HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

FACULTY OF LAW, ARTS AND SOCIAL
SCIENCES

SCHOOL OF EDUCATION

An Extended Case Study on the
Introductory Teaching of Programming

By

Michael William Jones

Thesis for the degree of
Doctor of Education

September 2010

Contents

Abstract i
Contents Vv
List of Figures Vil
List of Tables IX
Declaration of Authorship X
Acknowledgements Xi
Glossary Xii
List of Appendices XV

Michael Jones Indexes Page ii

University of Southampton
Abstract

Faculty of Law, Arts and Social Sciences

School of Education
Doctor of Education

An Extended Case Study on the

Introductory Teaching of Programming

By Michael William Jones

Learning to program is a complex and arduous process undertaken by thousands of
undergraduates in the UK each year. This study examined the progress of
transforming the pedagogical paradigm of an introductory programming unit from a
highly controlled, reductionist ‘cipher' orientation to one in which students have
more freedom to explore aspects of programming more creatively. To facilitate this,
certain programming concepts were introduced much earlier that had previously
been the case. This was supported by an analysis of the semiotics and symbology of
programming languages that showed that there was no intrinsic support for the
traditional sequence of introducing programming concepts. A second dimension to
the transformation involved doubling the number of assessments to emphasise the
benefits of continual engagement with programming. The pedagogical
transformation was to have been phased over four successive cohorts, although the
fourth phase had to be delayed due to a revalidation that amalgamated three

programmes into a framework.

The study was planned during the second phase of the transformation. To ensure that

the study did not disrupt the students’ learning experience the main focus of the

Michael Jones Indexes Page iii

research was on quantitative analyses of the work submitted by the students as part
of the coursework for the unit. This work included programming portfolios and tests.
In all, the work of more than 400 students completing more than a thousand
portfolios and a thousand tests were analysed, providing a holistic view of waypoints
in the learning process.

The analyses showed that the second and third cohorts responded positively to the
greater level of freedom, creating more sophisticated applications utilising a wider
range of programming constructs. In the latter part of the fourth cohort a more
traditional, constrained approach was used by another tutor that resulted in a

narrowing of the range of programming concepts developed.

The quantitative instruments were augmented by questionnaires used to gauge the
students' previous experience, and initial views. Analyses of these returns showed
that there appeared to be a limited relationship between a student's previous
experience and the likelihood that he or she would succeed in the unit and be eligible

to continue to the next stage of the undergraduate programme.

The original plan was for qualitative instruments to be introduced in the final two
cohorts. The re-organisation alluded to earlier restricted qualitative methods to short,

semi-structured interviews during the third cohort.

Within the study, certain aspects of the pedagogical transformation were considered
in more depth: the development and use of a code generator and criterion-referenced
assessment. These innovations were part of another dimension of the transformation
of the unit, emphasising comprehension and modification equally with construction.
This dimension reflects the changing nature of programming, incorporating existing
code wherever possible. The analyses showed that comprehension skills developed

to a greater extent within the unit compared with modification and construction.

The main conclusions of the study were that the pedagogical changes had a
beneficial effect on the learning of all students, including those with considerable

previous experience, and those who had never written a program before.

Michael Jones Indexes Page iv

Contents

1. The Introductory Programming LandSCapecccecvveeieeiiesieireie e esie e 1
1.1. Introduction: software in the community and economycccccevevervreene 1
1.2. Barriers t0 ProgramimMing.........cccooerererinienieienesiesiesiesesee e eseeneas 3
1.3. The Pedagogical LandSCape.........ccccvuerurerieiieiieeiesieesieesieseesieeeesee e esaesneeneas 4
1.4, The Research LandSCape........ccccvcvueiieiieiieiieieeie et esee sttt 8
1.5, The ReSEAICN ISSUEScoiiiiiiiiiiieceie e 11

2. The Inspiration for the RESEArChcccooviiiiiiiiie 14
2.1. The Semiotics Of Programmingccccceveiivereiiieieseseese e see e eee e 14
2.2, Problem SOIVING........coiiiiiece e 15
2.3, ITP RESBAICH ...ttt 17
2.4. Disciplinary Commons iN TTP ... 21
2.5. The Redesign of the (Introductory) Programming Unit...........ccccceeveivennnn. 25

3. RESEArch APPrOACH........coviiicice e 38
T8 N | 1 USRI 38
B0 I 0 T- T @0 o] ¢ PSSR 39
3.3, Research Methodologycccvvieiieiiiie e 40
3. IMIBASUIES ...ttt ettt e e e et e e n e b e e nnn e 72
3.5, The Evaluation FrameworK..........cccooiiiiiiiiienee s 75

A, THE RESUILS.....eiuiiieii ettt sneenreeneennes 77
4.1. Entry Routes and INitial SUIVEYS........ccoveieiiieieeie e 77
4.2, CONLINUALIONeiviiiiie ettt bbb nre s 81
4.3. The Student EXPEIIENCEcoiieierieiieeie ettt 85
O 11 1 (o] 1 1SS 88
4.5. Comparisons of Applications Size by Programmec..ccccecvevevievvenenne. 98
T =51 TR UPSPRPRRO 104
A7, ONIING TOSES.c.uiiitieieeie ettt sttt ettt e sree e 104
4.8. Did Students Work ContinUOUSIY? ..o 119
4.9, CONCIUSIONSoviiiiiieiiesie ittt 129

5. Pedagogical INNOVALIONScccueiieiiiie i 130
5.1. Assessing Concept Realisation Directly in Introductory Programming130

Michael Jones Indexes Page v

5.2. JCodeGen: Using Code Generation in Introductory Programming............ 135

5.3. The Simple Development ENVIrONMENt..........cccoeveeveeieiiese e 149
5.4. The Electronic Assessment System (EAS)cccocvvvevieeviiie i, 150
6. Reflections on the RESEAICNcooiiiiiiiiie s 153
6.1. The Pedagogical Objectives and Achievementsccccevevverriieieenenn, 153
6.2. The Research APProachccccceeeieeiesie i 157
6.3. Recommendations for the Design and Delivery of an Introductory
Programming UNIT..........oooooiiiiiieiiiesece et 159
6.4, THE FULUIE ..cveee e et 162
7. Learning to Program: the fULUIe..........cooeee i 163
7.1. The Effect on Programming Education...............ccccoeveeveiieireve e, 164
7.2. The Readiness of the Current APproachccccevvieniiie i, 165
7.3. The Role 0f RESEAICHcceeiieii et 166
T4, 1N CONCIUSION ...t 166

Michael Jones Indexes Page vi

Figures

Figure 1 — Sample Comparisons of Consecutive Portfolio Assignments 74
Figure 2 — Summary of Entry Routes for All CONOItSccccceeieiiiiiniiiie e 78
Figure 3 — Cohort D: Expressed Level of Motivation and Confidence 87
Figure 4 — Cohort D: Expressed Level of Comprehension, Modification, and
CONSITUCTION <.t bbbt 88
Figure 5 — Cohorts B, C, D: Average Number of Applications per Portfolio 89
Figure 6 — Cohorts B, C, D: Average Number of Source Files per Portfolio............. 90
Figure 7 — Cohort C: Use of Programming Constructs in Portfolios............c............ 91
Figure 8 — Cohort A: Cumulative Comparison of Portfolios 1and 2......................... 92
Figure 9 — Cohort A: Use of Programming Constructs in Portfolios*..................... 93
Figure 10 — All Cohorts: Use of Programming Constructs Portfolio 2*.................... 93
Figure 11 — All Cohorts: Adjusted Use of Programming Constructs for Portfolio 2*
.. 94
Figure 12 — All Cohorts: Use of Programming Constructs for Portfolio 4* 95
Figure 13 — Cohort B: Comparison of Sizes for Portfolios 1 and 2............cc.cccceeuene. 96
Figure 14 — Cohort C: Comparison of Sizes for Portfolios 2 and 3............ccccccvvneee. 97
Figure 15 — Computing Cohorts: Mean Total Sizes of Portfolioc.cccccovevvennen. 99
Figure 16 — Cohort D: Mean Total Sizes of Portfolio by Group...........ccoecvevinenne. 100
Figure 17 — Computing Cohorts: Skew in Net Sizes of Portfolio.............c.ccoceeenne. 101

Figure 18 — All Cohorts: Coverage of Programming Constructs in Portfolio 1*.....102

Figure 19 — All Cohorts: Coverage of Programming Constructs in Portfolio 4*.....102

Figure 20 — All Cohorts: Weighted Use of Programming Constructs...................... 103
Figure 21 — Distribution of Response Times to Test QUESHIONS..........cccocevererennnns 117
Figure 22 — Cohorts B, C, D: Comparisons of Scores in Tests 1 and 2................... 119
Figure 23 — Cohort B: Distributions of Build Batch Files Dates and Times 122
Figure 24 — Cohort C: Distributions of Build Batch Files Dates and Times 122
Figure 25 — Cohort D: Distributions of Build Batch Files Dates and Times. 123
Figure 26 — Cohort C: Batch File Creation Times for Portfolios 1 and 2................ 124
Figure 27 — Cohort C: Batch File Creation Times for Portfolios 3and 4................ 124
Figure 28 — Cohort D: Batch File Creation Times for Portfolios 1 and 2................ 125
Figure 29 — Cohort D: Batch File Creation Times for Portfolios 3and 4................ 125

Figure 30 — Cohort C: Proportion of Students Making Claims Against the Concepts

Michael Jones Indexes Page vii

(0] gl = 0] 1 Yo 1 o I SRS 133
Figure 31 — Cohort D: Proportion of Students Making at Least One Claim in
o] 11 (0] [0 TNt RSP RPTP PRSI 133
Figure 32 — Cohort C: Proportion of Students Making at Least One Claim in
POrfOlIOS 2 aN0 3 ... e 134
Figure 33 — Cohort D: Proportion of Students Making at Least One Claim for
POMTONIO 2. e e 134

Michael Jones Indexes Page viii

Tables

Table 1 — Summary of Entry Routes for All CONOItS...........ccceevieiieiecieceee e, 77

Table 2 — Cohorts B, C, D: Summary of Completion Rates for the Initial Survey....78

Table 3 — Summary of Professed Prior Programming Experience for the Initial
Survey for Cohorts B, Cand Dc.cccveoveiieiicicseece e 79

Table 4 — All Cohorts: Comparison of Prior Programming Experience (Scaled)......80

Table 5 — All Cohorts: Prior Web Programming Experience (Scaled)...........ccc.co...... 81
Table 6 — Summary of Progression Statistics for All Cohorts..........ccccoevvviveieiiennnn. 82
Table 7 — Summary of Overall Averages by Entry Category for All Cohorts............ 83
Table 8 — Summary of Students Passing First Time by Entry Category for All
(070] 1T] 1 1< TSR PPR 83
Table 9 — Summary of Programming Results Compared with Overall Performance
FOr Al CONOITS ..o 84

Table 10 — Summary of Correlations Between Coursework and Examination Marks
IN Programmingcoeooioeiie ettt 85

Table 11 — Frequency of Numbers of Alternatives for Questions used in Multiple-

CROICE TESES ...ttt bbbt 106
Table 12 — Distribution of Test Questions in Taxonomic Categories....................... 107
Table 13 — Measures of Fairness in Onling TeStS........cccvvvrrieieninneene e 109
Table 14 — Challenge of Online Tests linked to Taxonomic Categories................... 111
Table 15 — Challenge of Online Tests linked to Numbers of Alternatives............... 112
Table 16 — Measures 0f ONling TEStS SCOIES......ccuvivriieriiinieiee e 113
Table 17 — Scores on Unseen and Practice Questions in Online Tests 114

Table 18 — Cohorts C, D: Build Batch Files created more than 28 Days Prior to the
ASSIGNMENE DEAANINEcvveiiee e 126
Table 19 - Profile of Naming and Layout Obfuscation for All JCodeGen Requests

Table 20 — Profile of Naming and Layout Obfuscation by the Students with the Most
REGUESTS ...t 146

Table 21 - Profile of Naming and Selection Obfuscation by the Students with the
FEWESE REQUESTS ...t 147

Table 22 — Profile of Naming and Selection Obfuscation in Submitted Applications

Michael Jones Indexes Page ix

Declaration of Authorship

I, Michael William Jones declare that the thesis entitled “An Extended Case Study

on the Introductory Teaching of Programming” and the work presented in the

thesis are both my own, and have been generated by me as the result of my own

original research. | confirm that:

this work was done wholly or mainly in candidature for a research degree at

this University;

where any part of this thesis has previously been submitted for a degree or
other qualification at this University or another institution, this has been

clearly stated,;

where | have consulted the published work of others, this is always clearly
attributed,

where | have quoted from the work of others, the source is always given;

with the exception of such quotations, this thesis is entirely my own work;

I have acknowledged all the main sources of help;

where the thesis is based on the work done by myself jointly with others, |
have made clear exactly what was done by others and what I have

contributed myself.;

none of this work has been published before submission.

Signed: Michael William Jones

Date:

18™ March 2010

Michael Jones Indexes Page x

Acknowledgements

First and foremost | want to thank my lovely wife, Paula, for her unstinting support
and encouragement, and for her technical knowledge. Without her, this work could
not have been completed. Secondly, | thank my supervisor, lan Bryant, who gave me
sound advice and guidance at every stage. This was very useful throughout the
research, particularly at the outset and in the latter stages. The other tutors on the
Doctor of Education programme in the School of Education provided valuable
learning opportunities — I am only sorry that | was unable to explore these in greater
detail. Next, many thanks are due to the Bournemouth University students for the
effort they put in during their first year Programming unit. | also owe a debt of
gratitude to Sally Fincher, of the University of Kent, who selected me to participate
in the Disciplinary Commons in Introductory Teaching of Programming. My fellow
‘Commoners’ helped to make this an enjoyable and stimulating experience, and they
provided feedback when this was requested. Various colleagues at Bournemouth
provided technical assistance and information at crucial points. Finally, | thank my

employers, Bournemouth University, for providing the funds.

Michael Jones Indexes Page xi

Glossary

BTEC Business and Technology Education Council. A UK education body more
generally associated with vocational qualifications.

Cohort Single intake of undergraduate students. A cohort may include students

who are repeating due to previous failure.

CWFDP Cumulative Weighted Frequency Difference as a Percentage. This is a
measure derived for use in this research for comparing two populations.
The frequency of the intervals in each are calculated as percentages. The
difference between the corresponding interval in each population is then
calculated and weighted according to the value of the interval. These
weighted figures are then accumulated. The measure highlights the
nature and location of shifts between the two populations, such as
between the results obtained on two successive assignments by the same

cohort of students.

DBMS DataBase Management System. Software that provides services and
controls the access to and integrity of a database. In modern computing,
this is synonymous with RDBMS (Relational DataBase Management
System).

HEA Higher Education Academy. Formerly known as the Learning and
Teaching Support Network (LTSN).

HTML HyperText Markup Language. Document markup language used widely
in the World Wide Web (WWW). Specified by Tim Berners-Lee in 1989.

ICS Information and Computer Sciences — a group within the Higher
Education Academy (HEA)

ICT Information and Communications Technology. Wider definition of IT.

IT Information Technology. A more general term used for ICT,

Michael Jones Indexes Page xii

ITP

Java

JCQ

K-12

LMS

Lickert

LTSN

OO0

PAL

Python

Introductory (or Initial) Teaching of Programming. In the context of this

research the term is used in connection with first year undergraduates.

Programming language widely used in higher education. Developed by

Sun Microsystems.

The Joint Council for (General) Qualifications. The UK body responsible

for coordinating pre-University educational awards.

Designation used in the United States and Australia for pre-University

education (first to twelfth grades).

Learning Management System. A repository for learning materials. A
VLE is an LMS augmented with assessment components and

mechanisms.

Psychometric scale often used in questionnaires. Developed in the 1930s

by Rensis Lickert.

Learning and Teaching Support Network. Renamed the Higher

Education Academy.

Object-orientation. A software paradigm where the attributes and
operations associated with a noun are encapsulated in a class. Each

object is an instance of a class.

Peer Assisted Learning. A system in which more senior students (PAL
Leaders) teach more junior students in formal lectures or seminars. These
sessions are additional — they do not replace other sessions. The tutors
provide the materials are provided by the tutors, and also provide
guidance and tutoring to the PAL leaders.

Programming language. Name (allegedly) inspired by Monty Python’s
Flying Circus.

Michael Jones Indexes Page xiii

URL Uniform Resource Locator. Used to identify a resource (document) on

the World Wide Web.

VLE Virtual Learning Environment. Term related to Learning Management

System.

Michael Jones Indexes Page xiv

Appendices

Appendix A — Analysis of Cohort A

Appendix B — Analysis of Cohort B

Appendix C — Analysis of Cohort C

Appendix D — Analysis of Cohort D

Appendix E — All Cohorts Portfolios

Appendix F — Semiotic Complexity of Programming Languages
Appendix G - Principles Underpinning the Redesign of the Programming Unit
Appendix H - Time-based collections considered harmful
Appendix | — Test Questions

Appendix J — Bibliography

Appendix K — Survey Questions

Appendix L — Examples of Student Activities

Michael Jones Indexes Page xv

1. The Introductory Programming Landscape

1.1. Introduction: software in the community and economy

The widespread adoption of ‘e’ business practices and technologies throughout the
world has contributed to economic growth around the planet. Computing and IT is
estimated to be the second largest sector in the UK economy (after banking), and all
estimates indicate that demand for computing and IT skills will continue to outstrip
supply. A report conducted by Microsoft UK and conducted by Lancaster University
Management School and the British Computer Society (Lancaster University
Management School, 2006) painted a stark picture of the problems facing the UK
software industry. An average of 20,000 computing and IT (Information Technology)
graduates emerge from UK universities with a combination of foundation,
undergraduate, and postgraduate degrees each year. This figure is insufficient to
satisfy the estimated 141,000 computing and IT jobs likely to be required in each of
the next five years. This picture was corroborated by one of the e-skills quarterly
reports for 2005 (e-skills, 2005). This skills gap is currently being filled by a
combination of graduates moving into IT from other disciplines and by recruitment
from overseas. Since the global recession, demand for IT skills has dipped by around
a third (Office of National Statistics, 2010), but there is still a skills shortage in this
area. It is also the case that thousands of computing professionals retire each year.
The UK Government recently announced the establishment of an IT Academy (due
to open in 2010) as part of a wider drive to encourage more UK citizens into this

industry.

Social networking using mobile phones and websites such as MySpace, FaceBook,
LinkedIn and SecondLife is growing so rapidly that it is estimated that more than
70% of all UK citizens visit social networking sites for 4 or more hours per month
(comScore, 2009). Partly, this is facilitated by cost: purchasing and using a computer
is now within the reach of almost all UK citizens. As technology has advanced, so
networking costs have declined. Many governments around the world are investing

heavily in IT, keen to avoid being on the wrong side of the 'digital divide'.
The importance of IT has long been recognised within the UK education system. IT

Michael Jones Introduction Page 1

has been a feature of the National Curriculum for many years, with around 24,000
students annually being awarded grade C or above in GCSE ICT (Information and
Communications Technology) (JCQ 2009a). At A level, both Computing and ICT are
available, with the numbers of students being 4,710 and 11,948 respectively in 2009
(JCQ 2009b). Males account for approximately 90% of the Computing figures and

around two thirds of those for ICT.

One might imagine that the clear growth in the use of computing and IT within
almost all industries and forms of entertainment, and the availability of well-paid
employment would result in an increased demand for computing and IT education.
In fact, the reverse appears, at least superficially, to be the case. There has been a
steady decline in the numbers of students in these areas over the past few years. For
instance, the figures for Computing and ICT A level students in 2006 for the UK
were 5,629 and 14,208 respectively (JCQ 2006), some 15% higher than the
corresponding figures in 2009. Similarly, demand for Computer Science at
undergraduate level has declined in recent years both in Europe and North America,
and prompted a number of initiatives, for example the K-12 programmes in the
United States (Penuel, 2006). Many of these are aimed at encouraging more young
people to become engaged in computing, rather than remain content to remain within
the IT environment. The difference between computing and IT can be envisaged in
terms of the nature of participation: computing professionals are engaged in the
construction of the software artefacts (designs and programs), whereas IT

professionals tend to select, configure and exploit existing artefacts.

On closer inspection, however, the nature of the decline in computing in higher
education is rather more complex. A number of ‘creative' disciplines in computer
games and animation and digital media development have seen significant growth in
recent years with many universities now offering undergraduate programmes in these

disciplines.

The tasks that each piece of software performs are linked to a context. That context
might be relevant to many users, but some will want to modify or extend the
capability of the software for specific purposes. Most software is therefore

configurable. Simple configuration involves selecting components to include or

Michael Jones Introduction Page 2

exclude, or set certain values. When a configuration file includes logic (decision
making and repetition) it becomes a program. Programming therefore lies at the
heart of a software system, being used both to construct the system, and facilitate
complicated configuration. An example is a web browser: website developers embed
programs or program segments within HTML (HyperText Markup Language)

documents, with the browser rendering the HTML, and executing the programs.

1.2. Barriers to Programming

The barriers to participation counterbalance the large number of career opportunities
offered by the software industry. Software is highly contextualised in terms of
technologies — heavily influenced by the operating system, the hardware, the
programming language, and the database management system (DBMS). Modern
software systems may also incorporate more than one programming language (as in
the case of a website), and each of the components will have multi-faceted
relationships with the other components. Moreover, whilst software is undoubtedly
creative, the resulting artefact has to fulfil an exact set of requirements. The low cost
of computing equipment means that there is the no significant technology cost
barrier to adding more capability. By contrast, writing software is very labour
intensive: if existing software can be extended or re-configured (instead of
commissioning new software) much of these costs can be mitigated. One
consequence is that the comprehension of software (to establish its suitability) has
become an essential skill for a software developer. It has been recognised, however,
that understanding software is a highly complex cognitive task (Misra and Akman,
2008).

A programming language is essentially an algebra and, as such, was initially
designed for a specific purpose. As with many other algebras, extensive use is often
made of symbols, producing a visual appearance for a program unlike that of a
snippet of any natural language. Most programming languages began as personal or
limited projects that have then been adopted and extended by a wider community.
The design decisions inherent in the limited scope of the original purpose of the
language may not be observed in any continued development, resulting in

idiosyncrasies that the programmer must accommodate. The nature of these

Michael Jones Introduction Page 3

‘features’ is generally such that programmers cannot reason effectively — they just
need to know the specific details. This necessary accumulation of minutiae requires
significant continuous investment of time, and tends to attract certain personality
types, and repel others. It is not, perhaps, a surprise that software development is
seen (Grandin & Duffy, 2008) as one potential area of employment for those
suffering from Asperger’s Syndrome, a particular and relatively mild form of autism

that often manifests itself in obsessive attention to detail.

The grammar of a programming language is one layer of the complexity of learning
to program. Each language also has an associated set of 'norms', which programmers
using that language are expected to observe, in addition to those dictated by the
syntax of the language. These norms are intended to convey meaning above and
beyond that which is strictly necessary in terms of the algebra. For instance, it is
conventional in the Java programming language to begin variable names with a
lowercase letter; in C# it is conventional to use uppercase letters to start variable
names. In both cases, the choice is not arbitrary, as it is linked to a wider set of
styling practices that aim to shorten the time taken by a professional to comprehend
the code. The 'comprehension time' is critical in modern software development, as

incorporating as much existing software as possible is economically prudent.

Another layer of complexity is represented by the ubiquitous nature of software:
every component of a computer system contains some software, and a computing
professional may need to have some understanding of this. It could be that the time
delay involved in processing data is problematic in specific situations; likewise there
may be an impact on the choice of hardware device or networking capability. Many
fonts include snippets of program code to handle kerning as text is resized. That all
components of a computer system can be programmed is therefore both a blessing
and a curse. Software offers almost total flexibility, at the cost of complexity in every

dimension.

1.3. The Pedagogical Landscape

A number of reasons are put forward to explain the inconsistent nature of computing

and ICT education prior to university (Reynolds et al., 2003). The demand for IT

Michael Jones Introduction Page 4

skills in industry means that few teachers have experience or relevant qualifications.
A typical software developer with five years experience could expect to earn
considerably more than a teacher with comparable length of experience,
notwithstanding the fact that the teacher may have to have spent longer in the
education system.

In a world of school league tables and considerable autonomy in curriculum
implementation within schools in the UK, the computing and ICT syllabus is
subjected to a number of interpretations. Where a student is required to write a
program to fulfil coursework requirements, the teacher will often have considerable
flexibility in the choice of examination board, programming language, and in the
complexity of the algorithm to be constructed. Coursework is generally marked by
the school, and moderated externally. The combined effect is that university
undergraduate courses cannot assume a given level of understanding of
programming (or other elements of computing) even where students have completed

apparently related preparatory courses.

Another salient issue for the design of the programme for an introductory
programming course is that the desired endpoint is rarely clear. The complexity of
software development precludes any likelihood that emerging graduates will be
competent software developers, unless they have considerable prior experience, or
they are prepared to invest considerable time in addition to that required as part of
the study programme. What, then, is an acceptable endpoint, and how should that be
reflected in the goals for the initial teaching of programming? This leads to an
exploration of the depth versus breadth debate, and to an examination of what

constitutes depth.

When people learn to drive, the general assumption is that they will become non-
professional drivers — if a person wishes to become a racing driver or a taxi driver,
then it is generally accepted that additional study and tutoring will be required. As a
consequence, ‘non-professional’ pupils are given basic skills in controlling the car,
observing the law, and being courteous to other drivers. There is little coverage of
brake horse-power, or the technology of the camshaft. In the context of the IT

industry, any individual may need to develop or configure software, or interact with

Michael Jones Introduction Page 5

software developers, so it seems reasonable to insist (as do all computing and IT
undergraduate programmes in the UK) that all computing and ICT students study

one or more units or modules in programming.

The issue remains: what are the fundamentals of programming? Should the theory of
programming language grammar be explored, to facilitate an easier transition
between programming languages, given that most professional software developers
need to be proficient in more than one language? On the other hand, if the
relationships between the programming language and the database management
system, the operating system, the graphical user interface or the network are not
explored, there is the possibility that this will limit the acquisition of transferable

skills in these (more practical) dimensions.

The Association of Computing Machinery (ACM), the main professional body for
computing in the United States, has set out an example curriculum for undergraduate
programmes in computer science (ACM, 2008). The programming elements are
linked not only to the programming language grammars, but are also heavily
influenced by mathematics. Mathematics is the root discipline of computer science:
all computers are realisations of a Universal Turing Machine (Turing, 1936), which
developed out of research into computability theory. Each programming language
has a deterministic grammar, which precisely spells out not only what is acceptable,
but also the consequences of the execution of a given instruction. On closer
inspection, the tacit assumption that computing is a specialisation of mathematics is
not so clear. Mathematics is essentially a modelling technology, which has been
adapted and developed to model many aspects of the world, from physics to
economics. Attempts have been made to model the complexity of modern software
systems: many companies included a software metrics element in their software
development operations throughout most of the 1990's. Software metrics remains an
active research area, but most companies are more likely to use metrics derived from
project management methodologies when estimating the time and costs involved in

developing a software system.

The power and affordability of modern computers have allowed software to

penetrate many more facets of the operations of most businesses. This has taken

Michael Jones Introduction Page 6

place in a very short timespan. The rapid change in the nature and scope of software
is one factor that confounds mathematics: the other is the necessity to include (or not
to exclude) the other components of the software system. If | wish to study gravity
by dropping something from a window, it matters little which window, what is
dropped, by whom, and on what day or time of day. The model can ignore many
aspects of the context of this experiment without compromising the results. With
software, one does not have that luxury: how long an application will take to
execute, or even whether it will fail or not, may be heavily dependent on the
hardware, the operating system, and what else is executing concurrently. For the vast
majority of software systems, mathematical modelling is not feasible, and it can be
seen that to suggest that it might be (through the design of the curriculum) might be

seen as counter-productive.

The second argument for including mathematics in introductory programming is that
of transferable skills: constructing a mathematical argument consists of selecting and
sequencing mathematical components, relevant to the algebra in question. This is
analogous to writing software, but this analogy is not limited to mathematics. Most
disciplines involve similar intellectual and cognitive activities, but all disciplines can
be approached in a variety of ways. Despite many years of research, no reliable link
between programming and any other discipline has been found. For instance,
Dehnadi (2006) proposed a simple test that he claimed indicated whether someone
would be likely or not to be able to program. Caspersen et al. (2007) failed to
replicate Dehnadi’s findings.

The conclusion is that neither the tutor nor the student can reliably predict how
difficult the student will find programming. It is therefore not surprising that a wide
range of student motivation and capability in programming has been observed many
times (e.g., Bergin and Reilly, 2005; Jenkins, 2001). This disparity need not
disappear over time. In industry, it is not unknown for software developers with
similar educational and experiential profiles to differ in productivity by one or more
orders of magnitude. The more productive developers seem to make better choices
and are more consistent, therefore making many fewer mistakes. The more capable
appear to have more viable mental models (Ma et al., 2007). Any differences in

programmer capability can be magnified, as testing (and the consequential correcting

Michael Jones Introduction Page 7

of errors) occupies a high proportion of a developer's time. Many undergraduate
computing and IT cohorts exhibit a similar wide range of student application and
ability. This complicates the notions of achievement thresholds, and the design of
activities and support. It is difficult to avoid being more favourable either to the
stronger and most committed students, or to those more in danger of not progressing.

1.4. The Research Landscape

The scope of the research was the first year students on a programming unit reading
computing and IT honours programmes within a single UK university. The students
were (and are) mainly UK citizens who have just completed A level or BTEC Higher
National programmes in Computing or ICT. The cohorts are predominantly male.
Widening the scope of the study to include postgraduate and foundation degree
students was rejected at an early stage. The postgraduate students at the higher
education institution involved generally have significant prior experience. The
foundation degree students are based at various external locations, and the nature of

the programmes at each location is not directly comparable.

The focus for the study was the students' perception and progress of four successive
cohorts through a single 20 credit first year unit — Programming. This unit runs
throughout the year, and is one of six equally weighted units that comprise the first
year. The format of delivery is a weekly one-hour lecture and guided, supervised

workshops. Additional support sessions are also available.

The detail of the research approach was investigated and formulated based on
primary and secondary research, although certain boundaries were identified. As the
unit in question contributes directly to students' progression through an
undergraduate programme, controlled studies were not considered ethically
acceptable, neither were they feasible, given that the study necessarily had a

significant time dimension.

The underlying theme of pedagogic research is to improve the student experience. In
that sense, there is a significant element that aims to make positive statements about

which aspects of the approach are more successful, and which are not. Given that the

Michael Jones Introduction Page 8

nature of learning is highly complex, it is also likely that any theory that emerges
will need to be grounded in analytical data. The personal aspect of learning will also
dictate that an element of the data gathering may well be qualitative, alongside more
quantitative measures of student achievement. The philosophical aspects are
considered in detail later. The intention was to rely heavily on grounded data, and to
remain close to the evidence when planning and implementing modifications. The
rationale for this was that there is a great temptation toward abstraction, in order to
simplify the message and hence provide a more tractable student experience. The
acknowledged steep initial learning curve for programming encourages this
tendency. However, the complexities of the inter-dependency of many technologies

and techniques mean that abstraction can hide (or gloss over) significant factors.

Within a student cohort there will be a wide range of capability and expectations.
With the importance (in programming) of many small pieces of very specific
information, this range can become magnified, and potentially unmanageable. One
avenue that could be explored is to focus on one of a number of subgroups (females,
mature students, those with particular aspirations or previous experience). A decision
was taken early on to evaluate and support the learning of all types of students: those
who enjoy programming, those who are largely neutral, and those for whom the unit
is a necessary evil. To enable this to be measured, it is essential that all types of
students are clearly engaging with the unit content, rather than either setting their
own agenda, or 'borrowing' from other students. Plagiarism is a major concern, as
ready-made solutions (or ones commissioned by students) are readily available
(Clarke and Lancaster, 2006).

Measuring success is not a trivial exercise, given that parallel studies are not
possible, and that the makeup of successive cohorts cannot be controlled. External
factors, such as the development of a new course elsewhere in the university, or at a
rival institution, may affect the nature of the recruitment. One approach is to
compare the unit with the others being presented to the same students. Those units
will focus on databases, web technologies, networking, systems design, and the
business environment. Apart from the latter two, all units involve practical elements
and assessments. Each student is asked to complete a questionnaire on each unit

towards the end of the academic year, which is administered centrally by the

Michael Jones Introduction Page 9

university. There are quantitative measures of achievements in assessments, and
student use of online materials can be monitored. Every effort is made by nominated
individuals (not directly linked to the programme) to interview any students who
withdraw; those interviews may yield important information, but were not
considered relevant in the context of this study. These interviews are voluntary and

the reports compiled do not provide reliable or verifiable data.

The research was linked to changes in the curriculum and the programme. The
programme had been revalidated two years before the main part of the study began,
and a number of significant modifications had been made. The Programming unit
was in transition from a very traditional, constrained scheme, towards one that

allowed students more scope for creativity.

The aim of the research was to monitor, measure, understand and guide this
transition, and thus help to achieve a positive profile of student achievement and

motivation in the Programming unit.

The transition was planned to take place over four successive cohorts. This dictated
the length of the study. As the changes were manifestations of a deep-seated
modification in the ethos of the unit (from transcription to creation) it was necessary
to investigate as many aspects of the delivery of the unit as possible, to ensure that

any negative consequences would be highlighted.

The main focus for the study was the ephemera produced as a consequence of the
learning and assessment processes: the coursework (tests and programs), and
examinations. Of these, the programs are the most directly linked to programming,
so the study concentrated on the applications submitted by the students for

assessment.

If there were limited ranges of size and complexity in the programs submitted, then
this would indicate that at least some of the students were being constrained,
provided the variety in prior experience and expectations existed. Analyses of survey
responses established that the cohorts did include students with considerable prior

experience and ones with limited motivation to succeed at programming.

Michael Jones Introduction Page 10

One would expect, therefore, to see a widening of the spectrum of achievement as
the unit progressed. This may be a significant issue in a learning environment. Is the
purpose of the unit to facilitate learning in all students, or is it to enable all students
to achieve a given level of understanding and knowledge, implying that those
already at that level should not, in effect, receive support? The changes to the
pedagogy associated with the Programming unit reflected a transition from the

‘competence level’ approach to one where all are encouraged to stretch themselves.

One of the features of the redesigned delivery programme for introductory
programming was an increased use of online and software resources, particularly
ones that facilitate student interaction and assessment. None of these were employed
in the previous delivery regime. The researcher was successful in bidding for some
funds to develop software systems to assist in both learning and assessment. These
were added to systems already built by the researcher to facilitate online submission
of fully validated applications and multiple-choice online tests (both used previously

in the delivery of other units).

By analysing the size and complexity of programs, when they were started, and the
students’ understanding of programs, it was hoped that a rich picture would be

painted of the learning experiences of all students.

In the event, the research showed that all students gained understanding and all felt
able to express themselves adequately. Each of the transitions in pedagogy were
successful, in that they facilitated the writing of larger and more complicated

programs at an earlier stage in the unit by all students.

1.5. The Research Issues

The logical starting point for any research is to define the nature of the task being
studied. In this case, an exploration of the cognitive complexity of programming
would highlight the key constraints for the design of the programming course itself,
and frame the analytical research associated with it. This complexity would need to
embrace the multi-faceted technological issues identified already, but also

necessarily involved examination of motivation, problem solving and language

Michael Jones Introduction Page 11

acquisition. Two examples will suffice. A group of around 200 first year
undergraduate computing students were supplied with a program that printed an
outline of the life of Alexander the Great. Instead of indicating that he conquered a
number of countries, the tutor used 'visited' as a euphemism, including the single
quotes in the print instruction. The students were then encouraged to substitute
aspects of their lives, as an initial exercise. Some time later, students had to submit
programs for assessment. 25% (N=47) out of 197 included programs which, whilst
detailing aspects of their lives (and clearly not in a euphemistic sense), still retained
the single quotes around the verb. This provides an informal measure of how passive
students of programming can be, willing to substitute, but not delete. Secondly,
almost all programming languages use English words, although the semantics are
often quite different. In C, Java, C++ and C#, the word 'static' has a precise meaning,
which is at variance with all the common uses of the word. Likewise, punctuation
generally plays a more important role in most programming languages than in
written or spoken language. This linguistic 'distance’ between the perceived
semantics and the specific use of words and symbols, may make a further
contribution to the sense of dissociation many students feel. Sternberg (1977)
suggested that analogical reasoning could be used to foster a sense of connection
between two domains. Halasz and Moran (1982), however, argued that analogical
reasoning could be detrimental as it depends on the assumption that the inferred and
projected domains share fundamental characteristics in the specific areas where the
analogy is being applied.

The examination of the linguistic, technological and pedagogic complexities of
learning to program were followed by an examination of more of the literature
associated with learning in general, and learning to program in particular. Much
research has been devoted to this topic over many years, and by many researchers
and research teams. A good deal of this research is experiential, with most articles
detailing the student achievements and responses. Themes were derived from an
analysis of this material both in terms of specific learning points, and at a more
abstract level regarding the nature of how introductory programming is perceived.
One study in particular, the Disciplinary Commons in the Introductory Teaching of
Programming (Fincher, 2005) will be examined in detail, as it brought together a

number of tutors (including the author) over a period of time, each reflecting on

Michael Jones Introduction Page 12

selected issues by drawing upon his or her own experience (and that of the students).

The experience of students in programming on this programme had been patchy,
with (often) large failure rates and a markedly bi-modal distribution of performance.
Another tutor had introduced consistency in the delivery and assessment that had
rectified the problems of completion, but there had been no modifications to the

pedagogy.

The initial design involved modifications to the delivery and assessment, as well as
to the adoption of Java as the programming language. Java, developed and
maintained by Sun Microsystems, is widely used in the computing industry, and is
closely linked to a number of other popular, professional languages, such as C# (used
by Microsoft in its .NET framework). Java had been tried unsuccessfully before,
over a period of three years. Rather than modify the pedagogic approach, the
language itself was blamed for the problems. There was therefore some apprehension

associated with reverting to Java.

A programme of change was designed and implemented over a series of cohorts.
These incremental changes in content, presentation and assessment were monitored
within each cohort, with the analysis influencing the nature and rate of change for
successive cohorts. In the event the circumstances changed unexpectedly. During the
third delivery of the revised unit, the university announced a major redevelopment of
all undergraduate programmes, leading to larger cohort sizes through amalgamation
of existing programmes. The fourth presentation of the material (again modified
based on the evaluation) was to over two hundred students, two and a half times
larger than the previous cohorts. The 'additional’ students came from programmes
that were more focused on IT than computing. The opportunity to evaluate the extent
to which the revised course was applicable to different students was seized upon, and
considerable data gathered and analysed. Nonetheless, the increased number caused

a number of logistical issues, which potentially complicated the evaluation.

Michael Jones Introduction Page 13

2. The Inspiration for the Research

There were five main sources of inspiration for this research:
1. Aninterest in the semiotics of programming.
2. An interest in the research relating to problem solving.
3. Developments and innovations in the Initial Teaching of Programming (ITP).
4. The Disciplinary Commons in ITP.

5. The Redesign of the Programming Unit.
2.1. The Semiotics of Programming

Every computer programming language uses syntax and sentence structures that are
at least unusual, and often incomprehensible, to the layperson. Whatever the
intention behind the design of the language, the general norm is that the meaning
attached to a symbol or word when used in a computer program will run contrary to
the meaning when that same symbol or word is used in natural language. For
instance, loops in many commonly used programming languages are announced by
the use of “for’. In English, ‘for’ is a preposition and does not imply action, let alone
repetition. This dissonance between natural language and programming languages
extends to the use of symbols, especially brackets and punctuation. The opportunities
for novices to use transferable or analogical reasoning in program comprehension are
therefore significantly reduced. Even apparent similarities can be traps for the
unwary. Some students talk in terms of ‘if loops’, apparently conflating two
concepts: the “if’ decision statement (that does not involve repetition), and the loop,
which does. Closer inspection illustrates the complexity of the semiotics of computer
programming languages vis-a-vis natural languages. In a natural language setting one
might say: (when inserting coins into a parking meter) “if the total has not reached
the required level, insert another coin’. In this context, it appears that ‘if” controls the
repetition, but it is the implied loop associated with the “insert coin’ action that
suggests that the test should be repeated. Many individuals may not be aware of this
semantic subtlety, which is analogous to young children calling an apple a ‘napple’
by falsely assuming that the indefinite article is always ‘a’. In programming one
cannot replicate this sophistication, with the result that the phrasing would have to be

Michael Jones Inspiration for the Research Page 14

‘until the total is reached, or “while the total has not been reached. This "false’

reasoning can be difficult to overcome.

Another main area of difficulty for students of programming is the semantics of
(grammatical) symbols. In natural language these are essentially delimiters —
segregating the text into more comprehensible elements. When to use a particular
delimiter can be a matter of debate. As Kurt Vonnegut remarked of semi-colons:
“they are transvestite hermaphrodites representing absolutely nothing. All they do is
show you've been to college” (Monnegut, 2003). In programming, each delimiter has
a precise meaning and a defined set of circumstances in which it can be used.
Appendix F contains a more detailed exposition of these issues, demonstrating the
extent of the linguistic leap that novices need to make as one of the elements in

learning to write computer programs.

2.2. Problem Solving

A solution to a problem is a network of components that, when traversed in
connection with a given problem, produces the desired set or sequence of results.
Problem solving is therefore the process of selecting, constructing, and sequencing
solution components into a suitable network. A network (or directed graph) is
required in the case of complex problems, as there is the implication that certain
paths will be traversed more than once, if not many times. This is another of the
elements that makes computer-based problem solving so difficult for the novice.
There is a significant intellectual overhead in ‘walking through’ a potential solution
component several times, whist maintaining an accurate mental model of the state of
associated data. Programmers evolve their own “style’ of programming specifically
in order to help manage this intellectual complexity. Using names and indentation in
particular ways can provide additional cues that help to compartmentalise the
traversal process, thus reducing the intellectual load. Style is a child of necessity not
idiosyncrasy. Novices have no access to such intellectual shortcuts.

The selection of the solution components in programming may seem an intellectual
process, but is heavily (and increasingly) a knowledge-based activity. There is a

plethora of existing solutions and solution components readily available to software

Michael Jones Inspiration for the Research Page 15

developers via libraries and frameworks. Multiple potential solutions can usually be
constructed, leading to the need both to know what is available, and to evaluate the
qualities of the various alternatives. Using existing solution components is generally
desirable as these significantly reduce the extent of testing and the likelihood of logic
errors. Testing is the most expensive part of the software development process.

2.2.1. Problem Solving and Planning

Computer programs are often not merely the solutions to problems: they need to be
manifestations of a particular type of planning system. In planning, the goals and
operators that define the solution space are not immutable, as they are in problem
solving. The goals associated with a computer application will often change, based
on users’ requirements, legal considerations, and errors. A computer program is,
therefore, (in the artificial intelligence sense) a planning system where the goals and
operators are subject to change, but where those goals and operators are fixed at any
given moment. This has similarities with Mayer et al. (1986) who explored the
connection between thinking and programming, suggesting (pp.608-9) that a focus
on cognitive elements pertaining to programming is more productive than the

development of more general intellectual skills.

2.2.2. Do Programmers need to be Geeks or Nerds?

The terms 'geek’, and 'nerd' are all used (often pejoratively) to encapsulate the

personality traits associated with IT in general, and programming in particular.

'Geek' (dictionary.com, 2009a) originally referred to fools or simpletons, or circus
performers with bizarre 'acts', sometimes including biting the heads off chickens. It
was another association, that of the ability to concentrate on detail (particularly detail
meaningless to others), that led to its re-emergence in common parlance in the
1970's. Nerd (dictionary.com, 2009b) is a more recent addition to the language, first
being mentioned in Dr Seuss, and gaining popularity in the 1950's as a slang term for
a 'drip' or 'square’, especially in Detroit, Michigan.

Do programmers need to be geeks or nerds? And, if so, is that a problem?

The limitations of current software development tools mean that programmers need

Michael Jones Inspiration for the Research Page 16

to be obsessed with detail. The intellectual complexity of comprehending and
evaluating potential solutions also implies an immersion in the process that can lead
to dissociation with colleagues. Yet it is also true that modern software development
cannot be an individual activity. Software projects require a multi-disciplinary team
that includes designers and users as well as project managers and testers, in addition
to other developers. A professional software developer must therefore be able to
relate to the potential solution (i.e., system) at multiple levels in order to

communicate effectively with the other team members..

2.2.3. Summary

There are echoes of some of the elements of programming in other disciplines.
Choreography, for instance, involves an arcane language and the construction of a
‘solution’ involving many components. The scale of the two disciplines is not so
readily comparable. A twenty-minute dance will involve hundreds of steps. Most
modern software projects have tens of thousands of instructions. The human form
and capabilities constrain the choreographer. Software has almost no boundaries. The
final difference is that dance steps are built from fundamental movements: in
programming all of the concepts form a network, where each is dependent on others.

Identifying a starting position and a direction of travel are not trivial problems.

2.3. ITP Research

The challenges inherent in learning to program have long been recognised. The
psychological dimensions have also been explored over much the same time period.
Gerald Weinberg (1998), Elliot Soloway (1985, 1986) and Thomas Green (Green,
1989; Petre and Green, 1993) (among many) have written extensively on the
psychology of programming, and there are conferences and interest groups dedicated
to a greater understanding of this area. The Psychology of Programming Interest
Group publishes articles and holds an annual workshop. At a recent workshop
Dehnadi et al. (2009) argued the psychological benefits of consistency in

introductory programming.

The problem solving facets of constructing programs is an aspect that has received

considerable attention. Papert (Solomon and Papert, 1976) with his invention of

Michael Jones Inspiration for the Research Page 17

Logo, attempted to create a more readily accessible programming system. The “turtle
graphics’ within Logo have been translated for use in other programming languages,
including Pascal and Java. In turtle graphics the programmer guides a writing object
(the turtle) around a two dimensional space. The anthropomorphising of the
graphical processes has itself become of interest to the research community, notable
in the development of the Alice project (Cooper et al, 2000; Kelleher and Pausch,

2007) and Scratch (http://scratch.mit.edu). Scratch is one of many learning projects

based on Squeak (http://www.squeak.org).

One interesting difference between Logo and these environments is the extent to
which recognisable symbols and entities are used. In Alice, the programmer can
create three-dimensional worlds and populate them with characters, such as animals
and people. Although there are obvious physical differences between these virtual
worlds and the real one, much of the movement and physical attributes are plausible.
In Logo, the turtle is imaginary, only that part of its path when it was writing is
visible. The intention was to assist the student in creating an abstracted mental model
of the algorithm creation that was not necessarily based on common psychological
processes. Recursion is a powerful problem solving technique that can only be
realised within a computer. Papert and other advocates of languages like Logo (e.g.,
Scheme) based on Lisp aimed to help students learn to understand and use this alien
problem solving technique. This can be demonstrated in the use of Logo in highly

recursive algorithms such as fractals and Sierpinski curves (Ross, 1983).

Recursion depends on the creation and manipulation of multiple concurrent states of
the solution space, so the use of characters in Alice prevents the consideration of
recursion. Alice therefore emphasises the ‘translation” paradigm of programming,
where the individual seeks to represent his or her own (non-recursive) solution in
terms of a program. It is the case that recursion is most effective within a highly
regular solution space containing relatively few operators. Few real-world problems
exhibit these characteristics, so the priority to cover recursion has reduced as

programming has permeated more aspects of life.

Syntax-directed editors and specialised development tools are approaches that aim to

lower the slope of the initial learning curve. A syntax-directed editor such as Xcode

Michael Jones Inspiration for the Research Page 18

http://scratch.mit.edu
http://www.squeak.org

(Apple, 2008), allows the programmer to create a program by filling the required
slots, with the editor supplying the constant elements. The author used such an editor
(based on the work by Morris and Schwartz, 1981) in an introductory course some
years ago. Only one student (of 12) found it useful. Almost all the others formed a
positive aversion to using it. BlueJ (Barnes and Kolling, 2002) and jGrasp (Cross
and Hendrix, 2007) are two examples of visual development tools that espouse the

same approach, extending the notion to include methods and classes.

These types of systems have benefits, but there are risks. A learning curve is not one-
dimensional: attempts to lower the slope in one direction may cause an increase
another facet of the slope. The design of Java is an example: every Java application
must include the same text — text that only relates to the operation of the Java
system, not the program under consideration. Forcing the students to type this text in
each time they write a program is likely to lead to errors and increase the slope of the
learning curve. Wrapping up this standard text, or providing some means by which it
is automatically generated eliminates that problem at the risk of preventing the
students from understanding the boundary between the language and the system

supplying the text.

Mechanisms such as ‘advance organisers’ (originally suggested by Ausubel, 1960)
have been tried (Mayer, 1981) in an attempt to improve students’ comprehension of
program code. The early experiment by Ausubel showed that a suitable advance
organiser could assist the learner in retaining recognition and recall of symbols, but
this was challenged in a later paper (Clawson and Barnes, 1973). That many
struggle to memorise and retain the memories of unusual symbols was not disputed.
The use of pseudo-code could be seen as one application of advance organisers. At
first glance it would seem sensible to provide students with a view of creating
programs that is not concerned with the detailed syntax. This would be the case were
it not for the influence the syntax has in many programming languages on the
solution (program) that should result. For instance, the range and type of data
structures available in a particular language often dictates key elements of the
solution. The process of translating the pseudo-code into a working program is
therefore rarely a trivial process, and could be so complex that the use of pseudo-

code could be counter-productive. Programming books rarely include sections on

Michael Jones Inspiration for the Research Page 19

pseudo-code.

The commitment required to reliably assimilate the syntax, structure and conventions
of a particular programming language and programming would suggest that the
range of achievement within a cohort of students is likely to be quite large, even
where all students have comparable prior experience. Commitment itself cannot be
considered to be a fundamental factor. Learning styles and prior experience may
have a more profound influence on the learning process and hence on the level of
commitment. Thomas et al. (2002) examined the effect of learning styles on
achievement in ITP, and found a relationship between learning style and
achievement. Whether this was due to an underlying influence of learning style or to
bias linked to the delivery programme could not be established. Byrne and Lyons
(2001) and Jenkins (2002) have also commented on the influence of learning style,

without coming to any firm conclusions.

An ever-present danger is that the existence of any (even notional) commitment
‘threshold” will polarise the student cohort into (generally) three categories. There
might be those that are prepared to make the requisite commitment, and those who
are not. There may be a number in the middle willing to make a conditional
commitment, such as to achieve a pass in an assessment component. Jenkins and
Davy (2000) and Dauvis et al. (2001) have observed this “tri-partite’ phenomenon.
The danger is that students might select an approach to learning that is more
connected with a perceived desire to project a particular social orientation than with
their own learning needs. The consequence would also be a bi-modal achievement
profile, with the committed students achieving high grades and the individuals in the
other groups being awarded much lower marks, as there is little difference between
intermittent commitment and low commitment where neither reaches the required
threshold. Members of these two lower-achieving groups might be tempted to
plagiarise, and this has become a major concern in teaching programming (Culwin
and Lancaster 2000). Plagiarism in programming is itself a major research area, and
many resources are available (HEA-ICS, 2008), and conference and journal articles
appear regularly (e.g., Joy and Luck, 1999; Chen et al., 2004; Jadalla and Elnagar,
2008).

Michael Jones Inspiration for the Research Page 20

The sequencing of the introduction of programming concepts has also received
attention. Which statements to introduce and in which order, when and where to
introduce data structures, can lead to numerous permutations of delivery scheme.
When the paradigm (process-oriented, data-oriented, object-oriented) is overlaid,
further alternatives are available. Even within object-orientation, the point at which

new classes are defined can vary.

The programming language and system are also considerations that can complicate
the issue of conceptual selection and sequencing. Different programming languages
affect this design in different ways. A language like Java (widely used in higher
education) does not offer the same flexibility as (say) Python with regard to building
simple programs. Once the initial hurdles are overcome, Java includes features that
assist the learner by providing more feedback and control. As the choice of
programming language has such a pervasive influence on the delivery scheme and
the learning experience, it is not surprising that much energy has been expended in
support of particular languages. It is often said that the easiest way to start an
argument between computing people is to suggest that a given language should be
used to teach programming.

2.4. Disciplinary Commons in ITP

This was an initiative started by Sally Fincher and Josh Tenenberg. A National
Teaching Fellowship was awarded to Professor Fincher in 2004, and part of the
funding connected with this award was used to fund the UK activity. Tenenberg led
the US initiative, where the remit was widened to include all of Computer Science,
but confined to a limited geographical area. The idea for the Commons was to bring
together lecturers with considerable experience of teaching programming to pool
their ideas in the form of portfolios. More information is available (Fincher, 2005).
The intention was to create portfolios of experience and reflection, not to create a
definitive learning regime or to decide (for instance) on the most appropriate

programming language.

The notion of a portfolio as a research instrument is associated with researchers such

as Pat Hutchings and Lee Shulman (Hutchings, 1998; Hutchings and Shulman,

Michael Jones Inspiration for the Research Page 21

1999). Interested individuals respond to an invitation to participate, and participants
are selected on the basis of perceived expertise. Within the study, participants engage
in a range of activities, including directed reading, discussions, and the selection of
relevant artefacts. The participants are then asked to reflect on the activities. This is a
specialisation of case study research, as the researcher selects the aspects under
consideration, and the participants are active elements in the generation of data, but
are not involved in other facets of the research process. It is generally the case that
the researcher analyses the reflection and the selections, but does not pass judgement
on the artefacts selected or the selection process.

There is a displacement in time, where participants are asked to reflect on past
events. The nature of the reflection is the focus for the analysis: the tenor and
content, the volume of positive, negative, and descriptive elements, the level of
introspection, and the extent of the use of corrobative data can all provide insights
into the nature of the intellectual engagement of the participant with different aspects

of the activities.

Criticism of portfolios is not difficult to understand. The researcher cannot know for
how long the participant reflected, nor can it be established whether the reflection
truly reflects the participant’s views — either at the point of reflection or during the
activity. There will be an element of post hoc rationalisation, as always in the case of
time-displaced studies. The reflection need not be supported with verifiable data;

therefore the veracity of the statements may not be dependable.

The key element is the motivation of the participant. The reflection should be seen as
a positive process for the individual, both in terms of the immediate response of
writing the reflection, in terms of sharing with others and of experiencing the
reflections of others. If this is the case, it is reasonable to assume that the extent of
misleading rationalisation may be limited. If the researcher is seen as judgemental of
the portfolio or applying some level of comparison between portfolios, or (for
instance) one or more participants does not perceive himself or herself as one among
equals, then it may easily be the case that the participants will be defensive, and the
reflection coloured beyond the point of usefulness.

Michael Jones Inspiration for the Research Page 22

The *Commons’ was conducted during 2005-06, and involved 20 academics with
considerable experience in ITP being selected from those who expressed an interest.
Plenary monthly meetings were held in London South Bank University. Professor
Fincher decided the theme and agenda for the meetings, each of which lasted around
six hours. The attendees were asked to contribute by participating in the discussions
within the meetings, and writing a reflective piece on the topic under discussion
(either before or after the meeting). These pieces were then collected by the
individuals into their respective portfolios and submitted to Ms Fincher for analysis,
and with the intention of their being made available at a later date to the wider
academic audience. The experience has been disseminated in articles (Fincher,
2006b) and a website (Fincher, 2006). Since then, several other computing
Commons studies have taken place.

Prior to the first meeting, the author expected that the function of the Commons was
to be positivist — to collate and evaluate experience and to decide on the most
appropriate delivery and/or assessment scheme. The author soon realised his mistake
and initially found the lack of focus on producing definitive answers to be somewhat
disconcerting. As the diversity of approaches being employed by the various
attendees became more apparent, the rationale for the Commons (a group of equals)
became clearer. The intention was to expose the participants to richer and more
reflective views of a variety of approaches to the initial teaching of programming

than could be achieved via journal papers or conference presentations.

The next consequence was to enthuse the attendees to extend the level of their
reflection, as the environment created was so positive and supportive. The time taken
to travel back and forth from and to the meetings provided additional opportunities
for reflection, the rail system notwithstanding. Attendees were provided (at the
meetings) with “train reading’ to provide an impetus to the reflection for the next

meeting.

A request for participation was made early in the summer of 2005, with the selection
being confirmed some two months prior to the first meeting. Two participants had to
withdraw due to work pressures, and not all those who persevered to the end

submitted complete portfolios. The actual number of submissions was 12.

Michael Jones Inspiration for the Research Page 23

Dissemination of the results took the form of conference papers and journal articles,
written by various subgroups of the participants. A Commons in the teaching of user

interfaces took place during 2007-08 and others have taken place since.

As the Commons progressed, it became clear that the approach to teaching in
general, and programming in particular, had received far less research focus in the
author’s School than was the case for the other institutions represented. This was
evident in the learning materials being used, and in the nature of the learning and
assessment processes being employed. This consideration of innovation resonated
with the author, and provided enhanced motivation to understand in more detail

(through research) the processes relevant to learning to program.

The author found the process of portfolio creation within the Disciplinary Commons
to be cathartic and illuminating. Thinking more deeply about aspects of the activity
highlighted the extent to which components of the delivery and assessment scheme
had become axiomatic simply through custom and practice. The timescale of the
Commons (some 9 months) allowed a gradual evaluation of the precepts
underpinning the design of the delivery and assessment. These deliberations were a
significant factor in the redesign of the introductory programming unit. It was not
surprising to discover that the symbol used in the Commons logo was derived from
Frank Lloyd Wright’s experiment with a form of architecture commons that he
conducted in his home (Taliesin) in the early part of the twentieth century. The
conduct of the Commons also has echoes of Donald Schon’s practicum (Schon,
1984).

The views of the other participants were of more incidental benefit to the author.
Each was working in a different environment of institution and course; some were
mainly teaching, whilst others were more focused on (generally non-pedagogical)
research. There was a great sense of camaraderie and collective participation, at least
from the author’s perspective that helped to engender a sense of responsibility for the
completion of the portfolio. It was also the case that Sally Fincher organised the
meetings meticulously, so the author found each of the meetings stimulating, despite

their length.

Michael Jones Inspiration for the Research Page 24

2.5. The Redesign of the (Introductory) Programming Unit

A number of conclusions can be drawn from the literature regarding the necessary
and desirable components that should comprise the delivery and assessment scheme
for an introductory programming unit. These were encapsulated as a set of eighteen
principles, which are listed in Appendix G. These principles suggest that
individualising the learning experience is central to a notion of creative
programming, and as a direct result of the nature of programming and the processes
involved in the learning of programming. There is also recognition of the complexity
of programming that should influence any aspirations the tutor may have for the
level of student achievement that is possible in an introductory programming unit.

2.5.1. Initial Application Genre

Although all programs provide a mapping between an input dataset and an output
dataset, there are many forms of mapping. Each form can be considered to represent

a separate genre of program.

The following is an indicative list of some of the most common programming

genres.
1. Data Processing.
2. Graphical User Interface (GUI).
3. Mobile.
4. Game.

The differences become apparent in non-trivial programs — programs having multiple
manipulations. Historically, data processing applications emanated from the
processing of business data, typically financial transactions. In a data processing
application most manipulations are in some critical manner different from other
manipulations. In a timetabling system, for instance, scheduling will probably
involve logic specific to the type of room (e.g., lecture theatres, meeting rooms,

laboratories).

Michael Jones Inspiration for the Research Page 25

In GUI applications the user is presented with a number of components on a form
where each component is capable of responding to a variety of user actions. The
critical element is that, when the user interacts with a visible component, this user

action is generally linked to the manipulation of other components.

Mobile applications are similar to GUI applications in terms of managing
components and the consequences of user actions, but there is the addition of
elements specific to the deployment of the application. This brings in the need to
understand the underlying systems software, something that is also true of web

applications.

The term ‘game’ here is used to embrace those applications where the elements of
the solution space are well defined. It is also the case that there are often regularities
to the solution space that can be exploited. Solitaire would be an extreme example,
where only one type of move is allowed. Game applications often involve creating

solutions by exploring networks of potential strategies or actions.

Elegance

‘Elegance’ is a term often applied to solutions in general. It is interpreted here to
mean ‘apposite’ or ‘parsimonious’ — the use of sufficient elements to solve the
problem and no more. Each genre of application involves a different interpretation of
elegance. In game applications with their exploration of highly regular solution
spaces, elegance tends to manifest itself in terms of recursive, compact algorithms.

An elegant solution for solitaire might involve less than 20 instructions.

Elegance is not simply an aesthetic aspiration. One tends to find that inelegant
solutions are very difficult to comprehend and therefore to modify reliably. A long-
winded solitaire program will generally include extraneous elements that may well
render the program incapable of being modified without introducing secondary

errors.

In GUI, mobile, and web applications the “two worlds’ of the user interface and the
data manipulation need to be separated when represented in the program. If this is

not followed, then complex dependencies will be generated that will prove difficult

Michael Jones Inspiration for the Research Page 26

to modify. The model-view-controller (XXX) observer design pattern was created to
help programmers realise this separateness. The ‘view’ corresponds to the user
interface, and the ‘model’ to the data and its manipulation. The “‘controller’ facilitates

communication between the two in such a manner that dependencies are minimised.

Data processing applications can be considered to correspond with the “model’
element of the MVC design pattern. Many ‘real-world’ applications have little or no
user interface. Examples would include applications that process invoices, and
programs that download and apply updates to operating systems or applications
software. Data processing applications are characterised by being aggregations of
different manipulations. There will often be insufficient regularity in these
manipulations to use the same sequence of statements to perform more than one
manipulation. In attempting to create a single algorithm that can be applied to
multiple manipulations, the programmer may impose constraints that will make it
more difficult to test or modify the program. In data processing applications it will
generally be the case that the size of an application will tend to be proportional to the

number of manipulations, and vice-versa.

Within the programming units across the programme, the main genres explored were
(and are): data processing, GUI and web genres. As “data processing’ is common to
all these genres it was decided that this would be the genre to which the students
would be first introduced. It follows that application size would be an appropriate

element in the measurement of student progress..

2.5.2. A Different Programming Language

The programme (which includes the first year Programming unit) was substantially
remodelled during 2004 and 2005, in terms of the unit structure and content. The
first year (level C as it is designated) Programming unit remained, with
modifications to the assessment (with the re-introduction of an end of unit
examination) and to the programming language (Java replacing C). There were also
changes to the teaching team, with the author becoming the unit leader.

The impetus for these alterations came largely from two sources: to rectify

reductions in recruitment, and to update a very traditional content and pedagogy. The

Michael Jones Inspiration for the Research Page 27

Programming unit typified the traditional nature of the approach taken. The C
programming language was developed in the late 1960’s (Kernighan and Ritchie,
1988) originally as a high-level assembly language, and remains a language
primarily used to write systems software. The programming assignments were highly
prescriptive, echoing the “cipher’ or ‘translator’ role of a developer within the
software engineering discipline. In a strict interpretation of software engineering, the
user is responsible for the requirements of a new software system, and the software
engineer’s responsibility is to gather, analyse, then transcribe these faithfully into
software. Incidentally, this partitioning of responsibilities is generally inappropriate
in a modern commercial marketplace where both user and developer are encouraged

to be creative in the application of information technology.

2.5.3. Operational Considerations

All learning in a formal environment is subject to a number of strategic, tactical, and
operational considerations. The strategic and tactical elements can be considered to
be reasonably static, as programming will form part of every computing
undergraduate degree for the foreseeable future, and the main objectives of such a

unit will remain much as they have been.

Higher education is subject to cost constraints, in common with every area of
government activity. These constraints are partially linked to limits on income, and
there are cost pressures associated with advances in learning technology. These
technological developments would extend beyond the learning management
software, to include networking of lecture theatres and laboratories to capture
learning activities and facilitate access to the learning system and to other learning
resources. The learning management system (also termed a virtual learning
environment) can offer mechanisms to simplify and automate submission of
assignments and provide access to feedback, marks and grades. These latter two may
also be integrated with the student records system, to simplify the production of

results for consideration by examination boards.
Staff costs associated with technical support is also a consideration.

The technology helps to individualise the learning experience by allowing students

Michael Jones Inspiration for the Research Page 28

to access materials at a time and in a place that may be more suitable and convenient.
More materials may also be available, especially if one factors in the plethora of
websites related to almost every area of education. One consequence is that
supervised workshops will gradually morph into learning studios, where members of
staff are available to support and guide, rather than direct learning. A reduction in the
interaction between tutors and students would then be expected that, in turn, leads to
pressures to increase the number of workstations in laboratories, and the creation of

larger learning environments or 'studios'.

A parallel development, aimed at increasing student choice (as well as reducing
costs), is the introduction of frameworks, which accommodate multiple programmes,
each of which may include a number of pathways, or awards. A framework consists
of a number of units (or modules). A programme is a particular subset of units, and
an award (or pathway) will consist of a specific subset of units within a given

programme.

Common units in a framework can then be shared, reducing costs. Greater incidence
of commonality in the first year allows students to delay the choice of their
specialism, which many students find appealing. Common units thus tend to have
very large numbers of students, and need to cater for a wide range of student
expectation, motivation, and prior experience. There may be additional learning
constraints on such units, as they will need to provide the underpinning for each of

the successive units in the various programmes.

The framework model was adopted prior to the first cohort. Four pathways were
included, three of which (Software Engineering, Software Engineering Management,
and Software Product Design) were focused on specific areas within computing.
There was also a Computing award where students could select any of the units from
the focused awards, which then catered for those students wishing to have a more

individual learning programme.

Subsequently, this Computing framework was amalgamated with two others (in
Business Information Technology and Networking) to produce the Software Systems
framework. Over the four-year period of this study, Cohorts A, B and C were part of

Michael Jones Inspiration for the Research Page 29

the Computing framework and Cohort D was the first of the Software Systems
cohorts. Programming was a compulsory unit in all three of the frameworks that
were amalgamated into the Software Systems framework, although the delivery and
assessment schemes were different. All three frameworks also included a third year
industrial placement, but a minority of students undertook placements that involved

producing software.

The learning management system (or virtual learning environment - VLE) was
gradually phased in over a few years, starting after the introduction of the
Computing framework. Consequently, most of the facilities offered by a VLE had to
be replicated by the author. These included online tests, assignment submissions and

access to assignment feedback.

2.5.4. A Redefinition of Axioms

The adoption of the following axioms underpinned the redesign of the unit:

1. Universe transitions impede learning

2. Learning to program benefits from continuous engagement.

Many introductory texts recognise the complexity inherent in learning to program,
and attempt to simplify the process with examples that do not require either loops or
collections (e.g., arrays). This approach requires at least three fundamental ‘universe
transitions’ before students can tackle realistic problems: the use of loops,
collections, and classes. A “‘universe transition’ is here taken to mean the
modification (as opposed to the expansion) of the scope and nature of the problems

being examined, and the operators available to construct solutions.

An early adoption of loops and collections (e.g., arrays) reduces the number of
universe transitions. The semiotic overhead of the syntax of loops and arrays was
considered to be negligible, given the high semiotic complexity of even the simplest
Java program. The need for multiple transitions also increases the chances of
students developing problem solving strategies that are too closely tied to the current
universe, thus producing resistance to the transition above and beyond that which

might be expected. See Appendix H for a more in-depth analysis.

Michael Jones Inspiration for the Research Page 30

More detail on the redesign of the Programming unit is available (Jones, 2007).

2.5.5. A Phased Approach

It was decided to introduce a more modern pedagogical approach gradually, phasing
the process over four successive cohorts, to facilitate a high level of control over the
introduction and the measurements of the effects of the changes. The level of success
of students in obtaining industrial placements and employment remained very high,
indicating that many aspects of the curriculum and approach were deemed
appropriate. Student feedback was also largely positive.

The component of the transition were elucidated as:

1. Introduction of portfolio assignments. A portfolio more closely links the
weekly workshops with the assignment, and also provides the student with
more choice in the selection of work to be submitted.

2. Increasing the number of assessed elements. The intention was to emphasise

the benefits of a continuous approach to learning to program.

3. Increasing the profile of program comprehension. Modern software
construction is a fusion of original algorithm design and implementation, and

integration with existing software components.

4. Increasing the self-reflective element in assessment. The objective was to
increase the participation of the students in the design of requirements, and to
raise the students” awareness of the programming constructs.

5. Placing more emphasis on a wider range of programming constructs. The
constructs that traditionally receive little attention in introductory units are

those dealing with error handling.

6. Early introduction of a realistic problem universe. This implies that students

would be introduced to the design of classes at a very early stage.

As each component represents a separate (albeit evolutionary) step in the change

Michael Jones Inspiration for the Research Page 31

process, it was decided to synchronise the introduction of components with
successive cohorts. Component 1 was introduced in Cohort A, components 2 and 3
in Cohort B, and 4 and 5 in Cohort C, with component 6 being delayed until Cohort
D. In the event, the amalgamation of the three programmes into the Software
Systems framework created a significant challenge, so the sixth component was

changed to:

6. Promulgation of the delivery scheme to a larger and more diverse student
population. The numbers of students trebled, the learning environment
changed, as did the staffing.

2.5.6. The Central Role of the Portfolio

The successful introduction of a portfolio assignment was the crucial first step in the
planned pedagogical evolution. To ensure success, the portfolio would need to satisfy
meta-requirements, and so be more than an arbitrary collection of applications.
Instead of writing software to meet specific, functional requirements, each student
would need to select a group of applications that together demonstrated specified
programming techniques. For computing to be seen as a creative, rather than a
translation, discipline, the focus needs to be placed equally on the programming
techniques and on the requirements of the commissioning user. The applications in a

portfolio can thus be seen as analogous to studies in an artist’s portfolio.

2.5.7. More Assessment Elements

The prior assessment regime included an assignment submitted towards the end of
each of the first two terms. The time between assignment deadlines was therefore in
the region of three months. The workshops continued, and so there were
opportunities for students to receive support and informal guidance, throughout the
academic year. No formative assessment was provided. For novices, such a time
span between summative assignments is considerable, and that is not the only
potential source of anxiety. Where there are two assignments in an assessment

regime, both need to be represented in the calculation of the final mark.

An increase in assessed elements can ameliorate both sources of concern. With (say)

Michael Jones Inspiration for the Research Page 32

four programming assignments, students would more readily be aware of their
progress, and there would be the potential for the weakest mark to be omitted (from
the final calculation). Such an increase would double the marking load, so action was
required to manage this. The placing of the first programming assignment was also a
consideration. An early assignment presents opportunities and threats. Provided
(almost) all students submit a passable piece of work, general anxiety within the
cohort would be reduced; the reverse would be true if even a substantial minority

were to fail (or fail to submit).

Purely automatic marking was discounted, as this inevitably drives one towards a
purely mechanistic assignment, and there is little scope for innovation (on the part of
the student) to be rewarded. Elements of the assessment process therefore became

the focus for automation. These were identified as:

a. Online tests. The use of online tests can minimise marking time. Making a
subset of the questions available during practice sessions can provide

formative assessment and augment the learning process.

b. Online assignment submission. This would substantially reduce the effort
involved in collecting and processing CDs or floppy disks, and minimise
errors, provided the submission system rigorously validated the submitted

files.

c. Generation of feedback. This involved the use of standard phrases linked to
document generation software, and helped to minimise the time taken to

generate feedback once the marks had been decided.

d. Use of a supplied library. This provided a range of features to create new
projects and simplify input/output. This was more than ‘wrapping up’
complexity for convenience — the features were based on sound programming

principles.

e. Generation of sample code. The intention was to facilitate more emphasis on
code layout and variable naming, as well as enable those students with

minimal confidence to create applications suitable for submission.

Michael Jones Inspiration for the Research Page 33

f. Identification of concept realisation. Every program contains realisations of
programming concepts via constructs. This software was intended to enable
students to identify the relationships between the concepts and their

corresponding realisation(s).

g. ldentification of programming constructs. Software which can list the
constructs used in an application can be useful in providing formative
feedback, as well as assist in the marking processes for summative

assignments.

At this time, the HEI (Higher Education Institution) in question was in the process of
evaluating Virtual Learning Environments (VLEs). Fortunately, the author had been
involved in the development of a learning management system that included an
online question component (Jones et al., 2003). This was easily modified to provide
the necessary functionality. Similarly, the author had constructed a rudimentary
online submission system that was enhanced, particularly with regard to the
validation of the submitted files. As the intention was to create an integrated system,
it was not possible to include any of the many software products and systems
available to fulfil the other requirements. This necessitated the production of the
software, some of which was done in projects commissioned under the *Releasing
Potential’ initiative launched at the HEI in 2006. In all, three projects were awarded

to the author within this programme.

2.5.8. Student Activities

The revised delivery programme included one of the innovations introduced
previously: that of multiple exercises in a given workshop. The use of a long list (e.g.
12) of exercises allowed students to select certain activities, as it would not be
possible for a novice to complete all the exercises between the weekly scheduled

sessions. An example of a revised workshop session is included in Appendix L.

Appendix L also includes an example of the first programming assignment. This was
distributed at the outset of the delivery of the unit, to be completed by week 6. The
assignment allows for student choice in terms of the applications to be submitted and

the number of applications. Two of the options allow the student to include code

Michael Jones Inspiration for the Research Page 34

generated by a supplied software tool (JCodeGen) that is described later as one of
the pedagogical innovations. Where generated code is included the student would be
required to correct any styling errors, replace any unsuitable variable names with
more appropriate ones, and add relevant comments. This emphasises the equal
importance given to comprehension in the early stages of the delivery of the unit.

2.5.9. Fostering Creativity

Creativity can be viewed as the reconciliation of multiple goals (some of which may
not be fully understood) into an artefact that has the power to astonish. There is a
sense in a creative discipline of some element of discontinuity, or of nonlinearity —

redefining problems and/or realigning solution components in novel ways.

Inherent in the notion of creativity is a considerable element of freedom. As Albert
Einstein is quoted as saying “You can never solve a problem on the level on which it
was created”. The danger this poses in an educational environment is that the
consequence may be a susceptibility to the charge of ‘relativism’ — many potential

solutions could be seen as impervious to criticism.

The solution is a focus on meta-requirements: on the underlying techniques and
structures. Many arts subject use this approach, and it can easily be adapted for

programming.

Accordingly, the requirements for the portfolios were expressed in terms of
programming concepts, with students being free to create and mould their own

problems around a specified set of programming constructs.

The corollary of this approach is that the assessment needs to examine the artefact
(in this case program code) in order to check that the concepts have been used.
Software was developed to assist in this process. The experience of this style of
assessment is described later as one of the innovations introduced in the delivery and

assessment of the revised unit.

2.5.10. Program Comprehension
Examining existing artefacts and techniques is vital in all learning. There may be an

Michael Jones Inspiration for the Research Page 35

initial *assimilation shock” with the learner feeling unable to take in all the
ramifications, but this can be ameliorated through explanation and exploration. With
the semiotic and conceptual overhead in programming there is a danger that this
shock will manifest itself in an “all-or-nothing’ strategy whereby the student blindly
accepts the program and uses it ‘as-is’, or simply fails to engage with the artefact at

all.

To reduce the chance of assimilation shock it was decided to get the students to focus
on aspects of the presented code by rectifying errors and limitations in styling or
naming. As there are few rules involved, it was hoped that students would spot
problems fairly easily, whilst exposing them to the code over an extended period of

time.

A program generator was written to produce endless variations of small programs,
thus fostering some sense of identification within the students, and creating an
environment where students could collaborate freely. Two further versions were

created, based on student feedback.

2.5.11. Framework for the Modifications to the Delivery and

Assessment Schemes

In response to the conclusions, the delivery and assessment schemes were modified.
One consideration was that the changes should be seen as evolutionary, rather than
revolutionary. The previous regime had satisfactory results and students expressed
general approval of the unit. A second element was also crucial in this respect. The
Peer Assisted Learning (PAL) system used successfully in the Computing framework
involved second year students tutoring first year students on aspects of the
curriculum (Fleming, 2004). It was therefore important that the second year tutors

should understand that the changes would add to the learning experience.

2.5.12. Modifications to the Delivery Scheme

Appendix A includes an outline of the changes to the delivery and assessment
schemes that were implemented for Cohort A. Eight changes were made to the
delivery scheme, and twelve to the nature and operational arrangements for the

assessment scheme. These changes emanated from an analysis of the eighteen

Michael Jones Inspiration for the Research Page 36

principles outlined in Appendix G. A key element in these modifications is the
increase in the visibility and immediacy of the delivery. By demonstrating the
writing of code in front of students, and by getting them to demonstrate their code to
a tutor, there is the sense of connection between the individuals and the artefacts that
can lead to more timely informal and formal feedback. A more detailed analysis can
be found in Jones (2007).

2.5.13. Summary

Many small, incremental changes were required to the delivery and assessment
schemes in order to implement the range of changes required. The increased use of
automated components (via the supplied library and the various online and marking
support systems) meant that the level of staff effort would decline (once the systems
were produced). The systems associated with assignment submissions,
demonstrations and marking were also designed to minimise the time taken to mark

and return student work.

The production time for the support systems interfered with the time to produce the
learning materials, with the result that in the first term of Cohort A more use was
made of manual processes than originally envisaged. This had a negative impact on

the time taken to mark (and turnaround) the two assignments.

Incidentally, for purposes of convenience, all programming assignments were
designed as ‘portfolios’. Of the 14 assignments analysed, three were constrained
assignments, where students were required to write a single program. The
constrained assignments were the final assignment for Cohort A, and the two final
assignments for Cohort D. It should also be noted that another tutor was responsible
for the delivery of the latter part of the unit for Cohort D. This was done, in part, to
smooth the amalgamation of the three programmes into the Software Systems

Framework.

Michael Jones Inspiration for the Research Page 37

3. Research Approach

Where resources are limited (which is the case with almost all research studies),
compromises need to be made in terms of the three main dimensions: time, width,
and depth. The ‘width’ of a study refers to the number and/or profile of the
participants and the number of facets to be investigated. The “depth’ is the degree to
which the selected facets are to be investigated. Time can be used either to focus on
one group over a period of time, or to study a number of groups each over a period
of time. The scope of the study should be driven by the aims and objectives of the

research, although logistical and resource implications need to be considered.

3.1. Aims

The overall aim of the research was to obtain a better understanding of some of the
key elements in the process of learning to program in the context of an academic
course that is linked to an academic group which focuses on applied research in
software engineering. To gain some insight into a range of factors, considerable data
needed to be gathered and analysed. Whilst no group of students is homogeneous in
terms of its computing background and ambition and motivation, the variety in each
of these dimensions is not linked to gender, age, or ethnic origin. It therefore follows
that data needed to be gathered from all the students in a given cohort. The use of
multiple locations would provide a richer picture of the processes involved, but
pedagogical incompatibilities and logistical problems limited the geographical scope

to a single programme in a single institution.

As one aim of the research was to examine the management of change, it was clear
from an early stage that more than one cohort would need to be considered. In the
event four consecutive cohorts were included in the study. The first two relate to the
time immediately prior to the start of the study, and were included to provide insight
into the progress of the transition, a more general view of the facets of learning to
program, to facilitate comparison with later cohorts, and to obtain some estimate of
the research value of the data gathered as an inherent consequence of unit delivery.
In parallel with the planning of the research study (and the delivery of the unit to

Cohort C), the nature of the undergraduate computing provision was being redefined,

Michael Jones Research Approach Page 38

and three programmes (Computing, Business Information Technology, and
Multimedia and Networking) were amalgamated into one (Software Systems)
framework with a common first year. It was decided to include the first delivery of
the unit to the first intake of the revised framework, even though pedagogical
compromises were necessary (as a consequence of the amalgamation), and there
would be logistical issues emanating from the larger numbers and changes in
staffing. On balance it was felt that the aims and learning objectives of the revised
unit were sufficiently similar to those of the preceding unit to enable a reasonable
degree of comparative analysis.

3.2. The Cohorts

The research study therefore covered the first full-time academic years of four
consecutive cohorts, identified by the letters A to D. As mentioned previously, the
first Cohort (A) was completed prior to the commencement of the consideration of
the topic for the research. The delivery of the unit to Cohort B coincided with the
development of the research proposal. The additional mechanisms used to support
concurrent gathering and analysis of research data were then first available for
Cohort C. These were refined for the research in association with the delivery of the
revised unit to Cohort D.

Although the cohorts had many similarities, there were certain characteristics
pertinent to each cohort. Cohort A was the first intake following a revalidation of the
Computing programme in 2005. This revalidation included significant changes to the
structure of the programme and units. An examination was re-introduced for the first
year Programming unit, and the Java programming language was adopted. There
were also changes to the teaching team for the Programming unit. There were
therefore considerable risks associated with the delivery of this unit, which resulted
in @ more conservative approach to introducing changes to the delivery and

assessment regimes.

The following cohort (Cohort B) saw the introduction of the major changes to the
learning and assessment regime. These were: the online submission of assignments,

the generation of feedback, the use of online practice and assessed tests, an increase

Michael Jones Research Approach Page 39

in the number of assignments, and the introduction of a code generator.

Some minor innovations were made for Cohort C. A library of useful classes and
applications was distributed to all students, and portfolio assignments needed to
include a file containing the claims of concept realisation. In addition, the code
generator was revised, as was the feedback generation system.

The presentation of the Programming unit for Cohort D (the first intake for the
combined Software Systems Framework) was to in excess of 200 students,
considerably more than the 70-85 students involved in the three previous cohorts.
The pedagogical compromises necessitated by the amalgamation resulted in the
adoption of the Computing approach for the first term, migrating to the approach

previously taken by another tutor in the other programmes for the second term.

3.3. Research Methodology

The various elements pertinent to the research were summarised and encapsulated as

a series of research questions.

3.3.1. Review of the Purpose of the Research

The research study aimed to monitor and measure the progress made towards
transforming an introductory programming unit in an undergraduate computing
programme from a reductionist to a creative paradigm. Instead of a developing a
toolkit of solution components then applying these in solving defined problems, the
intention of the learning programme would become one in which the students would
select their own activities. As almost all forms of programming include the same
concepts, the conceptual area covered is likely to be the same, but it was hoped that
students would become more confident of their own capabilities, and explore aspects

of programming beyond the basic curriculum.

This transformation could not be achieved in a single step: the pedagogical
perspectives of the other tutors, the other units in the programme, and the majority of
views expressed in the prevailing literature were (and largely are) reductionist.

Additionally, there remained a number of unknowns regarding the pedagogy that

Michael Jones Research Approach Page 40

would facilitate more creativity, and the nature of the intervening points along the
transformational path. The progress along the path had to be controlled, to ensure
that the direction of movement was always positive. If not, the scepticism of the
other stakeholders may have been reinforced. More importantly, risk-taking would
be unethical, as programming is a compulsory part of both the first and second years
of the programme that was the focus for the study. It is (and was) also the case that
few students have prior experience of programming, which means that a wide range
of capability and motivation will exist within a single cohort of students. It was
noted that the (then) current pedagogy had not produced results that required
immediate and drastic modification: the motivation for change was pedagogical

enhancement, not pedagogical recovery.

3.3.2. The Research Questions

The main objective of the research was to monitor and measure the effects of
implementing a paradigm shift in the pedagogy of an introductory programming
unit, where that shift was to be implemented incrementally over four successive
cohorts. The main research question ‘can a paradigm shift be implemented’ needed
to be elucidated in offensive and defensive terms. Offensively, the shift should
improve students’ capabilities in programming. Defensively, no student should have

his or her learning impaired by the changes.

As the pedagogical modifications were to be phased over a period of four academic
years, these offensive and defensive aspects were to be realised both within each

cohort and between cohorts.
Within the delivery to each cohort the following questions need to be answered:

1. Isthere evidence of learning in all students? All students should demonstrate
measurable learning throughout the unit delivery. On average, student
performance should improve, and there should not be an increase in failures
or withdrawals. In terms of programming, each portfolio assignment should
be more sophisticated than the previous one, in terms of the numbers of

instructions, and the breadth of programming concepts realised.

Michael Jones Research Approach Page 41

2. Does the profile of student performance follow a uni-modal Normal
distribution? All aspects of student behaviour and achievement should be
characterised by a broadly Normal curve that should extend over a reasonable
range. One might expect a certain amount of skew where (for example) there
are a number of students with similar profiles and expectations towards one
end of the spectrum. A rapid decline in participation or discontinuities in the
achievement curve would indicate that at least one section of the cohort felt

disenfranchised and had become dissociated from the unit.

3. Is there an internal consistency in the data gathered? The continuation and
participation rates should broadly align. Both are inter-linked with the level
of achievement in coursework and examination. One would always wish
there to be a reasonably high correlation between coursework and
examination achievement, even where (as in this case) the activities are quite
different. If such a correlation exists, it would indicate that a similar level of
intellectual capability and involvement permeates the delivery and
assessment. One would also expect high positive correlations between

coursework assessment components.

4. Are performance and progression (largely) independent of prior experience?
(This follows from the recruitment policy for the programme, rather than the
Programming unit itself). The nature of computing and information
technology education at primary and secondary level is such that no
assumptions can be made regarding students’ prior experience or expertise.
Students with minimal or no prior experience of computing should still be
able to progress. Ideally, progression of those with no experience should
match those students with some, or even perhaps considerable prior

computing experience.

5. Isthere a good level of student achievement? It is not enough that students’
progress — they must feel able and confident to express themselves and to
explore their interests within the subject. In terms of programming, this can
be seen in the use of more advanced concepts, and in self-authored

applications.

Michael Jones Research Approach Page 42

Between cohorts one would wish to have the following questions answered:

1. Is there evidence of evolution? No subject remains stationary, which applies
equally to the pedagogy and the domain. There should be developments in
the approach taken in delivery and assessment, and in the topics being
covered. These changes should recognisably flow between cohorts wherever

possible, so that each builds on a firm foundation.

2. Is there evidence of an improvement in student engagement? Each cohort can
be assumed to be independent from the previous one, but the learning
environment should be enriched by the experiences of those previous cohorts.
Where the learning environment (including staffing and resources) remains

relatively stable, one would expect to see small improvements year on year.

3. Is there consistency between cohorts? This is more focused on defensive
aspects. A similar level of effort, application and capability shown by a
student should lead to a comparable reward irrespective of the cohort. The
idea here is that, if the learning environment has improved, then it is

reasonable to expect a similar increase in the level of student attainment.

The next issue impinging on the design of the research method was the extent to
which these questions could be answered. There were two significant areas
demanding the attention of the author/researcher: supporting pedagogical change and
conducting the research. As the two were inter-dependent, it was decided that the
ongoing data analysis would be conducted to a level that could be used to monitor
and inform the pedagogical changes. Moreover, the analyses would be segregated
according to the facets of the study. The aggregation of these individual views would
provide a comprehensive statement on the success or otherwise of the paradigm shift

in the pedagogy.

3.3.3. Overview of Research Methods

There are many facets to a research study: the research methodology; ethical
considerations; resource availability; the skills available to the research team; the

availability of participants; other research in the field; and the characteristics of the

Michael Jones Research Approach Page 43

field itself. These factors form a network of influence, with the hegemony lying with
the intent of the research, embodied in the beliefs of the research team (Maxwell,
1998:88). The result is that the design of the research programme will necessarily be
an iterative process. This can continue after the start of the research, as opportunities
and issues manifest themselves. As resources were limited (especially with regard to
the size of the research team), the data collection regime was considered to be the

dominant component.

At face value, including the beliefs of the research team would appear to lay the
research open to accusations of bias; that the research was more concerned with
supporting the beliefs of the researchers, as opposed to adding to the body of
knowledge in a rigorous manner. The results of the research may be considered to be
unreliable or invalid, in that another group of researchers might not be able to
produce similar results, and the relationship between the data captured and data
representative of the domain might be too tenuous to convince the wider academic

public.

Where that which is being studied has also been designed, delivered and assessed by
the researcher(s), the potential for bias is considerably increased. In the context of
this study, it was not possible to commission the design of the research programme,
neither was it considered desirable to utilise the existing pedagogical regime. The
design of the research programme had to be cognisant of the extent of potential bias,
and to make strenuous efforts to at least limit, if not mitigate the effects wherever
possible.

One important consideration was the extent to which the research (as distinct from
the pedagogy) should impact upon the students' experience. The temptation was to
focus mainly on gathering quantitative data arising naturally from the learning
process: using assessments and online activities as the main source of primary data.
Such an approach could be seen as non-invasive. The main limitation would be that
this would restrict the level of data associated with the experience, rather than the

effects (phenomena).

Michael Jones Research Approach Page 44

3.3.4. Philosophical Influences

"Education implies that something worthwhile is being or has been intentionally
transmitted in a morally acceptable manner” (Peters, 1966:25). This is quite a broad
definition, especially if one delves into the various meanings of ‘intention’. This is
borne out by Ryle, quoted in Peters (1967:1) who asserts, "the logical geography of
concepts in the act of education have not been mapped™. One might imagine one
approach to defining education is to look through instances of education and attempt
to abstract general principles from them. Or to "formulate a definition of ‘education’
and to see whether this would fit all examples of it" (Peters, 1966:23). Either
approach, Peters argues, would run counter to that proposed by Wittgenstein (1953,
cited in Peters, 1966:24) in his later writings where he writes that games are a
"family of words united by a complicated network of similarities overlapping and
criss-crossing; sometimes overall similarities, sometimes of detail™. If one substitutes
‘education’ for 'games’, one can see that Wittgenstein suggests that there is no one
characteristic or group of characteristics which are shared by all examples of

education.

Peters' definition does not imply that all worthwhile things are necessarily education,
but it does separate learning from education, in that the moral and intentional
dimensions are not logically necessary for learning. Education is a special case of
what Ryle termed an 'achievement’ word, although Scheffler (1960:11) widens the

concept by adding 'trying' as a part of the educational process.

If research results are to have any validity beyond the immediate study, there has to
be some concept of the separation of the 'local’ and the 'general’. These two elements
have been characterised as 'subjective’ and 'objective’, the implication being that only
the objective can be translated or projected into a different scenario. Many scientists
strive for objectivity in the design of their experimental frameworks, harking back to
the scientific method associated with the Age of Enlightenment. This positivism (as
characterised by Tiryakian, 1978:23) is based on the belief of the existence of a
world that is mapped by a set of invariant, objective relationships, which can be
represented in a precise manner. Logical Positivism suggests that the precision can

be realised using mathematics.

Michael Jones Research Approach Page 45

Karl Popper challenged logical positivism, suggesting that verification through
formal argument was not enough to ensure that an endeavour was 'scientific’. He
introduced the principle of falsification (Magee, 1973:35-55) that contends that only
that which can be falsified can be considered science. And falsification depends on
the existence of objective knowledge. However, because Popper recognised the
possibility of errors in methodology, it follows that there are no verified scientific
theories, just ones that have been “corroborated”. Popper did not see 'science’ as
exclusive, urging researchers to be ambitious in seeking to apply falsification to a
variety of theories. There was also a social dimension to his work: seeing the
objective knowledge as an agent of democracy, in a manner that echoed the views of

Dewey.

Thomas Kuhn was a critic of Popper who suggested that an equally important
concern was the nature of scientific progress, which he characterised as being largely
evolutionary, but occasionally revolutionary; the latter of which he saw as shifts in
the paradigm. Later theories explain phenomena more fully than previous ones, but
that does not mean that theories can be directly compared. This concept of
‘'uncommensurability' opened up Kuhn to accusations of relativism, which he
rejected on the grounds that each theory was being measured. It is interesting to note
that Stickney (2006:327-9) suggests that Kuhn's views (which he terms relativist) are
being used to justify changes in educational organisation and funding. The idea being
that one cannot directly compare approaches, one judges each against the phenomena
of (presumably) grades and rates of completion.

3.3.5. Subjectivism

Phenomenology, hermeneutics and Critical Theory are branches of philosophy that
are generally seen as being subjective. Phenomenology is "the intuitive exploration
and faithful description of the phenomena within the context of the world of lived
experience (Lebeswelt), anxious to avoid reductionist oversimplification and
overcomplications by preconceived theoretical patterns” (Speigelberg, 1967:257).
Edmund Husserl is generally acknowledged to be the "center” of phenomenology
(Ricoeur, 1967:3), but Husserl himself stated that it was Brentano's development of
"intentionality into a descriptive concept of psychology"” (Husserl, 1931, quoted in
Chisholm, 1967:1) that began the philosophical movement of phenomenology. This

Michael Jones Research Approach Page 46

movement can be described as more of a method than a doctrine, as it includes the
"pure” phenomenology of Husserl's early writings, and the existential

phenomenology of (among others) Heidegger, Sartre, and Merleau-Ponty.

Hegel considered phenomenology to be a "thorough inspection of all the varieties of
human experience ... [including] ethical, political, religious, aesthetic and everyday
experience™ (Ricoeur, 1967:3). This is potentially introspective and self-referential,
which led to the American Pragmatists rejecting Hegel's views and approach.
Husserl took a different approach (Husserl, 1973), focusing (in the earlier works) on
the pursuit of “pure” phenomena, with the idea of then being able to aggregate these
objective components into 'real’ scientific theories and principles. He separated
aspects of phenomena into noesis (the use as intended in a given situation) and
noema (all intended uses of the object) (Gurwitsch, 1967:47), partly to resolve

difficulties with locating “pure” phenomena.

Philosophers have often accused the social sciences of lack of (not only) rigour, but
the intention to be rigorous (e.g., Popper's encouragement to social scientists to
embrace falsification). Merleau-Ponty, a prominent phenomenologist, is an
exception, being described by Tiryakian (1978:21) as being the “critical bridge
between existential philosophy and the social structure of intersubjectivity. Edith
Stein (a student of Husserl) outlined the notion of empathy as central to
intersubjectivity: the experiencing of another as an individual, not as an object within

other objects (Mooney and Moran, 2002).

Critical Theory grew out of the ill-defined critical theory espoused by the Frankfurt
School, and has a "cognitive dependence on a 'pre-theoretical instance’, an existing
social interest in emancipation which it seeks to articulate” (Honneth, 1999:320).
Critical Theory is characterised as being "empirical without being reducible to
empirical and analytical science; it is philosophical but in the sense of critique and
not first of philosophy; it is historical without being historicist; and it is practical, not
in the sense of possessing a technological potential, but in the sense of being oriented

to enlightenment and emancipation” (McCarthy, 1978:126).

The postmodern era has seen two variations of critical theory, according to

Michael Jones Research Approach Page 47

Brunkhorst (2009:94): fundamentalist, as epitomised by followers of Hedeigger, and
anti-fundamentalist, epitomised by Rorty. Adorno, one of the leading lights in the
pre-war Frankfurt School, is suggested as aligning more with the anti-
fundamentalists, in the sense that he presaged sentiments which Rorty has expressed,
such as "the freedom of the plural is not endangered by 'science and naturalistic
philosophy' but by 'scarcity of food ... and the secret police™ (Rorty, PMN,
1978:389). Such sentiments do accord with the Left Hegelian and Marxist view of
the emancipatory aspiration of people. Where there is a difference is that Adorno saw
this emancipatory aspiration as applying only to the proletariat; an aspiration that
could only be facilitated by collective opposition to capital. This has been redefined
by Jurgen Habermas to focus on the paradigm of communication in his Theory of
Communicative Action (Russill, 2005:285), rather than the paradigm of production
(Honneth, 1999:327). This re-drafting of Critical Theory has become the dominant
philosophy in modern Germany, although Habermas is not without his critics
(Heinrich, 1999).

3.3.6. Application to the Study

The 'situational’ and 'cultural’ aspects of the intended research would tend to suggest
links with the pragmatism of John Dewey. His philosophical roots lay in the
American Pragmatism of William James and Charles (C.S.) Pierce, sharing with
them the Hegelian rejection of Cartesian dualism. Unlike James and Pierce, and
their followers, including C.1. Lewis, Dewey developed a social and biological
dimension to his view of pragmatism (Peters, 1977:104). Education as an instrument
of 'democracy’ is a theme of much of his writing. Dewey went as far as to suggest
(1916, republished 1966:328) “philosophy may be defined as 'the general theory of

education".

Dewey's views heavily influenced the design of the American education system. In
the 1920s he proposed a different agenda from the prevailing individualistic view of
education favoured by other pragmatists. His 'constructivism' had five elements, each
relating to the mutually inter-twined concepts of society, culture, democracy, and
education. For Dewey, a key aspect of democracy is fluidity: the absence of social,

political, or educational barriers.

Michael Jones Research Approach Page 48

One accusation levelled at pragmatic research is that the acceptance of the integral
nature of the situational and cultural factors necessarily limits the extent to which

conclusions can be applied in differing environments.

It may seem that subjectivity may not be relevant where a large volume of
quantitative data is to be analysed, as in this research study. The relevance of a
consideration of subjectivism in the context of this study is to explore the notions
that the quantitative measures may be subjective, and that the inferences drawn from
the analysis almost certainly will be subjective. Suppose a student selects the correct
option in a multiple-choice test, or correctly identifies the specific lines of a program
that realise a given programming concept. The quantitative measures, whilst precise,
will tell only part of the story. Treating them as definitive or complete requires a

subjective judgement, as does viewing the researcher is an independent observer.

One alternative considered was to use a variation of action research, where teams of
individuals collaborate to solve problems. This can have a strongly social context,
but this is not necessary. The essential element is continuous data gathering and
analysis, rather than external sampling by an individual researcher or researchers, or
purely self-reflection. An important consideration in action research is the notion of a
solution. Who decides what a solution is, how can it be measured; is it static or can it

change?

In this study the researcher is totally immersed in the scenario, designing the
delivery and assessment, and being mainly responsible for both. There was
continuing contact with the participants, most of which was concerned with their
learning. The researcher was not to be in the role of participant, neither would the
participants be overtly involved in solving the problem of designing an improved
unit. The latter was considered unethical, as it may have deflected the students from
their main purpose, that of learning about programming and hence passing the unit.

Given those caveats, it was still possible to consider the research as following the
action research paradigm. Data would be continuously available and analysed
frequently, via the assessments and actions of the students. Minor modifications to

the delivery and assessment could be made in response to particular circumstances,

Michael Jones Research Approach Page 49

with more significant changes being applied to the regimes for the following cohort.
The students’ input to the problem solving process would necessarily be indirect, as
their engagement and achievement (or lack thereof) would be significant. This would
not deviate from the tenets of action research, provided the students were made
aware of the overall enterprise. It would also be the case that within the learning
process, there may be time for the students to provide more direct input into realising

the objective of a more effective introduction to programming.

The participants in this study would not be (directly) helping to solve the problem of
facilitating a paradigm shift in pedagogical style. This was an important
consideration, and one that indicated that the research study could not be
characterised as classic action research. Also, although the participants could be
viewed as equals, and they would be constructing a portfolio of work during the
academic year, they would not be asked to reflect on this portfolio: deflecting the
participants’ efforts away from studying programming would not be ethical in the

context of an environment where the participants’ performance was being evaluated.

In the context of the population under consideration, it was concluded that the most
suitable technique would be a sequence of case studies each one focused around all

of the activities of a given cohort. This conclusion was rationalised in terms of:

1. It was not relevant, practical, desirable or ethical to select any group within a
cohort. This would apply to the following potential groupings: prior
experience, gender, ethnicity, and age. Selecting (say) those with no prior
experience would have been a haphazard process, given the lack of definitive
and verifiable data. There would also have been ethical considerations arising
from such a choice, given that the researcher was also responsible for the

assessment and marking.

2. The planned phased evolution of the curriculum necessarily involved

multiple cohorts.

3. Multiple cohorts would provide opportunities to evaluate the selection,

application and calibration of instruments.

Michael Jones Research Approach Page 50

4. Within practical limits, it was not considered valid to select a subset of
activities for inclusion in the case study. Focusing on one aspect may lead to

ignoring positive or negative effects on other facets of the unit.

Case study research is a well established, although sometimes controversial group of
research techniques. Each technique involves the identification of a delineated set of
activities involving a discrete group of participating individuals. These activities are
observed using instruments and various data points recorded. The controversy often
focuses on whether such an approach can be scientific and manifests itself in terms

of one of more of the following accusations:

a. Practical knowledge is seen to be of less value compared with theoretical
knowledge. The highly contextualised nature of a case study implies that any
theoretical data is compromised by contextual data, rendering the results

meaningless.

b. Case studies are useful for generating hypotheses, rather than rigorously
testing them. Case studies involve observation (ideally general rather than
selective) that lends itself to analyses that yield patterns that can be used to
generate theories. This grounding of the theory in the data is a common form

of case study research.

c. Itis difficult to generalise from a single case study. Again the unresolved
dichotomy between specific case-related data and more applicable domain

data may compromise any extrapolation to, or comparison with another case.

d. There is a danger of unrecorded and unverifiable bias in the data gathered.
No case study can record all data points, and those that are recorded may be
subject to error or bias. Other researchers (and the researchers themselves)
may be unable to spot or assess bias in selection and recording. This would

impact the validity of the data.

e. Summarising a case study may be problematic. Summarising implies the

application selection and abstraction, raising the import of certain data above

Michael Jones Research Approach Page 51

others, and grouping data around and into a higher-level conceptual

framework.

Underpinning these concerns is that there must be an element of indiscrimination in
the observation: the researcher wishes to capture the richness of the activities and so
cannot be too selective in gathering the data. It may be that instruments need to be
modified (or even introduced) as the case study evolves. Furthermore, as stated
above, no data gathering can be comprehensive, and it may not be possible for a
researcher (often immersed in the case) to be aware of the subtleties of bias.
Alternatively, the researcher may embrace the bias, or neglect to consider it, in order
not to alienate himself/herself from the participants. The idea being that the
participants will behave more naturally over the extended period of the case study if

the researcher is seen as part of the case study itself.

Where the researcher moves between observer and agent there are additional
challenges to the notion of case study as a rigorous research approach. Such
participant action research intentionally uses the bias of the researcher to influence

and/or enact change within the activities under consideration.

Flyvbjerg (2006) has systematically refuted each of the accusations above, and
pointed out that examples are an essential element in social science research. The

key is a set of good examples, well executed.

Having established that case study research was a potentially acceptable research
approach, consideration moved to the selection of specific technique and the
generation of a rigorous research method. The research was planned during the
delivery of Cohort B. The retention of the programming assignments (portfolios)
from Cohort A meant that quantitative analyses of all portfolios for all students
across the four cohorts would be possible. Given the volume and number of this
data, it was decided that the resources required to produce the analyses would limit

the number and diversity of other instruments.

3.3.7. Case Study Research

Robert Yin has published widely on case study research, covering research methods

Michael Jones Research Approach Page 52

and sample cases (Yin, 1998; Yin, 2003; Yin, 2004). From an analysis of this and
other literature (e.g., Stake, 1995; Cavaye, 1996; Huet et al, 2004), three of the
factors that needed to be elucidated were identified (Kennedy, 1979:664-6):
attributes (those aspects to be included), the functions (the actions involved), and the
outcomes (ephemera). In terms of this research study, the attributes were the tests,
surveys, and programs; the functions were the analyses to be performed; and the
outcomes should answer the research questions. These aspects of the research should
be applied (where possible) to each of the cohorts. As Kennedy (1979:674) indicates,
one can only draw tentative conclusions when generalising over a number of case
studies, as there may be a number of differences between the attributes, functions
and outcomes in each case study. Whilst one may assume that the makeup of each
cohort will be similar, this cannot be controlled, and one must assume a certain level
of variety. Even where a unit has been delivered a number of times, there may be
changes in aspects of the delivery, such as staffing, or the use of different
assignments and test questions. The outcomes should bear a level of comparison, but
one can readily see that the more detailed the analyses, the greater the likelihood of
false positives or false negatives — the association of non-causal factors, or the

dissociation of causal influences.

It was therefore decided to limit the depth of the statistical analyses to the common
measures of population and distribution, with a small amount of regression analysis

where appropriate.

It was decided that analysing all the test and survey responses, and every line of
submitted code would provide a reasonable basis on which to compare each of the

cohorts.

3.3.8. The Selection of the Research Method

The main objective of the research was to monitor the progress towards a change in
pedagogical orientation over a number of cohorts. The students are crucial
components in this progress, but the nature of their involvement had to be defined.
All students had to be willing to actively engage with the pedagogy otherwise
learning could not take place, or would be piecemeal. The question then remained as

to whether (and to what extent) the students could influence the pedagogy either

Michael Jones Research Approach Page 53

within the presentation itself, or in the design of the pedagogy for the following

cohort.

The pedagogy allowed for (and encouraged) students to create their own
applications, thus one dimension of active involvement was already catered for.
Extending this into influencing the pedagogical design was considered, but rejected,
mainly on ethical grounds. If a group of students suggested a change of pedagogy, it
would be highly likely that this may have a negative impact on other students, and

there would be the chance that there would be other unforeseen consequences.

There are characteristics of the research that have elements of grounded theory,
action research, and case study. The intention was that the recommendations should
be grounded in data; the students would need to be actively involved in the

pedagogy; and each cohort could be considered to be a case study.

Whilst one goal was for the recommendations to be grounded in analytical data, it
was felt that the lack of control over the recruitment, staffing and other resources
would limit the extent to which any derived or inferred theory could be considered

reliable or capable of projection into the future, or into other HElIs..

Participant action theory was not considered appropriate for this study, as the
students’ participation was necessarily restrict