HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

An Incremental Refinement Approach to
a Development of a Flash-Based File
System in Event-B

by

Kriangsak Damchoom

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the
Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

October 2010

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Kriangsak Damchoom

Nowadays, many formal methods are used in the area of software development accom-
panied by a number of advanced theories and tools. However, more experiments are still
required in order to provide significant evidence that will convince and encourage users
to use, and gain more benefits from, those theories and tools. Event-B is a formalism
used for specifying and reasoning about systems. Rodin is an open and extensible tool for
Event-B specification, refinement and proof. The flash file system is a complex system.
Such systems are a challenge to specify and verify at this moment in time. This system
was chosen as a case study for our experiments, carried out using Event-B and the Rodin
tool. The experiments were aimed at developing a rigorous model of flash-based file sys-
tem; including implementation of the model, providing useful evidence and guidelines to
developers and the software industry. We believe that these would convince users and
make formal methods more accessible. An incremental refinement was chosen as a strat-
egy in our development. The refinement was used for two different purposes: feature
augmentation and structural refinement (covering event and machine decomposition).
Several techniques and styles of modelling were investigated and compared; to produce
some useful guidelines for modelling, refinement and proof. The model of the flash-based
file system we have completed covers three main issues: fault-tolerance, concurrency and
wear-levelling process. Our model can deal with concurrent read/write operations and
other processes such as block relocation and block erasure. The model tolerates faults
that may occur during reading/writing of files. We believe our development acts as an
exemplar that other developers can learn from. We also provide systematic rules for
translation of Event-B models into Java code. However, more work is required to make

these rules more applicable and useful in the future.

Contents

Declaration of Authorship

Acknowledgements

1 Introduction

1.1
1.2
1.3
1.4

Background and Motivation Lo oo
Research Direction and Goal
Methodologies and Results in Brief
Chapter Outline

2 Formal Methods

2.1 Introduction L
2.2 Formal Methods L
2.3 Why Formal Methods are Important for Software Engineering
2.4 Existing Modelling Languages
241 Z Notation e
2.4.2 7 Structure and Example
243 VDM . ..
2.4.4 VDM Structure and Example 0L
2.4.5 B-Method
2.4.5.1 B Structure.

2.4.5.2 An example of B-Specification

2.4.6 A CompariSon

2.5 Other Formalisms
2.5.1 Temporal Logic
2.5.2 Process Algebra L
2.5.3 Action Systems

2.6 Refinement

3 Event-B

3.1 Imtroduction L
3.2 Event-B Structure
3.21 Contexts
3.2.2 Machines

3.3 Refining a Machine in Event-B o000
3.4 Event-B proof obligations o 0.
3.5 A technique for breaking up an atomic event
3.6 Machine Decomposition oo

xi

xii

vi CONTENTS
3.7 Event Extension 28
3.8 Projection Function for Modelling Records 30
3.9 Rodin, an Event-B Modelling Tool 31
3.10 A Comparison 33

4 Modelling and Proof of a File System 35
4.1 Introduction L 35
4.2 An Informal Description of a Tree-structured File System and Constraints 37
4.3 Aninitial model 37
4.4 1% Refinement: Files and Directories 43
4.5 2" Refinement: File content 46
4.6 3™ Refinement: Permissions 47
4.7 4" Refinement: Other missing properties 50
4.8 Vertical Refinement L 50
4.9 Decomposition of the file write event 51
4.10 Linking the Abstract File System to the Flash Interface Layer 54

4.10.1 Abstract Flash Interfaces Layer 54

4.10.2 Relating the File System Layer with the Flash Interface Layer . . 56
4.11 Dealing with faults 59
4.12 Modelling of the mount event 62
4.13 Machine Decomposition o 63
4.14 Proofs e 67
4.15 Conclusion and Assessment 71

5 Evolution of the File System Models and Proofs 74
5.1 Introduction L L 74
5.2 2™ Refinement: File content 76
5.3 Vertical Refinement 76

5.3.1 A decomposition of the writefile event 7
5.3.2 Linking the Abstract File System to the Flash Interface Layer. . . 80
5.3.3 Machine Decomposition 83
5.4 Proofs e 85
5.5 Conclusion and Assessmento 86

6 Refinement of the Flash Interface Layer 88
6.1 Introduction 88
6.2 1%t Refinement: Page Register 89
6.3 2" Refinement: Events required for block reclamation 94
6.4 3" Refinement: Ordering of Relocation Events 96
6.5 4% Refinement: Refinement of Erasing a Block 99
6.6 5™ Refinement: Status Register 104
6.7 Proofs e 106
6.8 Conclusion and Assessmento 109

7 Comparison with Related Work on Verifying Flash File System 111
7.1 Introduction 111
7.2 Related Work 112

721 ALOY . o o oot e 112

CONTENTS vii
7.2.2 VDM ... 113

T.2.3 2. e 113

7.3 Assessment and Comparison 114
7.3.1 Point 1: Features 114

7.3.2 Point 2: Refinement strategy 116

7.3.3 Point 3: Verification Techniques 117

T4 SUMMATY e e e e 119

8 Systematic Translation of Event-B Models into Java Code 120
8.1 Introduction. e 120
8.2 Class Construction i 121
8.2.1 Defined Types in a Context as Java Classes 121

8.2.2 A Machineasa Class 122

8.2.3 Machine Variables as Classes 124

8.2.4 Application of Rules 127

8.3 Event Transformation, 130
8.3.1 BasicEvents 131

8.3.2 Event Groups 133

8.3.3 Event Loops 135

8.3.4 Shared Events 136

8.3.5 Concurrent Events 137

8.3.6 Applyingthe Rules. 137

8.4 Related Work e 138
8.5 Conclusion and Discussion 140

9 An Implementation 143
9.1 Introduction e 143
9.2 Prototype 144
9.3 Conclusion and Assessment 146

10 Modelling, Refinement and Proof Guidelines 149
10.1 Introduction e 149
10.2 Modelling Guidelines L Lo 149
10.3 Refinement Guidelines 152
10.4 Proof Guidelines 153

11 Conclusion and Future Work 155
11.1 Conclusion e 155
11.2 Assessment of Event-B and the Rodintool 158
11.2.1 Event-B 158

11.2.2 Rodin e 160

11.3 Future Work e 161

A An Event-B specification of a file system 163
A.1 An initial model: Tree structure 163
A.2 The first refinement: Files and directories 167
A.3 The second refinement: File content 171
A.4 The third refinement: Permissions 175

viii CONTENTS
A.5 The fourth refinement: Missing properties 179
A.6 The fifth refinement: Decomposition of the writefile event 183
A.7 The sixth refinement: Decomposition of the readfile event 186
A.8 The seventh refinement: Flash specification 189
A9 Contexts e 201

B An Event-B specification of a file system, V2 210
B.1 The second refinement: File content 210
B.2 The fifth refinement: Decomposition of the write event 213
B.3 The sixth refinement: Decomposition of the read event 216
B.4 The seventh refinement: Introduction of the flash specification 219

C An Event-B Specification of Flash Memory 227
C.1 Aninitial model L 227
C.2 The first refinement: Page Register 229
C.3 The second refinement: Relocation events 233
C.4 The third refinement: Sequencing of relocation events 239
C.5 The fourth refinement: Refining the block_erase event 244
C.6 The fifth refinement: Status Register 250

Bibliography 257

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

A module structure of VDM 12
An Example of VDM Specification 13
An Abstract Machinein B. 14
An Example of B-Specification 16
Relationships between machines and contexts 21
Structure of an Event Lo 22
Three syntactic forms of anevent 22
Three types of generalized substitution 22
An example of event refinement diagram 24
An abstract level 25
Machine invariants and its initialisation of the concrete level 25
Events of the concrete level 26
Machine M before decomposition 27
A diagram illustrating a decomposition made to Machine M 28
Sub-machines representing a result of a decomposition of Machine M . . . 28
An example of event extension 29
A documentation style to represent an extended event 30
Part of context specifying a record type L. 30
An event (modify_evt) showing the use of the record type RT 31
Part of context specifying a record type 31
A extension of the modify_evt event 32
An architecture of a flash file system, 36
Machine variables, invariants and initialisation of an abstract model . . . 38
No-loop property using transitive closure 39
Definition of transitive closure (¢cl) and no-loop theorem (thm3) in a context 40
Machine theorems satisfying reachability and no-loop properties. 40
A specification of create event L. 41
A diagram of copying a subtree (subparent) rooted at a from r to ¢ . .. 41
A specification of copy event Lo Lo 42
Diagram of moving a subtree rooted at ¢ from rtoc. 42
A specification of move event 43
A specification of delete event 43
Machine variables, invariants and initialisation of the first refinement . . . 44
A specification of create-fileevent 45
A first refinement of the copy event 45
Additional machine variables and invariants of the second refinement . . . 46

ix

LIST OF FIGURES

4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30

4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2

A specification of file write evento 47
Additional machine variables and invariants of the third refinement 48
A specification of Event r_open L. 48
A definition of read permission function 49
An alternative guard ensuring that usr has the read permission on f . . . 49
An extended event crifile 50
A diagram of refining events readfile and writefile 51
Refinement diagram of event writefile 52
Machine invariants of the refinement 52
Decomposition of the writefile event 53
Scenarios of concurrent writing of two files 54
A structure of PDATA 55
Machine invariants for replacing the file system by the flash specification . 57
A diagram of mapping writefile to the flash specification 57
A diagram representing an example of data refinement where fcontent is

replaced by fat and flash 58
The refinement of the w_step event 59
The power_loss event of the second refinement 61
The power_on event of the second refinement 61
The power_on event of the seventh refinement 62
The mount event of the initial model 63
The mount event of the second refinement 63
Part of the mount event of the seventh refinement 64
A machine-decomposition diagram focusing on events page_read and page_write
An abstract page_program of the flash interface layer 65
Event pagewrite of the file system layer 66
Event page_program, in case of using curried function 66
A predicate describing the tree property 69
A diagram of tree join 70
A theorem of tree join 70
A diagram of refinement chains representing a flash file system 75
A specification of events readfile and writefile 77
Machine invariants of the refinement 78
Decomposition of the writefile event 79
Machine invariants of replacing the file system by the flash specification . 80
A diagram of mapping writefile to the flash specification 81
The refinement of the w_step event 82
The refinement of w_end_ok event 83
The power_on event of the seventh refinement 84
A machine-decomposition diagram focusing on events page_read and page_write
Event pagewrite of the file system layer 85
An abstract page_program of the flash interface layer 85

Event decomposition diagrams representing events page_read and page_program
State diagrams representing states of page registers which are used for
reading and writing L L Lo L 92

65

84

91

LIST OF FIGURES xi

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30

The first refinement of Event page_read 93
Event pread_fail oo 94
Machine invariants of the second refinement 95
Additional events required for reclamation process 96
An event-refinement diagram representing the block relocation process . . 97
Machine invariants of the third refinement 97
A refinement of page relocation 000 98
Machine invariants of the fourth refinement 100
An event-refinement diagram representing an erasing process 101
A state diagram representing states of blocks in erasing process 101
Reclamation process phasel: erasing a block 102
Reclamation process phase2: restoring the number of erasures 103
Reclamation of a block fail 0000, 103
Invariants of the third refinement 106
Part of the fifth refinement focusing on page program 107

A refinement of the pprog_start event, in the case of using state function . 107

Rule 1: Converting a defined typetoaclass 121
A get-method of ST 122
A context representing part of defined types 122
Classes implementing PDATA and RowAddr 122
Rule 2: Translating a machine intoaclass 123
Rule 2a: Translating a simple variable in a machine class 123
Rule 2b: Translating a set variable as a collection in a machine class . . . 124
Rule 2x: Translating an array property 124
A diagram representing machine decomposition L. 125
Rule 3: Function over a set variable 125
Rule 4: Subset of set variable as a boolean property 125
Rule 5: Subset to sub-classes, 126
Rule 6: Relation to a list-attribute 126
Rule 7: Partial function to class property 126
Rule 8: Translating an array property 127
A machine class representing the file system model 127
Part of machine invariants defining objects, files and directories 128
A class diagram of OBJECT, FILE and DIRECTORY 128
Part of machine invariants defining objects’ properties 128
An OBJECT class 0 i i e e e e 129
Part of machine invariants defining files’ properties 129
Part of machine invariants defining files’ status, typel 129
Part of machine invariants defining files’ status, type2 129
FILE Class e 130
DIRECTORY Class o oot e e 130
General rules for event transformation 132
Additional rules for event transformation 133
A general rule for implementing event groups 134
A general rule for implementing event loops 135

A general rule for implementing a shared event 136

xii LIST OF FIGURES
8.31 A scheme of implementing concurrent methods 137
8.32 Java code implementing the incr_evt event 138
8.33 An abstract method writefile L. 139
8.34 A method implementing the w_step 140
8.35 An example of class representing compound entity 142
9.1 A structure of a flash file system L. 144
9.2 A simulation of the flash array screen 1 145
9.3 A simulation of the flash array screen 2 146
9.4 A concurrent implementation of the writefile event 147
9.5 A concurrent implementation of the w_step event 148
9.6 An implementation of the page_program event 148
10.1 Two possible ways of specifying a property 151

11.1 A diagram of refinement chains representing a development of a flash file
System e e e e e e e 156

List of Tables

4.1
4.2

5.1

6.1
6.2

7.1
7.2

Proof statistics 67
Proof statistics comparing multi-level with single-level approaches, fo-

cussing on horizontal refinement steps MCHO up to MCH4 71
Proof statistics — previous version in brackets 86
A table representing states of the status register 105
Proof statistics of the flash model 108
Feature Comparison 115
Proof Comparison 118

xiii

Declaration of Authorship

I, Kriangsak Damchoom, declare that the thesis entitled An Incremental Refine-
ment Approach to a Development of a Flash-Based File System in Event-B
and the work presented in the thesis are both my own, and have been generated by me

as the result of my own research. I confirm that:
e this work was done wholly or mainly while in candidature for a research degree at
this University;

e any part if this thesis has previously been submitted for a degree or any other quali-

fication at the University of any other institution, this has been clearly stated;
e where I have consulted the published work of others, this is always clearly attributed;

e where I have quoted form the work of others, the source is always given. With the

exception of such quotations this thesis entirely my own work;
e | have acknowledged all main sources of help;

e where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;
e parts of this work have been published as

— K. Damchoom and M. Butler. Applying event and machine decomposition to a
flash-based filestore in Event-B. In Marcel Vinicius Medeiros Oliveira and Jim
Woodcock, editors, SBMF, volume 5902 of Lecture Notes in Computer Science,
pages 134-152. Springer, 2009.

— K. Damchoom and M. Butler. An experiment in applying Event-B and Rodin to a
flash-based filestore. In Rodin User and Developer Workshop, July 2009.

— K. Damchoom, M. Butler, and J.-R. Abrial. Modelling and proof of a tree- structured
file system in Event-B and Rodin. In Shaoying Liu, T. S. E. Maibaum, and Keijiro
Araki, editors, ICFEM, volume 5256 of Lecture Notes in Computer Science, pages
25-44. Springer, 2008.

Signed:oooooiiiiii e,

XV

Acknowledgements

I would like to thank my supervisor, Prof Michael Butler, for his very valuable help
and guidance. His supervision really helps me a lot in carrying out this research. Many
problems would not be solved without his guidance. His ability really made me surprise
many times when he could solve the problems that I had tried many times but failed.

This thesis would not succeed without his kind supervision.

Many thanks to the Royal Thai Government and Department of Mathematics and Com-
puter Science, Prince of Songkla University, for financial support and giving me a good

chance to study abroad.

I would like to thank Dr Denis A. Nicole for his suggestion and valuable comment about
the file system. Many thanks to Prof Jean-Raymond Abrial who gives me a good idea

of modelling and proving of the tree properties.

I would like to thank my examiners, Prof Luc Moreau and Dr Andrew Ireland, for their

valuable comment and suggestion that are really useful for making this thesis complete.

Many thanks also go to my mother Pim, wife Aom, sisters Joy and Ann, brother Dam,
friends (Salang, Khampee, Supat, Somporn, Pakwan, Somphop, Tossaporn, Athitaya,
Yaowaret, Pornrawee, Watsawee, Oat, Nam, Pundita, Onjira, Thanyalak, Sutat, Jaru-
tas, Antony, Paiphan, Yuwapat, Waraporn and Num-Oratai) and colleagues (Devakar,
Andy, Collin, Reza, Mar Ya, Nurlida, Lis, John, Renato, Shamim, Edward, Pasha and

Ali) for their support and encouragement.

Kriangsak Damchoom
Dependable Systems and Software Engineering Group

School of Electronics and Computer Science

University of Southampton, UK

Xvii

To my grand mother, Rom Damkaew

Xix

Chapter 1

Introduction

Over the past three decades, formal methods have been introduced and used in sev-
eral areas of software development. Recently, the software industry has made use of
VDM [84], Z [20], ASM [18], B [1] and Event-B [4]. However, research in this area
is still going; attempting to make improvements and achieve more benefits from these
methods. Work is also underway to bridge the gap between requirements, specifications

and implementations.

1.1 Background and Motivation

In a grand challenge in verified software proposed by Hoare and Misra in [72], they state
that theories, tools and experiments are three main areas of challenging research in formal
verification. Nowadays, many advanced theories and useful tools are developed and used
in the software community. In addition, the performance of modern machines (compared
with the past decades) is great enough for the advanced computations needed for formal
reasoning such as theorem proving and model checking. Experiments are also important
and still needed for this discipline in order to push forward scientific progress in formal
methods and make formal methods more accessible to software industries. Hoare and
Misra say that experiments should be carried out by using existing tools and theories
with selected areas of real-world systems especially for those systems concerned about
safety or security. Experiments help us to understand the strengths and weaknesses of
theories and tools. Experiments provide scientific evidence that can support the analysis
of those theories and tools, and encourage other researchers to engage in more effective

research in the future.

Event-B [4] is a formal method which is an extension of the B-method [1]. It is intended
for specifying, and reasoning about, complex systems. These include concurrent and

communicating systems [31]. Tool support for the Event-B method is provided by the
1

2 Chapter 1 Introduction

Rodin platform [6, 5]. This tool is based on Eclipse [57] and is designed to provide an

extensible specification and verification environment.

A flash-based file system has been proposed as a challenging system by Joshi and
Holzmann [85]. As presented in [85], there are some reasons why a file system is at-
tractive: Firstly, a file system is complex enough even though it is only one part of
an operating system. For example, how do we deal with failures that may occur while
performing file or flash operations? How do we cope with fault-tolerance; when flash
instructions fail or, with power loss?” How do we ensure reliability in the presence of con-
current accesses? Moreover, correctness and security are very important for file systems,
since important data, stored on modern machines, is now managed by the file system.
Additionally, most current file systems have a well-established, well-defined, interface
based on the POSIX standard® [85]. However, although fundamental data structures
and algorithms used in the design of file systems are well-understood, file systems still
have bugs. These pose a serious problem to users and enterprises. For example, in case
of NASA, the software used for management of flash memory cards (in space missions)
has a problem with unpredictable failures. This can give rise to sudden power-loss and
reboots [76].

Three issues that should be addressed when doing research into file systems are func-
tional requirements, underlying hardware and fault-tolerance [117]. Flash memory is
an attractive option for implementing file systems because flash memory has no moving
parts, consumes low power and is easily available. It is presently used in many kinds of
storage devices. For example, flash memory has recently become a popular choice for

nonvolatile storage used on spacecraft [85].

1.2 Research Direction and Goal

Direction: As mentioned earlier, an experiment is an important research approach in
the field of formal methods. Thus, performing experiments with a formal method and
tool was chosen as the direction of our research. Our work has been carried out by
focusing on experiments using Event-B and the Rodin platform. A flash-based
file system is selected as a case study for experiments. A goal of the experiments is to
formally develop and implement a flash-based file system. In this work, several modelling
techniques/styles are addressed in order to evaluate and compare. A set of functional
requirements — such as operations affecting a tree structure, read and write operations
— are selected as part of the system to be modelled, verified and implemented. Three

important issues to be covered in our specification are fault-tolerance, concurrency and

'POSIX (Portable Operating System Interface) is a standard defining application programming in-
terfaces (APIs) for file systems [66].

Chapter 1 Introduction 3

a wear-levelling process”.

2

Research contributions: The research goal is to produce scientific evidence in five

forms as follows:

(i) Verified models of a flash-based file system consisting of specification, refinement

and proof. Our models cover three main issues: fault-tolerance, concurrency and
wear-levelling. Concurrent file operations (e.g. read and write) were not covered
in other related work. In addition, the structure of the file system and features we
covered are also different from others. For example, we represent the filesystem
structure as a tree structure using parent function, instead of using named-path.
This work contributes to the grand challenge [85] already mentioned. (Details of

comparison are given in Section 7.3.)

(ii) Several techniques — in modelling, refinement and proof — have been investigated

(iii)

and compared to choose appropriate ones for our development. An incremental
approach has been selected as our main strategy. This approach was not used in
other related work in modelling and verifying of file systems (as discussed in Chap-
ter 7). We have followed a strong systematic refinement approach to organizing
the refinement process that would be useful for other researchers and practitioners.
Our work covers a full formal development (i.e. abstract specification, refinement,
proof and implementation) that is rarely found in other work. Much existing for-
mal modelling work usually ends with a specification/model without transforming
it to an implementation. We believe that this would be of benefit to other peo-
ple who are learning formal methods and/or carrying out research (especially in
Event-B).

Systematic translation of Event-B models into Java code together with an im-
plementation which is derived from the formal methods. The aim is to provide
systematic translation rules and show that the models we specified are imple-
mentable by applying the rules we proposed. Our translation rules are defined for
direct translation of Event-B models into Java code, which is different from others.
For instance, Edmands et al [49] provide a tool to for specifying Java-like models,
which are able to be translated into Event-B models for formal verification, and
are able to be translated into Java code for implementation. (Related work is

discussed in Section 8.4).

Assessments of methods and tools used for specification. Our experiment aims
to assess Event-B and the Rodin tool by evaluating experimental results such as
proof statistics, an implementation (whether the final outcome is satisfactory or

not) and facilities of the tool (whether it is convenient for the users) compared

2A technique used for prolonging the life time of flash memory covering relocating and erasing blocks
within a flash chip [62].

4 Chapter 1 Introduction

with other methods and tools. The assessments we propose in this thesis show the
strengths and weakness of Event-B and the Rodin tool that would be useful for
further improvement of the language and tool. For example, what extensions could
be added to languages or tools in order to make them more useful and accessible

in the future?

(v) Modelling, refinement and proof guidelines. These aim to provide new informa-
tion/evidence that would be useful for formal developers, further research and the
software industry — in terms of modelling techniques, styles or patterns used for
formal specification, etc. For example, which modelling styles/techniques are suit-
able for the problem area? Which modelling styles can make proof simpler? How

essential benefits can be achieved from existing theories and tools?

1.3 Methodologies and Results in Brief

Our experiments are carried out by using Event-B and the Rodin platform. A flash-
based file system is chosen as our case study. An incremental refinement is employed as
our strategy to develop a model of a flash-based file system. The refinement is used in
two different approaches, horizontal or feature augmentation and vertical refinements or
structural refinement [27]. Horizontal refinement is aimed at introducing new require-
ments or features which were not addressed in the initial model or may be postponed
to other refinement steps. Thus, in each refinement step, additional state variables
and related events might be added/extended to incorporate those features which are
introduced. The system models will be enlarged gradually when new properties are
added. On the other hand, the purpose of structural refinement is to replace an abstract
structure with more design details in each refinement step down to an implementation.
This kind of refinement may involve data refinement, event decomposition and machine

decomposition.

In our development, we began with an initial model focusing on manipulation of a
tree structure. After that, horizontal refinements were used to enlarge the model by
introducing new features in refinement steps. We finally got several levels of a refinement
chain representing a model of an abstract file system. After that, structural refinement
was employed to relate the abstract file system with the flash specification. Event-
decomposition was used in this step to decompose atomic events (file-read and -write)
into sub-events in order to relate to the interfaces (page-read and -program) provided
by the flash interface layer. Then, machine decomposition was employed to decompose
the file system machine, that has already been replaced by the flash specification, into
two sub-machines (representing the file system layer and the flash interface layer). At
this point, we then have two sub-machines that can be further refined separately. In our

work, further refinements focussing on the flash specification were carried out to cover

Chapter 1 Introduction 5

other flash features and the wear-levelling process.

Our development covers three main issues (i.e. fault-tolerance, concurrency and the
wear-levelling technique). We have two main Event-B models in our development. One
represents the file system layer and the other one represents the flash interface layer.
The model of the flash interface layer provides interfaces (page-read and page-program)
to the file system layer. The wear-levelling technique, a technique used for prolonging
the lifetime of the flash devices, is specified in this model. The model of file system
describes tolerance of faults that may occur at any point during reading/writing of a
file. The model can also deal with concurrent file read and write operations. The flash
interface model can also deal with concurrent page read/program and block-erase events,

and faults.

In this work, we also have an evolution of the file system model described in Chapter 5.
The evolution aims at revising the file system model to satisfy the requirements (i.e.
partial read /write operations and unbounded version numbers) that have been changed.
From this development, we outline the effect of this evolution and reusability of modelling

and proofs.

Theorem proving is a methodology used for reasoning about our models. For all develop-
ments in Chapter 5 and 6, 1069 POs (Proof Obligations) were automatically generated
by the Rodin tool. 671 POs were generated for the file system model and 398 POs were
generated for the flash interface model. Most of them, 94% (of the file system model)
and 100% (of the flash interface model), were discharged automatically (i.e. in total
1028 of 1069 POs (96%) were proved automatically). The rest, 41 POs, were proved

interactively using the Rodin tool.

Based on experiences of modelling and proof, we provided some useful guidelines that
developers may learn from. The guidelines are classified into three categories: modelling,
refinement and proof. We also investigated and proposed systematic translation rules to
translate Event-B models into Java code. The set of translation rules is divided into two
parts: class construction and event transformation. However, future work is required to
automate the application of these rules. Finally, we also implemented a prototype of a
flash file system following the specification and the set of translation rules we proposed.
This implementation covers two parts: a file system layer and a flash interface layer.
We simulated part of the flash interface layer instead of using the real flash because we

want to be able to simulate faults and test whether our model can deal with that.

1.4 Chapter Outline

In Chapter 2, we outline some existing formal methods together with reasons for their

importance for software engineering. Chapter 3 details Event-B and the Rodin platform.

6 Chapter 1 Introduction

In Chapter 4, Chapter 5 and Chapter 6, work undertaken with case studies — a tree-
structured file system and the flash memory — are used to show how to specify and
refine system models using Event-B and Rodin. Related work on flash file systems
are discussed and compared in Chapter 7. Systematic translation rules for translating
Event-B models into Java code are proposed in Chapter 8. An implementation of a
flash file system is outlined in Chapter 9. Modelling, refinement and proof guidelines
are discussed in Chapter 10. Finally, a conclusion, assessment of Event-B and Rodin,

and future work are given in Chapter 11.

Chapter 2

Formal Methods

2.1 Introduction

The purpose of this chapter is to outline an overview of formal methods, techniques
and tools used for specification and verification. This chapter begins with giving a
definition of formal methods in Section 2.2. Secondly, reasons why formal methods are
important for software engineering are outlined in Section 2.3. Thirdly, some existing
formal methods and tools used for specification and verification are given in Section 2.4.
In this section, Z [20], B [1] and VDM [84] are chosen as examples of formalisms to
be outlined and compared. The reasons we chose them are (i) they are state-based
approach, which is an underline approach of Event-B and (ii) they are methods recently
used in the software industry. However, there are other formal methods recently used
such as ASM [18] and Alloy [81] which are not explained here. Other formalisms such as
temporal logic, process algebras and action systems are briefly described in Section 2.5.

Finally, refinement technique will be given in Section 2.6.

Note: To make it easier for readers to follow, Event-B — which is the method used in

our development — will be outlined separately in Chapter 3.

2.2 Formal Methods

A definition of formal methods can be defined as mathematically-based techniques used
for specifying, verifying and reasoning about software and hardware systems [1, 32, 84].
Formal methods are intended to explain software systems to both users and developers
with a precise documentation which is structured and presented at an appropriate level of
abstraction [83]. In addition, formal methods are aimed at providing users mechanisms,

such as automatic provers and model checkers, to verify models.

7

8 Chapter 2 Formal Methods

Because of employing mathematical notation to specify systems, models specified by us-
ing formal methods are well-formed statements in mathematical logic that can be verified
by mathematical processes. Moreover, the value of formal methods is that they provide
a means for users (designers or developers) to construct a precise model of the system
which is later to be implemented. The model is not the system itself. It is an abstract
representation of the real system, allowing reasoning about the system without having
it at ones disposal yet [1]. This means that the model cannot be tested or executed to
verify that the model works properly and has properties that satisfy our needs. Simi-
larly, we cannot use any room inside a model of a building. Therefore, reasoning about
it is a powerful way to analyse a model [6]. Formal specification languages support spec-
ification of what a system should do. In contrast, programming languages are designed
for specification of how results should be achieved. Although functional programming
languages, such as ML (which stands for “Meta Language”) [106, 69], Haskell [77, 79],
and Scheme [55], are more like specification languages since these describe what result

is expected, they are designed to be executable [20].

2.3 Why Formal Methods are Important for Software En-

gineering

The following reasons are summarised from Bowen [20] and Holloway [73] in order to

describe why formal methods are important for the software development process.

As mentioned earlier, a formal specification is a well-formed mathematical statement.
Because of its precision, even if such a specification is invalid — for example, the speci-
fication is not what the customer expected — compared with an informal specification,
it is easier to tell where and why it is incorrect and fix it [20]. For example, when we
find some things that go wrong during a development process we can go back to see
the specification components such as invariants, preconditions or proof obligations in
order to check whether they meet the requirements or not and fix them. In contrast, an
informal specification is often ambiguous, it is difficult to find errors and eventually fix
them. Additionally, employing mathematical notation increases the understanding of
the behaviour of a system, particularly early in a design phase. It can aid designers to

organise their thoughts, and make a model clearer, simpler and easier to understand [20].

Moreover, formal reasoning about a system is possible by stating and proving theorems
about it. These provide a mechanism to check whether the system behaves in the way
as we expected or not. Formal methods also help developers in reasoning about the
operation of the system before its implementation [20]. For example, preconditions of
each operation can be checked to see whether they satisfy the requirements either by

manual inspection or using tools for model checking and animation.

The presence of design flaws is a major reason why software can go wrong or does

Chapter 2 Formal Methods 9

something which is not what we expected. Therefore, to ensure that the software system
does what it is intended to do, design flaws must be handled in some way. Even though
there are some different approaches used to handle the design flaws such as testing,
design diversity, and fault avoidance, a suitable way that can reduce the design flaws is
avoidance by using formal methods [73]. For small systems or systems with low reliability
requirements, testing may be possible to show that the system meets its requirements.
However, for high integrity software systems, such testing would require much more time
than is feasible. Importantly, a test-based approach cannot cover the cases outside test
cases applied to the system domain. Namely, an error may occur when the system tries
to execute some cases outside that might be reached in the execution. Thus, for those

systems, testing-based approaches are inadequate.

As stated in [20], a precise specification specified by using formal methods is easy to be
followed until an implementation phase. The possible errors in a design can be reduced.
Consequently, when errors could be found and fixed at the design phase, the number of

iterations through a development cycle could be reduced.

Another point is that development cost is critical. If flaws could be found at the design

stage, it would be cheaper to fix them than if they are found later in testing process [20].

2.4 Existing Modelling Languages

In this section, some existing specification languages including Z, VDM and B will be

outlined in order. At the end of this section, a comparison among them will be given.

2.4.1 Z Notation

The Z notation [20] is a formal modelling language used for describing and reasoning
about computer-based systems. It is aimed at providing precise specifications of sys-
tems and formulation of proofs about intended system behaviour. It was originally
introduced by Jean-Raymond Abrial in the late 1970s and later developed by members
of Programming Research Group at Oxford University [20].

Bowen [20] states that all expressions specified in Z notation are based on standard
mathematical notations used in set theory, lambda calculus, and first-order predicate
logic. Z contains a standardized list of mathematical functions and predicates which are

commonly used in specification.

The problem with using mathematics alone is that large specifications usually become
unmanageable and unreadable. Hence, a schema notation is included in Z to aid the

structuring of specifications. This provides a framework for a textual combination of

10 Chapter 2 Formal Methods

sections of mathematics (known as schemas) using schema operators which are similar

to the mathematical operations[20].

The concept of an abstract specification in Z is to specify what a system does rather
than how the system does it. It is designed to be expressive and easy to reason about

by humans rather than executable by computers.

2.4.2 7 Structure and Example

Schemas, represented using box notation, are introduced to aid the structuring of Z
specifications. The schemas are used to describe two main parts of a specification: state

space and operations [20).

The state-space schema shown below is divided into two parts, the first part is used to
define the state variables (z1, 22, ..., 2n) and the second part is an area for specifying

invariants of those variables.

__StateSpace
xl: 51
x2: 52

xn : Sn

Inv(zl,...,zn)

Below is an example of a Z schema of the visual file system model introduced by
Hughes [78]. The schema shown below is a state space of FileSysState which consists of
a set of objects named objects and function parent. The parent is specified as a partial
function mapped from OBJ to OBJ, where OBJ is a set-type. Two constants, desktop

and trash, are specified in this schema.

__ FileSysState
objects : P OBJ
loc : OBJ - OBJ

desktop € objects

trash € objects

dom parent = objects — desktop
ran parent C objects
parent(trash) = desktop
(parent=1)*({desktop}) = objects

Chapter 2 Formal Methods 11

Those invariants given above show that (1) desktop and trash are elements of objects; (2)
all objects except desktop have a parent; (3) the set of all parents is a subset of or equal
to set objects; (4) the parent of trash is desktop; and (5) all objects can be reached from
desktop. The asterisk (*) represents a transitive closure. That is, (parent~1)*({desktop})

returns all objects that can be reached from desktop.

All operations in Z are considered to be atomic and can be structured in the following

general way[20].

— Operation
x1:81; ...; an : Sn
zl’: S1; ...; zn’ : Sn
il?7: T1; .5 am?: Tm
oll: Ul; ...; op!: Up

Inv(zl,...,2n)
In

v(zl, ... zn')

S

(417, ...,im?, 21, ..., an, zl’, ..., 20/, ol!, ..., op!)

In the operation schema, ¢17, ..., im? are inputs, represented by including the ¢ symbol in
the variable name while the outputs indicated by / are oll,..., op!. The precondition is:
Pre(il?,...,4sm?,z1, ..., zn). And the state change (z1,...,zn) to (z1, ..., zn’) is specified
by: Op(il?,....im?, z1,...,2n,z1’ ..., 2n’ o1, ..., op!).

For example, the operation schema illustrated below represents the Move operation
specified by Hughes [78]. An obj is an object to be moved to a new parent named to.

Both obj and to are specified as elements of OBJ. They are identified as input variables.

_ Mowe
obj?: OBJ
to? : OBJ

obj? ¢ {desktop, trash}

to? ¢ (parent=1)*({obj})
parent’ = parent & {obj? — to?}

The invariants state that: (1) object obj must not be desktop or trash; (2) the target
location or new parent, to, must not be an element of objects which are descendants of the
obj, where (parent=1)*({obj}) returns all descendants of obj. Finally, the last invariant
shows that the parent of 0bj will be changed to be to, where the oplus notation, @, is a

relation overriding.

12 Chapter 2 Formal Methods

24.3 VDM

VDM (Vienna Development Method) is one of the earlier formal methods introduced
by a research group of IBM laboratory in Vienna. The aim of this method is to be used
for writing system specifications together with discharging of proof obligations. These
proof obligations are proved to ensure that the specifications maintain invariants [47].
VDM provides a framework for reasoning about the system specifications such as data
types, operations, etc. All specifications and proof obligations are written in terms of
predicates. HOL [64] is a theorem prover used for verification. VDM uses a special
three-valued logic to deal with undefinedness — a predicate that cannot be identified as
either true or false [105] — instead of classical two valued logic [84]. Even though VDM

is not as popular as Z, it provides features of composition and decomposition [94].

2.4.4 VDM Structure and Example

VDM uses a module notation which is a combination of data definitions, state variables
and a collection of operations to specify a system. The structure of the module is shown
in Figure 2.1 [84].

module MODULE_NAME
ééﬁnitions types

's‘t'ate

end ;

functions

operations

end MODULE_NAME

FIGURE 2.1: A module structure of VDM

Figure 2.2 shows an example of a VDM specification of a simple file system focusing
on read and write operations. The module shown in Figure 2.2 is named FILE. This
module has two parameter types: FID and CONTENT; and two operations: WRITE
and READ. The definitions section states that FCONT is a function-type mapped from
FID to CONTENT. The state of this file system is represented as files, which is typed
as FCONT and is initialised to the empty set, where filesy is an initial state.

WRITE is an operation that has an effect of writing a new file with a content to the

file system. This operation uses an external state variable named files for writing, this

Chapter 2 Formal Methods 13

module FILE
parameters types FID, CONTENT
exports operations
WRITE : FID x CONTENT—,

READ : FID — CONTENT
definitions
types

FCONT = FID —- CONTENT
state

State of files : FCONT

init (mk_=State(filesy)) = filesp = {}
end;
operations

WRITE(i : FID, cnt : CONTENT)
ext wr files : FCONT

pre i ¢ dom files

post files = files™ U {i — cnt}

READ(i : FID) ocnt : CONTENT
ext rd files : FCONT

pre i € dom files

post ocnt = files(1)

end FILE

FI1GURE 2.2: An Example of VDM Specification

means that the files will be updated by this operation. There are two parameters used in
this operation: ¢ (an FID) and cnt (a CONTENT). The pre-condition states that ¢ must
not be an element of the domain of files, namely, this identifier must not have already
been stored in the file system. The post-condition indicates that the state variable files

will be equal to the previous state unions the new entry (i — cnt) which is being added.

Operation READ is aimed at reading the content of an existing file. In this operation,
i is an input parameter and ocnt is an output parameter. Here files is defined as an
external state used for reading (since it is specified as rd). That is, changes are not
allowed to be made to this state variable. The pre-condition, ¢ € dom files, states that
the given file ID, 4, must exist. The post-condition shows that ocnt is equal to files(i),

which is a file content corresponding to the identifier i.

2.4.5 B-Method

The B-method [1, 35], originally developed by Jean-Raymond Abrial in the mid 1980s, is

a state-based method used for specifying, reasoning about and coding software systems.

14 Chapter 2 Formal Methods

It is based on set theories which are used for data modelling, while generalized substitu-
tions are used for describing state modifications through machine operations. Machine
invariants are specified by using predicate logic. Refinement is used to relate mod-
els at varying levels of abstraction, and there are a number of structuring mechanisms

(machine, refinement, implementation) used for organising a development.

The B-method is based on a notion of abstract machine and a notion of refinement.
Variables of an abstract machine are typed by using set theoretic constructs such as
sets, relations and functions [30]. The concept of refinement is the key notion for de-
veloping B models of computer-based systems in an incremental way. B models are
accompanied by mathematical proofs that justify them. Proofs of B models convince
the user (designer or specifier) that the models preserve all invariants and satisfy all
refinement obligations [36]. The B-method has been selected as a tool by industries in
area of critical systems concerning about risk. A notable example of the application of
B is its industrial use in the railway control system in Paris (The Paris Metro) which has
been working since 1998 [30]. Another example is the driverless at Paris Roissy Airport

that has been operational in 2007 [3].

2.4.5.1 B Structure

The Figure 2.3 shows the structure of an abstract machine in classical B which consists
of clauses: MACHINE, SETS, CONSTANTS, PROPERTIES, VARIABLES, INVARI-
ANT, INITTALISATION and OPERATIONS [110].

MACHINE mch_name

SETS set_name(s)
CONSTANTS const_name(s)
PROPERTIES predicate(s)
VARIABLES var_name(s)
INVARIANT predicate(s)
INITAILISATION var_init(s)
OPERATIONS operation(s)

FIGURE 2.3: An Abstract Machine in B

The MACHINE clause defines a name of an abstract machine. In the example shown
in Figure 2.4, the machine is named Counter. The SETS clause specifies all sets (types)
used in the machine. The CONSTANTS clause identifies the constants which are
used in the machine. The PROPERTIES clause describes the properties of those
constants and sets. Considering the example given in Figure 2.4, there is one constant
named mazx. Constant maz is defined as a natural number (N). The VARIABLES

clause introduces all machine variables used in the machine. The INVARIANT clause

Chapter 2 Formal Methods 15

details all information related to the properties of the variables that must always be true
such as types of those variables, relationships between the variables and their constraints
or other restrictions on their values. All variables must have their types given in the
Invariant clause. This means that there is at least one invariant clause for each variable
which is defined in the Variables clause. The values of those variables can be changed
when the machine is executed, however, such changes must not violate the invariants.
The INITIALISATION clause is used to initialise the values of all variables of the
machine. These values can later be modified by operations. The OPERATIONS
clause specifies all operations required in the machine. The operations clause is used to

describe the dynamic/behavioural properties of the systems.

2.4.5.2 An example of B-Specification

Figure 2.4 is an example of a specification in standard B where Counter is a machine
name; ctr (counter), a machine variable, is initialised to zero; and maz is a constant
used to identify the maximum value of ctr. There are three operations in this machine:
incr (increase the value of ctr by 1 at a time when this operation is performed); decr
(decrease the value of ctr by 1 at time); and display is an operation for displaying the
value of ctr. PRE clause identifies a precondition of operations. All actions within a
THEN-END block will be performed only when the precondition holds.

2.4.6 A Comparison

Z, VDM and B are state-based formalisms in which a system is modelled by explicitly
giving the definition of states and operations. Operations have an effect of transform-
ing the system from a state to another state. In this approach, there is no explicit

representation of concurrency.

Focusing on the structure of specification, although those methods have their own struc-
ture, they still have some parts which are similar in purpose. For instance, they all have

an operation part and state variables.

The second point, focusing on operations, is that input and output variable are clearly
defined in Z and VDM. Z uses “?” and “!” for input and output, respectively, while VDM
uses “rd” and “wr” to classify the variables which are used for reading and writing,
respectively. Although they all use the operation part to transform a system state
to another state, their styles of transforming the system state are different. Namely,
VDM [84] uses precondition and postcondition as a mechanism for specifying a process
that aims to transform a state of program/model from one state to another state. The
program must be performed in a state satisfying precondition and terminated in a state

satisfying the postcondition. 7Z uses prime variables as post-state variables after the

16 Chapter 2 Formal Methods

MACHINE Counter
CONSTANTS
max
PROPERTIES
max € N
VARIABLES
ctr
INVARIANT
ctr ¢ N
ctr < max
INITIALISATION
ctr:=0
OPERATIONS
incr =
PRE
ctr < max
THEN
ctr:==ctr +1
END
decr =
PRE
crt >0
THEN
ctr :==ctr — 1
END
rst < display =
BEGIN
rst := crt

END

FI1GURE 2.4: An Example of B-Specification

change. Event-B uses generalized substitutions for transforming the model from one
valid state to another valid state [4]. Namely, it must be proved that the substitutions
that have been made to the state variable do not violate the desired properties that have

been specified as invariants.

2.5 Other Formalisms

2.5.1 Temporal Logic

Temporal logic [95, 96] is a formalism for specification and verification of reactive sys-
tems. It has been used to describe and reason about behaviour of the systems which are

concerned about time. In a temporal logic, a truth value of statements/propositions can

Chapter 2 Formal Methods 17

vary in time. This means that the truth value can be changed when the time changes
while a truth value of the propositions in classical logic always be the same. In addition,
temporal propositions generally contain some references to time conditions, while the

classical logic deals with timeless propositions [89].

Temporal logic of actions (TLA) is a logic introduced by Lamport [91, 92]. It
combines temporal logic with a logic of actions. TLA is used to specify and reason about
concurrent and reactive systems by providing a mathematical foundation for describing

the behaviour of the systems.

2.5.2 Process Algebra

Process algebra [13] is an algebraic approach used for describing or specifying behaviour
of systems, especially for concurrent systems. This approach provides mathematical
mechanisms and techniques to specify systems in terms of how processes interact, com-
municate, and synchronise with each other. The behaviour is the overall events or
actions that the system can perform, and the actions are regarded as discrete, namely,

concurrence may occur instantaneously.

There are many process algebras such as CSP (Communicating Sequential Processes)
introduced by Hoare [71], CCS (Calculus for Communicating Systems) introduced by
Milner [98] and ACP (Algebra for Communicating Processes) proposed by Bergstra and
Klop [17]. Moreover, m-Calculus, originally developed by Milner [99], is an evolution of
CCS to model concurrent systems consisting of mobile processes whose configuration is
changing [50]. Although there are some differences between those methods, they use
algebraic expressions and laws provided to describe and reason about the behaviour of

communicating processes [22].

2.5.3 Action Systems

The action system formalism [12, 11], introduced by Back et al., is a state-based formal-
ism for distributed systems. It provides a method to design the distributed systems that
concentrates on the overall behaviour of the systems. The behaviour is defined in terms
of possible actions that the processes can engage in, rather than in terms of a sequential

code that the processes execute.

In case of process communication, Back et al [12, 11] also states that action systems
provide a mechanism for processes to communicate or interact with each other during
the execution. For example, when each process executes a sequential piece of code, it
may communicate with the other processes by sending and receiving messages through

shared variables or communication channel provided by the systems.

18 Chapter 2 Formal Methods

Additionally, an action system may be decomposed into a set of parallel sub-systems
for implementation in a distributed fashion by breaking up the actions into sub-systems
and using shared variables as a communication channel for interaction between those

parallel action systems [23].

2.6 Refinement

Refinement [47, 8] is a mechanism that allows developers to sharpen their models step
by step by adding more features or design details. Refinement aims at converting an
abstract model into a concrete model that is implementable. As stated in [47], the main
principle of refinement is that if the initial specification is valid and the refinement steps

preserve correctness, then the resulting implementation will be correct by construction.

The refinement calculus is a calculus of program transformation. It provides rules for
transforming abstract program structures to more concrete program structures while
maintaining desired properties [37]. As stated in [28], originally, the refinement calculus
was developed for sequential programs and then was extended to deal with distributed
and parallel program via the action system of Back [11]. As stated in [116], it is also
redeveloped individually by Morris [102], Morgan [100], and Back et al [10].

The concept of rule-based style of refinement (e.g. the refinement style of Morgan [100])
is to apply the rules to transform program fragments/models (S) from one form to
another form (S'), automatically. S C S’ (S is refined by S’) holds if only if S’ satisfies
all desired properties that S satisfies [28]. Automatic transformation is a way that

guarantees refinement [24].

Posit-and-prove is an alternative approach for refining models/programs. The concept
of this approach is to rewrite a concrete model from the abstraction and then prove that
the concrete one is the correct refinement of the abstract one (using theorem provers or
model checkers) [24]. This is in contrast to the rule-based approach that is aimed at

applying the rules to transform the abstract models/programs into concrete ones.

The refinement style used in Event-B follows the posit-and-prove approach. VDM also
uses the posit-and-prove style for its refinement mechanism [39]. As already mentioned,
by following this approach, an abstract model will be refined by rewriting it as a concrete
one (without applying any transformation rules). Then, proof is required to show that
the concrete model is the correct refinement of the abstract one. Desired properties of
the model are specified as invariants (predicates formulated from state variables) that
must be true forever. Such changes that have been made to the state variables (by

events/operations) must be proved that those properties are maintained.

Refinement might be used in two different purposes that can be identified as follows:

Chapter 2 Formal Methods 19

Horizontal Refinement or Superposition Refinement

The purpose of this approach is to introduce new requirements or properties which
are not addressed at the initial level or may be postponed to the next level. Thus,
in each refinement step, additional state variables and events might be added to sat-
isfy those requirements. The system models will be augmented gradually when new
features of properties are introduced. This kind of refinement may be called feature
augmentation [27]. For example, in case of a file system, an abstraction may start with
introducing only functional requirements affecting a tree structure such as create, delete,
copy, and move objects (files or directories) in the tree structure. The next refinement
may add other requirements related to an object’s properties such as file contents. Thus,
in this refinement, some variables and events associated with this property need to be
added to the model, such as variable file-content and events read and write. Similarly,
other refinement steps may introduce other properties or events to satisfy other new
requirements that may later be covered, such as the owner of each object and access
permissions. Examples of this approach can be seen in Chapter 4, where horizontal

refinement is used to introduce file system features in Section 4.4 up to 4.7.
Vertical Refinement

The aim of vertical refinement is to refine an abstract model by adding design details
in each level of refinement down to an implementation. These refinement explain how
features are achieved. Introducing new functional requirements or new properties is not
appropriate for this approach. This kind of refinement may involve data and event /oper-
ation refinement, such as replacing an abstract state variable by a concrete one, breaking
up an atomic event into sub-events, etc. To understand more about this approach, some
examples of this refinement are given in Section 4.8. These examples are refinements
of a file system focusing on read and write operations. Namely, at the abstraction, we
begin with introducing abstract events which are later refined by being broken up into

sub-events through refinement steps.

Chapter 3

Event-B

3.1 Introduction

Event-B [4, 6] is an extension of the B-method for specifying and reasoning about sys-
tems. Butler [31] states that Event-B was inspired by action systems of Back et al [12],
which was described in the previous chapter. Event-B is an event-based approach which
is defined in terms of a few simple concepts describing a discrete event system and proof

obligations that permit verification of properties of the event system.

This chapter begins with describing the structure of an Event-B model which consists
of two main parts: contexts and machines, in Section 3.2. Refinement in Event-B is
described in Section 3.3. Other modelling techniques/features used in Event-B, i.e.
event-decomposition, machine decomposition, event-extension and projection function
for modelling record-types, are detailed in Section 3.5, 3.6, 3.7 and 3.8, respectively.
The Rodin tool, a tool developed for Event-B modelling and verifying is introduced in
Section 3.9. Finally, a comparison between Event-B and other state-based formalisms

is given in Section 3.10.

3.2 Event-B Structure

An Event-B model [68, 97, 6] is described in terms of contexts and machines (machine
is called model in [97]). Contexts contain the static parts whereas machines contain the
dynamic part of a model. Contexts can be extended by other contexts and referenced by
machines. Each machine can be refined by other machines. This structure is illustrated

in Figure 3.1.
21

22 Chapter 3 Event-B
MACHINE CONTEXT
Variables ees Carrier Sets
Invariants > Constants
Events N Axioms
\ Sees
Theorems AN Theorems
A AN A
. 1 \\ 1
refines | N | extends
____________ T N
Other Machines --------- -) Other Contexts

FiGURE 3.1: Relationships between machines and contexts
3.2.1 Contexts

Contexts [6, 8] contain the static parts of a model. Each context may consist of carrier
sets and constants as well as axioms which are used to describe the properties of those
sets and constants. Contexts may contain theorems for which it must be proved that they
follow from the preceding axioms and theorems. Moreover, contexts can be extended
by other contexts and seen by more than one machine. Additionally, a context may be
indirectly seen by machines. Namely, a context C can be seen by a machine M indirectly

if the machine M explicitly sees a context which is an extension of the context C.

3.2.2 Machines

Machines [6, 97] contain the dynamic part of an Event-B model. This part is used
to specify behavioural properties of the model. A machine is made of a state, which
is defined by means of variables, invariants, events, theorems and variants shown in

Figure 3.1.

Variables, like constants, correspond to simple mathematical objects: sets, binary re-
lations, functions, numbers, etc. They are constrained by invariants I(v) where v are
the variables of the machine. Invariants are supposed to hold whenever variable values

change. But this must be proved through the discharge of proof obligations [6].

A machine contains a number of atomic events showing the way that the model may
evolve. Each event is normally composed of four elements: an event name, parameter(s),
guard(s) and action(s), illustrated in Figure 3.2. The guard is the necessary condition
for the event. The action determines the way in which the state variables are going to

evolve when the event is performed [6].

Chapter 3 Event-B 23

Event

Name
Parameter
Guard
Action

FIGURE 3.2: Structure of an Event

All events are guarded and atomic and might be performed only when its guard holds.
This means that when the guards of several events hold at the same time, then only
one of them may be performed at that time. An enabled event is non-deterministically
chosen to be performed. Generally, an event, named euvt, is presented in one of three
possible forms shown in Figure 3.3. act represents actions of an event that may involve
generalized substitution of machine variables (v) and/or parameters (¢) which are local
to the event, while grd represents guards of an event. (Here ¢ is called local variables
in [6].)

evt = begin act(v) end
evt = when grd(v) then act(v) end
evt = any t where grd(t,v) then act(t,v) end

FI1GURE 3.3: Three syntactic forms of an event

There are three types of action illustrated in Figure 3.4: skip (do nothing), deterministic
assignment and non-deterministic assignment. Where z is a variable, F is an expression
and P is a predicate. The value of z in each case depends on its corresponding expres-
sion/predicate. For example, z :€ E(t,v), z will be assigned as an element of E(t,v).

In the case of = :| P(¢,v,2’), x will be assigned as a value satisfying the predicate P.

Type Generalized Substitution
Empty skip
Deterministic z:= E(t,v)
Non-deterministic | = :€ E(t,v)

z:| P(t,v,)

FIGURE 3.4: Three types of generalized substitution

3.3 Refining a Machine in Event-B

Abrial et al [6] states that there are two possible ways of refining a machine, one is refining

its state and another one is refining its events. Typically, both are used together.

In case of refining machine state — or data refinement [47] — gluing invariants play an

important role to relate states of a concrete machine to abstract states. Gluing invariants

24 Chapter 3 Event-B

are invariants of a refined machine that refer to variables of the abstract machine [6,
5]. The gluing invariant is expressed in terms of a predicate P(v,w) connecting the
state variables of the abstract machine (v) and the corresponding state variables of the

concrete machine (w) [5].

When refining events, each event of the abstract machine may be refined by one or
more corresponding events in the refinement [6]. There are many cases where an event
is considered to be refined. For example, when an abstract variable referred to in the
event has been replaced by a concrete one (in a refinement step), some related guards
and/or actions of that event may need to be changed. Namely, the abstract variable
which is referred to in that event must be replaced by the concrete one. In the case of
feature augmentation, for example, the abstract event may be extended by adding new

features which are introduced in that refinement.
Adding new events in a refinement

During refinement, it is possible to refine an abstract machine by adding new events to
its corresponding machine. The new events must be proved to refine a dummy event
that does nothing (skip) in the abstraction. In this case, some proof obligations may fail
to be proved if there are some actions of any new event trying to update a variable of the
abstract machine. However, if necessary, a new variable (which is used as a mirror of the
abstract variable at certain points) can be added to the concrete machine together with
some gluing invariants relating the abstract variable with the new one. In addition, it
may be proved that those events cannot collectively take control infinitely [6]. For this,
as stated in [6], a unique variant expression has to be introduced. This variant will be

decreased by those new events.

3.4 Event-B proof obligations

Several kinds of proof obligations are generated by the proof obligation generator (POG),
such as WD (Well-definedness), INV (Invariant Preservation), GRD (Guard Strength-
ening), SIM (Action Simulation), etc.

WD proof obligations are generated to ensure that axioms, invariants, event guards/ac-
tions are well defined. The Rodin tool supports well-definedness to aid the activities
of modelling and proving [5]. For example, as stated in [5], it can be guaranteed that
partial functions are never applied to arguments outside their domain. INV proof obliga-
tions are generated to guarantee that the invariants are always preserved whenever the
machine state changes. The generated GRD proof obligation ensures that the guard of a
concrete event is a correct refinement of the corresponding guard of the abstract event.
Finally, the generated SIM proof obligations aim to ensure that the abstract action are

refined correctly by the action of the corresponding concrete event as specified by any

Chapter 3 Event-B 25

gluing invariants.

3.5 A technique for breaking up an atomic event

A technique for breaking up an atomic event into sub-events has been proposed by Butler
and Yadav in [31]. This technique is based on the idea that an abstract (atomic) event
may be realised by a number of activities or actions inside that can be split into sub-
events through refinement steps. To understand more about event decomposition, event
refinement diagrams proposed in [26] and a simple example will be used to explain how
an atomic event can be decomposed into sub-events. Figure 3.5 shows an example of
such a diagram. In the figure, the root represents an abstract event which is partitioned
into events start, step, and end in a refinement. A solid line indicates that the end
event refines the abs_evt event. That means the end event will be proved to refine
the abstraction. The dashed lines state that both start and step refine skip. The oval
represents a quantifier that specifies multiple interleaved instances of an event (i will
range over some set). Order, from left to right, constrains the order in which events
have been performed. A step(i) event can be performed only when the start event is
completed, and end can be performed only when all step(i) events have been occurred.

The order amongst the step(i) events is nondeterministic.

abstraction

[sort][seé)(i)][end] refinement

FIGURE 3.5: An example of event refinement diagram

In Event-B, there are no explicit sequencing operations. Events are non-deterministically
performed when their guards hold. Thus, in order to control the order of event execution,
each event must be guarded by using additional state or flag variables. For example, in
order to start writing a single page, the given file must be in the writing state. Thus, a
writing state should be introduced and used to construct guards of events that we want

to control.

The event refinement diagrams are used as an aid to constructing and understanding
the formal models rather than being formal objects themselves. As outlined in [26],
the diagrams were inspired by Jackson Structured Design (JSD) diagrams [82]. We see
some useful of this systematic diagram. It would be great in the future if investigation
for a more formal incorporation of event refinement diagrams into the refinement proof

obligations could be carried out by developers who are interested.

26 Chapter 3 Event-B

To understand more about this technique, we give a simple example of breaking up an

event which is discussed below.

The following example is aimed at breaking up one atomic event named incr (increase
the value of x by the value of y) into sub-events named start, step and end; where z
and y are integer variables. This example is divided into two levels: one abstraction and

one refinement step.
Abstraction:

At this level, see Figure 3.6, an abstract atomic event named incr was introduced to-
gether with its failure case. Considering Event incr, the value of z is increased by the

value of y. In the case of failure, the value of z is equal to a special value ‘ko’.

INVARIANTS INITIALISATION
y e y:€ZL
T €L T:€Z

Event incr =
Begin
ri=x+Yy

Event incr_fail =
Begin
x:=ko

End End

FIGURE 3.6: An abstract level

Refinement:

In this refinement, additional variables x’, n and flag are added to the abstract machine.
The variable n, a number of steps proceeded, is initialised to 0. Variable flag is a boolean
variable used for checking whether or not the increasing step is completed. This flag is
initialised to be FALSE. Machine invariants and its initialisation of this level are given

in Figure 3.7.

INVARIANTS INITIALISATION
n ez
' eZ n:=0
flag € BOOL 2 =0
flag = FALSE =2’ =z +n flag := FALSE

FIGURE 3.7: Machine invariants and its initialisation of the concrete level

Event step, specified in Figure 3.8, is a sub-event which is added to specify that the

value of z is increased by 1 at a time. This event shows that when the flag is equal to

Chapter 3 Event-B 27

FALSE (incrementing step has not completed yet) and n < y, 2’ and n are increased
by 1. Event end_ok is a refinement of the incr event. This event states that when n is
equal to y and the flag is FALSE, z will be assigned z’ and the flag is set to be TRUE
(indicating that the increasing step has completed). Gluing invariant of Figure 3.7 is

used to discharge refinement proof obligations (SIM).

Event start =

Event step =

Begin When
n:=0 n <y
=z flag = FALSE
flag := FALSE Then
End =2 +1
n:=n+1
End

Event end_ok refines incr=
When

Event end_fail
refines incr_fail =

n=y When

flag = FALSE flag = FALSE
Then Then

r =1 z:=ko

flag :== TRUE flag == TRUFE
End End

FIGURE 3.8: Events of the concrete level

3.6 Machine Decomposition

Generally, a model is started with small number of features (small set of machine events
and state variables) and then is enlarged gradually by adding more features or design
details in refinement steps. Namely, machine variables and/or events might be added
in each step. As stated in [8], the refinement process might become quite heavy if
there are a large number of events and state variables. Moreover, it may be found
that the refinement steps which are undertaken are not involving any more the totality
of the system, that is only a few variables and events are concerned, while others are
not important. Therefore, the idea of decomposition would be important for of formal
modelling. The decomposition is a mechanism aimed at partitioning a large system
model into smaller parts that can be addressed more easily than the whole. Namely,

each part should to be refined independently of the others.

Two approaches have been proposed to the decomposition of Event-B models. The first

is the shared variable decomposition which is proposed by Abrial et al [8]. The second is

28 Chapter 3 Event-B

the shared event decomposition proposed by Butler [26]. The difference between this two
approaches is the method of the interaction between sub-models. The shared variable
approach means sub-models interact with each other via shared variables, while the

interaction of the shared event approach is the synchronisation over the shared events.

In our development, we follow the decomposition structures of Butler [26]. The decom-
position structure given in [26] is a parallel-based decomposition. Namely, the machine
variables and events are split into sub-machines. Each sub-machines must not have any
common state variables. As mentioned above, each sub-machines interact with each

other via the synchronisation over the shared parameterised events.

Figure 3.9 shows a scheme of an Event-B model named M. This machine consists of
variables v1 and v2, and events evtl, evt2 and evt_s. Suppose we are decomposing
this machine into two sub-machines (i.e. M1 and M2) as illustrated in Figure 3.10,
where machine variables and events are split into M1 and M 2. Namely, variable v1 and
evtl are placed in M1, while v2 and evt2 are placed in M2. Event evi_s is a shared
event which is used for synchronisation. This shared event is also partitioned into two
sub-events located in both sub-machines. This shared event depends on both M1 and
M2, since it has the effect of updating both variables v1 of M1 and v2 of M2. This is
in contrast to evtl and evt2, where evtl depends only on vl and evt2 depends only on
v2. Guards and actions (of the shared event) on vl and on v2 are clearly separated.
Namely, vl is referenced by g¢grd3 and act3, while v2 is referenced by grd4 and act4,
separately. Parameters pl, p2 and p3 are local to the shared event. M1 and M2 can

MACHINE M
Variables

vl, v2
Invariants

Events
evtl = any p where grd1(p,vl) then actl(p,vl) end
evt2 = any p where grd2(p, v2) then act2(p, v2) end
evt_s = any pl, p2, p3 where
grd3(pl, p3,v1l) A grdd(p2, p3,v2)
then
act3(pl, p3,vl) || actd(p2, p3, v2)
end
End

FIGURE 3.9: Machine M before decomposition

be refined separately provided shared events and shared parameters are maintained.

Figure 3.11 shows a result of the machine decomposition that has been made to Machine
M. The top represents Machine M1 with Variable v1 and events evtl and evt_s1. The

Chapter 3 Event-B 29

vl
G
v2

\

FIGURE 3.10: A diagram illustrating a decomposition made to Machine M

bottom represents Machine M2 with Variable v2 and events evt2 and evt_s2. Parameters
pl and p2 are local to evi_sl and evi_s2 respectively, while p3 is a shared parameter
across evt_sl and evt_s2. This shared parameter is used for synchronisation of both

sub-events.

MACHINE M1
Variables

vl
Invariants

Events

evtl = any p where grd1(p,vl) then actl(p,vl) end

evt_s1 = any pl, p3 where grd3(pl, p3,vl) then act3(pl, p3,v1) end
End

MACHINE M2
Variables

V2
Invariants

Events

evt2 = any p where grd2(p, v2) then act2(p, v2) end

evt_s2 = any p2, p3 where grd4(p2, p3,v2) then actd(p2, p3, v2) end
End

FIGURE 3.11: Sub-machines representing a result of a decomposition of Machine M

3.7 Event Extension

Event extension is a feature that have been added to the Rodin tool release 0.9.x and

later. The purpose of this feature is to make model easier to be refined (especially for

30 Chapter 3 Event-B

horizontal refinement). Namely, instead of repeating guards and actions of an abstract
event in the concrete event, such events can be extended by introducing only part of
specification that have been extended in that step. Instead of using refines, extends

is used for modelling the event extension.

Figure 3.12 shows an example of event-extension. The top represents an abstract event
named crifile_abs, while the bottom represents the concrete event (crtfile_ext) which
is an extension of the crifile_abs event. In the concrete event, the crifile_abs event is
extended by adding a property, i.e. file content (fcontent € files - CONTENT, where
files represents a set of existing files and CONTENT = N - DATA representing the
content of files). Using the event-extension feature provided by the tool, that part of the
specification which is inherited from the previous abstraction are omitted. Developers
specify only part that have been introduced in that step. In this example, the extended

part is act3, where the content of file is initialised to be empty. This feature also makes a

Event crifile_abs refines create =

Any obj, in Where
grdl : obj € OBJECT \ (files U directories)
grd2 : in € directories

Then
actl : files := files U {obj }
act2 : parent(obj) := in

End

Event crifile_ext extends crifile_abs =
Begin
act3 : fecontent(obj) = @
End

FI1GURE 3.12: An example of event extension

model easier to be modified. Namely, some modification can be made to the abstraction

and that change is automatically inherited by the refinement.

Figure 3.13 shows another style of representing an extended event. In order to make a
difference between inherited part (0bj, in, grdl, grd2, actl and act2) and the extended
part (act3) of the ctrfile_ext event, we represent the extended part in italic style while
the inherited part is represented in normal style. This style makes documentation of

extended events more understandable.

Chapter 3 Event-B 31

Event crifile_ext extends crifile_abs =

Any obj, in Where
grdl : obj € OBJECT \ (files U directories)
grd2: in € directories

Then
actl:files:=files U {obj}
act2 : parent(obj) := in
act3 : fecontent(obj) = @

End

F1GURE 3.13: A documentation style to represent an extended event

3.8 Projection Function for Modelling Records

Evans and Butler [53] have given an approach for specifying record types in Event-B
using projection function. In order to model a record or a data type that may consist
of two or more elements, using projection function is a way to specify this. Figure 3.14
shows an example of modelling of a record type following the style given in [53]. The
record type is named RT', where the structure of this type is composed of two proper-
ties: propl OfRT and prop2 OfRT. This record type is specified as a carrier set while its
properties are specified as constants. Each property is defined using a projection func-
tion. The type of each property may be a user-defined type or a basic type such as N,
BOOL, etc. For example, the first property (propl OfRT) of this record type is defined
as a natural number while the second property (prop2 OfRT) is defined as a user-defined
type T72.

CONTEXT CTX
Sets
RT, T2
Constants
propl OfRT, prop2 OfRT
Axioms
axml : propl OfRT € RT — N
axm?2 : prop20fRT € RT — T2

FIGURE 3.14: Part of context specifying a record type

Suppose we have a machine variable named mwvar (representing an array of RT elements)

specified as
mvar € N+ RT

Figure 3.16 gives an Event-B event showing the use of the record type (RT) which is

32 Chapter 3 Event-B

specified above. This event has the effect of modifying the value of mwvar at position i
to be newval (actl). The values of the components within the newval are pl and p2,

which are typed N and T2 respectively.

Event modify_evt =
Any i, newval, pl, p2 Where
grdl : i € dom(muvar)
grd2 : newval € RT
grd3 :pl € N
grdd : p2 € T2
grd5 : propl OfRT (newval) = pl
grd6 : prop2 OfRT (newval) = p2
Then
actl : movar(i) := newval

End

FIGURE 3.15: An event (modify_evt) showing the use of the record type RT

The record type (RT) which is defined in Figure 3.14 may be extended by adding more
properties in another refinement step. Figure 3.16 shows an example of a context where
the RT type is extended. This context (CTX2) is an extension of the context named
CTX, which is given in Figure 3.14. The extension is to add an additional property
named prop3OfRT (which is T'3) to RT.

CONTEXT CTX2 extends CTX
Sets
T3, ...
Constants
prop3OfRT, ...
Axioms
axm3 : prop3OfRT € RT — T3

FIGURE 3.16: Part of context specifying a record type

Figure 3.17 shows an extended part of the modify_euvt event when the additional property
(p3) of RT has been added.

3.9 Rodin, an Event-B Modelling Tool

The Rodin platform [2, 29, 40, 5] is an open and extensible tool for Event-B specification

and verification. This platform contains a database of modelling elements used for

Chapter 3 Event-B 33

Event modify_evt extends modify_evt =
Any
p3
Where
grd7:p3 € T3
grd8 : prop3 OfRT (newval) = p3
End

FIGURE 3.17: A extension of the modify_evt event

constructing system models such as variables, invariants and events. It provides useful
tools for users to specify their models, accompanied by flexible tools for refinement and
proof. Abrial et al [6] express that extending the state of art in formal methods tools
and allowing other developers to employ their tools as plug-ins to assist the development
methods are the purposes of the kernel of the Rodin tool. It allows users to customize

and adapt the primary tool to serve their particular need.

Several plug-ins are available for the Rodin platform [25], for example, UML-B [113],
ProB [16], the decomposition plug-in [112], B2Latex [46]. These plug-ins have been
developed to satisfy some features required for users who may want to animate their
models (using the ProB animator) during the design or who may want to represent
their models by using UML-like diagrams of UML-B. The B2Latex plug-in is a LaTeX
code generator that we have developed to help users in translating their Event-B models
into LaTeX documents. The shared-event composition [111] is another plug-in that
was used in our development for machine decomposition. This composition plug-in is
based on shared event decomposition of Butler [26]. The decomposition tool [112] is a
recent one that has been developed to support both shared variable and shared event

decomposition.

Theorem proving is the main technique used for reasoning about Event-B models. The
Rodin tool supports automatic generation of proof obligations in order to free the users
from difficult work of writing them explicitly [5]. Proving of the models will be attempted
automatically whenever the model is saved. If some proof obligations have not been
discharged automatically by the provers, the Rodin tool also provides a proof manager
for users to carry out interactive proof. Other formal languages have theorem proving
support: the Z/EVES system [109] has been used for Z; KIV theorem prover [14] has
been used for ASM; and HOL [65] has been used for VDM. Z/EVES has a graphical
interface and supports automatic type checking. However, users still need to construct
proof scripts by hand. Similarly for KIV and HOL theorem provers, modellers are also

need to construct all proof obligations by themselves.

The theorem prover provided by the Rodin toolset was chosen for the verification parts of

our experiments. Although the Rodin toolset also supports animation and model check-

34 Chapter 3 Event-B

ing via the ProB plug-in [16], there were some reasons why we chose the theorem prover
approach. First is the limitation of model checking caused by state space explosion.
Model checking can guarantee correctness within a limited state space. It cannot ensure
the correctness outside the given state space, e.g. the complex system with complex
data structures that might involve a large state space. The theorem prover approach
can reason about infinite state spaces and state spaces that involve complex data struc-
tures and recursion [103]. Theorem prover can reason about the model without visiting
the state space by verifying logical properties of models. Our model is a complex one
that results in a large state space for model checking. We had tried many times to use
ProB plug-in but failed. At the earlier stage of modelling, where a small set of features
had been introduced, the ProB model checker and animator worked well. But, when we
refined the model by adding more design details, which made the data structures more
complex, we were unable to use ProB for animating and checking our models. Thus,
we decided to stop using it for verifying our models. Another reason, which is a main
point, theorem proving approach helped us a lot in discovering of invariants. Failing
proof obligations guided us to identify which invariants should be introduced. (It can be

seen in our development outlined in Chapter 4, 5 and 6, where we discuss about this.)

3.10 A Comparison

As an extension of B, most of the notation used in an Event-B model such as sets,
relations and functions are similar to B. Thus, developers who have used B for spec-
ification would find it easy to adapt to Event-B. However, there are some differences
between B and Event-B. Firstly, the structures used to describe the model are different.
The static part (context) and dynamic part (machine) are totally separated in Event-B.
Secondly, Event-B is more suited to model complex systems such as distributed and
concurrent systems. Because it is an event based approach which consists of a collection
of guarded atomic events, a machine is viewed as a reactive system that continually
executes enabled events in an interleaved fashion [30]. This makes parallel activities and
concurrent processes easier to model as an interleaving of event executions, while shared
variables/events are used for interaction between the activities/processes. Classical B
is based on a passive model. Namely, operations are called by other operations. (In

Event-B, an event is not necessary called by others.)

As stated in [26], Event-B refinement is more general than classical B and other related
languages such as Z and VDM. The ability to introduce new events in a refinement step
is an important feature of Event-B. Event-B refinement supports the decomposition of

an atomic event and also the decomposition of a machine.

Composition/Decomposition of Event-B and classical B are different. Namely, Event-B

uses A- and B-style (that have already discussed in Section 3.6) as a mechanism for

Chapter 3 Event-B 35

machine decomposition while classical B uses machine inclusion/import (which is based

on program structuring).

Compared with other state-based approaches mentioned in Chapter 2, Event-B also uses
generalized substitutions as a mechanism to transform a system state to another state
like B. Event-B supports both concurrent and communication systems. Proof is a

methodology used for verification of Event-B models similar to classical B.

Chapter 4

Modelling and Proof of a File
System

4.1 Introduction

As previously mentioned in Chapter 1, a flash file system has been proposed as a chal-
lenge for verification technology and we have chosen it as a case study for our exper-
iments. Figure 4.1 is a representative of a flash file system [67]. In the figure, the
architecture was divided into two main parts. The first part, the dotted box, represents
user/application and file system layers. The file system layer provides the generic in-
terface to the file system itself. The second part (the dashed box) represents the flash
file system core which is composed of the flash interface and hardware layers, and other
intermediate layers such as Data Object and Basic Allocation layers (more details can
be seen in [67]). This chapter presents a specification of the file system layer within the
dotted box, focusing on basic functionalities of a tree-structured file system, and read
and write operations. Details and specification of the flash interface layer within the

dashed part will later be explored in Chapter 6.

The aim of this chapter is to investigate and describe how existing theories and tech-
niques of specification, refinement and proof can be applied in Event-B and Rodin to the
specification of a file system. For example, how horizontal and vertical refinements can
be applied, how selection of formulation affects the specification and proof, how breaking

up an atomic event and machine decomposition can be applied to this case study.

Incremental refinement is our main strategy in carrying out the work. We first use
feature augmentation to incrementally specify a model of an abstract file system by
adding new features in each refinement step. After that, structural refinements (covering
event and machine decomposition) are used for adding more design details to relate the

abstract file system to the specification of the flash interface. Here we get eight levels of

37

38 Chapter 4 Modelling and Proof of a File System

User/Application/OS Layer

File System Layer

Flash Interface Layer

A 4

FLASH HARDWARE

FIGURE 4.1: An architecture of a flash file system

specification modelling of a flash file system covering (1st) tree structure, (2nd) files and
directories, (3rd) file content, (4th) permission control, (5th) other missing properties
(name, creation date, etc.), (6th) decomposing file write (7th) decomposing file read
and (8th) replacing by the flash specification. We split the features and choose to refine
the model in this order for some reasons. First, we want to simplify the proof of the
first level by postponing files and directories to be introduced in the following step.
Second, file content should come after an introduction of files. Similarly for permissions,
they should come after file content, since reading/writing of a file content depends on
the permissions. Third, all file system features were covered before exploring structural
refinements that involve adding more design details. Finally, we split the features into
a number of refinement steps because we want to make the gap between each level as
small as possible. We believe that the small gap leads us to get simpler gluing invariants

and proofs. This testifies the proof statistics given in Table 4.1.

Our model covers concurrent file read/write operations. Several file read/write events
can be performed simultaneously in an interleaved fashion. The model we developed
also tolerates faults that may occur at any point during reading/writing of files. Details

are given in Section 4.8.

This chapter begins with an informal description of a tree-structured file system and
its constraints in Section 4.2. An abstract model of the file system layer and its hor-
izontal refinements are given in Section 4.3 to Section 4.7. Vertical refinements which
are explored to relate that file system layer with the flash interface layer are given in
Section 4.8. The fault-tolerance issue is given in Section 4.11. Machine decomposition
is outlined in Section 4.13. Full details of the specification are given in Appendix A.

Proofs are given in Section 4.14. Finally, conclusion and assessment of what we have

Chapter 4 Modelling and Proof of a File System 39

achieved are discussed in Section 4.15.

Note: Much of the contents of this chapter appears in ICFEM 2008 [45], SBMF 2009 [44]
and Rodin Workshop 2009 [43].

4.2 An Informal Description of a Tree-structured File Sys-

tem and Constraints

A tree-structured file system can be described in terms of a collection of objects rep-
resenting files and directories and a set of operations that may be performed on these
objects. The objects are structured as a tree. The tree has only one root directory that
cannot be deleted, copied or moved. Each object except the root has only one parent

which is a directory. Four operations affecting the tree structure are discussed below.

Create: Create an object in an existing directory. The object can be either a file or a

directory.

Copy: Copy an existing object from one place to another place. The destination must
exist and must not be a descendant of the object being copied or the object itself. If
the object being copied is a directory, all objects belong to that directory must also be

copied to the new location and the copy must have the same structure as the original.

Delete: Delete an existing object in the file system. In case of deleting a directory, all

its descendants must also be removed.

Move: Move an existing object from one place to another place. The destination must

exist and must not be a descendant of the object being moved or the object itself.

Note that the copy event we specify here is not traditionally found in file systems.
Namely, the process of copy could be done by performing read and write operations
provided. However, the copy operation is sometimes found at the higher level of user
interfaces provided by operating systems, such as DOS and visual file system. It is also
found in the specification of a visual file system in Z of Hughes [78]. The copy event
is a complex event that directly affects the structure of the tree. Performing this event
must not destroy the tree properties. The reason we have specified this operation in our

model is to show that our abstract copy event preserves the tree properties.

4.3 An initial model

In our development, we begin with an abstract model of a tree-structured file system
focusing on tree properties and operations affecting the tree structure. However, files

and directories are not distinguished in this level. Instead, they are postponed to the

40 Chapter 4 Modelling and Proof of a File System

next refinement given in Section 4.4. Thus, in this level, both files and directories are
treated in the same way as objects, which are nodes of the tree structure. Below is a
list of requirements in this level.

Reql.1: The tree has a root node.

Reql.2: All objects except the root node must have a parent.

Reql.3: There are no loops in the tree.

Reql.4: Every node in the tree is reachable from the root node.
Machine variables, invariants which are formulated to satisfy those required proper-

ties mentioned above, and initialised values of those variables are given in Figure 4.2.

Variables, invariants and initialisation are discussed below.

Variables
objects, parent
Invariants
invl.l : objects C OBJECT
1mwl.2 : root € objects
invl.3 : parent € objects \ {root} — objects
invl.d:Vs-(s C parent—'[s] = s = @)

Initialisation
objects := {root}
parent 1= &

FIGURE 4.2: Machine variables, invariants and initialisation of an abstract model

As can be seen from a context by this abstract machine, OBJECT is defined as a carrier
set and root is an OBJECT constant (see Figure 4.4). Considering Figure 4.2, there are
two state variables introduced in the machine: (i) objects, a set of existing objects in the
file system (inv1.1); and (ii) parent, a total function mapped from all objects except root
to their parent which is an object. In this abstraction, objects and parent are initialised
to a set consisting of root and the empty set respectively. Invariant inv1.3 states that all
objects except root must have a parent. This invariant satisfies Reql.2. Invariant inv1.4
is introduced to ensure that there are no loops in the tree structure (satisfying Req1.3).
This invariant is formulated by using the no-loop property proposed by Abrial in [4].
The reason we choose this formulation instead of transitive closure which is generally
used to specify tree properties — such as a specification of visual file system in [78] — is

to make the model easier to prove.

Considering inv1.4, parent'[s] gives the direct descendants of all elements of set s. For

s C objects, s C parent ![s] means that s contains a loop in the parent relationship.

Chapter 4 Modelling and Proof of a File System 41

Hence, this invariant states that the only such set that can exist is the empty set and
thus the parent structure cannot have loops. If we were to use transitive closure, we

would need to add the property inv1.4b given in Figure 4.3 to the machine invariants.

inv1.4b : tel(parent) N id(OBJECT) = &

F1GURE 4.3: No-loop property using transitive closure

Here tcl which is mentioned in Invariant inv1l.4b is a transitive closure. In a con-
text shown in Figure 4.4, tcl is defined as a total function mapped from OBJECT <
OBJECT to OBJECT < OBJECT. Giving r € OBJECT < OBJECT, the transitive
closure of r is equal to r U r; tcl(r) (thml of Figure 4.4). The transitive closure we

specify here follows from the definition given in [1].

The parent variable is updated by several of the events. If we were to use inv1.4b instead
of invl.4, the copy event, for example, would give rise to a proof obligation with inv1.4b

as a hypothesis and the following goal:
tel(parent U replica U {nobj — to}) N id(OBJECT) = &

The way to prove this proof obligation would not be easy since distribution of tcl through
union and other set operations is not straightforward. We avoid such difficulty in proofs

by using formulation inv1.4 instead.

Significantly, we can prove that the formulation in inv1.4b follows from the formulation
in ¢nvl.4. This is given by Theorem thm3 shown in Figure 4.4. This theorem has been
proved using the interactive prover of Rodin. The strategy we follow in proving this

theorem is to use proof by contradiction.

In order to satisfy requirement Reql.4, instead of introducing another invariant, we
present other machine theorems (given in Figure 4.5) which are derived from existing
invariants and guarantee that the reachability property is satisfied. Considering Theorem
mth3, since (tcl(parent))~[{root}] returns all objects reachable from root, this theorem
shows that all objects except root are reachable from root. Other machine theorems,
mthl and mth2, are used in the proof of mth3. Theorem mth4 is introduced to satisfy
the no-loop property.

Abstract Events:
In this section, we outline four abstract events including create, move, copy and delete.

Create event: Create an object in an existing location (see Figure 4.6). In the figure,

obj is an object being created and in is its parent. Here obj must be an OBJECT that

42 Chapter 4 Modelling and Proof of a File System

Sets
OBJECT
Constants
root, tcl, objrel, objfn
Axioms
axml : root € OBJECT
axm?2 : objrel = OBJECT < OBJECT
azm3 : objfn = OBJECT \ {root} — OBJECT
axmd : tcl € objrel — objrel
axmb : Vr-(r € objrel = r C tcl(r))
axmb : Y r-(r € objrel = r; tel(r) C tel(r))
arm7 :Vr t-(r € objrel N v Ct Nr; tCt = tel(r) Ct)
Theorems
thml :Vr-(r € objrel = tcl(r)=rU (r; tcl(r)))
thm2 : tcl(@) = @
thm3 :Vt-(t € objfn A (Vs-s C (t7H[s] = s=02)
= tcl(t) N id(OBJECT) = @)

FIGURE 4.4: Definition of transitive closure (¢cl) and no-loop theorem (thm3) in a
context

Theorems
mthl :V T-(root € T A parent=*[T] C T = objects C T)
mth2 : objects C {root} U (tcl(parent))=*[{root}]
mth3 : objects \ {root} C (tcl(parent)) H{root}]
mthd : tcl(parent) N id(OBJECT) =

FIGURE 4.5: Machine theorems satisfying reachability and no-loop properties

is not already in the set objects (see grd1); and in must exist (see grd2). The object obj
will be added to the set objects by actl; and in will be assigned to be the obj’s parent
by act2.

Copy event: In order to understand more about the copy event, we will describe this
event by using Figure 4.7. From the figure, the left-hand side is a tree before copying
and the right-hand side is the result. Here r is a root node, a is an object being copied
(d and e, its descendants, will be copied as well) from node r to node c¢. The arrows
represent the function parent and the dashed lines represent a correspondence function
which is a bijection from the set of all objects being copied to the set of new objects (a’
d’, and e’) which is a copy of that set. The correspondence bijection is used to maintain

the structure of directory a in the copy.

Considering the copy event given in Figure 4.8, obj (the object being copied) and to (the
destination) behave like external parameters provided by users or application programs,

while the rest are local parameters used for computation. However, there is no distinction

Chapter 4 Modelling and Proof of a File System 43

Event create =

Any
obj,in

Where
grdl : obj € OBJECT \ objects
grd2 : in € objects

Then
actl : objects := objects U {obj}
act2 : parent(obj) := in

End

FIGURE 4.6: A specification of create event

() ()
%D - @56\{@
o

replica

FIGURE 4.7: A diagram of copying a subtree (subparent) rooted at a from r to ¢

between external parameters and local parameters in Event-B. In this event, des is the
set of all descendants of the object obj which is equal to (tcl(parent))~'[{obj}]; objs is
the set of all objects being copied; nobjs is the set of new objects corresponding to the
set objs; corres is the correspondence bijection. With reference to Figure 4.7, subparent
represents the subtree rooted at a which is being copied. In this event, subparent is
equal to des < parent which is a restriction of the parent function to des (e.g., d — a
and e — a in Figure 4.7). Finally, replica is a copy of subparent which is equal to

corres—t; subparent; corres (e.g., d' +— a’ and e’ — @’ in Figure 4.7).

At this point, the reason we introduce a number of additional local parameters is to make
models easier to read. For example, without introducing des, subparent and replica, actl

of Figure 4.8 can be replaced by
parent := parent U corres™%; (tcl(parent)) ™ [{obj}] < parent; corres U {nobj — to}
but we can see that the action becomes more difficult to read.

Additionally, there are two main constraints in this event. Firstly, the object being
copied, obj, must exist and must not be the root. This is satisfied by grd1l. Secondly,

the destination, to, must exist and must not be the object being copied or its descendant

44 Chapter 4 Modelling and Proof of a File System

Event copy =
Any
obj, to, des, objs, corres, nobjs, nobj, subparent, replica
Where
grdl : obj € objects \ {root}
grd2 : des C objects
grd3 : des = (tcl(parent))~1[{obj}]
grd4 : to € objects
grd5 : to ¢ des U {obj}
grd6 : objs = des U {obj }
grd7 : nobjs € OBJECT \ objects
grd8 : corres € objs =» nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des <1 parent
grd11 : replica = corres™'; subparent; corres
Then
actl : parent := parent U replica U {nobj — to}
act2 : objects := objects U nobjs
End

FIGURE 4.8: A specification of copy event

(satisfied by grd5). Guard grd5 plays an important role to ensure that loops are not
produced by this event.

Move event: This event is aimed at moving an existing object except root from one
place to another place. Considering Figure 4.9, a is an object being moved from node
r to node ¢. Node ¢ will become a new parent of a. In Figure 4.10, an existing object
named o0bj is moved to a new location named to. Parameter des represents the set
of all descendants of obj which is equal to (tcl(parent))~'[{obj}]. In this case, the
destination, to, must exist and not be obj or a descendant of obj (these constraints are
specified as grd2 and ¢grd5). These guards are necessary to guarantee that the move does

not introduce a loop or unreachable objects. The parent function is updated so that obj

T

M\ & = ©
ONO. 0 (2)
ON O

F1GURE 4.9: Diagram of moving a subtree rooted at a from 7 to ¢

has to as its parent.

Chapter 4 Modelling and Proof of a File System 45

Event move =
Any
obj, to, des
Where
grdl : obj € objects \ {root}
grd2 : to € objects
grd3 : des C objects
grd4 : des = (tcl(parent))~'[{obj}]
grd5 : to ¢ des U {obj}
Then
actl : parent(obj) := to
End

FIGURE 4.10: A specification of move event

Delete event: This event is given in Figure 4.11. In this figure, 0bj is an object being
deleted; des is a set of all obj’s descendants. Here grdl states that obj must be an
existing object except root. The object being deleted and all its descendants, objs, will

be removed from objects by actl and all related parent-entries are also removed by act2.

Event delete =
Any
obj, des, obys
Where
grdl : obj € objects \ {root}
grd2 : des C objects
grd3 : des = (tcl(parent)) ™ [{obj}]
grd4 : objs = des U {obj}
Then
actl : objects := objects \ objs
act2 : parent := objs 4 parent
End

FIGURE 4.11: A specification of delete event

4.4 1° Refinement: Files and Directories

In this refinement, objects are partitioned into files or directories. There are two machine
variables introduced in this level, namely, files (a set of existing files) which is initialised
to the empty set and directories (a set of existing directories) which is initialised to a

set of root. Additionally, the create event of the abstraction is refined into events crifile

46 Chapter 4 Modelling and Proof of a File System

(create file) and mkdir (make directory). Additional requirements for this level are given
below.

Req2.1: The set of objects is partitioned into files and directories.

Req2.2: The root node is a directory.

Req2.3: The parent of each object must be a directory.
Figure 4.12 shows a list of machine variables, invariants formulated to satisfy the above
requirements and initialised values of each variable. Considering the gluing invariant

inv2.4, the abstract variable objects is entirely defined in terms of files and directories.

As a result, it can be substituted by files U directories and is no longer used in this level.

Variables

files, directories, parent
Invariants

inv2.1 : files C objects

inv2.2 : directories C objects

inv2.3 : files N directories = &

inv2.4 : objects = files U directories

mv2.5 : root € directories

inv2.6 : ran(parent) C directories
Initialisation

files .= @

directories := {root}

parent == &

FIGURE 4.12: Machine variables, invariants and initialisation of the first refinement

Because of the space constraint and the similarity of some events (such as creating a file
and making directory), we chose two events (crtfile and copy) to illustrate a concrete

model of this level.

Create-file event: This event (named crifile), given in Figure 4.13, refines create of
the previous abstraction. Additional details introduced in this refinement: (i) grd2, in
must be a directory; and (ii) actl, the object must be added to the set files directly,

instead of the set objects in the previous abstraction.

A refinement of Event copy: In this refinement, see Figure 4.14, additional details
introduced in this event are: (i) grd4, the destination, to, must be a directory; (ii) act2,
all correspondents of objs which are files must be added to the set files; and (iii) act3, all
correspondents of 0bjs which are directories must be added to the set directories as well.

These two actions refine Action act2 of the previous abstraction (given in Figure 4.8).

Chapter 4 Modelling and Proof of a File System 47

Event crifile refines create =

Any
obj, in

Where
grdl : obj € OBJECT \ (files U directories)
grd2 : in € directories

Then
actl : files := files U {obj }
act2 : parent(obj) := in

End

FIGURE 4.13: A specification of create-file event

Event copy refines copy =
Any
obj, to, des, objs, corres, nobjs, nobj, subparent, replica
Where
grdl : obj € (files U directories) \ {root}
grd2 : des C (files U directories)
grd3 : des = (tcl(parent)) ™ [{obj}]
grd4 : to € directories
grdb : to ¢ des U {obj}
grd6 : objs = des U {obj}
grd7 : nobjs C OBJECT \ (files U directories)
grd8 : corres € objs =» nobjs
grd9 : nobj = corres(obj)
grd10 : subparent = des <1 parent
grd11 : replica = corres™'; subparent; corres
Then
actl : parent := parent U replica U {nobj — to}
act : files := files U corres|objs N files]
act3 : directories := directories U corres[objs N directories]
End

FIGURE 4.14: A first refinement of the copy event

The reason we have postponed files and directory to be introduced here is to make proof
simpler. In the first level they are treated in the same way as objects which are nodes
of the the tree structure. If we were to introduce them at the first step, proving the tree
properties would be more difficult since files and directories are different. Namely, we
would need to prove for both crifile and mkdir events. At this level, we did not need to
show that the crifile and mkdir events preserve the tree properties, since their abstract

event create has already been proved in the abstraction.

48 Chapter 4 Modelling and Proof of a File System

4.5 2" Refinement: File content

In this refinement, file contents and other related constraints are introduced together
with five events — i.e. r_open (open an existing file for reading), w_open (open an
existing file for writing), read (read the whole content of a file from the storage into a
memory buffer), write (write the content of a file on the buffer back to the storage) and
close (close an opened file). Note that we also introduce the power_loss event in this
level, since the memory contents (read and write buffers) have been introduced. We
postponed details of this event to be addressed in Section 4.11 where the fault-tolerance

is outlined.

The requirements and constraints which are covered in this level:

Req3.1: Each file has content (which might be empty).
Req3.2: Each file must be opened before reading or writing.

Req3.3: A buffer of each opened file will be assigned once the file is opened and released

when the file is closed.

Req3.4: All operations are disabled when the power is off.

Machine variables and invariants introduced in this refinement are listed in Figure 4.15.

Variables

fecontent, power_on, r_opened_files, w_opened_files, rbuffer, wbuffer
Invariants

nw3.1 : power_on € BOOL

3.2 : power_on = TRUE = fcontent € files - CONTENT

1nw3.3 : r_opened_files C files

1nw3.4 : w_opened_files C files

nv3.5 : r_opened_files N w_opened_files = &

1nw3.6 : rbuffer € r_opened_files - CONTENT

inv3.7 : whuffer € w_opened_files - CONTENT

FIGURE 4.15: Additional machine variables and invariants of the second refinement

In this refinement, the content of each file, fcontent, is defined as a total function mapped
from each file to a content. The content is valid only when the power is on (inv3.2).
Variable r_opened_files and w_opened_files are set of files which are opened for reading
and writing respectively. The buffers of opened files, rbuffer (for reading) and wbuffer

(for writing), are specified as a total function mapped from each opened file to a content.

Chapter 4 Modelling and Proof of a File System 49

The content is represented as an array of data items (DATA). In a context seen by this
refined machine, the content is defined as a constant named CONTENT; and DATA is
defined as a carrier set. We assume that the contents of each file are contiguous although

it is specified as a partial function.

CONTENT =N + DATA

Figure 4.16 given below represents an event writefile. This event aims to write the whole
content of the given file named f on its buffer into the storage. The guard of the event

ensures that the power must be on and the given file f must be opened for writing.

Event writefile =
Any
f
Where
grdl : power_on = TRUFE
grd2 : f € w_opened_files
Then
actl : fecontent(f) := wbuffer(f)
End

FIGURE 4.16: A specification of file write event

4.6 3™ Refinement: Permissions

In this level, requirements related to access permissions are introduced. The list of new

requirements and constraints is given below.

Req4.1: Each object has an owner, a group-owner and a list of permissions.
Req4.2: Access to each object depends on its permissions.

Req4.3: Each user can be a member of one or more groups but mostly one primary

group is assigned

Considering Figure 4.17, there are a number of machine variables introduced in this
refinement. For example, users, a set of existing users; groups, a set of existing groups;
user_pgrp, a primary group of each user; user_grps, user’s groups; obj_owner, an owner
of each object; and obj_perms, permissions of each object. Invariant inv4.5 states that
a primary group of each user must be a group in which the user is a member. In a
context seen by this machine, GROUP and USER are defined as a carrier set. PER-

MISSION, a set of permission types, is specified as a enumerated set which is equal to

50 Chapter 4 Modelling and Proof of a File System

{rbo, wbo, zbo, rbg, wbg, xbg, rbw, wbw, rhw}, where rbo: owner-read, wbo: owner-write,
zbo: owner-execute, gbo: group-read, wbg: group-write, xbg: group-execute, rbw: world-

read, wbw: world-write and zbw: world-execute.

Variables

users, groups, user_pgrp, user_grps, obj_owner, obj_grp, obj_perms
Invariants

inwvd.1 : users C USER

mv4.2 : groups C GROUP

mvd.3 : user_pgrp € users — groups

mvd. 4 : user_grps € users <> groups

invd.5 : YV u-u € users = user_pgrp(u) € user_grps[{u}]

inv4.6 : obj_owner € (files U directories) — users

invd.7 : obj_grp € (files U directories) — groups

invd.8 : obj_perms € (files U directories) <» PERMISSION

FIGURE 4.17: Additional machine variables and invariants of the third refinement

Figure 4.18 is an example of the r_open event, which is an extension of r_open in the
previous abstraction. Italic lines represent the extending part that have added. Other
part (not italic) inherited from the previous abstraction are shown here just for making
the event more understandable. In this event, guards grd4 and grd5 state that user usr

who issues this open request must exist and has a read-permission on the object 0bj.

Event r_open extends r_open =
Any
f usr
Where
grdl : power_on = TRUE
grd2: f € files
grd3: f ¢ r_opened files Uw_opened files
grd4 : usr € users
grd5 : f — usr € RPerm(obj_perms — obj_owner — obj_grp — user_grps)
Then
actl : rbuffer(f) := o
act2:r_opened :=r_opened files U {f}
End

FI1GURE 4.18: A specification of Event r_open

RPerm, which is used in the r_open event (shown in Figure 4.18), encodes the rules
that determine whether a user has read permission for an object obj. It is defined in a

context seen by this machine. The related part of the context defining RPerm is shown

Chapter 4 Modelling and Proof of a File System 51

in Figure 4.19. In the figure, su represents the super user (who has the right to manage
every thing), defined as a USER constant. This function states that a user u has a
permission to read an object o only if at least one of these criteria is satisfied:

(i) The user is the owner and has the owner-read permission (rbo).

(ii) The user is a member of the group to which the object belongs and has the group-

read permission (7bg).
(iii) The world-read permission (rbw) is assigned to the object.

(iv) The user is the super user.

0 — u € RPerm(obj_perms — obj_owner — obj_grp — user_grps)
<((0 u € obj_owner A o — rbo € obj_perms)

obj_grp(o) € user_grps[{u}] A o — rbg € obj_perms)

o — rbw € obj_perms)

<o <o<

su))

~—
S
I

FIGURE 4.19: A definition of read permission function

Other permission definitions (i.e., write and execute permission functions) which are not

mentioned here are also specified in the same way.

Without providing this RPerm function, specifying Guard grd5 of Figure 4.18 would be
more complicated in order to check whether the user has to the right to read the given file
or not. Namely, this guard would be replaced by the specification given in Figure 4.20.
Moreover, we would need to model like this for every event where the permission control
is required. Instead, specifying as a separate permission function makes it reusable and

easier to read.

((f = usr € obj_owner A f + rbo € obj_perms)

V

(obj_grp(f) € user_grps[{usr}] A f — rbg € obj_perms)
V

(f — rbw € obj_perms)

V

(usr = su))

FIGURE 4.20: An alternative guard ensuring that usr has the read permission on f

52 Chapter 4 Modelling and Proof of a File System

4.7 4" Refinement: Other missing properties

Other properties that have been missed or postponed at the previous abstract levels are
explored in this level, for instance, creation date, last modification date and name. The
event-extension feature is also used in this step to extend the model by adding these

missing properties.

Here is an example of the crt_file event given in Figure 4.21. This figure shows some of
the specification that have been extended. Parameter nme represents a name of the file
being created. This name must not already exist in the given directory (grd8). Action
act9 sets the creation date of the file being crated to be nowdate. We defined nowdate
as a DATE constant in a context seen by this model. The last modification date is also

set to be nowdate, while file size is initialised to be 0.

Event cri_file extends cri_file =
Any nme Where
grd7 : nme € NAME
grd8 : nme ¢ oname[parent ! [{indr}]]
Then
act8 : oname(obj) := nme
act9 : dateCreated(obj) := nowdate
act10 : dateLastModified(obj) := nowdate
actll : file_size(obj) := 0
End

FIGURE 4.21: An extended event crifile

4.8 Vertical Refinement

The purpose of this section is to outline the decomposition of the abstract events readfile
and writefile. The decomposition is based on the assumption that the content of the
file is read from or written to the storage one page at a time. As shown in Figure 4.22
(b), for example, instead of writing the buffer content into the storage in one step,
we introduced an intermediate variable named fcont_tmp. This variable behaves like a
shadow disk used for accumulating the content of the pages as they are written one at
a time. This shadow becomes the actual content of that file only when all pages have
been written to the shadow. The use of this shadow allows us to deal with faults that
may occur during writing of a file — if a fault occurs, we discard the shadow and keep
the original. The use of the shadow is an abstraction of the fact that when writing of

a file at the implementation level, we use fresh pages on the flash array rather than

Chapter 4 Modelling and Proof of a File System 53

over-writing the pages used for the previous version of the file. Additional details are

explained in Section 4.9.

readfile writefile
- -
fcontent rbuffer whbuffer fcontent
r_step r_end w_step w_end
7 X 7 7 X7 X
— SR —
_'__: refinement Y .
fcontent r_tmp rbuffer whuffer fcont_tmp fcontent
(a) read afile (b) write afile

FIGURE 4.22: A diagram of refining events readfile and writefile

Note: Instead of detailing the decomposition of both file read and file write which are
similar, we will present only file write which is more interesting in Section 4.9. Full

details of the specification can be found in Appendix A.

Other two structural refinements are (i) replacing an abstract file system by the flash
specification which is outlined in Section 4.10 and (ii) decomposing a file system machine
into two sub-machines to represent the file system layer and the flash interface layer.

The details of the second one is provided in Section 4.13.

4.9 Decomposition of the file write event

Figure 4.23 (a) shows an event refinement diagram for the writefile event which is de-
composed into three sub-events: w_start (start write), w_step (write one page at a time)
and w_end (end write, when all pages have been written completely). (The event de-
composition we outline here follows the style of Butler and Yadav we have discussed in
Section 3.5.) Event w_end refines writefile of the abstraction while w_start and w_step
refine skip. This diagram states that w_start must be performed before w_step. Event

w_step will be repeated until all pages are written or programmed into the flash device.

In case of failures (see Fig. 4.23 (b)), in the abstraction, the writefileFail event does
nothing (i.e. skip). The content of file on the storage is not changed but all memory

buffers are released.

Figure 4.24 shows machine invariants specified in this refinement step. Variable fcont_tmp
represents the temporary content of the file while it is in the writing state. This vari-
able behaves like a shadow content of the file being written, as already discussed. This

shadow content becomes an actual content (fcontent) when all pages have been written

54 Chapter 4 Modelling and Proof of a File System

writefileFail abstraction

’
,

,
,

,
,
,

[w_ste;;t] [w_step(p)] [w_end_ok] [w_start] [W_end_fail] refinement

(&) success (b) fail

FIGURE 4.23: Refinement diagram of event writefile

to the shadow. No change is made to fcontent if writing of the given file fails at any
point from the start to the end of writing. That means the content of that file will be the
same as the previous state. We specified writing as a set of opened files which are in the
writing state. Variable wbuffer represents a write-buffer of each writing file. Invariant
inv6.3 states that for any file f which is in the writing state, the temporary contents of

f will be a subset of or equal to the content on its writing buffer.

1mw6.1 : writing C w_opened_files
mw6.2 : fcont_tmp € writing - CONTENT
inv6.3 : V f-f € writing = feont_tmp(f) C wbuffer(f)

FIGURE 4.24: Machine invariants of the refinement

Figure 4.25 shows the refinement of event writefile when it is split into w_start, w_step
and w_end (in cases of success and fail). In order to start writing (w_start), the given
file must be opened for writing and not already in the writing state (see grd2 and grd3
of event w_start). Event w_step writes the contents of page i from the write buffer
(wbuffer) into feont_tmp. In order to do this the given file must be in the writing state
(see grd2). The page being written must be a page in the write buffer that has not
already been written to the storage (see guards grd5 and grd6of event w_step). Event
w—_end_ok is enabled when all pages have been written (grd3) and the file is in the
writing state. The effect of w_end_ok is to overwrite the existing file content with the

shadow content.

Guard grd3 of the w_end_ok event and Invariant inv6.3 play an important role in
proving that the w_end_ok event is a correct refinement of the writefile event (given in
Figure 4.16). Namely, the gluing invariant, inv6.3, is used to show that fcont_tmp(f) is
equal to wbuffer(f) when the guard of the w_end_ok event holds.

This model can deal with concurrent file read /write events. While a file is being written,
another file might be read/written at the same time. Consider the file-write event, for
example, where it is split into sub-events. Suppose file fI is requested to be written with

three pages of contents, and file f2 is also requested to be written with two pages at the

Chapter 4 Modelling and Proof of a File System 55

Event w_start =
Any f Where
grdl : power_on = TRUE
grd2 : f € w_opened_files
grd3 : f ¢ writing
Then
actl : writing := writing U {f}
act2 : fecont_tmp(f) := @
End
Event w_step =
Any f, i, cnt Where
grdl : power_on = TRUE
grd2 : f € writing
grd3 : i € N
grd4 : ent € DATA
grd5 : i — cnt € whuffer(f)
grd6 : 1 ¢ dom(fcont_tmp(f))

Then
actl : feont_tmp(f) := feont_tmp(f) U {i — cnt}
End
Event w_end_ok refines writefile =
Any f Where

grdl : power_on = TRUE
grd2 : f € writing
grd3 : dom(wbuffer(f)) = dom(fcont_tmp(f))
Then
actl : feontent(f) := feont_tmp(f)
act2 : writing := writing \ {f}
actd : fecont_tmp := {f} <4 fcont_tmp
actd : file_size(f) := card(fecont_tmp(f))
End
Event w_end_fail =
Any f Where
grdl : power_on = TRUE
grd2 : f € writing
Then
actl : writing := writing \ {f}
act2 : feont_tmp := {f} < fcont_tmp
End

FIGURE 4.25: Decomposition of the writefile event

same time. Figure 4.26 shows two scenarios of concurrent file-write of both success and

fail cases, where two file-write events have been performed in the same time.

Figure 4.26 shows that even when file fI has not been completely written we can start
writing another file named f2. In addition, it is not necessary to complete writing page

p2 of file f1 before start writing page p3 of the same file. Moreover, although file f1

56 Chapter 4 Modelling and Proof of a File System

succeed fail
w_start(f1) w_start(f1)
w_step(f1, pl, cntl) w_step(f1, pl, cntl)
w_start(f2) w_start(f2)
w_step(f1, p3, cnt3) w_step(f1, p3, cnt3)
w_step(f2, pl, cntl) w_step(f2, pl, cntl)
w_step(f2, p2, cnt2) w_step(f2, p2, cnt2) fail
w_end_ok(f2) w_end_fail(f2)
w_step(f1, p2, cnt2) w_step(f1, p2, cnt2)
w_end_ok(f1) w_end_ok(f1)

FIGURE 4.26: Scenarios of concurrent writing of two files

has been started first, it might be completed after the completion of writing file f2. If
failures occur at any point (see Figure 4.26 (left) where writing page p2 of file f2 fails)
w_end_fail will be reached instead of the w_end_ok event, since the failure will prevent

grd3 of the w_end_ok event from becoming true.

4.10 Linking the Abstract File System to the Flash Inter-

face Layer

This section outlines an initial model of the flash specification, which is based on the
ONFT specification given in [52], and shows how it is related to the abstract file sys-
tem via data refinement. We first describe an abstract specification of the flash in
Section 4.10.1 and then show a refinement of the file system layer when the flash speci-

fication is included.

4.10.1 Abstract Flash Interfaces Layer

An ONFI-based flash device is represented as a collection of LUNs (Logical Units). Each
LUN is composed of a number of blocks. Each block has a number of pages. Each page
is a sequence of data items. The ONFI structure means that flash pages are accessed
via row addresses that consists of a LUN number, a block number within a LUN and a
page number within a block. A flash device can be specified in Event-B as an array of

pages which are identified by row addresses:
flash € RowAddr — PDATA

where RowAddr is specified as a carrier set representing all possible row addresses. In
this step, we ignore the structure of the row address, since its components (i.e. LUN,
block and page numbers) within a row address are not used/referenced in this level. The

structure is postponed to be specified in another refinement step. We have found that

Chapter 4 Modelling and Proof of a File System 57

ignoring the structure of the row address makes the model of this refinement simpler,
since row addresses are represented using a simple form as a carrier set. It would be more
complex if we were to specify RowAddr as LUAddr x BAddr x PAddr, where LUAddr:
LUN addresses, BAddr: block addresses and PAddr: page addresses. An appropriate
way for modelling the structure of the row address and details are discussed in Chapter 6

where further refinements focussing on the flash specification are explored.

PDATA represents a page data within each page. However, the ONFI specification does
not provide details of how data is stored in each page. In order to deal with faults, we
have made an assumption that page data is composed of an actual data (to be stored),
an object to which the data belongs, a logical page id or page index (in the view of
file system) and a version number identifying the version of that page data. Figure 4.27
represents the structure of PDATA. We model each component of PDATA as a projection
function following the approach of Evans and Butler [53] that has already been discussed
in Section 3.8. For example, the file data stored in a PDATA is modelled by dataOfpage
(azm1). The other projections represent file object, page index and version number.
A set of version numbers (VERNUM) is used to record the version of data which is

programmed in each page.

azml : dataOfpage € PDATA — DATA
axm?2 : objOfpage € PDATA — OBJECT
azm3 : pidxOfpage € PDATA — N

azmd : verOfpage € PDATA — VERNUM

FIGURE 4.27: A structure of PDATA

We have tried an alternative way to specify the contents of the page data as machine
variables. Namely, each property (i.e. dataOfpage, 0bjOfpage, pidzOfpage and verOf-
page) is specified as a machine variable. We have found that this makes our model
become more complex and difficult to manage. In addition, modifying the contents of
a PDATA is made to the whole rather than some parts of the PDATA. For example,
rewriting a page content of a file with a new content is done by writing the new content
to another fresh page (rather than modifying the content at the old location) and then
mark the old one as obsolete. Thus, specifying as machine variables that makes it be

able to modify an individual part of page data is not necessary.

Moreover, we have tried another way to specify flash. Namely, instead of specifying
flash € RowAddr — PDATA as above, we could use curried functions to specify flash by
introducing two other type-constants, LUN and BLOCK, as

BLOCK = PAddr — PDATA
LUN = BAddr — BLOCK

58 Chapter 4 Modelling and Proof of a File System

and then define flash as

flash € LUAddr — LUN

This alternative choice shows that flash is a collection of LUNs instead of a collection of
PDATAs, directly. We have done an experiment to compare these two approaches. We
found that using curried function for this case study makes the model more difficult to
specify and reason about. An example comparing both approaches is given in Figure 4.41
of Section 4.13.

4.10.2 Relating the File System Layer with the Flash Interface Layer

The flash interface layer provides two main interfaces to the file system layer. The first is
page_read, read a page of data from a given row address, and the second is page_program
(or page_write), write a page of data into the flash device at a given row address. These

two interfaces will become parts of the events r_step and w_step of the file system layer.

In this refinement step, flash properties are introduced together with variables used to
relate those two layers. Variables fcontent and fcont_tmp of the file system layer are
replaced by fat, fat_tmp and flash. The variable fat represents the table of contents of
each file. This table is a mapping of each file to a table that maps each logical page-id
of the file to its corresponding row address within the flash. The corresponding row
address represents the location (within the flash device) in which the content of that

page is stored. Variable flash represents a flash content which is a collection of pages.

The properties mentioned above are described by the invariants given in Figure 4.28.
Many invariants (e.g. nv7.3, inv7.4, inv7.8, inv7.9 and inv7.10) are gluing invariants
introduced to relate the abstract variables fcontent and fcont_tmp with the concrete
variables fat, fat_tmp and flash. They play an important role in proving the correctness
of this refinement. Variable programmed_pages represents the row addresses of pages
that have already been programmed or written, while obsolete_pages is a set of pro-
grammed pages that are obsolete. Invariants inv7.8 and inv7.10 relate the content of
file with the actual content on the flash device. For instance, inv7.8 says that for any
flash page with a version that equals the current version of the file to which the page
belongs, the data of that page will be the data of the given page-id of that file as defined
by content. Invariant inv7.10 ensures that the FAT table is formulated correctly from

the right version of such pages.

Figure 4.29 illustrates how the file write of the abstract file system is replaced by the
flash specification. The top diagram represents the abstract file write which is composed
of three sub-events: w_start, w_step and w_end. The bottom diagram represents the

refinement where w_step is refined by event pagewrite. In this event, page_program will

Chapter 4 Modelling and Proof of a File System

99

inv7.1: fat € files - (N - RowAddr)
inv7.2 : fat_tmp € writing — (N - RowAddr)

inv7.3:Vf-f € files= dom(fat(f)) = dom(fcontent(f))
invT74 Y f-f € files A\ f € writing = dom(fat_tmp(f)) = dom(fcont_tmp(f))

inv7.5 : flash € RowAddr — PDATA
inv7.6 : programmed_pages C RowAddr
inv7.7 : obsolete_pages C programmed_pages

inv7.8 :Vp-p € PDATA A 0bjOfpage(p) € files

A verOfpage(p) = curr_version(objOfpage(p)) A pidzOfpage(p) # 0
= pidzOfpage(p) — dataOfpage(p) € feontent(objOfpage(p))

inv7.9 :Vp-p € PDATA A 0bjOfpage(p) € writing

A wverOfpage(p) = writing_version(objOfpage(p)) A pidzOfpage(p) # 0
= pidzOfpage(p) — dataOfpage(p) € feont_tmp(objOfpage(p))

invT7.10 : Vi, r, f,p-f € files A r € programmed_pages \ obsolete_pages

A p = flash(r) A verOfpage(p) = curr_version(f)

A 0bjOfpage(p) = f A pideOfpage(p) =i AN i # 0
= i r € fat(f)

FIGURE 4.28: Machine invariants for replacing the file system by the flash specification

be called in order to write the content of each page into the flash device. When each page

has been programmed successfully, the fat_tmp will be updated. Finally, the fat_tmp

will be copied to fat when all pages have been completely programmed into the flash

device.

,F '_':'. : abstraction

whuffer fcont_tmp fcontent

w_start pagewrite w_end
R N N
whuffer
page program

flash

FIGURE 4.29: A diagram of mapping writefile to the flash specification

refinement

Figure 4.30 shows a simple example of data refinement in this level when the abstract

60 Chapter 4 Modelling and Proof of a File System

file system is replaced by the flash specification. The top represents an abstraction
where the content of file f1 is represented by fcontent(f1). The content of this file is
composed of two pages of contents: c¢ntl and cnt2. In the refinement (the bottom), the
abstract fcontent is refined by concrete variables fat and flash. To get the content of
page 1, since fat(f1)(1) = r4, flash(r4) = pd4 and dataOfpage(pd4) = cntl, we then get
feontent(f1)(1) = dataOfpage(flash(fat(f1)(1))).

abstraction

fcontent (f1)

f1 [1 Jent1 fcontent (f1)(1) = cntl
2 cnt 2 fcontent(f1)(2) = cnt2
fat(f1) flash
f1 > 1 |r4 rl | pdl
2 [r7 r2 | pd2

\ T4 | pdd| dataCfpage(pd4) = cntl
77 | pd7

dat aOf page(pd7) cnt2

ref i nenent

FIGURE 4.30: A diagram representing an example of data refinement where fcontent
is replaced by fat and flash

Figure 4.31 shows the pagewrite event which is a refinement of the w_step event. The
pagewrite event will look for an available page on the flash (¢grd7 and ¢rd8) in order
to write the content of page number ¢ on the wbuffer. Parameter r represents a row
address within the flash to which the content will be written. Based on the approach
to modelling of records given in [53], we specify guards grd9 - grd13 to describe the
contents of pdata to be written to the flash. Action act! updates the temporary fat
table of the file f. Action act2 sets the content of the flash at row number r equal to

pdata. The row address identifying that page will be set as a programmed page by acts.

Proof obligations generated by the Rodin tool help us to discover those gluing invariants
(i.e. nw7.3, invT7.4, inv7.8 and inv7.9). For example, we have a generated PO typed
GRD (guard strengthening proof obligation) to ensure the correct refinement of a guard
(named grd6 of the w_step event, in Figure 4.25). Namely, we need to show that while
the file f is in the writing state, grd6 : i ¢ dom(fcont_tmp(f) (of the w_step event) of
the previous abstraction is entailed by grd6 : i ¢ dom(fat_tmp) of its refinement, given
in Figure 4.31. This PO led us to Invariant inv7.4 saying that if file f is in the writing
state, the domain of fat_tmp(f) equals the domain of fecont_tmp(f). Similarly for other

gluing invariants, we used failing POs as guidelines.

Chapter 4 Modelling and Proof of a File System 61

Event pagewrite refines w_step =

Any f,i, cnt, r, pdata Where
grdl : power_on = TRUFE
grd2 : f € writing
grd3 i €N
grd4d : cnt € DATA
grd5 : i — cnt € wbuffer(f)
grd6 : i ¢ dom(fat_tmp(f))
grd7 : r € RowAddr
grd8 : r ¢ programmed_pages
grd9 : pdata € PDATA
grd10 : verOfpage(pdata) = writing_version(f)
grd11 : objOfpage(pdata) = f
grd12 : lpidOfpage(pdata) = i
grd13 : dataOfpage(pdata) = cnt

Then
actl : fat_tmp(f) = fat_tmp(f) U{i— r}
act2 : flash(r) := pdata
act3 : programmed_pages := programmed_pages U {r}

End

FIGURE 4.31: The refinement of the w_step event

4.11 Dealing with faults

As previously mentioned in Section 4.1, our model tolerates faults that may occur at
any point during the execution of file operations (e.g. reading and writing of files).
Our fault model is based on the case that the system is able to reboot after failure.
Our fault model deals with (i) power loss and (ii) failure to read or write a page of
flash. Other failures such as fail-stop (that makes the system stops and is unable to
reboot), Byzantine failure (processes fail by acting maliciously) [93] are not addressed.
Our model covers both the file system software and the flash device. We assume that
flash events (i.e. page read and page program) execute atomically. So that fault events
are interleaved with non-fault events. In particular we assume that writing a page to

flash either succeeds or fails in a detectable way.

To deal with faults, the use of a shadow disk and versioning has been employed in
our model. This mechanism is a general standard which is widely used in file systems.
Compared with other related work on verification of file system (where fault-tolerance
were addressed), shadow disk and version numbers are also used in the work of Woodcock
et al [118] and Kang et al [88].

In the case of power loss, all memory contents (such as buffers and the FAT table) are
lost but the contents within the flash device remain. All file operations being executed

are also aborted. The system needs to reformulate the correct FAT table from the flash

62 Chapter 4 Modelling and Proof of a File System

contents that have already been written prior to the power loss. Namely, the most recent
version of such pages of file contents will be selected to formulate to FAT table when

the power is on.

In the case of failure to read or program a page of flash, if reading/programming of any
page (of any file) fails at the flash layer, the failure will be indicated to the file system
layer. As a result, reading/writing of that file at the file system layer will be forced to

abort. More details are discussed below.

Based on the characteristic of the flash device, modifying the content of a page must
be done by writing the new content to another fresh page and then re-mapping the
mapping table. Such pages of the file contents may have different versions. Suppose
we want to write an existing file with a new content. The new content of that file will
be written to another place (as a shadow), instead of modifying the content at the old
location, with a newer version. The shadow content becomes the actual one if writing of
that file has been completed. On the other hand, if any failure occurs during writing of
a file, the previous valid version in the stage where the file was will be used. Some part
of file contents (with the new version) that may be completely written will be ignored.
Namely, the version number will be used to determine whether the page is the most
recent version or not. The pages with the most recent version numbers will be selected
to formulate the FAT table.

In our design, the file content is written to the flash device one page at a time. Writing
of page data (or page program interface provided by the flash interface layer) is specified
as an atomic event that can either succeed or fail. When all pages required have been
written completely, page 0 (like the use of i-node of Unix file system [66]) will be written
at the end in order to update the file description including the most recent version of
that file. Thus, if any of pages required has not been written successfully, the page 0
will not be written (writing of that file will be aborted). That means the most recent
version number of that file will not be updated. In mount stage, the system will know
which one is the most recent one of the file content that will selected to formulate the

correct FAT table, while other pages with invalid version numbers will be ignored.

In our development, we have introduced power loss and power on events to the model.
The power loss event has the effect of releasing all memory contents, while the power on
event has the effect of reconstructing the correct FAT table from the existing contents
stored on the storage. These two events do nothing with the written data on the storage
but the memory contents. Namely, no files or contents are changed or lost. Details of

each event are discussed below.

Figure 4.32 shows the specification of the power_loss event which is introduced in the
second refinement, where file contents and memory buffers are added. The power_loss
event sets the power_on flag to be false (actl) and releases all memory contents, i.e. lists

of files being opened for writing and reading (act2 and act3), and writing and reading

Chapter 4 Modelling and Proof of a File System 63

buffers (act4 and acth).

Event power_loss =

When
grdl : power_on = TRUFE

Then
actl : power_on := FALSE
act2 : w_opened_files := &
act3 : r_opened_files := @
actd : whuffer := @
acth : rbuffer .= @

End

FIGURE 4.32: The power_loss event of the second refinement

Similarly for other following refinement steps, memory contents that have been intro-
duced in refinement steps (such as fat and fat_tmp in the seventh refinement) are also
released by this event. In this refinement, we also have an invariant (inv2.z) saying that

while the power is off all memory buffers are empty.

inv2.z : power_on = FALSE = (w_opened_files = & N\ r_opened_files = &
A wbuffer = & N rbuffer = @)

Figure 4.33 shows the power_on event which is introduced in the second refinement. This
event sets the power_on status to be TRUE. This makes all data and events available.
We do not need to set all buffers to be empty, since the invariant specified above have
guaranteed. Similarly, this event is refined gradually when new features/design details

are added in other following refinement steps.

Event power_on =

When

grdl : power_on = FALSE
Then

actl : power_on := TRUE
End

FIGURE 4.33: The power_on event of the second refinement

Figure 4.34 shows the power_on event of the seventh refinement where the flash speci-
fication has been introduced. When the power is on, the power_on event reconstructs
the FAT table from the existing data that has been stored before the power loss. Pa-
rameter ft represents the FAT table being reconstructed. Guards grd5 and ¢grd6 guar-
antee that only correct versions of file contents stored on the flash device are selected

to construct the FAT table. As specified in grd5, the corresponding page selected to

64 Chapter 4 Modelling and Proof of a File System

formulate the table of content (ft) of each file must be the recent version of that file
(verOfpage(p) = curr_version(f)). Guard grd3 ensures that all pages of such files are
read to formulate the FAT table. (We assume that the content of such a file starts at
index 1).

Event power_on refines power_on =
Any
It
Where
grdl : power_on = FALSE
grd2 : ft € files — (N + RowAddr)
grd3 : Y f-f € files = dom(ft(f)) = 1..file_size(f)
grd4 : ¥ p-p € PDATA N objOfpage(p) € dom(ft) = p € ran(flash)
grd5 :Yi,r,f,p-r € programmed_pages \ obsolete_pages A f € files
A p = flash(r) A verOfpage(p) = curr_version(f)
A 0bjOfpage(p) = f A pidzOfpage(p) =i AN i #0
= i1 € ft(f)
grd6 :Yi,r,f,p-f € files N r € programmed_pages \ obsolete_pages
A p = flash(r) N i — 1 € ft(f)
= (verOfpage(p) = curr_version(f) A
objOfpage(p) = f A pidzOfpage(p) =i)

Then
actl : power_on := TRUFE
act2 : fat .= ft

End

FI1GURE 4.34: The power_on event of the seventh refinement

4.12 Modelling of the mount event

The mount event we specified here is aimed at mounting the contents within the storage
device into the file system. Figure 4.35 shows the specification of this event which is
specified in the first level. This event has an effect of adding a subtree (prt) rooted at
z into an existing file system. This subtree represents the file system structure within
the device being mounted. The set of objects (i.e. files and directories) within the
device which is mounted will be added to the set of existing objects (actl), where objs

represents the objects to be mounted. The parent structure is also updated by act2.

The mount event has been refined gradually in refinement steps, based on features and
design details which are introduced in each step. Figure 4.36 shows an extended part
of the mount event when the file content is introduced in the second refinement. In
this step, guards g¢grd13, grd14 and action act4 are added. fent represents the content

of each file within the device which is mounted. fs represents a set of files within the

Chapter 4 Modelling and Proof of a File System 65

Event mount =

Any objs, prt, x, fent Where
grdl : objs C OBJECT
grd2 : objects N objs = &
grd3 : x € objs
grd4 : prt € objs \ {x} — objs
grd5:¥s-(s C prt—1[s] = s = @)
grd6 : prt N parent = &

Then
actl : objects := objects U objs
act2 : parent := parent U prt U {x > root}

End

FIGURE 4.35: The mount event of the initial model

device. Since the power loss is also introduced in this level, the mount event is enabled
only when the power is on (grd14). As mentioned in Section 4.5, power_on is specified
as a BOOL variable representing the power status. All events are disabled if the power
is off (power_on = FALSE).

Event mount extends mount =
Any fent Where
grd13 : fent € fs - CONTENT
grd14 : power_on = TRUE
Then
actd : fcontent := fecontent U fent
End

FIGURE 4.36: The mount event of the second refinement

Similarly, when the flash is mounted, only valid pages with the most recent version are
selected to formulate the FAT table. Figure 4.37 shows the seventh refinement of the
mount event when the flash specification has been introduced. (Because of the space
constraint, we will show only an important part of the mount event.) Guards grd25 and
grd26 ensure that all pages which are read to formulate the FAT table (ft) are valid pages
with the right version. The actions of the event add all information into the existing file

system. (Full details of this event can be found in Appendix A).

4.13 Machine Decomposition

The aim of this section is to decompose the machine into a file system machine, modelling

the file system layer, and a flash machine, modelling the flash interface layer. As a result,

66 Chapter 4 Modelling and Proof of a File System

Event mount refines mount =
Any
objs, fs, ds, prt, x, fent, objown, objperms
objgrp, objname, cdate, mdate, fsize, ft, crv
Where

grd22 : crv € objs - VERNUM
grd23 : ft € fs — (N + RowAddr)
grd24 .V f-f € fs = dom(ft(f)) = dom(fent(f))
grd25 : ¥ p-p € ran(flash) N objOfpage(p) € dom(ft)
A verOfpage(p) = crv(objOfpage(p))
=
pidzOfpage(p) — dataOfpage(p) € fent(objOfpage(p))
grd26 Vi, r, f,p-r € programmed_pages \ obsolete_pages
A f € fs N p = flash(r) A verOfpage(p) = crv(f)
A objOfpage(p) = f A pidzOfpage(p) = i
= i1 € ft(f)
Then
actl : files := files U fs
act2 : directories := directories U ds
act3 : parent := parent U prt U {z > root}
actd : fat := fat U ft
acth : obj_owner := obj_owner U objown
act6 : obj_perms := obj_perms U objperms
act7 : obj_grp := obj_grp U objgrp
act8 : oname := oname U objname
act9 : dateCreated := dateCreated U cdate
act10 : dateLastModified := dateLastModified U mdate
actll : file_size := file_size U fsize
actl2 : current_version := current_version U crv

End

FIGURE 4.37: Part of the mount event of the seventh refinement

further refinements of the flash interface layer can be explored separately. The machine
decomposition we apply here follows the style of Butler described in [26] that we have
already discussed in Section 3.6. Namely, machine variables and events are partitioned
into sub-machines. Sub-machines interact with each other via synchronisation over

shared parameterised events.

Figure 4.38 shows a diagram of machine decomposition illustrating the decomposition
of the events pagewrite and pageread. The top layer represents part of the file sys-
tem that consists of machine variables fat, fat_tmp, wbuffer, and so on. The bottom
layer represents part of the flash interface containing machine variables: flash, pro-
grammed_pages and obsolete_pages. The ovals represent synchronisation over shared

parameterised events between the sub-machines. In this case, both sub-machines in-

Chapter 4 Modelling and Proof of a File System 67

teract with each other by synchronising over the page_write and the page_read events.

File System

fat, fat_tmp, wbuffer, writing, rbuffer, ...

write

flash, programmed_pages, obsolete pages
Flash Interface

FIGURE 4.38: A machine-decomposition diagram focusing on events page_read and
page_write

At this point, for example, we partition the pagewrite event given in Figure 4.31 following
the approach of [26] (that we have already discussed in Section 3.8) and get a specification
of the page_program event of the flash interface layer which is shown in Figure 4.39. We
also get a specification of the pagewrite event of the file system layer given in Figure 4.40.
Parameters r and pdata represent shared parameters which are used for an interaction

between these two events.

Event page_program =
Any r, pdata Where
grdl : r € RowAddr
grd2 : r ¢ programmed_pages
grd3 : pdata € PDATA
Then
actl : flash(r) := pdata
act2 : programmed_pages := programmed_pages U {r}
End

FIGURE 4.39: An abstract page_program of the flash interface layer

After decomposition, we get a machine specifying the flash interface layer which consists
of two main events page_program and page_read. This machine can later be refined
separately from the specification of the file system (in Chapter 6). We also get a machine
specifying the file system with pagewrite and pageread plus the other events from earlier

refinement such as w_start and w_end.

In Section 4.10.1, we discussed the alternative of using curried functions to model the
flash structure. At this point, if we were to use curried function, the page_program event
would be specified as the specification given in Figure 4.41. This event becomes more

complicated, as we can see a number of parameters and guards are required for this

68 Chapter 4 Modelling and Proof of a File System

Event pagewrite =

Any f,i, cnt, r, pdata Where
grdl : power_on = TRUFE
grd2 : f € writing
grd3 : i € N
grd4 : cnt € DATA
grd5 : i — cnt € whuffer(f)
grd6 : 1 ¢ dom(fat_tmp(f))
grd7 : r € RowAddr
grd8 : pdata € PDATA
grd9 : verOfpage(pdata) = writing_version(f)
grd10 : 0bjOfpage(pdata) = f
grd11 : lpidOfpage(pdata) = i
grd12 : dataOfpage(pdata) = cnt

Then

actl : fat_tmp(f) := fat_tmp(f) U {i— r}
End

FIGURE 4.40: Event pagewrite of the file system layer

event, compared with Figure 4.39. This would also make the pagewrite event (given in

Figure 4.31) and the model more complex and difficult to manage and prove.

Event page_program =
Any
lid, bid, pid, pcnt, old_bk, old_lun, new_bk, new_lun
Where
grdl : lid € LAddr
grd2 : bid € BAddr
grd3 : pid € PAddr
grd4 : lid — old_lun € flash
grd5 : bid — old_bk € old_lun
grd6 : pdata € PDATA
grd7 : new_bk € BLOCK
grd8 : new_lun € LUN
grd9 : new_bk = old_bk < {pid — pdata}
grd10 : new_lun = old_lun < {bid — new_bk}
Then
actl : flash = flash < {lid — new_lun}
End

FIGURE 4.41: Event page_program, in case of using curried function

Chapter 4 Modelling and Proof of a File System 69

4.14 Proofs

The proof statistics, given in Table 4.1, show that 597 proof obligations were generated
by the Rodin platform for all of the development outline in this chapter. 544 proof obli-
gations (or 91%) were proved automatically while others were discharged interactively
using the Rodin tool. MCHO represents an initial model while MCH1 up to MCHT rep-
resent refining machines in such refinement steps. CTXO0 up to CTX3 represent contexts
which are seen by those machines. (Note that proof statistics given here are slightly
different from the proof statistics given in [44] because we have added additional events
mount, unmount, power_on and power_loss in this development.) It can be seen that we
have the high number of POs that were discharged interactively in MCHO because prov-
ing tree properties is not easy, compared with other levels that have simpler properties.
This is similar to the seventh refinement where we introduced the flash specification.

This requires a number of gluing invariants that are not easy to prove automatically.

TABLE 4.1: Proof statistics

Machines/Contexts | Total POs | Automatic | Interactive
CTX0 10 8 2
CTX1 7 3 4
CTX2 0 0 0
CTX3 3 3 0
MCHO 45 30 15
MCH1 84 78 6
MCH2 51 51 0
MCHS3 46 43 3
MCH4 43 42 1
MCH5 38 37 1
MCH6 42 41 1
MCH7 228 198 20
Overall 597 544 (91%) | 53 (9%)

To make proof simpler, careful selection of invariants and machine theorems was im-
portant and eased the proof effort. For example, for the high-level requirements on
the data structure, we introduced two tree properties: (i) no-loop and (ii) reachability.
These properties are normally expressed using transitive closure. However, we identified
simpler but sufficient formulations (inv1.3 and inv1.4 given in Figure 4.2) and expressed
these as invariants. Proving that all events preserved these invariants was not too dif-
ficult since they did not involve transitive closure. The transitive closure formulations
were expressed as machine theorems, and we showed that these followed from the ex-
isting invariants. We did not need to prove that the theorems were preserved by all

machine events. This simplified the proof effort considerably.

In addition, to order to make interactive proofs easier, we introduced theorems that could

70 Chapter 4 Modelling and Proof of a File System

be reused for discharging several similar proof obligations. For instance, a theorem about
tree-join was used to prove that the tree property holds for events create, copy and move.

A theorem only needs to be proved once.

An important point is when we should introduce additional lemmas/theorems to help
proofs. Based on our experience, we would like to suggest developers to introduce
additional theorems if it is found that proofs of some POs are similar. Namely, they
have similar goals and proof steps. Steps of proving those goals could be generalised
and used to discharge similar POs. For example, proving the preservation of the no-loop

property of the copy and create events is similar.

In proving that copy and create preserve the no-loop property, we had two similar goals
given below. (To make it easier to follow, we named them as GA (for copy) and GB

(for create).)
GA: Vs-s C (parent U replica U {nobj + to}) ![s] = s =T,

where replica represents a copy of the subtree being copied to node to; nobj represents
the root node of the copy. Similar to the create event, we also have a similar goal given

below (where replica = &, since there is only one node to be added).
GB : Vs-s C (parent U {obj ~ indr})~1[s] = s =2,

where obj is an object being created and indr is its parent. Proof of these two goals
involved a huge number of proof steps. Several proof steps (such as instantiation and
adding hypothesis) were discharged interactively. Other trivial proof steps (such as

simplification rewrites) were discharged automatically.

At that point, we realised that proof steps required for GA and GB were quite similar.
Hence, in our development, these proof steps were generalised as a theorem named thm5

(join theorem) given below.

thmb:Vf,g,t,u,z, M, N -
N C OBJECT
ANM C OBJECT
ANNM=g
NteM
NfeM\{t}—M
ANueN
NgeN\{u} - N
NxeM
ANVA-ACf A= A= 02)
ANV B-BCg'Bl=B=2)
ANfUgU{u—ze (MUN)\{t} > MUN

Chapter 4 Modelling and Proof of a File System 71

=
(VC-CC(fUgU{um 2}) ' C]= C=2)

This theorem says that if tree f rooted at t has no-loops and ¢ which is rooted at u has
no-loops, then the join of g and f at node z also has no-loops. (M represents a set of all
nodes of tree f while N represents a set of all nodes of tree g). This theorem was used to
prove GA by providing f = parent, g = replica, t = root, u = obj, x = to, M = objects
and N = nobjs, where nobjs represents a set of new nodes which are copies of all nodes
of the subtree to be copied. Similarly for proof of GB, this theorem was instantiated by
providing f = parent, g = &, t = root, u = obj, x = indr, M = objects and N = {obj}.

We also saw this pattern of proof steps was similar to the move event, as we can see the
similarity of the pattern of moving and copying a subtree illustrated in Figure 4.9 and
Figure 4.7. (This is also similar to the create event, since we realised that the object
being created is also a subtree that has only one node.) Namely, this theorem could be

used for proving the preservation of the no-loop property of the move event as well.

To make it more general, IsTree given in Figure 4.42 could be introduced as a predicate
ensuring that function p (parent function) on set S is a tree rooted at r. We could use this
predicate to construct a tree theorem (named tree-join which is shown in Figure 4.44).
This theorem can be used to prove that events copy, create and move preserve the tree
properties (e.g. no-loop). To understand more about this theorem, Figure 4.43 is given

to illustrate how tree-join theorem is formulated.

IsTree(S,p,r) < (
res
AN peS\{r}—S
AVS-SCplS]l=85=0
A S\ A{r} € (tel(p)) = [{r}]

FIGURE 4.42: A predicate describing the tree property

The theorem given in Figure 4.44 states that if f is a tree rooted at r on M, ¢ is a tree
rooted at ©w on N, and M and N are disjoint then the join of ¢ with node z on f is a

tree.

Initially, when we were specifying all features in one level rather than layering them over
several refinements, we had a lot of difficulty in identifying sufficient invariants. There
were some proof obligations that could not be discharged, because of the difficulty of
finding sufficient invariants. Because of this difficulty, we then chose a different way to
specify our model by using a multi-levelled refinement approach. We found that the
multi-level approach helped us to factor out the difficulty of modelling and, to identify

the right invariants. At the earlier stage of work, while we were specifying everything

72 Chapter 4 Modelling and Proof of a File System

Treefon M

Treegon N

FIGURE 4.43: A diagram of tree join

TreeJoinThm : ¥ f, g, 7, u,x, M, N-
M C OBJECT N N C OBJECT
N IsTree(M,f,r)
A IsTree(N, g, u)
ANMNON=o
ANzeM

IsTree(M UN,fUgU{u— z},71)

FIGURE 4.44: A theorem of tree join

in one level, the model was complicated and we needed to identify a huge number of
invariants. Some of them were related to some group of machine variables while some
are independent from others. When we needed to modify some features, we needed
to look through all invariants to find out which one should be modified. Sometimes,
we missed some properties (e.g. forgot some invariants) and also needed to change the
model. Compared with the multi-level approach, each level has an individual purpose
or concentrates on just one feature (or just small set of features). This makes it easy to

identify invariants focusing on just the features being addressed.

In addition, the multi-level approach also made our models easier to modify. For in-
stance, when we wanted to modify the model that affects only one feature, we could
go to the level where that feature was introduced, directly, and then modified what we
wanted. In the case of horizontal refinement where the event-extension feature was used,

the modification was propagated down automatically by the tool.

Having identified sufficient invariants using a multi-level approach we also experimented
with collapsing MCHO up to MCH4 to a single level. All invariants that had been
discovered were merged into a single level. Figure 4.2 shows a comparison of the proof
statistics of multi-level and single-level approaches, focussing on part of the horizontal

refinement. The statistics show that the difference in automatic proof is not significant

Chapter 4 Modelling and Proof of a File System 73

between these two approaches. This may be because of the right invariants have already
identified and proved by using the multi-level approach. Here we just collapsed them
together, which is different from when we initially started with all features in a single

level but straggled to find sufficient invariants.

TABLE 4.2: Proof statistics comparing multi-level with single-level approaches, fo-
cussing on horizontal refinement steps MCHO up to MCH4

approach | Total POs | Automatic | Interactive
multi-level 260 235 (91%) | 25 (9%)
single-level 239 208 (87%) | 31 (13%)

From the table, we may see that the number of proof obligations of multi-level is higher
than single-level. The reason is that some POs are required for proving to show the cor-
rect refinement of guards (GRD) and events (SIM). However, these were automatically

discharged.

4.15 Conclusion and Assessment

In this chapter, we have outlined our development of a flash file system focussing on a
tree-structured file system and basic file operations (such as create, open, read, write,
delete, etc.), together with some experiments. The experiments which were carried out
in this development are aimed at investigating which modelling styles and refinement
approaches are suitable for our development. The purpose is to construct a model with
clear and accurate formulation of the system properties and discharge of all proof obli-
gations. To satisfy these, as discussed in the proof section, careful selection of invariants
and machine theorems was important and eased the proof effort. For example, in the
development of a file system, abstraction allows us to tackle difficulty properties (i.e.
no-loop and reachability) in isolation of many other details. These properties are nor-
mally expressed using transitive closure. However, as discussed in the Proofs section,

we selected simpler but sufficient formulations and exposed these as invariants.

In our development, we also have investigated, modelled and outlined the use of refine-
ment in two different purposes. First, refinement was used in feature augmentation (or
horizontal refinement) and the second was for structural refinement (or vertical refine-

ment).

Feature augmentation was firstly used to construct a model of an abstract file system.
Instead of specifying everything in one level that may increase proof difficulty, we decided
to split the whole system features into sub-features. These sub-features were chosen to
be introduced in refinement steps. Thus, each refinement step has its own purpose based

on what features that have been introduced. As discussed in Section 4.14, we have found

74 Chapter 4 Modelling and Proof of a File System

that this approach helped us to identify sufficient invariants, and made the model easier
to be constructed and modified. Namely, an incremental refinement (i.e. a small number
of features/design details is added in each refinement step) makes the gap between each
level of refinements smaller. The unique purpose of each refinement step and the smaller

gap led to the easier identifying of invariants.

We have also found that the event-extension feature which is included in the new release
of the Rodin platform (release 0.9.x and later) is very useful for horizontal refinements.
As already discussed in Section 3.7 and [44], this feature makes models easier to be

refined and modified.

Structural refinement was used for relating the abstract file system with the flash spec-
ification. Event-decomposition is a structural refinement on which we focused in Sec-
tion 4.8. We have shown how the event-decomposition technique outlined in Section 3.5
can be applied to our case study. This technique was used to partition atomic events
readfile and writefile into a number of sub-events as explained in Section 4.9. We have
found that the event-decomposition technique is very effective for breaking an atomic
event. It can be applied to other work, that its events may require to be decomposed in
order to cope with fault-tolerance or concurrency. An atomic event can be partitioned

into sub-events that can be performed in an interleaved fashion.

When the flash specification has been introduced in the seventh refinement we have pro-
ceeded to another structural refinement to decompose the machine into two sub-machines
(representing an abstract file system layer and a flash interface layer) in the following
refinement step, using the machine-decomposition style of Butler [26]. These two layers
interact with each other via the shared parameterised events. Based on this evidence, we
believe that machine decomposition is useful for other developments with specification
involving sub-systems that can be partitioned and refined separately. At the moment,
Rodin did not provide any tool to decompose machines directly, we needed to decompose
machines manually using the editor of the Rodin tool. After manually decomposition,
we used the shared-event composition plug-in [111] to recompose the machines and show
that the decomposition have been done correctly. Recently, a machine-decomposition
tool [112] is available as a plug-in to the Rodin platform. This would be useful in the
feature. The reason we decompose a machine is to enable further refinements focus-
ing on the flash specification separately. (Details of further refinements are outlined in
Chapter 6.)

In addition, we have shown that our model can deal with faults and concurrent file
operations (e.g. read and write) in Section 4.8 and Section 4.9. While a file is being
written, another file may be read or written at the same time, in an interleaved way.
Failures might occur at any point during reading or writing of a file. As discussed in
Section 4.8, use of a shadow and versioning, which is a general standard, was employed

in our work. In order to write a file, the content of the given file is written to the shadow

Chapter 4 Modelling and Proof of a File System 75

one page at a time and this shadow becomes the actual content of the given file when
all pages required have been completely written. This is the same style used in the work
of Woodcock and Devies [118]. We also introduced version numbers to deal with this.
If writing of a file with a new version failed, the previous version of that file will be
used. All pages with the new version that have been partially written will be ignored.
As mentioned earlier, the use of version numbers is also found in the work of Kang et
al [88].

Note that a comparison with related work on specification and verification of flash file

systems is provided in Chapter 7.

Chapter 5

Evolution of the File System
Models and Proofs

5.1 Introduction

The aim of this chapter is to outline another version of the file system model, where
the system requirements are partially changed. The changes mentioned are aimed at
making the model deal with partial read/write of a file, which contrasts to the model
outlined in Chapter 4 where the whole content of such file is read from or written to
the storage. Another difference is the unbounded version numbers of file content. As
specified in Chapter 4, the version number was bounded (i.e. 2-bit version is applied).
The difficulty of the bounded version is the reusing of previous version numbers. Namely,
before starting to write any page, we need to ensure that there are no valid pages with
the version being reused. On the other hand, the unbounded version, the version number
of each page will be increased every time it is rewritten without reusing the pervious
version numbers. Since the life time of a flash device is limited by the limit erasure, a
32-bit number is large enough to be used for numbering the version of each page [62].

Therefore, the use of unbounded version numbers is reasonable.

In this chapter, we outline a revised model of the flash file system that aimed at covering
those two requirements (partial read /write operations and unbounded version numbers)
mentioned. Because the previous model and this revised model are quite similar, some
features that have previously been specified in the former model can be reused. Parts of
the model related to the new requirements are needed to be modified. We will outline the
impact of these changes that affects the model. For example, which part of refinement
chain are affected? How much specification can be reused? What is the difference in

proof? Are the language and tool flexible enough to deal with this evolution?

Figure 5.1 shows a diagram of refinement chains representing an overview of our devel-

7

78 Chapter 5 Evolution of the File System Models and Proofs

opment of a flash-based file system comparing the original model and the revised model.
Two refinement chains are given in the figure. The original model is represented using
suffix _a while _b represents the revised model. We also decomposed the seventh re-
finement machine into two sub-machines in the revised model, in order to represent the
file system and the flash interface layers. Since the specifications of the abstract flash
interface layer of both chains are the same, we used MCH_FL to represent the model of
the flash interface layer for both modelling chains. This MCH_FL will be refined later

in order to cover more details focussing on the flash specification (in Chapter 6).

tree structure MCHO see » CTXO0
4§ refine: sees Textends
files/directories MCH1 >
F o ——efiner
file content MCH2a MCH2b |59,
T f
permissions MCH3a MCH3b
f f
missing properties ..| MCH4a MCHAb
f f
decompose write| MCH5a MCH5b
T)
decompose read MCH6a MCH6b
f f
link to flash spec MCH7a MCH7b
decompose \ /
MCH_FSa MCH_FL MCH_FSb
n
further refinement

FIGURE 5.1: A diagram of refinement chains representing a flash file system

The revised model is also based on the tree-structure file system. The first and the
second levels (MCHO and MCH1) modelling the tree structure can also be reused in this
development. No modifications are required in the first and the second levels. That
means reproving tree properties are not required for the revised model, since they have
already proved in the first level. To satisfy the new requirements, however, we need to
modify the second refinement (MCH2) where file contents and related operations (e.g.
read/write a file) are added. The modification which is made here is to meet the partial
read/write requirement. From the third refinement down to the seventh refinement, the
vertical refinement starting at the fifth refinement is the main part that needs to be

modified. Details are discussed in Section 5.3.

Because of the similarity, this chapter outlines and discusses only important parts and

Chapter 5 Evolution of the File System Models and Proofs 79

refinement steps that have been revised. The chapter begins with the second refinement
where file contents have been introduced in Section 5.2. Section 5.3 gives modelling
details where structural refinements have been explored to relate the file system layer

to the flash interface layer. Finally, conclusion and assessment are given in Section 5.5.

5.2 2" Refinement: File content

Similar to the previous model given in Chapter 4, in this refinement, file contents and
other related constraints are introduced together with five events: r_open (open an
existing file for reading), w_open (open an existing file for writing), read (read the
content of a file from the storage into a memory buffer), write (write the content of
file on the buffer back to the storage) and close (close an opened file). Instead of
reading/writing the whole content of file, partial read and write operations are allowed

for this revised model.

The modification in this level does not affect existing invariants given in Figure 4.15.
Only events readfile and writefile need to be changed to satisfy the partial read/write
requirement. Figure 5.2 shows the revised version of the readfile and writefile events.
The readfile event reads the content of the given file from the storage starting at the
given offset with the length specified. Similarly, the writefile event is aimed at writing
the content of the given file on the buffer into the storage starting at the given offset
with the given length. (The length to be written must not be greater than the length
of the content on the buffer.) Guards grd3 up to grd6 of the readfile event are added to
restrict the scope of the contents to be read. Similarly for the writefile event, grd3 up to
grd6 are added to ensure that the starting offset and length specified are valid. Guards
grd7 and grd8 of the writefile event are aimed at specifying a mapping function (named
corresPos) between logical addresses on the buffer and physical addresses of the file on

the storage.

5.3 Vertical Refinement

Similar to the model outlined in Chapter 4, the purpose of vertical refinement here is
to relate the abstract file system to the flash specification. The vertical refinement we
explore in this section involves event and machine decomposition. The event decompo-
sition is based on the assumption that the content of the file is read from or written to
the storage one page at a time. Three refinement steps are carried out: (i) decomposing
the writefile event, (ii) decomposing the readfile event and (iii) decomposing the model

into two sub-models.

Note: Instead of detailing the decomposition of both file read and file write which are

80 Chapter 5 Evolution of the File System Models and Proofs

Event readfile =

Any f, offset,len Where

grdl : power_on = TRUFE

grd2 : f € r_opened_files

grd3 : offset € dom(feontent(f))

grd4 : len € N

grd5 : len < card(fcontent(f))

grd6 : offset + len — 1 € dom(fcontent(f))
Then

actl : rbuffer(f) := (offset .. offset + len — 1) < feontent(f)
End

Event writefile =
Any f, offset, len, corresPos Where
grdl : power_on = TRUE
grd2 : f € w_opened_files
grd3 : offset € N
grd5 : len € N
grd6 : len < card(wbuffer(f))
grd7 : corresPos € 0..len — 1 —» offset .. offset + len — 1
grd8 : ¥ p-p € dom(corresPos) = corresPos(p) = p + offset
Then

actl : feontent(f) := feontent(f) <+ (corresPos™%; (0..len — 1 < wbuffer(f)))
End

FIGURE 5.2: A specification of events readfile and writefile

similar, we present only file-write, which is more interesting in Section 5.3.1. Full details

of the specification can be found in Appendix B.

Other two structural refinements are (i) replacing an abstract file system by the flash
specification which is outlined in Section 5.3.2 and (ii) decomposing a file system model
into two sub-models to represent the file system layer and the flash interface layer. The

second one is detailed in Section 5.3.3.

5.3.1 A decomposition of the writefile event

An event refinement diagram given in Figure 4.23 can also be used to explain the de-
composition of the writefile event. Namely, the writefile event is decomposed into three
sub-events: w_start (start write), w_step (write a single) and w_end (end write, when
all pages have been written completely). Event w_end refines writefile of the abstraction
while w_start and w_step refine skip. Because of the requirement that has been changed,

the specification in this refinement step is also changed.

Figure 5.3 shows machine invariants in this refinement step. Variable fcont_tmp repre-

Chapter 5 Evolution of the File System Models and Proofs 81

sents temporary content of the file while it is in the writing state. As already discussed
in Chapter 4, this variable behaves like a shadow content of the file being written. This
shadow content becomes an actual content (fcontent) when all required pages have been
written. We specified writing as a set of opened files which are in the writing state.
Variable wbuffer represents a write-buffer of each writing file. Invariant inv6.3 states
that for any file f which is in the writing state, the temporary contents of f will be a

subset or equal to the content on its writing buffer.

mw6.1 : writing C w_opened_files

1mw6.2 : fcont_tmp € writing - CONTENT

inv6.3 : Y f-f € writing = fecont_tmp(f) C wbuffer(f)

1mw6.4 : writing_offset € writing — N

mv6.5 : writing_len € writing — N

inv6.6 : V f-f € writing = writing_len(f) < card(wbuffer(f))
inv6.7 VY f-f € writing = writing_offset(f) € dom(fcontent(f))

FIGURE 5.3: Machine invariants of the refinement

Compared with the original model, two additional variables are introduced in this re-
finement: writing_offset and writing_len. The writing_offset variable is used to identify
the starting position within the writing file to which the content will be written, while
writing_len specifies the length of content to be written. Invariants inv6.1 up to inv6.3
are the same as specified in Chapter 4. The rest are additional invariants which are
introduced to satisfy the partial write operation. For example, Invariant inv6.7 ensures

that the offset used to start writing of any file must be in the valid domain.

Figure 5.4 shows the refinement of the writefile event when it is split into three phases.
Consider the w_start event. Some changes have been made to this event. Namely, two
additional parameters are added (i.e. offset and len). The given offset and length to
be written must be valid (guarded by ¢rd6 and ¢rd7). The start event has an effect
of putting the given file into the writing state and setting the scope of content to be
written. Event w_step writes the contents of page i from the write buffer (wbuffer) into
feont_tmp. In order to do this, the given file must be in the writing state (see grd1).
The page being written must be a page in the write buffer that has not already been
written to the storage (see guards grd5 and grd6 of the w_step event). Event w_end_ok
is reached when all pages required have been written (grd7) and the file is in the writing
state. The effect of w_end_ok is to overwrite the existing file content with the shadow

content starting at the offset specified.

Similar to the original model given in Chapter 4, Guard grd7 of the w_end_ok event and
Invariant inv6.3 play an important role in proving that the w_end_ok event is a correct
refinement of the writefile event (given in Figure 5.2). Namely, the gluing invariant,

inv6.3, is used to show that fecont_tmp(f) is equal to wbuffer(f) when all guards of the

82

Chapter 5 Evolution of the File System Models and Proofs

Event w_start =
Any f, offset,len Where
grdl : power_on = TRUE
grd2 : f € w_opened_files
grd3 : f ¢ writing
grd4 : offset € N
grd5 : len € N
grd6 : len < card(wbuffer(f))
grd7 : offset € 0 .. file_size(f)

Then

actl : writing := writing U {f}
act2 : feont_tmp(f) := @

act3 : writing_offset(f) := offset
actd : writing_len(f) := len

End
Event w_step =

Any f, i, data Where
grdl : power_on = TRUE
grd2 : f € writing
grd3 : 1 €0.
grd4 : data € DATA
grd5 : i — data € wbuffer(f)
grd6 : i ¢ dom(feont_tmp(f))

Then

actl : feont_tmp(f) := feont_tmp(f) U {i — data}

End

Event w_end_ok refines writefile =
Any f, offset, len, corresPos, fsz Where
grdl : power_on = TRUE
grd2 : f € writing
grd3 : offset = writing_offset(f)
grd4 : len = writing_len(f)
grdb : corresPos € 0..len — 1 —» offset .. offset + len — 1
grd6 : ¥V p-p € dom(corresPos) = corresPos(p) = p + offset
grd7 : dom(feont_tmp(f)) =0..len — 1
grd8 : fsz € {len + offset, file_size(f)}
grd9 : fsz = len + offset < offset + len > file_size(f)

Then

actl : feontent(f) := feontent(f) <+ (corresPos™%; feont_tmp(f))
act2 : feont_tmp := {f} < fcont_tmp

act3 : file_size(f) := fsz

actd : dateLastModified (f) := nowdate

acth : writing := writing \ {f}

act6 : writing_offset := {f} <9 writing_offset

act7 : writing_len := {f} <9 writing_len

End

. (writing_len(f) — 1)

FIGURE 5.4: Decomposition of the writefile event

Chapter 5 Evolution of the File System Models and Proofs 83

w_end_ok event hold.

5.3.2 Linking the Abstract File System to the Flash Interface Layer

In this refinement step, flash properties are introduced together with variables used to
relate the file system and the flash interface layers. Compared with the original version
given in Chapter 4, there are no difference in specifying state variables. All machine
variables can be reused in this revised model. Namely, variables fcontent and fcont_tmp
of the file system layer are also replaced by fat and fat_tmp respectively. The variable
fat represents the table of contents of each file. This table is a mapping of each logical
page-id of each file to its corresponding row address within the flash. The corresponding
row address represents the location (in the flash) in which the content of that page is

stored.

mv7.8:Vp-p € PDATA
A 0bjOfpage(p) € dom(fat)
A (Vz-z € PDATA A 0bjOfpage(z) = objOfpage(p)
A pidzOfpage(z) = pidzOfpage(p)
=verOfpage(z) < verOfpage(p))
=
pidxOfpage(p) — dataOfpage(p) € feontent(objOfpage(p))

inv7.9 :Vp-p € PDATA N 0bjOfpage(p) € dom(fat_tmp)
A verOfpage(p) = writing_version(objOfpage(p))
=
pidzOfpage(p) — dataOfpage(p) € wbuffer(objOfpage(p))

inv7.10 : Vp-p € PDATA N 0bjOfpage(p) € writing
=
writing_version(objOfpage(p)) > most_recent_version(objOfpage(p))

inv7.11:Yi,r, f,p-r € programmed_pages \ obsolete_pages N f € files
A p = flash(r) A objOfpage(p) = f A pideOfpage(p) =i A i #0
A (Yz-x € PDATA A objOfpage(z) = f
A pidzOfpage(z) = i
= verOfpage(z) < verOfpage(p))
= i r € fat(f)

FIGURE 5.5: Machine invariants of replacing the file system by the flash specification

An important requirement affecting this refinement is the use of unbounded version
numbers. Some modifications are required for the related events, i.e. create, read, write,
etc. In addition, some invariants also need to be modified. Figure 5.5 shows some of

machine invariants of the revised version. It is noted that Invariants inv7.1 up to inv7.7

84 Chapter 5 Evolution of the File System Models and Proofs

are the same as specified in the original version. Here we show only some invariants that
have been changed. Invariants inv7.8 and inv7.11 ensures that all pages that are used
to generate the FAT table are the right versions (the most recent one) of such pages.
For instance, inv7.8 says that for any page of the file within the FAT table where that
page is the most recent version the given page-id, the data of that page will be the data
of the given page-id of that file. Invariant inv7.9 ensures that the content of any page
being written must be the content of the given file on the write-buffer. Finally, inv7.10
guarantees that the version of any page being written is greater than the most recent

version of that page.

Figure 5.6 illustrates how the file write of the abstract file system is replaced by the flash
specification. The top diagram represents the abstract file write which is composed of
three sub-events: w_start, w_step and w_end. The bottom diagram represents the
refinement where w_step is refined by event pagewrite. In this event, page_program will
be called in order to write the content of each page into the flash device. When each page
has been programmed successfully, the fat_tmp will be updated. Finally, the fat will be
overridden by the fat_tmp when all required pages have been completely programmed

into the flash device.

:F a7 abstraction

whuffer fcont_tmp fcontent

w_start pagewrite w_end
VR Y N
whuffer
refinement
page programme

By
AN

flash

FI1GURE 5.6: A diagram of mapping writefile to the flash specification

Figure 5.7 shows the pagewrite event which is a refinement of the w_step event. The
pagewrite event will look for an available page on the flash (grd8 - grd9) to which the
content of page number i on the wbuffer buffer is written. Parameter r represents a
row address within the flash. wv represents the new version of the page being written.
This version (wv) has been set by the start event which is equal to the latest version
plus one. Guards grd10-grdi14 describe the contents of pdata to be written to the flash.
Action act! updates the temporary fat table of the file f. Action act2 sets the content
of the flash at row number r equal to pdata. Action act3 sets that row address as a

programmed page.

Chapter 5 Evolution of the File System Models and Proofs 85

Event pagewrite refines w_step =

Any f,i,data, r, pd, wv Where

grdl : power_on = TRUFE

grd2 : f € writing

grd3: i €0.. (writing_len(f) — 1)

grd4 : data € DATA

grd5 : i — data € wbuffer(f)

grd6 : i ¢ dom(fat_tmp(f))

grd7 : wu = writing_version(f)

grd8 : r € RowAddr

grd9 : r ¢ programmed_pages

grd10 : pd € PDATA

grd11 : objOfpage(pd) = f

grd12 : pidzOfpage(pd) = i

grd13 : verOfpage(pd) = wov

grd14 : dataOfpage(pd) = data
Then

actl : fat_tmp(f) := fat_tmp(f) U {i— r}

act2 : flash(r) := pd

act3d : programmed_pages := programmed_pages U {r}
End

FIGURE 5.7: The refinement of the w_step event

Figure 5.8 shows the refinement of the w_end_ok event. Guards grd1 to grd6 and actions
actd to act7? are similar to the previous abstraction given in Figure 5.4. Since variables
feontent and fcont_tmp are refined by fat and fat_tmp, Guard grd7 of this event is also
changed (i.e. feont_tmp is replaced by fat_tmp). This guard ensures that all pages
required have been written. Local variable toc represents a table of contents which is a
mapping function from each logical page id to the corresponding row address within the
flash. The corresponding row address represents the location to which the content of
that page id is programmed. Some changes are also made to the actions. For instance,
Action actl updates the table of content of the given file fat(f). Action actl releases
the temporary FAT of the given file. Action act9 updates most recent version of the

given file.

Figure 5.9 shows the power_on event of this evolution. This event is aimed at recon-
structing the FAT table from existing data stored on the device. Similar to the original
version (discussed in Section 4.11), guards grd5 and grd6 play an important role to en-
sure that page contents that have been read to construct the FAT table are valid pages

with the most recent version.

86 Chapter 5 Evolution of the File System Models and Proofs

Event w_end_ok refines w_end_ok =
Any f, offset, len, toc, corresPos Where

grd7 : dom(fat_tmp(f)) =0..len — 1

grd8 : toc € N = RowAddr

grd9 : toc = corresPos™'; fat_tmp(f)
Then

actl : fat(f) := fat(f) < toc
act2 : fat_tmp := {f} <9 fat_tmp

act8 : writing_version = {f } < writing_version
act9 : most_recent_version(f) := writing_version(f)
End

FIGURE 5.8: The refinement of w_end_ok event

5.3.3 Machine Decomposition

The aim of this section is to outline the decomposition of the file system model that have
been linked to the flash specification. In this step, we decompose the machine into a file
system machine, modelling the file system layer, and a flash machine, modelling the flash
interface layer, similar to what we have completed in Chapter 4. As a result, further
refinements of the flash model can be explored separately. The machine decomposition

we apply here also follows the style of Butler [26] outlined in Section 3.6.

Figure 5.10 shows a diagram of machine decomposition illustrating the decomposition of
the events pagewrite and pageread. The top layer represents the file system sub-machine
consisting of variables fat, fat_tmp, wbuffer, and so on. The bottom layer represents the
flash interface sub-machine containing variables named flash, programmed_pages and
obsolete_pages. The ovals represent shared parameterised events used for synchronisa-
tion. In this case, both sub-machines interact with each other by synchronising over the

page_write and the page_read events.

Figure 5.11 and Figure 5.12 show two parts of the pagewrite event (given in Figure 5.7)
when it is partitioned following the approach of [26]. Figure 5.11 gives the specification
representing pagewrite of the file system layer. Figure 5.12 represents the page_program
(page program) interface provided by the flash interface layer. (We use different names
to make the referencing of them easier.) Here we can see that the difference between
the original model we presented in Chapter 4 and the revised model is the specification
of the pagewrite event of the file system layer (Figure 5.11). The specification of the
page_program of the flash interface model is the same as we obtained in the Chapter 4
(Figure 5.12). The requirements that have been changed affect only the file system layer.
The specification of the flash interface layer can be reused from before. Parameters r

and pd are shared parameters used for the interaction between these two events.

Chapter 5 Evolution of the File System Models and Proofs 87

Event power_on refines power_on =
Any
It
Where
grdl : power_on = FLASE
grd2 : ft € files — (N + RowAddr)
grd3 YV f-f € files = dom(ft(f)) =1.. file_size(f)
grd4 : ¥ p-p € PDATA N objOfpage(p) € dom(ft) = p € ran(flash)
grd5 :Yi,r, f,p-r € programmed_pages \ obsolete_pages A f € files
A p = flash(r) A objOfpage(p) = f A pidzOfpage(p) =i A i # 0
A (Vz-x € PDATA A objOfpage(z) = f
A pidzOfpage(z) = i
= verOfpage(z) < verOfpage(p))
= i r € ft(f)
grd6 :Yi,r,f,p-f € files N r € programmed_pages \ obsolete_pages
A p = flash(r) N i+ 1 € ft(f)
= (verOfpage(p) < most_recent_version(f) A
objOfpage(p) = f A pidzOfpage(p) =i)

Then
actl : power_on := TRUFE
act2 : fat .= ft

End

FI1GURE 5.9: The power_on event of the seventh refinement

File System

fat, fat_tmp, wbuffer, writing, rbuffer, ...

write

flash, programmed_pages, obsolete pages
Flash Interface

F1GURE 5.10: A machine-decomposition diagram focusing on events page_read and
page_write

Similarly, after the decomposition is completed, we get a machine specifying the flash
interface layer which consists of two main events page_program and page_read. This
machine can later be refined separately from the specification of the file system. (Further
refinements of the flash interface layer are given in Chapter 6.) We also get a machine
specifying the file system with pagewrite and pageread plus the other events from earlier

refinement such as w_start and w_end.

88 Chapter 5 Evolution of the File System Models and Proofs

Event pagewrite =

Any f,i,data, r, pd, wv Where
grdl : power_on = TRUFE
grd2 : f € writing
grd3: i €0.. (writing_len(f) — 1)
grd4 : data € DATA
grd5 : i — data € wbuffer(f)
grd6 : i ¢ dom(fat_tmp(f))
grd7 : wu = writing_version(f)
grd8 : r € RowAddr
grd10 : pd € PDATA
grd11 : objOfpage(pd) = f
grd12 : pidzOfpage(pd) = i
grd13 : verOfpage(pd) = wov
grd14 : dataOfpage(pd) = data

Then

actl : fat_tmp(f) == fat_tmp(f) U {i — r}
End

FIGURE 5.11: Event pagewrite of the file system layer

Event page_program =
Any r, pd Where
grd8 : v € RowAddr
grd9 : r ¢ programmed_pages
grd10 : pd € PDATA
Then
act2 : flash(r) := pd
act3 : programmed_pages := programmed_pages U {r}
End

FIGURE 5.12: An abstract page_program of the flash interface layer

5.4 Proofs

Table 5.1 shows the comparison of proof statistics between the original version of the
file system and the revised version. To make it easier to compare, we also provided
information given in brackets to represent proof statistics of the original version. Aster-
isks mean there is no difference between the original and the revised versions. In this
development, 671 POs were generated automatically by the Rodin tool. 630 POs (94%)
were proved automatically while the rest, 41 POs, were discharged interactively. As
given in Table 5.1, it can be seen that some parts of modelling have not been affected
(i.e. CTXO0 up to MCH1 have no changes).

In this development of the revised version, we needed to reprove some POs interactively.

Chapter 5 Evolution of the File System Models and Proofs

89

TABLE 5.1: Proof statistics — previous version in brackets

Machines/ | Total POs Automatic Reused New
Contexts Interactive Interactive
CTX0* 10 8 - 2
CTX1* 7 3 - 4
CTX2* 0 0 - 0
CTX3* 3 3 - 0
MCHO* 45 30 - 15
MCH1* 84 78 - 6
MCH2 56 (51) 56 (51) 0 0 (0)
MCH3 46 43 3 0 (3)
MCH4 43 42 1 0 (1)
MCHS5 80 (38) 79 (37) 0 1 (1)
MCHG6 81 (42) 80 (41) 0 1(1)
MCH?7 216 (228) 208 (198) 0 8 (20)
Overall 671 (597) | 630, 94% (544, 91%) 4, 0.5% 37, 5.5% (53, 9%)

However, proving the same POs that have already been proved in the previous devel-
opment is easier. Namely, we can reuse the proof tree of such PO that have already
been discharged by copying it to discharge the same PO in the revised model. In this
evolution, we have four proof trees that have been reused. (Details of reusing proof trees
are discussed in Section 10.4) The number of POs of MCH5 and MCH6 are higher than
the original model, since the partial write and read have been introduced. Namely, more
constraints (e.g. offset and length to be read or written) need to be added. From the
table, we can see that MCH?7, where the unbounded version number is introduced, has
a smaller number of interactive proofs, compared with the previous model. The smaller
number of interactive proofs suggests that specifying using unbounded version numbers
makes proof simpler. The version numbers will be reused, in the case of using bounded
version numbers. This led to the difficulty of determining whether the page is the most
recent version or not. Instead, in the case of using unbounded version numbers, we just
increase the version number of such pages by 1 (if that page has been modified). Thus,
the greatest version number of such a page is the most recent one of that page. This

makes it easier to model and verify.

5.5 Conclusion and Assessment

We have presented the revised version of the file system model that have already been
given in Chapter 4. The revision is based on the requirements that have been changed
(i.e. partial read/write operation and unbounded version of the file contents). We have
shown parts of the specification that were affected. The changes affected only parts
where the file content is introduced and where the structural refinement has been taken

place. We have found that the revised version where we used the unbounded version

90 Chapter 5 Evolution of the File System Models and Proofs

number is easier to manage because using bounded version numbers makes model more
complex than using unbounded version numbers. This is testified by proof statistics of
the machine MCHY given in Table 5.1.

In addition, we have found that parts of the feature augmentation have been slightly
affected by the revision. As it can be seen that in earlier parts of the refinement chain (the
first up to the fourth refinements), we needed to modify only the refinement step where
the file content is introduced. By using the event-extension feature, this modification is
propagated down automatically. Many parts of the original model given in Chapter 4
can be reused. The original contexts are completely reused without changes made. In
addition, because the requirements that have been changed affected only part of the file
system layer, the model representing the flash interface was not affected. That is, even
if other requirements of the file system layer are changed — such as changing of the file
system structure from the tree structure to the path-based structure — such a change
will not affect the flash model.

The event-extension feature and the tools (e.g. modelling, refinement and proof) pro-
vided by Rodin are useful for this development. These make revising a model easy.
Additionally, because of the facilities of tool and language, we can also model a system
in different approaches (in different chains) in order to compare them. Since a machine
can be refined by different machines, from the first level of a specification we may have
several chains of refinement steps that can be used in comparison. This is also useful

for studying and carrying out experiments in Event-B.

Chapter 6

Refinement of the Flash Interface
Layer

6.1 Introduction

The purpose of this chapter is to outline a verified development of a flash interface layer
(including refinements and proofs). As discussed in Chapter 4, after decomposition,
the flash model will be refined separately by adding more details focusing on the flash
specification in refinement steps. Further refinements mentioned are addressed in this
chapter. For example, each LUN has at least one page register used for buffering data.
Writing of a page is completed in two phases. The first is writing the given data into a
page register within the selected LUN and the second is programming the data on the
page register into the flash at the given row address. Similarly for reading page data,
the data will be first transferred to the page register before it is read into the memory
buffer.

Additional events required for block reclamation are also explored in this chapter such
as relocating a page and erasing a block. Reclamation involves selecting and erasing
blocks in order to be reused for writing. In order to reclaim any block, the block should
contain obsolete data. That means the number of free spaces will be increased when
such a block is reclaimed. The candidate block (to be reclaimed) may have one or
more pages with valid data. All valid pages within the block being reclaimed must be
relocated (moved to another fresh block). After all valid pages have been relocated, the
given block becomes obsolete and ready to be erased. That means only obsolete blocks
are allowed to be erased. Another constraint is that the number of erasures per block is
limited (the number is dependent on its manufacturing), normally between 10,000 and
1,000,000 [62]. A block that fails to be erased becomes a bad block which can no longer
use. The failures may be (i) the number of erasures has reached the erasure limit and

(ii) the number of times that have been tried to erase the block have reached the limit

91

92 Chapter 6 Refinement of the Flash Interface Layer

number.

Wear-levelling is a technique used for prolonging the life-time of the flash device. This
technique involves selecting an appropriate block to be reclaimed in order to balance the
number of erasures across the blocks within the flash chip. Namely, a block is worn-out
(or is no longer to be used) when the number of erasures goes over the erasure limit. A
summary of several wear-levelling techniques is given in [62] and [15]. We follow some

of them in our development. Details are explained in each step of refinement.

In our development, concurrent page read/program is also covered. Reading/writing of
pages can be performed simultaneously in an interleaved fashion. Each LUN has several
page registers. While a page register is used for reading/writing of a flash page, another
page register may be used for reading or writing of another flash page. Details are
given in Section 6.2 where page registers are introduced. Concurrency is also applied to
modelling of other processes such as the relocation process in Section 6.4 and the erasing

process in Section 6.5.

Fault-tolerance is also addressed in our development. It can be seen in Section 6.4 and
Section 6.5 where we outline the reclamation process that tolerates faults that may
occur at any point during the block reclamation. The fault-tolerance of page-read and
page-program operations has been dealt at the file system layer of Chapter 4. In this
Chapter, the page-read and page-program events are also refined to deal with faults. In
the case of faults (i.e. reading or programming a page fails), the status register of the
corresponding LUN being performed will be set to indicate these faults. This makes the

file system layer knows whether the reading/writing of a page succeeds or not.

This chapter starts with outlining further refinements that have been carried out in
several refinement steps in Section 6.2 up to Section 6.6. The page register is introduced
in the first refinement. The reclamation process is introduced in the second refinement
and more details are added in the third and the fourth refinements. Finally, conclusions

and assessment are given in Section 6.8.

6.2 1% Refinement: Page Register

This refinement is based on the fact that two phases are required for the page read and
the page program operations [52]. As stated in [52], in order to read from the flash
array, the page data which is requested must be transferred to a page register before it
is read off chip. In the case of the page program operation, data must be written to a
page register before it is programmed into the flash array. To satisfy this, a page register
is introduced as an intermediate buffer which is used as a temporary storage of a page

data after it is read from or before it is programmed to the flash array.

In the ONFI architecture [52], page registers are intermediate buffers (RAM) within

Chapter 6 Refinement of the Flash Interface Layer 93

LUNs. They are used for storing a page data after it is read from or before it is pro-
grammed to the flash array at a specified row address. Each LUN may have several page
registers — depending on the number of interleaved operations supported per LUN. Thus,
each page register is identified by a LUN address and an interleaved address within the
LUN. We have compared two approaches for specifying page register addressing (PR):
(i) cartesian product and (ii) projection functions. These two styles are mathematically

equivalent.

The first approach (cartesian product) is specifying page register addressing as
PR = LUAddr x IntAddr

where PR was specified as a constant representing set of page registers. Each page
register is identified by a combination of a LUN address (LUAddr) and an interleaved
address (IntAddr). Here IntAddr is a set of interleaved addresses within a LUN (which
is equal to 0..N-1 where N is the number of interleaved operations supported per LUN).

The second approach (projection function) is specifying PR as a carrier set in a context
accompanied by two projections (lidOfPR, a LUN address to which each page register
belongs and intaOfPR, an interleaved address of each page register), which are specified

as constants. Axioms specifying these projections are given below.

lidOfPR € PR — LUAddr
intaOfPR € PR — IntAddr

In our experiment, we have found that these two approaches have no difference in proof
(all POs were discharged automatically for both) but using projection function is more
readable and easier to specify. Addressing an individual property within the carte-
sian product particularly when the product is composed of many entities like RowAddr
(RowAddr = LUAddr x BAddr x PAddr) is more complicated. For instance, addressing
the PAddr value of any row address r requires a nested projection (i.e. prj2(prj2(r)),
where prj2 is the projection on the second element) which is more complicated. There-

fore, we selected the projection function for our formulation as outlined in this report.

In our development, we classified the page registers into two different states based on
what they are being used for. The first is readingPR, a set of page registers being used
for reading. The second is writingPR, a set of page registers being used for writing.

They were specified as machine variables given below.

readingPR C PR
writingPR C PR

where these sets are disjoint:

94 Chapter 6 Refinement of the Flash Interface Layer

readingPR N writingPR = &

The corresponding row addresses to which the data within the page registers belong

were formulated as

corresRowOfreadingPR € readingPR — RowAddr
corresRowOfwritingPR € writingPR — RowAddr
ran(corresRowOfreadingPR) N ran(corresRowOfwritingPR) = &

while the data within each page register was specified as a machine variable given below.

dataOfPR € PR — PDATA

We defined the corresponding row address of the page register being written as an
injective because another write is not allowed to be performed on the same page being
written. On the other hand, we specified the corresponding row address of the page
register being read as a total function because multiple-reads can be performed on the

same page.

In this refinement, the page_read and page_prog events were split into sub-events as given
in Figure 6.1. For example, see (a) Page Read where the page_read event was decom-
posed into three steps (in order from left to right): (1) pread_start, selects an available
page register within the LUN (to which the requested page belongs); (2) read2reg, trans-
fers a page data into the selected page register; and (3) pread_end, reads data from the
page register off chip. The pread_end event refines the abstract page_read while others

refine skip.

page_r ead

f

(@) PageRead

[pread_start] [read2reg

——

[pread_end]

(b) Page Program

[pprog_start] [wite2reg] [pprog_end]

FIGURE 6.1: Event decomposition diagrams representing events page_read and
page_program

In order to control the sequence of those sub-events, additional state variables are re-

quired. We introduced two state variables given below.

Chapter 6 Refinement of the Flash Interface Layer 95

pread_start pprog_start
readi ngPR ! writingPR !
read2reg write2reg
v E v E
r eady?2r ead - r eady2pr og i
pread_end i pprog_end i
“pread_fai “pprog_fail
(a) PageRead (b) Page Program

FIGURE 6.2: State diagrams representing states of page registers which are used for
reading and writing

ready2read C readingPR
ready2prog C writingPR

Variable ready2read represents a set of reading page registers with data that are ready
for reading off chip. Variable ready2prog represents a set of writing page registers with
data that are ready to be programmed into the flash array. Figure 6.2 shows state
diagrams representing states of page registers, which are used for reading and writing.
From the start event till the end event, failures may occur at any point. In the case of
failures, those states will be reset. The page_read and page_program events are atomic
events. They either completely succeed or fail. State transitions in Figure 6.2 correspond

to the leaf events in Figure 6.1.

Figure 6.3 shows a refinement of the page_read event which was decomposed into three
steps, as previously mentioned. In order to start reading (pread_start event) at row r,
grd1 ensures that the given page must be valid (is already programmed and not obsolete).
Parameter pr specifies an available PR within the LUN to which the given page belongs
in order to be used for buffering (see grd2 to grd4). The actions put the page register pr
into the reading state and set the corresponding row address of the page register to be
the row address of the page being read, by actl and act2 respectively. Event read2reg
transfers the page content at the given row address into the corresponding page register.
In this event, the page register must be in the reading state before transferring, and then
it is set to be ready for reading (ready2read) once the content have been transferred to
the page register. Event pread_end reads the content of the corresponding page register
that have already been in the ready2read state off chip (see grdl — grd3) and resets the

page register (see actl — act3).

Invariant inv4 given below is the gluing invariant we introduced in order to prove that

the pread_end event is the correct refinement of the previous abstract event page_read.

96

Chapter 6 Refinement of the Flash Interface Layer

grdl

Then

End

grd2 :
grd3 :
grd4 :
grdb :
grd6 :

actl :
act3 :

Event pread_start =
Any r, pr Where

grdl : r € programmed_pages \ obsolete_pages
grd2 : pr € PR
grd3 : pr ¢ readingPR U writingPR
grd4 : lidOfRow(r) = lidOfPR(pr)
Then
actl : readingPR := readingPR U {pr}
act2 : corresRowOfreadingPR(pr) :=r
End

Event read2req =
Any r, pr, pdata Where

: pr € dom/(corresRowOfreadingPR)
r = corresRowOfreadingPR(pr)
pr € readingPR
pr & ready2read
pdata € PDATA
pdata = flash(r)

dataOfPR(pr) := pdata
ready2read := ready2read U {pr}

Event pread_end refines page_read =
Any r,pr, pdata Where

grdl : pr € ready2read

grd2 : r = corresRowOfreadingPR(pr)

grd3 : pdata = dataOfPR(pr)
Then

actl : ready2read = ready2read \ {pr}

act2 : readingPR := readingPR \ {pr}

act3 : corresRowOfreadingPR := {pr} <4 corresRowOfreadingPR
End

FIGURE 6.3: The first refinement of Event page_read

invd : ¥ pr,r-pr € ready2read N\ r € programmed_pages N\ T = corresRowOfreadingPR(pr)
= dataOfPR(pr) = flash(r)

This invariant says that if the corresponding page register (pr) of the page being read at
row address r is in the ready2read state, then the content on the page register is equal

to the page content of the flash at the given row r.

In the case of failures that may occur at any point from the start event to the last step
of reading, the fail event is specified in Figure 6.4. This event is proved to refine skip.
The page register being used for reading (see grd1l) will be reset by actl — act3. That

means the page register will not be in the ready state that is valid to be read.

Chapter 6 Refinement of the Flash Interface Layer 97

Event pread_fail =
Any r, pr Where
grdl : pr € readingPR
grd2 : r = corresRowOfreadingPR(pr)
Then
actl : ready2read := ready2read \ {pr}
act2 : readingPR := readingPR \ {pr}
act3 : corresRowOfreadingPR := {pr} 4 corresRowOfreadingPR
End

FIGURE 6.4: Event pread_fail

Our model allows concurrent interleaved reads and writes of different pages. Namely,
while a page is being read into a page register, another page register may be used for
reading or programming another page simultaneously. The number of interleaved events
depends on the interleaved address supported per LUN. Considering the pread_start
event (given in Figure 6.3), we can start reading another page if there is another page

register available (see grd3 of the event).

6.3 2" Refinement: Events required for block reclamation

The purpose of the reclamation process is to select a block within a flash chip to be
erased and reused. In order to erase a block, the given block must has no valid pages.
If the given block contains valid pages, all valid pages must be relocated to another free
block. Relocating a valid page is completed in two steps: (i) copy the valid content
from the old location to a new location and (ii) mark the old location as obsolete at
the end. These two steps are specified as events named copy_a_page_to_new_loc and

mark_old_page_obsolete. Details will be explained later in this section.

Figure 6.5 shows some of machine invariants specified in this refinement. In order to re-
late an old location of any page that has been relocated to a new location, we introduced
a translation function named trans_func which was specified as inv2.2. Variable flash2
represents part of the flash array that have been used for storing relocated pages. It is
related to the flash in the view of the file system layer by the gluing invariant inv2.11.
This invariant says that the content of page r (in the file system view) that have been
relocated is equal to the content of page at the corresponding row of r (in the flash

view).

The translation layer where the translation function is specified is a good design idea to
deal with flash addressing. This mechanism avoids re-updating the FAT table when any
valid page has been relocated to another location. When a flash page is requested to be

read by the file system layer the translation layer has the responsibility of translating

98 Chapter 6 Refinement of the Flash Interface Layer

Invariants
inv2.1: flash2 € RowAddr - PDATA
inv2.2 : trans_func € RowAddr - RowAddr
inv2.3 : programmed_pages2 C RowAddr
inv2.4 : dom(flash2) = programmed_pages2
inv2.5 : dom(trans_func) C programmed_pages
inv2.6 : programmed_pages2 = trans_func[programmed_pages]
inv2.7 : programmed_pages N programmed_pages2 = &
1nv2.8 : obsolete_pages2 C programmed_pages U programmed_pages2
inv2.9 : ran(trans_func) N obsolete_pages2 = &
1mv2.10 : obsolete_pages C obsolete_pages2
inv2.11 :Vr-r € dom(trans_func) = flash(r) = (trans_func; flash2)(r)

FIGURE 6.5: Machine invariants of the second refinement

the requested page address to the corresponding location within the flash device. Then,
the page data will be read and sent back to the file system layer. This translation table
is designed to be stored in the memory. Although its content is lost in the case of power
loss or sudden-reboot, all valid page contents still remain and are able to be used to
re-formulate the correct FAT table at the mount stage which is dealt by the file system
layer. Note that, at the moment, we did not model the translation layer separately. It

is included as one feature of the flash interface layer we modelled in this chapter.

Figure 6.6 shows two additional events which were introduced in this refinement. Event
copy—_a_page_to_new_loc is aimed at copying the content of a valid page (pdata) from
the old location (old_r) to the new location (new_r). Event mark_old_page_obsolete
marks an old page at row old_r as obsolete. We introduced programmed_pages2 as a set
of pages that have been programmed during the relocation. It is specified as Invariant
inw2.3 and nwv2.6. We also introduced obsolete_pages2 to represent an overall set of
obsolete pages. As specified in Figure 6.5, it is a superset of obsolete pages of the

previous abstraction.

However, the sequencing of events copy_a_page_to_new_loc and mark_old_page_obsolete
was not addressed in this refinement. These events are independent and nondetermin-
istically selected to be performed. In this step, we only prove that these events refine
skip (i.e. executing them will conform to the previous abstraction). Sequencing control
was postponed to the next refinement. The reason we modelled the feature in this way
is to make our model simpler. Namely, introducing a small number of features raises
a small set of POs required to be discharged. Additionally, it is easier to follow the
model. At this point, developers can see that we can introduce a number of individual
atomic events that are nondeterministically chosen to be performed at the level where
they are introduced. After that, we can refine them later in a refinement step in order to

control the sequence in which each event should be performed. To control the order of

Chapter 6 Refinement of the Flash Interface Layer 99

Event copy_a_page_to_new_loc =
Any old_r, new_r, pdata Where
grdl : old_r € programmed_pages \ obsolete_pages2
grd2 : new_r € RowAddr \ (programmed_pages U programmed_pages2)
grd3 : pdata = flash(old_r)
grd4 : old_r ¢ dom(trans_func)
Then
actl : flash2(new_r) := pdata
act2 : programmed_pages2 := programmed_pages2 U {new_r}
act3 : trans_func(old_r) := new_r
End
Event mark_old_page_obsolete =
Any old_r Where
grdl : old_r € programmed_pages
grd2 : old_r ¢ obsolete_pages2
Then
actl : obsolete_pages2 := obsolete_pages2 U {old_r}
End

FI1GURE 6.6: Additional events required for reclamation process

events which are performed, additional state variables or flags are required and details
are discussed in Section 6.4. Note that this technique only works when all steps of the
process refine skip. In this development, the effect of relocation process is invisible to

the file system.

6.4 3% Refinement: Ordering of Relocation Events

The purpose of this refinement is to control the sequence of the relocation events that
has been postponed from the previous abstraction. The sequence of relocation events

and related constraints are discussed below.

The block which is selected to be relocated may has some valid pages. Such a valid
page within the selected block will be copied to another location and then mark the old
one as obsolete. Relocating a block will end when all valid pages have been completely
relocated. This process can be explained using a diagram given in Figure 6.7. This
diagram shows an event-refinement diagram of the block relocation process. Note that we
use dotted boxes to represent the abstract events relocate_a_block and relocate_a_page
because there are no actual events specified in the abstract model. They are just abstract

processes.

As illustrated in Figure 6.7, in order to relocate any block, three steps are required: (i)

start relocating a block, (ii) relocate all valid pages within the block and (iii) end relocat-

100 Chapter 6 Refinement of the Flash Interface Layer

: _block

——————— Lommeeo oo S

end_rel ocating
_a_bl ock

start_rel ocating relocate_a_
_a_bl ock page

P —

start_relocating copy_old_to_ mar k_ol d_page_
_a_page new_| oc obsol ete

FIGURE 6.7: An event-refinement diagram representing the block relocation process

ing a block. Relocating a valid page is also completed in three steps: (i) start relocating
a page, (ii) copy the valid content from the old location to the new location and (iii)
mark the old location as obsolete at the end. Relocating a valid page is completed when
the content of the given page has been copied to the new location and the old location
has been marked as obsolete. Relocating a page will be repeated until all valid pages
(within the block being relocated) have been relocated. Once the relocating block has
no valid pages, the relocating process has been completed. This block becomes obsolete
and is a candidate block that may be selected to be erased in the next process. As given
in [86], erasing a block is not necessary to be performed once it has been completely
relocated. That is, easing an obsolete block might be performed in background when
the system is in the idle state or when free spaces are required. Details and refinement

of erasing a block are discussed in Section 6.5.

Figure 6.8 shows machine invariants of this level. T'wo state variables were introduced.
First, relocating_blocks represents a set of blocks that are in the relocating state. Sec-
ond, relocating_pages represents a function relating the old location of each page being
relocated to the new location, to which the content of this page is copied. Invariant
inv3.3 says that all pages being relocated must be valid. Invariant inv3.4 says that all

pages within the blocks being relocated are not allowed for reading and writing.

mw3.1 : relocating_blocks C BLOCK
inv3.2 : relocating_pages € RowAddr - RowAddr
inv3.3 : dom(relocating_pages) C (programmed_pages \ obsolete_pages2)
inv3.4 : Y b, r-b € relocating_blocks \ BlkOfRow(r) = b
=
r ¢ ran(corresRowOfreadingPR) A r ¢ ran(corresRowOfwritingPR)

FIGURE 6.8: Machine invariants of the third refinement

Figure 6.9 presents a refinement of copy_a_page_to_new_loc and mark_old_page_obsolete

Chapter 6 Refinement of the Flash Interface Layer 101

events with ordering constraints added. Some changes were made to these events. For ex-
ample, in order to copy a page from old_r to another location (new_r), old_r — new_r
must be in the relocating state (see grdl). Guard grd2 ensures that new location
(new_r) must be free. In the second step, in order mark the old location to be ob-
solete, old_r — mew_r must be in the relocating state and new_r have already been
programmed. Event start_relocating_a_page is new event refining skip. In order to start
relocating a valid page (at row old_r), the given page must belong to the block being in
the relocating state (grd2); and the new location (new_r) to which it is moved is free
(grd3). If these two locations have not already been added to the relocating state, this

event has an effect of setting them into the relocating state

Event start_relocating_a_page =
Any old_r, new_r Where
grdl : old_r € programmed_pages \ obsolete_pages2
grd2 : BlkOfRow(old_r) € relocating_blocks
grd3 : new_r € RowAddr \ (progrmmed_pages U programmed_pages2)
grd4 : old_r ¢ dom(relocating_pages)
grd5 : new_r ¢ ran(relocating_pages)
Then
actl : relocating_pages := relocating_pages U {old_r — new_r}
End
Event copy_a_page_to_new_loc refines copy_a_page_to_new_loc =
Any old_r, new_r, pdata Where
grdl : old_r — new_r € relocating_pages
grd2 : new_r ¢ programmed_pages2
grd3 : pdata = flash(old_r)
Then
actl : flash2(new_r) := pdata
act2 : programmed_pages2 := programmed_pages2 U {new_r}
act3 : trans_func(old_r) := new_r
End
Event mark_old_page_obsolete refines mark_old_page_obsolete =
Any old_r, new_r Where
grdl : old_r — new_r € relocating_pages
grd?2 : new_r € programmed_pages2
Then
actl : obsolete_pages2 := obsolete_pages2 U {old_r}
End

FIGURE 6.9: A refinement of page relocation

Note that our model can also deal with concurrent block relocation. Namely, while any
block is in the relocating state, another candidate block can be relocated in the same
time. Each sub-event of the relocation process is performed in an interleaved fashion.

For example, while relocating a valid page of some blocks, another valid page of another

102 Chapter 6 Refinement of the Flash Interface Layer

block can also relocated simultaneously.

Failures may occur at any point between the start and the end of relocating a block.
The first case is failing to write the valid content to new location. This case does not
pose any data inconsistency. That is, the content at the old location remains valid to be
used while the new location is invalid to be used. Formally, it simply prevents further
relocation steps and relocation always maintains consistency. The second is failing to
mark the old one to be obsolete. In this case, two valid pages with the same content
are stored in the flash array (at the old and the new locations). When the flash is
remounted, only one valid page is firstly read and chosen to formulate the correct FAT
table while another is marked as obsolete. This is not a problem because both locations
have exactly the same content. Choosing either one of them to formulate the FAT table

does not matter.

6.5 4" Refinement: Refinement of Erasing a Block

The purpose of this section is to concentrate on the erasing process (or reclamation pro-
cess) and outline what constraints we have addressed. In this refinement, the block_erase
event is split into sub-events that can be performed in an interleaved fashion. Namely,

our model presented here also deal with concurrent erase events.

In this refinement, several types of blocks were specified in order to classify and control
the sequence of reclamation process. Figure 6.10 shows machine invariants specifying

additional variables which were introduced.
candidate_blocks is a list of candidate blocks, which are allowed to be selected for
reclamation.
relocating_blocks is set of blocks being relocated. It is a subset of candidate blocks.

obsolete_blocks is a set of blocks that have no valid pages (or the pages in use). They

are candidate blocks that are ready to be erased in the reclamation process.
erasing_blocks is a set of obsolete blocks in the erasing state.

bad_blocks is a list of blocks that are no longer to be used. For instance, the block that

fails to be erased will be marked as a bad block.

num_erased represents the number of times that each block has been erased. Each
block can be erased within the maximum number allowed (the limited number

depends on the manufacturing).

In our development, we decided to record the number of times that the blocks have been

erased within each block in order to be used for the wear-levelling technique. The point

Chapter 6 Refinement of the Flash Interface Layer 103

invd.l : candidate_blocks C BLOCK
mnwvd.2 : relocating_blocks C candidate_blocks
inwv4d.3 : obsolete_blocks C BLOCK
1mw4.4 : obsolete_blocks N relocating_blocks = &
mvd.5 Y r, b-r € programmed_pages N\ b € obsolete_blocks
A BlkOfRow(r) = b = r € obsolete_pages2
1mv4.6 : erasing_blocks C obsolete_blocks
invd. 7T ¥ b, r-b € obsolete_blocks N\ r € RowAddr N\ BlkOfRow(r) = b
=
(7 ¢ ran(corresRowOfreadingPR) N r ¢ ran(corresRowOfwritingPR))
mv4.8 : num_erased € BLOCK — N
nv4d.9 : invalid_num_erased_blocks C BLOCK
1nw4.10 : restoring_num_erased C invalid_num_erased_blocks
mo4.11 : tmp_num_erased € RowAddr + N
inv4.12 : corresBlkOftmpFErased € dom(tmp_num_erased) — BLOCK
1mv4.13 : bad_blocks C BLOCK
inv4.14 : bad_blocks N candidate_blocks = @

FIGURE 6.10: Machine invariants of the fourth refinement

is how to maintain the number of erasures when the block is erased. How to deal with
failures that may occur during the erasing process. The idea of Marshall and Manning
given in [62] is chosen as our solution. Namely, prior to erasing any block, the current
number of erasures of that block must be copied to somewhere else. When the erasing
step has been completed the number of erasures will be restored at the end. (Details
are explained later in this section.) Here are additional machine variables which are
introduced to deal with this.

invalid_num_erased_blocks represents the (erased) blocks with an invalid number of
erasures. This kind of blocks becomes valid when the valid number of erasures has

been restored.

restoring_num_erased represents a set of blocks that are in the state of restoring the

number of erasures.

tmp_num_erased is used for recording the number of erasures of the blocks being erased.
The number of erasures will be temporarily stored in another block that its state

is not erasing or relocating.

corresBlkOftmpErased is a mapping function representing the associate block to which

the temporary number of erasures belongs.

Figure 6.11 shows an event refinement diagram of the block-erase event which is com-
posed of four sub-events: start_erase_a_block, erase_a_block, start_restore_num_erased

and restore_num_erased. The erase_a_block event refines the previous block_erase event

104 Chapter 6 Refinement of the Flash Interface Layer

bl ock_erase

start_erase_a erase_a_bl ock start_restore restore_num_
_bl ock _num er ased erased

FIGURE 6.11: An event-refinement diagram representing an erasing process

Candi dat e bl ock

start _erasing_a_bl ock

[er asi ng_bl ocks }--...

failure casel

erase_a_bl ock (erasing fail)
y

[i nval i d_num er ased_bl ocks]

start_restore_num erased

v
[restoring_num erased }____

failure case2

restoring fail
restore_num erased (9)

reclamation fail

FIGURE 6.12: A state diagram representing states of blocks in erasing process

while others refine skip. Details of each event are given in Figure 6.13 and Figure 6.14.
A state diagram of blocks in the reclamation process is shown in Figure 6.12. The se-
lected block will be set to be in the erasing state when the start_erasing_a_block event
is performed. The process of restoring the number of erasures will take place once the
given block has been erased and is in the ‘nvalid_num_erased state. When the valid
number of erasures has been restored, this block becomes a fresh block and is ready to

be reused.

The reclamation events are divided into two phases given in Figure 6.13 and Figure 6.14.
In order to start erasing any block (start_erase_block), we select an obsolete block with
the least number of erasures (see grdl and g¢rd7) in order to balance the number of
erasures across the blocks. (Similarly for the start_relocate_a_block event, we also select
the candidate with the least number of erasures.) This method is a basic algorithm of
the wear-levelling technique [62]. In phasel, the start event sets the state of the given
block to be in the erasing_blocks state (actl), and writes the current number of erasures
of the given block to a free page in another block that is not in the erasing process (act2
and act3). Secondly, erase_a_block erases the block (all pages are set to the default
state) and sets the state of the given block to be invalid_num_erased_blocks. In phase2,

the start_restore_num_erased sets the block with an invalid number of erasures to be

Chapter 6 Refinement of the Flash Interface Layer 105

Event start_erase_block =
Any b, free_r Where
grdl : b € obsolete_blocks
grd2 : b ¢ erasing_blocks U bad_blocks
grd3 : num_erased(b) < maz_erase
grd4 : free_r € RowAddr \ (programmed_pages U programmed_pages2)
grd5 : BlkOfRow(free_r) ¢ erasing_blocks
grd6 : free_r ¢ dom(tmp_num_erased)
grd7 :V k-k € obsolete_blocks \ bad_blocks
= num_eraseOfblock(k) > num_eraseOfblock(b)
Then
actl : erasing_blocks := erasing_blocks U {b}
act2 : tmp_num_erased(free_r) := num_erased(b)
act3 : corresBlkOftmpErased(free_r) := b
End
Event erase_a_block refines block_erase =
Any rows, b Where
grdl : rows C RowAddr
grd2 : b € erasing_blocks
grd3 : rows = BIkOfRow 1[{b}]
grd4 : rows N dom(trans_func) = &
Then
actl : flash = flash < (rows x {dp})
act2 : programmed_pages := programmed_pages \ rows
act3 : obsolete_pages := obsolete_pages \ rows
actd : programmed_pages2 := programmed_pages2 \ rows
acth : obsolete_pages2 := obsolete_pages2 \ rows
act6 : invalid_num_erased_blocks := invalid_num_erased_blocks U {b}
act7 : obsolete_blocks := obsolete_blocks \ {b}
act8 : erasing_blocks := erasing_blocks \ {b}
End

FIGURE 6.13: Reclamation process phasel: erasing a block

in the restoring_num_erased state. The restore_num_erased event restores the number
of erasures to the (erased) block by increasing it by one, and then resets the state of the

block being restored.

As already mentioned earlier, we also deal with faults in this development. Failures
may occur at any points (as specified in Figure 6.15) — first is at the erasing process
and second is at the restoring number of erasures. In the first case, the block is still
in the obsolete state which is a candidate that may be selected to be erased later when
reclamation is required. In the second case, the given block has completely been erased
but the number of erasures has not been restored yet. In this case, this block still have
an invalid number of erasures, since the invalid_num_erased flag has been set. However,

the number of erasures of the block which is stored in another block still remain and

106

Chapter 6 Refinement of the Flash Interface Layer

Event start_restore_num_erased =

Any b Where
grdl : b € invalid_num_erased_blocks
grd2 : b & restoring_num_erased
Then
actl : restoring_num_erased := restoring_num_erased U {b}

End

Event restore_num_erased =

Any b, row Where
grdl : b € restoring_num_erased
grd2 : row € dom(tmp_num_erased)
grd3 : b = corresBlkOftmpErased(row)
Then
actl : num_erased(b) := tmp_num_erased(row) + 1
act2 : restoring_num_erased := restoring_num_erased \ {b}
act3 : tmp_num_erased := {row} < tmp_num_erased
actd : corresBlkOftmpErased := {row} < corresBlkOftmpFErased

acth : invalid_num_erased_blocks := invalid_num_erased_blocks \ {b}

End

FIGURE 6.14: Reclamation process phase2: restoring the number of erasures

can be restored later.

Event erase_a_block_fail_casel =

Any b Where
grdl : b € erasing_blocks
Then

actl : erasing_blocks := erasing_blocks \ {b}
act2 : restoring_num_erased := restoring_num_erased \ {b}
End

Event restore_num_erased_fail_case2 =

Any b Where

grdl : b € restoring_num_erased
Then

actl : restoring_num_erased = restoring_num_erased \ {b}
End

FIGURE 6.15: Reclamation of a block fail

Chapter 6 Refinement of the Flash Interface Layer 107

6.6 5" Refinement: Status Register

The status register has an important role to determine whether the flash device is ready
or not. The flash device is ready for performing any operation if all LUNs within the flash
device are ready. If the flash is not ready, no operations are allowed to be performed.
The status register is also used to indicate whether the previous operation that has been

performed succeed or not.

In the ONFI specification [51, 52], each LUN contains a status register (SR). The status

register is represented in the standard as an array of eight bits with different meanings:
SR[0] = FAIL, SR[1] = FAILC, SR[5| = ARDY ,SR[6| = RDY, SR[7] = WP

Positions 2-4 are reserved. FAIL, RDY (ready) and WP (write protection) are frequently
used. FAILC and ARDY are valid only for the program cache operations, optional
operations depending on the flash device. More details about optional operations can
be found in [52]. In our development, we concentrate on only mandatory operations
(such as page-read, page-write, block-erase, etc.). Thus, FAILC and ARDY are ignored

in this work.

In this refinement, a status register for each LUN is introduced. The write protection
(WP) is represented as a bit within the status register. This WP bit is allowed to be
set or reset by the flash commands. Page-program and block-erase operations are not
allowed to be performed on any LUN that have been write-protected. In our research,
we have compared two approaches of specifying status values of the status register.
The first is specifying as a state function mapping from each LUN the a status value.
The second is representing status values as state sets, following the work of Butler and
Yadav [31].

In the first approach, using state function, a machine variable representing the status of
each LUN will be formulated as

ISR € LUAddr — STATUS

where STATUS is defined as an enumerated set of possible values of the status register
in a context. That is, STATUS = {RDY ,nRDY,FRDY} where RDY represents the
ready status (the RDY bit is true), nRDY means not ready (the RDY bit is set to be
false), and FRDY represents the status of which FAIL and RDY bits are true.

Table 6.1 shows three significant states of the status register that we specify in this
refinement. As previously discussed, FAILC and ARDY are ignored in our development.
Thus only the RDY, FAIL and WP bits are addressed. In addition, in the standard, if

108 Chapter 6 Refinement of the Flash Interface Layer

the RDY bit is 0, other bits (except the WP bit) are invalid. Because the validation
of the WP bit is not dependent on others, it is better to specify the state of the WP
bit separately. If we were to include this bit, the number of possible states would be

increased (i.e. six states are required). This would make model more difficult to manage.

TABLE 6.1: A table representing states of the status register

states RDY FAIL (WP)

Iready 1 0 (0,1)
Ireadyfail 1 1 (0,1)
Inotready 0 - (0,1)

In the second approach, using state sets, each possible states of the status register is
specified as a state-set variable. Below shows the state-set variables we introduced to

represent the status of each LUN.

Iready represents a set of LUNs with RDY bit is set to 1. This means this LUN is

ready for execution of another command.

lreadyfail (ready and fail) means both RDY and FAIL bits are set to 1. This case
indicates that the previous command performed on the selected LUN has failed

and the LUN is now ready for another command.

Inotready represents a set of LUNs that are not ready. The RDY bit is cleared to 0.

This means all other status bits are invalid and shall be ignored.

wprotected represents a set of LUNs which are write protected. (The WP bit is set to
be 1.) This kind of LUNSs is not allowed to be programmed or erased. This state

can overlap with above three states.

In our experiment, we have found that the second approach, specifying using state sets,
makes proof simpler. Namely, the second approach led us to gain a higher degree of
automatic proof. Although more proof obligations are needed to be discharged for the
second approach, all are automatically discharged. This approach was chosen for our

development.

Figure 6.16 shows additional variables introduced in this refinement. State sets previ-
ously mentioned are defined and constrained by inv5.3 up to inv5.8. Variable {_status
represents the current status of the target flash (indicating that the target flash is ready
(RDY) or not ready (nRDY') for the next command). It is global for the whole flash
device. Invariant inv5.9 says that if the target flash is ready means all LUNs’ statuses

are ready.

Chapter 6 Refinement of the Flash Interface Layer 109

invb.1: t_status € STATUS

1nwb.2 : wprotected C LUAddr

inv5.3 : lready C LUAddr

nwbd.4 : lreadyfail C LUAddr

inv5.5 : Inotready C LUAddr

inv5.6 : lready N lreadyfail = &

1mwb.7 : lready N Inotready = &

inv5.8 : lreadyfail N Inotready = &

inv5.9 : t_status = RDY = (V1-1 € LUAddr =1 € (lready U lreadyfail)

FIGURE 6.16: Invariants of the third refinement

In this refinement, some extensions were made to some previous abstract events. For
example, in order to start any new operation on a LUN, the status register of that LUN
must be ready. Once the operation is started the status is set to be not-ready until the
end of the operation. Figure 6.17 shows some changes made to the write2reg event in
this refinement. For example, in case of success, the LUN being performed is moved from
the not-ready state (notready) to the ready state (Iready). Additional events related to
status registers were also introduced, for example, set_writeprotect, reset_writeprotect

and read_status. Details can be found in Appendix C.

On the other hand, if we were to specify using state function, the w_start event will
be replaced by the specification given in Figure 6.18 where ISR is specified as a state
function mapping from each LUN to a status value within STATUS.

At this point, we can see that although using state function does not make proof simpler,
it makes the specification more readable and easier to model compared with specifying
as state sets. Setting the value of the status register of each LUN is completed in
one action, compared with the previous case that requires three (simultaneous) actions.
This approach seems to be suitable if the number of states is larger. Thus, these two
approaches are appropriate for particular cases. Developers may choose state function
if there is a huge number of state values to specify, otherwise using state sets would
be suitable. In our development, we chose state sets because we have only three state

values and want to make proof of the model simpler.

6.7 Proofs

Proof statistics given in Table 6.2 show that 352 proof obligations were generated and
all were discharged automatically by the Rodin tool. MCH_FL represents an abstract
machine of the flash interface layer while MCH_R1 up to MCH_R5 represent its refine-
ments. Note that the proof statistics of the machine MCH_R5 are based on using state

110 Chapter 6 Refinement of the Flash Interface Layer

Event pprog_start extends pprog_start =
Where
grd3 : t_status = RDY
grd4 : lid ¢ wprotected
Then
act3 : Inotready := Inotready U {lid}
actd : lready := lready \ {lid}
acth : lreadyfail := lreadyfail \ {lid}
End

Event pprog_end_ok extends pprog_end =
Where
grd4 : lid € Inotready
Then
acth : lready := lready U {lid}
act6 : Inotready := Inotready \ {lid}
End

Event pprog_fail extends pprog_fail =
Where
grd2 : lid € Inotready
Then
act3 : lreadyfail = lreadyfail U {lid}
actd : Inotready := Inotready \ {lid}
End

FIGURE 6.17: Part of the fifth refinement focusing on page program

Event pprog_start extends pprog_start =
Where
grd3 : t_status = RDY
grd4 : lid ¢ wprotected
Then
actd : ISR(lid) := nRDY
End

FIGURE 6.18: A refinement of the pprog_start event, in the case of using state function

sets. In the case of using state functions, we got total 56 POs. 48 of them were auto-
matically proved while the rest are discharged interactively. (They may require more

time (or powerful prover) to discharge automatically.)

We have got completely automatic proof for several reasons. First, based on experience of
what we have learnt from the modelling of file system such as selection of formulation,
we have analyzed possible forms of specifying flash properties before selecting one of

them to model. For example, as discussed in Section 4.10.1 where the abstract flash

Chapter 6 Refinement of the Flash Interface Layer 111

TABLE 6.2: Proof statistics of the flash model

Machines/Contexts | Total POs | Automatic | Interactive
MCH_FL 9 9 0
MCH_R1 66 66 0
MCH_R2 55 55 0
MCH_R3 56 56 0
MCH_R4 70 70 0
MCH_R5 142 142 0

Overall 398 398 (100%) 0

specification is introduced, we avoided using curried function to make model easier to
specify and prove. We decided to use state sets instead of state functions (as example
given in Section 6.6). An other example, as discussed in Section 6.2, we used the
projection function to specify the row addresses and page registers instead of using

cartesian product.

Second, in case of failing to prove any PO, that PO was used as a guideline to improve
the model. That is, such PO will be checked to see why it cannot be discharged. In
some cases, an additional guard needs to be added to the corresponding event in order to
make the PO discharged automatically. Sometimes, additional invariants were required

to discharge some POs.

Another reason is that the flash interface model is not too complex in proof, compared
with the tree-structured file system model of Chapter 4. Many invariants specified in
each level of the flash memory model are straightforward and easier to prove than the

invariants specifying the tree properties.

We can see a huge number of POs to be discharged for the fifth refinement (MCH_REF5)
because we needed to prove that all state sets are disjoint. In addition, it seems to be
more POs to be discharged if there are more states. At this point, we have completed
another experiment to compare. That is, instead of introducing inv5.6 up to nv5.8 to

say that those state sets are disjoint, we could replace them by the following invariant

inv5z : partition(LUAddr, lready, Inotready, lreadyfail)

We have found that using this invariant could reduce the number of POs from 142 to
100, and all are still discharged automatically. That means, specifying state sets in this
way would be more appropriate. Note that partition is a new operation that was added

to Rodin towards the later part of our research.

112 Chapter 6 Refinement of the Flash Interface Layer

6.8 Conclusion and Assessment

In this chapter, we have presented further refinements focussing on the flash specification
after we have decomposed our model in Chapter 4. We began with investigating the
ONFT specification, analysing and deciding which formulation is suitable for modelling
each flash property. Incremental refinement was also used as our strategy to develop
this model. Some useful techniques that we have learnt from the previous chapter of
modelling and proof of the file system layer — such as careful section of formulation,

using proof obligation as a guideline, etc. — were also employed in this experiment.

In the first level, we have only two main interfaces provided to the file system layer:
page_read and page_program. After that, other requirements and constraints were later
addressed in refinement steps. Namely, we first introduced page registers and partitioned
the atomic events page_read and page_program in the first refinement. Relocating a
page and erasing a block, processes required for block reclamation and wear-levelling
technique, were introduced in next refinement steps. We have found that careful selection
of formulation mentioned in the previous chapter and incremental approach are also
useful for this case study. As it can be seen in Figure 5.1, we can achieve 100% proof

obligations discharged automatically.

We have given another approach of specifying a sequence of events to be performed.
Individual events (or sub-steps) can be introduced in an abstract level and later be or-
dered in the following refinement. In the level where they are specified, each step is
non-deterministically chosen to be performed. In the refinement, we introduced addi-
tional flag/state variables which were used to formulate event’ guards and control the
sequence of events to be performed. We only prove that these individual events refine
skip in order to show that executing them conform the previous abstraction. As already
mentioned, this technique works when all steps of the process refine skip. An example
can be seen in Section 6.3 (where we introduced individual steps required for the block
reclamation process) and Section 6.4 (where we added sequencing control to force those

steps to be performed in an order).

We also have completed some experiments to compare different styles of modelling. For
example, modelling of page registers in Section 6.2 where projection function versus
cartesian product; and modelling of status registers in Section 6.6 where state set versus
state function. First, as discussed in Section 6.2, specifying PR using projection func-
tions makes model more readable and easier to specify than using cartesian product.
Namely, accessing an individual element within the cartesian product is more compli-
cated. Second, modelling states of status registers as state sets lets us gain a higher
degree of automatic proof, compared with specifying as a state function. However, spec-
ifying as a state function is easier to specify and read. As discussed in Section 6.6,
modifying the state value can be done in one step if we specify using state function,

while several steps are required if we specify using state set. However, these two ap-

Chapter 6 Refinement of the Flash Interface Layer 113

proaches are suitable for each particular case. Developers may choose state function if
there is a large number of state values to be specified otherwise using state sets would
be suitable.

Additionally, based on experience of using the Rodin tool, comparing the previous release
0.8.x and the later release 1.x.x, some useful features which are extended make modelling
easier. For example, considering the fifth refinement, release 0.8.x has no partition
operation in Event-B, we need to add a huge number of invariants to clarify that all
intersections between state sets are the empty set. Similar to the event-extension feature
that have already discussed in Section 3.7, this feature is also useful for developing our

flash interface model which is outlined in this chapter.

Chapter 7

Comparison with Related Work
on Verifying Flash File System

7.1 Introduction

A number of formalisations of file systems have been developed by other researchers.
Most of them are focused on file contents, and read and write operations. There is
some work that deal with the structure of file systems such as a specification of a visual
file system in Z by Hughes [78] and the work of Hesselink and Lali [70]. The work of
Hughes is focused on a tree structure and operations affecting the tree structure, but
file content and a manipulation of file content were not specified. The work of Hesselink
and Lali is focused on modelling of a hierarchical file system using PVS [104]. This
work, [70], covers basic file operations including move and remove directories. Another
related work by Morgan and Sufrin presented in [101] is a specification of a Unix filing
system in Z. In this specification, instead of using a tree structure, the location of each
object is formulated as a sequence of directory names, which is the path of each object.
This work is concentrated on file contents and naming operations used for manipulating
these rather than structure manipulation operations such as directory copy and move.
Based on the specification of Morgan and Sufrin, Freitas, Woodcock and Fu [58, 61, 60]
have developed a verified model of the POSIX filestore accompanied by a representation

and proof using the Z/Eves proof system [109].

Since the filestore challenge was proposed by Joshi and Holzmann [85] in 2005, other
researchers have addressed this challenge, such as [34], [59], [54], [87], [33] and [115]. For
example, Butterfield and Woodcock [34] have developed an abstract Z-specification of the
ONFT standard [51]. There was no refinement and proof mentioned in [34]. Butterfield,
Freitas and Woodcock [33] have followed the work given in [34] by adding more details
focusing on the structural aspects of the flash devices together with proof using Z/Eves.
Ferreira et al. [54] have developed and verified a VDM specification of the Intel Flash

115

116 Chapter 7 Comparison with Related Work on Verifying Flash File System

File System Core [67]. Alloy [81] and HOL [64] were used as tools for model checking
and theorem proving in [54]. They stated that this work has not been completed yet
they still have difficulties of translating VDM to HOL. The work contributed by Kang
and Jackson [87, 88] is a formal specification and analysis of a flash-based file system in
Alloy. This work was focused on basic operations of a filesystem and features covering
wear-levelling and fault tolerance. Another work developed by Taverne and Pronk [115]
is a formal development of a POSIX-like file store using a flash memory. Promela [74] is
the formal language used in [115] while model checking using Spin [75] is a mechanism

used for verification. However, the wear-levelling was not covered in this work.

This chapter first gives an overview of related work in Section 7.2. A comparison covering
particular points is given in the following section. Our work is compared with three pieces
of related work that apply various methods (i.e. Alloy, VDM and Z) to the file store

problem.

7.2 Related Work

Three related bodies of work are chosen for comparison with our work. First is the
work of Kang and Jackson [87, 88] in Alloy; second is the work carried out by Ferreira
et al. [54] in VDM; and third is the work of Freitas et al. [58] in Z. As mentioned in
Chapter 2, VDM and Z are state-based approaches like Event-B that make it easier
to compare. In the case of Alloy (a declarative language which is designed for model
checking [81]), the features which are covered in the Alloy work are similar to our work.
Namely, this work specifies read and write operations of both the file system layer and

the flash interface layer, and also covers the wear-levelling process.

7.2.1 Alloy

The specification and analysis of a flash file system are described in [87]. This work
demonstrated one abstract level of the POSIX file system which is later refined to link
with the flash interface layer. This work focused on read and write operations. Other
basic operations such as delete and move were not mentioned. This work did not focus
on the tree structure. The location of each file is represented by a sequence of directory
names. Two issues which were covered in this work are wear-levelling and fault-tolerance.
In the case of the wear-levelling process, they described three steps of the reclaim pro-
cedure. First, look for a dirty block which contains obsoleted data and has the lowest
erase count. Second, relocate the valid pages (that may exist) in the selected block.
That is, rewrite the valid pages to new page locations (which are available) and then
re-map to the new locations. Third, erase the selected block. This block becomes avail-

able to be reused. Considering fault-tolerance, this work focused on power loss recovery.

Chapter 7 Comparison with Related Work on Verifying Flash File System 117

The specification was based on the mechanism described in the specification of the Intel
Flash File System.

The Alloy Analyzer [81] was used as a model checker to check the refinement properties
(which relate the abstract file system with the concrete file system, taking account of flash
architecture) for read and write operations. This kind of verification is fully automatic
within a finite scope. They stated that the total size of the file system they verified
was 24 data elements (with 6 flash pages). The refinement properties were checked in
approximately 8 hours. A number of iterations were used to correct the model when
non-trivial bugs were found during the model-checking process. Note that Alloy does not
have refinement built in. They manually defined the relationship between the abstract
state-variables with the concrete state-variables together with assertion. Details can be
found in [87].

7.2.2 VDM

The work given in [54] was aimed at specifying and verifying the Intel Flash File System
Core [67] focusing on the file system layer. The flash interface and the low level layers
were not covered in this work. A naming structure was used to define file locations
instead of the tree structure (using parent function). The location of each file was

represented by a sequence of directory names.

This work was carried out by using VDM as a formal language for specification. HOL [65]
and Alloy were used for theorem proving and model checking respectively. In order
to verify the model, the VDMTools [41] was used to generate POs and translate the
VDM model into an HOL format for proof. Alloy played an important role to generate
counterexamples to proof obligations, when there was a PO that could not be discharged
by the prover. However, manual translation was needed to convert the VDM model to
Alloy. In this work, some POs could not be discharged using the prover and had no
counterexample found. They needed to prove these POs by hand.

This work was just started and has no refinement. They demonstrated one level of
specification and its verification. A small set of features was addressed. This work did
not mention which basic functionalities of a file system they covered. In the paper, they
focused on only the delete operation covering delete file and directory, and showed how
POs of these operations can be discharged. Other features, such as specification of the

flash interface layer, were considered as future work.

723 Z

The work given in [58] is a Z specification and verification of the POSIX file system

covering basic operations of a file system such as read, write, create, delete, etc. This

118 Chapter 7 Comparison with Related Work on Verifying Flash File System

work is based on the specification of the Unix filing system developed by Morgan and
Sufrin [101]. In this specification, instead of using a tree structure, the location of each
object was formulated as a sequence of directory names, which is the path of each file.
This work concentrated on file contents and naming operations used for manipulating
these rather than structure manipulation operations such as directory copy and move.

However, this work did not cover the specification of the flash interface layer.

The Z formal language was used to specify the model. Z/Eves was used as a tool for
verification (that is, theorem proof). Proof statistics given in this work shows 1337
proof steps in total. Those were classified into trivial steps (48%) relying on automation
rules included in Z/Eves, intermediate steps (34.8%) requiring knowledge of how Z/Eves
conducts the transformation, and creative steps (17.2%) requiring domain knowledge of

theorem proof such as instantiation.

In addition, there is another model of a flash memory specified in Z which was developed
by Butterfield et al [34]. This work focussed on the ONFI specification [51]. Three main
operations, page-read, page-write and block-erase were addressed. However, this work
did not cover the specification of the file system layer (that involves basic file operations
such as open, read and write a file). They presented one level of specification and no
proof is mentioned in this work. This work, [34], has been refined by adding more design
details of the flash structure in [33]. The work of Huges [78] is also a Z specification of
a visual file system. In this specification, transitive closure was chosen to specify the
main property of a tree structure, e.g. reachability. However, the no-loop property was
not mentioned in this specification. In addition, refinement and proof were not given
in [78]. Finally, we used transitive closure indirectly in order to make our model easier

to prove, as already discussed in Chapter 4.

7.3 Assessment and Comparison

Besides different tools and methods used, key points which are selected to compare with

the related work are discussed below.

7.3.1 Point 1: Features

Table 7.1 shows a comparison between our work and other related work consisting of
the work in Z, Alloy and VDM. The specification of the file system we developed was
based on the architecture of the Intel Flash File System, like the work in VDM. Our
specification of the file system covers not only read and write operations like [87] but also
basic operations such as create, move and delete, and access permissions. In addition,
our work also cover a specification of the flash interface layer focusing on page-read, page-

program and block-erase operations which are interfaces provided to the file system layer.

Chapter 7 Comparison with Related Work on Verifying Flash File System

119

TABLE 7.1: Feature Comparison

Features Event-B Z [58] Alloy [87] | VDM [54]
file system architecture Intel POSIX POSIX Intel
flash interface specification ONFi no ONFi ONFi
structure tree-based | path-based | path-based | path-based
create yes yes yes yes
delete yes yes no yes
move yes yes no no
copy yes no no no
read,write yes yes yes no
open, close yes yes no no
truncate no yes no no
mkdir, rmdir yes yes no yes
permissions yes no no no
fault-tolerance yes yes yes no
concurrency yes no no no
flash operations
page read/program yes no yes no
block erase yes no yes no
wear-levelling yes no yes no
executable implementation yes no no no

Compared with others, first, the work in VDM covered only the file system layer focusing
on some basic operations such as delete (others, such as read and write operations, and
the flash interface layer have not been specified yet). Second, the work in Alloy focused
on only read and write operations. This work also covered the wear-levelling process and
the fault-tolerance which is similar to our work. Third, the work in Z is a specification
of POSIX file system focusing on basic functionalities for files and directories such as
create, open, read and write operations. In this work they concentrated on the naming
operation instead of copy and move directory. However, this work did not cover the

specification of the flash interface layer.

The structure of the file system layer we modelled is the tree structure which is different
from others. We have found that representing the tree structure as a parent function
makes it easier to copy and move subtrees, compared with the naming structure (or
path-based). For example, in order to move any subtree, only the parent of the root of
the given subtree is required to be changed. On the other hand, if we were to represent
the file structure as a path-based structure, the path of all objects belonging to the

subtree must be changed.

Fault-tolerance, concurrency and wear-levelling process are three main issues that are
addressed in our our development. It can be seen that concurrency were not addressed
by others, fault-tolerance and wear-levelling were covered is some work. Unlike all the

other work, an implementation of the model is also covered in our work. The aim of

120 Chapter 7 Comparison with Related Work on Verifying Flash File System

this part is to show that our model is implementable following from the systematic

translation rules proposed in Chapter 8.

Compared with other work, a specification of a visual file system in Z developed by
Hughes [78] is similar to our work, since they used the tree structure as a representative
of the file system. However, the specification of this work did not cover the no-loop
property and has no proof supported. In our work, we have already proved that our
model preserves the tree properties (no-loop and reachability properties). The work
of Hesselink [70] is another work aimed at dealing with the hierarchical file structure
covering making and moving directories. This work represents the file structure using
path-based while our work used a parent function. However, [70] did not cover the flash
specification. The work of Taverne and Pronk [115] is a POSIX-like file store using a
flash memory. The structure of [115] is a path-based structure which is different from
our work. Basic operations including files and directories manipulation were covered

in [115] but the wear-levelling process was not addressed.

7.3.2 Point 2: Refinement strategy

In our work, an incremental refinement strategy is the main methodology used for our
formal development. We used refinement to introduce new features in an incremental
way to develop our models. After that (when all required features were addressed),
structural refinement was used to refine the model by adding more design details to
relate the specification of the file system to the flash specification. For example, we used
the atomicity decomposition technique [31] as a mechanism to decompose an atomic
event named write-file into start-write, page-write and end-write, in order to satisfy the

page-program operation provided by the flash interface layer.

In our development, an incremental approach was chosen to make the model simpler
and easier to prove. Namely, in each step, a small set of features is introduced, the
complexity of modelling is reduced. Specifying everything in one level of specification
makes models more complex and difficult to prove. For example, if we were to introduce
files and directories in the same level as specifying the tree properties, then the create
event would be replaced by events crifile and mkdir because files and directories are
different. Therefore, instead of proving only that the create event preserves the tree-
properties, we would need to prove that both events, crifile and mkdir, preserve the
tree properties. In our approach, since we have already proved that the create event
preserves the tree properties (in the abstraction), we do not need to prove it again (in the
refinement) in order to show that events crifile and mkdir preserve the tree properties

if they are refined events of the create event.

A distinguishing feature of our treatment of the flash file system problem is the use

of multiple levels of refinement to relate an abstract model, with large atomic reads

Chapter 7 Comparison with Related Work on Verifying Flash File System 121

and writes on abstract data structures, to a model with more complex concrete data
structures and more fine-grained atomic steps. As stated in [47], “an abstract program
[or specification] is, in general, easier to prove correct than a concrete one, this simplifies
the structuring of the verification process”. Additionally, as presented in [44], the use of
multiple levels of refinement makes the abstraction gap relatively small at each stage.
That means the gluing invariants required for refinement verification are also relatively
simple. We believe that this relative can ease proof effort. This is testified by the
proof statistics we have given in Section 4.14 and 6.7. In addition, as we have already
discussed in Chapter 4 and 5, the use of multi-levels also makes an evolution process of
the model easier to carry out. Namely, if we were to specify everything in one level, this
would make model more complicated and difficult to modify. In the case of multi-level
approach, each level has its own individual purpose based on the features/requirements
that have been introduced in that level. Thus, modification can be made directly to the

level where the changes affect, then such changes will be propagated down automatically.

We also used the machine decomposition technique [26] to decompose our model into
sub-models that can later be refined separately. As stated in [44], this is another dis-
tinguishing feature of our work. While it is well-known that decomposition is critical
for scaling of formal development, it is rare to find examples of its application in prac-
tice. Our flash file system development represents an exemplar of multi-level refinement
and of machine decomposition that we believe others could learn from. This role as an

exemplar is an important contribution of the thesis.

Compared with others, most of the related work has only one level of specification such
as [34], [54], [78] and [115]. Another work given in [87] presented an abstract file system
together with one level of refinement. It can be seen that an incremental refinement

strategy is not the way they used to develop models.

7.3.3 Point 3: Verification Techniques

Theorem proving is a mechanism used for verifying our models like the work in VDM [54]
and Z [58] while the work in Alloy [87] used model checking as a technology to analyse
the model. [54] used theorem proving at the first step of verification. If some POs could
not be discharged then model checking was used to analyse and find counterexamples.
However, manual translation was needed for translating VDM to Alloy. Some POs were
discharged by hand when counterexamples were not found. The details of proof statistics

were not given in this work.

In the case of the Z model [58], they need to define proof scripts by hand before proving
using Z/Eves. Based on proof statistics of this work shown in Table 7.2!, more than 50%

!Note that superscript a represents the number of POs that were discharged automatically while
superscript i represents the interactive proofs.

122 Chapter 7 Comparison with Related Work on Verifying Flash File System

TABLE 7.2: Proof Comparison

Criteria Event-B Z [58] Alloy [87] VDM [54]
mechanism proof proof model checking proof+

model checking

tool Rodin Z/Eves Alloy Analyzer | HOL + Alloy
number of POs 1069 219 na na

(1028% + 41%) | (proof scripts)

total proof steps 577 1337 na na
trivial steps 449 (78%) 642 (48%) na na
intermediate steps 43 (7%) 465 (35%) na na
creative steps 85 (15%) 230 (17%) na na

of the proof steps (consisting of 17.2% creative and 38.4% intermediate) are non-trivial.
This seems to be that proving this model was not easy. Namely, a large number of
interactive proving and knowledge in theorem proving are required. In this work, there
is no statistics that make it clear about the number of proof scripts and steps which

were discharged automatically by the tool.

In order to make a reasonable comparison, we classified the complexity of our proof
steps into three categories (i.e. trivial, intermediate and creative) like [58]. In our
circumstance (in Event-B and Rodin), creative steps cover particular kinds of proof steps
such as adding hypothesis, instantiation, case distinction and proving by contradiction.
Intermediate steps are simple kinds of interactive steps such as applying implication,
removing negation, rewriting set equality, etc. Finally, trivial steps in our circumstance
involve interactive steps that require little thought by user — such as simplification,

trivial rewrites, equality substitution, etc.

Considering Table 7.2, in our development, a total 1069 of POs were generated by the
Rodin tool. 1028 POs (96%) were discharged automatically while other 41 POs were
discharged interactively. In case of automatic discharge, all proof steps required for
discharging each PO are trivial and performed automatically by the Rodin tool. Proving
the other 41 POs involves 577 proof steps. 449 (78%) of them are trivial steps, 43 (7%)

of them are classified as intermediate steps. The rest, 85 steps (15%), are creative steps.

In case of trivial steps, they were performed automatically by the Rodin tool. Other

types of proof steps (intermediate and creative) required interactive proving.

In addition, introducing additional invariants and theorems which are used for discharg-
ing POs or proving some system properties is also considered as a kind of creative step
in Rodin. (In our development, 16 theorems were introduced to help proof.) The ad-
ditional proved theorems we introduced can be reused to discharge some similar POs.
For example, as discussed in Section 4.14, a tree-join theorem which was introduced
in a context can be reused to prove that events create, copy and move preserve the

tree properties. That is, instead of reproving the same thing in different events, this

Chapter 7 Comparison with Related Work on Verifying Flash File System 123

technique makes interactive proof easier and saves the time required for proving.

7.4 Summary

We have outlined an overview of related work together with detailed-comparison with
three pieces of related work in Alloy, VDM and Z. The features which were covered
in each work are partially different from each other (see Table 7.1). For example, our
work was focused on the tree-structure while others were based on naming-structure
(or path-based). Concurrency was addressed in our models while it was found in other
related work. Our work covered both the file system layer and the flash interface layer.
Theorem proving is our methodology used for verification like the work in Z and VDM.
An incremental refinement was used as a main strategy in our formal development which
is different from others. As already discussed in Section 7.3.2, we have found that this
approach can make models easier to specify and manage (e.g. modification of models).
Additionally, we found that multi-levels of refinement also help evolution of the models,

as already discussed in Chapter 5.

Chapter 8

Systematic Translation of
Event-B Models into Java Code

8.1 Introduction

This chapter is aimed at outlining rules for translating Event-B specifications into Java
code. We follow an object oriented programming approach. We provide systematic
translation rules focusing on class construction and event translation together with ex-
amples that we believe other developers can learn from. The examples are based on the

flash file system that have already discussed in previous chapters.

We chose Java because we can preserve modelling structure in Java. Java supports
an object oriented programming that we follow. Java is an object oriented program-
ming language providing many features that are useful for system development, such as
reusability, polymorphism, inheritance, etc [42]. The Rodin toolset and most of plug-ins
are based on Java-Eclipse. We believe that our rules would be easier to collaborate with

others in future.

The rules we propose here are aimed at general use, not just for the file system model.
However, limitations still remain. Some lines of Event-B cannot be translated using
our rules (these were translated individually by hand). At the moment, we could not
define all possible rules for translating Event-B, but we have given some guidelines to

be followed in general. Details are discussed in Section 8.26.

This chapter begins with rules for constructing classes from the Event-B specification
(in Section 8.2) before focusing on event translation in Section 8.3. Related work is

discussed in Section 8.4 and Section 8.5 concludes the chapter with some discussion.

125

126 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.2 Class Construction

To describe how classes are constructed, we divide our explanation into two categories
based on where classes come from: (i) contexts and (ii) machines. These two categories
are the main structures that can be used to construct classes. In the case of contexts,
each defined type is considered to become a class. In the case of machines, we have two
sub-categories. First is a set machine classes, which are constructed from the machine
themselves. Second is a set of internal classes, which are constructed from machine

variables.

8.2.1 Defined Types in a Context as Java Classes

A general rule for translating a defined type into a Java class is given in Figure 8.1.
Suppose we have a defined type named ST specified in a context given on the left
of Figure 8.1. Constants p1OfST, p20fST, ..., pnOfST represent the properties of ST,
which are specified as total functions mapping to the type of each property. Each Tz can
be a user-defined type or a general type such as N, BOOL, etc. In the implementation,
based on the ST specified, we will get a class representing this type on the right of
Figure 8.1. The result class is called ST and includes an attribute for each property of
ST defined in the context.

Set s: ST

ST,... e
Const ant s: Tl plO ST,

plCF ST, plOF ST, .. ., pnCF ST T2 p2OCF ST;
Axi ons .

plOST € ST —» T1 Tn pnO ST,

p20f ST € ST — T2

pnOxf ST € ST — Tn

FiGURE 8.1: Rule 1: Converting a defined type to a class

Additional methods should be introduced in this class in order to get and set the value
of each attribute, as an example given in Figure 8.2. However, they are not required for
all attributes. For example the set method is not required for the static properties that

are not allowed to be modified, such as a block id of each row address, etc.

Note that if there are no specific properties specified for any defined type, this type will

become a class with no specific attributes.

To illustrate the application of Rule 1, we chose part of our flash file model to be
applied. In our development, we have several data types, such as OBJECT, USER,
GROUP, PDATA and RowAddr, which are defined as carrier sets in contexts. These

Chapter 8 Systematic Translation of Event-B Models into Java Code 127

public T1 get_plOF ST(){

return plcf ST;

FI1GURE 8.2: A get-method of ST

types represent records which are specified as projection function. Figure 8.3 gives an
example of PDATA and RowAddr type-specification. PDATA is composed of object id,
page index, version number and data, while RowAddr is composed of LUN id, block id
and page id. Figure 8.4 shows classes (PDATA and RowAddr) which are constructed

Sets
PDATA, RowAddr, ...
Constants
0bjOfpage, pidxOfpage, versOfpage, dataOfpage
lidOfRow, bidOfRow, pidOfRow, ...
Axioms
0bjOfpage € PDATA — OBJECT
pidxOfpage € PDATA — N
versOfpage € PDATA — N
dataOfpage € PDATA — DATA

lidOfRow € RowAddr — N
bidOfRow € RowAddr — N
pidOfRow € RowAddr — N

FI1GURE 8.3: A context representing part of defined types

from the definition specified in Figure 8.3 to which Rule 1 is applied.

PDATA RowAddr
OBJECT obj O page; int |idORow,
i nt pidxXf page; int bi dOf Row;
int versO page; int pi dOf Row;
DATA dat aOf page; .

FIGURE 8.4: Classes implementing PDATA and RowAddr

8.2.2 A Machine as a Class

Figure 8.5 gives a general rule for constructing a class from a machine named MCH. To

translate a machine, the machine itself becomes a class containing attributes, which are

128 Chapter 8 Systematic Translation of Event-B Models into Java Code

constructed from machine variables and their corresponding typing invariants. Machine

Machi ne NMCH cl ass NCH

Vari abl es:
I nvari ants:
typi ng-i nvs

Event s: }//> net hods

FiGURE 8.5: Rule 2: Translating a machine into a class

events are implemented as methods of the machine class. Details of the transformation

of events into Java code will be addressed later in Section 8.3.

As given in Figure 8.5, to implement attributes of a machine class, only typing invariants
and related variables are selected to define those attributes. We proposed two major
sub-rules for translating two different types of machine variables: (i) a simple variable
which is specified as an element of a set and (ii) a set variable which is specified as a

collection of data. Details are explained below.

First, we have a variable named b which is specified as a single element of B, as can be
seen from Figure 8.6. Thus, in the implementation, b becomes an attribute (which is
typed B) of the machine class named MCH.

Machi ne NCH VCH
Vari abl es:

b, ... B b;
I nvari ants:

beB

Fi1cURE 8.6: Rule 2a: Translating a simple variable in a machine class

Second, Figure 8.7 reveals that variable a is specified as a set of instances of A. This
variable will become an attribute of the interface class which is implemented as a col-
lection of instances of A. In Java, a collection of instances can be implemented by using
arrays or other structures such as linked lists, trees, etc [56]. An array is simpler and
easier to follow, compared with using linked list which is more complicated but flexible
for memory allocation (and flexible for unbounded lists of instances). That means, each
structure is suitable for a particular type of data collection. For example, if the number
of instances is unbounded then the linked list is appropriate for implementing a list of
these instances. On the other hand, if the maximum number of instances is known,
implementing using array would be appropriate. In order to make our translation rules
more general, we will not choose one of those, instead we will use the '_Collection’

term to represent a collection of classes’ instances. In the implementation, for example,

Chapter 8 Systematic Translation of Event-B Models into Java Code 129

ACollection a; will be replaced by A[]| a; if it is implemented using array, or A a; if

it is implemented using a linked list where A is implemented as a linkable class!.

Machi ne NCH NCH
Vari abl es: _

a, ... ACol l ection a;
I nvari ants:

acA

FIGURE 8.7: Rule 2b: Translating a set variable as a collection in a machine class

Figure 8.8 gives an extension rule for implementing a property which is specified as a
partial function over natural numbers. In the machine, Variable p is specified as an
array of A instances. In an implementation, p becomes an attribute of the machine class

which is implemented as an array of A instances, as given on the right.

Machi ne MCH MCH
Vari abl es:
P, ... A pll;
I nvari ants:
peN-+A

FIGURE 8.8: Rule 2x: Translating an array property

Note: In the case of machine decomposition, we may have several machine classes rep-
resenting the entire system being developed. For example, if a machine is finally de-
composed into n sub-machines then we will get n machine classes representing those n
sub-machines. From Figure 8.9, the machine A is decomposed into A1l and A2. As given
in the figure, A1 and A2 will become machine classes that interact with each other via
shared events, as discussed in Section 4.13. Again if further machine decomposition is
applied to the machine A1 to gain sub-machines Ala and Alb, then we will finally have
three machine classes Ala, Alb and A2 representing such sub-systems being developed.
(The Al class is replaced by Ala and Alb.) In the implementation, each machine class
interacts with its related machine by method calling. Details of implementing of shared

events are given in Section 8.3.4.

8.2.3 Machine Variables as Classes

The purpose of this section is to explore systematic rules used for constructing internal

classes from machine variables when additional properties are specified for them.

'A linkable class is a class that has at least one linking attribute representing the object which is
next to itself. This attribute is typed as the class name. The number of linking attributes depends on
the type of linked lists (i.e. one for a single linked list; and two for a double linked list) [56]

130 Chapter 8 Systematic Translation of Event-B Models into Java Code

shared
eventn

shared
eventl

FIGURE 8.9: A diagram representing machine decomposition

First, from Figure 8.10, if p! specifies a specific property of variable a and is typed as
T1, then a becomes a class named A and pl becomes an attribute of class A presented
on the right hand side.

acA | | ITTTToTTTTTToTT
plea—>T1

FIGURE 8.10: Rule 3: Function over a set variable

Second, from Figure 8.11, if ¢ is a subset or equal to ¢ and elements of sets can move in
and out of ¢ [and there are no specific properties for ¢, then ¢ becomes a boolean state
property of A. For example, r_opened_files C files, a file element can be moved to the
r_opened_files state when it is opened and moved back when it is closed. On the other
hand, for example, files C objects, when a file element is removed from files, it is also
removed from objects totally. That means, in this case, files shall not be implemented
as a boolean attribute. The appropriate way to implement files is to construct files as

a subclass of the objects class which is discussed later in Rule 5.

NN

bool ean c;

FIGURE 8.11: Rule 4: Subset of set variable as a boolean property

Third, from Figure 8.12, if we have p1, ¢ and d specifying specific properties of a like
the previous case, but we also have specific properties for ¢ and d then we will get a
result given on the right. Namely, ¢ and d are constructed as sub-classes of A, named
C and D respectively. p! is a common property of both C' and D, while p2 and p3 are
specific properties of C' and D respectively.

Fourth (as can be seen in Figure 8.13), if we have an invariant saying that p5 € ¢ <> T'5,

this means an element of ¢ may have more than one corresponding value of T5. This

Chapter 8 Systematic Translation of Event-B Models into Java Code 131

A
cca T1 p1
dca
cnd={} is-a is-a
plea —>T1
p2 € c — T2 C C
p3ed — T3 | | eeeeeeeeeee | e
ce T2 p2 T3 p3

FIGURE 8.12: Rule 5: Subset to sub-classes

kind of property will be implemented as a collection of T5’ instances as given on the

right of the figure.

p5 € ¢ & T5 .
T5Col | ecti on p5;

FIGURE 8.13: Rule 6: Relation to a list-attribute

Fifth, if any property is specified using a partial function (rather than a total function),
we have added an additional rule to deal with this as given in Figure 8.14. This partial
function means that not all elements of ¢ have this property. Not only is p6 implemented
as an attribute of C, but we also have an additional flag attribute to indicate that p6 is
valid only when this flag true. For example, getting the value of p6 succeeds only when

existPo is true.

C
p6 € c +— T6
T6 p6;
bool ean exi st P6;

Fi1GURE 8.14: Rule 7: Partial function to class property

Figure 8.15 gives a rule for translating any property which is specified as a partial
function over numbers. On the left, p7 is a property of a which is specified as an array
of elements typed T7. The right hand side shows the A class where p7 is implemented
as an array of T7. The domain of the array property should be contiguous although the
specification (N + T'7) is defined as a partial function. If the domain is not contiguous,

implementing as a dynamic structure such as a linked list would be more appropriate.

132 Chapter 8 Systematic Translation of Event-B Models into Java Code

p7 € a—(N+-T7) | |~

F1GURE 8.15: Rule 8: Translating an array property
8.2.4 Application of Rules

In our development, we have two main variables specified in the file system machine:
files and directories (others such as users, groups, etc., will not be focused on in this
report). These two variables are implemented as attributes of the machine class, named
FILEMCH. The machine class we get is given in Figure 8.16 where Rule 2b is applied
to set variables files and directories. Namely, files and directories are implemented as

collections of files and directories, respectively.

FILE [] files;

DI RECTORY [] directories;
int numfiles;

int numdirs;

DI RECTORY root;

FI1GURE 8.16: A machine class representing the file system model

In this model, we also have root € directories specified as a machine invariant. Thus,
root is implemented as an instance of DIRECTORY in the FILEMCH class, where Rule
2a is applied. Attributes num_files and num_dirs are used to keep the number of files

and directories, respectively. In Event-B, these two properties are specified as

num_files = card(files)

num_dirs = card(directories)

Moreover, we also have other properties specified in the machine. Some are specific to
files, and some are common to both files and directories. Below are examples of applying

translation rules that have been discussed previously.

In our development, we specified a set of objects as OBJECT instances. Each object can
be either a file or a directory. Figure 8.17 shows some of machine invariants modelling
these properties. From the specification given in Figure 8.17, we get a class diagram
representing classes OBJECT, FILE and DIRECTORY given in Figure 8.18. As pre-

viously mentioned, when an element of files or directories is removed, it is also removed

Chapter 8 Systematic Translation of Event-B Models into Java Code 133

objects C OBJECT

files C objects

directories C objects

files U directories = objects
files N directories = &

FIGURE 8.17: Part of machine invariants defining objects, files and directories

from the set of objects, that means these files and directories shall become subclasses of
the objects class. In addition, we have specific properties for files and directories, thus
Rule 5 is applicable to this case. (Note that we use UPPERCASE to represent classes.)

FI1GURE 8.18: A class diagram of OBJECT, FILE and DIRECTORY

The OBJECT class is the generalized class of FILE and DIRECTORY. The common
properties (or attributes) of each object are specified as a number of machine invariants

shown in Figure 8.19. These properties lead us to obtain an OBJECT class with at-

parent € objects \ {root} — directories
obj_name € objects - NAME
createdDate € objects — DATE
lastModiDate € objects - DATE
obj_owner € objects — users
obj_group € objects — groups
obj_perms € objects <> PERMISSION

FIGURE 8.19: Part of machine invariants defining objects’ properties

tributes given in Figure 8.20 where Rule 3 and Rule 6 are applied. Note, because the
obj_perms (objects’ permissions) is specified as a relation — that means one object may
have more than one permission types (based on its owner, group and world) — we imple-
ment it as an array of permission types. Additionally, as mentioned earlier, additional

methods for setting and getting the value of each attribute are also required.

The specific properties of files which are specified as machine invariants are given in

134 Chapter 8 Systematic Translation of Event-B Models into Java Code

DI RECTORY parent ;

NAME obj _nane;

DATE cr eat edDat e;

DATE | ast Modi Dat e;

USER obj _owner;

GROUP obj _gr oup;

PERM SSION [] obj_perm

FIGURE 8.20: An OBJECT class

Figure 8.21.

fat € files — (N + RowAddr)
fsize € files > N
current_version € files — N

FIGURE 8.21: Part of machine invariants defining files’ properties

File status values are also specified as state sets given in Figure 8.22. Note that, in an

alternative way, we could specify the status values as total functions given in Figure 8.23.

w_opened_files C files
writing_files C w_opened_files
r_opened_files C files
reading_files C r_opened_files

FIGURE 8.22: Part of machine invariants defining files’ status, typel

w_opened_files € files - BOOL
writing_files € w_opened_files - BOOL
r_opened_files € files — BOOL
reading_files € r_opened_files - BOOL

FIGURE 8.23: Part of machine invariants defining files’ status, type2

The reason we chose the first approach (using state sets) is to make proof simpler (as
already discussed in Chapter 6). However, both led to the same result, as specified as

properties of class FILE described in Figure 8.24, where Rule 3 and Rule 8 are applied.

Chapter 8 Systematic Translation of Event-B Models into Java Code 135

FI LE ext ends OBJECT
RowAddr[] fat;

int fsize;

int curr_version;
bool ean w_opened,;
bool ean witing;
bool ean r_opened,;
bool ean reading;

FIGURE 8.24: FILE Class

Figure 8.25 shows a DIRECTORY class where members represents a list of children be-

longing to each directory, while dsize represents the number of children of each directory.

DI RECTORY ext ends OBJECT

OBJECT [] menbers;
int dsize;

FIicure 8.25: DIRECTORY Class

Note that, so far, there are no specific properties for directories specified in the model.

However, in Event-B, members and dsize could be specified as

members = parent !
dsize = directories — N
Vd-d € directories = dsize(d) = card(members(d))

8.3 Event Transformation

In general, the reader may understand that all events specified in the machine will be-
come methods of the machine class. The reader may have thought that one event must be
translated to exactly one corresponding method. In fact, several events may be merged
into one corresponding method, and an event may have more than one corresponding
method. For instance, one event may have one method implementing the event itself
and one separate method implementing one or more of its guards that return boolean

values.

In this section, we divided event-transformation rules into several sub-sections covering

basic events, event groups, event loops, shared events and concurrent events.

136 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.3.1 Basic Events

This section aimed at proposing general rules used for translating basic events to Java
methods. Generally, in Event-B, an event is composed of four elements: name, param-

eter, guard and action.
evt_name = any i,x where grd(v,i,z) then act(v,i,z) end

Parameters (i,) are defined and constrained by the event guard (grd). Parameters
specified here can be both internal (¢) and external (z) parameters. However, in Event-
B, there is no explicit distinction between internal and external parameters. Thus, we
will impose this distinction through a naming convention (p_i for internal and p_z of
external). The action act is performed only when the guard holds. Here v represents

machine variables.

Simple rules of event transformation:

- An event name becomes a method name.

- A guard becomes a condition within a method and also the declaration of external

and local parameters of the method.

- An action identifies the purpose of the method. It is expressed in terms of program-

ming statements/instructions.

- In addition, some guards can be implemented as separate methods that return a
boolean value. Similarly, an action of an event may be implemented as a separate
method. These depend on styles of implementation and developer’s preferences.
If an action or a guard is complicated and difficult to express in one line of code,
implementing as a separate method would be appropriate. Another reason, based
on encapsulation concept? of the object oriented programming, instead of setting
the value of any attribute directly, using method call would be more appropriate.

Details and examples are given later in this section.

The scheme given in Figure 8.26 is aimed at introducing a prototype of event-to-code
transformation. (Note that BF stands for “B Form” and JF stands for “Java Form”.)
Figure 8.26 (BF) represents an event structure that consists of parameters, guards and
actions. Internal parameters become local variables of the Java method, while external
parameters become method parameters. In this example, prm_i is specified as a local
parameter and prm_z is specified as an external parameter. In the case of a local

parameter, for instance, suppose we specified

2 Attributes of classes should be defined as private or protected and their values are allowed to set or
get via the methods provided [42]

Chapter 8 Systematic Translation of Event-B Models into Java Code 137

grd1_i : prm_i € typeOfprmi
then we will get the declaration of the local variable, prm_i, as
type Ofprmi prm_i; (implementing grd1_ezp)

where typeOfprmi can be user-defined type, int, boolean, String, etc.

BF
Event evt_nanme =
Any prmi, prmx Were
grdl i & //defines prm.i
grd2_x & /] defines prmx
grd3 & grd4 & ..& grdn //pre-conditions
Then
actl
act 2
actn
End
JF. 1 JF. 2
public rtype ntd_nane (type prmx){ public rtype ntd_nane (type prmx){
grdl_exp //declaration of prm.i grdl_exp //declaration of prm.i
if(grd3_exp & & ... && grdn_exp){ if(lgrd3_exp) return err_val ue;
/1if the condition holds proceed if(lgrd4_exp) return err_val ue;
act 1_expression; c
act 2_expression; if(lgrdn_exp) return err_val ue;
/1if all conditions hold proceed
act n_expression; act 1_expression;
return rval ue; act 2_expression;
} .
act n_expressi on;
return err_val ue; return rval ue;
} }

FIGURE 8.26: General rules for event transformation

Additionally, we present two approaches to an implementation of an event guard (grd3
up to grdn) in Java (see Figure 8.26 (JF.1) and (JF.2)). In the case of JF.1, we implement
guards as a compound condition using ‘&&’. When these guards hold, meaning when
the compound condition is true, the actions act! up to actn will be performed. Here
rvalue represents the return value corresponding to the return type (rtype). Similarly, an
error value (err_value) shall be returned if it fails. The return type may be implemented
as void of which the return value is nothing. In another approach, JF.2, we implement
in such a way that if any guard is not satisfied, the method will be forced to abort
and return an error value indicating that executing this method failed. This approach
would be useful if we want to return or report an error message for a particular case of
such failures relating to each particular guard/condition. For instance, we may have a

particular error message for grd3 if this guard or condition is false.

Figure 8.27 gives additional rules for translating an event into Java code based on Event-

B types. In the figure, we can see that ‘€’ and ‘C’ can be used in both declaration and

138 Chapter 8 Systematic Translation of Event-B Models into Java Code

condition. However, implementation of some types is non-explicit. For example, set
and relation operations vary by the style of implementation. That means one line of
B-code representing any action may be implemented in different ways. For example, the
Event-B action writing_files := writing_files U {f} means the given file f is set to be in
the writing state. Thus, we can implement it by setting the writing flag of f to be true
(by f.setWritingFlag()) or we can set the flag value to be true directly (without calling
a method). Another example, if we have wbuffer := {f} < wbuffer meaning releasing
the write buffer of f, then this action might be implemented as a separate method to
release the write buffer and is called like f.resetWBuffer(). On the other hand, its write
buffer might be released directly by setting it to be null as f.wbffer = null.

Not ati on Exanpl e | Meani ng Java
I mpl enent ati on
Condi tion
= X =y x is equal toy X ==y
X #y X is not equal toy X l=y
>, <, 2, = ot her conpari sons >, <, 2= <=
A,V conjunctions (and, or) &&, ||
Assi gnment

The value of x is
1= X 1=y assigned to be equal X =Y;
to the value of y
Arithmetic operations
plus, mnus, multiply, + -, %
+ -, % di vi de

FIGURE 8.27: Additional rules for event transformation

Development of a comprehensive and systematic set of rules for set- and relation-
operation translation is outside scope of this thesis. These depends on programming
styles and developer’s preferences. However, we proposed general rules for translating

them with some examples.

8.3.2 Event Groups

The purpose of this section is to outline rules used for translating a group of events
to a Java method. For instance, how can we implement decomposed events in Java?
Figure 8.28 gives a general rule for translating a decomposed event into Java. The
top of the figure shows an event-refinement diagram [26] representing an abstract event
(abs_evt) which is decomposed into n sub-events: step_1, step_2, ..., step_n. The
bottom represents two different approaches to the implementation of the decomposed
event above. The first (on the left) is implemented as a simple form without separate

methods. The second (on the right) is where sub-events are implemented as separate

Chapter 8 Systematic Translation of Event-B Models into Java Code 139

methods. Based on the definition of the event-refinement diagram, sub-events will be
performed in order from left to right. Thus, this corresponding method is implemented
as a sequence of n steps (or sub-methods), which are ordered in the same way as the
given specification. Namely, the step_1 event must be completed before performing

step_2, and so on.

[stenn | [tpl]

public rtype abs_ntd(ext_prns){

decl aration of int_prms;

if (JF(step_1l.grd)){
JF(step_1.act);
}el sef
JF(evt _fail.act);
return err_val ue;

if (JF(step_n.grd)){
JF(step_n.act);
}el sef
JF(evt _fail.act);

return err_val ue;
}

public rtype abs_ntd(ext_prms){

decl aration of int_prnms;

if (JF(step_1)==false){
JF(evt _fail);
return err_val ue;

i f(JF(step_n)==fal se){
JF(evt _fail);
return err_val ue;

}

return rval ue;

return rval ue; }

FIGURE 8.28: A general rule for implementing event groups

In the first approach presented on the left, the guard of each event is implemented as
a condition of if-statement. If this condition is true, then the corresponding actions (in
Java form) will be performed. If any condition is false, the Java form of the fail_evt.act
will be performed and then return an error value. With the second approach showing
on the right, each sub-event is implemented as a method returning a boolean value (or
any value indicating whether the function being performed succeed or not). That is, if
any method (representing each sub-event) failed, JF(evt_fail) will be performed and the
error value will be returned to indicate that the process being executed failed. Finally,
if all sub-methods have succeeded completely, the return value will be returned at the

end.

Note that we represent JF (Java Form) as a function that transforms the given B-
specification into Java code. Suppose the return value of JF(step_1) is a method public
boolean stepl_mtd(){...}, we will get if(stepl_mtd()==false) { ... return err_value; }
in the first step. For instance, JF (step_1.grd) returns the Java form of the guard of the

step_1 event.

140 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.3.3 Event Loops

There is no semantic notation for specifying loops in Event-B. However, loops can be
modelled in Event-B. For instance, in the refinement diagram on the top-left of Fig-
ure 8.29, we use all(i) to indicate that the step_evt event will be performed for all 4
before performing the event on the right. To specify a loop, additional flag/state vari-
ables are required and used to formulate guards to control the sequencing and iteration
of the events to be performed. In this case, a guard — saying that the number of ¢
that has been performed has not reached the number required — is needed to make the

step_evt event enable. This condition will be false when all steps have been completed.

public rtype abs_ntd(ext_prms){

for(i=init_val;i<=mx_val;i++){
if(JF(step_evt.grd)){
JF(step_evt.act);

[st ep-_evt] e }

public rtype abs_ntd(ext_prns){

while (JF(step_evt.grd)){
JF(step_evt.act);
}

FI1GURE 8.29: A general rule for implementing event loops

In Figure 8.29, we present two styles of implementing event loops. First, a for-loop is
used and then the second a while-loop is used. Each style is suitable for a particular
case. Using a for-loop is applicable only when we have already known the number of
iterations to be performed, otherwise using a while-loop is more suitable. On the top
of Figure 8.29, we present an implementation of for-loop. In this case, the step_evt
event will be performed for all 4 when the if-condition (JF'(step_evt.grd)) is true. Here
init_val and mx_val represent a lower-bound and an upper-bound of the value of i. The
bottom shows a loop event which is implemented using a while-loop. The guard of the
step_evt event becomes a condition of the while-loop. All actions of the step_evt will be

performed while the condition of the while-loop is true.

Chapter 8 Systematic Translation of Event-B Models into Java Code 141

8.3.4 Shared Events

The purpose of this section is to provide a general rule for implementing a shared event
synchronisation. As mentioned in Section 8.2.2, see Figure 8.30 where we have a machine
named A which is decomposed into A1l and A2. Here shared_evt is a shared event of
both Al and A2 before decomposing. The shared event is split into two sub-events
named calling_evt (of the machine Al) and called_evt (of the machine A2). Suppose
the called_evt event of the machine A2 is called by the calling_evt event of the machine
Al, we will get an implementation of the calling_evt as given on the right, which is

located in the machine class Al. The called_mtd method representing the call_evt

public rtype calling_ntd(ext_prns){

event is implemented on the A2 side (or in the machine class A2).
[decl aration of paraneters]
if 1'(JF(Al.calling evt.pre_grd))

Al.calling
_evt
return err_val ue;
Al
A shared_ [rprm=1] JF(A2.called_evt(prns));
""" evt Tttt
A2 if 1'(JF(AL.calling_evt.post_grd))

return err_val ue;
JF(Al.calling_evt.act);
A2.call ed_
evt return rval ue;
}

FIGURE 8.30: A general rule for implementing a shared event

As given in Figure 8.30, when the called event is performed, a return value may be
produced. We present rprm as a parameter to which the return value is returned. This
parameter is a shared parameter specified for an interaction between these calling and
called events. We classify the guard of the calling event into two parts. These two
parts are pre_grd and post_grd, representing parts of the guard before and after calling
respectively. Each of them might be omitted if they are not specified in the specification.
For example, if the return value is not required for formulating any post_grd guard, the
second part of if-condition will be omitted. When the called method has been completed

and all conditions are satisfied, the action of the calling method will proceed.

It is noted that the composition in Event-B is symmetric [26]. There is no hierarchical
or sequencing structure. That is, sub-components or sub-machines interact with each
other via synchronisation over shared events. In Java, we implement the decomposed

model as a hierarchical structure. For example, methods of A2 will be called by Al.

142 Chapter 8 Systematic Translation of Event-B Models into Java Code

8.3.5 Concurrent Events

To implement events as concurrent methods, such events must be implemented as
method classes implementing Runnable or extending Thread [63]. Figure 8.31 shows
a scheme of implementing concurrent methods. Within the method constructor, an
initial values of method variables will be assigned. The initial values depend on the
values of passing parameters (parms). Method run is required for implementing this
kind of method. The purpose of the given Event-B event is expressed within the body
of method run in java form. The action of the event will be performed only when the
guard of the given event holds. (Examples of and details of an implementation are given
in Chapter 9.)

public class ccrt_ntd inplenments Runnabl e{

[decl aration of method variabl es];

/I met hod constructor
public ccrt_ntd (parns){
[assigni ng nethod vari abl es] ;

//run nethod

public void run(){
if(!'JF(ccrt_evt.grd)) return;
JF(stepn.act);

F1cURE 8.31: A scheme of implementing concurrent methods

In Java implementation, new thread will be created every time this kind of method is
called. Several treads which are created will be run simultaneously. The Java code given

below is an example of creating and starting a thread of the method name cert_mtd.

(new Thread(new ccrt_mtd(parms))).start();

8.3.6 Applying the Rules

In this section, we have three examples of event implementation. The first is a simple
example of an implementation of the incr_evt which was given in Section 3.5. This
event is composed of three sub-events: start, step and end. Figure 8.32 shows an imple-
mentation of this event where the rules given in Figure 8.28 and 8.29 are applied. This
event has the effect of increasing the value of x by the value of y. Because there is no
guard specified of the start event (see Figure 3.8), we have only an implementation of

the action part of the start event.

Figure 8.33 shows an example focussing on the flash file model. This example shows
an implementation of the writefile event which is also decomposed into three phases:

w_start, w_step and w_end. Each sub-event is implemented as a separated method.

Chapter 8 Systematic Translation of Event-B Models into Java Code 143

public boolean incr_ntd(){

int n; . .
int x2: Declaration of internal
bool ean fl ag; parameters

n = 0,
flag = fal se; JF(start)

X2 = X;
while (flag == false & n < vy) {
X2 = X2 +1; JF(st
h=n+ L } (step)
}

if(flag==fal se & n==y){
X = X2; JF(end)

flag = true;

}

return true;

FIGURE 8.32: Java code implementing the incr_evt event

The third example is given in Figure 8.34. This figure shows the implementation of
the w_step event where the rule of shared event synchronisation given in Figure 8.30 is
applied. We implement the w_step event as a separate method because this process is
complicated and will be called several times by the writefile method in order to write
a file. Therefore, implementing as a separate method would be more appropriate. This
method is located in the file system layer. In order to write a page, the page_program
method provided by the flash interface will be called. If programming the given page

succeeds, a true value will be returned. Otherwise a false value will be returned.

Note: If we want to implement events writefile and w_step as concurrent methods, these
events must be implemented as method classes implementing Runnable or extending
Thread, using the scheme given in Figure 8.31. Examples and details are given in
Chapter 9.

8.4 Related Work

Recently, several code generators have been developed to translate formal specifications
into programming code such as C++, Java, or Ada. For example, B0 of the B-method is
a final refinement of a B specification that can be translated to programming code [90].
Atelier-B [38] is a tool that can generate C, C++ or Ada code from the B0. Java Card
Code Generator [114], is another example of a code generator used to translate B spec-
ifications to Java code. The BART tool [107] is another tool for automatic refinement
that is currently being developed by ClearSy. This tool aims at automatically refining

the well-detailed B specification to a B0 implementation that can be translated to pro-

144 Chapter 8 Systematic Translation of Event-B Models into Java Code

FS.witefile
public boolean witefile(FILE f, String cnt){
/*
* (1) Start wite, setting tenp-buffer and file state
*/

if(lwstart(f,cnt)) F W start
return false; -

/*
* (2) Loop to wite each page (w_step) to the flash nenory.
*/

bool ean success = fal se;

for(int p=0;p<f.get_wbf_size(); p++){}
/Iwite a single page p
success = w_step(f,p); } w_sten(p)

/1if not success in any page being witten

if(!success){

w_end_fail (f);
return fal se;

}
/*
* (3) End wite
*/
if('w_end(f)){
/1if not success in the |ast step
w_end_fail (f);
return fal se;

} w_end_ok
//return true if all are conpl eted}

return true;

FIGURE 8.33: An abstract method writefile

gramming code using Atelier-B. Other extensions of existing formal methods such as
Object-Z and VDM++ also have code generator tools. For instance, IFAD VDM [9]
supports automatic generation of C++. However, most of code generated from those
tools do not cover all system modules, such as the user interface which is manually

implemented.

Considering Event-B, currently, there are no direct code generators published for Event-
B. However, it has been considered as a future plug-in to be developed for the Rodin
platform [7, 5]. Object-oriented Concurrent-B (OCB) [48, 49], is a recent project aimed
at developing a tool used for designing models of concurrent systems. FEach model is
designed in the form of a Java-like model that can be automatically translated into an
Event-B specification for verification and can be automatically translated into Java code
for its implementation. Our work aimed at directly transforming an Event-B model into
Java code which is different from the work of Edmunds (translating a Java-like model
into Java code). The work of Wright [119] is to translate an Event-B model into C code,
which is a structure programming style. This work focuses on event-transformation. In
addition, UML-B [113] is one of the Rodin plug-ins allowing developers to construct
UML-like models. This plug-in provides UML-like features, such as class diagram, state
diagram, etc. These diagrams are automatically translated into Event-B specification.
In contrast to [113], our approach is to construct Java classes from the Event-B specifi-

cation, instead.

Chapter 8 Systematic Translation of Event-B Models into Java Code 145

FS. w_step
public bool ean w_step(FILE f, int idx){
/l1the given file nmust be in the witing state
/1f ewiting_files
if(tf.iswiting()) {
return;

}

/k

* Cet the buffer content of the page specified
*/

/1idx|->cnt € wbuffer(f)

String pcnt = f.get_wbuffer(idx);

/*

* Construct a page data

pdata € PDATA

obj Of page(pdata) = f

pi dxOf page(pdata) = idx

ver Of page(pdata) = witing_version(f)
dat aOf page(pdata) = cnt

* kK kK

*/
PDATA pdata = new
DATA(file.getd D(),index+1,file.getWitingVersion(), pcnt);
//r € RowAddr
/*
* Call flash APl to programthis page where r is the return val ue
*/
RowAddr r = f.page_progranm(pdata);

if(r==null){ //if not succeeded

[Massage: Witing the given page fails];
}el sef /1if succeeded
/*

* Add new entry to the table of contents

*/

/1 fat_tmp(f) = fat_tnp(f) v{i »r}
TOCEntry tocEntry = new TOCEntry(idx+1,r);
f.addToC t np(i dx+1,tocEntry);

F1cURE 8.34: A method implementing the w_step

For a simple case (e.g. simple data structure), we might use OCB or Wright’s code
generators. However, for a complex structure (such as event decomposition), these
tools may not appropriate. We may use a tool to translate an Event-B model into
classical B specification in order to be converted into B0 that can later be translated
to programming code. However, this requires more work. Additionally, code generators

supporting BO-translation do not support concurrency [38].

8.5 Conclusion and Discussion

Systematic rules that can be used in general are important. These rules act as a frame-
work or guideline for developers to implement the system model. In this chapter, we
have proposed systematic rules for class construction and event translation that would

be useful for developers in translating Event-B models into Java code.

While translating the Event-B specification to programming code, the readers may find
that sometimes it is difficult to express lines of the specification into programming code
because there are no specific rules for translation. As discussed in Section 8.3, one line
of specification may be translated into different styles of programming code. However,

those different styles must be a correct implementation. That means if we know what the

146 Chapter 8 Systematic Translation of Event-B Models into Java Code

specification is or what the purpose of each line of the specification is, we will know how

it can be coded using programming language even there are many styles to implement.

To make these translation rules more useful and applicable in the future, mechanical
application of rules is important. For example, providing an automatic tool to refine
the well-detailed specifications into the normal forms that are able to be applied by the

translation rules.

For example, if we have

acP(A)

specified in the specification, this line should be reformulated as a normal form as

aCA

in order to be able to be translated using Rule 2b.

Another example, if we have any guard specified as

grd:z € A\ a
this guard should be split into
grd_a:z € A (declaration)
grd_b:x ¢ a (condition)

which are the normal forms that are able to be translated using existing translation

rules.

For a complex structure, such as

pET—Y

where x or y are a product of two entities or more.

For example, if £ = a x b, namely, p € a X b—y, = could be reformulated as an Event-B
record, where a and b are specified as its properties. Suppose this record type is named

X in a context, we will get

per—Y

Chapter 8 Systematic Translation of Event-B Models into Java Code 147

where

rCX.

That is, Rule 3 is now applicable. Namely, X becomes a class with an attribute p typed
Y, which is shown in Figure 8.35.

X

A a;
B b
%(. . 5

F1GURE 8.35: An example of class representing compound entity

Similarly, if y is also a product of some entities, such as y = ¢ x d, then we will get a

class representing y where ¢ and d are its attributes.

More systematic rules for implementing patterns of set and relation operations are also
required for future work. As mentioned earlier, these kinds of operations (such as do-
main/range restriction, subtraction, etc.) may be implemented in various ways (de-
pending on programming styles). Our work does not cover all Event-B notations but we

provide the translation rules in general that developers can follow.

In addition, to guarantee the correctness of the translation rules, formal verification of
translation (of both high-level specifications to low-level specifications (that are imple-
mentable) and low-level specifications to generated code) and verified translators are
also important. We need proofs to ensure that the application of rules has been done
correctly. Verification of generated code can be achieved by many approaches, such as
providing an automatic code generator, or by providing assertions to verify the code,
against. For example, in the case of JML (Java Modelling Language) [21], we may gener-
ate assertions from invariants and events specified in the models and then verify the code
using the JML tool. These assertions will help developers to guarantee that Java code
which are implemented preserves those required properties/assertions. An automatic
translation tool is also required, to ensure that the assertions are formally generated
and verified. Additionally, providing verified translators is an alternative approach to
guarantee the correctness of code translation like Atelier-B translators [38] that aim to
translate BO (an implementable form of classical B) into programming code (e.g. C and
Ada).

Chapter 9

An Implementation

9.1 Introduction

This chapter aims to present an implementation of a flash file system. The purpose of
this implementation is to show how the model of flash file system can be implemented,
how the translation rules can be applied, and to convince ourselves and the readers that

the model we have developed is possible to be implemented.

Although we do not have an automatic code generator to translate the formal specifica-
tion into programming code, it does not imply that the final implementation does not
satisfy the given specification or is a bad implementation. To reduce the gap between the
specification and its implementation, we have a set of systematic translation rules that
have already discussed in Chapter 8. Our implementation of the flash-based file system
presented in this chapter follows from the translation rules mentioned. (We manually
transform our models into Java code following those rules.) However, as mentioned pre-
viously in Chapter 8, the rules we proposed do not provide all possible rules to cover all
Event-B notation. For instance, lines of the specification related to set or relation op-
erations (such as restriction, subtraction, overriding, etc.) vary by programming styles.
Although we present no rules specific to these, we have provided general rules that may
be followed.

As mentioned in Section 8.5, we may use code verification techniques — such as JML [21],
automatic code generation — to guarantee the correctness of code. For example, we
may generate assertions (in JML) from Event-B specifications and use JML tool to
verify code. In addition, providing verified translators is another approach to ensure the
correctness of code translation. This is another way of reducing the gap and gaining
higher assurance. However, because of the time constraint, we did not use this technique

for our implementation.

In this chapter, we begin with outlining a prototype of a flash file system in Section 9.2.
149

150 Chapter 9 An Implementation

After that, a conclusion and future work are given in Section 9.3.

9.2 Prototype

Figure 9.1 shows an overview of the flash file structure which is summarised from the
architecture of the Intel Flash File System Core Reference Guide [67]. In Figure 9.1,
the file system layer is the part we specified in Chapter 5. We implemented this part as
user /application interfaces providing commands to animate the file system. The flash
interface layer down to hardware layer, the dashed box, is the part which is simulated.
Some intermediate layers in the dashed box, such as the data object and the basic
allocation layers are not mentioned in this figure. We assume that all layers within the
dashed box are composed as one layer providing page_read and page_program interfaces
to the file system layer. This simulation part corresponds to the flash model we specified
in Chapter 6.

User/Application/OS L ayer

A

File System L ayer

Flash Interface L ayer

A

FLASH HARDWARE

FIGURE 9.1: A structure of a flash file system

A prototype which is outlined in this section was implemented using Java on the Eclipse
platform. Part of the simulation aims at simulating an array of pages within the flash
memory and animating what changes are made to the flash array whenever file operations

have been performed.

The reasons we chose to simulate a flash device rather than use the existing real flash are
(i) simulation of faults is easier to be made since our work contrate on fault-tolerance,
(ii) not all flash devices follow the ONFI standard we have followed, and (iii) because of

the competition, underline specification of the recent products in the market are secret.

Figure 9.2 shows an example of flash simulation. It displays a current array of pages

Chapter 9 An Implementation 151

within a flash memory. Each page is identified by a row address which is composed of
a LUN address, a block address and a page address. Besides the address, each page
contains its content and status fields which are used to identify the current status of
each page, etc. In Figure 9.2, there are two versions of file f. The second version is valid
while the previous version is obsolete. When the file is opened for reading, all pages

corresponding to the valid version are read.

mainapp (22} [Java Application] C:\Program Filesi Java'jrecibintjavaw, exe (74 Feb 2010 10:06:44)

Suirootrprintarray

LU BLOCE PALGE Prograrumed Chsolete Version FID PID Content
u} u} u} true false u} oo diroot:null:su:700

a a 1 true true a 147153739 0 f:f:0:5u:700:

n] u] Z true trus 1 14715739 1 Thi=s is the orig
u} u} 3 true true 1 14715739 2 inal content of

a 1 a true true 1 14715739 3 file £

u} 1 1 True True 1 14715739 0 f:f:0:3:5u:700:

u} 1 2 true false 2 14715739 1 Thi=z is the new

u} 1 3 true false z 147157359 2 content of the £
n] 2 u] true false z 14715739 3 ile £

a 2 1 true false 2 147153739 0 f:f:0:3:5u:700:

u} Z Z false false u} oo

u} 2 3 false false u} oo

u} 3 a false false a oo

u} 3 1 false false u} oo

u} 3 2 false false u} oo

PR

1 3 Z Ialse Ialse u uou

1 3 3 false false u} oo

su:rootxopen(f, r)

fid =14715739

suirootx>resd (14718739

This is the new content of the file £

Surrooti

FIGURE 9.2: A simulation of the flash array screen 1

Suppose in a reclamation process, block (0,1) has been reclaimed. Figure 9.3 shows a
result of this. All valid pages at rows (0,1,2) and (0,1,3) have been relocated to rows
(0,2,2) and (0,2,3) respectively. The old locations become obsolete and are ready to be
erased. When this block (0,1) is selected to be erased, programmed and obsolete bits

will be set to be false.

In the file system layer, file read and write methods are implemented as concurrent
methods implementing Runnable. Figure 9.4 and Figure 9.5 show such implementation
of the writefile and w_step events of the file system layer, where they are implemented in
a concurrent style. Each call of writefile is a separate thread. Within a writefile thread,

all w_step (write a page) are run concurrently.

Similarly, when the interfaces page-read and page-program (provided by the flash inter-

face layer) are called, they can be executed concurrently in an interleaved fashion.

Methods accessing state variables within the flash, such as page-read and page-program
must be synchronized in order to ensure thread safety [63]. Figure 9.6 gives an imple-
mentation of the page_program event which is an interface provided to the file system

layer. Because this method has the effect of modifying the flash content that might

152 Chapter 9 An Implementation

Suirootrprintarray

LT BLOCE PALGE Prograrmmed Chsolete Version FID PID Content
u} u} u} true false u} oo d:root:null:su:700

u} u} 1 true true u} 14718739 0 f:f:0:su:700:

a a 2 true true 1 147158739 1 This i=s the orig
u} u} 3 true true 1 14718739 2 inal content of

u} 1 u} true true u} oo

u} 1 1 true true u} oo

u} 1 Z true true u} oo

u} 1 3 true true u} oo

a Z a true false Z 14718739 3 ile £

u} Z 1 true false Z 14718739 0 f:f:0:3:5u:700:

u} Z Z true false Z 14718739 1 This i= the new

u} Z 3 true false Z 14718739 2 content of the £
u} 3 u} false false u} oo

u} 3 1 false false u} oo

u} 3 Z false false u} oo

u} 3 3 false false u} oo

1 u} u} false false u} oo

1 u} 1 false false u} oo

su:rootropen(f,r)

fid =14718739

su:rootrread(14715739)

This is the new content of the file £

su:rootﬂ

FI1GURE 9.3: A simulation of the flash array screen 2

be accessed by several read/program operations simultaneously, this method must be

synchronized.

9.3 Conclusion and Assessment

We have presented an implementation of a flash-based file system by using the translation
rules given in Chapter 8. Our implementation covers two parts: (i) the file system layer
providing interfaces to users and application programs and (ii) the flash interface layer
providing interfaces to the file system layer. The first part implemented follows the
specification given in Chapter 4. The implementation of this layer provides interfaces
used to animate the system covering basic file operations such create, read/write files.
The implementation of the second part follows the specification given in Chapter 6. This

part aimed at simulating the flash device whenever the flash operations are performed.

The implementation we have completed still has a gap between the specification and the
implementation. In order to narrow the gap, further work is still required — such as an
automatic tool for refining Event-B models into the normal forms that are able to be

translated using the translation rules, and automatic code generators.

Based on this implementation, much time was spent for specifying and reasoning about
this model, but only few weeks were spent for coding the prototype. It can be believed
that formal activities (modelling and verifying) make developers understand more about
the systems being developed. As a result, the more understanding the developers have
would make it easier to achieve an implementation of the system which satisfies the

given specification. This could reduce the time used for the implementation as well.

Chapter 9 An Implementation 153

FS.witefile

public class witefile inplenents Runnabl e{
private int fid;
private String cont;
// constructor
public witefile(int id, String cnt){
fid =id;
cont = cnt;

//run nethod
public void run(){
FILE f = getFile(fid);
if(f==null){
[Masseging: "File does not exist!"];
return;

}
if(!f.iswopened()){

[Masseging: File has not been opened for witing!"];

return;
}
/*
* (1) Start wite
*/

w_start(f,cont);

I
* (2) Wite a single (w_step).

* Loop to wite each page to the flash nenory.
*

/

f

or(int i=0;i<f.get_wbf_size();i++){
try{
(new w_step(f,i)).run();
}catch (Exception e){
witefile_fail (f);

return;
}
}
IE;
* (3) End wite
*/

if(!'w_end(f))
witefile_fail (f);

FIGURE 9.4: A concurrent implementation of the writefile event

However, it cannot ensure that the final implementation satisfies all what are specified
in the given model. Therefore, additional systematic translation rules, verification of

translation and automatic code generators are still required in the future.

154

Chapter 9 An Implementation

public class w_step inplenments Runnabl e{
private FILE file;
private int index;
public w_step(FILE f, int idx){
file = f;
index = idx;

}

public void run(){
//the given file nust be in the witing state
if(!file.iswWiting()) {

return;
}
I*
* Get the buffer content of the page specified
*/

String pcnt = file.get_wbuffer(index);
/*

* Construct a page data

*/

PDATA pdata = new

DATA(file.getO D(),index+1,file.getWitingVersion(),pcnt);

I+
* Call flash APl to programthis page
*/

RowAddr r = flash. page_progran(pdata);

if(r==null){ //if not succeeded
[Massage: Witing the given page fails];

}el sef /1if succeeded

7+
* Add new entry to the table of contents
*/

TOCEntry tocEntry = new TOCEntry(index+1,
file.addToC tnp(index+1,tocEntry);

FS. w_st ep

r);

FIGURE 9.5: A concurrent implementation of the w_step event

public synchroni zed RowAddr page_progran(PDATA pdat a){
//r and pdata are shared paraneters
//r : RowAddr\ programred_pages
//pdata : PDATA
RowAddr r = get FreePage();
if(r==null)

return null;
/lextracting the row address
int I=r.get_lid();
int b=r.get_bid();
int p=r.get_pid();

/1if the event guard satisfies

/lflash(r) := pdata

/| programmed_pages : = programmed_pages 7 {r}
flashArray[|][b][p] =pdat a;
programred[|][b] [p] =true;

//return the address to which the given data is
return r;

FL. page_pr ogr am

pr ogr amred

FIGURE 9.6: An implementation of the page_program event

Chapter 10

Modelling, Refinement and Proof

Guidelines

10.1 Introduction

The purpose of this chapter is to contribute our modelling, refinement and proof guide-
lines. These guidelines are based on our experiments which were carried out using Event-
B and Rodin to model a flash based file system. We firstly give modelling guidelines in
Section 10.2. Refinement guidelines are given in Section 10.3 and proof guidelines are
discussed in Section 10.4. Note that some improvement guidelines to the formal language

and the Rodin tool are given in Chapter 11 where we assess Event-B and Rodin.

10.2 Modelling Guidelines

(MG1) Careful selection of formulation can ease proof effort. Based on experience of
modelling the file system layer, in order to specify any system’s property, possible formu-
lations should be explored and analyzed to find which one is suitable for modelling that
required property. For example, as explained in Chapter 4, we avoided using transitive
closure to specify the no-loop property in order to find the easier way to prove. Instead
of using transitive closure to specify no-loop property, we employed the no-loop theorem

proposed by Abrial in [4] to model this property. As a result, this makes proof easier.

(MG2) Avoid using quantification to formulate specification, if possible. This could make
models simpler and easier to proof. Namely, proving the preservation of invariants, which
are specified using qualification, might require interactive instantiation that makes proof

more difficult. To avoid, for example, instead of specifying an invariant like

inv_a : Y r-r € dom(trans_func) = trans_func(r) € programmed_pages2

155

156 Chapter 10 Modelling, Refinement and Proof Guidelines

it can be simplified as

inv_b : programmed_pages2 = trans_func[programmed_pages]

which is simpler, where dom(trans_func) C programmed_pages.

(MG3) Instead of introducing new machine invariants to satisfy some system properties,
providing machine theorems and proving that these properties are satisfied is another
mechanism used for specifying system models — for instance, modelling of the reach-
ability property that we have already discussed in Chapter 4. We only need to show
that machine theorems follow from the existing invariants and axioms. However, this

approach can only be used when the new theorem follows from existing invariants.

(MG4) As partially discussed in Chapter 4, providing additional parameters in each
event is useful sometimes. Although more guards are needed, it could make models more
readable and easier to manage in both specifying and proof. Moreover, it is felt that
providing a separation of input and output parameters (e.g. using name conventions)

would make Event-B models more readable and easier to model communication systems.

(MG5) We have used two different ways of specifying the status register of each LUN
in Section 6.6. The first is specifying as a state function and the second is specifying
as state sets. Each approach is appropriate for a particular state property. Although
we have found that specifying using state sets gave us a higher degree of automatic
proofs, specifying using state function makes models more readable and easier to specify.
Developers may choose state set if the number of state is small (e.g. two or three possible
states). On the other hand, if the number of state is more than three we suggest to specify

as a state function that would make the model easier to manage.

(MG6) Which direction is suitable for specifying a property? Figure 10.1 shows two
possible ways of specifying a relation property between X and Y. Developers may have

a difficulty of choosing which way to be addressed.

Case A is the way to specify Y as a property of X. That means we will get a property

variable given below.

ypropOfr € X — Y

On the other hand, Case B, if we were to specify X as a property of Y, then we will have

apropOfy € ¥ < X

Our guideline is to suggest that (if possible) specifying as a function is more appropriate,

since the inversion can be used to obtain an inverse property. That is

Chapter 10 Modelling, Refinement and Proof Guidelines 157

CaseA

CaseB

FiGURE 10.1: Two possible ways of specifying a property

zpropOfy = ypropOfz !

However, if the relation between X and Y is not a function, specifying X < Y or
Y < X has no deference in modelling difficulty and proof. Thus, this depends on the
users’ preference. However, we have a guideline to suggest. If X is more frequently
referenced than Y or there are some other properties specified like apropOfr € X — A,
specifying ypropOfz € X <+ Y would be more systematic.

(MGT7) Based on our experiment in comparing two styles of specifying user-defined types:
cartesian product versus projection function. In our development, these two styles have
no difference in proof. However, we have found that specifying using projection function
is easier to specify and follow. As example discussed in Section 6.2, we have a row address
which is composed of a LUN address, a block address and a page address. If we were to
specify using cartesian product as RowAddr = LUAddr x BAddr x PAddr, addressing an
individual element of a row address is more complicated than using projection function.
For example, getting the middle element of any row address r requires nested projection
(i.e. projl(proj2(r))), which is more complex than using projection function for each

element.

(MG8) Redundant guards should be avoided. If any guard can be determined by an-
other within the same event, it is not necessary to be specified. For example, suppose
wbuffer(f) is specified as N -+ CONTENT, if we have grdl : i ¢ dom(wbuffer(f)) then
grd2 : i — cnt ¢ wbuffer(f) is not necessary to be specified because grd2 is always true

if grd1 is true.

(MG9) Conflicting guards shall be avoided. Developers should be aware of introducing

a conflict guard because conflict guards are not detected and reported by the tool. For

158 Chapter 10 Modelling, Refinement and Proof Guidelines

example, we may have grdl : z < 0 and ¢grd2 : z > 1 specified as guards of an event.

These two guards are conflict but have no proof showing this modelling flaw.

(MG10) To make models more readable, naming is important. Developers should be
aware of naming. Namely, naming of variables, constants or even sets should be explicit
and easier to follow. For example, developers may use uppercase for naming set types,

while lowercase should be used as a prefix of variable names.

(MG11) As we discussed an idea of event extension proposed by Rezazadeh and Butler
in [108] together with our supporting experiments presented in [44], nowadays, this
idea has become an event-extension feature available in the Rodin toolset release 0.9.2
or later. The purpose of this feature is to refine a model by introducing only new
properties or some extending parts to the concrete machine, as an example given in
Figure 4.18. We have found that this feature is very useful for feature augmentation. It
makes modelling simpler and easier to refine. In addition, some changes can be made
to the abstract levels individually and are propagated down automatically. This is in
contrast to when we were developing the model of [45] using the Rodin tool release 0.8.2
that has no support for event-extension. We would like to suggest this feature for other

developments involving horizontal refinement.

10.3 Refinement Guidelines

We presented two approaches to refine Event-B models: horizontal refinement and ver-
tical refinement. These two approaches are based on the purpose of refinement. The
horizontal is for introducing new features in refinement steps. It is also called “fea-
ture augmentation” [27]. This kind of refinement is suitable for introducing new system
properties that may be postponed or missed in the abstraction. On the other hand,
The purpose of the vertical refinement or structural refinement is to add more design
details to the models instead of adding new features. As an example given in Chapter 4,
we began with horizontal refinement steps to incrementally model an abstract file sys-
tem before focusing on vertical refinement to relate the abstract file model to the flash
specification. However, it is not necessary to complete all horizontal refinements before
starting any vertical refinement. If we have missed some features or some properties,
they can be introduced later even if some vertical refinements have been completed.
For example, we have introduced the status register at the last step of refinement in
Chapter 6.

Make the refinement gap as small as possible. As discussed in Chapter 4, the small gap
leads to simpler gluing invariants and makes refinement not too complicated. We also
believe that this help us to discover sufficient invariants. Incremental feature augmenta-
tion is effective for proof and coverage. As we have found in our experiments, this kind

of development make models easier to manage and modify, and it is useful for specifying

Chapter 10 Modelling, Refinement and Proof Guidelines 159

complex systems that may have many features to be covered. To make specification
easier to manage, those features can be divided into submodules and introduced in re-
finement steps. Refinement can also be used to introduce other requirements that may
be postponed or missed from the previous steps and later be covered in the refinement
steps. Refinement allows us to factor out some of the modelling and proof complexi-
ties. In our development, we began with focusing on the tree structure manipulation in
the abstract model and postponed other details to other refinement steps. We did not
distinguish files and directories at the abstract level. This made the proof obligations
and invariants for the tree structure easier to formulate than if we had tried to model

everything in one level.

10.4 Proof Guidelines

To make proof simpler and gain a higher degree of automatic proof, modelling styles,
refinement techniques, etc. are important. For example, introducing proved theorems
to help proof easier, sequencing of guards, careful selection of formulation, using POs
as guidelines and so on, are important to achieve a higher degree of automatic proof.

Some of these have already been discussed in Section 10.2.

For example, introducing additional theorems can ease proof effort. T'wo kinds of theo-
rems were introduced in our development. The first type is a set of specific theorems,
which were derived from the existing machine invariants and axioms. This kind of the-
orems can be used to specify some system properties instead of specifying as invariants.
This has already been discussed in Section 10.2. The second type is a set of general
theorems which are introduced and used for discharging POs. General theorems should
be specified in a context. They can be seen and used by more than one machine, and can
be extended by other contexts. On the other hand, specific theorems should be specified
in machines. These specific theorems can be used to help discharge proof obligations
as well. We did this on specific example to enforce the guidance. As already discussed
in Section 4.14, we introduced some useful theorems (such as a tree-join theorem) to
help proof of the tree properties. This additional theorem can be reused for discharging
similar proof obligations — i.e. it was used to prove that events create, copy and move
preserve the no-loop property. This makes interactive proof easier and can reduce the

time used for proving.

Remove redundant invariants or replace some invariants by another simpler ones. For
instance (as discussed in Section 6.7), we can simplify by using partition function to spec-
ify disjoint sets, instead of introducing a number of invariants saying that intersection

amount of those sets is empty. This can also reduce the number of POs.

Ordering of event’ guards affects proof results. In order to gain more proof effectiveness,

developers must be aware of the order of guards being specified. For example, the guard

160 Chapter 10 Modelling, Refinement and Proof Guidelines

that is required to prove the well-definedness of another guard should be specified before

that guard.

Use failing POs as guidelines for specifying and reasoning about system models. That
is, in each step of iteration of modelling, modification and proof, POs generated by the
Rodin tool could be used as guidelines to improve the model. This kind of improvement
may involve removing errors and strengthening in order to help proof. For example,
it can be used to determine which gluing invariant should be added to the machine or
which guard should be added to the event in order to improve the model. As a result,
this technique means we get a higher degree of automatic proof. The work of Ireland
et al [80] proposes an automatic tool to generate modelling guidance from failed proofs.
This work would be useful in the future if such guidelines are generated automatically,

instead of analysing by the developers themselves that might require skilled knowledge.

Reuse the proof trees to discharge the same proof obligations, if possible. Namely, we
may have some POs that have already discharged. The proof trees of these POs (maybe
the whole tree or just some parts of the proof tree) can be reused to prove some POs
that have the same hypothesis and goal. As an example given in the evolution of the
file system model (Chapter 5), we reused proof trees of the original model to discharge
the same POs of the revised model. Reuse of proof tree is done by copying the proof
tree (that have already been proved) from the proof window and then pasting it onto
the proof window at the same target goal. We have found that this is really useful for
avoiding reproving the PO that is really complex and requires many interactive steps.
Note that reusing of proof trees will not succeed if naming (of variables or parameters)

of the source machine and of the target machine is different.

Chapter 11

Conclusion and Future Work

The aim of this chapter is to summarise our findings and discuss some future work. We
summarise what we have carried out and achieved from each chapter in Section 11.1.
An assessment of Event-B and Rodin is discussed in Section 11.2. Finally, future work

is discussed in Section 11.3.

11.1 Conclusion

As previously mentioned in Chapter 1, there are many formal methods used for specifi-
cation and verification. In addition, a number of useful theories and tools are available
for modelling and reasoning about systems. However, they need to be improved in many
ways to bridge the gap between requirements, specifications and implementations. For-
mal methods should be made more accessible to users. More experiments need to be
carried out in order to produce scientific evidence that can convince users to deploy and
gain more benefits from the use of those theories and tools. Therefore, this experimental
approach was chosen as a direction of our research. Event-B and Rodin were selected
as a method and a tool for our experiments. A flash-based file system was considered

to be a case study of our work.

In this thesis, we have completed six main pieces of work: (i) modelling and proof of
a tree-structured file system. This is later refined in Chapter 4 by focusing on read
and write operations, fault-tolerance and machine decomposition; (ii) in Chapter 5, we
showed an evolution of the file system model; (iii) in Chapter 6, we outlined refinement
and proof of the flash interface layer which is based on the ONFI specification; (iv) in
Chapter 8, we identified systematic translation of Event-B models into Java code; (v)
in Chapter 9, we implemented a prototype of a flash-based file system which is a link
between the first model and the second model by using translation rules of the fourth
part; and (vi) in Chapter 10, we provided modelling, refinement and proof guidelines

which are based on our experiments and experience of modelling.

161

162 Chapter 11 Conclusion and Future Work

tree structure

see » CTX0

sees Textends

>
>

files/directories

refines

file content
permissions,
missing properties ..
decompose write ...
decompose read

link to flash spec

decompose \ /

MCH_FL MCH_FSb

introduce page register

introduce reclamation eventsJ.

FIGURE 11.1: A diagram of refinement chains representing a development of a flash file
system

Figure 11.1 shows a diagram of refinement chains representing an overview of our devel-
opment of a flash-based file system. We have completed two refinement chains of the file
system model (which are represented by suffixes a and b). The revised model where the
requirements have been changed is represented by the chain b, while the original model
is represented by the chain a. We have decomposed the file system model (MCHT7x) into
two sub-models representing the file system layer and the flash interface layer. After
that we have explored five further refinements (MCH_R1 up to MCH_R5) focussing on
the flash specification. We have got eight levels of specification (MCHOx up to MCHT7x)
representing the file system layer and six levels (MCH_FL up to MCH_R5) representing

the flash interface layer.

In the modelling of the file system layer, we began with an abstract tree structure and
later explored seven refinement steps (MCH1..MCHT) to complete the file system model.
In the first step (MCHO), we focused on a tree structure and operations affecting the

structure. In this step, directories and files were treated in the same way as objects in

Chapter 11 Conclusion and Future Work 163

order to make proof easier. Directories, files and other properties such as file contents,
permissions were postponed to other refinements. The flash specification was introduced
in the seventh refinement (MCHT7x) in order to relate the abstract file system to the flash

structure.

In this development, we have found some useful techniques that can ease proof effort
and make models easier to manage — such as careful selection of formulation, providing
additional proved theorems to help proof, use of refinement to introduce missing prop-
erties or new features; providing additional event parameters, etc. These techniques

mentioned have already been proposed as guidelines and discussed in Chapter 10.

The second model represents the flash interface layer (in Chapter 6). After the machine
decomposition has been used to split the file system machine into two sub-machines, we
have completed five further refinement steps (MCH_R1 .. MCH_RJ5) focussing on the
flash specification. The purpose of these refinement steps is to incrementally add more
design details of the flash specification and model the wear-levelling technique. The
incremental approach and other useful techniques we have found in the development
of the file system model (such as selection of formulation, using POs as a guideline
for correcting the model, etc.) were employed in specifying this model. Additional
constraints and details were added in each step of refinements. From this model, we
have completely reached 100% POs discharged automatically. We also have carried out
some experiments to compare styles of modelling and proposed guidelines in Chapter 10.
For example, specifying state values as state sets led us to gain higher degree of automatic
proof. Specifying data types using projection function makes models easier to manage

than using cartesian product, as example of specifying RowAddr discussed in Section 6.2.

In Chapter 7, we have discussed some related work on applying formal methods to the file
store problem and provided a comparison. A distinguishing feature of our development
is the use of multiple levels of refinement. In this way we relate an abstract model, with
large atomic events (i.e. read and write) on abstract data structures, to a model with
more complex concrete data structures, and more fine-grained atomic steps. Another
distinguishing feature of our work is the use of machine decomposition to partition
the system model after several refinement steps. The partitioning led to sub-models
that were refined separately. As stated in [44], it is well-known that decomposition is
important for scaling of formal development. However, it is rare to find examples of its
application in practice. Our development of a flash file system represents an exemplar
of multi-level refinement and of machine decomposition that we believe others could
learn from. This acts as an exemplar and is an important contribution of our work.
In addition to this contribution, in Chapter 10, we also provided some guidelines for

modelling, refinement and proof that developers could learn from.

Another contribution of our work is that of providing systematic translation of Event-

B models into Java code. The set of translation rules we presented in this thesis is

164 Chapter 11 Conclusion and Future Work

composed of two categories: class construction and event transformation. However,
more work is required in future in order to make these rules more applicable. (Details

will be discussed in Section 11.3).

The prototype we implemented was divided into two parts. One is an implementation
of a flash file system which is closely related to the file system model we have speci-
fied. Another one is a simulation of flash memory which is related to the flash model
in Chapter 6. This simulation part provides a number of APIs to be called by the
implementation of flash file system. Our implementation follows the specification and

translation rules we have developed and presented in this thesis.

The consistency of the specification is ensured by formal verification techniques, such
as theorem proving and model checking. However, this cannot guarantee that the spec-
ifications/models that have been specified are the right ones or satisfy the desired re-
quirements. Namely, if the all given requirements were not covered (maybe, because of
human errors), the model/specification would not be the right one. That is, inconsisten-
cies between the requirements and specifications may remain. This may lead developers
to wrong implementations. To reduce the gap, requirements engineering techniques,
including systematic translation of requirements into specification, are important. (But
this is out off our research scope.) In our development, to make translation of require-
ments into specifications more systematic, requirements in each step were listed as bullet
points of required properties (as presented in Chapter 4). Some properties (e.g. no-loop
property) were then expressed as invariants that need to be held forever while some
properties/requirements were expressed as events. Namely, whenever the state variables
have been changed (by events specified) the associated invariants much be proved to
be maintained. If all required properties/requirements could be related to/explained by
invariants or any part of the model, then it would be more confident to guarantee that

the model specified is correct/valid.

11.2 Assessment of Event-B and the Rodin tool

The purpose of this section is to assess Event-B and Rodin, which are used in our
development for specifying and reasoning about the flash file system. The assessments
discussed below are based on our experiments and experiences of using Event-B and the

Rodin platform.

11.2.1 Event-B

In this section, we begin with outlining positive points of Event-B and then providing

some guidelines and desirable features that may be useful in the feature.

Chapter 11 Conclusion and Future Work 165

The structure that obviously separates machines from contexts makes an Event-B model
easier to refine. Namely, the machines and the contexts can be individually refined or
referenced by others. Additionally, the flexibility of refinement in Event-B allows users
to decide which approach or technique they want to employ. For example, in case of an
incremental approach, users can postpone some requirements at the beginning and later

address them in other refinement steps.

In addition, even if the specification goes wrong or there is something that cannot be
proved, it is possible to check where and why it is incorrect by using generated proof
obligations as a guideline. For example, each type of the proof obligations, such as GRD
(guard), INV (invariant), etc., can be used to tell what the system is trying to prove
and why it cannot be discharged.

As already discussed in this report, many useful features have been added to the lan-
guage, such as partition operation, event-extension, etc. These features make modelling
and proof simpler. The event-extension is very useful for horizontal refinement. This
makes models easier to be refined and proved. In addition, some modifications can easily
be made to the abstraction individually and are propagated down automatically. The
partition operation makes modelling of state sets simpler. We do not need to specify
a huge number of invariants to clarify that the state sets are disjoint. However, some
features and theories that may be useful for specification should be added to the lan-
guage and tools such as providing useful theories, separation of internal and external

parameters, sequence type, etc.

Distinguishing of parameters between input and output would be useful for specifying
interactive systems. The distinction makes users easier to know which parameters should

be passed to the event and which parameters are local to that event.

Providing a sequence type and its manipulation (like supporting in the B-method) would
be useful for specifying the models that require this type in Event-B. For example, if we
were to specify the structure of a file system as a naming-structure, using sequence type
would make the model easier to manage. Similarly for the transitive closure, providing
it would be useful for modelling as well. Developers could use it directly, instead of

specifying by themselves.

Based on the IsTree predicate we have introduced in the Proof section of Chapter 4,
we believe that providing tree theories as a feature of the language might be useful for
specifying systems involving manipulation of the tree structure. Tree operations join,
split and duplicate can be defined as a theory used for manipulating a tree. For example,
copying a subtree from one place to another can be done by duplicating the given subtree
and then joining the replica with the node of the target tree specified. In order to remove

a subtree, split the subtree specified and then discard it.

166 Chapter 11 Conclusion and Future Work

11.2.2 Rodin

Rodin is not only a tool for specification but also a tool for refinement and verification.
Rodin comes with a database of modelling elements and useful plug-ins such as a proof
obligation generator (POG), model checkers, automated and interactive provers [7]. The
automatic PO generator and provers are useful features for verification that can save
users’ time from manual proving. For example, in case of Z/EVES (a proof tool for Z, but
have no POG), users need to identify POs by themselves. In addition, without automatic
provers, users have to know what goal they need to prove and which hypothesis should
be used to prove that goal. Even though the users are good at proving, they may have to
spend a lot of time to discharge a huge number of proof obligations by themselves. In case
of the Rodin tool, as already discussed in Section 3.9, proof obligations are automatically
generated and then are proved automatically by the provers where possible. Although
some POs are not discharged automatically, the tool provides an interactive prover which
is easy to use. However, the prover needs to be improved in some ways. For example, the
memory problem that always occur when proving some complex POs should be solved.
Another case, some trivial POs that should be discharged automatically still need to be
proved interactively. Sometimes, some necessary hypothesis used to prove the given goals
are missed (are not selected automatically by the tool). Occasionally, many hypothesis
which are not necessary are added to the list of hypothesis used for automatic proof.

These examples may mean the POs cannot be discharged automatically.

Additionally, we now consider our experiences of using the Rodin platform as a tool for
constructing and analysing Event-B models. The Rodin platform provides a useful tool
for Event-B specification. It uses a visual interface which is familiar to users as in other
modern software. Each component used for specification is well-designed and easy to

use. In addition, a refinement can be constructed easily by this tool.

Moreover, as an extensible tool which allows users to customise their tool and plug in
other available tools to satisfy their needs, it makes this tool more flexible and attractive
to use. For instance, the users can install UML-B plug-in to design their models using
components provided by UML-B; plug in a decomposition tool to decompose a machine;

or plug in B2Latex as a tool to generate latex documents, etc.

In order to satisfy additional features of the language proposed in the previous sec-
tion, the Rodin tool should be adapted or additional plug-ins should be provided. For
instance, providing code generators are important for bridging the gap between the
specification and the implementation. It would be good to develop a code generator to

translate Event-B models into programming code such as Java, C, etc.

It would be useful, if conflicting guards could be detected and reported by the tool.
As discussed in Section 10.2, currently, conflicting guards can make models go wrong

without reporting any errors. Thus, it is really important to be aware of this situation.

Chapter 11 Conclusion and Future Work 167

Fortunately, those useful features, such as a decomposition plug-in, and code generator

are considered as roadmap features, and are being developed for the Rodin toolset [7].

Finally, although the Rodin tool supports the event-extension feature that is useful
for feature augmentation, some improvements should be made. For instance, while
extending an event, the previous abstract specification should be shown in the editor
as a disabled part. This would make it easier for developers to follow what they have

specified and what they are trying to extend, instead of hiding it in the editor.

11.3 Future Work

Based on our development, we have seen some issues/features that could be explored in
the future in order to push forward research in formal methods. For example, developing
diagrammatic forms of guidance, comparison of decomposition styles, tools supporting
the generation of useful lemmas, verification of translation, etc. These would be useful

and make formal methods more accessible in the future.

Firstly, it would be useful in future if diagrammatic forms of guidance — such as event-
refinement diagrams (e.g. Figure 4.23, Figure 6.1, etc.) and refinement-chain diagrams
(e.g. Figure 11.1 where we represent the overview of the specification process) could be
developed as plug-ins. We believe these diagrams help us to understand more about the
system being specified. To make it more formal, not just an aid that need to be drawn
by hand, investigation for more formal incorporation of these diagrams into refinement

proof could be carried out, together with tools supporting these features.

Secondly, based on our use of shared event decomposition, we see an issue that would be
useful in the future. Since Rodin provides two types of decomposition (shared variable
and shared event, as discussed in Section 3.6), and a decomposition tool is now available
and being improved, carrying out an experiment of comparison of these two approaches
would be useful to provide scientific evidence for developers/modellers. For example,
what the strengths and the weaknesses of these two approaches are; what kind of systems

they are suitable for, etc.

Thirdly, based on our experience of introducing proved theorems/lemmas to help proofs,
it would be useful if there were tools/plug-ins for generation of lemmas. For example, as
discussed in Section 4.14, we have introduced some proved theorems to help proof of tree
properties (e.g. no-loop property). Instead of discovering and introducing the lemmas by
the modellers themselves, providing modellers with a tool to generate lemmas/theorems
would be better.

Fourthly, providing a tool to automatically generate proof guidance from the failing
proof obligations is another challenge to be addressed. Regarding the proof guideline we

discussed in Section 10.4, we can used failed proof as guidelines to improve (correcting

168 Chapter 11 Conclusion and Future Work

or strengthening) the models. However, use of failing proofs requires skilled knowledge
in formal reasoning. Hence, developing a tool that can generate a list of guidelines from

those failed proof obligations would help developers a lot in modelling and proof.

Finally, as discussed in Chapter 8, our translation rules do not cover all possible forms
of Event-B notation, such as relation operations (e.g. domain/range subtraction, over-
riding, etc.). Additional patterns and systematic rules for translation of set and relation
operations are still required. In addition, similar to BART [107] that have already
discussed in Section 8.4, it would be useful to have an automatic tool for systematic
application of the translation rules. For example, an automatic tool for refining Event-B
models into the normal forms that are able to be translated using the rules. More-
over, formal verification of the translation is also required to ensure the correctness of
the translation. These would be useful in future to make the translation rules more

applicable.

Appendix A

An Event-B specification of a file

system

A.1 An initial model: Tree structure

Tree structured model of file store. There is a single root object. Each object other than
parent has a root. There are no loops in the parent structure. Each object is reachable

from the root.

MACHINE FMCHO00
SEES FCTXO01
VARIABLES

objects
parent

INVARIANTS

invi : objects € P(OBJECT)
inv2: root € objects
inv3 : parent € objects \ {root} — objects
invéd : Vs-(s C parent™1[s] = s = @)
No loop: easier to discharge POs than using transitive closure
thml : tcl(parent) N (OBJECT <id) = &
No loop property using transitive closure
thm2 : VT -root € T A parent=*[T] C T = objects C T
used to prove thm3
thm3 : objects C {root} U (tcl(parent)) = [{root}]

used to prove thm4
thmd : (objects \ {root}) C (tcl(parent))~'[{root}]

Reachabilty property, all objects can be reached from the root node
thmb : Vz-x ¢ ran(parent) = (tcl(parent)) [{z}] = @

All leaf nodes have no children

169

170 Appendix A An Event-B specification of a file system
thm6 : V- (tcl(parent))~L[{z}] < parent €
(tel(parent))~[{x}] — (tcl(parent)) " [{z}] U {z}
thm7 : V- (tcl(parent)) " [{z}] < parent €
((tel(parent)) " [{z}] U {z}) \ {=}
— (tel(parent)) ' [{z}] U {z}
this is used for copying, inserting and moving in order to prove that any
subtree rooted at x is a total function.
thm8 : Va,s-s C ((tcl(parent)) " [{z}] < parent)~![s] = s = &
thm7 plus thm8 implies that any subtree rooted at x is a tree
thm9 : Vz-((tel(parent))~L[{z}] U {z}) < parent €
(objects \ ((tcl(parent))=[{z}] U {z})) \ {root}
— objects \ ((tcl(parent)) " [{z}] U {z})
this is used for delete and move operation in order to prove inv3.
EVENTS
Initialisation

begin

actl: objects := {root}
actd : parent := &

end

Event newobj =

This event creates a new object (0bj) with a specified parent (indr).

any

obj, indr

where
grdl :
grd2:
then
actl:
act2:
end

Event move =

obj € OBJECT \ objects
indr € objects

objects := objects U {obj }
parent(obj) := indr

Move an object obj to another place to.

any
obj
to
des
where
grdl :
grd?2 :
grd3:
grd4 :
then
actl:
end

Event delete =

all descendants of obj

obj € objects \ {root}

to € objects

des = (tcl(parent))~1[{obj}]
to ¢ des U {obj}

parent(obj) := to

Delete an object that has no children.

any
obj

where
grdl:

obj € objects \ {root}

Appendix A An Event-B specification of a file system

171

grd2 : parent [{obj}] = @
then
actl : objects := objects \ {obj}
act2: parent := {obj} < parent
end
Event copy =
Copy an object obj and all its descendants (des) to another location (to).
any
obj, des, to
objs all objects to be copied
corres corresponding function mapping source objects to their copies
nobjs new copies of objs
nobj the copy of obj
subparent subtree to be copied
replica the copy of subparent
where
grdl : obj € objects \ {root}
grd2 : des C objects
grd3: des = (tcl(parent))~1[{obj}]
grd4 : to € objects
grd5 : to ¢ des U {obj}
grd6 : objs = des U {obj}
grd7 : nobjs C OBJECT \ objects
grd8 : corres € objs —» nobjs
grd9 : nobj = corres(obyj)
grdl0 : subparent = des <l parent
grdll : replica = corres™'; subparent; corres
then
actl : parent := parent U replica U {nobj — to}
act2 : objects := objects U nobjs
end

Event deltree =

Delete the given object obj and all its descendants (des).

any

obj, des, objs

where

grdl :
grd2 :
grd3:
grd4 :

then

actl:
act2:

end

Event mount

obj € objects \ {root}

des C objects

des = (tcl(parent))~1[{obj}]
objs = des U {obj}

objects := objects \ objs
parent := objs <4 parent

o~

Mount a flash device into an existing root.

any
objs
prt
T

where
grdl
grd2
grd3

all objects to be mounted
parent structure of 0bjs rooted at x
subroot

: objs C OBJECT
© X € objs
. prt € objs \ {z} — objs

172 Appendix A An Event-B specification of a file system

grdd : Vs-(s C prt—1[s] = s = @)

Has no loops.
grd5 : prt N parent = &
grd6 : objects N objs = &
then
actl:

act2
end

objects := objects U objs
. parent := parent U prt U {x — root}

Event unmount =

any

objs all objects to be released

T subroot to be unmounted.
where

grdl : objs C objects

grd2 : root ¢ objs

grd3: x € objs

grd4 : objs = (tcl(parent)) " [{z}] U {z}
then

actl : objects := objects \ objs

act2: parent := objs 4 parent
end

END

Appendix A An Event-B specification of a file system 173

A.2 The first refinement: Files and directories

In this refinement, objects are partitioned into files and directories. root is a directory.

Any parent is a directory. Variable objects is no longer used.

MACHINE FMCHO1
REFINES FMCHO00
SEES FCTX01
VARIABLES
files
directories
parent
INVARIANTS
invil : files C objects
inv2 : directories C objects
inv3: files N directories = &
invé4 : objects = files U directories
invb : root € directories
invé : ran(parent) C directories
EVENTS
Initialisation
begin
act2: files: =g
act3: directories := {root}

actd : parent := &
end

Event mkdir =
Make a directory obj in the given directory indr.
refines newobj

any
obj, indr

where
grdl : obj € OBJECT \ (files U directories)
grd2 : indr € directories

then
actl : directories := directories U {obj}
act2 : parent(obj) := indr

end

Event crt_file =
Create file 0bj in the given directory indr
refines newobj
any
obj, indr
where

grdl : obj € OBJECT \ (files U directories)

grd2 : indr € directories
then
actl: files := files U {obj}

174 Appendix A An Event-B specification of a file system

act2: parent(obj) := indr
end

Event move =
Move an object obj and its descendants des to another place to.
refines mowve

any
obj, to, des
where
grdl : obj € (files U directories) \ {root}
grd2 : to € directories
grd3: des = (tcl(parent))~'[{obj}]
grdd : to ¢ des U {obj}
then
actl: parent(obj) := to
end
Event delfile =
Delete a file (0bj)
refines delete

any
obj
where
grdl : obj € files
grd2 : parent [{obj}] = @
then
actl: files := files \ {obj}
act2: parent := {obj} < parent
end
Event rmdir =
Delete an empty directory.
refines delete

any
obj
where
grdl : obj € directories \ {root}
grd2 : parent [{obj}] = @
then
actl : directories := directories \ {obj}
act2: parent := {obj} < parent
end
Event copy =
Copy an existing object obj all its descendants des to another location to
refines copy

any
obj, des, to, objs, corres
nobjs, nobj, subparent, replica
where
grdl : obj € (files U directories) \ {root}
grd2 : des C (files U directories)
grd3: des = (tcl(parent))~'[{obj}]
grd4 : to € directories
grd5 : to ¢ des U {obj}
grd6 : objs = des U {obj}
grd7 : nobjs C OBJECT \ (files U directories)

Appendix A An Event-B specification of a file system 175

grd8 : corres € objs —» nobjs
grd9 : nobj = corres(obyj)
grdl0 : subparent = des <l parent

grdll : replica = corres™'; subparent; corres
then

actl : parent := parent U replica U {nobj — to}
act2: files := files U corres[objs N files]
act3: directories := directories U corres[objs N directories]
end
Event deltree =
Delete the given object (0bj) and all its descendants (des). Actually, it can be
done recursively by events delfile and rmdir.
refines deltree
any
obj, des, objs
where
grdl : obj € (files U directories) \ {root}
grd2 : des C (files U directories)
grd3: des = (tcl(parent))~'[{obj}]
grd4 : objs = des U {obj}
then
actl : parent := objs 4 parent
act2: files := files \ (objs N files)
act3: directories := directories \ (objs N directories)
end
Event mount =
refines mount

any
objs, fs, ds, prt, x
fs: set of files, ds set of directories
where
grdl : objs C OBJECT
grd2: fs C objs
grd3: ds C objs
grd4d : objs = fs U ds
grds: fsNds =
grd6 : (files U directories) N objs = &
grd7 : x € ds
grd8: prt € (fs U ds)\ {z} — ds
grd9 : Vs-(s C prt~[s] = s = @)
grd10 : prt N parent = &
grdill: filesNfs=o
grdl2 : directories N ds = &
then
actl: files := files U fs
act2: directories := directories U ds
act3: parent := parent U prt U {z — root}
end
Event unmount =
refines unmount
Unmount the storage device. All objects 0bjs rooted at x within the device will
be released.

any

176 Appendix A An Event-B specification of a file system

objs, x
where
grdl : objs C files U directories
grd2 : root ¢ objs
grd3: x € objs
grd4 : objs = (tcl(parent)) " [{z}] U {z}
then
actl: files := files \ (objs N files)
act2 : directories := directories \ (objs N directories)

act3: parent := objs 4 parent
end

END

Appendix A An Event-B specification of a file system

177

A.3 The second refinement: File content

Introduce file content together with open, read and write events. Power loss and power

on are also introduced in this refinement.

MACHINE FMCHO02
REFINES FMCHO1
SEES FCTX02

VARIABLES
files
directories
parent
fcontent the content of each file
w_opened_files files which are opened for writing
r_opened_files files which are opened for reading
wbuffer write buffers
rbuffer read buffers
power_on power status
INVARIANTS
invl : fcontent € files - CONTENT

inv2:
inv3:
inv4 :
invbh :
inv6 :
inv7 :
inv8 :

EVENTS

w_opened_files C files

r_opened_files C files

w_opened_files N r_opened_files = &
wbhuffer € w_opened_files - CONTENT
rbuffer € r_opened_files - CONTENT
power_on € BOOL

power_on = FALSE = (w_opened_files :== & N r_opened_files := &

wbuffer := & A rbuffer .= &)

Initialisation

extended

begin

end

act4 :
acthb:
act6 :
act7 :
act8:
act9:

fcontent .= @
w_opened_files := &
r_opened_files := &
wbuffer := &
rbuffer == &
power_on := TRUE

Event mkdir =

extends mkdir

where

en

grd3

: power_on = TRUFE

Event cri_file =
Create a file 0bj

178 Appendix A An Event-B specification of a file system

extends crit_file

where

grd3 : power_on = TRUE
then

act3: fcontent(obj) := @
end

Event move =
Move an object from one place to another.
extends mowve

where
grd5 : power_on = TRUE

grd6 : obj ¢ w_opened_files U r_opened_files
end

Event delfile =
Delete a file from the specified directory.
extends delfile

where
grd3: obj ¢ w_opened_files U r_opened_files
grd4 : power_on = TRUE

then
act3: fcontent := {obj} <4 feontent

end

Event rmdir =
Delete an empty directory
extends rmdir

where
grd3 : power_on = TRUE
end

Event deltree =
Delete an object and its descendants.
extends deltree

where
grd5 : objs N (w_opened_files U r_opened_files) = &

All objects to be deleted, objs, must not be in used.

grd6 : power_on = TRUE
then

actd : fcontent := objs <9 fcontent
end

Event copy =
Copy an existing object

extends copy

where

grdl2 : powerloss = FALSE
then

act4 : fcontent := fcontent U (corres™'; fcontent)
end

Event w_open =
Open the given file f for writing.

any

Appendix A An Event-B specification of a file system

179

f,ent
where

grdl :

grd2 :

f € files
cnt € CONTENT

The content to be written.

grd3:

grd4 :
then
actl:

act2:

f ¢ w_opened_files U r_opened_files

power_on = TRUE

w_opened_files := w_opened_files U {f}
wbuffer(f) := ent

Set wbuffer pointing to the content cnt to be written.

end

Event r_open =

Open file f for reading.

any
f
where
grdl :
grd2:
grd3:
then
actl:
act2:
end

f € files
f ¢ w_opened_files U r_opened_files
power_on = TRUE

r_opened_files := r_opened_files U {f}
rouffer(f) == @

Event readfile =
Read the whole content of a file from the storage into the read buffer.

any
f
where
grdl:
grd2:
then
actl:
end

Event writefile

f € r_opened_files
power_on = TRUE

rouffer(f) := fcontent(f)

~

Write the content on the write buffer of the given file into the storage.

any

where

grdl :
grd2 :

then

actl:

end

Event close =

f € w_opened_files
power_on = TRUE

feontent(f) := whuffer(f)

Close an opened file.

any

f

where

grdl :
grd2 :

then

actl:
act2:

f € r_opened_files U w_opened_files
power_on = TRUE

r_opened_files := r_opened_files \ {f}
w_opened_files :== w_opened_files \ {f}

180 Appendix A An Event-B specification of a file system

act3: rbuffer .= {f} < rbuffer

actd : wbuffer := {f} 9 wduffer
end

Event power_off =

when

grdl : power_on = TRUE
then

actl: power_on := FALSE

act2: wbhuffer == @

act3: rbouffer := o

actd : w_opened_files := &

actb : r_opened_files == &
end

Event power_on =

when

grdl : power_on = FALSE
then

actl: power_on := TRUE
end

Event mount =
Close the device into the existing root.
extends mount

any
fent
where

grdl3: fent € fs - CONTENT

grdi4 : power_on = TRUE
then

act4d : fcontent := fcontent U fent
end

Event unmount =
extends unmount

where
grd5 : objs N w_opened_files = @
grd6 : objs N r_opened_files = &

grd7 : power_on = TRUE
then

act4d : fcontent := objs 4 fecontent
end

END

Appendix A An Event-B specification of a file system 181

A.4 The third refinement: Permissions

Introduce permissions and related events.

MACHINE FMCHO03
VARIABLES

USErs the set of existing users

groups the set of existing groups
user_grps user’s groups

USET_PYTP the primary group of each user
obj_owner the owner of each object
obj_grp the group-owner of each object
obj_perms permissions of each object

INVARIANTS

invl : users C USER
inv2: groups C GROUP
inv3: su € users
inv4 : admin € groups
invd : user_grps € users <» groups
inv6 : user_pgrp € users — groups
inv7 : obj_owner € (files U directories) — users
inv8 : obj_grp € (files U directories) — groups
inv9 : obj_perms € (files U directories) <» PERMISSION
thml : obj_perms — obj_owner — obj_grp — user_grps € dom(WPerm)
thm2 : obj_perms — obj_owner — obj_grp — user_grps € dom(RPerm)
thm3 : obj_perms — obj_owner — obj_grp — user_grps € dom(XPerm)
EVENTS
Initialisation
extended
begin
act10 : users := {su}
actll: groups := {admin}
actl12: user_grps := {su > admin}
act13: user_pgrp := {su +— admin}
actl4 : obj_owner := {root — su}
actl5: obj_grp := {root — admin}
act16 : obj_perms := {root — wbo, root — rbo, root — xbo}
end
Event mkdir =
Make a directory
extends mkdir
any
usr the user who issues the request

qrp the primary group of the user
where
grd4 : usr € users

182 Appendix A An Event-B specification of a file system
grdb5 : grp € groups
grd6 @ usr — grp € user_pgrp
grd7 : indr — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
then
act3: obj_owner(obj) := usr
actd : obj_grp(obj) :== grp
act5 : obj_perms := obj_perms U {obj — rbo, 0bj — wbo, 0bj — zbo}
end

Event crt_file =
Create a file

extends crit_file

any
usr the user who issues the request
qrp the primary group of the user
where
grd4 : usr € users
grd5: grp € groups
grd6 : usr — grp € user_pgrp
b grd7 : indr — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
then
actd : obj_owner(obj) := usr
act5: obj_grp(obj) := grp
4 act6 : obj_perms := obj_perms U {obj — rbo, 0bj — wbo, 0bj — xbo}
en

Event move =
Move an object from one place to another.
extends move

any
uST

where
grd7 : usr € users

grd8 : obj — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)

grd9 : to — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
end

Event delfile =
Delete file 0bj by user usr
extends delfile

any
usr
where
grdb : usr € users
o grd6 : obj — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
en
actd : obj_owner := {obj} 4 obj_owner
act5 : obj_grp := {obj} < obj_grp
act6 : obj_perms := {obj} < obj_perms
end

Event rmdir =
Delete an empty directory (obj) by user usr.
extends rmdir

any
uUST
where

Appendix A An Event-B specification of a file system 183

grd4d : usr € users

grd5 : obj — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
then

act3: obj_owner := {obj} <9 obj_owner
actd : obj_grp := {obj} <4 obj_grp
actb: obj_perms := {obj} < obj_perms
end
Event deltree =
Delete the given object and all its descendants.
extends deltree

any
UST
where
grd7 : usr € users

grd8 : obj — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
then

act5 : obj_owner := objs 4 obj_owner
act6 : obj_grp := objs Q obj_grp
act7 : obj_perms := objs 4 obj_perms
end
Event copy =

Copy an existing object 0bj to directory to by user usr
extends copy

any
usr
where
grdl3: usr € users
grdid : obj — usr € RPerm(obj_perms +— obj_owner — obj_grp — user_grps)

grdib : to > usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
then

act5 : obj_owner := obj_owner U (corres; obj_owner)
act6 : obj_grp := obj_grp U (corres™'; obj_grp)
act7 : obj_perms := obj_perms U (corres™'; obj_perms)
end
Event w_open =
Open file f for writing by user usr.
extends w_open

any
UST
where
grdb : usr € users

grd6 : f > usr € WPerm(obj_perms — obj_owner s obj_grp — user_grps)
end

Event r_open =
Open file f for reading by user usr
extends r_open

any
usr
where
grd4 : usr € users

grd5 : f i+ usr € RPerm(obj_perms — obj_owner — obj_grp — user_grps)
end

184 Appendix A An Event-B specification of a file system

Event readfile =
Read the whole content of a file from the storage into the read buffer.

extends readfile

Event writefile =

Write the content on the whuffer of the given file into the storage.
extends writefile
Event close =
Close an opened file.
extends close
Event power_off =
extends power_off
Event power_on =
extends power_on
Event mount =
extends mount

an,
Y objown the owner of each object being mounted
objperms list of permissions of each object
objgrp the group owner of each object
where
grdib : objown € objs — users

grdi6 : objperms € objs <» PERMISSION
grdl7 : objgrp € objs — groups

then
act5 : obj_owner := obj_owner U objown

act6 : obj_perms := obj_perms U objperms
act7 : obj_grp := obj_grp U objgrp
end
Event unmount =
extends unmount

then
act5: obj_owner := objs 4 obj_owner

act6 : obj_grp := objs € obj_grp
act7 : obj_perms := objs < obj_perms
end

END

Appendix A An Event-B specification of a file system

185

A.5 The fourth refinement: Missing properties

Adding other properties: name, creation date and last modification date.

MACHINE FMCH04
REFINES FMCHO03
SEES FCTXO03

VARIABLES
oname name of each object
dateCreated creation date

dateLastModified last modification date
file_size file size

INVARIANTS

invl : oname € (files U directories) — NAME

inv2 : dateCreated € (files U directories) — DATE
inv3 : dateLastModified € (files U directories) — DATE
inv4 : file_size € files - N

thml : files N directories = @

EVENTS
Initialisation
extended
begin
actl17 : oname := {root — rname}
act18 : dateCreated := {root — dfdate}
act19 : dateLastModified := {root — dfdate}
act20: file_size := &
end
Event mkdir =
Make a directory
extends mkdir

any
nme
where
grd7 : nme € NAME

grd8 : nme ¢ oname|parent[{indr}]]
then

act6: oname(obj) := nme

act7 : dateCreated(obj) := nowdate

act8 : dateLastModified(obj) := nowdate
end

Event cri_file =
create file
extends cri_file

any
nme
where

186 Appendix A An Event-B specification of a file system

grd7 : nme € NAME
grd8 : nme & oname|parent[{indr}]|

then
act7 : oname(obj) := nme
act8 : dateCreated(obj) := nowdate
act9 : dateLastModified(obj) := nowdate
act10 : file_size(obj) :=0

end

Event move =
Move an object from one place to another.
extends mowve

where
grd10 : oname(obj) ¢ oname[parent 1 [{to}] U {to}]
end

Event delfile =
Delete a file obj
extends delfile

then
act9 : oname = {obj} <9 oname

act10 : dateCreated := {obj} < dateCreated
actll : dateLastModified := {obj} < dateLastModified
act12: file_size := {obj} <4 file_size

end

Event rmdir =
Delete an empty directory obj
extends rmdir

then
act6 : oname = {obj} < oname
act7 : dateCreated := {obj} < dateCreated

act8: dateLastModified := {obj} 4 dateLastModified
end

Event deltree =
Delete the given object and all its descendants.
extends deltree

then
act8: oname := objs 9 oname
act9 : dateCreated := objs < dateCreated
actl10 : dateLastModified := objs <9 dateLastModified
actll: file_size := objs <4 file_size

end

Event copy =
Copy an existing object obj to directory to.
extends copy

where
grd17 : oname(obj) ¢ oname[parent1[{to}] U {to}]
then
act9 : oname := oname U (corres™"; oname)
act10 : dateCreated := dateCreated U (corres™'; dateCreated)
act11 : dateLastModified := dateLastModifiedU(corres™'; dateLastModified)

act12: file_size := file_size U (corres™!; file_size)

1

Appendix A An Event-B specification of a file system

187

end
Event w_open =
Open the given file f for writing.
extends w_open
Event 7r_open =
Open the given file for reading.
extends r_open
Event readfile =
Read the whole content of a file from the storage into the read buffer.
extends readfile
Event writefile =
Write the content on the wbuffer of the given file into the storage.
extends writefile

then
act2: dateLastModified(f) := nowdate

act3: file_size(f) := card(wbuffer(f))

end

Event close =
Close an opened file.
extends close

Event rename =

any
obj the given object to be renamed
indr the directory to which the given object belongs
nname new name

where

grdl : obj € (files U directories) \ {root}

grd2: obj ¢ (w_opened_files U r_opened_files)

grd3 : indr € directories

grd4 : nname € NAME

grd5 : indr = parent(obj)

grdé : nname ¢ oname[parent ™ [{indr}] U {indr}]
then

actl: oname(obj) := nname

act2 : dateLastModified(obj) := nowdate
end

Event power_off =
extends power_off

Event power_on =
extends power_on

Event mount =
extends mount

any
objname the name of each object being mounted
cdate the creation date of each object being mounted
mdate the last modification date of each object being mounted

fsize the size of each file being mounted
where

188 Appendix A An Event-B specification of a file system

grdl8 : objname € objs - NAME
grdl9 : cdate € objs - DATE
grd20 : mdate € objs — DATE
grd21 : fsize € fs + N
grd21 : fsize = card(fat_tmp(f))

then
act8: oname := oname U objname
act9 : dateCreated := dateCreated U cdate
actl10 : dateLastModified := dateLastModified U mdate
actll: file_size := file_size U fsize

end

Event unmount =

extends unmount

then
act8:

act9:
actl0

actll
end

END

oname = objs 9 oname

dateCreated := objs < dateCreated

. dateLastModified := objs <€ dateLastModified
. file_size := objs 9 file_size

Appendix A An Event-B specification of a file system 189

A.6 The fifth refinement: Decomposition of the writefile

event

Decomposing the writefile event into sub events: w_start, w_step and w_end.

MACHINE FMCHO05
REFINES FMCH04
SEES FCTXO03
VARIABLES

writing

feont_tmp
INVARIANTS

invi : writing C w_opened_files

inv2: fceont_tmp € writing - CONTENT

inv3: Vf-f € writing = feont_tmp(f) C wbuffer(f)

inva : power_on = FALSE = writing := @ A fcont_tmp := &
EVENTS
Initialisation

extended

begin
act20 : writing := &
act21: fcont_tmp = O
end

Event mkdir =
Make a directory
extends mkdir
Event crt_file =
create file
extends cri_file
Event move =
Move an object from one place to another.
extends move
Event delfile =
Delete an object, and all its descendents, from specified directory.
extends delfile
Event rmdir =
Delete an empty directory.
extends rmdir
Event deltree =

extends deltree

190 Appendix A An Event-B specification of a file system

Event copy =
Copy an existing object and its descendants to another place
extends copy
Event w_open =
Open file for writing.
extends w_open
Event r_open =
Open file for reading
extends r_open
Event readfile =
Read the whole content of a file from the storage into the read buffer.
extends readfile
Event w_start =
Start writing file f.

any

f

where
grdl : f € w_opened_files
grd2: f ¢ writing
grd3 : powerloss = FALSE
then
actl : writing := writing U {f}
act2: fcont_tmp(f) := @
end

Event w_step =
Writing step, write a data of page i from the buffer into fecont_tmp (which is a

mirror of the storage)

any
f, 1, data

where
grdl: f € writing
grd2: 1 €N

grd3: data € DATA
grd4 : i — data € whuffer(f)
grd5 : i ¢ dom(fecont_tmp(f))

grd6 : powerloss = FALSE
then

actl: fcont_tmp(f) := feont_tmp(f) U {i — data}
end

Event w_end_ok =
Writing a file is completed when all pages have been written (grd3)
refines writefile

any
S
sz
where
grdl : f € writing
grd2 : powerloss = FALSE
grd3 : dom(fecont_tmp(f)) = dom(wbuffer(f))

Appendix A An Event-B specification of a file system

191

grdd: sz €N
then
actl: fcontent(f) := feont_tmp(f)

act2: dateLastModified(f) := nowdate
act3: writing := writing \ {f}
actd : fcont_tmp = {f} < feont_tmp

actb: file_size(f) := card(fcont_tmp(f))
end

Event w_end_fail =

Writing a file fails. Release all memory contents.

any

where

grdl : f € writing
then

actl : writing := writing \ {f}

act2: fcont_tmp := {f} < feont_tmp
end

Event close =
Close an opened file.
extends close

where
grd3: f ¢ writing
end

Event rename =
extends rename

Event power_off =
extends power_off

then
act6 : writing := &
act7: fcont_tmp =@
end

Event power_on =
extends power_on

Event mount =
extends mount

Event unmount =
extends unmount

END

192 Appendix A An Event-B specification of a file system

A.7 The sixth refinement: Decomposition of the readfile

event

MACHINE FMCHO06
REFINES FMCHO05
SEES FCTXO03
VARIABLES

reading
rbuff _tmp

INVARIANTS

invl : reading C r_opened_files

inv2 : rbuff_tmp € reading — CONTENT

inv3: Vf-f € reading = rbuff _tmp(f) C fcontent(f)

invd : power_on = FALSE = reading := @ A rbuff _tmp := &
thml : Vf-f € reading = f € dom(fcontent)

EVENTS
Initialisation
extended

begin
act22: reading := &
act23: rbuff_tmp =@
end

Event mkdir =
Make a directory
extends mkdir
Event crt_file =
create file
extends crit_file
Event move =
Move an object from one place to another.
extends move
Event delfile =
Delete an object, and all its descendants, from specified directory.
extends delfile
Event rmdir =
Delete an object, and all its descendents, from specified directory.
extends rmdir
Event deltree =
extends deltree
Event copy =
Copy an existing object

extends copy

Appendix A An Event-B specification of a file system 193

Event w_open =

Open file for writing.

extends w_open
Event r_open =

Open file for reading

extends r_open
Event w_start =

Start writing a file.

extends w_start
Event w_step =

Writing step, write one data unit from a buffer into fcont_tmp (which is a mirror

of the storage)

extends w_step
Event w_end_ok =

extends w_end_ok
Event w_end_fail =

Writing of a file fails.

extends w_end_fail
Event close =

Close an opened file.

extends close

where
grd3: f ¢ reading
end

Event rename =
extends rename
Event r_start =
Start reading of the given file
any
where

grdl: f € r_opened_files
grd2: f ¢ reading

then
actl : reading := reading U {f}
act2: rbuff _tmp(f) := @

end

Event r_step =

Reading step, read the data of page ¢ from the storage into the temp buffer.

any
f, 1, data

where
grdl: f € reading
grd2: i €N

grd3: data € DATA
grd4 : i — data € fecontent(f)

194 Appendix A An Event-B specification of a file system

grd5 : i & dom(rbuff _tmp(f))
then

actl : rbuff_tmp(f) := rbuff _tmp(f) U {i — data}
end

Event r_end_ok =
Reading the whole content of file f from the storage into the read buffer is com-
pleted when all pages have been read (grd2).
refines readfile

any

where
grdl : f € reading
grd2 : dom(rbuff _tmp(f)) = dom(fcontent(f))

grd3 : powerloss = FALSE
then

actl : rbuffer(f) := rbuff —tmp(f)
act2: reading := reading \ {f}

act3: rbuff_tmp = {f} <9 rbuff _tmp
end

Event r_end_fail =
Reading of the given file fails. This event releases all memory buffers

any

S

where

grdl : f € reading
then

actl : reading := reading \ {f}

act2 : rbuff _tmp = {f} < rbuff _tmp
end

Event power_off =
extends power_off

then
act8: reading := &
act9: rouff_tmp =@
end

Event power_on =
extends power_on

Event mount =
extends mount

Event unmount =

extends unmount

END

Appendix A An Event-B specification of a file system 195

A.8 The seventh refinement: Flash specification

Relating to flash interfaces provided. fcontent and fcont_tmp are replaced by fat and
fat_tmp. Note: Because copying can be done recursively by events read and write, we

decided not to refine it in this level.

MACHINE FMCHO7
REFINES FMCHO06
SEES FLCTX
VARIABLES

files

directories

parent

w_opened _files A set of files being opened for writing

r_opened files A set of files being opened for reading

wbuffer Write buffer of each w_opened files, containing the content to be

written to the flash
rbuffer Read buffer of each file being opened of reading
power_on
users
groups
user_grps
user_pgrp
obj_owner
obj_grp
obj_perms
oname
dateCreated
dateLastModified
file_size
writing Set of files being in writing state
reading Set of files being in reading state
rbuff_ tmp Temporary read buffer. It becomes the actual output buffer when
all pages has been read into the memory.
fat The table of contents of each file.
fat_tmp Temporary fat.
curr—_version The current version of each file
writing_version Writing version of each file
flash A flash device which is an array of pages
programmed_pages Set of pages that have already been programmed
obsolete_pages Set of programmed pages which are obsolete.

INVARIANTS

invl: flash € RowAddr — PDATA
inv2 : programmed_pages C RowAddr
inv3 : obsolete_pages C programmed_pages

196 Appendix A An Event-B specification of a file system

inv4 : power_on = TRUFE = fat € files — (N -» RowAddr)
This fat is a mapping of each file to a table that maps each page index within
the file to its corresponding row address in the flash.
inv5: fat_tmp € writing — (N + RowAddr)
inv6 : curr_version € (files U directories) — VERNUM
inv7 @ writing_version € writing — VERNUM
inv8: Vp-p € PDATA A objOfpage(p) € files
A verOfpage(p) = curr_version(objOfpage(p)) N pideOfpage(p) # 0
= pidzOfpage(p) — dataOfpage(p) € feontent(objOfpage(p))
inv9: Vi, r,f,p-f € files N r € programmed_pages \ obsolete_pages
A p = flash(r) A verOfpage(p) = curr_version(f)
A 0bjOfpage(p) = f A pidzOfpage(p) =i AN i # 0
= i1 € fat(f)
inv10: Vi, r, f, p-r € programmed_pages \ obsolete_pages
A f € writing A p = flash(r) A verOfpage(p) = writing_version(f)
A objOfpage(p) = f A pidzOfpage(p) =i N i # 0
= i+ r € fat_tmp(f)
invil: Vf-f € files = dom(fat(f)) = dom(fecontent(f))
invi2: Vf-f € files = dom(fcontent(f)) =1.. file_size(f)
inv13: Vf-f € writing = dom(fat_tmp(f)) = dom(fecont_tmp(f))
invi14 : power_on = FALSE = fat := @ A fat_tmp := & A writing_version := &
invis : Vf-f € writing = writing_version(f) # curr_version(f)
EVENTS
Initialisation
begin
actl: files := o
act2 : directories := {root}
act3: parent := &
act4d : w_opened_files := &
act5: r_opened_files := &
act6 : whuffer .= @
act7 : rbuffer := o
act8: users := {su}
act9 : groups := {admin}
actl10 : user_grps := {su > admin}
actll : user_pgrp := {su — admin}
act12 : obj_owner := {root — su}
act13: obj_grp := {root — admin}
actl4 : obj_perms := {root — wbo, root — rbo, root — zbo}
actl5: oname := {root — rname}
act16 : dateCreated := {root — dfdate}
actl7 : dateLastModified := {root — dfdate}
actl8: writing == &
actl9: reading := &
act20: rbhuff_tmp := @
act21l: fat: =0
act22: fat_tmp =
act23: curr_version = &
act24 : wnriting_version := &

Appendix A An Event-B specification of a file system 197

act25 : programmed_pages := &
act26 : obsolete_pages := &
act27: flash := dflash
act28: power_on := TRUFE
act29: file_size := @

end

Event mkdir =
Make a directory
extends mkdir

any
r a row address used to record the new description of the object being
created
desc the description to be stored

pdata a page data to be programmed at row r
where
grd10 : r € RowAddr \ programmed_pages
grdil : pdata € PDATA
grdl2: desc € DATA
grdi3: objOfpage(pdata) = obj
grdi14 : pidzOfpage(pdata) = 0
grd15 : verOfpage(pdata) =0
grdi16 : dataOfpage(pdata) = desc
then
act10: flash(r) := pdata
actll: programmed_pages := programmed_pages U {r}
act12 : curr_version(obj) := 0
end

Event cri_file =
create file
refines crt_file
any
obj, indr, usr, grp, nme
r arow address used to record the new description of the file being created

fdesc the description of file to be stored
pdata a page data to be programmed at row r
where
grdl : obj € OBJECT \ (files U directories)
grd2 : indr € directories
grd3 : usr € users
grd4d : grp € groups
grdb @ usr — grp € user_pgrp
grd6 : indr — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
grd7 : nme € NAME
grd8 : nme ¢ oname|parent[{indr}]|
grd9 : fdesc € DATA
grd10 : pdata € PDATA
grdil : r € RowAddr \ programmed_pages
grd12 : objOfpage(pdata) = obj
grd13 : pidzOfpage(pdata) = 0
grdi4d : verOfpage(pdata) =0
grdl5 : dataOfpage(pdata) = fdesc
grd16: Vp-p € PDATA A 0bjOfpage(p) = obj = pidzOfpage(p) =0

198

Appendix A An Event-B specification of a file system

grdl7 : power_on = TRUE
then
actl: files := files U {obj}
act2: parent(obj) := indr
act3: fat(obj) =92
actd : obj_owner(obj) := usr
act5: obj_grp(obj) := grp
act6 : obj_perms := obj_perms U {obj — rbo, 0bj — wbo, 0bj — xbo}
act7 : oname(obj) := nme
act8 : dateCreated(obj) := nowdate
act9 : dateLastModified(obj) := nowdate
act10 : curr_version(obj) := 0
actll: flash(r) := pdata
act12 : programmed_pages := programmed_pages U {r}
act13: file_size(obj) =0
end

Event move =

Move an object obj and its descendants des to another location to by user usr.
extends move

any
T the selected row address within the flash device to be written
fdesc represents a DATA of file description (name, owner, permissions,

etc.)

pdata a PDATA to be written to flash
where
grd9 : r € RowAddr \ programmed_pages

grd10 : pdata € PDATA

grdil : desc € DATA

grdi12 : objOfpage(pdata) = obj

grd13 : pidzOfpage(pdata) = 0

grdi14d : verOfpage(pdata) = curr_version(obj)

grdi15 : dataOfpage(pdata) = desc
then

act2: flash(r) := pdata

4 act3: programmed_pages := programmed_pages U {r}

en

Event delfile =

Delete a file.
refines delfile

any
obj
usr
7 0Ws all row addresses belonging to object being deleted
where
grdl : obj € files \ {root}
grd2 : parent [{obj}] = @
grd3: obj ¢ w_opened_files U r_opened_files
grd4 : usr € users
grd5 : obj — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
grd6 : obj ¢ reading
grd7 : rows C programmed_pages \ obsolete_pages
grd8 : rows = flash~[objOfpage ' [{obj}]]
grd9 : power_on = TRUE
then

Appendix A An Event-B specification of a file system 199

actl: files := files \ {obj}
act2: parent := {obj} < parent
act3: fat :={obj} < fat
actd : obj_owner := {obj} 4 obj_owner
act5 : obj_grp := {obj} < obj_grp
act6 : obj_perms := {obj} < obj_perms
act7 : oname := {obj} < oname
act8 : dateCreated := {obj} < dateCreated
act9 : dateLastModified := {obj} < dateLastModified
actl10: fat_tmp := {obj} <4 fat_tmp
actll : curr_version := {obj} 9 curr_version
act12: obsolete_pages := obsolete_pages < rows
actl5: file_size := {obj} < file_size

end

Event rmdir =
Delete an empty directory.
extends rmdir

any
rows all rows belonging to the obj being deleted
where
grd6 : rows C programmed_pages \ obsolete_pages
grd7 : rows = flash~[objOfpage 1 [{0bj}]]
then
act9 : obsolete_pages := obsolete_pages U rows
end

Event deltree =
Delete the given object (0bj) and all its descendants (des), by user usr.

refines deltree

any

obj, des, objs, usr

rows all rows belonging to those objects (0bjs) being deleted.
where

grdl : obj € (files U directories) \ {root}

grd2 : des C (files U directories)

grd3: des = (tcl(parent))~'[{obj}]

grd4 : objs = des U {obj}

grd5 : objs N (w_opened_files U r_opened_files) = &

All must not be in use.
grd6 : usr € users
grd7 : obj — usr € WPerm(obj_perms — obj_owner — obj_grp — user_grps)
grd8 : rows C programmed_pages \ obsolete_pages
grd9 : rows = flash~[objOfpage'[objs]]
grdl0 : power_on = TRUE
then
actl : parent := objs 4 parent
act2: files := files \ (objs N files)
act3: directories := directories \ (objs N directories)
actd: fat := objs 4 fat
act5 : obj_owner := objs 4 obj_owner
act6 : obj_grp := objs < obj_grp
act7 : obj_perms := objs < obj_perms
act8: oname := objs € oname
act9 : dateCreated := objs 4 dateCreated

200 Appendix A An Event-B specification of a file system

actl10 : dateLastModified := objs 9 dateLastModified
actll: obsolete_pages := obsolete_pages U rows
actl12: curr_version := objs € curr_version
actl13: file_size := objs 4 file_size
end
Event w_open =
Open a file of writing.
extends w_open
Event r_open =
Open a file for reading
extends r_open
Event w_start =
Start writing of a file.
refines w_start

any
f
cv the current version of file f
wv the version of file f being written
where
grdl : f € w_opened_files
grd2: f ¢ writing
grd3: cv = curr_version(f)
grdd : wv € VERNUM
grd5: ((ww=cv+1&cv<2)V (wv=0))
grd6 : Vp-p € PDATA A 0bjOfpage(p) = f = verOfpage(p) # wov
grd7 : power_on = TRUE
then
actl : writing := writing U {f}
act2: fat_tmp(f) = O
act3: writing_version(f) := wv
end
Event w_step =
Writing step, write the data of page ¢ from the buffer into the flash device at row
T
refines w_step

any

fii

data the data of page ¢ of file f

r the address to be written

pdata the page data to be written to the flash
where

grdl : f € writing

grd2: i €N

grd3: ¢ >0

grd4 : data € DATA

grd5 : i — data € whuffer(f)

grd6 : i & dom(fat_tmp(f))

grd7 : r € RowAddr \ programmed_pages
grd8 : pdata € PDATA

grd9 : verOfpage(pdata) = writing_version(f)
grd10 : pidzOfpage(pdata) = i

Appendix A An Event-B specification of a file system 201

grdil : objOfpage(pdata) = f
grdl12 : dataOfpage(pdata) = data
grdl3: power_on = TRUE

then

actl: fat_tmp(f) = fat_tmp(f) U {i— r}

act2: flash(r) := pdata

act3: programmed_pages := programmed_pages U {r}
end

Event w_end_ok =
Writing the given file is complete when all pages have been written to the flash

device.

refines w_end_ok

any

f

wu writing version

data Contains file description

r row address to store file description

pdata a PDATA to be programmed to row r
where

grdl : f € writing

grd2 : dom(fat_tmp(f)) = dom(wbuffer(f))
grd3 : wv = writing_version(f)

grd4 : r € RowAddr \ programmed_pages
grd5 : data € DATA

grd6 : pdata € PDATA

grd7 : verOfpage(pdata) = wv

grd8 : pidzOfpage(pdata) = 0

grd9 : objOfpage(pdata) = f

grd10 : dataOfpage(pdata) = data

grdll : power_on = TRUE
then

actl: fat(f) := fat_tmp(f)
act2 : dateLastModified(f) := nowdate

act3 : writing := writing \ {f}
actd : fat_tmp := {f} < fat_tmp
acts : curr_version(f) := wv
act6 : writing_version := {f} <4 writing_version
act7: flash(r) := pdata
act8: programmed_pages := programmed_pages U {r}
act9: file_size(f) := card(fat_tmp(f))
end

Event w_end_fail =
Writing of a file fails

refines w_end_fail

any
f
where
grdl: f € writing
then
actl : writing := writing \ {f}
act2: fat_tmp := {f} < fat_tmp
act3 : writing_version := {f} <9 writing_version
end

202 Appendix A An Event-B specification of a file system

Event close =
Close an opened file.
extends close

Event rename =
Rename the given object.
extends rename

any
r, newdesc, pdata
where
grd7 : r € RowAddr \ programmed_pages
grd8 : pdata € PDATA
grd9 : newdesc € DATA
grd10 : objOfpage(pdata) = obj
grdil : pidzOfpage(pdata) = 0
grdi2 : verOfpage(pdata) = curr_version(obj)
grd13: dataOfpage(pdata) = newdesc
then
act3: flash(r) := pdata
actd : programmed_pages := programmed_pages U {r}
end
Event r_start =
Start read the given file
refines r_start

any

where
grdl: f € r_opened_files
grd2: f ¢ reading
grd3 : power_on = TRUE
then
actl: reading := reading U {f}
act2: rbuff _tmp(f) =@
end

Event r_step =

Reading step, read the data of page ¢ from the flash at row r into the temp buffer.

refines r_step

any
f, 1, data, r, pdata
where
grdl: f € reading
grd2: i €N
grd3: ¢ >0

grd4 : data € DATA

grd5 : power_on = TRUE

grd6 : r € programmed_pages \ obsolete_pages
grd7 : i+ r € fat(f)

grd8 : pdata = flash(r)

grd9 : verOfpage(pdata) = curr_version(f)
grd10 : pidzOfpage(pdata) = i

grdll : objOfpage(pdata) = f

grdl12: data = dataOfpage(pdata)

Appendix A An Event-B specification of a file system

203

grdi3: i ¢ dom(rbuff_tmp(f))
grdld : i~ data & rbuff _tmp(f)

then
actl
end

Event r_end_

s rbuff _tmp(f) == rbuff —tmp(f) U {i — data}

ok =

Reading the given file is completed when all pages have been read (grd3).

refines r_end_ok

any

f

where

grdl :
grd2:
grd3:

then

actl:
act2:
act3:

end

power_on = TRUE
f € reading
dom(rbuff _tmp(f)) = dom(fat(f))

rouffer(f) := rbuff —tmp(f)
reading := reading \ {f}

rouff _tmp := {f} < rbuff _tmp

Event r_end_fail =

Reading of a file fails.

refines r_

any
f
where
grdil
then
actl
act2
end

end_fail

[€ reading

. reading := reading \ {f}
s rbuff _tmp = {f} <4 rbuff _tmp

Event mark_obsolete =

A utility event to mark all pages (identified by rows) of the given file that has the

version number equal to the given version (ver).

any
f, ver, rows
where
grdl : f € files
grd2: ver € VERNUM
grd3 : rows C programmed_pages
grd4 : rows = flash~[objOfpage 1 [{f}] N verOfpage = [{ver}]]
grd5 : power,n = TRUE
then
actl : obsolete_pages := obsolete_pages U rows
end

Event power_off =

refines power_off

when

grdl :

then

actl:
act2:
act3:
act4 :

power_on = TRUFE

power_on := FALSE
wbuffer == &
rbuffer .= @
w_opened_files := &

204

Appendix A An Event-B specification of a file system

acthb:
act6 :
act7 :
act8:
act9:
actl10

actll
end

r_opened_files := &

fat =@
writing = &
fat_tmp =
reading := &

s rbuff _tmp ;= o
s writing_version 1= &

Event power_on =
Reconstructs a FAT table.

refines power_on

any

ft

where
grdl :
grd2 :
grd3:
grd4 :
grd5 :

grdé6 :

then
actl

act2:
end

Event mount =

power_on = FALSE
ft € files = (N + RowAddr)
Vf-f € files = dom(ft(f)) =1.. file_size(f)
Vp-p € PDATA A 0bjOfpage(p) € dom(ft) = p € ran(flash)
Vi, r,f,p-r € programmed_pages \ obsolete_pages A f € files
A p = flash(r) N verOfpage(p) = curr_version(f)
A 0bjOfpage(p) = f A pidxOfpage(p) =i AN i # 0
= i1 e ft(f)
Vi, r, f,p-r € programmed_pages \ obsolete_pages N\ f € files
A p = flash(r) N i — r € ft(f)
= (verOfpage(p) = curr_version(f) A
objOfpage(p) = f A pidzOfpage(p) =i)

: power_on := TRUE

fat .= ft

Mount the flash contents into an existing root.

refines mount

any
objs

set of all objects to be mounted.

fs Set of files to be mounted.
ds set of directories to be mounted.

prt

parent function representing the structure of all objs to be mounted.

x Subroot to be mounted to the existing root.

fent
objown

the content of each file
the owner of each object being mounted

objperms the set of permissions of each object being mounted

objgrp the group owner of each object being mounted
objname the name of each object being mounted

cdate the creation date of each object being mounted
mdate the modification date of each object being mounted
fsize the size of each file being mounted

ft the table of content of each file being mounted
cv the current version of each object being mounted

where
grdl :
grd2 :
grd3:
grd4 :

objs € OBJECT
fs C objs

ds C objs

objs = fs U ds

Appendix A An Event-B specification of a file system 205

grdbs :
grd6 :
grd7 :
grds :
grd9 :

grdlo :
grdill :
grdl2:
grdl3:
grdi4 :
grdlb:
grdl6 :
grdl7 :
grdils8 :
grdil9:
grd20 :
grd21 :
grd22 :
grd23:

fsNds=9
(files U directories) N objs = &
x € ds
prt € objs \ {z} — ds
Vs-(s Cprt—i[s] = s = @)
prt N parent = &
filesN fs =
directories N ds = &
fent € fs - CONTENT
objown € objs — users
objperms € objs <> PERMISSION
objgrp € objs — groups
objname € objs - NAME
cdate € objs — DATE
mdate € objs — DATE
fsize € fs > N
ft € fs = (N -» RowAddr)
cv € objs - VERNUM
Vp-p € ran(flash) A objOfpage(p) € fs A verOfpage(p) = cv(0bjOfpage(p))

A pidzOfpage(p) # 0 = pidxOfpage(p) — dataOfpage(p) €

fent(objOfpage(p))

grd24

grd2b

grd26

grd27
then
actl:

act2:
act3:
actd :
acth:
act6
act7 :
act8:
act9:
act10
actll

actl2
end

- Vi, r, f,p-r € programmed_pages \ obsolete_pages N f € fs

A p = flash(r) N verOfpage(p) = curr_version(f)

A objOfpage(p) = [A pidzOfpage(p) = i
= i 1€ ft(f)

: Vi, r, f,p-r € programmed_pages \ obsolete_pages N f € fs

A p = flash(r) N i — r € ft(f)
= (verOfpage(p) = cv(f) A
objOfpage(p) = f A pidzOfpage(p) = i)

: Vf-f € fs= dom(ft(f)) = dom(fent(f))
: power_on = TRUFE

files := files U fs

directories := directories U ds
parent := parent U prt U {z — root}
fat = fat U ft

obj_owner := obj_owner U objown

. obj_perms := obj_perms U objperms

obj_grp := obj_grp U objgrp
oname := oname U objname
dateCreated = dateCreated U cdate

. dateLastModified := dateLastModified U mdate
. file_size := file_size U fsize
:curr_version := curr_version U cv

Event unmount =

unmount a flash device consisting of objects objs rooted at x

refines unmount

any

objs, x

where
grdl :
grd?2 :
grd3:

objs C files U directories
root ¢ objs
T € objs

206

Appendix A An Event-B specification of a file system

END

grd5 : objs = (tel(parent)) " [{z}] U {z}
grd6 : objs N w_opened_files = &

no files are in used
grd7 : objs N r_opened_files = &

no files are in used
grd8 : power_on = TRUE

then

end

actl: files := files \ (objs N files)

act3: directories := directories \ (objs N directories)
act2: parent := objs 4 parent

actd : fat := objs 9 fat

act5: obj_owner := objs 4 obj_owner

act6 : obj_grp := objs Q obj_grp

act7 : obj_perms := objs 4 obj_perms

act8: oname := objs 9 oname

act9 : dateCreated := objs 4 dateCreated

act10 : dateLastModified := objs 4 dateLastModified
actll: file_size := objs 9 file_size

actl12: curr_version := objs 4 curr_version

Appendix A An Event-B specification of a file system 207

A.9 Contexts

CONTEXT FCTX
Defines objects, root object and transitive closure of relations on objects, and
introduces some theorems used for discharging OPs.

SETS
OBJECT

CONSTANTS

root root object
objrel type of relation on objects
tcl transitive closure of an objrel
objfn type of function on objects
AXIOMS
axml : root € OBJECT
axm2 : objfn = OBJECT \ {root} + OBJECT
axmé : objrel = OBJECT < OBJECT
axm3 : tcl € objrel — objrel
axmb : Vr-(r € objrel =
r C tel(r))
r included in tcl(r)
axm6 : Vr-(r € objrel =
r; tel(r) C tel(r))
unfolding included in tcl(r)
axm? : Vr,t-(r € objrel A\ Ct AT t Ct
= tcl(r) Ct)
tcl(r) is least
thmb5 : objfn C objrel
thml : Vr-r € objrel = tel(r) = r U (r; tcl(r))
tcl(r) is a fixed point
thm2 : Vt-t € objfn A (Vs-s Ct7ls]= s =)= tcl(t) N (OBJECT <id) = @
No loop theorem: (!s.s <: (t71)[s] => s = {}) imples tcl(t) has no loops.
thm3 : tcl(9) =2
END

208 Appendix A An Event-B specification of a file system

CONTEXT FCTX01
including additional theorems used for discharging POs
EXTENDS FCTX

AXIOMS
thml : Vr, r2-
r € objrel
A 12 € objrel
AT2Cr
ANVssCrls]=s=0)
=

Vit C(r2)[t] =t =09)
This thm is used for delete operation, when r2 is a tree after delete. This
thm is used to prove inv10 (no-loop property).

thm2 : Vf, g, ¢, t,u, M, N-

N C OBJECT

ANM C OBJECT

ANNM=0

ANteM

ANfeM\{t}—M

ANu €N

ANceM»»N

Au = c(t)

Ng=(cY f; ¢

=

g€ N\{u}—>N
This is used to prove that g is a total function (g is a copy of a subtree f
rooted at ¢; and c is a corresponding function). M = objs (all objects being
copied). N = nobjs (new objects which are copies). ¢ = a root node of subtree
f. f = des<aparent (des is a set of all descendants from t). ¢ = objs — nobjs.
u = the correspondent of ¢. This is used for event copy, move and create.

thm3 : Vf,c,g,t,u, M, N-

N C OBJECT

ANM C OBJECT

NteM

NfeM\{t}—-M

A(VssCfls]=s=02)

ANu €N

ANceM»»N

Au = c(t)

Ng=cl f;c

ANgeN\{u}—>N

= VwwC g Hw]=w=02)

Appendix A An Event-B specification of a file system 209

This thm is used to prove that there is no-loop in g. It is used for copy,

create, move operations.
thmd : Vf, g, t,u,z, M, N-

N C OBJECT

AN M C OBJECT
ANNM=go
ANteM
ANfeM\{t}—-M
ANu€eN
NgeN\{u} =N
ANz eM

=

fugu{u—z}e (MUN)\{t}=MUN
This thm is used to prove inv8, and is used by thm14 for copying (also for
inserting and moving) By providing f = an original tree (= parent for copying
and inserting, = (des U {0bj}) < parent for moving) M = set of all objects
in f. (= objects for copying and inserting, = objects \ (des U {obj}) for
moving) N = set of new objects being added. (= nobjs for copying, = {obj}
for inserting, = des U {obj} for moving) g = a copy of a subtree of f. (=
corres—%; des < parent; corres for copying, = {} for inserting, = des <l parent
for moving). ¢ = root node. u = an object being copied, inserted or moved
(obj). = = a target location (or parent).

thm5 : Vf, g, t,u,x, M, N-

N C OBJECT

ANM C OBJECT

ANNM=0

ANteM

NfeM\{t}—M

ANu €N

ANgeN\{u} - N

Nz eM

ANVA-ACF A= A=2)

AN(VB-BC g lB]= B=29)

ANfUgU{u—z}e(MUN)\{t} >=MUN

=

VC-CC(fugu{ur z}) ()= C=2)
This thm is used for copying, inserting and moving in order to maintain inv10.
For copying, we give: f = parent,g = des <| parent,u = obj,z = to, M =
objects, N = mobjs This theorem can be used for inserting a new object by
providing: f = parent,g = {},u = obj,z = indr, M = objects, N = {obj},
(u is an object being inserted into the location x). We can use this theorem

for moving by providing: f = des{obj} <<| parent,g = des <| parent,t =

210 Appendix A An Event-B specification of a file system

rootu = obj,x = to, M = objects (des{obj})N = des{obj} (u is an object
being moved to the location x)
END

Appendix A An Event-B specification of a file system

211

CONTEXT FCTX02
EXTENDS FCTX01
SETS

DATA
NAME
DATE

CONSTANTS

CONTENT
rname
dfdate
nowdate
sizeOfdata

AXIOMS

axml : CONTENT =N + DATA
axm2 : @ € CONTENT

axm3 : rname € NAME

axmé : dfdate € DATE

axmb : nowdate € DATE

axm6 : sizeOfdata € DATA — N

axm7 : Ve-c € CONTENT = finite(c)

END

212 Appendix A An Event-B specification of a file system

CONTEXT FCTXO03
Introducing PERMISSION, USER and GROUP
EXTENDS FCTX02

SETS
USER
GROUP
PERMISSION
CONSTANTS
admin admin group
su super user
rbo read by owner
wbo written by owner

xbo executed by owner
rbg read by group

wbg written by group
xbg executed by group
rbw read by world

wbw written by world
xbw executed by world
RPerm

WPerm

XPerm

AXIOMS

axml : PERMISSION = {rbo, wbo, zbo, rbg, wbg, xbg, rbw, wbw, xbw}
axn2 : WPerm € (OBJECT <> PERMISSION)x(OBJECT ~+ USER)x(OBJECT

GROUP) x (USER «» GROUP)

— (OBJECT > USER)
axn3 : RPerm € (OBJECT +» PERMISSION)x(OBJECT — USER)x(OBJECT

GROUP) x (USER «» GROUP)

— (OBJECT <« USER)
axm4 : X Perm € (OBJECT <> PERMISSION)x(OBJECT -+ USER)x(OBJECT -+

GROUP) x (USER +» GROUP)

— (OBJECT <« USER)
axmb : Yo, u,p,s,g,m-0 € OBJECT N u € USER

A p € (OBJECT < PERMISSION)

A s € (OBJECT - USER)

A g € (OBJECT + GROUP)

A m € (USER <> GROUP)

A o € dom(g)

=

(
o+ u € WPerm(p+— s+ g+— m)
iS4

(

Appendix A An Event-B specification of a file system 213

0 u€SsNor who €p)V
9(0) € m[{u}] A o = whg € p) v
wwap)

(
(
(o
(u = su)
)
)
o is an object, u is a user,
function, g: object-group function, m: user-group relation
axm6 : Yo, u,p,s,g,m-0 € OBJECT AN u € USER
A p € (OBJECT <> PERMISSION)
N s € (OBJECT + USER)
A g € (OBJECT + GROUP)
A m € (USER <> GROUP)
A o € dom(g)
=

(

0o+ u € RPerm(p — s+ g +— m)

=

(

p: object-permission relation, s: object-owner

(o u€sNhor rho €p)V
(9(0) € m[{u}] A o= rbg € p) V
(0 rbw € p) V

(u = su)

)

)
axm7 : Yo, u,p,s,g,m-0 € OBJECT N u € USER

A p € (OBJECT «+» PERMISSION)
A s € (OBJECT + USER)

A g € (OBJECT + GROUP)

A m € (USER + GROUP)

A o € dom(g)

=

(

o— u € XPerm(p — s+ g m)
=

(

(o= ue€sNorsxbo€p)V
(9(0) € m[{u}] A o zbg € p) V
(0 zbw € p) V

(u = su)

)

214

Appendix A An Event-B specification of a file system

)
axm8 : su € USER

axm9 : admin € GROUP
END

Appendix A An Event-B specification of a file system

215

CONTEXT FLCTX
EXTENDS FCTX03
SETS

BYTE Data item
PDATA
RowAddr

CONSTANTS

FLASH A collection of LUNs
dflash default target

dp default page data
objOfpage

verOfpage

pidx0fpage

datalOfpage

VERNUM

AXIOMS

END

axmlb : FLASH = RowAddr — PDATA
axml8: dp € PDATA

axmi6 : dflash € FLASH

axm34 : VERNUM =0..2

axm30 : 0bjOfpage € PDATA — OBJECT
axm31 : verOfpage € PDATA — VERNUM
axm32 : pidzOfpage € PDATA — N

axm33 : dataOfpage € PDATA — DATA

Appendix B

An Event-B specification of a file
system, V2

The specification given here is the revised version of the specification given in Ap-
pendix A. The revision is based on the requirement that have been changed (i.e. sat-
isfying unbounded version number and partial write/read operations). Details have
already discussed in Chapter 5. Because of the similarity between the original version
and the revised version. We will give only part of the specification that have been

affected (in the second, fifth, sixth and seventh refinements).

B.1 The second refinement: File content

There are two main parts that have been affected because of the changes of system
requirements. Namely, events readfile and writefile that are required to support partial

reading/writing files.

MACHINE FMCHO02B
REFINES FMCHO1
SEES FCTX02
VARIABLES

files

directories

parent

fcontent the content of each file

w_opened_files files which are opened for writing
r_opened_files files which are opened for reading
wbuffer writing buffers of w_opened_files

rbuffer reading buffers of r_opened_files
power—_on power status

217

218 Appendix B An Event-B specification of a file system, V2

INVARIANTS

invl : power_on € BOOL
inv2 : power_on = TRUE = fcontent € files - CONTENT
inv3 : w_opened_files C files
inv4 : r_opened_files C files
invh @ w_opened_files N r_opened_files = &
inv6é : wbhuffer € w_opened_files - CONTENT
inv7 : rbuffer € r_opened_files - CONTENT
inv8 : power_on = FALSE = (w_opened_files = & N r_opened_files = &
wbuffer = & A rbuffer = @)
EVENTS

Initialisation

extended

begin
actb: fcontent := @
act6 : w_opened_files := &
act7 : r_opened_files := &
act8: wbhuffer .= @
act9 : rbuffer := o
act10 : power_on := TRUE

end

Event w_open =
Open the given file for writing.

any

f

cnt
where
grdl : f € files
grd2: cnt € CONTENT
The content to be written.

grd3: f ¢ w_opened_files U r_opened_files
grd4 : power_on = TRUE

then
actl : w_opened_files := w_opened_files U {f}

act2 : wbuffer(f) := cnt

Set whuffer pointing to the content to be written.
end

Event writefile =
Write the content on the writing buffer of the given file (wbuffer(f)) into the
storage, start at the offset with the length (len) specified. The previous content of
the file will be overridden by the content on the write buffer starting at the offset
specified. The length to be written in the specification equals the length of the
data on the write buffer

any

f, offset, len,

corresPos mapping function between logical and physical page ids
where

grdl: f € w_opened_files

grd2 : offset € N

Appendix B An Event-B specification of a file system, V2

219

grd3 :
grd4 :
grdb :
grd6 :
grd7 :

then

actl:

end

Event 1r_open

len e N

len < card(wbuffer(f))

corresPos € 0..len — 1 — offset .. offset + len — 1
Vp-p € dom(corresPos) = corresPos(p) = p + offset
power_on = TRUFE

feontent(f) := feontent(f) < (corresPos™!; (0..len—1<qwbuffer(f)))

~

Open file for reading

any

where
grdl

grd2

grd3:

then

actl:
act2:

end

o f € files
. f ¢ w_opened_files U r_opened_files
power_on = TRUE

r_opened_files := r_opened_files U {f}
rouffer(f) == @

Event readfile =
Read the content of file f from the storage, starting at the offset with the length

(len) specified, into the read buffer.

any

f, offset, len
where

grdl : power_on = TRUE

grd2 : f € r_opened_files

grd3 : offset € dom(fcontent(f))

grdd : len € N

grd5 : offset 4+ len — 1 € dom(fcontent(f))
then

4 actl : rbuffer(f) := (offset .. offset + len — 1) < fecontent(f)

en

Event close =

Close an opened file.

any

f

where
grdil

grd2 :

then

actl:
act2:
act3:
act4 :

end
END

. f € r_opened_files U w_opened_files
power_on = TRUFE

r_opened_files := r_opened_files \ {f}
w_opened_files := w_opened_files \ {f}
rouffer == {f} < rbuffer

wbuffer := {f} < wbuffer

220 Appendix B An Event-B specification of a file system, V2

B.2 The fifth refinement: Decomposition of the write event

MACHINE FMCHO05B
REFINES FMCH04B
SEES FCTXO03
VARIABLES

writing files being in the writing state

feont_tmp temporary contents of writing files

writing_offset the given offsets to be written of writing files

writing_len the specified lengths to be written of writing files
INVARIANTS

invl : writing C w_opened_files
inv2: feont_tmp € writing - CONTENT
inv3: Vf-f € writing = feont_tmp(f) C whbuffer(f)
invéd : writing_offset € writing — N
invh @ writing_len € writing — N
inv6é : Yf-f € writing = writing_len(f) < card(wbuffer(f))
inv7 : Yf-f € writing = writing_offset(f) € dom(fcontent(f))
inv8 : power_on = FALSE = (writing = & A fcont_tmp = &)
EVENTS
Initialisation
extended
begin
act20 : writing := &
act21: fcont_tmp = O
act34 : writing_offset == @
act35: writing_len := &
end
Event w_open =
Open file f for writing by user usr where c¢nt is the content to be written (on write
buffer)
extends w_open

any

f,cnt, usr
where

grdl : f € files

grd2 : cnt € CONTENT

The content to be written.
grd3: f ¢ w_opened files U r_opened files
grd6 : power_on = TRUE
grd4 : usr € users

grd5 : f — usr € WPerm(obj_perms — obj_owner — obj_grp —> user_grps)
then
actl: w_opened files := w_opened files U {f}

act2: wbuffer(f) := cnt

Set whuffer pointing to the content to be written.
end

Appendix B An Event-B specification of a file system, V2 221

Event w_start =

Start write. Specifies the offset and length (len) to be written. Sets f into the
writing state.

any

f, offset, len
where

grdl : power_on = TRUE
grd2: f € w_opened_files
grd3: f ¢ writing

grd4 : offset € N

grd5: len € N

grd6 : len < card(wbuffer(f))

grd7 : offset € dom(fcontent(f))
then

actl: writing := writing U {f}

act2: fcont_tmp(f):= @

act3: writing_offset(f) := offset

actd : writing_len(f) := len
end

Event w_step =

Writing step, write the data of page ¢ on the buffer into fcont_tmp(f) (which is a
mirror content of f in the storage)

any

f, 1, data
where

grdl : power_on = TRUFE

grd2: f € writing

grd3: i €N

grd4 : data € DATA

grd5 : i — data € whuffer(f)

grd6 : i & dom(fcont_tmp(f))
then

4 actl: fcont_tmp(f) := feont_tmp(f) U {i — data}

en

Event w_end_ok =

Write the content on the wbuffer of the given file f into the storage, starting at the
offset with the length specified. The previous content of the file will be overridden
by the content on the write buffer starting at the offset specified. The length to
be written in the specification equals the length of the data on the write buffer.
refines writefile

any
f, offset, len, fsz, corresPos
where
grd3 : power_on = TRUE
grdl: f € writing
grd2 : offset = writing_offset(f)
grd4 : len = writing_len(f)
grd5 : corresPos € 0..len — 1 — offset .. offset + len — 1
grd6 : Vp-p € dom(corresPos) = corresPos(p) = p + offset
grd7 : dom(fecont_tmp(f)) =0..len — 1
grd8 : fsz € {len + offset, file_size(f)}

grd9 : fsz = len + offset < offset + len > file_size(f)
then

222 Appendix B An Event-B specification of a file system, V2

actl: fcontent(f) := feontent(f) <+ (corresPos™; feont_tmp(f))
act2 : dateLastModified(f) := nowdate
act3: file_size(f) := fsz
act4 : writing := writing \ {f}
acts: fcont_tmp := {f} < feont_tmp
act6 : writing_offset := {f} < writing_offset
act7 : writing_len := {f} < writing_len

end

Event w_end_fail =
write fail
any

where
grdl : f € writing
then
act2: writing := writing \ {f}
act3: fcont_tmp = {f} < fecont_tmp
actd : writing_offset := {f} < writing_offset
acts : writing_len := {f} < writing_len
end

END

Appendix B An Event-B specification of a file system, V2 223

B.3 The sixth refinement: Decomposition of the read event

MACHINE FMCHO06B
Decompose the file write event

REFINES FMCHO05B

SEES FCTXO03

VARIABLES

reading files being read

rouff _tmp temporary read-buffers of reading files
reading_offset the offset to be started of reading files
reading_len the length to be read

INVARIANTS

invi : reading C r_opened_files
inv2 : rbuff _tmp € reading - CONTENT
inv3: reading_offset € reading — N
invé4 : reading_len € reading — N
inv5 : Vf-f € reading N power_on = TRUE=-reading_offset(f) € dom(fcontent(f))
invé : Vf-f € reading N power_on = TRUE=-reading_offset(f)+reading_len(f)—
1 € dom(fcontent(f))
inv7 : Vf-f € reading N\ power_on = TRUE=rbuff _tmp(f) C reading_offset(f)..

(reading_offset(f) + reading_len(f) — 1) < fcontent(f)
inv8 : power_on = FALSE = (reading = & A rbuff _tmp = @)

EVENTS
Initialisation
extended
begin
act25: reading := &
act26 : rbuff _tmp := o
act27 : reading_offset := &

act28: reading_len := &
end

Event r_open =
Open file f for reading, by user usr
extends r_open

any
f,usr
where
grdl : f € files
grd2: f ¢ w_opened files U r_opened files
grd3 : power_on = TRUE
grd4 : usr € users

grd5 : f — usr € RPerm(obj_perms — obj_owner — obj_grp > user_grps)
then

actl: r_opened files :=r_opened files U {f}

act2: rbuffer(f) := &
end

224 Appendix B An Event-B specification of a file system, V2

Event r_start =
Start read the given file at the offset with the length len.

any

f, offset, len
where

grdl : power_on = TRUFE
grd2: f € r_opened_files
grd3: f ¢ reading
grd4 : offset € N
grd5 : offset €0 .. file_size(f)
grd6 : len € N
grd7 : offset + len — 1 € dom/(fcontent(f))
then
actl: reading := reading U {f}
act2: rbuff_tmp(f) := @
act3: reading_offset(f) := offset
actd : reading_len(f) := len
end
Event r_step =

Reading step, read the data of page i from the storage into the temp read-buffer.

any
f, 1, data
where
grdl : power_on = TRUE
grd2: f € reading
grd3: ieN
grd4 : i € reading_offset(f) .. reading_offset(f) + reading_len(f) — 1
grdb : data € DATA
grd6 : i — data € feontent(f)
grd7 : i & dom(rbuff _tmp(f))
then
a4 actl : rbuff_tmp(f) := rbuff_tmp(f) U {i — data}
en

Event r_end_ok =
Reading file is succeeded, when all pages required have beeb read into the temp
read-buffer (grd5).
refines readfile

any

f, offset, len
where

grdl : power_on = TRUFE
grd2: f € reading

grd3 : offset = reading_offset(f)
grd4 : len = reading_len(f)

grd5 : dom(rbuff _tmp(f)) = (offset .. offset + len — 1)
then

actl: rbuffer(f) := rbuff —tmp(f)
act2 : rbuff_tmp = {f} < rbuff _tmp

act3: reading_offset := {f} < reading_offset
actd : reading_len := {f} < reading_len
acth : reading := reading \ {f}
end
Event r_end_fail =

Reading file failed (abort). Release all buffer contents.

Appendix B An Event-B specification of a file system, V2

225

any

where
grdl
then

actl :
act2:
act3:
actd :

end
END

. f € reading

reading := reading \ {f}

rouff _tmp := {f} < rbuff _tmp
reading_offset := {f} < reading_offset
reading_len := {f} < reading_len

226 Appendix B An Event-B specification of a file system, V2

B.4 The seventh refinement: Introduction of the flash spec-

ification

This section outlines part of the specification that have beeb affected when the flash

specification has been added.

MACHINE FMCHO07B
REFINES FMCH06B
SEES FLCTX
VARIABLES

flash
programmed_pages
obsolete_pages
fat FAT table representing the table of content of each file
fat_tmp temporary FAT
writing_version writing version of each file
most_recent_version the most recent version of file contents
INVARIANTS
invi : power_on = TRUE = flash € RowAddr — PDATA
inv2 : programmed_pages C RowAddr
inv3 : obsolete_pages C programmed_pages
inv4 : power_on = TRUE = fat € files — (N -+ RowAddr)
invs: fat_tmp € writing — (N -+ RowAddr)
inv6 : writing_version € writing — VERNUM
inv7 : Vf-f € files A\ power_on = TRUE = dom(fat(f)) = dom(fcontent(f))
inv8 : Vf-f € writing = dom(fat_tmp(f)) = dom(fecont_tmp(f))
inv9: Vp-p € PDATA
A 0bjOfpage(p) € dom(fat)
A (Vz-z € PDATA A objOfpage(x) = objOfpage(p)
A pidzOfpage(z) = pidzOfpage(p)
= verOfpage(z) < verOfpage(p)
)
=
pidzOfpage(p) — dataOfpage(p) € feontent(objOfpage(p))
inv10: Vp-p € PDATA A objOfpage(p) € dom(fat_tmp)
A verOfpage(p) = writing_version(objOfpage(p))
=
pidzOfpage(p) — dataOfpage(p) € wbuffer(objOfpage(p))
invil: Vp-p € PDATA A 0bjOfpage(p) € writing
=
verOfpage(p) < writing_version(objOfpage(p))
inv12 : most_recent_version € files - VERNUM

Appendix B An Event-B specification of a file system, V2 227

inv13: Vp-p € PDATA A 0bjOfpage(p) € writing
=

writing_version(objOfpage(p)) > most_recent_version(objOfpage(p))
inv13: power_on = FALSE = (fat = & A fat_tmp = & A writing_version = &)
invid : Yi,r, f,p-f € files A r € programmed_pages \ obsolete_pages

A p = flash(r) A objOfpage(p) = f A pidzOfpage(p) =i A i # 0
A (Vz-x € PDATA A objOfpage(z) = f
A pidzOfpage(z) = i
= verOfpage(z) < verOfpage(p))
= i r € fat(f)
invi5 : Vi, r, f,p-r € programmed_pages \ obsolete_pages N f € writing

A p = flash(r) A objOfpage(p) = f A pidzOfpage(p) =i AN i # 0
A (Yax-x € PDATA A objOfpage(x) = f
A pidzOfpage(x) = i
= wverOfpage(x) < verOfpage(p))
= i r € fat_tmp(f)

invi6 : Yf-f € files = dom(fcontent(f)) =1.. file_size(f)
EVENTS
Initialisation
begin
actl: files: =@
act2 : directories := {root}
act3: parent := &
actd : w_opened_files := &
act5: r_opened_files := &
act6 : wbhuffer .= @
act7 : rbuffer == o
act8: users := {su}
act9 : groups := {admin}
act10 : user_grps := {su — admin}
actll : user_pgrp := {su — admin}
act12 : obj_owner := {root — su}
act13: obj_grp := {root — admin}
actl4 : obj_perms := {root — wbo, root — rbo, root — xbo}
actl5: oname := {root — rname}
act16 : dateCreated := {root — dfdate}
actl7 : dateLastModified := {root — dfdate}
act18: file_size := &
act19: power_on := TRUE
act20 : writing := &
act21 : writing_offset := @
act22: writing_len :== &
act23: reading := &
act24 : rbuff _tmp =2
act25 : reading_offset := &
act26 : reading_len ;== @
act27 : flash := dflash
act28 : programmed_pages ;= &
act29 : obsolete_pages := &
act30: fat =9
act3l: fat_tmp:=

228 Appendix B An Event-B specification of a file system, V2

act32 : writing_version := &
act33 : most_recent_version := &
end

Event mount =
refines mount

any
objs, fs, ds, prt, x, fent, objperms
objgrp, objname, cdate, mdate, fsize
ft fat table of each file being mounted
mrv the most recent version of each file
where
grdl : power_on = TRUFE
grd2: objs C OBJECT
grd3: fs C objs
grdd : ds C objs
grd5 : objs = fs U ds
grd6: fsNds =9
grd7 : (files U directories) N objs = &
grd8: x € ds
grd9 : prt € objs \ {z} — ds
grd10: Vs-(s C prt—l[s] = s = @)
grdll : prt N parent = <&
grdil2: filesNfs =g
grdi3 : directories N ds = &
grdid : fent € fs - CONTENT
grdib : objown € objs — users
grdl6 : objperms € objs <> PERMISSION
grdl7 : objgrp € objs — groups
grdl8: objname € objs - NAME
grdl9 : cdate € objs - DATE
grd20 : mdate € objs — DATE
grd21: fsize € fs N
grd22: ft e fs — (N -+ RowAddr)

grd23: Vf-f € fs = dom(ft(f)) = dom(fent(f))
grd24 : Vp-p € ran(flash)

A objOfpage(p) € dom(ft)
A (Vz-z € PDATA A 0bjOfpage(z) = 0objOfpage(p)
A pidzOfpage(z) = pidzOfpage(p)
= verOfpage(z) < verOfpage(p)
)

=

pidzOfpage(p) — dataOfpage(p) € fent(objOfpage(p))
grd25: mrv € objs - VERNUM
grd26 : Vp-p € PDATA

A objOfpage(p) € dom(ft)
=
verOfpage(p) < mrv(objOfpage(p))
then
actl: files := files U fs
act2 : directories := directories U ds
act3: parent := parent U prt U {z — root}

Appendix B An Event-B specification of a file system, V2 229

act4 :
acthb:
act6 :
act7 :
act8:
act9:
actl10:
actll:

end

fat = fat U ft

obj_owner := obj_owner U objown

obj_perms := obj_perms U objperms

obj_grp := obj_grp U objgrp

oname := oname U objname

dateCreated := dateCreated U cdate
dateLastModified := dateLastModified U mdate

. file_size := file_size U fsize
actl2:

most_recent_version := most_recent_version U mrv

Event unmount =

refines unmount

any

objs, x

where
grd4 :

grdl :
grd?2 :
grd3:
grdb :
grd6 :

grdr7 :
then
actl:

act3
act2:
act4 :
actb:
act6 :
act7 :
act8:
act9:
actl10:

actll:
actl2:

end

power_on = TRUE

objs C files U directories

root ¢ objs

T € objs

objs = (tel(parent)) 1 [{z}] U {z}
objs N w_opened_files = &

objs N r_opened_files = &

files := files \ (objs N files)

. directories := directories \ (objs N directories)

parent 1= objs < parent

fat :== objs 4 fat

obj_owner := objs < obj_owner

obj_grp := objs < obj_grp

obj_perms := objs 9 obj_perms

oname := objs < oname

dateCreated := objs < dateCreated
dateLastModified := objs < dateLastModified
file_size := objs <9 file_size
most_recent_version := objs < most_recent_version

Event w_start =

refines w_start

any
f, offset, len
wv writing version of f
where
grdl : power_on = TRUFE
grd2: f € w_opened_files
grd3: f ¢ writing
grdd : wv € VERNUM
grd5 : wv = most_recent_version(f) + 1
grd6 : Vp-p € PDATA A 0bjOfpage(p) = f = verOfpage(p) < wv
grd7 : offset € N
grd8: len € N
grd9 : len < card(wbuffer(f))
grdi0 : offset € 0. . file_size(f))
then
actl : writing := writing U {f}

230

Appendix B An Event-B specification of a file system, V2

act2:
act3:
act4 :
acth:

end

Event w_step

fat_tmp(f) =@
writing_version(f) := wov
writing_offset(f) := offset
writing_len(f) := len

~

refines w_step

any
f, 1, data
r a row address, a location for writing data of page ¢
pd page data to be programmed to the flash
wv writing version
where
grdl : power_on = TRUE
grd2: f € writing
grd3: 1 €N
grd4 : data € DATA
grd5 : i — data € whuffer(f)
grd6 : i ¢ dom(fat_tmp(f))
grd7 : r € RowAddr
grd8 : r ¢ programmed_pages
grd9 : wv = writing_version(f)

grdl10: pd € PDATA

grdil : objOfpage(pd) = f
grd12 : pidzOfpage(pd) = i
grd13 : verOfpage(pd) = wov
grdi4d : dataOfpage(pd) = data

then
actl

act?2

act3
end

 fat_tmp(f) = fat_tmp(f) U {i — r}
. flash(r) := pd
. programmed_pages := programmed_pages U {r}

Event w_end_ok =

Writing the content on the wbuffer of the given file into the storage. It is completed

when all pages required have been programmed to the flash device (grd10).

refines w_end_ok

any

f, offset, len, fsz, cnt, corresPos

where

grdl :
grd2:
grd3 :
grd4 :
grdb :
grd6 :
grd7 :
grds8 :

grd9

power_on = TRUE

f € writing

offset = writing_offset(f)

len = writing_len(f)

ent € N+ RowAddr

offset € dom(fat(f))

corresPos € 0..len — 1 —» offset .. offset + len — 1
Vp-p € dom(corresPos) = corresPos(p) = p + offset

. fsz € {len + offset, file_size(f)}

grd10: fsz = len + offset < offset + len > file_size(f)
grdll : dom(fat_tmp(f)) =0..len —1
grd12: cnt = corresPos™1; fat_tmp(f)

then
actl

act?2

: fat(f) := fat(f) < ent
. dateLastModified(f) := nowdate

Appendix B An Event-B specification of a file system, V2 231

act3: file_size(f) := fsz
actd : fat_tmp := {f} < fat_tmp
acts : writing_version := {f} <9 writing_version
act6 : writing := writing \ {f}
act7 : most_recent_version(f) := writing_version(f)
act8 : writing_offset := {f } 9 writing_offset
act9 : writing_len := {f} 9 writing_len
end
Event w_end_fail =
Writing the given file fails (abort). Releases all related memory contents.
refines w_end_fail

any

S

where
grdl: f € writing

then
actl: writing := writing \ {f}
act2: fat_tmp := {f} < fat_tmp
act3: writing_version := {f} <9 writing_version
actd : writing_offset := {f} <9 writing_offset
acth : writing_len := {f} <9 writing_len

end

Event r_start =
Start read the given file f, starting at the offset with the length specified.
refines r_start

any

f, offset, len
where

grdl : power_on = TRUE
grd2: f € r_opened_files
grd3: f ¢ reading
grd4d : offset € N
grd5 : offset € 0.. file_size(f))
grd6 : len € N
grd7 : len < file_size(f)
then
actl : reading := reading U {f}
act2: rbuff _tmp(f) ==
act3: reading_offset(f) := offset
actd : reading_len(f) := len
end
Event r_step =
Reading step, read the data (data) of page i from the storage (at row r) into the
temp buffer.

refines r_step

any

f, i, data, r

pd page data of row r

ver the most recent version of page 7
where

grdl : power_on = TRUE
grd2: f € reading
grd3: ieN

232 Appendix B An Event-B specification of a file system, V2
grd4 : i € reading_offset(f) .. reading_offset(f) + reading_len(f) — 1
grd5 : data € DATA
grdé : i € dom(fat(f))
grd7 : r € programmed_pages \ obsolete_pages
grd8 : r = fat(f)(7)
grd9 : i & dom(rbuff _tmp(f))
grdl10 : pd = flash(r)
grdil : data = dataOfpage(pd)
grd12 : i = pidxOfpage(pd)
grdi3: f = objOfpage(pd)
grdl4 : ver = verOfpage(pd)

then
actl: rbuff _tmp(f) := rbuff _tmp(f) U {i — data}

end

Event r_end_ok =

Reading the given file end when all pages required have been read.

refines r_end_ok

an
f, offset, len
where
grdl : power_on = TRUE
grd2: f € reading
grd3 : offset = reading_offset(f)
grd4 : len = reading_len(f)
o grd5 : dom(rbuff _tmp(f)) = (offset .. offset + len — 1)
en
actl: rbuffer(f) := rbuff _tmp(f)
act2: rbuff_tmp := {f} < rouff _tmp
act3: reading_offset := {f} < reading_offset
actd : reading_len := {f} < reading_len
acts : reading := reading \ {f}
end

Event r_end_fail =

Read the whole content of a file from the storage into the read buffer.

refines r_end_fail

any

where
rdl :
theng
actl:
act2:
act3:
actd :
end

Event power_loss

f € reading

reading := reading \ {f}

rbuff —tmp := {f} < rouff _tmp
reading_offset :== {f} <4 reading_offset
reading_len := {f} < reading_len

refines power_loss

when
grdl :

then
actl:

act2:
act3:
actd :

power_on = TRUFE

power_on := FALSE
w_opened_files := &
r_opened_files := &
wbuffer .= &

Appendix B An Event-B specification of a file system, V2

233

acthb:
act6 :
act7 :
act8:
act9:

act10:
actll:

actl2

end

rbuffer == &
writing 1= &
fat_tmp .=
writing_offset := &
writing_len == &
reading := &
rbuff_tmp = @

. reading_offset :== &
actl3:
actl4d:

reading_len := &
writing_version = &

Event power_on =

refines power_on

any

ft
where
grdl :

grd2:
grd3:
grd4 :
grds :

grdé6 :

then
actl:
act2:
end

END

power_on = FALSE
ft € files— (N -+» RowAddr)
Vf-f € files = dom(ft(f)) =1.. file_size(f)
Vp-p € PDATA A objOfpage(p) € dom(ft) = p € ran(flash)
Vi, r,f,p-f € files A v € programmed_pages \ obsolete_pages
A p = flash(r) A objOfpage(p) = f A pideOfpage(p) =i A i #0
A (Vz-x € PDATA A objOfpage(z) = f
A pidxOfpage(x) = i
= wverOfpage(z) < verOfpage(p))
= i1 € ft(f)
Vi, r,f,p-f € files A v € programmed_pages \ obsolete_pages
A p = flash(r) N i — r € ft(f)
= (verOfpage(p) < most_recent_version(f) A

0bjOfpage(p) = f A pidzOfpage(p) =i)

power_on := TRUE
fat .= ft

Appendix C

An Event-B Specification of Flash
Memory

C.1 An initial model

MACHINE FMCHO7_FL
The flash part after decomposing.
SEES FLCTX
VARIABLES
flash represents the flash device which is an array of page data

programmed_pages set of pages that have been programmed
obsolete_pages set of obsolete pages

INVARIANTS
invl: flash € RowAddr — PDATA

inv2 : programmed_pages C RowAddr
inv3 : obsolete_pages C programmed_pages

EVENTS
Initialisation

begin
actl: flash := dflash
act2: programmed_pages := &
act3: obsolete_pages := &
end
Event page_programme =

Programme data to the flash at the given row address.

any
new_r
pdata

where
grdl : new_r € RowAddr \ programmed_pages
grd2 : pdata € PDATA

then

235

236 Appendix C An Event-B Specification of Flash Memory

actl: flash(new_r) := pdata
act2 : programmed_pages := programmed_pages U {new_r}
end
Event page_read =
Read page data from the flash at the given row address.
any
r
pdata
where
grdl : r € programmed_pages \ obsolete_pages
grd2 : pdata = flash(r)
end
Event block_erase =
Erase all the given pages within a block.

any
rows All rows within the given block.
where
grdl : rows C RowAddr
grd2 : rows N (programmed_pages \ obsolete_pages) = &
The block being erased have no vailid pages
then
actl: flash := flash < (rows x {dp})
act2: programmed_pages := programmed_pages \ rows

act3: obsolete_pages := obsolete_pages \ rows
end

Event mark_pages_obsolete =
Utility event. Mark all pages belongs to obj as obsolete.
any
rows
obj
where
grdl : obj € OBJECT
grd2 : rows C programmed_pages \ obsolete_pages
grd3 : rows = flash~[objOfpage 1 [{obj}]]
then

actl : obsolete_pages := obsolete_pages U rows
end

Event mark_a_page_obsolete =

Utility event. Marks a page specified by the given row address as obsolete.

any
old_r
where
grdl : old_r € programmed_pages \ obsolete_pages
then
4 actl : obsolete_pages := obsolete_pages U {old_r}
en

END

Appendix C An Event-B Specification of Flash Memory 237

C.2 The first refinement: Page Register

Page registers are introduced in this step. Two phases are required for the events

page_read and page_write.

MACHINE FMCHO7_FL_REF1
REFINES FMCHO7_FL
SEES FLCTX01

VARIABLES
flash
programmed_pages
obsolete_pages
ready2read Set of page registers that is content is ready to be read off chip.
ready2prog Set of page registers that is content is ready to be programmed.

readingPR Set of page registers being in the reading state.

writingPR Set of page registers being in the writing state.

corresRowOfreadingPR the corresponding row address of the page register being
used for reading

corresRowOfwritingPR ~ the corresponding row address of the page register being
used for writing

dataOfPR the page data within the page register

INVARIANTS

invi : readingPR C PR

inv2 : writingPR C PR

inv3: readingPR N writingPR = @

inv4 : ready2read C readingPR

invb : ready2prog C writingPR

invé : dataOfPR € PR — PDATA

inv7 : corresRowOfreadingPR € readingPR — programmed_pages \ obsolete_pages

inv8 : corresRowOfwritingPR € writingPR ~— RowAddr \ programmed_pages

inv9 : Vpr, r-pr € ready2read N\ r € programmed_pages

A 7 = corresRowOfreadingPR(pr)
= dataOfPR(pr) = flash(r)
inv10 : ran(corresRowOfreadingPR) N ran(corresRowOfwritingPR) = &
EVENTS
Initialisation
extended

begin

actd : ready2read := O

act5: ready2prog := @

act6 : readingPR := @

act7 : writingPR := &

act8: corresRowOfreadingPR = @
act9 : corresRowOfwritingPR 1= &
act10 : dataOfPR := PR x {dp}

238 Appendix C An Event-B Specification of Flash Memory

end
Event pageread_start =
(read stepl) Start reading a page by selecting the related LUN (in which the the
page row r is) and available page register.
any
r the target row address to be read
lid LUN number to which the r belongs
pr an available page register within LUN /lid
where
grdl : r € programmed_pages \ obsolete_pages
grd2: pr € PR
grd3 : pr ¢ readingPR U writingPR
grd4 : lid = lidOfPR(pr)
grd5 : lidOfRow(r) = lid
then
actl : readingPR := readingPR U {pr}

act2: corresRowOfreadingPR(pr) :== r
end

Event read2req =

(read step2) Transfer the page-data (pdata) at the given row address (r) to the
page register (pr).

any
r, pdata, pr
where
grdl : pr € dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd3: pr € readingPR
grd4 : pr ¢ ready2read
grd5 : pdata € PDATA
grd6 : pdata = flash(r)
then
actl: dataOfPR(pr) := pdata
act2: ready2read := ready2read U {pr}
end

Event page_read_end =
(read step3 success) Read page data (pdata) of row r from the register (pr) off
chip.
refines page_read

any
r, pdata, pr
where
grdl : pr € ready2read
grd2 : r = corresRowOfreadingPR(pr)
grd3 : pdata = dataOfPR(pr)
then
actl : ready2read := ready2read \ {pr}

act2 : readingPR = readingPR \ {pr}

act3: corresRowOfreadingPR := {pr} < corresRowOfreadingPR
end

Event page_read_fail =
(read step3 fails)

any

Appendix C An Event-B Specification of Flash Memory 239

r

pr
where
grdl : pr € readingPR

grd2 : r = corresRowOfreadingPR(pr)
then

actl : readingPR = readingPR \ {pr}

act2 : ready2read = ready2read \ {pr}

act3: corresRowOfreadingPR := {pr} <4 corresRowOfreadingPR
end

Event pageprog_start =
(program stepl) Starting page_programmed by selecting the related LUN and
avialable page register.
any
r the row address to which the data to be programmed

lid the LUN to which the row r belongs

pr an available page register within the LUN
where

grdl : r € RowAddr \ programmed_pages

grd2 : r ¢ ran(corresRowOfwritingPR) U ran(corresRowOfwritingPR)

grd3: pr € PR

grd4 : pr ¢ readingPR U writingPR

grd5 : lid = lidOfPR(pr)

grdé : lidOfRow(r) = lid
then

actl : writingPR := writingPR U {pr}

4 act2: corresRowOfwritingPR(pr) := r

en

Event write2req =
(program step2) Write/transfer the page data pdata to be programmed into the
page register (pr) within the LUN (lid).

any
r, pdata, pr
where
grdl: r € RowAddr
grd2: pr € writingPR
grd3: pr ¢ ready2prog
grd4 : lidOfRow(r) = lidOfPR(pr)
grd5 : corresRowOfwritingPR(pr) = r
grd6 : pdata € PDATA
then
actl: dataOfPR(pr) := pdata

act2 : ready2prog := ready2prog U {pr}
end

Event page_program_ok =
(program step3 successful) Program the data on the page register to the flash at
the corresponding row address.
refines page_programme

any
new_r, pdata, pr
where
grdl : pdata € PDATA

grd2 : pr € ready2prog

240 Appendix C An Event-B Specification of Flash Memory

grd3: new_r = corresRowOfwritingPR(pr)
grd4 : pdata = dataOfPR(pr)
then
actl: flash(new_r) := pdata
act2 : programmed_pages := programmed_pages U {new_r}
act3: ready2prog := ready2prog \ {pr}
actd : writingPR := writingPR \ {pr}
act5 : corresRowOfwritingPR := {pr} 9 corresRowOfwritingPR
end
Event page_prog_fail =
(program step3 failed)
any
r, pr
where
grdl : pr € writingPR
grd2 : r = corresRowOfwritingPR(pr)
then
actl : writingPR := writingPR \ {pr}
act2 : ready2prog := ready2prog \ {pr}
act3: corresRowOfwritingPR := {pr} 4 corresRowOfwritingPR
end
Event mark_pages_obsolete =
A utility event used for marking a set of pages as obsolete.
extends mark_pages_obsolete

where
grd4 : rowsN(ran(corresRowOfreadingPR)Uran(corresRowOfwritingPR)) =

%]
end

Event mark_a_page_obsolete =
Utility event. Marks a single page specified by the given row address as obsolete.
extends mark_a_page_obsolete

where

grd2 : old_r ¢ ran(corresRowOfreadingPR) U ran(corresRowOfwritingPR)
en

Event erase_a_block =
extends block_erase

where
grd3 : rows N ran(corresRowOfreadingPR)
grd4 : rows N ran(corresRowOfwritingPR)
end

END

=d
=d

Appendix C An Event-B Specification of Flash Memory 241

C.3 The second refinement: Relocation events

Block reclamation is a background process. It is composed of (1) Selecting a candidate
block to reclaim. In our development, we select an block with the least number of
erasures. (2) Relocating if any valid page exists. After relocating complete, the given
block becomes obsolete (ready to be erased). (3) Erasing an obsolete block to be reused.
This process may not be proceed once the second step has been completed. We assume
that the obsolete will be selected when free spaces are required or when the system is in
the idle state (depending on algorithm). We delay the erase event to be refined in the

fourth refinement, where more details of reclamation process are added.

Two events required for relocation a page are introduced in this refinement: (1) copy a

valid page from one place to another fresh page (2) mark the old location to be obsolete.

MACHINE FMCHO7_FL_REF2d
REFINES FMCHO7_FL_REF1
SEES FLCTX01

VARIABLES

flash

programmed_pages

obsolete_pages

ready2read

ready2prog

readingPR Set of page registers being in the reading state.
writingPR Set of page registers being in the writing state.
corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR

flash2 represents part of the flash array that have been programmed during

relocating process.
trans_func A translation function, mapping the old location to the new location.

programmed_pages2 represents a set of pages that have been programmed

during the relocation.
obsolete_pages2 represents a set of all obsolete pages.

INVARIANTS

invl: flash2 € RowAddr -+ PDATA

inv2 : trans_func € RowAddr + RowAddr

inv3 : programmed_pages2 C RowAddr

inv4 : programmed_pages2 = trans_func[programmed_pages|

inv5 : dom(flash2) = programmed_pages2

inv6 : programmed_pages N programmed_pages2 = &

inv7 : obsolete_pages2 C programmed_pages U programmed_pages2
inv8 : obsolete_pages C obsolete_pages2

242 Appendix C An Event-B Specification of Flash Memory

inv9 : dom(trans_func) C programmed_pages
inv10 : ran(trans_func) N obsolete_pages2 = &
invil : Vr-r € dom(trans_func) = flash(r) = flash2(trans_func(r))
invi2 : Vr-r € ran(corresRowOfwritingPR) = r ¢ programmed_pages2
EVENTS
Initialisation
extended
begin
act13: flash2 := dflash
actld : trans_func ;= &
actlb : programmed_pages2 := &
act16 : obsolete_pages2 := &
end
Event pageread_start =
(read stepl) Starting page_read by selecting the related LUN (lid) (in which the
the page row r is) and available page register (pr).
extends pageread_start
any
r,1lid,pr
where
grdl: r € programmed pages \ obsolete_pages2
grd2: pr € PR
grd3: pr ¢ readingPR U writingPR
grd4 : 1id = 1id0fPR(pr)
grd5 : 1id0fRow(r) = 1id
then
actl: readingPR := readingPR U {pr}
act2: corresRowOfreadingPR(pr) :=r
end
Event read2req =
(read step2) Transfer the page-data at the given row address (r) to the page register
(pr). casel: row r has not been relocated
extends read2reg

any
r,pdata, pr
where
grdl : pr € dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd7 : r ¢ dom(trans_func)
grd3 : pr € readingPR
grd4 : pr ¢ ready2read
grd5 : pdata € PDATA
grd6 : pdata = flash(r)
then
actl: dataOfPR(pr) := pdata

act2: ready2read := ready2read U {pr}
end

Event read2reg2 =
(r2) Transfer the page-data (pdata) at the given row address to the page register
pr. case2: if row r has been relocated. The content will be the content where the

content of the given page has been relocated (grd7)

Appendix C An Event-B Specification of Flash Memory 243

refines readZreqg

any
r, pdata, pr
where

grdl : pr € dom(corresRowOfreadingPR)
grd2 : r = corresRowOfreadingPR(pr)
grd3: pr € readingPR

grd4 : pr ¢ ready2read

grd5 : pdata € PDATA

grd6 : r € dom(trans_func)

grd7 : pdata = flash2(trans_func(r))
then

actl: dataOfPR(pr) := pdata

act3: ready2read := ready2read U {pr}
end

Event page_read_end =
(read step3 success) Read page data from the register off chip.
extends page_read_end

any
r,pdata, pr
where
grdl : pr € ready2read
grd2: r = corresRowOfreadingPR(pr)

grd3: pdata = dataOfPR(pr)
then

actl: ready2read := ready2read \ {pr}
act2: readingPR := readingPR \ {pr}
act3: corresRowOfreadingPR := {pr} < corresRowOfreadingPR

end

Event page_read_fail =

(read step3 fails)

extends page_read_fail

any
r,pr

where
grdl : pr € readingPR

grd2: r = corresRowOfreadingPR(pr)
then

actl: readingPR := readingPR \ {pr}
act2: ready2read := ready2read \ {pr}
act3: corresRowOfreadingPR := {pr} < corresRowOfreadingPR
end
Event pageprog_start =
(program stepl) Starting page_programmed by selecting the related LUN lid (to
which row 7 belongs) and available page register (pr).
refines pageprog_start
any
r, lid, pr
where
grdl: r € RowAddr \ (programmed_pages U programmed_pages2)

grd2 : r ¢ ran(corresRowOfwritingPR) U ran(corresRowOfwritingPR)
grd3: pr € PR

grd4 : pr ¢ readingPR U writingPR

244 Appendix C An Event-B Specification of Flash Memory

grd5 : lid = lidOfPR(pr)
grd6 : lidOfRow(r) = lid
then
actl: writingPR := writingPR U {pr}
act2 : corresRowOfwritingPR(pr) :==r
end
Event write2req =

(program step2) Write/transfer the data to be programmed into the page register
within the LUN.

extends write2reg

any
r row address to be programmed
pdata
pr corresponding page register of row r
where

grdl : r € RowAddr

grd8 : pr € writingPR

grd5 : pr ¢ ready2prog

grd4 : 1id0fRow(r) = 1id0fPR(pr)
grd9 : corresRowOfwritingPR(pr) =r

grd6 : pdata € PDATA
then

actl: dataOfPR(pr) := pdata
act2 : ready2prog := ready2prog U {pr}
end
Event page_program_ok =
(end program success) Programme the data (pdata) on the page register pr to the

flash at the corresponding row address r.
refines page_program_ok

any
new_r, pdata, pr
where
grdl : pdata € PDATA
grd2 : pr € ready2prog
grd3: new_r = corresRowOfwritingPR(pr)
grd4 : pdata = dataOfPR(pr)

grd5 : new_r ¢ dom(trans_func)
then

actl: flash(new_r) := pdata
act2: programmed_pages := programmed_pages U {new_r}
act3: ready2prog := ready2prog \ {pr}
act4 : writingPR := writingPR \ {pr}
act5 : corresRowOfwritingPR := {pr} 9 corresRowOfwritingPR
end
Event page_prog_fail =
(programming a page fails)
extends page_prog_fail
any
T, pr
where
grdl : pr € writingPR

grd2: r = corresRowOfwritingPR(pr)
then

Appendix C An Event-B Specification of Flash Memory

245

actl:
act2:
act3:

end

writingPR := writingPR \ {pr}
ready2prog := ready2prog \ {pr}
corresRowOfwritingPR := {pr} < corresRowOfwritingPR

Event mark_pages_obsolete =

A utility event used for marking a set of pages (identified by rows) that belong to

object obj as obsolete.

extends mark_pages_obsolete

any
rows, obj
where
grdl : obj € OBJECT
grd2 : rows C programmed pages \ obsolete_pages
grd3 : rows = flash™*[objOfpage ![{obj}]]
grd4 : rowsN(ran(corresRowOfreadingPR)Uran(corresRowOfwritingPR)) =
%]
then
actl: obsolete_pages := obsolete_pages U rows
4 act2: obsolete_pages2 := obsolete_pages2 U rows
en

Event mark_a_page_obsolete =

Utility event. Marks a single page specified by the given row address as obsolete.

extends mark_a_page_obsolete

any
old_r
where
grdl :
grd2:
then
actl :
act2:
end

Event

old_r € programmed_pages \ obsolete_pages
old r ¢ ran(corresRowOfreadingPR)Uran(corresRowOfwritingPR)

obsolete_pages := obsolete_pages U {old_r}
obsolete_pages2 := obsolete_pages2 U {old_r}

copy_a_page_to_new_loc =

Copy a valid page from old_r to another location new_r

any

old_r,new_r, pdata

where
grdl :

grd?2 :
grd3:
grd4 :
then
actl
act2:

act3:
end

old_r € programmed_pages \ obsolete_pages2

new_r € RowAddr \ (programmed_pages U programmed_pages2)
pdata = flash(old_r)

old_r ¢ dom(trans_func)

. flash2(new_r) := pdata

programmed_pages2 := programmed_pages2 U {new_r}
trans_func(old_r) := new_r

Event mark_old_page_obsolete =

Mark a page to be obsolete

any
old_r
where
grdl :

grd?2 :

old_r € programmed_pages
old_r ¢ obsolete_pages?2

246

Appendix C An Event-B Specification of Flash Memory

Event

then

end

actl :

obsolete_pages2 := obsolete_pages2 U {old_r}

erase_a_block =

FErase all the given pages within the given block, which is obsolete.

refines erase_a_block

END

any

rows

where

grdl :
grd2 :
grd3:
grd4 :
grd5 :
grd2:

then

end

actl :
act2:
act3:

actd

All rows within the given block.

rows C RowAddr

rows N (programmed_pagess \ obsolete_pages2) = &
rows N ran(corresRowOfwritingPR) = &

rows N ran(corresRowOfreadingPR) = &

rows N dom(trans_func) = &

rows N (programmed_pagess2 \ obsolete_pages2) = &

flash = flash < (rows x {dp})
programmed_pages := programmed_pages \ rows
obsolete_pages := obsolete_pages \ rows

. programmed_pages2 := programmed_pages2 \ TOWSs
acth:
acté6 :

flash2 := flash2 < (rows x {dp})

obsolete_pages2 := obsolete_pages2 \ rows

Appendix C An Event-B Specification of Flash Memory 247

C.4 The third refinement: Sequencing of relocation events

MACHINE FMCHO7_FL_REF3
REFINES FMCHO7_FL_REF2
SEES FLCTX2
VARIABLES

flash

programmed_pages

obsolete_pages

ready2read

ready2prog

readingPR

writingPR

corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR

flash?2

trans_func

programmed_pages?2

obsolete_pages?2

relocating_blocks a set of blocks being relocated

relocating_pages a set of pages being relocated from the old locations to new
locations

INVARIANTS
invi : relocating_blocks C BLOCK
inv2 : relocating_pages € RowAddr » RowAddr
inv3: dom(relocating_pages) C (programmed_pages2 \ obsolete_pages2)
invéd : Vb, r-b € relocating_blocks N\ r € RowAddr

A BlkOfRow(r) = b
=
r ¢ ran(corresRowOfreadingPR) A r ¢ ran(corresRowOfwritingPR)
EVENTS
Initialisation
extended

begin
actl7 : relocating_blocks := &
act18: relocating_pages := &
end

Event pageread_start =
(rl) Starting page_read by selecting the related LUN (in which the the page no.
r is) and available page register.
extends pageread_start

where
grd9 : BlkOfRow(r) ¢ relocating_blocks
end

248 Appendix C An Event-B Specification of Flash Memory

Event read2req =
(r2) Transfer the page-data at the given row address to the page register. Casel:
the given row has not been relocated.
extends read2reg
Event read2reg2 =
(r2) Transfer the page-data at the given row address to the page register. case2:
if row r has been relocated.
extends read2reg?
Event page_read_end =
(r3a) Read page data from the register off chip.
extends page_read_end
Event page_read_fail =
(r3b)
extends page_read_fail
Event pageprog_start =
(wl) Starting page_programmed by selecting the related LUN and available page
register.
extends pageprog_start

where
grd9 : BlkOfRow(r) ¢ relocating_blocks
end

Event write2req =
(w2) Write/transfer the data to be programmed into the page register within the
LUN.
extends writeZreg
Event page_program_ok =
(w3a) Programme the data on the page register to the flash at the corresponding
row address.
extends page_program_ok
Event page_prog_fail =
(w3b)
extends page_prog_fail
Event mark_pages_obsolete =
A utility event used for marking a set of pages as obsolete.
extends mark_pages_obsolete

where
grd5 : rows N dom(relocating_pages) = &
end

Event mark_a_page_obsolete =
Utility event. Marks a single page specified by the given row address as obsolete.
extends mark_a_page_obsolete

where
grd3: old_r ¢ dom(relocating_pages)

Appendix C An Event-B Specification of Flash Memory 249

end
Event erase_a_block =
Erase all the given pages within the given block, which is obsolete.
extends erase_a_block
Event start_relacating_a_block =
(1) Start relocating a block b (which is a candidate) if the given block has been

marked as obsolete. The relocating block becomes obsolete when there are no valid

pages.

any
b

where
grdl: b€ BLOCK

grd2 : b ¢ relocating_blocks
grd3: Vr-r € RowAddr N\ BlkOfRow(r) = b

=r & ran(corresRowOfwritingPR) U ran(corresRowOfreadingPR)

There is no page being written or read.
grd4 : dr-r € (programmed_pages U programmed_pages2) N BlkOfRow(r) =

b
=1 ¢ obsolete_pages2

At least one valid page exists
then
actl : relocating_blocks := relocating_blocks U {b}
end

Event start_relocating_a_page =
(2.1) Start relocating a valid page within the relocating block (b), if exist, from
old_r to new_r

any
old_r,new_r, b

where
grdl : old_r € (programmed_pages U programmed_pages2) \ obsolete_pages2

grd2 : b € relocating_blocks

grd3: BlkOfRow(old_r) =b

grd4d : new_r € RowAddr \ (programmed_pages U programmed_pages2)
grd5 : old_r ¢ dom(relocating_pages)

grd6 : new_r ¢ ran(relocating_pages)
then

actl : relocating_pages := relocating_pages U {old_r — new_r}
end

Event copy_a_page_to_new_loc =
(2.2) Write the content of page at the old location to another location.
refines copy_a_page_to_new_loc
any

old_r,new_r

pdata a PDATA to be copied from old_r to new_r
where
grdl : old_r — new_r € relocating_pages

grd2 : new_r ¢ programmed_pages2
grd4 : pdata = flash(old_r)
grd5 : new_r ¢ ran(trans_func)

250 Appendix C An Event-B Specification of Flash Memory

then
actl: flash2(new_r) := pdata

act2 : programmed_pages2 := programmed_pages2 U {new_r}

act3: trans_func(old_r) := new_r
end

Event mark_old_page_obsolete =
(2.3a) Mark the old page to be obsolete at the end when the content has been
written to the new location.
refines mark_old_page_obsolete

any
old_r,new_r

where
grdl : old_r — new_r € relocating_pages

grd2: new_r € programmed_pages2
then
actl : obsolete_pages2 := obsolete_pages2 U {old_r}

act2 : relocating_pages := relocating_pages \ {old_r — new_r}
end

Event relocate_a_page_fail =
(2.3b) In the case of relocating the given page fails (or abort), remove the tuple of
pages being located. If locating a page is aborted at any point, (i) fail to write to
a new location (fail at 2.2), the content at the old location is still valid; (ii) fail to
mark the old as obsolete. That means there two valid pages with the same content
in both old and new location. However, when the flash is remounted only one is

selected to formulate the fat table and then mark another obsolete.

any
old_r,new_r
where
grdl : old_r — new_r € relocating_pages
then
4 actl : relocating_pages := relocating_pages \ {old_r — new_r}
en

Event relocate_a_block_end =
(3a success) Mark the block being located as obsolete when there are no valid

pages exist. The obsolete block is the block that is read for erasing.

any
b

where
grdl : b € relocating_blocks

grd2 : Vr-r € (programmed_pages2U progrmmed_pages) N\ BlkOfRow(r) = b
= 1 € obsolete_pages2)

No valid pages within the given block.
then
actl : relocating_blocks := relocating_blocks \ {b}
end

Event relocate_a_block_fail =
(3b fail) When relocating a block fails. As the result, some valid pages may exist
and it has not been marked as obsolete. That means this block might be selected
to relocate and erase again in the future.

any

Appendix C An Event-B Specification of Flash Memory

251

b

rws
where

grdl :
grd2:

then

actl :
act2:

end
END

the block being relocated

all rows within the given block

b € relocating_blocks
rws = BlkOfRow™[{b}]

relocating_blocks := relocating_blocks \ {b}
relocating_pages := rws < relocating_pages

252 Appendix C An Event-B Specification of Flash Memory

C.5 The fourth refinement: Refining the block_erase event

MACHINE FMCHO7_FL_REF4
REFINES FMCHO7_FL_REF3
SEES FLCTX3

VARIABLES

flash

programmed_pages

obsolete_pages

ready2read page registers that their data are ready to be read

ready2prog page registers that their data are ready to be programmed into
the flash

readingPR Set of page registers being in the reading state.

writingPR Set of page registers being in the writing state.

corresRowOfreadingPR

corresRowOfwritingPR

dataOfPR data of each page register

flash?2 represents part of flash that have been programmed during relocation

trans_func A translation function, mapping the content from the old location

to the new location.
programmed_pages?2 represents a set of pages that have already been pro-

grammed during the relocating process
obsolete_pages2 represents a set of all obsolete pages
relocating blocks blocks in the relocating state
relocating pages pairs of pages (old,new) that are in the relocating state
candidate_blocks blocks which are candidate to be relocated
obsolete_blocks set (programmed) blocks that have no valid pages
erasing_blocks blocks being in the erasing state
num_erased the number of times that each block has been erased
tnvalid_num_erased_blocks (erased) blocks with invalid num_erased
restoring_num_erased blocks in the restoring num_erased state
tmp_num_erased temporary places storing the number of erasures
corresBlkOftmpErased the corresponding block of the tmp_num_erased
bad_blocks set of bad blocks

INVARIANTS

invl : candidate_blocks C BLOCK

inv2 : relocating_blocks C candidate_blocks

inv3 : obsolete_blocks C BLOCK

inv4 : obsolete_blocks N relocating_blocks = &

inv5 : Vr-r € (programmed_pages U programmed_pages2)

A BlkOfRow(r) € obsolete_blocks

= 1 € obsolete_pages2
inv6 : erasing_blocks C obsolete_blocks
inv7 : Vb, r-b € obsolete_blocks N

r € RowAddr N BlkOfRow(r) = b
=
r ¢ ran(corresRowOfreadingPR) A r ¢ ran(corresRowOfwritingPR)

Appendix C An Event-B Specification of Flash Memory 253

inv8 : num_erased € BLOCK — N

inv9 : invalid_num_erased_blocks C BLOCK

inv10 : restoring_num_erased C invalid_num_erased_blocks

invil : tmp_num_erased € RowAddr - N

inv12 : corresBlkOftmpErased € dom(tmp_num_erased) — BLOCK
invi13: bad_blocks C BLOCK

inv14 : bad_blocks N candidate_blocks = &

inv15: Vr-r € dom(relocating_pages) = BlkOfRow(r) € relocating_blocks

EVENTS
Initialisation
extended

begin
act19 : candidate_blocks := @
act20 : obsolete_blocks := &
act21 : erasing_blocks := &
act22 : num_erased := BLOCK x {0}
act27 : tnwvalid_num_erased_blocks := @
act23: restoring_num_erased := &
act24 : tmp_num_erased := &
act25 : corresBIkOftmpErased := &

act26 : bad_blocks .= &
end

Event pageread_start =
(rl) Starting page_read by selecting the related LUN (in which the the page row
r is) and avialable page register.
extends pageread_start

where
grd7 : BlkOfRow(r) ¢ obsolete_blocks U relocating_blocks U bad_blocks
end

Event read2req =
(r2) Transfer the page-data at the given row address to the page register. (casel)
extends read2reg

Event read2reg2 =

(r2) Transfer the page-data from the given row address to the page register. (case2)

extends read2reg?
Event page_read_end =
(r3.0k) Read page data from the register off chip.
extends page_read_end
Event page_read_fail =
(r3.fail)
extends page_read_fail
Event pageprog_start =
(wl) Starting page_programmed by selecting the related LUN and avialable page
register.

extends pageprog_start

254 Appendix C An Event-B Specification of Flash Memory

where
grd10 : BlkOfRow(r) ¢ obsolete_blocks U relocating_blocks U bad_blocks
end

Event write2req =
(w2) Write/transfer the data to be programmed into the page register within the
LUN.
extends write2reg

Event page_program_ok =
(w3.0k) Programme the data on the page register to the flash at the corresponding
row address.
extends page_program_ok

Event page_prog_fail =
(w3.fail) programming the given page fails
extends page_prog_fail

Event mark_pages_obsolete =
A utility event used for marking a set of pages as obsolete.
extends mark_pages_obsolete

Event mark_a_page_obsolete =
Utility event. Marks a single page specified by the given row address as obsolete.
extends mark_a_page_obsolete

Event start_relacating_a_block =
(1) Start relocating a block (which is a candidate) if the given block has been
marked as obsolete. The relocating block becomes obsolete when there are no
valid pages.
refines start_relacating_a_block

any
b
where
grdl : b € candidate_blocks
grd2 : b ¢ relocating_blocks U obsolete_blocks
grd3: Vr-r € RowAddr N\ BlkOfRow(r) = b=-r ¢ ran(corresRowOfwritingPR)U

ran(corresRowOfreadingPR)

There is no page being written or read.
grdd : BIkOfRow [{b}] N (programmed_pages \ obsolete_pages2) # @

Existing some valid pages
then
actl : relocating_blocks := relocating_blocks U {b}
end

Event start_relocating_a_page =
(2.1) Start relocating a valid page within the relocating block (if exist).
extends start_relocating_a_page

Event copy_a_page_to_new_loc =
(2.2) Write the content of page at the old location to another location.
extends copy_a_page_to_new_loc

where

Appendix C An Event-B Specification of Flash Memory 255

grd6 : BlkOfRow(new_r) ¢ obsolete_blocks U bad_blocks
end

Event mark_old_page_obsolete =
(2.3) Mark the old page to be obsolete at the end when the content has been
written to the new location.
extends mark_old_page_obsolete

Event relocate_a_page_fail =
(2.fail) In the case of relocating the given page fails (or abort), remove the tuple
of pages being located. If locating a page is aborted at any point, (2.2.fail) fail to
write to a new location (fail at 2.2), the content at the old location is still valid;
(2.3.fail) fail to mark the old as obsolete. That means there are two valid pages
with the same content in both old and new location. However, when the flash is
mounted only one is selected to formulate the fat table and then mark another
obsolete.
extends relocate_a_page_fail

Event relocate_a_block_end =
(3.0k) Mark the block being located as obsolete when there are no valid pages
exist. The obsolete block is the block that is read for erasing.
refines relocate_a_block_end

any
b

where
grdl : b € relocating_blocks

or lid — bid € LUAddr x BAddr meaning it can be any block. The dirty

block is a candidate block to be reclaim.
grd2 : BlkOfRow™'[{b}] N (programmed_pages \ obsolete_pages2) = @
No valid pages within the given block.

then
actl : relocating_blocks := relocating_blocks \ {b}

act2: obsolete_blocks := obsolete_blocks U {b}
end

Event relocate_a_block_fail =
(3.fail) When relocating a block fails. As the result, some valid pages may exist
and it has not been marked as obsolete. That means this block might be selected
to relocate and erase again in the future.
refines relocate_a_block_fail

any
b, rws
where
grdl : b € relocating_blocks
grd2 : rws = BlkOfRow™[{b}]
then
actl : relocating_blocks := relocating_blocks \ {b}
4 act2: relocating_pages := rws < relocating_pages
en

Event start_erase_block =

(4.1) Start erasing an obsolete block. Set the given block in the erasing state.

256 Appendix C An Event-B Specification of Flash Memory

[Store the number of erasures somewhere else (in the other block) before erasing.
The number of erasure will be restored when erasing process complete]

This step are not necessary to be performed once the relocation of the given block
complete. This event just pick up one of the obsolete blocks to be erased.

any
b

free_r
where
grdl : b € obsolete_blocks

grd2: b ¢ erasing_blocks

grd3 : num—_erased(b) < max_erase

grd4 : free_r € RowAddr \ (programmed_pages2 U programmed_pages)

grd5 : BlkOfRow(free_r) ¢ erasing_blocks

grd6 : free_r ¢ dom(tmp_num_erased)

grd7 : Vk-k € obsolete_blocks\ bad_blocks=num_eraseOfblock(k) > num_eraseOfblock(b)

select an obsolete block with the least number of erasures

grd8 : b ¢ bad_blocks
then
actl : erasing_blocks := erasing_blocks U {b}

act2 : tmp_num_erased(free_r) := num_erased(b)

Store the number of erasures somewhere else.

act3: corresBlkOftmpErased(free_r) := b
end

Event erase_a_block_end =
(4.2.0k) erase the given block which is obsolete. That means all pages have already
set to the default (dp). The previous num erased is also cleared. That is the
number of erasing times is now invalid.
refines erase_a_block

any
rows All rows within the given block.
b
where
grdl : b € erasing_blocks
grd2 : rows = BlkOfRow [{b}]
grd3 : rowsN((programmed_pages2U programmed_pages)\ obsolete_pages) =

%]

The block being erased have no valid pages
grd4 : rows N ran(corresRowOfreadingPR) = &
grd5 : rows N ran(corresRowOfwritingPR) = &
grd6 : rows N dom(trans_func) = &

Vr-r € dom(trans_func) = flash(r) = dp
grd7 : rows N ran(trans_func) = &
then
actl: flash := flash < (rows x {dp})
act2 : programmed_pages := programmed_pages \ rows
act3: obsolete_pages := obsolete_pages \ rows
act4 : programmed_pages2 := programmed_pages2 \ rows
actb : obsolete_pages2 := obsolete_pages2 \ rows
act6 : erasing_blocks := erasing_blocks \ {b}
act7 : obsolete_blocks := obsolete_blocks \ {b}

Appendix C An Event-B Specification of Flash Memory 257

act8: candidate_blocks := candidate_blocks \ {b}

act9 : invalid_num_erased_blocks := invalid_num_erased_blocks U {b}
end

Event erase_a_block_fail =
(4.2.fail) In the case of erasing fails. The block is still in the obsolete state that
might be selected to be erased later. (The obsolete block is invalid to be used)

any
b
where
grdl : b € erasing_blocks
then
actl: erasing_blocks := erasing_blocks \ {b}
end

Event start_restore_num_erased =

(5.1) Start restoring the number of erasures

any
b
where
grdl : b € invalid_num_erased_blocks
then
actl : restoring_num—_erased := restoring_num_erased U {b}
end

Event restore_num_erased =
(5.2.0k) Restoring of the number of erasures success.

any
b
row the row that temporarily stores the number of times that block b has

been erased
where
grdl : b € restoring_num_erased

grd2: row € dom(tmp_num_erased)

grd3: b = corresBlkOftmpErased(row)
then
actl: num_erased(b) := tmp_num_erased(row) + 1

act2 : restoring_num—_erased := restoring_num_erased \ {b}
act3: tmp_num_erased := {row} < tmp_num_erased
actd : corresBlkOftmpErased := {row} <4 corresBlkOftmpErased

act5 : invalid_num_erased_blocks := invalid_num_erased_blocks \ {b}
end

Event restore_num_erased_fail =
(5.2.fail) Restoring of the number of erasures fails. This means the num_erased of

this block still invalid. It may be restored later, since the valid one still remain.

any
b
where
grdl : b € restoring num erased
then
act2: restoring num erased := restoring num erased \ {b}
end

END

258 Appendix C An Event-B Specification of Flash Memory

C.6 The fifth refinement: Status Register

MACHINE FMCHO7_FL_REF5
REFINES FMCHO7_FL_REF4
SEES FLCTX4

VARIABLES

flash

programmed_pages

obsolete_pages

ready2read page registers that their data are ready to be read

ready2prog page registers that their data are ready to be programmed into

the flash
readingPR Set of page registers being in the reading state.
writingPR Set of page registers being in the writing state.
corresRowOfreadingPR
corresRowOfwritingPR
dataOfPR data of each page register
flash?2 represents part of flash that have been programmed during relocation
trans_func A translation function, mapping the content from the old location

to the new location.
programmed_pages?2 represents a set of pages that have already been pro-

grammed during the relocating process
obsolete_pages?2 represents a set of all obsolete pages
relocating blocks blocks in the relocating state
relocating pages pairs of pages (old,new) that are in the relocating state
candidate_blocks blocks which are candidate to be relocated
obsolete_blocks set (programmed) blocks that have no valid pages
erasing blocks blocks being in the erasing state
num_erased the number of times that each block has been erased
invalid num erased blocks (erased) blocks with invalid num_erased
restoring num erased blocks in the restoring num_erased state
tmp_num erased temporary places storing the number of erasures
corresBlkOftmpErased the corresponding block of the tmp_num_erased
bad_blocks set of bad blocks
t_status the status of the target flash device
lready set of LUNs that their status values is ready
Inotready set of LUNs that their status values is not ready
lreadyfail set of LUNs that is ready, but the previous command fails
wprotected set of LUNs that are write protected

INVARIANTS

invl : t_status € STATUS

inv2 : lready C LUAddr

inv3: lnotready C LUAddr

inv4 : lreadyfail C LUAddr

inv5 : wprotected C LUAddr

inv6 : partition(LUAddr, lready, Inotready, lreadyfail)

Appendix C An Event-B Specification of Flash Memory 259

inv7 @ t_status = RDY = (V-1 € LUAddr = [€ (lready U lreadyfail))
inv8 : Vr-r € RowAddr A lidOfRow(r) € wprotected = r ¢ ran(relocating_pages)
inv9 : Vr-r € RowAddr A r € ran(relocating_pages) = lidOfRow(r) ¢ wprotected
EVENTS
Initialisation
extended
begin
act27 : t_status := RDY
act28 : lready := LUAddr
act29 : lnotready := @

act30 : lreadyfail :== &

act31: wprotected := &
end

Event pageread_start =
(rl) Starting page_read by selecting the related LUN (in which the the page no.
r is) and available page register.
extends pageread_start

where
grdi2 : t_status = RDY

grdil : lid ¢ wprotected

then
act3: Inotready = Inotready U {lid}
actd : lready = lready \ {lid}
acth : lreadyfail := lreadyfail \ {lid}
act6 : t_status := nRDY

end

Event read2req =
(r2) Transfer the page-data at the given row address to the page register.
extends read2reg
Event page_read_end =
(r3a) Read page data from the register off chip.
extends page_read_end
any
lid
where
grd5 : lid = lidOfRow(r)
grd6 : lid € Inotready
then
actb : lready := lready U {lid}
act6 : Inotready := Inotready \ {lid}
end

Event page_read_fail =

(r3b)

extends page_read_fail

any
lid

where
grd3: lid = lidOfRow(r)
grd4 : lid € Inotready

then

260 Appendix C An Event-B Specification of Flash Memory

actd : lreadyfail := lreadyfail U {lid}
act5 : Inotready := Inotready \ {lid}
end
Event pageprog_start =
(wl) Starting page_programmed by selecting the related LUN and avialable page
register.
extends pageprog_start

where
grdl2 : t_status = RDY

grdi3: lid ¢ wprotected
then

act3: lnotready := Inotready U {lid}
actd : lready := lready \ {lid}
acth : lreadyfail := lreadyfail \ {lid}
act6 : t_status := nRDY
end
Event write2req =

(w2) Write/transfer the data to be programmed into the page register within the
LUN.
extends write2reg
Event page_program_ok =
(w3a) Programme the data on the page registier to the flash at the corresponding
row address.
extends page_program_ok
any
lid
where
grd8 : lid € Inotready

grd9 : lid = lidOfRow(new_r)
then
act8: lready := lready U {lid}
act9 : Ilnotready := Inotready \ {lid}
end
Event page_prog_fail =
(w3b)
extends page_prog_fail
any
lid
where
grd3 : lid € Inotready
grd4 : lid = lidOfRow(r)
then
acth : lreadyfail := lreadyfail U {lid}
act6 : Inotready := Inotready \ {lid}
end
Event mark_pages_obsolete =
A utility event used for marking a set of pages as obsolete.
extends mark_pages_obsolete
Event mark_a_page_obsolete =

Utility event. Marks a single page specified by the given row address as obsolete.

Appendix C An Event-B Specification of Flash Memory 261

extends mark_a_page_obsolete
Event start_relacating_a_block =
(1) Start relocating a block (which is a candidate) if the given block has been
marked as obsolete. The relocating block becomes obsolete when there are no
valid pages.
extends start_relacating_a_block
Event start_relocating_a_page =
(2.1) Start relocating a valid page within the relocating block (if exist).
extends start_relocating_a_page

any
lid_old, lid_new
where
grd9 : lid_old = lidOfRow(old_r)

grd10 : lid_new = lidOfRow(new_r)

grdll : {lid_new,lid_old} N wprotected = @
then
act2: Inotready := Inotready U {lid_old, lid_new}

act3: lready = lready \ {lid_old, lid_new}
act4d : lreadyfail := lreadyfail \ {lid_old, lid_new}

acth : t_status := nRDY
end

Event copy_a_page_to_new_loc =
(2.2) Write the content of page at the old location to another location.
extends copy_a_page_to_new_loc
Event mark_old_page_obsolete =
(2.3) Mark the old page to be obselete at the end when the content has been
written to the new location.
extends mark_old_page_obsolete
Event relocate_a_page_fail_casel =
(2.2.fail) Fail to write to a new location (fail at 2.2), the content at the old location
is still valid
extends relocate_a_page_fail
any
lid
where
grd2 : new_r ¢ programmed_pages2
grd3 : lid = lidOfRow(new_r)
grd4 : lid € Inotready
then
act2 : lreadyfail := lreadyfail U {lid}
act3: lnotready := Inotready \ {lid}
end

Event relocate_a_page_fail_case2 =
(2.3.fail) Fail to mark the old as obsolete. That means there are two valid pages
with the same content in both old and new location. However, when the flash is
mounted only one is selected to formulate the fat table and then mark another
obsolete.

extends relocate_a_page_fail

262 Appendix C An Event-B Specification of Flash Memory
any
lid
where
grd2 : new_r € programmed_pages2
grd3 : lid = lidOfRow(old_r)
grd4 : lid € Inotready
grd5 : old_r ¢ obsolete_pages2
then
act2 : lreadyfail := lreadyfail U {lid}
act3: lnotready := Inotready \ {lid}
end

Event relocate_a_block_end =
(3.0k) Mark the block being located as obsolete when there are no valid pages
exist. The obsolete block is the block that is read for erasing.

extends relocate_a_block_end

any
lid
where
grd4 : lid € Inotready
grd5 : lid = lidOfBIk(b)
then
act3: lready := lready U {lid}
actd : Inotready := Inotready \ {lid}
end

Event relocate_a_block_fail =
(3.fail) When relocating a block fails. As the result, some valid pages may exist
and it has not been marked as obsolete. That means this block might be selected
to relocate and erase again in the future.

extends relocate_a_block_fail

any
lid
where
grd3 : lid € Inotready
grdd : lid = lidOfBlk(b)
then
act3: lreadyfail := lreadyfail U {lid}
act4 : Inotready = Inotready \ {lid}
end

Event start_erase_block =

(4.1) Start erasing an obsolete block. Set the given block in the erasing state.
[Store the number of erasures somewhere else (in the other block) before erasing.
The number of erasure will be restored when erasing process complete]

extends start_erase_block

any
lid

where
grd9 : t_status = RDY
grd10 : lid = lidOfBlk(b)
grdll : lid ¢ wprotected

then
act4 : Inotready := Inotready U {lid}
act5 : lready := lready \ {lid}

Appendix C An Event-B Specification of Flash Memory

263

act6 : lreadyfail := lreadyfail \ {lid}
act7 : t_status := nRDY
end
Event erase_a_block_ok =

(4.2.0k) erase the given block which is obsolete
extends erase_a_block
any
lid
where
grd8 : lid € Inotready
grd10 : lid = lidOfBIk(b)
then
act8 : lready := lready U {lid}
act9 : Inotready := Inotready \ {lid}
end

Event erase_a_block_fail =

(4.2.fail) In the case of erasing fails. The block is still in the obsolete state that

might be selected to be erased later. (The obsolete block is invalid to be used.)

extends erase_a_block_fail
any
lid
where
grd2 : lid € Inotready
grd3 : lid = lidOfBIk(b)
then
actb : lreadyfail := lreadyfail U {lid}
act6 : Inotready := Inotready \ {lid}
end
Event start_restore_num_erased =
(5.1) Start restoring the number of erasures
extends start_restore_num_erased
any
lid
where
grd9 : t_status = RDY
grd10 : lid = lidOfBIk(b)

grdil : lid ¢ wprotected
then

act4 : Inotready := Inotready U {lid}
acts : lready := lready \ {lid}
act6 : lreadyfail := lreadyfail \ {lid}
act7 : t_status := nRDY

end

Event restore_num_erased_ok =

(5.2.0k) restore the number of erasures at the end of erasing a block

extends restore_num_erased

any
lid
where
grd5 : lid = lidOfBIk(b)
grd4 : lid € Inotready
then
act8 : lready := lready U {lid}

264 Appendix C An Event-B Specification of Flash Memory

act9 : Inotready := Inotready \ {lid}
end

Event restore_num_erased_fail =
(5.2.fail) Restoring of the number of erasures fails. This means the num_erased of

this block still invalid. It may be restored later, since the the vilid one still remian.

extends restore_num_erased_fail

any
lid
where
grd2 : lid = lidOfBIk(b)
grd3 : lid € Inotready
then
act2: lready := lready U {lid}
act3: lnotready := Inotready \ {lid}
end

Event setwprotect =

any
lid
where
grdl : lid € LUAddr
grd2 : lid ¢ wprotected
grd3 : t_status = RDY
grdsd : ran(relocating_pages) N lidOfRow~'[{lid}] = @
No pages being in the relocating process.
grd5 : ran(corresRowOfwritingPR) N lidOfRow ' [{lid}] = @
No page being programmed
then
actl : wprotected := wprotected U {lid}
end

Event remove_wprotect =

any
lid
where
grdl : lid € LUAddr
grd2 : lid € wprotected
grd3: t_status = RDY
then
actl : wprotected := wprotected \ {lid}
end
Event read_flash_status =
any
st
where
grdl: st € {RDY ,nRDY}
grd2: st = RDY < (VI-1 € LUAddr =1 € (lready U lreadyfail))
then
actl: t_status := st
end

END

Bibliography

1]
2]

J.-R. Abrial. The B Book. Cambridge University Press, 1996.

J.-R. Abrial. A system development process with Event-B and the Rodin platform.
In M. Butler, M. G. Hinchey, and M. M. Larrondo-Petrie, editors, ICFEM, volume
4789 of Lecture Notes in Computer Science, pages 1-3. Springer, 2007.

J.-R. Abrial. Formal methods: Theory becoming practice. J. UCS, 13(5):619-628,
May 2007.

J.-R. Abrial. Modelling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin.
Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer (STTT), 10.1007, April 2010.
Published online.

J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool
environment for Event-B. In Z. Liu and J. He, editors, ICFEM 2006 Lecture Notes
i Computer Science, volume 4260, 2006.

J-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. A roadmap for the Rodin
toolset version 1.0: 12 June 2008. In Borger et al. [19], page 347.

J.-R. Abrial and S. Hallerstede. Refinement, decomposition and instantiation of

discrete models: Application to Event-B. Fundamentae Infomatica, 2006.

S. Agerholm and P. G. Larsen. The IFAD VDM tools: Lightweight formal methods.
In FM-Trends 98: Proceedings of the International Workshop on Current Trends
in Applied Formal Method, pages 326—-329, London, UK, 1999. Springer-Verlag.

R.-J. Back, , and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

R. J. R. Back. Refinement calculus, part ii: parallel and reactive programs. In REX
workshop: Proceedings on Stepwise refinement of distributed systems: models, for-
malisms, correctness, pages 67-93, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

265

266 BIBLIOGRAPHY

[12] R. J. R. Back and F. Kurki-Suonio. Distributed cooperation with action systems.
ACM Trans. Program. Lang. Syst., 10:513-554, 1988.

[13] J.C.M. Baeten. A brief history of process algebra. Technical report, Department
of Computer Science, Technische Universiteit Eindhoven, 2004.

[14] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Programmiermethodik.
Formal system development with kiv. In Fundamental Approaches to Software
Engineering, number 1783 in LNCS, pages 363-366. Springer, 2000.

[15] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-memory algorithms.
In ESA’06: Proceedings of the 14th conference on Annual European Symposium,
pages 100-111, London, UK, 2006. Springer-Verlag.

[16] J. Bendisposto and M. Leuschel. The ProB plug-in for Eclipse and Rodin. Tech-
nical report, Institut fiir Informatik, Heinrich-Heine Universitat Diisseldorf, 2007.

[17] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77-121, 1985.

[18] E. Borger. The abstract state machines method for high-level system design and
analysis. Technical report, Dipartimento di Informatica, Universita di Pisa, Italy,
2003.

[19] E. Borger, M. Butler, J. P. Bowen, and Paul Boca, editors. Abstract State Ma-
chines, B and Z, First International Conference, ABZ 2008, London, UK, Septem-
ber 16-18, 2008. Proceedings, volume 5238 of Lecture Notes in Computer Science.
Springer, 2008.

[20] J. Bowen. Formal Specification and Documentation using Z: A Case Study Ap-
proach. International Thomson Computer Press, 2003.

[21] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. Rustan M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer, 7(3):212-232, June 2005.

[22] M. Butler. A CSP approach to action systems. PhD thesis, Programming Research
Group, Oxford University, 1992.

[23] M. Butler. Stepwise refinement of communicating systems. Science of Computer
Programming, 27(2):139-173, 1996.

[24] M. Butler. On the verified-by-construction approach. Technical report, University
of Southampton, UK, February 2006.

[25] M. Butler. Rodin deliverable D31: Plublic versions of plug-in tools.

Technical report, University of Southampton, UK, 2007. Available from:
http://rodin.cs.ncl.ac.uk/D31.pdf.

BIBLIOGRAPHY 267

[26]

[32]

[33]

[34]

M. Butler. Decomposition structures for Event-B. In IFM ’09: Proceedings of the
7th International Conference on Integrated Formal Methods, pages 20-38, Berlin,
Heidelberg, 2009. Springer-Verlag.

M. Butler, J.-R. Abrial, K. Damchoom, and A. Edmunds. Applying Event-B and
Rodin to the filestore, 2008. VSRNet Workshop, ABZ 2008.

M. Butler, J. Grundy, T. Langbacka, R. Ruksenas, and J. von Wright. The re-
finement calculator: Proof support for program refinement. In Formal Methods
Pacific 97, pages 40-61. Springer, 1997.

M. Butler and S. Hallerstede. The Rodin formal modelling tool. BCS-FACS
Christmas 2007 Meeting - Formal Methods In Industry, London., December 2007.

M. Butler, M. Leuschel, and C. Snook. Tools for system validation with B ab-
stract machines. In ASM 2005: 12th International Workshop on Abstract State
Machines, 2005.

M. Butler and D. Yadav. An incremental development of the Mondex system in
Event-B. Formal Aspects of Computing, 20(1):61-77, 2007.

R. W. Butler. What is formal methods. Technical report, NASA, 2001. Available
from http://shemesh.larc.nasa.gov/fm/fm-what.html.

A. Butterfield, L. Freitas, and J. Woodcock. Mechanising a formal model of flash
memory. Sci. Comput. Program., 74(4):219-237, 2009.

A. Butterfield and J. Woodcock. Formalising flash memory: First steps. In
ICECCS ’07: Proceedings of the 12th IEEE International Conference on Engi-
neering Complex Computer Systems (ICECCS 2007), pages 251-260, Washington,
DC, USA, 2007. IEEE Computer Society.

D. Cansell and D. Méry. Foundation of the B-method. Computing and Informatics,
20:1-31, 2003.

D. Cansell and D. Méry. Tutorial on the event-based B method Concepts and Case
Studies. Technical report, LORIA and Université Henri Poincaré Nancy, 2006.

D. Carrington. Vdm and the refinement calculus: a comparison of two system-
atic design methods. Technical report, The University of Queenland, Australia,
December 1993.

ClearSy. Atelier B translators user manual, version 4.6. Tech-
nical report, ClearSy, Parc de la Duranne, 2009. Available from

http://www.atelierb.eu/ressources/DOC/english /translators-user-manual.pdf.

268

BIBLIOGRAPHY

[39]

[40]

[46]

[47]

[48]

[51]

T. Clement. Combining transformation and posit-and prove in a VDM devel-
opment. In VDM ’91: Proceedings of the 4th International Symposium of VDM
FEurope on Formal Software Development-Volume I, pages 63-80, London, UK,
1991. Springer-Verlag.

J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna. Rodin
(rigorous open development environment for complex systems). Fifth European
Dependable Computing Conference: EDCC-5 supplementary, pages 23-26, 2005.
Available from http://rodin.cs.ncl.ac.uk.

CSK System Corp. VDMTools, 2009. Available from http://www.vdmtools.jp.

Oracle Corporation. Object-oriented programming concepts, Jan 2010.

http://java.sun.com/docs/books/tutorial /java/concepts/.

K. Damchoom and M. Butler. An experiment in applying Event-B and Rodin to
a flash-based filestore. In Rodin User and Developer Workshop, July 2009.

K. Damchoom and M. Butler. Applying event and machine decomposition to a
flash-based filestore in Event-B. In Marcel Vinicius Medeiros Oliveira and Jim
Woodcock, editors, SBMF, volume 5902 of Lecture Notes in Computer Science,
pages 134-152. Springer, 2009.

K. Damchoom, M. J. Butler, and J.-R. Abrial. Modelling and proof of a tree-
structured file system in Event-B and Rodin. In Shaoying Liu, T. S. E. Maibaum,
and Keijiro Araki, editors, ICFEM, volume 5256 of Lecture Notes in Computer
Science, pages 25—44. Springer, 2008.

K. Damchoom and E. R. Jam. B2Latex, a LaTeX code generator for the Rodin
platform, 2007. Available from: http://www.event-b.org.

W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Cambridge University Press, 1998.

A. Edmunds and M. Butler. Linking Event-B and concurrent object-oriented

programs. FElectronic Notes in Theoretical Computer Science, 2008.

A. Edmunds and M. Butler. Tool support for Event-B code generation. In Work-
shop on Tool Building in Formal Methods - ABZ Conference, Canada, 2010.

S. Eisenbach and R. Paterson. m—calculus semantics for the concurrent configu-
ration language darwin. In Hawaii International Conference on System Sciences,

Koloa, Hawaii, January 1993.

Hynix Semiconductor et al. Open NAND flash interface specification, revision 1.0.
Technical report, ONFI, www.onfi.org, Dec. 2006.

BIBLIOGRAPHY 269

[52]

[53]

Hynix Semiconductor et al. Open nand flash interface specification, revision 2.0.

Technical report, ONFI, www.onfi.org, 2008.

N. Evans and M. Butler. A proposal for records in event-b. In Tobias Nipkow,
Jayadev Misra, and Emil Sekerinski, editors, Formal Methods 2006, volume LNCS
4085, pages 221-235. Springer, 2006.

M. A. Ferreira, S. S. Silva, and J. N. Oliveira. Verifying intel flash file system core
specification. In Fourth VDM /Overture Workshop (CS-TR-1099), 2008.

R. B. Findler. Scheme and functional programming 2006: paper abstracts. SIG-
PLAN Not., 41(8):6-9, 2006.

D. Flanagan. Java in a Nutshell. O’Reilly, USA, 5th edition, 2005.

The Eclipse Foundation. Eclipse - an open development platform, 2007. Available
from http://www.eclipse.org/.

L. Freitas, Z. Fu, and J. Woodcock. POSIX file store in Z/Eves: an experiment in
the verified software repository. In ICECCS, pages 3—14. IEEE Computer Society,
2007.

L. Freitas, J. Woodcock, and A. Butterfield. POSIX and the verification grand
challenge: A roadmap. ICECCS, 0:153-162, 2008.

L. Freitas, J. Woodcock, and Z. Fu. POSIX file store in Z/Eves: An experiment
in the verified software repository. Sci. Comput. Program., 74(4):238-257, 20009.

Z. Fu. A refinement of the Uniz filling system using Z/Eves. PhD thesis, University
of York, 2006.

E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM
Comput. Surv., 37(2):138-163, 2005.

B. Goetz. Java Concurrency in Practice. Addison Wesley, USA, 2006.

M. Gordon. From lcf to hol: a short history. In Proof, Language, and Interaction,
pages 169-185. MIT Press, 2000.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.

The Open Group. IEEE Std 1003.1, 2004 Edition. Available from

http://www.unix.org/version3/ieee_std.html.

Intel Flash File System Core Reference Guide. Vesion 1. Technical Report 304436-
001, Intel Corporation, Oct 2004.

S. Hallerstede. Justification for the Event-B modelling notation. LNCS, 4255:49—
63, 2007.

270

BIBLIOGRAPHY

[69]

[70]

[71]

[72]

[77]

[78]

[79]

[80]

[82]

[83]

R. Harper. Programming in Standard ML. Carnegie Mellon University, 2005.
Available from: http://www.cs.cmu.edu/ rwh/smlbook/online.pdf.

W. H. Hesselink and M. I. Lali. Formalizing a hierarchical file system. FElectron.
Notes Theor. Comput. Sci., 259:67-85, 2009.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 2004.

T. Hoare and J. Misra. Verified software: theories, tools, experiments; vision of a

grand challenge project. 2005.

C. M. Holloway. Why engineers should consider formal methods. In The 16th
Digital Avionics Systems Conference, 1997.

G. J. Holzmann. Promela language reference. Available from

http://www.spinroot.com/spin/Man/promela.html.

G. J. Holzmann. The Spin model checker: primer and reference manual. Addison
Wesley, USA, 2004.

G. J. Holzmann, R. Joshi, and A. Groce. New challenges in model
checking. In Proceedings of the Conference on Computer-Aided Verification.
Pasadena, CA : Jet Propulsion Laboratory, NASA, 2006. Available from
http://hdl.handle.net/2014/39859.

P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of haskell: being lazy
with class. In HOPL III: Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pages 12-1-12-55, New York, NY, USA, 2007.
ACM.

J. Hughes. Specifying a visual file system in Z. Technical report, Department of
Computing Science, University of Glasgow, 1989.
Available from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=199162.

G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

A. Treland, G. Grov, and M. Butler. Reasoned modelling critics: turning failed
proofs into modelling guidance. In ABZ 2010. Springer-Verlag, 2010.

D. Jackson. Software Abstraction: Logic, Language, and Analysis. MIT Press,
Cambridge, 2006.

M. A. Jackson. System Development. Prentice Hall, Englewood Cliffs, 1983.

C. Jones, P. Hearn, and J. Woodcock. Verified software: A grand challenge.
Software Technologies, IEEE Computer Society, pages 93-95, April 2006.

BIBLIOGRAPHY 271

[84]

[36]

C. B. Jones. Sytematic Software Development Using VDM. Pren-
tice Hall International, second edition, 1990. Available from
http://www.freetechbooks.com/about244.html.

R. Joshi and G. J. Holzmann. A mini challenge: Build a verifiable filesystem.
In Verified Software: Theories, Tools, Ezxperiments. Zurich, Switzerland, 2005.
Available from http://vstte.ethz.ch/papers.html.

E. Jou and J.H. Jeppesen III. Flash memory wear leveling system providing
immediate direct access to microprocessor, October 1996. US partent 5,568,423,
Filed April 14, 1995; Issued October 22,1996; Assigned to Unisys.

E. Kang and D. Jackson. Formal modeling and analysis of a flash filesystem in
Alloy. In Borger et al. [19], pages 294-308.

E. Kang and D. Jackson. Designing and analyzing a flash file system with Alloy.
Int J Software Informatics, 3(2-3):129148, 2009.

H. Krumm. Temporal logic. Technical report, Department of Computer Science,
University of Dortmund, 2000.

A. Krupp, W. Mueller, and I. Oliver. Formal refinement and model checking of
an echo cancellation unit. In DATE ’04: Proceedings of the conference on Design,
automation and test in Europe, page 30102, Washington, DC, USA, 2004. IEEE

Computer Society.
L. Lamport. The temporal logic of actions. ACM Toplas 16, 3:872-923, 1994.

L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382-401, 1982.

X. Liu, H. Yang, and H. Zedan. Formal methods for the re-engineering of com-
puting systems: A comparison. Technical report, Software Technology Research
Laboratory, De Montfort University, England, 1997.

Z. Manna and A. Pnueli. Completing the temporal picture. Theoretical Computer
Science, 83:97-130, 1991.

Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

C. Métayer, J.-R. Abrial, and L. Voisin. Rodin deliverable 3.2. Event-B language.
Technical report, University of Newcastle upon Tyne, UK, 2005. Available from
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf.

272

BIBLIOGRAPHY

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge
University Press, 1999.

C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

C. Morgan and B. Sufrin. Specification of the UNIX filing system. IEEE Trans.
Software Eng., 10(2):128-142, 1984.

J. M. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program., 9(3):287-306, 1987.

M. Ouimet. Formal software verification: Model checking and theorem prov-
ing. Technical Report, Embedded Systems Laboratory, Massachusetts Institute of
Technology, March 2007.

S. Owre, N. Shankar, and J. Rushby ans D. Stringer-Calvert. PVS version
2.4, system guide, prover guide, PVS language reference, 2001. Available from
http://pvs.csl.sri.com.

D. L. Parnas. Predicate logic for software engineering. IEEE Transactions on
Software Engineering, 19:859-862, 1993.

L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1996.

A. Requet. BART: A tool for automatic refinement. In Borger et al. [19], page
345.

A. Rezazadeh and M. J. Butler. Some guidelines for formal development of web-
based applications in B-method. In Helen Treharne, Steve King, Martin C. Henson,
and Steve A. Schneider, editors, ZB, volume 3455 of Lecture Notes in Computer
Science, pages 472-492. Springer, 2005.

M. Saaltink. The Z/EVES system. In ZUM97: Z Formal Specification Notation,
pages 72-85. Springer-Verlag, 1997.

S. Schneider. The B-method an Introduction. Palgrave, 2001.

R. Silva and M. Butler. Supporting reuse mechanisms for developments in Event-

B: Composition. Technical report, ECS, University of Southampton, 2009.

R. Silva, C. Pascal, T.‘S. Hoang, and M. Butler. Decomposition tool for Event-B.
In Workshop on Tool Building in Formal Methods - ABZ Conference, Canada,
2010.

C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML.
ACM Transactions on Software Engineering and Methodology, 15(1):92-122, 2006.

BIBLIOGRAPHY 273

[114]

[115]

[116]

[117]

[118]

[119]

B. Tatibouet, A. Requet, J.-C. Voisinet, and A. Hammad. Java card code gener-
ation from B specifications. In Formal Methods and Software Engineering, pages
306-318, Berlin, Germany, 2003. Springer.

P. Taverne and C. (Kees)Pronk. RAFFS: Model checking a robust abstract flash
file store. In ICFEM ’09: Proceedings of the 11th International Conference on
Formal Engineering Methods, pages 226—245, Berlin, Heidelberg, 2009. Springer-
Verlag.

Y. Wang, J. Pang, M. Zha, Z. Yang, and G. Zheng. A formal software development
approach using refinement calculus. J. Comput. Sci. Technol., 16(3):251-262, 2001.

J. Woodcock. ABZ call for papers on the POSIX pilot project in the grand chal-
lenge, 2007. Available from http://www.cs.york.ac.uk/circus/mc/abz.

J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice—Hall, 1996.

S. Wright. Automatic generation of C from Event-B. In Workshop on Integration
of Model-based Formal Methods and Tools, February 2009.

