with large bedload, island shoals form in the 

upstream part. In this case the island has a spindle-shaped form (Fig. 2.28 B). Locations 

of erosion occur only on the banks. When islands are elongated (li>3-4wi), smaller 

islands may occur in each branch, thereby forming secondary branching (Fig. 2.28 C). 

When li>3-4wi the sideway development of islands dominates (Fig. 2.28 D). If the length 

of the branch Ll =1.4-1.6, where L = the length of straight branch, then discharges are 

redistributed and the greater part of the flow goes into the straight branch, the winding 

branch become shallow, and the processes recur. As a result, fan branching may occur. 

Each branch is in a different degree of development and differs from others by its 

intensity and length of erosion. 
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Figure 2.28: Locations of erosion and accumulation: A and B – simple 

branching; C – with secondary branching; D – fan-like branching. 

1 – erosion; 2 – accumulation. From Chalov (2000). 
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2.5. BANK EROSION ESTIMATION AND PREDICTION METHODS 
 

The literature reveals that a wide variety of methods for bank erosion estimation 

and prediction have been formulated. Each of these methods has their own particular 

advantages and limitations. All methods could be divided into empirical methods and 

models. In turn, the models could be divided as kinematic and dynamic (Ferguson, 

1984a, Mosselman, 1995, Piégay et al., 2005). 

 

2.5.1. Empirical methods 
 

Studies using geometrical and flow characteristics of channels have yielded a 

number of empirical relationships with bank erosion rate. These studies reviewed by 

Kondratiev et al. (1982), Knighton (1998) and recently reviewed by Richard et al. 

(2005). A summary of empirical relationships for bank erosion rate is presented in Table 

2.7. From this table it can be seen that the majority of empirical relationships are for 

geometrical characteristics. Relationships between erosion rate and the curvature radius 

to channel width ratio have been widely used since studies by Hickin and Nanson (1975, 

1984). They demonstrated that the erosion rate (C) normalized by width (w) increased 

with decreasing r/w to a maximum when 2<r/w<3 (Fig. 2.29). Hooke (1997) compiled 

data from various sources to represent the relationship between erosion rate and 

curvature, which confirms the finding by Hickin and Nanson (1975). Hickin and Nanson 

(1975) and Nanson and Hickin (1983) obtained channel migration rates C for the Beatton 

River by applying the methods of dendrochronology to trees growing on the scrolls. 

They found the following equations: 

C=2.0 w/r (w/r ≤ 0.32)     2.6 

C=0.2 r/w (w/r>0.32)     2.7 

Hickin and Nanson (1984) further suggested that the coefficients in these 

equations are closely related to the texture of the bank materials. An amount of point 

scatter occurs in these relationships and partly is explained by variations in factors such 

as stream power and outer-bank sediment size, and may in part be related to other 

aspects of bend geometry (Knighton, 1998). 
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Table 2.7: A summary of empirical relationships between bank erosion rate 

and other parameters (after Richard et al. (2005) with additions) 
Source Significant relationship Notes 

Hickin and Nanson (1975), 

Nanson and Hickin (1983) 

C ~ r/w Also identified bank texture, 

planform, and sediment supply rate as 

important 

Hooke (1979) C ~ Qpeak, API API = Antecedent precipitation index 

Hooke (1980) C ~ A (drainage area) 

C ~ % silt-clay in bank 

 

Begin (1981b) C ~ r/w  

Kondratiev et al. (1982) C ~ w  

Popov (1982), 

Krutovskiy (2002) 

C ~ lm/Lm  

Berkovich and Vlasov (1982) C ~ Q, S, h and D50  

Nanson and Hickin (1983) C ~ Q and S 

C ~ w and S 

C ~ Q, S and D50 

C ~ w, S and D50 

 

Hickin and Nanson (1984) C ~ r/w Also identified bank resistance as 

important 

Nanson and Hickin (1986) C ~ Q, S, D50, w, h, ω  and 

Ω  

 

Biedenharn et al. (1989) C ~ r/w  

Thorne (1991) C ~ r/w Also identified bank material and 

geologic controls as important 

Antropovskii (1991) C ~ w  

Klaassen and Masselink (1992) C ~ w, r/w Assuming that bank resistance and 

sediment concentration do not vary. 

Bank vegetation was not important 

MacDonald (1991) C ~ h  

Xu (1997) C ~ BI BI – braiding index 

Lawler et al. (1999) C ~ L L = distance downstream. Also found 

stream power and bank material to be 

important 

Walker and Rutherfurd (1999) C ~ A, Q, S, d, w and Ω  Also identified bank resistance as 

important 

Rutherfurd (2000) C ~ Q  

Shields Jr. et al. (2000) C ~ w, r/w Comparing pre- and post-dam rates 

Van De Wiel (2003) C ~ A  

Richard et al. (2005) C ~ Q, S, D50, w and Ω  Comparing pre- and post-dam rates 
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Figure 2.29: A relationship between average migration rate and the ratio of 

radius of curvature to channel width. 

 

It is nevertheless difficult to consider the radius of curvature of the channel as the 

sole factor governing bank erosion. This difficulty is encapsulated in Fig. 2.29 wherein it 

is evident that two distinct data sets plot with dissimilar r/w peaks.  Indeed, Furbish 

(1988, 1991) showed that the migration rate varies with bend length as well as curvature. 

In his studies the average migration rate increases monotonically with average curvature 

if differences in bend length are taken into account. Popov (1982), on the basis of 

extensive experimental studies, noticed that in the course of the development of free 

meanders, erosion rates increase until a value of lm/Lm=1.6 (lm=meander or bend length) 

is reached, and then decrease. For example, Krutovskiy (2002) using data from a number 

of bends in the Chulym River (Western Siberia, Russia), has plotted a curve which 

shows a relationship between maximum erosion rate and lm/Lm (Fig. 2.30). Popov (1982) 

also found that rates of meander migration are directly proportional to channel depth and 

that with an increase in the frequency of floodplain submerge, cutoffs occur in earlier 

stages of meander development (for incomplete meandering). 
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Figure 2.30: A relationship between maximum bank erosion rate (C) and 

lm/Lm for the Chulym River (from Krutovskiy, 2002) 

 

The scatter in Fig. 2.30 could be due to the variation in resistance of bank 

material to erosion. For example, from observations by Kamenskov (1987) on the Ob 

and Chulym rivers (Western Siberia), erosion of terraces occurs five to ten times more 

slowly than erosion of floodplain banks, which are lower in height than terraces, under 

the same degree of meander development. Thus, the relation between bank erosion rate 

and degree of meander development shown in Fig. 2.30 may be without scatter only in 

the case of uniform bank structures and with constant discharge and sediment load in all 

meander bends. Therefore, rates of bank erosion should depend on the degree of 

meander development, bank material resistance to erosion, bank height, water discharge 

and sediment load. 

Findings by Hickin and Nanson (1975) and by Popov (1982) show that bank 

erosion rates have nonlinear relations with the degree of meander development (r/w and 

lm/Lm). Kamenskov (1987) provided the following explanation of that phenomenon. As 

the degree of meander development is increased, the slope of the water surface is 

decreased which in turn leads to a reduction of water velocity. But, in the early stages of 

meander development the asymmetry of the flow pattern is increased such that 

maximum flow velocities occur near to the outer bank. The action of this factor ceases to 

be effective as meander bends become more developed and the slope continues to 

decrease. Consequently, rates of bank erosion decrease. 
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Makkaveev (1955) determined that the hydraulic utility of the meandering form 

is lost when the local increase in the kinetic energy of flow becomes equal to the energy 

loss of the flow. Makkaveev (1955) defined this condition as lm/Lm=1.6. Bagnold (1960) 

on the basis of experimental results found that total resistance of the boundary reaches a 

minimum when r/w is approximately 2. At values of r/w below 2, Bagnold (1960) 

suggested that the flow along the inner boundary becomes unstable and breaks away 

from the boundary. Energy dissipation occurs and the flow loses energy. At values above 

2, there is higher resistance of the boundary. More recently Markham and Thorne (1992) 

have studied flow patterns in different zones of a bend and the development of flow 

separation. They have concluded that separation at the inner and outer bank is an 

important bend flow process for channels with small width to depth ratios. Outer bank 

separation occurs at a lower r/w value than that for inner bank separation. When flow at 

the inner bank separates, meander evolution switches from lateral growth to downstream 

migration. If outer bank separation occurs, the bend may divide in two (double heading) 

or cut off (Lagasse et al., 2004). 

Using a somewhat different empirical method, Hooke (1980) related bank 

erosion rates from several streams in Southeast Devon to catchment area (as a surrogate 

of discharge and width). The analysis reveals an approximate square-root relationship 

between bank erosion rate and catchment area. The equation obtained is: 

C=2.45A0.45      2.8 

where C = bank erosion rate (m yr-1); A = catchment area (km2). 

However, this relation is broad, since the many factors other than catchment area 

that might influence migration rates are not accounted for (Hasegawa, 1989a). Indeed, 

after investigating the relation between C/w and various parameters expected to 

influence bank erosion rate, Hooke (1980) found that bank erosion may be influenced by 

a complex combination of other factors (e.g. silt-clay content of bank material, presence 

of a gravel layer, width-depth ratio, radius of curvature, slope, bank height). Lewin 

(1987) reported that maximum bank erosion rates occur in ‘middle reaches’ of a 

catchment. In middle reaches stream power is quite high, indeed may be at its maximum, 

but material is alluvial and usually highly erodible because of maximum sand content in 

these reaches, whereas further downstream gradient declines and clay content tends to 

increase (Hooke, 1995). However, for Welsh rivers a high correlation between meander 

mobility and stream power was not found by Lewin (1987). Atkinson et al. (2003) have 

used a geographically weighted logistic regression model to study the relations between 

riverbank erosion and geomorphological variables, finding that the relation between 

stream power and bank erosion is inverse and direct for different positions along a river. 
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Berkovich and Vlasov (1982) developed an equation to calculate bank erosion 

rate where several parameters are related with bank erosion rate. In this equation the 

relationship between bank erosion rate (C) and mean annual discharge (Q), slope (S), 

grain size (D) and bank height (h) is given by: 

Dh
SQkC

2

=       2.9 

Using bank erosion rate data, Berkovich and Vlasov (1982) were able to define 

the values of the empirical coefficient (k), showing that it depends on discharge and 

channel width (Table 2.8). 

 

Table 2.8: Values of the empirical coefficient k in the equation of Berkovich 

and Vlasov (1982) (from Makkaveev and Chalov, 1986) 
Q, m sec-1 w, m k, (sec m-3) 

>5000 >15000 0.8*10-5-1.1*10-5 

5000-1000 1200-600 8.5*10-5-9.2*10-5 

1000-500 350-200 3.0*10-4-3.4*10-4 

500-300 150-100 5.1*10-4-5.8*10-4 

<300 <50 5.0*10-3-6.0*10-3 

 

Chalov (2000) pointed out that this method considers also the relation between 

bank erosion rate and bank height. From equation 2.9, the higher the bank, the lower the 

rate of bank erosion. Antropovskii (1991) has used the method of Berkovich and Vlasov 

(1982) and other two methods to estimate the rate of lateral migration in the Amur River 

and for several rivers in Western and Middle Siberia. One method is based on 

constructing regional relations of the equiprobable values of the specific coefficients of 

the lateral migration rate (Kc) and river width (Kw). He found that for morphologically 

uniform stretches of the Amur River Kc=Kw
1.70, whereas for morphologically uniform 

stretches of rivers in the southern part of Western and Middle Siberia Kc=1.50Kw-0.50. 

However, it is not clear how these coefficients are defined and Antropovskii (1991) did 

not provide a description. Another method is based on the assumption that the ratio of 

the lateral migration rate to the river width at the edges of the low-water banks, 

characteristic for a morphologically uniform stretch, remains the same during the design 

time, i.e. C/w*100%=const. Also Antropovskii (1991) used the probability curve 

C/w*100%=f(p), which was plotted from the data on the investigated river reaches under 

natural conditions (Fig. 2.31). Then in the calculations the probability p=50% is used to 

determine the average long-term rates (“normals”) of lateral migration. 
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Figure 2.31: Probability curve of the maximum lateral migration rates of the 

main channel of the Lower Katun River (in % of the river width w) during 

the period from 1970 to 1987. (from Antropovskii, 1991) 

 

For the last two methods, channel width was determined from empirical 

hydraulic geometry relations, notably the relations which were suggested by Altunin 

(1958) and Kroshkin (1984). Antropovskii (1991) has used these methods to predict rates 

of bank erosion under conditions which will occur after the construction of a dam. By 

comparison with measured bank erosion rates, all methods give lower values of bank 

erosion rate with a difference of c.20-25% from the measured rates. 

In comparison with meandering rivers, for braided rivers it is more difficult to 

construct a relationship of plan-view characteristics (braiding indices) and rates of bank 

erosion, because these parameters are more changeable in time and space than for 

meandering rivers. Therefore, methods to predict lateral bank erosion for braided rivers 

are still very poorly elaborated. However, in the literature there is at least one example 

with somewhat high correlation between braiding index and bank erosion rate which was 

presented by Xu (1997) for the middle Hanjiang River (Fig. 2.32). From this relationship 

bank erosion rate is likely to be higher in river reaches with higher values of braiding 

index, i.e. with greater number of mid-channel bars. 
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Figure 2.32: A relationship between braiding index and bank erosion rate. 

Negative values indicate bank deposition. (from Xu, 1997) 

 

2.5.2. Kinematic models 
 

Ferguson (1984a) defined kinematic models as those which involve geometry 

and time. From this definition, approaches based on historical analysis also are kinematic 

models, although in the literature authors refer to kinematic models as only those studies 

which are based on relations between bank erosion rates and curvature. 

Prediction of meander migration may be made using two or more previous maps 

or aerial photographs by comparison of graphical materials of different dates and then 

extrapolation of lateral erosion rates into the future. Ideally the maps should be modern 

as historic maps are often inaccurate or only indicative of the position of banklines. In 

recommendations given in Anonymous (1985) it is suggested that graphical materials 

should have dates with intervals of not more than five to seven years and one map should 

be recent. Brice (1971) stated that erosion rates defined from analysis of graphical 

materials can be used for prediction if the period between different dates include a 

representative number of high flows, during which most lateral erosion occurs. The basis 

of this method is an assumption that rates of parameter change, which are determined 

from map overlays, will remain constant during the period of prediction. Comprehensive 

development of this method was performed recently by Lagasse et al. (2004). Authors 
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have used such parameters as outer bank radius of curvature, and the amount and 

direction of migration of the bend centroid. An example of using this method is 

illustrated in Fig. 2.33. The advantage of the method by Lagasse et al. (2004) is that the 

method can be easily used with GIS. In this case the subjectivity of measurements and 

calculations is reduced. However, it does not take into account that the relation between 

bank erosion rates and degree of development is nonlinear. 

 
Figure 2.33: Channel migration comparison for the Tombibee River near 

Amory (from Lagasse et al., 2004) 

 

The most widely used kinematic models are models that use the relation 

proposed by Hickin and Nanson (1975). As noted by Hooke (2003) tests in applying 

kinematic models produced realistic-looking meanders, with lobing and double-heading 

(Fig. 2.34). From applying this model to actual rivers (e.g. Gilvear et al., 2000) it has 

been concluded that the model replicates the major features of the meandering course. 
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Figure 2.34: Simulation of changes of a simple sine wave using Ferguson’s 

(1984a) model, producing asymmetry (from Hooke, 2003) 
blue curve – initial position of a channel; red curve – in the end of simulation. 

 

If maps and aerial photographs of previous dates are not available for a meander 

bend, and there are data available for adjacent bends which have similar conditions of 

meander development, then prediction may be realized using the following method 

[Anonymous, 1985]. The first step is to estimate the maximum erosion rate on the basis 

of available data. Using data from adjacent meander bends Сmax is calculated using: 

n

C
C

n

i
ii∑

== 1
max

)/( κ
,     2.10 

where Сi = maximum erosion rate in each meander, for which data is available; κi = 

coefficient of rate of meander development, which depends on the angle of turn α  

(Table 2.9); n = number of meander bends. 

 

Table 2.9: The coefficient iκ  in the equation 2.10 for different α  

(from Anonymous, 1985) 
α  10 20 30 40 55 70 85 100 125 170 215 240 260 

iκ  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.9 0.8 0.7 

 

The lateral shift of the bankline bankL  in a given cross section can be calculated 

by the equation of Kondrat’yev (1968): 

( )( )avgpoolavgiibank ddddTCL −−= maxmaxκ ,   2.11 

where idmax  = the maximum depth in a given cross section; poold  = the maximum depth 

in the whole meander bend; avgd  = the average depth of the two riffles which limit the 
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given meander bend; Т = the time period of the prediction. For this method a 

longitudinal profile along the thalweg is required. 

This equation can be also used if initial cartographic materials are available for a 

given meander bend. In this case Сmax is determined directly for a given meander bend 

by overlay of maps or aerial photographs. Also for this method a longitudinal profile 

along the thalweg is required. 

Kinematic models also are used for braided rivers. A review of kinematic models 

for braided rivers is given by Jagers (2003). As an example from studies in the braided 

Brahmaputra-Jamuna River, Mosselman et al. (1995) concluded that the correlation 

between annual erosion and magnitude and duration of the annual flood was weak, and 

that channel abandonment was clearly correlated with upstream bifurcation geometry. 

Therefore they simulated bank migration of individual channels in a braided river using a 

kinematic model. However, employing a kinematic model for braided rivers is more 

complicated than for meandering rivers because the model should be applied for each 

branch of a braided system. 

 

2.5.3. Dynamic models 
 

Dynamic models, in comparison to kinematic models, are based on descriptions 

of physical processes which influence bank erosion. Reviews of dynamic models were 

provided by Mosselman (1995) and more recently by Piégay et al. (2005) and Duan 

(2005). Klaassen et al. (1993) roughly divided dynamic models into categories in the 

order of increasing complexity: 

1) Meander models based on the equations for water flow and bank 

migration in curved equiwidth channels (e.g. Ikeda et al., 1981); 

2) Meander models based on the equations for water flow, sediment 

transport and bank migration in curved equiwidth channels (e.g. 

Johannesson and Parker, 1989; Crosato, 1990); 

3) Meander models based on the equations for water flow and bank 

migration in channels with arbitrary geometries (e.g. Mosselman, 1992). 

In the last decade also many papers which describe and develop dynamic models 

were published (e.g. Darby and Thorne, 1996; Sun et al., 1996; Meakin et al., 1996; 

ASCE Task Committee, 1998; Mosselman, 1998; Nagata et al., 2000; Seminara et al., 

2001; Darby et al., 2002; Lancaster and Bras, 2002; Olsen, 2003; Duan and Julien, 2005; 

Duan, 2005; Jang and Shimizu, 2005). Advantages and disadvantages of these models 
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were reviewed by Piégay et al. (2005). Mosselman (1995) discussed the utility of several 

2-dimensional, depth averaged models. He concluded that while mathematical models of 

river planform changes were able to help in understanding how river planform evolve, 

none of them had reached the level of being a generally valid and easy to apply software 

package suitable for routine application. The diversity of processes and forms present in 

natural, meandering rivers means that, even assuming that the governing equations are 

fully understood and are correctly formulated mathematically, a single computational 

model is unlikely to have universal validity. Computational models are developed to 

simulate specific, idealized representations of natural fluvial systems (Darby, 1998). 

Moreover, meander migration is usually simulated using a functional relationship 

between bank erosion rate and near-bank flow velocity, using a proportionality 

coefficient determined by calibration (Bridge, 2003). Another disadvantage is that 

dynamic models require a very large amount of high-quality input data to produce 

reliable results. Darby (2005) has reported a database for 62 British gravel-bed rivers. 

This database can be used to calibrate and verify morphological models. However, this is 

a tool only for these UK rivers. Piégay et al. (2005) have concluded that numerical 

modelling approaches have the potential of attaining reliable quantitative predictions but 

their use is not common in practical applications, and the costs involved in collecting the 

necessary data can be much higher than the stakes concerned. 
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CHAPTER 3: APPLIED METHODS AND USED VARIABLES 
 

3.1. INTRODUCTION AND DATABASE DESCRIPTION 
 

As it is reviewed in the previous chapter, there are three main approaches to 

estimate bank erosion rate – empirical approach, kinematic and dynamic modelling. In 

order to achieve a goal of this study – general recommendation for river crossing site 

selection, the first approach is the most appropriate, because it allows derivation of 

general relationships from the available data, and allows a certain level of confidence in 

conclusions about relationships between bank erosion rate and other parameters of a 

system where a river operates. However, in terms of system consideration, a statistical 

treatment of such data often result in so-called black box models. In black box models 

the internal components of the system are ignored or excluded from direct treatment and 

only the relationship between inputs to the system and outputs from the system are 

considered (Thomas and Goudie, 2000). Therefore from such results dependence or 

independence of bank erosion rate upon the considered parameters cannot be determined 

and only statistical correlation (or association) could be revealed. This is the main 

disadvantage of all “black box” models; a researcher will never be sure about causal 

mechanisms. At the same time “black box” models are widely used by engineers due to 

their simplicity in application without deep knowledge of bank erosion processes. 

In the subsequent sections descriptions of applied statistical methods are given. 

To realize these methods in this study Microsoft ® Office Excel 2003 and SPSS14.0 for 

Windows are used. Also variables, which are involved in the statistical analyses, are 

discussed below. All these variables are combined from as many publications as it is 

possible to collect at this stage. Data and a list of literature references are presented as a 

database in an appendix, and an interested reader could verify the obtained results. 

Bank erosion rate depends from different parameters and the problem of lateral 

river activity is multivariate. There are some efforts to describe the problem in physical 

processes framework. The most detailed empirical analyses of the relationships between 

bank erosion rate and underlying channel processes are provided by researches of Hickin 

and Nanson (1984) and Nanson and Hickin (1986). They proposed that bank erosion rate 

can be expressed by the following function: 

( )rhDwfC ,,,, 50ω= , 
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where ω  = stream power; w  = channel width; 50D  = mean sediment size; h  = bank 

height and r  = radius of meander curvature. 

They eliminated sediment transport as a significant variable because of lack of 

data and because for meandering rivers suspended load is from bank erosion, rather than 

vice versa. It was assumed that bank strength is determined primarily by the sediment 

size of the outer bank. Bank strength declines as grain size declines from cobbles to fine 

sand, with fine sand representing the minimum bank strength. Bank strength increases 

again with cohesion. 

Thus, by study of Nanson and Hickin (1986) it was assumed to use geometrical 

characteristics of a channel, stream power as a characteristic of driving force and 

sediment size as a characteristic of resistant force. 

To follow above described framework data are assembled in a database of bank 

erosion rate. The database at initial stage was based on data from Van De Wiel’s (2003) 

study, where information about bank erosion rates and drainage area is collected. 

Consequently the database was extended by new datasets and by adding extra parameters 

which a priori have influence to bank erosion rate. The entire list of parameters of the 

database with descriptions is given in Table 3.1. A part of parameters is essential for the 

database, other parameters were tabulated as available in the literature. Some of 

parameters characterize the same, for example for water discharge different values are in 

use (e.q. mean annual, bankfull). Such of dilemma, which parameters should be involved 

in analysis, is described with details in section 3.3. 

There are more than 900 observations in the database. However, it should be 

noted that the database is disparate itself as datasets are collected from different studies 

of bank erosion rate. Mostly datasets are for areas where bank erosion studies are 

performed either for scientific reason or for practical problems. Therefore, it is no 

wonder that majority of datasets from Northern American and Europian rivers. Also a 

huge portion of datasets added to the database for rivers of the former USSR. 
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Table 3.1: Description of information in the bank erosion database 

 
Name of column in the 

database Description Notes 

Source reference to literature source  
River name of river  

Location description of reach location (e.g. 5 
km from the river mouth, near 
Southampton)  

Country e.g. UK, USA, Laos.  
Part of World descriptive location, e.g. Asia or 

North America  
Channel type e.g. braided, meandering, straight.  
Classification sometimes authors have used 

name of channel types according to 
special classifications (e.g. 
equiwidth meandering according to 
Brice's classification)  

Type channel type used in 
Krasnoshchekov’s analysis  

Bank being eroded right or left  
Maximum bank erosion 

rate, m/year   
Average from maximum 

bank erosion rates on the 
reach, m/year   

Average bank erosion rate 
on the reach, m/year   

Rate values of bank erosion rate which 
are used in Krasnoshchekov’s 
analysis  

Rate_type the type of bank erosion (e.g. 
average or maximum or average 
from maximum, see above)  

A, km2 drainage area  
Maximum observed discharge, 

m3/s   
Average annual discharge, m3/s   

Cv for Qav coefficient of variation for average 
annual discharge  

Qbf (m3/s) bankfull discharge 
Bankfull width (m)  
Bankfull depth (m)  

Qbf Area (m2) cross-section area at bankfull 
condition 

Average Velocity at Qbf (m/s)  
Qbf Wetted Perimeter (m)  
Qbf Hydraulic Radius (m)  

Qbf Recurrence Interval (years)  

Parameters for bankfull 
condition 

Qmaf (m3/s) mean annual flood discharge 
Q 2-Year Peak (m3/s) two-year flood 

Q5.0, m3/s five-year flood 
Q95 (m3/s) ninety-fifth percentile flood 

various characteristics 
of water discharge 
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Table 3.1 (cont.) 

 
Effective Discharge Qe (m3/s) (see individual references for 

definition) 
Qe Width (m) ‘’ 
Qe Depth (m) ‘’ 
Qe Area (m2) ‘’ 

Average Velocity at Qe (m/s) ‘’ 
Qe Wetted Perimeter (m) ‘’ 

Parameters for effective 
discharge condition 

Q discharge value which are used in 
Krasnoshchekov’s analysis (note 
that average discharges were 
adjasted to bankfull) 

 

Water surface slope  
Channel slope, Sc  

Valley slope, Sv  

dimensionless 
parameters 

Avg. Floodplain or Valley Width 
(m)   

radius of curvature, m only for meandering rivers  
Width, m channel width if there is no 

indication of either bankfull width or 
effective width  

Depth, m channel depth if there is no 
indication either bankfull depth or 
effective depth  

width width values which are used in 
Krasnoshchekov’s analysis  

depth depth values which are used in 
Krasnoshchekov’s analysis  

width/depth width/depth ratio  
Bank height, m as given in individual sources  

Half wavelength, m only for meandering rivers  
meander length, m only for meandering rivers  

Bed D16 (mm)  
bed D50, mm  

Bed D84 (mm)  
Avg Bed Material Sorting (non 

dimension)  
Avg Bed Material %Si/Cl (%) % content of silt and clay in bed 

material 
Avg Bed Material %Sand (%) % content of sand in bed material 

Avg Bed Material % Gravel (%) % content of gravel in bed material 
Bed material e.g. gravel, sand, silt (descriptive) 

bedload transport, kg s-1  

Parameters for bed 

Bank D16 (mm)  
bank D50, mm  

Bank D84 (mm)  
Avg Bank Material Sorting (non 

dimension)  
bank silt-clay content, % % content of silt and clay in bank 

material  
Avg Bank Material %Sand (%) % content of sand in bank material 

Avg Bank Material % Gravel 
(%) % content of gravel in bank material 

bank material e.g. gravel, sand, silt (descriptive) 
bank vegetation e.g. grass, trees, shrubs 

(descriptive) 

Parameters for bank 
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Table 3.1 (cont.) 

 
riparian_vegetation categories of riparian vegetation 

which are used in 
Krasnoshchekov’s analysis 

 

Channel Manning's n   
Floodplain Manning's n   

P channel sinuosity  
Gravel layer absence of gravel layer in bank (0-

absent, 1-present)  
Period of measurement date from the begining to the end of 

measurements (e.g. 1972-1999)  
Timespan of measurement, yr how many years (e.g. 27 years)  

Used technique(s) which technique(s) was used for 
bank erosion measurement (e.g. 
historical sourses(from maps), 
erosion pins)  

Techniques categories of techniques which are 
used in Krasnoshchekov’s analysis  

Notes additional important information, 
which is not included in above-listed 
cells  

Taken from if data were taken from not original 
source (see the first cell), than 
reference is given from which it was 
taken  

 
in bold red – information which is essential and is collected for each river site. 
in bold blue – characteristics of bank erosion rate. So at least one from the list of 

characteristics is essensial for the database. 
in black – other characteristics of river sites which were tabulated as available in the literature. 
in red – information which is generated from the existing data to ease further analysis 
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3.2. APPLIED METHODS 
 

3.2.1. The t-test 
 

The t-test description and particularities of use are given, consistent with Sumner 

(1978) and Davis (1973). Usually the t-test is used to test the hypothesis that a sample of 

mean X  could have been drawn from a total population whose means is μ . It is thus a 

development of the standard error of the mean, and is given by: 

t = 
difference between sample and population means

standard error of the meant = 
difference between sample and population means

standard error of the mean  

n
X

σ
μ −

= ,     3.1 

where X  = mean of the sample; μ  = hypothetical mean of total population; n = number 

of observations and σ  = standard deviation of observations. The value of t obtained by 

this formula must then be compared with tabulated values of t for different probabilities. 

These are given in most statistical texts; herein statistical tables by Lindley and Scott 

(1984) have been used. The significance of any one result is increased if a larger sample 

size is used. In general, for constant n, a higher t-value indicates that there is a smaller 

probability that the sample was drawn from the total population. 

Also the t-test is used for a somewhat different problem. The t-test is appropriate 

to answer the question: “Are the means of the two sample collections the same?” In this 

case the mean values of two samples are compared against one another, rather than 

against a hypothetical mean of population. The null hypothesis is 

210 : μμ =H       3.2 

which states that the mean of the population from which the first sample was drawn is 

the same as the mean of the parent population of the second sample. This hypothesis is 

posed against the alternative 

211 : μμ ≠H       3.3 

that the two population means are not equal. The test statistic in this case has the form 

( ) ( )21

21

11 nn
XXt

p +
−

=
σ

     3.4 

where the quantity pσ  is the pooled estimate of the population standard deviation, based 

on both samples. The estimate is found from the pooled estimated variance, given by 
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where the subscripts refer, respectively, to the first sample and second sample. The 

degree of freedom in this case is 221 −+= nnν . Then the value of t obtained by formula 

(3.4) must be compared with tabulated values of t with ν  degrees of freedom and a 

certain level of significance. If the t-statistic defined by (3.4) exceeds the tabulated value 

of t, then the hypothesis (3.2) is rejected and the alternative hypothesis (3.3) is accepted. 

 

3.2.2. Simple linear regression 
 

A simple linear regression models the relationship between two variables by 

fitting a linear equation to observed data. One variable is considered to be a dependent 

variable (also known as an outcome, or response variable), and the other is considered to 

be an independent variable (also known as a predictor or explanatory variable). This 

does not necessarily imply that one variable causes the other, for instance, wider channel 

widths do not cause higher bank erosion rates, but that there is some significant 

correlation between the two variables. 

Before attempting to fit a linear model to observed data, it should be first 

determined whether or not there is a relationship between the variables of interest. A 

scatterplot can be a helpful tool in determining the strength of the relationship between 

two variables. If there appears to be no correlation between the proposed independent 

and dependent variables (i.e., the scatterplot does not indicate any increasing or 

decreasing trends), then fitting a linear regression model to the data probably will not 

provide a useful model. In old publications linear equations are derived by the best “eye” 

fit from a scatterplot, i.e. the equations included some part of subjectivism. With 

progress of computer sciences in state-of-the-art publications statistical program 

packages of analysis are used. The most common method for fitting a regression line is 

the method of least-squares. This method calculates the best-fitting line for the observed 

data by minimizing the sum of the squares of the vertical deviations from each data point 

to the line (if a point lies on the fitted line exactly, then its vertical deviation is 0). 

Because the deviations are first squared, then summed, there are no cancellations 

between positive and negative values. 

Simple linear regression analysis produces estimates of the model parameters. 

The simple linear regression model is a mathematical equation for a line. It has the 

following form: 
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Y = a + bX,     3.6 

where Y is the dependent variable and X is the independent variable. The slope of the line 

is b, and a is the intercept with y-axis when x = 0. The parameters a and b of the equation 

are estimated using mathematical formulae, which are applied to data. The regression 

analysis procedure tests the null hypothesis that the slope parameter of the independent 

variable is 0 versus the alternative hypothesis that the slope parameter is different than 0. 

If the value of the t test statistic lies within the critical region (e.g. at a significance level 

of 5%), the null hypothesis is rejected and it is concluded that there is a statistically 

significant correlation between the dependent variable and the independent variable. The 

significance is checked by outputs of the t-test statistic in SPSS14 or alternatively from 

the table of percentage points, which can be found, for instance, in Lindley and Scott 

(1984). This issue is most crucial for the cases of small samples. It should be noted that a 

relationship can be strong and yet not significant and conversely, a relationship can be 

weak but significant. The test of the null hypothesis that the slope parameter equals 0 

actually is a special case of test of the slope of a linear regression. In general the t-test can 

be used to test the hypothesis that the regression slope is equal to some value β , which 

may be not equal 0 (Davis, 1973): 

XD SSMS
bt

/
β−

= ,     3.7 

where b = the regression slope, DMS  = the mean square deviation and XSS  = the sums of 

squares of X. The mean square deviation is defined as: 
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where 
∧

iY  = estimated value, iY  = original value, n = number of observations. The sums of 

squares of X as: 
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This test is used when two regression lines with different slopes are compared. 

Using this test analysis one can conclude that the regression slope from one dataset is 

significantly different from the other regression slope or not from a statistical point of 

view. 

The slope parameter can be interpreted also as the amount of change in the 

average of the dependent variable for a one-unit increase in the independent variable. 
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However, in this study the log-transformed values are used. It means that the equation 

(3.6) with transformed variables takes the form: 

log Y = a + b log X.     3.10 

Hence, the resulting regression equation takes the form of a power function, which 

can be expressed as: 

Y = α  X b,     3.11 

where Y is the dependent variable, α  is a constant, which equals 10a, and X is the 

independent variable with b as the exponent. The use of log-transformed values is 

common within physical geography (Sumner, 1978), and particularly within studies of 

bank erosion rates (e.g. Richard et al, 2005). 

A valuable numerical measure of association between two variables is the Pearson 

correlation coefficient. For given set of observations (X1, Y1), (X2, Y2), ... , (XN, YN), the 

formula for computing the correlation coefficient is given by 

( ) ( )∑ ∑∑ ∑
∑ ∑ ∑

−−

−
=

2222
iiii

iiii

YYNXXN

YXYXN
r .   3.12 

The Pearson correlation coefficient measures how closely the variable X and Y are 

correlated. The correlation coefficient is a number between -1 and +1. A positive 

correlation indicates a positive association between the variables (increasing values in one 

variable correspond to increasing values in the other variable), while a negative 

correlation indicates a negative association between the variables (increasing values is 

one variable correspond to decreasing values in the other variable). A correlation value 

close to 0 indicates no association between the variables. A correlation greater than 0.7 is 

generally described as strong, whereas a correlation less than 0.5 is generally described as 

weak. These values can vary based upon the "type" of data being examined (Field, 2005). 

Because the formula for calculating the correlation coefficient standardizes the variables, 

changes in scale or units of measurement will not affect its value. For this reason, the 

correlation coefficient is often more useful than a graphical depiction in determining the 

strength of the association between two variables. 

Another valuable numerical measure of association between two variables is the 

coefficient of determination, more widely known as R2. It is useful because it gives the 

proportion of the variance of one variable that is predictable from the other variable. The 

coefficient of determination is a number between 0 and +1 and denotes the strength of the 

linear association between X and Y. For example, if the correlation coefficient between 

log-transformed bank erosion rate and log-transformed bankfull water discharge equals r 

= 0.47 and then R2 = 0.22, which means that 22% of the total variance in log-transformed 
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bank erosion rate can be explained by the linear relationship between log-transformed 

bankfull water discharge and bank erosion rate as described by the regression equation. 

The other 78% of the total variance remains unexplained. If the regression line passes 

exactly through every point on the scatter plot, it would be able to explain all of the 

variance. The further the line is away from the points, the less it is able to explain. 

 

3.2.3. Multiple regression 
 

Multiple regression allows researchers to examine the effect of many different 

factors on some dependent variable at the same time. The general purpose of multiple 

regression is to learn more about the relationship between several independent variables 

and a dependent variable. In the sciences and particularly in studies of bank erosion, 

multiple regression procedures are widely used (e.g. Hooke, 1979; Nanson and Hickin, 

1986; Alvarez, 2005; Richard et al., 2005). However, all these studies were regional in 

nature and collected comprehensive data sets that quantified all the variables to be 

included in multiple regression. Thus, regionally significant relationships can be derived 

with small data sets, whereas in the present study an attempt is made to draw together a 

larger but disparate dataset. Walker and Rutherfurd (1999) applied multiple regression 

for meandering channels for a dataset from different regions around world with four 

independent variables and with only a sample size of 33. Even though Walker and 

Rutherfurd (1999) obtained statistically significant correlations, there is a large effect of 

sample size and according to Fig. 3.1 the sample size is even not enough for a condition 

of required sample size for four independent variables. 

Applying multiple regression analysis in this study failed. Using a model, where 

Nanson and Hickin (1986) proposed to use stream power, sediment size, channel width, 

bank height and radius of curvature, the resulting statistic (adjusted R2) obtained to be 

low (<0.2). It is assumed that there are two main reasons. The first reason is the 

necessary amount of data for regression and the second is the effect of multicollinearity. 

Regarding the amount of data, some authors recommend that one should have at least 10 

to 20 times as many observations as one has variables, otherwise the estimates of the 

regression line are probably unstable. Field (2005) has given more concrete guidelines 

and summarized them as a graph (Fig. 3.1). Fig. 3.1 shows the sample size required to 

achieve a high level of power depending on the number of independent variables and the 

size of the expected effect (Field, 2005). In all attempts to make multiple regression with 

three or more independent variables the sufficient amount of data does not meet the 
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requirement from guidelines in Fig. 3.1. For two independent variables instead of 

multiple regression the simple linear regression is used where as the independent 

variable ratios and products of two variables are involved. 
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Figure 3.1: Graph to show the sample size required in regression depending 

on the number of independent variables and the size of expected effect 

(Redrawn from Field, 2005) 

 

Another reason why multiple regression has not been used in this study is 

multicollinearity. Multicollinearity is a common problem in many correlation analyses. 

Multicollinearity refers to linear inter-correlation among variables. A strong correlation 

is obtained between such independent variables as water discharge and geometrical 

characteristics of a channel (depth, width and bank height). The main danger of high 

levels of collinearity is that the probability of rejecting of a good independent variable 

increases as it will be found to be non-significant (Field, 2005). Using other independent 

parameters which are not strongly correlated to each other, it is found that there is 

insufficient number of data to make a robust regression equation. Consequently, taking 

into account these two reasons and obtained “negative” results for multiple regression 

with parameters, which are somewhat physically-based, in further analysis the multiple 

regression has not been used by “playing” with other combinations of parameters. 

Perhaps, with more data it will be possible to apply multiple regression. 

 

3.2.4. Association for ordinal data 
 

In this study there is a need to define an association between two ordered cross-

classifications. Usually methods to calculate such kind of association are used in the 
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social and medical sciences (Field, 2005), and so far are not used widely in 

geomorphology. The problem is how to define an association between bank erosion rate 

expressed in qualitative terms (e.g. “low”, “medium”, “severe”) and such classifications 

as channel type, vegetation, bed and bank types, which are described by qualitative terms 

as well. 

The outcome variable may include a continuous scale (e.g. rates of bank erosion), 

binary measures (e.g. stable and unstable), or an ordered category (e.g. severe, medium, 

low). Bank erosion rate is inherently a continuous variable. Therefore, for a continuous 

dependent variable there are two ways of analysis. If the independent variable is 

expressed as a continuous one, then linear regression analysis is applicable to the 

dependent variable (see previous section). If the independent variable is expressed as a 

categorical one, then an analysis might be used to show the distribution of bank erosion 

with categories such as channel, vegetation, bed and bank types. As an example in Fig. 

3.2 a distribution of bank erosion rates with main channel types is shown. This way is 

useful and informative, because one can compare mean values and ranges between 

categories (in the example between different channel types). However, in this case it is 

impossible to conclude how close two categories are associated to each other by 

quantitative means. 
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Figure 3.2: An example of distribution for bank erosion rate by channel 

types. 
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Logistic regression analysis works well only for the binary or dichotomous 

outcome. For example, Atkinson et al. (2003) have performed a logistic regression to 

study absence or presence of bank erosion phenomena along the Afon Dyfi river in 

North Wales, UK. In the current study it is actually not appropriate to analyse conditions 

for presence or absence of bank erosion because collected data indicate information only 

for river reaches where bank erosion is ongoing. For the binary outcome as “stable” and 

“unstable” it is impossible to perform the logistic regression in this study too. The main 

reason is that it is difficult to distinguish between “stable” reach and “unstable” reach 

with the same bank erosion rate. As example, for a river 10 m wide with bank erosion 

rate 1 m yr-1 in an urbanized area a reach may be classified as “unstable”, and for a river 

100 m wide in rural area a reach with the same bank erosion rate may be classified as 

“stable”. So there is no generally accepted threshold between “stable” and “unstable” 

even along the same river and any classification arbitrarily depends on relative river size 

and the value of eroded riparian land. 

Consequently, estimation of association for ordinal data followed by frequency 

analysis seems to be the most suitable in this study. The distribution of bank erosion 

rates reveals the order of categories for channel, bank, bed and vegetation types. 

Consequent estimation of association for two ordered cross-classifications reveals the 

strength and the significance of this association. 

A continuous variable of bank erosion rate can be converted into an ordinal 

variable by categorizing the range of values. There are some arbitrary classifications in 

the literature, where bank erosion rates are presented as an ordinal variable. As an 

example (from Chalov, 2000), in Table 3.2 ranges of bank erosion rates for different 

bank compositions are shown. Using this table one can define how severe bank erosion 

rate is for a given bank composition. However, as it has been noticed, these 

classifications are arbitrary and are not generally accepted, because in different 

geomorphological conditions the same bank erosion rate can be either severe or mild. 

Even though this classification is based on Chalov’s experience and generalization of 

many observations, it is useful to the present study as it can indicate how to categorize a 

continuous variable such as bank erosion rate. It is obvious that the actual values of 

ranges may vary depending on the whole range of available data and amount of data 

inside ranges. 
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Table 3.2: Bank erosion rate (m yr-1) with different bank types (from 

Chalov, 2000) 

Level of erosion 
Sand and 

loamy sand Loam Clay 
Peat; Semi-

bedrock 
Very severe >10 >5 >2 >1 
Severe 5-10 2-5 1-2 0.5-1 
Medium 2-5 1-2 0.5-1 0.2-0.5 
Low <2 <1 <0.5 <0.2 
 

A mathematical explanation of a measure of association and its significance for 

ordered data is presented herein after Goodman and Kruskal (1954, 1959, 1963, 1972), 

Berry et al. (1976), Brown and Benedetti (1977), Liebetrau (1983) and Field (2005). 

Suppose that two ordinal variables X and Y are sampled jointly, and that resulting sample 

(X1, Y1),…, (Xn, Yn) is classified into an I×J contingency table. Then nij is the number of 

observations that fall into cell (i, j) of the table; that is nij is the number of observations 

that Xk falls into (raw) category i and Yk falls into (column) category j. In this case as a 

measure of association may be used the following widely used measures: Spearman’s 

correlation (Rho); Kendall’s Tau and Goodman-Kruskal Gamma. In this study the 

Goodman-Kruskal Gamma is used for several reasons. Firstly, Spearman’s correlation 

has been avoided in calculations because data for bank erosion rate were transformed 

into percentages inside each category. This transformation was performed due to the big 

difference in the amount of data between categories, for instance, for the meandering 

channel type there are more than 600 datapoints, while for the straight channel type, a 

few tens of datapoints. The Spearman’s correlation can not take into account this 

transformation of data as it applies to the ranks of the data rather than to the actual data 

values themselves. Secondly, the Kendall’s Tau is not used in this study because it is 

most appropriate for square tables. In general this condition not always is satisfied. The 

Goodman-Kruskal Gamma is more appropriate; it can take into account data 

transformation and can be used for any dimensions of tables. The Goodman-Kruskal γ  

is defined by 

DISCON
DISCON

+
−

=γ ,     3.13 

where CON = number of pairs that are concordant, DIS = number of pairs that are not 

concordant (discordant pairs). CON is calculated as 

∑∑
= =

=
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i
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j
ijijCONnCON
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* ,    3.14 

where 
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is the total number of observations “southeast” of cell (i, j). 

Number of pairs that are discordant D is calculated as 
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where 
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=
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jiij nDIS
' '

''
*      3.17 

is the total number of observations “southwest” of cell (i, j). 

If there is independence, one expects that the order of the X has no connection 

with the order of the Y. If there is high association one expects that the order of the X 

would generally be the same as that of the Y. If there is high counter association one 

expects that the orders would generally be different. As given by Goodman and Kruskal 

(1954) some important properties of γ  follow: 

- γ  is indeterminate if the population is concentrated in a single row or column 

of the cross-classification table. 

- γ  is 1 if the population is concentrated in an upper-left to lower-right diagonal 

of the cross-classification table. γ  is -1 if the population is concentrated in lower-left to 

upper-right diagonal of the table. 

- γ  is 0 in the case of independence, but the converse need not hold except in the 

2 by 2 case. 

In terms of its interpretation, the Goodman and Kruskal γ  is more similar to 

Kendall’s Tau than Spearman’s Rho. Spearman’s Rho is considered as the regular 

Pearson’s correlation coefficient in terms of the proportion of variability accounted for, 

whereas Kendall’s Tau and Goodman and Kruskal γ  represent a probability, i.e., the 

difference between the probability that the observed data are in the same order versus the 

probability that the observed data are not in the same order. 

To test the significance of the Goodman and Kruskal γ  the chi-square statistic 

has concomitantly come to be used. However, the clarification of using the chi-square 

statistics revealed the fact that there exists no functional relation between the sampling 

distributions of chi-square and the Goodman and Kruskal γ  (Berry et al., 1976). 

Because the chi-square statistic is the most widely used statistic, Berry et al. (1976) warn 

that it is imperative to use the chi-square statistic appropriately. In this study the 

hypothesis of independence is checked to conclude that γ  is significantly not equal to 
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zero. Under the hypothesis of independence, γ  equals zero. For this case, Brown and 

Benedetti (1977) give the formula for variance of γ  

( ) ( ) ( ) ( )2
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1

22 /4 DISCONDISCON
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ijijij +⎥

⎦
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−−−= ∑∑

= =

γσ , 

 3.18 

where CON and DIS are defined by equations (3.14) and (3.16) respectively; n – the total 

number of observation; CONij and DISij are defined as 
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CONij is the number of observation concordant with one in cell (i,j). DISij is the 

number of observation discordant with one in cell (i,j). 

The formula (3.18) should be used for testing the hypothesis that γ =0 (Liebetrau, 

1983). One can suppose if σγ 2≥ , it is certainly safe to conclude that 0≠γ . 

Otherwise, γ  is not accepted due to its large variance. 
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3.3. USED VARIABLES 
 

The major conceptual limitation of all regression techniques is that one can only 

ascertain relationships, but never be sure about the underlying causal mechanisms. 

Therefore all possible physically reasonable variables have been identified to study 

relationships with bank erosion rates. 

The variables identified as potentially controlling bank erosion rates are 

conventionally divided into three groups. This division is based on the scale effect when 

the bank erosion problem is considered. As stated by Schumm (1991) ‘…, the 

components of the fluvial system can be investigated at many scales, but no component 

can be totally isolated because there is an interaction of hydrology, hydraulics, geology 

and geomorphology at all scales,…’. Therefore, the bank erosion phenomenon is 

considered at all available scales. Fig. 3.3 shows the three groups based on scale. In 

Table 3.3 all variables are listed, which are related to bank erosion. The number of 

variables also was dictated by availability and amount of data. 

 
 

Figure 3.3: Scales at which the bank erosion rate is considered: a) catchment 

scale; b) reach scale and c) cross-section scale. 

Modified after Schumm (1991). 
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Table 3.3: Variables to relate with bank erosion 

 

# Variable Units Scale* 
Used 

scale* 
Data type 

1 2 3 4 5 6 

1 Drainage area (A) km2 a a interval 

2 Water discharge (Q) m3 sec-1 a; b; c a interval 

3 Average annual runoff (M) mm year-1 a a interval 

4 Sediment transport (Qs) kg sec-1 a; b; c a interval 

5 Channel depth (d) m b; c b interval 

6 Channel width (w) m b; c b interval 

7 Bank height (h) m b; c b interval 

8 Floodplain/valley width (wv) km b b interval 

9 Water surface slope (Sw) - b; c b interval 

10 Channel slope (Sc) - b; c b interval 

11 Valley slope (Sv) - b b interval 

12 Depth to width ratio (d/w) - b; c b interval 

13 Bank height to width ratio (h/w) - b; c b interval 

14 Unit discharge (q) m2 sec-1 b; c b interval 

15 Gross stream power ( Ω ) W m-1 b; c b interval 

16 Unit stream power (ω ) W m-2 b; c b interval 

17 Shear stress (τ ) N m-2 b; c b interval 

18 Coefficient of variation (Cv) - b b interval 

19 Channel type descriptive b b categorical 

20 Water velocity (υ ) m sec-1 b; c c interval 

21 Median bed grain size (Dbed) mm and φ  c c interval 

22 Median bank grain size (Dbank) mm and φ  c c interval 

23 Bank silt-clay content % c c interval 

24 Bed material type descriptive b; c c categorical 

25 Bank material type descriptive b; c c categorical 

26 Riparian vegetation type descriptive b; c c categorical 

 

* Scales are presented accordingly to Fig. 3.3. 
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In statistical analysis, units for variables are used as shown in column 3 of Table 

3.3. It was essential to convert data to the same units as in some sources the English 

system has been used. The scales, at which variables are considered, are shown in the 

fourth column. Because there is an interaction at all scales (Schumm, 1991), there are 

overlaps of scales for some variables. Overlap of scales in Table 3.3 can be explained 

also by consideration of application. For example, water discharge can be used as a 

characteristic of the catchment scale as this amount of water drained from the whole 

drainage area to the river station where it is measured. Similarly as a characteristic of a 

river reach, the same water discharge could be used because it is one of the key factors 

of channel form. There is a velocity-cross section area approach to define water 

discharge, so water discharge can be also used to characterize conditions at the scale of 

the cross-section. However, in this study each variable is assigned into a single scale 

(column 5, Table 3.3) for simplification and logical construction for further 

consideration. Finally, in column 6, types of data for variables are shown, as selection of 

a proper statistical method depends upon the data type (Liebetrau, 1983). There are two 

types: 1) interval and 2) categorical. Different statistical methods are used for these types 

of data and description and particularities of the methods are given in a chapter of 

applied methods description. 

 

3.3.1. The catchment scale 
 

Catchment scale considerations frame the boundary conditions within which 

rivers operate, constraining the range of river behaviour and associated morphological 

attributes (Brierley and Fryirs, 2005). The variables, which fall into the catchment scale, 

are drainage area, water discharge, average annual runoff and sediment transport (Table 

3.3). While drainage area characterizes the size of a catchment, discharge and sediment 

transport reflect not only catchment size but also climate and geology of the drainage 

basin. 

Drainage area is delimited by a topographic divide or watershed as the land area 

which collects all the surface runoff flowing in a network of channels to exit at a 

particular point on a river (Downs and Gregory, 2004). Although there is no problem 

with defining this variable, three uncertainties exist (Fig. 3.4). In the first case drainage 

area is given up to the mouth of a river when particular sites of bank erosion 

observations are located upstream from the mouth (Fig. 3.4 A). In the second case 

drainage area is given for the nearest hydrological station where data about discharge are 
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available (Fig. 3.4 B). In the third case only one value of drainage area is given when 

several observation sites on adjacent meander loops are considered (Fig. 3.4 C). In the 

last two cases the difference between given value and actual value is not marked, but in 

the first case may differ from the actual value significantly. Therefore when drainage 

area is given up to the river mouth, the location of observation is checked and as far as 

possible is corrected based on cartographic materials. If it was not possible to make a 

correction due to lack of cartographic materials then the value of drainage area was 

rejected. 

 

                    (A)            (B)             (C) 

 
Figure 3.4: Cases of uncertainties for drainage area. 1 – given drainage area; 

2 – actual sites of bank erosion observations. See text for explanation of each 

case. 

 

Water discharge. There is a conceptual discharge which is related to channel 

formation and consequently to channel adjustment and bank erosion. This is the concept 

of dominant or channel-forming discharge. The concept is a simplification of the true 

complexity of the natural processes which lead to channel formation (Carling, 1988). 

This simplification assumes that a single value discharge is responsible for the channel 

morphology in alluvium (Charlton et al., 1978). The concept provides a relationship 

between the hydrologic characteristics of the channel, the hydraulic characteristics of the 

channel and the geomorphic characteristics of the channel (Tilleard, 1999). It is used in 

studies of channel pattern (e.g. Alabyan and Chalov, 1998), processes of bedload 

transport (e.g. Emmett and Wolman, 2001), river restoration (e.g. Tilleard, 1999) and 

channel stability (e.g. Carling, 1988; Olsen et al., 1997). 

The dominant discharge is a single discharge measure that determines the 

geometry of an alluvial channel at a particular location (Bridge, 2003). This discharge 

depends on the character and quantity of sediment transported and on the composition of 

the bed and bank materials (Thomas and Goudie, 2000). Wolman and Miller (1960) 



 101

suggested that the dominant discharge is defined by the magnitude of event and its 

occurrence frequency. As a channel conveys a certain amount of water and sediment, 

channel form and erosion/deposition processes depend on the relative magnitude of 

flows and the thresholds of material motion. The low flows have not enough energy to 

erode channel bed and banks but they occur often. The largest flows have the highest 

energy and consequently can erode channel bed and banks at the greatest rate but they 

occur seldom. More moderate flows have less energy then the high flows and erode 

channel bed and banks with lower rate. However, these moderate flows can actually do 

more work as they influence the channel boundaries for longer time. Therefore there is 

likely to be a discharge, at neither the high nor the low extreme, that is both sufficiently 

frequent and sufficiently effective to be most important in forming and maintaining the 

channel (Leopold, 1994). 

Three measures for dominant discharge are commonly applied: effective 

discharge, bankfull discharge and a discharge of a certain occurrence interval (Pickup 

and Warner, 1976; Doyle et al., 2007). The effective discharge is that discharge which 

transports the most bed load in a stream that is close to steady-state conditions (Pickup 

and Warner, 1976; Carling, 1988). The bankfull discharge is the flow which just fills the 

channel to the tops of the banks (Williams, 1978). The discharge of a certain occurrence 

interval is used as a statistical definition of dominant discharge and flows with return 

intervals ranging from 1 to 2 years are typically used (Doyle et al., 2007). 

There is no common agreement concerning which of these three measures should 

be used in studies of channel stability. Although Doyle et al. (2007) have recommended 

the effective discharge as it provides process-based insight of drivers of current and 

future trajectories of channel stability, the bankfull and the discharge of a certain 

occurrence interval are widely applied as to estimate them information about sediment 

load is not necessary. By a quantitative analysis Andrews (1980) found that, at least for 

the Yampa River basin in Colorado and Wyoming, the effective discharge is near equal 

to the bankfull discharge. Moreover, Gomez et al. (2007) have concluded that the 

effective discharge probably is more relevant to the overall picture of sediment 

movement, while the overall channel geometry is determined by discharges at or near 

bankfull. As stated by Leopold (1994), actual field observations confirm that the erosion 

rate, the sediment transport rate, and the bar building by deposition are most active when 

the discharge is near bankfull. By these reasons, in this study the bankfull discharge is 

used as the main characteristic of water discharge to relate with bank erosion. However, 

it should be borne in mind that for the bankfull discharge there are uncertainties in 
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methods to determine this discharge (e.g. Williams, 1978 or more recent examination by 

Navratil et al., 2006 and a review by Lenzi et al., 2006). 

During collection of bankfull discharge data a problem of necessary and 

sufficient number of datapoints for statistically meaningful analysis has arisen. The 

determination of bankfull discharge requires special fieldwork or special calculations. In 

contrast, average annual discharge is published for every gauging station and is ready 

available (Leopold, 1994). It seems to be a reason why in many papers, in considerations 

of study reaches, the average annual discharge is used more frequently than the bankfull 

discharge. To define the bankfull discharge for reaches where only data about average 

annual discharge are available a relationship between average annual discharge and 

bankfull discharge is used (Fig. 3.5). From the relationship it is evident that such an 

adjustment is necessary as the bankfull discharge is considerably greater that the average 

annual discharge. 
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Figure 3.5: A relationship between bankfull discharge and average annual 

discharge. Number of observations is 69. 

 

Herein the relationship is constructed in general sense for all available data from 

different geomorphological setting, though Leopold (1994) found that such relationships 

depend upon drainage area. From his example, for the Seneca Creek at Dawsonville, 
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Maryland with drainage area 262 km2 the ratio of bankfull discharge to average “long-

term” discharge is 20:1, while for the Watts Branch near Rockville in the same country 

with drainage area 9.6 km2 the ratio is about 60:1. Consequently, the ratio may increase 

as the basin size decreases. Also the ratio varies for different regions. For instance, in 

Coast Range area of California the ratio is about 30:1, and in Front Range of Colorado 

the ratio is about 7:1 (Leopold, 1994). Despite these facts, and taking into account that 

the obtained relationship is statistically strong (R2=0.78) and significant (at a 

significance level of 5%, the critical value of t is 1.66, and the test statistic is 15.3, i.e. 

lies within the critical region, so the hypothesis that the slope is zero must be rejected), 

as presented in Fig. 3.5 the relationship between average annual discharge and bankfull 

discharge has been used in further analysis for bank erosion. 

Average annual runoff is used here because maps of average annual runoff are 

ready available from government or environment agencies. Usually maps of average 

annual runoff are produced as isolines maps. However, in the last decades with 

development of GIS technology choropleth (gridded) maps are used as well (e.g. Arnell, 

1995; Sauquet, 2006). Another reason to use the average annual runoff, is because values 

of discharge depend on the drainage area and rivers of different sizes are not comparable 

using water discharge values. Comparison is facilitated by expressing water discharge as 

average annual runoff because it is expressed as runoff per unit catchment area (Leopold, 

1994). In hydrology, maps of average annual runoff are used for water resources and 

water budget studies and also to estimate water discharge for ungauged sites. The value 

of this characteristic shows how much water drains from a catchment per year, expressed 

as a water layer which is equally distributed over drainage area. The average annual 

runoff is defined as: 

A
QM ×

=
31536 ,     3.21 

where M = average annual runoff (mm year-1); Q = average annual discharge (m3 sec-1); 

A = drainage area (km2); 31536 = a coefficient to convert units. Note that in this case in 

order to calculate the runoff the average annual discharge is used, not the bankfull 

discharge. 

Sediment transport. There are numerous sediment transport equations in the 

literature. Recently the applicability and accuracy of many popular sediment transport 

equations have been evaluated and re-examined (e.g. Gomez and Church, 1989; Reid et 

al., 1996; Martin and Church, 2000; Yang and Huang, 2001; Almedeij and Diplas, 2003; 

Bravo-Espinosa et al., 2003; Martin, 2003; Barry et al., 2004; Martin and Ham, 2005; 

Wong and Parker, 2006). Results and conclusions from these studies are summarised in 
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Table 3.4. From these studies there is no unambiguous answer as to which equation is 

better to use. However, following Gomez and Church (1989) the Bagnold (1980) 

equation is adopted herein to calculate sediment transport as there is limited hydraulic 

information in the assembled database. 

The final form of the Bagnold (1980) equation with substitution of all reference 

values has the following form: 
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where sq  = the sediment transport rate per unit width (kg m-1 sec-1); sρ  = the sediment 

density (taken equals 2650 kg m-3); ρ  = the water density (taken equals 1000 kg m-3); 

ω  = stream power exerted by the water flow (W m2); cω  = the critical value of stream 

power required to initiate sediment transport (W m2); d = flow depth at bankfull 

conditions (m); D = bed material particle size (m) (median grain size is used). The 

stream power exerted by the water flow at unit channel width is given as: 

w
gQSρω = ,      3.23 

where ρ  = the density of water (1000 kg m-3); g = the acceleration due to gravity (9.81 

m sec-2); Q = the bankfull discharge (m3 sec-1); S = channel slope; w = the bankfull width 

(m). The critical value of stream power required to initiate sediment transport is given by 

Bagnold (1980) as: 
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Consequently, to calculate sediment transport by the Bagnold (1980) equation the 

following data are necessary: bankfull discharge, channel slope, width, depth and median 

grain size of bed material. In order to calculate the total sediment transport rate through 

the cross-section in kg per sec, the sediment transport rate per unit width defined by 

equation (3.22) is multiplied by the channel width. 
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Table 3.4: A summary of evaluations and re-examinations for bed-load equations. 

 

Study by General description of study Main results and conclusions 

Gomez and Church, 1989 Evaluation of the performance 12 bed-load equations 
None of the tested equations performed consistently. Under limited hydraulic information, best is 
the equation of Bagnold (1980), whereas the Einstein (1950) and Parker et al. (1982) equations 
should be used when local hydraulic information is available. 

Reid et al., 1996 Evaluation of the performance 6 bed-load equations 
Meyer-Peter and Müller (1948) equation performed best for conditions of unarmoured beds in 
desert and semidesert environments. The Bagnold (1980) and Parker (1990) equations 
underpredict considerably, but perform better than others tested equations. 

Martin and Church, 2000 Re-examination of Bagnold (1980) equation 
A rational version of the Bagnold (1980) equation has been derived on the basis of dimensional 
analysis. Using a large dataset the most consistent empirical coefficients have been obtained. 

Yang and Huang, 2001 Evaluation of the performance 13 bed-load equations 
Bed-load equations based on energy dissipation rates or stream power concepts more accurately 
described the observed transport data and the degree of equation complexity did not necessarily 
translate into increased model accuracy. 

Almedeij and Diplas, 2003 Evaluation of the performance 5 bed-load equations 
The Almedeij and Diplas (2003) equation performed best, but performance varied between sites. 
Other tested equations overpredict or underpredict observed bed-load rates by several orders of 
magnitude. 

Bravo-Espinosa et al., 2003 Evaluation of the performance 7 bed-load equations 

Equations by Parker et al. (1982), Schoklitsch (1962), and Meyer-Peter and Müller (1948) 
adequately predicted sediment transport in channels with transport-limited condition, whereas the 
equations by Bagnold (1980) and Schoklitsch (1962) performed well for partially transport-limited 
and supply-limited conditions. Overall, the equation of Schoklitsch (1962) predicted well the 
measured bedload data for eight of 22 streams, and the Bagnold (1980) equation predicted the 
measured data in seven streams. 

Martin, 2003 Evaluation of the performance 5 bed-load equations 
Results do not suggest that one particular equation is preferred. Bed-load equations appear to 
consistently underpredict transport rates for the Vedder River, British Columbia. 

Barry et al., 2004 Evaluation of the performance 9 bed-load equations 

Results show substantial differences in performance but no consistent relationship between 
equation performance and degree of calibration or complexity. Equations which contain a 
transport threshold (Meyer-Peter and Müller, 1948; Bagnold, 1980; Ackers and White, 1973) 
typically exhibit worse performance than nonthreshold equations (Parker et al., 1982). The 
transport data are best described by a simple power function of discharge. 

Martin and Ham, 2005 Evaluation of the performance 4 bed-load equations Bagnold (1980) equation provides the most consistently reasonable results. However, the range of 
error may typically be up to an order of magnitude. 

Wong and Parker, 2006 Re-examination of Meyer-Peter and Müller (1948) equation 
By the database of Meyer-Peter and Müller (1948) it was shown that the form drag correction is 
unnecessary for plane-bed conditions and should be dropped. Simplified versions of Meyer-Peter 
and Müller (1948) equation have been presented. 
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3.3.2. Reach scale 
 

The river reach is defined as a homogeneous section of a river channel within 

which hydrological, geological, and adjacent watershed surface conditions do not change 

significantly, i.e. there is no change in the imposed controlling factors, such that the river 

maintains a near consistent structure (Kellerhals et al., 1976; Downs and Gregory, 2004; 

Brierley and Fryirs, 2005). At this scale the following parameters are considered: 

channel depth, channel width, bank height, floodplain/valley width, channel slope, valley 

slope, some ratios and products of them and others (see Table 3.3). Some of the 

geometrical variables are defined by Fig. 3.6. Below concerns about defining of the 

parameters are given because there are uncertainties for some of them. Also equations to 

define some of parameters are presented. 

 

 
Figure 3.6: Definition sketch for some geometrical parameters at the reach 

scale. 

 

Channel depth and width. It should be noticed that depth and width for a channel 

are defined for bankfull conditions where it was possible. The channel depth is more 

sensitive to a chosen bankfull level than channel width. Consequently, the channel depth 

is more variable even for adjacent river reaches. Also there is dependence on where 

measurements were taken, e.g. whether they were taken at a pool or riffle. For the 

channel width in some cases difficulties arise in its estimation as well. In the case of a 

single-thread river it is not a problem. For braided rivers channel width can be estimated 

at bankfull conditions when in-channels bars are submerged and the river represents 

itself as a single-thread channel. But for anabranched rivers, even at bankfull conditions, 

channel width is determined for each separated channel, because the width, when all 
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channels of anabranched system are submerged, represents the width of the floodplain 

rather than the width of the channel. 

Bank height. By the definition of bankfull discharge, which is has been given 

above, the bank height is equal to the bankfull channel depth. This is the case when 

banks have nearly the same height. However, usually on meandering rivers the eroded 

(concave) bank is higher than the opposite (convex) bank, consequently bank height is 

not always equal to the depth in bankfull conditions. It seems that this was the reason to 

give the following additional definition for the bankfull discharge: discharge at a stage 

when there is incipient overflow to the adjacent floodplain (Wolman and Leopold, 

1957). In this case only one bank can be inundated. It is not obvious how bank height is 

measured in different studies. In some studies the bank height is the distance from the 

top edge of the bank to the thalweg, in others to the water level in low water, in others to 

the “normal” level, and in some studies at the date of observation, which can be done at 

different seasons. It was important to know about how the bank height was measured 

while compiling data, but unfortunately in many studies bank height is given without 

mention of how it was measured. In the used database all available data about bank 

height are used in further analysis, despite the above noted uncertainties in the bank 

height definition. 

Floodplain/valley width. Both the floodplain width and valley width were used, 

because in cases when the floodplain is confined by valley walls than it occupies the 

whole width of the valley. 

Slope. Three characteristics of slope are used, notably water surface slope, 

channel slope and valley slope. In relatively straight channels channel and valley slopes 

are nearly equal. In meandering rivers channel slope and valley slope are related through 

sinuosity as follows: 

c

v

S
S

P = ,      3.25 

where P = sinuosity; Sv = valley slope; Sc = channel slope. Using this relation for slope 

either channel or valley slope has been calculated if data about sinuosity have been given 

in original sources. 

Regarding water slope it should be noted that during a year this characteristic is 

subject to change. The only one value of water slope for a river reach is used as is given 

in original sources, although water slope at high water and at low water, or at rising limb 

and at dropping limb during flood time can differ from each other markedly. 
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Gross stream power is given as: 

gQSρ=Ω ,      3.26 

where Ω  = the gross stream power (W m-1); ρ  = water density (1000 kg m-3); g = 

gravitational acceleration (9.81 m sec-2); Q = water discharge (m sec-3); S = channel 

slope. Unit stream power is defined by equation (3.23). 

Shear stress. An estimate of the shear stress exerted by water flow can be 

obtained from: 

gRSρτ = ,      3.27 

where τ  = shear stress (N m-2); ρ  = water density (1000 kg m-3); g = gravitational 

acceleration (9.81 m sec-2); R = hydraulic radius (m); S = slope. In the assumption for 

wide channels the channel depth is used instead of hydraulic radius. 

Coefficient of variation of water discharge is defined as: 

Q
Cv σ

= ,      3.28 

where Cv = coefficient of variation; σ  = standard deviation which is a measure of how 

widely values are dispersed from the average value of water discharge Q . In order to 

calculate the coefficient of variation, initial data for discharge values were downloaded 

from the USGS website (http://waterdata.usgs.gov/nwis/sw). Therefore, it was possible 

to make a relationship only for rivers where USGS operates. 

Channel type is defined qualitatively from planview of the river channel from the 

air and it is considered over the length of a river channel reach (Downs and Gregory, 

2004). For channel types a special consideration has been given. In this study the 

relationship between bank erosion and channel types has been considered in a separate 

section. 

 

3.3.3. Cross-section scale 
 

Definition of the cross-section is not easy because channels can be compound in 

cross-section, they may not be clearly differentiated from the floodplain and they may 

alter because of short-term storm events. Definition can be given based either on 

morphology, sedimentological evidence, ecological/biotic evidence or evidence from 

recent flood events (Downs and Gregory, 2004). However, herein the concern is which 

parameters to use in the scale of cross-section. As the shape of the cross-section is a 

function of the flow, the quantity and character of the sediment, the character or 
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composition of the boundaries, including the vegetation (Leopold, 1994), then in this 

scale the following parameters are of concern: water velocity, median grain size, bank 

silt-clay content, sediment types and vegetation types. 

Water velocity is used as a characteristic which reflect the ability of water flow to 

erode river banks. The values of water velocity are taken as given in original sources or 

have been calculated as water discharge divided by cross-section area. Consequently, the 

values represent the average water velocity for the cross-section. 

Erosion rate depends not only on the power of water flow to erode but also on 

properties of the sediment which is under the action of flowing water. The erodibility of 

sediment depends upon its properties such as grain size distribution (Allen et al., 1999), 

grain shape (Oakey et al., 2005), bulk density (Wynn and Mostaghimi, 2006), 

cohesiveness (Osman and Thorne, 1988) and others. These properties determine the 

resistance of sediment to erosive action of water flow. Also some properties for cohesive 

sediment change due to the type and intensity of subaerial processes (also known as 

“preparatory” or “weakening the bank” processes) (Couper, 2003). 

Median grain size. To characterize size of bed and bank sediments the median 

grain size is used. The values of median grain size are available only from sources where 

the grain size analysis was undertaken. Consequently, data about median grain size is 

limited. To create a relationship with bank erosion rate the median grain size values were 

converted into the phi-scale (Krumbein, 1936; Sumner, 1978) as: 

DD 102 log32.3log ×−=−=φ      3.29 

where D = median grain size in mm. The boundaries between successive size classes in 

phi-scale and in mm are shown in Table 3.5. 

Bank silt-clay content data also are available only from grain size analysis. 

However, some sources provide qualitative data by describing fractions as “silt”, “sand” 

and so on. 

Sediment type. While the median grain size and the bank silt-clay content give 

quantitative description of sediment, sediment types as qualitative description are used 

widely as well. Herein sediment types are given in two senses. Firstly, by grain size, and 

secondly by cohesiveness as defined below. 

For grain size, the Udden (1914) and Wentworth (1922) grain scale is widely 

used as the practical standard (Blair and McPherson, 1999). A summary of used grain 

scales is given by Blott and Pye (2001) and presented in Table 3.5. Herein a broad scale 

is adopted, which includes the following gradations: “boulders”, “gravel”, “sand” and 

“silt and clay”. Table 3.5 is used to define sediment type by grain size where data about 

median grain size are available. Use of descriptive terms for sediment is also dictated by 
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the fact that often there are no quantitative information about median grain size in some 

publications, and only descriptive information such as “sand-bed” or “gravel-bed” is 

available. 

 

Table 3.5: Grain size scales (from Blott and Pye, 2001) 

 

mm
Udden (1914) and 
Wentworth (1922)

Friedman and     
Sanders (1978)
Very large boulders

-11 2048
Large boulders Very large

-10 1024
Medium boulders Large

-9 512 Cobbles
Small boulders Medium Boulders

-8 256
Large cobbles Small

-7 128
Small cobbles Very small

-6 64
Very coarse pebbles Very coarse

-5 32
Coarse pebbles Coarse

-4 16 Pebbles
Medium pebbles Medium Gravel

-3 8
Fine pebbles Fine

-2 4
Granules Very fine pebbles Very fine

-1 2
Very coarse sand Very coarse sand Very coarse

0 1
Coarse sand Coarse sand Coarse

1 0.5
Medium sand Medium sand Medium Sand

2 0.25
Fine sand Fine sand Fine

3 0.125
Very fine sand Very fine sand Very fine

4 0.063
Very coarse silt Very coarse

5 0.031
Coarse silt Coarse

6 0.016 Silt
Medium silt Medium Silt

7 0.008
Fine silt Fine

8 0.004
Very fine silt Very fine

9 0.002 Clay
Clay Clay

Descriptive terminology

Blott and Pye (2001)

Grain size

φ mm
Udden (1914) and 
Wentworth (1922)

Friedman and     
Sanders (1978)
Very large boulders

-11 2048
Large boulders Very large

-10 1024
Medium boulders Large

-9 512 Cobbles
Small boulders Medium Boulders

-8 256
Large cobbles Small

-7 128
Small cobbles Very small

-6 64
Very coarse pebbles Very coarse

-5 32
Coarse pebbles Coarse

-4 16 Pebbles
Medium pebbles Medium Gravel

-3 8
Fine pebbles Fine

-2 4
Granules Very fine pebbles Very fine

-1 2
Very coarse sand Very coarse sand Very coarse

0 1
Coarse sand Coarse sand Coarse

1 0.5
Medium sand Medium sand Medium Sand

2 0.25
Fine sand Fine sand Fine

3 0.125
Very fine sand Very fine sand Very fine

4 0.063
Very coarse silt Very coarse

5 0.031
Coarse silt Coarse

6 0.016 Silt
Medium silt Medium Silt

7 0.008
Fine silt Fine

8 0.004
Very fine silt Very fine

9 0.002 Clay
Clay Clay

Descriptive terminology

Blott and Pye (2001)

Grain size

φ
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With respect to cohesiveness there is no clear distinction as to which sediment is 

cohesive and which is not cohesive as cohesion depends upon many physical and 

chemical properties of sediment. In the context of this study two simple approaches are 

considered to categorize sediment by cohesiveness. The first one is based on grain size, 

and the second one on the silt-clay content. 

In the first approach a basic conceptual model (according to Makkaveev and 

Chalov, 1986) is used. By this concept there are two main forces resisting erosion: the 

resistant force due to gravity and the resistant force due to cohesiveness. Both depend on 

the grain size of sediment, and a graphical representation is shown in Fig. 3.7. The effect 

of the resistant force due to gravity increases as grain size increases. In contrast, the 

resistant force due to cohesiveness has an inverse relationship with grain size. The 

intersection of the curves corresponds to grain size around 0.05 mm. The minimum point 

for the total curve (sum of both forces, presented as a dashed curve in Fig. 3.7) also 

corresponds to this grain size. At this point total resistance reaches its minimum. Based 

on this analysis Makkaveev and Chalov (1986) suggested to divide sediments as follows: 

if grain size is coarser than 0.05 mm then noncohesive; if less than 0.05 mm then 

cohesive. However, there is a range of grain sizes (approximately 0.002-0.1 mm from 

Fig. 3.7) for which both resistance forces are of significance. This range is considered as 

intermediate. A slightly different (shifted toward coarser grain size) range for 

intermediate sediments has been given by Sundborg (1956), notably 0.006-0.6 mm. 

These ranges are broad. Indeed, comparing with grain size scale (Table 3.5) the lower 

limit 0.002 mm include all categories of silt and equals to the upper limit for clay; the 

upper limit 0.6 mm for intermediate sediments by cohesiveness include gradations of 

sand up to the “coarse sand”. According to the sediment classification of van Rijn 

(2007), sediments with grain sizes smaller than 0.008 mm are classified as “very 

cohesive”, and larger than 0.062 mm as “noncohesive”. Thus by various authors 

different and wide ranges for the intermediate sediments by cohesiveness are suggested. 

To be consistent with the widely used grain size scale (Table 3.5) the following arbitrary 

range is adopted for intermediate sediments by cohesiveness: from 0.008 mm up to 0.125 

mm including “medium silt”, “coarse silt”, “very coarse silt” and “very fine sand” 

gradations. Assumptions are made that the gradation “fine silt” is fine enough to possess 

cohesion, and the gradation “fine sand” is coarse enough to not possess cohesiveness. 
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Figure 3.7: Relative effect of resistant forces due to gravity (Fg) and due to 

cohesion (Fc). Redrawn from Makkaveev and Chalov (1986), 

after Mohr (1944). 

 

In the second approach the distinction between noncohesive and cohesive 

sediments is related to silt-clay and sand content. Wynn and Mostaghimi (2006) have 

noted that cohesion decreases with increased sand content. van Rijn (2007) has presented 

a table (his Table 1, p. 650) where types of sediments are related to percentage of 

organic material, clay, silt and sand content. Herein a simplified and modified version of 

van Rijn’s table is adopted (Table 3.6). Three categories by cohesiveness have been 

related only to silt and clay percentage and sand percentage, ignoring the organic 

material percentage. 

 

Table 3.6: Types of sediment by cohesiveness (simplified and modified after 

van Rijn, 2007) 

<60>40Cohesive

>60 and <90<40 and >10Intermediate

>90<10Noncohesive

Percentage of 
sand, %

Percetage of    
silt and clay, %

Type of 
sediment

<60>40Cohesive

>60 and <90<40 and >10Intermediate

>90<10Noncohesive

Percentage of 
sand, %

Percetage of    
silt and clay, %

Type of 
sediment

 
 

Riparian vegetation type. The effect of riparian vegetation type on the hydraulic 

geometry of gravel rivers has been shown by Hey and Thorne (1986). They have used 
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the following four categories of bank vegetation types: (I) – grassy banks with no trees 

or bushes; (II) – 1-5% tree/shrub cover; (III) – 5-50% tree/shrub cover; (IV) – more than 

50% tree/shrub cover or incised into floodplain. However, the studied rivers are laterally 

stable and there are no observations about significant lateral erosion on these rivers. 

Subsequently a number of studies about the effect of vegetation to bank erosion have 

been done. Recent reviews can be found in e.g. Wynn and Mostaghimi (2006) and Pollen 

(2007). In short, lateral erosion is particularly dependent on riparian vegetation type and 

its density, but the complexity of natural, vegetated streams often makes it difficult to 

establish a direct causal relation between riparian vegetation and channel characteristics 

(Gran and Paola, 2001). In further analysis a simple arbitrary classification of vegetation 

is used. The categories as “no vegetation”, “grass”, “shrubs”, “trees” are adopted to 

describe riparian vegetation type and to construct a relationship with bank erosion rate. 
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CHAPTER 4: RESULTS AND DISCUSSION OF STATISTICAL 
EXAMINATIONS 

 

4.1. INTRODUCTION 
 

In this chapter different parameters are considered which may be related to lateral 

stability. Usually the bank erosion, or recession, rate expressed as a unit loss per time 

period (e.g. m per year) is used to describe lateral stability, but other characteristics such 

as the volume of eroded material (e.g. m3 per year), the plan area (e.g. hectares per year) 

or relative bank erosion rates (e.g. % of channel width per year) can also be used. 

However, the latter are still calculated based on data describing bank erosion rates. 

Furthermore, there are more data about bank erosion rates in the literature than other 

indices of lateral stability. For these reasons data about bank erosion rates as the main 

characteristic of lateral stability are used in this study. Another characteristic, which is 

used in this study, is a relative bank erosion rate which shows a proportion of the channel 

width being eroded every year. This characteristic is useful to compare activity of 

channels in a “dimensionless” sense where data about channel width are available. 

The aim of this chapter is to develop general relationships between bank erosion 

rate and such characteristics as channel types, water discharge, slope, bank and bed 

material grain size, riparian vegetation types and others using statistical analyses. 

There is an extensive literature concerning bank erosion rates. The data extracted 

were obtained from different parts of world, in different parts of river systems (upper, 

middle and lower reaches), from different channel types (straight, meandering and 

others) and from various hydrological and geomorphological conditions. Thus there is a 

wide range of bank erosion rate values reported, from a few mm per hundred years (in 

bedrock rivers) up to several hundreds metres per year in alluvial rivers (for instance, 

braided sections of the Brahmaputra River). Moreover, scientists use different techniques 

of measurement and calculation for bank erosion rates (Fig. 4.1). A comprehensive 

review of techniques, which are used for measurement and calculation of bank erosion 

rates, can be found in an article by Lawler (1993). As noted by Lawler (1993) the use of 

specific techniques depends upon various reasons, notably, the multiplicity of possible 

approaches to the study of bank erosion (e.g. emphasis on process rates, mechanics, or 

geotechnics); the differing disciplinary backgrounds of researchers; the appropriate time 

scale of interest for a particular study; the variety of riverine environments (e.g. in terms 

of channel size, boundary materials and climate/hydrological regime); the varying 
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constraints of time, finance and logistics between projects; and changing measurement 

technology over time (Lawler, 1993). Since the review of Lawler (1993), research has 

been done with modern equipment, as a result with very high spatial resolution. For 

example, Barker et al. (1997) have used terrestrial photogrammetry and Thoma et al. 

(2005) have used airborne laser scanning. In the papers these techniques were examined 

for use in studies of bank erosion rates, but these techniques are not widely used in 

practice yet. 

In this study the majority of collected data (74%) represents the technique of 

utilizing historical sources (maps and air photographs) (Fig. 4.1). For 12% of the data, 

information about the techniques used is not available. In recent decades scientists have 

used the erosion pin technique with increasing frequency. The peculiarities of this 

technique result in a large number of data from small rivers, where, in general, low bank 

erosion rates are observed. This bias towards studies of low bank erosion rates affects the 

global distribution of bank erosion rate values recorded in the literature and may explain 

the skewness of this distribution (Fig. 4.2 A). Rarely, scientists have used other 

techniques (5%). Following Lawler (1993) a list of other techniques is given in the 

notation for Fig 4.1. 
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Figure 4.1: Techniques of bank erosion measurement and calculation for 

data used in this study. Number of observations is 906. 

1. No information about used techniques; 2. Historical sources or combinations of historical sources; 3. 

Erosion pins (including PEEP – Photo-Electronic Erosion Pin) or combinations with erosion pins; 4. Other 

methods: botanical evidence; planimetric resurveys; repeated cross-profiling; sedimentological evidence; 

interview with local inhabitants; terrestrial photogrammetry; airborne laser scanning; morphological 

criteria; sediment traps/catchment trays; erosion box; thermal disturbance; painted pebbles/sections; 

contemporary repeated photography. 
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Figure 4.2: Bank erosion rate log-normal distributions. (A) Bank erosion 

rate values. Number of observations is 906. (B) Relative bank erosion rate 

values. Number of observations is 487. Red curves represent Normal 

distribution. 
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In bedrock rivers bank erosion rates are not significant for engineering purposes, 

therefore only data for alluvial rivers are used in this study. Alluvial rivers also may have 

low bank erosion rates ranging upwards from several mm per year. Taking into 

consideration the range of bank erosion rate and relative bank erosion rate values (Fig. 

4.2), in statistical analysis Log10 transformed values are used. The transformed 

distribution for bank erosion rate (Fig. 4.2 A) shows that most values are found within 

the interval 1-10 m per year (Log-transformed values from 0 to 1). High bank erosion 

rates with values of more than 100 metres per year (higher than Log-transformed value 

2) are observed more rarely providing isolated, if not exceptional examples. The 

majority of observation for relative bank erosion rate (Fig. 4.2 B) is found within the 

interval 1-10% (or 0.01-0.1 in proportions of unity) of channel width per year (Log-

transformed values from -2 to -1). As for absolute values of bank erosion there is a bias 

to low values, though it is not as obvious as in Fig. 4.2 A. Nearly log-normal 

distributions of bank erosion rates and relative bank erosion rate show a similar 

frequency distribution as many natural phenomena, such as floods, earthquakes, storms 

(Wolman and Miller, 1960; Sumner, 1978). In general, large events of the same process 

occur seldom and small events occur often. 

Some statistical relationships for bank erosion rates have been proposed prior to 

this study (e.g. Hooke, 1980; Nanson and Hickin, 1986; Richard et al., 2005), but all of 

them have been made for specific regions of the world. Consequently, the relationships 

derived in these earlier works can be applied within regions with similar physiographic 

settings. In this study an attempt is made to derive general relationships with data from 

different regions representing a wide range of conditions. In this case some limitations 

occur, primarily a greater scatter in the defined relationships. In this study, although 

parameters are adduced for regression equations, and from the statistical standpoint they 

are well-founded, derived statistical relationships are recommended to be regarded as 

approximations for bank erosion rate estimation. As was noted above, the main aim is to 

derive general relationships for bank erosion rate, and not to describe and discuss 

specific site situations, which in some cases may be contrary to the results obtained in 

this study. It is significant to notice that there are a few studies where general 

relationships for bank erosion are considered in the literature. Among them a relationship 

with drainage area derived by Hooke (1980), a study by Walker and Rutherfurd (1999), 

where relationships with many variables were derived, but only for the meandering 

channel type, and a relationship of bank erosion rate with water discharge by Rutherfurd 

(2000), also only for meandering rivers. These studies are valuable for comparison with 
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results obtained in this study and are considered further where corresponding 

relationships are presented. 

All the following sections are divided into two parts. In the first, results for bank 

erosion rate are given, while in the second, results for relative bank erosion rate are 

described. 

 

4.2. ASSOCIATION WITH CHANNEL TYPES 
 

4.2.1. Bank erosion rate and channel types 
 

As a first stage of analysis, channel types were tentatively divided into four main 

types: straight, anabranched, meandering and braided (following Nanson and 

Knighton, 1996). Straight channels were defined as those that were reported in the 

literature as ‘straight’ but which lacked prominent reported shoals in accord with the 

definition of Acker and Charlton (1970). Fig. 4.3 shows how many data for each channel 

type were involved in the analysis. Almost 76% of overall data are for meandering 

channels. Much less data are available for braided channels and about equal proportions 

are available for anabranched and straight channels. 
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Figure 4.3: Distribution of data for different channel types. Channel types: 

1. Braided; 2. Meandering; 3. Anabranched; 4. Straight. Number of 

observations is 906. 
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In Fig. 4.4 a distribution of bank erosion rate values by main channel types is 

shown. From Fig. 4.4 it is evident that the ranges of values and maximum valves 

decrease from braided to meandering to anabranched, and are minimum for straight 

channels. The minimum of the mean values also is for straight channels. Consequently, 

straight river reaches are the most stable in relation to bank erosion rate for given natural 

conditions. In this study data are used for natural channels alone, and so data for 

modified rivers with artificially straightened channels are not taken into account. As is 

known (e.g. Lewin, 1976) modified channels can be laterally unstable. With respect to 

their degree of bank stability, anabranched channels follow after straight channels by 

range, having a greater range of values. However, the mean value is slightly higher than 

for meandering channels. 
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Figure 4.4: Ranges and mean values of bank erosion rate by channel types. 

 

The mean value of bank erosion rates for meandering channels is 4.1 m per year, 

but the range is much bigger than for anabranched channels. This result for the range is 

explained because meandering channels are the predominant type (Leopold, 1994) with 

the greatest number of data about bank erosion rates (Fig. 4.3). Moreover, as will be 

shown below in an analysis for meandering subtypes, for different subtypes of 

meandering channels bank erosion rates vary. The mean value for meandering channels 
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obtained by Walker and Rutherfurd (1999) is slightly less than that found in this study 

and equals 3.44 m per year. This difference is not significant taking into account the 

comment of Walker and Rutherfurd (1999) that the mean value is heavily biased by a 

few large values of bank erosion rate. 

Among all channel types, braided channels are characterized by the largest range 

and the largest mean value of bank erosion rate. Consequently from Fig. 4.4, braided 

channels are the most active in terms of bank erosion rate. 

To estimate the association between main channel types and bank erosion further, 

the Goodman and Kruskal γ  is used as defined in the methodology for ordinal data 

association. The initial data of bank erosion rate were transformed into categories and 

the percentage of the number of observations that fall into each category was counted 

(Table 4.1). The ordering and directions of categories are shown in Fig. 4.5. A graphical 

representation of data in Table 4.1 is shown in Fig. 4.6. In Fig. 4.7 cumulative bank 

erosion rate graphs for the main channel types are presented. With these graphical 

representations it is easier to interpret the tabulated data. 

 

Table 4.1: Initial data to define the Goodman and Kruskalγ . Number of 

observations is 906. 

Categories of bank erosion rate, m yr-1 
Channel type 

<0.1 0.1-2 2-5 5-10 >10 

Braided 1 % 27 % 17 % 25 % 30 % 

Meandering 6 % 43 % 25 % 15 % 11 % 

Anabranched 9 % 33 % 29 % 15 % 14 % 

Straight 30 % 57 % 8 % 0 % 5 % 

 

 

Lateral activity

Categories of bank erosion rate, m yr-1

<0.1 0.1-2 2-5 5-10 >10

Channel types
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Figure 4.5: Ordering of categories for bank erosion rate and channel types 

by lateral activity. 
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Figure 4.6: Distribution of observation number by bank erosion rate 

categories. Colour bars indicate channel types. 
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Figure 4.7: Cumulative bank erosion rate curves for the main channel types 

(based on data from Table 4.1). 1 – braided channels; 2 – meandering 

channels; 3 – anabranched channels and 4 – straight channels. 
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The value of the Goodman and Kruskal γ  is -0.49. It means that the observed 

data are in the inverse order (Fig. 4.5) with the probability 0.49. The variance of γ , 

( )γσ 2 =0.00236. The condition that σγ 2≥  is satisfied and therefore, one can safely 

conclude that 0≠γ  (Liebetrau, 1983). Although the Goodman and Kruskal γ  is far 

from 1 (when there is a perfect association), the value of 0.49 indicates that there is an 

association between bank erosion rate and the order of channel types. 

The graphical representation (Fig. 4.6) of data in Table 4.1 shows that the 

majority of data are in the category of bank erosion rate between 0.1 and 2 m yr-1. For 

straight, meandering and anabranched channel types the distributions indicate that from 

0 to 2 m yr-1 the percentage of observation number increase and for bank erosion rates 

more than 2 m yr-1 consistently decrease. Meanwhile, for the braided channel type the 

distribution shows different behaviour. For bank erosion higher than 2 m yr-1 the 

percentage of observation number is consistently increased with the maximum in the 

bank erosion rate category of more than 10 m yr-1. The distributions for meandering and 

anabranched types are similar and the cumulative graphs (Fig. 4.7) for these types are 

also similar. Using the cumulative graphs it is possible to define the median bank erosion 

rate for each channel type. The median bank erosion rate is read at the intersection of the 

50% line and the cumulative curves (Fig. 4.7). From the intersections: median bank 

erosion rate for straight channel type is 0.6 m yr-1; for meandering – 2.1 m yr-1; for 

anabranched – 2.6 m yr-1; for braided – 5.9 m yr-1. From this analysis one can conclude 

that, for instance, for braided rivers the bank erosion rate is higher than 5.9 m yr-1 in 50% 

of cases. For other percentages of bank erosion frequency values have been read from 

Fig. 4.6 and combined in Table 4.2. However, this analysis is a generalization and must 

be viewed as a tentative first step. A comparison of mean values is possible to make only 

for meandering channels because previously Walker and Rutherfurd (1999) have 

analysed statistical characteristics of meander migration rate for 91 river reaches in eight 

different countries. In the results they obtained the median bank erosion was 0.86 m per 

year, which is considerably less than that obtained in this study (2.1 m per year). 

Another application of cumulative graphs is that one can choose an order of 

categories for channel types. As was shown by the distribution analysis (Fig. 4.4) the 

following order based on ranges has been used (from the most active to the least active): 

braided, meandering, anabranched and straight. However, Fig. 4.7 shows the following 

order: braided, anabranched, meandering and straight. Indeed, the Goodman and Kruskal 

γ  is a bit higher for the latter order based on median values (-0.51 with 096.02 ±=σ ) 

which confirms that the order (braided, anabranched, meandering and straight) is more 
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reliable for association of channel types and bank erosion rate. Though the difference in 

the two γ  values is not large, a graphical representation of initial data as cumulative 

graphs is a useful tool to choose proper ordering for categories. 

 

Table 4.2: Bank erosion rates in m per year for different frequencies and 

channel types 

 

Channel type Frequency, 

% Braided Anabranched Meandering Straight 

10 >10 >10 10 2.2 

20 >10 7.8 6.6 1.6 

30 10 4.9 4.2 1.2 

40 8.0 3.6 2.9 0.8 

50 5.9 2.6 2.1 0.6 

60 4.0 1.8 1.4 0.3 

70 2.2 1.2 1.0 0.1 

80 1.2 0.6 0.6 <0.1 

90 0.7 0.1 0.2 <0.1 

 

In the case when only the classical channel types classification, notably braided, 

meandering and straight (after Leopold and Wolman, 1957), are taken into the analysis, 

then the association becomes more robust with the Goodman and Kruskal γ  equal to  

-0.65 with 12.02 ±=σ . 

Below an attempt is made to compare bank erosion rates for subtypes of the main 

channel types. It is possible to perform this analysis only for meandering channels, 

because for them subtype classifications were elaborated prior and enough data are 

available. There are classifications of subtypes for straight, anabranched and braided as 

well (e.g. a classification of Nanson and Knighton, 1996 for anabranched rivers; a 

schematization of Chalov, 2001 for braided and anabranched rivers), but at present there 

are not enough data within each subtype for meaningful statistical analysis. For 

meandering rivers such a comparison is possible to make as in Lagasse et al. (2004) 

initial data for meandering rivers of different subtypes in the United States were collated. 

Lagasse et al. (2004) modified a classification of Brice (1975). This classification is 

useful also for this study, because it is based on the plan-view features of channels, and 

the subtypes are thus easily recognized on maps and air photographs. A distribution of 

mean values and the ranges in relation to each of the subtypes of meandering channels is 

shown in Fig. 4.8. 
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The least laterally active channels are channels of type А. Bank erosion rate 

values are found within a narrow interval and do not exceed 1.5 m per year. Types B1 

and G1 are relatively laterally inactive too. All these types are characterized as equal 

width channels. Brice (1982) also discovered that rivers with equiwidth channels are 

either static or relatively stable. Although for types B1 and G1 mean values are slightly 

higher than for type A, they do not exceed 2.5 m per year. 

Channels with irregular width are more laterally active than equiwidth channels 

(Fig. 4.8). This was also found by (Brice, 1982). The other types (B2, C, D, E, F, and 

G2) are types with irregular width, though between them there are essential distinctions. 

It is significant that rivers with bars have higher bank erosion rates than rivers without 

bars. Based on this characteristic, a group of subtypes (B2 and E) may be distinguished. 

Although these types differ from each other by form, the mean values and ranges do not 

differ markedly and are less than the values for channel types with bars. An exception is 

type G2. The mean value of bank erosion rate for type G2 is higher, but the range is 

narrow. It is explained by limited amount of data for type G2 (only 2 observations). 

Possibly the range for type G2 will be bigger if more data for this type were available. 

Nevertheless, with data for other types the conclusion is that one sign of lateral activity 

is a presence of bars in a channel. 

The most predominant type of meandering is type C, so it sets the conditions for 

observing the maximum range of bank erosion rates. The mean value does not exceed 5 

m per year, but in some cases bank erosion rates reach tens of metres per year. 

Types D and F are most active. However, this statement is based on data from a 

few rivers. Perhaps the true ranges are bigger than shown in Fig. 4.8. 

Based on the above described analysis three groups of meandering channels are 

distinguished. In the first group types A, B1 and G1 are considered and have the 

following common features: equiwidth and absence of bars. In the second group, which 

are characterised with irregular width and absence of bars, types B2 and E are in 

consideration. Finally, types C, D and G2 fall in the third group. The last group is 

characterized by irregular width and presence of bars. Type F is ignored as no common 

features with the three groups and mainly because of limited data (only 4 observations) 

for this type are available. 
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Figure 4.8: A distribution of bank erosion rates with respect to subtypes of meandering (based on initial data from Lagasse et al., 2004) 
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These three groups have been analysed for ordinal data association with bank 

erosion categories. Initial data and their graphical representation are shown in Fig. 4.9. 

From this figure the largest number of observations for “equiwidth channels without 

bars” are in the bank erosion category less than 1 m per year and the number of 

observations consistently declines with increasing bank erosion rate. Meanwhile, for the 

“irregular width channel without bars” and “with bars” channel subtypes the distribution 

shows different behaviour. For both these groups, up to the category 2 – 5 m per year the 

number of observations increases and for bank erosion rates higher than 5 m per year 

decreases consistently. The difference between “irregular width without bars” and “with 

bars” is the skewness of distributions. For “without bars” there is skewness to smaller 

values of bank erosion rate, while for “with bars” there is skewness to higher rates of 

bank erosion. 
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Figure 4.9: Distribution of observation number by bank erosion rate 

categories. Colour bars indicate meandering subtypes. 

 

For the association between the three groups of subtypes of meandering channels 

and bank erosion rate categories the value of the Goodman and Kruskal γ  is 0.74. 

The 10.02 ±=σ , i.e. a conclusion is that 0≠γ . Consequently, the observed data for 

meandering subtypes are in direct order with bank erosion rate with the probability 0.74, 

which is closer than in the case of general channel types. Although the variance is twice 

as high as in the general case, the value of variance is still acceptable statistically. The 
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difference in the variance is partly explained by number of observations: for meandering 

subtypes the number of observations is 132 and is much less than for general channel 

types with 906 observations. 

The cumulative curves of bank erosion rate for the groups of different 

meandering subtypes (Fig. 4.10) have been used to define bank erosion rates at different 

cumulative frequencies (Table 4.3) and to compare these curves with the cumulative 

curve in general case (4 in Fig. 4.10). For “equiwidth channels without bars” across the 

whole range of frequencies bank erosion rates are less than in the general case. To the 

contrary, for “irregular width channels with bars” bank erosion rates are higher than in 

the general case for the whole range of frequencies. Due to different steepness of the 

curves, “irregular width channels without bars” are characterized by higher bank erosion 

rates in the frequency range from c. 40 to 100% than meandering channels in “general”. 

Otherwise, in the range 0 – c. 40%, “irregular width channels without bars” are 

characterized by lower bank erosion rates than in the general case. The median bank 

erosion rate (50%) in the general case is 2.1 m per year. This value is likely to be 

exceeded for “equiwidth channels without bars” in 20% of cases, for “irregular width 

channels without bars” in 60% of cases and for “irregular width channels with bars” in 

85% of cases. 

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4

C
um

ul
at

iv
e 

fr
eq

ue
nc

y,
 %

Bank erosion rate, m yr-1

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

1
2
3
4

C
um

ul
at

iv
e 

fr
eq

ue
nc

y,
 %

Bank erosion rate, m yr-1
 

 

Figure 4.10: Cumulative bank erosion rate curves for meandering subtypes 

(based on data from Fig. 4.9). 1 – “equiwidth channels without bars”; 2 – 

“irregular width channels without bars”; 3 – “irregular width channels with 

bars” and 4 – meandering channels in general case from Fig. 4.7 is shown 

for comparison purpose. 
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Table 4.3: Bank erosion rates in m per year for different frequencies and 

meandering subtypes. 

Meandering subtype 
Frequency, 

% 
equiwidth channels 

without bars 

irregular width 

channels without bars 

irregular width 

channels with bars 

10 3.0 5.5 9.9 

20 2.0 4.3 7.9 

30 1.4 3.7 6.2 

40 1.2 3.1 4.8 

50 1.0 2.6 4.1 

60 0.8 2.1 3.4 

70 0.6 1.6 2.9 

80 0.4 1.2 2.3 

90 0.2 0.7 1.8 

 

4.2.2. Relative bank erosion rate and channel types 
 

The same analyses as for absolute values of bank erosion rates for relative bank 

erosion rate (C/w: ratio of bank erosion rate to channel width) have been performed and 

results are presented below. 
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Figure 4.11: A distribution of relative bank erosion data for different 

channel types. Channel types: 1. Braided; 2. Meandering; 3. Anabranched; 

4. Straight. Number of observations is 487. 
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The distribution by main channel types of how many data were involved in the 

analysis is shown in Fig. 4.11. The portion of data for meandering channels is less than 

in the analysis of absolute values of bank erosion rate, though it is still the majority of 

available data (60%). 20% is for braided channels; 10% of data are available for 

anabranched channels and the minor part (8.6%) is for straight channels. 

The ranges and mean values of the relative bank erosion rate distributed by 

channel types are shown in Fig. 4.12. In this case, comparing with Fig. 4.3, one can 

conclude that the most active channels are meandering channels instead of braided 

channels. The maximum relative bank erosion rate is 0.36, i.e. 36% of channel width 

could be eroded in a meandering channel per year. To compare, an analysis performed 

by Kondratiev et al. (1982) for 800 meandering reaches in rivers of the former USSR 

revealed that the maximum of the relative bank erosion rate is 0.20, i.e. 20% of channel 

width per year, which is less than obtained herein. Perhaps this is because the current 

study data were obtained from different countries with wider variation in environmental 

conditions than for the data used by Kondratiev et al. (1982). Indeed, Walker and 

Rutherfurd (1999) obtained a higher maximum value (C/w*100% = 25%) using data 

mainly for rivers in the USA but also for Canada, Australia, the UK and other countries. 

However, the maximum value of relative bank erosion revealed herein shows that the 

bank in a meandering river can be eroded as much as a third part of the channel width, 

while in the study of Walker and Rutherfurd (1999) – as much as a quarter. The 

maximum for braided channels is 0.15; for anabranched = 0.14 and for straight = 0.11. 

The mean values are in the same order (Fig. 4.12). Consequently, the following order of 

channel types in regards to the relative bank erosion rate is revealed: 

meandering → braided → anabranched → straight from the most active to the least active. 

Again the straight channels are the least active as well as from the analysis of absolute 

values of bank erosion rates. There are no big differences in ranges and mean values 

between braided and anabranched channels. The values are only slightly higher for 

braided channels and probably are more robust as the number of observations is more 

than twice that for anabranched channels. 
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Figure 4.12: Ranges and mean values for relative bank erosion rate (C/w) by 

channel types. 

 

For the revealed order of channel types the association with categories of relative 

bank erosion rate, i.e. the Goodman and Kruskalγ  is -0.22. The initial data to calculate 

the coefficient of association and the data distribution by categories are shown in Fig. 

4.13. The distribution for meandering channels shows the consistent increase in the 

number of observations with increasing of relative bank erosion categories. The 

maximum observation number (31%) is for relative bank erosion more than 5% of the 

channel width per year. The distributions for braided and anabranched channels are 

similar to each other. From the category “less than 0.5% of channel width per year” to 

the category “0.5% - 1% of channel width per year” the number of observation declines, 

then increases and reaches a maximum in the category “2% - 5% of channel width per 

year”: 35% of data are for braided and 27% are for anabranched channels. For these 

channel types the minimum number of observation lies in the category “more than 5% of 

channel width per year”. For straight channels the minimum number of observations also 

is within that category and the distribution is similar to that for braided and anabranched 

channels. However, the maximum number of observations (29%) is in the category “less 
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than 0.5% of channel width per year”. Due to the similarity of distributions for braided, 

anabranched and straight channels the value of the Goodman and Kruskalγ  is low and 

shows that statistically there is no association between the order of channel types and the 

order of relative bank erosion categories. Despite the low value of the Goodman and 

Kruskalγ , the sign (minus) shows the correct direction of the prior chosen order for 

channel types (meandering → braided → anabranched → straight) from the most active to 

the least active. 
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Figure 4.13: Distribution of observation number by relative bank erosion 

rate categories. Colour bars indicate main channel types. 

 

From the cumulative curves (Fig. 4.14) the median relative bank erosion values 

have been determined. For meandering channels the median relative bank erosion is 

2.7% of channel width per year; for braided – 2.1%; for anabranched – 1.4% and finally 

for straight channels – 1.2%. For other frequencies of exceedance the values of the 

relative bank erosion rate are combined in Table 4.4. A comparison with the results of 

Kondratiev et al. (1982) for meandering channels shows that values obtained herein are 

considerably less. The median relative bank erosion rate obtained by Kondratiev et al. 

(1982) is 5%, almost twice the value found here. According to Kondratiev et al. (1982) 

for 75% of observations the relative bank erosion rate exceeds 3.5% of channel width per 

year and for 25% of observations – exceeds 9%. The values from Fig. 4.14 are 1.1% and 

“more than 5%” for 75% and 25% of observation respectively. Consequently, 

Kondratiev et al. (1982) have dealt in general with data which came from more active 
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meandering channels with respect to the relative bank erosion rate. To the contrary, 

Walker and Rutherfurd (1999) have obtained the median relative bank erosion rate as 

1.6% of channel width per year, which is considerably less than that obtained from Fig. 

4.14. To compare these results with a so-called “rule-of-thumb” for river managers in 

Fig. 4.14 red dashed lines are shown for 1% of channel width per year. The rule of 

thumb states that a meandering channel migrates at about 1% of channel width per year 

(Walker and Rutherfurd, 1999). The values of exceedance are the following: for 

meandering channels in 76% of cases; for braided – 70%; for anabranched – 61% and for 

straight channels in 58% of cases the relative bank erosion rate 1% of channel width per 

year is likely to be exceeded. 
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Figure 4.14: Cumulative relative bank erosion rate curves for the main 

channel types (based on data from Fig. 4.13). 1 – meandering channels; 2 – 

braided channels; 3 – anabranched channels and 4 – straight channels. 

Black dashed lines – determination of median values; red dashed lines – 

determination of the exceedance probability of the 0.01 relative bank erosion 

value (1% of channel width per year). See text for explanations. 
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Table 4.4: Bank erosion rates in proportion of channel width per year (yr-1) 

for different frequencies (%) and channel types. 

 

Channel type 
Frequency, % 

Meandering Braided Anabranched Straight 

10 >0.05 >0.05 >0.05 >0.05 

20 >0.05 0.046 0.043 0.039 

30 >0.05 0.037 0.031 0.023 

40 0.039 0.028 0.022 0.015 

50 0.027 0.021 0.014 0.012 

60 0.017 0.014 0.010 0.008 

70 0.012 0.010 0.007 0.005 

80 0.008 0.006 0.004 0.003 

90 0.004 0.003 0.002 0.0015 

 

An analysis for meandering subtypes has been performed as well as for absolute 

values of bank erosion rates. However, due to data limitation not all subtypes were 

involved. For type G2 there are no observations at all; for types D and G1 only single 

observation and for type F only two points. Consequently, these types are not presented 

in Fig. 4.15 where distributions of the mean values and the ranges of relative bank 

erosion rates by meandering subtypes are shown. In contrast with Fig. 4.8, the type A by 

the mean value and range is not the least active subtype for relative values of bank 

erosion rate. Nevertheless, for all subtypes the maximum relative bank erosion rate does 

not exceed 10% of channel width per year, except for subtype C. Taking into 

consideration that the means and ranges for A, B1, B2 and E do not differ markedly, two 

categories of channels are distinguished. The above listed subtypes fall into the first 

category. In the second category the subtype C is considered. The distinct characteristic 

is the absence or presence of point bars. The subtype C is characterized as channels with 

point bars, while the other subtypes are characterized as channels without bars. 
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Figure 4.15: Ranges and mean values of relative bank erosion rates by 

meandering subtypes (based on initial data from Lagasse et al., 2004). For 

descriptions of meandering subtypes see Fig. 4.8. 
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Figure 4.16: Distribution of observation number for meandering subtypes 

by relative bank erosion rate categories. 
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Two types of meandering, notably meandering channels “without bars” and “with 

bars” have been analysed for association with relative bank erosion rate categories. 

Because the number of observations for the two categories of meandering is 

approximately equal (34 observations for “meandering without bars” and 37 for 

“meandering with bars”), in calculation of the Goodman and Kruskalγ  the number of 

observations by categories are used without conversion to percentage. A distribution of 

observation numbers by relative bank erosion categories is shown in Fig. 4.16. For 

“meandering channels without bars” the minima of number of observations are in 

extreme categories. For other categories the numbers of observations are approximately 

the same. Meanwhile, for “meandering channels with bars” the number of observations 

consistently increases with the maximum in the category “more than 5% of channel 

width per year”. Due to the regular distribution for “meandering channels without bars” 

with absence of a tendency to increase or decrease along the categories, the Goodman 

and Kruskalγ  is low and equals 0.46. 

Although the Goodman and Kruskalγ  is low, the cumulative curves for 

meandering subtypes (Fig. 4.17) are considerably different. From Fig. 4.17 the median 

value of the relative bank erosion rate for “meandering channels with bars” is higher by 

as much as 2.5 times than that for “meandering channels without bars”. The median 

relative bank erosion values are 1.5% and 3.8% for “without bars” and “with bars” 

respectively. For other probabilities of exceedance values are combined in Table 4.5. 

A comparison of cumulative curves for meandering subtypes and meandering 

channels in general revealed that relative bank erosion is higher than in general for 

“meandering channels with bars” and otherwise is lower than in general for “meandering 

channel without bars” in the whole range of probabilities of exceedance (see Fig. 4.17). 
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Figure 4.17: Cumulative relative bank erosion rate curves for the 

meandering subtypes. 1 – meandering channels without bars; 2 – 

meandering channels with bars; 3 – meandering channels in general case 

from Fig. 4.14 is shown for comparison purpose. 

 

 

Table 4.5: Relative bank erosion rates (yr-1) for different frequencies and 

meandering subtypes 

 

Meandering subtype 
Frequency, % 

meandering channels without bars meandering channels with bars 

10 0.050 0.083 

20 0.034 0.069 

30 0.027 0.056 

40 0.020 0.045 

50 0.016 0.038 

60 0.012 0.029 

70 0.008 0.017 

80 0.005 0.010 

90 0.003 0.005 
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4.3. RELATIONSHIPS AT THE CATCHMENT SCALE 
 

4.3.1. Bank erosion rate at the catchment scale 
 

Drainage area. Since the publication of Hooke (1980), where a relationship 

between bank erosion rate and drainage area was produced, scientists have considered 

the relationship either with criticism (e.g. Hasegawa, 1989a) or with improvement on the 

basis of adding new data (e.g. Van De Wiel, 2003). The idea of developing such 

relationships is to estimate bank erosion rates with data which are easy to obtain from 

maps. Statistically, such relationships may be well founded. In this study a relationship 

between bank erosion rate and drainage area was constructed as well using all available 

data, i.e. for all river types (Fig. 4.18). By the relationship higher bank erosion rates are 

more likely on rivers with bigger drainage area. 

 

 
Figure 4.18: Relationship between bank erosion rate and drainage area. 

Number of observations is 397. 

 

Statistically the relationship presented in Fig. 4.18 is less well defined than in the 

study of Van De Wiel (2003) where R2 = 0.67 but is better than in the earlier study of 

Hooke (1980) where R2 = 0.39. Walker and Rutherfurd (1999) obtained an even weaker 

relationship between drainage area and bank erosion rate with R2 = 0.35. Rewriting the 
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equation from Fig. 4.18 in the power form (see Table 4.6) shows that the power 

exponent is 0.4. In other studies the power law has been obtained with slightly different 

values of the exponent. For instance, Walker and Rutherfurd (1999) derived the 

exponent as 0.38 which is close to obtained herein. Hooke (1980) and Van De Wiel 

(2003) obtained slightly higher values than in Fig. 4.18 and almost the same values – 

0.45 and 0.44, respectively. From the analysis of the resultant equation Hooke (1980) 

concluded that there is the square-root relationship between bank erosion rate and 

drainage area. However, in all consequent studies it has been shown that the power is 

slightly less than square-root, i.e. always less than 0.5. But note that for the relationship 

Hooke (1980) has used the maximum bank erosion rates while in other studies the mean 

erosion rates have been used (see Table 4.6). Despite varying values of the parameters, 

the relationships show the same direct relationship between bank erosion rate and 

drainage area. 

 

Table 4.6: A comparison of equations for relationship between bank erosion 

rate and drainage area. 

 

From 
Derived 

equation 
N R2 Notes 

Hooke (1980) 
45.045.2 AC =

 
55 0.39 

A relationship between maximum 

bank erosion rate and drainage area 

Walker and Rutherfurd (1999) 
38.0052.0 AC =

 
46 0.35 

A relationship between mean bank 

erosion rate and drainage area 

Van De Wiel (2003) 
44.0053.0 AC =

 
162 0.67 

A relationship between mean bank 

erosion rate and drainage area 

This study 
40.0053.0 AC =

 
397 0.52 

A relationship between mean bank 

erosion rate and drainage area 

 

A comparison of the coefficients in the equations revealed that for the mean bank 

erosion rate the coefficients are nearly equal. By the coefficients, one can conclude that 

in a river with drainage area 1 km2 bank erosion rate is likely to be 0.05 m per year in 

average and up to 2.5 m per year as maximum. 

Water discharge. As a parameter considered in catchment scale water discharge 

is used too. The initial premise is that the larger the water discharge the higher the bank 

erosion rates. In general, the premise is justified (Fig. 4.19). In Fig. 4.19 points are 

shown in different colour by channel types. Note that almost all points for straight 

channels are located below the regression line and consequently are associated with 
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lower bank erosion rates than other channel types. Meandering and braided channels 

occupy the whole range of values for both water discharges and bank erosion rates. 

Anabranched channels are located in a narrow range of medium and high values of 

bankfull discharge and with broad range in bank erosion rates values. 

 
Figure 4.19: Relationship between bank erosion rates and bankfull 

discharge. Number of observations is 427. Channel types: 1. Anabranched; 

2. Braided; 3. Meandering; 4. Straight. Red dashed lines represent envelope 

lines. 

 

From a statistical point of view there is a slight heteroscedasticity in Fig. 4.19 

(see dashed red lines). The condition of heteroscedasticity indicates that the error 

variance is not constant, and rather depends from the independent variable values 

(Lewis-Beck, 1990). As bankfull discharge increases, the variation of residuals for bank 

erosion rate decreases. Possibly this situation can be improved by additional datapoints 

in the region of large values of the discharge and bank erosion rate. However, in this 

case the scatter of points will be bigger and R2 smaller. Berry and Feldman (1985) noted 

that a slight heteroscedasticity has little effect on the significance test. Therefore, despite 

the slight heteroscedasticity, at current stage of study the relationship between bankfull 

discharge and bank erosion rate presented in the Fig. 4.19 can be statistically accepted. 

The relationship between bank erosion rates and water discharge is positive, but 

not as well defined as that for drainage area due to bigger point scatter. For comparative 

reasons the results from previous studies and from this study are combined in Table 4.7. 
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Walker and Rutherfurd (1999) obtained a close relationship using 68 datapoints. 

Afterwards Rutherfurd (2000) added several points with data for mean annual discharge 

and obtained slightly different results (with higher power and less close), but this 

difference is not significant. From Fig. 4.19 using much more datapoints, the relationship 

differs from the previous studies significantly. The power is considerably less than that 

in studies by Walker and Rutherfurd (1999) and Rutherfurd (2000). R2 is about half that 

obtained in previous studies. Consequently, in this case adding more datapoints lead to 

bigger scatter point. Also using a larger number of datapoints, the power value in the 

equations is changed significantly. In contrast, for the drainage area relationship the 

power in all studies lies in narrow range. 

 

Table 4.7: A comparison of equations for relationship between bank erosion 

rate and water discharge. 

From 
Derived 

equation 
R2 

Notes about used discharges for 

relationship 

Walker and Rutherfurd (1999) 
59.0042.0 QC =

 
0.44 

Bankfull discharge 

Rutherfurd (2000) 
60.0044.0 QC =

 
0.43 

Either bankfull or mean annual 

flood discharge 

This study 
38.0182.0 QC =

 
0.22 

Bankfull discharge – either given in 

original sources or calculated by the 

equation of the relationship between 

bankfull and average annual 

discharge 

 

Considering the derived equations in Table 4.7, one can conclude that for 

bankfull water discharge 1 m3 sec-1 bank erosion rate is expected to be 0.04 m per year 

from studies of Walker and Rutherfurd (1999) and Rutherfurd (2000) and 0.18 m per 

year from this study. This significant difference (almost five times) in the coefficients 

can not be explained by using different characteristics of water discharge, though in this 

study adjusted bankfull discharges have been also used. Perhaps in other similar studies 

different values of the coefficient can be obtained depending on the available dataset. 

Also note that the range of bank erosion rates in the area of small discharge is the widest 

(see Fig. 4.19). From obtained results it is important to underline that the relationship 

with discharge is more sensitive to additional datapoints than the relationship with 

drainage area. 
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Average annual runoff. As a ratio of water discharge and drainage area the 

average annual runoff is used. From consideration of the water balance this parameter 

reflects the climate conditions of an area. It is supposed that in deserts with dry climate 

the amount of average annual runoff is small and in tropics it is large due to the amount 

of rainfall. A relationship between bank erosion rate and average annual runoff is shown 

in Fig. 4.20. There is no statistically strong relationship (R2=0.12) although it is 

significant (p<0.0001) due to large amount of datapoints. Consequently, due to the 

extreme scatter the parameter is not useful for predictive purposes. Also one can 

conclude that a tropical river is as likely to be laterally active as a river in dry or 

temperate environment. Indeed, from a bank erosion study of the Rio Grande de Añasco 

in humid tropical environment Alvarez (2005) has concluded that both the mean bank 

erosion rate and the ratio of meander curvature to channel width for maximum migration 

in a humid tropical river are similar to those in humid temperate rivers. 

 
Figure 4.20: A relationship between bank erosion rates and average annual 

runoff. Number of observations is 226. 

 

Sediment transport rate. The last parameter considered in the catchment scale is 

sediment transport rate. In some models (e.g. Popov, 1965; Neill, 1984; Richardson, 

2002) for meandering rivers it is supposed that the amount of transported sediment is 

directly related to the meander migration rate. Only in general does the constructed 

relationship between bank erosion rate and total sediment transport rate (Fig. 4.21 A) 

support this idea. Although the regression line shows a positive relation, there is a big 

point scatter. From a statistical point of view this relationship is weak but it is 
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significant. If sediment transport is expressed in terms of unit sediment transport rate 

(Fig. 4.21 B) then the relationship becomes not significant at p=0.05. Despite the logical 

consideration that bank erosion rate should be related to the amount of sediment 

transported by water, by statistical results obtained herein (Fig. 4.21), and considering 

the data scatter, one could conclude that a river with high bedload is as laterally active as 

a river with a low transported sediment amount. However, the relationships shown in 

Fig. 4.21 are for catchment scale reports of sediment transport (yield), whereas sediment 

transport acts at the reach and cross-section scale. 

 
(A) 

 
(B) 

Figure 4.21: Relationship between bank erosion rate and (A) gross sediment 

transport rate (number of observations is 57); (B) unit sediment transport 

rate (number of observations is 57). 
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4.3.2. Relative bank erosion rate at the catchment scale 
 

An analysis of relationships between relative bank erosion rate and variables 

considered at the catchment scale revealed that there are no statistically meaningful 

correlations (Fig. 4.22). Even by the directions of the regression lines any conclusion 

about behaviour of relative bank erosion rate with parameters of the catchment scale can 

not be derived because R2 values are nearly equal to zero. When points are labelled by 

channel types (Fig. 4.22 A and C), then there is also no tendency in relative bank erosion 

rate values with parameters of the catchment scale. Points for different channel types are 

scattered widely as well. Consequently, relative bank erosion rate does not depend upon 

parameters used to characterize a catchment and one could expect the same relative bank 

erosion rate in either a small river or a large river. Also from the relationships with water 

discharge and with average annual runoff the relative bank erosion rate is expected to be 

similar for rivers conveying different amount of water. These results confirm a 

conclusion of Hooke (1980) from an analysis of a relationship between bank erosion rate 

and drainage area that erosion rates are similar for all sizes of catchment if scaled as 

channel width per year. 

A relationship between relative bank erosion rate and sediment transport rate is 

not presented in Fig. 4.22 because there are only 7 points. It is not a large enough 

number of datapoint to construct a statistically meaningful relationship. Therefore at this 

stage of study it is impossible to make any rational conclusion about this relation. 
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Figure 4.22: Relationship between relative bank erosion rate and (A) drainage area (number of observations is 229); (B) bankfull 

discharge (number of observations is 292); (C) average annual runoff (number of observations is 129). For (A) and (C) channel types are: 1. 

Anabranched; 2. Braided; 3. Meandering; 4. Straight. 
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4.4. RELATIONSHIPS AT THE REACH SCALE 
 

4.4.1. Bank erosion rate at the reach scale 
 

In this section relationships between bank erosion rate and various parameters of 

a channel at the scale of the river reach are considered. Channel size can be 

geometrically defined by channel depth and width. Other geometrical parameters such as 

height of eroded bank, floodplain/valley width, channel and valley slopes, depth to width 

and bank height to width ratios are used as well. Also water surface slope, gross stream 

power, unit discharge, unit stream power, shear stress and coefficient of variation are 

considered at this scale. Because erosion occurs locally along banks, it is supposed that 

relationships of bank erosion rates with parameters of the river reach scale would be 

closer than with parameters of the catchment scale. However, it is should be borne in 

mind that channel size characteristics are functions of water discharge (Leopold and 

Maddock, 1953): 

A function for channel depth: 
fcQd = ; 34.051.0 Qd = , R2 = 0.66, N = 63, p<0.01.    4.1 

A function for channel width: 
baQw = ; 63.091.1 Qw = , R2 = 0.72, N = 292, p<0.0001   4.2 

where w = width, m; d = depth, m; Q = bankfull water discharge, m3s-1; a,b,c, and f are 

numerical constants. Results using data from the current study are shown in equations 

4.1 and 4.2. These results are produced only to show that geometrical parameters of the 

channel closely correlate with water discharge, rather than to examine hydraulic 

geometry at-a-station and downstream as was performed by Leopold and Maddock 

(1953). 

Channel depth. Constructing a relationship between bank erosion rate and 

channel depth, it is found that this relationship is better defined than for water discharge 

(Fig. 4.23). However, there is still quite a big scatter of points, especially in the region of 

large values of channel depth. The scatter of points partly can be explained by variability 

of channel depth during a year, which can reach more than 10 metres in large rivers. 

Even though an attempt was made to reduce data to the same conditions (bankfull), 

channel depth is sensitive to chosen bankfull level. In general, the relationship between 

bank erosion rates and channel depth is positive. Deep channels characterize big rivers 
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with large water discharges, i.e. the dependence on water discharge is imposed on the 

relationship. 

 
Figure 4.23: Relationship between bank erosion rate and bankfull depth. 

Number of observations is 91. 

 

Rewriting the equation from Fig. 4.23 in the power form is 42.135.0 dC = . The 

obtained coefficient shows that bank erosion rate is likely to be 0.35 m per year when 

bankfull depth is 1 m. 

Channel width. An alternative parameter, which is not as sensitive as bankfull 

depth to chosen bankfull level (see section 3.3.2), is channel width. Nanson and Hickin 

(1986) found that width was better than other parameters as a single predictor for bank 

erosion rate. A relationship of bank erosion rate with channel width is shown in Fig. 

4.24, where points are divided by channel types. From a statistical point of view this 

relationship is as good as that for channel depth (R2 equals 0.47), but more robust as the 

number of datapoints is almost five times bigger than for the relationship with channel 

depth. Moreover, for Fig. 4.24 all available data about channel width were used whether 

this was width at bankfull, at low water, as given on maps and at date of observations, 

although data for bankfull condition were prefered. Perhaps, the fact that all available 

data about channel width are used partly explains the scatter of points in Fig. 4.24. As 

noted already it is supposed that channel width is not as sensitive to level change as 

channel depth. 

Points for straight channels are mainly located below the regression line, 

especially for channels narrower than 20 metres. In other words, for given width, one 
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would expect lower bank erosion rates will occur in straight channels than in other 

channel types, especially in small rivers. 

 
Figure 4.24: A relationship between bank erosion rate and channel width. 

Channel types: 1. Anabranched; 2. Braided; 3. Meandering; 4. Straight. 

Number of observations is 487. 

 

 
Figure 4.25: Relationship between bank erosion rate and width for 1 – 

braided channels (number of observations is 100), 2 – meandering channels 

(number of observations is 294) and 3 – straight channels (number of 

observations is 42). 
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With available data it is possible to construct relationships for braided, 

meandering and straight channels separately (Fig. 4.25). For anabranched channels a 

statistically meaningful regression line is not possible to obtain at this stage of analysis. 

Comparing with Fig. 4.24 for braided and meandering channels the relationship is less 

well defined than in the general case, while for straight channels the relationship is better 

defined than that in general (see R2 values). 

 

Table 4.8: Test results for the null hypothesis that the slopes (1 and 2) are 

equal. 
slope 1 slope 2 ν  t t5% 

braided vs meandering 

0.89 0.73 98 1.316 1.661 

braided vs straight 

0.89 1.19 98 2.467 1.661 

meandering vs braided 

0.73 0.89 292 2.987 1.650 

meandering vs straight 

0.73 1.19 292 8.587 1.650 

straight vs braided 

1.19 0.89 40 2.028 1.684 

straight vs meandering 

1.19 0.73 40 3.110 1.684 

 

The regression lines have different values of slope (coefficient b). The less steep 

line is for meandering channels, steeper is for braided channels and the steepest is for 

straight channels. That slopes for these channel types in Fig. 4.25 significantly differ was 

tested and results are shown in Table 4.8. In this table ν  = degree of freedom; t = the 

computed value of t-statistic; t5% = the table value of t at the significance level 5% from 

Lindley and Scott (1984). For large values of the degree of freedom the harmonic 

interpolation is used as suggested by Lindley and Scott (1984). From the results it can be 

concluded that the slopes significantly differ, because the t-statistic in all tests lies in the 

critical region. The only exception is when the slope for braided channels statistically is 

compared with the meandering one. In this case the computed value of the t-statistic is 

less than the tabulated value, which means that the slope for braided channels does not 

differ statistically from the slope for meandering channels. On the other hand, the slope 

for meandering channels is statistically different from the slope for braided channels (see 

“meandering vs braided”). Therefore, after this analysis it is concluded that the slopes for 

channel types statistically differ from each other. It means that, in a statistical sense, the 
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rate of bank erosion for straight channels increases more rapidly as a function of channel 

width than for braided and meandering channels. 

Regression equations from Figs. 4.24 and 4.25, which are rewritten in the power 

form, are combined in Table 4.9. Considering the coefficient in the equations of Table 

4.9, one can derive that for a channel 1 m wide it would be expected that bank erosion 

rate is likely to be 0.05 m per year in total case, 0.03 m per year for braided channels, 

0.06 m per year for meandering channels and 0.005 m per year for straight channels. 

Because 1 m width is so narrow for natural channels using the obtained equations values 

of bank erosion rate are calculated for round values (10; 50; 100; 500) of channel width 

and presented in Table 4.9. 

 

Table 4.9: Regression equations for relationship between bank erosion rate 

(C, m yr-1) and channel width (w, m). 
Type Equations w=10 w=50 w=100 w=500 N R2 

Total 8.0047.0 wC =  0.30 1.07 1.87 6.78 487 0.47 

For braided 

channels 
89.0032.0 wC =  0.25 1.04 1.93 8.08 100 0.35 

For meandering 

channels 
73.0063.0 wC =  0.34 1.10 1.82 5.88 294 0.39 

For straight 

channels 
19.1005.0 wC =  0.077 0.53 1.20 8.14 42 0.62 

 

There is a dependance from water discharge imposed on the relationship between 

bank erosion rate and channel width (Fig. 4.26). It is again evident that channel size 

depends upon the amount of water which the channel must convey. In general the 

relationship between bank erosion rates and channel width is positive and is better 

defined than with water discharge, as it was supposed at the beginning of the analysis. In 

addition, the closer relation with width than with water discharge can be explained as 

follow. At-a-station channel width is not as changeable as water discharge, particularly 

in channels with steep banks. In the extreme case of a rectangular channel, the width is a 

constant with all possible water discharge values below bankfull. Finally, discharge is 

more difficult to measure accurately than is channel width and, as noted above, different 

values of discharge were reported in the raw data sets from which standardized bankful 

values were caculated.  
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Figure 4.26: A relationship between bank erosion rate and width showing 

the dependence of width on discharge. Change of colour shows increasing in 

water discharge; red points with water discharge more than 2500 up to 

33 250 m3 sec-1. Number of observations is 292. 

 

Bank height. If, for the sake of argument, it is acceptable to negate the correlation 

of bank height with discharge, there are two contrary explanations for the relationship 

between bank erosion rate and bank height in the literature. On the one hand, bank 

erosion rates increase with increasing bank height, due to the increasing instability with 

respect to mass failure (Osman and Thorne, 1988); i.e. a positive relationship. On the 

other hand, the higher the bank then the greater the volume of sediment delivered into 

the channel. The flow’s ability to erode the bank will therefore decrease because the flow 

has to carry more sediment away from the bank toe (Hasegawa, 1989b; Chalov, 2000); a 

negative relationship. On account of these contrary explanations, it is uncertain how 

bank erosion rate and bank height may be related in the general case. 

Results of the linear model are shown in Fig. 4.27 A. In general, the relationship 

is positive and shows that with increasing of bank height the bank erosion rates are likely 

to increase; i.e the positive trend is the same as for bank erosion and discharge. Despite a 

big point scatter, the relationship is closer than that for discharge, depth and width (R2 = 

0.53). As for relationships with water depth and with channel width, in the relationship 

between bank height and bank erosion rate the co-linearity of water discharge cannot be 

negated and has an effect (Fig. 4.27 B). Thus, high banks are characteristic features of 

large rivers with rapid rates of bank erosion. An existence of river reaches with high, 
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steep banks consequently is a reliable sign of lateral movement of channel in these 

reaches. From the equation which is rewritten in the power form 23.12.0 hC = , one can 

conclude that with a bank 1 m high there is likely to observe a bank erosion rate of 0.2 m 

per year. 

 
Figure 4.27: Relationship between bank erosion rate and bank height. 

Change of colour in (B) shows increasing in water discharge; red points with 

water discharge more than 2500 up to 33 250 m3 sec-1. Number of 

observations for (A) is 235 and for (B) is 61. 
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Floodplain and/or valley width. To check how bank erosion rate is associated 

with average width of either the floodplain or valley (as appropriate) on a reach a 

relationship is constructed (Fig. 4.28). It might be surmised that broad plains indicate 

extensive lateral channel migration activity and so should be associated with relatively 

high rates of bank erosion. It is obvious from the diagram that there is a big scatter of 

points. Nevertheless, wide floodplain or valley of rivers is an indicator of high bank 

erosion rates as there is positive correlation between bank erosion rate and 

floodplain/valley width. At the same time it should be borne in mind that there is an 

effect of river size, because steep mountain rivers with small drainage area are 

characterised by narrow floodplains sometimes confined by rock, and lowland rivers 

with bigger drainage area are characterized by wide unconfined floodplains. The power 

form of the regression line from Fig. 4.28 is rewritten as 97.007.1 vwC = . Therefore, by the 

coefficient it is derived that bank erosion rate is likely to be c.1 m per year in rivers with 

floodplain/valley 1 km wide, and otherwise is directly proportional to floodplain width. 

 

 
Figure 4.28: Relationship between bank erosion rate and average width of 

floodplain or valley. Number of observations is 237. Channel types: 1. 

Anabranched; 2. Braided; 3. Meandering; 4. Straight. 

 

Slope. Considering channel slope, one might expect that the steeper the channel 

the higher the stream power and shear stress, and as consequence the capability of stream 

is greater to erode banks. However, results show an inverse relationship of bank erosion 
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rate and channel slope (Fig. 4.29 B). Regarding water slope and valley slope there are 

relationships which are not significant (Fig. 4.29 A and C). 

Although the correlation between bank erosion rate and channel slope is not 

strong (R2 equals 0.23) with big point scatter, in general with a steep channel slope, low 

bank erosion rates are more likely to occur. However, this can be explained by the 

following. River reaches with steep channel slopes are usually located in upper parts of 

river system where small amounts of water are observed. As was shown above, bank 

erosion rate is associated with characteristics of river size, notably drainage area and 

water discharge. Therefore, in headstreams though steep slopes of the channels occur, 

there is not enough discharge to create high stream power for bank erosion. Moreover, it 

is assumed that in headstreams bed and banks are composed by coarser sediments, which 

may be more resistant to erosion. 
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   (A)          (B)       (C) 

 
 

Figure 4.29: Relationship of bank erosion rate with (A) water surface slope (number of observations is 41); (B) channel slope (number 

of observations is 339); and (C) valley slope (number of observations is 156). 
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Ratios. Relationships with the ratios of bankfull depth and bank height to channel 

width are weak from statistical point of view (see R2 values in Fig. 4.30). Therefore, 

there are no correlations between bank erosion rate and the ratios of bankfull depth and 

bank height to width. However, considering the direction of regression lines it can be 

concluded that the width has a bigger effect on erosion rates than bankfull depth and 

bank height because the direction is negative in both relationships and the channel width 

is a denominator. Taking into account the relationships for the ratios, one can conclude 

that the relationship for channel width is more robust than that for bankfull depth and 

bank height, despite that the above derived relationships for bankfull depth, channel 

width and bank height (Figs. 4.23, 4.24 and 4.27 A) show the R2 values are the same for 

both bankfull depth and channel width and even the R2 for bank height is higher than that 

for channel width. This result support the finding of Nanson and Hickin (1986) that 

channel width is a better predictor of erosion rates than other parameters. 

Also the unit discharge is used as a ratio, because it represents the ratio of water 

discharge to channel width. Relationships between unit discharge and bank erosion rate 

are shown in Fig. 4.31. There two relationships shown – for all channels and for straight 

channels only. The relationship for straight channels is shown as for this channel type a 

high correlation is obtained (R2 is 0.53), but for other types there are no correlations 

between unit discharge and bank erosion rate. R2 values for other types are 

approximately equal to the R2 value for all channels. However, if the straight channels 

(P<1.3) are seen as representing low sinuosity meandering channels and thus represent 

the lower portion of the meandering channel data cloud, then there is no justification to 

fit a regression equation to this data sub-set. The issue of defining straight channels as 

separate from meandering channels is considered in the ‘Discussion’. 
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(A) 

 

 

 
(B) 

 

Figure 4.30: Relationship between bank erosion rate and (A) the depth to 

width ratio (number of observations is 92); and (B) the bank height to width 

ratio (number of observations is 112). 
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Figure 4.31: Relationship between bank erosion rate and unit discharge. 

Total regression line is shown as a solid line; total equation is shown in the top left corner; total 

number of observations is 290. Regression line for straight channels is shown as a dashed line; 

equation for straight channels is shown in the bottom right corner; number of observations for 

straight channels is 30. Channel types: 1. Anabranched; 2. Braided; 3. Meandering; 4. Straight. 

 

Stream power. Plotted sets of data for analysis of the relationship between bank 

erosion rate and gross and unit stream power (Fig. 4.32), show that there are no 

correlations and for unit stream power; the relationship is even not significant. R2 values 

are very low. Even a division by channel types does not reveal any tendencies. 

Moreover, points for straight and anabranched channels are grouped in an area of high 

stream power. The fact that points for braided channels are located also in the area of 

high stream power supports the earlier empirical finding by QS-diagrams that braided 

channels possess higher stream power than meandering ones. But straight and 

anabranched channels are distributed on QS-diagrams with wide ranges of stream power 

(e.g. straight channels on QS-diagram by Leopold and Wolman (1957); anabranched 

channels by Nanson and Knighton (1996)). In addition, based on the representation by 

Bridge (2003) of the continuum of equilibrium channel patterns, straight channels should 

possess lower stream power than meandering channels. Also, anastomosing channels as 

a subtype of anabranched channels (Nanson and Knighton, 1996) are characterized by 

low stream power (e.g. Nanson and Croke, 1992; Knighton and Nanson, 1993; Makaske, 

2001). Therefore, the dataset collated herein for bank erosion study does not completely 

coincide with previous studies of channel types, where different datasets have been used. 
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(A) 

 

 
(B) 

 

Figure 4.32: Relationship between bank erosion rate and (A) gross stream 

power (number of observations is 261); and (B) unit stream power (number 

of observations is 188). Channel types: 1. Anabranched; 2. Braided; 3. 

Meandering; 4. Straight. 
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Table 4.10: A comparison of equations for relationship between bank 

erosion rate and gross stream power. 

 

From 
Derived 

equation 
N R2 Notes 

Walker and Rutherfurd (1999) 
53.0025.0 Ω=C

 
63 0.35 

Only for meandering 

channels 

This study 
11.0871.0 Ω=C

 
261 0.02 

For different channel types 

 

A comparison with an earlier study of relationship between bank erosion rate and 

gross stream power is combined in Table 4.10. While herein the obtained relationship is 

not significant, Walker and Rutherfurd (1999) have derived a positive relationship 

between bank erosion rate and gross stream power. But the relationship by Walker and 

Rutherfurd (1999) is not strong and is constructed only for meandering channels with 63 

datapoints. In the current study many more datapoints have been used and for different 

channel types. Therefore, with adding more data for the relationship of bank erosion rate 

with gross stream power the association becomes weaker. Perhaps, such statistically 

meaningful positive relationships would be possible to obtain only for regional studies. 

But from this analysis, in the general case, one can conclude that bank erosion rate is not 

correlated with stream power. 

Shear stress. Regarding the shear stress, a scatter plot is possible to create only 

for meandering channels (Fig. 4.33) as data about shear stress are available only for this 

channel type. There is no significant correlation between bank erosion rate and shear 

stress. However, an envelope curve for the upper limit of values (a dashed curve in 

Fig. 4.33) shows the following behaviour. By the envelope curve, the maximum value of 

bank erosion rate is observed in the area of moderate values of shear stress. This result 

suggests that high magnitude of shear stress does not always lead to severe bank erosion. 

The behaviour of the envelope curve is contrary to some fluvial bank erosion models, 

where a simple exceedance of the shear stress is used. In these models bank erosion rate 

is not linear, but positively depends upon the magnitude of shear stress. The behaviour of 

the envelope curve rather supports the theory of magnitude-frequency of Wolman and 

Miller (1960) that moderate values that are more frequent are responsible for bigger 

changes of channels. Indeed, incorporating duration of shear stress impact in a fluvial 

bank erosion model and in a conceptual model of bank erosion of cohesive banks, Julian 

and Torres (2006) have concluded that, for cohesive banks, bank erosion rates depend 

more on the impact duration, while for noncohesive banks the magnitude is important. 
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Figure 4.33: Relationship between bank erosion rate and shear stress. 

Number of observations is 79. 

 

Coefficient of variation. With variation of annual average water discharge in 

“long term” bank erosion rate does not correlate from statistical standpoint (Fig. 4.34). 

Note that the coefficient of variation is presented without Log10 transformation. From 

the relationship between bank erosion rate and coefficient of variation, one can conclude 

that the same bank erosion rate is likely in a river with very variable average annual 

discharge from year to year and in a river which is characterized by more stable values of 

average annual discharge in the long term period. 
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Figure 4.34: Relationship between bank erosion rate and coefficient of 

variation. Number of observations is 135. 

 

4.4.2. Relative bank erosion rate at the reach scale 
 

In general, relationships for relative bank erosion are weak compared with 

absolute values of bank erosion. The scatter plots for bankfull depth, bank height, 

floodplain/valley width and different characteristics of slope are combined in Fig. 4.35. 

In Fig. 4.36 other remaining relationships are presented. From all of them there are no 

strong correlations and between relative bank erosion rate and variables which are 

considered in the reach scale and most of them are not significant. Even division of 

points by channel types does not reveal any tendencies in the scatter plots as shown by 

examples in Fig. 4.35 B and Fig. 4.36 B for bank height and for ratio of bank height to 

channel width, respectively. 

Slope. Comparing relationships for characteristics of slope in Fig. 4.29 and Fig. 

4.35 D, E, F, the following differences could be noticed. For water surface relationship 

(Fig. 4.35 D) there is no significant correlation as well as in the case of absolute bank 

erosion rate values (Fig. 4.29 A). However, the heteroscedasticity is more obvious for 

relative bank erosion rate (see red dashed lines in Fig. 4.35 D), which indicate bigger 

variations of residuals in the area of high water surface slope values than in Fig. 4.29 A. 

For the channel slope relationship there is no significant correlation (Fig. 4.35 E), while 

for a relationship between actual values of bank erosion rate and channel slope an 
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inverse slight correlation has been obtained (Fig. 4.29 B). Such a slight, but positive, 

correlation is revealed for a relationship between relative bank erosion rate and valley 

slope (Fig. 4.35 F), whereas there is no correlation in the case of actual bank erosion rate 

values (Fig. 29 C). The direction of a relationship in Fig. 4.35 F shows that the steeper 

the valley the higher relative bank erosion rate is likely to be observed. 

Stream power. In relationships for stream power characteristics (gross stream 

power and unit stream power, Figs 4.36 C and D, respectively) points are distinguished 

by channel types. As in the case of actual bank erosion rate values (Fig. 4.32), there are 

no significant correlations, and grouping of points for straight, braided and anabranched 

channels in the area of high stream power than for meandering ones. Another result 

which is similar to that for actual bank erosion rate has been obtained for a relationship 

with shear stress (Fig. 4.36 E). By the envelope curve, relative bank erosion rate reaches 

its maximum at moderate shear stress. It should be noticed that in Fig. 4.36 E data are 

available only for meandering channels. 

Relationships of relative bank erosion rate with channel width (Figs 4.37 and 

4.38) and with unit discharge (Fig. 4.39) are presented separately from other parameters. 

Channel width. As with many parameters there is no correlation between relative 

bank erosion rate and channel width (Fig. 4.37), where a big point scatter is obtained 

even with point division by channel types. However, if a relationship of actual bank 

erosion rate with channel width like that in Fig. 4.24 is represented with adding of 

relative bank erosion rate bounds (Fig. 4.38), then some important information is 

revealed. The bounds show the following ranges of the relative bank erosion rate. The 

blue bound represents the interval of bank erosion rate to width ratio in percent from 

0.01 to 0.1. The yellow bound – from 0.1 to 1% of width. The green bound – from 1 to 

10% of width. The red bound – from 10 to 100% of width. This analysis reveals that in 

about 90% of cases relative bank erosion rates are not greater than 10% of channel 

width. Thus, one could say with confidence that relative bank erosion rate greater than 

10% of channel width can be observed rarely and in exceptional cases and most likely to 

be observed in the range of 1 to 10% of channel width. 
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Figure 4.35: Relationship of relative bank erosion rate with (A) bankfull depth (number of observations is 91); (B) bank height (number 

of observations is 112); (C) floodplain/valley width (number of observations is 168); (D) water surface slope (number of observations is 

32); (E) channel slope (number of observations is 253); and (F) valley slope (number of observations is 83). Channel types: 1. 

Anabranched; 2. Meandering; 3. Straight. 
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Figure 4.36: Relationship of relative bank erosion rate with (A) channel depth to width ratio (number of observations is 92); (B) bank 

height to channel width ratio (number of observations is 112); (C) gross stream power (number of observations is 188); (D) unit stream 

power (number of observations is 188); (E) shear stress (number of observations is 85); and (F) coefficient of variation (number of 

observations is 67). Channel types: 1. Anabranched; 2. Braided; 3. Meandering; 4. Straight. 
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Figure 4.37: Relationship between relative bank erosion rate and channel 

width. Number of observations is 487. Channel types: 1. Anabranched; 2. 

Braided; 3. Meandering; 4. Straight. 

 

 
Figure 4.38: Relationship between bank erosion rate and width with 

different relative bank erosion rate bounds. Explanation in the text. 
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Unit discharge. Considering a relationship between relative bank erosion rate and 

unit discharge for all channel types, there is no significant correlation. However, the 

regression line, which is constructed only for anabranched channels, shows a positive 

and significant (R2 = 0.32) relationship (Fig. 4.39). Although for anabranched channels 

the relationship is closer than in total, the value of the coefficient of determination shows 

that only a third of variance could be explained by the regression and is consequently not 

considered of predictive capacity. 

 

 
Figure 4.39: Relationship between relative bank erosion rate and unit 

discharge. 
Total regression line is shown as a solid line; total number of observations is 290. Regression line 

for anabranched channels is shown as a dashed line; equation for anabranched channels is shown 

in the bottom right corner; number of observations for anabranched channels is 45. Channel 

types: 1. Anabranched; 2. Braided; 3. Meandering; 4. Straight. 
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4.5. RELATIONSHIPS AT THE CROSS-SECTION SCALE 
 

4.5.1. Bank erosion rate at the cross-section scale 
 

In this section relationships between bank erosion rate and variables at the scale 

of cross-section are considered. These variables are water velocity, bed and bank median 

grain size and types, bank silt-clay content and riparian vegetation types. 

Average water velocity. The coefficient of determination and a scatter plot in 

Fig. 4.40 show that there is a weak correlation between bank erosion rate and average 

water velocity at bankfull condition. The R2 value is low and points are widely scattered. 

 

 
Figure 4.40: Relationship between bank erosion rate and water velocity at 

bankfull conditions. Number of observations is 54. 

 

Grain size. Regarding the grain size of bank and bed material, by relationships 

presented in Fig. 4.41, one could conclude that there is no correlation between bank 

erosion rate and either median bank grain size or median bed grain size. The dashed 

vertical lines in Fig. 4.41 bound the categories of bank and bed material by grain size. 

The majority of points are located in the “sand” category for bank and for bed as well. 

Consequently, the majority of analysed data represent sand-bed rivers or rivers with 

sandy banks. Because of wide ranges and scatter distribution of points inside each 

category it is likely to observe the same magnitude of bank erosion rate in rivers with 
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banks composed by sand or by gravel, and in sand-bed or gravel-bed rivers. Taking into 

account this wide point scatter and absence of correlation, data is not proceeded further 

for ordinal association analysis. It is clear that the ordinal association analysis will show 

absence of any association between categories of bank erosion rate and either bank or 

bed material categories. These results for grain size coincide with a previous regional 

study by Nanson and Hickin (1986). They have found for rivers in western Canada that 

the coefficient of correlation between bank median grain size and bank erosion rate 

equals 0.27, which means that R2 is 0.073. Because Nanson and Hickin (1986) 

performed their analysis only for 18 rivers, the coefficient of correlation was found 

statistically insignificant at the level of significance of 1%. 

Silt-clay content. In Fig. 4.42 a relationship of bank erosion rate with silt-clay 

content of bank in percent is presented. According to this figure there is no correlation 

between these two variables. Points are widely scattered even for different channel types. 

The majority of presented points are for meandering channels, much less for straight 

channels. For braided and anabranched channels it is impossible to derive any 

meaningful conclusion for this kind of relation due to limited number of points in Fig. 

4.42. 

Cohesiveness. As it is pointed out in the previous chapter, the cohesiveness is an 

important factor for bank resistance, but it is difficult quantitatively to distinguish which 

material is either cohesive or noncohesive. Indeed, using an approach to distinguish bank 

material by cohesiveness based purely on median grain size failed in this study. It 

happened because in the category “cohesive” there is only one data point and thus it is 

impossible to compare this category with others. Despite the simplicity of this approach 

supported by logical explanation in earlier studies (Sundborg, 1956; Makkaveev and 

Chalov, 1986), using alone the median grain size is not sufficiently robust to distinguish 

cohesive and noncohesive sediments. Another approach based on silt-clay and sand 

content allowed the comparison different categories. A distribution of ranges and mean 

values of bank erosion rate by cohesiveness categories is presented in Fig. 4.43. The 

ranges are almost equal. Only the “intermediate” range is slightly less than for others 

categories. At the same time the category “intermediate” is characterized by the 

minimum number of observations and perhaps with additional data the range would be 

wider. The mean values in Fig. 4.43 increase from “cohesive” to “noncohesive”. The 

mean value for the category “noncohesive” is nearly twice as large as for “cohesive” 

category. 
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Figure 4.41: Relationship between bank erosion rate and median grain size of (A) bank (number of observations is 91) and (B) bed 

(number of observations is 248). 
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Figure 4.42: Relationship between bank erosion rate and bank silt-clay 

content. Number of observations is 165. 

 

 

noncohesiveintermediatecohesive

20

15

10

5

0

4.07

2.291.94

mean

number

C
, m

 y
r-1

99

22

44

noncohesiveintermediatecohesive

20

15

10

5

0

4.07

2.291.94

mean

number

C
, m

 y
r-1

99

22

44

 
Figure 4.43: Ranges and mean values for bank erosion rate by categories of 

bank cohesiveness. 
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Due to difficulties to distinguish sediments by cohesiveness and taking into 

account the number of observations for different categories (the number of observations 

for the “intermediate” category is considerably less than for others categories), in further 

analysis of ordinal association categories “cohesive” and “noncohesive” are involved 

whilst ignoring the category “intermediate”. It becomes clear from the distribution in 

Fig. 4.44 why the mean value of erosion for “noncohesive” material is higher than that of 

“cohesive”. The distribution shows that numbers of observations of “noncohesive” 

material with bank erosion rate higher than 2 m per year are greater than those of 

“cohesive” material. Thus the bias to higher values of erosion rate for “noncohesive” 

category cannot be related to just a few data of extreme bank erosion rate. In the same 

time, the distributions for “noncohesive” and “cohesive” categories show the same 

behaviour with maximum numbers of observations in the category “0.1 – 2 m per year”. 

The difference in the distributions is that data for “noncohesive” material is distributed 

more evenly amongst bank erosion rate categories than for “cohesive” material. 
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Figure 4.44: Distribution of observation number by bank erosion rate 

categories. Colour bars indicate bank material types by cohesiveness. 

 

Data presented in Fig. 4.44 have been used for computing the Goodman and 

Kruskal γ . In result the γ  equals 0.45. Therefore two cross tables associated to each 

other with probability 0.45 and that this association is positive. However, the value is 

low due to almost the same distributions in Fig. 4.44. The 12.02 ±=σ , i.e. a conclusion 

is that 0≠γ . Thus, on average, it is likely to observe higher bank erosion rate in rivers 

with noncohesive bank than in rivers with cohesive banks. 



 172

Vegetation type. The same analysis of bank erosion rate distribution (Fig. 4.45) 

and ordinal association is performed for riparian vegetation type. Due to limited data for 

the categories “no vegetation” (10 observations) and “shrubs” (only 4 observations), 

these categories are omitted from the further analysis. For the categories “grass” and 

“trees” the mean values differ from each other only slightly, while the range for “trees” 

is narrower than that for “grass”. The order “trees” → ”grass” has been analysed with the 

order of bank erosion rate categories for association. The initial data to calculate the 

Goodman and Kruskal γ  and the distribution by categories are presented in Fig. 4.46. 
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Figure 4.45: Ranges and mean values of bank erosion rates for riparian 

vegetation categories. 
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Figure 4.46: Distribution of observation number by bank erosion rate 

categories. Colour bars indicate riparian vegetation categories. 

 

A distribution in Fig. 4.46 shows that for the riparian categories the bank erosion 

categories are distributed in a similar way with the maximum number of observation in 

the category 0.1 – 2 m per year. Also from this distribution it is revealed that the wider 

range and slightly higher mean value for the “grass” category is dictated by few extreme 

data for bank erosion rate. Indeed, the calculated Goodman and Kruskal γ  equals -0.14 

and the negative sign shows that the categories should be inversely related. The γ  value 

is low due to similar distribution and suggests that there is no association between the 

orders for bank erosion rate and riparian vegetation type. The 14.02 ±=σ , i.e. a 

conclusion is that the association is not significant. Therefore, from this analysis it 

should be concluded that it is likely to observe the same bank erosion rate in river with 

banks covered either by grass or trees. 
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4.5.2. Relative bank erosion rate at the cross-section scale 
 

Average velocity. For the relative bank erosion rate at the cross-section scale 

results are slightly different from relationships for absolute values of bank erosion rate. 

For instance, results for a relationship between relative bank erosion rate and average 

velocity at bankfull conditions (Fig. 4.47) show that correlation is greater than in case of 

absolute bank erosion rate (see R2 values). However, the R2 is still too low to conclude 

that there is a close correlation. Consequently, the average velocity should not be used 

alone to estimate bank erosion rates, though the relationships show a positive direction. 

 

 
Figure 4.47: Relationship between relative bank erosion rate and water 

velocity at bankfull conditions. Number of observations is 52. 

 

Grain size. Similar results have been obtained for median grain size of bank and 

bed as for absolute values of bank erosion rate (Fig. 4.48), i.e. there are no correlations. 

The majority of points are located in the grain size range for sand class. Taking into 

account a big scatter on both diagrams for all classes of grain size, an ordinal analysis 

has not been performed to associate categories of materials by grain size and relative 

bank erosion rate. From the diagrams presented in Fig. 4.48 one could conclude that the 

same magnitude of relative bank erosion is likely to be observed in rivers with banks 

composed by sand or gravel, and in sand-bed or gravel-bed rivers. 
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Figure 4.48: Relationship between relative bank erosion rate and median grain sizes of (A) bank (number of observations is 48) and (B) 

bed (number of observations is 207). 



 176

Silt-clay content. A scatter-plot presented in Fig. 4.49 shows no correlation 

between relative bank erosion rate and silt-clay content in river banks. The same results 

are obtained when points are distinguished by channels types. But in another hand, 

points mainly represent meandering and straight channels and only a few points 

available for braided and anabranched channels. From this analysis it could be concluded 

that bank silt-clay content cannot be used to estimate relative bank erosion rate even 

tentatively. 

 
Figure 4.49: Relationship between relative bank erosion rate and bank silt-

clay content. Number of observations is 125. 

 

Cohesiveness. An approach to distinguish bank material types by cohesiveness 

using median grain size alone failed as well as in the case of absolute values of bank 

erosion rate. Therefore, an approach using silt-clay and sand content has been applied to 

categorize bank material. Fig. 4.50 shows distributions of ranges and mean values for 

these categories. For the “intermediate” category the narrowest range and minimum 

mean are resulted. At the same time the minimum number of observations occurs for this 

category and perhaps with more available data the range would be wider and the mean 

higher. Due to considerably low amount of data comparing with others categories, the 

“intermediate” category has been not used in further analysis for ordinal association. 

Regarding the remaining categories, the mean values only slightly differ from each 

other, but the range for “cohesive” category is wider than for “noncohesive” one. 

Consequently, an order based on ranges from the least active to the most active by lateral 
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movement of a channel, i.e. “noncohesive” → “cohesive” has been analysed for ordinal 

association. 
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Figure 4.50: Ranges and mean values for relative bank erosion rates by 

categories of bank cohesiveness. 

 

Initial data and distribution by categories are combined in Fig. 4.51. Numbers of 

observations for two categories are distributed in a similar way with maximum in the 

category “more than 0.02 and less than 0.05” of relative bank erosion rate. The only 

difference between distributions is that for the “cohesive” category the numbers of 

observations are distributed more evenly along relative bank erosion rate categories than 

for “noncohesive”. The resulted Goodman and Kruskal γ  is low and equals -0.16, and 

the association is not significant. The sign minus indicates that the prior chosen order for 

bank material is incorrect and should be inverse and the low value of association is 

dictated by similarity of distributions in Fig. 4.51. Therefore, there is no association 

between categories of bank material by cohesiveness and relative bank erosion rate. 

From this analysis it could be concluded that it is likely to observe the same relative 

bank erosion rate in river with either cohesive or noncohesive banks. 
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Figure 4.51: Distribution of observation number by relative bank erosion 

rate categories. Colour bars indicate bank material types by cohesiveness. 

 

Vegetation type. For a relationship between relative bank erosion rate and 

riparian vegetation types the same methodology as for types of bank material by 

cohesiveness has been applied and results are presented below. In Fig. 4.52 distributions 

of ranges and mean values are shown, Due to limited data for the categories “no 

vegetation” (8 observations) and “shrubs” (2 observations), these categories are omitted 

from the analysis of ordinal association. For the categories “grass” and “trees” the mean 

values and ranges differ from each considerably. For “grass” category the range is wider 

and the mean value is higher than those for “trees” category. Consequently, the order 

“trees” → ”grass” has been analysed with the order of relative bank erosion rate 

categories for association. The initial data to calculate the Goodman and Kruskal γ  and 

the distribution by categories are presented in Fig. 4.53. From the distributions in 

Fig. 4.53 it is evident that the majority of data for “trees” and “grass” represent relative 

bank erosion rate higher than 0.02 (i.e. 2% of channel width per year). It is also evident 

that for “grass” the relative bank erosion rate as high as more than 10% of width per year 

has been observed in 30% of cases. 
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Figure 4.52: Ranges and mean values for relative bank erosion rates by 

riparian vegetation categories. 
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Figure 4.53: Distribution of observation number by relative bank erosion 

rate categories. Colour bars indicate riparian vegetation categories. 
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Using data given in Fig. 4.53, the Goodman and Kruskal γ  has been computed 

and equals 0.45. This value is considerably higher than in the case of absolute values of 

bank erosion rate (where it equals -0.14), and suggests that the two cross tables are 

associated with each other with probability only 0.45 (note that value 1 shows perfect 

association). The positive sign shows that the prior chosen order of riparian vegetation 

types is positively related to relative bank erosion rate categories from the least active to 

the most active channels. The 12.02 ±=σ , i.e. a conclusion is that the association is 

significant. Therefore, it is likely to observe higher relative bank erosion rate in rivers 

with banks covered by grass than in rivers with banks covered by trees. 
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CHAPTER 5: CONCLUDING DISCUSSION 
 

5.1. CONTROLS ON CHANNEL PATTERN 
 

From the review of the different approaches that have been adopted to quantify 

the conditions for transition in channel types – it is difficult, if not impossible, to solve 

this problem in a generic sense with the available methods and information because even 

using the same approach different results often are achieved using different data sets (see 

the range of separating lines in QS-diagrams, Fig. 2.12). Ferguson (1984b) suggested 

using such QS-diagrams taking into account the location of a particular point on the 

diagram with respect to distance to the discriminatory line. If a point is located close to 

the discriminatory line, then a river corresponding to this point is more prone to change 

its form. However, a wide range of discriminatory lines appears and the log-scale of the 

variables shows that often the main controls (discharge, slope) would have to change by 

a large amount if a given river was to change its form. On this basis, it seems unrealistic 

that a river would change its form within a short period of time due to natural forcing. 

Therefore in natural conditions it would not be expected to witness changes of channel 

types in the period of engineering time (typically 20-50 years). Only extreme events 

(such as earthquake, volcanic eruption, dam collapse, forest fire) which could lead to a 

significant increase or decrease in the supplied amount of water and sediment to a river 

reach could result to rapid change of channel type of a river. River channels have 

changed more slowly due to land-management, for example, the South Platte River is a 

famous example. However despite numerous studies of the Platte River, exemplified 

most recently by Joekel and Henbry (2008), planform changes have been gradual over 

decades and it has proven difficult to predict the changes on the Platte. Further, it is 

usually impossible to predict the timing of the extreme events noted above for a 20-50 

years perspective. That being said, there is a requirement in river engineering 

management to recognise distinct channel patterns, to identify rivers which might be 

sensitive to disturbance and to develop procedures that are more sustainable – the latter 

requiring the adoption of a longer-term perspective than was the purview of river 

engineers in the past. 

Despite the fact that the utility of QS-diagrams becomes weak in practice when 

data are combined on one plot from different studies and different regions, that 

combination does reveal some patterns in the relationships between controlling factors. 

The first pattern is that points on the diagram are distributed depending upon the bed 
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median grain size; an issue remarked upon previously by many workers. The second is 

related to a dependence of channel form transition upon the size of the river system, 

which implies a system-scale dependence; an issue that has not received comment 

previously. 

Grain-size control. The control exercised by grain-size has been addresses using 

trend-surface analysis (Davis, 1973) implemented using interpolation within Surfer™ 8 

(Golden Software, Golden, CO, USA). Trend surfaces change gradually and capture 

general coarse-scale patterns in data but are susceptible to outliers. The latter issue was 

explored by completing surfaces with and without outliers to check for surface stability 

and those surfaces reported below do reproduce the general tendencies of the sampled 

data.  Considering the first point, Fig. 5.1 shows a trend-surface of median bed grain size 

(phi) within the coordinates of a QS-diagram. The partial correlation coefficient of phi 

with slope is r =0.78, while with discharge it is only 0.38. Therefore, grain size 

increases as slope increases, and has only a weak negative dependency upon changes of 

water discharge (Fig. 5.1).  Indeed, Ferguson (1984b) stated that the coefficient a in 

equation (2.1) is not constant and depends on bed grain size. Consequently, when a 

larger amount of empirical data is used to define a QS-diagram, as herein, it is evident 

that a single discriminatory Q-S straight-line cannot be defined and it has some 

dependency on grain size. This supposition is supported by the suggestion of considering 

the hydraulic geometry for sand-bed and gravel-bed rivers separately (Xu, 2004). Xu 

(2004) suggested to apply approaches pertaining to hydraulic geometry for sand-bed and 

gravel-bed rivers separately to reduce the point scatter in resultant relationships. From 

Fig. 5.2 it is clear that gravel-bed points plot above sand-bed points and consequently 

gravel-bed rivers are characterized by higher stream power, as indexed by the QS 

product. 
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Figure 5.1: Linear trend-surface of bed median grain size (phi) on 

QS-diagram and locations of points. 

 

While a separate consideration by bed type in studies of hydraulic geometry 

could improve obtained relationships by reducing point scatter, it does not illuminate 

more clearly any discriminatory lines between meandering and braided channel types. 

The approach only shows a tendency for braided channels to plot above meandering 

channels, especially for gravel-bed rivers, but there are a lot of interpenetrating points 

(see Fig. 5.2). The best separation could be observed if only data samples for gravel-bed 

braided and sand-bed meandering channels are considered. However, on another hand, if 

one would consider data samples for gravel-bed meandering and sand-bed braided 

channels alone, then a contrary conclusion can be derived, that braided sand-bed 

channels are characterized by lower stream power than meandering gravel-bed ones. 

These results imply that two mechanisms of braiding occur: (i) due to a steep slope and 

(ii) due to sediment overloading, which idea accords with Lane (1957). The first 

mechanism is more prone to apply to gravel-bed rivers (Fig. 5.2), while the second one 

applies appositely to sand-bed rivers. Because of these two different mechanisms of 

braiding occurrence, Simpson and Smith (2001) argued that the Leopold and Wolman 

(1957) QS relationship is unable to predict channel pattern in the case of the sand-bed 

Milk River. From the present analysis it becomes evident why Simpson and Smith 

(2001) reach such a conclusion, because much of the Leopold and Wolman (1957) data 

came from gravel-bed rivers and mostly represent the first mechanism of braiding 
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occurrence, while in the study by Simpson and Smith (2001) the behaviour of the sand-

bed Milk River is dominated by the second mechanism, i.e. sediment overloading. 

 
Figure 5.2: QS-diagram with points divided into groups 

with different bed types. 
1 – meandering sand-bed; 2 – braided sand-bed; 3 – meandering gravel-bed; 4 – braided gravel-bed. 

 

System scale dependence. Another implication that arises from consideration of 

all available data combined is that it reveals a dependence of the exponent in the 

equation (2.1) upon the discharge magnitude and therefore scales with the size of a river 

system. Data obtained from a variety of small-scale laboratory studies often have been 

used to populate QS-diagrams and these plots reveal important results. The main finding 

is that at this small-scale, channel slope is the prevalent control discriminating between 

meandering and braiding (Schumm et al, 1987). The channel type present does not 

depend to any significant degree upon the discharge magnitude or upon discharge 

fluctuations. In fact, from the laboratory studies the value of the exponent b is known to 

be small (0.1-0.25) (e.g. Ackers and Charlton, 1970; Edgar, 1973; Ackers, 1982) and this 

reflects the small influence of discharge on channel types. However, when data are 

added to QS-diagrams from natural rivers the exponent increases as the scale of the 

system increases. This behaviour of the exponent is shown in Fig. 5.3. The discriminator 

for larger rivers systems is characterized by a larger exponent, significantly equal to -1 

for the largest rivers. Therefore, when large rivers are under consideration, water 

discharge becomes as important a factor as slope. 
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Figure 5.3: Frequency distribution of discharge datasets 

used in various approaches. 
(A) based on data from Lane (1957); (B) based on data from Leopold and Wolman (1957); (C) based on data 

from Romashin (1968). 

 

As the physical meaning of QS-diagrams lies in the equation of stream power, 

due consideration should be given to the stream power distribution throughout the 

longitudinal profile of a river.  In the distribution of total stream power on a QS-diagram 

(Fig. 5.4) isolines of total stream power have an exponent of -1 and reflect the ‘equal’ 

influence of slope and discharge. The arrow 1 in Fig. 5.4 is not a discriminatory curve 

but rather has a trajectory with an exponent (b) less than 1 and reflects increasing power 

with increasing of discharge. Arrow 1 is generalised but, for b-values in the range -0.1 to 

-0.25 and for suitable a-values in Equation 2.1, would project back to values of slope 

between 0.1 and 0.01 which is the range of slopes reported for small discharges systems 

(10-6 m3 s-1 to10-2 m3 s-1) from flume studies at which the meandering-braided transition 

occurs (Tiffany, 1935; Hooke, 1967; Zimpfer, 1975; Hong and Davies, 1979; Zarn and 

Davies, 1994; Zhang et al., 2001; Ashmore, 1982). Arrow 2 again is generalised and is 

not a descriminator; it has an exponent equal to -1 and shows that with increasing 

discharge the stream power remains constant. Arrow 3 has an exponent greater than 1 

and shows decreasing power with an increase of discharge. This latter curve is 

hypothetical and is included for completeness but has no support from large river data. 

Lawler (1992) proposed a distribution of stream power for an hypothetical river system 
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(Fig. 5.5). In this hypothetical drainage system, stream power reaches its maximum in 

the middle part of the system and decreases as the system increases in absolute size. The 

reason for this is that the increase in discharge with catchment size is more than off-set 

by a reduction in channel slope; thus to maintain power on low slopes a considerable 

increase in discharge is required. It is recognised however that a direct analogy cannot be 

draw between the multiple catchment data and the proposal of Lawler (1992) which 

applies to increments in catchment area within a single representative catchment. 

However, the principle remains applicable, that as system scale increases and slope 

declines, the stream power can only be sustained by high discharges. Such an adjustment 

however cannot explain the changes in the exponent of the discriminatory equation (2.1) 

from small to medium sized systems. It is notable that when considering data from large 

river systems, Romashin (1968) obtained an exponent of b = 1.0. Note that in the present 

study, despite obtaining Q-S data for some of the largest river systems in the world, 

streampower values do not exceed 100,000 W m-1 and although discharges for the 

largest rivers span the range 103 to 105, slope declines in this range from c. 10-2 to 10-4. 

Note also that for high slopes in the streampower range: 10,000 to 100,000 W m-1, 

channels are almost universally coarse-grained and braided, whereas for the same power 

range but for lower slopes channels are predominately finer-grained and anastomosed. 

Finally it is evident that a QS discriminator with slope b = 1.0 drawn along the 10,000 W 

m-1 curve neatly distinguishes multi-channel systems from single channel meandering 

systems for systems > Q = 102 m3 s-1. Thus a suitable discriminator is: 

 
1−= QS ,     where 100 < Q < 100,000 m3 s-1    5.1 
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Figure 5.4: Isolines of gross stream power (W m-1) on QS-diagram. 

Explanation in text. 
1 – meandering; 2 – straight; 3 – anabranched; 4 – braided. 

 

 

 

Figure 5.5: Hypothetical stream power (according to Lawler, 1992), flow, 

channel size, and sediment characteristics change throughout the 

longitudinal profile. 
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Note that Equation 5.1, although robust, cannot be extrapolated to provide a 

discriminator for smaller systems and this is a significant observation which will be 

refered to below. Note also that for streampower values greater than 10,000 W m-1 there 

are practically no meandering rivers evident in Fig. 5.4.  However, there are scattered 

examples of braided streams to the left of the discriminator. The overlap of meandering 

and braided stream channel types in this study is less evident than in most prior 

representations of the QS-diagram and yet the presence of braided rivers to the left of the 

discriminator requires comment. There are three main reasons why this may occur. 

Firstly, and generally, the definition of channel type is always imprecise and some 

channels may have been mis-classified within this study as in other studies but yet 

rigorous checking within this study reduced this possibility significantly. More 

importantly, other controlling variables, such as grain size (noted above) or vegetation 

(considered below), may be locally important and will influence the threshold value of 

streampower for transition. Notable are a group of braided channels plotted just below S 

~ 10-2 within the low value discharge decades of 10-1 to 101 m3 s-1. A careful check of the 

source literature shows that these are indeed braided systems, characterised by loose 

sediment and little vegetation, and that they plot more in accord with the QS transition 

criteria suggested by the laboratory experiments in similar-scale, small systems noted 

above. The position of these data, although few, add to the suspicion that the exponent of 

the discriminator might be low for small natural systems. Unfortunately it has not been 

possible to obtain reliable data for additional small systems during this investigation to 

test or strengthen the argument for a scale-dependent exponent (b) further. This dearth of 

small-scale field examples has also been noted by Paola et al. (2009). 

As a key characteristic of channel form, the sinuosity (P) can also be distributed 

on a QS-diagram (Fig. 5.6).  By the application of the trend-surface analysis (as reported 

for grain-size control) it was anticipated from theory and simulation (Schumm, 1979; 

Stølum, 1996) that P would be low in the bottom-left of the diagram, increase to a 

maximum in mid-plot and then decrease again towards the top-right (Fig. 5.7). The 

values of P decrease as expected in the top-right but a high sinuosity area is located 

towards the bottom-left of Fig. 5.6 with low slope and low discharge. Four rivers are 

numbered 1 through 4 to exemplify the high sinuosity low-power systems. However, it is 

traditional to assume that in the area of low discharge and low slope (lower-left white 

region in Fig. 5.6) channels have low sinuosity, as flume studies have shown that straight 

channels are characterized by low stream power (e.g. Ackers and Charlton, 1970; Edgar, 

1973; Zimpfer, 1975; Schumm and Khan, 1972 a&b). The Ackers and White 

discriminator for straight to meandering channels is shown in Fig. 5.6 and lies well 
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above many data points for natural meandering channels. Neglecting consideration of the 

bottom-left of the figure (which is considered subsequently), the trend-surface of P 

reveal important results. The red band in Fig. 5.6 represents sinuosity between 1.3 and 

1.5. These values are used here because by various authors different values of sinuosity 

are used to define straight:meandering transition, for example, van den Berg (1995) has 

used 1.3 while Leopold and Wolman (1957) have used 1.5. As it seen in the figure the 

red band does not follow a power function trend (i.e straight line plot on log-log 

coordinates) but rather is curved throughout. Although the portion between 1 and 

3.5 log Q might be approximated by a power law function, the extremities of the red 

band clearly deviate from the general trend. Within low magnitude of water discharge 

the sinuosity depends upon slope alone, but sinuosity becomes increasingly dependent 

on the increase in discharge. In a general sense, the trend of the red band mimicks the 

trend of the red streampower curves, 1, 2 and 3 in Fig. 5.4. 

A conceptual distribution of sinuosity change with slope is shown in Fig. 5.7 A 

and according to Schumm (1979) there are two threshold slopes (1 and 2 in Fig. 5.7 A). 

The first threshold slope corresponds to the change from straight to meandering; the 

second threshold slope – from meandering to braided/anabranching. On another hand, 

for a given low slope, the sinuosity depends upon discharge alone and the sinuosity 

change shows the same behaviour with discharge as with slope. Consequently, there are 

two threshold discharges. The first for transition from straight to meandering and second 

threshold discharge represents critical discharge when river can not maintain a single-

thread channel. The first transition cannot be isolated either by using a single threshold 

value of streampower (Fig. 5.4) or a single threshold value of sinuosity (Fig. 5.6) and 

many notionally straight channels are found in the same Q-S space as meandering 

channels. However, in Fig. 5.6 the second transition most commonly reported in the 

literature (i.e P = 1.3 to 1.5) has a distinct, near-linear (using log-log coordinates) trend 

equivalent approximately to the 10,000 W m-1 critical streampower threshold (Fig.5.4) 

across a range of discharge values between about 100m3 s-1 and 3,000m3 s-1. To the left 

and right of these latter discharge values the critical sinuosity is achieved for lower 

stream power values. There are however no data for multi-channels for high slopes and 

moderate discharges and insufficient data for large rivers with high discharge and low 

slopes to ascertain is this second threshold is indeed variable and consequently scale 

dependent. This issue is considered further below. 
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Figure 5.6: Cubic trend-surface of sinuosity (P) on QS-diagram and 

locations of points. The points 1 through 4 represent the River Barwon, 

Mississippi, Fawn River and Yellow Creek respectively.  The curve for the 

Ackers and Charlton (1970) straight:meandering discriminator is shown. 

Further explanations in the text. 
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Figure 5.7: Conceptual relations between sinuosity and (A) slope and (B) 

water discharge. Explanations in the text. 
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The preceding analysis reveals two important points: 

Firstly, the fact that data for both meandering and notionally straight channels 

overlap and span the P = 1.3 to 1.5 ‘threshold’ begs the question as to whether it is 

reasonable to consider any natural channel reach to be ‘straight’. It is evident from 

reviewing the literature (e.g. Leopold and Wolman, 1957; van den Berg, 1995), that these 

two threshold values high-lighted by Schumm (1979) have not been associated with a 

mechanistic process interpretation; rather they seem to have been selected as convenient 

conceptual transitions, indeed Leopold and Wolman (1957, p.53) state “truly straight 

channels are so rare among natural rivers as to be almost nonexistent”. Given that natural 

‘straight’ channels often exhibit alternate bars and have meandering talwegs that 

periodically impinge on the banklines it is unlikely that truly straight channels (i.e. P = 

1.0) have been recorded from natural systems.  Indeed, all the P data in Fig. 5.6 have 

values of 1.1 or greater. Thus the concept of a straight natural channel has little utility and 

no support from field data. Rather, the only theoretical condition proposed for the 

maintenance of a straight channel appears to be Dbed,/W > 10-l (Parker, 1976); this 

condition has not been tested thoroughly and although large values of Dbed/W can be 

attained in the laboratory and in canals they are but rarely attained in natural rivers. 

Secondly, the scale-dependence of the streampower threshold for meandering to 

multi-channelled is an important and novel observation. It is evident from Fig. 5.4 (and 

Fig. 5.6) that some low slope, high discharge channels could exhibit low sinuosity and, 

with an increase in discharge, there would a shift to multi-channeled form i.e. 

anastomosed without a strongly meandering transitional phase. This adjustment in 

planform for large rivers requires further attention and only recently has this issue 

received some attention by additional empirical data from large alluvial rivers 

(Latrubesse, 2008). Latrubesse (2008) found a mean discharge threshold of 17 000 m3s-1 

for low gradient rivers above which “only anabranching systems can achieve efficient 

ways to move water and sediment over exceptionally low gradients”. 

Given the comments made above with respect to straight channels the issue 

warrents additional attention. In the traditional QS-diagram only meandering and braided 

channels are considered, and attention is not paid to straight channels. However, ‘straight’ 

and anabranched channels are distributed on QS-diagrams with a wide range of stream 

power. The range for anabranch channels plotted herein (Fig. 5.4) ranges through one 

order of magnitude of power whilst straight channels plotted herein (Fig 5.6) range 

through several orders. These results are contrary to the representation by Bridge (2003) 

of the continuum of equilibrium channel patterns; small-discharge, straight channels 

should possess lower stream power than meandering channels. However, some large-
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discharge, low-power channels can exhibit low-sinuosity and these large rivers are often 

mud-rich and usually exhibit anastomosed tendencies (Galloway and Hobday, 1983, 

p.57). Further, in contrast to Bridge’s supposition, many studies (e.g. Schumm, 1963; 

1969; Ebisemiju, 1994; Swamee et al., 2003; Hinds et al., 2004) have noted that streams 

of gentle bed gradient and high proportion of suspended fine sediment load (Allen, 1965) 

tend to have high sinuosities. Often these systems are small, poorly drained, aggrading 

systems, such as mountain meadow streams incised into peat (e.g. Watters and Stanley, 

2007; Aswathy et al., 2008) but can include large systems such as deltaic and coastal 

plain rivers (e.g. Mississippi – Leeder, 1982; Rhine-Meuse – Gouw and Berendsen, 

2008). Ironically although the traditional Q-S diagram was developed to apply to natural 

channels much of the publications on the existence criteria for ‘straight’ channels are 

from small flume studies wherein the ‘straight’ channels were artificially cut trapezoidal 

sections at the being of flume runs (e.g. Leopold and Wolman, 1957; Ackers and 

Charlton, 1970; Shumm and Khan, 1972) and so the idea that low power is associated 

with straight channels persists, largely because the context of the temporal development 

of sinuosity was not considered in any detail in the early flume experiments used to define 

the straight:meandering transition (Leopold and Wolman, 1957; Ackers and Charlton, 

1970; Edgar, 1973; Shumm and Khan, 1972). Rather, simulations and field data have 

shown that high sinuosity values (e.g. > 3.0) and low sinuosity values (e.g. → 1.0) 

alternate in time and space as river meanders cut-off (Martinsen, 1983; Stølum, 1996) 

which process largely explains the co-existence fields of ‘straight’ and meandering 

channels in Fig. 5.6. 

Herein it has been found that points for ‘straight’ channels scatter on the QS-

diagram without any regularity. However, using another approach, notably the diagram 

of Parker (1976), points for ‘straight’ channels (i.e. P < 1.3) show quantitative properties 

which discriminate them from other channel types (Fig. 5.8). In principle, the Parker 

(1976) diagram should not be useful as it is based on theory developed to discriminate 

meandering and braided channels and does not include theoretically supported 

conditions to discriminate straight channels. Indeed, points plotted in Fig. 5.8 represent 

natural rivers and all fall to the left of the Parker discriminator between meandering and 

braided. As noted by Bridge (1993) the criteria of Parker (1976) often do not agree well 

with field data and this is the case herein. Perhaps this failing is because the majority of 

data used by Parker (1976) to check the criteria came from laboratory experiments and 

do not reflect conditions in natural rivers. Nevertheless, despite Bridge’s ascertion, the 

points for low sinuosity (straight) channels in Fig. 5.8 are distinct from meandering and 

braided channels and are grouped to the right of more sinuous channels (P >1.3) within 
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the area with high values of S/F and d/w. Therefore, very low-sinuosity (straight) 

channels are characterized by higher channel slope or lower Froude number or more 

equant aspect ratio than meandering and braided channels which have broader shallower 

channels. Thus the diagram of Parker (1976) shows qualitative properties of low 

sinuosity channels by which they can be distinguished from other channel types. 

Similarly, braided channels fall to the left of meandering channels. Finally it should be 

noted that Parker’s analysis cannot be extended to small systems characterised by small 

discharge and steep slopes as the discriminator would extend to slopes greater than the 

angle of repose. At this point it is worth noting that the majority of discriminators 

proposed in the literature apply only for a limited range of discharge values which 

suggest that other discriminators must apply for other ranges of discharge, a point not 

made explicity in the prior literature. 
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Figure 5.8: Diagram of Parker (1976). 

 

Similarly, a suggestion by Parker (2008, pers com.) to affect separation of 
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This latter approach achieved only separation by grainsize and not by channel 

type (results not shown). Finally in this section, some comment has to be made with 

respect to another popular approach introduced by van den Berg (1995) using unit power 

and grain size. From Fig. 5.1 there is a strong linear trend in grainsize within the Q-S 

framework which, in principle, supports an analysis based on streampower (QS) and 

grainsize. However, the actual analysis of van den Berg (1995) is flawed. Points used by 

van den Berg (1995) were artificially adjusted by using empirical hydraulic geometry 

equations to calculate channel width. Lewin and Brewer (2001) argued that such 

adjustment does not have any considered theoretical support and they showed using 

actual channel width that the approach of van den Berg (1995) does not work and is 

invalid. Consequently, the van den Berg model is not considered herein. 

In summary, referring to Table 2.2, despite numerous attempts to produce 

combinations of controlling parameters as non-dimensional ratios, it is evident that most 

reasonably-successful approaches are based on the balance between the potential energy 

represented by valley slope and the kinetic energy as represented by a representative 

discharge, usually the bankfull value. Indeed, this balance underpins the popular analysis 

of Parker (1973) – Parkers’s ratios S/F and d/W readily can be re-arranged to show the 

simple dependency of S on Q, i.e. Parker’s analysis is a QS approach. 

From the above discussion of extensive data sets, an approach using a QS-

diagram with a traditional ‘straight-line’ discriminator alone would be meaningful in a 

quantitative sense only with respect to regional studies considering a small range of 

discharge values when the braiding occurrence is driven by one of two mechanisms: 

steep slope or sediment overloading, and the effects of the river size are not strong. So 

far QS-diagrams work satisfactorily for gravel-bed rivers where rivers are more prone to 

braid due to steep slopes (e.g. Bray, 1982) and less attention have been paid to braiding 

occurrence due to overloading, except for studies of particular river reaches (e.g. 

Coleman, 1969; Simpson and Smith, 2001). Although the control of sediment 

overloading might influence the position of any discriminator it is difficult to see that 

this would be system-scale dependent. Rather the importance of scale-dependent 

variation in the streampower threshold values for transition between meandering and 

multi-channel needs additional consideration especially in respect of small headwater 

streams and large, low-gradient rivers (see also Baker, 1978). Such an analysis goes 

beyond the perview of this thesis but a possible system-scale control on the discriminator 

is proposed below. 

A key control on bank stability refered to throughout this thesis is vegetation 

cover. A clue to its importance is found in the trend of the aspect ratio (width/depth) on 
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the QS diagram. Width scales with bankfull discharge whilst depth tends to scale with 

valley slope such that the trend surface has equivalue lines angled at 55o across the 

diagram (Fig. 5.9) with low values of W/d to the left of the diagram and vice versa. 

Numerous studies (Schumm, 2005) have demonstrated the effect of vegetation in 

constraining the value of W/d to smaller values compared to unvegetated systems. The 

influence of vegetation within this present study however are ambiguous indicating, for 

example, more rapid bank recession for grassed banks than for tree-covered banks in 

accord with studies such as Hey and Thorne (1986) but with low bank recession rates for 

unvegetated banks (Figs. 4.52 and 4.53).  The complexity of the effect of vegetation on 

riverbank stability is a common throughout the literature (Schumm, 2005) and the 

variance reflects the strong influence of local factors, such as vegetation type. However, 

some commonalities emerge when individual river behaviour is considered. The majority 

of studies have shown that on individual rivers without vegetative bankcover, riverbank 

recession is more rapid than within those reaches where there is good cover (e.g. Beeson 

and Doyle, 1995). The study of Hey and Thorne (1986) demonstrates that for a given 

valley slope, channel widening occurs for a lower discharge where vegetation cover is 

less dense. Thus channel widening occurs at a lower value of streampower when 

vegetation is absent or less effective. 

 
Figure 5.9: Trend surface of Lg (W/d) on QS-diagram. 
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Several small-scale flume studies were cited above as examples of experiments in 

which the transition from straight to meandering or meandering to braided could occur 

for smaller values of critical streampower than have been recorded for moderate sized 

rivers. Although there are scaling issues to be considered (e.g. Davies et al., 2003), 

numerous studies reviewed for example by Parker (1999) have shown qualitative 

dynamic similitude between experimental studies and natural conditions (see also Paola 

et al., 2009). Rather flume experiments usually have loose bank materials and transition 

from meandering to braided occurs at lower threshold power values than vegetated 

systems. Gran and Paola (2001) and Tal and Paola (2007) demonstrated this effectively; 

when vegetatation was added to a braidplain in a small flume the channel changed to a 

meandering habit and higher values of streampower were required to change from 

meandering to braided once the vegetation was present. Millar (2000) observed similar 

effects; when forest cover was removed from banks of a natural river, the river changed 

from meandering to a braided habit. Thus the absence of, or ineffectual presence of, 

vegetation in small systems might explain the low values of streampower required for 

transition and the low values of the exponent b in the regression equations relating Q and 

S for small systems in flume studies. The importance of vegetation in stabilizing 

riverbanks and stabilizing the threshold value for transition appears from the present 

study to possible become important when Q > 102 m3 s-1, above which value constant 

streampower induced by higher critical discharges is required to induce transition. To 

support this ascertion, in the case of a single catchment study, Abernethy and Rutherfurd 

(1998) noted that sub-aerial processes where important for erosion of exposed river 

banks in headwater catchments but that vegetation cover became increasingly important 

farther down the system to stabilize the banks as streampower increased (Lawler, 1992) 

and bank sediments became finer. In distal portions of the river system, river banks were 

of a height that much of the bank profile was below rooting depth. Root complexes on 

the bank top enhance soil strength, but rooting depth is rarely greater than 1.0m (Jackson 

et al., 1996; Sun et al., 1997; Tufekcioglu et al., 1999) and the exposed bank profile 

below this soil thickness is often unvegetated with no protection from erosion (Simon 

and Collison, 2002). Under these conditions the bare banks in downstream locations 

failed more so than any vegetated banks further up the system (Abernethy and 

Rutherfurd, 1998). This latter study demonstrates the system-scale complexity of the 

effect of vegetation on bank stability compounded by the system-scale trends in 

streampower (Lawler, 1992). The largest rivers of the world, often have high river banks 

(e.g 8 m to 20 m) but there are insufficient studies of the effects of vegetation on bank 

stability for these large systems to deduce if the threshold for channel change occurs at a 
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lower value of streampower. There is insufficient high discharge:low valley-slope data 

within Fig. 5.4 to suggest such an effect, although there is some suggestion that sinuosity 

might decrease for these large rivers at lower threshold streampower for systems with 

Q > 103 m3 s-1 (Fig. 5.6).  

 

5.2. BANK EROSION RATE AND CHANNEL TYPES 
 

From the results of the ordinal data analysis there is a close association between 

bank erosion rate and the main channel types.  The association is not strong when the 

anabranched type is included in the analysis but when considering the classical channel 

types alone (after Leopold and Wolman, 1957), i.e. by omitting the anabranched type, 

the association becomes more robust with an association coefficient of 0.65 (see section 

4.2.1). Perhaps this result is explained by the fact that anabranching systems may include 

braided, meandering and straight types of channels for particular branches and 

consequently may display the different character of lateral activity associated with the 

classic types. From the association values the following order by lateral activity is 

revealed: braided, meandering, anabranched and straight, i.e. from the most active to the 

least active. Such an order is obtained on the basis of the cumulative curves distribution 

for different channel types (see Fig. 4.7). 

Another important result is that there are features of meandering channel form 

such as the presence of bars and width uniformity, which indicate channel lateral 

activity. This result is derived from an analysis for subtypes of meandering rivers. The 

presence of bars and width uniformity were pointed out to be qualitatively important in 

channel activity estimation by Brice (1982) and herein this idea has received support by 

quantitative statistical analysis (see Goodman and Kruskal γ  values in Fig. 5.10 and in 

the ‘Results’ section, Fig. 4.10). By assuming that these channel features might very-

well indicate lateral activity in ‘straight’ and braided channels as well, a classification is 

proposed and presented in Fig. 5.10. The assumption is made, as at this stage, that there 

are not enough data for subtypes of straight and braided rivers to make a meaningful 

statistical analysis but with adequate data the Brice classification could be further tested 

by robust statistical methods as used herein. 
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Figure 5.10: A proposed classification of channel types by lateral activity. 

Goodman and Kruskal γ  values noted above are statistically significant 

(see section 4.2.1) 
Pictures from Google Earth and Lagasse et al. (2004) 
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The proposed classification (Fig. 5.10) is based on an analysis of absolute bank 

erosion rates and the most laterally active channels from this analysis are braided 

channels. However, when relative bank erosion rates are under consideration, the most 

laterally active channels are meandering channels (see Fig. 4.12). Overall, channel type 

and features of channel form may be used to estimate lateral activity. Therefore, maps 

and air photographs of river reaches with information about (i) channel types and (ii) 

channel features are valuable when choosing a location of a pipeline crossing. 

Another implication of the analysis is that a widely accepted “rule-of-thumb” for 

river managers does not work. The axiom states that a meandering channel migrates at 

about 1% of channel width per year. This axiom is common, especially in the USA 

(Walker and Rutherfurd, 1999). However, results for 1% of channel width per year 

values of exceedance are more than 50% for all channel types with maximum for 

meandering channels (76% of cases) (see Fig. 4.14). Consequently, a river manager 

should be cautious of simply applying the “rule-of-thumb”, as in most cases a river is 

more active than is supposed by the rule. 

 

5.3. BANK EROSION RATE RELATIONSHIPS 
 

There is a strong correlation between bank erosion and the size of rivers 

(catchment area) and with the geometry of channels, but no strong correlation with the 

driving characteristics (discharge, sediment transport, shear stress, velocity). Taking into 

account that there is a weak correlation with water discharge and no correlation with 

flow variability (Cv), one could conclude that with changes of these variables due to 

climate change it is unlikely that bank erosion rates will be changed significantly in the 

near future. 

At the scale of the catchment, the closest correlation is obtained between bank 

erosion rate and drainage area. Although the relationship between bank erosion rate and 

water discharge is positive, there is a bigger point scatter than in the relationship with 

drainage area. Perhaps this result is dictated by the fact that drainage area can be 

measured fairly precisely using planimetry, while for water discharge, even for the same 

measure of discharge, such as bankfull discharge, measurements and calculations can be 

made by different methods (e.g. Williams, 1978) which introduce uncertainty when data 

are combined from various studies. Taking into account the obtained weak relationship 

between bank erosion rate and water discharge, an engineer should be cautious of 

applying statistical generic relationships for any particular site. For example, 
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Evans et al. (2003) have used the fixed power 0.6 in an empirically derived relationship 

by Rutherfurd (2000) between bank erosion rate and water discharge. Evans et al. (2003) 

studied sediment loads generated by streambank erosion for twenty-eight watersheds in 

Pennsylvania. They concluded that the applied statistical model performed very well. 

However, this conclusion is dictated by the model having an statistically adjusted 

coefficient. For watersheds in Pennsylvania the range of the coefficient is across orders 

of magnitude from 0.00001 to 0.00068. These values are significantly lower than that 

derived for data from around the world reflecting only the chosen value of the fixed 

power. One can wrongly conclude from the derived coefficients that apply to the 

Pennsylvanian examples that bank erosion rates are lower than elsewhere. Therefore, 

investigators and river managers should be cautious of applying statistical relationships 

with fixed power value in the equations as this procedure can lead to misinterpretation of 

other resulting parameters. It should be always be kept in mind that statistical treatment 

is a generalization of available data. This caution should be applied not only for the 

relationship with water discharge but for all relationships obtained in this study. Another 

important result at the catchment scale reveals that there is no correlation between bank 

erosion rate and bed-load sediment transport (see Fig. 4.21). Therefore, such 

classification of channel types as that of Schumm (1985) where types associated with 

sediment transport and channel stability, should be considered on a basis probably of the 

vertical stability rather than lateral stability. Another implication of that result (i.e. 

Fig.4.21) is that perhaps suspended load might better represents lateral channel activity 

than bed load transport in an assumption that eroded fine material from banks are 

transported preferentially in suspension rather than as bed load. However, this 

speculation was not possible to check in this study due to data absence for suspended 

load transport. 

At the scale of the river reach, overall the best predictor is the channel width, as 

was noted by Nanson and Hickin (1986). This characteristic is an indicator of the channel 

geometry and is less affected by water level changes as is the channel depth.  Moreover, 

the channel width can be derived directly from maps and air photographs and therefore it 

is the most useful characteristic in lateral activity estimation. In the scatterplot of bank 

erosion rate and channel width (Fig. 4.25), points for ‘straight’ channels with widths 

narrower than c. 20 metres are located below the regression line. This result means that 

narrow, ‘straight’ channels have lower bank erosion rate than others channel types. In 

addition the erosion rates for ‘straight’ channels less than 10m wide are very low  

(<0.1m s-1) but the data points are few. This indicates clearly that erosion rates for 

‘straight’ channels of low width are small but, as a rider, it should be noted that 
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investigators rarely select straight channels for investigation of erosion rates and so the 

data sets are biased against small straight channels. These result for ‘straight’ channels are 

more general than a regional study by Beechie et al. (2006) for forested mountain rivers. 

They found that there is a threshold channel width (15-20 m) below which rivers show 

non-migrating behaviour (laterally stable), whereas channels wider than 20 m are 

migrating. Beechie et al. (2006) explained this threshold on the basis of interrelationship 

of channel size and riparian vegetation: when a river is narrow and shallow, it does not 

have enough erosive force to erode banks as the channel depth is less than the rooting 

depth; when a river becomes deep enough (channel depth exceeds the rooting depth) it 

would erode banks beneath the roots. Beechie et al. (2006) concluded that when a river 

becomes deep enough to erode its banks, it has a threshold width of 15-20 m.  This 

explanation can be applied for small rivers with forested floodplains. For other small 

rivers, larger grain size, confinement by valley walls in upper parts of river systems and a 

small amount of supplied water all favour a high resistance force and insufficient erosive 

force as to result in low rates of migration.  

 

5.4. CONCLUSIONS AND RECOMMENDATIONS 
 

From the review and discussion section a novel issue is recognised that in 

equation 2.1 the exponent may depend upon the river scale. It is found that an 

explanation for this behaviour is possibly related to the balance between potential and 

kinetic energy distribution of stream power along a conceptual river mediated by 

grainsize and vegetation trends down system. Also it is concluded that in the near future 

(engineering time) it is unlikely that a river will change its channel type and it not 

expected that bank erosion rates will be accelerated noticeably due to climate change. 

The results of statistical examinations for bank erosion rate can be used as 

approximations to estimate lateral activity at a proposed site of a pipeline crossing. 

The following list of recommendations from the results is derived which could be 

used by engineers: 

1. select relatively straight river reaches. In results of ordinal regression the 

straight sections are the most laterally inactive (see section 4.2.1 and 

Fig. 5.10); 

2. in meandering rivers select sites at the bend inflection, not nearby to a 

possible cutoff. This recommendation is based on review of schemes of 

meander evolutions (see section 2.4.1.3); 
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3. consider meandering subtypes as meandering channels with bars are 

characterized more active than channels without bars. The recommendation is 

derived from ordinal regression analysis for meandering subtypes (see section 

4.2.1 and Fig. 5.10) 

4. in braided rivers select sites with fewer bars and uniform channel width. As 

the previous recommendation is based on ordinal regression and supposition 

of analogy with meandering rivers (see section 5.2); 

5. use the cumulative curves (Figures 4.7; 4.10; 4.14 and 4.17; Tables 4.2; 4.3; 

4.4; 4.5) to estimate bank erosion rates for different channel types, but be 

aware that it is a rough estimation; 

6. select sites where valley form is relatively straight. This recommendation is 

based on review of anabranched rivers and Table 2.6 (see section 2.4.3.1); 

7. select sites with low, flat banks as high, steep banks are a reliable sign of 

lateral movement of channel in these reaches (see Fig. 4.57) 

8. select sites with narrower floodplains (see Fig. 4.28); 

9. use the relationships with channel width (Figs 4.24; 4.25; Table 4.9) for 

rough estimation of bank erosion rate; 

In conclusion it should be noted that at this stage of study it is difficult to 

analyse and derive scientific-based recommendation for multiple channels and 

large rivers and the main reason for that situation is limited available data for 

processing. Therefore, one of the way is to concentrate efforts for more thorough 

research for multiple channels and large rivers. 
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APPENDIX 
 

Database for bank erosion rate 

References for database of bank erosion rate 
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