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Abstract

We develop a new class of prior distributions for Bayesian comparison of nested
models, which we call intrinsic moment priors, by combining the well-established
notion of intrinsic prior with the recently introduced idea of non-local priors, and
in particular of moment priors. Specifically, we aim at testing the equality of two
proportions, based on independent samples, and thus focus on discrete data models.
Given two nested models, each equipped with a default prior, we first construct a
moment prior under the larger model. In this way, the asymptotic learning behavior
of the Bayes factor is strengthened, relative to currently used local priors, when the
smaller model holds; remarkably, this effect is already apparent for moderate sample
sizes. On the other hand, the asymptotic learning behavior of the Bayes factor when
the larger model holds is unchanged. However, without appropriate tuning, a moment
prior does not provide enough evidence for the larger model when the sample size is
small and the data only moderately support the smaller one. For this reason, we
apply to the moment prior an intrinsic prior procedure, which amounts to pulling
the moment prior towards the subspace specified by the smaller model; we provide
general guidelines for determining the training sample size necessary to implement
this step. Thus, by joining the virtues of moment and intrinsic priors, we obtain
an enhanced objective Bayesian testing procedure: i) our evidence for small samples
is broadly comparable to that given by current objective methods; ii) we achieve a
superior learning performance as the sample size increases (when the smaller model
holds). We first illustrate our methodology in a running Bernoulli example, where we
test a sharp null hypothesis, then we implement our procedure to test the equality
of two proportions. A detailed analysis of the properties of our method, including a
comparison with standard intrinsic priors, is presented together with an application
to a collection of real-world 2 x 2 tables involving a sensitivity analysis and a cross-

validation study.

Keywords: Bayes factor; intrinsic prior; model choice; moment prior; non-local prior;
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1 Introduction

The analysis of two independent binomial populations has a long history, dating back
to the beginning of the twentieth century; for an account see Howard (1998). If ¢,
and Ay denote the two population proportions, a typical hypothesis of interest is that
of equality, #; = 65, or a one sided hypothesis, such as #; < 6,. For the latter
case Howard (1998) provides a Bayesian reinterpretation of frequentist tests as well
as a proposal for a fully Bayesian analysis based on a prior distribution embodying
dependence between #; and 0,.

In this paper we are concerned with testing the equality of the two proportions.
The problem is equivalent to testing independence in a 2 x 2 contingency table whose
row margins are fixed by design. Casella and Moreno (2009) recently provided a
detailed objective Bayesian analysis of the latter problem, also discussing alternative
sampling procedures, based on the notion of intrinsic prior.

Intrinsic priors are now recognized as a useful tool for Bayesian hypothesis testing
and more generally for model comparison, especially in an objective Bayesian setting.
Numerous applications ranging from variable selection (Casella and Moreno, 2006;
Casella et al., 2009) to change point problems (Moreno et al., 2005; Girén et al.,
2007) to contingency tables (Casella and Moreno, 2005; Consonni and La Rocca,
2008; Casella and Moreno, 2009) testify their potential.

Given two parametric models, My (the null model) nested in M; (the alternative
model), each equipped with its own default prior distribution, p?(:) and pP(-), the
intrinsic (prior) approach suitably modifies pP(-) by “peaking” it around the subspace
specified by M. In this way, M; becomes more competitive against M, precisely
when the comparison is most delicate, namely for data generating mechanisms close
to the null, and this displacement of prior mass effectively averts the Jeffreys-Lindley-
Bartlett paradox; see Kass and Raftery (1995, sect. 5.1) and Robert (2001, sect. 5.2.5).

The idea of “centering” the prior around the null, under the larger model, can be
traced back at least to Jeffreys and can also be performed outside the intrinsic prior
setup. A notable example in this sense is the hierarchical Bayesian framework, as

developed by Albert and Gupta (1982) and Albert (1990).



Virtually all priors under M; currently used for Bayesian hypothesis testing or
model comparison belong to the class of local priors, which do not vanish over the
subspace specified by the null. For instance, in the problem of testing the equality
of two proportions, the default prior will be a product of uniform priors (one for ¢,
and one for 6y), or possibly a product of two Jeffreys priors. Clearly, these priors
are bounded away from zero on the line 6; = 5. The intrinsic prior for this problem
shares a similar feature; see Casella and Moreno (2009, sect. 3.2).

A serious deficiency of local priors relates to their asymptotic learning rate. Specif-
ically, the Bayes factor in favor of M, when M, holds, diverges in probability ex-
ponentially fast, as the sample size grows, whereas it converges to zero in probability
at polynomial rate only, when M holds. Although this fact is well known, it is
less known that this imbalance is already quite dramatic for moderate sample sizes.
However, this feature can be successfully corrected, as suggested in recent work of
Johnson and Rossell (2010), where these authors advocate the use of non-local priors,
and in particular of moment priors.

We find the idea of non-local priors appealing. At the same time, we concur that
the rationale underlying the intrinsic approach for tuning a default prior is useful.
We therefore combine non-local and intrinsic priors into a unified new class of priors
for testing nested models. These priors exhibit finite sample properties of the Bayes
factor comparable to those of the intrinsic approach, but they outperform current
local prior approaches (including the intrinsic one) in terms of asymptotic learning
behavior (when the null model holds). In this sense, we obtain an enhanced Bayesian
testing procedure.

The rest of the paper is organized as follows. Section 2 provides background
material on intrinsic and moment priors, with special reference to the testing problem
under consideration. Sections 3 and 4 represent the core of the paper: the former
presents a new class of non-local priors, which we name intrinsic moment priors, while
the latter implements the proposed methodology to obtain an enhanced objective
Bayesian test for the equality of two proportions. Section 5 applies our new test to a
collection of randomized binary trials of a new surgical treatment for stomach ulcers,
also discussed from a meta-analysis perspective by Efron (1996). Section 6 offers

some concluding remarks and investigates a few issues worth of further consideration.



2 Priors for the comparison of nested models

We review in this section two methodologies for constructing priors when two nested
models are compared: intrinsic priors and moment priors.

Consider two sampling models for the same discrete observables:

Mo = {fo(-[€), & € 2o} vs My ={fi(-|&1), & € Ei}, (1)

where M is nested in My, i.e., for all & € Zo, fo(-[&) = fi(-|&1), for some & € ¢ C
=1. Let po(&o) and p1 (&) be the priors under the two models, which we assume proper,
and denote the data by y = (y1,...,%,); occasionally we will write ™ to stress the

dependence on n. The Bayes factor in favor of M; (equivalently against My) is

BFy(y) = my) - where m;(y) = ffj(y|§j)pj(§j)d§j, j = 0,1. We assume equal

mo(y)’

prior probabilities for My and M, so that the posterior probability of M; can be
immediately recovered from BFyo(y) as P(M,|y) = (14+BFy (y)) ™", where BFy; (y) =
1/BFio(y).

2.1 Intrinsic priors

Intrinsic priors were introduced in objective hypothesis testing to convert improper
priors into proper ones (Berger and Pericchi, 1996; Moreno, 1997; Moreno et al., 1998).
In this way, Bayes factors, which cannot be meaningfully evaluated using improper
priors, admit a sensible interpretation. However, this view of the intrinsic approach
is unduly restrictive and actually hinders its inherent nature, as it is apparent for
discrete data models: in this case the default priors are usually proper, but the
intrinsic approach may still be considered useful.

The actual implication of intrinsic priors is to “peak” the prior under the alterna-
tive around the region specified by the null, a suggestion dating back to Jeffreys; see
also Morris (1987). This is related to the Jeffreys-Lindley-Bartlett paradox, because
the idea is to counterbalance the excessive diffuseness of many standard default priors
under the alternative. Casella and Moreno (2005), Consonni and La Rocca (2008)
and Casella and Moreno (2009) reiterate this concept for discrete data models.

Let pP (&) and pP (&) be two default priors under My and My, respectively; for

simplicity we assume them to be proper, as this will typically be the case with discrete
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data models. While we may in general retain p5 (&), it is often the case that pP (&)
be inappropriate because it is relatively too diffuse, thus unduly penalizing M; when
the data only mildly support M. Let © = (x1,...,2;) be a vector of observables,
whose dimensionality ¢ we call the training sample size. The intrinsic prior on &; with

training sample size t is given by
pi&lt) =) pP(&lr)md (x), (2)

where pP (& |r) is the posterior density of & under M, given x, and m{(z) =
| fo(@|&)pE (&0)dEo is the marginal density of z under My; it is natural to let ¢t = 0
return the default prior.

We remark that (2) is not the original definition of intrinsic prior, but rather
its formulation as an expected posterior prior (Perez and Berger, 2002). We find
formula (2) especially appealing, because it makes clear that an intrinsic prior is a
mixture of fictitious posteriors. Notice that, as the training sample size t increases,
the intrinsic prior tends to “peak” on the subspace Zy. The choice of ¢ is left to the
user, and it should be noticed that the standard notion of minimal training sample
size is vacuous in the context of discrete observables, because the default priors are

already proper by assumption.

Example 2.1 (Bernoulli) Denoting & by 6 and & by 6y, consider the testing prob-
lem My : fo(y|6o) = Bin(y|n, ) versus My : fi(y|#) = Bin(y|n,0), where 0y is a
fixed value, while 6 varies in (0,1). Let the default prior be pP(0]b) = Beta(6]b,b)
for some b > 0. We take a symmetric prior because standard default objective priors

satisfy this property. The intrinsic prior in this case is given by

t
pi(0]b,t) = Beta(|b + x,b + t — x)Bin(z|n, 6). (3)

=0

The solid curves in Figure 1(a), i.e., those specified by h = 0, illustrate the behavior
of the intrinsic priors with training sample size t = 0 (default prior), t =1 and t = 8,
when Oy = 0.25 and b =1 (uniform default prior). The dashed curves (h = 1) should
be discarded for the time being. The effect of the intrinsic procedure is very clear:
already with t = 1 the density has become a straight line with negative slope, so as

to start privileging low values of 6, such as 8y = 0.25, and with a training sample
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size t = 8 the effect is much more dramatic, with the density now having a mode
somewhere around 0.25 and then declining quickly. Figure 1(b) shows (again focus on
solid lines only), for n = 12 and different values of the observed count y, the posterior
probability of My as a function of the observed count y (evidence curve): switching
from t = 0 (default prior) to t = 1 (intrinsic prior with unit training sample), the
evidence in favor of the alternative model increases, especially in the region around

y = 3, while correctly remaining well below the 0.5-line.

2.2 Moment Priors

Consider the testing problem (1). We say that the smaller model holds if the sampling
distribution of the data belongs to M; we say that the larger model holds if it belongs
to M but not to Mj. The following result shows an imbalance in the learning rate

of the Bayes factor for commonly used priors.

Result 2.1 In the testing problem (1) assume that pi(&1) is continuous and strictly
positive for all&; € Z1, and let the data y™ = (yi,...,y,) arise under i.i.d. sampling.
If My holds, then BFo(y™) = O,(n=(41=40)/2) " qs n — oo, where d; is the dimension
of 25, 7= 1,2, (dy > dy); if My holds, then BFy (y™) = e~ Ent0o(n'?) gy s o0,

for some K > 0.

We refer to Dawid (1999) for a proof of this result. It should be noted that a crucial
role is played by the fact that p; (&) > 0 for all & € =g, so that the only way to speed
up the decrease of BFyo(y™) when M, holds is to force the prior density under M,
to vanish on =,. This is indeed the approach taken by Johnson and Rossell (2010)
when defining their non-local priors. Their motivation, however, is also conceptual,
as it relates to an idea of separation between models.

Let g(£1) be a continuous function vanishing on Zy. From a given baseline (local)

prior p;(&;), define a new prior as

pr(gl) oc g(&1)p1(&r), (4)

which we name a generalized moment prior. For instance, if =y C R and 2y = Z =

{&}, with & a fixed value, we may take g(&) = (& — &)?", where h is a positive

5



(6lb=1.h,t)

M

1

p

P(My]y,b=1,h, 1)

0.2 0.4 0.6 0.8 1.0

0.0

(a) Prior Densities

(b) Small Sample Evidence

g=—2=0 o o o

.

‘P

g Y-

= 0,=0.25 VAR

' g/ e
o\ . P
\ 4 ’
V4 = I’
\ R )/ n=12

.V ’
y u]

\\ o D\ — /// . - h=0’t=1
CogTTeE R
" n.._'-g, . -0 h=1,t=8

o \D\ D/’ "D.' -3 h=2,t=0
SRR = N = B = EL 8- h=2t=13

I I I I I I I
0 2 4 6 8 10 12
y

Figure 1: Prior densities and small sample evidence for the Bernoulli example.



integer (h = 0 returns the baseline prior); this defines the moment prior introduced
by Johnson and Rossell (2010) for testing a sharp hypothesis on a scalar parameter.
It can be seen that in this case BFio(y™) = O,(n~/*7") when M, holds, while we
still have BFy; (y™) = e En+t0p("*) when M holds.

Example 2.2 (Bernoulli ctd.) For a given conjugate baseline prior Beta(f|ay, as)

define the corresponding conjugate moment prior of order h as

(6 — )"

oM
— B
pi (Blar,az h) K(ar,as,h,600) talfla, o), ®)
where
03’1 2 o o
K(ai,as,h,0)) = ——— ) (=1)Y6,?B(a, + j,as), 6
(1 2 0) B(al,ag);<3)( ) 0 (1 J 2) ()

and B(ay,as) is the Beta function with parameters (ai,as2). In particular, if h = 1
and ay = as = b, with b a default choice (such as b =1 or b = 1/2), we obtain the
default moment prior pPM (0|b, h). The thin dashed curve in Figure 1(a), i.e., the one
specified by h = 1 and t = 0, represents the default moment prior with b = 1 when
0o = 0.25. The other two dashed curves (h = 1) with t = 1 (intermediate) and t = 8
(thick) should be ignored for the time being. The behavior of pPM(0lb = 1,h = 1) is
the following: it is zero at the null value 8y = 0.25, as required, it increases rapidly
as 0 goes to 1, while it goes up more gently as 0 goes to zero. It is clear that this
moment prior will not be suitable for testing purposes, because it puts too much mass
away from Oy. This is confirmed by the thin dashed line in Figure 1(b): the null model
1s unduly favored. The thin dotted line in the same figure shows that things get even
worse for h = 2.

The next section takes up the above issue and provides an effective solution.

3 Intrinsic Moment Priors

From Example 2.2 it is clear that the default moment prior does not accumulate
enough mass around the null value (more generally around the subspace specified by
the null model). This suggests applying the intrinsic procedure to the default moment
prior, thus obtaining a new class of priors for testing nested hypotheses, which we

name intrinsic moment priors.



Our strategy for enhanced objective Bayesian testing of two nested models thus
envisages the following steps: i) start with a default prior under each of the two
models; ii) construct the default moment prior of order A under the larger model; iii)
for a given training sample size ¢, generate the corresponding intrinsic prior, which
produces the intrinsic moment prior: this is the prior we recommend to compute the
Bayes factor. Step ii) improves the learning behavior under the null, while step iii)
makes sure that the testing procedure exhibits a good finite sample behavior in terms

of the evidence curve .

Example 3.1 (Bernoulli ctd.) Recall that the intrinsic prior is an average of fic-
titious posterior distributions. Since in our case we start from the default moment
prior (5) with a; = ay = b, the intrinsic moment prior for 0 with training sample

size t will be given by

(0 — 6p)*" )
B —12)B
G\b h,t) E K 02Ttk 00) eta(0)b + x,b+ t — z)Bin(x|t,6y), (7)

where K (ay, as, h, 0) is defined in (6), and we exploited conjugacy of p{™ (0|ay, as, h).
Notice that (7) describes a family of prior distributions, including standard intrinsic
priors (h = 0) as well as the default prior (h = 0,t = 0) as special cases. In order
to compute the Bayes factor BFM (y|b, h,t) = %, where miM (y|b, h,t) =
I fi(y|0)pi™ (0]b, b, t)d6 and fo(ylfo) = Bin(y|n, 6y), we exploit the fact that the Bayes
factor using an intrinsic prior is a weighted average of conditional Bayes factors based

on the starting prior; see for ezample Consonni and La Rocca (2008, Proposition 3.4).

Thus, we find

BFM (y|b, h,t) ZBFCM ylb+ 2, b+t —x, h)Bin(z|t, 6), (8)

where BEGM (ylay, az, h) = %, and we then compute m§{™ (ylay, az, h) =

[ Fi(yl)p§™ (0)ay, as, h)d6 by means of the useful relationship

K(a'l +y7a2+n_y7h790)
K(ala a2, ha 00)

m1CM(?/|a1, az, h) = mlc(y|a17a2)7 9)

where mY (ylar, a2) = [ f1(y|0)p§ (blar, az)dd = (7 )W is the usual Beta-

Binomial marginal density using the conjugate prior p$(0lai,as) = Beta(f|ay, as).



Notice that equation (9) reveals a structural relationship between the marginal data
distribution based on a conjugate moment prior and that based on its conjugate base-
line prior; its scope is in fact general. A consequence of (9) is that the Bayes factor
based on a conjugate moment prior can be readily computed from the usual Bayes

factor based on a conjugate prior:

K(a1+y7a2+n_yahaeo)

BFS)M(y|a17a27h) - K(a/l s h 90)

BFlco(y|a1,a2)7 (10)

m{ (ylay,a2)

fo(ylbo)
Figure 1(a) shows (letting b = 1) the effect of applying the intrinsic procedure to

where BFS(ylay, az) =

the default moment prior of order h = 1 (dashed curves): ast grows, the overall shape
of the prior density changes considerably, because more and more probability mass in
the extremes is displaced towards 0y, giving rise to two modes, while the non-local
nature of the prior is preserved, because the density remains zero at 6y = 0.25. In
this way, as shown in Figure 1(b), the evidence against the null for small samples
is brought back to more reasonable values (with respect to the default moment prior).
More specifically, Figure 1(b) shows that the intrinsic moment prior with h = 1 and
t =8 (a choice explained later in subsection 3.1) performs comparably to the uniform
prior (and to the standard intrinsic prior with unit training sample) over a broad
range of values for the observed count y; this intrinsic moment prior results in a
smaller amount of evidence for values of y close to the null, which is to be expected
for continuity, but induces a steeper evidence gradient as y moves away from the null,
which makes it appealing.

The learning behavior of the intrinsic moment prior is illustrated in Figure 2(a),
which reports the average posterior probability of the null model (computed on 1000
simulated data sets of increasing size) letting first 0 = 0.25 and then 0 = 0.4 (an
instance of the alternative model). It is apparent from this plot that a non-local prior
(h > 0) is needed, if strong evidence in favor of the null has “ever” to be achieved, but
also that the intrinsic procedure is crucial to calibrate small sample evidence. These
results are striking, and they signal that our method actually represents a marked im-
provement over current methods. Notice that there is an associated cost: the moment
prior trades off speed in learning the alternative model for speed in learning the null

model; the intrinsic procedure is remarkably effective in controlling this trade off.
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Figure 2: Learning behavior and minimal data set evidence for the Bernoulli example.
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Next we discuss the choice of the hyperparameters h and ¢t. The value of h
determines the asymptotic behavior of BFLM (y™), as n — oo. The choice h = 1 is
enough to change the convergence rate to M, from sub-linear to super-linear (when
M holds). Even though the convergence rate to M; (when M; holds) is unchanged,
we have seen that increasing h induces a delay in learning M;. Thus, we recommend
letting h = 1 by default, and trying h = 2 for sensitivity purposes. We discuss the

choice of t in a separate subsection.

3.1 Choosing the training sample size

Recall that the goal of the intrinsic procedure is to pull mass toward the null sub-
space in the prior under M. There is clearly a tension here between this aim and
that of leaving enough mass in other areas of the parameter space, not to unduly
discredit M. This is precisely the issue we face when choosing t. We now provide
some guidelines for the Bernoulli problem, with a view to more general situations.

Fix 0y = 1/2; this represents the worst scenario in terms of the information content
of a single observation. In this case, the minimal sample size capable of providing
evidence both in favor of the null and of the larger model is n = 2. Then, the data
values y = 0 and y = 2 are in favor of My, while the value y = 1 supports the null
model. Consider the weight of evidence against the null using an intrinsic moment
prior, i.e., WOE,(t) = log BF{M(y|b, h,t), where we focus on the dependence on ¢
for a given choice of b, h (and given data y). Clearly, for symmetry, WOE(t) =
WOEs(t).

Broadly speaking, the intrinsic approach rests on the following considerations:
i) WOE,(t = 0) is too small; ii) WOEy(t = 0) and WOE,(t = 0) can be safely
reduced without much harm. Point i) stems from the consideration that, when the
data support the null model (y = 1 in our setup), and the prior is the default one
(t = 0), the evidence in favor of M; is too low for small sample sizes, because the
default prior is too diffuse. On the other hand, as already remarked elsewhere, when
the data clearly do not support Mg there will be enough evidence in favor of M;
for all reasonable (not overly diffuse) priors. Now, as ¢ increases, so does WOFE(t),

while WOE(t) and WOFE,(t) decrease, and point ii) comes into play.
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As t diverges, the prior under M, will progressively concentrate around the region
defined by M, so that the marginal data distributions under the two models will
eventually coincide, and WOE,(t) will converge to zero, whatever the data y. What
is then a natural minimal threshold for ¢ to consider? To answer this question, define
the total weight of evidence TWOE(t) = > WOE,(t) and consider the weight of
evidence as a sort of currency: we will be certainly willing to trade off a decrease
in WOE(t) and WOE,(t) for an increase in WOFE(t) as long as we get more than
we give, that is, as long as we increase TWOUE(t). Define t* = argmax; TWOE(t).
The value t* represents the minimal training sample size we should take into con-
sideration when implementing the intrinsic procedure. Notice that this definition of
minimal training sample size is not the usual one, which is adopted in the context of
intrinsic priors or expected posterior priors (i.e., the smallest sample size such that
the posterior is proper for all data outcomes). Also notice that, in practice, we need
to check that t* be well-defined. Then, we will probably be willing to let ¢ vary
over{t*,... t* + n} for a sensitivity analysis.

We remark that the above strategy to find ¢* in an intrinsic procedure is general,
at least for discrete data models. In particular, the above strategy can be used to
determine the minimal training sample size for the standard intrinsic prior (h = 0).
Figure 2(b) plots TWOE(t) for h = 0, 1,2, assuming a uniform default prior (b = 1).
Interestingly, when h = 0 (standard intrinsic prior), we find ¢* € {0, 1}. This seeming
indeterminacy can be explained by noticing that, when 6y = 0.5, the intrinsic prior
with ¢ = 1 is the uniform prior, i.e., it is the same as the default prior. It follows
that, according to our criterion, when the starting prior is uniform, we could even
dispense with the intrinsic procedure. On the other hand, when the starting prior is
the default moment prior of order h = 1, it turns out that ¢t* = 8, while for h = 2
we obtain ¢* = 13, so that with non-local moment priors the intrinsic procedure is
necessary: this makes sense, because the starting prior puts mass at the endpoints of

the parameter space in a rather extreme way.
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4 Testing the equality of two proportions

We consider as larger model the product of two binomial models

M s fi(yr, Y201, 62) = Bin(y1|n1,01)Bin(y2|n1,02), (11)

where n; and n, are fixed sample sizes. The null model assumes 6; = 6, = 0, so that

Mo : fo(y1,4210) = Bin(yi|ni, 0)Bin(ya|ny, 0). (12)

A default prior for  under M is pP(0|b) = Beta(6|b,b), where b = 1 (or b = 1/2),
while under M, a default prior for (6y,6) is pP (61, 62)b) = Beta (6, |b, b)Beta(6s|b, b);
in principle we could use different values of b for the two models, but we feel that
little is lost by keeping our analysis simpler. For later purposes it is expedient to
set the notation for a more general conjugate prior under M;, which we write as
p{ (601, 02|a) = Beta(6;]ai1, ar2)Beta(fz|as, as), where a = [[a;i]k=1.2]j=12 is a matrix

of strictly positive real numbers. Then, we consider the conjugate moment prior

9 _ (9 2h
p?M(Hl, 02|6L, h) = %Beta(@l |CL11, alg)Beta(02|a21, agg), (13)
where .
2h B(ai + j, a12) B(ag + 2h — 7, as)
K(a,h) = ) (=1)/ . 14
( ) Z (] )( ) B(an,au) B(a21,a22) ( )

7=0
As usual b = 0 returns p{(6y,6z|a). The default moment prior pP* (6, 0,]b, h) is
obtained by letting a1 = a2 = a1 = ass = 0.

Consider now the intrinsic approach applied to pP*. A natural requirement for
an objective analysis is that the resulting joint prior for (6, 6s) be symmetric. It can
be checked that, for the purely intrinsic case (h = 0), this happens even if the training
sample sizes in the two groups, t; and o, are different (resulting from the fact that
we use a single value of b for p’” and pP*). On the other hand, for the non-local

case (h > 0), symmetry is only guaranteed if t; = t5 = ¢ (the balanced case). We

thus define the intrinsic moment prior of order h with training sample size t as

t t
p{M(91,92|b7 h,t) = Z ZP?M(91,92|$1,$27197 h)m(?(xl,x2|b), (15)

x1=0 x2=0

where

(16)

X1 2

t t\ B(b b+ 2t — —
mé)(l‘hxﬂb):( >( > (+:E1—|—x2, - o x2>

B(b,b) ’
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and h = 0 returns the standard intrinsic prior p!(6;,0,|b,t) with balanced training

samples of size t. The default moment posterior in (15) can be computed as
plDM(91792|x17x2ab7 h) :pch<01,92|(I;,h), (17)

where (a);, =b+ 1, (a});y =b+t—x1, (a})y = b+ 2, and (a})yy = b+t — xo.
Recall that the Bayes factor against M using an intrinsic moment prior under
M is given by

t

t
BFfé‘J(yl,yﬂb, hvt) - Z Z BFI%M(yhyﬂb, azah)moD(Ilaxﬂb)? (18)

x1=0 z2=0
where BFGM (y1,12|b, a%, h) is the Bayes factor based on the right hand side of (17).

Similarly to the Bernoulli case, we can write

K(a%, h)

Yy

BEGM (y1, yalb,a, h) = m

BFg)(ylay2|bv a)? (19)

where (%)11 = an + Y1, (a’gj)IZ = G12 + N1 — Y1, (%)21 = az1 + Yo, and (%)22 =

(99 + no — 9. A standard computation then gives

c (1) [ B(ay +y1, a12 +ny — y1) Blag + y2, g2 + 1y — 1)
my (y17y2|a') -

hn Y2 Blayi, a12)B(asgy, ass) ’
and it follows that the Bayes factor against Mg, using a conjugate moment prior

under M, can be written as

B(b,b)B(a11 + y1, a12 + n1 — y1)B(ag1 + Y2, aza + na — y2)

BEG(y1,yalb, a) =
10(y1, v210:0) B(ai1, a12) B(agy, az) B(b+ y1 + y2, b+ 1y +ng — y1 — o)

. (20)

Using (20) in (19) and plugging the latter into (18) provides an explicit expression
for BFIM (y1,yalb, h, t).

4.1 Choice of hyperparameters

The intrinsic moment prior pi™ (6, 65|b, h,t) depends on three hyperparameters. As in
the Bernoulli case, we recommend choosing b = 1, which provides a uniform marginal
distribution of y; +y, under M, and of (y1, y2) under My, and h = 1, which is enough
to change the asymptotic behavior of the Bayes factor under the null from sub-linear
to super-linear. As for the choice of ¢, we follow the general procedure outlined in the

Bernoulli example, with suitable specific modifications to deal with the present case.
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Clearly ny = ny = 1 represent the minimal sample sizes for the testing problem
at hand. In this case, of the four possible data outcomes, two are supportive for M,
namely (y; = 0,y = 0) and (y; = 1,92 = 1), and two, namely (y; = 0,y = 1) and
(y1 = 1,y2 = 0), are supportive for M;. We repeat the argument in subsection 3.1 and
take t* = argmax; TWOE(t) as the minimal training sample size, where TWOE(t) =
>, WOE,(t) and WOE,(t) = log BEIM (31 ys|b, b, t).

Figure 3(a) plots TWOE(t) for h = 0,1,2. As for the Bernoulli case, t* is well-
defined and when h = 0 (standard intrinsic prior) we get t* = 0. Hence, we would
recommend a sensitivity analysis with ¢ € {0, min{ni,ns}}, say, in line with the
analysis carried out by Casella and Moreno (2009, Table 2) on a collection of 2 x 2
tables, which we also examine later in this paper (section 5). On the other hand,
when the starting prior is the default moment prior with h = 1 we find t* = 6, while
for h = 2 we get t* = 11. Thus, as for the Bernoulli case, it turns out that starting
with a non-local moment prior the intrinsic approach is needed. In the following
subsection we highlight some features of the intrinsic moment priors specified by the

above values of h and ¢t = t* (including ~ = 0 and t* = 0).

4.2 Characteristics of intrinsic moment priors

Figure 4 presents a collection of nine priors for (y,6;) under M;, each labelled
with its corresponding correlation coefficient r. Although the absolute values of r
are of dubious utility in describing these distributions, because of their shape, the
comparison of these values enables us to highlight the roles played by h and ¢: as h
grows the prior mass is displaced from areas around the line #; = 5 to the corners
(0, =0,02 =1) and (0, = 1,6, = 0), thus inducing negative correlation; on the other
hand, as t grows the prior mass is pulled back towards either side of the line 6; = 65,
and positive correlation is induced. The priors in the first row are local, while those in
the second and third row are non-local. The three distributions on the main diagonal
represent, for the three valutes of h, our suggested priors based on the criterion for
the choice of ¢ described in subsection 4.1. Notice that » ~ 0 for all three suggested

priors, so that the chosen value of t can be seen as “compensating” for h.
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Figure 3: Characteristics of intrinsic moment priors for comparing two proportions.
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Some further insight into the structure of the priors on the main diagonal of
Figure 4 can be gleaned by looking at Figure 3(b), which reports their marginal
distributions (identical for #; and 65). All three densities are symmetric around 0.5,
but the two intrinsic moment priors with A > 0 tend to moderately favor the outer
values of the interval (0,1).

Figure 3(c) reports the average posterior probability of the null model (computed
on 1000 simulated data sets of increasing size) letting first §; = 65 = 0.25 and then
6, = 0.25,60, = 0.4 (an instance of the alternative model). The learning behavior is
quite different under the three priors. As for the Bernoulli example, when the data
are generated under the null model a much quicker correct response is provided by
the non-local intrinsic moment priors: for sample sizes up to 500 the average posterior
probability of M under the default prior does not cross the 0.9 threshold, whereas
under the non-local intrinsic moment priors it reaches the 95% threshold by the time
300 observations have been collected. On the other hand, switching from h = 0
to h > 0, the learning behavior under the alternative model is compromised in the
short run, but not in the long run: there is an initial increase in the average posterior
probability of the null model that takes about 100 observations to be neutralized, then
the delay in learning stabilizes and by the time 500 observations have been collected
strong evidence is achieved. These results suggest that the trade off in favor of M;
can be pushed further, when the intrinsic procedure is applied, and this provides
motivation for a sensitivity analysis with ¢t > t*.

Figure 3(d) illustrates the small sample behaviour of intrinsic moment priors, by
reporting the contour lines in the (yi, y2)-plane (n; = ny = 12) for selected thresholds
of the posterior probability of M;. One can see, visually, a good degree of agreement
among all three priors. There is also a clear indication that the higher thresholds,
such as 90% and 95%, are reached for pairs (yi,%2) closer to the y; = o line under
the non-local intrinsic moment priors than under the default prior. Similarly to the
Bernoulli example, this is due to the steeper gradient of the evidence surface as the

data move away from the null supporting values.
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5 Application

In this section we analyze data from 41 randomized trials of a new surgical treatment
for stomach ulcers. For each trial the number of occurrences and nonoccurrences
under Treatment (the new surgery, group 1) and Control (an older surgery, group 2)
are reported; see Efron (1996, Table 1). Occurrence here refers to an adverse event:
recurrent bleeding. Efron (1996) analyzed these data with the aim of performing a
meta-analysis, using empirical Bayes methods. On the other hand our objective is
to establish whether the probability of occurrence is the same under Treatment and
Control in each individual table; for a similar analysis see Casella and Moreno (2009).

We analyze the data using the intrinsic moment priors of section 4, letting b = 1
and comparing the results given by different choices of A and t. Specifically, we
perform a sensitivity analysis with respect to the actual choice of t, and a cross-

validation study of the predictive performance achieved by different choices of h.

5.1 Sensitivity analysis

We let ¢ vary from t* to ¢* + min {ns,ny} both for h = 0 (standard local prior) and
h =1 (recommended non-local prior), where t* = 0 for h = 0 and t* = 6 for h = 1
(minimal training sample size as discussed in subsection 4.1), while n; and ng are
the trial sample sizes for Treatment and Control. For each of the above pairs (h,t),
and for all 41 tables in the dataset, we evaluate the posterior probability of the null
model. It turns out that the latter is quite insensitive to any further increase in ¢
(beyond t*+min {ny,ns}). We report our findings in Figure 5(a), where the tables are
arranged (for a better appreciation of our results) from left to right in increasing order
of ]% — 372! (absolute difference in observed proportions): this explains the mostly
declining pattern of the posterior probabilities of the null model. The range of these
probabilities is depicted as a vertical segment, separately for the standard intrinsic
and the intrinsic moment prior, and the values for t = t* and ¢t = t* + min{ny, no}
are marked with circles and triangles, respectively, so that in practice (thanks to a
monotonic behavior) we can see an arrow describing the overall change in probability.
One can identify three sets of tables: left-hand (up to table 38), center (tables from

20 to 7) and right-hand (remaining tables). Some specific comments follow below.
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Figure 5: Results of the sensitivity analysis and cross-validation study: each number

on the horizontal axis identifies a table.
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Consider first the left-hand tables. Except for table 18 (and possibly table 38)
the posterior probability of M ranges above the value 0.5, which can be regarded
as a conventional decision threshold for model choice under a 0-1 loss function. The
non-local intrinsic moment prior (black arrow) produces values for the posterior prob-
ability of My higher than under the standard intrinsic prior (white arrow): this is
only to be expected, because of the local versus non-local nature of these priors. All
arrows point downwards: this is the effect of the intrinsic procedure; when the data
support the null model, the action of pulling the prior towards the null subspace
makes the alternative more competitive and takes evidence away from M. Save for
table 18 (and possibly 38) a robust conclusion can be reached in favor of the equality
of proportions between the two groups. Next consider the tables in the center. Here
the lengths of the intervals are shorter than before, with the majority of tables ex-
hibiting a posterior probability of the null below the 0.5 threshold, and the remaining
ones hovering over it. Again all arrows point downwards, indicating that the intrinsic
procedure is working in favor of the alternative, although to a much lesser extent
than for the left-hand tables. This makes sense because M, is less supported in this
group of tables, and hence the amount of evidence that can be transferred to M; is
limited. The conclusion against the equality of the two proportions is robust for the
majority of the tables in this group, but the analysis is inconclusive for tables 32, 26
and 33. Finally, the pattern of the right-hand tables indicates a low support for the
null, with the possible exception of table 6. Most of the arrows point upwards, but
all ranges are very short and on some occasions negligible: this is the action of the

intrinsic procedure in favor of M, because the data do not support the null model.

5.2 Cross-validation study

We now compare the predictive performance of the intrinsic moment priors with
h =0, h=1and h = 2, taking for granted that ¢ should be equal to t* (for any given
value of h). To this aim, we assign a logarithmic score to each probability forecast p,
say, of an event E: the score is log(p), if E occurs, and log(1—p), if E occurs; this is a
proper scoring rule (Bernardo and Smith, 1994, sect. 2.7.2). Notice that each score is

negative, the maximum value it can achieve is zero, and higher scores indicate a better
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prediction. Suppose we want to predict an occurrence in group 1. We exclude this
case from the dataset and compute é§” as the Bayesian model average of the posterior
means of f; under M; and 6 under M, based on counts (y; — 1,1 — 41, Y2, No — Ya);
similarly, for an occurrence in group 2, we compute éél) upon interchanging subscript
1 and 2 above. On the other hand, to predict a nonoccurrence in group 1, we let é%o)
be the Bayesian model average of the posterior means of #; under M; and 6 under
M, based on counts (y1,n1 — y1 — 1,y2,no — yo); as before, the computation of ééo)
to predict a nonoccurrence in group 2 requires interchanging subscript 1 and 2. In
the spirit of cross-validation, we repeat the analysis for each case and compute the
overall mean score

_ plog” + (n1 — y1) log(1 — 01”) + yo log 05" + (ns — o) log(1 — 6”)
nq + No .

S

(21)

Now let S, be the score associated to the intrinsic moment prior of order h,
h =0,1,2. Of particular interest are the differences S; — Sy and Sy — Sy. A positive
value for S; — Sy, say, means that the prior with h = 1 produces on average a better
forecasting system than the standard intrinsic prior (h = 0); notice that the latter
coincides with the default uniform prior because t* = 0. One can use a first order
expansion of the logarithmic score to gauge the difference more concretely: a positive
difference S; — Sy = d > 0 means that the prior with h = 1 generates “correctly-
oriented probability forecasts” (higher values for occurrences and lower values for
nonoccurrences) which are, on average, d x 100 % better than those produced by
the standard intrinsic prior. Here the average is taken over the combination of event
outcomes (occurrence/nonoccurrence) and groups (Treatment/Control) with weights
given by the observed sample frequencies. Since d > 0 is an average of score differences
over the four blocks of events, there is no guarantee of a uniform improvement in
prediction across all of them.

Figure 5(b) reports the results of our cross-validation study with the tables again
arranged from left to right in increasing order of absolute difference in observed pro-
portions. Essentially for all tables, but with the notable exception of the last four, the
non-local intrinsic moment priors perform better than the standard intrinsic prior,
with differences in score ranging from —0.1% to 3.8% (median improvement 0.5%)

when h = 1 and from 0.0% to 4.9% (median improvement 0.7%) when h = 2. On
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the other hand, for the last four tables, which are clearly against the null, the per-
formance of the non-local priors is much worse: this happens because the intrinsic
moment priors produce a greater degree of posterior shrinkage towards the null within
the alternative model. Differences in score range from —0.4% down to —8.6%, when
h = 1, and from —0.8% down to —13.1%, when h = 2. Notice that the intrinsic
moment prior predicts better with A = 2 than with A = 1 when the difference in score
is positive, but the reverse occurs for negative differences in score; in the latter case
the performance can be appreciably worse. On grounds of prudence, these results

seem to reinforce our recommendation in favor of the choice h = 1.

6 Discussion

In this paper we have presented a general methodology to construct objective Bayesian
tests for nested hypotheses in discrete data models. The only required input is a de-
fault (proper) parameter prior under each of the entertained models. The fundamental
tool in our approach is represented by a particular class of non-local priors, which
we name intrinsic moment priors. These priors combine the virtues of moment and
intrinsic priors to obtain enhanced objective tests, whose learning rate is strongly ac-
celerated, relative to current local prior methods, when the smaller model holds, while
remaining sufficiently fast for practical purposes, when the larger model holds. Small
sample evidence is also broadly comparable with that afforded by modern objective
methods, including those based on intrinsic priors.

A robustness analysis is naturally embedded in our approach, by letting the train-
ing sample size vary over a grid of values. The notion of minimal training sample
size is more delicate to handle in our case than in the case of the standard intrinsic
approach. To this aim, we devised the notion of total weight of evidence as a natural
currency to trade evidence stakes (on the log scale). While this notion worked fine
in our problems, its broad applicability still remains an open issue and should be
carefully evaluated in each specific case. In particular, it would be interesting to see
how far its scope could be extended beyond discrete data models.

The general methodological framework developed in this paper was tried out on a

substantive statistical issue, namely testing the equality of two independent propor-
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tions. This resulted in a novel objective Bayesian test for this problem, which leads
to sharper conclusions, even for moderately large samples, when the two population
proportions are actually equal. An extension of our methods to testing independence
in general contingency tables under a variety of sampling schemes, as in Casella and

Moreno (2009), would constitute a natural and useful development.
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