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‘Boreal’ created using the ‘Persistence of Vision’ Ray Tracer
by Norbert Kern (2004)

Making Sense of the Scene

e First we see, then we measure.

*“Nature is too green and badly lit”
(Frangois Boucher, 1703-1770)

e \What we see is not the
complete picture.
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Boucher, Madame de Pdfpadour,
Wallace Collection




Role of Field Spectroscopy in ‘scaling-up’

e Scaling-up from individual
elements of the scene to
areas the size of a pixel.

Principles of
Field Spectroscopy

Based on physical units:
radiance, irradiance and
reflectance.

Traceability of
measurements is
important - need to
standardise methods and
materials.

Proximate Field Spectroscopy
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BRDF vs ‘reflectance factor’ Measurement of reflectance factors

What we actually measure is the
‘Hemispherical-Conical Reflectance Factor’ (HCRF)

N e Reference panels need calibrating (spectral
and angular).
» Reference panels deteriorate over time.
e Reflectance factors are not an inherent

Reflected light from the property of the target.
surface contained within
a 3D cone

Incident light from the
Sun and the sky

. heed to pay more attention to the
spectral irradiance distribution.

Automated Tramway for
Spectral data collection

White tile Gravel Reference
(shiny) tile (matt)

Reflectance Factor: Clear vs. Overcast sky Reflectance Factor: Clear vs. Overcast sky
06 ot +
G sy
Clear Sky +
e Overcast Sky X Overcast Sky x
058
X X * * x * x X * X
054 P . ; x . b
X x - % X x x § £ 0086
£ 052 + El 2
;oo e P .
g ma‘ + : * * * N B oo
046
044 oo
Gravel Sand
0
04 11:15 11:30 11:45 12:00 1215 1230 12:45 13.00 13:15
Wi nm e po @is p® e 60 s
Vincent Odongo (2010) Vincent Odongo (2010)




Reflectance Factor: Clear vs. Overcast sky The importance of metadata
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NERC NCAVEO CHILBOLTON FIELD EXPERIMENT - JUNE 2008
ASD FIELD SPECTRA - Instrument N4406 - Brockley Field, Red Flag, 15 June 2006

e e Site information
v [ [ o e Reference panel
e Foreoptics etc. Development of

Field Spectroscopy
1970 - 2010

Sequence of
spectral data,
with times and
notes.

e Ancillary data
e Calib. history
e Sky codes

e Contact details

ISCO Field Spectroradiometer (1969) Portable Multiband Radiometers




Role of FS in Education and Training JPL Portable Field Reflectance Spectrometer (1975)

Madrid Workshop 3-4 Dec 2009
Madrid Workshop 3-4 Dec 2009

Fixed Geometry, Single Beam Instruments

Madrid Workshop 3-4 Dec 2009

Solutions to the problem of tall canopies

The problem of sub-visual clouds
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Vincent van Gogh, Wheatfield and Cypresses, Saint-Remy, 1889




. The problem of sub-visual clouds
Demonstration of SAMS

Spectral Analysis and Management
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e monitor or model the irradiance

System e Cause the amount of irradiance to
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http://sams.casil.ucdavis.edu/

Simulated dual-beam method Dual-beam HCRF and D:G ratio (parasol method)

‘Spectral irradiance (mWmnm')
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reduced error by 50% compared
with single-beam method.
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Milton & Rollin (2006)

Variable Geometry Instruments University of Zurich RSL dual-beam goniometer

The NPL
GRASS goniometer
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Estimating the BRDF
Measure the HCRF Bare soil (red wavelengths)

Use this in a mathematical

model to estimate the BRDF

'Il
Wm,

4 Z/
it
R s

”'t’ﬁr iy
i
il

Dense grass canopy

Co-ordinate system (Sun at 180°)

Role of Field Spectroscopy in Modelling
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Field Spectroscopy
in
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Field Spectroscopy in Earth Observation
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Field Spectroscopy and vegetation canopy dynamics
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TSC1 reﬂemance vs cosine of solar zenith angle at 650nm
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Conclusion

NCAVEO
Field Campaign

Roles for Field Spectroscopy in EO

o An effective tool for teaching the physical
principles of remote sensing.

e Scaling-up from individual elements of the
scene to areas the size of a pixel.
Using those pixel-scale data to:
e validate numerical models & perform
sensitivity anaysis
¢ validate sensor calibration post-launch
e correct remotely sensed data for the
effect of the atmosphere.

e Complementary to imaging spectrometry -
FS can give access to the dynamics of the
scene. Link with processes and change.




