
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

An Incremental Refinement Approach to

a Development of a Flash-Based File

System in Event-B

by

Kriangsak Damchoom

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

October 2010

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Kriangsak Damchoom

Nowadays, many formal methods are used in the area of software development accom-

panied by a number of advanced theories and tools. However, more experiments are still

required in order to provide significant evidence that will convince and encourage users

to use, and gain more benefits from, those theories and tools. Event-B is a formalism

used for specifying and reasoning about systems. Rodin is an open and extensible tool for

Event-B specification, refinement and proof. The flash file system is a complex system.

Such systems are a challenge to specify and verify at this moment in time. This system

was chosen as a case study for our experiments, carried out using Event-B and the Rodin

tool. The experiments were aimed at developing a rigorous model of flash-based file sys-

tem; including implementation of the model, providing useful evidence and guidelines to

developers and the software industry. We believe that these would convince users and

make formal methods more accessible. An incremental refinement was chosen as a strat-

egy in our development. The refinement was used for two different purposes: feature

augmentation and structural refinement (covering event and machine decomposition).

Several techniques and styles of modelling were investigated and compared; to produce

some useful guidelines for modelling, refinement and proof. The model of the flash-based

file system we have completed covers three main issues: fault-tolerance, concurrency and

wear-levelling process. Our model can deal with concurrent read/write operations and

other processes such as block relocation and block erasure. The model tolerates faults

that may occur during reading/writing of files. We believe our development acts as an

exemplar that other developers can learn from. We also provide systematic rules for

translation of Event-B models into Java code. However, more work is required to make

these rules more applicable and useful in the future.

Contents

Declaration of Authorship xi

Acknowledgements xii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Direction and Goal . 2

1.3 Methodologies and Results in Brief . 4

1.4 Chapter Outline . 5

2 Formal Methods 7

2.1 Introduction . 7

2.2 Formal Methods . 7

2.3 Why Formal Methods are Important for Software Engineering 8

2.4 Existing Modelling Languages . 9

2.4.1 Z Notation . 9

2.4.2 Z Structure and Example . 10

2.4.3 VDM . 12

2.4.4 VDM Structure and Example . 12

2.4.5 B-Method . 13

2.4.5.1 B Structure . 14

2.4.5.2 An example of B-Specification 15

2.4.6 A Comparison . 15

2.5 Other Formalisms . 16

2.5.1 Temporal Logic . 16

2.5.2 Process Algebra . 17

2.5.3 Action Systems . 17

2.6 Refinement . 18

3 Event-B 20

3.1 Introduction . 20

3.2 Event-B Structure . 20

3.2.1 Contexts . 21

3.2.2 Machines . 21

3.3 Refining a Machine in Event-B . 22

3.4 Event-B proof obligations . 23

3.5 A technique for breaking up an atomic event 24

3.6 Machine Decomposition . 26

v

vi CONTENTS

3.7 Event Extension . 28

3.8 Projection Function for Modelling Records 30

3.9 Rodin, an Event-B Modelling Tool . 31

3.10 A Comparison . 33

4 Modelling and Proof of a File System 35

4.1 Introduction . 35

4.2 An Informal Description of a Tree-structured File System and Constraints 37

4.3 An initial model . 37

4.4 1st Refinement: Files and Directories . 43

4.5 2nd Refinement: File content . 46

4.6 3rd Refinement: Permissions . 47

4.7 4th Refinement: Other missing properties 50

4.8 Vertical Refinement . 50

4.9 Decomposition of the file write event . 51

4.10 Linking the Abstract File System to the Flash Interface Layer 54

4.10.1 Abstract Flash Interfaces Layer . 54

4.10.2 Relating the File System Layer with the Flash Interface Layer . . 56

4.11 Dealing with faults . 59

4.12 Modelling of the mount event . 62

4.13 Machine Decomposition . 63

4.14 Proofs . 67

4.15 Conclusion and Assessment . 71

5 Evolution of the File System Models and Proofs 74

5.1 Introduction . 74

5.2 2nd Refinement: File content . 76

5.3 Vertical Refinement . 76

5.3.1 A decomposition of the writefile event 77

5.3.2 Linking the Abstract File System to the Flash Interface Layer . . . 80

5.3.3 Machine Decomposition . 83

5.4 Proofs . 85

5.5 Conclusion and Assessment . 86

6 Refinement of the Flash Interface Layer 88

6.1 Introduction . 88

6.2 1st Refinement: Page Register . 89

6.3 2nd Refinement: Events required for block reclamation 94

6.4 3rd Refinement: Ordering of Relocation Events 96

6.5 4th Refinement: Refinement of Erasing a Block 99

6.6 5th Refinement: Status Register . 104

6.7 Proofs . 106

6.8 Conclusion and Assessment . 109

7 Comparison with Related Work on Verifying Flash File System 111

7.1 Introduction . 111

7.2 Related Work . 112

7.2.1 Alloy . 112

CONTENTS vii

7.2.2 VDM . 113

7.2.3 Z . 113

7.3 Assessment and Comparison . 114

7.3.1 Point 1: Features . 114

7.3.2 Point 2: Refinement strategy . 116

7.3.3 Point 3: Verification Techniques 117

7.4 Summary . 119

8 Systematic Translation of Event-B Models into Java Code 120

8.1 Introduction . 120

8.2 Class Construction . 121

8.2.1 Defined Types in a Context as Java Classes 121

8.2.2 A Machine as a Class . 122

8.2.3 Machine Variables as Classes . 124

8.2.4 Application of Rules . 127

8.3 Event Transformation . 130

8.3.1 Basic Events . 131

8.3.2 Event Groups . 133

8.3.3 Event Loops . 135

8.3.4 Shared Events . 136

8.3.5 Concurrent Events . 137

8.3.6 Applying the Rules . 137

8.4 Related Work . 138

8.5 Conclusion and Discussion . 140

9 An Implementation 143

9.1 Introduction . 143

9.2 Prototype . 144

9.3 Conclusion and Assessment . 146

10 Modelling, Refinement and Proof Guidelines 149

10.1 Introduction . 149

10.2 Modelling Guidelines . 149

10.3 Refinement Guidelines . 152

10.4 Proof Guidelines . 153

11 Conclusion and Future Work 155

11.1 Conclusion . 155

11.2 Assessment of Event-B and the Rodin tool 158

11.2.1 Event-B . 158

11.2.2 Rodin . 160

11.3 Future Work . 161

A An Event-B specification of a file system 163

A.1 An initial model: Tree structure . 163

A.2 The first refinement: Files and directories 167

A.3 The second refinement: File content . 171

A.4 The third refinement: Permissions . 175

viii CONTENTS

A.5 The fourth refinement: Missing properties 179

A.6 The fifth refinement: Decomposition of the writefile event 183

A.7 The sixth refinement: Decomposition of the readfile event 186

A.8 The seventh refinement: Flash specification 189

A.9 Contexts . 201

B An Event-B specification of a file system, V2 210

B.1 The second refinement: File content . 210

B.2 The fifth refinement: Decomposition of the write event 213

B.3 The sixth refinement: Decomposition of the read event 216

B.4 The seventh refinement: Introduction of the flash specification 219

C An Event-B Specification of Flash Memory 227

C.1 An initial model . 227

C.2 The first refinement: Page Register . 229

C.3 The second refinement: Relocation events 233

C.4 The third refinement: Sequencing of relocation events 239

C.5 The fourth refinement: Refining the block erase event 244

C.6 The fifth refinement: Status Register . 250

Bibliography 257

List of Figures

2.1 A module structure of VDM . 12

2.2 An Example of VDM Specification . 13

2.3 An Abstract Machine in B . 14

2.4 An Example of B-Specification . 16

3.1 Relationships between machines and contexts 21

3.2 Structure of an Event . 22

3.3 Three syntactic forms of an event . 22

3.4 Three types of generalized substitution . 22

3.5 An example of event refinement diagram 24

3.6 An abstract level . 25

3.7 Machine invariants and its initialisation of the concrete level 25

3.8 Events of the concrete level . 26

3.9 Machine M before decomposition . 27

3.10 A diagram illustrating a decomposition made to Machine M 28

3.11 Sub-machines representing a result of a decomposition of Machine M . . . 28

3.12 An example of event extension . 29

3.13 A documentation style to represent an extended event 30

3.14 Part of context specifying a record type 30

3.15 An event (modify evt) showing the use of the record type RT 31

3.16 Part of context specifying a record type 31

3.17 A extension of the modify evt event . 32

4.1 An architecture of a flash file system . 36

4.2 Machine variables, invariants and initialisation of an abstract model . . . 38

4.3 No-loop property using transitive closure 39

4.4 Definition of transitive closure (tcl) and no-loop theorem (thm3) in a context 40

4.5 Machine theorems satisfying reachability and no-loop properties 40

4.6 A specification of create event . 41

4.7 A diagram of copying a subtree (subparent) rooted at a from r to c . . . 41

4.8 A specification of copy event . 42

4.9 Diagram of moving a subtree rooted at a from r to c 42

4.10 A specification of move event . 43

4.11 A specification of delete event . 43

4.12 Machine variables, invariants and initialisation of the first refinement . . . 44

4.13 A specification of create-file event . 45

4.14 A first refinement of the copy event . 45

4.15 Additional machine variables and invariants of the second refinement . . . 46

ix

x LIST OF FIGURES

4.16 A specification of file write event . 47

4.17 Additional machine variables and invariants of the third refinement 48

4.18 A specification of Event r open . 48

4.19 A definition of read permission function 49

4.20 An alternative guard ensuring that usr has the read permission on f . . . 49

4.21 An extended event crtfile . 50

4.22 A diagram of refining events readfile and writefile 51

4.23 Refinement diagram of event writefile . 52

4.24 Machine invariants of the refinement . 52

4.25 Decomposition of the writefile event . 53

4.26 Scenarios of concurrent writing of two files 54

4.27 A structure of PDATA . 55

4.28 Machine invariants for replacing the file system by the flash specification . 57

4.29 A diagram of mapping writefile to the flash specification 57

4.30 A diagram representing an example of data refinement where fcontent is
replaced by fat and flash . 58

4.31 The refinement of the w step event . 59

4.32 The power loss event of the second refinement 61

4.33 The power on event of the second refinement 61

4.34 The power on event of the seventh refinement 62

4.35 The mount event of the initial model . 63

4.36 The mount event of the second refinement 63

4.37 Part of the mount event of the seventh refinement 64

4.38 A machine-decomposition diagram focusing on events page read and page write 65

4.39 An abstract page program of the flash interface layer 65

4.40 Event pagewrite of the file system layer 66

4.41 Event page program, in case of using curried function 66

4.42 A predicate describing the tree property 69

4.43 A diagram of tree join . 70

4.44 A theorem of tree join . 70

5.1 A diagram of refinement chains representing a flash file system 75

5.2 A specification of events readfile and writefile 77

5.3 Machine invariants of the refinement . 78

5.4 Decomposition of the writefile event . 79

5.5 Machine invariants of replacing the file system by the flash specification . 80

5.6 A diagram of mapping writefile to the flash specification 81

5.7 The refinement of the w step event . 82

5.8 The refinement of w end ok event . 83

5.9 The power on event of the seventh refinement 84

5.10 A machine-decomposition diagram focusing on events page read and page write 84

5.11 Event pagewrite of the file system layer 85

5.12 An abstract page program of the flash interface layer 85

6.1 Event decomposition diagrams representing events page read and page program 91

6.2 State diagrams representing states of page registers which are used for
reading and writing . 92

LIST OF FIGURES xi

6.3 The first refinement of Event page read 93

6.4 Event pread fail . 94

6.5 Machine invariants of the second refinement 95

6.6 Additional events required for reclamation process 96

6.7 An event-refinement diagram representing the block relocation process . . 97

6.8 Machine invariants of the third refinement 97

6.9 A refinement of page relocation . 98

6.10 Machine invariants of the fourth refinement 100

6.11 An event-refinement diagram representing an erasing process 101

6.12 A state diagram representing states of blocks in erasing process 101

6.13 Reclamation process phase1: erasing a block 102

6.14 Reclamation process phase2: restoring the number of erasures 103

6.15 Reclamation of a block fail . 103

6.16 Invariants of the third refinement . 106

6.17 Part of the fifth refinement focusing on page program 107

6.18 A refinement of the pprog start event, in the case of using state function . 107

8.1 Rule 1: Converting a defined type to a class 121

8.2 A get-method of ST . 122

8.3 A context representing part of defined types 122

8.4 Classes implementing PDATA and RowAddr 122

8.5 Rule 2: Translating a machine into a class 123

8.6 Rule 2a: Translating a simple variable in a machine class 123

8.7 Rule 2b: Translating a set variable as a collection in a machine class . . . 124

8.8 Rule 2x: Translating an array property . 124

8.9 A diagram representing machine decomposition 125

8.10 Rule 3: Function over a set variable . 125

8.11 Rule 4: Subset of set variable as a boolean property 125

8.12 Rule 5: Subset to sub-classes . 126

8.13 Rule 6: Relation to a list-attribute . 126

8.14 Rule 7: Partial function to class property 126

8.15 Rule 8: Translating an array property . 127

8.16 A machine class representing the file system model 127

8.17 Part of machine invariants defining objects, files and directories 128

8.18 A class diagram of OBJECT, FILE and DIRECTORY 128

8.19 Part of machine invariants defining objects’ properties 128

8.20 An OBJECT class . 129

8.21 Part of machine invariants defining files’ properties 129

8.22 Part of machine invariants defining files’ status, type1 129

8.23 Part of machine invariants defining files’ status, type2 129

8.24 FILE Class . 130

8.25 DIRECTORY Class . 130

8.26 General rules for event transformation . 132

8.27 Additional rules for event transformation 133

8.28 A general rule for implementing event groups 134

8.29 A general rule for implementing event loops 135

8.30 A general rule for implementing a shared event 136

xii LIST OF FIGURES

8.31 A scheme of implementing concurrent methods 137

8.32 Java code implementing the incr evt event 138

8.33 An abstract method writefile . 139

8.34 A method implementing the w step . 140

8.35 An example of class representing compound entity 142

9.1 A structure of a flash file system . 144

9.2 A simulation of the flash array screen 1 145

9.3 A simulation of the flash array screen 2 146

9.4 A concurrent implementation of the writefile event 147

9.5 A concurrent implementation of the w step event 148

9.6 An implementation of the page program event 148

10.1 Two possible ways of specifying a property 151

11.1 A diagram of refinement chains representing a development of a flash file
system . 156

List of Tables

4.1 Proof statistics . 67

4.2 Proof statistics comparing multi-level with single-level approaches, fo-
cussing on horizontal refinement steps MCH0 up to MCH4 71

5.1 Proof statistics – previous version in brackets 86

6.1 A table representing states of the status register 105

6.2 Proof statistics of the flash model . 108

7.1 Feature Comparison . 115

7.2 Proof Comparison . 118

xiii

Declaration of Authorship

I, Kriangsak Damchoom, declare that the thesis entitled An Incremental Refine-

ment Approach to a Development of a Flash-Based File System in Event-B

and the work presented in the thesis are both my own, and have been generated by me

as the result of my own research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• any part if this thesis has previously been submitted for a degree or any other quali-

fication at the University of any other institution, this has been clearly stated;

• where I have consulted the published work of others, this is always clearly attributed;

• where I have quoted form the work of others, the source is always given. With the

exception of such quotations this thesis entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as

– K. Damchoom and M. Butler. Applying event and machine decomposition to a

flash-based filestore in Event-B. In Marcel Vinicius Medeiros Oliveira and Jim

Woodcock, editors, SBMF, volume 5902 of Lecture Notes in Computer Science,

pages 134-152. Springer, 2009.

– K. Damchoom and M. Butler. An experiment in applying Event-B and Rodin to a

flash-based filestore. In Rodin User and Developer Workshop, July 2009.

– K. Damchoom, M. Butler, and J.-R. Abrial. Modelling and proof of a tree- structured

file system in Event-B and Rodin. In Shaoying Liu, T. S. E. Maibaum, and Keijiro

Araki, editors, ICFEM, volume 5256 of Lecture Notes in Computer Science, pages

25-44. Springer, 2008.

Signed: ..

Date: ..

xv

Acknowledgements

I would like to thank my supervisor, Prof Michael Butler, for his very valuable help

and guidance. His supervision really helps me a lot in carrying out this research. Many

problems would not be solved without his guidance. His ability really made me surprise

many times when he could solve the problems that I had tried many times but failed.

This thesis would not succeed without his kind supervision.

Many thanks to the Royal Thai Government and Department of Mathematics and Com-

puter Science, Prince of Songkla University, for financial support and giving me a good

chance to study abroad.

I would like to thank Dr Denis A. Nicole for his suggestion and valuable comment about

the file system. Many thanks to Prof Jean-Raymond Abrial who gives me a good idea

of modelling and proving of the tree properties.

I would like to thank my examiners, Prof Luc Moreau and Dr Andrew Ireland, for their

valuable comment and suggestion that are really useful for making this thesis complete.

Many thanks also go to my mother Pim, wife Aom, sisters Joy and Ann, brother Dam,

friends (Salang, Khampee, Supat, Somporn, Pakwan, Somphop, Tossaporn, Athitaya,

Yaowaret, Pornrawee, Watsawee, Oat, Nam, Pundita, Onjira, Thanyalak, Sutat, Jaru-

tas, Antony, Paiphan, Yuwapat, Waraporn and Num-Oratai) and colleagues (Devakar,

Andy, Collin, Reza, Mar Ya, Nurlida, Lis, John, Renato, Shamim, Edward, Pasha and

Ali) for their support and encouragement.

Kriangsak Damchoom

Dependable Systems and Software Engineering Group

School of Electronics and Computer Science

University of Southampton, UK

xvii

To my grand mother, Rom Damkaew

xix

Chapter 1

Introduction

Over the past three decades, formal methods have been introduced and used in sev-

eral areas of software development. Recently, the software industry has made use of

VDM [84], Z [20], ASM [18], B [1] and Event-B [4]. However, research in this area

is still going; attempting to make improvements and achieve more benefits from these

methods. Work is also underway to bridge the gap between requirements, specifications

and implementations.

1.1 Background and Motivation

In a grand challenge in verified software proposed by Hoare and Misra in [72], they state

that theories, tools and experiments are three main areas of challenging research in formal

verification. Nowadays, many advanced theories and useful tools are developed and used

in the software community. In addition, the performance of modern machines (compared

with the past decades) is great enough for the advanced computations needed for formal

reasoning such as theorem proving and model checking. Experiments are also important

and still needed for this discipline in order to push forward scientific progress in formal

methods and make formal methods more accessible to software industries. Hoare and

Misra say that experiments should be carried out by using existing tools and theories

with selected areas of real-world systems especially for those systems concerned about

safety or security. Experiments help us to understand the strengths and weaknesses of

theories and tools. Experiments provide scientific evidence that can support the analysis

of those theories and tools, and encourage other researchers to engage in more effective

research in the future.

Event-B [4] is a formal method which is an extension of the B-method [1]. It is intended

for specifying, and reasoning about, complex systems. These include concurrent and

communicating systems [31]. Tool support for the Event-B method is provided by the

1

2 Chapter 1 Introduction

Rodin platform [6, 5]. This tool is based on Eclipse [57] and is designed to provide an

extensible specification and verification environment.

A flash-based file system has been proposed as a challenging system by Joshi and

Holzmann [85]. As presented in [85], there are some reasons why a file system is at-

tractive: Firstly, a file system is complex enough even though it is only one part of

an operating system. For example, how do we deal with failures that may occur while

performing file or flash operations? How do we cope with fault-tolerance; when flash

instructions fail or, with power loss? How do we ensure reliability in the presence of con-

current accesses? Moreover, correctness and security are very important for file systems,

since important data, stored on modern machines, is now managed by the file system.

Additionally, most current file systems have a well-established, well-defined, interface

based on the POSIX standard1 [85]. However, although fundamental data structures

and algorithms used in the design of file systems are well-understood, file systems still

have bugs. These pose a serious problem to users and enterprises. For example, in case

of NASA, the software used for management of flash memory cards (in space missions)

has a problem with unpredictable failures. This can give rise to sudden power-loss and

reboots [76].

Three issues that should be addressed when doing research into file systems are func-

tional requirements, underlying hardware and fault-tolerance [117]. Flash memory is

an attractive option for implementing file systems because flash memory has no moving

parts, consumes low power and is easily available. It is presently used in many kinds of

storage devices. For example, flash memory has recently become a popular choice for

nonvolatile storage used on spacecraft [85].

1.2 Research Direction and Goal

Direction: As mentioned earlier, an experiment is an important research approach in

the field of formal methods. Thus, performing experiments with a formal method and

tool was chosen as the direction of our research. Our work has been carried out by

focusing on experiments using Event-B and the Rodin platform. A flash-based

file system is selected as a case study for experiments. A goal of the experiments is to

formally develop and implement a flash-based file system. In this work, several modelling

techniques/styles are addressed in order to evaluate and compare. A set of functional

requirements – such as operations affecting a tree structure, read and write operations

– are selected as part of the system to be modelled, verified and implemented. Three

important issues to be covered in our specification are fault-tolerance, concurrency and

1POSIX (Portable Operating System Interface) is a standard defining application programming in-
terfaces (APIs) for file systems [66].

Chapter 1 Introduction 3

a wear-levelling process2.

Research contributions: The research goal is to produce scientific evidence in five

forms as follows:

(i) Verified models of a flash-based file system consisting of specification, refinement

and proof. Our models cover three main issues: fault-tolerance, concurrency and

wear-levelling. Concurrent file operations (e.g. read and write) were not covered

in other related work. In addition, the structure of the file system and features we

covered are also different from others. For example, we represent the filesystem

structure as a tree structure using parent function, instead of using named-path.

This work contributes to the grand challenge [85] already mentioned. (Details of

comparison are given in Section 7.3.)

(ii) Several techniques – in modelling, refinement and proof – have been investigated

and compared to choose appropriate ones for our development. An incremental

approach has been selected as our main strategy. This approach was not used in

other related work in modelling and verifying of file systems (as discussed in Chap-

ter 7). We have followed a strong systematic refinement approach to organizing

the refinement process that would be useful for other researchers and practitioners.

Our work covers a full formal development (i.e. abstract specification, refinement,

proof and implementation) that is rarely found in other work. Much existing for-

mal modelling work usually ends with a specification/model without transforming

it to an implementation. We believe that this would be of benefit to other peo-

ple who are learning formal methods and/or carrying out research (especially in

Event-B).

(iii) Systematic translation of Event-B models into Java code together with an im-

plementation which is derived from the formal methods. The aim is to provide

systematic translation rules and show that the models we specified are imple-

mentable by applying the rules we proposed. Our translation rules are defined for

direct translation of Event-B models into Java code, which is different from others.

For instance, Edmands et al [49] provide a tool to for specifying Java-like models,

which are able to be translated into Event-B models for formal verification, and

are able to be translated into Java code for implementation. (Related work is

discussed in Section 8.4).

(iv) Assessments of methods and tools used for specification. Our experiment aims

to assess Event-B and the Rodin tool by evaluating experimental results such as

proof statistics, an implementation (whether the final outcome is satisfactory or

not) and facilities of the tool (whether it is convenient for the users) compared

2A technique used for prolonging the life time of flash memory covering relocating and erasing blocks
within a flash chip [62].

4 Chapter 1 Introduction

with other methods and tools. The assessments we propose in this thesis show the

strengths and weakness of Event-B and the Rodin tool that would be useful for

further improvement of the language and tool. For example, what extensions could

be added to languages or tools in order to make them more useful and accessible

in the future?

(v) Modelling, refinement and proof guidelines. These aim to provide new informa-

tion/evidence that would be useful for formal developers, further research and the

software industry – in terms of modelling techniques, styles or patterns used for

formal specification, etc. For example, which modelling styles/techniques are suit-

able for the problem area? Which modelling styles can make proof simpler? How

essential benefits can be achieved from existing theories and tools?

1.3 Methodologies and Results in Brief

Our experiments are carried out by using Event-B and the Rodin platform. A flash-

based file system is chosen as our case study. An incremental refinement is employed as

our strategy to develop a model of a flash-based file system. The refinement is used in

two different approaches, horizontal or feature augmentation and vertical refinements or

structural refinement [27]. Horizontal refinement is aimed at introducing new require-

ments or features which were not addressed in the initial model or may be postponed

to other refinement steps. Thus, in each refinement step, additional state variables

and related events might be added/extended to incorporate those features which are

introduced. The system models will be enlarged gradually when new properties are

added. On the other hand, the purpose of structural refinement is to replace an abstract

structure with more design details in each refinement step down to an implementation.

This kind of refinement may involve data refinement, event decomposition and machine

decomposition.

In our development, we began with an initial model focusing on manipulation of a

tree structure. After that, horizontal refinements were used to enlarge the model by

introducing new features in refinement steps. We finally got several levels of a refinement

chain representing a model of an abstract file system. After that, structural refinement

was employed to relate the abstract file system with the flash specification. Event-

decomposition was used in this step to decompose atomic events (file-read and -write)

into sub-events in order to relate to the interfaces (page-read and -program) provided

by the flash interface layer. Then, machine decomposition was employed to decompose

the file system machine, that has already been replaced by the flash specification, into

two sub-machines (representing the file system layer and the flash interface layer). At

this point, we then have two sub-machines that can be further refined separately. In our

work, further refinements focussing on the flash specification were carried out to cover

Chapter 1 Introduction 5

other flash features and the wear-levelling process.

Our development covers three main issues (i.e. fault-tolerance, concurrency and the

wear-levelling technique). We have two main Event-B models in our development. One

represents the file system layer and the other one represents the flash interface layer.

The model of the flash interface layer provides interfaces (page-read and page-program)

to the file system layer. The wear-levelling technique, a technique used for prolonging

the lifetime of the flash devices, is specified in this model. The model of file system

describes tolerance of faults that may occur at any point during reading/writing of a

file. The model can also deal with concurrent file read and write operations. The flash

interface model can also deal with concurrent page read/program and block-erase events,

and faults.

In this work, we also have an evolution of the file system model described in Chapter 5.

The evolution aims at revising the file system model to satisfy the requirements (i.e.

partial read/write operations and unbounded version numbers) that have been changed.

From this development, we outline the effect of this evolution and reusability of modelling

and proofs.

Theorem proving is a methodology used for reasoning about our models. For all develop-

ments in Chapter 5 and 6, 1069 POs (Proof Obligations) were automatically generated

by the Rodin tool. 671 POs were generated for the file system model and 398 POs were

generated for the flash interface model. Most of them, 94% (of the file system model)

and 100% (of the flash interface model), were discharged automatically (i.e. in total

1028 of 1069 POs (96%) were proved automatically). The rest, 41 POs, were proved

interactively using the Rodin tool.

Based on experiences of modelling and proof, we provided some useful guidelines that

developers may learn from. The guidelines are classified into three categories: modelling,

refinement and proof. We also investigated and proposed systematic translation rules to

translate Event-B models into Java code. The set of translation rules is divided into two

parts: class construction and event transformation. However, future work is required to

automate the application of these rules. Finally, we also implemented a prototype of a

flash file system following the specification and the set of translation rules we proposed.

This implementation covers two parts: a file system layer and a flash interface layer.

We simulated part of the flash interface layer instead of using the real flash because we

want to be able to simulate faults and test whether our model can deal with that.

1.4 Chapter Outline

In Chapter 2, we outline some existing formal methods together with reasons for their

importance for software engineering. Chapter 3 details Event-B and the Rodin platform.

6 Chapter 1 Introduction

In Chapter 4, Chapter 5 and Chapter 6, work undertaken with case studies – a tree-

structured file system and the flash memory – are used to show how to specify and

refine system models using Event-B and Rodin. Related work on flash file systems

are discussed and compared in Chapter 7. Systematic translation rules for translating

Event-B models into Java code are proposed in Chapter 8. An implementation of a

flash file system is outlined in Chapter 9. Modelling, refinement and proof guidelines

are discussed in Chapter 10. Finally, a conclusion, assessment of Event-B and Rodin,

and future work are given in Chapter 11.

Chapter 2

Formal Methods

2.1 Introduction

The purpose of this chapter is to outline an overview of formal methods, techniques

and tools used for specification and verification. This chapter begins with giving a

definition of formal methods in Section 2.2. Secondly, reasons why formal methods are

important for software engineering are outlined in Section 2.3. Thirdly, some existing

formal methods and tools used for specification and verification are given in Section 2.4.

In this section, Z [20], B [1] and VDM [84] are chosen as examples of formalisms to

be outlined and compared. The reasons we chose them are (i) they are state-based

approach, which is an underline approach of Event-B and (ii) they are methods recently

used in the software industry. However, there are other formal methods recently used

such as ASM [18] and Alloy [81] which are not explained here. Other formalisms such as

temporal logic, process algebras and action systems are briefly described in Section 2.5.

Finally, refinement technique will be given in Section 2.6.

Note: To make it easier for readers to follow, Event-B – which is the method used in

our development – will be outlined separately in Chapter 3.

2.2 Formal Methods

A definition of formal methods can be defined as mathematically-based techniques used

for specifying, verifying and reasoning about software and hardware systems [1, 32, 84].

Formal methods are intended to explain software systems to both users and developers

with a precise documentation which is structured and presented at an appropriate level of

abstraction [83]. In addition, formal methods are aimed at providing users mechanisms,

such as automatic provers and model checkers, to verify models.

7

8 Chapter 2 Formal Methods

Because of employing mathematical notation to specify systems, models specified by us-

ing formal methods are well-formed statements in mathematical logic that can be verified

by mathematical processes. Moreover, the value of formal methods is that they provide

a means for users (designers or developers) to construct a precise model of the system

which is later to be implemented. The model is not the system itself. It is an abstract

representation of the real system, allowing reasoning about the system without having

it at ones disposal yet [1]. This means that the model cannot be tested or executed to

verify that the model works properly and has properties that satisfy our needs. Simi-

larly, we cannot use any room inside a model of a building. Therefore, reasoning about

it is a powerful way to analyse a model [6]. Formal specification languages support spec-

ification of what a system should do. In contrast, programming languages are designed

for specification of how results should be achieved. Although functional programming

languages, such as ML (which stands for “Meta Language”) [106, 69], Haskell [77, 79],

and Scheme [55], are more like specification languages since these describe what result

is expected, they are designed to be executable [20].

2.3 Why Formal Methods are Important for Software En-

gineering

The following reasons are summarised from Bowen [20] and Holloway [73] in order to

describe why formal methods are important for the software development process.

As mentioned earlier, a formal specification is a well-formed mathematical statement.

Because of its precision, even if such a specification is invalid – for example, the speci-

fication is not what the customer expected – compared with an informal specification,

it is easier to tell where and why it is incorrect and fix it [20]. For example, when we

find some things that go wrong during a development process we can go back to see

the specification components such as invariants, preconditions or proof obligations in

order to check whether they meet the requirements or not and fix them. In contrast, an

informal specification is often ambiguous, it is difficult to find errors and eventually fix

them. Additionally, employing mathematical notation increases the understanding of

the behaviour of a system, particularly early in a design phase. It can aid designers to

organise their thoughts, and make a model clearer, simpler and easier to understand [20].

Moreover, formal reasoning about a system is possible by stating and proving theorems

about it. These provide a mechanism to check whether the system behaves in the way

as we expected or not. Formal methods also help developers in reasoning about the

operation of the system before its implementation [20]. For example, preconditions of

each operation can be checked to see whether they satisfy the requirements either by

manual inspection or using tools for model checking and animation.

The presence of design flaws is a major reason why software can go wrong or does

Chapter 2 Formal Methods 9

something which is not what we expected. Therefore, to ensure that the software system

does what it is intended to do, design flaws must be handled in some way. Even though

there are some different approaches used to handle the design flaws such as testing,

design diversity, and fault avoidance, a suitable way that can reduce the design flaws is

avoidance by using formal methods [73]. For small systems or systems with low reliability

requirements, testing may be possible to show that the system meets its requirements.

However, for high integrity software systems, such testing would require much more time

than is feasible. Importantly, a test-based approach cannot cover the cases outside test

cases applied to the system domain. Namely, an error may occur when the system tries

to execute some cases outside that might be reached in the execution. Thus, for those

systems, testing-based approaches are inadequate.

As stated in [20], a precise specification specified by using formal methods is easy to be

followed until an implementation phase. The possible errors in a design can be reduced.

Consequently, when errors could be found and fixed at the design phase, the number of

iterations through a development cycle could be reduced.

Another point is that development cost is critical. If flaws could be found at the design

stage, it would be cheaper to fix them than if they are found later in testing process [20].

2.4 Existing Modelling Languages

In this section, some existing specification languages including Z, VDM and B will be

outlined in order. At the end of this section, a comparison among them will be given.

2.4.1 Z Notation

The Z notation [20] is a formal modelling language used for describing and reasoning

about computer-based systems. It is aimed at providing precise specifications of sys-

tems and formulation of proofs about intended system behaviour. It was originally

introduced by Jean-Raymond Abrial in the late 1970s and later developed by members

of Programming Research Group at Oxford University [20].

Bowen [20] states that all expressions specified in Z notation are based on standard

mathematical notations used in set theory, lambda calculus, and first-order predicate

logic. Z contains a standardized list of mathematical functions and predicates which are

commonly used in specification.

The problem with using mathematics alone is that large specifications usually become

unmanageable and unreadable. Hence, a schema notation is included in Z to aid the

structuring of specifications. This provides a framework for a textual combination of

10 Chapter 2 Formal Methods

sections of mathematics (known as schemas) using schema operators which are similar

to the mathematical operations[20].

The concept of an abstract specification in Z is to specify what a system does rather

than how the system does it. It is designed to be expressive and easy to reason about

by humans rather than executable by computers.

2.4.2 Z Structure and Example

Schemas, represented using box notation, are introduced to aid the structuring of Z

specifications. The schemas are used to describe two main parts of a specification: state

space and operations [20].

The state-space schema shown below is divided into two parts, the first part is used to

define the state variables (x1, x2, ..., xn) and the second part is an area for specifying

invariants of those variables.

StateSpace

x1 : S1

x2 : S2

...

xn : Sn

Inv(x1, ..., xn)

Below is an example of a Z schema of the visual file system model introduced by

Hughes [78]. The schema shown below is a state space of FileSysState which consists of

a set of objects named objects and function parent. The parent is specified as a partial

function mapped from OBJ to OBJ, where OBJ is a set-type. Two constants, desktop

and trash, are specified in this schema.

FileSysState

objects : POBJ

loc : OBJ 7→ OBJ

desktop ∈ objects

trash ∈ objects

dom parent = objects − desktop

ran parent ⊆ objects

parent(trash) = desktop

(parent−1)∗({desktop}) = objects

Chapter 2 Formal Methods 11

Those invariants given above show that (1) desktop and trash are elements of objects; (2)

all objects except desktop have a parent; (3) the set of all parents is a subset of or equal

to set objects; (4) the parent of trash is desktop; and (5) all objects can be reached from

desktop. The asterisk (*) represents a transitive closure. That is, (parent−1)∗({desktop})
returns all objects that can be reached from desktop.

All operations in Z are considered to be atomic and can be structured in the following

general way[20].

Operation

x1 : S1; ...; xn : Sn

x1′ : S1; ...; xn ′ : Sn

i1? : T1; ...; im? : Tm

o1! : U 1; ...; op! : Up

Pre(i1?, ..., im?, x1, ..., xn)

Inv(x1, ..., xn)

Inv(x1′, ..., xn ′)

Op(i1?, ..., im?, x1, ..., xn, x1′, ..., xn ′, o1!, ..., op!)

In the operation schema, i1?, ..., im? are inputs, represented by including the ? symbol in

the variable name while the outputs indicated by ! are o1!, ..., op!. The precondition is:

Pre(i1?, ..., im?, x1, ..., xn). And the state change (x1, ..., xn) to (x1′, ..., xn ′) is specified

by: Op(i1?, ..., im?, x1, ..., xn, x1′, ..., xn ′, o1!, ..., op!).

For example, the operation schema illustrated below represents the Move operation

specified by Hughes [78]. An obj is an object to be moved to a new parent named to.

Both obj and to are specified as elements of OBJ. They are identified as input variables.

Move

obj ? : OBJ

to? : OBJ

obj ? /∈ {desktop, trash}
to? /∈ (parent−1)∗({obj})
parent ′ = parent ⊕ {obj ? 7→ to?}

The invariants state that: (1) object obj must not be desktop or trash; (2) the target

location or new parent, to, must not be an element of objects which are descendants of the

obj, where (parent−1)∗({obj}) returns all descendants of obj. Finally, the last invariant

shows that the parent of obj will be changed to be to, where the oplus notation, ⊕, is a
relation overriding.

12 Chapter 2 Formal Methods

2.4.3 VDM

VDM (Vienna Development Method) is one of the earlier formal methods introduced

by a research group of IBM laboratory in Vienna. The aim of this method is to be used

for writing system specifications together with discharging of proof obligations. These

proof obligations are proved to ensure that the specifications maintain invariants [47].

VDM provides a framework for reasoning about the system specifications such as data

types, operations, etc. All specifications and proof obligations are written in terms of

predicates. HOL [64] is a theorem prover used for verification. VDM uses a special

three-valued logic to deal with undefinedness – a predicate that cannot be identified as

either true or false [105] – instead of classical two valued logic [84]. Even though VDM

is not as popular as Z, it provides features of composition and decomposition [94].

2.4.4 VDM Structure and Example

VDM uses a module notation which is a combination of data definitions, state variables

and a collection of operations to specify a system. The structure of the module is shown

in Figure 2.1 [84].

module MODULE NAME
...
definitions types
...
state
...
end ;
functions
...
operations
...
end MODULE NAME

Figure 2.1: A module structure of VDM

Figure 2.2 shows an example of a VDM specification of a simple file system focusing

on read and write operations. The module shown in Figure 2.2 is named FILE. This

module has two parameter types: FID and CONTENT ; and two operations: WRITE

and READ. The definitions section states that FCONT is a function-type mapped from

FID to CONTENT. The state of this file system is represented as files, which is typed

as FCONT and is initialised to the empty set, where files0 is an initial state.

WRITE is an operation that has an effect of writing a new file with a content to the

file system. This operation uses an external state variable named files for writing, this

Chapter 2 Formal Methods 13

module FILE
parameters types FID ,CONTENT
exports operations

WRITE : FID × CONTENT→,
READ : FID → CONTENT

definitions
types

FCONT = FID → CONTENT
state

State of files : FCONT
init (mk State(files0)) =̂ files0 = {}

end;
operations

WRITE (i : FID , cnt : CONTENT)
ext wr files : FCONT
pre i /∈ domfiles
post files = files∼ ∪ {i 7→ cnt}

READ(i : FID) ocnt : CONTENT
ext rd files : FCONT
pre i ∈ domfiles
post ocnt = files(i)

end FILE

Figure 2.2: An Example of VDM Specification

means that the files will be updated by this operation. There are two parameters used in

this operation: i (an FID) and cnt (a CONTENT). The pre-condition states that i must

not be an element of the domain of files, namely, this identifier must not have already

been stored in the file system. The post-condition indicates that the state variable files

will be equal to the previous state unions the new entry (i 7→ cnt) which is being added.

Operation READ is aimed at reading the content of an existing file. In this operation,

i is an input parameter and ocnt is an output parameter. Here files is defined as an

external state used for reading (since it is specified as rd). That is, changes are not

allowed to be made to this state variable. The pre-condition, i ∈ domfiles, states that

the given file ID, i, must exist. The post-condition shows that ocnt is equal to files(i),

which is a file content corresponding to the identifier i.

2.4.5 B-Method

The B-method [1, 35], originally developed by Jean-Raymond Abrial in the mid 1980s, is

a state-based method used for specifying, reasoning about and coding software systems.

14 Chapter 2 Formal Methods

It is based on set theories which are used for data modelling, while generalized substitu-

tions are used for describing state modifications through machine operations. Machine

invariants are specified by using predicate logic. Refinement is used to relate mod-

els at varying levels of abstraction, and there are a number of structuring mechanisms

(machine, refinement, implementation) used for organising a development.

The B-method is based on a notion of abstract machine and a notion of refinement.

Variables of an abstract machine are typed by using set theoretic constructs such as

sets, relations and functions [30]. The concept of refinement is the key notion for de-

veloping B models of computer-based systems in an incremental way. B models are

accompanied by mathematical proofs that justify them. Proofs of B models convince

the user (designer or specifier) that the models preserve all invariants and satisfy all

refinement obligations [36]. The B-method has been selected as a tool by industries in

area of critical systems concerning about risk. A notable example of the application of

B is its industrial use in the railway control system in Paris (The Paris Metro) which has

been working since 1998 [30]. Another example is the driverless at Paris Roissy Airport

that has been operational in 2007 [3].

2.4.5.1 B Structure

The Figure 2.3 shows the structure of an abstract machine in classical B which consists

of clauses: MACHINE, SETS, CONSTANTS, PROPERTIES, VARIABLES, INVARI-

ANT, INITIALISATION and OPERATIONS [110].

MACHINE mch name
SETS set name(s)
CONSTANTS const name(s)
PROPERTIES predicate(s)
VARIABLES var name(s)
INVARIANT predicate(s)
INITAILISATION var init(s)
OPERATIONS operation(s)

Figure 2.3: An Abstract Machine in B

The MACHINE clause defines a name of an abstract machine. In the example shown

in Figure 2.4, the machine is named Counter. The SETS clause specifies all sets (types)

used in the machine. The CONSTANTS clause identifies the constants which are

used in the machine. The PROPERTIES clause describes the properties of those

constants and sets. Considering the example given in Figure 2.4, there is one constant

named max. Constant max is defined as a natural number (N). The VARIABLES

clause introduces all machine variables used in the machine. The INVARIANT clause

Chapter 2 Formal Methods 15

details all information related to the properties of the variables that must always be true

such as types of those variables, relationships between the variables and their constraints

or other restrictions on their values. All variables must have their types given in the

Invariant clause. This means that there is at least one invariant clause for each variable

which is defined in the Variables clause. The values of those variables can be changed

when the machine is executed, however, such changes must not violate the invariants.

The INITIALISATION clause is used to initialise the values of all variables of the

machine. These values can later be modified by operations. The OPERATIONS

clause specifies all operations required in the machine. The operations clause is used to

describe the dynamic/behavioural properties of the systems.

2.4.5.2 An example of B-Specification

Figure 2.4 is an example of a specification in standard B where Counter is a machine

name; ctr (counter), a machine variable, is initialised to zero; and max is a constant

used to identify the maximum value of ctr. There are three operations in this machine:

incr (increase the value of ctr by 1 at a time when this operation is performed); decr

(decrease the value of ctr by 1 at time); and display is an operation for displaying the

value of ctr. PRE clause identifies a precondition of operations. All actions within a

THEN–END block will be performed only when the precondition holds.

2.4.6 A Comparison

Z, VDM and B are state-based formalisms in which a system is modelled by explicitly

giving the definition of states and operations. Operations have an effect of transform-

ing the system from a state to another state. In this approach, there is no explicit

representation of concurrency.

Focusing on the structure of specification, although those methods have their own struc-

ture, they still have some parts which are similar in purpose. For instance, they all have

an operation part and state variables.

The second point, focusing on operations, is that input and output variable are clearly

defined in Z and VDM. Z uses “?” and “!” for input and output, respectively, while VDM

uses “rd” and “wr” to classify the variables which are used for reading and writing,

respectively. Although they all use the operation part to transform a system state

to another state, their styles of transforming the system state are different. Namely,

VDM [84] uses precondition and postcondition as a mechanism for specifying a process

that aims to transform a state of program/model from one state to another state. The

program must be performed in a state satisfying precondition and terminated in a state

satisfying the postcondition. Z uses prime variables as post-state variables after the

16 Chapter 2 Formal Methods

MACHINE Counter
CONSTANTS

max
PROPERTIES

max ∈ N
VARIABLES

ctr
INVARIANT

ctr ∈ N
ctr ≤ max

INITIALISATION
ctr := 0

OPERATIONS
incr =

PRE
ctr ≤ max

THEN
ctr := ctr + 1

END
decr =

PRE
crt > 0

THEN
ctr := ctr − 1

END
rst ← display =

BEGIN
rst := crt

END

Figure 2.4: An Example of B-Specification

change. Event-B uses generalized substitutions for transforming the model from one

valid state to another valid state [4]. Namely, it must be proved that the substitutions

that have been made to the state variable do not violate the desired properties that have

been specified as invariants.

2.5 Other Formalisms

2.5.1 Temporal Logic

Temporal logic [95, 96] is a formalism for specification and verification of reactive sys-

tems. It has been used to describe and reason about behaviour of the systems which are

concerned about time. In a temporal logic, a truth value of statements/propositions can

Chapter 2 Formal Methods 17

vary in time. This means that the truth value can be changed when the time changes

while a truth value of the propositions in classical logic always be the same. In addition,

temporal propositions generally contain some references to time conditions, while the

classical logic deals with timeless propositions [89].

Temporal logic of actions (TLA) is a logic introduced by Lamport [91, 92]. It

combines temporal logic with a logic of actions. TLA is used to specify and reason about

concurrent and reactive systems by providing a mathematical foundation for describing

the behaviour of the systems.

2.5.2 Process Algebra

Process algebra [13] is an algebraic approach used for describing or specifying behaviour

of systems, especially for concurrent systems. This approach provides mathematical

mechanisms and techniques to specify systems in terms of how processes interact, com-

municate, and synchronise with each other. The behaviour is the overall events or

actions that the system can perform, and the actions are regarded as discrete, namely,

concurrence may occur instantaneously.

There are many process algebras such as CSP (Communicating Sequential Processes)

introduced by Hoare [71], CCS (Calculus for Communicating Systems) introduced by

Milner [98] and ACP (Algebra for Communicating Processes) proposed by Bergstra and

Klop [17]. Moreover, π-Calculus, originally developed by Milner [99], is an evolution of

CCS to model concurrent systems consisting of mobile processes whose configuration is

changing [50]. Although there are some differences between those methods, they use

algebraic expressions and laws provided to describe and reason about the behaviour of

communicating processes [22].

2.5.3 Action Systems

The action system formalism [12, 11], introduced by Back et al., is a state-based formal-

ism for distributed systems. It provides a method to design the distributed systems that

concentrates on the overall behaviour of the systems. The behaviour is defined in terms

of possible actions that the processes can engage in, rather than in terms of a sequential

code that the processes execute.

In case of process communication, Back et al [12, 11] also states that action systems

provide a mechanism for processes to communicate or interact with each other during

the execution. For example, when each process executes a sequential piece of code, it

may communicate with the other processes by sending and receiving messages through

shared variables or communication channel provided by the systems.

18 Chapter 2 Formal Methods

Additionally, an action system may be decomposed into a set of parallel sub-systems

for implementation in a distributed fashion by breaking up the actions into sub-systems

and using shared variables as a communication channel for interaction between those

parallel action systems [23].

2.6 Refinement

Refinement [47, 8] is a mechanism that allows developers to sharpen their models step

by step by adding more features or design details. Refinement aims at converting an

abstract model into a concrete model that is implementable. As stated in [47], the main

principle of refinement is that if the initial specification is valid and the refinement steps

preserve correctness, then the resulting implementation will be correct by construction.

The refinement calculus is a calculus of program transformation. It provides rules for

transforming abstract program structures to more concrete program structures while

maintaining desired properties [37]. As stated in [28], originally, the refinement calculus

was developed for sequential programs and then was extended to deal with distributed

and parallel program via the action system of Back [11]. As stated in [116], it is also

redeveloped individually by Morris [102], Morgan [100], and Back et al [10].

The concept of rule-based style of refinement (e.g. the refinement style of Morgan [100])

is to apply the rules to transform program fragments/models (S) from one form to

another form (S ′), automatically. S ⊑ S ′ (S is refined by S ′) holds if only if S ′ satisfies

all desired properties that S satisfies [28]. Automatic transformation is a way that

guarantees refinement [24].

Posit-and-prove is an alternative approach for refining models/programs. The concept

of this approach is to rewrite a concrete model from the abstraction and then prove that

the concrete one is the correct refinement of the abstract one (using theorem provers or

model checkers) [24]. This is in contrast to the rule-based approach that is aimed at

applying the rules to transform the abstract models/programs into concrete ones.

The refinement style used in Event-B follows the posit-and-prove approach. VDM also

uses the posit-and-prove style for its refinement mechanism [39]. As already mentioned,

by following this approach, an abstract model will be refined by rewriting it as a concrete

one (without applying any transformation rules). Then, proof is required to show that

the concrete model is the correct refinement of the abstract one. Desired properties of

the model are specified as invariants (predicates formulated from state variables) that

must be true forever. Such changes that have been made to the state variables (by

events/operations) must be proved that those properties are maintained.

Refinement might be used in two different purposes that can be identified as follows:

Chapter 2 Formal Methods 19

Horizontal Refinement or Superposition Refinement

The purpose of this approach is to introduce new requirements or properties which

are not addressed at the initial level or may be postponed to the next level. Thus,

in each refinement step, additional state variables and events might be added to sat-

isfy those requirements. The system models will be augmented gradually when new

features of properties are introduced. This kind of refinement may be called feature

augmentation [27]. For example, in case of a file system, an abstraction may start with

introducing only functional requirements affecting a tree structure such as create, delete,

copy, and move objects (files or directories) in the tree structure. The next refinement

may add other requirements related to an object’s properties such as file contents. Thus,

in this refinement, some variables and events associated with this property need to be

added to the model, such as variable file-content and events read and write. Similarly,

other refinement steps may introduce other properties or events to satisfy other new

requirements that may later be covered, such as the owner of each object and access

permissions. Examples of this approach can be seen in Chapter 4, where horizontal

refinement is used to introduce file system features in Section 4.4 up to 4.7.

Vertical Refinement

The aim of vertical refinement is to refine an abstract model by adding design details

in each level of refinement down to an implementation. These refinement explain how

features are achieved. Introducing new functional requirements or new properties is not

appropriate for this approach. This kind of refinement may involve data and event/oper-

ation refinement, such as replacing an abstract state variable by a concrete one, breaking

up an atomic event into sub-events, etc. To understand more about this approach, some

examples of this refinement are given in Section 4.8. These examples are refinements

of a file system focusing on read and write operations. Namely, at the abstraction, we

begin with introducing abstract events which are later refined by being broken up into

sub-events through refinement steps.

Chapter 3

Event-B

3.1 Introduction

Event-B [4, 6] is an extension of the B-method for specifying and reasoning about sys-

tems. Butler [31] states that Event-B was inspired by action systems of Back et al [12],

which was described in the previous chapter. Event-B is an event-based approach which

is defined in terms of a few simple concepts describing a discrete event system and proof

obligations that permit verification of properties of the event system.

This chapter begins with describing the structure of an Event-B model which consists

of two main parts: contexts and machines, in Section 3.2. Refinement in Event-B is

described in Section 3.3. Other modelling techniques/features used in Event-B, i.e.

event-decomposition, machine decomposition, event-extension and projection function

for modelling record-types, are detailed in Section 3.5, 3.6, 3.7 and 3.8, respectively.

The Rodin tool, a tool developed for Event-B modelling and verifying is introduced in

Section 3.9. Finally, a comparison between Event-B and other state-based formalisms

is given in Section 3.10.

3.2 Event-B Structure

An Event-B model [68, 97, 6] is described in terms of contexts and machines (machine

is called model in [97]). Contexts contain the static parts whereas machines contain the

dynamic part of a model. Contexts can be extended by other contexts and referenced by

machines. Each machine can be refined by other machines. This structure is illustrated

in Figure 3.1.

21

22 Chapter 3 Event-B

MMAACCHHIINNEE

Variables

Invariants

Events

Theorems

CCOONNTTEEXXTT

Carrier Sets

Constants

Axioms

Theorems

sees

Other Contexts

Other Machines

refines extends

sees

sees

Figure 3.1: Relationships between machines and contexts

3.2.1 Contexts

Contexts [6, 8] contain the static parts of a model. Each context may consist of carrier

sets and constants as well as axioms which are used to describe the properties of those

sets and constants. Contexts may contain theorems for which it must be proved that they

follow from the preceding axioms and theorems. Moreover, contexts can be extended

by other contexts and seen by more than one machine. Additionally, a context may be

indirectly seen by machines. Namely, a context C can be seen by a machine M indirectly

if the machine M explicitly sees a context which is an extension of the context C.

3.2.2 Machines

Machines [6, 97] contain the dynamic part of an Event-B model. This part is used

to specify behavioural properties of the model. A machine is made of a state, which

is defined by means of variables, invariants, events, theorems and variants shown in

Figure 3.1.

Variables, like constants, correspond to simple mathematical objects: sets, binary re-

lations, functions, numbers, etc. They are constrained by invariants I(v) where v are

the variables of the machine. Invariants are supposed to hold whenever variable values

change. But this must be proved through the discharge of proof obligations [6].

A machine contains a number of atomic events showing the way that the model may

evolve. Each event is normally composed of four elements: an event name, parameter(s),

guard(s) and action(s), illustrated in Figure 3.2. The guard is the necessary condition

for the event. The action determines the way in which the state variables are going to

evolve when the event is performed [6].

Chapter 3 Event-B 23

Event

Name
Parameter
Guard
Action

Figure 3.2: Structure of an Event

All events are guarded and atomic and might be performed only when its guard holds.

This means that when the guards of several events hold at the same time, then only

one of them may be performed at that time. An enabled event is non-deterministically

chosen to be performed. Generally, an event, named evt, is presented in one of three

possible forms shown in Figure 3.3. act represents actions of an event that may involve

generalized substitution of machine variables (v) and/or parameters (t) which are local

to the event, while grd represents guards of an event. (Here t is called local variables

in [6].)

evt =̂ begin act(v) end
evt =̂ when grd(v) then act(v) end
evt =̂ any t where grd(t,v) then act(t,v) end

Figure 3.3: Three syntactic forms of an event

There are three types of action illustrated in Figure 3.4: skip (do nothing), deterministic

assignment and non-deterministic assignment. Where x is a variable, E is an expression

and P is a predicate. The value of x in each case depends on its corresponding expres-

sion/predicate. For example, x :∈ E (t , v), x will be assigned as an element of E (t , v).

In the case of x :| P(t , v , x ′), x will be assigned as a value satisfying the predicate P .

Type Generalized Substitution

Empty skip
Deterministic x := E (t , v)
Non-deterministic x :∈ E (t , v)

x :| P(t , v , x ′)

Figure 3.4: Three types of generalized substitution

3.3 Refining a Machine in Event-B

Abrial et al [6] states that there are two possible ways of refining a machine, one is refining

its state and another one is refining its events. Typically, both are used together.

In case of refining machine state – or data refinement [47] – gluing invariants play an

important role to relate states of a concrete machine to abstract states. Gluing invariants

24 Chapter 3 Event-B

are invariants of a refined machine that refer to variables of the abstract machine [6,

5]. The gluing invariant is expressed in terms of a predicate P(v ,w) connecting the

state variables of the abstract machine (v) and the corresponding state variables of the

concrete machine (w) [5].

When refining events, each event of the abstract machine may be refined by one or

more corresponding events in the refinement [6]. There are many cases where an event

is considered to be refined. For example, when an abstract variable referred to in the

event has been replaced by a concrete one (in a refinement step), some related guards

and/or actions of that event may need to be changed. Namely, the abstract variable

which is referred to in that event must be replaced by the concrete one. In the case of

feature augmentation, for example, the abstract event may be extended by adding new

features which are introduced in that refinement.

Adding new events in a refinement

During refinement, it is possible to refine an abstract machine by adding new events to

its corresponding machine. The new events must be proved to refine a dummy event

that does nothing (skip) in the abstraction. In this case, some proof obligations may fail

to be proved if there are some actions of any new event trying to update a variable of the

abstract machine. However, if necessary, a new variable (which is used as a mirror of the

abstract variable at certain points) can be added to the concrete machine together with

some gluing invariants relating the abstract variable with the new one. In addition, it

may be proved that those events cannot collectively take control infinitely [6]. For this,

as stated in [6], a unique variant expression has to be introduced. This variant will be

decreased by those new events.

3.4 Event-B proof obligations

Several kinds of proof obligations are generated by the proof obligation generator (POG),

such as WD (Well-definedness), INV (Invariant Preservation), GRD (Guard Strength-

ening), SIM (Action Simulation), etc.

WD proof obligations are generated to ensure that axioms, invariants, event guards/ac-

tions are well defined. The Rodin tool supports well-definedness to aid the activities

of modelling and proving [5]. For example, as stated in [5], it can be guaranteed that

partial functions are never applied to arguments outside their domain. INV proof obliga-

tions are generated to guarantee that the invariants are always preserved whenever the

machine state changes. The generated GRD proof obligation ensures that the guard of a

concrete event is a correct refinement of the corresponding guard of the abstract event.

Finally, the generated SIM proof obligations aim to ensure that the abstract action are

refined correctly by the action of the corresponding concrete event as specified by any

Chapter 3 Event-B 25

gluing invariants.

3.5 A technique for breaking up an atomic event

A technique for breaking up an atomic event into sub-events has been proposed by Butler

and Yadav in [31]. This technique is based on the idea that an abstract (atomic) event

may be realised by a number of activities or actions inside that can be split into sub-

events through refinement steps. To understand more about event decomposition, event

refinement diagrams proposed in [26] and a simple example will be used to explain how

an atomic event can be decomposed into sub-events. Figure 3.5 shows an example of

such a diagram. In the figure, the root represents an abstract event which is partitioned

into events start, step, and end in a refinement. A solid line indicates that the end

event refines the abs evt event. That means the end event will be proved to refine

the abstraction. The dashed lines state that both start and step refine skip. The oval

represents a quantifier that specifies multiple interleaved instances of an event (i will

range over some set). Order, from left to right, constrains the order in which events

have been performed. A step(i) event can be performed only when the start event is

completed, and end can be performed only when all step(i) events have been occurred.

The order amongst the step(i) events is nondeterministic.

abs_evt

start step(i) end

abstraction

refinement

all(i)

Figure 3.5: An example of event refinement diagram

In Event-B, there are no explicit sequencing operations. Events are non-deterministically

performed when their guards hold. Thus, in order to control the order of event execution,

each event must be guarded by using additional state or flag variables. For example, in

order to start writing a single page, the given file must be in the writing state. Thus, a

writing state should be introduced and used to construct guards of events that we want

to control.

The event refinement diagrams are used as an aid to constructing and understanding

the formal models rather than being formal objects themselves. As outlined in [26],

the diagrams were inspired by Jackson Structured Design (JSD) diagrams [82]. We see

some useful of this systematic diagram. It would be great in the future if investigation

for a more formal incorporation of event refinement diagrams into the refinement proof

obligations could be carried out by developers who are interested.

26 Chapter 3 Event-B

To understand more about this technique, we give a simple example of breaking up an

event which is discussed below.

The following example is aimed at breaking up one atomic event named incr (increase

the value of x by the value of y) into sub-events named start , step and end ; where x

and y are integer variables. This example is divided into two levels: one abstraction and

one refinement step.

Abstraction:

At this level, see Figure 3.6, an abstract atomic event named incr was introduced to-

gether with its failure case. Considering Event incr , the value of x is increased by the

value of y. In the case of failure, the value of x is equal to a special value ‘ko’.

INVARIANTS INITIALISATION
y ∈ Z y :∈ Z
x ∈ Z x :∈ Z

Event incr =̂ Event incr fail =̂
Begin Begin

x := x + y x := ko
End End

Figure 3.6: An abstract level

Refinement:

In this refinement, additional variables x ′, n and flag are added to the abstract machine.

The variable n, a number of steps proceeded, is initialised to 0. Variable flag is a boolean

variable used for checking whether or not the increasing step is completed. This flag is

initialised to be FALSE. Machine invariants and its initialisation of this level are given

in Figure 3.7.

INVARIANTS INITIALISATION
n ∈ Z ...
x ′ ∈ Z n := 0
flag ∈ BOOL x ′ := 0
flag = FALSE ⇒ x ′ = x + n flag := FALSE

Figure 3.7: Machine invariants and its initialisation of the concrete level

Event step, specified in Figure 3.8, is a sub-event which is added to specify that the

value of x is increased by 1 at a time. This event shows that when the flag is equal to

Chapter 3 Event-B 27

FALSE (incrementing step has not completed yet) and n < y , x ′ and n are increased

by 1. Event end ok is a refinement of the incr event. This event states that when n is

equal to y and the flag is FALSE, x will be assigned x ′ and the flag is set to be TRUE

(indicating that the increasing step has completed). Gluing invariant of Figure 3.7 is

used to discharge refinement proof obligations (SIM).

Event start =̂ Event step =̂
Begin When

n := 0 n < y
x ′ := x flag = FALSE
flag := FALSE Then

End x ′ := x ′ + 1
n := n + 1

End

Event end ok refines incr=̂ Event end fail
When refines incr fail =̂

n = y When
flag = FALSE flag = FALSE

Then Then
x := x ′ x := ko
flag := TRUE flag := TRUE

End End

Figure 3.8: Events of the concrete level

3.6 Machine Decomposition

Generally, a model is started with small number of features (small set of machine events

and state variables) and then is enlarged gradually by adding more features or design

details in refinement steps. Namely, machine variables and/or events might be added

in each step. As stated in [8], the refinement process might become quite heavy if

there are a large number of events and state variables. Moreover, it may be found

that the refinement steps which are undertaken are not involving any more the totality

of the system, that is only a few variables and events are concerned, while others are

not important. Therefore, the idea of decomposition would be important for of formal

modelling. The decomposition is a mechanism aimed at partitioning a large system

model into smaller parts that can be addressed more easily than the whole. Namely,

each part should to be refined independently of the others.

Two approaches have been proposed to the decomposition of Event-B models. The first

is the shared variable decomposition which is proposed by Abrial et al [8]. The second is

28 Chapter 3 Event-B

the shared event decomposition proposed by Butler [26]. The difference between this two

approaches is the method of the interaction between sub-models. The shared variable

approach means sub-models interact with each other via shared variables, while the

interaction of the shared event approach is the synchronisation over the shared events.

In our development, we follow the decomposition structures of Butler [26]. The decom-

position structure given in [26] is a parallel-based decomposition. Namely, the machine

variables and events are split into sub-machines. Each sub-machines must not have any

common state variables. As mentioned above, each sub-machines interact with each

other via the synchronisation over the shared parameterised events.

Figure 3.9 shows a scheme of an Event-B model named M . This machine consists of

variables v1 and v2, and events evt1, evt2 and evt s. Suppose we are decomposing

this machine into two sub-machines (i.e. M 1 and M 2) as illustrated in Figure 3.10,

where machine variables and events are split into M 1 and M 2. Namely, variable v1 and

evt1 are placed in M 1, while v2 and evt2 are placed in M 2. Event evt s is a shared

event which is used for synchronisation. This shared event is also partitioned into two

sub-events located in both sub-machines. This shared event depends on both M 1 and

M 2, since it has the effect of updating both variables v1 of M 1 and v2 of M 2. This is

in contrast to evt1 and evt2, where evt1 depends only on v1 and evt2 depends only on

v2. Guards and actions (of the shared event) on v1 and on v2 are clearly separated.

Namely, v1 is referenced by grd3 and act3, while v2 is referenced by grd4 and act4,

separately. Parameters p1, p2 and p3 are local to the shared event. M 1 and M 2 can

MACHINE M
Variables

v1, v2
Invariants

...
Events

evt1 =̂ any p where grd1(p, v1) then act1(p, v1) end
evt2 =̂ any p where grd2(p, v2) then act2(p, v2) end
evt s =̂ any p1, p2, p3 where

grd3(p1, p3, v1) ∧ grd4(p2, p3, v2)
then
act3(p1, p3, v1) ∥ act4(p2, p3, v2)

end
End

Figure 3.9: Machine M before decomposition

be refined separately provided shared events and shared parameters are maintained.

Figure 3.11 shows a result of the machine decomposition that has been made to Machine

M . The top represents Machine M 1 with Variable v1 and events evt1 and evt s1. The

Chapter 3 Event-B 29

M evt_s

M1

M2

evt1

evt2

v1

v2

Figure 3.10: A diagram illustrating a decomposition made to Machine M

bottom represents MachineM 2 with Variable v2 and events evt2 and evt s2. Parameters

p1 and p2 are local to evt s1 and evt s2 respectively, while p3 is a shared parameter

across evt s1 and evt s2. This shared parameter is used for synchronisation of both

sub-events.

MACHINE M1
Variables

v1
Invariants

...
Events

evt1 =̂ any p where grd1(p, v1) then act1(p, v1) end
evt s1 =̂ any p1, p3 where grd3(p1, p3, v1) then act3(p1, p3, v1) end

End

MACHINE M2
Variables

v2
Invariants

...
Events

evt2 =̂ any p where grd2(p, v2) then act2(p, v2) end
evt s2 =̂ any p2, p3 where grd4(p2, p3, v2) then act4(p2, p3, v2) end

End

Figure 3.11: Sub-machines representing a result of a decomposition of Machine M

3.7 Event Extension

Event extension is a feature that have been added to the Rodin tool release 0.9.x and

later. The purpose of this feature is to make model easier to be refined (especially for

30 Chapter 3 Event-B

horizontal refinement). Namely, instead of repeating guards and actions of an abstract

event in the concrete event, such events can be extended by introducing only part of

specification that have been extended in that step. Instead of using refines, extends

is used for modelling the event extension.

Figure 3.12 shows an example of event-extension. The top represents an abstract event

named crtfile abs, while the bottom represents the concrete event (crtfile ext) which

is an extension of the crtfile abs event. In the concrete event, the crtfile abs event is

extended by adding a property, i.e. file content (fcontent ∈ files → CONTENT , where

files represents a set of existing files and CONTENT = N 7→ DATA representing the

content of files). Using the event-extension feature provided by the tool, that part of the

specification which is inherited from the previous abstraction are omitted. Developers

specify only part that have been introduced in that step. In this example, the extended

part is act3, where the content of file is initialised to be empty. This feature also makes a

Event crtfile abs refines create =̂
Any obj , in Where

grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : in ∈ directories

Then
act1 : files := files ∪ {obj}
act2 : parent(obj) := in

End

Event crtfile ext extends crtfile abs =̂
Begin

act3 : fcontent(obj) := ∅
End

Figure 3.12: An example of event extension

model easier to be modified. Namely, some modification can be made to the abstraction

and that change is automatically inherited by the refinement.

Figure 3.13 shows another style of representing an extended event. In order to make a

difference between inherited part (obj , in, grd1, grd2, act1 and act2) and the extended

part (act3) of the ctrfile ext event, we represent the extended part in italic style while

the inherited part is represented in normal style. This style makes documentation of

extended events more understandable.

Chapter 3 Event-B 31

Event crtfile ext extends crtfile abs =̂
Any obj , in Where

grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : in ∈ directories

Then
act1 : files := files ∪ {obj}
act2 : parent(obj) := in

act3 : fcontent(obj) := ∅
End

Figure 3.13: A documentation style to represent an extended event

3.8 Projection Function for Modelling Records

Evans and Butler [53] have given an approach for specifying record types in Event-B

using projection function. In order to model a record or a data type that may consist

of two or more elements, using projection function is a way to specify this. Figure 3.14

shows an example of modelling of a record type following the style given in [53]. The

record type is named RT , where the structure of this type is composed of two proper-

ties: prop1OfRT and prop2OfRT . This record type is specified as a carrier set while its

properties are specified as constants. Each property is defined using a projection func-

tion. The type of each property may be a user-defined type or a basic type such as N,
BOOL, etc. For example, the first property (prop1OfRT) of this record type is defined

as a natural number while the second property (prop2OfRT) is defined as a user-defined

type T2.

CONTEXT CTX
Sets

RT ,T2
Constants

prop1OfRT , prop2OfRT
Axioms

axm1 : prop1OfRT ∈ RT → N
axm2 : prop2OfRT ∈ RT → T2

Figure 3.14: Part of context specifying a record type

Suppose we have a machine variable named mvar (representing an array of RT elements)

specified as

mvar ∈ N 7→ RT

Figure 3.16 gives an Event-B event showing the use of the record type (RT) which is

32 Chapter 3 Event-B

specified above. This event has the effect of modifying the value of mvar at position i

to be newval (act1). The values of the components within the newval are p1 and p2,

which are typed N and T2 respectively.

Event modify evt =̂
Any i ,newval , p1, p2 Where

grd1 : i ∈ dom(mvar)
grd2 : newval ∈ RT
grd3 : p1 ∈ N
grd4 : p2 ∈ T2
grd5 : prop1OfRT (newval) = p1
grd6 : prop2OfRT (newval) = p2

Then
act1 : mvar(i) := newval

End

Figure 3.15: An event (modify evt) showing the use of the record type RT

The record type (RT) which is defined in Figure 3.14 may be extended by adding more

properties in another refinement step. Figure 3.16 shows an example of a context where

the RT type is extended. This context (CTX2) is an extension of the context named

CTX, which is given in Figure 3.14. The extension is to add an additional property

named prop3OfRT (which is T3) to RT .

CONTEXT CTX2 extends CTX
Sets

T3, ...
Constants

prop3OfRT , ...
Axioms

axm3 : prop3OfRT ∈ RT → T3
...

Figure 3.16: Part of context specifying a record type

Figure 3.17 shows an extended part of themodify evt event when the additional property

(p3) of RT has been added.

3.9 Rodin, an Event-B Modelling Tool

The Rodin platform [2, 29, 40, 5] is an open and extensible tool for Event-B specification

and verification. This platform contains a database of modelling elements used for

Chapter 3 Event-B 33

Event modify evt extends modify evt =̂
Any

p3
Where

grd7 : p3 ∈ T3
grd8 : prop3OfRT (newval) = p3

End

Figure 3.17: A extension of the modify evt event

constructing system models such as variables, invariants and events. It provides useful

tools for users to specify their models, accompanied by flexible tools for refinement and

proof. Abrial et al [6] express that extending the state of art in formal methods tools

and allowing other developers to employ their tools as plug-ins to assist the development

methods are the purposes of the kernel of the Rodin tool. It allows users to customize

and adapt the primary tool to serve their particular need.

Several plug-ins are available for the Rodin platform [25], for example, UML-B [113],

ProB [16], the decomposition plug-in [112], B2Latex [46]. These plug-ins have been

developed to satisfy some features required for users who may want to animate their

models (using the ProB animator) during the design or who may want to represent

their models by using UML-like diagrams of UML-B. The B2Latex plug-in is a LaTeX

code generator that we have developed to help users in translating their Event-B models

into LaTeX documents. The shared-event composition [111] is another plug-in that

was used in our development for machine decomposition. This composition plug-in is

based on shared event decomposition of Butler [26]. The decomposition tool [112] is a

recent one that has been developed to support both shared variable and shared event

decomposition.

Theorem proving is the main technique used for reasoning about Event-B models. The

Rodin tool supports automatic generation of proof obligations in order to free the users

from difficult work of writing them explicitly [5]. Proving of the models will be attempted

automatically whenever the model is saved. If some proof obligations have not been

discharged automatically by the provers, the Rodin tool also provides a proof manager

for users to carry out interactive proof. Other formal languages have theorem proving

support: the Z/EVES system [109] has been used for Z; KIV theorem prover [14] has

been used for ASM; and HOL [65] has been used for VDM. Z/EVES has a graphical

interface and supports automatic type checking. However, users still need to construct

proof scripts by hand. Similarly for KIV and HOL theorem provers, modellers are also

need to construct all proof obligations by themselves.

The theorem prover provided by the Rodin toolset was chosen for the verification parts of

our experiments. Although the Rodin toolset also supports animation and model check-

34 Chapter 3 Event-B

ing via the ProB plug-in [16], there were some reasons why we chose the theorem prover

approach. First is the limitation of model checking caused by state space explosion.

Model checking can guarantee correctness within a limited state space. It cannot ensure

the correctness outside the given state space, e.g. the complex system with complex

data structures that might involve a large state space. The theorem prover approach

can reason about infinite state spaces and state spaces that involve complex data struc-

tures and recursion [103]. Theorem prover can reason about the model without visiting

the state space by verifying logical properties of models. Our model is a complex one

that results in a large state space for model checking. We had tried many times to use

ProB plug-in but failed. At the earlier stage of modelling, where a small set of features

had been introduced, the ProB model checker and animator worked well. But, when we

refined the model by adding more design details, which made the data structures more

complex, we were unable to use ProB for animating and checking our models. Thus,

we decided to stop using it for verifying our models. Another reason, which is a main

point, theorem proving approach helped us a lot in discovering of invariants. Failing

proof obligations guided us to identify which invariants should be introduced. (It can be

seen in our development outlined in Chapter 4, 5 and 6, where we discuss about this.)

3.10 A Comparison

As an extension of B, most of the notation used in an Event-B model such as sets,

relations and functions are similar to B. Thus, developers who have used B for spec-

ification would find it easy to adapt to Event-B. However, there are some differences

between B and Event-B. Firstly, the structures used to describe the model are different.

The static part (context) and dynamic part (machine) are totally separated in Event-B.

Secondly, Event-B is more suited to model complex systems such as distributed and

concurrent systems. Because it is an event based approach which consists of a collection

of guarded atomic events, a machine is viewed as a reactive system that continually

executes enabled events in an interleaved fashion [30]. This makes parallel activities and

concurrent processes easier to model as an interleaving of event executions, while shared

variables/events are used for interaction between the activities/processes. Classical B

is based on a passive model. Namely, operations are called by other operations. (In

Event-B, an event is not necessary called by others.)

As stated in [26], Event-B refinement is more general than classical B and other related

languages such as Z and VDM. The ability to introduce new events in a refinement step

is an important feature of Event-B. Event-B refinement supports the decomposition of

an atomic event and also the decomposition of a machine.

Composition/Decomposition of Event-B and classical B are different. Namely, Event-B

uses A- and B-style (that have already discussed in Section 3.6) as a mechanism for

Chapter 3 Event-B 35

machine decomposition while classical B uses machine inclusion/import (which is based

on program structuring).

Compared with other state-based approaches mentioned in Chapter 2, Event-B also uses

generalized substitutions as a mechanism to transform a system state to another state

like B. Event-B supports both concurrent and communication systems. Proof is a

methodology used for verification of Event-B models similar to classical B.

Chapter 4

Modelling and Proof of a File

System

4.1 Introduction

As previously mentioned in Chapter 1, a flash file system has been proposed as a chal-

lenge for verification technology and we have chosen it as a case study for our exper-

iments. Figure 4.1 is a representative of a flash file system [67]. In the figure, the

architecture was divided into two main parts. The first part, the dotted box, represents

user/application and file system layers. The file system layer provides the generic in-

terface to the file system itself. The second part (the dashed box) represents the flash

file system core which is composed of the flash interface and hardware layers, and other

intermediate layers such as Data Object and Basic Allocation layers (more details can

be seen in [67]). This chapter presents a specification of the file system layer within the

dotted box, focusing on basic functionalities of a tree-structured file system, and read

and write operations. Details and specification of the flash interface layer within the

dashed part will later be explored in Chapter 6.

The aim of this chapter is to investigate and describe how existing theories and tech-

niques of specification, refinement and proof can be applied in Event-B and Rodin to the

specification of a file system. For example, how horizontal and vertical refinements can

be applied, how selection of formulation affects the specification and proof, how breaking

up an atomic event and machine decomposition can be applied to this case study.

Incremental refinement is our main strategy in carrying out the work. We first use

feature augmentation to incrementally specify a model of an abstract file system by

adding new features in each refinement step. After that, structural refinements (covering

event and machine decomposition) are used for adding more design details to relate the

abstract file system to the specification of the flash interface. Here we get eight levels of

37

38 Chapter 4 Modelling and Proof of a File System

File System Layer

Flash Interface Layer

User/Application/OS Layer

FLASH HARDWARE

Figure 4.1: An architecture of a flash file system

specification modelling of a flash file system covering (1st) tree structure, (2nd) files and

directories, (3rd) file content, (4th) permission control, (5th) other missing properties

(name, creation date, etc.), (6th) decomposing file write (7th) decomposing file read

and (8th) replacing by the flash specification. We split the features and choose to refine

the model in this order for some reasons. First, we want to simplify the proof of the

first level by postponing files and directories to be introduced in the following step.

Second, file content should come after an introduction of files. Similarly for permissions,

they should come after file content, since reading/writing of a file content depends on

the permissions. Third, all file system features were covered before exploring structural

refinements that involve adding more design details. Finally, we split the features into

a number of refinement steps because we want to make the gap between each level as

small as possible. We believe that the small gap leads us to get simpler gluing invariants

and proofs. This testifies the proof statistics given in Table 4.1.

Our model covers concurrent file read/write operations. Several file read/write events

can be performed simultaneously in an interleaved fashion. The model we developed

also tolerates faults that may occur at any point during reading/writing of files. Details

are given in Section 4.8.

This chapter begins with an informal description of a tree-structured file system and

its constraints in Section 4.2. An abstract model of the file system layer and its hor-

izontal refinements are given in Section 4.3 to Section 4.7. Vertical refinements which

are explored to relate that file system layer with the flash interface layer are given in

Section 4.8. The fault-tolerance issue is given in Section 4.11. Machine decomposition

is outlined in Section 4.13. Full details of the specification are given in Appendix A.

Proofs are given in Section 4.14. Finally, conclusion and assessment of what we have

Chapter 4 Modelling and Proof of a File System 39

achieved are discussed in Section 4.15.

Note: Much of the contents of this chapter appears in ICFEM 2008 [45], SBMF 2009 [44]

and Rodin Workshop 2009 [43].

4.2 An Informal Description of a Tree-structured File Sys-

tem and Constraints

A tree-structured file system can be described in terms of a collection of objects rep-

resenting files and directories and a set of operations that may be performed on these

objects. The objects are structured as a tree. The tree has only one root directory that

cannot be deleted, copied or moved. Each object except the root has only one parent

which is a directory. Four operations affecting the tree structure are discussed below.

Create: Create an object in an existing directory. The object can be either a file or a

directory.

Copy: Copy an existing object from one place to another place. The destination must

exist and must not be a descendant of the object being copied or the object itself. If

the object being copied is a directory, all objects belong to that directory must also be

copied to the new location and the copy must have the same structure as the original.

Delete: Delete an existing object in the file system. In case of deleting a directory, all

its descendants must also be removed.

Move: Move an existing object from one place to another place. The destination must

exist and must not be a descendant of the object being moved or the object itself.

Note that the copy event we specify here is not traditionally found in file systems.

Namely, the process of copy could be done by performing read and write operations

provided. However, the copy operation is sometimes found at the higher level of user

interfaces provided by operating systems, such as DOS and visual file system. It is also

found in the specification of a visual file system in Z of Hughes [78]. The copy event

is a complex event that directly affects the structure of the tree. Performing this event

must not destroy the tree properties. The reason we have specified this operation in our

model is to show that our abstract copy event preserves the tree properties.

4.3 An initial model

In our development, we begin with an abstract model of a tree-structured file system

focusing on tree properties and operations affecting the tree structure. However, files

and directories are not distinguished in this level. Instead, they are postponed to the

40 Chapter 4 Modelling and Proof of a File System

next refinement given in Section 4.4. Thus, in this level, both files and directories are

treated in the same way as objects, which are nodes of the tree structure. Below is a

list of requirements in this level.

Req1.1: The tree has a root node.

Req1.2: All objects except the root node must have a parent.

Req1.3: There are no loops in the tree.

Req1.4: Every node in the tree is reachable from the root node.

Machine variables, invariants which are formulated to satisfy those required proper-

ties mentioned above, and initialised values of those variables are given in Figure 4.2.

Variables, invariants and initialisation are discussed below.

Variables
objects, parent

Invariants
inv1.1 : objects ⊆ OBJECT
inv1.2 : root ∈ objects
inv1.3 : parent ∈ objects \ {root}→ objects
inv1.4 : ∀ s ·(s ⊆ parent−1[s]⇒ s = ∅)

Initialisation
objects := {root}
parent := ∅

Figure 4.2: Machine variables, invariants and initialisation of an abstract model

As can be seen from a context by this abstract machine, OBJECT is defined as a carrier

set and root is an OBJECT constant (see Figure 4.4). Considering Figure 4.2, there are

two state variables introduced in the machine: (i) objects, a set of existing objects in the

file system (inv1.1); and (ii) parent , a total function mapped from all objects except root

to their parent which is an object. In this abstraction, objects and parent are initialised

to a set consisting of root and the empty set respectively. Invariant inv1.3 states that all

objects except root must have a parent. This invariant satisfies Req1.2. Invariant inv1.4

is introduced to ensure that there are no loops in the tree structure (satisfying Req1.3).

This invariant is formulated by using the no-loop property proposed by Abrial in [4].

The reason we choose this formulation instead of transitive closure which is generally

used to specify tree properties – such as a specification of visual file system in [78] – is

to make the model easier to prove.

Considering inv1.4, parent−1[s] gives the direct descendants of all elements of set s. For

s ⊆ objects, s ⊆ parent−1[s] means that s contains a loop in the parent relationship.

Chapter 4 Modelling and Proof of a File System 41

Hence, this invariant states that the only such set that can exist is the empty set and

thus the parent structure cannot have loops. If we were to use transitive closure, we

would need to add the property inv1.4b given in Figure 4.3 to the machine invariants.

inv1.4b : tcl(parent) ∩ id(OBJECT) = ∅

Figure 4.3: No-loop property using transitive closure

Here tcl which is mentioned in Invariant inv1.4b is a transitive closure. In a con-

text shown in Figure 4.4, tcl is defined as a total function mapped from OBJECT ↔
OBJECT to OBJECT ↔ OBJECT . Giving r ∈ OBJECT ↔ OBJECT , the transitive

closure of r is equal to r ∪ r ; tcl(r) (thm1 of Figure 4.4). The transitive closure we

specify here follows from the definition given in [1].

The parent variable is updated by several of the events. If we were to use inv1.4b instead

of inv1.4, the copy event, for example, would give rise to a proof obligation with inv1.4b

as a hypothesis and the following goal:

tcl(parent ∪ replica ∪ {nobj 7→ to}) ∩ id(OBJECT) = ∅

The way to prove this proof obligation would not be easy since distribution of tcl through

union and other set operations is not straightforward. We avoid such difficulty in proofs

by using formulation inv1.4 instead.

Significantly, we can prove that the formulation in inv1.4b follows from the formulation

in inv1.4. This is given by Theorem thm3 shown in Figure 4.4. This theorem has been

proved using the interactive prover of Rodin. The strategy we follow in proving this

theorem is to use proof by contradiction.

In order to satisfy requirement Req1.4, instead of introducing another invariant, we

present other machine theorems (given in Figure 4.5) which are derived from existing

invariants and guarantee that the reachability property is satisfied. Considering Theorem

mth3, since (tcl(parent))−1[{root}] returns all objects reachable from root , this theorem

shows that all objects except root are reachable from root . Other machine theorems,

mth1 and mth2, are used in the proof of mth3. Theorem mth4 is introduced to satisfy

the no-loop property.

Abstract Events:

In this section, we outline four abstract events including create, move, copy and delete.

Create event: Create an object in an existing location (see Figure 4.6). In the figure,

obj is an object being created and in is its parent. Here obj must be an OBJECT that

42 Chapter 4 Modelling and Proof of a File System

Sets
OBJECT

Constants
root , tcl , objrel , objfn

Axioms
axm1 : root ∈ OBJECT
axm2 : objrel = OBJECT ↔ OBJECT
axm3 : objfn = OBJECT \ {root}→OBJECT
axm4 : tcl ∈ objrel → objrel
axm5 : ∀ r ·(r ∈ objrel ⇒ r ⊆ tcl(r))
axm6 : ∀ r ·(r ∈ objrel ⇒ r ; tcl(r) ⊆ tcl(r))
axm7 : ∀ r , t ·(r ∈ objrel ∧ r ⊆ t ∧ r ; t ⊆ t ⇒ tcl(r) ⊆ t)

Theorems
thm1 : ∀ r ·(r ∈ objrel ⇒ tcl(r) = r ∪ (r ; tcl(r)))
thm2 : tcl(∅) = ∅
thm3 : ∀ t ·(t ∈ objfn ∧ (∀ s ·s ⊆ (t−1)[s] ⇒ s = ∅)
⇒ tcl(t) ∩ id(OBJECT) = ∅)

Figure 4.4: Definition of transitive closure (tcl) and no-loop theorem (thm3) in a
context

Theorems
mth1 : ∀T ·(root ∈ T ∧ parent−1[T] ⊆ T ⇒ objects ⊆ T)
mth2 : objects ⊆ {root} ∪ (tcl(parent))−1[{root}]
mth3 : objects \ {root} ⊆ (tcl(parent))−1[{root}]
mth4 : tcl(parent) ∩ id(OBJECT) = ∅

Figure 4.5: Machine theorems satisfying reachability and no-loop properties

is not already in the set objects (see grd1); and in must exist (see grd2). The object obj

will be added to the set objects by act1; and in will be assigned to be the obj ’s parent

by act2.

Copy event: In order to understand more about the copy event, we will describe this

event by using Figure 4.7. From the figure, the left-hand side is a tree before copying

and the right-hand side is the result. Here r is a root node, a is an object being copied

(d and e, its descendants, will be copied as well) from node r to node c. The arrows

represent the function parent and the dashed lines represent a correspondence function

which is a bijection from the set of all objects being copied to the set of new objects (a ′,

d ′, and e ′) which is a copy of that set. The correspondence bijection is used to maintain

the structure of directory a in the copy.

Considering the copy event given in Figure 4.8, obj (the object being copied) and to (the

destination) behave like external parameters provided by users or application programs,

while the rest are local parameters used for computation. However, there is no distinction

Chapter 4 Modelling and Proof of a File System 43

Event create =̂
Any

obj , in
Where

grd1 : obj ∈ OBJECT \ objects
grd2 : in ∈ objects

Then
act1 : objects := objects ∪ {obj}
act2 : parent(obj) := in

End

Figure 4.6: A specification of create event

r

a b c

d e f a

d e

r

a b c

d e f

obj to

subparent

replica

Figure 4.7: A diagram of copying a subtree (subparent) rooted at a from r to c

between external parameters and local parameters in Event-B. In this event, des is the

set of all descendants of the object obj which is equal to (tcl(parent))−1[{obj}]; objs is

the set of all objects being copied; nobjs is the set of new objects corresponding to the

set objs; corres is the correspondence bijection. With reference to Figure 4.7, subparent

represents the subtree rooted at a which is being copied. In this event, subparent is

equal to des � parent which is a restriction of the parent function to des (e.g., d 7→ a

and e 7→ a in Figure 4.7). Finally, replica is a copy of subparent which is equal to

corres−1; subparent ; corres (e.g., d ′ 7→ a ′ and e ′ 7→ a ′ in Figure 4.7).

At this point, the reason we introduce a number of additional local parameters is to make

models easier to read. For example, without introducing des, subparent and replica, act1

of Figure 4.8 can be replaced by

parent := parent ∪ corres−1; (tcl(parent))−1[{obj}]� parent ; corres ∪ {nobj 7→ to}

but we can see that the action becomes more difficult to read.

Additionally, there are two main constraints in this event. Firstly, the object being

copied, obj , must exist and must not be the root . This is satisfied by grd1. Secondly,

the destination, to, must exist and must not be the object being copied or its descendant

44 Chapter 4 Modelling and Proof of a File System

Event copy =̂
Any

obj, to, des, objs, corres,nobjs,nobj , subparent , replica
Where

grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ objects
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ objects
grd8 : corres ∈ objs �� nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des � parent
grd11 : replica = corres−1; subparent ; corres

Then
act1 : parent := parent ∪ replica ∪ {nobj 7→ to}
act2 : objects := objects ∪ nobjs

End

Figure 4.8: A specification of copy event

(satisfied by grd5). Guard grd5 plays an important role to ensure that loops are not

produced by this event.

Move event: This event is aimed at moving an existing object except root from one

place to another place. Considering Figure 4.9, a is an object being moved from node

r to node c. Node c will become a new parent of a. In Figure 4.10, an existing object

named obj is moved to a new location named to. Parameter des represents the set

of all descendants of obj which is equal to (tcl(parent))−1[{obj}]. In this case, the

destination, to, must exist and not be obj or a descendant of obj (these constraints are

specified as grd2 and grd5). These guards are necessary to guarantee that the move does

not introduce a loop or unreachable objects. The parent function is updated so that obj

has to as its parent.

r

a

b c

d e

f

r

a b c

d e f

obj to

Figure 4.9: Diagram of moving a subtree rooted at a from r to c

Chapter 4 Modelling and Proof of a File System 45

Event move =̂
Any

obj , to, des
Where

grd1 : obj ∈ objects \ {root}
grd2 : to ∈ objects
grd3 : des ⊆ objects
grd4 : des = (tcl(parent))−1[{obj}]
grd5 : to /∈ des ∪ {obj}

Then
act1 : parent(obj) := to

End

Figure 4.10: A specification of move event

Delete event: This event is given in Figure 4.11. In this figure, obj is an object being

deleted; des is a set of all obj ’s descendants. Here grd1 states that obj must be an

existing object except root . The object being deleted and all its descendants, objs, will

be removed from objects by act1 and all related parent-entries are also removed by act2.

Event delete =̂
Any

obj , des, objs
Where

grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : objs = des ∪ {obj}

Then
act1 : objects := objects \ objs
act2 : parent := objs −▹ parent

End

Figure 4.11: A specification of delete event

4.4 1st Refinement: Files and Directories

In this refinement, objects are partitioned into files or directories. There are two machine

variables introduced in this level, namely, files (a set of existing files) which is initialised

to the empty set and directories (a set of existing directories) which is initialised to a

set of root . Additionally, the create event of the abstraction is refined into events crtfile

46 Chapter 4 Modelling and Proof of a File System

(create file) and mkdir (make directory). Additional requirements for this level are given

below.

Req2.1: The set of objects is partitioned into files and directories.

Req2.2: The root node is a directory.

Req2.3: The parent of each object must be a directory.

Figure 4.12 shows a list of machine variables, invariants formulated to satisfy the above

requirements and initialised values of each variable. Considering the gluing invariant

inv2.4, the abstract variable objects is entirely defined in terms of files and directories.

As a result, it can be substituted by files ∪ directories and is no longer used in this level.

Variables
files, directories, parent

Invariants
inv2.1 : files ⊆ objects
inv2.2 : directories ⊆ objects
inv2.3 : files ∩ directories = ∅
inv2.4 : objects = files ∪ directories
inv2.5 : root ∈ directories
inv2.6 : ran(parent) ⊆ directories

Initialisation
files := ∅
directories := {root}
parent := ∅

Figure 4.12: Machine variables, invariants and initialisation of the first refinement

Because of the space constraint and the similarity of some events (such as creating a file

and making directory), we chose two events (crtfile and copy) to illustrate a concrete

model of this level.

Create-file event: This event (named crtfile), given in Figure 4.13, refines create of

the previous abstraction. Additional details introduced in this refinement: (i) grd2, in

must be a directory; and (ii) act1, the object must be added to the set files directly,

instead of the set objects in the previous abstraction.

A refinement of Event copy : In this refinement, see Figure 4.14, additional details

introduced in this event are: (i) grd4, the destination, to, must be a directory; (ii) act2,

all correspondents of objs which are files must be added to the set files; and (iii) act3, all

correspondents of objs which are directories must be added to the set directories as well.

These two actions refine Action act2 of the previous abstraction (given in Figure 4.8).

Chapter 4 Modelling and Proof of a File System 47

Event crtfile refines create =̂
Any

obj , in
Where

grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : in ∈ directories

Then
act1 : files := files ∪ {obj}
act2 : parent(obj) := in

End

Figure 4.13: A specification of create-file event

Event copy refines copy =̂
Any

obj , to, des, objs, corres,nobjs,nobj , subparent , replica
Where

grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : des ⊆ (files ∪ directories)
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ directories
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ (files ∪ directories)
grd8 : corres ∈ objs �� nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des � parent
grd11 : replica = corres−1; subparent ; corres

Then
act1 : parent := parent ∪ replica ∪ {nobj 7→ to}
act2 : files := files ∪ corres[objs ∩ files]
act3 : directories := directories ∪ corres[objs ∩ directories]

End

Figure 4.14: A first refinement of the copy event

The reason we have postponed files and directory to be introduced here is to make proof

simpler. In the first level they are treated in the same way as objects which are nodes

of the the tree structure. If we were to introduce them at the first step, proving the tree

properties would be more difficult since files and directories are different. Namely, we

would need to prove for both crtfile and mkdir events. At this level, we did not need to

show that the crtfile and mkdir events preserve the tree properties, since their abstract

event create has already been proved in the abstraction.

48 Chapter 4 Modelling and Proof of a File System

4.5 2nd Refinement: File content

In this refinement, file contents and other related constraints are introduced together

with five events – i.e. r open (open an existing file for reading), w open (open an

existing file for writing), read (read the whole content of a file from the storage into a

memory buffer), write (write the content of a file on the buffer back to the storage) and

close (close an opened file). Note that we also introduce the power loss event in this

level, since the memory contents (read and write buffers) have been introduced. We

postponed details of this event to be addressed in Section 4.11 where the fault-tolerance

is outlined.

The requirements and constraints which are covered in this level:

Req3.1: Each file has content (which might be empty).

Req3.2: Each file must be opened before reading or writing.

Req3.3: A buffer of each opened file will be assigned once the file is opened and released

when the file is closed.

Req3.4: All operations are disabled when the power is off.

Machine variables and invariants introduced in this refinement are listed in Figure 4.15.

Variables
...
fcontent , power on, r opened files, w opened files, rbuffer , wbuffer

Invariants
inv3.1 : power on ∈ BOOL
inv3.2 : power on = TRUE ⇒ fcontent ∈ files → CONTENT
inv3.3 : r opened files ⊆ files
inv3.4 : w opened files ⊆ files
inv3.5 : r opened files ∩ w opened files = ∅
inv3.6 : rbuffer ∈ r opened files → CONTENT
inv3.7 : wbuffer ∈ w opened files → CONTENT

Figure 4.15: Additional machine variables and invariants of the second refinement

In this refinement, the content of each file, fcontent , is defined as a total function mapped

from each file to a content. The content is valid only when the power is on (inv3.2).

Variable r opened files and w opened files are set of files which are opened for reading

and writing respectively. The buffers of opened files, rbuffer (for reading) and wbuffer

(for writing), are specified as a total function mapped from each opened file to a content.

Chapter 4 Modelling and Proof of a File System 49

The content is represented as an array of data items (DATA). In a context seen by this

refined machine, the content is defined as a constant named CONTENT ; and DATA is

defined as a carrier set. We assume that the contents of each file are contiguous although

it is specified as a partial function.

CONTENT = N 7→ DATA

Figure 4.16 given below represents an event writefile. This event aims to write the whole

content of the given file named f on its buffer into the storage. The guard of the event

ensures that the power must be on and the given file f must be opened for writing.

Event writefile =̂
Any

f
Where

grd1 : power on = TRUE
grd2 : f ∈ w opened files

Then
act1 : fcontent(f) := wbuffer(f)

End

Figure 4.16: A specification of file write event

4.6 3rd Refinement: Permissions

In this level, requirements related to access permissions are introduced. The list of new

requirements and constraints is given below.

Req4.1: Each object has an owner, a group-owner and a list of permissions.

Req4.2: Access to each object depends on its permissions.

Req4.3: Each user can be a member of one or more groups but mostly one primary

group is assigned

Considering Figure 4.17, there are a number of machine variables introduced in this

refinement. For example, users, a set of existing users; groups, a set of existing groups;

user pgrp, a primary group of each user; user grps, user’s groups; obj owner , an owner

of each object; and obj perms, permissions of each object. Invariant inv4.5 states that

a primary group of each user must be a group in which the user is a member. In a

context seen by this machine, GROUP and USER are defined as a carrier set. PER-

MISSION, a set of permission types, is specified as a enumerated set which is equal to

50 Chapter 4 Modelling and Proof of a File System

{rbo,wbo, xbo, rbg ,wbg , xbg , rbw ,wbw , xbw}, where rbo: owner-read, wbo: owner-write,

xbo: owner-execute, gbo: group-read, wbg : group-write, xbg : group-execute, rbw : world-

read, wbw : world-write and xbw : world-execute.

Variables
...
users, groups, user pgrp, user grps, obj owner , obj grp, obj perms

Invariants
inv4.1 : users ⊆ USER
inv4.2 : groups ⊆ GROUP
inv4.3 : user pgrp ∈ users → groups
inv4.4 : user grps ∈ users ↔ groups
inv4.5 : ∀ u ·u ∈ users ⇒ user pgrp(u) ∈ user grps[{u}]
inv4.6 : obj owner ∈ (files ∪ directories)→ users
inv4.7 : obj grp ∈ (files ∪ directories)→ groups
inv4.8 : obj perms ∈ (files ∪ directories)↔ PERMISSION

Figure 4.17: Additional machine variables and invariants of the third refinement

Figure 4.18 is an example of the r open event, which is an extension of r open in the

previous abstraction. Italic lines represent the extending part that have added. Other

part (not italic) inherited from the previous abstraction are shown here just for making

the event more understandable. In this event, guards grd4 and grd5 state that user usr

who issues this open request must exist and has a read-permission on the object obj .

Event r open extends r open =̂
Any

f usr
Where

grd1 : power on = TRUE

grd2 : f ∈ files

grd3 : f /∈ r opened files ∪ w opened files

grd4 : usr ∈ users
grd5 : f 7→ usr ∈ RPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

Then
act1 : rbuffer(f) := ∅
act2 : r opened := r opened files ∪ {f}

End

Figure 4.18: A specification of Event r open

RPerm, which is used in the r open event (shown in Figure 4.18), encodes the rules

that determine whether a user has read permission for an object obj . It is defined in a

context seen by this machine. The related part of the context defining RPerm is shown

Chapter 4 Modelling and Proof of a File System 51

in Figure 4.19. In the figure, su represents the super user (who has the right to manage

every thing), defined as a USER constant. This function states that a user u has a

permission to read an object o only if at least one of these criteria is satisfied:

(i) The user is the owner and has the owner-read permission (rbo).

(ii) The user is a member of the group to which the object belongs and has the group-

read permission (rbg).

(iii) The world-read permission (rbw) is assigned to the object.

(iv) The user is the super user.

o 7→ u ∈ RPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
⇔((o 7→ u ∈ obj owner ∧ o 7→ rbo ∈ obj perms)
∨
(obj grp(o) ∈ user grps[{u}] ∧ o 7→ rbg ∈ obj perms)
∨
(o 7→ rbw ∈ obj perms)
∨
(u = su))

Figure 4.19: A definition of read permission function

Other permission definitions (i.e., write and execute permission functions) which are not

mentioned here are also specified in the same way.

Without providing this RPerm function, specifying Guard grd5 of Figure 4.18 would be

more complicated in order to check whether the user has to the right to read the given file

or not. Namely, this guard would be replaced by the specification given in Figure 4.20.

Moreover, we would need to model like this for every event where the permission control

is required. Instead, specifying as a separate permission function makes it reusable and

easier to read.

((f 7→ usr ∈ obj owner ∧ f 7→ rbo ∈ obj perms)
∨
(obj grp(f) ∈ user grps[{usr}] ∧ f 7→ rbg ∈ obj perms)
∨
(f 7→ rbw ∈ obj perms)
∨
(usr = su))

Figure 4.20: An alternative guard ensuring that usr has the read permission on f

52 Chapter 4 Modelling and Proof of a File System

4.7 4th Refinement: Other missing properties

Other properties that have been missed or postponed at the previous abstract levels are

explored in this level, for instance, creation date, last modification date and name. The

event-extension feature is also used in this step to extend the model by adding these

missing properties.

Here is an example of the crt file event given in Figure 4.21. This figure shows some of

the specification that have been extended. Parameter nme represents a name of the file

being created. This name must not already exist in the given directory (grd8). Action

act9 sets the creation date of the file being crated to be nowdate. We defined nowdate

as a DATE constant in a context seen by this model. The last modification date is also

set to be nowdate, while file size is initialised to be 0.

Event crt file extends crt file =̂
Any nme Where

grd7 : nme ∈ NAME
grd8 : nme /∈ oname[parent−1[{indr}]]

Then
act8 : oname(obj) := nme
act9 : dateCreated(obj) := nowdate
act10 : dateLastModified(obj) := nowdate
act11 : file size(obj) := 0

End

Figure 4.21: An extended event crtfile

4.8 Vertical Refinement

The purpose of this section is to outline the decomposition of the abstract events readfile

and writefile. The decomposition is based on the assumption that the content of the

file is read from or written to the storage one page at a time. As shown in Figure 4.22

(b), for example, instead of writing the buffer content into the storage in one step,

we introduced an intermediate variable named fcont tmp. This variable behaves like a

shadow disk used for accumulating the content of the pages as they are written one at

a time. This shadow becomes the actual content of that file only when all pages have

been written to the shadow. The use of this shadow allows us to deal with faults that

may occur during writing of a file – if a fault occurs, we discard the shadow and keep

the original. The use of the shadow is an abstraction of the fact that when writing of

a file at the implementation level, we use fresh pages on the flash array rather than

Chapter 4 Modelling and Proof of a File System 53

over-writing the pages used for the previous version of the file. Additional details are

explained in Section 4.9.

rbuffer r_tmp fcontent

rbuffer fcontent

r_step r_end

readfile

(a) read a file (b) write a file

wbuffer fcont_tmp fcontent

wbuffer fcontent

w_step w_end

writefile

abstraction

refinement

Figure 4.22: A diagram of refining events readfile and writefile

Note: Instead of detailing the decomposition of both file read and file write which are

similar, we will present only file write which is more interesting in Section 4.9. Full

details of the specification can be found in Appendix A.

Other two structural refinements are (i) replacing an abstract file system by the flash

specification which is outlined in Section 4.10 and (ii) decomposing a file system machine

into two sub-machines to represent the file system layer and the flash interface layer.

The details of the second one is provided in Section 4.13.

4.9 Decomposition of the file write event

Figure 4.23 (a) shows an event refinement diagram for the writefile event which is de-

composed into three sub-events: w start (start write), w step (write one page at a time)

and w end (end write, when all pages have been written completely). (The event de-

composition we outline here follows the style of Butler and Yadav we have discussed in

Section 3.5.) Event w end refines writefile of the abstraction while w start and w step

refine skip. This diagram states that w start must be performed before w step. Event

w step will be repeated until all pages are written or programmed into the flash device.

In case of failures (see Fig. 4.23 (b)), in the abstraction, the writefileFail event does

nothing (i.e. skip). The content of file on the storage is not changed but all memory

buffers are released.

Figure 4.24 shows machine invariants specified in this refinement step. Variable fcont tmp

represents the temporary content of the file while it is in the writing state. This vari-

able behaves like a shadow content of the file being written, as already discussed. This

shadow content becomes an actual content (fcontent) when all pages have been written

54 Chapter 4 Modelling and Proof of a File System

writefileFail

w_start w_end_fail refinement

writefile

w_start w_step(p) w_end_ok

all(p)

(a) success (b) fail

abstraction

Figure 4.23: Refinement diagram of event writefile

to the shadow. No change is made to fcontent if writing of the given file fails at any

point from the start to the end of writing. That means the content of that file will be the

same as the previous state. We specified writing as a set of opened files which are in the

writing state. Variable wbuffer represents a write-buffer of each writing file. Invariant

inv6.3 states that for any file f which is in the writing state, the temporary contents of

f will be a subset of or equal to the content on its writing buffer.

inv6.1 : writing ⊆ w opened files
inv6.2 : fcont tmp ∈ writing → CONTENT
inv6.3 : ∀ f ·f ∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)

Figure 4.24: Machine invariants of the refinement

Figure 4.25 shows the refinement of event writefile when it is split into w start, w step

and w end (in cases of success and fail). In order to start writing (w start), the given

file must be opened for writing and not already in the writing state (see grd2 and grd3

of event w start). Event w step writes the contents of page i from the write buffer

(wbuffer) into fcont tmp. In order to do this the given file must be in the writing state

(see grd2). The page being written must be a page in the write buffer that has not

already been written to the storage (see guards grd5 and grd6of event w step). Event

w end ok is enabled when all pages have been written (grd3) and the file is in the

writing state. The effect of w end ok is to overwrite the existing file content with the

shadow content.

Guard grd3 of the w end ok event and Invariant inv6.3 play an important role in

proving that the w end ok event is a correct refinement of the writefile event (given in

Figure 4.16). Namely, the gluing invariant, inv6.3, is used to show that fcont tmp(f) is

equal to wbuffer(f) when the guard of the w end ok event holds.

This model can deal with concurrent file read/write events. While a file is being written,

another file might be read/written at the same time. Consider the file-write event, for

example, where it is split into sub-events. Suppose file f1 is requested to be written with

three pages of contents, and file f2 is also requested to be written with two pages at the

Chapter 4 Modelling and Proof of a File System 55

Event w start =̂
Any f Where

grd1 : power on = TRUE
grd2 : f ∈ w opened files
grd3 : f /∈ writing

Then
act1 : writing := writing ∪ {f }
act2 : fcont tmp(f) := ∅

End
Event w step =̂

Any f , i , cnt Where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ N
grd4 : cnt ∈ DATA
grd5 : i 7→ cnt ∈ wbuffer(f)
grd6 : i /∈ dom(fcont tmp(f))

Then
act1 : fcont tmp(f) := fcont tmp(f) ∪ {i 7→ cnt}

End
Event w end ok refines writefile =̂

Any f Where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : dom(wbuffer(f)) = dom(fcont tmp(f))

Then
act1 : fcontent(f) := fcont tmp(f)
act2 : writing := writing \ {f }
act3 : fcont tmp := {f } −▹ fcont tmp
act4 : file size(f) := card(fcont tmp(f))

End
Event w end fail =̂

Any f Where
grd1 : power on = TRUE
grd2 : f ∈ writing

Then
act1 : writing := writing \ {f }
act2 : fcont tmp := {f } −▹ fcont tmp

End

Figure 4.25: Decomposition of the writefile event

same time. Figure 4.26 shows two scenarios of concurrent file-write of both success and

fail cases, where two file-write events have been performed in the same time.

Figure 4.26 shows that even when file f1 has not been completely written we can start

writing another file named f2. In addition, it is not necessary to complete writing page

p2 of file f1 before start writing page p3 of the same file. Moreover, although file f1

56 Chapter 4 Modelling and Proof of a File System

succeed fail

w start(f 1) w start(f 1)
w step(f 1, p1, cnt1) w step(f 1, p1, cnt1)
w start(f 2) w start(f 2)
w step(f 1, p3, cnt3) w step(f 1, p3, cnt3)
w step(f 2, p1, cnt1) w step(f 2, p1, cnt1)
w step(f 2, p2, cnt2) w step(f 2, p2, cnt2) fail
w end ok(f 2) w end fail(f 2)
w step(f 1, p2, cnt2) w step(f 1, p2, cnt2)
w end ok(f 1) w end ok(f 1)

Figure 4.26: Scenarios of concurrent writing of two files

has been started first, it might be completed after the completion of writing file f2. If

failures occur at any point (see Figure 4.26 (left) where writing page p2 of file f2 fails)

w end fail will be reached instead of the w end ok event, since the failure will prevent

grd3 of the w end ok event from becoming true.

4.10 Linking the Abstract File System to the Flash Inter-

face Layer

This section outlines an initial model of the flash specification, which is based on the

ONFI specification given in [52], and shows how it is related to the abstract file sys-

tem via data refinement. We first describe an abstract specification of the flash in

Section 4.10.1 and then show a refinement of the file system layer when the flash speci-

fication is included.

4.10.1 Abstract Flash Interfaces Layer

An ONFI-based flash device is represented as a collection of LUNs (Logical Units). Each

LUN is composed of a number of blocks. Each block has a number of pages. Each page

is a sequence of data items. The ONFI structure means that flash pages are accessed

via row addresses that consists of a LUN number, a block number within a LUN and a

page number within a block. A flash device can be specified in Event-B as an array of

pages which are identified by row addresses:

flash ∈ RowAddr → PDATA

where RowAddr is specified as a carrier set representing all possible row addresses. In

this step, we ignore the structure of the row address, since its components (i.e. LUN,

block and page numbers) within a row address are not used/referenced in this level. The

structure is postponed to be specified in another refinement step. We have found that

Chapter 4 Modelling and Proof of a File System 57

ignoring the structure of the row address makes the model of this refinement simpler,

since row addresses are represented using a simple form as a carrier set. It would be more

complex if we were to specify RowAddr as LUAddr × BAddr × PAddr , where LUAddr :

LUN addresses, BAddr : block addresses and PAddr : page addresses. An appropriate

way for modelling the structure of the row address and details are discussed in Chapter 6

where further refinements focussing on the flash specification are explored.

PDATA represents a page data within each page. However, the ONFI specification does

not provide details of how data is stored in each page. In order to deal with faults, we

have made an assumption that page data is composed of an actual data (to be stored),

an object to which the data belongs, a logical page id or page index (in the view of

file system) and a version number identifying the version of that page data. Figure 4.27

represents the structure of PDATA. We model each component of PDATA as a projection

function following the approach of Evans and Butler [53] that has already been discussed

in Section 3.8. For example, the file data stored in a PDATA is modelled by dataOfpage

(axm1). The other projections represent file object, page index and version number.

A set of version numbers (VERNUM) is used to record the version of data which is

programmed in each page.

axm1 : dataOfpage ∈ PDATA→DATA
axm2 : objOfpage ∈ PDATA→OBJECT
axm3 : pidxOfpage ∈ PDATA→ N
axm4 : verOfpage ∈ PDATA→VERNUM

Figure 4.27: A structure of PDATA

We have tried an alternative way to specify the contents of the page data as machine

variables. Namely, each property (i.e. dataOfpage, objOfpage, pidxOfpage and verOf-

page) is specified as a machine variable. We have found that this makes our model

become more complex and difficult to manage. In addition, modifying the contents of

a PDATA is made to the whole rather than some parts of the PDATA. For example,

rewriting a page content of a file with a new content is done by writing the new content

to another fresh page (rather than modifying the content at the old location) and then

mark the old one as obsolete. Thus, specifying as machine variables that makes it be

able to modify an individual part of page data is not necessary.

Moreover, we have tried another way to specify flash. Namely, instead of specifying

flash ∈ RowAddr→PDATA as above, we could use curried functions to specify flash by

introducing two other type-constants, LUN and BLOCK , as

BLOCK = PAddr → PDATA

LUN = BAddr → BLOCK

58 Chapter 4 Modelling and Proof of a File System

and then define flash as

flash ∈ LUAddr → LUN

This alternative choice shows that flash is a collection of LUNs instead of a collection of

PDATAs, directly. We have done an experiment to compare these two approaches. We

found that using curried function for this case study makes the model more difficult to

specify and reason about. An example comparing both approaches is given in Figure 4.41

of Section 4.13.

4.10.2 Relating the File System Layer with the Flash Interface Layer

The flash interface layer provides two main interfaces to the file system layer. The first is

page read, read a page of data from a given row address, and the second is page program

(or page write), write a page of data into the flash device at a given row address. These

two interfaces will become parts of the events r step and w step of the file system layer.

In this refinement step, flash properties are introduced together with variables used to

relate those two layers. Variables fcontent and fcont tmp of the file system layer are

replaced by fat, fat tmp and flash. The variable fat represents the table of contents of

each file. This table is a mapping of each file to a table that maps each logical page-id

of the file to its corresponding row address within the flash. The corresponding row

address represents the location (within the flash device) in which the content of that

page is stored. Variable flash represents a flash content which is a collection of pages.

The properties mentioned above are described by the invariants given in Figure 4.28.

Many invariants (e.g. inv7.3, inv7.4, inv7.8, inv7.9 and inv7.10) are gluing invariants

introduced to relate the abstract variables fcontent and fcont tmp with the concrete

variables fat, fat tmp and flash. They play an important role in proving the correctness

of this refinement. Variable programmed pages represents the row addresses of pages

that have already been programmed or written, while obsolete pages is a set of pro-

grammed pages that are obsolete. Invariants inv7.8 and inv7.10 relate the content of

file with the actual content on the flash device. For instance, inv7.8 says that for any

flash page with a version that equals the current version of the file to which the page

belongs, the data of that page will be the data of the given page-id of that file as defined

by content . Invariant inv7.10 ensures that the FAT table is formulated correctly from

the right version of such pages.

Figure 4.29 illustrates how the file write of the abstract file system is replaced by the

flash specification. The top diagram represents the abstract file write which is composed

of three sub-events: w start, w step and w end. The bottom diagram represents the

refinement where w step is refined by event pagewrite. In this event, page program will

Chapter 4 Modelling and Proof of a File System 59

inv7.1 : fat ∈ files → (N 7→ RowAddr)
inv7.2 : fat tmp ∈ writing → (N 7→ RowAddr)
inv7.3 : ∀ f ·f ∈ files ⇒ dom(fat(f)) = dom(fcontent(f))
inv7.4 : ∀ f ·f ∈ files ∧ f ∈ writing ⇒ dom(fat tmp(f)) = dom(fcont tmp(f))

inv7.5 : flash ∈ RowAddr → PDATA
inv7.6 : programmed pages ⊆ RowAddr
inv7.7 : obsolete pages ⊆ programmed pages

inv7.8 : ∀ p ·p ∈ PDATA ∧ objOfpage(p) ∈ files
∧ verOfpage(p) = curr version(objOfpage(p)) ∧ pidxOfpage(p) ̸= 0
⇒ pidxOfpage(p) 7→ dataOfpage(p) ∈ fcontent(objOfpage(p))

inv7.9 : ∀ p ·p ∈ PDATA ∧ objOfpage(p) ∈ writing
∧ verOfpage(p) = writing version(objOfpage(p)) ∧ pidxOfpage(p) ̸= 0
⇒ pidxOfpage(p) 7→ dataOfpage(p) ∈ fcont tmp(objOfpage(p))

inv7.10 : ∀ i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages
∧ p = flash(r) ∧ verOfpage(p) = curr version(f)
∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0
⇒ i 7→ r ∈ fat(f)

...

Figure 4.28: Machine invariants for replacing the file system by the flash specification

be called in order to write the content of each page into the flash device. When each page

has been programmed successfully, the fat tmp will be updated. Finally, the fat tmp

will be copied to fat when all pages have been completely programmed into the flash

device.

wbuffer fcont_tmp fcontent

w_step w_end w_start

wbuffer fat_tmp fat

pagewrite w_end w_start

flash

abstraction

refinement

page program

Figure 4.29: A diagram of mapping writefile to the flash specification

Figure 4.30 shows a simple example of data refinement in this level when the abstract

60 Chapter 4 Modelling and Proof of a File System

file system is replaced by the flash specification. The top represents an abstraction

where the content of file f 1 is represented by fcontent(f 1). The content of this file is

composed of two pages of contents: cnt1 and cnt2. In the refinement (the bottom), the

abstract fcontent is refined by concrete variables fat and flash. To get the content of

page 1, since fat(f 1)(1) = r4, flash(r4) = pd4 and dataOfpage(pd4) = cnt1, we then get

fcontent(f 1)(1) = dataOfpage(flash(fat(f 1)(1))).

f1

f1

fcontent(f1)

fat(f1) flash

dataOfpage(pd4) = cnt1

dataOfpage(pd7) = cnt2

fcontent(f1)(1) = cnt1

fcontent(f1)(2) = cnt2

abstraction

refinement

1 cnt1
2 cnt2

r1 pd1
r2 pd2
...
r4 pd4
...
r7 pd7
...

1 r4
2 r7

Figure 4.30: A diagram representing an example of data refinement where fcontent
is replaced by fat and flash

Figure 4.31 shows the pagewrite event which is a refinement of the w step event. The

pagewrite event will look for an available page on the flash (grd7 and grd8) in order

to write the content of page number i on the wbuffer. Parameter r represents a row

address within the flash to which the content will be written. Based on the approach

to modelling of records given in [53], we specify guards grd9 - grd13 to describe the

contents of pdata to be written to the flash. Action act1 updates the temporary fat

table of the file f. Action act2 sets the content of the flash at row number r equal to

pdata. The row address identifying that page will be set as a programmed page by act3.

Proof obligations generated by the Rodin tool help us to discover those gluing invariants

(i.e. inv7.3, inv7.4, inv7.8 and inv7.9). For example, we have a generated PO typed

GRD (guard strengthening proof obligation) to ensure the correct refinement of a guard

(named grd6 of the w step event, in Figure 4.25). Namely, we need to show that while

the file f is in the writing state, grd6 : i /∈ dom(fcont tmp(f) (of the w step event) of

the previous abstraction is entailed by grd6 : i /∈ dom(fat tmp) of its refinement, given

in Figure 4.31. This PO led us to Invariant inv7.4 saying that if file f is in the writing

state, the domain of fat tmp(f) equals the domain of fcont tmp(f). Similarly for other

gluing invariants, we used failing POs as guidelines.

Chapter 4 Modelling and Proof of a File System 61

Event pagewrite refines w step =̂
Any f , i , cnt , r , pdata Where

grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ N
grd4 : cnt ∈ DATA
grd5 : i 7→ cnt ∈ wbuffer(f)
grd6 : i /∈ dom(fat tmp(f))
grd7 : r ∈ RowAddr
grd8 : r /∈ programmed pages
grd9 : pdata ∈ PDATA
grd10 : verOfpage(pdata) = writing version(f)
grd11 : objOfpage(pdata) = f
grd12 : lpidOfpage(pdata) = i
grd13 : dataOfpage(pdata) = cnt

Then
act1 : fat tmp(f) := fat tmp(f) ∪ {i 7→ r}
act2 : flash(r) := pdata
act3 : programmed pages := programmed pages ∪ {r}

End

Figure 4.31: The refinement of the w step event

4.11 Dealing with faults

As previously mentioned in Section 4.1, our model tolerates faults that may occur at

any point during the execution of file operations (e.g. reading and writing of files).

Our fault model is based on the case that the system is able to reboot after failure.

Our fault model deals with (i) power loss and (ii) failure to read or write a page of

flash. Other failures such as fail-stop (that makes the system stops and is unable to

reboot), Byzantine failure (processes fail by acting maliciously) [93] are not addressed.

Our model covers both the file system software and the flash device. We assume that

flash events (i.e. page read and page program) execute atomically. So that fault events

are interleaved with non-fault events. In particular we assume that writing a page to

flash either succeeds or fails in a detectable way.

To deal with faults, the use of a shadow disk and versioning has been employed in

our model. This mechanism is a general standard which is widely used in file systems.

Compared with other related work on verification of file system (where fault-tolerance

were addressed), shadow disk and version numbers are also used in the work of Woodcock

et al [118] and Kang et al [88].

In the case of power loss, all memory contents (such as buffers and the FAT table) are

lost but the contents within the flash device remain. All file operations being executed

are also aborted. The system needs to reformulate the correct FAT table from the flash

62 Chapter 4 Modelling and Proof of a File System

contents that have already been written prior to the power loss. Namely, the most recent

version of such pages of file contents will be selected to formulate to FAT table when

the power is on.

In the case of failure to read or program a page of flash, if reading/programming of any

page (of any file) fails at the flash layer, the failure will be indicated to the file system

layer. As a result, reading/writing of that file at the file system layer will be forced to

abort. More details are discussed below.

Based on the characteristic of the flash device, modifying the content of a page must

be done by writing the new content to another fresh page and then re-mapping the

mapping table. Such pages of the file contents may have different versions. Suppose

we want to write an existing file with a new content. The new content of that file will

be written to another place (as a shadow), instead of modifying the content at the old

location, with a newer version. The shadow content becomes the actual one if writing of

that file has been completed. On the other hand, if any failure occurs during writing of

a file, the previous valid version in the stage where the file was will be used. Some part

of file contents (with the new version) that may be completely written will be ignored.

Namely, the version number will be used to determine whether the page is the most

recent version or not. The pages with the most recent version numbers will be selected

to formulate the FAT table.

In our design, the file content is written to the flash device one page at a time. Writing

of page data (or page program interface provided by the flash interface layer) is specified

as an atomic event that can either succeed or fail. When all pages required have been

written completely, page 0 (like the use of i-node of Unix file system [66]) will be written

at the end in order to update the file description including the most recent version of

that file. Thus, if any of pages required has not been written successfully, the page 0

will not be written (writing of that file will be aborted). That means the most recent

version number of that file will not be updated. In mount stage, the system will know

which one is the most recent one of the file content that will selected to formulate the

correct FAT table, while other pages with invalid version numbers will be ignored.

In our development, we have introduced power loss and power on events to the model.

The power loss event has the effect of releasing all memory contents, while the power on

event has the effect of reconstructing the correct FAT table from the existing contents

stored on the storage. These two events do nothing with the written data on the storage

but the memory contents. Namely, no files or contents are changed or lost. Details of

each event are discussed below.

Figure 4.32 shows the specification of the power loss event which is introduced in the

second refinement, where file contents and memory buffers are added. The power loss

event sets the power on flag to be false (act1) and releases all memory contents, i.e. lists

of files being opened for writing and reading (act2 and act3), and writing and reading

Chapter 4 Modelling and Proof of a File System 63

buffers (act4 and act5).

Event power loss =̂
When

grd1 : power on = TRUE
Then

act1 : power on := FALSE
act2 : w opened files := ∅
act3 : r opened files := ∅
act4 : wbuffer := ∅
act5 : rbuffer := ∅

End

Figure 4.32: The power loss event of the second refinement

Similarly for other following refinement steps, memory contents that have been intro-

duced in refinement steps (such as fat and fat tmp in the seventh refinement) are also

released by this event. In this refinement, we also have an invariant (inv2.x) saying that

while the power is off all memory buffers are empty.

inv2.x : power on = FALSE ⇒ (w opened files = ∅ ∧ r opened files = ∅
∧ wbuffer = ∅ ∧ rbuffer = ∅)

Figure 4.33 shows the power on event which is introduced in the second refinement. This

event sets the power on status to be TRUE. This makes all data and events available.

We do not need to set all buffers to be empty, since the invariant specified above have

guaranteed. Similarly, this event is refined gradually when new features/design details

are added in other following refinement steps.

Event power on =̂
When

grd1 : power on = FALSE
Then

act1 : power on := TRUE
End

Figure 4.33: The power on event of the second refinement

Figure 4.34 shows the power on event of the seventh refinement where the flash speci-

fication has been introduced. When the power is on, the power on event reconstructs

the FAT table from the existing data that has been stored before the power loss. Pa-

rameter ft represents the FAT table being reconstructed. Guards grd5 and grd6 guar-

antee that only correct versions of file contents stored on the flash device are selected

to construct the FAT table. As specified in grd5, the corresponding page selected to

64 Chapter 4 Modelling and Proof of a File System

formulate the table of content (ft) of each file must be the recent version of that file

(verOfpage(p) = curr version(f)). Guard grd3 ensures that all pages of such files are

read to formulate the FAT table. (We assume that the content of such a file starts at

index 1).

Event power on refines power on =̂
Any

ft
Where

grd1 : power on = FALSE
grd2 : ft ∈ files → (N 7→ RowAddr)
grd3 : ∀ f ·f ∈ files ⇒ dom(ft(f)) = 1..file size(f)
grd4 : ∀ p ·p ∈ PDATA ∧ objOfpage(p) ∈ dom(ft)⇒ p ∈ ran(flash)
grd5 : ∀ i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ files

∧ p = flash(r) ∧ verOfpage(p) = curr version(f)
∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0
⇒ i 7→ r ∈ ft(f)

grd6 : ∀ i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages
∧ p = flash(r) ∧ i 7→ r ∈ ft(f)
⇒ (verOfpage(p) = curr version(f) ∧

objOfpage(p) = f ∧ pidxOfpage(p) = i)
Then

act1 : power on := TRUE
act2 : fat := ft

End

Figure 4.34: The power on event of the seventh refinement

4.12 Modelling of the mount event

The mount event we specified here is aimed at mounting the contents within the storage

device into the file system. Figure 4.35 shows the specification of this event which is

specified in the first level. This event has an effect of adding a subtree (prt) rooted at

x into an existing file system. This subtree represents the file system structure within

the device being mounted. The set of objects (i.e. files and directories) within the

device which is mounted will be added to the set of existing objects (act1), where objs

represents the objects to be mounted. The parent structure is also updated by act2.

The mount event has been refined gradually in refinement steps, based on features and

design details which are introduced in each step. Figure 4.36 shows an extended part

of the mount event when the file content is introduced in the second refinement. In

this step, guards grd13, grd14 and action act4 are added. fcnt represents the content

of each file within the device which is mounted. fs represents a set of files within the

Chapter 4 Modelling and Proof of a File System 65

Event mount =̂
Any objs, prt , x , fcnt Where

grd1 : objs ⊆ OBJECT
grd2 : objects ∩ objs = ∅
grd3 : x ∈ objs
grd4 : prt ∈ objs \ {x}→ objs
grd5 : ∀ s ·(s ⊆ prt−1[s]⇒ s = ∅)
grd6 : prt ∩ parent = ∅

Then
act1 : objects := objects ∪ objs
act2 : parent := parent ∪ prt ∪ {x 7→ root}

End

Figure 4.35: The mount event of the initial model

device. Since the power loss is also introduced in this level, the mount event is enabled

only when the power is on (grd14). As mentioned in Section 4.5, power on is specified

as a BOOL variable representing the power status. All events are disabled if the power

is off (power on = FALSE).

Event mount extends mount =̂
Any fcnt Where

grd13 : fcnt ∈ fs → CONTENT
grd14 : power on = TRUE

Then
act4 : fcontent := fcontent ∪ fcnt

End

Figure 4.36: The mount event of the second refinement

Similarly, when the flash is mounted, only valid pages with the most recent version are

selected to formulate the FAT table. Figure 4.37 shows the seventh refinement of the

mount event when the flash specification has been introduced. (Because of the space

constraint, we will show only an important part of the mount event.) Guards grd25 and

grd26 ensure that all pages which are read to formulate the FAT table (ft) are valid pages

with the right version. The actions of the event add all information into the existing file

system. (Full details of this event can be found in Appendix A).

4.13 Machine Decomposition

The aim of this section is to decompose the machine into a file system machine, modelling

the file system layer, and a flash machine, modelling the flash interface layer. As a result,

66 Chapter 4 Modelling and Proof of a File System

Event mount refines mount =̂
Any

objs, fs, ds, prt , x , fcnt , objown, objperms
objgrp, objname, cdate,mdate, fsize, ft , crv

Where
...
grd22 : crv ∈ objs →VERNUM
grd23 : ft ∈ fs → (N 7→ RowAddr)
grd24 : ∀ f ·f ∈ fs ⇒ dom(ft(f)) = dom(fcnt(f))
grd25 : ∀ p ·p ∈ ran(flash) ∧ objOfpage(p) ∈ dom(ft)

∧ verOfpage(p) = crv(objOfpage(p))
⇒
pidxOfpage(p) 7→ dataOfpage(p) ∈ fcnt(objOfpage(p))

grd26 : ∀ i , r , f , p ·r ∈ programmed pages \ obsolete pages
∧ f ∈ fs ∧ p = flash(r) ∧ verOfpage(p) = crv(f)
∧ objOfpage(p) = f ∧ pidxOfpage(p) = i
⇒ i 7→ r ∈ ft(f)

Then
act1 : files := files ∪ fs
act2 : directories := directories ∪ ds
act3 : parent := parent ∪ prt ∪ {x 7→ root}
act4 : fat := fat ∪ ft
act5 : obj owner := obj owner ∪ objown
act6 : obj perms := obj perms ∪ objperms
act7 : obj grp := obj grp ∪ objgrp
act8 : oname := oname ∪ objname
act9 : dateCreated := dateCreated ∪ cdate
act10 : dateLastModified := dateLastModified ∪ mdate
act11 : file size := file size ∪ fsize
act12 : current version := current version ∪ crv

End

Figure 4.37: Part of the mount event of the seventh refinement

further refinements of the flash interface layer can be explored separately. The machine

decomposition we apply here follows the style of Butler described in [26] that we have

already discussed in Section 3.6. Namely, machine variables and events are partitioned

into sub-machines. Sub-machines interact with each other via synchronisation over

shared parameterised events.

Figure 4.38 shows a diagram of machine decomposition illustrating the decomposition

of the events pagewrite and pageread. The top layer represents part of the file sys-

tem that consists of machine variables fat, fat tmp, wbuffer, and so on. The bottom

layer represents part of the flash interface containing machine variables: flash, pro-

grammed pages and obsolete pages. The ovals represent synchronisation over shared

parameterised events between the sub-machines. In this case, both sub-machines in-

Chapter 4 Modelling and Proof of a File System 67

teract with each other by synchronising over the page write and the page read events.

File System

Flash Interface

 page
write

 page
read

fat, fat_tmp, wbuffer, writing, rbuffer, ...

flash, programmed_pages, obsolete_pages

Figure 4.38: A machine-decomposition diagram focusing on events page read and
page write

At this point, for example, we partition the pagewrite event given in Figure 4.31 following

the approach of [26] (that we have already discussed in Section 3.8) and get a specification

of the page program event of the flash interface layer which is shown in Figure 4.39. We

also get a specification of the pagewrite event of the file system layer given in Figure 4.40.

Parameters r and pdata represent shared parameters which are used for an interaction

between these two events.

Event page program =̂
Any r , pdata Where

grd1 : r ∈ RowAddr
grd2 : r /∈ programmed pages
grd3 : pdata ∈ PDATA

Then
act1 : flash(r) := pdata
act2 : programmed pages := programmed pages ∪ {r}

End

Figure 4.39: An abstract page program of the flash interface layer

After decomposition, we get a machine specifying the flash interface layer which consists

of two main events page program and page read. This machine can later be refined

separately from the specification of the file system (in Chapter 6). We also get a machine

specifying the file system with pagewrite and pageread plus the other events from earlier

refinement such as w start and w end.

In Section 4.10.1, we discussed the alternative of using curried functions to model the

flash structure. At this point, if we were to use curried function, the page program event

would be specified as the specification given in Figure 4.41. This event becomes more

complicated, as we can see a number of parameters and guards are required for this

68 Chapter 4 Modelling and Proof of a File System

Event pagewrite =̂
Any f , i , cnt , r , pdata Where

grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ N
grd4 : cnt ∈ DATA
grd5 : i 7→ cnt ∈ wbuffer(f)
grd6 : i /∈ dom(fat tmp(f))
grd7 : r ∈ RowAddr
grd8 : pdata ∈ PDATA
grd9 : verOfpage(pdata) = writing version(f)
grd10 : objOfpage(pdata) = f
grd11 : lpidOfpage(pdata) = i
grd12 : dataOfpage(pdata) = cnt

Then
act1 : fat tmp(f) := fat tmp(f) ∪ {i 7→ r}

End

Figure 4.40: Event pagewrite of the file system layer

event, compared with Figure 4.39. This would also make the pagewrite event (given in

Figure 4.31) and the model more complex and difficult to manage and prove.

Event page program =̂
Any

lid , bid , pid , pcnt , old bk , old lun,new bk ,new lun
Where

grd1 : lid ∈ LAddr
grd2 : bid ∈ BAddr
grd3 : pid ∈ PAddr
grd4 : lid 7→ old lun ∈ flash
grd5 : bid 7→ old bk ∈ old lun
grd6 : pdata ∈ PDATA
grd7 : new bk ∈ BLOCK
grd8 : new lun ∈ LUN
grd9 : new bk = old bk �− {pid 7→ pdata}
grd10 : new lun = old lun �− {bid 7→ new bk}

Then
act1 : flash := flash �− {lid 7→ new lun}

End

Figure 4.41: Event page program, in case of using curried function

Chapter 4 Modelling and Proof of a File System 69

4.14 Proofs

The proof statistics, given in Table 4.1, show that 597 proof obligations were generated

by the Rodin platform for all of the development outline in this chapter. 544 proof obli-

gations (or 91%) were proved automatically while others were discharged interactively

using the Rodin tool. MCH0 represents an initial model while MCH1 up to MCH7 rep-

resent refining machines in such refinement steps. CTX0 up to CTX3 represent contexts

which are seen by those machines. (Note that proof statistics given here are slightly

different from the proof statistics given in [44] because we have added additional events

mount , unmount , power on and power loss in this development.) It can be seen that we

have the high number of POs that were discharged interactively in MCH0 because prov-

ing tree properties is not easy, compared with other levels that have simpler properties.

This is similar to the seventh refinement where we introduced the flash specification.

This requires a number of gluing invariants that are not easy to prove automatically.

Table 4.1: Proof statistics

Machines/Contexts Total POs Automatic Interactive

CTX0 10 8 2
CTX1 7 3 4
CTX2 0 0 0
CTX3 3 3 0
MCH0 45 30 15
MCH1 84 78 6
MCH2 51 51 0
MCH3 46 43 3
MCH4 43 42 1
MCH5 38 37 1
MCH6 42 41 1
MCH7 228 198 20

Overall 597 544 (91%) 53 (9%)

To make proof simpler, careful selection of invariants and machine theorems was im-

portant and eased the proof effort. For example, for the high-level requirements on

the data structure, we introduced two tree properties: (i) no-loop and (ii) reachability.

These properties are normally expressed using transitive closure. However, we identified

simpler but sufficient formulations (inv1.3 and inv1.4 given in Figure 4.2) and expressed

these as invariants. Proving that all events preserved these invariants was not too dif-

ficult since they did not involve transitive closure. The transitive closure formulations

were expressed as machine theorems, and we showed that these followed from the ex-

isting invariants. We did not need to prove that the theorems were preserved by all

machine events. This simplified the proof effort considerably.

In addition, to order to make interactive proofs easier, we introduced theorems that could

70 Chapter 4 Modelling and Proof of a File System

be reused for discharging several similar proof obligations. For instance, a theorem about

tree-join was used to prove that the tree property holds for events create, copy and move.

A theorem only needs to be proved once.

An important point is when we should introduce additional lemmas/theorems to help

proofs. Based on our experience, we would like to suggest developers to introduce

additional theorems if it is found that proofs of some POs are similar. Namely, they

have similar goals and proof steps. Steps of proving those goals could be generalised

and used to discharge similar POs. For example, proving the preservation of the no-loop

property of the copy and create events is similar.

In proving that copy and create preserve the no-loop property, we had two similar goals

given below. (To make it easier to follow, we named them as GA (for copy) and GB

(for create).)

GA : ∀ s ·s ⊆ (parent ∪ replica ∪ {nobj 7→ to})−1[s]⇒ s = ∅ ,

where replica represents a copy of the subtree being copied to node to; nobj represents

the root node of the copy. Similar to the create event, we also have a similar goal given

below (where replica = ∅, since there is only one node to be added).

GB : ∀ s ·s ⊆ (parent ∪ {obj 7→ indr})−1[s]⇒ s = ∅ ,

where obj is an object being created and indr is its parent. Proof of these two goals

involved a huge number of proof steps. Several proof steps (such as instantiation and

adding hypothesis) were discharged interactively. Other trivial proof steps (such as

simplification rewrites) were discharged automatically.

At that point, we realised that proof steps required for GA and GB were quite similar.

Hence, in our development, these proof steps were generalised as a theorem named thm5

(join theorem) given below.

thm5 : ∀ f , g , t , u, x ,M ,N ·
N ⊆ OBJECT

∧ M ⊆ OBJECT

∧ N ∩ M = ∅
∧ t ∈ M

∧ f ∈ M \ {t}→M

∧ u ∈ N

∧ g ∈ N \ {u}→N

∧ x ∈ M

∧ (∀A·A ⊆ f −1[A]⇒A = ∅)

∧ (∀B ·B ⊆ g−1[B]⇒ B = ∅)

∧ f ∪ g ∪ {u 7→ x} ∈ (M ∪ N) \ {t}→M ∪ N

Chapter 4 Modelling and Proof of a File System 71

⇒
(∀C ·C ⊆ (f ∪ g ∪ {u 7→ x})−1[C]⇒ C = ∅)

This theorem says that if tree f rooted at t has no-loops and g which is rooted at u has

no-loops, then the join of g and f at node x also has no-loops. (M represents a set of all

nodes of tree f while N represents a set of all nodes of tree g). This theorem was used to

prove GA by providing f = parent , g = replica, t = root , u = obj , x = to, M = objects

and N = nobjs, where nobjs represents a set of new nodes which are copies of all nodes

of the subtree to be copied. Similarly for proof of GB , this theorem was instantiated by

providing f = parent , g = ∅, t = root , u = obj , x = indr , M = objects and N = {obj}.

We also saw this pattern of proof steps was similar to the move event, as we can see the

similarity of the pattern of moving and copying a subtree illustrated in Figure 4.9 and

Figure 4.7. (This is also similar to the create event, since we realised that the object

being created is also a subtree that has only one node.) Namely, this theorem could be

used for proving the preservation of the no-loop property of the move event as well.

To make it more general, IsTree given in Figure 4.42 could be introduced as a predicate

ensuring that function p (parent function) on set S is a tree rooted at r . We could use this

predicate to construct a tree theorem (named tree-join which is shown in Figure 4.44).

This theorem can be used to prove that events copy, create and move preserve the tree

properties (e.g. no-loop). To understand more about this theorem, Figure 4.43 is given

to illustrate how tree-join theorem is formulated.

IsTree(S , p, r) ⇔ (
r ∈ S
∧ p ∈ S \ {r}→ S
∧ ∀S ·S ⊆ p−1[S]⇒ S = ∅
∧ S \ {r} ⊆ (tcl(p))−1[{r}]

)

Figure 4.42: A predicate describing the tree property

The theorem given in Figure 4.44 states that if f is a tree rooted at r on M , g is a tree

rooted at u on N , and M and N are disjoint then the join of g with node x on f is a

tree.

Initially, when we were specifying all features in one level rather than layering them over

several refinements, we had a lot of difficulty in identifying sufficient invariants. There

were some proof obligations that could not be discharged, because of the difficulty of

finding sufficient invariants. Because of this difficulty, we then chose a different way to

specify our model by using a multi-levelled refinement approach. We found that the

multi-level approach helped us to factor out the difficulty of modelling and, to identify

the right invariants. At the earlier stage of work, while we were specifying everything

72 Chapter 4 Modelling and Proof of a File System

r

 x

 u

Tree g on N

Tree f on M

Figure 4.43: A diagram of tree join

TreeJoinThm : ∀ f , g , r , u, x ,M ,N ·
M ⊆ OBJECT ∧ N ⊆ OBJECT
∧ IsTree(M , f , r)
∧ IsTree(N , g , u)
∧ M ∩ N = ∅
∧ x ∈ M

⇒
IsTree(M ∪N , f ∪ g ∪ {u 7→ x}, r)

Figure 4.44: A theorem of tree join

in one level, the model was complicated and we needed to identify a huge number of

invariants. Some of them were related to some group of machine variables while some

are independent from others. When we needed to modify some features, we needed

to look through all invariants to find out which one should be modified. Sometimes,

we missed some properties (e.g. forgot some invariants) and also needed to change the

model. Compared with the multi-level approach, each level has an individual purpose

or concentrates on just one feature (or just small set of features). This makes it easy to

identify invariants focusing on just the features being addressed.

In addition, the multi-level approach also made our models easier to modify. For in-

stance, when we wanted to modify the model that affects only one feature, we could

go to the level where that feature was introduced, directly, and then modified what we

wanted. In the case of horizontal refinement where the event-extension feature was used,

the modification was propagated down automatically by the tool.

Having identified sufficient invariants using a multi-level approach we also experimented

with collapsing MCH0 up to MCH4 to a single level. All invariants that had been

discovered were merged into a single level. Figure 4.2 shows a comparison of the proof

statistics of multi-level and single-level approaches, focussing on part of the horizontal

refinement. The statistics show that the difference in automatic proof is not significant

Chapter 4 Modelling and Proof of a File System 73

between these two approaches. This may be because of the right invariants have already

identified and proved by using the multi-level approach. Here we just collapsed them

together, which is different from when we initially started with all features in a single

level but straggled to find sufficient invariants.

Table 4.2: Proof statistics comparing multi-level with single-level approaches, fo-
cussing on horizontal refinement steps MCH0 up to MCH4

approach Total POs Automatic Interactive

multi-level 260 235 (91%) 25 (9%)
single-level 239 208 (87%) 31 (13%)

From the table, we may see that the number of proof obligations of multi-level is higher

than single-level. The reason is that some POs are required for proving to show the cor-

rect refinement of guards (GRD) and events (SIM). However, these were automatically

discharged.

4.15 Conclusion and Assessment

In this chapter, we have outlined our development of a flash file system focussing on a

tree-structured file system and basic file operations (such as create, open, read, write,

delete, etc.), together with some experiments. The experiments which were carried out

in this development are aimed at investigating which modelling styles and refinement

approaches are suitable for our development. The purpose is to construct a model with

clear and accurate formulation of the system properties and discharge of all proof obli-

gations. To satisfy these, as discussed in the proof section, careful selection of invariants

and machine theorems was important and eased the proof effort. For example, in the

development of a file system, abstraction allows us to tackle difficulty properties (i.e.

no-loop and reachability) in isolation of many other details. These properties are nor-

mally expressed using transitive closure. However, as discussed in the Proofs section,

we selected simpler but sufficient formulations and exposed these as invariants.

In our development, we also have investigated, modelled and outlined the use of refine-

ment in two different purposes. First, refinement was used in feature augmentation (or

horizontal refinement) and the second was for structural refinement (or vertical refine-

ment).

Feature augmentation was firstly used to construct a model of an abstract file system.

Instead of specifying everything in one level that may increase proof difficulty, we decided

to split the whole system features into sub-features. These sub-features were chosen to

be introduced in refinement steps. Thus, each refinement step has its own purpose based

on what features that have been introduced. As discussed in Section 4.14, we have found

74 Chapter 4 Modelling and Proof of a File System

that this approach helped us to identify sufficient invariants, and made the model easier

to be constructed and modified. Namely, an incremental refinement (i.e. a small number

of features/design details is added in each refinement step) makes the gap between each

level of refinements smaller. The unique purpose of each refinement step and the smaller

gap led to the easier identifying of invariants.

We have also found that the event-extension feature which is included in the new release

of the Rodin platform (release 0.9.x and later) is very useful for horizontal refinements.

As already discussed in Section 3.7 and [44], this feature makes models easier to be

refined and modified.

Structural refinement was used for relating the abstract file system with the flash spec-

ification. Event-decomposition is a structural refinement on which we focused in Sec-

tion 4.8. We have shown how the event-decomposition technique outlined in Section 3.5

can be applied to our case study. This technique was used to partition atomic events

readfile and writefile into a number of sub-events as explained in Section 4.9. We have

found that the event-decomposition technique is very effective for breaking an atomic

event. It can be applied to other work, that its events may require to be decomposed in

order to cope with fault-tolerance or concurrency. An atomic event can be partitioned

into sub-events that can be performed in an interleaved fashion.

When the flash specification has been introduced in the seventh refinement we have pro-

ceeded to another structural refinement to decompose the machine into two sub-machines

(representing an abstract file system layer and a flash interface layer) in the following

refinement step, using the machine-decomposition style of Butler [26]. These two layers

interact with each other via the shared parameterised events. Based on this evidence, we

believe that machine decomposition is useful for other developments with specification

involving sub-systems that can be partitioned and refined separately. At the moment,

Rodin did not provide any tool to decompose machines directly, we needed to decompose

machines manually using the editor of the Rodin tool. After manually decomposition,

we used the shared-event composition plug-in [111] to recompose the machines and show

that the decomposition have been done correctly. Recently, a machine-decomposition

tool [112] is available as a plug-in to the Rodin platform. This would be useful in the

feature. The reason we decompose a machine is to enable further refinements focus-

ing on the flash specification separately. (Details of further refinements are outlined in

Chapter 6.)

In addition, we have shown that our model can deal with faults and concurrent file

operations (e.g. read and write) in Section 4.8 and Section 4.9. While a file is being

written, another file may be read or written at the same time, in an interleaved way.

Failures might occur at any point during reading or writing of a file. As discussed in

Section 4.8, use of a shadow and versioning, which is a general standard, was employed

in our work. In order to write a file, the content of the given file is written to the shadow

Chapter 4 Modelling and Proof of a File System 75

one page at a time and this shadow becomes the actual content of the given file when

all pages required have been completely written. This is the same style used in the work

of Woodcock and Devies [118]. We also introduced version numbers to deal with this.

If writing of a file with a new version failed, the previous version of that file will be

used. All pages with the new version that have been partially written will be ignored.

As mentioned earlier, the use of version numbers is also found in the work of Kang et

al [88].

Note that a comparison with related work on specification and verification of flash file

systems is provided in Chapter 7.

Chapter 5

Evolution of the File System

Models and Proofs

5.1 Introduction

The aim of this chapter is to outline another version of the file system model, where

the system requirements are partially changed. The changes mentioned are aimed at

making the model deal with partial read/write of a file, which contrasts to the model

outlined in Chapter 4 where the whole content of such file is read from or written to

the storage. Another difference is the unbounded version numbers of file content. As

specified in Chapter 4, the version number was bounded (i.e. 2-bit version is applied).

The difficulty of the bounded version is the reusing of previous version numbers. Namely,

before starting to write any page, we need to ensure that there are no valid pages with

the version being reused. On the other hand, the unbounded version, the version number

of each page will be increased every time it is rewritten without reusing the pervious

version numbers. Since the life time of a flash device is limited by the limit erasure, a

32-bit number is large enough to be used for numbering the version of each page [62].

Therefore, the use of unbounded version numbers is reasonable.

In this chapter, we outline a revised model of the flash file system that aimed at covering

those two requirements (partial read/write operations and unbounded version numbers)

mentioned. Because the previous model and this revised model are quite similar, some

features that have previously been specified in the former model can be reused. Parts of

the model related to the new requirements are needed to be modified. We will outline the

impact of these changes that affects the model. For example, which part of refinement

chain are affected? How much specification can be reused? What is the difference in

proof? Are the language and tool flexible enough to deal with this evolution?

Figure 5.1 shows a diagram of refinement chains representing an overview of our devel-

77

78 Chapter 5 Evolution of the File System Models and Proofs

opment of a flash-based file system comparing the original model and the revised model.

Two refinement chains are given in the figure. The original model is represented using

suffix a while b represents the revised model. We also decomposed the seventh re-

finement machine into two sub-machines in the revised model, in order to represent the

file system and the flash interface layers. Since the specifications of the abstract flash

interface layer of both chains are the same, we used MCH FL to represent the model of

the flash interface layer for both modelling chains. This MCH FL will be refined later

in order to cover more details focussing on the flash specification (in Chapter 6).

MCH0

MCH1

MCH2a

MCH3a

MCH4a

MCH5a

MCH6a

MCH7a

MCH_FL MCH_FSa

MCH2b

MCH3b

MCH4b

MCH5b

MCH6b

MCH7b

MCH_FSb

decompose ………...

tree structure ………

files/directories ……

file content ………...

permissions ………..

missing properties ...

decompose write

decompose read

link to flash spec

CTX0 sees

sees

sees
refines

refines

extends

further refinement

Figure 5.1: A diagram of refinement chains representing a flash file system

The revised model is also based on the tree-structure file system. The first and the

second levels (MCH0 and MCH1) modelling the tree structure can also be reused in this

development. No modifications are required in the first and the second levels. That

means reproving tree properties are not required for the revised model, since they have

already proved in the first level. To satisfy the new requirements, however, we need to

modify the second refinement (MCH2) where file contents and related operations (e.g.

read/write a file) are added. The modification which is made here is to meet the partial

read/write requirement. From the third refinement down to the seventh refinement, the

vertical refinement starting at the fifth refinement is the main part that needs to be

modified. Details are discussed in Section 5.3.

Because of the similarity, this chapter outlines and discusses only important parts and

Chapter 5 Evolution of the File System Models and Proofs 79

refinement steps that have been revised. The chapter begins with the second refinement

where file contents have been introduced in Section 5.2. Section 5.3 gives modelling

details where structural refinements have been explored to relate the file system layer

to the flash interface layer. Finally, conclusion and assessment are given in Section 5.5.

5.2 2nd Refinement: File content

Similar to the previous model given in Chapter 4, in this refinement, file contents and

other related constraints are introduced together with five events: r open (open an

existing file for reading), w open (open an existing file for writing), read (read the

content of a file from the storage into a memory buffer), write (write the content of

file on the buffer back to the storage) and close (close an opened file). Instead of

reading/writing the whole content of file, partial read and write operations are allowed

for this revised model.

The modification in this level does not affect existing invariants given in Figure 4.15.

Only events readfile and writefile need to be changed to satisfy the partial read/write

requirement. Figure 5.2 shows the revised version of the readfile and writefile events.

The readfile event reads the content of the given file from the storage starting at the

given offset with the length specified. Similarly, the writefile event is aimed at writing

the content of the given file on the buffer into the storage starting at the given offset

with the given length. (The length to be written must not be greater than the length

of the content on the buffer.) Guards grd3 up to grd6 of the readfile event are added to

restrict the scope of the contents to be read. Similarly for the writefile event, grd3 up to

grd6 are added to ensure that the starting offset and length specified are valid. Guards

grd7 and grd8 of the writefile event are aimed at specifying a mapping function (named

corresPos) between logical addresses on the buffer and physical addresses of the file on

the storage.

5.3 Vertical Refinement

Similar to the model outlined in Chapter 4, the purpose of vertical refinement here is

to relate the abstract file system to the flash specification. The vertical refinement we

explore in this section involves event and machine decomposition. The event decompo-

sition is based on the assumption that the content of the file is read from or written to

the storage one page at a time. Three refinement steps are carried out: (i) decomposing

the writefile event, (ii) decomposing the readfile event and (iii) decomposing the model

into two sub-models.

Note: Instead of detailing the decomposition of both file read and file write which are

80 Chapter 5 Evolution of the File System Models and Proofs

Event readfile =̂
Any f , offset , len Where

grd1 : power on = TRUE
grd2 : f ∈ r opened files
grd3 : offset ∈ dom(fcontent(f))
grd4 : len ∈ N
grd5 : len ≤ card(fcontent(f))
grd6 : offset + len − 1 ∈ dom(fcontent(f))

Then
act1 : rbuffer(f) := (offset . . offset + len − 1)� fcontent(f)

End

Event writefile =̂
Any f , offset , len, corresPos Where

grd1 : power on = TRUE
grd2 : f ∈ w opened files
grd3 : offset ∈ N
grd5 : len ∈ N
grd6 : len ≤ card(wbuffer(f))
grd7 : corresPos ∈ 0 . . len − 1�� offset . . offset + len − 1
grd8 : ∀ p ·p ∈ dom(corresPos)⇒ corresPos(p) = p + offset

Then
act1 : fcontent(f) := fcontent(f)�− (corresPos−1; (0 . . len − 1� wbuffer(f)))

End

Figure 5.2: A specification of events readfile and writefile

similar, we present only file-write, which is more interesting in Section 5.3.1. Full details

of the specification can be found in Appendix B.

Other two structural refinements are (i) replacing an abstract file system by the flash

specification which is outlined in Section 5.3.2 and (ii) decomposing a file system model

into two sub-models to represent the file system layer and the flash interface layer. The

second one is detailed in Section 5.3.3.

5.3.1 A decomposition of the writefile event

An event refinement diagram given in Figure 4.23 can also be used to explain the de-

composition of the writefile event. Namely, the writefile event is decomposed into three

sub-events: w start (start write), w step (write a single) and w end (end write, when

all pages have been written completely). Event w end refines writefile of the abstraction

while w start and w step refine skip. Because of the requirement that has been changed,

the specification in this refinement step is also changed.

Figure 5.3 shows machine invariants in this refinement step. Variable fcont tmp repre-

Chapter 5 Evolution of the File System Models and Proofs 81

sents temporary content of the file while it is in the writing state. As already discussed

in Chapter 4, this variable behaves like a shadow content of the file being written. This

shadow content becomes an actual content (fcontent) when all required pages have been

written. We specified writing as a set of opened files which are in the writing state.

Variable wbuffer represents a write-buffer of each writing file. Invariant inv6.3 states

that for any file f which is in the writing state, the temporary contents of f will be a

subset or equal to the content on its writing buffer.

inv6.1 : writing ⊆ w opened files
inv6.2 : fcont tmp ∈ writing → CONTENT
inv6.3 : ∀ f ·f ∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)
inv6.4 : writing offset ∈ writing → N
inv6.5 : writing len ∈ writing → N
inv6.6 : ∀ f ·f ∈ writing ⇒ writing len(f) ≤ card(wbuffer(f))
inv6.7 : ∀ f ·f ∈ writing ⇒ writing offset(f) ∈ dom(fcontent(f))

Figure 5.3: Machine invariants of the refinement

Compared with the original model, two additional variables are introduced in this re-

finement: writing offset and writing len. The writing offset variable is used to identify

the starting position within the writing file to which the content will be written, while

writing len specifies the length of content to be written. Invariants inv6.1 up to inv6.3

are the same as specified in Chapter 4. The rest are additional invariants which are

introduced to satisfy the partial write operation. For example, Invariant inv6.7 ensures

that the offset used to start writing of any file must be in the valid domain.

Figure 5.4 shows the refinement of the writefile event when it is split into three phases.

Consider the w start event. Some changes have been made to this event. Namely, two

additional parameters are added (i.e. offset and len). The given offset and length to

be written must be valid (guarded by grd6 and grd7). The start event has an effect

of putting the given file into the writing state and setting the scope of content to be

written. Event w step writes the contents of page i from the write buffer (wbuffer) into

fcont tmp. In order to do this, the given file must be in the writing state (see grd1).

The page being written must be a page in the write buffer that has not already been

written to the storage (see guards grd5 and grd6 of the w step event). Event w end ok

is reached when all pages required have been written (grd7) and the file is in the writing

state. The effect of w end ok is to overwrite the existing file content with the shadow

content starting at the offset specified.

Similar to the original model given in Chapter 4, Guard grd7 of the w end ok event and

Invariant inv6.3 play an important role in proving that the w end ok event is a correct

refinement of the writefile event (given in Figure 5.2). Namely, the gluing invariant,

inv6.3, is used to show that fcont tmp(f) is equal to wbuffer(f) when all guards of the

82 Chapter 5 Evolution of the File System Models and Proofs

Event w start =̂
Any f , offset , len Where

grd1 : power on = TRUE
grd2 : f ∈ w opened files
grd3 : f /∈ writing
grd4 : offset ∈ N
grd5 : len ∈ N
grd6 : len ≤ card(wbuffer(f))
grd7 : offset ∈ 0 . . file size(f)

Then
act1 : writing := writing ∪ {f }
act2 : fcont tmp(f) := ∅
act3 : writing offset(f) := offset
act4 : writing len(f) := len

End
Event w step =̂

Any f , i , data Where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ 0 . . (writing len(f)− 1)
grd4 : data ∈ DATA
grd5 : i 7→ data ∈ wbuffer(f)
grd6 : i /∈ dom(fcont tmp(f))

Then
act1 : fcont tmp(f) := fcont tmp(f) ∪ {i 7→ data}

End
Event w end ok refines writefile =̂

Any f , offset , len, corresPos, fsz Where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : offset = writing offset(f)
grd4 : len = writing len(f)
grd5 : corresPos ∈ 0 . . len − 1�� offset . . offset + len − 1
grd6 : ∀ p ·p ∈ dom(corresPos)⇒ corresPos(p) = p + offset
grd7 : dom(fcont tmp(f)) = 0 . . len − 1
grd8 : fsz ∈ {len + offset ,file size(f)}
grd9 : fsz = len + offset ⇔ offset + len > file size(f)

Then
act1 : fcontent(f) := fcontent(f)�− (corresPos−1; fcont tmp(f))
act2 : fcont tmp := {f } −▹ fcont tmp
act3 : file size(f) := fsz
act4 : dateLastModified(f) := nowdate
act5 : writing := writing \ {f }
act6 : writing offset := {f } −▹ writing offset
act7 : writing len := {f } −▹ writing len

End

Figure 5.4: Decomposition of the writefile event

Chapter 5 Evolution of the File System Models and Proofs 83

w end ok event hold.

5.3.2 Linking the Abstract File System to the Flash Interface Layer

In this refinement step, flash properties are introduced together with variables used to

relate the file system and the flash interface layers. Compared with the original version

given in Chapter 4, there are no difference in specifying state variables. All machine

variables can be reused in this revised model. Namely, variables fcontent and fcont tmp

of the file system layer are also replaced by fat and fat tmp respectively. The variable

fat represents the table of contents of each file. This table is a mapping of each logical

page-id of each file to its corresponding row address within the flash. The corresponding

row address represents the location (in the flash) in which the content of that page is

stored.

...
inv7.8 : ∀ p ·p ∈ PDATA
∧ objOfpage(p) ∈ dom(fat)
∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = objOfpage(p)
∧ pidxOfpage(x) = pidxOfpage(p)
⇒verOfpage(x) < verOfpage(p))

⇒
pidxOfpage(p) 7→ dataOfpage(p) ∈ fcontent(objOfpage(p))

inv7.9 : ∀ p ·p ∈ PDATA ∧ objOfpage(p) ∈ dom(fat tmp)
∧ verOfpage(p) = writing version(objOfpage(p))
⇒
pidxOfpage(p) 7→ dataOfpage(p) ∈ wbuffer(objOfpage(p))

inv7.10 : ∀ p ·p ∈ PDATA ∧ objOfpage(p) ∈ writing
⇒
writing version(objOfpage(p)) > most recent version(objOfpage(p))

inv7.11 : ∀ i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ files
∧ p = flash(r) ∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0
∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = f

∧ pidxOfpage(x) = i
⇒ verOfpage(x) < verOfpage(p))

⇒ i 7→ r ∈ fat(f)
...

Figure 5.5: Machine invariants of replacing the file system by the flash specification

An important requirement affecting this refinement is the use of unbounded version

numbers. Some modifications are required for the related events, i.e. create, read, write,

etc. In addition, some invariants also need to be modified. Figure 5.5 shows some of

machine invariants of the revised version. It is noted that Invariants inv7.1 up to inv7.7

84 Chapter 5 Evolution of the File System Models and Proofs

are the same as specified in the original version. Here we show only some invariants that

have been changed. Invariants inv7.8 and inv7.11 ensures that all pages that are used

to generate the FAT table are the right versions (the most recent one) of such pages.

For instance, inv7.8 says that for any page of the file within the FAT table where that

page is the most recent version the given page-id, the data of that page will be the data

of the given page-id of that file. Invariant inv7.9 ensures that the content of any page

being written must be the content of the given file on the write-buffer. Finally, inv7.10

guarantees that the version of any page being written is greater than the most recent

version of that page.

Figure 5.6 illustrates how the file write of the abstract file system is replaced by the flash

specification. The top diagram represents the abstract file write which is composed of

three sub-events: w start, w step and w end. The bottom diagram represents the

refinement where w step is refined by event pagewrite. In this event, page program will

be called in order to write the content of each page into the flash device. When each page

has been programmed successfully, the fat tmp will be updated. Finally, the fat will be

overridden by the fat tmp when all required pages have been completely programmed

into the flash device.

wbuffer fcont_tmp fcontent

w_step w_end w_start

wbuffer fat_tmp fat

pagewrite w_end w_start

flash

abstraction

refinement

page programme

Figure 5.6: A diagram of mapping writefile to the flash specification

Figure 5.7 shows the pagewrite event which is a refinement of the w step event. The

pagewrite event will look for an available page on the flash (grd8 - grd9) to which the

content of page number i on the wbuffer buffer is written. Parameter r represents a

row address within the flash. wv represents the new version of the page being written.

This version (wv) has been set by the start event which is equal to the latest version

plus one. Guards grd10-grd14 describe the contents of pdata to be written to the flash.

Action act1 updates the temporary fat table of the file f. Action act2 sets the content

of the flash at row number r equal to pdata. Action act3 sets that row address as a

programmed page.

Chapter 5 Evolution of the File System Models and Proofs 85

Event pagewrite refines w step =̂
Any f , i , data, r , pd ,wv Where

grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ 0 . . (writing len(f)− 1)
grd4 : data ∈ DATA
grd5 : i 7→ data ∈ wbuffer(f)
grd6 : i /∈ dom(fat tmp(f))
grd7 : wv = writing version(f)
grd8 : r ∈ RowAddr
grd9 : r /∈ programmed pages
grd10 : pd ∈ PDATA
grd11 : objOfpage(pd) = f
grd12 : pidxOfpage(pd) = i
grd13 : verOfpage(pd) = wv
grd14 : dataOfpage(pd) = data

Then
act1 : fat tmp(f) := fat tmp(f) ∪ {i 7→ r}
act2 : flash(r) := pd
act3 : programmed pages := programmed pages ∪ {r}

End

Figure 5.7: The refinement of the w step event

Figure 5.8 shows the refinement of the w end ok event. Guards grd1 to grd6 and actions

act4 to act7 are similar to the previous abstraction given in Figure 5.4. Since variables

fcontent and fcont tmp are refined by fat and fat tmp, Guard grd7 of this event is also

changed (i.e. fcont tmp is replaced by fat tmp). This guard ensures that all pages

required have been written. Local variable toc represents a table of contents which is a

mapping function from each logical page id to the corresponding row address within the

flash. The corresponding row address represents the location to which the content of

that page id is programmed. Some changes are also made to the actions. For instance,

Action act1 updates the table of content of the given file fat(f). Action act1 releases

the temporary FAT of the given file. Action act9 updates most recent version of the

given file.

Figure 5.9 shows the power on event of this evolution. This event is aimed at recon-

structing the FAT table from existing data stored on the device. Similar to the original

version (discussed in Section 4.11), guards grd5 and grd6 play an important role to en-

sure that page contents that have been read to construct the FAT table are valid pages

with the most recent version.

86 Chapter 5 Evolution of the File System Models and Proofs

Event w end ok refines w end ok =̂
Any f , offset , len, toc, corresPos Where

...
grd7 : dom(fat tmp(f)) = 0 . . len − 1
grd8 : toc ∈ N 7→ RowAddr
grd9 : toc = corresPos−1; fat tmp(f)

Then
act1 : fat(f) := fat(f)�− toc
act2 : fat tmp := {f } −▹ fat tmp
...
act8 : writing version := {f } −▹ writing version
act9 : most recent version(f) := writing version(f)

End

Figure 5.8: The refinement of w end ok event

5.3.3 Machine Decomposition

The aim of this section is to outline the decomposition of the file system model that have

been linked to the flash specification. In this step, we decompose the machine into a file

system machine, modelling the file system layer, and a flash machine, modelling the flash

interface layer, similar to what we have completed in Chapter 4. As a result, further

refinements of the flash model can be explored separately. The machine decomposition

we apply here also follows the style of Butler [26] outlined in Section 3.6.

Figure 5.10 shows a diagram of machine decomposition illustrating the decomposition of

the events pagewrite and pageread. The top layer represents the file system sub-machine

consisting of variables fat, fat tmp, wbuffer, and so on. The bottom layer represents the

flash interface sub-machine containing variables named flash, programmed pages and

obsolete pages. The ovals represent shared parameterised events used for synchronisa-

tion. In this case, both sub-machines interact with each other by synchronising over the

page write and the page read events.

Figure 5.11 and Figure 5.12 show two parts of the pagewrite event (given in Figure 5.7)

when it is partitioned following the approach of [26]. Figure 5.11 gives the specification

representing pagewrite of the file system layer. Figure 5.12 represents the page program

(page program) interface provided by the flash interface layer. (We use different names

to make the referencing of them easier.) Here we can see that the difference between

the original model we presented in Chapter 4 and the revised model is the specification

of the pagewrite event of the file system layer (Figure 5.11). The specification of the

page program of the flash interface model is the same as we obtained in the Chapter 4

(Figure 5.12). The requirements that have been changed affect only the file system layer.

The specification of the flash interface layer can be reused from before. Parameters r

and pd are shared parameters used for the interaction between these two events.

Chapter 5 Evolution of the File System Models and Proofs 87

Event power on refines power on =̂
Any

ft
Where

grd1 : power on = FLASE
grd2 : ft ∈ files → (N 7→ RowAddr)
grd3 : ∀ f ·f ∈ files ⇒ dom(ft(f)) = 1 . . file size(f)
grd4 : ∀ p ·p ∈ PDATA ∧ objOfpage(p) ∈ dom(ft)⇒ p ∈ ran(flash)
grd5 : ∀ i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ files

∧ p = flash(r) ∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0
∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = f
∧ pidxOfpage(x) = i
⇒ verOfpage(x) < verOfpage(p))

⇒ i 7→ r ∈ ft(f)
grd6 : ∀ i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages

∧ p = flash(r) ∧ i 7→ r ∈ ft(f)
⇒ (verOfpage(p) < most recent version(f) ∧

objOfpage(p) = f ∧ pidxOfpage(p) = i)
Then

act1 : power on := TRUE
act2 : fat := ft

End

Figure 5.9: The power on event of the seventh refinement

File System

Flash Interface

 page
write

 page
read

fat, fat_tmp, wbuffer, writing, rbuffer, ...

flash, programmed_pages, obsolete_pages

Figure 5.10: A machine-decomposition diagram focusing on events page read and
page write

Similarly, after the decomposition is completed, we get a machine specifying the flash

interface layer which consists of two main events page program and page read. This

machine can later be refined separately from the specification of the file system. (Further

refinements of the flash interface layer are given in Chapter 6.) We also get a machine

specifying the file system with pagewrite and pageread plus the other events from earlier

refinement such as w start and w end.

88 Chapter 5 Evolution of the File System Models and Proofs

Event pagewrite =̂
Any f , i , data, r , pd ,wv Where

grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ 0 . . (writing len(f)− 1)
grd4 : data ∈ DATA
grd5 : i 7→ data ∈ wbuffer(f)
grd6 : i /∈ dom(fat tmp(f))
grd7 : wv = writing version(f)
grd8 : r ∈ RowAddr
grd10 : pd ∈ PDATA
grd11 : objOfpage(pd) = f
grd12 : pidxOfpage(pd) = i
grd13 : verOfpage(pd) = wv
grd14 : dataOfpage(pd) = data

Then
act1 : fat tmp(f) := fat tmp(f) ∪ {i 7→ r}

End

Figure 5.11: Event pagewrite of the file system layer

Event page program =̂
Any r , pd Where

grd8 : r ∈ RowAddr
grd9 : r /∈ programmed pages
grd10 : pd ∈ PDATA

Then
act2 : flash(r) := pd
act3 : programmed pages := programmed pages ∪ {r}

End

Figure 5.12: An abstract page program of the flash interface layer

5.4 Proofs

Table 5.1 shows the comparison of proof statistics between the original version of the

file system and the revised version. To make it easier to compare, we also provided

information given in brackets to represent proof statistics of the original version. Aster-

isks mean there is no difference between the original and the revised versions. In this

development, 671 POs were generated automatically by the Rodin tool. 630 POs (94%)

were proved automatically while the rest, 41 POs, were discharged interactively. As

given in Table 5.1, it can be seen that some parts of modelling have not been affected

(i.e. CTX0 up to MCH1 have no changes).

In this development of the revised version, we needed to reprove some POs interactively.

Chapter 5 Evolution of the File System Models and Proofs 89

Table 5.1: Proof statistics – previous version in brackets

Machines/ Total POs Automatic Reused New
Contexts Interactive Interactive

CTX0∗ 10 8 - 2
CTX1∗ 7 3 - 4
CTX2∗ 0 0 - 0
CTX3∗ 3 3 - 0
MCH0∗ 45 30 - 15
MCH1∗ 84 78 - 6
MCH2 56 (51) 56 (51) 0 0 (0)
MCH3 46 43 3 0 (3)
MCH4 43 42 1 0 (1)
MCH5 80 (38) 79 (37) 0 1 (1)
MCH6 81 (42) 80 (41) 0 1 (1)
MCH7 216 (228) 208 (198) 0 8 (20)

Overall 671 (597) 630, 94% (544, 91%) 4, 0.5% 37, 5.5% (53, 9%)

However, proving the same POs that have already been proved in the previous devel-

opment is easier. Namely, we can reuse the proof tree of such PO that have already

been discharged by copying it to discharge the same PO in the revised model. In this

evolution, we have four proof trees that have been reused. (Details of reusing proof trees

are discussed in Section 10.4) The number of POs of MCH5 and MCH6 are higher than

the original model, since the partial write and read have been introduced. Namely, more

constraints (e.g. offset and length to be read or written) need to be added. From the

table, we can see that MCH7, where the unbounded version number is introduced, has

a smaller number of interactive proofs, compared with the previous model. The smaller

number of interactive proofs suggests that specifying using unbounded version numbers

makes proof simpler. The version numbers will be reused, in the case of using bounded

version numbers. This led to the difficulty of determining whether the page is the most

recent version or not. Instead, in the case of using unbounded version numbers, we just

increase the version number of such pages by 1 (if that page has been modified). Thus,

the greatest version number of such a page is the most recent one of that page. This

makes it easier to model and verify.

5.5 Conclusion and Assessment

We have presented the revised version of the file system model that have already been

given in Chapter 4. The revision is based on the requirements that have been changed

(i.e. partial read/write operation and unbounded version of the file contents). We have

shown parts of the specification that were affected. The changes affected only parts

where the file content is introduced and where the structural refinement has been taken

place. We have found that the revised version where we used the unbounded version

90 Chapter 5 Evolution of the File System Models and Proofs

number is easier to manage because using bounded version numbers makes model more

complex than using unbounded version numbers. This is testified by proof statistics of

the machine MCH7 given in Table 5.1.

In addition, we have found that parts of the feature augmentation have been slightly

affected by the revision. As it can be seen that in earlier parts of the refinement chain (the

first up to the fourth refinements), we needed to modify only the refinement step where

the file content is introduced. By using the event-extension feature, this modification is

propagated down automatically. Many parts of the original model given in Chapter 4

can be reused. The original contexts are completely reused without changes made. In

addition, because the requirements that have been changed affected only part of the file

system layer, the model representing the flash interface was not affected. That is, even

if other requirements of the file system layer are changed – such as changing of the file

system structure from the tree structure to the path-based structure – such a change

will not affect the flash model.

The event-extension feature and the tools (e.g. modelling, refinement and proof) pro-

vided by Rodin are useful for this development. These make revising a model easy.

Additionally, because of the facilities of tool and language, we can also model a system

in different approaches (in different chains) in order to compare them. Since a machine

can be refined by different machines, from the first level of a specification we may have

several chains of refinement steps that can be used in comparison. This is also useful

for studying and carrying out experiments in Event-B.

Chapter 6

Refinement of the Flash Interface

Layer

6.1 Introduction

The purpose of this chapter is to outline a verified development of a flash interface layer

(including refinements and proofs). As discussed in Chapter 4, after decomposition,

the flash model will be refined separately by adding more details focusing on the flash

specification in refinement steps. Further refinements mentioned are addressed in this

chapter. For example, each LUN has at least one page register used for buffering data.

Writing of a page is completed in two phases. The first is writing the given data into a

page register within the selected LUN and the second is programming the data on the

page register into the flash at the given row address. Similarly for reading page data,

the data will be first transferred to the page register before it is read into the memory

buffer.

Additional events required for block reclamation are also explored in this chapter such

as relocating a page and erasing a block. Reclamation involves selecting and erasing

blocks in order to be reused for writing. In order to reclaim any block, the block should

contain obsolete data. That means the number of free spaces will be increased when

such a block is reclaimed. The candidate block (to be reclaimed) may have one or

more pages with valid data. All valid pages within the block being reclaimed must be

relocated (moved to another fresh block). After all valid pages have been relocated, the

given block becomes obsolete and ready to be erased. That means only obsolete blocks

are allowed to be erased. Another constraint is that the number of erasures per block is

limited (the number is dependent on its manufacturing), normally between 10,000 and

1,000,000 [62]. A block that fails to be erased becomes a bad block which can no longer

use. The failures may be (i) the number of erasures has reached the erasure limit and

(ii) the number of times that have been tried to erase the block have reached the limit

91

92 Chapter 6 Refinement of the Flash Interface Layer

number.

Wear-levelling is a technique used for prolonging the life-time of the flash device. This

technique involves selecting an appropriate block to be reclaimed in order to balance the

number of erasures across the blocks within the flash chip. Namely, a block is worn-out

(or is no longer to be used) when the number of erasures goes over the erasure limit. A

summary of several wear-levelling techniques is given in [62] and [15]. We follow some

of them in our development. Details are explained in each step of refinement.

In our development, concurrent page read/program is also covered. Reading/writing of

pages can be performed simultaneously in an interleaved fashion. Each LUN has several

page registers. While a page register is used for reading/writing of a flash page, another

page register may be used for reading or writing of another flash page. Details are

given in Section 6.2 where page registers are introduced. Concurrency is also applied to

modelling of other processes such as the relocation process in Section 6.4 and the erasing

process in Section 6.5.

Fault-tolerance is also addressed in our development. It can be seen in Section 6.4 and

Section 6.5 where we outline the reclamation process that tolerates faults that may

occur at any point during the block reclamation. The fault-tolerance of page-read and

page-program operations has been dealt at the file system layer of Chapter 4. In this

Chapter, the page-read and page-program events are also refined to deal with faults. In

the case of faults (i.e. reading or programming a page fails), the status register of the

corresponding LUN being performed will be set to indicate these faults. This makes the

file system layer knows whether the reading/writing of a page succeeds or not.

This chapter starts with outlining further refinements that have been carried out in

several refinement steps in Section 6.2 up to Section 6.6. The page register is introduced

in the first refinement. The reclamation process is introduced in the second refinement

and more details are added in the third and the fourth refinements. Finally, conclusions

and assessment are given in Section 6.8.

6.2 1st Refinement: Page Register

This refinement is based on the fact that two phases are required for the page read and

the page program operations [52]. As stated in [52], in order to read from the flash

array, the page data which is requested must be transferred to a page register before it

is read off chip. In the case of the page program operation, data must be written to a

page register before it is programmed into the flash array. To satisfy this, a page register

is introduced as an intermediate buffer which is used as a temporary storage of a page

data after it is read from or before it is programmed to the flash array.

In the ONFI architecture [52], page registers are intermediate buffers (RAM) within

Chapter 6 Refinement of the Flash Interface Layer 93

LUNs. They are used for storing a page data after it is read from or before it is pro-

grammed to the flash array at a specified row address. Each LUN may have several page

registers – depending on the number of interleaved operations supported per LUN. Thus,

each page register is identified by a LUN address and an interleaved address within the

LUN. We have compared two approaches for specifying page register addressing (PR):

(i) cartesian product and (ii) projection functions. These two styles are mathematically

equivalent.

The first approach (cartesian product) is specifying page register addressing as

PR = LUAddr × IntAddr

where PR was specified as a constant representing set of page registers. Each page

register is identified by a combination of a LUN address (LUAddr) and an interleaved

address (IntAddr). Here IntAddr is a set of interleaved addresses within a LUN (which

is equal to 0..N-1 where N is the number of interleaved operations supported per LUN).

The second approach (projection function) is specifying PR as a carrier set in a context

accompanied by two projections (lidOfPR, a LUN address to which each page register

belongs and intaOfPR, an interleaved address of each page register), which are specified

as constants. Axioms specifying these projections are given below.

lidOfPR ∈ PR→ LUAddr

intaOfPR ∈ PR→ IntAddr

In our experiment, we have found that these two approaches have no difference in proof

(all POs were discharged automatically for both) but using projection function is more

readable and easier to specify. Addressing an individual property within the carte-

sian product particularly when the product is composed of many entities like RowAddr

(RowAddr = LUAddr ×BAddr ×PAddr) is more complicated. For instance, addressing

the PAddr value of any row address r requires a nested projection (i.e. prj2(prj2(r)),

where prj2 is the projection on the second element) which is more complicated. There-

fore, we selected the projection function for our formulation as outlined in this report.

In our development, we classified the page registers into two different states based on

what they are being used for. The first is readingPR, a set of page registers being used

for reading. The second is writingPR, a set of page registers being used for writing.

They were specified as machine variables given below.

readingPR ⊆ PR

writingPR ⊆ PR

where these sets are disjoint:

94 Chapter 6 Refinement of the Flash Interface Layer

readingPR ∩ writingPR = ∅

The corresponding row addresses to which the data within the page registers belong

were formulated as

corresRowOfreadingPR ∈ readingPR→ RowAddr

corresRowOfwritingPR ∈ writingPR � RowAddr

ran(corresRowOfreadingPR) ∩ ran(corresRowOfwritingPR) = ∅

while the data within each page register was specified as a machine variable given below.

dataOfPR ∈ PR→ PDATA

We defined the corresponding row address of the page register being written as an

injective because another write is not allowed to be performed on the same page being

written. On the other hand, we specified the corresponding row address of the page

register being read as a total function because multiple-reads can be performed on the

same page.

In this refinement, the page read and page prog events were split into sub-events as given

in Figure 6.1. For example, see (a) Page Read where the page read event was decom-

posed into three steps (in order from left to right): (1) pread start , selects an available

page register within the LUN (to which the requested page belongs); (2) read2reg , trans-

fers a page data into the selected page register; and (3) pread end , reads data from the

page register off chip. The pread end event refines the abstract page read while others

refine skip.

page_read

pread_start

read2reg

pread_end

page_prog

pprog_start

write2reg

pprog_end

(a) Page Read

(b) Page Program

Figure 6.1: Event decomposition diagrams representing events page read and
page program

In order to control the sequence of those sub-events, additional state variables are re-

quired. We introduced two state variables given below.

Chapter 6 Refinement of the Flash Interface Layer 95

readingPR

ready2read

read2reg

pread_end

pread_start

pread_fail

writingPR

ready2prog

write2reg

pprog_end

pprog_start

pprog_fail

(a) Page Read (b) Page Program

Figure 6.2: State diagrams representing states of page registers which are used for
reading and writing

ready2read ⊆ readingPR

ready2prog ⊆ writingPR

Variable ready2read represents a set of reading page registers with data that are ready

for reading off chip. Variable ready2prog represents a set of writing page registers with

data that are ready to be programmed into the flash array. Figure 6.2 shows state

diagrams representing states of page registers, which are used for reading and writing.

From the start event till the end event, failures may occur at any point. In the case of

failures, those states will be reset. The page read and page program events are atomic

events. They either completely succeed or fail. State transitions in Figure 6.2 correspond

to the leaf events in Figure 6.1.

Figure 6.3 shows a refinement of the page read event which was decomposed into three

steps, as previously mentioned. In order to start reading (pread start event) at row r ,

grd1 ensures that the given page must be valid (is already programmed and not obsolete).

Parameter pr specifies an available PR within the LUN to which the given page belongs

in order to be used for buffering (see grd2 to grd4). The actions put the page register pr

into the reading state and set the corresponding row address of the page register to be

the row address of the page being read, by act1 and act2 respectively. Event read2reg

transfers the page content at the given row address into the corresponding page register.

In this event, the page register must be in the reading state before transferring, and then

it is set to be ready for reading (ready2read) once the content have been transferred to

the page register. Event pread end reads the content of the corresponding page register

that have already been in the ready2read state off chip (see grd1− grd3) and resets the

page register (see act1− act3).

Invariant inv4 given below is the gluing invariant we introduced in order to prove that

the pread end event is the correct refinement of the previous abstract event page read .

96 Chapter 6 Refinement of the Flash Interface Layer

Event pread start =̂
Any r , pr Where

grd1 : r ∈ programmed pages \ obsolete pages
grd2 : pr ∈ PR
grd3 : pr /∈ readingPR ∪ writingPR
grd4 : lidOfRow(r) = lidOfPR(pr)

Then
act1 : readingPR := readingPR ∪ {pr}
act2 : corresRowOfreadingPR(pr) := r

End
Event read2reg =̂

Any r , pr , pdata Where
grd1 : pr ∈ dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pr ∈ readingPR
grd4 : pr /∈ ready2read
grd5 : pdata ∈ PDATA
grd6 : pdata = flash(r)

Then
act1 : dataOfPR(pr) := pdata
act3 : ready2read := ready2read ∪ {pr}

End
Event pread end refines page read =̂

Any r , pr , pdata Where
grd1 : pr ∈ ready2read
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pdata = dataOfPR(pr)

Then
act1 : ready2read := ready2read \ {pr}
act2 : readingPR := readingPR \ {pr}
act3 : corresRowOfreadingPR := {pr} −▹ corresRowOfreadingPR

End

Figure 6.3: The first refinement of Event page read

inv4 : ∀ pr , r ·pr ∈ ready2read ∧ r ∈ programmed pages ∧ r = corresRowOfreadingPR(pr)

⇒ dataOfPR(pr) = flash(r)

This invariant says that if the corresponding page register (pr) of the page being read at

row address r is in the ready2read state, then the content on the page register is equal

to the page content of the flash at the given row r .

In the case of failures that may occur at any point from the start event to the last step

of reading, the fail event is specified in Figure 6.4. This event is proved to refine skip.

The page register being used for reading (see grd1) will be reset by act1 − act3. That

means the page register will not be in the ready state that is valid to be read.

Chapter 6 Refinement of the Flash Interface Layer 97

Event pread fail =̂
Any r , pr Where

grd1 : pr ∈ readingPR
grd2 : r = corresRowOfreadingPR(pr)

Then
act1 : ready2read := ready2read \ {pr}
act2 : readingPR := readingPR \ {pr}
act3 : corresRowOfreadingPR := {pr} −▹ corresRowOfreadingPR

End

Figure 6.4: Event pread fail

Our model allows concurrent interleaved reads and writes of different pages. Namely,

while a page is being read into a page register, another page register may be used for

reading or programming another page simultaneously. The number of interleaved events

depends on the interleaved address supported per LUN. Considering the pread start

event (given in Figure 6.3), we can start reading another page if there is another page

register available (see grd3 of the event).

6.3 2nd Refinement: Events required for block reclamation

The purpose of the reclamation process is to select a block within a flash chip to be

erased and reused. In order to erase a block, the given block must has no valid pages.

If the given block contains valid pages, all valid pages must be relocated to another free

block. Relocating a valid page is completed in two steps: (i) copy the valid content

from the old location to a new location and (ii) mark the old location as obsolete at

the end. These two steps are specified as events named copy a page to new loc and

mark old page obsolete. Details will be explained later in this section.

Figure 6.5 shows some of machine invariants specified in this refinement. In order to re-

late an old location of any page that has been relocated to a new location, we introduced

a translation function named trans func which was specified as inv2.2. Variable flash2

represents part of the flash array that have been used for storing relocated pages. It is

related to the flash in the view of the file system layer by the gluing invariant inv2.11.

This invariant says that the content of page r (in the file system view) that have been

relocated is equal to the content of page at the corresponding row of r (in the flash

view).

The translation layer where the translation function is specified is a good design idea to

deal with flash addressing. This mechanism avoids re-updating the FAT table when any

valid page has been relocated to another location. When a flash page is requested to be

read by the file system layer the translation layer has the responsibility of translating

98 Chapter 6 Refinement of the Flash Interface Layer

Invariants
inv2.1 : flash2 ∈ RowAddr 7→ PDATA
inv2.2 : trans func ∈ RowAddr 7→ RowAddr
inv2.3 : programmed pages2 ⊆ RowAddr
inv2.4 : dom(flash2) = programmed pages2
inv2.5 : dom(trans func) ⊆ programmed pages
inv2.6 : programmed pages2 = trans func[programmed pages]
inv2.7 : programmed pages ∩ programmed pages2 = ∅
inv2.8 : obsolete pages2 ⊆ programmed pages ∪ programmed pages2
inv2.9 : ran(trans func) ∩ obsolete pages2 = ∅
inv2.10 : obsolete pages ⊆ obsolete pages2
inv2.11 : ∀ r ·r ∈ dom(trans func)⇒ flash(r) = (trans func; flash2)(r)

Figure 6.5: Machine invariants of the second refinement

the requested page address to the corresponding location within the flash device. Then,

the page data will be read and sent back to the file system layer. This translation table

is designed to be stored in the memory. Although its content is lost in the case of power

loss or sudden-reboot, all valid page contents still remain and are able to be used to

re-formulate the correct FAT table at the mount stage which is dealt by the file system

layer. Note that, at the moment, we did not model the translation layer separately. It

is included as one feature of the flash interface layer we modelled in this chapter.

Figure 6.6 shows two additional events which were introduced in this refinement. Event

copy a page to new loc is aimed at copying the content of a valid page (pdata) from

the old location (old r) to the new location (new r). Event mark old page obsolete

marks an old page at row old r as obsolete. We introduced programmed pages2 as a set

of pages that have been programmed during the relocation. It is specified as Invariant

inv2.3 and inv2.6. We also introduced obsolete pages2 to represent an overall set of

obsolete pages. As specified in Figure 6.5, it is a superset of obsolete pages of the

previous abstraction.

However, the sequencing of events copy a page to new loc andmark old page obsolete

was not addressed in this refinement. These events are independent and nondetermin-

istically selected to be performed. In this step, we only prove that these events refine

skip (i.e. executing them will conform to the previous abstraction). Sequencing control

was postponed to the next refinement. The reason we modelled the feature in this way

is to make our model simpler. Namely, introducing a small number of features raises

a small set of POs required to be discharged. Additionally, it is easier to follow the

model. At this point, developers can see that we can introduce a number of individual

atomic events that are nondeterministically chosen to be performed at the level where

they are introduced. After that, we can refine them later in a refinement step in order to

control the sequence in which each event should be performed. To control the order of

Chapter 6 Refinement of the Flash Interface Layer 99

Event copy a page to new loc =̂
Any old r ,new r , pdata Where

grd1 : old r ∈ programmed pages \ obsolete pages2
grd2 : new r ∈ RowAddr \ (programmed pages ∪ programmed pages2)
grd3 : pdata = flash(old r)
grd4 : old r /∈ dom(trans func)

Then
act1 : flash2(new r) := pdata
act2 : programmed pages2 := programmed pages2 ∪ {new r}
act3 : trans func(old r) := new r

End
Event mark old page obsolete =̂

Any old r Where
grd1 : old r ∈ programmed pages
grd2 : old r /∈ obsolete pages2

Then
act1 : obsolete pages2 := obsolete pages2 ∪ {old r}

End

Figure 6.6: Additional events required for reclamation process

events which are performed, additional state variables or flags are required and details

are discussed in Section 6.4. Note that this technique only works when all steps of the

process refine skip. In this development, the effect of relocation process is invisible to

the file system.

6.4 3rd Refinement: Ordering of Relocation Events

The purpose of this refinement is to control the sequence of the relocation events that

has been postponed from the previous abstraction. The sequence of relocation events

and related constraints are discussed below.

The block which is selected to be relocated may has some valid pages. Such a valid

page within the selected block will be copied to another location and then mark the old

one as obsolete. Relocating a block will end when all valid pages have been completely

relocated. This process can be explained using a diagram given in Figure 6.7. This

diagram shows an event-refinement diagram of the block relocation process. Note that we

use dotted boxes to represent the abstract events relocate a block and relocate a page

because there are no actual events specified in the abstract model. They are just abstract

processes.

As illustrated in Figure 6.7, in order to relocate any block, three steps are required: (i)

start relocating a block, (ii) relocate all valid pages within the block and (iii) end relocat-

100 Chapter 6 Refinement of the Flash Interface Layer

relocating_a
_block

start_relocating
_a_block

relocate_a_
page

end_relocating
_a_block

start_relocating
_a_page

copy_old_to_
new_loc

mark_old_page_
obsolete

*

Figure 6.7: An event-refinement diagram representing the block relocation process

ing a block. Relocating a valid page is also completed in three steps: (i) start relocating

a page, (ii) copy the valid content from the old location to the new location and (iii)

mark the old location as obsolete at the end. Relocating a valid page is completed when

the content of the given page has been copied to the new location and the old location

has been marked as obsolete. Relocating a page will be repeated until all valid pages

(within the block being relocated) have been relocated. Once the relocating block has

no valid pages, the relocating process has been completed. This block becomes obsolete

and is a candidate block that may be selected to be erased in the next process. As given

in [86], erasing a block is not necessary to be performed once it has been completely

relocated. That is, easing an obsolete block might be performed in background when

the system is in the idle state or when free spaces are required. Details and refinement

of erasing a block are discussed in Section 6.5.

Figure 6.8 shows machine invariants of this level. Two state variables were introduced.

First, relocating blocks represents a set of blocks that are in the relocating state. Sec-

ond, relocating pages represents a function relating the old location of each page being

relocated to the new location, to which the content of this page is copied. Invariant

inv3.3 says that all pages being relocated must be valid. Invariant inv3.4 says that all

pages within the blocks being relocated are not allowed for reading and writing.

inv3.1 : relocating blocks ⊆ BLOCK
inv3.2 : relocating pages ∈ RowAddr 7� RowAddr
inv3.3 : dom(relocating pages) ⊆ (programmed pages \ obsolete pages2)
inv3.4 : ∀ b, r ·b ∈ relocating blocks ∧ BlkOfRow(r) = b

⇒
r /∈ ran(corresRowOfreadingPR) ∧ r /∈ ran(corresRowOfwritingPR)

Figure 6.8: Machine invariants of the third refinement

Figure 6.9 presents a refinement of copy a page to new loc andmark old page obsolete

Chapter 6 Refinement of the Flash Interface Layer 101

events with ordering constraints added. Some changes were made to these events. For ex-

ample, in order to copy a page from old r to another location (new r), old r 7→ new r

must be in the relocating state (see grd1). Guard grd2 ensures that new location

(new r) must be free. In the second step, in order mark the old location to be ob-

solete, old r 7→ new r must be in the relocating state and new r have already been

programmed. Event start relocating a page is new event refining skip. In order to start

relocating a valid page (at row old r), the given page must belong to the block being in

the relocating state (grd2); and the new location (new r) to which it is moved is free

(grd3). If these two locations have not already been added to the relocating state, this

event has an effect of setting them into the relocating state

Event start relocating a page =̂
Any old r ,new r Where

grd1 : old r ∈ programmed pages \ obsolete pages2
grd2 : BlkOfRow(old r) ∈ relocating blocks
grd3 : new r ∈ RowAddr \ (progrmmed pages ∪ programmed pages2)
grd4 : old r /∈ dom(relocating pages)
grd5 : new r /∈ ran(relocating pages)

Then
act1 : relocating pages := relocating pages ∪ {old r 7→ new r}

End
Event copy a page to new loc refines copy a page to new loc =̂

Any old r ,new r , pdata Where
grd1 : old r 7→ new r ∈ relocating pages
grd2 : new r /∈ programmed pages2
grd3 : pdata = flash(old r)

Then
act1 : flash2(new r) := pdata
act2 : programmed pages2 := programmed pages2 ∪ {new r}
act3 : trans func(old r) := new r

End
Event mark old page obsolete refines mark old page obsolete =̂

Any old r ,new r Where
grd1 : old r 7→ new r ∈ relocating pages
grd2 : new r ∈ programmed pages2

Then
act1 : obsolete pages2 := obsolete pages2 ∪ {old r}

End

Figure 6.9: A refinement of page relocation

Note that our model can also deal with concurrent block relocation. Namely, while any

block is in the relocating state, another candidate block can be relocated in the same

time. Each sub-event of the relocation process is performed in an interleaved fashion.

For example, while relocating a valid page of some blocks, another valid page of another

102 Chapter 6 Refinement of the Flash Interface Layer

block can also relocated simultaneously.

Failures may occur at any point between the start and the end of relocating a block.

The first case is failing to write the valid content to new location. This case does not

pose any data inconsistency. That is, the content at the old location remains valid to be

used while the new location is invalid to be used. Formally, it simply prevents further

relocation steps and relocation always maintains consistency. The second is failing to

mark the old one to be obsolete. In this case, two valid pages with the same content

are stored in the flash array (at the old and the new locations). When the flash is

remounted, only one valid page is firstly read and chosen to formulate the correct FAT

table while another is marked as obsolete. This is not a problem because both locations

have exactly the same content. Choosing either one of them to formulate the FAT table

does not matter.

6.5 4th Refinement: Refinement of Erasing a Block

The purpose of this section is to concentrate on the erasing process (or reclamation pro-

cess) and outline what constraints we have addressed. In this refinement, the block erase

event is split into sub-events that can be performed in an interleaved fashion. Namely,

our model presented here also deal with concurrent erase events.

In this refinement, several types of blocks were specified in order to classify and control

the sequence of reclamation process. Figure 6.10 shows machine invariants specifying

additional variables which were introduced.

candidate blocks is a list of candidate blocks, which are allowed to be selected for

reclamation.

relocating blocks is set of blocks being relocated. It is a subset of candidate blocks.

obsolete blocks is a set of blocks that have no valid pages (or the pages in use). They

are candidate blocks that are ready to be erased in the reclamation process.

erasing blocks is a set of obsolete blocks in the erasing state.

bad blocks is a list of blocks that are no longer to be used. For instance, the block that

fails to be erased will be marked as a bad block.

num erased represents the number of times that each block has been erased. Each

block can be erased within the maximum number allowed (the limited number

depends on the manufacturing).

In our development, we decided to record the number of times that the blocks have been

erased within each block in order to be used for the wear-levelling technique. The point

Chapter 6 Refinement of the Flash Interface Layer 103

inv4.1 : candidate blocks ⊆ BLOCK
inv4.2 : relocating blocks ⊆ candidate blocks
inv4.3 : obsolete blocks ⊆ BLOCK
inv4.4 : obsolete blocks ∩ relocating blocks = ∅
inv4.5 : ∀ r , b ·r ∈ programmed pages ∧ b ∈ obsolete blocks

∧ BlkOfRow(r) = b ⇒ r ∈ obsolete pages2
inv4.6 : erasing blocks ⊆ obsolete blocks
inv4.7 : ∀ b, r ·b ∈ obsolete blocks ∧ r ∈ RowAddr ∧ BlkOfRow(r) = b

⇒
(r /∈ ran(corresRowOfreadingPR) ∧ r /∈ ran(corresRowOfwritingPR))

inv4.8 : num erased ∈ BLOCK → N
inv4.9 : invalid num erased blocks ⊆ BLOCK
inv4.10 : restoring num erased ⊆ invalid num erased blocks
inv4.11 : tmp num erased ∈ RowAddr 7→ N
inv4.12 : corresBlkOftmpErased ∈ dom(tmp num erased)→ BLOCK
inv4.13 : bad blocks ⊆ BLOCK
inv4.14 : bad blocks ∩ candidate blocks = ∅

Figure 6.10: Machine invariants of the fourth refinement

is how to maintain the number of erasures when the block is erased. How to deal with

failures that may occur during the erasing process. The idea of Marshall and Manning

given in [62] is chosen as our solution. Namely, prior to erasing any block, the current

number of erasures of that block must be copied to somewhere else. When the erasing

step has been completed the number of erasures will be restored at the end. (Details

are explained later in this section.) Here are additional machine variables which are

introduced to deal with this.

invalid num erased blocks represents the (erased) blocks with an invalid number of

erasures. This kind of blocks becomes valid when the valid number of erasures has

been restored.

restoring num erased represents a set of blocks that are in the state of restoring the

number of erasures.

tmp num erased is used for recording the number of erasures of the blocks being erased.

The number of erasures will be temporarily stored in another block that its state

is not erasing or relocating.

corresBlkOftmpErased is a mapping function representing the associate block to which

the temporary number of erasures belongs.

Figure 6.11 shows an event refinement diagram of the block-erase event which is com-

posed of four sub-events: start erase a block , erase a block , start restore num erased

and restore num erased . The erase a block event refines the previous block erase event

104 Chapter 6 Refinement of the Flash Interface Layer

block_erase

start_erase_a
_block

erase_a_block

restore_num_
erased

start_restore
_num_erased

Figure 6.11: An event-refinement diagram representing an erasing process

start_erasing_a_block

start_restore_num_erased

reclamation fail

erasing_blocks

restoring_num_erased

erase_a_block

Candidate block

failure case1
(erasing fail)

failure case2
(restoring fail)

invalid_num_erased_blocks

restore_num_erased

Figure 6.12: A state diagram representing states of blocks in erasing process

while others refine skip. Details of each event are given in Figure 6.13 and Figure 6.14.

A state diagram of blocks in the reclamation process is shown in Figure 6.12. The se-

lected block will be set to be in the erasing state when the start erasing a block event

is performed. The process of restoring the number of erasures will take place once the

given block has been erased and is in the invalid num erased state. When the valid

number of erasures has been restored, this block becomes a fresh block and is ready to

be reused.

The reclamation events are divided into two phases given in Figure 6.13 and Figure 6.14.

In order to start erasing any block (start erase block), we select an obsolete block with

the least number of erasures (see grd1 and grd7) in order to balance the number of

erasures across the blocks. (Similarly for the start relocate a block event, we also select

the candidate with the least number of erasures.) This method is a basic algorithm of

the wear-levelling technique [62]. In phase1, the start event sets the state of the given

block to be in the erasing blocks state (act1), and writes the current number of erasures

of the given block to a free page in another block that is not in the erasing process (act2

and act3). Secondly, erase a block erases the block (all pages are set to the default

state) and sets the state of the given block to be invalid num erased blocks. In phase2,

the start restore num erased sets the block with an invalid number of erasures to be

Chapter 6 Refinement of the Flash Interface Layer 105

Event start erase block =̂
Any b, free r Where

grd1 : b ∈ obsolete blocks
grd2 : b /∈ erasing blocks ∪ bad blocks
grd3 : num erased(b) ≤ max erase
grd4 : free r ∈ RowAddr \ (programmed pages ∪ programmed pages2)
grd5 : BlkOfRow(free r) /∈ erasing blocks
grd6 : free r /∈ dom(tmp num erased)
grd7 : ∀ k ·k ∈ obsolete blocks \ bad blocks

⇒ num eraseOfblock(k) ≥ num eraseOfblock(b)
Then

act1 : erasing blocks := erasing blocks ∪ {b}
act2 : tmp num erased(free r) := num erased(b)
act3 : corresBlkOftmpErased(free r) := b

End
Event erase a block refines block erase =̂

Any rows, b Where
grd1 : rows ⊆ RowAddr
grd2 : b ∈ erasing blocks
grd3 : rows = BlkOfRow−1[{b}]
grd4 : rows ∩ dom(trans func) = ∅

Then
act1 : flash := flash �− (rows × {dp})
act2 : programmed pages := programmed pages \ rows
act3 : obsolete pages := obsolete pages \ rows
act4 : programmed pages2 := programmed pages2 \ rows
act5 : obsolete pages2 := obsolete pages2 \ rows
act6 : invalid num erased blocks := invalid num erased blocks ∪ {b}
act7 : obsolete blocks := obsolete blocks \ {b}
act8 : erasing blocks := erasing blocks \ {b}

End

Figure 6.13: Reclamation process phase1: erasing a block

in the restoring num erased state. The restore num erased event restores the number

of erasures to the (erased) block by increasing it by one, and then resets the state of the

block being restored.

As already mentioned earlier, we also deal with faults in this development. Failures

may occur at any points (as specified in Figure 6.15) – first is at the erasing process

and second is at the restoring number of erasures. In the first case, the block is still

in the obsolete state which is a candidate that may be selected to be erased later when

reclamation is required. In the second case, the given block has completely been erased

but the number of erasures has not been restored yet. In this case, this block still have

an invalid number of erasures, since the invalid num erased flag has been set. However,

the number of erasures of the block which is stored in another block still remain and

106 Chapter 6 Refinement of the Flash Interface Layer

Event start restore num erased =̂
Any b Where

grd1 : b ∈ invalid num erased blocks
grd2 : b /∈ restoring num erased

Then
act1 : restoring num erased := restoring num erased ∪ {b}

End
Event restore num erased =̂

Any b, row Where
grd1 : b ∈ restoring num erased
grd2 : row ∈ dom(tmp num erased)
grd3 : b = corresBlkOftmpErased(row)

Then
act1 : num erased(b) := tmp num erased(row) + 1
act2 : restoring num erased := restoring num erased \ {b}
act3 : tmp num erased := {row} −▹ tmp num erased
act4 : corresBlkOftmpErased := {row} −▹ corresBlkOftmpErased
act5 : invalid num erased blocks := invalid num erased blocks \ {b}

End

Figure 6.14: Reclamation process phase2: restoring the number of erasures

can be restored later.

Event erase a block fail case1 =̂
Any b Where

grd1 : b ∈ erasing blocks
Then

act1 : erasing blocks := erasing blocks \ {b}
act2 : restoring num erased := restoring num erased \ {b}

End

Event restore num erased fail case2 =̂
Any b Where

grd1 : b ∈ restoring num erased
Then

act1 : restoring num erased := restoring num erased \ {b}
End

Figure 6.15: Reclamation of a block fail

Chapter 6 Refinement of the Flash Interface Layer 107

6.6 5th Refinement: Status Register

The status register has an important role to determine whether the flash device is ready

or not. The flash device is ready for performing any operation if all LUNs within the flash

device are ready. If the flash is not ready, no operations are allowed to be performed.

The status register is also used to indicate whether the previous operation that has been

performed succeed or not.

In the ONFI specification [51, 52], each LUN contains a status register (SR). The status

register is represented in the standard as an array of eight bits with different meanings:

SR[0] = FAIL,SR[1] = FAILC ,SR[5] = ARDY ,SR[6] = RDY ,SR[7] = WP

Positions 2-4 are reserved. FAIL, RDY (ready) andWP (write protection) are frequently

used. FAILC and ARDY are valid only for the program cache operations, optional

operations depending on the flash device. More details about optional operations can

be found in [52]. In our development, we concentrate on only mandatory operations

(such as page-read, page-write, block-erase, etc.). Thus, FAILC and ARDY are ignored

in this work.

In this refinement, a status register for each LUN is introduced. The write protection

(WP) is represented as a bit within the status register. This WP bit is allowed to be

set or reset by the flash commands. Page-program and block-erase operations are not

allowed to be performed on any LUN that have been write-protected. In our research,

we have compared two approaches of specifying status values of the status register.

The first is specifying as a state function mapping from each LUN the a status value.

The second is representing status values as state sets, following the work of Butler and

Yadav [31].

In the first approach, using state function, a machine variable representing the status of

each LUN will be formulated as

lSR ∈ LUAddr → STATUS

where STATUS is defined as an enumerated set of possible values of the status register

in a context. That is, STATUS = {RDY ,nRDY ,FRDY } where RDY represents the

ready status (the RDY bit is true), nRDY means not ready (the RDY bit is set to be

false), and FRDY represents the status of which FAIL and RDY bits are true.

Table 6.1 shows three significant states of the status register that we specify in this

refinement. As previously discussed, FAILC and ARDY are ignored in our development.

Thus only the RDY, FAIL and WP bits are addressed. In addition, in the standard, if

108 Chapter 6 Refinement of the Flash Interface Layer

the RDY bit is 0, other bits (except the WP bit) are invalid. Because the validation

of the WP bit is not dependent on others, it is better to specify the state of the WP

bit separately. If we were to include this bit, the number of possible states would be

increased (i.e. six states are required). This would make model more difficult to manage.

Table 6.1: A table representing states of the status register

states RDY FAIL (WP)

lready 1 0 (0,1)
lreadyfail 1 1 (0,1)
lnotready 0 - (0,1)

In the second approach, using state sets, each possible states of the status register is

specified as a state-set variable. Below shows the state-set variables we introduced to

represent the status of each LUN.

lready represents a set of LUNs with RDY bit is set to 1. This means this LUN is

ready for execution of another command.

lreadyfail (ready and fail) means both RDY and FAIL bits are set to 1. This case

indicates that the previous command performed on the selected LUN has failed

and the LUN is now ready for another command.

lnotready represents a set of LUNs that are not ready. The RDY bit is cleared to 0.

This means all other status bits are invalid and shall be ignored.

wprotected represents a set of LUNs which are write protected. (The WP bit is set to

be 1.) This kind of LUNs is not allowed to be programmed or erased. This state

can overlap with above three states.

In our experiment, we have found that the second approach, specifying using state sets,

makes proof simpler. Namely, the second approach led us to gain a higher degree of

automatic proof. Although more proof obligations are needed to be discharged for the

second approach, all are automatically discharged. This approach was chosen for our

development.

Figure 6.16 shows additional variables introduced in this refinement. State sets previ-

ously mentioned are defined and constrained by inv5.3 up to inv5.8. Variable t status

represents the current status of the target flash (indicating that the target flash is ready

(RDY) or not ready (nRDY) for the next command). It is global for the whole flash

device. Invariant inv5.9 says that if the target flash is ready means all LUNs’ statuses

are ready.

Chapter 6 Refinement of the Flash Interface Layer 109

inv5.1 : t status ∈ STATUS
inv5.2 : wprotected ⊆ LUAddr
inv5.3 : lready ⊆ LUAddr
inv5.4 : lreadyfail ⊆ LUAddr
inv5.5 : lnotready ⊆ LUAddr
inv5.6 : lready ∩ lreadyfail = ∅
inv5.7 : lready ∩ lnotready = ∅
inv5.8 : lreadyfail ∩ lnotready = ∅
inv5.9 : t status = RDY ⇒ (∀ l ·l ∈ LUAddr ⇒ l ∈ (lready ∪ lreadyfail)
...

Figure 6.16: Invariants of the third refinement

In this refinement, some extensions were made to some previous abstract events. For

example, in order to start any new operation on a LUN, the status register of that LUN

must be ready. Once the operation is started the status is set to be not-ready until the

end of the operation. Figure 6.17 shows some changes made to the write2reg event in

this refinement. For example, in case of success, the LUN being performed is moved from

the not-ready state (notready) to the ready state (lready). Additional events related to

status registers were also introduced, for example, set writeprotect , reset writeprotect

and read status. Details can be found in Appendix C.

On the other hand, if we were to specify using state function, the w start event will

be replaced by the specification given in Figure 6.18 where lSR is specified as a state

function mapping from each LUN to a status value within STATUS .

At this point, we can see that although using state function does not make proof simpler,

it makes the specification more readable and easier to model compared with specifying

as state sets. Setting the value of the status register of each LUN is completed in

one action, compared with the previous case that requires three (simultaneous) actions.

This approach seems to be suitable if the number of states is larger. Thus, these two

approaches are appropriate for particular cases. Developers may choose state function

if there is a huge number of state values to specify, otherwise using state sets would

be suitable. In our development, we chose state sets because we have only three state

values and want to make proof of the model simpler.

6.7 Proofs

Proof statistics given in Table 6.2 show that 352 proof obligations were generated and

all were discharged automatically by the Rodin tool. MCH FL represents an abstract

machine of the flash interface layer while MCH R1 up to MCH R5 represent its refine-

ments. Note that the proof statistics of the machine MCH R5 are based on using state

110 Chapter 6 Refinement of the Flash Interface Layer

Event pprog start extends pprog start =̂
Where

grd3 : t status = RDY
grd4 : lid /∈ wprotected

Then
act3 : lnotready := lnotready ∪ {lid}
act4 : lready := lready \ {lid}
act5 : lreadyfail := lreadyfail \ {lid}

End
...

Event pprog end ok extends pprog end =̂
Where

grd4 : lid ∈ lnotready
Then

act5 : lready := lready ∪ {lid}
act6 : lnotready := lnotready \ {lid}

End

Event pprog fail extends pprog fail =̂
Where

grd2 : lid ∈ lnotready
Then

act3 : lreadyfail := lreadyfail ∪ {lid}
act4 : lnotready := lnotready \ {lid}

End

Figure 6.17: Part of the fifth refinement focusing on page program

Event pprog start extends pprog start =̂
Where

grd3 : t status = RDY
grd4 : lid /∈ wprotected

Then
act3 : lSR(lid) := nRDY

End

Figure 6.18: A refinement of the pprog start event, in the case of using state function

sets. In the case of using state functions, we got total 56 POs. 48 of them were auto-

matically proved while the rest are discharged interactively. (They may require more

time (or powerful prover) to discharge automatically.)

We have got completely automatic proof for several reasons. First, based on experience of

what we have learnt from the modelling of file system such as selection of formulation,

we have analyzed possible forms of specifying flash properties before selecting one of

them to model. For example, as discussed in Section 4.10.1 where the abstract flash

Chapter 6 Refinement of the Flash Interface Layer 111

Table 6.2: Proof statistics of the flash model

Machines/Contexts Total POs Automatic Interactive

MCH FL 9 9 0
MCH R1 66 66 0
MCH R2 55 55 0
MCH R3 56 56 0
MCH R4 70 70 0
MCH R5 142 142 0

Overall 398 398 (100%) 0

specification is introduced, we avoided using curried function to make model easier to

specify and prove. We decided to use state sets instead of state functions (as example

given in Section 6.6). An other example, as discussed in Section 6.2, we used the

projection function to specify the row addresses and page registers instead of using

cartesian product.

Second, in case of failing to prove any PO, that PO was used as a guideline to improve

the model. That is, such PO will be checked to see why it cannot be discharged. In

some cases, an additional guard needs to be added to the corresponding event in order to

make the PO discharged automatically. Sometimes, additional invariants were required

to discharge some POs.

Another reason is that the flash interface model is not too complex in proof, compared

with the tree-structured file system model of Chapter 4. Many invariants specified in

each level of the flash memory model are straightforward and easier to prove than the

invariants specifying the tree properties.

We can see a huge number of POs to be discharged for the fifth refinement (MCH REF5)

because we needed to prove that all state sets are disjoint. In addition, it seems to be

more POs to be discharged if there are more states. At this point, we have completed

another experiment to compare. That is, instead of introducing inv5.6 up to inv5.8 to

say that those state sets are disjoint, we could replace them by the following invariant

inv5x : partition(LUAddr , lready , lnotready , lreadyfail)

We have found that using this invariant could reduce the number of POs from 142 to

100, and all are still discharged automatically. That means, specifying state sets in this

way would be more appropriate. Note that partition is a new operation that was added

to Rodin towards the later part of our research.

112 Chapter 6 Refinement of the Flash Interface Layer

6.8 Conclusion and Assessment

In this chapter, we have presented further refinements focussing on the flash specification

after we have decomposed our model in Chapter 4. We began with investigating the

ONFI specification, analysing and deciding which formulation is suitable for modelling

each flash property. Incremental refinement was also used as our strategy to develop

this model. Some useful techniques that we have learnt from the previous chapter of

modelling and proof of the file system layer – such as careful section of formulation,

using proof obligation as a guideline, etc. – were also employed in this experiment.

In the first level, we have only two main interfaces provided to the file system layer:

page read and page program. After that, other requirements and constraints were later

addressed in refinement steps. Namely, we first introduced page registers and partitioned

the atomic events page read and page program in the first refinement. Relocating a

page and erasing a block, processes required for block reclamation and wear-levelling

technique, were introduced in next refinement steps. We have found that careful selection

of formulation mentioned in the previous chapter and incremental approach are also

useful for this case study. As it can be seen in Figure 5.1, we can achieve 100% proof

obligations discharged automatically.

We have given another approach of specifying a sequence of events to be performed.

Individual events (or sub-steps) can be introduced in an abstract level and later be or-

dered in the following refinement. In the level where they are specified, each step is

non-deterministically chosen to be performed. In the refinement, we introduced addi-

tional flag/state variables which were used to formulate event’ guards and control the

sequence of events to be performed. We only prove that these individual events refine

skip in order to show that executing them conform the previous abstraction. As already

mentioned, this technique works when all steps of the process refine skip. An example

can be seen in Section 6.3 (where we introduced individual steps required for the block

reclamation process) and Section 6.4 (where we added sequencing control to force those

steps to be performed in an order).

We also have completed some experiments to compare different styles of modelling. For

example, modelling of page registers in Section 6.2 where projection function versus

cartesian product; and modelling of status registers in Section 6.6 where state set versus

state function. First, as discussed in Section 6.2, specifying PR using projection func-

tions makes model more readable and easier to specify than using cartesian product.

Namely, accessing an individual element within the cartesian product is more compli-

cated. Second, modelling states of status registers as state sets lets us gain a higher

degree of automatic proof, compared with specifying as a state function. However, spec-

ifying as a state function is easier to specify and read. As discussed in Section 6.6,

modifying the state value can be done in one step if we specify using state function,

while several steps are required if we specify using state set. However, these two ap-

Chapter 6 Refinement of the Flash Interface Layer 113

proaches are suitable for each particular case. Developers may choose state function if

there is a large number of state values to be specified otherwise using state sets would

be suitable.

Additionally, based on experience of using the Rodin tool, comparing the previous release

0.8.x and the later release 1.x.x, some useful features which are extended make modelling

easier. For example, considering the fifth refinement, release 0.8.x has no partition

operation in Event-B, we need to add a huge number of invariants to clarify that all

intersections between state sets are the empty set. Similar to the event-extension feature

that have already discussed in Section 3.7, this feature is also useful for developing our

flash interface model which is outlined in this chapter.

Chapter 7

Comparison with Related Work

on Verifying Flash File System

7.1 Introduction

A number of formalisations of file systems have been developed by other researchers.

Most of them are focused on file contents, and read and write operations. There is

some work that deal with the structure of file systems such as a specification of a visual

file system in Z by Hughes [78] and the work of Hesselink and Lali [70]. The work of

Hughes is focused on a tree structure and operations affecting the tree structure, but

file content and a manipulation of file content were not specified. The work of Hesselink

and Lali is focused on modelling of a hierarchical file system using PVS [104]. This

work, [70], covers basic file operations including move and remove directories. Another

related work by Morgan and Sufrin presented in [101] is a specification of a Unix filing

system in Z. In this specification, instead of using a tree structure, the location of each

object is formulated as a sequence of directory names, which is the path of each object.

This work is concentrated on file contents and naming operations used for manipulating

these rather than structure manipulation operations such as directory copy and move.

Based on the specification of Morgan and Sufrin, Freitas, Woodcock and Fu [58, 61, 60]

have developed a verified model of the POSIX filestore accompanied by a representation

and proof using the Z/Eves proof system [109].

Since the filestore challenge was proposed by Joshi and Holzmann [85] in 2005, other

researchers have addressed this challenge, such as [34], [59], [54], [87], [33] and [115]. For

example, Butterfield andWoodcock [34] have developed an abstract Z-specification of the

ONFI standard [51]. There was no refinement and proof mentioned in [34]. Butterfield,

Freitas and Woodcock [33] have followed the work given in [34] by adding more details

focusing on the structural aspects of the flash devices together with proof using Z/Eves.

Ferreira et al. [54] have developed and verified a VDM specification of the Intel Flash

115

116 Chapter 7 Comparison with Related Work on Verifying Flash File System

File System Core [67]. Alloy [81] and HOL [64] were used as tools for model checking

and theorem proving in [54]. They stated that this work has not been completed yet

they still have difficulties of translating VDM to HOL. The work contributed by Kang

and Jackson [87, 88] is a formal specification and analysis of a flash-based file system in

Alloy. This work was focused on basic operations of a filesystem and features covering

wear-levelling and fault tolerance. Another work developed by Taverne and Pronk [115]

is a formal development of a POSIX-like file store using a flash memory. Promela [74] is

the formal language used in [115] while model checking using Spin [75] is a mechanism

used for verification. However, the wear-levelling was not covered in this work.

This chapter first gives an overview of related work in Section 7.2. A comparison covering

particular points is given in the following section. Our work is compared with three pieces

of related work that apply various methods (i.e. Alloy, VDM and Z) to the file store

problem.

7.2 Related Work

Three related bodies of work are chosen for comparison with our work. First is the

work of Kang and Jackson [87, 88] in Alloy; second is the work carried out by Ferreira

et al. [54] in VDM; and third is the work of Freitas et al. [58] in Z. As mentioned in

Chapter 2, VDM and Z are state-based approaches like Event-B that make it easier

to compare. In the case of Alloy (a declarative language which is designed for model

checking [81]), the features which are covered in the Alloy work are similar to our work.

Namely, this work specifies read and write operations of both the file system layer and

the flash interface layer, and also covers the wear-levelling process.

7.2.1 Alloy

The specification and analysis of a flash file system are described in [87]. This work

demonstrated one abstract level of the POSIX file system which is later refined to link

with the flash interface layer. This work focused on read and write operations. Other

basic operations such as delete and move were not mentioned. This work did not focus

on the tree structure. The location of each file is represented by a sequence of directory

names. Two issues which were covered in this work are wear-levelling and fault-tolerance.

In the case of the wear-levelling process, they described three steps of the reclaim pro-

cedure. First, look for a dirty block which contains obsoleted data and has the lowest

erase count. Second, relocate the valid pages (that may exist) in the selected block.

That is, rewrite the valid pages to new page locations (which are available) and then

re-map to the new locations. Third, erase the selected block. This block becomes avail-

able to be reused. Considering fault-tolerance, this work focused on power loss recovery.

Chapter 7 Comparison with Related Work on Verifying Flash File System 117

The specification was based on the mechanism described in the specification of the Intel

Flash File System.

The Alloy Analyzer [81] was used as a model checker to check the refinement properties

(which relate the abstract file system with the concrete file system, taking account of flash

architecture) for read and write operations. This kind of verification is fully automatic

within a finite scope. They stated that the total size of the file system they verified

was 24 data elements (with 6 flash pages). The refinement properties were checked in

approximately 8 hours. A number of iterations were used to correct the model when

non-trivial bugs were found during the model-checking process. Note that Alloy does not

have refinement built in. They manually defined the relationship between the abstract

state-variables with the concrete state-variables together with assertion. Details can be

found in [87].

7.2.2 VDM

The work given in [54] was aimed at specifying and verifying the Intel Flash File System

Core [67] focusing on the file system layer. The flash interface and the low level layers

were not covered in this work. A naming structure was used to define file locations

instead of the tree structure (using parent function). The location of each file was

represented by a sequence of directory names.

This work was carried out by using VDM as a formal language for specification. HOL [65]

and Alloy were used for theorem proving and model checking respectively. In order

to verify the model, the VDMTools [41] was used to generate POs and translate the

VDM model into an HOL format for proof. Alloy played an important role to generate

counterexamples to proof obligations, when there was a PO that could not be discharged

by the prover. However, manual translation was needed to convert the VDM model to

Alloy. In this work, some POs could not be discharged using the prover and had no

counterexample found. They needed to prove these POs by hand.

This work was just started and has no refinement. They demonstrated one level of

specification and its verification. A small set of features was addressed. This work did

not mention which basic functionalities of a file system they covered. In the paper, they

focused on only the delete operation covering delete file and directory, and showed how

POs of these operations can be discharged. Other features, such as specification of the

flash interface layer, were considered as future work.

7.2.3 Z

The work given in [58] is a Z specification and verification of the POSIX file system

covering basic operations of a file system such as read, write, create, delete, etc. This

118 Chapter 7 Comparison with Related Work on Verifying Flash File System

work is based on the specification of the Unix filing system developed by Morgan and

Sufrin [101]. In this specification, instead of using a tree structure, the location of each

object was formulated as a sequence of directory names, which is the path of each file.

This work concentrated on file contents and naming operations used for manipulating

these rather than structure manipulation operations such as directory copy and move.

However, this work did not cover the specification of the flash interface layer.

The Z formal language was used to specify the model. Z/Eves was used as a tool for

verification (that is, theorem proof). Proof statistics given in this work shows 1337

proof steps in total. Those were classified into trivial steps (48%) relying on automation

rules included in Z/Eves, intermediate steps (34.8%) requiring knowledge of how Z/Eves

conducts the transformation, and creative steps (17.2%) requiring domain knowledge of

theorem proof such as instantiation.

In addition, there is another model of a flash memory specified in Z which was developed

by Butterfield et al [34]. This work focussed on the ONFI specification [51]. Three main

operations, page-read, page-write and block-erase were addressed. However, this work

did not cover the specification of the file system layer (that involves basic file operations

such as open, read and write a file). They presented one level of specification and no

proof is mentioned in this work. This work, [34], has been refined by adding more design

details of the flash structure in [33]. The work of Huges [78] is also a Z specification of

a visual file system. In this specification, transitive closure was chosen to specify the

main property of a tree structure, e.g. reachability. However, the no-loop property was

not mentioned in this specification. In addition, refinement and proof were not given

in [78]. Finally, we used transitive closure indirectly in order to make our model easier

to prove, as already discussed in Chapter 4.

7.3 Assessment and Comparison

Besides different tools and methods used, key points which are selected to compare with

the related work are discussed below.

7.3.1 Point 1: Features

Table 7.1 shows a comparison between our work and other related work consisting of

the work in Z, Alloy and VDM. The specification of the file system we developed was

based on the architecture of the Intel Flash File System, like the work in VDM. Our

specification of the file system covers not only read and write operations like [87] but also

basic operations such as create, move and delete, and access permissions. In addition,

our work also cover a specification of the flash interface layer focusing on page-read, page-

program and block-erase operations which are interfaces provided to the file system layer.

Chapter 7 Comparison with Related Work on Verifying Flash File System 119

Table 7.1: Feature Comparison

Features Event-B Z [58] Alloy [87] VDM [54]

file system architecture Intel POSIX POSIX Intel
flash interface specification ONFi no ONFi ONFi

structure tree-based path-based path-based path-based
create yes yes yes yes
delete yes yes no yes
move yes yes no no
copy yes no no no

read,write yes yes yes no
open, close yes yes no no
truncate no yes no no

mkdir, rmdir yes yes no yes
permissions yes no no no

fault-tolerance yes yes yes no
concurrency yes no no no

flash operations
page read/program yes no yes no

block erase yes no yes no
wear-levelling yes no yes no

executable implementation yes no no no

Compared with others, first, the work in VDM covered only the file system layer focusing

on some basic operations such as delete (others, such as read and write operations, and

the flash interface layer have not been specified yet). Second, the work in Alloy focused

on only read and write operations. This work also covered the wear-levelling process and

the fault-tolerance which is similar to our work. Third, the work in Z is a specification

of POSIX file system focusing on basic functionalities for files and directories such as

create, open, read and write operations. In this work they concentrated on the naming

operation instead of copy and move directory. However, this work did not cover the

specification of the flash interface layer.

The structure of the file system layer we modelled is the tree structure which is different

from others. We have found that representing the tree structure as a parent function

makes it easier to copy and move subtrees, compared with the naming structure (or

path-based). For example, in order to move any subtree, only the parent of the root of

the given subtree is required to be changed. On the other hand, if we were to represent

the file structure as a path-based structure, the path of all objects belonging to the

subtree must be changed.

Fault-tolerance, concurrency and wear-levelling process are three main issues that are

addressed in our our development. It can be seen that concurrency were not addressed

by others, fault-tolerance and wear-levelling were covered is some work. Unlike all the

other work, an implementation of the model is also covered in our work. The aim of

120 Chapter 7 Comparison with Related Work on Verifying Flash File System

this part is to show that our model is implementable following from the systematic

translation rules proposed in Chapter 8.

Compared with other work, a specification of a visual file system in Z developed by

Hughes [78] is similar to our work, since they used the tree structure as a representative

of the file system. However, the specification of this work did not cover the no-loop

property and has no proof supported. In our work, we have already proved that our

model preserves the tree properties (no-loop and reachability properties). The work

of Hesselink [70] is another work aimed at dealing with the hierarchical file structure

covering making and moving directories. This work represents the file structure using

path-based while our work used a parent function. However, [70] did not cover the flash

specification. The work of Taverne and Pronk [115] is a POSIX-like file store using a

flash memory. The structure of [115] is a path-based structure which is different from

our work. Basic operations including files and directories manipulation were covered

in [115] but the wear-levelling process was not addressed.

7.3.2 Point 2: Refinement strategy

In our work, an incremental refinement strategy is the main methodology used for our

formal development. We used refinement to introduce new features in an incremental

way to develop our models. After that (when all required features were addressed),

structural refinement was used to refine the model by adding more design details to

relate the specification of the file system to the flash specification. For example, we used

the atomicity decomposition technique [31] as a mechanism to decompose an atomic

event named write-file into start-write, page-write and end-write, in order to satisfy the

page-program operation provided by the flash interface layer.

In our development, an incremental approach was chosen to make the model simpler

and easier to prove. Namely, in each step, a small set of features is introduced, the

complexity of modelling is reduced. Specifying everything in one level of specification

makes models more complex and difficult to prove. For example, if we were to introduce

files and directories in the same level as specifying the tree properties, then the create

event would be replaced by events crtfile and mkdir because files and directories are

different. Therefore, instead of proving only that the create event preserves the tree-

properties, we would need to prove that both events, crtfile and mkdir, preserve the

tree properties. In our approach, since we have already proved that the create event

preserves the tree properties (in the abstraction), we do not need to prove it again (in the

refinement) in order to show that events crtfile and mkdir preserve the tree properties

if they are refined events of the create event.

A distinguishing feature of our treatment of the flash file system problem is the use

of multiple levels of refinement to relate an abstract model, with large atomic reads

Chapter 7 Comparison with Related Work on Verifying Flash File System 121

and writes on abstract data structures, to a model with more complex concrete data

structures and more fine-grained atomic steps. As stated in [47], “an abstract program

[or specification] is, in general, easier to prove correct than a concrete one, this simplifies

the structuring of the verification process”. Additionally, as presented in [44], the use of

multiple levels of refinement makes the abstraction gap relatively small at each stage.

That means the gluing invariants required for refinement verification are also relatively

simple. We believe that this relative can ease proof effort. This is testified by the

proof statistics we have given in Section 4.14 and 6.7. In addition, as we have already

discussed in Chapter 4 and 5, the use of multi-levels also makes an evolution process of

the model easier to carry out. Namely, if we were to specify everything in one level, this

would make model more complicated and difficult to modify. In the case of multi-level

approach, each level has its own individual purpose based on the features/requirements

that have been introduced in that level. Thus, modification can be made directly to the

level where the changes affect, then such changes will be propagated down automatically.

We also used the machine decomposition technique [26] to decompose our model into

sub-models that can later be refined separately. As stated in [44], this is another dis-

tinguishing feature of our work. While it is well-known that decomposition is critical

for scaling of formal development, it is rare to find examples of its application in prac-

tice. Our flash file system development represents an exemplar of multi-level refinement

and of machine decomposition that we believe others could learn from. This role as an

exemplar is an important contribution of the thesis.

Compared with others, most of the related work has only one level of specification such

as [34], [54], [78] and [115]. Another work given in [87] presented an abstract file system

together with one level of refinement. It can be seen that an incremental refinement

strategy is not the way they used to develop models.

7.3.3 Point 3: Verification Techniques

Theorem proving is a mechanism used for verifying our models like the work in VDM [54]

and Z [58] while the work in Alloy [87] used model checking as a technology to analyse

the model. [54] used theorem proving at the first step of verification. If some POs could

not be discharged then model checking was used to analyse and find counterexamples.

However, manual translation was needed for translating VDM to Alloy. Some POs were

discharged by hand when counterexamples were not found. The details of proof statistics

were not given in this work.

In the case of the Z model [58], they need to define proof scripts by hand before proving

using Z/Eves. Based on proof statistics of this work shown in Table 7.21, more than 50%

1Note that superscript a represents the number of POs that were discharged automatically while
superscript i represents the interactive proofs.

122 Chapter 7 Comparison with Related Work on Verifying Flash File System

Table 7.2: Proof Comparison

Criteria Event-B Z [58] Alloy [87] VDM [54]

mechanism proof proof model checking proof+
model checking

tool Rodin Z/Eves Alloy Analyzer HOL + Alloy
number of POs 1069 219 na na

(1028a + 41i) (proof scripts)
total proof steps 577 1337 na na

trivial steps 449 (78%) 642 (48%) na na
intermediate steps 43 (7%) 465 (35%) na na

creative steps 85 (15%) 230 (17%) na na

of the proof steps (consisting of 17.2% creative and 38.4% intermediate) are non-trivial.

This seems to be that proving this model was not easy. Namely, a large number of

interactive proving and knowledge in theorem proving are required. In this work, there

is no statistics that make it clear about the number of proof scripts and steps which

were discharged automatically by the tool.

In order to make a reasonable comparison, we classified the complexity of our proof

steps into three categories (i.e. trivial, intermediate and creative) like [58]. In our

circumstance (in Event-B and Rodin), creative steps cover particular kinds of proof steps

such as adding hypothesis, instantiation, case distinction and proving by contradiction.

Intermediate steps are simple kinds of interactive steps such as applying implication,

removing negation, rewriting set equality, etc. Finally, trivial steps in our circumstance

involve interactive steps that require little thought by user – such as simplification,

trivial rewrites, equality substitution, etc.

Considering Table 7.2, in our development, a total 1069 of POs were generated by the

Rodin tool. 1028 POs (96%) were discharged automatically while other 41 POs were

discharged interactively. In case of automatic discharge, all proof steps required for

discharging each PO are trivial and performed automatically by the Rodin tool. Proving

the other 41 POs involves 577 proof steps. 449 (78%) of them are trivial steps, 43 (7%)

of them are classified as intermediate steps. The rest, 85 steps (15%), are creative steps.

In case of trivial steps, they were performed automatically by the Rodin tool. Other

types of proof steps (intermediate and creative) required interactive proving.

In addition, introducing additional invariants and theorems which are used for discharg-

ing POs or proving some system properties is also considered as a kind of creative step

in Rodin. (In our development, 16 theorems were introduced to help proof.) The ad-

ditional proved theorems we introduced can be reused to discharge some similar POs.

For example, as discussed in Section 4.14, a tree-join theorem which was introduced

in a context can be reused to prove that events create, copy and move preserve the

tree properties. That is, instead of reproving the same thing in different events, this

Chapter 7 Comparison with Related Work on Verifying Flash File System 123

technique makes interactive proof easier and saves the time required for proving.

7.4 Summary

We have outlined an overview of related work together with detailed-comparison with

three pieces of related work in Alloy, VDM and Z. The features which were covered

in each work are partially different from each other (see Table 7.1). For example, our

work was focused on the tree-structure while others were based on naming-structure

(or path-based). Concurrency was addressed in our models while it was found in other

related work. Our work covered both the file system layer and the flash interface layer.

Theorem proving is our methodology used for verification like the work in Z and VDM.

An incremental refinement was used as a main strategy in our formal development which

is different from others. As already discussed in Section 7.3.2, we have found that this

approach can make models easier to specify and manage (e.g. modification of models).

Additionally, we found that multi-levels of refinement also help evolution of the models,

as already discussed in Chapter 5.

Chapter 8

Systematic Translation of

Event-B Models into Java Code

8.1 Introduction

This chapter is aimed at outlining rules for translating Event-B specifications into Java

code. We follow an object oriented programming approach. We provide systematic

translation rules focusing on class construction and event translation together with ex-

amples that we believe other developers can learn from. The examples are based on the

flash file system that have already discussed in previous chapters.

We chose Java because we can preserve modelling structure in Java. Java supports

an object oriented programming that we follow. Java is an object oriented program-

ming language providing many features that are useful for system development, such as

reusability, polymorphism, inheritance, etc [42]. The Rodin toolset and most of plug-ins

are based on Java-Eclipse. We believe that our rules would be easier to collaborate with

others in future.

The rules we propose here are aimed at general use, not just for the file system model.

However, limitations still remain. Some lines of Event-B cannot be translated using

our rules (these were translated individually by hand). At the moment, we could not

define all possible rules for translating Event-B, but we have given some guidelines to

be followed in general. Details are discussed in Section 8.26.

This chapter begins with rules for constructing classes from the Event-B specification

(in Section 8.2) before focusing on event translation in Section 8.3. Related work is

discussed in Section 8.4 and Section 8.5 concludes the chapter with some discussion.

125

126 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.2 Class Construction

To describe how classes are constructed, we divide our explanation into two categories

based on where classes come from: (i) contexts and (ii) machines. These two categories

are the main structures that can be used to construct classes. In the case of contexts,

each defined type is considered to become a class. In the case of machines, we have two

sub-categories. First is a set machine classes, which are constructed from the machine

themselves. Second is a set of internal classes, which are constructed from machine

variables.

8.2.1 Defined Types in a Context as Java Classes

A general rule for translating a defined type into a Java class is given in Figure 8.1.

Suppose we have a defined type named ST specified in a context given on the left

of Figure 8.1. Constants p1OfST, p2OfST, ..., pnOfST represent the properties of ST,

which are specified as total functions mapping to the type of each property. Each Tx can

be a user-defined type or a general type such as N, BOOL, etc. In the implementation,

based on the ST specified, we will get a class representing this type on the right of

Figure 8.1. The result class is called ST and includes an attribute for each property of

ST defined in the context.

ST

T1 p1OfST;
T2 p2OfST;
...
Tn pnOfST;

Methods
...

Sets:
 ST,...
Constants:
 p1OfST,p1OfST,...,pnOfST
Axioms

 p1OfST ∈ ST → T1

 p2OfST ∈ ST → T2
 ...

 pnOfST ∈ ST → Tn
...

Figure 8.1: Rule 1: Converting a defined type to a class

Additional methods should be introduced in this class in order to get and set the value

of each attribute, as an example given in Figure 8.2. However, they are not required for

all attributes. For example the set method is not required for the static properties that

are not allowed to be modified, such as a block id of each row address, etc.

Note that if there are no specific properties specified for any defined type, this type will

become a class with no specific attributes.

To illustrate the application of Rule 1, we chose part of our flash file model to be

applied. In our development, we have several data types, such as OBJECT, USER,

GROUP, PDATA and RowAddr, which are defined as carrier sets in contexts. These

Chapter 8 Systematic Translation of Event-B Models into Java Code 127

public T1 get_p1OfST(){

return p1OfST;

}

Figure 8.2: A get-method of ST

types represent records which are specified as projection function. Figure 8.3 gives an

example of PDATA and RowAddr type-specification. PDATA is composed of object id,

page index, version number and data, while RowAddr is composed of LUN id, block id

and page id. Figure 8.4 shows classes (PDATA and RowAddr) which are constructed

Sets
PDATA,RowAddr , ...

Constants
objOfpage, pidxOfpage, versOfpage, dataOfpage
lidOfRow , bidOfRow , pidOfRow , ...

Axioms
objOfpage ∈ PDATA→OBJECT
pidxOfpage ∈ PDATA→ N
versOfpage ∈ PDATA→ N
dataOfpage ∈ PDATA→DATA
...
lidOfRow ∈ RowAddr → N
bidOfRow ∈ RowAddr → N
pidOfRow ∈ RowAddr → N
...

Figure 8.3: A context representing part of defined types

from the definition specified in Figure 8.3 to which Rule 1 is applied.

PDATA

OBJECT objOfpage;
int pidxOfpage;
int versOfpage;
DATA dataOfpage;
...

RowAddr

int lidOfRow;
int bidOfRow;
int pidOfRow;
...

Figure 8.4: Classes implementing PDATA and RowAddr

8.2.2 A Machine as a Class

Figure 8.5 gives a general rule for constructing a class from a machine named MCH. To

translate a machine, the machine itself becomes a class containing attributes, which are

128 Chapter 8 Systematic Translation of Event-B Models into Java Code

constructed from machine variables and their corresponding typing invariants. Machine

Machine MCH

Variables:
 ...
Invariants:
 typing-invs

Events:
 ...

class MCH

attributes
...

methods
...

Figure 8.5: Rule 2: Translating a machine into a class

events are implemented as methods of the machine class. Details of the transformation

of events into Java code will be addressed later in Section 8.3.

As given in Figure 8.5, to implement attributes of a machine class, only typing invariants

and related variables are selected to define those attributes. We proposed two major

sub-rules for translating two different types of machine variables: (i) a simple variable

which is specified as an element of a set and (ii) a set variable which is specified as a

collection of data. Details are explained below.

First, we have a variable named b which is specified as a single element of B, as can be

seen from Figure 8.6. Thus, in the implementation, b becomes an attribute (which is

typed B) of the machine class named MCH.

MCH

B b;

...

Machine MCH

Variables:
 b, ...
Invariants:

 b ∈ B
 ...

Figure 8.6: Rule 2a: Translating a simple variable in a machine class

Second, Figure 8.7 reveals that variable a is specified as a set of instances of A. This

variable will become an attribute of the interface class which is implemented as a col-

lection of instances of A. In Java, a collection of instances can be implemented by using

arrays or other structures such as linked lists, trees, etc [56]. An array is simpler and

easier to follow, compared with using linked list which is more complicated but flexible

for memory allocation (and flexible for unbounded lists of instances). That means, each

structure is suitable for a particular type of data collection. For example, if the number

of instances is unbounded then the linked list is appropriate for implementing a list of

these instances. On the other hand, if the maximum number of instances is known,

implementing using array would be appropriate. In order to make our translation rules

more general, we will not choose one of those, instead we will use the ’ Collection’

term to represent a collection of classes’ instances. In the implementation, for example,

Chapter 8 Systematic Translation of Event-B Models into Java Code 129

ACollection a; will be replaced by A[] a; if it is implemented using array, or A a; if

it is implemented using a linked list where A is implemented as a linkable class1.

MCH

ACollection a;

...

Machine MCH

Variables:
 a, ...
Invariants:

 a ⊆ A
 ...

Figure 8.7: Rule 2b: Translating a set variable as a collection in a machine class

Figure 8.8 gives an extension rule for implementing a property which is specified as a

partial function over natural numbers. In the machine, Variable p is specified as an

array of A instances. In an implementation, p becomes an attribute of the machine class

which is implemented as an array of A instances, as given on the right.

MCH

A p[];
...

Machine MCH

Variables:
 p, ...
Invariants:

 p ∈ ℕ ⇸ A
 ...

Figure 8.8: Rule 2x: Translating an array property

Note: In the case of machine decomposition, we may have several machine classes rep-

resenting the entire system being developed. For example, if a machine is finally de-

composed into n sub-machines then we will get n machine classes representing those n

sub-machines. From Figure 8.9, the machine A is decomposed into A1 and A2. As given

in the figure, A1 and A2 will become machine classes that interact with each other via

shared events, as discussed in Section 4.13. Again if further machine decomposition is

applied to the machine A1 to gain sub-machines A1a and A1b, then we will finally have

three machine classes A1a, A1b and A2 representing such sub-systems being developed.

(The A1 class is replaced by A1a and A1b.) In the implementation, each machine class

interacts with its related machine by method calling. Details of implementing of shared

events are given in Section 8.3.4.

8.2.3 Machine Variables as Classes

The purpose of this section is to explore systematic rules used for constructing internal

classes from machine variables when additional properties are specified for them.

1A linkable class is a class that has at least one linking attribute representing the object which is
next to itself. This attribute is typed as the class name. The number of linking attributes depends on
the type of linked lists (i.e. one for a single linked list; and two for a double linked list) [56]

130 Chapter 8 Systematic Translation of Event-B Models into Java Code

A
shared
event1

A1

A2

shared
eventn

Figure 8.9: A diagram representing machine decomposition

First, from Figure 8.10, if p1 specifies a specific property of variable a and is typed as

T1, then a becomes a class named A and p1 becomes an attribute of class A presented

on the right hand side.

A

T1 p1;
...

...

a ⊆ A
p1 ∈ a → T1
...

Figure 8.10: Rule 3: Function over a set variable

Second, from Figure 8.11, if c is a subset or equal to a and elements of sets can move in

and out of c [and there are no specific properties for c], then c becomes a boolean state

property of A. For example, r opened files ⊆ files, a file element can be moved to the

r opened files state when it is opened and moved back when it is closed. On the other

hand, for example, files ⊆ objects, when a file element is removed from files, it is also

removed from objects totally. That means, in this case, files shall not be implemented

as a boolean attribute. The appropriate way to implement files is to construct files as

a subclass of the objects class which is discussed later in Rule 5.

A

...
boolean c;
...

...

a ⊆ A
c ⊆ a
...

Figure 8.11: Rule 4: Subset of set variable as a boolean property

Third, from Figure 8.12, if we have p1, c and d specifying specific properties of a like

the previous case, but we also have specific properties for c and d then we will get a

result given on the right. Namely, c and d are constructed as sub-classes of A, named

C and D respectively. p1 is a common property of both C and D, while p2 and p3 are

specific properties of C and D respectively.

Fourth (as can be seen in Figure 8.13), if we have an invariant saying that p5 ∈ c ↔ T5,

this means an element of c may have more than one corresponding value of T5. This

Chapter 8 Systematic Translation of Event-B Models into Java Code 131

A

T1 p1;
...

C

T2 p2;
...

D

T3 p3;
...

is-a is-a

...

c ⊆ a
d ⊆ a
c ∩ d = {}
p1 ∈ a → T1

p2 ∈ c → T2

p3 ∈ d → T3
...

Figure 8.12: Rule 5: Subset to sub-classes

kind of property will be implemented as a collection of T5 ’ instances as given on the

right of the figure.

C

...
T5Collection p5;
...

...

p5 ∈ c ↔ T5
...

Figure 8.13: Rule 6: Relation to a list-attribute

Fifth, if any property is specified using a partial function (rather than a total function),

we have added an additional rule to deal with this as given in Figure 8.14. This partial

function means that not all elements of c have this property. Not only is p6 implemented

as an attribute of C, but we also have an additional flag attribute to indicate that p6 is

valid only when this flag true. For example, getting the value of p6 succeeds only when

existP6 is true.

C

...
T6 p6;
boolean existP6;
...

...

p6 ∈ c ⇸ T6
...

Figure 8.14: Rule 7: Partial function to class property

Figure 8.15 gives a rule for translating any property which is specified as a partial

function over numbers. On the left, p7 is a property of a which is specified as an array

of elements typed T7. The right hand side shows the A class where p7 is implemented

as an array of T7. The domain of the array property should be contiguous although the

specification (N 7→ T7) is defined as a partial function. If the domain is not contiguous,

implementing as a dynamic structure such as a linked list would be more appropriate.

132 Chapter 8 Systematic Translation of Event-B Models into Java Code

A

...
T7 [] p7;
...

...

p7 ∈ a →(ℕ ⇸ T7)
...

Figure 8.15: Rule 8: Translating an array property

8.2.4 Application of Rules

In our development, we have two main variables specified in the file system machine:

files and directories (others such as users, groups, etc., will not be focused on in this

report). These two variables are implemented as attributes of the machine class, named

FILEMCH. The machine class we get is given in Figure 8.16 where Rule 2b is applied

to set variables files and directories. Namely, files and directories are implemented as

collections of files and directories, respectively.

FILEMCH

FILE [] files;
DIRECTORY [] directories;
int num_files;
int num_dirs;
DIRECTORY root;
...

Methods
...

Figure 8.16: A machine class representing the file system model

In this model, we also have root ∈ directories specified as a machine invariant. Thus,

root is implemented as an instance of DIRECTORY in the FILEMCH class, where Rule

2a is applied. Attributes num files and num dirs are used to keep the number of files

and directories, respectively. In Event-B, these two properties are specified as

num files = card(files)

num dirs = card(directories)

Moreover, we also have other properties specified in the machine. Some are specific to

files, and some are common to both files and directories. Below are examples of applying

translation rules that have been discussed previously.

In our development, we specified a set of objects as OBJECT instances. Each object can

be either a file or a directory. Figure 8.17 shows some of machine invariants modelling

these properties. From the specification given in Figure 8.17, we get a class diagram

representing classes OBJECT, FILE and DIRECTORY given in Figure 8.18. As pre-

viously mentioned, when an element of files or directories is removed, it is also removed

Chapter 8 Systematic Translation of Event-B Models into Java Code 133

objects ⊆ OBJECT
files ⊆ objects
directories ⊆ objects
files ∪ directories = objects
files ∩ directories = ∅

Figure 8.17: Part of machine invariants defining objects, files and directories

from the set of objects, that means these files and directories shall become subclasses of

the objects class. In addition, we have specific properties for files and directories, thus

Rule 5 is applicable to this case. (Note that we use UPPERCASE to represent classes.)

OBJECT

...

FILE

...

DIRECTORY

...

is-a is-a

Figure 8.18: A class diagram of OBJECT, FILE and DIRECTORY

The OBJECT class is the generalized class of FILE and DIRECTORY. The common

properties (or attributes) of each object are specified as a number of machine invariants

shown in Figure 8.19. These properties lead us to obtain an OBJECT class with at-

parent ∈ objects \ {root}→ directories
obj name ∈ objects →NAME
createdDate ∈ objects →DATE
lastModiDate ∈ objects →DATE
obj owner ∈ objects → users
obj group ∈ objects → groups
obj perms ∈ objects ↔ PERMISSION

Figure 8.19: Part of machine invariants defining objects’ properties

tributes given in Figure 8.20 where Rule 3 and Rule 6 are applied. Note, because the

obj perms (objects’ permissions) is specified as a relation – that means one object may

have more than one permission types (based on its owner, group and world) – we imple-

ment it as an array of permission types. Additionally, as mentioned earlier, additional

methods for setting and getting the value of each attribute are also required.

The specific properties of files which are specified as machine invariants are given in

134 Chapter 8 Systematic Translation of Event-B Models into Java Code

OBJECT

DIRECTORY parent;
NAME obj_name;
DATE createdDate;
DATE lastModiDate;
USER obj_owner;
GROUP obj_group;
PERMISSION [] obj_perm;
...

Figure 8.20: An OBJECT class

Figure 8.21.

fat ∈ files → (N 7→ RowAddr)
fsize ∈ files →N
current version ∈ files →N
...

Figure 8.21: Part of machine invariants defining files’ properties

File status values are also specified as state sets given in Figure 8.22. Note that, in an

alternative way, we could specify the status values as total functions given in Figure 8.23.

w opened files ⊆ files
writing files ⊆ w opened files
r opened files ⊆ files
reading files ⊆ r opened files

Figure 8.22: Part of machine invariants defining files’ status, type1

w opened files ∈ files → BOOL
writing files ∈ w opened files → BOOL
r opened files ∈ files → BOOL
reading files ∈ r opened files → BOOL

Figure 8.23: Part of machine invariants defining files’ status, type2

The reason we chose the first approach (using state sets) is to make proof simpler (as

already discussed in Chapter 6). However, both led to the same result, as specified as

properties of class FILE described in Figure 8.24, where Rule 3 and Rule 8 are applied.

Chapter 8 Systematic Translation of Event-B Models into Java Code 135

FILE extends OBJECT

RowAddr[] fat;
int fsize;
int curr_version;
boolean w_opened;
boolean writing;
boolean r_opened;
boolean reading;
...

Figure 8.24: FILE Class

Figure 8.25 shows a DIRECTORY class where members represents a list of children be-

longing to each directory, while dsize represents the number of children of each directory.

DIRECTORY extends OBJECT

OBJECT [] members;
int dsize;
...

Figure 8.25: DIRECTORY Class

Note that, so far, there are no specific properties for directories specified in the model.

However, in Event-B, members and dsize could be specified as

members = parent−1

dsize = directories → N
∀ d ·d ∈ directories ⇒ dsize(d) = card(members(d))

8.3 Event Transformation

In general, the reader may understand that all events specified in the machine will be-

come methods of the machine class. The reader may have thought that one event must be

translated to exactly one corresponding method. In fact, several events may be merged

into one corresponding method, and an event may have more than one corresponding

method. For instance, one event may have one method implementing the event itself

and one separate method implementing one or more of its guards that return boolean

values.

In this section, we divided event-transformation rules into several sub-sections covering

basic events, event groups, event loops, shared events and concurrent events.

136 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.3.1 Basic Events

This section aimed at proposing general rules used for translating basic events to Java

methods. Generally, in Event-B, an event is composed of four elements: name, param-

eter, guard and action.

evt name =̂ any i,x where grd(v,i,x) then act(v,i,x) end

Parameters (i, x) are defined and constrained by the event guard (grd). Parameters

specified here can be both internal (i) and external (x) parameters. However, in Event-

B, there is no explicit distinction between internal and external parameters. Thus, we

will impose this distinction through a naming convention (p i for internal and p x of

external). The action act is performed only when the guard holds. Here v represents

machine variables.

Simple rules of event transformation:

- An event name becomes a method name.

- A guard becomes a condition within a method and also the declaration of external

and local parameters of the method.

- An action identifies the purpose of the method. It is expressed in terms of program-

ming statements/instructions.

- In addition, some guards can be implemented as separate methods that return a

boolean value. Similarly, an action of an event may be implemented as a separate

method. These depend on styles of implementation and developer’s preferences.

If an action or a guard is complicated and difficult to express in one line of code,

implementing as a separate method would be appropriate. Another reason, based

on encapsulation concept2 of the object oriented programming, instead of setting

the value of any attribute directly, using method call would be more appropriate.

Details and examples are given later in this section.

The scheme given in Figure 8.26 is aimed at introducing a prototype of event-to-code

transformation. (Note that BF stands for “B Form” and JF stands for “Java Form”.)

Figure 8.26 (BF) represents an event structure that consists of parameters, guards and

actions. Internal parameters become local variables of the Java method, while external

parameters become method parameters. In this example, prm i is specified as a local

parameter and prm x is specified as an external parameter. In the case of a local

parameter, for instance, suppose we specified

2Attributes of classes should be defined as private or protected and their values are allowed to set or
get via the methods provided [42]

Chapter 8 Systematic Translation of Event-B Models into Java Code 137

grd1 i : prm i ∈ typeOfprmi

then we will get the declaration of the local variable, prm i, as

typeOfprmi prm i; (implementing grd1 exp)

where typeOfprmi can be user-defined type, int, boolean, String, etc.

 BF
 Event evt_name =
 Any prm_i, prm_x Where
 grd1_i & //defines prm_i
 grd2_x & //defines prm_x

 grd3 & grd4 &...& grdn //pre-conditions
 Then
 act1
 act2

 ...
 actn

 End

 JF.1

public rtype mtd_name (type prm_x){

 grd1_exp //declaration of prm_i

 if(grd3_exp && ... && grdn_exp){
 //if the condition holds proceed
 act1_expression;
 act2_expression;
 ...
 actn_expression;
 return rvalue;
 }

 return err_value;
}

 JF.2

public rtype mtd_name (type prm_x){

 grd1_exp //declaration of prm_i

 if(!grd3_exp) return err_value;
 if(!grd4_exp) return err_value;
 ...
 if(!grdn_exp) return err_value;
 //if all conditions hold proceed
 act1_expression;
 act2_expression;
 ...
 actn_expression;
 return rvalue;
}

Figure 8.26: General rules for event transformation

Additionally, we present two approaches to an implementation of an event guard (grd3

up to grdn) in Java (see Figure 8.26 (JF.1) and (JF.2)). In the case of JF.1, we implement

guards as a compound condition using ‘&&’. When these guards hold, meaning when

the compound condition is true, the actions act1 up to actn will be performed. Here

rvalue represents the return value corresponding to the return type (rtype). Similarly, an

error value (err value) shall be returned if it fails. The return type may be implemented

as void of which the return value is nothing. In another approach, JF.2, we implement

in such a way that if any guard is not satisfied, the method will be forced to abort

and return an error value indicating that executing this method failed. This approach

would be useful if we want to return or report an error message for a particular case of

such failures relating to each particular guard/condition. For instance, we may have a

particular error message for grd3 if this guard or condition is false.

Figure 8.27 gives additional rules for translating an event into Java code based on Event-

B types. In the figure, we can see that ‘∈’ and ‘⊆’ can be used in both declaration and

138 Chapter 8 Systematic Translation of Event-B Models into Java Code

condition. However, implementation of some types is non-explicit. For example, set

and relation operations vary by the style of implementation. That means one line of

B-code representing any action may be implemented in different ways. For example, the

Event-B action writing files := writing files ∪ {f } means the given file f is set to be in

the writing state. Thus, we can implement it by setting the writing flag of f to be true

(by f.setWritingFlag()) or we can set the flag value to be true directly (without calling

a method). Another example, if we have wbuffer := {f } −▹ wbuffer meaning releasing

the write buffer of f , then this action might be implemented as a separate method to

release the write buffer and is called like f.resetWBuffer(). On the other hand, its write

buffer might be released directly by setting it to be null as f.wbffer = null .

Notation Example Meaning Java

Implementation
Condition = ≠ >, <, ≥, ≤ ∧, ∨

x = y

x ≠ y

x is equal to y

x is not equal to y

other comparisons

conjunctions (and, or)

x == y

x != y

>, <, >=, <=

&&, ||

Assignment

 :=

Arithmetic operations

 +, -, *, /

x := y

The value of x is
assigned to be equal
to the value of y

plus, minus, multiply,
divide

x = y;

+, -, *, /

Figure 8.27: Additional rules for event transformation

Development of a comprehensive and systematic set of rules for set- and relation-

operation translation is outside scope of this thesis. These depends on programming

styles and developer’s preferences. However, we proposed general rules for translating

them with some examples.

8.3.2 Event Groups

The purpose of this section is to outline rules used for translating a group of events

to a Java method. For instance, how can we implement decomposed events in Java?

Figure 8.28 gives a general rule for translating a decomposed event into Java. The

top of the figure shows an event-refinement diagram [26] representing an abstract event

(abs evt) which is decomposed into n sub-events: step 1, step 2, ..., step n. The

bottom represents two different approaches to the implementation of the decomposed

event above. The first (on the left) is implemented as a simple form without separate

methods. The second (on the right) is where sub-events are implemented as separate

Chapter 8 Systematic Translation of Event-B Models into Java Code 139

methods. Based on the definition of the event-refinement diagram, sub-events will be

performed in order from left to right. Thus, this corresponding method is implemented

as a sequence of n steps (or sub-methods), which are ordered in the same way as the

given specification. Namely, the step 1 event must be completed before performing

step 2, and so on.

 public rtype abs_mtd(ext_prms){

declaration of int_prms;

if (JF(step_1)==false){
 JF(evt_fail);
 return err_value;
}

...

if(JF(step_n)==false){
 JF(evt_fail);
 return err_value;
}

return rvalue;

 }

abs_evt

step_1

step_2

step_n

...

evt_fail

step_1

evt_fail

...

 public rtype abs_mtd(ext_prms){

declaration of int_prms;

if (JF(step_1.grd)){

JF(step_1.act);
}else{
 JF(evt_fail.act);
 return err_value;
}

...

if (JF(step_n.grd)){
JF(step_n.act);

}else{
 JF(evt_fail.act);
 return err_value;
}

return rvalue;
 }

Figure 8.28: A general rule for implementing event groups

In the first approach presented on the left, the guard of each event is implemented as

a condition of if-statement. If this condition is true, then the corresponding actions (in

Java form) will be performed. If any condition is false, the Java form of the fail evt .act

will be performed and then return an error value. With the second approach showing

on the right, each sub-event is implemented as a method returning a boolean value (or

any value indicating whether the function being performed succeed or not). That is, if

any method (representing each sub-event) failed, JF (evt fail) will be performed and the

error value will be returned to indicate that the process being executed failed. Finally,

if all sub-methods have succeeded completely, the return value will be returned at the

end.

Note that we represent JF (Java Form) as a function that transforms the given B-

specification into Java code. Suppose the return value of JF(step 1) is a method public

boolean step1 mtd(){...}, we will get if(step1 mtd()==false) { ... return err value; }
in the first step. For instance, JF (step 1.grd) returns the Java form of the guard of the

step 1 event.

140 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.3.3 Event Loops

There is no semantic notation for specifying loops in Event-B. However, loops can be

modelled in Event-B. For instance, in the refinement diagram on the top-left of Fig-

ure 8.29, we use all(i) to indicate that the step evt event will be performed for all i

before performing the event on the right. To specify a loop, additional flag/state vari-

ables are required and used to formulate guards to control the sequencing and iteration

of the events to be performed. In this case, a guard – saying that the number of i

that has been performed has not reached the number required – is needed to make the

step evt event enable. This condition will be false when all steps have been completed.

all i

 public rtype abs_mtd(ext_prms){

...

while (JF(step_evt.grd)){
JF(step_evt.act);

}

...
 }

abs_evt

step_evt

 public rtype abs_mtd(ext_prms){

...

for(i=init_val;i<=mx_val;i++){
if(JF(step_evt.grd)){

JF(step_evt.act);
}

}
...

 }

while grd

abs_evt

step_evt

... ...

... ...

Figure 8.29: A general rule for implementing event loops

In Figure 8.29, we present two styles of implementing event loops. First, a for-loop is

used and then the second a while-loop is used. Each style is suitable for a particular

case. Using a for-loop is applicable only when we have already known the number of

iterations to be performed, otherwise using a while-loop is more suitable. On the top

of Figure 8.29, we present an implementation of for-loop. In this case, the step evt

event will be performed for all i when the if-condition (JF (step evt .grd)) is true. Here

init val and mx val represent a lower-bound and an upper-bound of the value of i . The

bottom shows a loop event which is implemented using a while-loop. The guard of the

step evt event becomes a condition of the while-loop. All actions of the step evt will be

performed while the condition of the while-loop is true.

Chapter 8 Systematic Translation of Event-B Models into Java Code 141

8.3.4 Shared Events

The purpose of this section is to provide a general rule for implementing a shared event

synchronisation. As mentioned in Section 8.2.2, see Figure 8.30 where we have a machine

named A which is decomposed into A1 and A2. Here shared evt is a shared event of

both A1 and A2 before decomposing. The shared event is split into two sub-events

named calling evt (of the machine A1) and called evt (of the machine A2). Suppose

the called evt event of the machine A2 is called by the calling evt event of the machine

A1, we will get an implementation of the calling evt as given on the right, which is

located in the machine class A1. The called mtd method representing the call evt

event is implemented on the A2 side (or in the machine class A2).

A.shared_
evt

 public rtype calling_mtd(ext_prms){

 [declaration of parameters]

if !(JF(A1.calling_evt.pre_grd))
 return err_value;

[rprm =] JF(A2.called_evt(prms));

if !(JF(A1.calling_evt.post_grd))
 return err_value;

JF(A1.calling_evt.act);

return rvalue;
 }

A1.calling
_evt

A2.called_
evt

A1

A2

Figure 8.30: A general rule for implementing a shared event

As given in Figure 8.30, when the called event is performed, a return value may be

produced. We present rprm as a parameter to which the return value is returned. This

parameter is a shared parameter specified for an interaction between these calling and

called events. We classify the guard of the calling event into two parts. These two

parts are pre grd and post grd , representing parts of the guard before and after calling

respectively. Each of them might be omitted if they are not specified in the specification.

For example, if the return value is not required for formulating any post grd guard, the

second part of if-condition will be omitted. When the called method has been completed

and all conditions are satisfied, the action of the calling method will proceed.

It is noted that the composition in Event-B is symmetric [26]. There is no hierarchical

or sequencing structure. That is, sub-components or sub-machines interact with each

other via synchronisation over shared events. In Java, we implement the decomposed

model as a hierarchical structure. For example, methods of A2 will be called by A1.

142 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.3.5 Concurrent Events

To implement events as concurrent methods, such events must be implemented as

method classes implementing Runnable or extending Thread [63]. Figure 8.31 shows

a scheme of implementing concurrent methods. Within the method constructor, an

initial values of method variables will be assigned. The initial values depend on the

values of passing parameters (parms). Method run is required for implementing this

kind of method. The purpose of the given Event-B event is expressed within the body

of method run in java form. The action of the event will be performed only when the

guard of the given event holds. (Examples of and details of an implementation are given

in Chapter 9.)

 public class ccrt_mtd implements Runnable{

[declaration of method variables];

//method constructor
public ccrt_mtd (parms){

[assigning method variables];
}
//run method
public void run(){
 if(!JF(ccrt_evt.grd)) return;
 JF(stepn.act);
}

}

Figure 8.31: A scheme of implementing concurrent methods

In Java implementation, new thread will be created every time this kind of method is

called. Several treads which are created will be run simultaneously. The Java code given

below is an example of creating and starting a thread of the method name ccrt mtd .

(new Thread(new ccrt mtd(parms))).start();

8.3.6 Applying the Rules

In this section, we have three examples of event implementation. The first is a simple

example of an implementation of the incr evt which was given in Section 3.5. This

event is composed of three sub-events: start, step and end. Figure 8.32 shows an imple-

mentation of this event where the rules given in Figure 8.28 and 8.29 are applied. This

event has the effect of increasing the value of x by the value of y . Because there is no

guard specified of the start event (see Figure 3.8), we have only an implementation of

the action part of the start event.

Figure 8.33 shows an example focussing on the flash file model. This example shows

an implementation of the writefile event which is also decomposed into three phases:

w start , w step and w end . Each sub-event is implemented as a separated method.

Chapter 8 Systematic Translation of Event-B Models into Java Code 143

 public boolean incr_mtd(){

int n;
int x2;

 boolean flag;

 n = 0;
 flag = false;
 x2 = x;

while (flag == false && n < y) {
 x2 = x2 +1;
 n = n + 1;
}

if(flag==false && n==y){

x = x2;
flag = true;

 }

return true;

 }

JF(start)

Declaration of internal
parameters

JF(step)

JF(end)

Figure 8.32: Java code implementing the incr evt event

The third example is given in Figure 8.34. This figure shows the implementation of

the w step event where the rule of shared event synchronisation given in Figure 8.30 is

applied. We implement the w step event as a separate method because this process is

complicated and will be called several times by the writefile method in order to write

a file. Therefore, implementing as a separate method would be more appropriate. This

method is located in the file system layer. In order to write a page, the page program

method provided by the flash interface will be called. If programming the given page

succeeds, a true value will be returned. Otherwise a false value will be returned.

Note: If we want to implement events writefile and w step as concurrent methods, these

events must be implemented as method classes implementing Runnable or extending

Thread , using the scheme given in Figure 8.31. Examples and details are given in

Chapter 9.

8.4 Related Work

Recently, several code generators have been developed to translate formal specifications

into programming code such as C++, Java, or Ada. For example, B0 of the B-method is

a final refinement of a B specification that can be translated to programming code [90].

Atelier-B [38] is a tool that can generate C, C++ or Ada code from the B0. Java Card

Code Generator [114], is another example of a code generator used to translate B spec-

ifications to Java code. The BART tool [107] is another tool for automatic refinement

that is currently being developed by ClearSy. This tool aims at automatically refining

the well-detailed B specification to a B0 implementation that can be translated to pro-

144 Chapter 8 Systematic Translation of Event-B Models into Java Code

 FS.writefile
 public boolean writefile(FILE f, String cnt){

 /*
 * (1) Start write, setting temp-buffer and file state
 */
 if(!w_start(f,cnt))
 return false;

 /*
 * (2) Loop to write each page (w_step) to the flash memory.
 */
 boolean success = false;

 for(int p=0;p<f.get_wbf_size();p++){

 //write a single page p
 success = w_step(f,p);

 //if not success in any page being written
 if(!success){

 w_end_fail(f);
 return false;
 }
 }
 /*
 * (3) End write
 */
 if(!w_end(f)){
 //if not success in the last step

 w_end_fail(f);
 return false;

 }

 //return true if all are completed
 return true;
}

w_start

all(p)

w_step(p)

w_end_fail

w_end_ok

Figure 8.33: An abstract method writefile

gramming code using Atelier-B. Other extensions of existing formal methods such as

Object-Z and VDM++ also have code generator tools. For instance, IFAD VDM [9]

supports automatic generation of C++. However, most of code generated from those

tools do not cover all system modules, such as the user interface which is manually

implemented.

Considering Event-B, currently, there are no direct code generators published for Event-

B. However, it has been considered as a future plug-in to be developed for the Rodin

platform [7, 5]. Object-oriented Concurrent-B (OCB) [48, 49], is a recent project aimed

at developing a tool used for designing models of concurrent systems. Each model is

designed in the form of a Java-like model that can be automatically translated into an

Event-B specification for verification and can be automatically translated into Java code

for its implementation. Our work aimed at directly transforming an Event-B model into

Java code which is different from the work of Edmunds (translating a Java-like model

into Java code). The work of Wright [119] is to translate an Event-B model into C code,

which is a structure programming style. This work focuses on event-transformation. In

addition, UML-B [113] is one of the Rodin plug-ins allowing developers to construct

UML-like models. This plug-in provides UML-like features, such as class diagram, state

diagram, etc. These diagrams are automatically translated into Event-B specification.

In contrast to [113], our approach is to construct Java classes from the Event-B specifi-

cation, instead.

Chapter 8 Systematic Translation of Event-B Models into Java Code 145

FS.w_step

 public boolean w_step(FILE f, int idx){
 //the given file must be in the writing state

 //f ∈ writing_files
 if(!f.isWriting()) {
 return;
 }
 /*
 * Get the buffer content of the page specified
 */

 //idx|->cnt ∈ wbuffer(f)
 String pcnt = f.get_wbuffer(idx);
 /*
 * Construct a page data

 * pdata ∈ PDATA
 * objOfpage(pdata) = f
 * pidxOfpage(pdata) = idx
 * verOfpage(pdata) = writing_version(f)
 * dataOfpage(pdata) = cnt
 */
 PDATA pdata = new
 DATA(file.getOID(),index+1,file.getWritingVersion(),pcnt);

 //r ∈ RowAddr
 /*
 * Call flash API to program this page where r is the return value
 */
 RowAddr r = f.page_program(pdata);

 if(r==null){ //if not succeeded
 [Massage: Writing the given page fails];
 }else{ //if succeeded
 /*
 * Add new entry to the table of contents
 */

 // fat_tmp(f) := fat_tmp(f) ∪ {i ↦ r}
 TOCEntry tocEntry = new TOCEntry(idx+1,r);
 f.addToC_tmp(idx+1,tocEntry);
 }
 }
}

Figure 8.34: A method implementing the w step

For a simple case (e.g. simple data structure), we might use OCB or Wright’s code

generators. However, for a complex structure (such as event decomposition), these

tools may not appropriate. We may use a tool to translate an Event-B model into

classical B specification in order to be converted into B0 that can later be translated

to programming code. However, this requires more work. Additionally, code generators

supporting B0-translation do not support concurrency [38].

8.5 Conclusion and Discussion

Systematic rules that can be used in general are important. These rules act as a frame-

work or guideline for developers to implement the system model. In this chapter, we

have proposed systematic rules for class construction and event translation that would

be useful for developers in translating Event-B models into Java code.

While translating the Event-B specification to programming code, the readers may find

that sometimes it is difficult to express lines of the specification into programming code

because there are no specific rules for translation. As discussed in Section 8.3, one line

of specification may be translated into different styles of programming code. However,

those different styles must be a correct implementation. That means if we know what the

146 Chapter 8 Systematic Translation of Event-B Models into Java Code

specification is or what the purpose of each line of the specification is, we will know how

it can be coded using programming language even there are many styles to implement.

To make these translation rules more useful and applicable in the future, mechanical

application of rules is important. For example, providing an automatic tool to refine

the well-detailed specifications into the normal forms that are able to be applied by the

translation rules.

For example, if we have

a ∈ P(A)

specified in the specification, this line should be reformulated as a normal form as

a ⊆ A

in order to be able to be translated using Rule 2b.

Another example, if we have any guard specified as

grd : x ∈ A \ a

this guard should be split into

grd a : x ∈ A (declaration)

grd b : x /∈ a (condition)

which are the normal forms that are able to be translated using existing translation

rules.

For a complex structure, such as

p ∈ x → y

where x or y are a product of two entities or more.

For example, if x = a×b, namely, p ∈ a×b→y , x could be reformulated as an Event-B

record, where a and b are specified as its properties. Suppose this record type is named

X in a context, we will get

p ∈ x → y

Chapter 8 Systematic Translation of Event-B Models into Java Code 147

where

x ⊆ X .

That is, Rule 3 is now applicable. Namely, X becomes a class with an attribute p typed

Y , which is shown in Figure 8.35.

X

A a;
B b;
...
Y p;
...

Figure 8.35: An example of class representing compound entity

Similarly, if y is also a product of some entities, such as y = c × d , then we will get a

class representing y where c and d are its attributes.

More systematic rules for implementing patterns of set and relation operations are also

required for future work. As mentioned earlier, these kinds of operations (such as do-

main/range restriction, subtraction, etc.) may be implemented in various ways (de-

pending on programming styles). Our work does not cover all Event-B notations but we

provide the translation rules in general that developers can follow.

In addition, to guarantee the correctness of the translation rules, formal verification of

translation (of both high-level specifications to low-level specifications (that are imple-

mentable) and low-level specifications to generated code) and verified translators are

also important. We need proofs to ensure that the application of rules has been done

correctly. Verification of generated code can be achieved by many approaches, such as

providing an automatic code generator, or by providing assertions to verify the code,

against. For example, in the case of JML (Java Modelling Language) [21], we may gener-

ate assertions from invariants and events specified in the models and then verify the code

using the JML tool. These assertions will help developers to guarantee that Java code

which are implemented preserves those required properties/assertions. An automatic

translation tool is also required, to ensure that the assertions are formally generated

and verified. Additionally, providing verified translators is an alternative approach to

guarantee the correctness of code translation like Atelier-B translators [38] that aim to

translate B0 (an implementable form of classical B) into programming code (e.g. C and

Ada).

Chapter 9

An Implementation

9.1 Introduction

This chapter aims to present an implementation of a flash file system. The purpose of

this implementation is to show how the model of flash file system can be implemented,

how the translation rules can be applied, and to convince ourselves and the readers that

the model we have developed is possible to be implemented.

Although we do not have an automatic code generator to translate the formal specifica-

tion into programming code, it does not imply that the final implementation does not

satisfy the given specification or is a bad implementation. To reduce the gap between the

specification and its implementation, we have a set of systematic translation rules that

have already discussed in Chapter 8. Our implementation of the flash-based file system

presented in this chapter follows from the translation rules mentioned. (We manually

transform our models into Java code following those rules.) However, as mentioned pre-

viously in Chapter 8, the rules we proposed do not provide all possible rules to cover all

Event-B notation. For instance, lines of the specification related to set or relation op-

erations (such as restriction, subtraction, overriding, etc.) vary by programming styles.

Although we present no rules specific to these, we have provided general rules that may

be followed.

As mentioned in Section 8.5, we may use code verification techniques – such as JML [21],

automatic code generation – to guarantee the correctness of code. For example, we

may generate assertions (in JML) from Event-B specifications and use JML tool to

verify code. In addition, providing verified translators is another approach to ensure the

correctness of code translation. This is another way of reducing the gap and gaining

higher assurance. However, because of the time constraint, we did not use this technique

for our implementation.

In this chapter, we begin with outlining a prototype of a flash file system in Section 9.2.

149

150 Chapter 9 An Implementation

After that, a conclusion and future work are given in Section 9.3.

9.2 Prototype

Figure 9.1 shows an overview of the flash file structure which is summarised from the

architecture of the Intel Flash File System Core Reference Guide [67]. In Figure 9.1,

the file system layer is the part we specified in Chapter 5. We implemented this part as

user/application interfaces providing commands to animate the file system. The flash

interface layer down to hardware layer, the dashed box, is the part which is simulated.

Some intermediate layers in the dashed box, such as the data object and the basic

allocation layers are not mentioned in this figure. We assume that all layers within the

dashed box are composed as one layer providing page read and page program interfaces

to the file system layer. This simulation part corresponds to the flash model we specified

in Chapter 6.

File System Layer

Flash Interface Layer

User/Application/OS Layer

FLASH HARDWARE

Figure 9.1: A structure of a flash file system

A prototype which is outlined in this section was implemented using Java on the Eclipse

platform. Part of the simulation aims at simulating an array of pages within the flash

memory and animating what changes are made to the flash array whenever file operations

have been performed.

The reasons we chose to simulate a flash device rather than use the existing real flash are

(i) simulation of faults is easier to be made since our work contrate on fault-tolerance,

(ii) not all flash devices follow the ONFI standard we have followed, and (iii) because of

the competition, underline specification of the recent products in the market are secret.

Figure 9.2 shows an example of flash simulation. It displays a current array of pages

Chapter 9 An Implementation 151

within a flash memory. Each page is identified by a row address which is composed of

a LUN address, a block address and a page address. Besides the address, each page

contains its content and status fields which are used to identify the current status of

each page, etc. In Figure 9.2, there are two versions of file f . The second version is valid

while the previous version is obsolete. When the file is opened for reading, all pages

corresponding to the valid version are read.

Figure 9.2: A simulation of the flash array screen 1

Suppose in a reclamation process, block (0,1) has been reclaimed. Figure 9.3 shows a

result of this. All valid pages at rows (0,1,2) and (0,1,3) have been relocated to rows

(0,2,2) and (0,2,3) respectively. The old locations become obsolete and are ready to be

erased. When this block (0,1) is selected to be erased, programmed and obsolete bits

will be set to be false.

In the file system layer, file read and write methods are implemented as concurrent

methods implementing Runnable. Figure 9.4 and Figure 9.5 show such implementation

of the writefile and w step events of the file system layer, where they are implemented in

a concurrent style. Each call of writefile is a separate thread. Within a writefile thread,

all w step (write a page) are run concurrently.

Similarly, when the interfaces page-read and page-program (provided by the flash inter-

face layer) are called, they can be executed concurrently in an interleaved fashion.

Methods accessing state variables within the flash, such as page-read and page-program

must be synchronized in order to ensure thread safety [63]. Figure 9.6 gives an imple-

mentation of the page program event which is an interface provided to the file system

layer. Because this method has the effect of modifying the flash content that might

152 Chapter 9 An Implementation

…

Figure 9.3: A simulation of the flash array screen 2

be accessed by several read/program operations simultaneously, this method must be

synchronized.

9.3 Conclusion and Assessment

We have presented an implementation of a flash-based file system by using the translation

rules given in Chapter 8. Our implementation covers two parts: (i) the file system layer

providing interfaces to users and application programs and (ii) the flash interface layer

providing interfaces to the file system layer. The first part implemented follows the

specification given in Chapter 4. The implementation of this layer provides interfaces

used to animate the system covering basic file operations such create, read/write files.

The implementation of the second part follows the specification given in Chapter 6. This

part aimed at simulating the flash device whenever the flash operations are performed.

The implementation we have completed still has a gap between the specification and the

implementation. In order to narrow the gap, further work is still required – such as an

automatic tool for refining Event-B models into the normal forms that are able to be

translated using the translation rules, and automatic code generators.

Based on this implementation, much time was spent for specifying and reasoning about

this model, but only few weeks were spent for coding the prototype. It can be believed

that formal activities (modelling and verifying) make developers understand more about

the systems being developed. As a result, the more understanding the developers have

would make it easier to achieve an implementation of the system which satisfies the

given specification. This could reduce the time used for the implementation as well.

Chapter 9 An Implementation 153

FS.writefile

 public class writefile implements Runnable{
 private int fid;
 private String cont;
 //constructor
 public writefile(int id, String cnt){
 fid = id;
 cont = cnt;
 }
 //run method
 public void run(){
 FILE f = getFile(fid);
 if(f==null){
 [Masseging: "File does not exist!"];
 return;
 }
 if(!f.iswOpened()){
 [Masseging: File has not been opened for writing!"];
 return;
 }
 /*
 * (1) Start write
 */
 w_start(f,cont);

 /*
 * (2) Write a single (w_step).
 * Loop to write each page to the flash memory.
 */
 for(int i=0;i<f.get_wbf_size();i++){
 try{
 (new w_step(f,i)).run();
 }catch (Exception e){
 writefile_fail(f);
 return;
 }
 }
 /*
 * (3) End write
 */
 if(!w_end(f))
 writefile_fail(f);
 }
}

Figure 9.4: A concurrent implementation of the writefile event

However, it cannot ensure that the final implementation satisfies all what are specified

in the given model. Therefore, additional systematic translation rules, verification of

translation and automatic code generators are still required in the future.

154 Chapter 9 An Implementation

FS.w_step
 public class w_step implements Runnable{
 private FILE file;
 private int index;
 public w_step(FILE f, int idx){
 file = f;
 index = idx;
 }
 public void run(){
 //the given file must be in the writing state
 if(!file.isWriting()) {
 return;
 }
 /*
 * Get the buffer content of the page specified
 */
 String pcnt = file.get_wbuffer(index);
 /*
 * Construct a page data
 */
 PDATA pdata = new
 DATA(file.getOID(),index+1,file.getWritingVersion(),pcnt);
 /*
 * Call flash API to program this page
 */
 RowAddr r = flash.page_program(pdata);

 if(r==null){ //if not succeeded
 [Massage: Writing the given page fails];
 }else{ //if succeeded
 /*
 * Add new entry to the table of contents
 */
 TOCEntry tocEntry = new TOCEntry(index+1,r);
 file.addToC_tmp(index+1,tocEntry);
 }
 }
}

Figure 9.5: A concurrent implementation of the w step event

 FL.page_program
public synchronized RowAddr page_program(PDATA pdata){
 //r and pdata are shared parameters
 //r : RowAddr\programmed_pages
 //pdata : PDATA
 RowAddr r = getFreePage();
 if(r==null)

 return null;
 //extracting the row address
 int l=r.get_lid();
 int b=r.get_bid();
 int p=r.get_pid();

 //if the event guard satisfies
 //flash(r) := pdata
 //programmed_pages := programmed_pages � {r}
 flashArray[l][b][p]=pdata;
 programmed[l][b][p]=true;
 //return the address to which the given data is programmed
 return r;
}

Figure 9.6: An implementation of the page program event

Chapter 10

Modelling, Refinement and Proof

Guidelines

10.1 Introduction

The purpose of this chapter is to contribute our modelling, refinement and proof guide-

lines. These guidelines are based on our experiments which were carried out using Event-

B and Rodin to model a flash based file system. We firstly give modelling guidelines in

Section 10.2. Refinement guidelines are given in Section 10.3 and proof guidelines are

discussed in Section 10.4. Note that some improvement guidelines to the formal language

and the Rodin tool are given in Chapter 11 where we assess Event-B and Rodin.

10.2 Modelling Guidelines

(MG1) Careful selection of formulation can ease proof effort. Based on experience of

modelling the file system layer, in order to specify any system’s property, possible formu-

lations should be explored and analyzed to find which one is suitable for modelling that

required property. For example, as explained in Chapter 4, we avoided using transitive

closure to specify the no-loop property in order to find the easier way to prove. Instead

of using transitive closure to specify no-loop property, we employed the no-loop theorem

proposed by Abrial in [4] to model this property. As a result, this makes proof easier.

(MG2) Avoid using quantification to formulate specification, if possible. This could make

models simpler and easier to proof. Namely, proving the preservation of invariants, which

are specified using qualification, might require interactive instantiation that makes proof

more difficult. To avoid, for example, instead of specifying an invariant like

inv a : ∀ r ·r ∈ dom(trans func)⇒ trans func(r) ∈ programmed pages2

155

156 Chapter 10 Modelling, Refinement and Proof Guidelines

it can be simplified as

inv b : programmed pages2 = trans func[programmed pages]

which is simpler, where dom(trans func) ⊆ programmed pages.

(MG3) Instead of introducing new machine invariants to satisfy some system properties,

providing machine theorems and proving that these properties are satisfied is another

mechanism used for specifying system models – for instance, modelling of the reach-

ability property that we have already discussed in Chapter 4. We only need to show

that machine theorems follow from the existing invariants and axioms. However, this

approach can only be used when the new theorem follows from existing invariants.

(MG4) As partially discussed in Chapter 4, providing additional parameters in each

event is useful sometimes. Although more guards are needed, it could make models more

readable and easier to manage in both specifying and proof. Moreover, it is felt that

providing a separation of input and output parameters (e.g. using name conventions)

would make Event-B models more readable and easier to model communication systems.

(MG5) We have used two different ways of specifying the status register of each LUN

in Section 6.6. The first is specifying as a state function and the second is specifying

as state sets. Each approach is appropriate for a particular state property. Although

we have found that specifying using state sets gave us a higher degree of automatic

proofs, specifying using state function makes models more readable and easier to specify.

Developers may choose state set if the number of state is small (e.g. two or three possible

states). On the other hand, if the number of state is more than three we suggest to specify

as a state function that would make the model easier to manage.

(MG6) Which direction is suitable for specifying a property? Figure 10.1 shows two

possible ways of specifying a relation property between X and Y. Developers may have

a difficulty of choosing which way to be addressed.

Case A is the way to specify Y as a property of X. That means we will get a property

variable given below.

ypropOfx ∈ X →Y

On the other hand, Case B, if we were to specify X as a property of Y, then we will have

xpropOfy ∈ Y ↔ X

Our guideline is to suggest that (if possible) specifying as a function is more appropriate,

since the inversion can be used to obtain an inverse property. That is

Chapter 10 Modelling, Refinement and Proof Guidelines 157

.

.

.

.

.

.

Case A

Case B

X Y

.

.

.

.

.

.

Figure 10.1: Two possible ways of specifying a property

xpropOfy = ypropOfx−1

However, if the relation between X and Y is not a function, specifying X ↔ Y or

Y ↔ X has no deference in modelling difficulty and proof. Thus, this depends on the

users’ preference. However, we have a guideline to suggest. If X is more frequently

referenced than Y or there are some other properties specified like apropOfx ∈ X → A,

specifying ypropOfx ∈ X ↔ Y would be more systematic.

(MG7) Based on our experiment in comparing two styles of specifying user-defined types:

cartesian product versus projection function. In our development, these two styles have

no difference in proof. However, we have found that specifying using projection function

is easier to specify and follow. As example discussed in Section 6.2, we have a row address

which is composed of a LUN address, a block address and a page address. If we were to

specify using cartesian product as RowAddr = LUAddr×BAddr×PAddr , addressing an

individual element of a row address is more complicated than using projection function.

For example, getting the middle element of any row address r requires nested projection

(i.e. proj1(proj2(r))), which is more complex than using projection function for each

element.

(MG8) Redundant guards should be avoided. If any guard can be determined by an-

other within the same event, it is not necessary to be specified. For example, suppose

wbuffer(f) is specified as N 7→ CONTENT , if we have grd1 : i /∈ dom(wbuffer(f)) then

grd2 : i 7→ cnt /∈ wbuffer(f) is not necessary to be specified because grd2 is always true

if grd1 is true.

(MG9) Conflicting guards shall be avoided. Developers should be aware of introducing

a conflict guard because conflict guards are not detected and reported by the tool. For

158 Chapter 10 Modelling, Refinement and Proof Guidelines

example, we may have grd1 : x ≤ 0 and grd2 : x > 1 specified as guards of an event.

These two guards are conflict but have no proof showing this modelling flaw.

(MG10) To make models more readable, naming is important. Developers should be

aware of naming. Namely, naming of variables, constants or even sets should be explicit

and easier to follow. For example, developers may use uppercase for naming set types,

while lowercase should be used as a prefix of variable names.

(MG11) As we discussed an idea of event extension proposed by Rezazadeh and Butler

in [108] together with our supporting experiments presented in [44], nowadays, this

idea has become an event-extension feature available in the Rodin toolset release 0.9.2

or later. The purpose of this feature is to refine a model by introducing only new

properties or some extending parts to the concrete machine, as an example given in

Figure 4.18. We have found that this feature is very useful for feature augmentation. It

makes modelling simpler and easier to refine. In addition, some changes can be made

to the abstract levels individually and are propagated down automatically. This is in

contrast to when we were developing the model of [45] using the Rodin tool release 0.8.2

that has no support for event-extension. We would like to suggest this feature for other

developments involving horizontal refinement.

10.3 Refinement Guidelines

We presented two approaches to refine Event-B models: horizontal refinement and ver-

tical refinement. These two approaches are based on the purpose of refinement. The

horizontal is for introducing new features in refinement steps. It is also called “fea-

ture augmentation” [27]. This kind of refinement is suitable for introducing new system

properties that may be postponed or missed in the abstraction. On the other hand,

The purpose of the vertical refinement or structural refinement is to add more design

details to the models instead of adding new features. As an example given in Chapter 4,

we began with horizontal refinement steps to incrementally model an abstract file sys-

tem before focusing on vertical refinement to relate the abstract file model to the flash

specification. However, it is not necessary to complete all horizontal refinements before

starting any vertical refinement. If we have missed some features or some properties,

they can be introduced later even if some vertical refinements have been completed.

For example, we have introduced the status register at the last step of refinement in

Chapter 6.

Make the refinement gap as small as possible. As discussed in Chapter 4, the small gap

leads to simpler gluing invariants and makes refinement not too complicated. We also

believe that this help us to discover sufficient invariants. Incremental feature augmenta-

tion is effective for proof and coverage. As we have found in our experiments, this kind

of development make models easier to manage and modify, and it is useful for specifying

Chapter 10 Modelling, Refinement and Proof Guidelines 159

complex systems that may have many features to be covered. To make specification

easier to manage, those features can be divided into submodules and introduced in re-

finement steps. Refinement can also be used to introduce other requirements that may

be postponed or missed from the previous steps and later be covered in the refinement

steps. Refinement allows us to factor out some of the modelling and proof complexi-

ties. In our development, we began with focusing on the tree structure manipulation in

the abstract model and postponed other details to other refinement steps. We did not

distinguish files and directories at the abstract level. This made the proof obligations

and invariants for the tree structure easier to formulate than if we had tried to model

everything in one level.

10.4 Proof Guidelines

To make proof simpler and gain a higher degree of automatic proof, modelling styles,

refinement techniques, etc. are important. For example, introducing proved theorems

to help proof easier, sequencing of guards, careful selection of formulation, using POs

as guidelines and so on, are important to achieve a higher degree of automatic proof.

Some of these have already been discussed in Section 10.2.

For example, introducing additional theorems can ease proof effort. Two kinds of theo-

rems were introduced in our development. The first type is a set of specific theorems,

which were derived from the existing machine invariants and axioms. This kind of the-

orems can be used to specify some system properties instead of specifying as invariants.

This has already been discussed in Section 10.2. The second type is a set of general

theorems which are introduced and used for discharging POs. General theorems should

be specified in a context. They can be seen and used by more than one machine, and can

be extended by other contexts. On the other hand, specific theorems should be specified

in machines. These specific theorems can be used to help discharge proof obligations

as well. We did this on specific example to enforce the guidance. As already discussed

in Section 4.14, we introduced some useful theorems (such as a tree-join theorem) to

help proof of the tree properties. This additional theorem can be reused for discharging

similar proof obligations – i.e. it was used to prove that events create, copy and move

preserve the no-loop property. This makes interactive proof easier and can reduce the

time used for proving.

Remove redundant invariants or replace some invariants by another simpler ones. For

instance (as discussed in Section 6.7), we can simplify by using partition function to spec-

ify disjoint sets, instead of introducing a number of invariants saying that intersection

amount of those sets is empty. This can also reduce the number of POs.

Ordering of event’ guards affects proof results. In order to gain more proof effectiveness,

developers must be aware of the order of guards being specified. For example, the guard

160 Chapter 10 Modelling, Refinement and Proof Guidelines

that is required to prove the well-definedness of another guard should be specified before

that guard.

Use failing POs as guidelines for specifying and reasoning about system models. That

is, in each step of iteration of modelling, modification and proof, POs generated by the

Rodin tool could be used as guidelines to improve the model. This kind of improvement

may involve removing errors and strengthening in order to help proof. For example,

it can be used to determine which gluing invariant should be added to the machine or

which guard should be added to the event in order to improve the model. As a result,

this technique means we get a higher degree of automatic proof. The work of Ireland

et al [80] proposes an automatic tool to generate modelling guidance from failed proofs.

This work would be useful in the future if such guidelines are generated automatically,

instead of analysing by the developers themselves that might require skilled knowledge.

Reuse the proof trees to discharge the same proof obligations, if possible. Namely, we

may have some POs that have already discharged. The proof trees of these POs (maybe

the whole tree or just some parts of the proof tree) can be reused to prove some POs

that have the same hypothesis and goal. As an example given in the evolution of the

file system model (Chapter 5), we reused proof trees of the original model to discharge

the same POs of the revised model. Reuse of proof tree is done by copying the proof

tree (that have already been proved) from the proof window and then pasting it onto

the proof window at the same target goal. We have found that this is really useful for

avoiding reproving the PO that is really complex and requires many interactive steps.

Note that reusing of proof trees will not succeed if naming (of variables or parameters)

of the source machine and of the target machine is different.

Chapter 11

Conclusion and Future Work

The aim of this chapter is to summarise our findings and discuss some future work. We

summarise what we have carried out and achieved from each chapter in Section 11.1.

An assessment of Event-B and Rodin is discussed in Section 11.2. Finally, future work

is discussed in Section 11.3.

11.1 Conclusion

As previously mentioned in Chapter 1, there are many formal methods used for specifi-

cation and verification. In addition, a number of useful theories and tools are available

for modelling and reasoning about systems. However, they need to be improved in many

ways to bridge the gap between requirements, specifications and implementations. For-

mal methods should be made more accessible to users. More experiments need to be

carried out in order to produce scientific evidence that can convince users to deploy and

gain more benefits from the use of those theories and tools. Therefore, this experimental

approach was chosen as a direction of our research. Event-B and Rodin were selected

as a method and a tool for our experiments. A flash-based file system was considered

to be a case study of our work.

In this thesis, we have completed six main pieces of work: (i) modelling and proof of

a tree-structured file system. This is later refined in Chapter 4 by focusing on read

and write operations, fault-tolerance and machine decomposition; (ii) in Chapter 5, we

showed an evolution of the file system model; (iii) in Chapter 6, we outlined refinement

and proof of the flash interface layer which is based on the ONFI specification; (iv) in

Chapter 8, we identified systematic translation of Event-B models into Java code; (v)

in Chapter 9, we implemented a prototype of a flash-based file system which is a link

between the first model and the second model by using translation rules of the fourth

part; and (vi) in Chapter 10, we provided modelling, refinement and proof guidelines

which are based on our experiments and experience of modelling.

161

162 Chapter 11 Conclusion and Future Work

MCH0

MCH1

MCH2a

MCH3a

MCH4a

MCH5a

MCH6a

MCH7a

MCH_FL

MCH_R1

MCH_R2

MCH_R3

MCH_FSa

MCH2b

MCH3b

MCH4b

MCH5b

MCH6b

MCH7b

MCH_R4

MCH_R5

MCH_FSb

decompose ………...

tree structure ………

files/directories ……

file content ………...

permissions ………..

missing properties ...

decompose write

decompose read

link to flash spec

introduce reclamation events ……….

sequence the reclamation events ….

refine block erase …………………...

introduce status register …………….

introduce page register ……………....

CTX0 sees

sees

sees
refines

refines

extends

Figure 11.1: A diagram of refinement chains representing a development of a flash file
system

Figure 11.1 shows a diagram of refinement chains representing an overview of our devel-

opment of a flash-based file system. We have completed two refinement chains of the file

system model (which are represented by suffixes a and b). The revised model where the

requirements have been changed is represented by the chain b, while the original model

is represented by the chain a. We have decomposed the file system model (MCH7x) into

two sub-models representing the file system layer and the flash interface layer. After

that we have explored five further refinements (MCH R1 up to MCH R5) focussing on

the flash specification. We have got eight levels of specification (MCH0x up to MCH7x)

representing the file system layer and six levels (MCH FL up to MCH R5) representing

the flash interface layer.

In the modelling of the file system layer, we began with an abstract tree structure and

later explored seven refinement steps (MCH1..MCH7) to complete the file system model.

In the first step (MCH0), we focused on a tree structure and operations affecting the

structure. In this step, directories and files were treated in the same way as objects in

Chapter 11 Conclusion and Future Work 163

order to make proof easier. Directories, files and other properties such as file contents,

permissions were postponed to other refinements. The flash specification was introduced

in the seventh refinement (MCH7x) in order to relate the abstract file system to the flash

structure.

In this development, we have found some useful techniques that can ease proof effort

and make models easier to manage – such as careful selection of formulation, providing

additional proved theorems to help proof, use of refinement to introduce missing prop-

erties or new features; providing additional event parameters, etc. These techniques

mentioned have already been proposed as guidelines and discussed in Chapter 10.

The second model represents the flash interface layer (in Chapter 6). After the machine

decomposition has been used to split the file system machine into two sub-machines, we

have completed five further refinement steps (MCH R1 .. MCH R5) focussing on the

flash specification. The purpose of these refinement steps is to incrementally add more

design details of the flash specification and model the wear-levelling technique. The

incremental approach and other useful techniques we have found in the development

of the file system model (such as selection of formulation, using POs as a guideline

for correcting the model, etc.) were employed in specifying this model. Additional

constraints and details were added in each step of refinements. From this model, we

have completely reached 100% POs discharged automatically. We also have carried out

some experiments to compare styles of modelling and proposed guidelines in Chapter 10.

For example, specifying state values as state sets led us to gain higher degree of automatic

proof. Specifying data types using projection function makes models easier to manage

than using cartesian product, as example of specifying RowAddr discussed in Section 6.2.

In Chapter 7, we have discussed some related work on applying formal methods to the file

store problem and provided a comparison. A distinguishing feature of our development

is the use of multiple levels of refinement. In this way we relate an abstract model, with

large atomic events (i.e. read and write) on abstract data structures, to a model with

more complex concrete data structures, and more fine-grained atomic steps. Another

distinguishing feature of our work is the use of machine decomposition to partition

the system model after several refinement steps. The partitioning led to sub-models

that were refined separately. As stated in [44], it is well-known that decomposition is

important for scaling of formal development. However, it is rare to find examples of its

application in practice. Our development of a flash file system represents an exemplar

of multi-level refinement and of machine decomposition that we believe others could

learn from. This acts as an exemplar and is an important contribution of our work.

In addition to this contribution, in Chapter 10, we also provided some guidelines for

modelling, refinement and proof that developers could learn from.

Another contribution of our work is that of providing systematic translation of Event-

B models into Java code. The set of translation rules we presented in this thesis is

164 Chapter 11 Conclusion and Future Work

composed of two categories: class construction and event transformation. However,

more work is required in future in order to make these rules more applicable. (Details

will be discussed in Section 11.3).

The prototype we implemented was divided into two parts. One is an implementation

of a flash file system which is closely related to the file system model we have speci-

fied. Another one is a simulation of flash memory which is related to the flash model

in Chapter 6. This simulation part provides a number of APIs to be called by the

implementation of flash file system. Our implementation follows the specification and

translation rules we have developed and presented in this thesis.

The consistency of the specification is ensured by formal verification techniques, such

as theorem proving and model checking. However, this cannot guarantee that the spec-

ifications/models that have been specified are the right ones or satisfy the desired re-

quirements. Namely, if the all given requirements were not covered (maybe, because of

human errors), the model/specification would not be the right one. That is, inconsisten-

cies between the requirements and specifications may remain. This may lead developers

to wrong implementations. To reduce the gap, requirements engineering techniques,

including systematic translation of requirements into specification, are important. (But

this is out off our research scope.) In our development, to make translation of require-

ments into specifications more systematic, requirements in each step were listed as bullet

points of required properties (as presented in Chapter 4). Some properties (e.g. no-loop

property) were then expressed as invariants that need to be held forever while some

properties/requirements were expressed as events. Namely, whenever the state variables

have been changed (by events specified) the associated invariants much be proved to

be maintained. If all required properties/requirements could be related to/explained by

invariants or any part of the model, then it would be more confident to guarantee that

the model specified is correct/valid.

11.2 Assessment of Event-B and the Rodin tool

The purpose of this section is to assess Event-B and Rodin, which are used in our

development for specifying and reasoning about the flash file system. The assessments

discussed below are based on our experiments and experiences of using Event-B and the

Rodin platform.

11.2.1 Event-B

In this section, we begin with outlining positive points of Event-B and then providing

some guidelines and desirable features that may be useful in the feature.

Chapter 11 Conclusion and Future Work 165

The structure that obviously separates machines from contexts makes an Event-B model

easier to refine. Namely, the machines and the contexts can be individually refined or

referenced by others. Additionally, the flexibility of refinement in Event-B allows users

to decide which approach or technique they want to employ. For example, in case of an

incremental approach, users can postpone some requirements at the beginning and later

address them in other refinement steps.

In addition, even if the specification goes wrong or there is something that cannot be

proved, it is possible to check where and why it is incorrect by using generated proof

obligations as a guideline. For example, each type of the proof obligations, such as GRD

(guard), INV (invariant), etc., can be used to tell what the system is trying to prove

and why it cannot be discharged.

As already discussed in this report, many useful features have been added to the lan-

guage, such as partition operation, event-extension, etc. These features make modelling

and proof simpler. The event-extension is very useful for horizontal refinement. This

makes models easier to be refined and proved. In addition, some modifications can easily

be made to the abstraction individually and are propagated down automatically. The

partition operation makes modelling of state sets simpler. We do not need to specify

a huge number of invariants to clarify that the state sets are disjoint. However, some

features and theories that may be useful for specification should be added to the lan-

guage and tools such as providing useful theories, separation of internal and external

parameters, sequence type, etc.

Distinguishing of parameters between input and output would be useful for specifying

interactive systems. The distinction makes users easier to know which parameters should

be passed to the event and which parameters are local to that event.

Providing a sequence type and its manipulation (like supporting in the B-method) would

be useful for specifying the models that require this type in Event-B. For example, if we

were to specify the structure of a file system as a naming-structure, using sequence type

would make the model easier to manage. Similarly for the transitive closure, providing

it would be useful for modelling as well. Developers could use it directly, instead of

specifying by themselves.

Based on the IsTree predicate we have introduced in the Proof section of Chapter 4,

we believe that providing tree theories as a feature of the language might be useful for

specifying systems involving manipulation of the tree structure. Tree operations join,

split and duplicate can be defined as a theory used for manipulating a tree. For example,

copying a subtree from one place to another can be done by duplicating the given subtree

and then joining the replica with the node of the target tree specified. In order to remove

a subtree, split the subtree specified and then discard it.

166 Chapter 11 Conclusion and Future Work

11.2.2 Rodin

Rodin is not only a tool for specification but also a tool for refinement and verification.

Rodin comes with a database of modelling elements and useful plug-ins such as a proof

obligation generator (POG), model checkers, automated and interactive provers [7]. The

automatic PO generator and provers are useful features for verification that can save

users’ time from manual proving. For example, in case of Z/EVES (a proof tool for Z, but

have no POG), users need to identify POs by themselves. In addition, without automatic

provers, users have to know what goal they need to prove and which hypothesis should

be used to prove that goal. Even though the users are good at proving, they may have to

spend a lot of time to discharge a huge number of proof obligations by themselves. In case

of the Rodin tool, as already discussed in Section 3.9, proof obligations are automatically

generated and then are proved automatically by the provers where possible. Although

some POs are not discharged automatically, the tool provides an interactive prover which

is easy to use. However, the prover needs to be improved in some ways. For example, the

memory problem that always occur when proving some complex POs should be solved.

Another case, some trivial POs that should be discharged automatically still need to be

proved interactively. Sometimes, some necessary hypothesis used to prove the given goals

are missed (are not selected automatically by the tool). Occasionally, many hypothesis

which are not necessary are added to the list of hypothesis used for automatic proof.

These examples may mean the POs cannot be discharged automatically.

Additionally, we now consider our experiences of using the Rodin platform as a tool for

constructing and analysing Event-B models. The Rodin platform provides a useful tool

for Event-B specification. It uses a visual interface which is familiar to users as in other

modern software. Each component used for specification is well-designed and easy to

use. In addition, a refinement can be constructed easily by this tool.

Moreover, as an extensible tool which allows users to customise their tool and plug in

other available tools to satisfy their needs, it makes this tool more flexible and attractive

to use. For instance, the users can install UML-B plug-in to design their models using

components provided by UML-B; plug in a decomposition tool to decompose a machine;

or plug in B2Latex as a tool to generate latex documents, etc.

In order to satisfy additional features of the language proposed in the previous sec-

tion, the Rodin tool should be adapted or additional plug-ins should be provided. For

instance, providing code generators are important for bridging the gap between the

specification and the implementation. It would be good to develop a code generator to

translate Event-B models into programming code such as Java, C, etc.

It would be useful, if conflicting guards could be detected and reported by the tool.

As discussed in Section 10.2, currently, conflicting guards can make models go wrong

without reporting any errors. Thus, it is really important to be aware of this situation.

Chapter 11 Conclusion and Future Work 167

Fortunately, those useful features, such as a decomposition plug-in, and code generator

are considered as roadmap features, and are being developed for the Rodin toolset [7].

Finally, although the Rodin tool supports the event-extension feature that is useful

for feature augmentation, some improvements should be made. For instance, while

extending an event, the previous abstract specification should be shown in the editor

as a disabled part. This would make it easier for developers to follow what they have

specified and what they are trying to extend, instead of hiding it in the editor.

11.3 Future Work

Based on our development, we have seen some issues/features that could be explored in

the future in order to push forward research in formal methods. For example, developing

diagrammatic forms of guidance, comparison of decomposition styles, tools supporting

the generation of useful lemmas, verification of translation, etc. These would be useful

and make formal methods more accessible in the future.

Firstly, it would be useful in future if diagrammatic forms of guidance – such as event-

refinement diagrams (e.g. Figure 4.23, Figure 6.1, etc.) and refinement-chain diagrams

(e.g. Figure 11.1 where we represent the overview of the specification process) could be

developed as plug-ins. We believe these diagrams help us to understand more about the

system being specified. To make it more formal, not just an aid that need to be drawn

by hand, investigation for more formal incorporation of these diagrams into refinement

proof could be carried out, together with tools supporting these features.

Secondly, based on our use of shared event decomposition, we see an issue that would be

useful in the future. Since Rodin provides two types of decomposition (shared variable

and shared event, as discussed in Section 3.6), and a decomposition tool is now available

and being improved, carrying out an experiment of comparison of these two approaches

would be useful to provide scientific evidence for developers/modellers. For example,

what the strengths and the weaknesses of these two approaches are; what kind of systems

they are suitable for, etc.

Thirdly, based on our experience of introducing proved theorems/lemmas to help proofs,

it would be useful if there were tools/plug-ins for generation of lemmas. For example, as

discussed in Section 4.14, we have introduced some proved theorems to help proof of tree

properties (e.g. no-loop property). Instead of discovering and introducing the lemmas by

the modellers themselves, providing modellers with a tool to generate lemmas/theorems

would be better.

Fourthly, providing a tool to automatically generate proof guidance from the failing

proof obligations is another challenge to be addressed. Regarding the proof guideline we

discussed in Section 10.4, we can used failed proof as guidelines to improve (correcting

168 Chapter 11 Conclusion and Future Work

or strengthening) the models. However, use of failing proofs requires skilled knowledge

in formal reasoning. Hence, developing a tool that can generate a list of guidelines from

those failed proof obligations would help developers a lot in modelling and proof.

Finally, as discussed in Chapter 8, our translation rules do not cover all possible forms

of Event-B notation, such as relation operations (e.g. domain/range subtraction, over-

riding, etc.). Additional patterns and systematic rules for translation of set and relation

operations are still required. In addition, similar to BART [107] that have already

discussed in Section 8.4, it would be useful to have an automatic tool for systematic

application of the translation rules. For example, an automatic tool for refining Event-B

models into the normal forms that are able to be translated using the rules. More-

over, formal verification of the translation is also required to ensure the correctness of

the translation. These would be useful in future to make the translation rules more

applicable.

Appendix A

An Event-B specification of a file

system

A.1 An initial model: Tree structure

Tree structured model of file store. There is a single root object. Each object other than

parent has a root. There are no loops in the parent structure. Each object is reachable

from the root.

MACHINE FMCH00

SEES FCTX01

VARIABLES

objects

parent

INVARIANTS

inv1 : objects ∈ P(OBJECT)

inv2 : root ∈ objects

inv3 : parent ∈ objects \ {root}→ objects

inv4 : ∀s ·(s ⊆ parent−1[s]⇒ s = ∅)

No loop: easier to discharge POs than using transitive closure

thm1 : tcl(parent) ∩ (OBJECT � id) = ∅
No loop property using transitive closure

thm2 : ∀T ·root ∈ T ∧ parent−1[T] ⊆ T ⇒ objects ⊆ T

used to prove thm3

thm3 : objects ⊆ {root} ∪ (tcl(parent))−1[{root}]
used to prove thm4

thm4 : (objects \ {root}) ⊆ (tcl(parent))−1[{root}]
Reachabilty property, all objects can be reached from the root node

thm5 : ∀x ·x /∈ ran(parent)⇒ (tcl(parent))−1[{x}] = ∅
All leaf nodes have no children

169

170 Appendix A An Event-B specification of a file system

thm6 : ∀x ·(tcl(parent))−1[{x}]� parent ∈
(tcl(parent))−1[{x}]→ (tcl(parent))−1[{x}] ∪ {x}

thm7 : ∀x ·(tcl(parent))−1[{x}]� parent ∈
((tcl(parent))−1[{x}] ∪ {x}) \ {x}
→ (tcl(parent))−1[{x}] ∪ {x}

this is used for copying, inserting and moving in order to prove that any

subtree rooted at x is a total function.

thm8 : ∀x , s ·s ⊆ ((tcl(parent))−1[{x}]� parent)−1[s]⇒ s = ∅
thm7 plus thm8 implies that any subtree rooted at x is a tree

thm9 : ∀x ·((tcl(parent))−1[{x}] ∪ {x})−▹ parent ∈
(objects \ ((tcl(parent))−1[{x}] ∪ {x})) \ {root}
→ objects \ ((tcl(parent))−1[{x}] ∪ {x})

this is used for delete and move operation in order to prove inv3.

EVENTS

Initialisation

begin
act1 : objects := {root}
act4 : parent := ∅

end

Event newobj =̂

This event creates a new object (obj) with a specified parent (indr).

any
obj , indr

where
grd1 : obj ∈ OBJECT \ objects
grd2 : indr ∈ objects

then
act1 : objects := objects ∪ {obj}
act2 : parent(obj) := indr

end

Event move =̂

Move an object obj to another place to.

any
obj
to
des all descendants of obj

where
grd1 : obj ∈ objects \ {root}
grd2 : to ∈ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to /∈ des ∪ {obj}

then
act1 : parent(obj) := to

end

Event delete =̂

Delete an object that has no children.

any
obj

where
grd1 : obj ∈ objects \ {root}

Appendix A An Event-B specification of a file system 171

grd2 : parent−1[{obj}] = ∅
then

act1 : objects := objects \ {obj}
act2 : parent := {obj} −▹ parent

end

Event copy =̂

Copy an object obj and all its descendants (des) to another location (to).

any
obj , des, to
objs all objects to be copied
corres corresponding function mapping source objects to their copies
nobjs new copies of objs
nobj the copy of obj
subparent subtree to be copied
replica the copy of subparent

where
grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ objects
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ objects
grd8 : corres ∈ objs �� nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des � parent
grd11 : replica = corres−1; subparent ; corres

then
act1 : parent := parent ∪ replica ∪ {nobj 7→ to}
act2 : objects := objects ∪ nobjs

end

Event deltree =̂

Delete the given object obj and all its descendants (des).

any
obj , des, objs

where
grd1 : obj ∈ objects \ {root}
grd2 : des ⊆ objects
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : objs = des ∪ {obj}

then
act1 : objects := objects \ objs
act2 : parent := objs −▹ parent

end

Event mount =̂

Mount a flash device into an existing root.

any
objs all objects to be mounted
prt parent structure of objs rooted at x
x subroot

where
grd1 : objs ⊆ OBJECT
grd2 : x ∈ objs
grd3 : prt ∈ objs \ {x}→ objs

172 Appendix A An Event-B specification of a file system

grd4 : ∀s ·(s ⊆ prt−1[s]⇒ s = ∅)

Has no loops.
grd5 : prt ∩ parent = ∅
grd6 : objects ∩ objs = ∅

then
act1 : objects := objects ∪ objs
act2 : parent := parent ∪ prt ∪ {x 7→ root}

end

Event unmount =̂

any
objs all objects to be released
x subroot to be unmounted.

where
grd1 : objs ⊆ objects
grd2 : root /∈ objs
grd3 : x ∈ objs
grd4 : objs = (tcl(parent))−1[{x}] ∪ {x}

then
act1 : objects := objects \ objs
act2 : parent := objs −▹ parent

end

END

Appendix A An Event-B specification of a file system 173

A.2 The first refinement: Files and directories

In this refinement, objects are partitioned into files and directories. root is a directory.

Any parent is a directory. Variable objects is no longer used.

MACHINE FMCH01

REFINES FMCH00

SEES FCTX01

VARIABLES

f iles

directories

parent

INVARIANTS

inv1 : f iles ⊆ objects

inv2 : directories ⊆ objects

inv3 : f iles ∩ directories = ∅
inv4 : objects = files ∪ directories

inv5 : root ∈ directories

inv6 : ran(parent) ⊆ directories

EVENTS

Initialisation

begin
act2 : f iles := ∅
act3 : directories := {root}
act4 : parent := ∅

end

Event mkdir =̂

Make a directory obj in the given directory indr .

refines newobj

any
obj , indr

where
grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : indr ∈ directories

then
act1 : directories := directories ∪ {obj}
act2 : parent(obj) := indr

end

Event crt file =̂

Create file obj in the given directory indr

refines newobj

any
obj , indr

where
grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : indr ∈ directories

then
act1 : f iles := files ∪ {obj}

174 Appendix A An Event-B specification of a file system

act2 : parent(obj) := indr
end

Event move =̂

Move an object obj and its descendants des to another place to.

refines move

any
obj , to, des

where
grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : to ∈ directories
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to /∈ des ∪ {obj}

then
act1 : parent(obj) := to

end

Event delfile =̂

Delete a file (obj)

refines delete

any
obj

where
grd1 : obj ∈ files
grd2 : parent−1[{obj}] = ∅

then
act1 : f iles := files \ {obj}
act2 : parent := {obj} −▹ parent

end

Event rmdir =̂

Delete an empty directory.

refines delete

any
obj

where
grd1 : obj ∈ directories \ {root}
grd2 : parent−1[{obj}] = ∅

then
act1 : directories := directories \ {obj}
act2 : parent := {obj} −▹ parent

end

Event copy =̂

Copy an existing object obj all its descendants des to another location to

refines copy

any
obj , des, to, objs, corres
nobjs,nobj , subparent , replica

where
grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : des ⊆ (files ∪ directories)
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : to ∈ directories
grd5 : to /∈ des ∪ {obj}
grd6 : objs = des ∪ {obj}
grd7 : nobjs ⊆ OBJECT \ (files ∪ directories)

Appendix A An Event-B specification of a file system 175

grd8 : corres ∈ objs �� nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des � parent
grd11 : replica = corres−1; subparent ; corres

then
act1 : parent := parent ∪ replica ∪ {nobj 7→ to}
act2 : f iles := files ∪ corres[objs ∩ files]
act3 : directories := directories ∪ corres[objs ∩ directories]

end

Event deltree =̂

Delete the given object (obj) and all its descendants (des). Actually, it can be

done recursively by events delfile and rmdir.

refines deltree

any
obj , des, objs

where
grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : des ⊆ (files ∪ directories)
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : objs = des ∪ {obj}

then
act1 : parent := objs −▹ parent
act2 : f iles := files \ (objs ∩ files)
act3 : directories := directories \ (objs ∩ directories)

end

Event mount =̂

refines mount

any
objs, fs, ds, prt , x

fs: set of files, ds set of directories
where

grd1 : objs ⊆ OBJECT
grd2 : fs ⊆ objs
grd3 : ds ⊆ objs
grd4 : objs = fs ∪ ds
grd5 : fs ∩ ds = ∅
grd6 : (files ∪ directories) ∩ objs = ∅
grd7 : x ∈ ds
grd8 : prt ∈ (fs ∪ ds) \ {x}→ ds
grd9 : ∀s ·(s ⊆ prt−1[s]⇒ s = ∅)
grd10 : prt ∩ parent = ∅
grd11 : f iles ∩ fs = ∅
grd12 : directories ∩ ds = ∅

then
act1 : f iles := files ∪ fs
act2 : directories := directories ∪ ds
act3 : parent := parent ∪ prt ∪ {x 7→ root}

end

Event unmount =̂

refines unmount

Unmount the storage device. All objects objs rooted at x within the device will

be released.

any

176 Appendix A An Event-B specification of a file system

objs, x
where

grd1 : objs ⊆ files ∪ directories
grd2 : root /∈ objs
grd3 : x ∈ objs
grd4 : objs = (tcl(parent))−1[{x}] ∪ {x}

then
act1 : f iles := files \ (objs ∩ files)
act2 : directories := directories \ (objs ∩ directories)
act3 : parent := objs −▹ parent

end

END

Appendix A An Event-B specification of a file system 177

A.3 The second refinement: File content

Introduce file content together with open, read and write events. Power loss and power

on are also introduced in this refinement.

MACHINE FMCH02

REFINES FMCH01

SEES FCTX02

VARIABLES

files

directories

parent

fcontent the content of each file

w opened files files which are opened for writing

r opened files files which are opened for reading

wbuffer write buffers

rbuffer read buffers

power on power status

INVARIANTS

inv1 : fcontent ∈ files → CONTENT

inv2 : w opened files ⊆ files

inv3 : r opened files ⊆ files

inv4 : w opened files ∩ r opened files = ∅
inv5 : wbuffer ∈ w opened files → CONTENT

inv6 : rbuffer ∈ r opened files → CONTENT

inv7 : power on ∈ BOOL

inv8 : power on = FALSE ⇒ (w opened files := ∅ ∧ r opened files := ∅
wbuffer := ∅ ∧ rbuffer := ∅)

EVENTS

Initialisation

extended

begin
act4 : fcontent := ∅
act5 : w opened files := ∅
act6 : r opened files := ∅
act7 : wbuffer := ∅
act8 : rbuffer := ∅
act9 : power on := TRUE

end

Event mkdir =̂

extends mkdir

where
grd3 : power on = TRUE

end

Event crt file =̂

Create a file obj

178 Appendix A An Event-B specification of a file system

extends crt file

where
grd3 : power on = TRUE

then
act3 : fcontent(obj) := ∅

end

Event move =̂

Move an object from one place to another.

extends move

where
grd5 : power on = TRUE
grd6 : obj /∈ w opened files ∪ r opened files

end

Event delfile =̂

Delete a file from the specified directory.

extends delfile

where
grd3 : obj /∈ w opened files ∪ r opened files
grd4 : power on = TRUE

then
act3 : fcontent := {obj} −▹ fcontent

end

Event rmdir =̂

Delete an empty directory

extends rmdir

where
grd3 : power on = TRUE

end

Event deltree =̂

Delete an object and its descendants.

extends deltree

where
grd5 : objs ∩ (w opened files ∪ r opened files) = ∅

All objects to be deleted, objs, must not be in used.
grd6 : power on = TRUE

then
act4 : fcontent := objs −▹ fcontent

end

Event copy =̂

Copy an existing object

extends copy

where
grd12 : powerloss = FALSE

then
act4 : fcontent := fcontent ∪ (corres−1; fcontent)

end

Event w open =̂

Open the given file f for writing.

any

Appendix A An Event-B specification of a file system 179

f, cnt
where

grd1 : f ∈ files
grd2 : cnt ∈ CONTENT

The content to be written.
grd3 : f /∈ w opened files ∪ r opened files
grd4 : power on = TRUE

then
act1 : w opened files := w opened files ∪ {f }
act2 : wbuffer(f) := cnt

Set wbuffer pointing to the content cnt to be written.
end

Event r open =̂

Open file f for reading.

any
f

where
grd1 : f ∈ files
grd2 : f /∈ w opened files ∪ r opened files
grd3 : power on = TRUE

then
act1 : r opened files := r opened files ∪ {f }
act2 : rbuffer(f) := ∅

end

Event readfile =̂

Read the whole content of a file from the storage into the read buffer.

any
f

where
grd1 : f ∈ r opened files
grd2 : power on = TRUE

then
act1 : rbuffer(f) := fcontent(f)

end

Event writefile =̂

Write the content on the write buffer of the given file into the storage.

any
f

where
grd1 : f ∈ w opened files
grd2 : power on = TRUE

then
act1 : fcontent(f) := wbuffer(f)

end

Event close =̂

Close an opened file.

any
f

where
grd1 : f ∈ r opened files ∪ w opened files
grd2 : power on = TRUE

then
act1 : r opened files := r opened files \ {f }
act2 : w opened files := w opened files \ {f }

180 Appendix A An Event-B specification of a file system

act3 : rbuffer := {f } −▹ rbuffer
act4 : wbuffer := {f } −▹ wbuffer

end

Event power off =̂

when
grd1 : power on = TRUE

then
act1 : power on := FALSE
act2 : wbuffer := ∅
act3 : rbuffer := ∅
act4 : w opened files := ∅
act5 : r opened files := ∅

end

Event power on =̂

when
grd1 : power on = FALSE

then
act1 : power on := TRUE

end

Event mount =̂

Close the device into the existing root.

extends mount

any
fcnt

where
grd13 : fcnt ∈ fs → CONTENT
grd14 : power on = TRUE

then
act4 : fcontent := fcontent ∪ fcnt

end

Event unmount =̂

extends unmount

where
grd5 : objs ∩ w opened files = ∅
grd6 : objs ∩ r opened files = ∅
grd7 : power on = TRUE

then
act4 : fcontent := objs −▹ fcontent

end

END

Appendix A An Event-B specification of a file system 181

A.4 The third refinement: Permissions

Introduce permissions and related events.

MACHINE FMCH03

VARIABLES

...

users the set of existing users

groups the set of existing groups

user grps user’s groups

user pgrp the primary group of each user

obj owner the owner of each object

obj grp the group-owner of each object

obj perms permissions of each object

INVARIANTS

inv1 : users ⊆ USER

inv2 : groups ⊆ GROUP

inv3 : su ∈ users

inv4 : admin ∈ groups

inv5 : user grps ∈ users ↔ groups

inv6 : user pgrp ∈ users → groups

inv7 : obj owner ∈ (files ∪ directories)→ users

inv8 : obj grp ∈ (files ∪ directories)→ groups

inv9 : obj perms ∈ (files ∪ directories)↔ PERMISSION

thm1 : obj perms 7→ obj owner 7→ obj grp 7→ user grps ∈ dom(WPerm)

thm2 : obj perms 7→ obj owner 7→ obj grp 7→ user grps ∈ dom(RPerm)

thm3 : obj perms 7→ obj owner 7→ obj grp 7→ user grps ∈ dom(XPerm)

EVENTS

Initialisation

extended

begin
act10 : users := {su}
act11 : groups := {admin}
act12 : user grps := {su 7→ admin}
act13 : user pgrp := {su 7→ admin}
act14 : obj owner := {root 7→ su}
act15 : obj grp := {root 7→ admin}
act16 : obj perms := {root 7→ wbo, root 7→ rbo, root 7→ xbo}

end

Event mkdir =̂

Make a directory

extends mkdir

any
usr the user who issues the request
grp the primary group of the user

where
grd4 : usr ∈ users

182 Appendix A An Event-B specification of a file system

grd5 : grp ∈ groups
grd6 : usr 7→ grp ∈ user pgrp
grd7 : indr 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act3 : obj owner(obj) := usr
act4 : obj grp(obj) := grp
act5 : obj perms := obj perms ∪ {obj 7→ rbo, obj 7→ wbo, obj 7→ xbo}

end

Event crt file =̂

Create a file

extends crt file

any
usr the user who issues the request
grp the primary group of the user

where
grd4 : usr ∈ users
grd5 : grp ∈ groups
grd6 : usr 7→ grp ∈ user pgrp
grd7 : indr 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act4 : obj owner(obj) := usr
act5 : obj grp(obj) := grp
act6 : obj perms := obj perms ∪ {obj 7→ rbo, obj 7→ wbo, obj 7→ xbo}

end

Event move =̂

Move an object from one place to another.

extends move

any
usr

where
grd7 : usr ∈ users
grd8 : obj 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
grd9 : to 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

end

Event delfile =̂

Delete file obj by user usr

extends delfile

any
usr

where
grd5 : usr ∈ users
grd6 : obj 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act4 : obj owner := {obj} −▹ obj owner
act5 : obj grp := {obj} −▹ obj grp
act6 : obj perms := {obj} −▹ obj perms

end

Event rmdir =̂

Delete an empty directory (obj) by user usr .

extends rmdir

any
usr

where

Appendix A An Event-B specification of a file system 183

grd4 : usr ∈ users
grd5 : obj 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act3 : obj owner := {obj} −▹ obj owner
act4 : obj grp := {obj} −▹ obj grp
act5 : obj perms := {obj} −▹ obj perms

end

Event deltree =̂

Delete the given object and all its descendants.

extends deltree

any
usr

where
grd7 : usr ∈ users
grd8 : obj 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act5 : obj owner := objs −▹ obj owner
act6 : obj grp := objs −▹ obj grp
act7 : obj perms := objs −▹ obj perms

end

Event copy =̂

Copy an existing object obj to directory to by user usr

extends copy

any
usr

where
grd13 : usr ∈ users
grd14 : obj 7→ usr ∈ RPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
grd15 : to 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act5 : obj owner := obj owner ∪ (corres−1; obj owner)
act6 : obj grp := obj grp ∪ (corres−1; obj grp)
act7 : obj perms := obj perms ∪ (corres−1; obj perms)

end

Event w open =̂

Open file f for writing by user usr .

extends w open

any
usr

where
grd5 : usr ∈ users
grd6 : f 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

end

Event r open =̂

Open file f for reading by user usr

extends r open

any
usr

where
grd4 : usr ∈ users
grd5 : f 7→ usr ∈ RPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

end

184 Appendix A An Event-B specification of a file system

Event readfile =̂

Read the whole content of a file from the storage into the read buffer.

extends readfile

Event writefile =̂

Write the content on the wbuffer of the given file into the storage.

extends writefile

Event close =̂

Close an opened file.

extends close

Event power off =̂

extends power off

Event power on =̂

extends power on

Event mount =̂

extends mount

any
objown the owner of each object being mounted
objperms list of permissions of each object
objgrp the group owner of each object

where
grd15 : objown ∈ objs → users
grd16 : objperms ∈ objs ↔ PERMISSION
grd17 : objgrp ∈ objs → groups

then
act5 : obj owner := obj owner ∪ objown
act6 : obj perms := obj perms ∪ objperms
act7 : obj grp := obj grp ∪ objgrp

end

Event unmount =̂

extends unmount

then
act5 : obj owner := objs −▹ obj owner
act6 : obj grp := objs −▹ obj grp
act7 : obj perms := objs −▹ obj perms

end

END

Appendix A An Event-B specification of a file system 185

A.5 The fourth refinement: Missing properties

Adding other properties: name, creation date and last modification date.

MACHINE FMCH04

REFINES FMCH03

SEES FCTX03

VARIABLES

...

oname name of each object

dateCreated creation date

dateLastModified last modification date

f ile size file size

INVARIANTS

inv1 : oname ∈ (files ∪ directories)→NAME

inv2 : dateCreated ∈ (files ∪ directories)→DATE

inv3 : dateLastModified ∈ (files ∪ directories)→DATE

inv4 : f ile size ∈ files → N
thm1 : f iles ∩ directories = ∅

EVENTS

Initialisation

extended

begin
act17 : oname := {root 7→ rname}
act18 : dateCreated := {root 7→ dfdate}
act19 : dateLastModified := {root 7→ dfdate}
act20 : f ile size := ∅

end

Event mkdir =̂

Make a directory

extends mkdir

any
nme

where
grd7 : nme ∈ NAME
grd8 : nme /∈ oname[parent−1[{indr}]]

then
act6 : oname(obj) := nme
act7 : dateCreated(obj) := nowdate
act8 : dateLastModified(obj) := nowdate

end

Event crt file =̂

create file

extends crt file

any
nme

where

186 Appendix A An Event-B specification of a file system

grd7 : nme ∈ NAME
grd8 : nme /∈ oname[parent−1[{indr}]]

then
act7 : oname(obj) := nme
act8 : dateCreated(obj) := nowdate
act9 : dateLastModified(obj) := nowdate
act10 : f ile size(obj) := 0

end

Event move =̂

Move an object from one place to another.

extends move

where
grd10 : oname(obj) /∈ oname[parent−1[{to}] ∪ {to}]

end

Event delfile =̂

Delete a file obj

extends delfile

then
act9 : oname := {obj} −▹ oname
act10 : dateCreated := {obj} −▹ dateCreated
act11 : dateLastModified := {obj} −▹ dateLastModified
act12 : f ile size := {obj} −▹ file size

end

Event rmdir =̂

Delete an empty directory obj

extends rmdir

then
act6 : oname := {obj} −▹ oname
act7 : dateCreated := {obj} −▹ dateCreated
act8 : dateLastModified := {obj} −▹ dateLastModified

end

Event deltree =̂

Delete the given object and all its descendants.

extends deltree

then
act8 : oname := objs −▹ oname
act9 : dateCreated := objs −▹ dateCreated
act10 : dateLastModified := objs −▹ dateLastModified
act11 : f ile size := objs −▹ file size

end

Event copy =̂

Copy an existing object obj to directory to.

extends copy

where
grd17 : oname(obj) /∈ oname[parent−1[{to}] ∪ {to}]

then
act9 : oname := oname ∪ (corres−1; oname)
act10 : dateCreated := dateCreated ∪ (corres−1; dateCreated)
act11 : dateLastModified := dateLastModified∪(corres−1; dateLastModified)
act12 : f ile size := file size ∪ (corres−1; file size)

Appendix A An Event-B specification of a file system 187

end

Event w open =̂

Open the given file f for writing.

extends w open

Event r open =̂

Open the given file for reading.

extends r open

Event readfile =̂

Read the whole content of a file from the storage into the read buffer.

extends readfile

Event writefile =̂

Write the content on the wbuffer of the given file into the storage.

extends writefile

then
act2 : dateLastModified(f) := nowdate
act3 : f ile size(f) := card(wbuffer(f))

end

Event close =̂

Close an opened file.

extends close

Event rename =̂

any
obj the given object to be renamed
indr the directory to which the given object belongs
nname new name

where
grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : obj /∈ (w opened files ∪ r opened files)
grd3 : indr ∈ directories
grd4 : nname ∈ NAME
grd5 : indr = parent(obj)
grd6 : nname /∈ oname[parent−1[{indr}] ∪ {indr}]

then
act1 : oname(obj) := nname
act2 : dateLastModified(obj) := nowdate

end

Event power off =̂

extends power off

Event power on =̂

extends power on

Event mount =̂

extends mount

any
objname the name of each object being mounted
cdate the creation date of each object being mounted
mdate the last modification date of each object being mounted
fsize the size of each file being mounted

where

188 Appendix A An Event-B specification of a file system

grd18 : objname ∈ objs →NAME
grd19 : cdate ∈ objs →DATE
grd20 : mdate ∈ objs →DATE
grd21 : fsize ∈ fs → N
grd21 : fsize = card(fat tmp(f))

then
act8 : oname := oname ∪ objname
act9 : dateCreated := dateCreated ∪ cdate
act10 : dateLastModified := dateLastModified ∪ mdate
act11 : f ile size := file size ∪ fsize

end

Event unmount =̂

extends unmount

then
act8 : oname := objs −▹ oname
act9 : dateCreated := objs −▹ dateCreated
act10 : dateLastModified := objs −▹ dateLastModified
act11 : f ile size := objs −▹ file size

end

END

Appendix A An Event-B specification of a file system 189

A.6 The fifth refinement: Decomposition of the writefile

event

Decomposing the writefile event into sub events: w start, w step and w end.

MACHINE FMCH05

REFINES FMCH04

SEES FCTX03

VARIABLES

...

writing

fcont tmp

INVARIANTS

inv1 : writing ⊆ w opened files

inv2 : fcont tmp ∈ writing → CONTENT

inv3 : ∀f ·f ∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)

inv4 : power on = FALSE ⇒ writing := ∅ ∧ fcont tmp := ∅
EVENTS

Initialisation

extended

begin
act20 : writing := ∅
act21 : fcont tmp := ∅

end

Event mkdir =̂

Make a directory

extends mkdir

Event crt file =̂

create file

extends crt file

Event move =̂

Move an object from one place to another.

extends move

Event delfile =̂

Delete an object, and all its descendents, from specified directory.

extends delfile

Event rmdir =̂

Delete an empty directory.

extends rmdir

Event deltree =̂

extends deltree

190 Appendix A An Event-B specification of a file system

Event copy =̂

Copy an existing object and its descendants to another place

extends copy

Event w open =̂

Open file for writing.

extends w open

Event r open =̂

Open file for reading

extends r open

Event readfile =̂

Read the whole content of a file from the storage into the read buffer.

extends readfile

Event w start =̂

Start writing file f .

any
f

where
grd1 : f ∈ w opened files
grd2 : f /∈ writing
grd3 : powerloss = FALSE

then
act1 : writing := writing ∪ {f }
act2 : fcont tmp(f) := ∅

end

Event w step =̂

Writing step, write a data of page i from the buffer into fcont tmp (which is a

mirror of the storage)

any
f, i , data

where
grd1 : f ∈ writing
grd2 : i ∈ N
grd3 : data ∈ DATA
grd4 : i 7→ data ∈ wbuffer(f)
grd5 : i /∈ dom(fcont tmp(f))
grd6 : powerloss = FALSE

then
act1 : fcont tmp(f) := fcont tmp(f) ∪ {i 7→ data}

end

Event w end ok =̂

Writing a file is completed when all pages have been written (grd3)

refines writefile

any
f
sz

where
grd1 : f ∈ writing
grd2 : powerloss = FALSE
grd3 : dom(fcont tmp(f)) = dom(wbuffer(f))

Appendix A An Event-B specification of a file system 191

grd4 : sz ∈ N
then

act1 : fcontent(f) := fcont tmp(f)
act2 : dateLastModified(f) := nowdate
act3 : writing := writing \ {f }
act4 : fcont tmp := {f } −▹ fcont tmp
act5 : f ile size(f) := card(fcont tmp(f))

end

Event w end fail =̂

Writing a file fails. Release all memory contents.

any
f

where
grd1 : f ∈ writing

then
act1 : writing := writing \ {f }
act2 : fcont tmp := {f } −▹ fcont tmp

end

Event close =̂

Close an opened file.

extends close

where
grd3 : f /∈ writing

end

Event rename =̂

extends rename

Event power off =̂

extends power off

then
act6 : writing := ∅
act7 : fcont tmp := ∅

end

Event power on =̂

extends power on

Event mount =̂

extends mount

Event unmount =̂

extends unmount

END

192 Appendix A An Event-B specification of a file system

A.7 The sixth refinement: Decomposition of the readfile

event

MACHINE FMCH06

REFINES FMCH05

SEES FCTX03

VARIABLES

...

reading

rbuff tmp

INVARIANTS

inv1 : reading ⊆ r opened files

inv2 : rbuff tmp ∈ reading → CONTENT

inv3 : ∀f ·f ∈ reading ⇒ rbuff tmp(f) ⊆ fcontent(f)

inv4 : power on = FALSE ⇒ reading := ∅ ∧ rbuff tmp := ∅
thm1 : ∀f ·f ∈ reading ⇒ f ∈ dom(fcontent)

EVENTS

Initialisation

extended

begin
act22 : reading := ∅
act23 : rbuff tmp := ∅

end

Event mkdir =̂

Make a directory

extends mkdir

Event crt file =̂

create file

extends crt file

Event move =̂

Move an object from one place to another.

extends move

Event delfile =̂

Delete an object, and all its descendants, from specified directory.

extends delfile

Event rmdir =̂

Delete an object, and all its descendents, from specified directory.

extends rmdir

Event deltree =̂

extends deltree

Event copy =̂

Copy an existing object

extends copy

Appendix A An Event-B specification of a file system 193

Event w open =̂

Open file for writing.

extends w open

Event r open =̂

Open file for reading

extends r open

Event w start =̂

Start writing a file.

extends w start

Event w step =̂

Writing step, write one data unit from a buffer into fcont tmp (which is a mirror

of the storage)

extends w step

Event w end ok =̂

extends w end ok

Event w end fail =̂

Writing of a file fails.

extends w end fail

Event close =̂

Close an opened file.

extends close

where
grd3 : f /∈ reading

end

Event rename =̂

extends rename

Event r start =̂

Start reading of the given file

any
f

where
grd1 : f ∈ r opened files
grd2 : f /∈ reading

then
act1 : reading := reading ∪ {f }
act2 : rbuff tmp(f) := ∅

end

Event r step =̂

Reading step, read the data of page i from the storage into the temp buffer.

any
f, i , data

where
grd1 : f ∈ reading
grd2 : i ∈ N
grd3 : data ∈ DATA
grd4 : i 7→ data ∈ fcontent(f)

194 Appendix A An Event-B specification of a file system

grd5 : i /∈ dom(rbuff tmp(f))
then

act1 : rbuff tmp(f) := rbuff tmp(f) ∪ {i 7→ data}
end

Event r end ok =̂

Reading the whole content of file f from the storage into the read buffer is com-

pleted when all pages have been read (grd2).

refines readfile

any
f

where
grd1 : f ∈ reading
grd2 : dom(rbuff tmp(f)) = dom(fcontent(f))
grd3 : powerloss = FALSE

then
act1 : rbuffer(f) := rbuff tmp(f)
act2 : reading := reading \ {f }
act3 : rbuff tmp := {f } −▹ rbuff tmp

end

Event r end fail =̂

Reading of the given file fails. This event releases all memory buffers

any
f

where
grd1 : f ∈ reading

then
act1 : reading := reading \ {f }
act2 : rbuff tmp := {f } −▹ rbuff tmp

end

Event power off =̂

extends power off

then
act8 : reading := ∅
act9 : rbuff tmp := ∅

end

Event power on =̂

extends power on

Event mount =̂

extends mount

Event unmount =̂

extends unmount

END

Appendix A An Event-B specification of a file system 195

A.8 The seventh refinement: Flash specification

Relating to flash interfaces provided. fcontent and fcont tmp are replaced by fat and

fat tmp. Note: Because copying can be done recursively by events read and write, we

decided not to refine it in this level.

MACHINE FMCH07

REFINES FMCH06

SEES FLCTX

VARIABLES

files

directories

parent

w opened files A set of files being opened for writing

r opened files A set of files being opened for reading

wbuffer Write buffer of each w opened files, containing the content to be

written to the flash

rbuffer Read buffer of each file being opened of reading

power on

users

groups

user grps

user pgrp

obj owner

obj grp

obj perms

oname

dateCreated

dateLastModified

file size

writing Set of files being in writing state

reading Set of files being in reading state

rbuff tmp Temporary read buffer. It becomes the actual output buffer when

all pages has been read into the memory.

fat The table of contents of each file.

fat tmp Temporary fat.

curr version The current version of each file

writing version Writing version of each file

f lash A flash device which is an array of pages

programmed pages Set of pages that have already been programmed

obsolete pages Set of programmed pages which are obsolete.

INVARIANTS

inv1 : f lash ∈ RowAddr → PDATA

inv2 : programmed pages ⊆ RowAddr

inv3 : obsolete pages ⊆ programmed pages

196 Appendix A An Event-B specification of a file system

inv4 : power on = TRUE ⇒ fat ∈ files → (N 7→ RowAddr)

This fat is a mapping of each file to a table that maps each page index within

the file to its corresponding row address in the flash.

inv5 : fat tmp ∈ writing → (N 7→ RowAddr)

inv6 : curr version ∈ (files ∪ directories)→VERNUM

inv7 : writing version ∈ writing →VERNUM

inv8 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ files

∧ verOfpage(p) = curr version(objOfpage(p)) ∧ pidxOfpage(p) ̸= 0

⇒ pidxOfpage(p) 7→ dataOfpage(p) ∈ fcontent(objOfpage(p))

inv9 : ∀i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages

∧ p = flash(r) ∧ verOfpage(p) = curr version(f)

∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0

⇒ i 7→ r ∈ fat(f)

inv10 : ∀i , r , f , p ·r ∈ programmed pages \ obsolete pages

∧ f ∈ writing ∧ p = flash(r) ∧ verOfpage(p) = writing version(f)

∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0

⇒ i 7→ r ∈ fat tmp(f)

inv11 : ∀f ·f ∈ files ⇒ dom(fat(f)) = dom(fcontent(f))

inv12 : ∀f ·f ∈ files ⇒ dom(fcontent(f)) = 1 . . file size(f)

inv13 : ∀f ·f ∈ writing ⇒ dom(fat tmp(f)) = dom(fcont tmp(f))

inv14 : power on = FALSE ⇒ fat := ∅ ∧ fat tmp := ∅ ∧ writing version := ∅
inv15 : ∀f ·f ∈ writing ⇒ writing version(f) ̸= curr version(f)

EVENTS

Initialisation

begin
act1 : f iles := ∅
act2 : directories := {root}
act3 : parent := ∅
act4 : w opened files := ∅
act5 : r opened files := ∅
act6 : wbuffer := ∅
act7 : rbuffer := ∅
act8 : users := {su}
act9 : groups := {admin}
act10 : user grps := {su 7→ admin}
act11 : user pgrp := {su 7→ admin}
act12 : obj owner := {root 7→ su}
act13 : obj grp := {root 7→ admin}
act14 : obj perms := {root 7→ wbo, root 7→ rbo, root 7→ xbo}
act15 : oname := {root 7→ rname}
act16 : dateCreated := {root 7→ dfdate}
act17 : dateLastModified := {root 7→ dfdate}
act18 : writing := ∅
act19 : reading := ∅
act20 : rbuff tmp := ∅
act21 : fat := ∅
act22 : fat tmp := ∅
act23 : curr version := ∅
act24 : writing version := ∅

Appendix A An Event-B specification of a file system 197

act25 : programmed pages := ∅
act26 : obsolete pages := ∅
act27 : f lash := dflash
act28 : power on := TRUE
act29 : f ile size := ∅

end

Event mkdir =̂

Make a directory

extends mkdir

any
r a row address used to record the new description of the object being

created
desc the description to be stored
pdata a page data to be programmed at row r

where
grd10 : r ∈ RowAddr \ programmed pages
grd11 : pdata ∈ PDATA
grd12 : desc ∈ DATA
grd13 : objOfpage(pdata) = obj
grd14 : pidxOfpage(pdata) = 0
grd15 : verOfpage(pdata) = 0
grd16 : dataOfpage(pdata) = desc

then
act10 : f lash(r) := pdata
act11 : programmed pages := programmed pages ∪ {r}
act12 : curr version(obj) := 0

end

Event crt file =̂

create file

refines crt file

any
obj , indr , usr , grp,nme
r a row address used to record the new description of the file being created

fdesc the description of file to be stored
pdata a page data to be programmed at row r

where
grd1 : obj ∈ OBJECT \ (files ∪ directories)
grd2 : indr ∈ directories
grd3 : usr ∈ users
grd4 : grp ∈ groups
grd5 : usr 7→ grp ∈ user pgrp
grd6 : indr 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
grd7 : nme ∈ NAME
grd8 : nme /∈ oname[parent−1[{indr}]]
grd9 : fdesc ∈ DATA
grd10 : pdata ∈ PDATA
grd11 : r ∈ RowAddr \ programmed pages
grd12 : objOfpage(pdata) = obj
grd13 : pidxOfpage(pdata) = 0
grd14 : verOfpage(pdata) = 0
grd15 : dataOfpage(pdata) = fdesc
grd16 : ∀p ·p ∈ PDATA ∧ objOfpage(p) = obj ⇒ pidxOfpage(p) = 0

198 Appendix A An Event-B specification of a file system

grd17 : power on = TRUE
then

act1 : f iles := files ∪ {obj}
act2 : parent(obj) := indr
act3 : fat(obj) := ∅
act4 : obj owner(obj) := usr
act5 : obj grp(obj) := grp
act6 : obj perms := obj perms ∪ {obj 7→ rbo, obj 7→ wbo, obj 7→ xbo}
act7 : oname(obj) := nme
act8 : dateCreated(obj) := nowdate
act9 : dateLastModified(obj) := nowdate
act10 : curr version(obj) := 0
act11 : f lash(r) := pdata
act12 : programmed pages := programmed pages ∪ {r}
act13 : f ile size(obj) := 0

end

Event move =̂

Move an object obj and its descendants des to another location to by user usr .

extends move

any
r the selected row address within the flash device to be written
fdesc represents a DATA of file description (name, owner, permissions,

etc.)
pdata a PDATA to be written to flash

where
grd9 : r ∈ RowAddr \ programmed pages
grd10 : pdata ∈ PDATA
grd11 : desc ∈ DATA
grd12 : objOfpage(pdata) = obj
grd13 : pidxOfpage(pdata) = 0
grd14 : verOfpage(pdata) = curr version(obj)
grd15 : dataOfpage(pdata) = desc

then
act2 : f lash(r) := pdata
act3 : programmed pages := programmed pages ∪ {r}

end

Event delfile =̂

Delete a file.

refines delfile

any
obj
usr
rows all row addresses belonging to object being deleted

where
grd1 : obj ∈ files \ {root}
grd2 : parent−1[{obj}] = ∅
grd3 : obj /∈ w opened files ∪ r opened files
grd4 : usr ∈ users
grd5 : obj 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
grd6 : obj /∈ reading
grd7 : rows ⊆ programmed pages \ obsolete pages
grd8 : rows = flash−1[objOfpage−1[{obj}]]
grd9 : power on = TRUE

then

Appendix A An Event-B specification of a file system 199

act1 : f iles := files \ {obj}
act2 : parent := {obj} −▹ parent
act3 : fat := {obj} −▹ fat
act4 : obj owner := {obj} −▹ obj owner
act5 : obj grp := {obj} −▹ obj grp
act6 : obj perms := {obj} −▹ obj perms
act7 : oname := {obj} −▹ oname
act8 : dateCreated := {obj} −▹ dateCreated
act9 : dateLastModified := {obj} −▹ dateLastModified
act10 : fat tmp := {obj} −▹ fat tmp
act11 : curr version := {obj} −▹ curr version
act12 : obsolete pages := obsolete pages −▹ rows
act15 : f ile size := {obj} −▹ file size

end

Event rmdir =̂

Delete an empty directory.

extends rmdir

any
rows all rows belonging to the obj being deleted

where
grd6 : rows ⊆ programmed pages \ obsolete pages
grd7 : rows = flash−1[objOfpage−1[{obj}]]

then
act9 : obsolete pages := obsolete pages ∪ rows

end

Event deltree =̂

Delete the given object (obj) and all its descendants (des), by user usr .

refines deltree

any
obj , des, objs, usr
rows all rows belonging to those objects (objs) being deleted.

where
grd1 : obj ∈ (files ∪ directories) \ {root}
grd2 : des ⊆ (files ∪ directories)
grd3 : des = (tcl(parent))−1[{obj}]
grd4 : objs = des ∪ {obj}
grd5 : objs ∩ (w opened files ∪ r opened files) = ∅

All must not be in use.
grd6 : usr ∈ users
grd7 : obj 7→ usr ∈WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)
grd8 : rows ⊆ programmed pages \ obsolete pages
grd9 : rows = flash−1[objOfpage−1[objs]]
grd10 : power on = TRUE

then
act1 : parent := objs −▹ parent
act2 : f iles := files \ (objs ∩ files)
act3 : directories := directories \ (objs ∩ directories)
act4 : fat := objs −▹ fat
act5 : obj owner := objs −▹ obj owner
act6 : obj grp := objs −▹ obj grp
act7 : obj perms := objs −▹ obj perms
act8 : oname := objs −▹ oname
act9 : dateCreated := objs −▹ dateCreated

200 Appendix A An Event-B specification of a file system

act10 : dateLastModified := objs −▹ dateLastModified
act11 : obsolete pages := obsolete pages ∪ rows
act12 : curr version := objs −▹ curr version
act13 : f ile size := objs −▹ file size

end

Event w open =̂

Open a file of writing.

extends w open

Event r open =̂

Open a file for reading

extends r open

Event w start =̂

Start writing of a file.

refines w start

any
f
cv the current version of file f
wv the version of file f being written

where
grd1 : f ∈ w opened files
grd2 : f /∈ writing
grd3 : cv = curr version(f)
grd4 : wv ∈ VERNUM
grd5 : ((wv = cv + 1⇔ cv < 2) ∨ (wv = 0))
grd6 : ∀p ·p ∈ PDATA ∧ objOfpage(p) = f ⇒ verOfpage(p) ̸= wv
grd7 : power on = TRUE

then
act1 : writing := writing ∪ {f }
act2 : fat tmp(f) := ∅
act3 : writing version(f) := wv

end

Event w step =̂

Writing step, write the data of page i from the buffer into the flash device at row

r .

refines w step

any
f, i
data the data of page i of file f
r the address to be written
pdata the page data to be written to the flash

where
grd1 : f ∈ writing
grd2 : i ∈ N
grd3 : i > 0
grd4 : data ∈ DATA
grd5 : i 7→ data ∈ wbuffer(f)
grd6 : i /∈ dom(fat tmp(f))
grd7 : r ∈ RowAddr \ programmed pages
grd8 : pdata ∈ PDATA
grd9 : verOfpage(pdata) = writing version(f)
grd10 : pidxOfpage(pdata) = i

Appendix A An Event-B specification of a file system 201

grd11 : objOfpage(pdata) = f
grd12 : dataOfpage(pdata) = data
grd13 : power on = TRUE

then
act1 : fat tmp(f) := fat tmp(f) ∪ {i 7→ r}
act2 : f lash(r) := pdata
act3 : programmed pages := programmed pages ∪ {r}

end

Event w end ok =̂

Writing the given file is complete when all pages have been written to the flash

device.

refines w end ok

any
f
wv writing version
data Contains file description
r row address to store file description
pdata a PDATA to be programmed to row r

where
grd1 : f ∈ writing
grd2 : dom(fat tmp(f)) = dom(wbuffer(f))
grd3 : wv = writing version(f)
grd4 : r ∈ RowAddr \ programmed pages
grd5 : data ∈ DATA
grd6 : pdata ∈ PDATA
grd7 : verOfpage(pdata) = wv
grd8 : pidxOfpage(pdata) = 0
grd9 : objOfpage(pdata) = f
grd10 : dataOfpage(pdata) = data
grd11 : power on = TRUE

then
act1 : fat(f) := fat tmp(f)
act2 : dateLastModified(f) := nowdate
act3 : writing := writing \ {f }
act4 : fat tmp := {f } −▹ fat tmp
act5 : curr version(f) := wv
act6 : writing version := {f } −▹ writing version
act7 : f lash(r) := pdata
act8 : programmed pages := programmed pages ∪ {r}
act9 : f ile size(f) := card(fat tmp(f))

end

Event w end fail =̂

Writing of a file fails

refines w end fail

any
f

where
grd1 : f ∈ writing

then
act1 : writing := writing \ {f }
act2 : fat tmp := {f } −▹ fat tmp
act3 : writing version := {f } −▹ writing version

end

202 Appendix A An Event-B specification of a file system

Event close =̂

Close an opened file.

extends close

Event rename =̂

Rename the given object.

extends rename

any
r,newdesc, pdata

where
grd7 : r ∈ RowAddr \ programmed pages
grd8 : pdata ∈ PDATA
grd9 : newdesc ∈ DATA
grd10 : objOfpage(pdata) = obj
grd11 : pidxOfpage(pdata) = 0
grd12 : verOfpage(pdata) = curr version(obj)
grd13 : dataOfpage(pdata) = newdesc

then
act3 : f lash(r) := pdata
act4 : programmed pages := programmed pages ∪ {r}

end

Event r start =̂

Start read the given file

refines r start

any
f

where
grd1 : f ∈ r opened files
grd2 : f /∈ reading
grd3 : power on = TRUE

then
act1 : reading := reading ∪ {f }
act2 : rbuff tmp(f) := ∅

end

Event r step =̂

Reading step, read the data of page i from the flash at row r into the temp buffer.

refines r step

any
f, i , data, r , pdata

where
grd1 : f ∈ reading
grd2 : i ∈ N
grd3 : i > 0
grd4 : data ∈ DATA
grd5 : power on = TRUE
grd6 : r ∈ programmed pages \ obsolete pages
grd7 : i 7→ r ∈ fat(f)
grd8 : pdata = flash(r)
grd9 : verOfpage(pdata) = curr version(f)
grd10 : pidxOfpage(pdata) = i
grd11 : objOfpage(pdata) = f
grd12 : data = dataOfpage(pdata)

Appendix A An Event-B specification of a file system 203

grd13 : i /∈ dom(rbuff tmp(f))
grd14 : i 7→ data /∈ rbuff tmp(f)

then
act1 : rbuff tmp(f) := rbuff tmp(f) ∪ {i 7→ data}

end

Event r end ok =̂

Reading the given file is completed when all pages have been read (grd3).

refines r end ok

any
f

where
grd1 : power on = TRUE
grd2 : f ∈ reading
grd3 : dom(rbuff tmp(f)) = dom(fat(f))

then
act1 : rbuffer(f) := rbuff tmp(f)
act2 : reading := reading \ {f }
act3 : rbuff tmp := {f } −▹ rbuff tmp

end

Event r end fail =̂

Reading of a file fails.

refines r end fail

any
f

where
grd1 : f ∈ reading

then
act1 : reading := reading \ {f }
act2 : rbuff tmp := {f } −▹ rbuff tmp

end

Event mark obsolete =̂

A utility event to mark all pages (identified by rows) of the given file that has the

version number equal to the given version (ver).

any
f, ver , rows

where
grd1 : f ∈ files
grd2 : ver ∈ VERNUM
grd3 : rows ⊆ programmed pages
grd4 : rows = flash−1[objOfpage−1[{f }] ∩ verOfpage−1[{ver}]]
grd5 : poweron = TRUE

then
act1 : obsolete pages := obsolete pages ∪ rows

end

Event power off =̂

refines power off

when
grd1 : power on = TRUE

then
act1 : power on := FALSE
act2 : wbuffer := ∅
act3 : rbuffer := ∅
act4 : w opened files := ∅

204 Appendix A An Event-B specification of a file system

act5 : r opened files := ∅
act6 : fat := ∅
act7 : writing := ∅
act8 : fat tmp := ∅
act9 : reading := ∅
act10 : rbuff tmp := ∅
act11 : writing version := ∅

end

Event power on =̂

Reconstructs a FAT table.

refines power on

any
f t

where
grd1 : power on = FALSE
grd2 : f t ∈ files → (N 7→ RowAddr)
grd3 : ∀f ·f ∈ files ⇒ dom(ft(f)) = 1 . . file size(f)
grd4 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ dom(ft)⇒ p ∈ ran(flash)
grd5 : ∀i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ files

∧ p = flash(r) ∧ verOfpage(p) = curr version(f)
∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0
⇒ i 7→ r ∈ ft(f)

grd6 : ∀i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ files
∧ p = flash(r) ∧ i 7→ r ∈ ft(f)
⇒ (verOfpage(p) = curr version(f) ∧
objOfpage(p) = f ∧ pidxOfpage(p) = i)

then
act1 : power on := TRUE
act2 : fat := ft

end

Event mount =̂

Mount the flash contents into an existing root.

refines mount

any
objs set of all objects to be mounted.
fs Set of files to be mounted.
ds set of directories to be mounted.
prt parent function representing the structure of all objs to be mounted.
x Subroot to be mounted to the existing root.
fcnt the content of each file
objown the owner of each object being mounted
objperms the set of permissions of each object being mounted
objgrp the group owner of each object being mounted
objname the name of each object being mounted
cdate the creation date of each object being mounted
mdate the modification date of each object being mounted
fsize the size of each file being mounted
f t the table of content of each file being mounted
cv the current version of each object being mounted

where
grd1 : objs ⊆ OBJECT
grd2 : fs ⊆ objs
grd3 : ds ⊆ objs
grd4 : objs = fs ∪ ds

Appendix A An Event-B specification of a file system 205

grd5 : fs ∩ ds = ∅
grd6 : (files ∪ directories) ∩ objs = ∅
grd7 : x ∈ ds
grd8 : prt ∈ objs \ {x}→ ds
grd9 : ∀s ·(s ⊆ prt−1[s]⇒ s = ∅)
grd10 : prt ∩ parent = ∅
grd11 : f iles ∩ fs = ∅
grd12 : directories ∩ ds = ∅
grd13 : fcnt ∈ fs → CONTENT
grd14 : objown ∈ objs → users
grd15 : objperms ∈ objs ↔ PERMISSION
grd16 : objgrp ∈ objs → groups
grd17 : objname ∈ objs →NAME
grd18 : cdate ∈ objs →DATE
grd19 : mdate ∈ objs →DATE
grd20 : fsize ∈ fs → N
grd21 : f t ∈ fs → (N 7→ RowAddr)
grd22 : cv ∈ objs →VERNUM
grd23 : ∀p ·p ∈ ran(flash) ∧ objOfpage(p) ∈ fs ∧ verOfpage(p) = cv(objOfpage(p))

∧ pidxOfpage(p) ̸= 0 ⇒ pidxOfpage(p) 7→ dataOfpage(p) ∈
fcnt(objOfpage(p))

grd24 : ∀i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ fs
∧ p = flash(r) ∧ verOfpage(p) = curr version(f)
∧ objOfpage(p) = f ∧ pidxOfpage(p) = i
⇒ i 7→ r ∈ ft(f)

grd25 : ∀i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ fs
∧ p = flash(r) ∧ i 7→ r ∈ ft(f)
⇒ (verOfpage(p) = cv(f) ∧
objOfpage(p) = f ∧ pidxOfpage(p) = i)

grd26 : ∀f ·f ∈ fs ⇒ dom(ft(f)) = dom(fcnt(f))
grd27 : power on = TRUE

then
act1 : f iles := files ∪ fs
act2 : directories := directories ∪ ds
act3 : parent := parent ∪ prt ∪ {x 7→ root}
act4 : fat := fat ∪ ft
act5 : obj owner := obj owner ∪ objown
act6 : obj perms := obj perms ∪ objperms
act7 : obj grp := obj grp ∪ objgrp
act8 : oname := oname ∪ objname
act9 : dateCreated := dateCreated ∪ cdate
act10 : dateLastModified := dateLastModified ∪ mdate
act11 : f ile size := file size ∪ fsize
act12 : curr version := curr version ∪ cv

end

Event unmount =̂

unmount a flash device consisting of objects objs rooted at x

refines unmount

any
objs, x

where
grd1 : objs ⊆ files ∪ directories
grd2 : root /∈ objs
grd3 : x ∈ objs

206 Appendix A An Event-B specification of a file system

grd5 : objs = (tcl(parent))−1[{x}] ∪ {x}
grd6 : objs ∩ w opened files = ∅

no files are in used
grd7 : objs ∩ r opened files = ∅

no files are in used
grd8 : power on = TRUE

then
act1 : f iles := files \ (objs ∩ files)
act3 : directories := directories \ (objs ∩ directories)
act2 : parent := objs −▹ parent
act4 : fat := objs −▹ fat
act5 : obj owner := objs −▹ obj owner
act6 : obj grp := objs −▹ obj grp
act7 : obj perms := objs −▹ obj perms
act8 : oname := objs −▹ oname
act9 : dateCreated := objs −▹ dateCreated
act10 : dateLastModified := objs −▹ dateLastModified
act11 : f ile size := objs −▹ file size
act12 : curr version := objs −▹ curr version

end

END

Appendix A An Event-B specification of a file system 207

A.9 Contexts

CONTEXT FCTX

Defines objects, root object and transitive closure of relations on objects, and

introduces some theorems used for discharging OPs.

SETS

OBJECT

CONSTANTS

root root object

objrel type of relation on objects

tcl transitive closure of an objrel

objfn type of function on objects

AXIOMS

axm1 : root ∈ OBJECT

axm2 : objfn = OBJECT \ {root} 7→ OBJECT

axm4 : objrel = OBJECT ↔ OBJECT

axm3 : tcl ∈ objrel → objrel

axm5 : ∀r ·(r ∈ objrel ⇒
r ⊆ tcl(r))

r included in tcl(r)

axm6 : ∀r ·(r ∈ objrel ⇒
r ; tcl(r) ⊆ tcl(r))

unfolding included in tcl(r)

axm7 : ∀r , t ·(r ∈ objrel ∧ r ⊆ t ∧ r ; t ⊆ t

⇒ tcl(r) ⊆ t)

tcl(r) is least

thm5 : objfn ⊆ objrel

thm1 : ∀r ·r ∈ objrel ⇒ tcl(r) = r ∪ (r ; tcl(r))

tcl(r) is a fixed point

thm2 : ∀t ·t ∈ objfn ∧ (∀ s ·s ⊆ t−1[s]⇒ s = ∅)⇒ tcl(t) ∩ (OBJECT � id) = ∅
No loop theorem: (!s.s <: (t−1)[s] => s = {}) imples tcl(t) has no loops.

thm3 : tcl(∅) = ∅
END

208 Appendix A An Event-B specification of a file system

CONTEXT FCTX01

including additional theorems used for discharging POs

EXTENDS FCTX

AXIOMS

thm1 : ∀r , r2·
r ∈ objrel

∧ r2 ∈ objrel

∧ r2 ⊆ r

∧ (∀ s ·s ⊆ r [s]⇒ s = ∅)

⇒
(∀ t ·t ⊆ (r2)[t]⇒ t = ∅)

This thm is used for delete operation, when r2 is a tree after delete. This

thm is used to prove inv10 (no-loop property).

thm2 : ∀f , g , c, t , u,M ,N ·
N ⊆ OBJECT

∧ M ⊆ OBJECT

∧ N ∩ M = ∅
∧ t ∈ M

∧ f ∈ M \ {t}→M

∧ u ∈ N

∧ c ∈ M ��N

∧ u = c(t)

∧ g = (c−1; f ; c)

⇒
g ∈ N \ {u}→N

This is used to prove that g is a total function (g is a copy of a subtree f

rooted at t ; and c is a corresponding function). M = objs (all objects being

copied). N = nobjs (new objects which are copies). t = a root node of subtree

f . f = des�parent (des is a set of all descendants from t). c = objs��nobjs.

u = the correspondent of t . This is used for event copy, move and create.

thm3 : ∀f , c, g , t , u,M ,N ·
N ⊆ OBJECT

∧ M ⊆ OBJECT

∧ t ∈ M

∧ f ∈ M \ {t}→M

∧ (∀ s ·s ⊆ f −1[s]⇒ s = ∅)

∧ u ∈ N

∧ c ∈ M ��N

∧ u = c(t)

∧ g = c−1; f ; c

∧ g ∈ N \ {u}→ N

⇒ (∀w ·w ⊆ g−1[w]⇒ w = ∅)

Appendix A An Event-B specification of a file system 209

This thm is used to prove that there is no-loop in g . It is used for copy,

create, move operations.

thm4 : ∀f , g , t , u, x ,M ,N ·
N ⊆ OBJECT

∧ M ⊆ OBJECT

∧ N ∩ M = ∅
∧ t ∈ M

∧ f ∈ M \ {t}→M

∧ u ∈ N

∧ g ∈ N \ {u}→ N

∧ x ∈ M

⇒
f ∪ g ∪ {u 7→ x} ∈ (M ∪ N) \ {t}→M ∪ N

This thm is used to prove inv8, and is used by thm14 for copying (also for

inserting and moving) By providing f = an original tree (= parent for copying

and inserting, = (des ∪ {obj}) −▹ parent for moving) M = set of all objects

in f . (= objects for copying and inserting, = objects \ (des ∪ {obj}) for

moving) N = set of new objects being added. (= nobjs for copying, = {obj}
for inserting, = des ∪ {obj} for moving) g = a copy of a subtree of f. (=

corres−1; des�parent ; corres for copying, = {} for inserting, = des�parent

for moving). t = root node. u = an object being copied, inserted or moved

(obj). x = a target location (or parent).

thm5 : ∀f , g , t , u, x ,M ,N ·
N ⊆ OBJECT

∧ M ⊆ OBJECT

∧ N ∩ M = ∅
∧ t ∈ M

∧ f ∈ M \ {t}→M

∧ u ∈ N

∧ g ∈ N \ {u}→ N

∧ x ∈ M

∧ (∀A·A ⊆ f −1[A]⇒A = ∅)

∧ (∀B ·B ⊆ g−1[B]⇒ B = ∅)

∧ f ∪ g ∪ {u 7→ x} ∈ (M ∪ N) \ {t}→M ∪ N

⇒
(∀C ·C ⊆ (f ∪ g ∪ {u 7→ x})−1[C]⇒ C = ∅)

This thm is used for copying, inserting and moving in order to maintain inv10.

For copying, we give: f = parent , g = des <| parent , u = obj , x = to,M =

objects,N = nobjs This theorem can be used for inserting a new object by

providing: f = parent , g = {}, u = obj , x = indr ,M = objects,N = {obj},
(u is an object being inserted into the location x). We can use this theorem

for moving by providing: f = des{obj} <<| parent , g = des <| parent , t =

210 Appendix A An Event-B specification of a file system

rootu = obj , x = to,M = objects (des{obj})N = des{obj} (u is an object

being moved to the location x)

END

Appendix A An Event-B specification of a file system 211

CONTEXT FCTX02

EXTENDS FCTX01

SETS

DATA

NAME

DATE

CONSTANTS

CONTENT

rname

dfdate

nowdate

sizeOfdata

AXIOMS

axm1 : CONTENT = N 7→ DATA

axm2 : ∅ ∈ CONTENT

axm3 : rname ∈ NAME

axm4 : dfdate ∈ DATE

axm5 : nowdate ∈ DATE

axm6 : sizeOfdata ∈ DATA→ N
axm7 : ∀c ·c ∈ CONTENT ⇒ finite(c)

END

212 Appendix A An Event-B specification of a file system

CONTEXT FCTX03

Introducing PERMISSION, USER and GROUP

EXTENDS FCTX02

SETS

USER

GROUP

PERMISSION

CONSTANTS

admin admin group

su super user

rbo read by owner

wbo written by owner

xbo executed by owner

rbg read by group

wbg written by group

xbg executed by group

rbw read by world

wbw written by world

xbw executed by world

RPerm

WPerm

XPerm

AXIOMS

axm1 : PERMISSION = {rbo,wbo, xbo, rbg ,wbg , xbg , rbw ,wbw , xbw}
axm2 : WPerm ∈ (OBJECT ↔ PERMISSION)×(OBJECT 7→ USER)×(OBJECT 7→

GROUP)× (USER ↔ GROUP)

→ (OBJECT ↔ USER)

axm3 : RPerm ∈ (OBJECT ↔ PERMISSION)×(OBJECT 7→ USER)×(OBJECT 7→
GROUP)× (USER ↔ GROUP)

→ (OBJECT ↔ USER)

axm4 : XPerm ∈ (OBJECT ↔ PERMISSION)×(OBJECT 7→ USER)×(OBJECT 7→
GROUP)× (USER ↔ GROUP)

→ (OBJECT ↔ USER)

axm5 : ∀o, u, p, s, g ,m ·o ∈ OBJECT ∧ u ∈ USER

∧ p ∈ (OBJECT ↔ PERMISSION)

∧ s ∈ (OBJECT 7→ USER)

∧ g ∈ (OBJECT 7→ GROUP)

∧ m ∈ (USER ↔ GROUP)

∧ o ∈ dom(g)

⇒
(

o 7→ u ∈WPerm(p 7→ s 7→ g 7→ m)

⇔
(

Appendix A An Event-B specification of a file system 213

(o 7→ u ∈ s ∧ o 7→ wbo ∈ p) ∨
(g(o) ∈ m[{u}] ∧ o 7→ wbg ∈ p) ∨
(o 7→ wbw ∈ p) ∨
(u = su)

)

)

o is an object, u is a user, p: object-permission relation, s: object-owner

function, g: object-group function, m: user-group relation

axm6 : ∀o, u, p, s, g ,m ·o ∈ OBJECT ∧ u ∈ USER

∧ p ∈ (OBJECT ↔ PERMISSION)

∧ s ∈ (OBJECT 7→ USER)

∧ g ∈ (OBJECT 7→ GROUP)

∧ m ∈ (USER ↔ GROUP)

∧ o ∈ dom(g)

⇒
(

o 7→ u ∈ RPerm(p 7→ s 7→ g 7→ m)

⇔
(

(o 7→ u ∈ s ∧ o 7→ rbo ∈ p) ∨
(g(o) ∈ m[{u}] ∧ o 7→ rbg ∈ p) ∨
(o 7→ rbw ∈ p) ∨
(u = su)

)

)

axm7 : ∀o, u, p, s, g ,m ·o ∈ OBJECT ∧ u ∈ USER

∧ p ∈ (OBJECT ↔ PERMISSION)

∧ s ∈ (OBJECT 7→ USER)

∧ g ∈ (OBJECT 7→ GROUP)

∧ m ∈ (USER ↔ GROUP)

∧ o ∈ dom(g)

⇒
(

o 7→ u ∈ XPerm(p 7→ s 7→ g 7→ m)

⇔
(

(o 7→ u ∈ s ∧ o 7→ xbo ∈ p) ∨
(g(o) ∈ m[{u}] ∧ o 7→ xbg ∈ p) ∨
(o 7→ xbw ∈ p) ∨
(u = su)

)

214 Appendix A An Event-B specification of a file system

)

axm8 : su ∈ USER

axm9 : admin ∈ GROUP

END

Appendix A An Event-B specification of a file system 215

CONTEXT FLCTX

EXTENDS FCTX03

SETS

BYTE Data item

PDATA

RowAddr

CONSTANTS

FLASH A collection of LUNs

dflash default target

dp default page data

objOfpage

verOfpage

pidxOfpage

dataOfpage

VERNUM

AXIOMS

axm15 : FLASH = RowAddr → PDATA

axm18 : dp ∈ PDATA

axm16 : dflash ∈ FLASH

axm34 : V ERNUM = 0 . . 2

axm30 : objOfpage ∈ PDATA→OBJECT

axm31 : verOfpage ∈ PDATA→VERNUM

axm32 : pidxOfpage ∈ PDATA→ N
axm33 : dataOfpage ∈ PDATA→DATA

END

Appendix B

An Event-B specification of a file

system, V2

The specification given here is the revised version of the specification given in Ap-

pendix A. The revision is based on the requirement that have been changed (i.e. sat-

isfying unbounded version number and partial write/read operations). Details have

already discussed in Chapter 5. Because of the similarity between the original version

and the revised version. We will give only part of the specification that have been

affected (in the second, fifth, sixth and seventh refinements).

B.1 The second refinement: File content

There are two main parts that have been affected because of the changes of system

requirements. Namely, events readfile and writefile that are required to support partial

reading/writing files.

MACHINE FMCH02B

REFINES FMCH01

SEES FCTX02

VARIABLES

files

directories

parent

fcontent the content of each file

w opened files files which are opened for writing

r opened files files which are opened for reading

wbuffer writing buffers of w opened files

rbuffer reading buffers of r opened files

power on power status

217

218 Appendix B An Event-B specification of a file system, V2

INVARIANTS

inv1 : power on ∈ BOOL

inv2 : power on = TRUE ⇒ fcontent ∈ files → CONTENT

inv3 : w opened files ⊆ files

inv4 : r opened files ⊆ files

inv5 : w opened files ∩ r opened files = ∅
inv6 : wbuffer ∈ w opened files → CONTENT

inv7 : rbuffer ∈ r opened files → CONTENT

inv8 : power on = FALSE ⇒ (w opened files = ∅ ∧ r opened files = ∅
wbuffer = ∅ ∧ rbuffer = ∅)

EVENTS

Initialisation

extended

begin
act5 : fcontent := ∅
act6 : w opened files := ∅
act7 : r opened files := ∅
act8 : wbuffer := ∅
act9 : rbuffer := ∅
act10 : power on := TRUE

end

Event w open =̂

Open the given file for writing.

any
f
cnt

where
grd1 : f ∈ files
grd2 : cnt ∈ CONTENT

The content to be written.
grd3 : f /∈ w opened files ∪ r opened files
grd4 : power on = TRUE

then
act1 : w opened files := w opened files ∪ {f }
act2 : wbuffer(f) := cnt

Set wbuffer pointing to the content to be written.
end

Event writefile =̂

Write the content on the writing buffer of the given file (wbuffer(f)) into the

storage, start at the offset with the length (len) specified. The previous content of

the file will be overridden by the content on the write buffer starting at the offset

specified. The length to be written in the specification equals the length of the

data on the write buffer

any
f, offset , len,
corresPos mapping function between logical and physical page ids

where
grd1 : f ∈ w opened files
grd2 : offset ∈ N

Appendix B An Event-B specification of a file system, V2 219

grd3 : len ∈ N
grd4 : len ≤ card(wbuffer(f))
grd5 : corresPos ∈ 0 . . len − 1� offset . . offset + len − 1
grd6 : ∀p ·p ∈ dom(corresPos)⇒ corresPos(p) = p + offset
grd7 : power on = TRUE

then
act1 : fcontent(f) := fcontent(f)�−(corresPos−1; (0 . . len−1�wbuffer(f)))

end

Event r open =̂

Open file for reading

any
f

where
grd1 : f ∈ files
grd2 : f /∈ w opened files ∪ r opened files
grd3 : power on = TRUE

then
act1 : r opened files := r opened files ∪ {f }
act2 : rbuffer(f) := ∅

end

Event readfile =̂

Read the content of file f from the storage, starting at the offset with the length

(len) specified, into the read buffer.

any
f, offset , len

where
grd1 : power on = TRUE
grd2 : f ∈ r opened files
grd3 : offset ∈ dom(fcontent(f))
grd4 : len ∈ N
grd5 : offset + len − 1 ∈ dom(fcontent(f))

then
act1 : rbuffer(f) := (offset . . offset + len − 1)� fcontent(f)

end

Event close =̂

Close an opened file.

any
f

where
grd1 : f ∈ r opened files ∪ w opened files
grd2 : power on = TRUE

then
act1 : r opened files := r opened files \ {f }
act2 : w opened files := w opened files \ {f }
act3 : rbuffer := {f }�− rbuffer
act4 : wbuffer := {f }�− wbuffer

end

END

220 Appendix B An Event-B specification of a file system, V2

B.2 The fifth refinement: Decomposition of the write event

MACHINE FMCH05B

REFINES FMCH04B

SEES FCTX03

VARIABLES

...

writing files being in the writing state

fcont tmp temporary contents of writing files

writing offset the given offsets to be written of writing files

writing len the specified lengths to be written of writing files

INVARIANTS

inv1 : writing ⊆ w opened files

inv2 : fcont tmp ∈ writing → CONTENT

inv3 : ∀f ·f ∈ writing ⇒ fcont tmp(f) ⊆ wbuffer(f)

inv4 : writing offset ∈ writing → N
inv5 : writing len ∈ writing → N
inv6 : ∀f ·f ∈ writing ⇒ writing len(f) ≤ card(wbuffer(f))

inv7 : ∀f ·f ∈ writing ⇒ writing offset(f) ∈ dom(fcontent(f))

inv8 : power on = FALSE ⇒ (writing = ∅ ∧ fcont tmp = ∅)

EVENTS

Initialisation

extended

begin
act20 : writing := ∅
act21 : fcont tmp := ∅
act34 : writing offset := ∅
act35 : writing len := ∅

end

Event w open =̂

Open file f for writing by user usr where cnt is the content to be written (on write

buffer)

extends w open

any
f, cnt, usr

where
grd1 : f ∈ files
grd2 : cnt ∈ CONTENT

The content to be written.
grd3 : f /∈ w opened files ∪ r opened files
grd6 : power on = TRUE
grd4 : usr ∈ users
grd5 : f 7→ usr ∈ WPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act1 : w opened files := w opened files ∪ {f}
act2 : wbuffer(f) := cnt

Set wbuffer pointing to the content to be written.
end

Appendix B An Event-B specification of a file system, V2 221

Event w start =̂

Start write. Specifies the offset and length (len) to be written. Sets f into the

writing state.

any
f, offset , len

where
grd1 : power on = TRUE
grd2 : f ∈ w opened files
grd3 : f /∈ writing
grd4 : offset ∈ N
grd5 : len ∈ N
grd6 : len ≤ card(wbuffer(f))
grd7 : offset ∈ dom(fcontent(f))

then
act1 : writing := writing ∪ {f }
act2 : fcont tmp(f) := ∅
act3 : writing offset(f) := offset
act4 : writing len(f) := len

end

Event w step =̂

Writing step, write the data of page i on the buffer into fcont tmp(f) (which is a

mirror content of f in the storage)

any
f, i , data

where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ N
grd4 : data ∈ DATA
grd5 : i 7→ data ∈ wbuffer(f)
grd6 : i /∈ dom(fcont tmp(f))

then
act1 : fcont tmp(f) := fcont tmp(f) ∪ {i 7→ data}

end

Event w end ok =̂

Write the content on the wbuffer of the given file f into the storage, starting at the

offset with the length specified. The previous content of the file will be overridden

by the content on the write buffer starting at the offset specified. The length to

be written in the specification equals the length of the data on the write buffer.

refines writefile

any
f, offset , len, fsz , corresPos

where
grd3 : power on = TRUE
grd1 : f ∈ writing
grd2 : offset = writing offset(f)
grd4 : len = writing len(f)
grd5 : corresPos ∈ 0 . . len − 1�� offset . . offset + len − 1
grd6 : ∀p ·p ∈ dom(corresPos)⇒ corresPos(p) = p + offset
grd7 : dom(fcont tmp(f)) = 0 . . len − 1
grd8 : fsz ∈ {len + offset ,file size(f)}
grd9 : fsz = len + offset ⇔ offset + len > file size(f)

then

222 Appendix B An Event-B specification of a file system, V2

act1 : fcontent(f) := fcontent(f)�− (corresPos−1; fcont tmp(f))
act2 : dateLastModified(f) := nowdate
act3 : f ile size(f) := fsz
act4 : writing := writing \ {f }
act5 : fcont tmp := {f }�− fcont tmp
act6 : writing offset := {f }�− writing offset
act7 : writing len := {f }�− writing len

end

Event w end fail =̂

write fail

any
f

where
grd1 : f ∈ writing

then
act2 : writing := writing \ {f }
act3 : fcont tmp := {f }�− fcont tmp
act4 : writing offset := {f }�− writing offset
act5 : writing len := {f }�− writing len

end

END

Appendix B An Event-B specification of a file system, V2 223

B.3 The sixth refinement: Decomposition of the read event

MACHINE FMCH06B

Decompose the file write event

REFINES FMCH05B

SEES FCTX03

VARIABLES

...

reading files being read

rbuff tmp temporary read-buffers of reading files

reading offset the offset to be started of reading files

reading len the length to be read

INVARIANTS

inv1 : reading ⊆ r opened files

inv2 : rbuff tmp ∈ reading → CONTENT

inv3 : reading offset ∈ reading → N
inv4 : reading len ∈ reading → N
inv5 : ∀f ·f ∈ reading ∧ power on = TRUE⇒reading offset(f) ∈ dom(fcontent(f))

inv6 : ∀f ·f ∈ reading ∧ power on = TRUE⇒reading offset(f)+reading len(f)−
1 ∈ dom(fcontent(f))

inv7 : ∀f ·f ∈ reading ∧ power on = TRUE⇒rbuff tmp(f) ⊆ reading offset(f). .

(reading offset(f) + reading len(f)− 1)� fcontent(f)

inv8 : power on = FALSE ⇒ (reading = ∅ ∧ rbuff tmp = ∅)

EVENTS

Initialisation

extended

begin
act25 : reading := ∅
act26 : rbuff tmp := ∅
act27 : reading offset := ∅
act28 : reading len := ∅

end

Event r open =̂

Open file f for reading, by user usr

extends r open

any
f, usr

where
grd1 : f ∈ files
grd2 : f /∈ w opened files ∪ r opened files
grd3 : power on = TRUE
grd4 : usr ∈ users
grd5 : f 7→ usr ∈ RPerm(obj perms 7→ obj owner 7→ obj grp 7→ user grps)

then
act1 : r opened files := r opened files ∪ {f}
act2 : rbuffer(f) := ∅

end

224 Appendix B An Event-B specification of a file system, V2

Event r start =̂

Start read the given file at the offset with the length len.

any
f, offset , len

where
grd1 : power on = TRUE
grd2 : f ∈ r opened files
grd3 : f /∈ reading
grd4 : offset ∈ N
grd5 : offset ∈ 0 . . file size(f)
grd6 : len ∈ N
grd7 : offset + len − 1 ∈ dom(fcontent(f))

then
act1 : reading := reading ∪ {f }
act2 : rbuff tmp(f) := ∅
act3 : reading offset(f) := offset
act4 : reading len(f) := len

end

Event r step =̂

Reading step, read the data of page i from the storage into the temp read-buffer.

any
f, i , data

where
grd1 : power on = TRUE
grd2 : f ∈ reading
grd3 : i ∈ N
grd4 : i ∈ reading offset(f) . . reading offset(f) + reading len(f)− 1
grd5 : data ∈ DATA
grd6 : i 7→ data ∈ fcontent(f)
grd7 : i /∈ dom(rbuff tmp(f))

then
act1 : rbuff tmp(f) := rbuff tmp(f) ∪ {i 7→ data}

end

Event r end ok =̂

Reading file is succeeded, when all pages required have beeb read into the temp

read-buffer (grd5).

refines readfile

any
f, offset , len

where
grd1 : power on = TRUE
grd2 : f ∈ reading
grd3 : offset = reading offset(f)
grd4 : len = reading len(f)
grd5 : dom(rbuff tmp(f)) = (offset . . offset + len − 1)

then
act1 : rbuffer(f) := rbuff tmp(f)
act2 : rbuff tmp := {f }�− rbuff tmp
act3 : reading offset := {f }�− reading offset
act4 : reading len := {f }�− reading len
act5 : reading := reading \ {f }

end

Event r end fail =̂

Reading file failed (abort). Release all buffer contents.

Appendix B An Event-B specification of a file system, V2 225

any
f

where
grd1 : f ∈ reading

then
act1 : reading := reading \ {f }
act2 : rbuff tmp := {f }�− rbuff tmp
act3 : reading offset := {f }�− reading offset
act4 : reading len := {f }�− reading len

end

END

226 Appendix B An Event-B specification of a file system, V2

B.4 The seventh refinement: Introduction of the flash spec-

ification

This section outlines part of the specification that have beeb affected when the flash

specification has been added.

MACHINE FMCH07B

REFINES FMCH06B

SEES FLCTX

VARIABLES

...

f lash

programmed pages

obsolete pages

fat FAT table representing the table of content of each file

fat tmp temporary FAT

writing version writing version of each file

most recent version the most recent version of file contents

INVARIANTS

inv1 : power on = TRUE ⇒ flash ∈ RowAddr → PDATA

inv2 : programmed pages ⊆ RowAddr

inv3 : obsolete pages ⊆ programmed pages

inv4 : power on = TRUE ⇒ fat ∈ files → (N 7→ RowAddr)

inv5 : fat tmp ∈ writing → (N 7→ RowAddr)

inv6 : writing version ∈ writing →VERNUM

inv7 : ∀f ·f ∈ files ∧ power on = TRUE ⇒ dom(fat(f)) = dom(fcontent(f))

inv8 : ∀f ·f ∈ writing ⇒ dom(fat tmp(f)) = dom(fcont tmp(f))

inv9 : ∀p ·p ∈ PDATA

∧ objOfpage(p) ∈ dom(fat)

∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = objOfpage(p)

∧ pidxOfpage(x) = pidxOfpage(p)

⇒ verOfpage(x) < verOfpage(p)

)

⇒
pidxOfpage(p) 7→ dataOfpage(p) ∈ fcontent(objOfpage(p))

inv10 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ dom(fat tmp)

∧ verOfpage(p) = writing version(objOfpage(p))

⇒
pidxOfpage(p) 7→ dataOfpage(p) ∈ wbuffer(objOfpage(p))

inv11 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ writing

⇒
verOfpage(p) ≤ writing version(objOfpage(p))

inv12 : most recent version ∈ files →VERNUM

Appendix B An Event-B specification of a file system, V2 227

inv13 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ writing

⇒
writing version(objOfpage(p)) > most recent version(objOfpage(p))

inv13 : power on = FALSE ⇒ (fat = ∅ ∧ fat tmp = ∅ ∧ writing version = ∅)

inv14 : ∀i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages

∧ p = flash(r) ∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0

∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = f

∧ pidxOfpage(x) = i

⇒ verOfpage(x) < verOfpage(p))

⇒ i 7→ r ∈ fat(f)

inv15 : ∀i , r , f , p ·r ∈ programmed pages \ obsolete pages ∧ f ∈ writing

∧ p = flash(r) ∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0

∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = f

∧ pidxOfpage(x) = i

⇒ verOfpage(x) < verOfpage(p))

⇒ i 7→ r ∈ fat tmp(f)

inv16 : ∀f ·f ∈ files ⇒ dom(fcontent(f)) = 1 . . file size(f)

EVENTS

Initialisation

begin
act1 : f iles := ∅
act2 : directories := {root}
act3 : parent := ∅
act4 : w opened files := ∅
act5 : r opened files := ∅
act6 : wbuffer := ∅
act7 : rbuffer := ∅
act8 : users := {su}
act9 : groups := {admin}
act10 : user grps := {su 7→ admin}
act11 : user pgrp := {su 7→ admin}
act12 : obj owner := {root 7→ su}
act13 : obj grp := {root 7→ admin}
act14 : obj perms := {root 7→ wbo, root 7→ rbo, root 7→ xbo}
act15 : oname := {root 7→ rname}
act16 : dateCreated := {root 7→ dfdate}
act17 : dateLastModified := {root 7→ dfdate}
act18 : f ile size := ∅
act19 : power on := TRUE
act20 : writing := ∅
act21 : writing offset := ∅
act22 : writing len := ∅
act23 : reading := ∅
act24 : rbuff tmp := ∅
act25 : reading offset := ∅
act26 : reading len := ∅
act27 : f lash := dflash
act28 : programmed pages := ∅
act29 : obsolete pages := ∅
act30 : fat := ∅
act31 : fat tmp := ∅

228 Appendix B An Event-B specification of a file system, V2

act32 : writing version := ∅
act33 : most recent version := ∅

end

Event mount =̂

refines mount

any
objs, fs, ds, prt , x , fcnt , objperms
objgrp, objname, cdate,mdate, fsize
f t fat table of each file being mounted
mrv the most recent version of each file

where
grd1 : power on = TRUE
grd2 : objs ⊆ OBJECT
grd3 : fs ⊆ objs
grd4 : ds ⊆ objs
grd5 : objs = fs ∪ ds
grd6 : fs ∩ ds = ∅
grd7 : (files ∪ directories) ∩ objs = ∅
grd8 : x ∈ ds
grd9 : prt ∈ objs \ {x}→ ds
grd10 : ∀s ·(s ⊆ prt−1[s]⇒ s = ∅)
grd11 : prt ∩ parent = ∅
grd12 : f iles ∩ fs = ∅
grd13 : directories ∩ ds = ∅
grd14 : fcnt ∈ fs → CONTENT
grd15 : objown ∈ objs → users
grd16 : objperms ∈ objs ↔ PERMISSION
grd17 : objgrp ∈ objs → groups
grd18 : objname ∈ objs →NAME
grd19 : cdate ∈ objs →DATE
grd20 : mdate ∈ objs →DATE
grd21 : fsize ∈ fs → N
grd22 : f t ∈ fs → (N 7→ RowAddr)
grd23 : ∀f ·f ∈ fs ⇒ dom(ft(f)) = dom(fcnt(f))
grd24 : ∀p ·p ∈ ran(flash)

∧ objOfpage(p) ∈ dom(ft)

∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = objOfpage(p)

∧ pidxOfpage(x) = pidxOfpage(p)

⇒ verOfpage(x) < verOfpage(p)

)

⇒
pidxOfpage(p) 7→ dataOfpage(p) ∈ fcnt(objOfpage(p))

grd25 : mrv ∈ objs →VERNUM
grd26 : ∀p ·p ∈ PDATA

∧ objOfpage(p) ∈ dom(ft)

⇒
verOfpage(p) ≤ mrv(objOfpage(p))

then
act1 : f iles := files ∪ fs
act2 : directories := directories ∪ ds
act3 : parent := parent ∪ prt ∪ {x 7→ root}

Appendix B An Event-B specification of a file system, V2 229

act4 : fat := fat ∪ ft
act5 : obj owner := obj owner ∪ objown
act6 : obj perms := obj perms ∪ objperms
act7 : obj grp := obj grp ∪ objgrp
act8 : oname := oname ∪ objname
act9 : dateCreated := dateCreated ∪ cdate
act10 : dateLastModified := dateLastModified ∪ mdate
act11 : f ile size := file size ∪ fsize
act12 : most recent version := most recent version ∪ mrv

end

Event unmount =̂

refines unmount

any
objs, x

where
grd4 : power on = TRUE
grd1 : objs ⊆ files ∪ directories
grd2 : root /∈ objs
grd3 : x ∈ objs
grd5 : objs = (tcl(parent))−1[{x}] ∪ {x}
grd6 : objs ∩ w opened files = ∅
grd7 : objs ∩ r opened files = ∅

then
act1 : f iles := files \ (objs ∩ files)
act3 : directories := directories \ (objs ∩ directories)
act2 : parent := objs −▹ parent
act4 : fat := objs −▹ fat
act5 : obj owner := objs −▹ obj owner
act6 : obj grp := objs −▹ obj grp
act7 : obj perms := objs −▹ obj perms
act8 : oname := objs −▹ oname
act9 : dateCreated := objs −▹ dateCreated
act10 : dateLastModified := objs −▹ dateLastModified
act11 : f ile size := objs −▹ file size
act12 : most recent version := objs −▹most recent version

end

Event w start =̂

refines w start

any
f, offset , len
wv writing version of f

where
grd1 : power on = TRUE
grd2 : f ∈ w opened files
grd3 : f /∈ writing
grd4 : wv ∈ VERNUM
grd5 : wv = most recent version(f) + 1
grd6 : ∀p ·p ∈ PDATA ∧ objOfpage(p) = f ⇒ verOfpage(p) < wv
grd7 : offset ∈ N
grd8 : len ∈ N
grd9 : len ≤ card(wbuffer(f))
grd10 : offset ∈ 0 . . file size(f))

then
act1 : writing := writing ∪ {f }

230 Appendix B An Event-B specification of a file system, V2

act2 : fat tmp(f) := ∅
act3 : writing version(f) := wv
act4 : writing offset(f) := offset
act5 : writing len(f) := len

end

Event w step =̂

refines w step

any
f, i , data
r a row address, a location for writing data of page i
pd page data to be programmed to the flash
wv writing version

where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : i ∈ N
grd4 : data ∈ DATA
grd5 : i 7→ data ∈ wbuffer(f)
grd6 : i /∈ dom(fat tmp(f))
grd7 : r ∈ RowAddr
grd8 : r /∈ programmed pages
grd9 : wv = writing version(f)
grd10 : pd ∈ PDATA
grd11 : objOfpage(pd) = f
grd12 : pidxOfpage(pd) = i
grd13 : verOfpage(pd) = wv
grd14 : dataOfpage(pd) = data

then
act1 : fat tmp(f) := fat tmp(f) ∪ {i 7→ r}
act2 : f lash(r) := pd
act3 : programmed pages := programmed pages ∪ {r}

end

Event w end ok =̂

Writing the content on the wbuffer of the given file into the storage. It is completed

when all pages required have been programmed to the flash device (grd10).

refines w end ok

any
f, offset , len, fsz , cnt , corresPos

where
grd1 : power on = TRUE
grd2 : f ∈ writing
grd3 : offset = writing offset(f)
grd4 : len = writing len(f)
grd5 : cnt ∈ N 7→ RowAddr
grd6 : offset ∈ dom(fat(f))
grd7 : corresPos ∈ 0 . . len − 1�� offset . . offset + len − 1
grd8 : ∀p ·p ∈ dom(corresPos)⇒ corresPos(p) = p + offset
grd9 : fsz ∈ {len + offset ,file size(f)}
grd10 : fsz = len + offset ⇔ offset + len > file size(f)
grd11 : dom(fat tmp(f)) = 0 . . len − 1
grd12 : cnt = corresPos−1; fat tmp(f)

then
act1 : fat(f) := fat(f)�− cnt
act2 : dateLastModified(f) := nowdate

Appendix B An Event-B specification of a file system, V2 231

act3 : f ile size(f) := fsz
act4 : fat tmp := {f } −▹ fat tmp
act5 : writing version := {f } −▹ writing version
act6 : writing := writing \ {f }
act7 : most recent version(f) := writing version(f)
act8 : writing offset := {f } −▹ writing offset
act9 : writing len := {f } −▹ writing len

end

Event w end fail =̂

Writing the given file fails (abort). Releases all related memory contents.

refines w end fail

any
f

where
grd1 : f ∈ writing

then
act1 : writing := writing \ {f }
act2 : fat tmp := {f } −▹ fat tmp
act3 : writing version := {f } −▹ writing version
act4 : writing offset := {f } −▹ writing offset
act5 : writing len := {f } −▹ writing len

end

Event r start =̂

Start read the given file f , starting at the offset with the length specified.

refines r start

any
f, offset , len

where
grd1 : power on = TRUE
grd2 : f ∈ r opened files
grd3 : f /∈ reading
grd4 : offset ∈ N
grd5 : offset ∈ 0 . . file size(f))
grd6 : len ∈ N
grd7 : len ≤ file size(f)

then
act1 : reading := reading ∪ {f }
act2 : rbuff tmp(f) := ∅
act3 : reading offset(f) := offset
act4 : reading len(f) := len

end

Event r step =̂

Reading step, read the data (data) of page i from the storage (at row r) into the

temp buffer.

refines r step

any
f, i , data, r
pd page data of row r
ver the most recent version of page i

where
grd1 : power on = TRUE
grd2 : f ∈ reading
grd3 : i ∈ N

232 Appendix B An Event-B specification of a file system, V2

grd4 : i ∈ reading offset(f) . . reading offset(f) + reading len(f)− 1
grd5 : data ∈ DATA
grd6 : i ∈ dom(fat(f))
grd7 : r ∈ programmed pages \ obsolete pages
grd8 : r = fat(f)(i)
grd9 : i /∈ dom(rbuff tmp(f))
grd10 : pd = flash(r)
grd11 : data = dataOfpage(pd)
grd12 : i = pidxOfpage(pd)
grd13 : f = objOfpage(pd)
grd14 : ver = verOfpage(pd)

then
act1 : rbuff tmp(f) := rbuff tmp(f) ∪ {i 7→ data}

end

Event r end ok =̂

Reading the given file end when all pages required have been read.

refines r end ok

any
f, offset , len

where
grd1 : power on = TRUE
grd2 : f ∈ reading
grd3 : offset = reading offset(f)
grd4 : len = reading len(f)
grd5 : dom(rbuff tmp(f)) = (offset . . offset + len − 1)

then
act1 : rbuffer(f) := rbuff tmp(f)
act2 : rbuff tmp := {f } −▹ rbuff tmp
act3 : reading offset := {f } −▹ reading offset
act4 : reading len := {f } −▹ reading len
act5 : reading := reading \ {f }

end

Event r end fail =̂

Read the whole content of a file from the storage into the read buffer.

refines r end fail

any
f

where
grd1 : f ∈ reading

then
act1 : reading := reading \ {f }
act2 : rbuff tmp := {f } −▹ rbuff tmp
act3 : reading offset := {f } −▹ reading offset
act4 : reading len := {f } −▹ reading len

end

Event power loss =̂

refines power loss

when
grd1 : power on = TRUE

then
act1 : power on := FALSE
act2 : w opened files := ∅
act3 : r opened files := ∅
act4 : wbuffer := ∅

Appendix B An Event-B specification of a file system, V2 233

act5 : rbuffer := ∅
act6 : writing := ∅
act7 : fat tmp := ∅
act8 : writing offset := ∅
act9 : writing len := ∅
act10 : reading := ∅
act11 : rbuff tmp := ∅
act12 : reading offset := ∅
act13 : reading len := ∅
act14 : writing version := ∅

end

Event power on =̂

refines power on

any
f t

where
grd1 : power on = FALSE
grd2 : f t ∈ files → (N 7→ RowAddr)
grd3 : ∀f ·f ∈ files ⇒ dom(ft(f)) = 1 . . file size(f)
grd4 : ∀p ·p ∈ PDATA ∧ objOfpage(p) ∈ dom(ft)⇒ p ∈ ran(flash)
grd5 : ∀i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages

∧ p = flash(r) ∧ objOfpage(p) = f ∧ pidxOfpage(p) = i ∧ i ̸= 0
∧ (∀ x ·x ∈ PDATA ∧ objOfpage(x) = f

∧ pidxOfpage(x) = i
⇒ verOfpage(x) < verOfpage(p))

⇒ i 7→ r ∈ ft(f)
grd6 : ∀i , r , f , p ·f ∈ files ∧ r ∈ programmed pages \ obsolete pages

∧ p = flash(r) ∧ i 7→ r ∈ ft(f)
⇒ (verOfpage(p) < most recent version(f) ∧
objOfpage(p) = f ∧ pidxOfpage(p) = i)

then
act1 : power on := TRUE
act2 : fat := ft

end

END

Appendix C

An Event-B Specification of Flash

Memory

C.1 An initial model

MACHINE FMCH07 FL

The flash part after decomposing.

SEES FLCTX

VARIABLES

f lash represents the flash device which is an array of page data

programmed pages set of pages that have been programmed

obsolete pages set of obsolete pages

INVARIANTS

inv1 : f lash ∈ RowAddr → PDATA

inv2 : programmed pages ⊆ RowAddr

inv3 : obsolete pages ⊆ programmed pages

EVENTS

Initialisation

begin
act1 : f lash := dflash
act2 : programmed pages := ∅
act3 : obsolete pages := ∅

end

Event page programme =̂

Programme data to the flash at the given row address.

any
new r
pdata

where
grd1 : new r ∈ RowAddr \ programmed pages
grd2 : pdata ∈ PDATA

then

235

236 Appendix C An Event-B Specification of Flash Memory

act1 : f lash(new r) := pdata
act2 : programmed pages := programmed pages ∪ {new r}

end

Event page read =̂

Read page data from the flash at the given row address.

any
r
pdata

where
grd1 : r ∈ programmed pages \ obsolete pages
grd2 : pdata = flash(r)

end

Event block erase =̂

Erase all the given pages within a block.

any
rows All rows within the given block.

where
grd1 : rows ⊆ RowAddr
grd2 : rows ∩ (programmed pages \ obsolete pages) = ∅

The block being erased have no vailid pages
then

act1 : f lash := flash �− (rows × {dp})
act2 : programmed pages := programmed pages \ rows
act3 : obsolete pages := obsolete pages \ rows

end

Event mark pages obsolete =̂

Utility event. Mark all pages belongs to obj as obsolete.

any
rows
obj

where
grd1 : obj ∈ OBJECT
grd2 : rows ⊆ programmed pages \ obsolete pages
grd3 : rows = flash−1[objOfpage−1[{obj}]]

then
act1 : obsolete pages := obsolete pages ∪ rows

end

Event mark a page obsolete =̂

Utility event. Marks a page specified by the given row address as obsolete.

any
old r

where
grd1 : old r ∈ programmed pages \ obsolete pages

then
act1 : obsolete pages := obsolete pages ∪ {old r}

end

END

Appendix C An Event-B Specification of Flash Memory 237

C.2 The first refinement: Page Register

Page registers are introduced in this step. Two phases are required for the events

page read and page write.

MACHINE FMCH07 FL REF1

REFINES FMCH07 FL

SEES FLCTX01

VARIABLES

flash

programmed pages

obsolete pages

ready2read Set of page registers that is content is ready to be read off chip.

ready2prog Set of page registers that is content is ready to be programmed.

readingPR Set of page registers being in the reading state.

writingPR Set of page registers being in the writing state.

corresRowOfreadingPR the corresponding row address of the page register being

used for reading

corresRowOfwritingPR the corresponding row address of the page register being

used for writing

dataOfPR the page data within the page register

INVARIANTS

inv1 : readingPR ⊆ PR

inv2 : writingPR ⊆ PR

inv3 : readingPR ∩ writingPR = ∅
inv4 : ready2read ⊆ readingPR

inv5 : ready2prog ⊆ writingPR

inv6 : dataOfPR ∈ PR→ PDATA

inv7 : corresRowOfreadingPR ∈ readingPR→programmed pages \obsolete pages

inv8 : corresRowOfwritingPR ∈ writingPR � RowAddr \ programmed pages

inv9 : ∀pr , r ·pr ∈ ready2read ∧ r ∈ programmed pages

∧ r = corresRowOfreadingPR(pr)

⇒ dataOfPR(pr) = flash(r)

inv10 : ran(corresRowOfreadingPR) ∩ ran(corresRowOfwritingPR) = ∅
EVENTS

Initialisation

extended

begin
act4 : ready2read := ∅
act5 : ready2prog := ∅
act6 : readingPR := ∅
act7 : writingPR := ∅
act8 : corresRowOfreadingPR := ∅
act9 : corresRowOfwritingPR := ∅
act10 : dataOfPR := PR × {dp}

238 Appendix C An Event-B Specification of Flash Memory

end

Event pageread start =̂

(read step1) Start reading a page by selecting the related LUN (in which the the

page row r is) and available page register.

any
r the target row address to be read
lid LUN number to which the r belongs
pr an available page register within LUN lid

where
grd1 : r ∈ programmed pages \ obsolete pages
grd2 : pr ∈ PR
grd3 : pr /∈ readingPR ∪ writingPR
grd4 : lid = lidOfPR(pr)
grd5 : lidOfRow(r) = lid

then
act1 : readingPR := readingPR ∪ {pr}
act2 : corresRowOfreadingPR(pr) := r

end

Event read2reg =̂

(read step2) Transfer the page-data (pdata) at the given row address (r) to the

page register (pr).

any
r, pdata, pr

where
grd1 : pr ∈ dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pr ∈ readingPR
grd4 : pr /∈ ready2read
grd5 : pdata ∈ PDATA
grd6 : pdata = flash(r)

then
act1 : dataOfPR(pr) := pdata
act2 : ready2read := ready2read ∪ {pr}

end

Event page read end =̂

(read step3 success) Read page data (pdata) of row r from the register (pr) off

chip.

refines page read

any
r, pdata, pr

where
grd1 : pr ∈ ready2read
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pdata = dataOfPR(pr)

then
act1 : ready2read := ready2read \ {pr}
act2 : readingPR := readingPR \ {pr}
act3 : corresRowOfreadingPR := {pr} −▹ corresRowOfreadingPR

end

Event page read fail =̂

(read step3 fails)

any

Appendix C An Event-B Specification of Flash Memory 239

r
pr

where
grd1 : pr ∈ readingPR
grd2 : r = corresRowOfreadingPR(pr)

then
act1 : readingPR := readingPR \ {pr}
act2 : ready2read := ready2read \ {pr}
act3 : corresRowOfreadingPR := {pr} −▹ corresRowOfreadingPR

end

Event pageprog start =̂

(program step1) Starting page programmed by selecting the related LUN and

avialable page register.

any
r the row address to which the data to be programmed
lid the LUN to which the row r belongs
pr an available page register within the LUN

where
grd1 : r ∈ RowAddr \ programmed pages
grd2 : r /∈ ran(corresRowOfwritingPR) ∪ ran(corresRowOfwritingPR)
grd3 : pr ∈ PR
grd4 : pr /∈ readingPR ∪ writingPR
grd5 : lid = lidOfPR(pr)
grd6 : lidOfRow(r) = lid

then
act1 : writingPR := writingPR ∪ {pr}
act2 : corresRowOfwritingPR(pr) := r

end

Event write2reg =̂

(program step2) Write/transfer the page data pdata to be programmed into the

page register (pr) within the LUN (lid).

any
r, pdata, pr

where
grd1 : r ∈ RowAddr
grd2 : pr ∈ writingPR
grd3 : pr /∈ ready2prog
grd4 : lidOfRow(r) = lidOfPR(pr)
grd5 : corresRowOfwritingPR(pr) = r
grd6 : pdata ∈ PDATA

then
act1 : dataOfPR(pr) := pdata
act2 : ready2prog := ready2prog ∪ {pr}

end

Event page program ok =̂

(program step3 successful) Program the data on the page register to the flash at

the corresponding row address.

refines page programme

any
new r , pdata, pr

where
grd1 : pdata ∈ PDATA
grd2 : pr ∈ ready2prog

240 Appendix C An Event-B Specification of Flash Memory

grd3 : new r = corresRowOfwritingPR(pr)
grd4 : pdata = dataOfPR(pr)

then
act1 : f lash(new r) := pdata
act2 : programmed pages := programmed pages ∪ {new r}
act3 : ready2prog := ready2prog \ {pr}
act4 : writingPR := writingPR \ {pr}
act5 : corresRowOfwritingPR := {pr} −▹ corresRowOfwritingPR

end

Event page prog fail =̂

(program step3 failed)

any
r, pr

where
grd1 : pr ∈ writingPR
grd2 : r = corresRowOfwritingPR(pr)

then
act1 : writingPR := writingPR \ {pr}
act2 : ready2prog := ready2prog \ {pr}
act3 : corresRowOfwritingPR := {pr} −▹ corresRowOfwritingPR

end

Event mark pages obsolete =̂

A utility event used for marking a set of pages as obsolete.

extends mark pages obsolete

where
grd4 : rows∩(ran(corresRowOfreadingPR)∪ran(corresRowOfwritingPR)) =

∅
end

Event mark a page obsolete =̂

Utility event. Marks a single page specified by the given row address as obsolete.

extends mark a page obsolete

where
grd2 : old r /∈ ran(corresRowOfreadingPR) ∪ ran(corresRowOfwritingPR)

end

Event erase a block =̂

extends block erase

where
grd3 : rows ∩ ran(corresRowOfreadingPR) = ∅
grd4 : rows ∩ ran(corresRowOfwritingPR) = ∅

end

END

Appendix C An Event-B Specification of Flash Memory 241

C.3 The second refinement: Relocation events

Block reclamation is a background process. It is composed of (1) Selecting a candidate

block to reclaim. In our development, we select an block with the least number of

erasures. (2) Relocating if any valid page exists. After relocating complete, the given

block becomes obsolete (ready to be erased). (3) Erasing an obsolete block to be reused.

This process may not be proceed once the second step has been completed. We assume

that the obsolete will be selected when free spaces are required or when the system is in

the idle state (depending on algorithm). We delay the erase event to be refined in the

fourth refinement, where more details of reclamation process are added.

Two events required for relocation a page are introduced in this refinement: (1) copy a

valid page from one place to another fresh page (2) mark the old location to be obsolete.

MACHINE FMCH07 FL REF2d

REFINES FMCH07 FL REF1

SEES FLCTX01

VARIABLES

flash

programmed pages

obsolete pages

ready2read

ready2prog

readingPR Set of page registers being in the reading state.

writingPR Set of page registers being in the writing state.

corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR

f lash2 represents part of the flash array that have been programmed during

relocating process.

trans func A translation function, mapping the old location to the new location.

programmed pages2 represents a set of pages that have been programmed

during the relocation.

obsolete pages2 represents a set of all obsolete pages.

INVARIANTS

inv1 : f lash2 ∈ RowAddr 7→ PDATA

inv2 : trans func ∈ RowAddr 7→ RowAddr

inv3 : programmed pages2 ⊆ RowAddr

inv4 : programmed pages2 = trans func[programmed pages]

inv5 : dom(flash2) = programmed pages2

inv6 : programmed pages ∩ programmed pages2 = ∅
inv7 : obsolete pages2 ⊆ programmed pages ∪ programmed pages2

inv8 : obsolete pages ⊆ obsolete pages2

242 Appendix C An Event-B Specification of Flash Memory

inv9 : dom(trans func) ⊆ programmed pages

inv10 : ran(trans func) ∩ obsolete pages2 = ∅
inv11 : ∀r ·r ∈ dom(trans func)⇒ flash(r) = flash2(trans func(r))

inv12 : ∀r ·r ∈ ran(corresRowOfwritingPR)⇒ r /∈ programmed pages2

EVENTS

Initialisation

extended

begin
act13 : f lash2 := dflash
act14 : trans func := ∅
act15 : programmed pages2 := ∅
act16 : obsolete pages2 := ∅

end

Event pageread start =̂

(read step1) Starting page read by selecting the related LUN (lid) (in which the

the page row r is) and available page register (pr).

extends pageread start

any
r, lid, pr

where
grd1 : r ∈ programmed pages \ obsolete pages2
grd2 : pr ∈ PR
grd3 : pr /∈ readingPR ∪ writingPR
grd4 : lid = lidOfPR(pr)
grd5 : lidOfRow(r) = lid

then
act1 : readingPR := readingPR ∪ {pr}
act2 : corresRowOfreadingPR(pr) := r

end

Event read2reg =̂

(read step2) Transfer the page-data at the given row address (r) to the page register

(pr). case1: row r has not been relocated

extends read2reg

any
r, pdata, pr

where
grd1 : pr ∈ dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd7 : r /∈ dom(trans func)
grd3 : pr ∈ readingPR
grd4 : pr /∈ ready2read
grd5 : pdata ∈ PDATA
grd6 : pdata = flash(r)

then
act1 : dataOfPR(pr) := pdata
act2 : ready2read := ready2read ∪ {pr}

end

Event read2reg2 =̂

(r2) Transfer the page-data (pdata) at the given row address to the page register

pr . case2: if row r has been relocated. The content will be the content where the

content of the given page has been relocated (grd7)

Appendix C An Event-B Specification of Flash Memory 243

refines read2reg

any
r, pdata, pr

where
grd1 : pr ∈ dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pr ∈ readingPR
grd4 : pr /∈ ready2read
grd5 : pdata ∈ PDATA
grd6 : r ∈ dom(trans func)
grd7 : pdata = flash2(trans func(r))

then
act1 : dataOfPR(pr) := pdata
act3 : ready2read := ready2read ∪ {pr}

end

Event page read end =̂

(read step3 success) Read page data from the register off chip.

extends page read end

any
r, pdata, pr

where
grd1 : pr ∈ ready2read
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pdata = dataOfPR(pr)

then
act1 : ready2read := ready2read \ {pr}
act2 : readingPR := readingPR \ {pr}
act3 : corresRowOfreadingPR := {pr} −▹ corresRowOfreadingPR

end

Event page read fail =̂

(read step3 fails)

extends page read fail

any
r, pr

where
grd1 : pr ∈ readingPR
grd2 : r = corresRowOfreadingPR(pr)

then
act1 : readingPR := readingPR \ {pr}
act2 : ready2read := ready2read \ {pr}
act3 : corresRowOfreadingPR := {pr} −▹ corresRowOfreadingPR

end

Event pageprog start =̂

(program step1) Starting page programmed by selecting the related LUN lid (to

which row r belongs) and available page register (pr).

refines pageprog start

any
r, lid , pr

where
grd1 : r ∈ RowAddr \ (programmed pages ∪ programmed pages2)
grd2 : r /∈ ran(corresRowOfwritingPR) ∪ ran(corresRowOfwritingPR)
grd3 : pr ∈ PR
grd4 : pr /∈ readingPR ∪ writingPR

244 Appendix C An Event-B Specification of Flash Memory

grd5 : lid = lidOfPR(pr)
grd6 : lidOfRow(r) = lid

then
act1 : writingPR := writingPR ∪ {pr}
act2 : corresRowOfwritingPR(pr) := r

end

Event write2reg =̂

(program step2) Write/transfer the data to be programmed into the page register

within the LUN.

extends write2reg

any
r row address to be programmed
pdata
pr corresponding page register of row r

where
grd1 : r ∈ RowAddr
grd8 : pr ∈ writingPR
grd5 : pr /∈ ready2prog
grd4 : lidOfRow(r) = lidOfPR(pr)
grd9 : corresRowOfwritingPR(pr) = r
grd6 : pdata ∈ PDATA

then
act1 : dataOfPR(pr) := pdata
act2 : ready2prog := ready2prog ∪ {pr}

end

Event page program ok =̂

(end program success) Programme the data (pdata) on the page register pr to the

flash at the corresponding row address r .

refines page program ok

any
new r , pdata, pr

where
grd1 : pdata ∈ PDATA
grd2 : pr ∈ ready2prog
grd3 : new r = corresRowOfwritingPR(pr)
grd4 : pdata = dataOfPR(pr)
grd5 : new r /∈ dom(trans func)

then
act1 : f lash(new r) := pdata
act2 : programmed pages := programmed pages ∪ {new r}
act3 : ready2prog := ready2prog \ {pr}
act4 : writingPR := writingPR \ {pr}
act5 : corresRowOfwritingPR := {pr} −▹ corresRowOfwritingPR

end

Event page prog fail =̂

(programming a page fails)

extends page prog fail

any
r, pr

where
grd1 : pr ∈ writingPR
grd2 : r = corresRowOfwritingPR(pr)

then

Appendix C An Event-B Specification of Flash Memory 245

act1 : writingPR := writingPR \ {pr}
act2 : ready2prog := ready2prog \ {pr}
act3 : corresRowOfwritingPR := {pr} −▹ corresRowOfwritingPR

end

Event mark pages obsolete =̂

A utility event used for marking a set of pages (identified by rows) that belong to

object obj as obsolete.

extends mark pages obsolete

any
rows, obj

where
grd1 : obj ∈ OBJECT
grd2 : rows ⊆ programmed pages \ obsolete pages
grd3 : rows = flash−1[objOfpage−1[{obj}]]
grd4 : rows∩(ran(corresRowOfreadingPR)∪ran(corresRowOfwritingPR)) =

∅
then

act1 : obsolete pages := obsolete pages ∪ rows
act2 : obsolete pages2 := obsolete pages2 ∪ rows

end

Event mark a page obsolete =̂

Utility event. Marks a single page specified by the given row address as obsolete.

extends mark a page obsolete

any
old r

where
grd1 : old r ∈ programmed pages \ obsolete pages
grd2 : old r /∈ ran(corresRowOfreadingPR)∪ran(corresRowOfwritingPR)

then
act1 : obsolete pages := obsolete pages ∪ {old r}
act2 : obsolete pages2 := obsolete pages2 ∪ {old r}

end

Event copy a page to new loc =̂

Copy a valid page from old r to another location new r

any
old r ,new r , pdata

where
grd1 : old r ∈ programmed pages \ obsolete pages2
grd2 : new r ∈ RowAddr \ (programmed pages ∪ programmed pages2)
grd3 : pdata = flash(old r)
grd4 : old r /∈ dom(trans func)

then
act1 : f lash2(new r) := pdata
act2 : programmed pages2 := programmed pages2 ∪ {new r}
act3 : trans func(old r) := new r

end

Event mark old page obsolete =̂

Mark a page to be obsolete

any
old r

where
grd1 : old r ∈ programmed pages
grd2 : old r /∈ obsolete pages2

246 Appendix C An Event-B Specification of Flash Memory

then
act1 : obsolete pages2 := obsolete pages2 ∪ {old r}

end

Event erase a block =̂

Erase all the given pages within the given block, which is obsolete.

refines erase a block

any
rows All rows within the given block.

where
grd1 : rows ⊆ RowAddr
grd2 : rows ∩ (programmed pagess \ obsolete pages2) = ∅
grd3 : rows ∩ ran(corresRowOfwritingPR) = ∅
grd4 : rows ∩ ran(corresRowOfreadingPR) = ∅
grd5 : rows ∩ dom(trans func) = ∅
grd2 : rows ∩ (programmed pagess2 \ obsolete pages2) = ∅

then
act1 : f lash := flash �− (rows × {dp})
act2 : programmed pages := programmed pages \ rows
act3 : obsolete pages := obsolete pages \ rows
act4 : programmed pages2 := programmed pages2 \ rows
act5 : f lash2 := flash2�− (rows × {dp})
act6 : obsolete pages2 := obsolete pages2 \ rows

end

END

Appendix C An Event-B Specification of Flash Memory 247

C.4 The third refinement: Sequencing of relocation events

MACHINE FMCH07 FL REF3

REFINES FMCH07 FL REF2

SEES FLCTX2

VARIABLES

flash

programmed pages

obsolete pages

ready2read

ready2prog

readingPR

writingPR

corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR

flash2

trans func

programmed pages2

obsolete pages2

relocating blocks a set of blocks being relocated

relocating pages a set of pages being relocated from the old locations to new

locations

INVARIANTS

inv1 : relocating blocks ⊆ BLOCK

inv2 : relocating pages ∈ RowAddr 7� RowAddr

inv3 : dom(relocating pages) ⊆ (programmed pages2 \ obsolete pages2)

inv4 : ∀b, r ·b ∈ relocating blocks ∧ r ∈ RowAddr

∧ BlkOfRow(r) = b

⇒
r /∈ ran(corresRowOfreadingPR) ∧ r /∈ ran(corresRowOfwritingPR)

EVENTS

Initialisation

extended

begin
act17 : relocating blocks := ∅
act18 : relocating pages := ∅

end

Event pageread start =̂

(r1) Starting page read by selecting the related LUN (in which the the page no.

r is) and available page register.

extends pageread start

where
grd9 : BlkOfRow(r) /∈ relocating blocks

end

248 Appendix C An Event-B Specification of Flash Memory

Event read2reg =̂

(r2) Transfer the page-data at the given row address to the page register. Case1:

the given row has not been relocated.

extends read2reg

Event read2reg2 =̂

(r2) Transfer the page-data at the given row address to the page register. case2:

if row r has been relocated.

extends read2reg2

Event page read end =̂

(r3a) Read page data from the register off chip.

extends page read end

Event page read fail =̂

(r3b)

extends page read fail

Event pageprog start =̂

(w1) Starting page programmed by selecting the related LUN and available page

register.

extends pageprog start

where
grd9 : BlkOfRow(r) /∈ relocating blocks

end

Event write2reg =̂

(w2) Write/transfer the data to be programmed into the page register within the

LUN.

extends write2reg

Event page program ok =̂

(w3a) Programme the data on the page register to the flash at the corresponding

row address.

extends page program ok

Event page prog fail =̂

(w3b)

extends page prog fail

Event mark pages obsolete =̂

A utility event used for marking a set of pages as obsolete.

extends mark pages obsolete

where
grd5 : rows ∩ dom(relocating pages) = ∅

end

Event mark a page obsolete =̂

Utility event. Marks a single page specified by the given row address as obsolete.

extends mark a page obsolete

where
grd3 : old r /∈ dom(relocating pages)

Appendix C An Event-B Specification of Flash Memory 249

end

Event erase a block =̂

Erase all the given pages within the given block, which is obsolete.

extends erase a block

Event start relacating a block =̂

(1) Start relocating a block b (which is a candidate) if the given block has been

marked as obsolete. The relocating block becomes obsolete when there are no valid

pages.

any
b

where
grd1 : b ∈ BLOCK
grd2 : b /∈ relocating blocks
grd3 : ∀r ·r ∈ RowAddr ∧ BlkOfRow(r) = b

⇒r /∈ ran(corresRowOfwritingPR)∪ran(corresRowOfreadingPR)

There is no page being written or read.
grd4 : ∃r ·r ∈ (programmed pages ∪ programmed pages2) ∧ BlkOfRow(r) =

b

⇒ r /∈ obsolete pages2

At least one valid page exists
then

act1 : relocating blocks := relocating blocks ∪ {b}
end

Event start relocating a page =̂

(2.1) Start relocating a valid page within the relocating block (b), if exist, from

old r to new r

any
old r ,new r , b

where
grd1 : old r ∈ (programmed pages ∪ programmed pages2) \ obsolete pages2
grd2 : b ∈ relocating blocks
grd3 : BlkOfRow(old r) = b
grd4 : new r ∈ RowAddr \ (programmed pages ∪ programmed pages2)
grd5 : old r /∈ dom(relocating pages)
grd6 : new r /∈ ran(relocating pages)

then
act1 : relocating pages := relocating pages ∪ {old r 7→ new r}

end

Event copy a page to new loc =̂

(2.2) Write the content of page at the old location to another location.

refines copy a page to new loc

any
old r ,new r
pdata a PDATA to be copied from old r to new r

where
grd1 : old r 7→ new r ∈ relocating pages
grd2 : new r /∈ programmed pages2
grd4 : pdata = flash(old r)
grd5 : new r /∈ ran(trans func)

250 Appendix C An Event-B Specification of Flash Memory

then
act1 : f lash2(new r) := pdata
act2 : programmed pages2 := programmed pages2 ∪ {new r}
act3 : trans func(old r) := new r

end

Event mark old page obsolete =̂

(2.3a) Mark the old page to be obsolete at the end when the content has been

written to the new location.

refines mark old page obsolete

any
old r ,new r

where
grd1 : old r 7→ new r ∈ relocating pages
grd2 : new r ∈ programmed pages2

then
act1 : obsolete pages2 := obsolete pages2 ∪ {old r}
act2 : relocating pages := relocating pages \ {old r 7→ new r}

end

Event relocate a page fail =̂

(2.3b) In the case of relocating the given page fails (or abort), remove the tuple of

pages being located. If locating a page is aborted at any point, (i) fail to write to

a new location (fail at 2.2), the content at the old location is still valid; (ii) fail to

mark the old as obsolete. That means there two valid pages with the same content

in both old and new location. However, when the flash is remounted only one is

selected to formulate the fat table and then mark another obsolete.

any
old r ,new r

where
grd1 : old r 7→ new r ∈ relocating pages

then
act1 : relocating pages := relocating pages \ {old r 7→ new r}

end

Event relocate a block end =̂

(3a success) Mark the block being located as obsolete when there are no valid

pages exist. The obsolete block is the block that is read for erasing.

any
b

where
grd1 : b ∈ relocating blocks
grd2 : ∀r ·r ∈ (programmed pages2∪progrmmed pages) ∧ BlkOfRow(r) = b

⇒ r ∈ obsolete pages2)

No valid pages within the given block.
then

act1 : relocating blocks := relocating blocks \ {b}
end

Event relocate a block fail =̂

(3b fail) When relocating a block fails. As the result, some valid pages may exist

and it has not been marked as obsolete. That means this block might be selected

to relocate and erase again in the future.

any

Appendix C An Event-B Specification of Flash Memory 251

b the block being relocated
rws all rows within the given block

where
grd1 : b ∈ relocating blocks
grd2 : rws = BlkOfRow−1[{b}]

then
act1 : relocating blocks := relocating blocks \ {b}
act2 : relocating pages := rws −▹ relocating pages

end

END

252 Appendix C An Event-B Specification of Flash Memory

C.5 The fourth refinement: Refining the block erase event

MACHINE FMCH07 FL REF4

REFINES FMCH07 FL REF3

SEES FLCTX3

VARIABLES

flash

programmed pages

obsolete pages

ready2read page registers that their data are ready to be read

ready2prog page registers that their data are ready to be programmed into

the flash

readingPR Set of page registers being in the reading state.

writingPR Set of page registers being in the writing state.

corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR data of each page register

flash2 represents part of flash that have been programmed during relocation

trans func A translation function, mapping the content from the old location

to the new location.

programmed pages2 represents a set of pages that have already been pro-

grammed during the relocating process

obsolete pages2 represents a set of all obsolete pages

relocating blocks blocks in the relocating state

relocating pages pairs of pages (old,new) that are in the relocating state

candidate blocks blocks which are candidate to be relocated

obsolete blocks set (programmed) blocks that have no valid pages

erasing blocks blocks being in the erasing state

num erased the number of times that each block has been erased

invalid num erased blocks (erased) blocks with invalid num erased

restoring num erased blocks in the restoring num erased state

tmp num erased temporary places storing the number of erasures

corresBlkOftmpErased the corresponding block of the tmp num erased

bad blocks set of bad blocks

INVARIANTS

inv1 : candidate blocks ⊆ BLOCK

inv2 : relocating blocks ⊆ candidate blocks

inv3 : obsolete blocks ⊆ BLOCK

inv4 : obsolete blocks ∩ relocating blocks = ∅
inv5 : ∀r ·r ∈ (programmed pages ∪ programmed pages2)

∧ BlkOfRow(r) ∈ obsolete blocks

⇒ r ∈ obsolete pages2

inv6 : erasing blocks ⊆ obsolete blocks

inv7 : ∀b, r ·b ∈ obsolete blocks ∧
r ∈ RowAddr ∧ BlkOfRow(r) = b

⇒
r /∈ ran(corresRowOfreadingPR) ∧ r /∈ ran(corresRowOfwritingPR)

Appendix C An Event-B Specification of Flash Memory 253

inv8 : num erased ∈ BLOCK → N
inv9 : invalid num erased blocks ⊆ BLOCK

inv10 : restoring num erased ⊆ invalid num erased blocks

inv11 : tmp num erased ∈ RowAddr 7→ N
inv12 : corresBlkOftmpErased ∈ dom(tmp num erased)→ BLOCK

inv13 : bad blocks ⊆ BLOCK

inv14 : bad blocks ∩ candidate blocks = ∅
inv15 : ∀r ·r ∈ dom(relocating pages)⇒ BlkOfRow(r) ∈ relocating blocks

EVENTS

Initialisation

extended

begin
act19 : candidate blocks := ∅
act20 : obsolete blocks := ∅
act21 : erasing blocks := ∅
act22 : num erased := BLOCK × {0}
act27 : invalid num erased blocks := ∅
act23 : restoring num erased := ∅
act24 : tmp num erased := ∅
act25 : corresBlkOftmpErased := ∅
act26 : bad blocks := ∅

end

Event pageread start =̂

(r1) Starting page read by selecting the related LUN (in which the the page row

r is) and avialable page register.

extends pageread start

where
grd7 : BlkOfRow(r) /∈ obsolete blocks ∪ relocating blocks ∪ bad blocks

end

Event read2reg =̂

(r2) Transfer the page-data at the given row address to the page register. (case1)

extends read2reg

Event read2reg2 =̂

(r2) Transfer the page-data from the given row address to the page register. (case2)

extends read2reg2

Event page read end =̂

(r3.ok) Read page data from the register off chip.

extends page read end

Event page read fail =̂

(r3.fail)

extends page read fail

Event pageprog start =̂

(w1) Starting page programmed by selecting the related LUN and avialable page

register.

extends pageprog start

254 Appendix C An Event-B Specification of Flash Memory

where
grd10 : BlkOfRow(r) /∈ obsolete blocks ∪ relocating blocks ∪ bad blocks

end

Event write2reg =̂

(w2) Write/transfer the data to be programmed into the page register within the

LUN.

extends write2reg

Event page program ok =̂

(w3.ok) Programme the data on the page register to the flash at the corresponding

row address.

extends page program ok

Event page prog fail =̂

(w3.fail) programming the given page fails

extends page prog fail

Event mark pages obsolete =̂

A utility event used for marking a set of pages as obsolete.

extends mark pages obsolete

Event mark a page obsolete =̂

Utility event. Marks a single page specified by the given row address as obsolete.

extends mark a page obsolete

Event start relacating a block =̂

(1) Start relocating a block (which is a candidate) if the given block has been

marked as obsolete. The relocating block becomes obsolete when there are no

valid pages.

refines start relacating a block

any
b

where
grd1 : b ∈ candidate blocks
grd2 : b /∈ relocating blocks ∪ obsolete blocks
grd3 : ∀r ·r ∈ RowAddr ∧ BlkOfRow(r) = b⇒r /∈ ran(corresRowOfwritingPR)∪

ran(corresRowOfreadingPR)

There is no page being written or read.
grd4 : BlkOfRow−1[{b}] ∩ (programmed pages \ obsolete pages2) ̸= ∅

Existing some valid pages
then

act1 : relocating blocks := relocating blocks ∪ {b}
end

Event start relocating a page =̂

(2.1) Start relocating a valid page within the relocating block (if exist).

extends start relocating a page

Event copy a page to new loc =̂

(2.2) Write the content of page at the old location to another location.

extends copy a page to new loc

where

Appendix C An Event-B Specification of Flash Memory 255

grd6 : BlkOfRow(new r) /∈ obsolete blocks ∪ bad blocks
end

Event mark old page obsolete =̂

(2.3) Mark the old page to be obsolete at the end when the content has been

written to the new location.

extends mark old page obsolete

Event relocate a page fail =̂

(2.fail) In the case of relocating the given page fails (or abort), remove the tuple

of pages being located. If locating a page is aborted at any point, (2.2.fail) fail to

write to a new location (fail at 2.2), the content at the old location is still valid;

(2.3.fail) fail to mark the old as obsolete. That means there are two valid pages

with the same content in both old and new location. However, when the flash is

mounted only one is selected to formulate the fat table and then mark another

obsolete.

extends relocate a page fail

Event relocate a block end =̂

(3.ok) Mark the block being located as obsolete when there are no valid pages

exist. The obsolete block is the block that is read for erasing.

refines relocate a block end

any
b

where
grd1 : b ∈ relocating blocks

or lid 7→ bid ∈ LUAddr ×BAddr meaning it can be any block. The dirty

block is a candidate block to be reclaim.
grd2 : BlkOfRow−1[{b}] ∩ (programmed pages \ obsolete pages2) = ∅

No valid pages within the given block.
then

act1 : relocating blocks := relocating blocks \ {b}
act2 : obsolete blocks := obsolete blocks ∪ {b}

end

Event relocate a block fail =̂

(3.fail) When relocating a block fails. As the result, some valid pages may exist

and it has not been marked as obsolete. That means this block might be selected

to relocate and erase again in the future.

refines relocate a block fail

any
b, rws

where
grd1 : b ∈ relocating blocks
grd2 : rws = BlkOfRow−1[{b}]

then
act1 : relocating blocks := relocating blocks \ {b}
act2 : relocating pages := rws −▹ relocating pages

end

Event start erase block =̂

(4.1) Start erasing an obsolete block. Set the given block in the erasing state.

256 Appendix C An Event-B Specification of Flash Memory

[Store the number of erasures somewhere else (in the other block) before erasing.

The number of erasure will be restored when erasing process complete]

This step are not necessary to be performed once the relocation of the given block

complete. This event just pick up one of the obsolete blocks to be erased.

any
b
free r

where
grd1 : b ∈ obsolete blocks
grd2 : b /∈ erasing blocks
grd3 : num erased(b) ≤ max erase
grd4 : free r ∈ RowAddr \ (programmed pages2 ∪ programmed pages)
grd5 : BlkOfRow(free r) /∈ erasing blocks
grd6 : free r /∈ dom(tmp num erased)
grd7 : ∀k ·k ∈ obsolete blocks\bad blocks⇒num eraseOfblock(k) ≥ num eraseOfblock(b)

select an obsolete block with the least number of erasures
grd8 : b /∈ bad blocks

then
act1 : erasing blocks := erasing blocks ∪ {b}
act2 : tmp num erased(free r) := num erased(b)

Store the number of erasures somewhere else.
act3 : corresBlkOftmpErased(free r) := b

end

Event erase a block end =̂

(4.2.ok) erase the given block which is obsolete. That means all pages have already

set to the default (dp). The previous num erased is also cleared. That is the

number of erasing times is now invalid.

refines erase a block

any
rows All rows within the given block.
b

where
grd1 : b ∈ erasing blocks
grd2 : rows = BlkOfRow−1[{b}]
grd3 : rows∩((programmed pages2∪programmed pages)\obsolete pages) =

∅
The block being erased have no valid pages

grd4 : rows ∩ ran(corresRowOfreadingPR) = ∅
grd5 : rows ∩ ran(corresRowOfwritingPR) = ∅
grd6 : rows ∩ dom(trans func) = ∅
∀ r ·r ∈ dom(trans func)⇒ flash(r) = dp

grd7 : rows ∩ ran(trans func) = ∅
then

act1 : f lash := flash �− (rows × {dp})
act2 : programmed pages := programmed pages \ rows
act3 : obsolete pages := obsolete pages \ rows
act4 : programmed pages2 := programmed pages2 \ rows
act5 : obsolete pages2 := obsolete pages2 \ rows
act6 : erasing blocks := erasing blocks \ {b}
act7 : obsolete blocks := obsolete blocks \ {b}

Appendix C An Event-B Specification of Flash Memory 257

act8 : candidate blocks := candidate blocks \ {b}
act9 : invalid num erased blocks := invalid num erased blocks ∪ {b}

end

Event erase a block fail =̂

(4.2.fail) In the case of erasing fails. The block is still in the obsolete state that

might be selected to be erased later. (The obsolete block is invalid to be used)

any
b

where
grd1 : b ∈ erasing blocks

then
act1 : erasing blocks := erasing blocks \ {b}

end

Event start restore num erased =̂

(5.1) Start restoring the number of erasures

any
b

where
grd1 : b ∈ invalid num erased blocks

then
act1 : restoring num erased := restoring num erased ∪ {b}

end

Event restore num erased =̂

(5.2.ok) Restoring of the number of erasures success.

any
b
row the row that temporarily stores the number of times that block b has

been erased
where

grd1 : b ∈ restoring num erased
grd2 : row ∈ dom(tmp num erased)
grd3 : b = corresBlkOftmpErased(row)

then
act1 : num erased(b) := tmp num erased(row) + 1
act2 : restoring num erased := restoring num erased \ {b}
act3 : tmp num erased := {row} −▹ tmp num erased
act4 : corresBlkOftmpErased := {row} −▹ corresBlkOftmpErased
act5 : invalid num erased blocks := invalid num erased blocks \ {b}

end

Event restore num erased fail =̂

(5.2.fail) Restoring of the number of erasures fails. This means the num erased of

this block still invalid. It may be restored later, since the valid one still remain.

any
b

where
grd1 : b ∈ restoring num erased

then
act2 : restoring num erased := restoring num erased \ {b}

end

END

258 Appendix C An Event-B Specification of Flash Memory

C.6 The fifth refinement: Status Register

MACHINE FMCH07 FL REF5

REFINES FMCH07 FL REF4

SEES FLCTX4

VARIABLES

flash

programmed pages

obsolete pages

ready2read page registers that their data are ready to be read

ready2prog page registers that their data are ready to be programmed into

the flash

readingPR Set of page registers being in the reading state.

writingPR Set of page registers being in the writing state.

corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR data of each page register

flash2 represents part of flash that have been programmed during relocation

trans func A translation function, mapping the content from the old location

to the new location.

programmed pages2 represents a set of pages that have already been pro-

grammed during the relocating process

obsolete pages2 represents a set of all obsolete pages

relocating blocks blocks in the relocating state

relocating pages pairs of pages (old,new) that are in the relocating state

candidate blocks blocks which are candidate to be relocated

obsolete blocks set (programmed) blocks that have no valid pages

erasing blocks blocks being in the erasing state

num erased the number of times that each block has been erased

invalid num erased blocks (erased) blocks with invalid num erased

restoring num erased blocks in the restoring num erased state

tmp num erased temporary places storing the number of erasures

corresBlkOftmpErased the corresponding block of the tmp num erased

bad blocks set of bad blocks

t status the status of the target flash device

lready set of LUNs that their status values is ready

lnotready set of LUNs that their status values is not ready

lreadyfail set of LUNs that is ready, but the previous command fails

wprotected set of LUNs that are write protected

INVARIANTS

inv1 : t status ∈ STATUS

inv2 : lready ⊆ LUAddr

inv3 : lnotready ⊆ LUAddr

inv4 : lreadyfail ⊆ LUAddr

inv5 : wprotected ⊆ LUAddr

inv6 : partition(LUAddr , lready , lnotready , lreadyfail)

Appendix C An Event-B Specification of Flash Memory 259

inv7 : t status = RDY ⇒ (∀ l ·l ∈ LUAddr ⇒ l ∈ (lready ∪ lreadyfail))

inv8 : ∀r ·r ∈ RowAddr ∧ lidOfRow(r) ∈ wprotected ⇒ r /∈ ran(relocating pages)

inv9 : ∀r ·r ∈ RowAddr ∧ r ∈ ran(relocating pages)⇒ lidOfRow(r) /∈ wprotected

EVENTS

Initialisation

extended

begin
act27 : t status := RDY
act28 : lready := LUAddr
act29 : lnotready := ∅
act30 : lreadyfail := ∅
act31 : wprotected := ∅

end

Event pageread start =̂

(r1) Starting page read by selecting the related LUN (in which the the page no.

r is) and available page register.

extends pageread start

where
grd12 : t status = RDY
grd11 : lid /∈ wprotected

then
act3 : lnotready := lnotready ∪ {lid}
act4 : lready := lready \ {lid}
act5 : lreadyfail := lreadyfail \ {lid}
act6 : t status := nRDY

end

Event read2reg =̂

(r2) Transfer the page-data at the given row address to the page register.

extends read2reg

Event page read end =̂

(r3a) Read page data from the register off chip.

extends page read end

any
lid

where
grd5 : lid = lidOfRow(r)
grd6 : lid ∈ lnotready

then
act5 : lready := lready ∪ {lid}
act6 : lnotready := lnotready \ {lid}

end

Event page read fail =̂

(r3b)

extends page read fail

any
lid

where
grd3 : lid = lidOfRow(r)
grd4 : lid ∈ lnotready

then

260 Appendix C An Event-B Specification of Flash Memory

act4 : lreadyfail := lreadyfail ∪ {lid}
act5 : lnotready := lnotready \ {lid}

end

Event pageprog start =̂

(w1) Starting page programmed by selecting the related LUN and avialable page

register.

extends pageprog start

where
grd12 : t status = RDY
grd13 : lid /∈ wprotected

then
act3 : lnotready := lnotready ∪ {lid}
act4 : lready := lready \ {lid}
act5 : lreadyfail := lreadyfail \ {lid}
act6 : t status := nRDY

end

Event write2reg =̂

(w2) Write/transfer the data to be programmed into the page register within the

LUN.

extends write2reg

Event page program ok =̂

(w3a) Programme the data on the page registier to the flash at the corresponding

row address.

extends page program ok

any
lid

where
grd8 : lid ∈ lnotready
grd9 : lid = lidOfRow(new r)

then
act8 : lready := lready ∪ {lid}
act9 : lnotready := lnotready \ {lid}

end

Event page prog fail =̂

(w3b)

extends page prog fail

any
lid

where
grd3 : lid ∈ lnotready
grd4 : lid = lidOfRow(r)

then
act5 : lreadyfail := lreadyfail ∪ {lid}
act6 : lnotready := lnotready \ {lid}

end

Event mark pages obsolete =̂

A utility event used for marking a set of pages as obsolete.

extends mark pages obsolete

Event mark a page obsolete =̂

Utility event. Marks a single page specified by the given row address as obsolete.

Appendix C An Event-B Specification of Flash Memory 261

extends mark a page obsolete

Event start relacating a block =̂

(1) Start relocating a block (which is a candidate) if the given block has been

marked as obsolete. The relocating block becomes obsolete when there are no

valid pages.

extends start relacating a block

Event start relocating a page =̂

(2.1) Start relocating a valid page within the relocating block (if exist).

extends start relocating a page

any
lid old , lid new

where
grd9 : lid old = lidOfRow(old r)
grd10 : lid new = lidOfRow(new r)
grd11 : {lid new , lid old} ∩ wprotected = ∅

then
act2 : lnotready := lnotready ∪ {lid old , lid new}
act3 : lready := lready \ {lid old , lid new}
act4 : lreadyfail := lreadyfail \ {lid old , lid new}
act5 : t status := nRDY

end

Event copy a page to new loc =̂

(2.2) Write the content of page at the old location to another location.

extends copy a page to new loc

Event mark old page obsolete =̂

(2.3) Mark the old page to be obselete at the end when the content has been

written to the new location.

extends mark old page obsolete

Event relocate a page fail case1 =̂

(2.2.fail) Fail to write to a new location (fail at 2.2), the content at the old location

is still valid

extends relocate a page fail

any
lid

where
grd2 : new r /∈ programmed pages2
grd3 : lid = lidOfRow(new r)
grd4 : lid ∈ lnotready

then
act2 : lreadyfail := lreadyfail ∪ {lid}
act3 : lnotready := lnotready \ {lid}

end

Event relocate a page fail case2 =̂

(2.3.fail) Fail to mark the old as obsolete. That means there are two valid pages

with the same content in both old and new location. However, when the flash is

mounted only one is selected to formulate the fat table and then mark another

obsolete.

extends relocate a page fail

262 Appendix C An Event-B Specification of Flash Memory

any
lid

where
grd2 : new r ∈ programmed pages2
grd3 : lid = lidOfRow(old r)
grd4 : lid ∈ lnotready
grd5 : old r /∈ obsolete pages2

then
act2 : lreadyfail := lreadyfail ∪ {lid}
act3 : lnotready := lnotready \ {lid}

end

Event relocate a block end =̂

(3.ok) Mark the block being located as obsolete when there are no valid pages

exist. The obsolete block is the block that is read for erasing.

extends relocate a block end

any
lid

where
grd4 : lid ∈ lnotready
grd5 : lid = lidOfBlk(b)

then
act3 : lready := lready ∪ {lid}
act4 : lnotready := lnotready \ {lid}

end

Event relocate a block fail =̂

(3.fail) When relocating a block fails. As the result, some valid pages may exist

and it has not been marked as obsolete. That means this block might be selected

to relocate and erase again in the future.

extends relocate a block fail

any
lid

where
grd3 : lid ∈ lnotready
grd4 : lid = lidOfBlk(b)

then
act3 : lreadyfail := lreadyfail ∪ {lid}
act4 : lnotready := lnotready \ {lid}

end

Event start erase block =̂

(4.1) Start erasing an obsolete block. Set the given block in the erasing state.

[Store the number of erasures somewhere else (in the other block) before erasing.

The number of erasure will be restored when erasing process complete]

extends start erase block

any
lid

where
grd9 : t status = RDY
grd10 : lid = lidOfBlk(b)
grd11 : lid /∈ wprotected

then
act4 : lnotready := lnotready ∪ {lid}
act5 : lready := lready \ {lid}

Appendix C An Event-B Specification of Flash Memory 263

act6 : lreadyfail := lreadyfail \ {lid}
act7 : t status := nRDY

end

Event erase a block ok =̂

(4.2.ok) erase the given block which is obsolete

extends erase a block

any
lid

where
grd8 : lid ∈ lnotready
grd10 : lid = lidOfBlk(b)

then
act8 : lready := lready ∪ {lid}
act9 : lnotready := lnotready \ {lid}

end

Event erase a block fail =̂

(4.2.fail) In the case of erasing fails. The block is still in the obsolete state that

might be selected to be erased later. (The obsolete block is invalid to be used.)

extends erase a block fail

any
lid

where
grd2 : lid ∈ lnotready
grd3 : lid = lidOfBlk(b)

then
act5 : lreadyfail := lreadyfail ∪ {lid}
act6 : lnotready := lnotready \ {lid}

end

Event start restore num erased =̂

(5.1) Start restoring the number of erasures

extends start restore num erased

any
lid

where
grd9 : t status = RDY
grd10 : lid = lidOfBlk(b)
grd11 : lid /∈ wprotected

then
act4 : lnotready := lnotready ∪ {lid}
act5 : lready := lready \ {lid}
act6 : lreadyfail := lreadyfail \ {lid}
act7 : t status := nRDY

end

Event restore num erased ok =̂

(5.2.ok) restore the number of erasures at the end of erasing a block

extends restore num erased

any
lid

where
grd5 : lid = lidOfBlk(b)
grd4 : lid ∈ lnotready

then
act8 : lready := lready ∪ {lid}

264 Appendix C An Event-B Specification of Flash Memory

act9 : lnotready := lnotready \ {lid}
end

Event restore num erased fail =̂

(5.2.fail) Restoring of the number of erasures fails. This means the num erased of

this block still invalid. It may be restored later, since the the vilid one still remian.

extends restore num erased fail

any
lid

where
grd2 : lid = lidOfBlk(b)
grd3 : lid ∈ lnotready

then
act2 : lready := lready ∪ {lid}
act3 : lnotready := lnotready \ {lid}

end

Event setwprotect =̂

any
lid

where
grd1 : lid ∈ LUAddr
grd2 : lid /∈ wprotected
grd3 : t status = RDY
grd4 : ran(relocating pages) ∩ lidOfRow−1[{lid}] = ∅

No pages being in the relocating process.
grd5 : ran(corresRowOfwritingPR) ∩ lidOfRow−1[{lid}] = ∅

No page being programmed
then

act1 : wprotected := wprotected ∪ {lid}
end

Event remove wprotect =̂

any
lid

where
grd1 : lid ∈ LUAddr
grd2 : lid ∈ wprotected
grd3 : t status = RDY

then
act1 : wprotected := wprotected \ {lid}

end

Event read flash status =̂

any
st

where
grd1 : st ∈ {RDY ,nRDY }
grd2 : st = RDY ⇔ (∀ l ·l ∈ LUAddr ⇒ l ∈ (lready ∪ lreadyfail))

then
act1 : t status := st

end

END

Bibliography

[1] J.-R. Abrial. The B Book. Cambridge University Press, 1996.

[2] J.-R. Abrial. A system development process with Event-B and the Rodin platform.

In M. Butler, M. G. Hinchey, and M. M. Larrondo-Petrie, editors, ICFEM, volume

4789 of Lecture Notes in Computer Science, pages 1–3. Springer, 2007.

[3] J.-R. Abrial. Formal methods: Theory becoming practice. J. UCS, 13(5):619–628,

May 2007.

[4] J.-R. Abrial. Modelling in Event-B: System and Software Engineering. Cambridge

University Press, 2010.

[5] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.

Rodin: an open toolset for modelling and reasoning in Event-B. International

Journal on Software Tools for Technology Transfer (STTT), 10.1007, April 2010.

Published online.

[6] J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool

environment for Event-B. In Z. Liu and J. He, editors, ICFEM 2006 Lecture Notes

in Computer Science, volume 4260, 2006.

[7] J-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. A roadmap for the Rodin

toolset version 1.0: 12 June 2008. In Börger et al. [19], page 347.

[8] J.-R. Abrial and S. Hallerstede. Refinement, decomposition and instantiation of

discrete models: Application to Event-B. Fundamentae Infomatica, 2006.

[9] S. Agerholm and P. G. Larsen. The IFAD VDM tools: Lightweight formal methods.

In FM-Trends 98: Proceedings of the International Workshop on Current Trends

in Applied Formal Method, pages 326–329, London, UK, 1999. Springer-Verlag.

[10] R.-J. Back, , and J. von Wright. Refinement Calculus: A Systematic Introduction.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[11] R. J. R. Back. Refinement calculus, part ii: parallel and reactive programs. In REX

workshop: Proceedings on Stepwise refinement of distributed systems: models, for-

malisms, correctness, pages 67–93, New York, NY, USA, 1990. Springer-Verlag

New York, Inc.

265

266 BIBLIOGRAPHY

[12] R. J. R. Back and F. Kurki-Suonio. Distributed cooperation with action systems.

ACM Trans. Program. Lang. Syst., 10:513–554, 1988.

[13] J.C.M. Baeten. A brief history of process algebra. Technical report, Department

of Computer Science, Technische Universiteit Eindhoven, 2004.

[14] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Programmiermethodik.

Formal system development with kiv. In Fundamental Approaches to Software

Engineering, number 1783 in LNCS, pages 363–366. Springer, 2000.

[15] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-memory algorithms.

In ESA’06: Proceedings of the 14th conference on Annual European Symposium,

pages 100–111, London, UK, 2006. Springer-Verlag.

[16] J. Bendisposto and M. Leuschel. The ProB plug-in for Eclipse and Rodin. Tech-

nical report, Institut für Informatik, Heinrich-Heine Universität Düsseldorf, 2007.

[17] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-

tion. Theoretical Computer Science, 37:77–121, 1985.

[18] E. Börger. The abstract state machines method for high-level system design and

analysis. Technical report, Dipartimento di Informatica, Universita di Pisa, Italy,

2003.

[19] E. Börger, M. Butler, J. P. Bowen, and Paul Boca, editors. Abstract State Ma-

chines, B and Z, First International Conference, ABZ 2008, London, UK, Septem-

ber 16-18, 2008. Proceedings, volume 5238 of Lecture Notes in Computer Science.

Springer, 2008.

[20] J. Bowen. Formal Specification and Documentation using Z: A Case Study Ap-

proach. International Thomson Computer Press, 2003.

[21] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. Rustan M.

Leino, and E. Poll. An overview of JML tools and applications. International

Journal on Software Tools for Technology Transfer, 7(3):212–232, June 2005.

[22] M. Butler. A CSP approach to action systems. PhD thesis, Programming Research

Group, Oxford University, 1992.

[23] M. Butler. Stepwise refinement of communicating systems. Science of Computer

Programming, 27(2):139–173, 1996.

[24] M. Butler. On the verified-by-construction approach. Technical report, University

of Southampton, UK, February 2006.

[25] M. Butler. Rodin deliverable D31: Plublic versions of plug-in tools.

Technical report, University of Southampton, UK, 2007. Available from:

http://rodin.cs.ncl.ac.uk/D31.pdf.

BIBLIOGRAPHY 267

[26] M. Butler. Decomposition structures for Event-B. In IFM ’09: Proceedings of the

7th International Conference on Integrated Formal Methods, pages 20–38, Berlin,

Heidelberg, 2009. Springer-Verlag.

[27] M. Butler, J.-R. Abrial, K. Damchoom, and A. Edmunds. Applying Event-B and

Rodin to the filestore, 2008. VSRNet Workshop, ABZ 2008.

[28] M. Butler, J. Grundy, T. Langbacka, R. Ruksenas, and J. von Wright. The re-

finement calculator: Proof support for program refinement. In Formal Methods

Pacific 97, pages 40–61. Springer, 1997.

[29] M. Butler and S. Hallerstede. The Rodin formal modelling tool. BCS-FACS

Christmas 2007 Meeting - Formal Methods In Industry, London., December 2007.

[30] M. Butler, M. Leuschel, and C. Snook. Tools for system validation with B ab-

stract machines. In ASM 2005: 12th International Workshop on Abstract State

Machines, 2005.

[31] M. Butler and D. Yadav. An incremental development of the Mondex system in

Event-B. Formal Aspects of Computing, 20(1):61–77, 2007.

[32] R. W. Butler. What is formal methods. Technical report, NASA, 2001. Available

from http://shemesh.larc.nasa.gov/fm/fm-what.html.

[33] A. Butterfield, L. Freitas, and J. Woodcock. Mechanising a formal model of flash

memory. Sci. Comput. Program., 74(4):219–237, 2009.

[34] A. Butterfield and J. Woodcock. Formalising flash memory: First steps. In

ICECCS ’07: Proceedings of the 12th IEEE International Conference on Engi-

neering Complex Computer Systems (ICECCS 2007), pages 251–260, Washington,

DC, USA, 2007. IEEE Computer Society.

[35] D. Cansell and D. Méry. Foundation of the B-method. Computing and Informatics,

20:1–31, 2003.

[36] D. Cansell and D. Méry. Tutorial on the event-based B method Concepts and Case

Studies. Technical report, LORIA and Université Henri Poincaré Nancy, 2006.

[37] D. Carrington. Vdm and the refinement calculus: a comparison of two system-

atic design methods. Technical report, The University of Queenland, Australia,

December 1993.

[38] ClearSy. Atelier B translators user manual, version 4.6. Tech-

nical report, ClearSy, Parc de la Duranne, 2009. Available from

http://www.atelierb.eu/ressources/DOC/english/translators-user-manual.pdf.

268 BIBLIOGRAPHY

[39] T. Clement. Combining transformation and posit-and prove in a VDM devel-

opment. In VDM ’91: Proceedings of the 4th International Symposium of VDM

Europe on Formal Software Development-Volume I, pages 63–80, London, UK,

1991. Springer-Verlag.

[40] J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. Rodin

(rigorous open development environment for complex systems). Fifth European

Dependable Computing Conference: EDCC-5 supplementary, pages 23–26, 2005.

Available from http://rodin.cs.ncl.ac.uk.

[41] CSK System Corp. VDMTools, 2009. Available from http://www.vdmtools.jp.

[42] Oracle Corporation. Object-oriented programming concepts, Jan 2010.

http://java.sun.com/docs/books/tutorial/java/concepts/.

[43] K. Damchoom and M. Butler. An experiment in applying Event-B and Rodin to

a flash-based filestore. In Rodin User and Developer Workshop, July 2009.

[44] K. Damchoom and M. Butler. Applying event and machine decomposition to a

flash-based filestore in Event-B. In Marcel Vinicius Medeiros Oliveira and Jim

Woodcock, editors, SBMF, volume 5902 of Lecture Notes in Computer Science,

pages 134–152. Springer, 2009.

[45] K. Damchoom, M. J. Butler, and J.-R. Abrial. Modelling and proof of a tree-

structured file system in Event-B and Rodin. In Shaoying Liu, T. S. E. Maibaum,

and Keijiro Araki, editors, ICFEM, volume 5256 of Lecture Notes in Computer

Science, pages 25–44. Springer, 2008.

[46] K. Damchoom and E. R. Jam. B2Latex, a LaTeX code generator for the Rodin

platform, 2007. Available from: http://www.event-b.org.

[47] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof

Methods and their Comparison. Cambridge University Press, 1998.

[48] A. Edmunds and M. Butler. Linking Event-B and concurrent object-oriented

programs. Electronic Notes in Theoretical Computer Science, 2008.

[49] A. Edmunds and M. Butler. Tool support for Event-B code generation. In Work-

shop on Tool Building in Formal Methods - ABZ Conference, Canada, 2010.

[50] S. Eisenbach and R. Paterson. π−calculus semantics for the concurrent configu-

ration language darwin. In Hawaii International Conference on System Sciences,

Koloa, Hawaii, January 1993.

[51] Hynix Semiconductor et al. Open NAND flash interface specification, revision 1.0.

Technical report, ONFI, www.onfi.org, Dec. 2006.

BIBLIOGRAPHY 269

[52] Hynix Semiconductor et al. Open nand flash interface specification, revision 2.0.

Technical report, ONFI, www.onfi.org, 2008.

[53] N. Evans and M. Butler. A proposal for records in event-b. In Tobias Nipkow,

Jayadev Misra, and Emil Sekerinski, editors, Formal Methods 2006, volume LNCS

4085, pages 221–235. Springer, 2006.

[54] M. A. Ferreira, S. S. Silva, and J. N. Oliveira. Verifying intel flash file system core

specification. In Fourth VDM/Overture Workshop (CS-TR-1099), 2008.

[55] R. B. Findler. Scheme and functional programming 2006: paper abstracts. SIG-

PLAN Not., 41(8):6–9, 2006.

[56] D. Flanagan. Java in a Nutshell. O’Reilly, USA, 5th edition, 2005.

[57] The Eclipse Foundation. Eclipse - an open development platform, 2007. Available

from http://www.eclipse.org/.

[58] L. Freitas, Z. Fu, and J. Woodcock. POSIX file store in Z/Eves: an experiment in

the verified software repository. In ICECCS, pages 3–14. IEEE Computer Society,

2007.

[59] L. Freitas, J. Woodcock, and A. Butterfield. POSIX and the verification grand

challenge: A roadmap. ICECCS, 0:153–162, 2008.

[60] L. Freitas, J. Woodcock, and Z. Fu. POSIX file store in Z/Eves: An experiment

in the verified software repository. Sci. Comput. Program., 74(4):238–257, 2009.

[61] Z. Fu. A refinement of the Unix filling system using Z/Eves. PhD thesis, University

of York, 2006.

[62] E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM

Comput. Surv., 37(2):138–163, 2005.

[63] B. Goetz. Java Concurrency in Practice. Addison Wesley, USA, 2006.

[64] M. Gordon. From lcf to hol: a short history. In Proof, Language, and Interaction,

pages 169–185. MIT Press, 2000.

[65] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.

[66] The Open Group. IEEE Std 1003.1, 2004 Edition. Available from

http://www.unix.org/version3/ieee std.html.

[67] Intel Flash File System Core Reference Guide. Vesion 1. Technical Report 304436-

001, Intel Corporation, Oct 2004.

[68] S. Hallerstede. Justification for the Event-B modelling notation. LNCS, 4255:49–

63, 2007.

270 BIBLIOGRAPHY

[69] R. Harper. Programming in Standard ML. Carnegie Mellon University, 2005.

Available from: http://www.cs.cmu.edu/ rwh/smlbook/online.pdf.

[70] W. H. Hesselink and M. I. Lali. Formalizing a hierarchical file system. Electron.

Notes Theor. Comput. Sci., 259:67–85, 2009.

[71] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 2004.

[72] T. Hoare and J. Misra. Verified software: theories, tools, experiments; vision of a

grand challenge project. 2005.

[73] C. M. Holloway. Why engineers should consider formal methods. In The 16th

Digital Avionics Systems Conference, 1997.

[74] G. J. Holzmann. Promela language reference. Available from

http://www.spinroot.com/spin/Man/promela.html.

[75] G. J. Holzmann. The Spin model checker: primer and reference manual. Addison

Wesley, USA, 2004.

[76] G. J. Holzmann, R. Joshi, and A. Groce. New challenges in model

checking. In Proceedings of the Conference on Computer-Aided Verification.

Pasadena, CA : Jet Propulsion Laboratory, NASA, 2006. Available from

http://hdl.handle.net/2014/39859.

[77] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of haskell: being lazy

with class. In HOPL III: Proceedings of the third ACM SIGPLAN conference on

History of programming languages, pages 12–1–12–55, New York, NY, USA, 2007.

ACM.

[78] J. Hughes. Specifying a visual file system in Z. Technical report, Department of

Computing Science, University of Glasgow, 1989.

Available from http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=199162.

[79] G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

[80] A. Ireland, G. Grov, and M. Butler. Reasoned modelling critics: turning failed

proofs into modelling guidance. In ABZ 2010. Springer-Verlag, 2010.

[81] D. Jackson. Software Abstraction: Logic, Language, and Analysis. MIT Press,

Cambridge, 2006.

[82] M. A. Jackson. System Development. Prentice Hall, Englewood Cliffs, 1983.

[83] C. Jones, P. Hearn, and J. Woodcock. Verified software: A grand challenge.

Software Technologies, IEEE Computer Society, pages 93–95, April 2006.

BIBLIOGRAPHY 271

[84] C. B. Jones. Sytematic Software Development Using VDM. Pren-

tice Hall International, second edition, 1990. Available from

http://www.freetechbooks.com/about244.html.

[85] R. Joshi and G. J. Holzmann. A mini challenge: Build a verifiable filesystem.

In Verified Software: Theories, Tools, Experiments. Zurich, Switzerland, 2005.

Available from http://vstte.ethz.ch/papers.html.

[86] E. Jou and J.H. Jeppesen III. Flash memory wear leveling system providing

immediate direct access to microprocessor, October 1996. US partent 5,568,423,

Filed April 14, 1995; Issued October 22,1996; Assigned to Unisys.

[87] E. Kang and D. Jackson. Formal modeling and analysis of a flash filesystem in

Alloy. In Börger et al. [19], pages 294–308.

[88] E. Kang and D. Jackson. Designing and analyzing a flash file system with Alloy.

Int J Software Informatics, 3(2-3):129148, 2009.

[89] H. Krumm. Temporal logic. Technical report, Department of Computer Science,

University of Dortmund, 2000.

[90] A. Krupp, W. Mueller, and I. Oliver. Formal refinement and model checking of

an echo cancellation unit. In DATE ’04: Proceedings of the conference on Design,

automation and test in Europe, page 30102, Washington, DC, USA, 2004. IEEE

Computer Society.

[91] L. Lamport. The temporal logic of actions. ACM Toplas 16, 3:872–923, 1994.

[92] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002.

[93] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[94] X. Liu, H. Yang, and H. Zedan. Formal methods for the re-engineering of com-

puting systems: A comparison. Technical report, Software Technology Research

Laboratory, De Montfort University, England, 1997.

[95] Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer

Science, 83:97–130, 1991.

[96] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.

Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[97] C. Métayer, J.-R. Abrial, and L. Voisin. Rodin deliverable 3.2. Event-B language.

Technical report, University of Newcastle upon Tyne, UK, 2005. Available from

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.

272 BIBLIOGRAPHY

[98] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge

University Press, 1999.

[100] C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[101] C. Morgan and B. Sufrin. Specification of the UNIX filing system. IEEE Trans.

Software Eng., 10(2):128–142, 1984.

[102] J. M. Morris. A theoretical basis for stepwise refinement and the programming

calculus. Sci. Comput. Program., 9(3):287–306, 1987.

[103] M. Ouimet. Formal software verification: Model checking and theorem prov-

ing. Technical Report, Embedded Systems Laboratory, Massachusetts Institute of

Technology, March 2007.

[104] S. Owre, N. Shankar, and J. Rushby ans D. Stringer-Calvert. PVS version

2.4, system guide, prover guide, PVS language reference, 2001. Available from

http://pvs.csl.sri.com.

[105] D. L. Parnas. Predicate logic for software engineering. IEEE Transactions on

Software Engineering, 19:859–862, 1993.

[106] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,

1996.

[107] A. Requet. BART: A tool for automatic refinement. In Börger et al. [19], page

345.

[108] A. Rezazadeh and M. J. Butler. Some guidelines for formal development of web-

based applications in B-method. In Helen Treharne, Steve King, Martin C. Henson,

and Steve A. Schneider, editors, ZB, volume 3455 of Lecture Notes in Computer

Science, pages 472–492. Springer, 2005.

[109] M. Saaltink. The Z/EVES system. In ZUM97: Z Formal Specification Notation,

pages 72–85. Springer-Verlag, 1997.

[110] S. Schneider. The B-method an Introduction. Palgrave, 2001.

[111] R. Silva and M. Butler. Supporting reuse mechanisms for developments in Event-

B: Composition. Technical report, ECS, University of Southampton, 2009.

[112] R. Silva, C. Pascal, T.‘S. Hoang, and M. Butler. Decomposition tool for Event-B.

In Workshop on Tool Building in Formal Methods - ABZ Conference, Canada,

2010.

[113] C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML.

ACM Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.

BIBLIOGRAPHY 273

[114] B. Tatibouet, A. Requet, J.-C. Voisinet, and A. Hammad. Java card code gener-

ation from B specifications. In Formal Methods and Software Engineering, pages

306–318, Berlin, Germany, 2003. Springer.

[115] P. Taverne and C. (Kees)Pronk. RAFFS: Model checking a robust abstract flash

file store. In ICFEM ’09: Proceedings of the 11th International Conference on

Formal Engineering Methods, pages 226–245, Berlin, Heidelberg, 2009. Springer-

Verlag.

[116] Y. Wang, J. Pang, M. Zha, Z. Yang, and G. Zheng. A formal software development

approach using refinement calculus. J. Comput. Sci. Technol., 16(3):251–262, 2001.

[117] J. Woodcock. ABZ call for papers on the POSIX pilot project in the grand chal-

lenge, 2007. Available from http://www.cs.york.ac.uk/circus/mc/abz.

[118] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.

Prentice–Hall, 1996.

[119] S. Wright. Automatic generation of C from Event-B. In Workshop on Integration

of Model-based Formal Methods and Tools, February 2009.

