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LABOUR FORCE SURVEY

by Alinne de Carvalho Veiga

Data sets commonly used in the social sciences are often obtained by sample

surveys with complex designs. These designs usually incorporate a multistage

selection from a population with a natural hierarchical structure. In addition,

these surveys can also be carried out in a repeated manner including a rotating

panel design, which is a source of planned non-response. Unplanned non-response

is also present in panel data in the form of panel attrition and intermittent non-

response.

Methods are developed to handle this type of data complexity. These meth-

ods follow the Multilevel Model framework which is reviewed. Longitudinal growth

curve models accounting for the complex data hierarchy are fitted. Recognizing

the need to account for the complex correlation structure present in the data,

multivariate multilevel models are then adopted. Alternative modified correlation

structures accounting for the rotating sample design are proposed. Multivariate

multilevel models are fitted utilizing these alternative correlation structures. In

addition, models estimated using robust methods are compared with those esti-

mated using standard methods.

A method for calculating a set of longitudinal sample weights that accounts

for attrition is proposed. Models utilising the conditional sample weights and

longitudinal weights are fitted using the Probability-weighted Iterative General-

ized Least Squares (PWIGLS) estimation method. Furthermore, an extension to

PWIGLS for multivariate multilevel models is developed. Models fitted through

different estimation methods are compared and the best approaches are suggested.

Data from the Brazilian labour force survey, Pesquisa Mensal de Emprego

(PME) are used. The PME has a complex sampling design that includes a multi-

stage selection of the sample units and a rotating panel design characterised as

4-8-4. The methods developed are used to investigate the labour income dynamics

of employed heads of households in the PME survey.
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Denise, Katinha, Luana, Bia, Flavio, Wagner and Felipe (my dear Brazilians); Vasthi,

Eri and Renato (friends of all times); Marco, Carlo, Salomé, Lynda, Lorenzo, Aisha,
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Panel Data

Data sets commonly used in the social sciences are often obtained by sample sur-

veys with complex designs. These designs usually incorporate a multistage sample

selection from a population with a natural hierarchical structure. Furthermore,

when these designs include different waves of data collection, i.e. when the same

sample is followed over time, a complex longitudinal data set, or panel data set,

is generated.

Panel data is also called longitudinal data in the social sciences or repeated

measurements data in the medical sciences. According to Firebaugh (1997), panel

and longitudinal surveys follow households, families or individuals over time while

repeated measurements surveys follow birth cohorts over time. In economics panel

surveys may sometimes refer to repeated cross-sectional surveys that follow cohorts

or groups of individuals over time. These data are pooled or matched to form a

panel but only allow the investigation of aggregate change. This is not the type

of panel data this thesis deals with.

Heckman and Singer (1985) defined typical panel data as those that contain

a large number of units observed over a short period of time. The different times

the units are observed characterizes the waves of the data or the measurement

occasions. Plewis (1985) observed that in the social sciences panel surveys are

usually taken on fixed measurement occasions with regular spaces between each

of the measurements. However, panel data can also result from a rotating panel

scheme. These schemes involve the stratification of the selected sample into panels

1



Chapter 1 Introduction

that are rotated in and out of the survey during a specific period of time. This

results in a planned unbalanced panel data set, as not all the units are observed

at every time point. In addition, panel data can be prospective, collecting current

data in repeated interviews, or retrospective, collecting data from past events

(Menard, 2002).

There are a number of advantages of panel data when compared to cross-

sectional data sets. As already mentioned, in a longitudinal survey, the units of

analysis have their information collected for two or more periods of time. Usually

the same individuals or cohorts are followed over time, as opposed to a cross-

sectional survey which collects information for a single period of time. Therefore,

the analysis of panel data allows for the direct study of change (Plewis, 1985).

It allows for the investigation of the process of change that the individuals and

groups go through. Change can be due to growth or development reasons, histor-

ical reasons or due to group membership. These different processes relate to three

linearly dependent effects: age-effect, period-effect and the cohort-effect (Menard,

2002). Longitudinal surveys also allow for the study of the stability over time. Sta-

bility, as defined in Plewis (1985), is the positive correlation between the repeated

outcome measurements within the same individual. A higher positive correlation

would indicate a high level of individual stability.

Panel data can also be used in the investigation of cross-sectional effects. For

example it can be used for understanding the gross flow between each time period,

as well as the investigation of net flows over the time of the survey (Firebaugh,

1997). In this sense, a panel data analysis permits the investigation of the within

and between individuals variability, which is not possible in a cross-sectional anal-

ysis. It can also make possible the identification of directions and magnitude of

causal or temporal relationships. In the social sciences panel data have great ap-

plicability in the development and assessment of public policies (Burkhauser and

Smeeding, 2000). Furthermore, panel data analysis allows a better assessment of

important dynamic economic processes such as the study of spells of unemploy-

ment, job turnover and income mobility (Baltagi, 2005).

There are also disadvantages in the collection of panel data. These data sets

require special tools of analysis, which for example deal with the dependence over

time between the responses within the same unit of analysis. Furthermore, the

complexity of the panel survey design might certainly be seen as an disadvantage.

Due to such complex designs, the methods of analysis typically used for cross-

sectional data are not applicable for longitudinal data sets. In addition, if the

survey design also involves the selection of units through unequal probabilities of
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selection, clustering and stratification, methods applied in the analysis need to

account for these characteristics.

The analysis of panel survey data can also be affected by recall (Bailar,

1989) and measurement errors (Duncan, 2000). The former type of error relates

to how much the respondents can recall past events and declare them correctly.

Duncan (2000) stated that measurement errors were more serious in longitudinal

studies than in cross-sectional studies. Furthermore, the length of time that the

units participate in the survey may also be a source of bias which might reflect

behaviour change. Self-selection bias is also a potential source of error in panel

surveys (Solon, 1989) which may result in units ceasing their participation on the

survey. Non-response or panel attrition is a main concern. Non-response can be

determined by the design, or unplanned. Individuals can be omitted from the

survey in a specific period, or wave, or can prematurely drop out from the survey

characterizing attrition in a panel data set. The different types of non-response

cause the reduction of the sample size also generating an unbalanced data set.

This also requires special methods of analysis. Some panel surveys provide ways

to compensate for panel non-response, for example by applying ad hoc imputation

techniques or calculating sets of longitudinal sampling weights that account for

the different patterns of non-response (Lepkowski, 1989).

1.1.2 Panel Data Analysis

There are different approaches available in the statistical and econometrics lit-

erature for the analysis of panel data. In the statistical literature, the different

methods are concerned with the potential imbalance of the data caused by planned

or unplanned non-response, as well as with the potential correlation between the

repeated individual responses. One approach that handles incomplete longitudinal

data is the marginal model (Diggle et al., 2002). This is based upon the generalized

estimation equation (GEE) methodology that was presented by Liang and Zeger

(1986). The GEE is an alternative to the maximum likelihood estimation which

takes into account the dependence within individuals by incorporating a work-

ing covariance matrix into the estimation process. This method provides asymp-

totically normal and consistent coefficient estimates. Furthermore, this method

produces standard errors that are robust against misspecification of the working

covariance matrix. The focus of the marginal models is on the estimation of the

mean structure of the response. The dependence among responses within individ-

uals is treated as a nuisance. Therefore, the coefficients estimated by using models
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of this type have a marginal or population-average interpretation. Marginal mod-

els do not require assumptions about the distribution of the residuals. However,

the mean structure of the model must be properly specified.

Marginal models have a parallel in the analysis of panel data in the econo-

metrics literature, in which the methods are more concerned with the problem

of omitted individual variables and their relationship with the observed variables

rather than with the correlation between the repeated responses. Under the econo-

metric framework fixed effects models (Hsiao, 2003) have a similar formulation to

marginal models. Fixed effects models assume that the unobserved individual ef-

fects are fixed over time. These models are often estimated following the dummy-

variable approach (Wooldridge, 2002), which accounts for as many dummies as the

number of individuals in the sample minus one (n−1), capturing the time invariant

effect. No assumptions are made on the distribution of these unobserved effects.

Therefore, like the marginal models, inference can only be drawn conditionally on

the effects that are in the sample (Hsiao, 2003). It is also worth mentioning that

in a fixed effects model, only time varying covariates can be considered and, unlike

the marginal models, the covariance structure is not considered in the estimation

process. Hence, the repeated measures are considered conditionally independent

and identically distributed, given the fixed effects. Fixed effects models are often

estimated via ordinary least squares (Baltagi, 2005).

The random effects models under the econometrics framework have a similar

formulation to the fixed effects model. However, in the random effects model, the

unobserved individual effects are assumed to be uncorrelated with the observed

variables. In this model, the unobserved individual effects are thought to be

random draws from a population of individual effects. Therefore, inference about

the population that generated the effects is permitted. For longitudinal data with

a large number of time points, or occasions, random effects and fixed effects models

should generate the same results (Hsiao, 2003). When the number of occasions is

small the choice between either type of models should be based on the assumptions

about the unobserved effects, as ignoring the potential endogeneity leads to biased

estimators. However, due to their underlying modelling assumptions, the random

effects model seems a more natural choice for panel survey data than the fixed

effects models (Skinner, 2003).

Methods for the analysis of longitudinal data as discussed so far usually

consider only a time and an individual level effect. However, panel survey data

originated from a multistage sampling design, which involves the clustering of basic

units in higher level units, present a hierarchical structure. Each level of the data
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structure might be of research interest but also represents a potential source of

random data variability. Therefore, the data hierarchy needs to be considered in

the analysis. The multilevel modelling framework (Goldstein, 2003) is the standard

choice for clustered data of this type (Steele, 2008). Multilevel models are random

effects models that account for the clustering originated from multistage sampling

design, also allowing for the investigation of the effects of the data structure on

the outcome variable (Plewis and Fielding, 2003). These models rely on the same

strong assumptions about the conditional distribution of the random effects and

the observed variables as the models in the econometrics literature. Despite this,

multilevel models are perhaps the most appropriate for multistage survey data.

The multilevel modelling framework encompasses the random intercept mo-

del, the random slope model, or growth curve model, and the multivariate mul-

tilevel model. It handles unbalanced and unequally spaced panel data, provided

that the non-response mechanism is at random (Little and Rubin, 2002). In ad-

dition, this framework allows for the inclusion of variables at the different levels

of the data hierarchy. Therefore, it allows for the inclusion of time varying and

time constant covariates, as well as covariates for the higher level units. Under

this framework the repeated measurements are the level one units nested within

individuals, the level two units, which are nested within higher level units. The

inclusion of variables with coefficients varying randomly across the units relaxes

the underlying assumption that the repeated measures are exchangeable within

individuals (Goldstein, 2003). This characterizes the growth curve model, which

models the panel data as dependent of some measurement of time (Steele, 2008).

Furthermore, time, which is usually taken as a continuous variable in these types of

models, can be considered as having a linear or polynomial effect on the outcome.

A further extension of the random effects model under the multilevel model frame-

work is to consider the repeated outcomes as a multivariate outcome. Multivariate

multilevel models allow the modelling of the correlation structure between the in-

dividual responses usually treating time as a discrete variable. Models under this

framework are usually estimated via maximum likelihood or iterative generalized

least squares.

Multilevel models, as described above, do not incorporate the sampling de-

sign in contrast to those described in Pfeffermann et al. (1998). The method

presented by Pfeffermann et al. (1998) accounts for the unequal selection proba-

bilities in a two-level random coefficients model. Their proposed method modifies

the iterative generalized least squares estimation procedure to account for the

sampling weights, whence called probability-weighted iterative generalized least
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squares. Other authors proposed similar methods for cross-sectional multilevel

models. However, having the multivariate model as basis, Folsom (1989) and

Skinner and Holmes (2003) proposed methods to account for the sampling weights

in a longitudinal data analysis. These methods are not yet vastly explored in the

research literature and are still under debate.

1.1.3 Labour Force Surveys

The majority of the Labour Force Surveys in the world include some kind of

rotating sample design (McLaren and Steel, 2000). These rotating designs can

have a consecutive pattern of the form in-for-d or a non-consecutive pattern of

the form a-b-a(d) as defined in McLaren and Steel (2000). When a non-consecutive

pattern is adopted, the selected sample units are in the survey for a consecutive

occasions. There will be a gap of b between the middle occasions for a total span

of d = a+b+a and T = a+a time points. These non-consecutive rotating designs

are usually symmetric (Mehran, 2007). However, this does not need to be the case,

and instead these designs could follow an pattern such as a-b-c(d). Examples of

often used rotation patterns are the 2-2-2 (Italy and Israel for example), in-for-6

(Canada, Spain and Portugal), in-for-5 (the UK), in-for-8 (Australia) and 4-8-4

(U.S. and Brazil) (Mehran, 2007).

The Brazilian labour force survey whose official1 name translates to Monthly

Employment Survey is a probabilistic household sample survey conducted by the

Brazilian Institute for Geography and Statistics2. It is conducted every month with

the main objective of investigating the characteristics of the Brazilian labour force.

This survey has a complex multistage sample scheme characterised as a stratified

two-stage cluster design with approximately equal probabilities of selection at the

household level within each of the six metropolitan areas covered by the survey.

In addition it has a non-consecutive but symmetric sample rotating panel design

characterized as 4-8-4. This means that the selected sample units stay in the

sample for four consecutive months, are out for eight months and return to the

sample for other four consecutive months. Therefore, due to this rotation pattern

there is a gap of eight months between the fourth and fifth interview for every unit

in this survey.

1The official name of the survey is in Portuguese Pesquisa Mensal de Emprego usually ab-
breviated as PME. A list of abbreviations and notation is provided in the glossary at the end of
this thesis.

2Instituto Brasileiro de Geografia e Estat́ıtica - IBGE.
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1.2 Aims and Outline of the Thesis

Motivated by the different data complexities, this thesis aims to further develop

methods for analysing complex panel data. These methods follow the multilevel

modelling framework. Recognizing that the models under this framework are based

upon strong modelling assumptions, this thesis aims to demonstrate how some

of these assumptions can be relaxed to better incorporate the data complexities

in a single modelling exercise. The main data complexities considered are: (i)

the hierarchical structure of the data set, (ii) the complex correlation structure

between the repeated outcomes, (iii) the imbalance of the panel data due to panel

non-response and (iv) the incorporation of the rotating design and the sampling

weights into the analysis.

Following this introduction, this thesis contains seven more chapters. Chap-

ter 2 presents a methodological review of the analysis of longitudinal data under

the multilevel modelling framework. This chapter starts by presenting a general

multilevel model for cross-sectional data which is extended to accommodate lon-

gitudinal data and further extended to the multivariate multilevel model. This

chapter also presents: a review of the main covariance structures that can be

modelled under the multivariate multilevel model formulation; a review of the ro-

bust methods for the estimation of the standard errors of the estimated multilevel

model coefficients and a review of the different types of panel non-response mech-

anisms. The chapter finishes with a review of the methods to account for panel

non-responses with special attention given to methods which calculate longitudinal

sampling weights.

Data from the Brazilian labour force survey are used in this thesis to demon-

strate the different applications of the methods developed. This survey and its

main design features are described in Chapter 3. The design of the Brazilian

labour force survey is quite complex and encompasses the complexities aimed to

be accounted for in this thesis. One difficulty found relates to the linkage of the

data across time for this survey and this is also discussed in Chapter 3.

The methods developed in this thesis are used to investigate the labour

income dynamics of employed heads of household in the Brazilian labour force

survey. Chapter 4, therefore, presents a brief review of the Brazilian economy

and labour market. Special attention is given to the review of models for the

determinants of the labour income. Based on this review, Chapter 4 also presents

an initial cross-sectional model for labour income determinants. This model serves

as the basis for the other applications in this thesis.
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Longitudinal growth curve models accounting for the complex data hierarchy

are fitted in Chapter 5 assuming that the process of change varies between heads

of households. Therefore, the assumption of exchangeability between residuals

within the same individual is relaxed. These models are further extended to mul-

tivariate multilevel models which account for the complex correlation structure of

the data. Therefore, the assumption of uncorrelated residuals within individuals

is also relaxed. Alternative modified correlation structures that account for the

rotating panel design are presented. Multivariate multilevel models are then fitted

utilizing the alternative structures, which are compared and the best formulation

is identified.

Chapter 6 presents a detailed description of the method proposed in Pfef-

fermann et al. (1998), the probability-weighted iterative generalized least squares

estimation (PWIGLS) method. This chapter also presents an extension of the

PWIGLS method for the fit of multivariate multilevel models. This developed

framework allows the fitting of multivariate models imposing the alternative cor-

relation structures presented in Chapter 5.

Chapter 7 presents a method for calculating a set of multilevel longitudi-

nal weights that accounts for the panel attrition patterns of the Brazilian labour

force survey. Models utilising the developed set of multilevel longitudinal sam-

pling weights are fitted through PWIGLS. Furthermore, Chapter 7 also presents a

comparison between the models fitted through PWIGLS and an equivalent model

fitted using IGLS to a longitudinal data set.

Chapter 8 presents the key conclusions of this thesis. This chapter also

presents a summary of the research contributions and identified pieces of further

research.
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Chapter 2

Multilevel Models for the

Analysis of Longitudinal Data

2.1 The Multilevel Modelling Framework

Longitudinal data in the social sciences often originate from surveys with a com-

plex multistage sampling scheme. The different stages of the sampling scheme can

represent the different levels of the hierarchical structure of the data which usually

represents the natural grouping in the population. Most of the time, the selection

of the units of analysis in these schemes involve some kind of cluster sampling

techniques. The selected clusters are thought to be a random sample of the pop-

ulation of clusters. However, clustered data are not expected to be independent

(Kish and Frankel, 1974). In other words, units selected using clustered multi-

stage designs are not independent as the selection of the secondary sampling units

is conditioned on the selection of the primary sampling units. Furthermore, indi-

viduals within the same cluster may share similar characteristics and behaviours

and some of these characteristics might not even be observed by the researcher.

Such data complexity invalidates the use of standard estimation methods for re-

gression models once the observations are no longer assumed to be conditionally

independent and identically distributed (IID). These methods are based on the

ordinary least squares (OLS) estimation and their use for the analysis of multi-

level data still generate unbiased estimates. However, these estimates would be

inefficient and with standard errors biased downwards (Maas and Hox, 2004). In

addition, the levels of a hierarchical data set may be of research interest them-

selves. These groupings might contain potential random influences on the units

of analysis representing different sources of data variability (Snijders and Bosker,
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1999; Goldstein, 2003). For such data, Goldstein et al. (1994) stated that the use

of methods within the multilevel model framework is the appropriate approach

to follow. To account1 for the clusters and the hierarchical structure of data of

this type yields statistically efficient estimates of the regression coefficients with

correct estimates of the standard errors also producing more “conservative” confi-

dence intervals and test statistics (Goldstein, 2003). The multilevel approach also

allows for the investigation of particular clusters of interest, comparison between

clusters and inference on the level of variability between them.

Multilevel models were developed from the 1980s with the work of Aitkin

et al. (1981), as mentioned in Goldstein (2003) and Longford (1993). They are

an extension of the classical multiple regression model still keeping the linearity

and normality assumptions but relaxing the independence (due to clusters) and

the constant variance (due to random effects of covariates) assumptions. Before

the development of multilevel models, data with some hierarchical structure were

analysed either using aggregating or disaggregating techniques. Both techniques

ignore the multilevel structure. The former used individual data aggregated to

cluster averages and proportions. This is appropriate to make inferences at the

cluster level but not at the individual level avoiding the ecological fallacy, that

is when cluster level effects are generalized to the individuals (Luke, 2004). The

latter used cluster data disaggregated to the individual level. This inflates the

sample size and inference is made at the individual level. Consequently, this leads

to the incorrect calculation of standard errors and incorrect conclusions. Another

usual method to analyse clustered data was to fit separate regression models, one

for each cluster. Goldstein (2003) stated that for data where the total number

of clusters is small with a relatively large number of units within cluster, this

procedure may produce efficient results. However, this procedure cannot be used

if the variation between clusters needs to be investigated. Moreover, it could not

be applied in longitudinal analysis as longitudinal data are typically formed by a

large number of individuals with relatively few measurements.

Longitudinal data can be analysed in a multilevel modelling framework. For

example, individuals on a longitudinal data set represent the level two units and

their repeated measurements the level one units. In a more complex context, where

individuals are selected through a more complex sampling design, the highest level

of the analysis represent the clusters within which the individuals are nested, such

as households, the middle level the individuals and the bottom level their repeated

1Accounting for clusters here does not mean that the sampling design is being accounted for
as recommended in Pfeffermann et al. (1998).
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measurements. In this sense, longitudinal multilevel models are an extension of

cross-sectional multilevel models, which is the starting point of the next sub-

section. It is worth mentioning that in the statistical literature multilevel models

are also called: Hierarchical linear models (Bryk and Raudenbush, 1992); Random

coefficient models (Longford, 1993), Mixed effects models (as mentioned in Snijders

and Bosker (1999)) among others.

2.1.1 Cross-sectional Multilevel Modelling

Consider the following model representation:

yij = xT(1)ijβ(1) + xT(2)jβ(2) + uj + eij . (2.1)

This is a two-level random intercept model. In a cross-sectional data set, the

level two units are the n clusters, assumed to be independent and represented in

the model by the subscript j (j = 1, 2, . . . , n). The level one units are the nj

individuals, represented in the model by the subscript i (i = 1, 2, . . . , nj), that are

nested within cluster j. The total number of individuals in this cross-sectional

data is m =
∑

j nj.

The outcome variable, yij in model 2.1, is a continuous variable at the individ-

ual level, hence, the pair of subscripts ij. The idea of the multilevel approach is to

model the effects of individual and cluster characteristics on the outcome variable

in a single model representation, as in equation 2.1. The individual characteristics

are represented by the vector of explanatory variables at the individual level x(1)ij.

For a single cluster j the matrix of p(1) explanatory variables is represented as:

X(1)j =


1 x1j2 . . . x1jp(1)

1 x2j2 . . . x2jp(1)
...

...
. . .

...

1 xnjj2 . . . xnjjp(1)

 ,

where x(1)ij1 is a vector of ones for the intercept. Associated to this matrix is the

vector of fixed regression coefficients at the individual level

βT(1) =
(
β(1)1, β(1)2, . . . , β(1)p(1)

)
.
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Model 2.1 also includes the vector of fixed regression coefficients at the cluster

level

βT(2) =
(
β(2)1, β(2)2, . . . , β(2)p(2)

)
,

associated with the vector of explanatory variables x(2)j. The explanatory vari-

ables at the cluster level are also called contextual variables. For a single cluster

j the vector of p(2) contextual variables is represented as

xT(2)j =
(
x(2)j1, x(2)j2, . . . , x(2)jp(2)

)
.

Additionally, consider xij as being the vector of all p = p(1) + p(2) explanatory

variables for both of the levels and β the vector of all p fixed regression coefficients.

This is the fixed part of the model 2.1.

The model 2.1 contains two error terms: uj, at the cluster level, and eij, at

the individual level. These form the random part of the model. The presence of

more than one error term is what makes the multilevel model different from the

classical regression model. Multilevel models have at least one error term for each

level of analysis being considered (Snijders and Bosker, 1999). The uj in model

2.1 are also called cluster specific effects or cluster residuals and here it is assumed

that

uj∼N(0, σ2
u). (2.2)

Under the formulation of model 2.1 and conditioning on the set of explanatory

variables xij, the random intercepts uj are assumed to be uncorrelated with the

covariates. The uj are also assumed to be independent from the individual level

residuals eij. These are equivalent to the error terms of the classical linear regres-

sion, also called the raw residuals. Here it is assumed that conditioned on the set

of explanatory variables xij, the eij are mutually independent and that

eij∼N(0, σ2
e). (2.3)

The conditional distribution assumed implies that eij and the total set of all ex-

planatory variables xij are uncorrelated.

The mutual independence assumption of the eij implies the absence of cor-

relation between level one residuals of two individuals within the same cluster.

Therefore, given the random intercepts uj and the covariates xij, these two indi-

viduals are assumed to be independent (Skrondal and Rabe-Hesketh, 2004). The
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implicit assumptions can be summarized as

Cov (uj, eij) = 0,

Cov (eij, ei′j) = 0, ∀i 6= i
′

Cov (yij, yi′j|uj,xij,xi′j) = 0, ∀i 6= i
′
.

The variance components in 2.2 and 2.3, σ2
u and σ2

e respectively, represent

the between and the within cluster variabilities that are simultaneously modelled

in 2.1. The total variability of the observations under the model can be calculated

from the variance of the composite residuals

rij = uj + eij.

Under the already stated assumptions, it is easy to see that the variance of the

composite residuals rij for the random intercept model in 2.1 is:

V ar(rij) = V ar(uj + eij) = V ar(uj) + V ar(eij) = σ2
u + σ2

e .

As already mentioned, individuals within the same cluster are not expected

to have independent observations. In a random intercept model, this dependency

is induced by the uj as they are shared between individuals in the same cluster

as explained in Skrondal and Rabe-Hesketh (2004, page 51). The level of depen-

dence can be measured by the intra-cluster correlation given by the conditional

correlation between units within the same cluster as:

Cor(yij, yi′j|xij,xi′j) = Cor(uj + eij, uj + ei′j) ∀i 6= i
′

(2.4)

=
σ2
u

σ2
u + σ2

e

= ρ. (2.5)

This intra-cluster correlation can also be interpreted as the amount of the total

residual variability that is due to between clusters variability or as how similar the

individuals within the same cluster are (Snijders and Bosker, 1999). Therefore it is

a measure of the dependence that exists in the hierarchical data. Singer and Willett

(2003) advised starting the model building process by fitting an empty random

intercept model and calculating ρ. This gives an estimate of the average correlation

between randomly selected pairs of residuals in the same cluster (rij, ri′j). For

values of ρ close to zero, some authors (Snijders and Bosker, 1999; Bryk and

Raudenbush, 1992) suggested that the random intercept model could be simplified,
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leading to the classical regression model without the common random intercepts

uj. However, large values of ρ justify the use of the multilevel modelling framework

and the model building process should then continue.

Now consider an extension of the random intercept model in equation 2.1 to

the following model representation:

yij = xT(1)ijβ(1) + xT(2)jβ(2) + zTijuj + eij . (2.6)

This is a two-level random coefficients model. The difference between the model

in equation 2.1 and the model in equation 2.6 is that the latter includes the vector

with a sub-set of explanatory variables zij for which the coefficients are considered

as random at the cluster level. The vector zij is associated with the vector of

random effects at the cluster level uj that now includes the random intercepts and

the random slopes. The random slopes are thought as interaction terms between

the random intercepts and the explanatory variables whose effects are considered

to vary among the clusters. The same assumptions adopted for the formulation of

model 2.1 are also adopted for model 2.6. However, due to the presence of random

slopes, the model in equation 2.6 now has more than two error terms. There is one

error term at the individual level (eij), one error term for the intercept (u0j) and

additional error terms for the random slopes (ukj). For simplicity of illustration,

consider that the design matrix Z, for a cluster j, is of the form

Zj =


1 z1j

1 z2j

...
...

1 znjj

 . (2.7)

Therefore, it contains the vector of ones for the random intercepts and one ex-

planatory variable. In this case, the vector of cluster random effects is represented

by

uj =

(
u0j

u1j

)
.

This vector is then assumed here to have a bivariate normal distribution with

mean vector zero and covariance matrix Σu, as in

uj
iid∼ N

([
0

0

]
,

[
σ2
u0

σu01 σ2
u1

])
.
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The element σu01, in the covariance matrix Σu, represents the covariance between

the random intercepts and the random slopes. It shows the relationship between

u0j and u1j giving an idea of whether high intercepts are associated with higher

slopes, for example (Rabe-Hesketh and Skrondal, 2005).

The model in equation 2.6 indicates that there is heterogeneity among clus-

ters (Snijders and Bosker, 1999). It retains the assumption that individuals in

the same cluster are correlated, but this correlation now depends on the vector

zij. The conditional variance of the observations within the same cluster will also

depend on zij as can be seen below. The vector of composite residuals for the

cluster j under the random coefficients model in equation 2.6 is given as:

rj = Zjuj + ej,

where ej is the vector of level one raw residuals in the cluster j.

The covariance matrix V of the total composite residuals r is a block-diagonal

matrix. Each block in V represents one of the n clusters and is defined as

Vj = ZjΣuZ
T
j + Inj

σ2
e , (2.8)

where Inj
is a nj×nj identity matrix. The matrix Vj for a generic cluster j of size

nj can then be written as:

Vj =


σ2
r1j

σr21j σ2
r2j

...
...

. . .

σrnj1
j σrnj2

j . . . σ2
rnjj

 .

The random coefficient model 2.6 also assumes that the vector of composite resid-

uals r is N(0, V ). For the case where the design matrix Zj is as in equation 2.7

each component of the diagonal of Vj, the variances, can be written as

σ2
u0 + 2σu01zij + σ2

u1z
2
ij + σ2

e ,

and the off-diagonal terms, the covariances, as

σ2
u0 + σu01(zij + zi′j) + σ2

u1zijzi′j ∀i 6= i
′
.

This shows that, under the random coefficients model, the assumption of homos-

cedasticity of the residuals is relaxed. The variance has a quadratic relationship
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with zij. However, when the components of Σu are very small and close to zero

the total variance is close to the constant variance component at the individual

level, σ2
e (Singer and Willett, 2003). One other important point to observe is that

under the model representation 2.6 the intra-cluster correlation coefficient can no

longer be calculated using the formula in equation 2.5 as it also depends on zij.

However, ρ can be calculated for specific pairs of units as:

ρii′j =
σrii′j√
σ2
rij
σ2
ri′j

∀i 6= i′. (2.9)

Because the parameters of the random part, or the variance components,

of the model in equation 2.6 are often of great interest in a multilevel analysis,

Goldstein (2003) called the model in 2.6 the variance components model. It is

worth mentioning that this model, like the model in equation 2.1, also has a set

of contextual variables. The inclusion of such variables is of interest because in

multilevel data it is believed that the outcome can be influenced by the context

as well (Luke, 2004). These variables are cluster level covariates and can express

cluster level information, as well as cluster averages or proportions of level one

variables. They do not need to be produced from the same data set that provides

the level one variables. They can be provided from external sources. Snijders and

Bosker (1999) advised for the inclusion of cluster variables when the random co-

efficients show dependency with the level one variables. In addition, the inclusion

of contextual variables can explain some of the level two unexplained variability.

2.1.2 Estimation Methods

The use of standard methods such as the OLS to estimate the model in equation

2.6 is no longer appropriate due to the correlated cluster data and the presence

of more than one residual term. Goldstein (2003) presented some of the alterna-

tive methods that are appropriate for the estimation of multilevel models. Other

authors such as Longford (1993); Skrondal and Rabe-Hesketh (2004); Singer and

Willett (2003) and Snijders and Bosker (1999) also presented some of the same

methods and this sub-section aims to briefly describe them (for a full explanation

refer to these authors).

Longford (1993) stated that the methods utilized in the estimation of mul-

tilevel models are based upon maximum likelihood (ML) estimation. Singer

and Willett (2003) stated that the ML estimation is an appealing method because

of its large sample properties. The ML estimates are asymptotically consistent,
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normal and efficient. However, these properties are unlikely to hold in relatively

small samples. It is also worth mentioning that the ML estimation is based on the

assumption that the residuals are normally distributed.

The ML estimators are those that maximize the sample likelihood, which is

the joint probability function of observing the specific sample of the data. The

sample likelihood contains all the unknown parameters, both of the fixed (β) and

random (variance components) parts for the model in equation 2.6. The mean

is determined by the fixed part of the model and the variance is determined by

the random part (Singer and Willett, 2003). The method uses the whole sample

and in the case of multilevel data each cluster j contributes with nj terms to the

sample likelihood. However, ML estimation methods need numerical integration

algorithms in order to find the values of the parameters which maximize the log-

likelihood function. Some algorithms such as the EM, Newton-Raphson and Fisher

scoring are used and are described in detail in Longford (1993) and Skrondal and

Rabe-Hesketh (2004). These algorithms need starting values that are usually the

OLS estimates. One drawback of the ML estimation is that it does not take

into account the uncertainty of estimating the fixed effects when estimating the

parameters of the random effects. This represents an important drawback of the

ML method (Singer and Willett, 2003). In other words, the ML estimation does

not take into account the loss of degrees of freedom due to the estimation of the

fixed parameters. Hence, the estimates of the parameters in the random part of

the model are biased downwards.

Restricted maximum likelihood (REML) estimation is an alternative to

the ML for the estimation of the variance components. REML, which is based

on the residual likelihood, estimates the variance components of a model such as

the one in equation 2.6 accounting for the loss of degrees of freedom due to the

estimation of the parameters in the fixed part of the model (Singer and Willett,

2003; Snijders and Bosker, 1999). However, REML is not a complete substitute for

ML. It is more sensitive to outliers than ML (Skrondal and Rabe-Hesketh, 2004)

and for unbalanced data, usually the case when dealing with longitudinal data,

REML can also generate biased estimators. Snijders and Bosker (1999) added

that for a large enough sample, with large number of clusters, not much difference

will be expected between ML and REML estimators. It is also worth mentioning

that when assessing the goodness-of-fit via likelihood ratio tests, when REML is

the estimation method adopted, only the random part of the model can be tested.

This test is described in the next sub-section.

Iterative generalized least squares (IGLS) (Goldstein, 1986) is another
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of the algorithms used in the estimation of multilevel models. IGLS is based

upon the generalized least squares (GLS) estimation method that minimizes

a weighted function of the residuals (Goldstein, 2003). GLS is a more flexible

estimation method because it does not necessarily need the residuals to be nor-

mally distributed and it accommodates heteroscedastic or autocorrelated residuals

(Skrondal and Rabe-Hesketh, 2004). However, if the assumption of the normal dis-

tribution of the residuals holds the IGLS algorithm yields ML estimates (Goldstein,

1986). Some of the authors already mentioned in this section such as Goldstein

(2003), Longford (1993) and Skrondal and Rabe-Hesketh (2004) presented the

IGLS method. It iteratively estimates the random effects and the fixed effects un-

til their convergence. (See Goldstein (1986) for further details.) The IGLS method

is described in detail in the sub-section 6.2.1 following the notation presented in

Pfeffermann et al. (1998). It is worth mentioning that like ML estimation, IGLS

produces biased estimates for the random part of the model especially in small

samples (Goldstein, 2003). An alternative method which yields estimates equiva-

lent to REML is restricted iterative generalized least squares (RIGLS). One

more point to be considered is that, because IGLS and RIGLS are iterative algo-

rithms, they may not converge easily for very small data sets or highly unbalanced

data sets (Singer and Willett, 2003).

Goldstein (2003) also presented some information on Bayesian multilevel

model estimation based on Markov Chain Monte Carlo (MCMC) methods such

as the Gibbs Sampler and the Metropolis Hastings algorithm, but details of these

methods are beyond the scope of this thesis.

2.1.3 Model Selection, Checking and Interpretation

This subsection presents some suggested steps to follow when selecting a multilevel

model. This process involves the selection of significant fixed effects and significant

random effects. There are no rules of thumb for the selection of a multilevel model,

but some authors (Bryk and Raudenbush, 1992; Snijders and Bosker, 1999; Hox,

2000) provided some suggestions.

A good starting point is an empty random intercept model. This allows for

the investigation of the amount of variability explained in each of the levels and

the estimation of the intra-cluster correlation ρ (Snijders and Bosker, 1999). The

next step would be to include the set of level one explanatory variables. These

could include main effects and level one interaction terms, and when selecting

the significant interaction terms the hierarchical principle should be employed, i.e.
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the main effects of the interaction terms should also be retained in the model.

In other words, the main effects of the significant interaction terms should also

be kept in the model. After a level one model is selected two alternative steps

could be followed. Either the inclusion of level two variables or the inclusion of

random slopes could be addressed. Snijders and Bosker (1999) suggested that a

good practice is to perform these steps separately and that the significant effects

of each of the two steps could afterwards be tested together in the final model.

Snijders and Bosker (1999) recognized the difficulty in testing for significant

random slopes. For this reason, it is advised that these should be tested only

for covariates that show a strong fixed effect or for those that are substantively

expected to vary between clusters. Random slopes should not be tested for level

one interactions and they should be tested one at time. Care must be taken when

testing for the inclusion of random slopes as their variances are likely to be close

to zero. It should be kept in mind that the omission of an important random

effect will impact on the hypothesis testing of the fixed part of the model and

that, because the estimation methods involve numerical iteration, the inclusion

of many random slopes may lead to convergence problems. If a random slope is

found to be significant it means that there are still unexplained cluster differences.

Contextual variables can then be included in the model in order to try to explain

more of the unexplained cluster variability. In addition, the inclusion of level two

variables is highly advisable when the random intercept is thought to be correlated

with some of the covariates. It is also advisable to include in the model cross-level

interactions between the variable with the random slope and the level two variables

when the random slope seems to be correlated with a level two variable (Snijders

and Bosker, 1999).

Model selection is a dynamic process that should involve both theoretical and

empirical considerations. Overall, Snijders and Bosker (1999) advised refraining

from including non-significant effects. It is worth reinforcing that different selec-

tion procedures can result in different selected models. As in the classical linear

regression case the objective of the multilevel model selection is still to find the

most parsimonious model that best represents the relationship between outcome

variables and explanatory variables. Different tests of hypotheses can be used to

assist in the model selection. These tests are usually applicable in the comparison

of nested models from the same sample of data, and are listed below.

The Wald test is the general single parameter test that can be employed

to test whether a fixed effect, say βk, is significantly different from zero or not. It
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tests the hypotheses:

H0 : βk = 0

H1 : βk 6= 0 .

Under the null hypothesis, the Wald test statistic is:

TWald(β̂k) =

(
β̂k

S.E.(β̂k)

)2

,

where S.E.(β̂k) is the standard error of the estimate of the fixed effect β̂k being

tested. For large samples and under the null hypothesis, TWald(β̂k) ∼ χ2
1 and

the test procedure leads to the rejection of H0 if TWald(β̂k) > χ2
1(1−α) for level

significance α.

When multiple parameters need to be tested simultaneously, like in the case

of a categorical covariate with several categories, the multivariate Wald test

can be used. The hypotheses for the multivariate Wald test are:

H0 : Cβ = 0

H1 : Cβ 6= 0 ,

where C is a matrix of linear combinations, or the contrast matrix. Each row

of C is formed of sequences of 1′s or 0′s, where 1 is relatively positioned to the

parameters being tested from the vector of regression parameters β. Rewriting

Cβ as β∗, representing a sub-vector of β the hypotheses for the multivariate Wald

tests can now be written as:

H0 : β∗ = 0

H1 : β∗ 6= 0 .

Under the null hypothesis, the multivariate Wald test statistic is

TWald(β̂∗) = β̂
T

∗ Σ̂−1

β̂∗
β̂∗,

where Σ̂β̂∗ is the estimated covariance matrix of β̂∗, and DF is the number of

rows of C, therefore the number of parameters being tested. The null hypothesis

is rejected for large values of TWald(β̂∗), i.e. when TWald(β̂∗) > χ2
DF (1−α).
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It is worth mentioning that the multivariate Wald test is applicable to test

fixed effects only. For testing multiple parameters including random effects an

alternative is to use the likelihood ratio test (LRT). The LRT compares the

log-likelihoods (l) of two nested models, a reduced model Mred and a model with

the parameters being tested Mfull. The hypotheses being tested for the LRT are:

H0 : Mred

H1 : Mfull .

Under the null hypothesis, the test statistic of the LRT is

L2 = −2× (lred − lfull) , (2.10)

where DF is determined by the difference between the number of parameters in

the full and in the reduced model. The reduced model is rejected for large values

of the likelihood-ratio test statistic L2 ( i.e. L2 > χ2
DF (1−α)).

For the random part, however, the applicability of the LRT is questionable.

This is because the LRT tests whether the variances equal zero which is a value

on the boundary of the parameter space [0,∞) for the variances. Therefore, this

test will tend to accept the null hypothesis “more often than it should” as stated

in Frees (2004, chapter 5). Snijders and Bosker (1999) still advocate the use of the

LRT to test random effects bearing in mind that the test is, however, a one-sided

test. For example, the hypotheses for testing the variance of the random intercepts

are:

H0 : σ2
u0 = 0

H1 : σ2
u0 > 0 .

Therefore, the test could still be used and the p-value calculated based on the

χ2
1 distribution should be divided by two. This is because the test statistic is no

longer χ2
1 but a mixture of 0 and χ2

1 distribution (Snijders and Bosker, 1999). Care

must be taken, however, in applying the LRT to models estimated via REML. As

mentioned before, REML is used to estimate the random part of the model, and

the deviance from REML estimation describes only the random part of the model

(Singer and Willett, 2003). In the case where the reduced model and the full

model were both estimated via REML and the fixed part of each of the models

are exactly the same, the LRT could be applied to test the extra random effects

in the full model. Once again, the reduced model must be nested within the full
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model.

If two non-nested models need to be compared, two alternative goodness-of-

fit criteria can be used instead of the LRT. Both criteria use the likelihood-ratio

statistic of the fitted models only differing by a scale factor:

IC = L2 + 2× (Scale factor)(Number of parameters in the model) .

The Akaike information criterion (AIC) has a scale factor equal to one, and

the Bayesian information criterion (BIC) has the scale factor equal to half of

the log of the sample size (Singer and Willett, 2003), so:

AIC = L2 + 2ϕ

and

BIC = L2 + log(m)ϕ ,

where L2 is defined in equation 2.10, ϕ is the total number of parameters in the

model (for both fixed and random parts) and m is the total sample size. Singer

and Willett (2003) commented on the ambiguity of using BIC for the case of a

longitudinal multilevel model as it is not clear whether the sample size m should be

for the number of individuals in the data or the effective sample size that accounts

for the repeated observations within individuals. It is worth mentioning that the

models compared using AIC and BIC need not be nested but they should be fitted

to the same sample, and smaller values for AIC or BIC indicate a better fit of the

reduced model.

Model selection in the multilevel modelling framework also involves model

checking. Section 2.1.1 presented the assumptions which the multilevel models are

based upon. As for the classical regression models, the assumptions made for the

multilevel model need to be checked after the fitting of the model. The failure of

these assumptions compromises the interpretation of the estimated parameters. In

addition, the conclusions regarding the relationship between the outcome and the

covariates can be misleading. When the assumptions are not valid the hypothesis

tests are invalid as well (Snijders and Bosker, 1999).

The model checking process of a multilevel model is very similar to that

for the classical linear regression. The difference is that, because of the multiple

levels and the multiple residual terms, each error component requires checking.

A general graphical inspection is usually performed to assess the assumptions of
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linearity, homoscedasticity and normality. The linearity assumption is made for

the relationship between outcome and explanatory variables. This assumption can

be checked by directly plotting the outcome against the explanatory variables. For

departures from this assumption additional terms for the explanatory variables,

such as for example squared or cubic terms, can be included in the model. As

stated before, the residuals are assumed to be normally distributed. This as-

sumption can be checked by inspecting a normal probability plot. Last, but not

least, the assumption of constant variance of the level one raw residuals must be

checked. This assumption can be checked, for example, by plotting the residuals

against the fitted values. Note that, when random slopes are added to the model,

the composite residuals are no longer assumed to have constant variance.

The residuals uj, or the cluster specific effects, are random variables rather

than parameters of the multilevel model (Snijders and Bosker, 1999). For a random

slope model, such as the model in equation 2.6, each cluster has its own predicted

line. If only the fixed part is considered these lines are all the same. The cluster

specific effects need to be considered so that each cluster has their specific fitted

line. These cluster specific effects need to be predicted (Frees, 2004; Skrondal

and Rabe-Hesketh, 2004; Longford, 1993) from the model in order to check their

assumptions. This prediction is usually performed through Empirical Bayes (EB)

(Efron and Morris, 1975) estimation. This method combines information from

the cluster of interest with the other clusters, accounting for the cluster size and

the covariance matrix of the observations (Snijders and Bosker, 1999). If only the

random intercept is considered, the EB estimate for the random intercepts is given

by

û0j =
njσ̂

2
u0

njσ̂2
u0 + σ̂2

e

ỹj = Sh× ỹj ,

where ỹj is the cluster mean of the raw residuals yij −xTijβ̂. The EB residuals are

also called the shrinkage estimates because of the shrinkage factor Sh =
nj σ̂

2
u0

nj σ̂2
u0+σ̂2

e
.

This factor pushes the mean of the raw residuals for cluster j towards the gen-

eral mean. In other words, the EB residuals bring the estimates of the random

intercepts and random slopes closer to the mean. As the cluster size increases Sh

approaches to one, and the EB residuals will be approximately the same as the

mean of the raw residuals. The cluster specific effects can also be compared by

means of a caterpillar plot (Goldstein, 2003). This plots, for each cluster, their

predicted random effects with respective confidence intervals ordered according

to their magnitude. The comparison is performed by assessing those confidence
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intervals that do or do not overlap with the others. This type of graph can also

assist in grouping clusters according to their performance.

After the model has been selected and the assumptions checked the interpre-

tation of the parameter estimates can proceed. In the analysis of multilevel linear

models the interpretation of the fixed effects is the same as for the standard linear

regression analysis. In other words, it can be said that for a unit increase in xk,

y would have an expected change of β̂k, keeping all other variables constant. If

the model includes squared terms of some of the explanatory variables or inter-

action terms between any of them, these effects should be interpreted together.

If a categorical variable is also included in the model, the interpretation of its

effect compares the effect of each of the categories with the omitted category, the

baseline.

Models presented in the subsequent chapters, however, consider the fit of

a log-transformed outcome variable. In this case the interpretation of the pa-

rameters differs to that mentioned above. Instead of an expected change of β̂k

in the outcome for a unit change in xk, the expected change in y is a eβ̂k fold

increase/decrease, depending on the sign of β̂k. In other words, there will be an

expected

bk% = 100× (eβ̂k − 1)% (2.11)

change in y for a unit increase in xk (Tufte, 1974). However, when xk is also

considered with a log-transformation in the model this is no longer the interpre-

tation of β̂k. In this case β̂k represents the elasticity of the outcome with respect

to xk. Dougherty (2002) defined elasticity as the proportional change in y for a

given proportional increase in xk. For cluster level variables the interpretation can

follow as for the level one variables. In addition, the coefficients of the contextual

variables that represent proportions can be multiplied by any constant a and the

formula in equation 2.11 can be modified to

bk% = 100× (eβ̂k×a − 1)%, (2.12)

where, for example, a can be equal to 0.1. This gives the interpretation that

there will be an expected bk% change in y for a 10 percentage point increase in

contextual variable k.

The random part of the model can also be interpreted. To assist in the

interpretation of the random part of the model, a plot with the cluster specific

regression lines can be constructed by using the EB residuals. The presence of the

random intercepts in the model means that each cluster has its own intercept uj
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that varies randomly across clusters. Therefore, a graphical representation of this

model would show parallel regression lines, one for each cluster, showing how the

outcome cluster mean varies randomly across clusters. However, if the number of

clusters is relatively large, this plot can be constructed for a subset of clusters.

The same plot for the random coefficients model will show non-parallel cluster

specific lines, as each line will also depend on the values of zij.

Interpretation can also be given for the variance components and the intra-

cluster correlation can be calculated. The covariance term between the random

intercepts and random slope, σu01, can also be interpreted. This parameter shows

the relationship between the random slope and intercept, and it can be used to as-

sess for example whether clusters with above average intercept have above average

or below average slopes.

One very important point raised by all the authors cited so far is the need

to centre the covariates around their means in order to improve the interpretation

of the random effects. Centring is highly advisable for those explanatory variables

where the value 0 (zero) has no substantive meaning, and it is good practice

to centre or re-scale these variables. In a multilevel model (or in a longitudinal

multilevel model) Singer and Willett (2003) discussed whether the centring should

be around either the total mean or the group mean and advised the use of group

centring only if it can be justified substantively.

2.1.4 Continuous versus Discrete Outcome

The models presented so far were formulated for a continuous outcome. How-

ever, multilevel models may also accommodate discrete outcomes. They are an

extension of generalized linear models (GLM) where the relationship between the

expected response and the linear predictor (η) is determined by a link function

(g(.)) as shown in the model in equation 2.13:

E(yi|xi) = Pr(yi = 1|xi) = g−1(ηi) . (2.13)

In model 2.13, yi is a binary outcome variable with usual values coded as 1 (success)

and 0 (failure). The linear predictor ηi is defined as xTi β where xi is the vector

of explanatory variables and β is its associated vector of fixed coefficients. The

model in equation 2.13 is then a generalized linear one-level fixed effects model for
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non-clustered data. This model can also be written as:

g(πi) = ηi (2.14)

where g(.) is the function that links the probability of success πi with the covariates

in the linear predictor. The choice of which link function to use will depend on

the conditional distribution of the outcome variable. For binary outcomes, where

the distributions are either Bernoulli or Binomial, the most usual link functions

are the logit and the probit links defined respectively as:

ln

(
πi

1− πi

)
and

φ−1(πi),

where φ−1 is the inverse of the cumulative standard normal distribution. Between

these two link functions the logit is possibly the most used for its nice properties

and interpretation (Rabe-Hesketh and Skrondal, 2005). A logistic model, i.e. a

GLM model using the logit link, is a linear model for the log-odds, which is the

log of the expected number of successes for each failure. The interpretation for

the logistic regression model coefficients is as a multiplicative effect on these odds.

Another nice way of interpreting the results of a logistic model is through the

evaluation of the predicted probabilities that are given as

π̂i = {1 + exp(−ηi)}−1 .

These predicted probabilities can be plotted for any combination of the covariates

in the model and compared.

Now consider the model:

logit(E(yij|xij, uj)) = logit(Pr(yij = 1|xij, uj)) = ln

(
πij

1− πij

)
= ηij + uj ,

(2.15)
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where

πij = {1 + exp(−ηij)}−1

and

yij ∼ Bin(nij, πij) .

This is a two-level random intercept logistic model, in which the success probabil-

ities πij now depend not only on the individual but also on the clusters. As in the

model in equation 2.1, the clusters are the level two units with subscript j and

individuals are the level one units with subscript i. The linear predictor ηij is now

defined as xTijβ, where xij is the vector of explanatory variables for both of the

levels of the data which is associated with the vector of fixed effects β. The uj are

the cluster specific random intercepts and as before it is also assumed that:

uj∼N(0, σ2
u).

It is then assumed that the log-odds are normally distributed in the population

of clusters (Snijders and Bosker, 1999). It is worth noticing that the model in

equation 2.15 does not contain the term eij for the level one residuals. Therefore,

σ2
e is not estimated. This is because σ2

e is not a free parameter and is directly

determined by the success probabilities (Snijders and Bosker, 1999). This model

belongs to the class of generalized linear mixed models (GLMM).

GLMMs also allow for the inclusion of random coefficients at the cluster

level. However, the estimation of the GLMMs needs approximation methods as

there is no closed form for their marginal likelihood. Such methods are based

on numerical integration and use iterative methods such the Newton-Raphson al-

gorithm (Rabe-Hesketh and Skrondal, 2005). The main methods are those that

approximate the marginal joint probability of the responses by the Gauss-Hermite

adaptive quadrature (see Skrondal and Rabe-Hesketh (2004) for details) or those

that use first and second order Taylor linearisation of the likelihood (see Goldstein

(2003) and Snijders and Bosker (1999) for details). The methods based on the lin-

earisation, called Marginal quasi-likelihood (MQL) and Penalized quasi-likelihood

(PQL), allow for the use of IGLS or RIGLS. However, both MQL and PQL are

not very stable methods. MQL produces biased estimates and PQL have less bias

but are less precise than MQL. Another disadvantage of the linearisation methods

is that the deviance produced with such methods cannot be used in testing the hy-

pothesis of the model, while this can be done when using the adaptive quadrature
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methods. However, the accuracy of the adaptive quadrature methods depends on

the number of integration points used in the estimation (STATA Press, 2005). All

these methods differ mainly on how the random part of the model is estimated

while the fixed part is estimated in roughly the same way (Snijders and Bosker,

1999). The choice between the estimation methods, however, will depend on the

choice of statistical package available to be used in the analysis. Stata mainly

uses adaptive quadrature methods while MLwiN uses MQL or PQL. Snijders and

Bosker (1999) provides a list of references for more details on estimation methods

of the GLMMs.

It is also worth mentioning that the fixed part of a GLMM can be tested,

as in the linear multilevel model, through simple or multiple Wald test statistics.

However, the EB residuals cannot be simply predicted as in the linear case as they

do not have normal distribution, making the diagnostics of GLMMs a bit more

complex to perform (Snijders and Bosker, 1999).

2.2 The Robust Sandwich Estimator for Multi-

level Data

First consider the one-level cross-sectional linear model that assumes that the

observations are independent and identically distributed (IID)

yi = xTi β + ei ,

where it is assumed that

ei
IID∼ N(0, σ2

e).

This model is often estimated through OLS, which under this model is equivalent

to ML estimation. ML estimators are unbiased but not fully efficient. A sufficient

condition to guarantee consistent variance estimation of the ML estimators is that

the assumed probability model, i.e. the assumption of normal distribution of the

errors, is correctly specified. The asymptotically robust sandwich covariance esti-

mator protects against the misspecification of the model assumptions in order to

ensure variance consistency (Huber, 1967; White, 1982; Royall, 1986). It produces

standard errors for the estimates of the regression coefficients which are robust to

non-normal errors.

The principle behind the sandwich estimator is to estimate the covariance

matrix of the parameter estimates directly from the observed sample. This method
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is then based on the observed sample Fisher information matrix and on a diagonal

matrix of the cross-product of the estimated raw residuals. First, consider that

the asymptotic model-based covariance matrix of the parameter estimates is given

by:

Cov(β̂OLS) = (XTX)−1(XTVX)(XTX)−1 , (2.16)

where V = E(e eT ), e is the vector of errors and X is the matrix with the

explanatory variables xi. The idea of the sandwich estimator is then to substitute

the unknown covariance matrix V by

V̂sand = diag(ê êT ) (2.17)

which is a diagonal matrix of the cross-product of the vector ê for the estimated

raw residuals

êi = yi − xTi β̂OLS .

The asymptotically robust sandwich estimator for the covariance matrix of the

parameter estimates is then given by:

Ĉovsand(β̂OLS) = (XTX)−1(XT V̂sandX)(XTX)−1 . (2.18)

Because the sandwich estimator is based on the OLS estimated raw residuals,

which tend to be too small, it is biased downwards (MacKinnon and White, 1985).

For this reason, statistical software implements some of the different corrections

proposed in MacKinnon and White (1985) to adjust for the bias. These corrections

include, for example, scaling the raw residuals êi by (1− hii)−1/2 or by the square

of this adjustment, where hii are the main diagonal elements of the hat matrix

H = X(XTX)−1XT . These two corrections adjust each residual according to their

influence, also protecting against residual heteroscedasticity. Another alternative

to reduce bias is to use what MacKinnon and White (1985) called the degrees of

freedom correction for V̂sand, as:

V̂sandadj =
m

m− p
V̂sand ,

where m is the total sample size and p, here, is the number of regression parameters

being estimated.
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Now, consider the two-level random coefficients model:

yij = xTijβ + zTijuj + eij . (2.19)

This is the same model as in equation 2.6 in Chapter 2. The vector xTij is the

vector for the explanatory variables of both levels of the data hierarchy associated

with the vector of fixed regression coefficients β.

OLS estimation of a multilevel model provides unbiased but inefficient pa-

rameter estimates with negatively biased standard errors (Maas and Hox, 2004).

For this reason, multilevel models are often estimated through IGLS which also

assumes normality of the residuals in order to generate ML estimates (Goldstein,

1986). Nevertheless, even under violation of the normality assumption the IGLS

parameter estimates for both the fixed and the random parts of the model are still

asymptotically unbiased and consistent. On the other hand, the standard errors

of these estimates are incorrect and cannot be used for hypothesis testing except

in large samples (Goldstein, 2003). One way to correct the standard errors of the

parameter estimates of a multilevel model is also to use the asymptotically robust

sandwich covariance estimator, given by:

Ĉovrob(β̂IGLS) = (XT Σ̂−1
r X)−1(XT V̂ −1

r V̂sandV̂
−1
r X)(XT V̂ −1

r X)−1 , (2.20)

where V̂r is defined as the estimated block-diagonal covariance matrix of the obser-

vations from the final iteration of the IGLS, with blocks corresponding to cluster

j written as

zTj Σ̂uzj + Inj
σ̂2
e ,

which is the same as in equation 2.8. The matrix V̂sand in 2.20 is also a matrix

with the cross-product of the estimated vector of raw residuals êj. The difference

is that for the multilevel case V̂sand is a block-diagonal matrix where each of the

blocks represent each of the n clusters (Goldstein, 2003). In a two-level multilevel

model, each block of the matrix V̂sand is calculated as

êj × êTj ,

where êj is the vector of level one estimated raw residuals,

êij = yij − xTijβ̂OLS ,
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within cluster j. These blocks are not just a diagonal matrix as in the one-level

case. They are the cross-product matrices once individuals nested within the

same cluster are no longer thought to be independent. For a three-level model for

example, with clusters K representing the highest level clusters, the cross-product

matrix of the residuals is calculated at the third level. In this case, each of the

blocks of the V̂sand matrix represents one of the K clusters.

In the one-level case, if the assumed probability model is correctly or nearly

correctly specified the use of the sandwich estimator is not necessary (Freedman,

2006). In this case the unrobustified asymptotic covariance estimation is more

efficient and produces smaller standard errors (Maas and Hox, 2004). Furthermore,

Maas and Hox (2004) stated that when level two residuals in multilevel models are

non-normal, the use of the robust sandwich estimator is not advantageous. They

showed that the violation of this assumption had almost no effect on the estimates

of the fixed part of a multilevel model. Therefore, they confirmed the belief that

the methods for the estimation of multilevel models are already quite robust to

non-normality of the higher level residuals. However, this violation was shown to

have an impact on the estimation of the random part of the model. Maas and

Hox (2004) showed that the sandwich estimator performed better and was more

accurate in this case. Hence, the importance of its use when the investigation of,

for example, the level-two variation is of interest in the analysis. The comparison

between asymptotic and robust standard errors for the estimation of a multilevel

model is advisable. A large difference between these two estimators is an indication

of model misspecification.

2.3 Multilevel Longitudinal Models

Multilevel longitudinal models are an extension of the cross-sectional multilevel

models described until now. Therefore, all that was already discussed in the

previous sub-sections can be applied to the longitudinal data models. To avoid

repetition, this sub-section focuses on specific points that need to be addressed

when fitting a multilevel longitudinal model.

The longitudinal models are an extension of cross-sectional models, but not

only for the increased number of levels. For example, for a simple data set a

longitudinal model can be represented by a two-level model. The difference is

that the individuals are now the level two units and the level one units are their

repeated measures. However, in practice, many longitudinal data sets originate

from multistage sample surveys. Therefore, they should be represented by higher
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order multilevel models, such as by a three-level model where the clusters represent

the higher level units (Longford, 1993).

In a longitudinal multilevel model most of the variability of the data is ex-

pected to be at the level two units, the individual level (Goldstein, 2003). This is

in contrast to cross-sectional multilevel models where individuals are the level one

units and most of the variability is found at this level. Therefore, in a longitudinal

analysis, one should consider a well specified level two model, which should include

individual characteristics represented by main effects and interaction effects. It is

worth mentioning that random slopes for individual and higher level units may

also be considered under this framework. When only the random intercept is con-

sidered in a longitudinal multilevel model, it assumes that the covariance structure

of the observations is exchangeable. This assumption is not always valid, particu-

larly when the repeated measures are taken within short periods of time. One way

to relax this assumption is to include, for example, a random slope for the time

variable (Snijders and Bosker, 1999; Goldstein, 2003). Care must be taken, how-

ever, to ensure that the time point related to zero has a meaningful interpretation

as it represents the initial status. Therefore, the centring of the time variable or

its re-scaling is highly advisable.

This type of random coefficients longitudinal multilevel model is also known

as the growth curve model (Rabe-Hesketh and Skrondal, 2005). It is a two-level

random coefficients model, where level two are the individuals and level one are the

measurements taken on various occasions that are nested within individuals. In

the set of explanatory variables at the occasion level there is usually a variable to

represent time, often represented by the variable age or some related measurement

(Frees, 2004). The variable for time receives a random effect as growth is expected

to vary across individuals (Bryk and Raudenbush, 1992). It is also common to rep-

resent growth as a polynomial function of the variable for time, generally including

squared, cubic or even quartic terms for age for example. The growth curve model

then fits separate trajectories for each individual and these are calculated by using

the EB estimates, mentioned in section 2.1.3, for the random part of the model.

One of the major advantages of fitting a longitudinal model in the multilevel

framework is the possibility of assessing cross-level effects (Frees, 2004). For ex-

ample, with the inclusion of cross-level interactions between an individual variable

and the time variable. This allows the direct investigation of whether the effect of

the specific variable on the outcome varies over time. The cross-level interactions

need not only be between level two and level one, but maybe between any levels

of the data which are of interest to the analyst.
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Now consider the following model representation:

ytij = xT(1)tijβ(1) + xT(2)ijβ(2) + xT(3)jβ(3) + vj + zTtijuij + etij . (2.21)

This is a three-level multilevel model for change (Singer and Willett, 2003) or a

longitudinal multilevel model. It is an extension of the model in equation 2.6.

The three levels are represented by, respectively from the higher to the lower, the

subscript j for the n clusters, the subscript i for the nj individuals nested within

clusters and the subscript t for the Tij time points or occasions for each individual.

According to what was already mentioned, neither the Tijs or the njs need to be

the same for every individual or cluster.

One of the main differences of the two models is that model in equation 2.21

includes three sets of explanatory variables, one for each of the levels. The vector

x(1)tij contains the time-varying covariates or the occasion level variables. In this

set, at the occasions level, there might be a variable representing time (Frees,

2004). The vector with all explanatory variables of the model in equation 2.21 is

defined as:

xTtij =
(
xT(1)tij, x

T
(2)ij, x

T
(3)j

)
.

In this vector there are variables for each of the three levels representing main

effects of continuous or categorical variables, same-level interaction terms or cross-

level interaction terms. The vector xtij is associated with the vector of fixed

regression coefficients:

βT =
(
βT(1), β

T
(2), β

T
(3)

)
,

where the number between parentheses indicates to which level the regression

coefficient refers.

The other components of the model in equation 2.21 are the error terms and

the vector zTtij that in matrix form for individual i in cluster j is defined as:

Zij =


1 z1

1 z2

...
...

1 zTij

 . (2.22)
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Here it is also assumed that:

vj∼N(0, σ2
v) ,

uij∼N

([
0

0

]
,

[
σ2
u0

σu01 σ2
u1

])

and

etij∼N(0, σ2
e) .

As in the cross-sectional case, these three residual terms are assumed to be mutu-

ally independent and uncorrelated with the covariates in the model.

The design matrix in equation 2.22 contains the vector of ones for the random

intercept and the random effect for the time variable, here called z. In this case,

the model in equation 2.21 has only the random slope for the time variable. In

the growth curve model, such as the model in equation 2.21, the random intercept

is interpreted as the initial status, and the random slope for the variable that

represents time is interpreted as the rate of growth. The covariance term σu01

then measures the relationship between the initial status and the rate of growth,

measuring for example if those that had a high initial value will grow faster, or

not, than those with lower initial values.

Consider the composite residuals

rtij = vj + uij + etij ,

from the estimation of a three-level random intercept model of the form

ytij = xTtijβ + vk + uij + etij .

The total variability for this model can then be expressed as:

V ar(ytij|xtij) = σ2
v + σ2

u + σ2
e = σ2

r .

For a three-level random intercept model authors such as Longford (1993) and

Rabe-Hesketh and Skrondal (2005) presented different intra-cluster correlation

coefficients that can be calculated. Here, only the correlation between two mea-

surements of the same individual in the same cluster is presented, which can be
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calculated as:

Cor(ytij, yt′ij|xtij,xt′ij) =
σ2
v + σ2

u

σ2
v + σ2

u + σ2
e

∀t 6= t
′
.

However, for the model in equation 2.21 which includes both random intercept

and random slope, the composite residuals have actual form given as

rtij = vj + zTtijuij + etij .

The diagonal elements of the covariance matrix of the observations are given as:

σ2
v + zTtijΣuztij + σ2

e ,

and the off-diagonal elements are given as:

σ2
v + zTtijΣuzt′ij ∀t 6= t′.

If ztij contains time, this covariance matrix depends on the value of the time

variable. The variance of the observations will have a quadratic relationship with

the time variable. The elements of the correlation matrix for the observations can

be calculated in a similar way to equation 2.9, as:

ρtt′ij =
σrtt′ij√
σ2
rtij
σ2
rt′ij

∀t 6= t′.

which shows the dependence on the time lag between the observations. Hence, the

correlation structure is no longer exchangeable.

Modelling longitudinal data within the multilevel framework has an impor-

tant advantage as this approach automatically handles unbalanced data sets. Be-

cause the observations are nested within individuals, models of this type can easily

handle unbalanced and unequally spaced data sets. In unbalanced data sets, in-

dividuals can have measurements taken at different numbers of time points, for

reasons of panel attrition or determined by design. In unequally spaced data sets,

the time lag between each measure for all individuals does not need to be the same.

Therefore, a data set which is unbalanced by design can be handled with this ap-

proach. The multilevel longitudinal models presented so far, although allowing

for the presence of a random slope for time, still assume that the occasion level

residuals are uncorrelated. As already mentioned, this assumption is not usually

plausible particularly for observations measured close in time (Hox, 2000). Bryk
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and Raudenbush (1992) mentioned that correlation is bound to exist between the

level one residuals for each individual and that the level one residuals can be cor-

related with some occasion level variables. However, Bryk and Raudenbush (1992)

also stated that to assume the level one residuals are not correlated in longitudinal

data sets with few time points is a practical assumption and that under this as-

sumption significance tests are unlikely to be affected. If it is necessary to impose

a covariance structure on the residuals, multilevel models are flexible enough to

allow for this through a slight change of approach that treats each response as a

component of a multivariate normal distribution. This is the multivariate mul-

tilevel modelling approach that is briefly described in sub-section 2.3.2. Before

introducing the multivariate multilevel model, alternative error covariance struc-

tures which can be imposed on the error components are briefly listed in the next

sub-section.

2.3.1 Covariance Structures

The error covariance structure of the model in equation 2.21 allowed for het-

eroscedasticity but not for autocorrelation between the composite residuals. This

section reviews the most common types of covariance matrices that can be imposed

on the error components.

Suppose that the number of time points Tij is equal to 3 for every individual

i and that a two-level longitudinal model is considered. The following structures

can be imposed (Singer and Willett, 2003; Diggle et al., 2002; Fitzmaurice et al.,

2004):

- Unconstrained: It imposes no specific structure on the error covariance

matrix Σr. This covariance matrix is of the form:

Σunc
r =

 σ2
1

σ21 σ2
2

σ31 σ32 σ2
3

 .

Each diagonal term, the variances, and off diagonal term, the covariances,

of Σunc
r has their own value and they are parameters of the model to be

estimated. Models estimated imposing the unconstrained, or unstructured,

error covariance will have smallest deviance due to the larger number of esti-

mated parameters. With T occasions there will be T×(T+1)
2

extra parameters.
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Fitzmaurice et al. (2004) stated this structure is not advisable for highly un-

balanced data sets or data sets with relatively few individuals. Singer and

Willett (2003) advised comparing models fitted with imposed unstructured

correlation using the AIC and BIC criteria.

- Compound Symmetry: Also known as the exchangeable structure or uni-

form. This is the usual structure assumed in the longitudinal multilevel

model when only the random intercept is considered. In other words, it is

assumed that the variance at any time point is the same, as well as that the

covariance between any pair of time points is the same. For the data set

being considered in this section, this covariance matrix is of the form:

Σexch
r =

 σ2
u + σ2

e

σ2
u σ2

u + σ2
e

σ2
u σ2

u σ2
u + σ2

e

 .

With this structure the correlation between any pair of residuals will also be

the same and equal to ρ as in equation 2.5. In addition, if a random slope

is fitted but σ̂u01 and σ̂2
u1 are small the exchangeable structure may hold.

- Heterogeneous Compound Symmetry: This is an extension of com-

pound symmetry but not assuming homoscedasticity along the diagonal

terms of Σr. In addition the assumption of equal covariance between pairs

of residuals is also relaxed.

Σhexch
r =

 σ2
1

σ2σ1ρ σ2
2

σ3σ1ρ σ3σ2ρ σ2
3

 .

This structure has a constant autocorrelation parameter ρ also estimated by

the model.

- Autoregressive: This is the first-order autoregressive correlation structure,

also called exponential for continuous time data (Schabenberger and Pierce,

2001). The variances are assumed constant across time and equally spaced

pairs of responses have the same covariance (Fitzmaurice et al., 2004) which

depends on the lag between them. It causes the “band-diagonals” of Σr to

be the same. The main diagonal expresses a constant variance term and the

other diagonals are determined by:

Cov(rt, rt′) = σ2ρlag lag = 1, 2... .
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The Σr matrix under this structure has the form:

Σar
r =

 σ2

σ2ρ σ2

σ2ρ2 σ2ρ σ2

 .

This structure assumes that the correlation between pairs of residuals dimin-

ishes for larger lags. The model estimates only two variance components.

However, the degree to which the correlation diminishes is determined by a

constant ρ.

- Heterogeneous Autoregressive: This is an extension of autoregressive

structure but not assuming homoscedasticity along the diagonal terms of

Σr, just as with the heterogeneous exchangeable structure. In addition the

terms of the off diagonals are determined by:

Cov(rt, rt′) = σrtσrt′ρ
lag lag = 1, 2... .

Under this structure the covariance matrix of the residuals has the form:

Σhar
r =

 σ2
1

σ2σ1ρ σ2
2

σ3σ1ρ
2 σ3σ2ρ σ2

3

 .

This is more flexible than Σar
r .

- Toeplitz: This structure has similar characteristics to the Σar
r . However, the

elements of the band-diagonals are not forced to reduce by a fixed fraction

(Singer and Willett, 2003). This structure still considers the main diagonal

to be constant and the covariance matrix under this structure has the form:

Σtoep
r =

 σ2

σ1 σ2

σ2 σ1 σ2

 .

This imposes that pairs equally separated in time have the same correlation

(Fitzmaurice et al., 2004) and is only appropriate for equally spaced data.

The different variance components are parameters of the model to be esti-

mated. Compared to those with Σar
r , models with the Toeplitz2 structure

will have less residual degrees of freedom.

2Named after Otto Toeplitz, also defined as an ARMA process.
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Two more general covariance structures that deserve mentioning are the

following.

- Spatial Power: Also known as Markov Structure (Khattree and Naik,

1999). This is a reparameterisation of the exponential correlation structure,

which, as mentioned earlier, is equivalent to a continuous time autoregressive

structure. The exponential correlation structure can be written as:

Cov(rt, rt′) = σ2 exp

(
|t− t′|
−φ

)
∀t 6= t′ .

This structure, like the AR(1), imposes that the correlation between any

pairs of residuals will be smaller if measured further apart (Diggle et al.,

2002). Furthermore, the larger the value of 1/φ the faster the correlation

decays towards zero as the distance between the pairs of residuals increases.

The reparameterisation for the Spatial Power structure involves setting

ρ = exp

(
−1

φ

)
and expressing the covariance terms as:

Cov(rt, rt′) = σ2ρ|t−t
′|.

This is a direct generalization of AR(1) for unequally spaced data that takes

into account the distance between the T occasions by powering ρ by |t− t′|.
The name for this structure, spatial power, is justified as it is usually applied

to studies of spatial processes (Khattree and Naik, 1999). For the data set

considered in this section, the Spatial Power covariance matrix is also of the

form:

Σpow
r =

 σ2

σ2ρ1 σ2

σ2ρ2 σ2ρ1 σ2

 .

- General Linear: Assuming that the residual covariance matrix can be

expressed as a linear function of θ, the general linear covariance structure

(SAS Institute Inc,Version 8, 1999; Khattree and Naik, 1999; Jennrich and
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Schluchter, 1986) and (Pourahmadi, 2007) is of the form:

Σgen
r = θ0A0 + θ1A1 + ...+ θkAk,

where the matrices Ak are known symmetric matrices and the parameters

θk are unknown and unrelated covariance parameters to be estimated by the

model (Khattree and Naik, 1999). The known matrices Ak can be set to

represent any of the known structures or any desirable structure with the

requirement that Σgen
r must be a positive definite matrix. For example, the

compound symmetry structure could be expressed as:

Σexch
r =

 σ2
u + σ2

e

σ2
u σ2

u + σ2
e

σ2
u σ2

u σ2
u + σ2

e



= σ2
u

 1 1 1

1 1 1

1 1 1

+ σ2
e

 1 0 0

0 1 0

0 0 1

 .

2.3.2 Multivariate Multilevel Models

Longitudinal multilevel models, as described above, assume conditional indepen-

dence between the repeated outcomes, after controlling for the explanatory vari-

ables and the random effects. However, in longitudinal panel data, it is expected

that successive measurements within the same individual are correlated. For ex-

ample, the income of a head of household measured in month t + 1 is expected

to be correlated with their income measured in month t conditioned on the head

of the household’s characteristics. This conditional correlation imposes a struc-

ture in the error covariance matrix, which is often of interest in the analysis of a

longitudinal data set.

Multivariate multilevel models provide the appropriate tools for the analysis

of a longitudinal data set where the error covariance matrix has no restrictions

and is also of interest. This extends the general multivariate regression analysis,

where a balanced data set with no missing observations is required (Longford,

1993). Multivariate multilevel models are also seen as an extension of the two-

level growth curve model. However, time is now treated as a discrete variable.

Therefore, a categorical variable for time is included in the model and each occasion

is represented by a “dummy” variable. These occasion dummies are treated as
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having both fixed and random coefficients. Extra levels of the data hierarchy, in

addition to the occasion and the individual levels, can also be considered in the

model. The occasion dummies can be set to vary randomly at these higher levels

as well. However, this is not a necessary set up. A potential disadvantage of the

multivariate multilevel model is that, as it is equivalent to setting up one equation

for each occasion response, it may not be suitable for panel data with a large

number of occasions.

There are some advantages of fitting models to longitudinal data within

the multivariate multilevel framework. For example, a balanced data set is no

longer a requirement. The data can include individuals with different numbers

of time points. Therefore, these models can be used to analyse rotating panel

data and can be further constrained to accommodate the planned missing data as

performed in Yang et al. (2002). However, they are not as flexible as the growth

curve models when dealing with unequally spaced data (Fraine et al., 2005) as some

error structures can only be considered for equally spaced data. The multivariate

multilevel approach also handles missing data, as long as the assumption of missing

at random holds3.

As already mentioned, this approach does not assume that the repeated out-

comes are conditionally independent (Griffiths et al., 2004). The error variance

components are parameters of the model to be estimated. Moreover, constraints

on these parameters can be made in order to impose different error covariance

structures, such as those in subsection 2.3.1. However, here lies another disad-

vantage of the multivariate approach. Although the variance components are now

estimated and they can also be constrained, they are no longer interpreted as

cluster specific effects or individual specific effects as before (Snijders and Bosker,

1999).

The multivariate multilevel approach extends the random slope model in

equation 2.21 so that each individual response in a given occasion t is considered as

a component of a multivariate normally distributed random vector yij. These yij

are simultaneously modelled under the multivariate multilevel model (Goldstein,

2003).

To make it clear, consider the same hierarchy as before, where occasions are

nested within individuals which are nested within clusters. The occasion level

(subscript t, varying from 0 to T ) defines the multivariate structure (Goldstein,

2003). The individuals are the level one (subscript i, varying from 1 to nj) and

3This assumption is described in section 2.4 of Chapter 6.
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clusters the level two (subscript j, varying from 1 to n). A multivariate multilevel

model with only the time variable as covariate, treated as having both fixed and

random effects at the individual level, can be written as:

ytij = dTtijβ + dTtijvj + dTtijuij. (2.23)

In this model dtij is the vector with the T occasion dummies. They are defined to

indicate whether the row in the data set refers to the response at occasion t, being

equal to 1 or equal to zero (Snijders and Bosker, 1999). Note that this model can

handle intermittent missing response by setting all the elements of the dummy

for the missing occasion to zero. The occasion dummies are associated with the

vector of fixed regression coefficients

βT = (β1, β2, . . . , βT ) ,

and are also associated with the vectors of random effects at both the individual

uij and the cluster level vj. Note that all the T dummies are included in the

model. Therefore the model in equation 2.23 does not contain the intercept. This

is a two-level multivariate model.

Now consider a balanced data set where the total number of occasions per

individuals is fixed and equal to four and that the time points are labelled from 0

to 3. Here it is also assumed that:

vj∼MN(0,Σv) and uij∼MN(0,Σu),

where

Σv =


σ2
v0

σv10 σ2
v1

σv20 σv21 σ2
v2

σv30 σv31 σv32 σ2
v3

 and Σu =


σ2
u0

σu10 σ2
u1

σu20 σu21 σ2
u2

σu30 σu31 σu32 σ2
u3

 .

Defining Σr = Σv + Σu, the multivariate vector of responses for an individual is:

yij∼MN(Dijβ,Σr) ,

where Dij is a matrix containing the vectors dTtij. The model in equation 2.23

is a fully multivariate multilevel model with saturated covariance structure (Sni-

jders and Bosker, 1999). Therefore, this model has no occasion level variance

estimated. This is an important assumption of this model, that is that there are

42



Chapter 2 Multilevel Models for the Analysis of Longitudinal Data

no measurement errors in the repeated outcomes (Fraine et al., 2005). However, it

is a necessary assumption to ensure model identification. This model also assumes

that the effect of time varies randomly across clusters. An alternative model for-

mulation would be to consider a common random intercept at the cluster level for

all the occasions. This model can be written as:

ytij = dTtijβ + vj + dTtijuij. (2.24)

Here it is assumed, that

vj∼N(0, σ2
v) and uij∼MN(0,Σu),

where σ2
v is a scalar and Σu is as defined above. Linear and non-linear constraints

can be applied to the elements of Σu in order to express the different forms of

correlation structures. Multivariate multilevel models can be fitted imposing these

different structures. The IGLS and RIGLS methods, described in section 2.1.2,

can also be used to estimate the multivariate multilevel model. These methods

provide, for the fixed part of the model, statistically efficient parameter estimates

and accurate standard errors. They also provide efficient estimates of the error

variance components (Goldstein, 2003).

The multivariate model in equation 2.24 has no explanatory variables other

than the time dummies but the inclusion of such variables is straightforward. This

model still allows for the inclusion of different sets of covariates for the different

levels of the data, including the occasion level. These variables can be further

considered as having common or separate coefficients for each of the time points.

Separate coefficients are produced by including interaction terms between the time

dummies and the covariates, and they can be jointly tested for their significance

in the model.

The same steps for model checking as those for univariate multilevel models

are applied to the multivariate multilevel models. In addition, hypothesis testing

for the significance of parameters of a given explanatory variable can be performed

for each of the outcomes. In other words, some explanatory variables may be

statistically significant at one occasion but not at others.

This approach has not been vastly explored in the statistical literature. For

example, Yang et al. (2000) presented the multivariate approach for the analysis

of a longitudinal data set on voting attitudes. They modelled a discrete response

comparing the general multilevel longitudinal model with the multivariate model.
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The models from both approaches were estimated via penalized quasi-likelihood es-

timation. Their multivariate model, a two-level model, had time dummies treated

as random at both the cluster level and the individual level. Multivariate Wald

tests were used to decide on the inclusion or exclusion of variables for each of the

responses. Furthermore, the models tested were based upon a data set with a

fixed number of occasions for each individual.

Barbosa and Goldstein (2000) presented a multilevel longitudinal model for

discrete response assuming the responses within the same individuals were posi-

tively correlated. Barbosa and Goldstein (2000) used the same data example as

Yang et al. (2000) trying to extend their models to accommodate unequal time

points but noted that in this case the multivariate multilevel approach could no

longer be applied. Instead, Barbosa and Goldstein (2000) fitted one three-level

longitudinal model and two time-series multilevel models as defined in Goldstein

et al. (1994). In this definition, the time-series model is a multilevel longitudinal

model where the level one variance is considered as a function of time through an

autocorrelation function (first or second order). This allows for rather complex

dependency structures of the level one residuals. In their analysis of the time-

series models, Barbosa and Goldstein (2000) considered different autocorrelation

functions and aimed to compare their results with the multivariate model in Yang

et al. (2000).

In another article Yang et al. (2002) applied the multivariate longitudinal

framework to data under a non-random missing mechanism. This was allowed by

setting up constraints in the covariance matrices of both levels considered in the

analysis. Fraine et al. (2005) compared the longitudinal growth curve model with

the multivariate multilevel model. Their models were applied to data on student

well being. They advocate the use of multivariate models when the number of

time points is small. Their multivariate model considered an unstructured error

covariance and the test for different specifications for the covariance matrix was

supported. Plewis (2005) also compared the multivariate multilevel model formu-

lation with the growth curve models, for both continuous and binary outcomes. His

findings under the different specifications were consistent. His multivariate models

imposed restriction to the error covariance matrix and tests for other structures

were also suggested.
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2.4 Non-response in Longitudinal Data

As already mentioned in the previous sections, the methods for the analysis of

longitudinal data sets under the multilevel modelling framework allow for unbal-

anced, or incomplete, longitudinal data sets. Lack of balance in a longitudinal

data set can be planned or unplanned: planned when the data were generated

from a rotating sampling scheme for example and unplanned due to uncontrolled

non-response.

2.4.1 Planned Non-response

Longitudinal, or panel, data are commonly collected through rotating sampling

schemes such as that described in Chapter 3. These schemes consist of the substi-

tution of part of the sample in successive occasions, or waves, of a panel survey.

For example, in every wave a group of individuals, or a panel, is excluded from the

sample (rotated out) and it is substituted by another panel of individuals (that

are rotated in). In some rotating designs, panels once rotated out are allowed to

be rotated in again later on. However, in others, once a panel is rotated out it is

definitively excluded from the sample.

The reasons for using rotation schemes were stated in Hsiao (2003). The

first was related to optimal sampling. As mentioned in Steel (1997), the portion

of the sample that overlaps between consecutive months (waves of the panel) of

a rotating panel survey has an effect on the precision of the estimates of change.

The second reason is more practical, as it relates to the concern that individuals

participating in longitudinal surveys may change their behaviours influenced by

the time they are in the sample.

These schemes generate unbalanced data sets that were planned by the sam-

pling design. The unbalance arises from the fact that not all individuals are ob-

served on every occasion. In addition, for those panels which were rotated out and

rotated back into the sample, planned non-response will occur for the out of sam-

ple period. This type of planned non-response can be assumed as being missing

completely at random (Fitzmaurice et al., 2004). Therefore, methods for balanced

data can be extended for application to planned unbalanced data sets (Hsiao,

2003). The use of a multilevel framework is also recommended in the presence of

rotating samples (Goldstein, 2003). This issue is dealt with in Chapter 5.

45



Chapter 2 Multilevel Models for the Analysis of Longitudinal Data

2.4.2 Unplanned Non-response

Unplanned non-response in a longitudinal data set can be of different forms, due

to:

- delayed entry, causing initial non-response, where the initial wave has

missing values;

- intermittent or wave non-response, causing missing values to appear in

the middle of the panel;

- early-exit, or drop-out or attrition, when individuals leave the panel pre-

maturely;

- individuals refusal to participate, causing unit non-response, and

- item non-response to various questions in the survey.

Because of these different forms, and also due to the different occasions,

the problem of unplanned non-response is more serious in longitudinal data sets

than in cross-sectional data sets (Fitzmaurice et al., 2004). Non-response in a

longitudinal data set is usually not homogeneous across all the occasions. A par-

ticular concern is whether the non-response process happens at random or whether

non-respondents are systematically different compared to respondents. This po-

tential self-selective mechanism might be a source of bias and in smaller sample

sizes might cause an effect on the efficiency of the estimates (Winkels and Davies,

2000). Moreover, ignoring the non-response mechanism when missingness is re-

lated to the outcome causes the analysis to be seriously biased (Fitzmaurice et al.,

2004). Therefore, the investigation of the mechanism that generates the non-

response, mainly in the sense of how this mechanism is related to the outcome

variable, is suggested by Little (1995); Diggle et al. (2002) and Frees (2004).

Consider a two-level longitudinal model where subscript t represents the

occasion level and subscript i the individual level. In addition, consider a response

indicator Rti that takes the value 1 when the data are observed and 0 otherwise.

The vector of responses for individual i yi can be partitioned as yi = {yOi ,yMi },
where yOi are the observed responses and yMi are the missing responses. Three

main types of non-response mechanisms are identified and they are listed below.
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MCAR (missing completely at random). This is the most restrictive mechanism.

The assumption of MCAR holds if

Pr(Rti|yOi , yMi , Xi) = Pr(Rti) ,

meaning that the response probability does not depend on the outcome val-

ues or on the matrix of explanatory variablesXi. In other words, the outcome

is not related to the response mechanism. However, it can happen that

Pr(Rti|yOi , yMi , Xi) = Pr(Rti|Xi) .

This still means that the distribution of response does not depend on the

outcome variable. However, it does depend on the matrix of explanatory

variables Xi. This is called covariate-dependent MCAR. When missingness

is dependent on the covariates, the model should include the set of variables

that are the predictors of the response (Fitzmaurice et al., 2004).

A similar idea can be applied to the drop-out mechanism as defined by

Little (1995). In this sense, the drop-out is completely at random when

the probability of individuals dropping out in a given occasion does not

depend on past, current or future values of their outcomes. If the drop-out

mechanism is covariate-dependent the response model should also include

the drop-out predictors.

In the presence of MCAR, the data can be treated as if they were unbalanced

by design. The usual methods for balanced data can then be applied. Alter-

natively, the set of completers can be used in the analysis. Note that, under

the MCAR assumption, the set of completers can be considered to be a ran-

dom sample from the target population. Analysis based on a complete-case

data set is not biased under MCAR (Little, 1995). However, a complete-case

analysis is less efficient and may discard substantial parts of the data.

MAR (missing at random). This is a less restrictive assumption than MCAR,

and occurs when:

Pr(Rti|yOi , yMi , Xi) = Pr(Rti| yOi , Xi) .

That is, the response mechanism depends on the observed outcomes and on

the covariates but not on the missing outcomes.
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A similar idea can also be applied to the drop-out mechanism. Drop-out is at

random if the probability of dropping out depends on the observed response,

i.e. on the past outcomes.

Care must be taken, however, when analysing data based on this mechanism.

Under MAR, the set of completers can no longer be considered as a random

sample from the target population (Fitzmaurice et al., 2004). Therefore, an

analysis based on the set of completers will be biased. In addition, estima-

tion methods based on ML are recommended in this situation when all the

available data are used in the analysis.

NMAR (non-missing at random). This is also called non-ignorable missing. This

occurs when the response mechanism depends on both the set of observed

and missing outcomes and it cannot be ignored in the analysis.

In a similar fashion, Little (1995) defined non-ignorable outcome-based drop-

out and random coefficient based drop-out. In the former, drop-out depends

on the missing components but not on future values of the outcome. The

random coefficient based drop-out, in turn, depends on the current, past and

future values of the outcome while depending on the values of the random

coefficients of the individuals in the analysis.

For any type of non-ignorable missingness both a model for the response

and a model for the drop-out mechanism should be evaluated simultane-

ously. Failing to do so generates seriously biased results. Diggle et al. (2002,

Chapter 13) presented a review of models to predict non-response that can be

used in the analyses of longitudinal data. This review includes the two main

classes of models for drop-out mechanism also presented in Little (1995).

These are the selection models and pattern mixture models. Diggle et al.

(2007) stated that the literature for drop-out models in longitudinal analy-

sis is quite extensive. These authors also presented the most common ap-

proaches for the analysis of longitudinal data with drop-out and proposed a

new method that takes the histories of the subjects into account. Most of

the proposed methods to model the drop-out mechanism only accommodate

time-constant covariates (such as those in Little (1995), Hawkes and Plewis

(2006) and Diggle et al. (2007)). Roy and Lin (2002) described a method

that accommodates time-varying covariates, in which a transitional model

for the missing time-varying covariates is estimated in addition to a multi-

variate random coefficient model for the response and a random coefficient

selection model for the drop-out mechanism. All these methods, however,

ignore intermittent non-response.
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Under any of these mechanisms, Frees (2004) suggested that when possible

some follow-up procedures should be performed to attenuate non-response bias.

Multiple imputation methods can also be applied in longitudinal data sets with

non-response. Fitzmaurice et al. (2004) discussed some imputation methods for

longitudinal data but this is beyond of the scope of this thesis.

2.4.3 Longitudinal Weights

One other alternative approach to attenuate the non-response bias in survey data

is to use adjusted sampling weights based on the response distribution. These

adjusted weights compensate for the unequal probabilities of selection and for

the unplanned non-response that occurs in the surveys (Kalton and Bryk, 2000).

In panel surveys, these weights are usually in the form of cross-sectional and

longitudinal weights, which depend on the patterns of wave non-response and

on the attrition patterns. However, due to the varied number of measurement

occasions, the weighting process in panel surveys is inevitably more complex than

in cross-sectional surveys.

When the set of longitudinal weights is not available with the released panel

data, they can be constructed. There are different methods to calculate these

weights and the choice between the type of longitudinal weights to be used depends

on the objective of the analysis. They are usually calculated to: adjust for wave

non-response and attrition patterns or to adjust for the attrition patterns only

(Lepkowski, 1989). The objective of using longitudinal weights is to compensate

for the data loss (Kalton and Bryk, 2000) in each occasion. Therefore, there is a

different set of weights for every occasion which adjusts the responding patterns to

compensate for the non-responding patterns (Lepkowski, 1989). The longitudinal

weights are usually calculated for the set of respondents, and the non-response

cases are eliminated from the data set or are assigned weight zero.

The sets of longitudinal weights that are calculated to account for both the

wave non-response and the attrition patterns are the most complex type. There

will be up to 2T patterns of non-response in a panel data set with T occasions.

This would require the construction of up to 2T − 1 sets of longitudinal weights

to allow the analysis of data for all possible combinations of occasions, T . The

set of longitudinal weights that accounts only for the attrition patterns, in turn, is

the simplest. For example, in a longitudinal analysis that includes data from the

first occasion to occasion t, only the set of weights at occasion t is needed which

is adjusted to compensate for sample losses in all previous occasions (Kalton and
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Bryk, 2000). For that, only the set of individuals present from the first occasion to

occasion t needs to be considered in the analysis. However, this results in the elimi-

nation of valid data. Lepkowski (1989) suggested modifying the wave non-response

patterns so that they are expressed as attrition patterns. This modification results

in fewer data being eliminated when the attrition weights are calculated. How-

ever, it ignores the possibility that wave non-respondents might be fundamentally

different to those who leave the survey prematurely.

Panel surveys, such as the BHPS (Taylor et al., 2009), LFS (ONS, Office

for National Statistics, 2009), Panel Study of Income Dynamic (PSID) (Gouskova

et al., 2008), Survey of Income and Program Participation (SIPP) (Fuller and An,

1996; Kobilarcik and Singh, 1996; Allen and Petroni, 1994) and Survey of Labour

and Income Dynamics (SLID) (LaRoche, 2003; Hunter et al., 1992), use different

methods to calculate the longitudinal weight adjustments. These methods vary

in complexity but all have as a first step the definition of a base weight which is

usually the cross-sectional weight for the first occasion already adjusted to account

for initial wave non-response.

The simplest method involves classifying respondents and non-respondents

in weighting cells or classes according to the information available for all. The

non-response adjustment factor is calculated as the inverse of the response rate

in each of the classes (LaRoche, 2003). This response rate is calculated as the

weighted sum of the respondents sample over the weighted sum for the eligible

sample in that class. Respondents have their base weights adjusted by this factor

and non-respondents receive weight zero. This method often uses decision trees

to define the different cells and is usually followed by some kind of calibration

method (Kalton and Bryk, 2000).

Another method commonly used involves fitting logistic regression models

for the propensity of being a respondent (or non-respondent) (Hunter et al., 1992;

Rizzo et al., 1996). The outcome variable for the logistic model is the response

indicator, like the Rti from the previous section. The covariates are usually cat-

egorical variables taken from the data of the previous occasions. The model can

include main effects and interactions between these variables and also sampling

design variables (Lepkowski, 1989). The non-response adjustment factor is calcu-

lated as the inverse of the predicted probabilities for the respondents and applied

to their base weights. Non-response bias is expected to be reduced once the model

controls for the covariates that are related to the response propensity (Kalton and

Bryk, 2000). When only categorical variables are used this method works in a

similar way to the adjustment cells methods.
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The use of longitudinal weights is advisable in order to compensate for sample

losses between sequences of occasions. This practice ensures the sample is repre-

sentative of the population at the time the sample was selected (LaRoche, 2003).

Ignoring the non-response in a longitudinal analysis might yield biased estimates,

as this implies the assumption of equal distributions of the outcome variable for

respondents and non-respondents (Pfeffermann and Sikov, 2008). Non-response

reduces the sample size and in longitudinal surveys it might have an effect on the

availability of the longitudinal component. The use of methods that adjust for

non-response reduces the bias in the estimation of population parameters while

preserving the relationships between the survey variables, provided that the elim-

ination of the available cases is not significant (Kalton and Bryk, 2000).

2.5 Summary

This chapter focussed on a review of the models for the analysis of longitudi-

nal data within the multilevel modelling framework. Random intercepts, random

slopes and multivariate multilevel models were described in detail. This chapter

also presented a review of the alternative error correlation structures that can

be imposed on the estimation of multivariate multilevel models; the robust sand-

wich covariance estimator for multilevel models and the issue of non-response in

longitudinal data. Chapter 6 presents a review of methods for the analysis of

a longitudinal data under the multilevel modelling framework accounting for the

sampling weights, including methods for calculating longitudinal weights.
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Chapter 3

The Brazilian Monthly

Employment Survey

3.1 Introduction

In the introductory chapter of this thesis the Brazilian labour force survey was

mentioned as the survey providing the data to be used. This chapter presents some

details of the methodology of this survey whose official name Pesquisa Mensal de

Emprego translates to Brazilian Monthly Employment Survey, hereafter denoted

as PME.

The PME is a probabilistic household sample survey conducted by the Brazil-

ian national statistics office, the IBGE. This survey has a complex multistage

sampling design. It is conducted every month and the households selected in the

sample are rotated in and out following a rotation scheme. Its main aim is to

produce monthly indicators on the Brazilian labour market and it currently covers

the urban areas of the six main metropolitan regions of Brazil. The next section

presents some history of the PME survey and details of its design. The information

in this section was taken from official documents provided by the IBGE, mostly

from the PME methodological notes in IBGE (2002).

IBGE makes the PME data available in monthly files. These files need to

be merged in order to create a longitudinal data set. However, care must be

taken when merging these data files to ensure that the households and individuals

within households are correctly matched. This is an important issue of this survey

which is dealt with in Section 3.3. This chapter concludes with a discussion on

the selection of two working data sets from the PME to be used in the following

chapters: a cross-sectional and a longitudinal data set.
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3.2 The PME

3.2.1 History

Since the 60s, the IBGE have recognized the need to conduct a regular household

survey to be able to better understand the changes in the country’s social, de-

mographic and economic development. IBGE’s main national household survey

PNAD1, which started in 1967 as a quarterly survey, became annual in the late

70s. However, PNAD did not provide information on short term changes in the

labour market. Hence, IBGE developed its labour force survey, first implementing

it in 1980 (IBGE, 2001a). The main objective of the PME is to investigate the

characteristics of the Brazilian labour force, producing monthly indicators that aid

the evaluation and planning of the country’s socio-economic development (IBGE,

2009). The PME is a labour force survey comparable to the UK Labour Force

Survey (UK-LFS) and the U.S. Current Population Survey (CPS).

Brazil is the largest country in South-America, and according to the IBGE

the estimated population in the year 2005 was about 186 million inhabitants. Ge-

ographically, the country is divided into 5,560 municipalities. These municipalities

are grouped into 26 Federation Units (or States), and one Federal District. These

states are grouped into five great regions: North, North-East, Centre-West, South-

East and South. Some municipalities are also grouped to form the 28 Brazilian

metropolitan regions.

Recognizing that the core of the Brazilian labour market is located in the

metropolitan areas, the PME was initially designed to cover the nine metropolitan

areas that existed at the time the survey was introduced, and the Federal District.

However, due to budget constraints, the survey was first implemented in two of

these regions and two years later it was covering six metropolitan regions: Re-

cife and Salvador both located in the North-East Region; Belo Horizonte, Rio de

Janeiro and São Paulo located in the South-East and Porto Alegre located in the

South of Brazil. These are still the six metropolitan regions currently covered by

the survey.

PME has been one of the main sources of labour market indicators in Brazil.

Since it was first implemented, the PME survey methodology required some re-

visions. The first revision was in 1982. It was concerned with changes in the

conceptualization of work and aimed to relate to the questionnaire of the national

household survey PNAD. Later, in 1988, the survey had its second revision, where

1Pesquisa Nacional por Amostra de Domićılios.

53



Chapter 3 The Brazilian Monthly Employment Survey

only the sample size was reduced (Silva and Moura, 1988). This second revision

was justified as it improved the quality of the field work. Before this revision, a

listing process was carried out every two years with a sample of new households

found in selected enumeration areas being added to the original sample. However,

the number of interviewers remained the same or even reduced over the years.

This resulted in an increasing number of incomplete interviews. Silva and Moura

(1988) showed that this survey revision reduced the rate of non-response from

around 24% to 5%. Later, in 1993, a similar revision was performed again in order

to reduce the non-response rate.

In 1996, besides the PME, there were other surveys investigating the labour

force being conducted by other institutes of research in Brazil. In an effort to

improve the utility of the indicators provided by the different surveys, the Min-

istry of Labour proposed the unification of such surveys. For this purpose IBGE

started the latest revision of PME. No consensus was reached on the unification

of such surveys which differed mostly on the definition of the main labour market

indicators and design. However, IBGE continued with the revision process recog-

nizing that the PME survey should be updated to be able to capture the latest

changes in the Brazilian economy (IBGE, 2002). The revised survey was only fully

implemented in 2002. The main modifications concerned the definition of certain

variables following recommendations from the International Labour Organization

(ILO) to be applied to general labour force surveys. In the PME this involved

modifications of the sampling design, the questionnaire ordering and the regional

coverage. The revised PME was reduced to cover only the urban areas of the six

already included metropolitan regions. Due to important methodological changes

in this latter revision, the historic series initiated with the first implementation of

PME, was discontinued. However, IBGE still makes available both series.

IBGE is the first user of the PME data: it uses the PME mainly to pro-

duce monthly reports comparing the monthly employment indicators and the gross

flows in and out of employment. It also produces technical reports such as IBGE

(2001a,b, 2002, 2003, 2009). Some recent studies conducted by IBGE using the

PME data have been: on the increasing participation of women in the labour mar-

ket and their allocation as the head of the household (IBGE, 2006b); on the profile

of domestic workers and their increasing participation in the labour force (IBGE,

2006c) and also on the increasing participation of the population aged over 50 in

the labour market (IBGE, 2006a).

Other users besides the IBGE are those that implement more elaborate anal-

ysis of the PME data. However, the majority of the studies conduct cross-sectional
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or pooled cross-sectional time series analyses, while very few conduct longitudinal

analyses (Corseuil and Santos, 2002). One example of the use of the PME explor-

ing its longitudinal component can be found in Sedlacek et al. (1989). This study

used data from the PME before the latest revision to investigate labour market

mobility in a short period of time. The problem of matching individual records

was raised in this study. Ferrao (2002) is also another example of the use of the

PME data before its latest revision. This study used the multilevel modelling ap-

proach to investigate the participation in the labour market. Other studies, also

utilizing the PME data before the latest revision, are: Lemos (2002, 2006), both

used old PME with matching difficulties mentioned in the former; Schwartzman

(1999) that mentioned the reformulation and implementation of the question for

skin colour; and Barros et al. (2000) which used pooled time series analysis. The

lack of studies exploring the longitudinal component of the PME might be justified

by the difficulty in matching individual records to form a proper longitudinal data

set. This issue is discussed later on in this chapter.

3.2.2 Sampling Design and Rotating Panel Design

The PME sample of households was designed to be representative of the urban

population for each of the six metropolitan regions covered by the survey. The

sampling scheme adopted by the PME is characterised as a stratified two stage

cluster design with unequal probabilities of selection. Samples of households are

selected separately from each metropolitan region.

In each of the metropolitan regions groups of municipalities or pseudo-

municipalities2 form the independent strata. The census enumeration sectors,

which are the primary sampling units (PSU), are selected independently from

each stratum in each of the metropolitan regions. The secondary sampling units

(SSU) are the households which are selected from each PSU. All residents from

the selected households are surveyed. The motivation for this design is to ensure

the spread of the sample within each metropolitan region.

The PSUs are selected by systematic sampling with probability proportional

to their total number of private occupied households, as listed in the 2000 Demo-

graphic Census. From the selected PSUs, the households are selected by simple

systematic sampling, using a random start and a fixed interval of selection with

2The definition of pseudo-municipality is that when more than one municipality of smaller
size, according to the 2000 Census, are joined together to represent one stratum with sufficient
size to allow for the minimum number of PSUs to be selected from it (IBGE, 2002).
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the initial goal of selecting 16 households per PSU. Each PSU remains in the sam-

ple for a decade. It will only be replaced earlier by a similar one if there exists a

shortage of households to be selected or if the whole selection process is renewed.

Table 3.1 presents the PME sample composition. It shows the total number

of selected PSUs and selected households when the sample for the last revision

was designed, March 2001. The table also shows the equivalent information for

December 2005, for comparison. The change over time is due to the rotation of

the sample and the re-listing process carried out every year. Information for 2005

in this table was constructed from the monthly micro-data.

Table 3.1: The PME Sample Composition

Number Number of PSUs in the Population Number of 1/
of and Selected in the Sample Selected HHs (Sampling

Munici- Population Sample Sample Mar-01* Dec-05 Fraction)*
palities* Mar-01* Mar-01* Dec-05

Recife 14 3,068 261 283 4,715 5,610 200
Salvador 10 4,604 243 272 4,684 5,549 200
Belo Horizonte 33 14,710 359 389 6,644 7,544 200
Rio de Janeiro 19 20,612 406 441 7,576 8,309 500
São Paulo 39 3,023 431 471 7,820 9,119 700
Porto Alegre 30 4,982 329 378 5,773 6,763 200
Total 145 50,999 2,029 2,234 37,212 42,894
Notes: * Taken from IBGE (2002).

Another important feature of the PME sampling design is its rotation scheme.

By design, each selected household is interviewed in four consecutive months. They

are left out of the sample for eight consecutive months and return after this period

to be interviewed again in four consecutive months, after which they are excluded

from the sample. This characterises a rotating panel design known as 4-8-4. Ac-

cording to this rotation scheme, 25% of the sample is substituted every month.

In addition, surveys one year apart have 50% of households in common. This

rotating design allows following selected households over time for a period of 16

months, with an 8 month gap between the fourth and fifth interviews.

Table 3.2 shows the representation of the rotation scheme for the year 2004.

The cells of this table show the interview time for each panel and month. The

super columns in Table 3.2 represent the selection groups3. In 2004 these selection

groups were called D, E, F and G. Selection group D is not shown in the table.

Each selection group is divided into eight sub-samples with approximately the

same size, called rotation groups (RG). These are the eight columns (labelled

from 1 to 8) in Table 3.2. The RGs are composed by a set of PSUs from any of

the six metropolitan regions. The panels of households, which are rotated in and

out, are represented by the combination of selection groups and RG. For example,

3Selection groups are an administrative make up. It is formed by a set of households.
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the panel of households F4 was first introduced in the survey in January 2004.

In addition, once allocated to a RG, a PSU can only belong to this RG. In this

sense, panels G4 and F4, for example, are composed by the same set of PSUs.

However, the households allocated in selection group G are not the same as those

allocated in F. In other words, each selected PSU has households allocated to

different panels over the time that PSU is considered in the PME.

Table 3.2: The PME Rotation Scheme 4-8-4

Selection E Selection F Selection G
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

Jan 4 3 2 1
Feb 5 4 3 2 1
Mar 6 5 4 3 2 1
Apr 7 6 5 4 3 2 1
May 8 7 6 5 4 3 2 1
Jun 8 7 6 5 4 3 2 1
Jul 8 7 6 5 4 3 2 1
Aug 8 7 6 5 4 3 2 1
Sep 8 7 6 5 4 3 2 1
Oct 8 7 6 5 4 3 2 1
Nov 8 7 6 5 4 3 2 1
Dec 8 7 6 5 4 3 2 1

According to this rotation scheme, samples in consecutive months of the

same year have 6 panels in common, and samples one year apart have 4 panels in

common. This means that for every 12 months of data there is 50% of the sample

that overlaps. Moreover, in every month there are households being interviewed

from the first until the eighth time. This rotation scheme is the same as the one

adopted by the CPS (Bureau of Labour Statistics, 2002). The use of rotating

panel designs, like the one for the PME, over permanent samples is justified as it

reduces the respondent’s burden. It also allows for longitudinal comparisons when

a substantial number of household units are matched in consecutive months and

years (Sedlacek et al., 1989).

The PME sample is designed such that households once excluded from the

sample after the eighth interview, do not return to the survey in the following years.

However, the PME, like most surveys of this type, is not a longitudinal survey

per se. It is designed to follow household spaces (dwellings) but not individuals

over time. If residents from a selected household move out from it, while the

household is in the PME sample, no effort is made to follow these residents. The

new occupants of this household will be those to be interviewed for the rest of the

period that this household remains in the sample. This represents a drawback of

this data set as one cannot guarantee individual records to be accurately linked

across the distinct monthly surveys.
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One other important aspect of the PME sampling design is that, unlike

similar labour force surveys, in the Brazilian one, there is no change in the ques-

tionnaire for the different months that the households are surveyed. Therefore,

the selected household will respond to the exact same questionnaire in all eight

times it is interviewed.

3.2.3 Sampling Weights and Unit Non-response Correc-

tions

By design, the PME sampling scheme is initially self-weighted within each metro-

politan region. This means that the selected households and individuals from

the same metropolitan region would have the same sampling weight. The sam-

pling weights are the inverse of the sampling fraction, the inclusion probabilities,

presented in Table 3.1 earlier in this chapter. However, the last methodological

revision of the survey also included the correction of the sampling weights to ac-

count for unit non-response. This causes the loss of the self-weighted characteristic

of the design.

Without the treatment for non-response the design weights in a given metro-

politan region g, are written as:

wg =
1

fg
=

1

nhgpjhg
mjhg

Mjhg

,

where:

fg is the sampling fraction in the metropolitan region g;

nhg is the number of selected PSUs in the hth stratum in the metropolitan

region g;

pjhg is the relative size of the jth PSU in the hth stratum (according to the

2000 Census) in the metropolitan region g;

Mjhg is the number of listed households in the jth PSU in the hth stratum,

and

mjhg is the number of selected households in the jth PSU in the hth stratum

in the metropolitan region g.

For simplicity of notation the subscript for the metropolitan region g is omit-

ted hereafter. The treatment involves adjusting mjh to represent m∗jh, the number

of respondent households (with interview undertaken) and nh to represent n∗h, the
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number of PSUs within each stratum with at least one household interviewed. The

corrected sampling weights are written as:

w∗ijh =
1

n∗hpjh
m∗jh
Mjh

, (3.1)

which are the same for each household i in PSU j but may vary across PSUs and

strata for the same metropolitan region.

Two types of sampling weights are available in the survey micro-data. The

corrected weights w∗ijh (3.1) and the calibrated weights w
′∗
ijh (3.2), that are adjusted

by the population projection of each of the metropolitan regions4. The calibrated

weights are written as:

w
′∗
ijh = w∗ijh

P

P̂ ∗
, (3.2)

where P is the population projection of a given metropolitan region and P̂ ∗ is the

estimated population, calculated from the sample using the non-response adjusted

weights w∗ijh. These sampling weights are provided in each of the monthly data

sets. However, the survey does not provide longitudinal weights.

3.2.4 Variables in the Survey and Main Concepts

The field work of the PME is divided into two operations: annual update of the

sampling frame, where households in the selected sectors are listed and classified,

and monthly face-to-face interviews, which are spread out in the four weeks of

the month following a pre-defined schedule. Data are collected using an electronic

questionnaire divided into four parts. Part 1 contains the variables that serve to

identify the statistical units. Part 2 collects demographic data on all residents of

the selected households. Residents aged 10 years or over answer Parts 3 and 4 of

the questionnaire. Part 3 collects educational data and part 4 work characteristics.

Table 3.3 presents a list of the main characteristics investigated in the PME.

The statistical unit of investigation of the PME are people within the se-

lected households. Households, or dwellings, are defined as “the site structurally

separated and independent, designated to serve as habitation for one or more

individuals, or which has been used as such”. The PME covers all people resid-

ing in the household except people residing in embassies or consulates, hospitals,

4This projection is according to the population growth between the 1991 and 2000 census,
and based on the fertility, mortality and migration rates, as explained in IBGE (2002).
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Table 3.3: Characteristics Investigated by the PME

Units / Sub-Sets Characteristics
Households location and density.
Resident population socio-demographic (gender, date of birth, race/colour,

household dependency and family dependency).
Resident population education (literacy, school attendance and details on level of
aged 10 or over education, professional courses) and employment status.
Employed population reason and duration for being away from work.
away from work
Employed population number of jobs, occupation, time in the job, main activity,
at work number of employed people, usual and actual earnings and

working hours, contribution to public pension, private or
public sector, informality, fixed contract, action taken and
search for job and availability to work extra hours.

Unemployed population for those who have had a job before: time since last job, if in
the last year, investigates the characteristics of previous work
and reasons for leaving it;
looking for work, actions to find a work, time since last
looked for work, time searching,
availability to work and number of hours wished to be
working.

Economically inactive identifies those marginally attached to the economically active
population population and availability to work and discouragement.

boarding schools, orphanages, prison service establishments, military/defence es-

tablishments or religious houses. The main concepts adopted by PME follow the

recommendations of the ILO made for the investigation of the labour force char-

acteristics, and some of them are listed below:

Population of Working Age: Those aged 10 or over in the reference week

which is the week from Sunday to Saturday prior to the week of interview.

Employment/Work: Paid or unpaid activity in the production of goods

or services. Excluded from this concept are all unpaid activities for charity or

for religious institutions, or in the production for auto-consumption. Those who

undertook some paid or unpaid work for at least one hour in the reference week are

classified as the employed population, those without a job and looking for one

in this same week are the unemployed population and inactive population

are those otherwise (students and those not looking for jobs).

Earnings: Money, benefit in kind, products or goods received in return for

work done. It is sub-divided into usual (usual earnings for a complete month,

the reference month, excluding any benefit received in that month) and actual

(payment actually received including any extra earnings in the reference month)

monthly earnings, from the main and second jobs.

Main Job: Work had in the reference week. This is also the work which

the respondent worked for more hours, for a longer period of time and which paid

the highest salary.

Occupational Strata: The employed population is divided into: employees
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(work for an employer, for a given work pattern in payment of money, products,

goods or benefit), domestic workers (paid domestic services done in one or more

households), self employed (employees at their own establishment or working on

their own without any other employee, with or without a partner), employers

(establishment owners with at least one employee under their supervision) and

unpaid workers.

Employment Strata: This classifies the employed population into formal,

informal, military worker and workers in the public sector (government posts). In

Brazil, formal workers have an official document called carteira de trabalho (labour

card), and this should be signed by the employer, otherwise the worker is classified

as informal.

3.3 Matching of Households and Individuals

Around the world, LFS surveys have been used in a similar fashion to the PME.

Rowe and Nguyen (2004) used the individual longitudinal data of the Canadian

LFS to study unemployment transitions. They recognized the potential flaws of

the data, such as problems in matching individual records, non-existence of ret-

rospective data on unemployment and data censoring, which are also observed in

the PME. Problems in the matching of individual records were also identified in

Madrian and Lefgren (1999) for the CPS. In this report they proposed a combi-

nation of variables to form a key variable to assist in the matching and mentioned

that when trying to match data of such surveys non-response should be considered.

This section presents the issue of matching the monthly PME data. As

mentioned earlier, the main goal of the PME is to provide monthly indicators

of the Brazilian labour market. Although it presents a rotating panel design

that follows households over time, it was not originally designed to serve as a

longitudinal survey. For this reason, like some equivalent labour force surveys such

as the one conducted in Canada (Rowe and Nguyen, 2002), it does not provide on

its monthly micro-data files a unique individual identifier that allows individuals

within selected households to be matched over time. Instead, a set of variables

must be used to uniquely identify each of the households and individuals. IBGE

ensures that the values for these variables do not change in any of the months

the household is in the sample. These variables are those that represent the

metropolitan region, the stratum, the PSU and the panel that the households were

in and two other variables that are called “control” and “series”. All these variables

must be taken together to identify each one of the households. The omission of
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any of these variables causes the mismatching of household records. For matching

individuals, however, IBGE does not provide any explicit recommendation of the

set of variables to be used in any of the official documentation of the survey. It

recommends to the user, who intends to apply longitudinal methods on the PME

data, linking the individuals within matched households by using some of their

demographic variables such as date of birth and gender.

Some studies mentioned in the previous section identified this problem when

using PME data collected prior to the latest methodological revision. Antonaci

and Silva (2007) explored this issue in more current PME data. In this study, the

observed matching rates, for both households and individuals, were compared to

the matching rate expected by design. Table 3.4 presents this expected rate of

sample that overlaps between pairs of months. For example, 75% of the sample

should be matched when considering samples one occasion apart, and 50% for

samples taken one year apart. It is important to notice that, due to these rotating

panels, samples from months separated by intervals of 4 to 8 months will not

overlap, as well as samples separated by 16 months or more.

Table 3.4: Percentage of Sample Overlap between Pairs of Months

Month Sample Overlapping
Interval Determined by Design (%)
1 75.0
2 50.0
3 25.0
4-8 0.0
9 12.5
10 25.0
11 37.5
12 50.0
13 37.5
14 25.0
15 12.5
16 or more 0.0

Antonaci and Silva (2007), using PME data from March 2002 till December

2005, concluded that the observed household matching rates were not too different

from those expected by design. Using the same set of variables as those mentioned

above they found, for example, that the observed rate of household matching in

samples one month apart was 71%; for samples nine months apart this rate was

11% compared to the expected 12.5%; and for samples one year apart this rate

was 44%. Individuals were matched within the matched households considering

their gender and date of birth. Due to the clustered design, used in the PME

sample, the same expected rates are valid when matching individuals. Antonaci

and Silva (2007) concluded that the rates of individual record matching were less

than half of what was expected by the design (as in Table 3.4) for lags greater
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than three. They indicated this could be due to inconsistencies on the variable for

date of birth.

The matching exercise presented in Antonaci and Silva (2007) compared

month-by-month samples. Considering the set of PME data available to be used

for years 2004 and 2005, this section presents further matching exercises. These

exercises were performed considering the matching between data sets represent-

ing the different interview times. The monthly data for both years were pooled

together and files for each of the eight interviews were created. Each one of these

files could contain samples from every month of both years. By design, and if

there were no unit non-response, the expected matching rate for any panel from

one interview to the other is 100%. The different rates indicate the absence of

households, for either non-matching or non-response reasons.

Table 3.5 displays the matching rates for nine of the panels. These panels are

those that by design should have data for the eight interviews completed during

the observation period. These panels are labelled from F4 to F8 and G1 to G4,

and their starting date in the survey is presented in the table between brackets.

The columns of Table 3.5 show four selected pairs of comparisons: comparing the

1st interview with the 2nd, the 4th with the 5th, the 7th and the 8th and also the

1st with the 5th. It can be noticed that around 96% of the households in the 1st

interview are matched with the households of the 2nd in every panel. The matching

rates when comparing the last two interviews are also around 96 to 97%. However,

the matching between the 4th and the 5th interviews, considering the gap of eight

months between them, and the 1st and the 5th are those showing the lower rates.

As mentioned by Antonaci and Silva (2007) the main problem is with matching

households in the first four interviews with any of the last four. For example,

84% of the households from the panel starting in January 2004 were successfully

re-interviewed on the 5th occasion. These lower rates might be an indication of

mismatching and can be understood as panel non-response.

Table 3.5: Household Matching Rates of Selected Pairs of Interview Time and Panel

Panel Interview Times (%)
1 and 2 4 and 5 7 and 8 1 and 5

F4 (01/04) 96.4 84.1 97.5 83.6
F5 (02/04) 97.9 89.0 97.7 88.7
F6 (03/04) 96.8 89.1 97.5 88.4
F7 (04/04) 96.3 89.3 96.9 89.0
F8 (05/04) 96.8 87.8 95.7 88.1
G1 (06/04) 96.6 89.5 97.2 89.6
G2 (07/04) 97.0 87.2 97.2 86.8
G3 (08/04) 97.2 87.2 97.7 86.9
G4 (09/04) 96.4 87.4 96.1 87.5
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Madrian and Lefgren (1999) evaluated the matching of individual records in

the CPS monthly data. Although expecting similar rates to those for the household

matching, they recognized that the rates for individuals would be systematically

smaller due to individual non-response, mortality and residential mobility. The

same can be expected to happen in the PME case. Furthermore, measurement

errors in the variables for date of birth, for example, also contribute to the lower

individual matching rates. Madrian and Lefgren (1999), therefore, performed dif-

ferent matching exercises trying different combinations of key variables.

Similar exercises to those performed in Madrian and Lefgren (1999) were

performed for the PME data available. The results for all these exercises are not

shown here as the thorough investigation of the matching process goes beyond the

scope of this thesis. The exercises were performed to assist in the selection of the

final data set for the analysis. The exercises involved testing different combinations

of key individual variables added to the set of those that identify the household.

The variables considered were: the number of order of the individuals in the

household; the number of household members; date of birth; and characteristics

of the individuals such as gender, education level, skin colour and age. Table 3.6

presents the results for three of the exercises. The cells in this table represent the

first off-diagonal of the comparison between interviews, i.e. the rate comparing the

interviews taken one month apart. It is worth mentioning that these are values

calculated for the same nine panels as in Table 3.5.

Table 3.6: Individuals Matching Rates of Selected Pairs of Interview Time and
Panel

Pair of Number of Gender and Other
occasions Order DOB Variables
1 - 2 96.0 93.8 87.5
2 - 3 96.2 94.3 89.5
3 - 4 96.3 94.7 90.6
4 - 5 81.5 47.6 34.3
5 - 6 96.2 94.8 89.9
6 - 7 96.5 95.2 91.7
7 - 8 96.5 95.3 92.2

The first column in Table 3.6 considered the matching of individuals adding

the variable for the number of order of individuals (ORD) within the households.

At the first glance this variable appears to be the best candidate to be used com-

bined with the household identifiers. However, this variable is not fixed throughout

the different interviews: any change in the household structure causes the mem-

bers to be re-ordered thereby receiving different ordering from those of previous

interviews. Furthermore, if a new family moves to a household already in the

survey, the same ordering is assigned to the new members. Hence, basing the
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individual identification solely on the addition of the ORD variable may cause the

perfect match of records from completely different individuals or may cause the

records of the same individual not to be matched at all. For this exercise Table 3.6

shows that the lowest rate is for the match between the 4th and 5th interviews.

The second column in Table 3.6 shows the matching rates when considering

the gender and date of birth (DOB) variables added to the set of household identi-

fiers. DOB can be constructed for every individual from the variables provided for

day, month and year of birth. However, all these three variables present missing

observations, which generates DOB missing. Furthermore, this variable needs to

be re-calculated in every occasion, some occasions might present missing values

and others not. Therefore, matching the individual records solely on this variable

causes individuals who are observed on different occasions with valid data for all

other variables not to be matched due to a missing DOB. Notice from Table 3.6

that a lower average matching rate is found when compared to the previous ex-

ercise. These lower rates might reflect the problems with the DOB variable, as

also identified in Antonaci and Silva (2007), or might be an indication of a more

accurate match than the previous one. Once again, the matching rate between

the 4th and the 5th interviews is the lowest.

The last column in Table 3.6 shows the matching rates when considering the

addition of the variables for total number of members in the household, gender,

skin colour and year of birth (YOB). The variable for total number of members in

the household is a control for residential mobility. However, the addition of this

variable might prevent the successful matching of households that had a change

in the number of members over the time of the survey. The addition of YOB was

dictated by the difficulty in merging using DOB, as YOB contains less missing

values. Table 3.6 shows that this last matching exercise contains the lowest rates

of matching. This is a more restrictive set of key variables which might cause lower

rates of mismatched individuals. These results are in accordance with the results

presented by Madrian and Lefgren (1999).

From all the matching exercises performed, some not shown here, it was

noted that the matching of individual records from different PME data files is not

as effective as matching households themselves. It was also possible to conclude

that the initial matching problems identified when only households were being con-

sidered are magnified when performing the matching for the individual records,

particularly when the lag between the interviews is greater than three. The exer-

cises indicated that individual records are better matched within either the first

four interviews or the last four, but not among these two sets of interviews. This
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match can be done, but at a lower rate of accuracy and without confidence that

actual matches are not being discarded.

3.3.1 Non-response Patterns for Household Units

The results for the matching between household records showed some indication of

panel non-response (Little and Rubin, 2002). This was also identified in Antonaci

and Silva (2007). This sub-section aims to provide a brief investigation of the

patterns of non-response for the PME data set. Chapter 7 deals with this issue

of non-response a bit further. Due to the difficulty in matching individual records

this sub-section deals only with non-response at the household level.

A longitudinal data set for the PME survey can provide up to eight mea-

surement occasions for each household. If every time the household is interviewed

it is classified as “in” and each time that the household is not interviewed it is

classified as “out”, this gives a total of 256 (28) possible patterns of non-response.

Note that, since the PME micro-data provided are only for those households inter-

viewed in each month, no information on those households that were selected but

never interviewed is available. Therefore the pattern for “out” in every occasion

is not observed.

Consider the nine panels that should have the eight interviews completed by

design in the 2004/2005 pooled data. These panels are those that have their first

interview from January to September 2004. Therefore, if a household from any of

these panels is classified as “out” this is evidence of panel non-response. Table 3.7

shows a summary for the classification as either “in” or “out” for the household

units in these nine panels. The aim of this exercise is to illustrate the possible

different sizes of samples of household units if different patterns of non-response

were to be allowed. The last column of Table 3.7 represents the summation over

the nine panels. It shows that if only the units with eight interviews completed

(Completers in the table) were to be considered this number would be equal to

26,274. This represents 66% of the total number of households observed in these

nine panels. In the table, “Wave NR” stands for intermittent non-response from a

given interview time and it means that the unit was observed until one time before

that. For example intermittent non-response from interview 6 indicates that the

household unit was “in” in the first five interviews, “out” at the 6th but returns at

some point after that. If the household does not return to be “in” it is classified

as “Drop-out” in the table.

Note, from Table 3.7, that the drop-out from interview time 5 is the most
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Table 3.7: Non-response Patterns for Households in Panels with the Complete Set
of Interviews Determined by Design

Interview Panel
Time F4 F5 F6 F7 F8 G1 G2 G3 G4 Sum
Wave 8
Completers 2,699 3,131 3,045 2,943 2,702 2,991 2,974 2,989 2,800 26,274
Wave NR 35 46 47 52 81 56 47 41 68 473

Wave 7
Wave NR 26 17 33 20 42 28 22 25 20 233
Drop-out 25 29 24 20 43 30 24 16 17 228

Wave 6
Wave NR 41 28 33 27 46 44 59 49 40 367
Drop-out 15 21 18 24 22 27 22 24 19 192

Wave 5
Wave NR 266 171 159 144 157 144 196 192 169 1,598
Drop-out 198 176 184 163 162 149 196 202 185 1,615

Wave 4
Wave NR 77 77 62 78 61 66 54 49 86 610
Drop-out 19 14 12 19 12 6 19 16 20 137

Wave 3
Wave NR 78 64 96 78 109 67 64 77 89 722
Drop-out 24 15 9 7 16 16 19 14 7 127

Wave 2
Wave NR 110 67 101 117 105 106 97 90 116 909
Drop-out 20 13 24 21 11 21 18 18 15 161

Wave 1
Wave NR 759 611 577 644 736 652 652 636 638 5,905

Total 4,392 4,480 4,424 4,357 4,305 4,403 4,463 4,438 4,289 39,551

frequent. It is worth remembering that the set of households being considered in

the table are those that should be present for the full set of interviews and the

higher frequency of drop-outs from interview 5 indicates the failure to re-interview

the households after one year from the first interview. There is also, for interview 5,

a high level of intermittent non-response, indicating that although initially failing

to interview the household at the 5th interview, the survey manages to re-include

some of those units in subsequent interviews. The highest number of intermittent

non-response is for those from interview time 1, indicating an initial difficulty in

interviewing certain households. It is this category, which includes the patterns

with “out” for the first four interviews. These patterns represent 27% of the total

intermittent non-response from the first interview, considering the summation over

the nine panels in this exercise.

In summary, Table 3.7 shows that, of all household units in the nine panels

designed to have the full set of interviews in 2004/2005, 7% drop-out of the sample

prematurely, 26% have intermittent non-response (wave non-response) and 66%

complete the full set.
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3.4 The Selected Working Data Sets

To be able to work with the PME data, two working data sets are defined: one

cross-sectional data set described in detail in Section 4.3.1 and a longitudinal data

set described in this section.

At the time this research began, micro-data from the years 2004 and 2005

were available to use. The aim is to be able to form a longitudinal data set

from the available data. Table 3.2 already showed that some of the panels in

the available data included households being interviewed from their fifth interview

onwards only. So no information is available for their first four interviews. The

idea was to restrict the available data to consider only those households that had

data for their starting interview in 2004 or 2005. In this way, the longitudinal

data set only contains the households that entered the sample from January 2004.

These households are followed over time until the end of 2005.

Table 3.8 gives a representation of PME panels after this first restriction.

This forms the general working data set from which a cross-sectional and a longi-

tudinal data set can be selected. Recall that by design in every month there are

households being interviewed from the first time to the eighth. Therefore, each

column represents an occasion and under them there are the monthly samples that

the data will be selected from. For example, from the whole January 2004 sample,

only those households being interviewed for the first time are to be considered,

whereas from the February 2004 sample, households being interviewed for their

first and second times are considered, and so on. Selecting the households that

had their first interview from January 2004 onwards allows the construction of a

longitudinal series that starts from their first interview.

According to the representation in Table 3.8, different longitudinal data sets

could be formed. There is one, for example, where households have the full set of

interviews (eight interviews), and another where households have up to the first

four interviews. It is worth reinforcing that households which have their last four

interviews in the year 2004 were not considered in the working data set. The

working longitudinal data set will be formed by only those panels that by design

should have the full set of eight interviews, which are the first nine panels in the

table.

As discussed in Section 3.3, the matching of individual records is rather

difficult. Although the matching of all eight time points is difficult, it is not

impossible. In order to fulfil the methodological motivation of analysing a data

set containing the full set of interviews from the PME survey it was decided to
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Table 3.8: Representation of the Working Data-Set

Occasions
Panel 1 2 3 4 5 6 7 8
F4 Jan-04 Feb-04 Mar-04 Apr-04 Jan-05 Feb-05 Mar-05 Apr-05
F5 Feb-04 Mar-04 Apr-04 May-04 Feb-05 Mar-05 Apr-05 May-05
F6 Mar-04 Apr-04 May-04 Jun-04 Mar-05 Apr-05 May-05 Jun-05
F7 Apr-04 May-04 Jun-04 Jul-04 Apr-05 May-05 Jun-05 Jul-05
F8 May-04 Jun-04 Jul-04 Aug-04 May-05 Jun-05 Jul-05 Aug-05
G1 Jun-04 Jul-04 Aug-04 Sep-04 Jun-05 Jul-05 Aug-05 Sep-05
G2 Jul-04 Aug-04 Sep-04 Oct-04 Jul-05 Aug-05 Sep-05 Oct-05
G3 Aug-04 Sep-04 Oct-04 Nov-04 Aug-05 Sep-05 Oct-05 Nov-05
G4 Sep-04 Oct-04 Nov-04 Dec-04 Sep-05 Oct-05 Nov-05 Dec-05
G5 Oct-04 Nov-04 Dec-04 Jan-05 Oct-05 Nov-05 Dec-05 Jan-06
G6 Nov-04 Dec-04 Jan-05 Feb-05 Nov-05 Dec-05 Jan-06 Feb-06
G7 Dec-04 Jan-05 Feb-05 Mar-05 Dec-05 Jan-06 Feb-06 Mar-06
G8 Jan-05 Feb-05 Mar-05 Apr-05 Jan-06 Feb-06 Mar-06 Apr-06
H1 Feb-05 Mar-05 Apr-05 May-05 Feb-06 Mar-06 Apr-06 May-06
H2 Mar-05 Apr-05 May-05 Jun-05 Mar-06 Apr-06 May-06 Jun-06
H3 Apr-05 May-05 Jun-05 Jul-05 Apr-06 May-06 Jun-06 Jul-06
H4 May-05 Jun-05 Jul-05 Aug-05 May-06 Jun-06 Jul-06 Aug-06
H5 Jun-05 Jul-05 Aug-05 Sep-05 Jun-06 Jul-06 Aug-06 Sep-06
H6 Jul-05 Aug-05 Sep-05 Oct-05 Jul-06 Aug-06 Sep-06 Oct-06
H7 Aug-05 Sep-05 Oct-05 Nov-05 Aug-06 Sep-06 Oct-06 Nov-06
H8 Sep-05 Oct-05 Nov-05 Dec-05 Sep-06 Oct-06 Nov-06 Dec-06
I1 Oct-05 Nov-05 Dec-05 Sep-06 Oct-06 Nov-06 Dec-06 Jan-07
I2 Nov-05 Dec-05 Sep-06 Oct-06 Nov-06 Dec-06 Jan-07 Feb-07
I3 Dec-05 Sep-06 Oct-06 Nov-06 Dec-06 Jan-07 Feb- 07 Mar-07

consider a longitudinal data set, which included all eight time points, for as much

sample as possible given some criteria for validating the matching. One alternative,

however, to be able to work with individual data from the PME is to consider only

the heads of household. These are the household reference units and therefore

the most important member of the household. In addition, these individuals are

easier to identify from the data set. Each household contains only one individual

identified as the head of the household and for that similar matching rates as those

found for the households are expected. Furthermore, other matching criteria using

some of their individual characteristics, such as gender and age, would still be

necessary to guarantee a more accurate matching.

With the objective of modelling job earnings, the variable for the usual em-

ployment earnings in the main job was chosen as the variable of interest from

the other three job earnings variables available in the data. As defined earlier in

this chapter, the usual job earnings is the contractual pay received in the refer-

ence month and excludes any benefits received. This income component was also

used in Jenkins (2000), and for simplicity is adopted here and hereafter referred

to as labour income. As also presented earlier in this chapter, IBGE defines the

employed population as those who undertook some kind of paid or unpaid work

for at least one hour in the reference week. It also includes those who had a job

but were temporarily absent from this occupation. Job earnings are defined as

the benefit in return for work done and are measured as monthly earnings from
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the main and second jobs. Therefore, only those classified as employed have data

for job earnings. For this reason, the analysis sample is reduced to include only

employed heads of household.

The aim is to select a balanced data set of employed heads of household who

were employed at all eight time points starting from the first interview. There are

different strategies to select this longitudinal data set and different sets of criteria

for validating the matching of individuals. The choice of a complete-case balanced

data set is adopted for simplicity since the methods used to analyse this data

set are flexible enough to accommodate an unbalanced data set. To guarantee

a balanced data set, the heads of household that do not have, by design, all 8

time points were not considered. Those that dropped out of the panel or with

intermittent non-response were also not considered. This leaves a total of 12,170

heads of household. Furthermore, only those with valid data for all variables in

the analysis (see Tables 4.2 and 5.1) were selected, which leaves 10,183 heads of

household.

The set of criteria to validate the matching across the eight time points was

chosen based on the exercises performed earlier in this chapter. To ensure that

the same head of household is being followed over time, the data set was further

reduced to consider only those heads that, from one interview to the next, had:

- no change on the variable for gender;

- no change on the variable for skin colour;

- a change in the categorical variable for education of up to two (ordered)

categories (|Educr − Educs| ≤ 2);

- and a change in the declared age of up to three years (|Ager − Ages| ≤ 3).

Figure 3.1 presents the sample sizes for the different steps of the selection

of the data, including the number of heads of household that did not satisfy the

validation criteria. The final sub-set in Figure 3.1, of 6,524 employed heads of

household, composes the balanced working longitudinal data set to be used in

Chapters 5 and 7. It is worth mentioning that this is a quite restricted data set that

was formed to fulfil the methodological motivations of this thesis. This working

longitudinal data set might not be appropriate to draw important substantive

conclusions.
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Figure 3.1: Sample Sizes at Wave 1

3.5 Summary and Discussion

In summary, created in 1980, the PME survey was last revised and implemented

with a new methodology from September 2001. It covers the urban areas of the six

main metropolitan regions in Brazil and is conducted every month through face-

to-face interviews using an electronic questionnaire. It is a probabilistic sample

survey with complex design that includes household rotating within a period of 16

months. It has the same rotating panel design as the equivalent U.S. survey, the

CPS. As other similar labour force surveys, it follows the recommendations of the

ILO in its concepts and definitions and its main objective is to investigate issues

related to work in the target population. Data available for this study are from

the 2004 and 2005 PME and a selected sub-sample from those years is to be used

as the working data set.

Problems with the matching of the monthly PME data are well known. The

matching rates were assessed for both household and individual units. The match-

ing rates for the households were similar to those expected by design. Although

the comparisons indicated that households in the first four or in the last four con-

secutive monthly interviews are more easily matched than when households in any

of the first four are matched to any of the last four interviews. The lower house-

hold matching rates can be partly justified by the pattern of unit non-response

that showed that some households interviewed in the first four interviews did not

return for the last four or the opposite, as some households were just interviewed
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in the last four. Exercises performed showed that the matching of individual

records is not as accurate as for the household units. When the matching rates of

individual records were assessed even lower rates were found. The low rates for

individuals are not only influenced by the household unit non-response but also

by other factors that include residential mobility and other changes on household

structure. Measurement errors on the potential variables that serve to identify

the individuals are also cause for the lower rates. The exercises performed for the

individual matching identified greater difficulty in matching individuals that were

interviewed 9 months or more apart. These exercises indicate that if matching

of individuals needs to be performed a considered amount of effort is required to

guarantee a small portion of data matched over time. The suggested alternative

was to make use of the data of heads of household. This alternative was taken for-

ward and the working data set described in this chapter was restricted to include

only the heads of the households.

72



Chapter 4

Models for Income: Review and

Preliminary Analysis

4.1 Introduction

This chapter starts with a review of the main aspects of the Brazilian economy and

labour market. A detailed discussion of the studies of job earnings determinants

is given. One of the aims of this chapter is to select a model that will serve as

the basis for the analysis presented in the following chapters. This chapter then

proceeds with a preliminary analysis of the selected data set from the Brazilian

labour force survey (the PME) introduced in Chapter 3. With the objective of

selecting a model for the determinants of the log of the job earnings, a cross-

sectional multilevel model is fitted, only considering the heads of household and

the PSU level. An assessment on the significance of the variability between the

PSUs is also provided.

It is worth mentioning that throughout the preliminary analysis the PME

sampling design is taken into account, whereas, in the multilevel modelling, the

sampling weights are not used. The inclusion of the sampling weights and the sam-

pling design variables in the calculation of means and proportions was performed

by using the Stata svy commands (STATA Press, 2005). The issue of including

the sampling weights in a multilevel modelling analysis is raised in Chapters 6 and

7 of this thesis.
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4.2 The Brazilian Economy and Labour Market:

Brief Review

Brazil is the 5th most populated country in the world. The Brazilian population is

very diverse, being formed by native Americans, Africans and Europeans (Smith

and Vinhosa, 2002; World Bank, 2003). It is distributed within a vast territory,

which differs greatly in living conditions. Brazil is not a poor country: it was

ranked the 10th world economy in 2006 according to the total GDP1. With GNI2

per capita of US$5,910 in 2007, Brazil was classified as an upper-middle-income

economy according to the World Bank (2008). However, Brazil has one of the

most unequal economies in the world, with income distribution very skewed to the

right (Ferreira et al., 2006; Ferreira, 2000).

Brazil is more unequal than the average Latin American and African coun-

tries, behind South Africa only. According to the World Bank (2003), in Brazil the

average income of the richest 20% is 33 times the average income of the poorest

20%. Income inequality reduces economic growth and induces high poverty levels

which lead to weak social mobility (World Bank, 2003). The Brazilian poverty

headcount index in 2004 was 22%3. This means that 22% of the Brazilian popula-

tion had monthly household income per capita below the R$ 100.00 (one hundred

Reais) threshold.

Poverty and income inequality are closely connected to the labour market

and the job earnings (Barros and Mendonça, 1995). Ferreira (2000) stated that the

labour market works as a generator of inequalities as it transforms the differences

in the innate (such as skin colour, gender and intellectual capacity) and acquired

(such as education and experience) characteristics of workers into differences in

the wage premium. The Brazilian labour market is segmented, imperfect and

inequitable but flexible and efficient (World Bank, 2002). The main segments are

the formal and the informal sectors (Barros et al., 2000). Moreover, the Brazilian

labour force suffers from discrimination mainly due to differences in skin colour

and gender.

The Brazilian income inequality presented a stable distribution over the 80s

and the 90s, only showing signs of a decreasing trend in the current decade. This

stability was mainly due to the wage distribution which was also stable throughout

1GDP: Gross Domestic Product.
2GNI: Gross National Income.
3The poverty line was of R$ 100.00 which represents the threshold value for the targeting of

the social programme Bolsa Familia (Ferreira et al., 2006).
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the last three decades (Menezes-Filho et al., 2000; Nascimento and Souza, 2005).

In an analysis of the determinants of income inequality, Barros et al. (2006) drew

attention to its recent fall, in particular, between the years 2001 and 2004. They

commented that the current income inequality index is the lowest of the last 30

years although it is still very high. A smaller wage inequality was also identified in

Barros et al. (2006). They concluded that this decrease of the income inequality

was due to an increase in the income from other sources, mainly from public

policies in the form of cash-based programmes (O.E.C.D., 2006; Ferreira et al.,

2006), and recent changes in the labour market with the development of social

protection networks.

Over the last 30 years, the Brazilian economy went through important macro-

economic changes. Two parallel scenarios were identified in Ferreira and Barros

(1999): the first, characterized by the economic growth with stable income and

wage distributions but with a decline on income inequality; and the second, char-

acterized by the deterioration of the labour market with small effect on worsening

poverty levels. Due to the high inflation rates, there were four currency reforms in

this period, and the Brazilian currency changed its name each time. The Brazil-

ian economy changed from being a closed economy (Hay, 2001) to being an open

economy (Gonzaga et al., 2005). It is no longer dominated by the agriculture and

public manufacturing sectors. Instead, the Brazilian economy is dominated by the

private services sector (Ferreira, 2000; Ramos, 2007). The last three decades were

also a period of structural changes in the Brazilian population. It initially showed

signs of population growth (Smith and Vinhosa, 2002), particularly in the urban

areas, but soon it underwent changes in the demographic structure with the fall

of the fertility rate. During this period, there was a reduction in the dependency

ratio and in the size of families (Barros et al., 2006). An ageing of the population

was also observed (Ferreira et al., 2006). There was an increase in the educational

level of the population followed by an increase in the returns to higher education

level signalling that the Brazilian labour market became more selective (IPEA,

2005). An increase in the informal sector, particularly in the metropolitan areas,

was also observed (Passos et al., 2005).

4.2.1 Job Earnings

This section reviews some studies that investigated income determinants based on

individual level data using the labour earnings as the income variable. Labour

earnings are often used in studies of income determination in the labour market
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literature (Jenkins, 2000). In Brazil, job earnings are the largest share of the house-

hold income per capita. Therefore, it is the most important income component

(Ferreira et al., 2006).

Models for labour income are usually estimated based on the Mincer equa-

tion, created by Mincer and Polachek (1974). This equation is based on the human

capital theory, which measures the quality difference between workers with empha-

sis on the individual investments, as individuals accumulate human capital during

their life cycle (Fernandes, 2002). The human capital theory evaluates the income

differential for the different levels of investment. Education is an example of such

investment. Although seen as a costly resource, individuals invest in education

at an young age expecting pay rises later in life (Heckman and Singer, 1985) and

income returns might vary with the individual level of education. The human cap-

ital theory is then based upon the productivity capacity of the individuals, and

their abilities, innate characteristics and acquired knowledge generate product and

income flow (Hanushek, 2006; Scully, 1981).

In a recent study of the Mincer equation, Lemieux (2006) discussed how

this equation could be modified. Mincer and Polachek (1974) initially proposed

modelling job earnings, expressed in the natural logarithmic scale, as a function of

the individual’s education and their experience in the labour market. Recognizing

that experience in the labour market is not usually observed in the most common

empirical labour market data, age is used as a proxy of experience. Lemieux

(2006) discussed the use of squared terms for both experience and education. The

inclusion of the squared terms are justified as the relationship between education

and wages, for example, is not expected to be linear but to be approximated by a

squared function and therefore the squared term should be included and tested in

the model. While education has an expected convex (“J-shaped”) relationship with

the response of log-earnings, experience is expected to have a concave (inverted

“U-shaped”) relationship with the response.

Ferreira and Barros (1999) modelled the household income, instead of job

earnings, based on the Mincer equation. Using data from PNAD they performed

cross-sectional analyses of four different years. They observed that education (with

a squared term) had a convex effect on income while experience had a concave

effect with a maximum at 40 years of experience. Barros et al. (2000) performed

counterfactual simulations for the log-earnings also using data from PNAD and few

more explanatory variables than those suggested by the Mincer equation. They

presented what was called traditional results :
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“manufacturing industry and productive services are the economic

activities associated with higher wages while agriculture and personal

services are those associated with lower wages... employers tend to

have a higher income than employees and self-employed. ... Higher

wages are for formal ... and informal are those with the lowest wages.

... Labour income tends to be lower in the north-east.”

In a study of wage differentials in the industrial sector, Arbache (2001) used

human capital variables expressed by measured and unmeasured abilities, applying

different economic theories of wage determination. Education was used as a proxy

for workers abilities. Experience was represented in the model by two types of

experience variables, one as the experience in the labour market and another as

experience in the firm. These two variables had a positive relationship with wage

differentials.

Econometric issues to be considered when estimating job earnings equations

were raised in Menezes-Filho (2002). Some of these were, for example, endogeneity

and causal relationships which can be tackled by using fixed effect models or

instrumental variables approach (Hsiao, 2003). This study also had the Mincer

equation as the basis using the log-earnings as the response variable. The inclusion

of squared terms for education and age were justified: as it is not expected that the

returns to education will be the same in all the educational levels; and as returns

to experience vary in the life cycle.

Coelho and Corseuil (2002) also reviewed some studies on income differen-

tials. They provided a list of the most used covariates in these studies. These are:

individual variables such as educational level, age, skin colour, gender, position

in the family or household and region of residency; job variables such as sector of

activity, number of working hours, type of worker, job tenure or experience in the

firm, use of bonus hours and if workers receive benefits in the wage. They con-

cluded that in most of the studies conducted during the 80s and 90s, education is

the main factor for income differential and that the more educated the workforce,

the higher is their productivity and hence their income. Experience is also an-

other important factor. The more experience in the firm the workers acquire, the

greater is their capacity to implement the job well which increases their efficiency

and productivity. They also suggested that living conditions in different regions,

as used in Azzoni and Servo (2002), could be controlled for and variables for family

background, when possible, should include parental information and information

on the other members of the family. They also mentioned that it is important

to control for non-productive characteristics such as sex and skin colour, and the
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studies reviewed showed that the gender wage gap is decreasing and that there

are still some wage differentials by skin colour which is sometimes mistaken to

be regional differences. In addition, Silveira-Neto and Azzoni (2006) presented

some evidence of regional income disparity in Brazil and the existence of two well-

defined regional clusters. One formed by the rich south and south-east states and

the other, poorer, formed by the north and north-east states. They stated that

although the average per capita income in Brazil is relatively high, the regional

differential between these two clusters is significant and that these differences have

existed since colonization.

Few studies in the literature of the Brazilian labour market investigate in-

come mobility. Nascimento and Souza (2005) related the less variable wage distri-

bution to the stability of income inequality in a study on income mobility using

data from PME. In this study, Nascimento and Souza (2005) used fixed effects

models and stated that studies including the dynamic analysis of income mobility

are still very much incipient in the Brazilian economic literature. In the UK lit-

erature, Jenkins (2000) studied income mobility, also reviewing the multivariate

modelling framework. He raised some important points about the study of income

mobility as it is closely related to movements in and out of poverty. Also recogniz-

ing that labour market status is connected to economic welfare, he highlighted the

importance of conducting longitudinal studies to assist in the developing of pub-

lic policies. In Brazil, longitudinal analysis is still incipient, as also mentioned in

Corseuil and Santos (2002), and the majority of the studies conduct cross-sectional

or pooled cross-sectional analyses.

4.3 Preliminary Analysis

Following the brief review on models for labour income, the next sub-sections

present an application of the cross-sectional multilevel model, as described in Sec-

tion 2.1. The main aim of this preliminary analysis is to select a cross-sectional

model for the job earnings that will serve as the basis for further applications in

the following chapters of this thesis. A two-level random intercept model is fitted

and the significance of the PSU level is assessed. It is worth reinforcing that the

longitudinal component of the PME data is not being taken into account in this

chapter. The next sub-section describes the PME sample being analysed.
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4.3.1 Data Selected for Cross-sectional Analysis

Chapter 3 presented a description of the PME survey and its drawbacks in re-

spect to the matching of households and individual records throughout the survey

months. One alternative found in that chapter was to make use of the subset of

the heads of household in what was defined as the general working data set. This

working data set is formed by pooling data from the 2004 and 2005 PME surveys.

In order to conduct a cross-sectional analysis of the PME data, where the number

of measurement occasions equals one, the cross-sectional working data set to be

used in this chapter only considers the first interview of these heads of households.

In this sense, only the PSU and the heads of household levels are accounted for.

The analysis sample in this chapter, therefore, contains the first occasion data

of the 57,412 employed heads of household. The sample distribution of the labour

income, as expected, was shown to be very skewed to the right. Therefore, the

logarithm transformation is applied and Figure 4.1 presents the sample histogram

of the log-transformed income. It is worth mentioning that this labour income is

expressed in real terms, that is, it is inflated to prices of September 20064.

Figure 4.1: Sample Distribution of the Log-transformed Real Labour Income
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4This was the price index available at the time this data set was constructed. The nominal
income was adjusted for inflation relative to the base month of September 2006.
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The PME data set has limited choices of individual and household variables.

Table 4.1 presents the distribution of the heads of household in the analysis sample

according to some of their characteristics and their jobs characteristics. A better

explanation of some of the variables in Table 4.1 is presented in Table 4.2 at the

end of this sub-section. The results in this table were generated taking the PME

sampling weights and the design variables into account. It was performed using

Stata svy commands (STATA Press, 2005). Note that, due to the way the cross-

sectional data was selected, the survey weights available for each head of household

are from different survey periods. As the records selected in the working cross-

sectional data set are from January 2004 to December 2005, the percent of the

population and the average real income, as presented in Table 4.1, are over a 24

month period.

The PME covers the urban areas of the six main metropolitan areas of Brazil.

São Paulo is the largest metropolitan area. In the PME, the employment status

of the population is investigated for those aged 10 or older. Table 4.1 shows the

age distribution of the selected heads of household. They are more concentrated

in the age group between 40 and 49 years of age. In addition, employed heads

of household are in the majority well educated; 43% have 11 or more years of

schooling, which represents the completion of the equivalent of high school or

over. The second most frequent education level is for those that have from 4 to 7

years of schooling. This represents attending basic education, but not completing

it.
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Table 4.1: Distribution of Employed Heads of Households and Average Labour

Income by Selected Covariates

Distribution of Average

employed HoHH (%) Income

Metropolitan Regions

Recife 6.07 853

Salvador 6.85 994

Belo Horizonte 9.65 1,165

Rio de Janeiro 26.57 1,126

São Paulo 42.07 1,438

Porto Alegre 8.79 1,172

Age Group

10 to 19 0.37 491

20 to 29 13.47 812

30 to 39 28.68 1,137

40 to 49 30.92 1,368

50 to 59 18.96 1,452

60 or over 7.60 1,439

Gender

Men 73.30 1,375

Women 26.70 878

Skin Colour

White 56.47 1,604

Black 9.09 663

Yellow 0.78 2,933

Parda (Mixed) 33.55 765

Indigenous 0.11 749

Collapsed Skin Colour

Others 43.53 783

White 56.47 1,604

Education in

Years of Schooling

Less than 1 3.56 415

1 to 3 years 7.25 496

4 to 7 years 27.92 613

8 to 10 years 17.97 757

11 years or over 43.09 2,089

Not defined 0.21 501

Occupation

Employee 68.30 1,167

Self-Employed 24.15 911

Employer 7.43 3,095

Unpaid Workers 0.11 -

Informality

Formal 71.73 1,189

Informal 28.27 786

Employees in the

Private Sector 82.33 1,144

Public Sector 17.67 1,781

Sector & Informality

Formal Private Sector 62.92 1,216

Informal Private Sector 19.42 910

Formal Public Sector 3.23 1,540

Informal Public Sector 1.61 1,242

Military Services 12.83 1,918
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Table 4.1 – continued from previous page

Distribution of Average

employed HoHH Income

Activities

Manufacturing 18.60 1,328

Building 9.93 824

Commerce 18.71 1,055

Financial 13.84 1,822

Social Services 13.88 1,771

Domestic Services 6.31 359

Other Services 18.00 1,082

Other Activities 0.73 913

Duration of Employment

Average duration in months 98 -

Hours Worked

Average hours worked per week 44 -

Average Number

of Household Members 3 -

Total - 1,243

A recent study from IBGE pointed to an increase in the selection of women

as the reference person in the household, with this proportion being almost 30%

in August 2006 (IBGE, 2006b). Table 4.1 shows that the proportion of female

heads of household in the analysis sample is 26.7%. The variable that measures

skin colour in the PME is self-declared and classifies the population into five

sub-groups: White, Black, Yellow (Asian descendants), Mixed and Indigenous.

Table 4.1 shows that more than half of the heads of household classify themselves

as white. A common practice adopted in studies of the Brazilian population is to

create a dichotomous variable that represents white against others, collapsing all

other categories. This is also presented in Table 4.1.

On job characteristics, Table 4.1 shows that these heads of household are

in the majority employees (68%) or self-employed (24%). There is a quite small

share of unpaid workers and only 7% are employers. The share of the employee

heads of household can be further classified as formal (72%) and informal (28%)

employees. Furthermore, Table 4.1 shows that few employees are in the public

sector. The majority are formal employees in the private sector and around 13%

are in military service. These characteristics are, however, only for employees.

Looking again at all employed heads of households, Table 4.1 shows that they

are mostly engaged in the commerce and manufacturing activities as well as other

services. Table 4.1 also presents average values for some continuous characteristics

for this sub-set of employed heads of household, such as: their average duration

of employment is of 98 months and they work on average 44 hours per week. The
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last variable presented in Table 4.1 is the total number of household members.

This variable is discrete with an average of 3 members in the household.

Table 4.1 also presents the average labour income according to these same

characteristics. It can be observed from this table that employed heads of house-

hold in the Southern metropolitan regions - Belo Horizonte, Rio de Janeiro, São

Paulo and Porto Alegre - have higher average income than those in the northeast

regions. São Paulo is the metropolitan region with higher average income. There

is income differential for gender and skin colour: female heads of household have

lower average income than males and whites higher than others. Older heads of

household have higher average income as well as employers, and informal employ-

ees earn less than formal ones. Heads of households employed in the public sector

have higher average earnings than those in the private sector; both formal and

informal heads of household earn more in the public sector than in the private

sector. However, those in the military services have the highest earnings on aver-

age. Heads of household engaged in financial activities earn on average more than

on any other activity. To conclude, Table 4.1 shows that education returns are as

expected, with higher average income for the best educated.

Table 4.2 presents the set of variables considered as explanatory variables in

the models to follow. These variables were selected based on the review presented

earlier in this chapter. These are almost all the variables from Table 4.1, excluding

those that were applied to employee heads of household only. Furthermore, the

variable for type of worker now breaks the employee category into two: formal and

informal heads of household. Table 4.2 provides further explanation for each of the

variables. In summary they are: interview month, dummies for male and white,

age, education, number of members in the household, type of worker, type of

activity, metropolitan region, duration of employment and working hours. There

is also a dummy indicating whether the heads of household had their questionnaire

completed by another member of the household and not themselves. Furthermore,

squared terms for age and education are also considered. It is worth mentioning

that, in this analysis sample, the income variable contains 4.8% of missing values.

Therefore, heads of household with missing income are not included in the analysis

that follows. Also note that the small sub-set of unpaid workers, which have zero

labour income, is not included either. This brings the final data set to a total of

54,663 heads of households.
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Table 4.2: Variables Included in the Analyses

Variables Categories Definition

Metropolitan Regions Recife This is a cluster level variable.

Salvador It is the stratifying variable used

Belo Horizonte in the design of the PME.

Rio de Janeiro This variable is included in

São Paulo the model as a control variable.

Porto Alegre Recife is the baseline category.

Month of First Interview Represented in the model as a continuous

variable from 0 to 23 starting with

January 2004 till December 2005.

Gender Females An indicator for male heads of household

Males is considered in the model.

Age Group It is used in a continuous form.

The squared term is also considered.

Under the mincer equation age

is a proxy for experience.

In the multilevel model age is

centred around 40.

Skin Colour White This categorical variable is

Black later collapsed to represent an

Yellow indicator for whites against all

Parda (Mixed) other categories, referred to as

Indigenous others.

Education in It is used in a continuous form

Years of Schooling from 0 to 17 years of schooling.

The squared term is also considered.

Type of Worker Employer Employer is the baseline category.

Informal Employee Employees are now separated into

Formal Employee formal and informal employees.

Military Service

Self-Employed

Type of Activity Manufacturing Manufacturing is the baseline

Building category.

Commerce

Financial Services

Social Services

Domestic Services

Other Services

Other Activities

Duration of Employment Continuous variable in months. Serves

as a proxy for experience in the firm.

Working Hours Working hours expressed on the natural

logarithm scale.

Proxy Respondent This variable is used as a control

for hard to count heads of household.

Number of Household Members This variable is used as a control for

change in the household structure.
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4.3.2 Methodology

4.3.2.1 Cross-sectional Multilevel Modelling

The multistage nature of the PME sample determines that heads of household

are nested within PSUs. The multilevel modelling approach (Goldstein, 2003)

accounts for such data complexity, modelling the different sampling stages as dif-

ferent sources of variability with potential random influences. Figure 4.2 presents

the average of the log-income across PSUs. Notice that the PSU averages vary

considerably across clusters. A random intercept model, as described in Chapter

2, would be a reasonable starting model formulation to account for the variation

between PSUs.

Figure 4.2: Average of Log-Income across PSUs
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Consider the two-level random intercept model where heads of household are

the level one units (subscript i), which are nested within PSUs, the level two units

(subscript j ):

yij = xT(1)ijβ(1) + xT(2)jβ(2) + uj + eij. (4.1)

In model 4.1 the outcome variable yij is the continuous variable for the logarithm

of real labour income of the employed heads of household. This is modelled as a

function of covariates for each of the two levels considered in this analysis. The

vector x(1)ij contains the explanatory variables at the heads of household level.

This includes categorical and continuous variables as well as interaction terms.

The vector x(2)j contains the explanatory variables at the PSU level. Each of
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these vectors of covariates is associated with the respective vector of fixed regres-

sion coefficients β(1) and β(2). As this is a two-level random intercept model, the

random part of the model contains two mutually independent residuals terms: uj,

at the PSU level (or PSU random intercepts) and eij, at the heads of household

level. As also described in Chapter 2, here it is assumed that both residual terms

are normally distributed with mean zero and respective variances σ2
u and σ2

e . This

model further assumes that heads of household within the same PSU are condi-

tionally correlated. This conditional correlation is expressed by the intra-cluster

correlation coefficient, see equation 2.5 in Chapter 2.

4.3.3 Computational Aspects

Random intercept models can be fitted using different statistical software, which,

when the right options are specified, can all produce the same results. For exam-

ple, in Stata there are the commands xtreg and xtmixed that produce Maximum

Likelihood Estimation when the option MLE is specified (Rabe-Hesketh and Skro-

ndal, 2005). However, the xtreg command does not allow more than two levels

of data hierarchy. The Stata command GLLAMM (Generalized Linear Latent and

Mixed Model) (Rabe-Hesketh et al., 2004) can also produce similar results while

using numerical integration methods but it needs longer computational time than

other Stata commands. This model can also be estimated using the MLwiN soft-

ware (Rasbash et al., 2001), which uses IGLS to estimate the random intercept

model also producing ML estimates under the assumption of normality for the

distribution of the residuals.

4.3.4 Results

4.3.4.1 Model Selection

The first step of the cross-sectional multilevel analysis was to estimate the model in

equation 4.1 considering only the set of fixed main effects as explanatory variables.

The covariates included in the model were those described in Table 4.1 and their

effects were assessed in terms of their significance. It is worth mentioning that the

variable for metropolitan region is the only cluster level covariate included at this

stage as it is an important variable for the estimation of labour income in Brazil.

All other variables considered at this stage were level one covariates.
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The first column of Table 4.3 presents the results for this first model esti-

mated using the Stata command xtmixed. Notice that the variables for the num-

ber of household members and proxy respondent variables were not significant at

the 5% level, and therefore not included in the model. It is worth remembering

that the variables for age and duration of employment are now centred respectively

around the age of 40 and the average employment duration.

Table 4.3 also presents the estimated variance components for this model.

Both variance terms are statistically significant. The between PSU variance σ̂2
u of

0.05 is relatively small compared to the within PSU variance σ̂2
e of 0.30, but still

significantly different to zero. This gives an estimated intra-cluster correlation

coefficient ρ̂ of around 15%. This indicates the conditional correlation within

cluster and that the PSU level should be considered in this analysis.

Before attempting to interpret this initial model, the residual diagnostics is

performed. Figure 4.3 displays the level one residual in the first row and level two

residual in the second row.

Figure 4.3: Residual Diagnostic - Main Effects Model

Observe that the residuals at the heads of household level seem to be nor-

mally distributed. However, level two residuals show the presence of some extreme

positive values. This may indicate the violation of the normality assumption. The

fourth plot shows some evidence of non-constant variance for the PSU level resid-

uals. This might also indicate the presence of unmeasured cluster effects or that

the level two residuals are correlated with explanatory variables. The inclusion of

additional PSU level variables or contextual effects may address this problem.
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As identified earlier in this chapter, there is some evidence of gender and race

discrimination in the Brazilian labour market. Before the inclusion of contextual

variables, the model selection proceeded with the inclusion of interaction terms

between level one variables. For this purpose, only the interaction terms between

the dummy variables for males and whites and all other variables were considered

and tested in the model. The column (2) of Table 4.3 presents the results for

the model fitted with only the significant interaction terms. The inclusion of

such terms improved the model fit, as indicated by the LRT (L2 = 556.43 with

19 degrees of freedom). However, the residual diagnostic plots for this model

presented the same patterns as those of the previous model.

To try to improve the fit of this model the next step was to include contextual

effects. Unfortunately, PSU level variables, other than the metropolitan region,

were not available in the data set. Due to confidentiality protection such variables

are not immediately available in any of the official surveys. One alternative found

was to construct PSU level variables from the monthly PME data. This was

performed by pooling data from years 2004 and 2005 for all interviewed individuals.

Population means and proportions for specific variables were calculated taking the

sampling design and sampling weights into account for each PSU. For simplicity,

the contextual variables were calculated for the variables initially considered as

covariates in the model. Before deciding which of these variables to include in the

analysis, the level two residuals were plotted against the average PSU values of

the explanatory variables in the cross-sectional data set. Some of these plots are

presented in Figure 4.4 and similar behaviour to that in the fourth plot on Figure

4.3 was observed. Further model selection was performed and Figure 4.4 presents

the plots for the significant contextual variables in the column labelled (3) of Table

4.3.

The column labelled (3) of Table 4.3 presents the final cross-sectional mul-

tilevel model for the log of real labour income of employed heads of household.

Figure 4.5 presents the residual diagnostics plots for this model. Notice that the

inclusion of PSU level variables improved the shape of distribution of the level two

residuals. This model can then be interpreted, starting from the estimates of the

fixed part of the model as presented in the following sub-section.
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Figure 4.4: Level Two Residuals by Significant Contextual Effects

Note: Level two residuals on the vertical axis.

Figure 4.5: Residual Diagnostics - Contextual Effects Model
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Table 4.3: Cross-sectional Multilevel Modelling: Two-level Variance Compo-

nents Model

(1) (2) (3)

Coeff SE Coeff SE Coeff SE

Constant (intercept) 4.334 0.038 4.319 0.056 4.753 0.162

Month -0.004 0.001 -0.004 0.001 -0.004 0.001

squared term 0.213† 0.056† 0.205† 0.056† 0.216† 0.055†

Males 0.379 0.006 0.598 0.070 0.594 0.070

White 0.109 0.006 0.092 0.010 0.071 0.010

Age 5.333† 0.272† 2.293† 0.513† 1.427† 0.509†

squared term -0.351† 0.015† -0.293† 0.028† -0.311† 0.027†

Education -0.011 0.002 -0.029 0.004 -0.030 0.004

squared term 5.711† 0.133† 6.454† 0.231† 6.055† 0.229†

Type of Worker

(Employer as baseline)

Informal -0.545 0.012 -0.615 0.027 -0.593 0.027

Formal -0.360 0.010 -0.435 0.025 -0.412 0.025

Military service -0.247 0.015 -0.369 0.030 -0.339 0.029

Self-Employed -0.635 0.011 -0.806 0.026 -0.783 0.026

Type of Activity

(Manufacturing as baseline)

Building -0.069 0.010 0.181 0.052 0.180 0.052

Commerce -0.114 0.008 -0.001 0.017 -0.001 0.017

Financial -0.024 0.009 0.154 0.019 0.147 0.019

Social Services -0.044 0.011 0.082 0.018 0.081 0.018

Domestic Services -0.135 0.012 -0.067 0.017 -0.059 0.017

Other Services(a) -0.025 0.008 0.035 0.017 0.031 0.016

Other Activities(b) -0.272 0.027 -0.080 0.082 -0.088 0.081

Metropolitan Region

(Recife as baseline)

Salvador 0.116 0.023 0.117 0.023 0.077 0.016

Belo Horizonte 0.310 0.021 0.311 0.021 0.241 0.014

Rio de Janeiro 0.311 0.021 0.313 0.021 0.218 0.015

São Paulo 0.461 0.021 0.460 0.021 0.342 0.016

Porto Alegre 0.362 0.022 0.360 0.022 0.224 0.021

Duration of Employment (×120) 0.216 0.005 0.239 0.009 0.234 0.009

Squared term (×120) -0.049 0.002 -0.068 0.005 -0.068 0.005

Working Hours (in Log) 0.459 0.008 0.494 0.011 0.498 0.011

Interaction Terms of Male and:

White - - 0.024 0.011 0.024 0.011

Age - - 0.004 0.001 0.004 0.001

Squared term - - 0.000 0.000 0.000 0.000

Education - - 0.026 0.005 0.026 0.005

Squared term - - -0.001 0.000 -0.001 0.000

Type of Worker

(Employer as baseline)

Informal - - 0.074 0.030 0.072 0.030

Formal - - 0.079 0.027 0.080 0.027

Military service - - 0.167 0.035 0.166 0.034

Self-Employed - - 0.217 0.028 0.215 0.028

Type of Activity

(Manufacturing as baseline)

Building - - -0.298 0.053 -0.286 0.053

Commerce - - -0.152 0.019 -0.156 0.019

Financial - - -0.239 0.022 -0.240 0.021

Social Services - - -0.196 0.023 -0.199 0.023

Domestic Services - - -0.312 0.037 -0.312 0.037
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Table 4.3 – continued from previous page

(1) (2) (3)

Coeff SE Coeff SE Coeff SE

Other Services - - -0.086 0.019 -0.085 0.019

Other Activities - - -0.257 0.087 -0.241 0.086

Duration of Employment (×120) - - -0.034 0.010 -0.034 0.010

squared term (×120) - - 0.027 0.005 0.027 0.005

Working Hours (in Log) - - -0.094 0.016 -0.092 0.016

Contextual Effects

Proportion of White - - - - 0.104 0.029

Average Age - - - - 0.009 0.002

Proportion of Formal Workers - - - - -1.324 0.111

Proportion of Informal Workers - - - - -1.606 0.131

Proportion of Military Workers - - - - -1.866 0.124

Proportion of Self-Employed Workers - - - - -1.574 0.125

Proportion with Proxy Respondent - - - - 0.157 0.040

Average Education - - - - 0.073 0.004

σ̂2
u 0.055 0.002 0.055 0.002 0.011 0.001

σ̂2
e 0.301 0.002 0.298 0.002 0.297 0.002

ρ̂ 0.154 0.156 0.035

Number of Observations 54,663 54,663 54,663

-2×Log-Likelihood 93,056 92,500 90,084

(1) Model with level one main effects and metropolitan region variable.

(2) Model adding interaction terms.

(3) Model adding other contextual variables.

(a) Other Services include services as post offices, housing, food, personal, urban cleaning

and aerial transportation.

(b) Other Activities include all other activities not yet classified, such agriculture,

fishing, forestry, international organizations and non specified activities.
† Values at 10−3.

4.3.4.2 Model Interpretation

Note from Table 4.3 that the indicator for male heads of household interacts with

almost all level one explanatory variables. Hence, the interpretation of the effects

of these variables in the interaction terms accounts for the differences between male

and female heads of household and are displayed in Table 4.4. The effects for age,

education and duration of employment on income, accounting for the interaction

with the indicator for male heads of household, are displayed in Figures 4.6(b)

to 4.6(d). Figure 4.6(a) presents the effect of month of the interview on income.

Based on Table 4.4 and Figures 4.6(a) to (d) the following is observed from the

level one fixed effects.

The effect of the month of the first interview on the real labour income is

displayed in Figure 4.6(a). This effect starts as a negative effect on income, having

the lowest point just before month 10, which then starts increasing and becoming a

positive effect in later months of 2005. The relationship presented in Figure 4.6(a)
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may be indicative of an increase in the job earnings in real terms of employed

heads of household over the period of analysis.

The interaction effects between the indicator for males with the other vari-

ables indicate that there are income differentials between male and female heads of

household. At the baseline the income differential is 81% in favour of male heads

of household. White heads of household earn more and this effect is greater for

males (9.99%) than females (7.37%), with all else held constant.

Table 4.4: Percentage Impact on Average Real Labour Income - Interaction Terms

Females Males
Sex (at the baseline) - 81.06
White 7.37 9.99
Type of Worker (Employer as baseline)

Informal (44.71) (40.57)
Formal (33.77) (28.26)
Military service (28.77) (15.95)
Self-Employed (54.28) (43.30)

Type of Activity (Manufacturing as baseline)
Building 19.73 (10.05)
Commerce (0.06) (14.45)
Financial 15.79 (8.95)
Social Services 8.46 (11.13)
Domestic Services (5.69) (30.93)
Other Services 3.18 (5.19)
Other Activities (8.44) (28.05)
Working Hours (in Log) 64.53 50.11

Note: Values in parentheses indicate % decrease.

Following suggestions observed in the reviewed literature on models for job

earnings presented earlier in this chapter, squared terms for age and education

variables were also considered. These effects were tested and showed to be sig-

nificant, and, therefore, kept in the model. This confirms that the effects of age

and education on income are not linear, as presented in Figures 4.6(b) and (c)

respectively. As described in Table 4.2, age is centred around age 40 years and the

effect is zero at this age. Figure 4.6(b) shows that the impact of age on income has

an inverted U-shape. Notice the different curves for males and females showing

that there is a higher impact on the income for male heads of household older

than 40, than for female heads of household. Figure 4.6(c) shows the impact of

education. Education returns are as expected: the more educated the head of the

household the higher the income, showing a J-shape relationship. Furthermore,

the impact of education on income for male heads of household is higher than for

female heads of household.

Table 4.4 shows that employers earn more than any other type of worker

as already identified in Barros et al. (2000). The income differential between
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Figure 4.6: Impact of Month of First Interview, Age, Education and Duration of
Employment on Income

(a) Month of First Interview (b) Age

(c) Education (d) Duration of Employment

males and females varies for each type of worker. Compared to employers, female

informal workers earn around 45% less with all other variables held constant, while

male informal workers earn around 41% less. There is always a greater income

differential for female heads of household in any other category for type of worker

compared to employers.

The gap between female and male heads of household engaged in certain

activities tends to get narrower, as shown in Table 4.4. For example, female heads

of household engaged in activities in the financial sectors, building, social services

or other services earn, respectively, around 16%, 20%, 8% and 3% more than those

in the manufacturing sector (holding all else constant). Male heads of household, in

turn, earn more in the manufacturing sector than any other. This result, for male

heads of household, is also in agreement with the traditional result as presented

earlier in this chapter. In addition, those working in other activities or in the

domestic services are the less well paid activities for the heads of household.

Duration of employment also has a non-linear relationship with income as

shown in Figure 4.6(d). It is also worth recalling that duration is centred around

its sample mean (around 96 months for the data set being considered). The effect
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of the duration of employment on income for those working more than the average

duration is positive with males having a greater increase in income than females.

Working hours is considered in the model on the logarithmic scale. Table 4.4

shows that the impact on income of a unit change in the log hours is greater for

female heads of household than for male heads of household. Because this variable

is on the log scale it could also be interpreted as the income elasticity with respect

to working hours. The real labour income increases by 0.5% for female heads of

household when the working hours increase by 1% according to the results in Table

4.3. This effect for male heads of household is slightly lower at around 0.41%.

The variable for metropolitan region is a level two variable, as every head of

household in the same PSU belongs to the same metropolitan region. This vari-

able is actually the first stratification variable in the PME sampling design. Using

equation 2.11 in Chapter 2 and the values displayed in Table 4.3 it is possible to

conclude, for example, that heads of household in the metropolitan region of Sal-

vador earn 8% more than those in the Recife (holding all other variables constant).

Furthermore, notice that heads of household in the South-east metropolitan re-

gions earn around 25% more, while the highest income differential is for those living

in the metropolitan region of São Paulo, at around 40%. This is in accordance

with Silveira-Neto and Azzoni (2006).

Besides metropolitan region there are another eight significant PSU vari-

ables. Table 4.5 presents these estimated effects using equation 2.12 from Chapter

2. It is worth mentioning that the proportion of different types of workers is being

compared to the proportion of employers, hence, the negative effects. For example,

it can be observed that, there will be an increase of about 1.05% in the average

income for a 10% increase in the proportion of white heads of household. Another

possible interpretation is that heads of household in PSUs with a greater pro-

portion of white heads of household have higher average real income than those

with lower proportions. The variables that represent averages do not have the

same interpretation. Instead, for example, a higher mean PSU education level

has a positive effect on the income of heads of household. As for age, heads of

household in PSUs with older heads of household (more experienced) have slightly

higher average labour income.

Table 4.3 also presents the results for the random part of the model, given

by the variance effects for level one and level two. The estimated intra-cluster

correlation coefficient ρ̂, interpreted as the correlation between two randomly se-

lected heads of household in the same PSU, is 3.45%. This is smaller than those

calculated for the previous models, mainly because this last model included more

94



Chapter 4 Models for Income: Review and Preliminary Analysis

Table 4.5: Percentage Impact on Average Real Labour Income - Contextual Vari-
ables

Contextual Effects β̂ β̂a1 b%
Proportion of White 0.10 0.01 1.05
Average Age 0.01 0.01 0.88
Proportion of

Formal Workers (1.32) (0.13) (12.40)
Informal Workers (1.61) (0.16) (14.83)
Military Workers (1.87) (0.19) (17.02)
Self-Employed Workers (1.57) (0.16) (14.57)

Proportion with Proxy Respondent 0.16 0.02 1.58
Average Education 0.07 0.07 7.51
1 a = 1 for means and 10% for proportions

PSU level covariates. These estimates for the variance terms also indicate that

for these data there is a greater within PSU variability, with σ̂2
e equal to 0.297,

than between PSUs variability, where σ̂2
u equals to 0.01. Although still relativelly

small, the between PSU variance term is statistically significant indicating the

importance of accounting for the PSU level.

4.4 Summary

This chapter presented a brief review of the recent trends in the Brazilian economy,

focussing attention on some recent studies on wage determination. Most of the

reviewed studies had the Mincer equation model as a basis. This chapter also

presented an analysis of a cross-sectional data set from the PME survey. For

that, the first interviews for employed heads of household were considered. A

preliminary analysis of this sub-set was presented followed by a multilevel model

analysis. A more elaborate model than that suggested by the Mincer equation was

selected for the log of the labour income. This cross-sectional multilevel analysis

accounted for the PSU and the heads of household level. It was shown that in this

analysis sample, the between PSU variability is small relatively to the within PSU

variability, however, still significant. This indicates the importance of accounting

for the PSU level in the longitudinal analyses to follow. The final model presented

here served as basis for the modelling exercise in the following chapters.
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Chapter 5

Longitudinal Multilevel

Modelling Accounting for the

Rotating Design

5.1 Introduction

As discussed in Section 3.2 (Subsection 3.2.2) the Brazilian labour force survey (the

PME) has a non-consecutive, but symmetric, rotating panel design characterized

as 4-8-4 (a-b-a as described in the introductory chapter of this thesis). This means

that the selected sample units stay in the sample for four consecutive months, are

rotated out for eight months and return to the sample for another four consecutive

months. Therefore, due to this rotation pattern there will be a gap of eight

months between the fourth and fifth interviews for every head of household in

a longitudinal data set. This chapter aims to illustrate how to incorporate the

rotation pattern in the analysis of a longitudinal data set under the multilevel

modelling framework.

To fulfil the main objective of this chapter the longitudinal working data

set is considered. This data set includes all eight interviews for the employed

heads of household and was described in Section 3.4. This longitudinal data set

is analysed by means of growth curve models and multivariate multilevel models

as presented in Section 5.2. The analysis of the longitudinal data set should take

the gap between the fourth and fifth interviews into account. This can be seen

as a similar problem to modelling unequally spaced time data. Although all the

measurements are taken monthly, the time distance between the fourth and the

fifth interviews, for example, is not of one but eight months. One way to account
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for this larger interval between these two interviews, when treating time as a

continuous variable, as in the random slope models, is to consider it varying as

(0, 1, 2, 3, 12, 13, 14, 15) instead of from 0 to 7. However, this is irrelevant when

time is treated as a discrete variable as in the multivariate multilevel models.

When this is the case, one approach that accounts for the gap is to constrain the

error covariance matrix to depend on the temporal distance, i.e. the lag, between

the different measures as in Yang et al. (2002). Different structures for the error

covariance matrix are discussed in this chapter and extended to a general rotation

scheme, and models with the different structures are fitted and compared. This

chapter concludes with further discussion of alternative correlation structures and

extensions to this analysis to be considered.

5.2 Methodology

This section presents how the growth curve model and the multivariate multilevel

models can be used to analyse data provided by rotating panel designs. The growth

curve model accounts for this design by treating time as a continuous variable. The

multivariate multilevel model, which treats time as discrete, accounts for this gap

by constraining the error covariance matrix to depend on the temporal distance

between the interviews.

5.2.1 Growth Curve Models

Consider the three-level longitudinal data for the PME survey. Also consider the

non-consecutive PME rotating design of 4-8-4. One way to express the variable

for time would be to represent the interview times as (1, 2, 3, 4, 5, 6, 7, 8); or better

(0, 1, 2, 3, 4, 5, 6, 7) so as to improve interpretation. However, this does not account

for the gap of eight months that exists between the fourth and fifth interviews.

Consider then that the variable for time should be expressed to vary from 0, as

for the first measurement occasion, to d− 1, that is the total time span minus 1.

For the PME case time varies from 0 to 15, but due to the gap the vector for time

can be expressed as (0, 1, 2, 3, 12, 13, 14, 15).

Consider the growth curve model with only the time variable as a covariate:

ytij = xT(1)tijβ(1) + vj + zTtijuij + etij . (5.1)
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This is a three-level random slope model and time has both fixed and random

effects. It is worth remembering that the three levels of the data hierarchy are the

occasions (level one units, subscript t) which are nested within heads of household

(level two units, subscript i) which are nested within PSUs (level three units,

subscript j). The model in equation 5.1 has a similar formulation to the one

described by equation 2.21. As it is a three-level model it has three error terms

and the assumptions about their distributions, made previously, hold here.

With the objective of accounting for the rotating panel design, the matrix

of explanatory variables, which is associated with the vector of random effects, is

Zij =



1 0

1 1

1 2

1 3

1 12

1 13

1 14

1 15


.

The first column of Zij represents the random intercept and the second column the

values for the time variable. The gap between the fourth and fifth interviews is ac-

counted for in the model by declaring the time variable as (0, 1, 2, 3, 12, 13, 14, 15),

as mentioned before. One characteristic of the random slope model is that by

treating time as a continuous variable it accommodates unequally spaced longitu-

dinal data. Therefore, it allows the gap to be incorporated in the analysis in this

way, once the model depends on the measurements of the time variable.

Under this model formulation, the blocks Vj of the covariance matrix of the

composite residuals V no longer have an exchangeable structure, as when only the

random intercept is considered. The matrices Vj can be expressed as the sum of the

between PSU variation, σ2
v , the between heads of household variation, zTtijΣuztij

and the between occasions variation, σ2
e , where

Σu =

(
σ2
u0

σu01 σ2
u1

)
.

The main diagonal of Vj are the variance terms, which are given by

V ar(ytij|ztij) = σ2
v + zTtijΣuztij + σ2

e
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and the off-diagonals are the covariance terms given by

Cov(yrij, ysij|zrij, zsij) = σ2
v + zTrijΣuzsij.

This imposed form of the residual covariance matrix is a quadratic function of

time which is determined by the matrix of between heads of household variation

zTtijΣuztij. In general form it can be given as

γrs = σ2
u0 + (tr + ts)σu01 + trtsσ

2
u1,

where r and s are different occasions so that tr and ts represent values for the time

variable (Singer and Willett, 2003).

Another more flexible extension of this growth curve model is the one which

includes polynomial functions for the time variable. For example, the model could

include quadratic or cubic terms for time with both fixed and random effects.

However, this generates an even more difficult to interpret structure for the residual

covariance matrix. If the squared term for time is also considered in the model, the

general form for the elements of the between heads of household variation matrix

is given as

γrs = σ2
u0 + trtsσ

2
u1 + t2rt

2
sσ

2
u2 + (tr + ts)σu10 + (t2r + t2s)σu20 + trts(tr + ts)σu21,

where Σu is now given as:  σ2
u0

σu10 σ2
u1

σu20 σu21 σ2
u2

 .

Models including the squared term for time will be tested in this chapter.

Because the structure of the residual covariance matrix depends on the values

for the time variable, an analysis of this same data but treating time as varying

from 0 to 7, would provide different results. This is illustrated later in this chapter.

Treating time as varying from 0 to 7 in the case of the PME data is the same as

ignoring the gap in the rotating design. This is the same as assuming that each

interview was taken one month apart from each other including the fourth and

the fifth interviews, which is not true for the PME design.
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5.2.2 Multivariate Multilevel Models

Consider the multivariate multilevel model with only the time variable as a co-

variate:

ytij = dTtijβ + vj + dTtijuij. (5.2)

This is a two-level multivariate model for the three level hierarchical structure of

PME data set. Heads of household are the level one units that are nested within

the PSUs, the level two units. The occasion level is represented in the model to

define the multivariate structure (Goldstein, 2003). The multivariate model in

equation 5.2 is similar to the one in equation 2.24.

For the model in equation 5.2, the vector with the occasion dummies dtij now

contains a total of T = a + a dummies. For the PME data, this means that dtij

contains a total of eight dummies, one for each occasion, with both fixed effects

and random effects, at the heads of household level, in the model. Hence, it is

assumed that:

vj∼N(0, σ2
v) and uij∼MN(0,Σu),

where

Σu =



σ2
u0

σu1,0 σ2
u1

σu2,0 σu2,1 σ2
u2

σu3,0 σu3,1 σu3,2 σ2
u3

σu12,0 σu12,1 σu12,2 σu12,3 σ2
u12

σu13,0 σu13,1 σu13,2 σu13,3 σu13,12 σ2
u13

σu14,0 σu14,1 σu14,2 σu14,3 σu14,12 σu14,13 σ2
u14

σu15,0 σu15,1 σu15,2 σu15,3 σu15,12 σu15,13 σu15,14 σ2
u15


.

Therefore,

Σr = Σu + Jσ2
v ,

where J is a T × T matrix with 1 in every entry. The multivariate vector of

responses yij can be written as

yij∼MN(Dijβ,Σr) .
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The multivariate model 5.2 treats the time variable as discrete. Therefore, it

does not matter how the occasion dummies are labelled. In the above formulation

it was assumed that they were labelled as (0, 1, 2, 3, 12, 13, 14, 15). However, they

could have been alternatively labelled from 0 to 7. This model does not incorporate

the gap in such a straightforward way as the random slope model. Instead, this

can be achieved by constraining the parameters for the error covariance matrix

to depend on the temporal distance between the different occasions. Therefore, a

lag-dependent structure of the residual correlation can be imposed. For this, the

following matrix serves as a basis:

0

1 0

2 1 0

3 2 1 0

12 11 10 9 0

13 12 11 10 1 0

14 13 12 11 2 1 0

15 14 13 12 3 2 1 0


. (5.3)

The entries of this matrix represent the time distance between the pairs of

occasions, or the lag, for the non-consecutive rotating design of 4-8-4, such as the

one adopted on the PME survey. Due to the symmetric rotation pattern this lag

matrix has the form: [
Aa×a BT

a×a

Ba×a Aa×a

]
.

The sub-matrix A has lags varying from 0 to 3 and the top right entry of sub-

matrix B incorporates the gap of eight months between the fourth and the fifth

interviews and is 9. Sub-matrix B is a banded matrix with T − 1 bands, where T

is the total number of occasions. The bottom left entry of sub-matrix B has lag

d − 1, the total time span minus one. The next subsection presents a lag matrix

for a general, not necessarily symmetric, rotation patten a-b-c(d).
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The resulting covariance matrix accounting for the gap and following the

pattern of the lag-matrix 5.3, can be written as

Σr = Σu + Jσ2
v (5.4)

=



σ2
0

γ1 σ2
0

γ2 γ1 σ2
0

γ3 γ2 γ1 σ2
0

γ12 γ11 γ10 γ9 σ2
0

γ13 γ12 γ11 γ10 γ1 σ2
0

γ14 γ13 γ12 γ11 γ2 γ1 σ2
0

γ15 γ14 γ13 γ12 γ3 γ2 γ1 σ2
0


+ Jσ2

v . (5.5)

Because σ2
v is added to every entry of Σu, the resulting structure of Σr is the same

as the one imposed on Σu.

5.2.3 Lag Matrix for a General Rotating Design

This subsection presents a generalization of the lag-matrix in 5.3 for a general, not

necessarily symmetric, rotating panel design a-b-c(d). The general lag matrix has

the form: [
Aa×a BT

a×c

Bc×a Cc×c

]
. (5.6)

Matrix A is defined as

A =



a− a
... a− a

a− 3
... a− a

a− 2 a− 3
...

. . .

a− 1 a− 2 a− 3 . . . a− a


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and following the same pattern, matrix C is defined as

c− c
... c− c

c− 3
... c− c

c− 2 c− 3
...

. . .

c− 1 c− 2 c− 3 . . . c− c


.

Matrix B is slightly more complicated than A and C as it depends on a,

b and c. Matrix B is a c × a matrix formed by T − 1 diagonals of banded lags.

Here, T is the number of occasions a + c. The top right entry of matrix B has

lag equal to b + 1 and the top left b + a, the bottom left entry has lag equal to

b+ a+ c− 1 = d− 1 and the bottom right is b+ c. Matrix B is then defined as

b+ a b+ a− 1 . . . b+ 2 b+ 1

b+ a+ 1 b+ a . . . b+ 3 b+ 2

. . . . . . . . . . . . . . .

a+ b+ c− 2 . . . . . . b+ c
...

a+ b+ c− 1 a+ b+ c− 2 . . . b+ c+ 1 b+ c


.

5.3 Variables in the Longitudinal Analysis

Table 5.1 presents a similar table to the one presented in Chapter 4 with the

covariates to be included in the models that follow. The variables in this table

are organized according to which level of the data hierarchy they belong to. Note

that some of the variables are defined here differently to the previous chapter.

The first difference is that some of the variables previously defined at the heads of

household level are here defined at the occasion level. Note that heads of household

were restricted to be employed at all times but not restricted to the same job at

all times. Therefore, job characteristics change over time. Some other variables

were forced to be defined at the heads of household level. This was achieved by

repeating their values observed at the first occasion over the other three. These

variables were: age, education and the indicator for white. It is worth noticing

that the variables for age and duration of employment had their effects centred

on, respectively, the age of 40 and the occasion mean durations. The variable

for occasions, called wave, and month of the first interview were reduced by one

(-1) now varying respectively from 0 to 3 and 0 to 20. Squared terms were also
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considered; see Table 5.1. Note that the variable representing time incorporates

the gap between the fourth and the fifth interview.

Table 5.1: Variables Included in the Longitudinal Analyses

Variables Definition

Occasion Level Covariates

Wave Time variable with values (0, 1, 2, 3, 12, 13, 14 and 15).

Type of Worker Employer, Informal, Formal, Military Service and Self-Employed.

Type of Activity Manufacturing, Building, Commerce, Financial, Social Services,

Domestic Services, Other Services and Other Activities.

Duration of Employment In months with squared term - a proxy for experience in the firm.

Working Hours Working hours on log scale.

Proxy Respondent An indicator for the use of proxy respondent.

Number of Household Members Considered as a continuous variable.

Individual Level Covariates

Month of First Interview From 0 to 20.

Gender Females as the baseline.

Age Age at the first interview and squared term.

Race An indicator for whites against all other categories collapsed.

Education in Years of Schooling From 0 to 17 years of schooling at the first interview.

Cluster Level Covariates

Metropolitan Regions Recife, Salvador, Belo Horizonte, Rio de Janeiro,

São Paulo and Porto Alegre.

5.4 Alternative Covariance Structures

In Chapter 2, different residual covariance structures were presented. However,

some of these structures are not completely adequate for the analysis presented

in this chapter. This section examines these structures and proposes alternative

ones that seem more adequate to the objective of this chapter.

The first structure to be examined is the unconstrained denoted as Σunc
r as

presented in Chapter 2. This structure, as the name suggests, sets no constraints

on the parameters of the error covariance matrix. These parameters are freely

estimated and determined by the data (Singer and Willett, 2003). Therefore, the

potential effect of the gap between the fourth and fifth interviews can also be

determined by the data. Furthermore, a multivariate model for the longitudinal

data set that imposes an unstructured error covariance would have 36 additional

parameters to be estimated. As mentioned in Chapter 2, this model would have

the smallest deviance when compared to others imposing different structures for

Σr. This is not the most parsimonious structure and it could have a detrimental
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effect on the efficiency of the inferences about the mean structure of such a model

(Pourahmadi, 2007).

The AR(1), denoted as Σar
r in Chapter 2, is a lag-dependent structure which

assumes that the variances are constant overtime and that pairs of equally spaced

residuals have a constant covariance determined as a function of ρ as

(Σu)rs = γrs = σ2ρ|s−r| ∀r 6= s .

This means that the AR(1) structure imposes that the residual correlation at the

heads of household level has a fixed decay determined by a fraction of ρ. However

the same decay is not observed for Σr due to the addition of σ2
v to every entry

of Σu. Although this structure is lag-dependent, it assumes that the occasions

are equally spaced over time. This is not the case for the PME rotating design.

Therefore, the AR(1) structure is not an appropriate covariance structure for this

longitudinal data set when accounting for the PME rotating design. It would be

adequate, however, if the gap between the mid-point occasions was to be ignored.

The Toeplitz error covariance, Σtoep
r as presented in Chapter 2 is also a lag-

dependent structure assuming equal variance over time and equal covariance be-

tween equally spaced residuals. Although the Toplitz has a banded-diagonal struc-

ture, it is not as tightly constrained as the AR(1). The covariances between two

occasions for the Toeplitz, do not depend on a fraction of ρ, they only depend on

the temporal distance between them (Rochon and Helms, 1989). Because of this

stationary structure, the Toeplitz error covariance is only appropriate for equally

spaced data. Like the three previous structures, it could only be imposed on the

multivariate models for this longitudinal data set if the gap was to be ignored.

None of the above structures fully accounts for the PME rotation pattern.

The AR(1) and the Toeplitz are both lag-dependent but they assume that the

measurements were taken at equal time intervals. More appropriate structures

would be those that do account for the gap between the fourth and fifth interviews

and allow for irregularly spaced data, such as those in the longitudinal data set.

Two alternative structures are proposed here: the temporal power and the general

linear lag-dependent.

The structure hereafter referred to as the temporal power structure is the

Spatial Power (SAS Institute Inc,Version 8, 1999) structure presented in Chap-

ter 2. As mentioned in that chapter, this structure is a reparameterization of the
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exponential correlation which involves setting

ρ = exp

(
−1

φ

)
and expressing the covariance as

γrs = σ2ρ|ts−tr|.

Therefore, the temporal power structure takes into account the temporal distance

between the occasions by powering ρ by |ts − tr|. This structure is generally ap-

plied to spatial data. However, when dealing with temporal data instead, the

supposed spatial process is thought of as a one dimensional process (Khattree and

Naik, 1999). Hence, only one coordinate variable, containing the time variable

that incorporates the rotating design, should be considered. The temporal power

covariance structure can be imposed on any data that are generated from a sample

including rotating panel schemes, as long as the coordinate variable incorporates

the rotation pattern. Based on the lag matrix 5.3 and given the time variable de-

fined as (0, 1, 2, 3, 12, 13, 14, 15), the temporal power covariance structure for this

longitudinal data set can be written as:

Σtemp
r =



σ2

σ2ρ1 σ2

σ2ρ2 σ2ρ1 σ2

σ2ρ3 σ2ρ2 σ2ρ1 σ2

σ2ρ12 σ2ρ11 σ2ρ10 σ2ρ9 σ2

σ2ρ13 σ2ρ12 σ2ρ11 σ2ρ10 σ2ρ1 σ2

σ2ρ14 σ2ρ13 σ2ρ12 σ2ρ11 σ2ρ2 σ2ρ1 σ2

σ2ρ15 σ2ρ14 σ2ρ13 σ2ρ12 σ2ρ3 σ2ρ2 σ2ρ1 σ2


+ Jσ2

v .

The second alternative structure is hereafter referred to as the general lin-

ear lag-dependent covariance structure. This is the general linear covariance

structure as presented in Chapter 2 which expresses Σu as a linear combination

such as

Σu = θ0A0 + θ1A1 + ...+ θqAq, (5.7)

where the matrices Aq are known symmetric matrices and θq are unknown param-

eters to be estimated and these parameters are unrelated to each other (Khattree

and Naik, 1999). For the current problem, the Aq matrices are set in a way to
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represent the temporal distance between the occasions. In other words they are set

to be lag-dependent. Motivated by the Toeplitz structure and having the lag ma-

trix 5.3 as the basis for the 4-8-4 rotation pattern, a general linear lag-dependent

covariance structure of the following form is considered:

γ0

γ1 γ0

γ2 γ1 γ0

γ3 γ2 γ1 γ0

γ12 γ11 γ10 γ9 γ0

γ13 γ12 γ11 γ10 γ1 γ0

γ14 γ13 γ12 γ11 γ2 γ1 γ0

γ15 γ14 γ13 γ12 γ3 γ2 γ1 γ0


. (5.8)

Like the temporal power structure, the general linear lag-dependent structure can

be imposed on data from any pattern of rotating design such as those in the general

lag matrix 5.6. However, it requires that the matrices Aq can be used to represent

the specific lag matrix and that Σu is still a positive definite matrix.

For the longitudinal data set, the matrix 5.8 can be re-written and decom-

posed as follows:

Σu = γ0A0 + γ1A1 + γ2A2 + γ3A3 + γ9A9 + γ10A10

+γ11A11 + γ12A12 + γ13A13 + γ14A14 + γ15A15.

Σu = γ0



1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1


+γ1



0

1 0

0 1 0

0 0 1 0

0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1 0



+γ2



0

0 0

1 0 0

0 1 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0 0


+γ3



0

0 0

0 0 0

1 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0 0


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+γ9



0

0 0

0 0 0

0 0 0 0

0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


+γ10



0

0 0

0 0 0

0 0 0 0

0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



+γ11



0

0 0

0 0 0

0 0 0 0

0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0 0


+γ12



0

0 0

0 0 0

0 0 0 0

1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0 0



+γ13



0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0 0


+γ14



0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0 0



+γ15



0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0 0


.

For this specific rotation pattern the matrix Σu can be decomposed into 11 matri-

ces and there will be 11 parameters to be estimated. It is worth mentioning that

the way the matrices Aq are represented above does not guarantee positive defini-

tiveness for Σu. There are ways to overcome this problem, either by modifying

the matrices Aq, for example by considering the entries of every main diagonal as

equal to 1, or by specifying start values for the parameters.

5.4.1 Computational Aspects

Multilevel models can be fitted through a range of widely available statistical com-

puter packages. In Chapter 4 it was said that multilevel models can be fitted for

example in Stata or MLwiN software. The same can be said about the longitudinal

multilevel models. However, the fit of the multivariate multilevel model is not as

straightforward in either of these two packages.

Three level growth curve models can be fitted using the Stata command

xtmixed, which accommodates the various levels of the analysis. This command
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offers various options which can be changed in order to fit models using, for exam-

ple, maximum likelihood estimation or restricted maximum likelihood estimation.

Random coefficients can be declared at the various levels of the analysis and they

can be set to be independent or set to covary. However, the user cannot change

the default of this command to impose correlation among occasion level residuals.

Hence, multivariate multilevel models cannot be fitted in Stata via xtmixed alone.

Grilli and Rampichini (2006) showed different ways to set up a multivariate multi-

level model using the package GLLAMM (Rabe-Hesketh et al., 2004) in Stata. This

included setting up a latent factor model. One disadvantage is the computational

time necessary for GLLAMM to fit these types of models.

Multilevel models, including the multivariate multilevel model, can be fit-

ted using the software MLwiN. The multivariate model can be set up following

the steps presented in the MLwiN user’s guide (Rasbash et al., 2001). To follow

these procedures the longitudinal data set needs to be in a wide format, where

the rows represent the heads of household and their repeated measurements and

other variables are the different columns. This allows for the inclusion of common

or separated covariates and random intercept and slopes for the measurement oc-

casion variable in any of the levels of the data set. One disadvantage, however,

is that it is not clear in Rasbash et al. (2001) how to proceed to include occasion

level covariates.

There is an alternative way to set up the multivariate multilevel model in

MLwiN to produce the exact same results as the one described above (Singer and

Willett, 2003, Chapter7). This can be achieved by setting up the multivariate

model as a discrete growth curve model, where the occasion dummies are treated

both as fixed and random effects in the model. For identification purposes, this

model should not include a constant and does not contain the occasion level vari-

ance. For this set up, the longitudinal data set can be in a long format, where

each occasion is a row of the data set, and the inclusion of occasion level variables

is straightforward. In addition, it is also possible to include variables having either

separate or common coefficients, by including the interaction terms of these vari-

ables with the occasion dummies. Moreover, this set up allows linear constraints

to be imposed on the covariance matrix.

The statistical package SAS, on the other hand, can fit both the growth curve

model and the multivariate multilevel model in a straightforward way (Singer,

1998). The former is achieved by adding the option RANDOM to the PROC MIXED

command, and the latter by adding the option REPEATED. The PROC MIXED can

also fit the two-level multivariate model in equation 2.24, where there is a random
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intercept at the PSU level. Another advantage of fitting multivariate multilevel

models in SAS PROC MIXED command is that different covariance structures, includ-

ing the AR(1) and the two alternative ones, can be imposed. Khattree and Naik

(1999) and SAS Institute Inc,Version 8 (1999) presented a list of other structures

that can be used.

The temporal power covariance structure can be imposed on a multivariate

model when fitting it using SAS PROC MIXED by changing the TYPE option for the

REPEATED statement to TYPE = SP(POW)(c-list ). The string c-list contains the

numerical variable with the spatial coordinates (SAS Institute Inc,Version 8, 1999).

In the PME case, this is the time variable indicating the lags. To fit a multivariate

multilevel model imposing the general linear lag-dependent covariance structure

the TYPE option needs to be changed to TYPE = LIN(q ) where q is the number of

parameters θq to be estimated (SAS Institute Inc,Version 8, 1999). In addition the

user needs to provide an external file with all the Aq matrices. See Appendix A,

which presents the SAS codes for fitting a multivariate model, such as model 5.2,

imposing both the temporal power structure and the general linear lag-dependent

structure.

5.5 Results

This section begins by illustrating the fit of the growth curve model and the

multivariate model both accounting for the PME rotating design of the longitu-

dinal data set. The different residual covariance structures presented in Section

5.4 are imposed on the multivariate multilevel models in this section. Further-

more, different ways of expressing the time variable are considered for comparison.

This means that time is either considered to vary from 0 to 7 or is expressed as

(0, 1, 2, 3, 12, 13, 14, 15). The different models are compared and contrasted and

their goodness-of-fit evaluated. It is worth noticing that from now on, when the

time variable is expressed to account for the gap, as (0, 1, 2, 3, 12, 13, 14, 15), this

is referred as (0-15), otherwise (0-7).

With only the time variable as a covariate, the following models were fitted

to the longitudinal data set:

Random Slope Model (0-7): This is the growth curve model described in equa-

tion 5.1. By considering time as varying from 0 to 7, this model does not

account for the gap between the fourth and fifth occasions as it assumes an

equally spaced data set.
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Random Slope Model (0-15): This is the same random slope model as before

but accounting for the irregularly spaced data of the longitudinal data set

by considering time as a continuous variable varying from 0 to 15.

Unstructured (0-7): This is the multivariate multilevel model described in equa-

tion 5.2 imposing no constraints on the error covariance structure. Time was

labelled as varying from 0 to 7 and is presented purely for comparison.

Unstructured (0-15): This is the same unstructured model as the previous

model, but labelling the time variable varying from 0 to 15. The same

results for both unstructured models are found, as the multivariate model

treats time as a discrete variable and the error covariance structure for these

two models are not lag-dependent.

First Order Autoregressive: This is the multivariate multilevel model 5.2 con-

straining the parameters of the error covariance matrix to represent an AR(1)

structure. This model, as already mentioned, does not account for the rota-

tion pattern as it assumes that the occasions are equally spaced in time.

Toeplitz: Like the AR(1) model, the multivariate multilevel model 5.2 imposing

a Toeplitz structure does not fully account for the rotation pattern. Both of

these models have lag-dependent error covariance structures but ignore the

gap between the fourth and fifth interviews.

Temporal Power (0-7): This is the multivariate multilevel model 5.2 imposing a

temporal power error-covariance structure. For comparison reasons, the time

variable was here considered to vary from 0 to 7. This model provides the

exact same results as the AR(1) model, which is omitted from the following

tables.

Temporal Power (0-15): This is the multivariate multilevel model 5.2 imposing

the temporal power error covariance structure that fully accounts for the

PME rotating design. The time variable here is considered to vary from 0 to

15, and this variable is declared as the coordinate variable for the powering

of ρ.

General Linear Lag-dependent (0-15): This is the multivariate multilevel mo-

del 5.2 imposing the general linear lag-dependent structure. Time is also

considered to vary from 0 to 15 and the known matrices Aq were set to

account for the temporal distance between the occasions.
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Table 5.2: Model Selection: Goodness-of-fit Statistics

Time varying as
from 0 to 7 from 0 to 15

Model AIC BIC (SAS) AIC BIC (SAS)
Longitudinal Multilevel Model
Random Slope 30,316 30,343 27,534 27,561
Multivariate Multilevel Model
Unstructured 26,691 26,893 26,691 26,893
Toeplitz 29,392 29,441 - -
Temporal Power 35,630 35,647 37,701 37,717
General Linear
Lag-Dependent - - 26,950 27,016

Table 5.2 presents the goodness-of-fit statistics of the different models. All of

these models were fitted using REML estimation as the main aim was to investigate

the random parts of these models. Additionally, because these models are not

necessarily nested, the likelihood ratio test cannot be applied here. For these

reasons Table 5.2 presents the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) which are goodness-of-fit statistics that can be used

instead. Under the column for time varying from 0 to 7 are the statistics for those

models that do not account fully for the PME rotation pattern. For the random

slope model, the model that accounts for the rotation pattern (0-15) has a better

fit as AIC and BIC have smaller values than for the model that ignores the gap.

Comparing the multivariate models that ignore the gap, the temporal power

structure is the least preferable, as it has the highest values for both AIC and

BIC statistics. The Toeplitz structure is less affected than the temporal power

structure, as it is less restrictive in the decay of the correlation over time. Table

5.3 presents the estimated error covariance matrices and error autocorrelation ma-

trices for each of these models. Imposing the temporal power structure, assuming

that the measurements in the longitudinal data set are equally spaced over time,

underestimates the residual correlation. The unconstrained covariance structure,

in turn, is unaffected by the incorrect specification of time. Hence, this model

presents the best values for the goodness-of-fit statistics.

Observing the results for the models under the column for time varying from

0 to 15, once again, the least preferable structure is the temporal power. The

model imposing an unstructured error covariance matrix has again the smallest

values for AIC and BIC. However, this is the least parsimonious model. As already

mentioned, the estimation of additional nuisance parameters may cause loss of

efficiency in the inference for the fixed part of the model, and this model might

not be a good choice. Comparing the general linear-dependent model with the

unstructured model, the former does not do too badly, compared to the latter.
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The general linear-dependent model fully accounts for the rotation pattern and

has less estimated parameters than the unstructured model, therefore being a more

parsimonious choice.

Observing Table 5.3 and the results for the random slope models, notice

that they do provide different results as the continuous time variable is expressed

differently in these models. The estimated autocorrelation matrix for the random

slope model (0-7) presents an approximate banded structure that decays with

increasing lag. This is a result of assuming time as varying from 0 to 7. In addition,

the estimated covariance matrix shows some indication of heteroscedastic variance

over time. The results for the unstructured model present similar trends as those

for the random slope models. It is worth mentioning that because the models for

unstructured (0-7) and unstructured (0-15) provided the exact same results, Table

5.3 presents these results only once. The temporal power (0-7) assumes that the

variance is constant over time and the estimated autocorrelation matrix shows a

fast decay towards zero as the temporal distance increases between the occasions.

The results for the Toeplitz model shows a slower autocorrelation decay than the

temporal power (0-7) structure, although it still assumes homoscedasticity and

equally spaced data.
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Chapter 5 Longitudinal Multilevel Modelling Accounting for the Rotating Design

When comparing the results for the models that fully account for the rotating

design, the temporal power (0-15) model shows an even faster decay of the residual

correlation. This is probably an indication why this is not a preferable structure

when comparing the results of Table 5.2. In other words, this model assumes a

relative faster decay for the autocorrelation for larger temporal distance than the

actual data possibly presents. The general linear lag-dependent model, in turn,

does not impose such a fast decay as the temporal power (0-15). The estimated

autocorrelation matrix for the general linear lag-dependent model shows a similar

decay in the correlation as those for the random slope model (0-15) and for the

unstructured model. It also shows that the correlation for lags 9 and 10 seem to be

very close, this could be an indication that these two parameters could be further

constrained to be equal for future analysis of these data.

Table 5.4 presents the results for the fixed part of these models. For compar-

ison this table also presents robust standard errors of the regression coefficients.

This method is discussed in the next two chapters. As expected, the results for

the two random slope models differ. These models are dependent on the values of

the continuous variable for time. Observing the results for the multivariate mod-

els, note that the coefficient estimates for the occasion dummies are very similar

regardless of the imposed covariance structure. The exception is for the results for

the model imposing the temporal power (0-15) structure. The robust standard er-

rors are also very similar for all the multivariate models. However, the same is not

observed for the non-robust standard errors of these estimates. The non-robust

standard errors are somewhat larger for both the temporal power structures when

compared with the unstructured, the Toeplitz and the general linear lag-dependent

structure. When comparing robust with non-robust standard errors, non-robust

standard errors for temporal power structures are always larger than the robust

ones, which is not the case for the other covariance structures.

Based on the results presented so far, the analysis continued with the inclu-

sion of other covariates. The models were fitted only considering those structures

that account for the gap in the PME rotating design. Therefore, only the random

slope model (0-15), the unstructured and the general linear lag-dependent models

are fitted. The temporal power model was initially considered but then discarded,

bearing in mind that in the analysis presented above it was found not to be a good

model for the longitudinal data set.

Due to methodological, rather than substantive, motivation the model selec-

tion strategy followed the same steps as those for the final cross-sectional analysis

performed in Chapter 4, which served as the basis for the models considered in this
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Table 5.4: Fixed Parameters Estimates

RS (0-7) RS (0-15) Uns Temp (0-7) Toep Temp (0-15) GLLD
Intercept 6.626 6.629

SE (0.0167) (0.0166)
SERob (0.0171) (0.0170)

Wave 0.006 0.003
SE (0.0008) (0.0003)
SERob (0.0009) (0.0004)

Dummies
d0 6.629 6.628 6.629 6.627 6.629

SE (0.0168) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0172) (0.0172) (0.0172) (0.0172) (0.0172 )

d1 6.632 6.631 6.632 6.630 6.632
SE (0.0168) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0170) (0.0171) (0.0171) (0.0171) (0.0171)

d2 6.631 6.630 6.631 6.630 6.631
SE (0.0167) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0169) (0.0169) (0.0169) (0.0169) (0.0169)

d3 6.637 6.636 6.636 6.635 6.636
SE (0.0167) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0169) (0.0169) (0.0169) (0.0169) (0.0169)

d12 6.667 6.666 6.667 6.666 6.667
SE (0.0167) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0165) (0.0165) (0.0165) (0.0165) (0.0165)

d13 6.662 6.661 6.661 6.660 6.661
SE (0.0166) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0165) (0.0165) (0.0165) (0.0165) (0.0165)

d14 6.661 6.660 6.661 6.659 6.660
SE (0.0166) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0165) (0.0165) (0.0165) (0.0165) (0.0165)

d15 6.667 6.666 6.667 6.665 6.667
SE (0.0166) (0.0171) (0.0168) (0.0173) (0.0167)
SERob (0.0164) (0.0164) (0.0164) (0.0164) (0.0164)

chapter. The model selection strategy commenced with the inclusion of the main

fixed effects. The variables considered as covariates were those described in Table

5.1. Their significance levels were tested sequentially, meaning, first considering

the main effects, then the interaction effects, the contextual effects and finally the

interaction of the time variable with other variables. Main effects were retained if

significant at the 5% level. The next step was the inclusion of interaction effects

between the retained covariates and the variables for males and whites. Only these

interaction terms were tested, for the substantive reason, which is the belief that

there is still the presence of gender and race discrimination in the Brazilian labour

market. The significant interaction terms were retained and this step was followed

by the inclusion of cluster level covariates. However, to facilitate the model fitting

process, which at this point was already time-consuming, only significant contex-

tual effects from the cross-sectional modelling in Chapter 4 were considered here.

This model selection procedure still included tests for significant interaction effects

between time and other covariates.

It is worth mentioning that the squared and the cubic terms for the time

variable were tested in the random slope model but were not significant. Hence,

only the linear term was retained. It is also worth mentioning that, apart from
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being a longitudinal sample, the sample considered in the longitudinal data set is

relatively smaller than the one considered in Chapter 4. This might explain the

loss of significance of some of the variables in the model. The following variables

were excluded due to loss of significance: month at first interview (and its squared

term), the interaction term between number of household members and the dummy

for males, the interaction term between the squared term for age and dummy

for males and the contextual effects of age, race and proxy respondent. If of

substantive interest, extension of this analysis would be to test for the inclusion

of other interaction terms between time and other variables and possibly other

contextual effects. The selection of the fixed part of the model was performed by

fitting these models using ML estimation. This allows for the performance of the

likelihood ratio test. Once the fixed part of the model was selected, the random

part of the model was finally estimated via REML.

Before presenting the results for the fixed part of the models, the random part

of these models are examined. Table 5.5 presents the statistics for the goodness-

of-fit for the four models fitted here. The temporal power model is the least

preferable, reinforcing the previous findings about this structure. The choice is

once again between the multivariate models with unstructured and general linear

lag-dependent covariance structures. The same arguments made in favour of the

general linear lag-dependent model are valid here. This model is more parsimo-

nious when compared to the one imposing no constraints on the error covariance

structure and fully accounts for the rotation pattern. Appendix B presents the

plots for the residual diagnostics for both models. Both multivariate models pro-

duce similar plots.

Table 5.5: Model Selection: Goodness-of-fit Statistics (Model with more Covariates)

Model AIC BIC (SAS)
Random Slope (0-15) 21,246 21,273
Unstructured 20,446 20,649
Temporal Power (0-15) 30,178 30,195
General Linear Lag-Dependent 20,644 20,709

Table 5.6 presents the estimated residual covariance and autocorrelation ma-

trices for the four tested models. When comparing these autocorrelation matrices

with their respective matrices when no covariates were considered in the model

other than time, it can be observed that now the autocorrelations are smaller but

still quite strong. However, a faster decay for larger temporal distance between

occasions is observed after controlling for covariates. Additionally, the autocor-

relation matrix for the temporal power model has a much quicker decay towards

zero for larger temporal distances than any other structures.
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Figure 5.1: Autocorrelation Function

.2
.4
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.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lag

Random Slope Unstructured
Temporal Power GLLD

Figure 5.1 presents a plot for the autocorrelation function by lag. The series

of this plot were constructed from the autocorrelation matrices for each of the

structures. The line for the unstructured correlation represents the average over

the points for the given lag. This figure shows how different the autocorrelation

function for the temporal power is from the rest. It also shows that the autocorre-

lation functions for the general linear lag-dependent and the unstructured models

are very similar as they lie almost on the top of each other. Additionally, for all

the structures the autocorrelation shows a decreasing trend over time.

Table 5.7 presents the results for the fixed part of the model only for the

unstructured, for comparison reasons, and the general linear lag-dependent models.

A full interpretation of this table will be deferred to later analysis of this data set

as for now the motivation was more methodological than substantive. However,

by comparing the results of the two models in Table 5.7 a very small difference

in magnitude of the fixed effects is observed while the standard errors of these

estimates are nearly identical in both models.
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Chapter 5 Longitudinal Multilevel Modelling Accounting for the Rotating Design

Table 5.7: Multivariate Multilevel Modelling: Fixed Parameters Estimates

Unstructured GLLD

Coeff SE Coeff SE

Dummies for Occasion

d0 6.243 0.249 6.227 0.249

d1 6.264 0.249 6.248 0.249

d2 6.237 0.249 6.221 0.249

d3 6.250 0.249 6.234 0.249

d12 6.285 0.249 6.269 0.249

d13 6.271 0.249 6.255 0.249

d14 6.293 0.249 6.277 0.249

d15 6.291 0.249 6.275 0.249

Males 0.649 0.075 0.650 0.075

White 0.224 0.023 0.226 0.023

Age (@ wave 1) 4.209† 1.393† 4.310† 1.394†

Squared term -0.440† 0.043† -0.450† 0.043†

Type of Worker

(Employer as baseline)

Informal -0.139 0.016 -0.137 0.016

Formal -0.047 0.016 -0.045 0.016

Military service -0.008 0.021 -0.007 0.021

Self-Employed -0.175 0.014 -0.174 0.014

Type of Activity

(Manufacturing as baseline)

Building 0.031 0.036 0.029 0.036

Commerce -0.022 0.016 -0.023 0.016

Financial 0.039 0.020 0.039 0.020

Social Services 0.066 0.020 0.067 0.020

Domestic Services 0.000 0.019 -0.002 0.019

Other Services 0.001 0.018 0.000 0.018

Other Activities 0.028 0.061 0.038 0.061

Working Hours (in Log) 0.250 0.011 0.253 0.011

Proxy Respondent 0.003 0.006 0.003 0.006

Number of HH members 0.005 0.003 0.005 0.003

Metropolitan Region

(Recife as baseline)

Salvador 0.038 0.033 0.039 0.033

Belo Horizonte 0.245 0.032 0.244 0.032

Rio de Janeiro 0.211 0.029 0.212 0.029

São Paulo 0.359 0.032 0.359 0.032

Porto Alegre 0.226 0.034 0.226 0.034

Interaction Terms of Male and :

Age (@ wave 1) 0.003 0.002 0.003 0.002

Education (@ wave 1) 0.054 0.013 0.054 0.013

Squared term -0.003 0.001 -0.003 0.001

Type of Activity

(Manufacturing as baseline)

Building -0.046 0.037 -0.044 0.037

Commerce -0.021 0.018 -0.021 0.018

Financial -0.056 0.022 -0.056 0.022

Social Services -0.039 0.023 -0.042 0.023

Domestic Services -0.122 0.034 -0.121 0.034

Other Services -0.038 0.020 -0.036 0.020

Other Activities -0.074 0.066 -0.084 0.065

Duration of Employment (×120) 0.018 0.009 0.019 0.009

Squared term 0.009 0.005 0.009 0.005

Working Hours (in Log) -0.087 0.014 -0.087 0.014
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Table 5.7 – continued from previous page

Unstructured GLLD

Coeff SE Coeff SE

Proxy Respondent -0.041 0.007 -0.041 0.007

Interaction Terms of White and :

Type of Worker

(Employer as baseline)

Informal -0.056 0.020 -0.060 0.020

Formal -0.103 0.020 -0.104 0.020

Military service -0.141 0.026 -0.144 0.026

Self-Employed -0.013 0.017 -0.015 0.017

Occasion Dummies and :

d0× Education -0.069 0.012 -0.069 0.012

d1× " -0.072 0.012 -0.072 0.012

d2× " -0.065 0.012 -0.065 0.012

d3× " -0.065 0.012 -0.065 0.012

d12× " -0.064 0.012 -0.064 0.012

d13× " -0.061 0.012 -0.061 0.012

d14× " -0.068 0.012 -0.068 0.012

d15× " -0.067 0.012 -0.067 0.012

d0× Education2 0.009 0.001 0.009 0.001

d1× " 0.009 0.001 0.009 0.001

d2× " 0.009 0.001 0.009 0.001

d3× " 0.009 0.001 0.009 0.001

d12× " 0.009 0.001 0.009 0.001

d13× " 0.008 0.001 0.008 0.001

d14× " 0.009 0.001 0.009 0.001

d15× " 0.009 0.001 0.009 0.001

d0× Duration of Employment 0.046 0.010 0.045 0.009

d1× " 0.043 0.009 0.043 0.009

d2× " 0.033 0.009 0.033 0.009

d3× " 0.039 0.009 0.038 0.009

d12× " 0.040 0.009 0.040 0.009

d13× " 0.034 0.009 0.033 0.009

d14× " 0.039 0.009 0.038 0.009

d15× " 0.036 0.009 0.036 0.009

d0× Duration of Employment2 -0.022 0.005 -0.023 0.005

d1× " -0.022 0.005 -0.022 0.005

d2× " -0.021 0.005 -0.022 0.005

d3× " -0.024 0.005 -0.024 0.005

d12× " -0.020 0.005 -0.021 0.005

d13× " -0.018 0.005 -0.018 0.005

d14× " -0.019 0.005 -0.019 0.005

d15× " -0.017 0.005 -0.017 0.005

Contextual Effects:

Proportion of Formal -1.850 0.211 -1.847 0.211

Proportion of Informal -2.187 0.247 -2.181 0.247

Proportion of Military -2.080 0.233 -2.069 0.233

Proportion of Self-Employed -2.274 0.245 -2.280 0.245

Average Education 0.072 0.006 0.072 0.006

Number of Clusters 1,761 1,761

Number of Individuals 6,524 6,524

-2×Log-Likelihood 19,760 20,007

Note: † Values at 10−3.

124



Chapter 5 Longitudinal Multilevel Modelling Accounting for the Rotating Design

5.6 Summary and Discussion

The main objective of this chapter was to incorporate the PME rotation pattern

characterized as 4-8-4 into the analysis. For that a longitudinal data set which

included all the eight interviews for the employed heads of household of the PME

survey was considered. This chapter presented a discussion on how the models

considered so far accommodate such rotation patterns and proposed the use of

models that impose an error covariance structure that is dependent on the tem-

poral distance between the occasions. For this, a lag-matrix for the PME design

was presented and generalized to other rotation patterns. Two alternative covari-

ance structures were presented. These were the temporal power and the general

linear lag-dependent. Both of these structures can be imposed to data with ro-

tation patterns different to that of the PME. Models were fitted with the usual

structures and compared to the two alternative structures. The general linear

lag-dependent model presented good results overall, although still assuming ho-

moscedasticity over time. Extensions to the analysis presented here would be to

consider heterogeneous covariance structures. This would extend the general lin-

ear lag-dependent model, by not constraining the variances to be constant over

time. One other possibility would be, for example, to assume equal variance over

the first four time points not constrained to be the same as the equal variance for

the last four time points.
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Chapter 6

Probability-weighted Iterative

Generalized Least Squares

6.1 Introduction

Chapter 2 presented a review of the methods for the analysis of longitudinal data

under the multilevel model framework. That represented the fundamental theory

necessary for the analyses performed in Chapters 4 to 5. Chapter 7 deals with

the estimation of longitudinal multilevel models, such as those in the Chapter 5,

using methods which compensate for panel non-response. This chapter, therefore,

presents a review of methods of analysis of complex survey multilevel, and in par-

ticular longitudinal, data. These are methods that account for the sampling design

features, like clustering and stratification, and the sampling weights. This review

acts as the basis for the method developed later in this chapter which involves the

extension of the probability-weighted iterative generalized least squares estima-

tion method presented in Pfeffermann et al. (1998) to fit multivariate multilevel

models.

6.2 Complex Survey Methods for Longitudinal

and Multilevel Data

Most surveys adopt a sampling design that is more complex than the simple ran-

dom sampling (SRS) with replacement. This has motivated the adaptation of

traditional inference methods, initially developed under the assumption of SRS

(Kish and Frankel, 1974), to account for such design features (see for example
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(Skinner, 1986, 1989b; Pfeffermann and La Vange, 1989; Pessoa and Silva, 1998;

Pfeffermann, 1993; Lee and Forthofer, 2005). The complex sampling designs are

usually of multiple stages including stratification and clustering of the target pop-

ulation and unequal selection probability of the sampling units in each of the

sampling stages (LaVange et al., 2001).

Stratification is often used to guarantee a better representation of the tar-

get population. This procedure divides the target population into homogeneous

groups and constitutes a more efficient design than the SRS. Clustering is usu-

ally justified as a means to reduce costs. The clusters are usually homogeneous

groups and the units selected within the same cluster are expected to be corre-

lated. Unequal probabilities of selection are also used as a means to ensure a

better representation of the target population. The inverse of these probabilities

determine the sampling weights. Some surveys, like the Brazilian labour force

survey (the PME), are initially designed as self-weighting surveys. However, in

the presence of non-response, the sampling weights can be adjusted and the sam-

ple loses its self-weighting characteristic. Consequently the sampling weights can

correct for non-response and can also be post-stratification weights adjusting for

extreme values or to a known population pattern.

A sampling design is said to be informative when the selection indicators

depend on the survey response variables. In this case, ignoring the sampling

design leads to biased inference about most population parameters. Pfeffermann

et al. (1998) stated that informative sampling designs are usually the case when

unequal probabilities of selection are employed.

For descriptive inference the usual procedure to account for informative sam-

pling design is to utilize the Horvitz-Thompson estimator. This is an unbiased es-

timator that accounts for sampling weights; see Cochran (1977) for more details.

Two other estimators commonly used are the Ratio and the Regression estimators

(Pessoa and Silva, 1998) which are usually associated with the Taylor linearisa-

tion method for the estimation of the variance. Authors such as Skinner (1989a);

Binder (1983) and Kish and Frankel (1974) also mentioned other variance estima-

tion methods such as the Balanced Repeated Replications (BRR), the Jackknife

and the Bootstrap (refer to these authors for details).

For analytical inference, or inference about model parameters, the usual ap-

proach to account for informative sampling designs is to employ pseudo likelihood

estimation methods (described later in this section) which make use of the sam-

pling weights (Binder, 1983). This procedure is usually combined with the Taylor

linearisation method for the estimation of the variance of the parameter estimates
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producing design consistent estimates (Skinner, 1989a, page 18). Nonetheless, the

use of the sampling weights for analytical inference is debatable (Pfeffermann,

1993). This practice is recommended when estimating the model parameters.

However, the inclusion of the sampling weights may increase the variance of these

estimates. Pfeffermann (1993) suggested testing whether the sampling designs are

or are not informative, once the inclusion of the sampling weights in the analysis

would result in loss of efficiency for estimates. Some authors (Rabe-Hesketh and

Skrondal, 2006; Pfeffermann et al., 1998; Pfeffermann, 1993) also argued that the

inclusion of the design variables and sampling weights as covariates in the model

would suffice to account for the complex sampling design. However, this approach

is only advised if no change would be caused in the interpretation of the param-

eters. Moreover, this approach might not be possible as design variables are not

usually available in the official data sets released. Furthermore, Rabe-Hesketh and

Skrondal (2006) mentioned that design consistency can only be guaranteed if both

the design and the sampling weights are taken into account.

The approach based on pseudo likelihood estimation methods is applied to

single level data under complex survey sampling schemes. Also based on this ap-

proach, Pfeffermann et al. (1998) described a method for the analysis of two-level

models for a continuous outcome which accounts for the unequal selection proba-

bilities of units in each of the two levels of the model. Their proposal is justified as

in a multilevel model the finite population units are not independent and the over-

all selection probabilities do not contain enough information for bias correction.

Their method can only be implemented if the selection probabilities in each of the

levels are provided in the data set, so that the weights for the level two and level

one units can be calculated. The proposed estimation procedure adapts an IGLS

analogue of the pseudo-maximum likelihood (PML), therefore called probability-

weighted IGLS (PWIGLS), which is fully described in the next subsection 6.2.1.

In Pfeffermann et al. (1998), three scenarios were tested in a simulation study.

The simulated samples were based respectively on a non-informative design, on an

informative design at level two only and on an informative design at both levels.

Results showed that the standard IGLS estimates for samples with informative

designs produced biased estimates, whereas the PWIGLS for the same samples

had better design-based asymptotic characteristics.

Drawbacks of the method developed in Pfeffermann et al. (1998), as iden-

tified by Rabe-Hesketh and Skrondal (2006), were that it only accounted for a

two-level multilevel model and was developed for a continuous response variable.
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Hence, Rabe-Hesketh and Skrondal (2006) proposed extensions to generalized lin-

ear mixed models with multiple levels, based on the PML estimation via adaptive

quadrature (implemented in Stata via gllamm). They considered scaled weights,

performed a simulation study and concluded by noting the importance of account-

ing for weights under an informative design. However, they also noted a decrease

in efficiency of the weighted estimators and advised that post-stratification weights

might not be useful in these methods.

Rabe-Hesketh and Skrondal (2006) added that their method could also be

applied to longitudinal models, albeit without accounting for the complex level

one covariance structure. Skinner and Holmes (2003), on the other hand, pre-

sented two approaches to incorporate the complex sampling design in longitudinal

random effects models while accounting for correlated responses of the same indi-

vidual. However, the proposed methods, once again, only accommodate two-level

longitudinal data in which the individuals are the level two and occasions are the

level one units. Their first approach was based on a multivariate model utilizing

weighted mean and covariance matrices. However, this approach can only handle

monotone non-response and for short series it produces unstable estimates for the

covariance matrix. Their second approach, stated as the most efficient, is a mul-

tilevel approach for a random intercept model and corresponds to an extension of

the method presented in Pfeffermann et al. (1998) to allow for serial correlation

between repeated responses of the same individual. To begin with, this approach

makes use of the econometric method of first-differences (Wooldridge, 2002) that

eliminates the random effects and then estimates the correlation parameters using

weighted least squares. In a second step the regression parameters are estimated

via PWIGLS from a transformed data set based on the lagged responses and ac-

counting for the correlation estimated in the first step. This approach generates

consistent estimates.

Skinner and Holmes (2003) also discussed how to include individual weights

as level two weights and longitudinal weights as level one weights. For their specific

analysis, individual level weights were defined as the longitudinal weight in the first

wave for every individual in order to prevent a large weight variability. Given the

definition of the individual level weights, occasion level weights were defined by

dividing the longitudinal weights for every occasion by that for the first occasion.

This makes the conditional level one weight at the first occasion equal to one. This

was an alternative to ensure that the sample selection and the response process

at the first wave is assumed to be the selection process throughout the analysis.

Their scaling method was similar to the scaling method applied by Pfeffermann
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et al. (1998) so that the average of the scaled level one weights equals one and

their sum equals the number of occasions the individuals are in the panel.

Other authors, such as Feder et al. (2000) and Asparouhov and Muthen

(2006), proposed alternative methods to account for the complex survey design in

the analysis of longitudinal data. Both methods were based upon the pseudo-

maximum likelihood estimation procedure. One other important issue to no-

tice is that the likelihood ratio test can no longer be applied when examining

the goodness-of-fit of models estimated via pseudo-maximum likelihood (Skinner,

1989b). The Wald test can still be used provided that both the estimates and

their standard errors were estimated taking into account the sampling design and

weights of the complex survey data.

6.2.1 A Review on the Probability-weighted Iterative

Generalized Least Squares

This sub-section describes in detail the method proposed by Pfeffermann et al.

(1998) for the analysis of two-level data under complex survey design: the probabi-

lity-weighted iterative generalized least squares (PWIGLS). As was briefly men-

tioned before, this method is based on the IGLS estimation method adapting it

to an analogue of the pseudo-maximum likelihood estimation (PMLE) (Skinner,

1989a). This subsection starts by describing the IGLS, which is followed by a

description of the PMLE and finally by a description of the PWIGLS.

6.2.1.1 Iterative Generalized Least Squares (IGLS)

Consider the two-level model presented in equation 2.6 rewritten as:

yij = xTijβ + zTijuj + eij, (6.1)

where xij is the vector of the explanatory variables for both levels of the data

hierarchy and zij is the sub-set of the vector of explanatory variables that are

considered as random at the second level, the cluster level. The same assumptions

about the errors terms as those specified in the model in equation 2.6 are adopted

here:

uj∼N(0,Σu) and eij∼N(0, σ2
e).
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This model can be expressed in matrix form as:

Y j = Xjβ + rj (6.2)

where Xj is a matrix of all explanatory variables for units in cluster j, Y j is a

vector with the responses for units in cluster j and rj is a vector of the composite

errors given as:

rj = Zjuj + ej,

where Zj is a design matrix. For this model the total variance for the observations

within cluster j is given as:

Vj = ZjΣuZ
T
j + Inj

σ2
e ,

where Inj is an identity matrix size nj × nj.

Defining θ to be the row vector of s distinct covariance terms of Vj so that

θ = (θ1, ..., θs) = (vech(Σu)
T , σ2

e), Vj is expressed as a linear function of θ such

that:

Vj =
s∑

k=1

θkGkj,

where s = (q(q+ 1)/2) + 1 as defined in Pfeffermann et al. (1998) and Gkj is given

as:

Gkj = ZjHkjZ
T
j + Inj

δks for k = (1, 2, . . . , s),

where the Hkj are q× q matrices of zeroes and ones and δks is the Kronecker delta

defined as:

δks =

{
1 if k = s

0 otherwise
.

Example 6.1 Consider a two-level random intercept model where q = 1 and

s = 2. Hence, Σu = [σ2
u], θ = (θ1, θ2) = (σ2

u, σ
2
e) and Vj can be expressed as:

Vj = θ1G1j + θ2G2j.

For this model formulation, Hkj and δks are defined as:

H1j = [1] , H2j = [0] , δ12 = [0] and δ22 = [1] .
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Given a set of initial values (stage 0), the IGLS iterates between the estima-

tion of β̂ (stage 1) and θ̂ (stage 2) until convergence following the stages:

Stage 0: This stage calculates the initial values for both β̂ and θ̂. The estimates

for β̂ are usually taken to be:

β̂
(0)

OLS =

(∑
j

XT
j Xj

)−1(∑
j

XT
j Y j

)
.

For the initial values of θ̂: σ̂
2(0)
u are usually taken to be 0 and σ̂

2(0)
e estimated

as

σ̂2(0)
e =

∑
j

(∑
i (e

(0)
ij − ēj)

2
)

∑
j(nj − 1)

,

where
∑

j denotes the sum over the j = (1, 2, ..., n) clusters, e
(0)
ij are the raw

residuals calculated as e
(0)
ij = yij − xTijβ̂

(0)

OLS and ēj is the average residual

for cluster j. With θ̂
(0)

estimated to compose V̂
(r−1)
j for the first iteration

(r = 1) the new estimates for the fixed effects are calculated in stage 1.

Stage 1: At this stage β̂
(r)

IGLS, where the superscript (r) denotes the iteration

number, are calculated based on the general GLS formulation given as:

β̂
(r)

IGLS =

(∑
j

XT
j V̂

−1(r−1)
j Xj

)−1(∑
j

XT
j V̂

−1(r−1)
j Y j

)
. (6.3)

The general form of V̂j for the two-level random coefficients model is:

V̂j = ZjΣ̂uZ
T
j + Inj

σ̂2
e ,

Pfeffermann and La Vange (1989) wrote its inverse as

V̂ −1
j =

1

σ̂2
e

Inj
− 1

σ̂2
e

Zj(Z
T
j Zj + σ̂2

eΣ̂
−1
u )−1ZT

j .

Defining

Aj = (ZT
j Zj + σ̂2

eΣ̂
−1
u )−1,

V̂ −1
j can then be written as:

V̂ −1
j =

1

σ̂2
e

Inj
− 1

σ̂2
e

ZjAjZ
T
j .
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V̂
−1(r−1)
j can assume the same form as V̂ −1

j for each iteration (r). Substitut-

ing this expression for V̂
−1(r−1)
j in the equation 6.3, β̂

(r)

IGLS can be re-expressed

such that

β̂
(r)

IGLS = P̂ (r)−1Q̂(r) (6.4)

for P̂ (r) and Q̂(r) written as

P̂ (r) =
∑
j

XT
j V̂

−1(r−1)
j Xj

= (σ̂2
e)
−1
∑
j

(XT
j Xj −XT

j ZjAjZ
T
j Xj),

and

Q̂(r) =
∑
j

XT
j V̂

−1(r−1)
j Y j

= (σ̂2
e)
−1
∑
j

(XT
j Y j −XT

j ZjAjZ
T
j Y j).

The fixed coefficients are thereby estimated for iteration (r). Note in the

above formulae that for simplicity of notation, the superscript (r − 1) was

omitted from the components of V̂
(r−1)
j : σ̂2

e and Σ̂u. The subscript (r) was

omitted from Aj.

Stage 2 After the estimation in stage 1, the vector for the raw residuals e
(r)
j

is calculated to be used in the estimation of θ̂
(r)

which can be estimated

following the formulation presented in Pfeffermann et al. (1998)

θ̂
(r)

IGLS = R̂(r)−1Ŝ(r), (6.5)

where R̂(r) is a s×smatrix and Ŝ(r) is a s×1 vector with elements respectively

defined as: ∑
j

tr(V̂
(r−1)−1
j GkjV̂

(r−1)−1
j Glj)

and ∑
j

tr(e
(r)
j

T
V̂

(r−1)−1
j GkjV̂

(r−1)−1
j e

(r)
j ),

133



Chapter 6 Probability-weighted Iterative Generalized Least Squares

where subscripts k and l denote respectively the rows and columns of the

matrices and

e
(r)
j = (Y j −Xjβ̂

(r)

IGLS). (6.6)

These equations result from the partial derivatives of the log-likelihood of

the model in equation 6.1 with respect to θ. The log-likelihood and the

corresponding detailed algebra for obtaining the solution for the matrices

R̂(r) and Ŝ(r) were presented in Zhu (2008). These solutions are the same as

those introduced by Pfeffermann et al. (1998) in their Appendix A, which

are reproduced below for the general form where q > 1. The element in the

kth row and lth column of the s× s R̂(r) matrix is given by:

R̂(r)[k, l] =
1

σ̂e4(r−1)

∑
j

{δksδlsnj + δlstr(Z
T
j D

−1
j ZjCkj) + δkstr(Z

T
j D

−1
j ZjHlj)

+ tr(ZT
j D

−1
j ZjCkjZ

T
j D

−1
j ZjHlj)},

where

Ckj = Bkj − δksAj −BkjZ
T
j D

−1
j ZjAj, (6.7)

Bkj = σ̂2
eAjΣ̂

−1
u Hkj − δksAj, (6.8)

and the kth row element of the s× 1 matrix Ŝ(r), is given by:

Ŝ(r)[k] =
1

σ̂e4(r−1)

∑
j

{δkstr(eTj D−1
j ej) + tr(eTj D

−1
j ZjCkjZ

T
j D

−1
j ej)}.

It is worth noting that the superscript (r) for the current iteration was

omitted from matrices Aj, Bkj and Ckj and from ej in the above formulae.

These matrices and this vector are calculated for each iteration based on the

elements of V̂
(r−1)
j . It is also important to notice that D−1

j assumes the form

of an identity matrix size nj × nj, Inj, for the case of the random intercept

model under IGLS estimation.

The final iteration provides the estimates for both the fixed and random parts of

the model in 6.1. These are the ML estimates if the normality assumption holds.

The covariance matrix for the estimates of the fixed coefficients is given as

V̂ ar(β̂IGLS) = P̂−1,
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where P̂ is taken from the final iteration. Furthermore, by analogy with the

formulae presented in Goldstein (2003), it is straightforward to deduce that

V̂ ar(θ̂IGLS) = 2× R̂−1,

where R̂ is also taken from the final iteration.

6.2.1.2 Pseudo-maximum Likelihood (PML)

The pseudo-maximum likelihood (PML) estimation is one of the approaches that

take into account the sampling weights and the sampling design characteristics

when dealing with inference for regression parameters for survey data under com-

plex survey design. Proposed by Skinner (1989a), based on the ideas proposed

by Binder (1983), the PML modifies log-likelihood functions by incorporating the

weights so that the estimated likelihood equations are equivalent to the census

equations (Pfeffermann, 1993).

Consider the case of a parametric model for the population where ϕ repre-

sents all the parameters to be estimated. The census maximum likelihood estima-

tors for ϕ are those that maximize the log-likelihood

lU(ϕ) =
∑
U

log fi(yi,ϕ),

where fi(yi,ϕ) is the density of yi in the population. The census ML estimate is

obtained by solving the census likelihood equations

∂lU(ϕ)

∂ϕ
=
∑
U

ui(ϕ) =
∑
U

∂

∂ϕ
log fi(yi,ϕ) = 0,

where
∑

U represents the sum across all the elements of the finite population U

(Pessoa and Silva, 1998). These equations can only be solved if all the units in

the population are observed. One approach to overcome this problem is to ap-

ply the sampling estimation principles and the Hovitz-Thompson (HT) estimator

(Cochran, 1977) which uses the inverse of the selection probabilities (πi) as weights

(wi). The HT estimator T̂ (ϕ) for the vector of the population totals, i.e. the sum

of scores in the population,

T (ϕ) =
∑
U

ui(ϕ)

135



Chapter 6 Probability-weighted Iterative Generalized Least Squares

is given by

T̂ (ϕ) =
∑
S

wiui(ϕ),

where wi = 1/πi. The pseudo-maximum likelihood estimator ϕ̂PML is the solution

for

T̂ (ϕ) = 0.

Under general conditions, ϕ̂PML is a consistent estimator of ϕ. In general the PML

estimates do not share the same asymptotic characteristics as the ML estimates

do (Skinner, 1989a). However, the PML estimates are robust.

For the estimation of the covariance matrix of the PML estimates, V (ϕ̂PML),

Skinner (1989a) adopted the delta method also known as the Taylor linearisation

method, which in a general form is:

V̂L(ϕ̂PML) = I(ϕ̂PML)−1V̂L

(∑
S

wiui(ϕ̂PML)

)
I(ϕ̂PML)−1 (6.9)

where

I(ϕ̂PML)−1 =
∂T̂ (ϕ)

∂ϕT
=
∑
S

wi
∂ui
∂ϕT

∣∣∣∣∣
ϕ=ϕ̂PML

,

and the middle term of 6.9 is defined as

V̂L

(∑
S

wiui(ϕ̂PML)

)
=

H∑
h=1

mh

mh − 1

∑
j

(dhj − d̄h)(dhj − d̄h)T . (6.10)

Here dhj is defined in Skinner (1989a) as
∑

Shj
wiui(ϕ̂PML) in each PSU (cluster)

j in stratum h.

Pessoa and Silva (1998) added that PML estimation accounts for the weights

through the estimating equations of the parameters and their covariance and ac-

counts for the complex sampling design through the expression for the variance of

the total scores and through the inclusion probabilities.

For the case of a multilevel model, Pfeffermann et al. (1998) stated that

the PML estimation is not as straightforward as for the one-level model since the

population values are no longer assumed to be independent. Therefore the census

log-likelihood can no longer be expressed as simple sums of the units’ contributions

but as a sum across all levels instead. For a two-level model, for example, this
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could be written as (Grilli and Rampichini, 2006):

`(ϕ) =
N∑
j=1

log

∫ exp


Nj∑
i=1

log fij(yij,ϕ|uj)


φ(uj)duj,

where φ(uj) is the multivariate normal distribution of the level two random ef-

fects and log fij(yij,ϕ|uj) is the log-likelihood contributions of the level one units

conditioned on the level two random effects (Rabe-Hesketh and Skrondal, 2006).

For this reason, the log-likelihood for the sample units cannot be expressed as a

simple weighted sum of the sample contributions either, but rather as:

ˆ̀(ϕ) =
∑
j

wj log

∫ (
exp

{∑
S

wi|j log fij(yij,ϕ|uj)

})
φ(uj)duj.

Therefore, the main difference is that the sum for each of the levels requires the

respective conditional sampling weight. These weights are defined in Rabe-Hesketh

and Skrondal (2006, page 811). For the above case, of a two-level model, the sum

over the level one units are weighted by wi|j, that is the inverse of the selection

probability of the ith unit at cluster j given that cluster j has been selected; and

the sum over level two units are weighted by wj, that is the inverse of the selection

probability of cluster j.

6.2.1.3 Probability-weighted Iterative Generalized

Least Squares (PWIGLS)

The probability-weighted iterative generalized least squares (PWIGLS) method

adapts the IGLS estimation by incorporating the ideas of the PML estimation.

Consider the same two-level model as the one described for IGLS in equation 6.2.

Also consider that the selection probabilities for each of the levels are available for

use in the multilevel data. Hence, πj is the selection probability for cluster j and

πi|j is the conditional selection probability of unit i in cluster j given that cluster

j has been selected. These probabilities are such that

πij = πj × πi|j

are the unconditional sample inclusion probabilities (Pfeffermann et al., 1998).

The inverse of the conditional probabilities reflect the sampling weights for each

of the levels of the data.
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The underlying idea here is similar to that for the PML estimation. Firstly,

Pfeffermann et al. (1998) wrote the IGLS estimation for the census parameters,

that is for the case where all the units of the finite population U are observed.

Secondly, the census estimators were substituted by weighted sample estimates by

replacing each population sum over the level two units by the weighted sample

sum using wj and each population sum over the level one units by a weighted

sample sum using wi|j. Here wj are the level two weights and wi|j are the level one

weights.

The equivalent stages for the PWIGLS are then:

Stage 0: Like for the IGLS, in this stage the initial values for both β̂ and θ̂ are

calculated. First, let

D−1
j = diag(wi|j), (6.11)

that is a nj × nj diagonal matrix with wi|j in the main diagonal. Then

consider that wj is a scalar, in this way the initial estimates for β̂ are given

as:

β̂
(0)

PWIGLS =

(∑
j

wj(X
T
j D

−1
j Xj)

)−1(∑
j

wj(X
T
j D

−1
j Y j)

)
.

For the initial values of θ̂ it is also assumed that σ̂
2(0)
u is equal 0. Given that

the raw residuals can be calculated as

e
(0)
j = Y j −Xjβ̂

(0)

PWIGLS

and

û
(0)
j =

∑
iwi|je

(0)
ij∑

iwi|j
,

following the suggestions in Pfeffermann et al. (1998), σ̂
2(0)
e is estimated as:

σ̂2(0)
e =

∑
j wj

(∑
i(wi|j(e

(0)
j − û

(0)
j )

2
)

∑
j wj((

∑
iwi|j)− 1)

,

where
∑

j denotes the sum over the j = (1, 2, ..., n) clusters in the sample

and
∑

i denotes the sum over the level one units sampled in cluster j. From

this stage θ̂
(0)

is estimated and that forms matrix V̂
(r−1)
j to be used in the

next stage (iteration r = 1).
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Stage 1: Using the estimated V̂
(r−1)
j from previous iteration, β̂

(r)

PWIGLS is esti-

mated adopting the same formulation as in 6.4, i.e.

β̂
(r)

PWIGLS = P̂ (r)−1Q̂(r), (6.12)

where P̂ (r) and Q̂(r) are now defined as:

P̂ (r) =
∑
j

wj(X
T
j V̂

(r−1)−1
j Xj)

= (σ̂2
e)
−1
∑
j

wj(X
T
j D

−1
j Xj −XT

j D
−1
j ZjAjZ

T
j D

−1
j Xj),

and

Q̂(r) =
∑
j

wj(X
T
j V̂

(r−1)−1
j Y j)

= (σ̂2
e)
−1
∑
j

wj(X
T
j D

−1
j Y j −XT

j D
−1
j ZjAjZ

T
j D

−1
j Y j).

Here, D−1
j is as defined in equation 6.11 and for each iteration (r), but for

simplicity of notation omitting the superscripts (r) from Aj and (r−1) from

V̂ −1
j ,

Aj = (ZT
j D

−1
j Zj + σ̂2

eΣ̂
−1
u )−1 and (6.13)

V̂ −1
j = σ̂−2

e D−1
j − σ̂−2

e D−1
j ZjAjZ

T
j D

−1
j . (6.14)

Note that σ̂2
e and Σ̂u are elements of matrix V̂

(r−1)
j and also have their (r−1)

superscripts omitted.

Stage 2 From the estimation in stage 1, the raw residuals are calculated to be

used in the estimation of θ̂
(r)

, such that, as in equation 6.5, it is given as:

θ̂
(r)

PWIGLS = R̂(r)−1Ŝ(r), (6.15)

where the elements of R̂(r) and Ŝ(r) are now written as:

R̂(r)[k, l] =
1

σ̂e4(r−1)

∑
j

wj{δksδls(
∑
i

wi|j) + δlstr(Z
T
j D

−1
j ZjCkj)

+ δkstr(Z
T
j D

−1
j ZjHlj) + tr(ZT

j D
−1
j ZjCkjZ

T
j D

−1
j ZjHlj)}
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and

Ŝ(r)[k] =
1

σ̂e4(r−1)

∑
j

wj{δkstr(êTj D−1
j êj) + tr(êTj D

−1
j ZjCkjZ

T
j D

−1
j êj)},

where Bkj and Ckj are as in equations 6.8 and 6.7, Aj is defined as in equation

6.13, D−1
j is defined as in 6.11 and êj are the raw residuals which can be

calculated similarly to equation 6.6 but using β̂
(r)

PWIGLS instead.

The final iteration provides the estimates for both the fixed and random

parts of the model in 6.1. Like the PML estimates, the PWIGLS estimates are

design consistent and model consistent under weak regularity conditions (Rabe-

Hesketh and Skrondal, 2006, page 808). These conditions, however, require that

the number of level two units n and the number of level one units nj within cluster

j increase, which might not usually be the case (Pfeffermann et al., 1998, page

29).

For the estimation of the covariance matrix for the PWIGLS estimates Pf-

effermann et al. (1998) applied the Taylor linearisation methods as described in

Skinner (1989a) for the PML estimation. This method is based on the randomiza-

tion variance (Pfeffermann, 1993), assuming that the level two units were selected

with replacement and that the contributions to the pseudo likelihood are indepen-

dent. The Taylor linearisation method provides robust standard error estimates in

the form of the sandwich estimator (Huber, 1967; White, 1982; Freedman, 2006).

Pfeffermann et al. (1998) provided the formulation for these variances for the case

of the random intercept model as:

V̂ ar(β̂PWIGLS) = P̂−1

(
n

n− 1

)(∑
j

w2
jcjc

T
j

)
P̂−1, (6.16)

where cj = (XjV̂
(−1)
j êj), and by using the same kind of substitution as for P̂ (r)

and Q̂(r), cj can be written as

cj = (σ̂2
e)
−1
∑
j

(XT
j D

−1
j êj −XT

j D
−1
j ZjAjZ

T
j D

−1
j êj).
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Given that θ̂PWIGLS is estimated by equation 6.15 and R̂ is a Jacobian matrix, an

estimate for V ar(θ̂PWIGLS) can be given as:

V̂ ar(θ̂PWIGLS) = V̂ ar(R̂−1Ŝ)

= R̂−1V̂L(Ŝ)R̂−1,

where V̂L(Ŝ) can be found using the same principle as in equation 6.10. Therefore

V̂ ar(θ̂PWIGLS) is equal to

R̂−1

(
n

n− 1

)(∑
j

w2
j (Ŝ − R̂θ̂PWIGLS)(Ŝ − R̂θ̂PWIGLS)T

)
R̂−1. (6.17)

It is worth mentioning that all the above formulation can also be applied

to the random coefficient models where q > 1. Care must be taken however on

the specification of matrices Hkj and on the determination of the initial values for

θ̂
(0)

. When estimating random coefficient models through gllamm (Rabe-Hesketh

et al., 2004) it was observed that the usual initial values for the level-two variance

terms are 0.5 and for the covariance terms 0.

6.2.2 Scaled Weights

Most of the discussion presented in Pfeffermann et al. (1998) concerned scaling

methods that can be applied to the multilevel weights. This issue was also raised by

Rabe-Hesketh and Skrondal (2006); Grilli and Rampichini (2006) as an approach

to reduce the bias generated due to small samples. However, Pfeffermann et al.

(1998) showed that different scaling methods affect the estimates in different ways.

Their so called “method two” was preferred as the best potential scaling method

under informative weights. This particular method multiplies the level one weights

wi|j by a constant λj that represents the inverse of the average weight in cluster

j so that the sum of the scaled level one weights represents the actual cluster size

nj. Following this specification, the scaled weights can be writen as

w∗i|j = λj × wi|j =
wi|j × nj∑

iwi|j
.

For a two-level multilevel model, scaling is only required for the level one weights,

since the multiplication of level two weights by a constant would only re-scale the

pseudo likelihood having no effects on the estimates (Rabe-Hesketh and Skrondal,

2006). However, the scaling of level one weights is expected not only to have an
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effect on the estimates of the fixed part of the model but also a bigger effect on

the estimation of the random part.

The PWIGLS is not readily available in the traditional statistical computer

packages. Chantala et al. (2006) presented a brief comparison of packages that

can perform the PWIGLS. These include, for example, MLwiN, gllamm, MPLUS

and LISREL. They estimated the same model in the different packages providing

some highlights of the main differences and care that the user should take. It is

worth mentioning that computer code developed for the PWIGLS estimation is

available in Appendix D. These codes were written using the Mata language for

Stata.

6.3 PWIGLS for Multivariate Multilevel Models

This section presents an extension to the estimation method of probability-weighted

iterative generalized least squares (PWIGLS) to accommodate the estimation of

two-level multivariate (longitudinal) models. The PWIGLS for the estimation of

two-level random coefficients models was described in the previous section. The

description presented here uses the same notation and the main differences are

highlighted. This estimation method is used in the analysis presented in the next

chapter.

First consider the two-level multivariate model with only the time variable

as a covariate where random coefficients are allowed at the PSU level:

ytij = dTtijβ + zTtijvj + dTtijuij. (6.18)

This is a multivariate multilevel model equivalent to the model in equation 2.23.

Here ztij is a sub-set of the vector of explanatory variables which are considered as

random at the PSU level. The vector ztij is associated with the vector of random

effects at the cluster level which may include the random intercept and random

slopes. For the models in this section only the intercept is considered as random

at the PSU level. Therefore ztij is a vector of ones. Here it is also assumed that

vj∼MN(0,Σv) and uij∼MN(0,Σu).

Therefore, when the vector of random effects vj at the PSU level includes only

the random intercepts, Σv = σ2
v .
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The multivariate multilevel model in equation 6.18 can be re-expressed in

matrix form, as in equation 6.2, as

Y j = Xjβ + rj

where, as before, the subscript j is for the PSU, where Xj is the matrix of explana-

tory variables, Y j is the vector with the response variable and rj is the vector of

composite residual now given as

rtij = zTtijvj + dTtijuij.

Here it is also assumed that

rj∼N(0, Vj) .

For the multivariate model 6.18, Vj takes the form

Vj = ZjΣvZ
T
j +Dj(Inj

⊗ Σu),

where Zj is the design matrix for PSU j and Σv is the covariance matrix for

the PSU random effects. In addition consider that nj is the number of heads of

household in PSU j, each head of household is measured in Tij occasions. Assume

now that the number of occasions is fixed within heads of household and equal to

T . Therefore, the number of observations within PSU j is ntj = T × nj. Matrix

Dj is the ntj × ntj matrix defined as

Dj = [Inj
⊗Dij],

where Dij is the matrix formed with the vectors of the occasion dummies dtij, Inj

is the identity matrix with size nj × nj and the symbol ⊗ represents the Kronecker

product. Furthermore, Σu is the T × T covariance matrix of the random effects

at the heads of household level. Note that the cross-product between Inj
and the

covariance matrix Σu provides the block-diagonal structure at the cluster level,

where each block represents one head of household.

Example 6.2 Consider a three-level balanced data set where Tij = 4 for every

head of household i in PSU j. Also consider that the model in equation 6.18

only includes the random intercept at the PSU level. Therefore Σv = σ2
v and
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Zj = 1(ntj×1). Furthermore,

Dj = [Inj
⊗Dij] = Inj

⊗


1

0 1

0 0 1

0 0 0 1

 .

Hence, for this special case Dj is equivalent to the ntj × ntj identity matrix

Intj
. In this example Vj is given as:

Vj = Jntj
σ2
v +Dj(Inj

⊗ Σu),

where Jntj
is a ntj × ntj matrix of ones in every entry.

The matrix Vj can be expressed as a linear function of θ such that:

Vj =
s∑
k

θkGkj,

where θ is the row vector formed with the s distinct elements of Σv and Σu. For

the multivariate multilevel model, Gkj is given as:

Gkj = ZjHkjZ
T
j +Dj(Inj

⊗∆kj).

The main differences between the PWIGLS for the multivariate model and

the PWIGLS described in the previous section are in the form of Vj and the

definition of matrices Hkj and ∆kj. As before, Hkj are q × q matrices of zeroes

and ones where k = 1, ..., s, where s is the total number of parameters in θ and

q, here, is the number of random effects at the PSU level. The ∆kj matrices are

s T × T matrices of zeroes and ones and are defined to determine the covariance

structure being imposed in the multivariate model. Therefore, this procedure still

allows for the different covariance structures such as those discussed in Chapter 5,

to be imposed. For example, the general linear lag-dependent structure can be

imposed by defining the matrices ∆2j to ∆12j assuming the same form as each

one of the Aq matrices in Chapter 5 plus an additional ∆1j matrix, with zeroes in

every entry, necessary for the estimation of σ2
v . It is worth remembering that, for

the models considered here, q = 1.

Example 6.2 continued Consider for example that the Toeplitz structure is

being imposed on the error covariance matrix for the balanced data set where
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T = 4 and q = 1. Here, Σv = σ2
v and

Σu =


σ2

σ1 σ2

σ2 σ1 σ2

σ3 σ2 σ1 σ2

 .

Therefore, θ = (θ1, ..., θ5)T = (σ2
v , σ

2, σ1, σ2, σ3)T and s = 5. The total

variance is given as:

Vj =
s∑
k

θkGkj =
s∑
k

θk(ZjHkjZ
T
j +Dj(Inj

⊗∆kj))

where the matrices Hkj are

H1j = [1] , H2j = [0] , H3j = [0] , H4j = [0] , and H5j = [0],

and the matrices ∆kj are

∆1j =


0

0 0

0 0 0

0 0 0 0

 , ∆2j =


1

0 1

0 0 1

0 0 0 1

 ∆3j =


0

1 0

0 1 0

0 0 1 0

 ,

∆4j =


0

0 0

1 0 0

0 1 0 0

 and ∆5j =


0

0 0

0 0 0

1 0 0 0

.

The PWIGLS method iterates between the estimation of β̂
(r)

PWIGLS and

θ̂
(r)

PWIGLS as defined in equations 6.12 and 6.15 respectively. These equations are

repeated here (note that the superscript (r) defines the current iteration and (r−1)

the previous iteration):

β̂
(r)

PWIGLS = P̂ (r)−1Q̂(r),

θ̂
(r)

PWIGLS = R̂(r)−1Ŝ(r),
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where

P̂ (r) =
∑
j

wj(X
T
j V̂

(r−1)−1
j Xj) ,

Q̂(r) =
∑
j

wj(X
T
j V̂

(r−1)−1
j Y j) ,

the kth row and lth column element of R̂(r) and the kth entry of Ŝ(r) are given by

R̂(r)[k, l] =
∑
j

wjtr(V̂
(r−1)−1
j GkjV̂

(r−1)−1
j Glj) and

Ŝ(r)[k] =
∑
j

wjtr(ê
T
j V̂

(r−1)−1
j GkjV̂

(r−1)−1
j êj).

Here êj = Y j − Xjβ̂
(r)

PWIGLS and wj = 1/πj as defined in Pfeffermann et al.

(1998). Note that the matrix R̂(r) is a s× s matrix and Ŝ(r) is s× 1 matrix. For

the multivariate multilevel model, following suggestions by Goldstein (1986) and

Searle et al. (1992), V̂
(r−1)−1
j can be written as:

V̂ −1
j = D−1

j (Inj
⊗ Σ̂−1

u )−D−1
j (Inj

⊗ Σ̂−1
u )ZjAjZ

T
j D

−1
j (Inj

⊗ Σ̂−1
u )

where

Aj =
(

(σ̂2
v)
−1 + ZT

j D
−1
j (Inj

⊗ Σ̂−1
u )Zj

)−1

,

and D−1
j is defined as

D−1
j = diag(wi|j)⊗Dij .

Here diag(wi|j) is a diagonal matrix with the weights for the heads of household

repeated in the main diagonal. Note that for simplicity of notation in the above

formulae, the superscript (r) for the current iteration was omitted from matrix Aj

and the superscript (r−1) for the previous iteration was omitted from σ̂2
v and Σ̂u.

The final iteration provides the estimates for β̂PWIGLS and θ̂PWIGLS. The

variance estimators for the PWIGLS estimates are given in equations 6.16 and

6.17, and repeated here:

V̂ ar(β̂PWIGLS) = P̂−1

(
n

n− 1

)(∑
j

w2
jcjc

T
j

)
P̂−1,
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where cj = (XjV̂
−1
j êj) and

V̂ ar(θ̂PWIGLS) = R̂−1

(
n

n− 1

)(∑
j

w2
j (Ŝ − R̂θ̂)(Ŝ − R̂θ̂)T

)
R̂−1.

Note that the subscript PWIGLS was omitted from θ̂PWIGLS in the above equa-

tion for simplicity.

6.4 Summary

This chapter reviewed further topics to be considered in the analysis of a complex

longitudinal data set. It presented a review of the methods for the analysis of

longitudinal multilevel data under informative sampling designs. The probability-

weighted iterative generalised least squares as presented in Pfeffermann et al.

(1998) was described in detail. The topics reviewed in this chapter provided

the fundamental theory necessary for the extension of the PWIGLS estimation

method for multivariate multilevel models. This method was described in this

chapter. The extended method can be applied to both longitudinal data sets and

cross sectional data sets. The procedure accommodates different error covariance

structures as long as they can be expressed as linear functions of the covariance

parameters. Therefore, auto-regressive structures cannot be fitted here. Computer

routines for the implementation of such a method were also developed.
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Chapter 7

Longitudinal Multilevel

Modelling Compensating for

Panel Non-response

7.1 Introduction

In the analyses presented so far only complete-case data were considered. This in-

volved the selection of employed heads of household who were employed at all times

while in the Brazilian labour force survey (the PME) starting from January 2004.

Furthermore, this subset was reduced to contain only heads of household classified

as completers, meaning that they had valid data for all the occasions they were

to be observed in the survey. Therefore, heads of household who failed to present

data for any of the occasions or those who dropped out from the survey were not

considered. The choice for the complete-case data was adopted for simplicity as

the analysis of longitudinal data under the multilevel framework accommodates

the analysis of unbalanced data sets.

The PME survey has quite a complex sampling design. Recall that this

design involves a multistage rotating sample scheme with units selected through

unequal probabilities. Previous chapters have dealt with some of the complexities

of the PME sampling design. Chapter 4 dealt with the hierarchical structure of the

PME data while Chapter 5 dealt with the rotating sampling scheme and with the

complex correlation structure of the data. The main objective of this chapter is to

implement the weighting of the observations in the PME survey mainly to account

for panel non-response while still accounting for the aforementioned complexities.
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As noted in Chapter 6, the use of the sampling weights for inference about

model parameters is still under debate. Therefore, this chapter aims to provide

a contribution to such discussion by presenting the analysis of the PME data

through the fitting of multilevel longitudinal models utilising the PWIGLS esti-

mation method described in Chapter 6. This chapter also aims to present com-

parisons between multilevel models fitted not taking into account the sampling

weights but instead using methods for the robust estimation of the standard er-

rors of the regression parameters. It is worth mentioning that, although containing

a longitudinal component, the PME survey does not provide the set of longitu-

dinal sampling weights. Hence, this chapter also presents some discussion and a

suggested method to calculate such weights for the data analysed.

7.2 Weight Adjustments for Panel Non-response

As mentioned in Section 2.4, an alternative approach to compensate for the loss of

data in a longitudinal survey is to make use of longitudinal sampling weights. This

type of sampling weight is often supplied with longitudinal survey data. However,

it is not available with the PME data. As described in Chapter 3, only the cross-

sectional sampling weights are available to use. These weights are of two types:

the sample base weight, which corrects for the cross-sectional non-response and

the post-stratification, or calibrated, weights.

This section proposes an alternative method to calculate the longitudinal

weights for the PME data under analysis. However, before implementing the

proposed method, the next subsection presents a brief description of the sampling

weights already provided in the PME survey. This description was also presented

in Section 3.2.2. However, the following subsection discusses how to transform

these weights into weights to be used in multilevel analysis.

7.2.1 Cross-sectional and Multilevel Weights for the PME

Chapter 3 described the PME design as being a stratified two stage cluster de-

sign in each of the six metropolitan regions of the survey. Within each of the

metropolitan regions, municipalities compose the independent strata (subscript

h) from which the census sectors, the PSUs, are selected. The PSUs are selected

through PPS proportional to their total number of households as listed in the

2000 Census. Within each PSU the households are selected (the SSUs) via simple

systematic sample. This is initially a self-weighting design. However, corrections
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for cross-sectional unit non-response are applied to the initial sampling weights

resulting in the loss of the self-weighted characteristic.

Consider, here, the following sampling design variables:

H the number of strata;

nh the number of PSUs selected in the hth stratum;

mjh the number of households selected in the jth PSU;

Mjh the number of households counted in the sampling frame;

pjh the relative size of PSU j in stratum h in the 2000 Census;

m∗jh the number of households that were interviewed;

n∗h the number of PSUs with at least 1 interviewed household.

The cross-sectional PME sampling weights corrected for unit non-response are of

the form:

w∗ijh =
1

n∗hpjh
m∗jh
Mjh

. (7.1)

In the multilevel modelling framework, this set of weights makes up the

unconditional level one weights. To be able to account for the sampling weights

in a longitudinal multilevel analysis, it is necessary that a set of weights for each

level of the data hierarchy is available. In the PME data set these sets of weights

are not provided but they can be calculated from the unconditional weights using

the sampling design variables provided. Based upon the PME design variables,

the PSU level weights can be calculated as

w∗jh =
1

n∗hpjh
, (7.2)

and the household (individual) level weights can be calculated as

w∗i|jh =
Mjh

m∗jh
. (7.3)

Due to the design, every household and individual within the same PSU has the

same set of weights.

An investigation of the weights provided with the PME data files indicated

a potential problem. The selection probabilities pjh for some of the PSUs were
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found to change across the months of the survey. This change was observed to

occur mainly in those panels included in the sample in 2005. It is understood from

the design that this might be an indication of some field listing exercise or change

in the geographic boundaries of the PSUs. However, no confirmation was found

in the official documents of this survey. In order to address this problem, a new

PSU identification variable was created1.

Notice that the multilevel weights are calculated as recommended in Rabe-

Hesketh and Skrondal (2006) using the sample base weights and not the post-

stratification weights as these weights reflect more than just the sampling design.

Hereafter the subscript h is omitted for simplicity.

7.2.2 Longitudinal Sampling Weights for the PME Survey

A brief review of some methods utilized for the construction of longitudinal weights

was presented in Chapter 2. Based upon those methods, this section describes how

the sets of longitudinal weights were calculated for the PME data under study.

One important decision to make when constructing longitudinal weights is

which patterns of non-response to account for. As mentioned in Chapter 2, for

a longitudinal survey with T occasions there would be up to 2T patterns of non-

response. For the case of the PME this sums to a total of 256 potential patterns.

This could generate up to 2T − 1 sets of longitudinal weights, 255 for the PME,

if all the patterns were to be accounted for. For this reason, it is quite common

to construct the set of longitudinal weights which accounts only for the drop-

out patterns and not for the intermittent non-response. However, this implies

the exclusion of data since only individuals who respond up to occasion t, before

dropping out of the panel, are retained. This set of individuals for each occasion t

before the drop-out is called the attrition or drop-out sample (Skinner and Holmes,

2003).

Chapter 3 presented a brief analysis of the non-response patterns for the

household units in the PME data set (see Section 3.3). From Table 3.7, which

is also found summarized in Table 7.1 under the column of “All HoHH” (HoHH

means heads of household), it was observed that, considering the total set of

households which by design should have data in all eight occasions of the survey,

66% were completers, 7% dropped out at some point during the survey and 27%

1Models fitted later in this chapter use the new cluster identification variable for identifying
the higher level units. Therefore, different results are found when comparing the models fitted
in this chapter with those fitted in Chapter 5.
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had partial non-response. It was also observed that the drop-out from the fifth

interview was the most frequent. In addition, at this interview time a higher

number of households which had partial non-response was observed.

Table 7.1: Non-response Patterns

Interview Data from
Time All HoHH Selected HoHH
Wave 8
Completers 26,274 10,183
Wave NR 473 182
Wave 7
Wave NR 233 85
Drop-out 228 99
Wave 6
Wave NR 367 144
Drop-out 192 73
Wave 5
Wave NR 1,598 675
Drop-out 1,615 820
Wave 4
Wave NR 610 265
Drop-out 137 73
Wave 3
Wave NR 722 281
Drop-out 127 71
Wave 2
Wave NR 909 403
Drop-out 161 97
Wave 1
Wave NR 5,905 -
Total 39,551 13,451

Table 7.1 also presents the non-response patterns for the data set under

study in this chapter (explained in the following sub-section). It shows that 10,183

(76%) of the 13,451 selected heads of household provided data for all the interviews

(eight in total). As before, there is a higher frequency of drop-out after the fourth

interview, as well as a larger number of heads of household with partial non-

response at the fifth interview. From the total of 13,451, 1,415 (11%) dropped out

of the panel at some point and 1,853 (14%) had partial non-response. This shows

that adjusting only for the drop-out patterns eliminates 14% of data. It is worth

mentioning that, by construction in the selected data, there is no non-response at

the first wave.

There are different methods to calculate the longitudinal weights. These

methods mainly follow three steps which involve the definition and calculation of

the base weights, the adjustment of the base weights by a non-response adjust-

ment and later the calibration of the adjusted weights to population totals (Rizzo

et al., 1996). It is also important to have a good definition of the respondents

and non-respondents. This depends on the patterns of panel non-response that

the weights are compensating for. After the definition of respondents and non-

respondents the adjustment for the base weights can be calculated, for example, by
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using adjustment cells methods or logistic regression methods for the propensity

of response. The latter is the method adopted in this chapter and the adjustment

for the base weights is calculated as the inverse of the predicted probability of

responding. This adjustment is applied only to the weights of the respondents in

order to account for the non-respondents. The following sub-sections present each

of the steps followed.

7.2.2.1 Base Weights and Definition of Respondents

The first step in the construction of any set of longitudinal weights is to define

the set of base weights. In this analysis the base weights are defined as being the

sample base weight at the first occasion for the units under analysis. The base

weights are here called w∗ij(1). It is necessary at this point, however, to make a

discussion on the data set selected to be analysed. Following the analysis presented

in Chapter 5 this chapter shall also consider the longitudinal working data set, as

described in Section 3.4. However, for the construction of the longitudinal weights,

the data set used is the one before the filter for completers. It is important to

mention that the validation of the matching of all eight occasions is not performed

at this point either as this can only be done for the completers set.

The next step is to define the sets of respondents and non-respondents. This

depends on which patterns of non-response the adjustment is accounting for. It

can account for every non-response pattern or for only the attrition patterns.

Kalton and Bryk (2000) and Lepkowski (1989) suggested transforming the non-

attrition patterns into attrition patterns. This can be performed by considering

the individual data until their first wave non-response. However, this was not

undertaken here as it ignores the possibility that individuals who drop-out from

the PME panel might be different from those who miss one interview but reappear

later in the panel. Furthermore, given the complexity of accounting for each of

the PME non-response patterns the non-respondents are defined here as those who

drop-out from the survey. Therefore, no intermittent non-response is considered.

As a result, only the drop-out samples, which are composed by those who respond

up to occasion t, are retained for each occasion data. In this way, the response

indicator is equal to one for those who do not drop-out from the panel and zero

otherwise. The selection of those who respond up to the eighth occasion defines

the set of completers, who have their weights adjusted to represent the sample

observed at the first occasion.

153



Chapter 7 Longitudinal Multilevel Modelling Compensating for Panel Non-response

7.2.2.2 Logistic Regression Model for the Predicted Probabilities of

Response

The method chosen to adjust the base weights (w∗ij(1)) to compensate for the drop-

out is one of the methods mentioned in Lepkowski (1989). It involves performing

logistic regressions of a response indicator in order to calculate the predicted prob-

abilities and adjust the base weights by the inverse of these predicted probabilities.

Because no intermittent non-response is considered, the probability of dropping

out from the panel at occasion t is what is being predicted.

For each head of household on each of the occasions, there is an indicator

of responding up to that specific wave (receiving value 1) against dropping out at

that specific wave (receiving value 0). The set of completers are those who have

response indicators equal to one in all the eight occasions. Logistic regression

models are fitted for each response indicator as the outcome variable starting

from the second occasion as all the units are observed at the first occasion. The

covariates considered in each of the models are taken from the previous occasion.

In this sense, using the data from the first occasion, a logistic model for the

response at the second occasion is performed in order to adjust the base weights

and calculate occasion 2 weights. The same procedure is performed using data of

occasion 2 and response indicator for occasion 3 to adjust the already adjusted

weights of occasion 2. This is repeated for each subsequent pair of occasions in

order to conditionally adjust the weights of each occasion given the adjustment of

the previous occasion.

The choice of the covariates for initial inclusion in each of the logistic models

was made with the objective of predicting the probability of response given the

characteristics of the heads of the households. The auxiliary variables initially

considered were the same set of variables as those in Chapter 4. The exception

is that all the variables were considered in the model as categorical variables.

Therefore, continuous covariates were categorized. This followed the suggestions

presented in Chapter 2.

Initial model selection showed that some of the variables were not statistically

significant. Therefore they were not included subsequently. It was also observed

that for some of the variables their categories could have been collapsed and this

was pursued for both the education and the age variables. Further model selection

was performed for each of the seven models, one for each consecutive pair of

waves, separately. Statistically significant main effects were initially tested in one-

level logistic regression models through forward selection. Using these models
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as a base, multivariate Wald tests for each categorical variable were performed

and statistically significant terms at the 5% level were retained in the model.

Table 7.2 presents the final main-effects models. This table shows that for each

pair of occasions a different final main effects model was selected. No suggestion

was found in the reviewed literature on the best approach to select these models.

The belief that the probabilities of response might change over time motivated the

selection of different models for each of the pairs of occasions.

Note from Table 7.2 that the variable for metropolitan region was kept in all

the models even when the level of statistical significance was not met as this is an

important variable in the design of the survey. Another design variable considered

and tested was the variable representing the panel the units were selected to.

This is the first set of variables shown in Table 7.2. The panel variable was only

significant in the model (3,4) but not for the others. Although not shown in

Table 7.2 the outcome variable income was also tested in the models. However, in

none of the final main effects models did the variable income meet the significance

criteria. This shows that the response probabilities are not related to the income

for the set of heads of household considered here, which is an indication that the

panel non-response is missing at random.

After selecting the one-level models in Table 7.2, two-level random intercept

models were evaluated. There are different ways to perform the estimation of

discrete random intercept models. The models presented in this section were all

estimated using the Stata software and the Gllamm command, which estimates

the random intercept models via adaptive quadrature methods as mentioned in

Chapter 2. The two-level logistic models define the PSUs (clusters) as the second

level units and include a random intercept for each of the clusters. However, after

the selection of the data under analysis the number of observations per cluster is

quite small and some of the clusters have no variation on the response indicator.

Interaction effects between the significant main effects were then investigated at

this stage for both one-level and two-level models. The two-level models which

included the interaction terms did not converge and for some of the one-level

models convergence problems were also met. That was an indication for the non-

inclusion of the interaction effects. A similar problem with interactions terms

was mentioned in Rizzo et al. (1996) where the final model for the predicted

probabilities included only the significant main effects.
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Table 7.2: Logistic Regression Model for the Response Propensity

Occasion data, Response indicators

1,2 2,3 3,4 4,5 5,6 6,7 7,8

Panel 4.02 1.086

(2.05)*

Panel 4.03 1.078

(2.03)*

Panel 4.04 0.93

(1.86)

Panel 4.05 0.589

(1.29)

Panel 4.06 2.153

(2.82)**

Panel 4.07 0.569

(1.33)

Panel 4.08 0.763

(1.74)

Panel 4.09 0.157

(0.41)

Age 40 and over 0.565 0.649 0.431 0.468 0.433

(2.69)** (2.68)** (5.82)** (2.29)* (2.85)**

+12 years of Education -0.789 -0.862 -0.396 -0.539 -0.409

(2.92)** (3.27)** (4.35)** (2.28)* (2.22)*

5 to 9 years of work -0.063 0.003

(0.23) (0.01)

10 to 14 years of work 0.549 0.961

(1.33) (2.02)*

15 to 19 years of work 1.344 2.039

(1.85) (2.01)*

20 to 24 years of work 1.187 1.115

(1.63) (1.53)

+25 years of work - -0.183

- (0.44)

Proxy Respondent 0.643 0.64 0.162

(2.79)** (2.57)* (2.05)*

2 members in the HH 0.602 0.921 0.336 0.545 0.509

(1.99)* (2.38)* (2.68)** (1.73) (1.87)

3 members in the HH 0.995 1.101 0.543 0.767 0.602

(3.24)** (2.99)** (4.39)** (2.53)* (2.35)*

4 members in the HH 1.124 1.201 0.895 1.496 0.641

(3.47)** (3.20)** (6.84)** (4.18)** (2.51)*

5 members in the HH 1.524 0.425 0.705 0.941 0.389

(3.24)** (1.12) (4.67)** (2.43)* (1.35)

+6 members in the HH 1.362 1.816 0.856 1.407 1.064

(2.46)* (2.39)* (4.59)** (2.52)* (2.57)*
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Table 7.2 – continued from previous page

Occasion data, Response indicators

1,2 2,3 3,4 4,5 5,6 6,7 7,8

Salvador 1.528 -0.005 1.214 -0.206 -0.606 0.603 0.637

(2.84)** -0.01 (2.40)* -1.37 -0.89 -1.37 -1.69

Belo Horizonte -0.126 -0.538 0.269 0.136 -0.999 0.018 -0.424

(0.36) (1.07) (0.72) (0.91) (1.59) (0.05) (1.46)

Rio de Janeiro 1.946 0.605 1.855 0.483 0.381 1.074 0.882

(3.64)** (1.06) (3.46)** (3.23)** (0.54) (2.55)* (2.60)**

São Paulo 0.469 0.294 1.379 0.285 -0.881 0.625 0.497

(1.33) (0.56) (3.25)** (2.00)* (1.43) (1.67) (1.62)

Porto Alegre 0.133 -0.476 -0.048 0.16 -1.211 -0.025 -0.61

(0.35) (0.91) (0.13) (1.01) (1.92) (0.07) (2.07)*

Constant 2.876 4.744 2.669 1.567 5.435 3.273 3.219

(8.00)** (9.83)** (5.66)** (9.90)** (9.21)** (8.27)** (9.64)**

Observations 11,598 10,808 11,430 11,357 10,537 10,464 10,365

Note: Absolute value of z statistics in parentheses.

*significant at 5%, **significant at 1%

With the decision to test main-effects models only, Table 7.3 presents the

summary of predicted probabilities under the different model formulations. Ta-

ble 7.4 presents the estimates for the between cluster variance in the two-level

random intercept logistic models. It also presents the test for goodness-of-fit com-

paring the two model formulations. Note from Table 7.3 that the predicted proba-

bilities for each of the models are not very different when comparing one-level with

two-level models. A small difference is observed when, for the two-level models,

the random effects are taken into account in calculating the probabilities. How-

ever, Table 7.4 shows that for three of the seven models the two-level model is

not significantly different to the one-level model. This raises the issue of whether

or not to account for the random intercepts in any of the models. The aim of

this analysis is to calculate the marginal predicted probabilities of panel drop-

out given the heads of household characteristics rather then providing inference

on individual effects. Hence, the choice would be for the one-level model. Ran-

dom effects models would be of interest if the probabilities of panel drop-out were

thought to vary between clusters and also to control for the effects of the data

hierarchy on these probabilities. By retaining the metropolitan region variable in

the models, the regional effects are being controlled for. In addition, due to the

similarities between the predicted probabilities, in order to maintain simplicity

and consistency between the different models, those probabilities for the one-level

model formulation are chosen at this stage to be the weight adjustments.

157



Chapter 7 Longitudinal Multilevel Modelling Compensating for Panel Non-response

Table 7.3: Summary of the Predicted Probabilities

Model Statistics

Min Mean Median Max

1,2 Two-level

Fixed Only 0.9689 0.9963 0.9975 0.9998

Fixed and Random 0.7052 0.9958 0.9977 0.9998

One-level 0.9399 0.9916 0.9940 0.9995

2,3 Two-level

Fixed Only 0.9732 0.9949 0.9962 0.9995

Fixed and Random 0.9625 0.9949 0.9961 0.9995

One-level 0.9680 0.9938 0.9954 0.9993

3,4 Two-level

Fixed Only 0.8530 0.9936 0.9966 0.9999

Fixed and Random 0.8530 0.9936 0.9966 0.9999

One-level 0.8530 0.9936 0.9966 0.9999

4,5 Two-level

Fixed Only 0.7523 0.9393 0.9480 0.9770

Fixed and Random 0.5272 0.9373 0.9483 0.9841

One-level 0.7241 0.9278 0.9370 0.9717

5,6 Two-level

Fixed Only 0.9885 0.9954 0.9966 0.9998

Fixed and Random 0.9641 0.9953 0.9965 0.9998

One-level 0.9827 0.9931 0.9948 0.9996

6,7 Two-level

Fixed Only 0.9727 0.9969 0.9977 0.9995

Fixed and Random 0.7007 0.9959 0.9979 0.9996

One-level 0.9375 0.9905 0.9923 0.9982

7,8 Two-level

Fixed Only 0.9318 0.9891 0.9919 0.9980

Fixed and Random 0.6812 0.9882 0.9924 0.9982

One-level 0.9003 0.9824 0.9869 0.9963

Table 7.4: Between Cluster Variance and Goodness-of-fit Test

Model Goodness-of-fit
σ̂2
u SE(σ̂2

u) -2×Log-Likelihood LRT Half p-value
1,2 Two-level 1.879 0.753 1029.04 8.51 0.002

One-level 1037.55
2,3 Two-level 0.385 0.769 827.31 0.24 0.311

One-level 827.55
3,4 Two-level 0.000 0.000 796.69 0.00 0.500

One-level 796.69
4,5 Two-level 0.490 0.109 5675.18 32.26 0.000

One-level 5707.44
5,6 Two-level 0.875 0.844 836.57 1.06 0.151

One-level 837.63
6,7 Two-level 2.526 0.706 1045.26 25.29 0.000

One-level 1070.56
7,8 Two-level 1.077 0.341 1737.48 14.89 0.000

One-level 1752.38
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7.2.2.3 Adjusted Longitudinal Weights

Once the predicted probabilities have been calculated, the next step is to adjust

the weights by the inverse of the predicted probabilities. These adjustments are

performed only on the set of completers. The first step is to adjust the base

weights, w∗ij(1), multiplying them by the inverse of the predicted probabilities of

the model “1,2”, pij(1,2), which uses data from the first occasion to predict the

response at the second occasion:

w∗ij(2) = w∗ij(1) × 1/pij(1,2) ,

w∗ij(2) are the adjusted weights for occasion 2 that compensates for the panel drop-

out. The adjusted weights for occasion 3 are then calculated as:

w∗ij(3) = w∗ij(2) × 1/pij(2,3) ,

for occasion 4

w∗ij(4) = w∗ij(3) × 1/pij(3,4) ,

and so on, giving the adjusted weights for occasion 8:

w∗ij(8) = w∗ij(7) × 1/pij(7,8) .

Adopting this procedure, Table 7.5 presents the summary statistics for the

adjusted longitudinal weights for each of the occasions. The first row of Table 7.5

considers the base weights for completers only. These are the adjusted uncondi-

tional longitudinal weights for the PME data. Observe that these weights tend to

increase over time. Table 7.6 presents the same arrangement of information as in

Table 7.5 but for each of the adjustments, i.e. for each of the inverse probabilities

in each of the occasions, for all the data used.

Table 7.5: Summary of the Adjusted (Unconditional) Weights - Completers

Statistics
Min Mean Median Max SD RSE

w∗
ij(1)

131.00 478.18 468.40 2500.00 270.54 56.58

w∗
ij(2)

131.42 481.54 470.76 2506.02 272.09 56.50

w∗
ij(3)

132.05 483.99 474.04 2515.98 272.94 56.39

w∗
ij(4)

133.56 486.24 476.65 2518.21 273.33 56.21

w∗
ij(5)

138.93 521.46 501.27 2691.98 291.71 55.94

w∗
ij(6)

140.96 524.89 502.04 2700.00 293.62 55.94

w∗
ij(7)

141.73 529.34 505.79 2721.89 295.64 55.85

w∗
ij(8)

145.29 537.20 511.51 2751.12 298.02 55.48
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Table 7.6: Summary of the Inverse of the Predicted Probabilities

Statistics
Min Mean Median Max SD RSE

1/pij(1,2) 1.0005 1.0085 1.0060 1.0639 0.0090 0.8924
1/pij(2,3) 1.0007 1.0062 1.0046 1.0331 0.0050 0.4969
1/pij(3,4) 1.0001 1.0065 1.0034 1.1723 0.0090 0.8942
1/pij(4,5) 1.0291 1.0794 1.0672 1.3809 0.0430 3.9837
1/pij(5,6) 1.0004 1.0070 1.0052 1.0176 0.0050 0.4965
1/pij(6,7) 1.0018 1.0096 1.0078 1.0666 0.0080 0.7924
1/pij(7,8) 1.0037 1.0180 1.0133 1.1108 0.0130 1.2770

In Table 7.6, the predicted probabilities are not too variable. The exception

is for 1/pij(4,5). This represents the probability of responding after the gap of eight

months between the fourth and fifth occasions. The inverse of this probability

shows a sudden increase and is the most variable one according to the relative

standard error2 (RSE). This is also reflected in the adjusted weights in Table

7.5. The variance of the longitudinal weights w∗ij(8) is larger than the initial base

weights. However, this increase in the variance of the weights does not seem to be

too serious.

The plot in Figure 7.1 shows that the distribution of the adjusted weights

for the 8th occasion seems to be slightly shifted to the right in comparison to

the distribution of the base weights. Note that the shape of the distribution is

determined by the different sampling fractions for each of the metropolitan regions.

The set of longitudinal weights w∗ij(8) is the one to be used in the analysis of the

data set including data from the first to the eighth occasions for completers only.

This set of weights compensates for the losses of data between each pair of previous

occasions in order to keep the representativeness as at the first occasion.

The natural next step in the production of longitudinal weights would be to

use some sort of calibration technique on the adjusted weights. However, the main

objective for constructing such a set of weights here, is their use in a multilevel

analysis. Furthermore, Rabe-Hesketh and Skrondal (2006) stated that calibration

weights do not depend on selected clusters. For this reason, this step will not be

performed here. In order to use the longitudinal weights in a multilevel model

analysis, the different weights for the different levels need to be calculated in a

similar way as in equations 7.2 and 7.3. Hence, the set of adjusted weights w∗ij(8)

needs to be partitioned accordingly.

The cluster level weights w∗j are still defined as in 7.2 as they represent the

inverse of the PSU selection probability which should not change. The heads of

2RSE=(SD×100)/Mean.
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Figure 7.1: Distribution of the Base Weights and Adjusted Weights at the 8th

Occasion
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household level weights w∗i|j are those that need to be adjusted, and this can be

performed as in

w∗i|j(8) =
w∗ij(8)

w∗j
. (7.4)

In this way, w∗i|j(8) represents the longitudinal weights at the heads of household

level adjusted for the panel drop-out.

Once this adjustment is performed the occasion level weights w∗t|ij can be

defined as equal to one for every occasion. One alternative way to proceed is not

to perform this adjustment and instead of considering the occasion level weights

equal to one, consider

w∗t|ij =
1

pij((t−1),t)

,

which is the actual adjustment, the inverse of the predicted probabilities. This

alternative procedure will be considered in one application in Section 7.3, for

comparison.

The method developed in this section to construct the longitudinal weights

for the PME data considering attrition patterns only, is one of the possible methods

and perhaps the simplest. The construction and evaluation of longitudinal weights

using different methods goes beyond the scope of this thesis. However, this is an

area for future research.
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7.2.3 Computational Aspects

Appendix D presents the computer codes developed for the estimation of the

longitudinal multilevel models using the PWIGLS method. The codes were written

using the Mata language for Stata for the estimation of the two-level random

intercept or the random slope multilevel models. In addition, codes were also

written for the estimation of multivariate multilevel models imposing the Toeplitz

and the General Lag-dependent structures to the error covariance matrix.

These routines were developed following the method described by Pfeffer-

mann et al. (1998) and were based on the SAS codes using IML language pre-

sented in Corrêa (2001) created for the estimation of random intercept models

only. Therefore, the computer codes developed in this thesis represent extensions

of such work. It is worth mentioning that the codes were written to implement

the PWIGLS estimation method using the so called scaling method 2 as described

by Pfeffermann et al. (1998). This scaling method was reviewed in Chapter 6.

Note that some of the models fitted in the following section utilized robust

methods for the estimation of the standard error for the regression coefficients.

These models were fitted using SAS PROC MIXED adding the “empirical” option.

7.3 Results

To fulfil the methodological motivation of this thesis, that of dealing with the data

complexities of the PME data in one analysis, this chapter uses the same working

longitudinal data set as the one used in the analyses of Chapter 5. Therefore, the

same set of 6, 524 heads of household are hereafter analysed. The main aim of the

Chapter 5 was to account for the rotating design by imposing alternative error

covariance structures on multivariate multilevel models. The same goal is pursued

here. For that, the general linear lag-dependent covariance structure as presented

in 5.8 is considered.

The final model presented in Table 5.7 serves as the starting point for this sec-

tion. However, for simplicity, the interaction terms between some of the covariates

and the occasion variable are not considered at this point. They are re-included

and tested in a final model selection procedure performed in the last subsection of

this section. In the next two subsections, an application of the PWIGLS method

to growth curve models and an application of the extended method to multivariate

multilevel models are presented.
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7.3.1 Application of PWIGLS to Growth Curve Models

The main aim of this subsection is to illustrate an application of PWIGLS to the

analysis of the PME longitudinal data set. PWIGLS, as developed by Pfeffermann

et al. (1998), allows the estimation of two-level random coefficients models for

continuous outcomes. This method is described in detail in Section 6.2.1. It is

recognized that the random coefficient model is not the most appropriate type of

model to fit the PME data under study, as concluded in Chapter 5. However, this

is performed in order provide some discussion on the application of the PWIGLS.

This section also aims to provide a comparison of models estimated using the

robust sandwich estimator for the standard errors of the regression parameters

and models estimated via standard methods, neither accounting for the sampling

weights. Note that the robust sandwich estimator protects against misspecification

of the normality assumption of the higher level residuals, as discussed in Chapter 2.

Rabe-Hesketh and Skrondal (2006) referred to these as being semi-robust standard

errors.

As mentioned in the previous chapters, if no further clustering of higher level

units are present in the data, growth curve models are two-level multilevel models

where the variable representing time usually has a random coefficient. In this case

level two units are the individuals i and the level one units are the occasions t.

The PWIGLS, as described in Pfeffermann et al. (1998), can be readily applied.

However, this is not the case for the PME data which includes the higher level

for the PSU clusters j. Hence, this section starts by comparing two-level models,

which do not account for the PSU level, and three-level models for the PME data.

A similar analysis was presented in Skinner and Vieira (2007) while investigating

the effects of clustering on the variance estimation of the regression coefficients in

an analysis of longitudinal survey data. They compared robust estimation methods

with standard estimation methods to investigate whether fitting multilevel models

which do not account for any of the design features would be sufficient to account

for the effects of clustering. They concluded that simply including the higher

cluster level was not enough and that either the inclusion of random coefficients

or the use of robust methods would be necessary. They also observed that the

three-level model with robust methods provided results equivalent to those for

the model estimated using methods which do account for the complex sampling

design without accounting for the data hierarchy. However, none of their analyses

included the sampling weights.

Table 7.7 presents the results for the two-level and three-level random coef-

ficient models, still not considering the sampling weights, in order to compare the
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standard errors of the regression coefficient estimates (SEs). These models consid-

ered the time variable varying as (0, 1, 2, 3, 12, 13, 14, 15). The last two columns of

Table 7.7 present the ratios of the SEs for the three-level models to the two-level

models. Values equal to one in these two last columns indicate that both SEs are

equal and values greater than one indicate that those for the three-level model are

larger.

The SEs for the two-level and three-level models (columns labelled SE) can

be compared and they are virtually the same for most of the regression coefficients.

Differences are most noticeable in the SEs for the contextual variables and for the

metropolitan region variables, as they are cluster level covariates. Furthermore,

difference is also observed for the SE of the intercept. The comparison between

the robust standard errors and the non-robust shows that robust SEs (columns

labelled Rob.SE) are slightly larger than non-robust. However, this is not observed

for the variable of metropolitan regions where robust SEs are smaller than non-

robust. Furthermore, some of the variables present a notable difference between

robust and non-robust SEs. This will be investigated once again when the SEs

under PWIGLS estimation are also examined.

Observing the values of the estimated regression coefficients in Table 7.7,

notice that they are very similar but not identical when comparing the three-

level with the two-level model. One other important point to observe, is the

relatively small between cluster variability in the three-level model. The between

individual variability is larger for this model, even larger than the within individual

variability, reflecting that most of the variability is at level two. This very small

cluster level variance, although statistically significant, is an indication that the fit

of the two-level model for this data set would not be so bad. Table 7.8 therefore

presents the results for the two-level models estimated via PWIGLS, hereafter

referred to as PWIGLS models.
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Table 7.7: Two and Three-level Random Slope Models

2-level Model 3-level Model 3-level/2-level

Coeff SE Rob.SE Coeff SE Rob.SE SE Rob.SE

Constant 6.198 0.230 0.270 6.227 0.249 0.283 1.084 1.051

Wave 0.003 0.000 0.000 0.003 0.000 0.000 1.000 1.056

Males 0.663 0.075 0.132 0.657 0.075 0.136 0.998 1.034

White 0.226 0.023 0.036 0.226 0.023 0.036 1.003 0.996

Age (@ wave 1) 4.265† 1.399† 1.477† 4.235† 1.395† 1.471† 0.997 0.996

Squared term -0.443† 0.043† 0.054† -0.442† 0.043† 0.056† 0.997 1.036

Education (@ wave 1) -0.069 0.011 0.012 -0.066 0.011 0.012 0.998 1.008

Squared term 0.009 0.001 0.001 0.009 0.001 0.001 0.998 1.021

Type of Worker

(Employer as baseline)

Informal -0.139 0.016 0.028 -0.139 0.016 0.029 1.000 1.010

Formal -0.044 0.016 0.029 -0.044 0.016 0.029 0.999 1.005

Military service -0.009 0.021 0.034 -0.009 0.021 0.034 1.000 1.011

Self-Employed -0.175 0.014 0.024 -0.175 0.014 0.024 1.000 1.011

Type of Activity

(Manufacturing as baseline)

Building 0.023 0.036 0.040 0.022 0.036 0.040 1.000 1.013

Commerce -0.023 0.016 0.027 -0.024 0.016 0.027 1.000 1.003

Financial 0.036 0.020 0.027 0.035 0.020 0.028 1.000 1.016

Social Services 0.065 0.020 0.027 0.065 0.020 0.027 0.999 0.999

Domestic Services -0.002 0.019 0.032 -0.003 0.019 0.032 1.000 1.016

Other Services -0.002 0.018 0.026 -0.003 0.018 0.027 0.999 1.043

Other Activities 0.038 0.061 0.063 0.037 0.061 0.063 1.000 1.005

Duration of Employment

(× 120) 0.036 0.008 0.013 0.036 0.008 0.013 1.000 1.018

Squared term -0.020 0.004 0.007 -0.020 0.004 0.007 1.000 1.000

Working Hours (in Log) 0.254 0.011 0.027 0.254 0.011 0.027 1.000 1.023

Proxy Respondent 0.003 0.006 0.008 0.003 0.006 0.008 1.000 1.023

Number of HH members 0.005 0.003 0.004 0.005 0.003 0.004 0.999 1.042

Metropolitan Region

(Recife as baseline)

Salvador 0.039 0.031 0.030 0.039 0.033 0.033 1.056 1.104

Belo Horizonte 0.248 0.030 0.028 0.244 0.032 0.029 1.048 1.052

Rio de Janeiro 0.215 0.028 0.025 0.212 0.029 0.028 1.054 1.091

São Paulo 0.360 0.030 0.028 0.359 0.032 0.030 1.055 1.078

Porto Alegre 0.231 0.033 0.031 0.225 0.034 0.033 1.048 1.072

Interaction Terms

of Male and :

Age (@ wave 1) 0.002 0.002 0.002 0.003 0.002 0.002 0.997 0.999

Education (@ wave 1) 0.053 0.013 0.014 0.054 0.013 0.014 0.996 1.004

Squared term -0.003 0.001 0.001 -0.003 0.001 0.001 0.997 1.022

Type of Activity

(Manufacturing as baseline)

Building -0.036 0.037 0.042 -0.035 0.037 0.044 1.000 1.037

Commerce -0.021 0.018 0.029 -0.020 0.018 0.029 1.000 1.014

Financial -0.052 0.022 0.030 -0.051 0.022 0.031 1.000 1.034

Social Services -0.039 0.023 0.034 -0.039 0.023 0.033 0.999 0.990

Domestic Services -0.125 0.034 0.055 -0.124 0.034 0.056 1.000 1.017

Other Services -0.036 0.020 0.029 -0.035 0.020 0.031 1.000 1.055

Other Activities -0.087 0.065 0.074 -0.085 0.065 0.074 1.000 0.997

Duration of Employment

(× 120) 0.020 0.009 0.015 0.020 0.009 0.015 1.000 0.992

Squared term 0.009 0.005 0.008 0.009 0.005 0.008 1.000 1.000

Working Hours (in Log) -0.090 0.014 0.032 -0.089 0.014 0.033 1.000 1.031
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Table 7.7 – continued from previous page

2-level Model 3-level Model 3-level/2-level

Coeff SE Rob.SE Coeff SE Rob.SE SE Rob.SE

Proxy Respondent -0.042 0.007 0.009 -0.042 0.007 0.009 1.000 1.023

Interaction Terms

of White and :

Type of Worker

(Employer as baseline)

Informal -0.058 0.020 0.036 -0.059 0.020 0.035 1.000 0.982

Formal -0.103 0.020 0.037 -0.105 0.020 0.037 1.000 0.995

Military service -0.142 0.026 0.044 -0.142 0.026 0.045 1.000 1.015

Self-Employed -0.015 0.017 0.031 -0.015 0.017 0.031 1.000 0.998

Contextual Effects:

Prop of Formal -1.817 0.194 0.220 -1.843 0.211 0.234 1.090 1.066

Prop of Informal -2.159 0.227 0.252 -2.185 0.248 0.267 1.093 1.062

Prop of Military -2.017 0.212 0.246 -2.065 0.233 0.274 1.098 1.111

Prop of Self-Employed -2.209 0.225 0.250 -2.273 0.245 0.273 1.089 1.093

Average Education 0.071 0.006 0.006 0.072 0.006 0.007 1.079 1.144

σ̂2
v 0.011 2.305† 2.305†

σ̂2
u0 0.278 5.158† 5.158† 0.267 5.350† 5.350† 1.037 1.037

σ̂2
u1 -0.004 0.187† 0.187† -0.004 0.187† 0.187† 1.000 1.000

σ̂u01 0.001 0.012† 0.012† 0.001 0.012† 0.012† 1.000 1.000

σ̂2
e 0.045 0.323† 0.323† 0.045 0.323† 0.323† 1.000 1.000

−2× Log-Likelihood 20,747 20,719

AIC 20,859 20,833

BIC 21,239 21,145

Note: † Values at 10−3.

The first two columns in Table 7.8 are the coefficient estimates and the ro-

bust estimates of the standard errors for the two-level model in Table 7.7, which

are presented for easy comparison. Because this is a two-level random coefficient

model, only two sets of weights are needed: one for the individual level and an-

other for the occasion level. Furthermore, two different weighting approaches were

undertaken. The first took as level two weights the unconditional longitudinal

weights w∗ij(8), calculated as mentioned earlier, and the occasion level weights were

all equal to one. The second is the alternative weighting approach as mentioned

in section 7.2. This means that the level two weights were the unadjusted w∗ij

weights and the level one weights were equal to w∗ij(8)/w
∗
ij, representing the inverse

of the probability of responding up to occasion 8.

These two different weighting approaches generated different results for the

models fitted. In the first weighting approach the level one weights are equal to one;

hence, no effect of scaling can be identified here. In the second weighting approach,

because the predicted probabilities are constant within heads of household, the

scaling method makes the level one weights all equal to one. In consequence,
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the second weighting approach is equivalent to not using any of the panel non-

response adjustments, since the level two weights are unadjusted. In this sense,

the comparisons in Table 7.8 are for a model fitted using robust methods, a model

fitted using weights which compensate for panel non-response and a model fitted

using unadjusted weights. This last model does not account for the panel attrition,

which is not correct for this application.

The SEs are virtually the same when comparing the two PWIGLS models

in Table 7.8. The difference is mostly on the third decimal place, with few ex-

ceptions. The SEs after weighting are generally larger than the robust SEs not

accounting for the weights3. Comparing the values of the estimated regression

coefficients between the two PWIGLS models, leads to the conclusion that, for

most of the variables, they are roughly the same. There are a few cases where

these estimates differ. Examples are for the type of worker variable and for some

of the categories of type of activity. This indicates that the different weights have

different effects on these covariates. The parameter estimates for the model fitted

without the weights are similar to the estimated coefficients after weighting for

most variables. However, once again, for type of worker and type of activities

the coefficient estimates differ. This could be an indication that the weights are

compensating for the disproportionate sampling for the different types of work-

ers or that they are compensating for the different drop-out patterns which exist

between these different groups.

One other important point to raise for the comparison of the estimates in

Table 7.8, and also with those in Table 7.7, is that some of the variables lose

significance after either robust methods or weighting are adopted. This is observed

for some of the interaction terms and some main effects indicating that further

model selection would be necessary. This will be performed in the next section.

One last comparison between the PWIGLS models is that both the parameter

estimates and the SEs of the estimated random effects variances are virtually

the same. However, differences in the SEs for the within individual variance are

noticed when comparing these variance component estimates with those for the

model fitted without the weights.

3The SEs for the PWIGLS method are also robust SEs. However, when the term “robust” is
used in this chapter it refers to models estimated without accounting for the multilevel weights.
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Table 7.8: Two-level Random Slope Models Fitted by Alternative Methods

IGLS PWIGLS (1) PWIGLS (2)

Coeff Rob.SE Coeff SE Coeff SE

Constant 6.198 0.270 5.900 0.298 5.935 0.298

Wave 0.003 0.000 0.002 0.000 0.002 0.000

Males 0.663 0.132 0.637 0.152 0.646 0.152

White 0.226 0.036 0.220 0.038 0.222 0.037

Age (@ wave 1) 4.265† 1.477† 3.988† 1.778† 4.034† 1.786†

Squared term -0.443† 0.054† -0.431† 0.062† -0.430† 0.062†

Education (@ wave 1) -0.069 0.012 -0.078 0.014 -0.077 0.014

Squared term 0.009 0.001 0.010 0.001 0.010 0.001

Type of Worker

(Employer as baseline)

Informal -0.139 0.028 -0.098 0.029 -0.096 0.029

Formal -0.044 0.029 -0.012 0.029 -0.010 0.029

Military service -0.009 0.034 0.020 0.034 0.024 0.033

Self-Employed -0.175 0.024 -0.156 0.024 -0.153 0.024

Type of Activity

(Manufacturing as baseline)

Building 0.023 0.040 0.004 0.048 0.001 0.048

Commerce -0.023 0.027 -0.033 0.026 -0.031 0.026

Financial 0.036 0.027 0.029 0.026 0.032 0.026

Social Services 0.065 0.027 0.066 0.029 0.071 0.029

Domestic Services -0.002 0.032 0.008 0.034 0.014 0.035

Other Services -0.002 0.026 0.005 0.024 0.007 0.024

Other Activities 0.038 0.063 0.002 0.069 0.010 0.066

Duration of Employment (× 120) 0.036 0.013 0.029 0.016 0.029 0.017

Squared term -0.020 0.007 -0.019 0.006 -0.019 0.006

Working Hours (in Log) 0.254 0.027 0.256 0.032 0.257 0.031

Proxy Respondent 0.003 0.008 0.010 0.008 0.012 0.008

Number of HH members 0.005 0.004 0.004 0.004 0.003 0.004

Metropolitan Region

(Recife as baseline)

Salvador 0.039 0.030 0.035 0.031 0.036 0.031

Belo Horizonte 0.248 0.028 0.246 0.029 0.251 0.029

Rio de Janeiro 0.215 0.025 0.220 0.026 0.222 0.026

São Paulo 0.360 0.028 0.367 0.029 0.372 0.029

Porto Alegre 0.231 0.031 0.233 0.032 0.240 0.032

Interaction Terms of Male and :

Age (@ wave 1) 0.002 0.002 0.003 0.002 0.003 0.002

Education (@ wave 1) 0.053 0.014 0.063 0.016 0.062 0.016

Squared term -0.003 0.001 -0.004 0.001 -0.004 0.001

Type of Activity

(Manufacturing as baseline)

Building -0.036 0.042 -0.014 0.050 -0.013 0.050

Commerce -0.021 0.029 -0.011 0.028 -0.014 0.028

Financial -0.052 0.030 -0.047 0.030 -0.050 0.030

Social Services -0.039 0.034 -0.045 0.036 -0.051 0.036

Domestic Services -0.125 0.055 -0.107 0.044 -0.113 0.044

Other Services -0.036 0.029 -0.047 0.028 -0.049 0.028

Other Activities -0.087 0.074 -0.015 0.075 -0.024 0.072

Duration of Employment (× 120) 0.020 0.015 0.025 0.018 0.025 0.019

Squared term 0.009 0.008 0.008 0.007 0.008 0.008

Working Hours (in Log) -0.090 0.032 -0.090 0.037 -0.091 0.037

Proxy Respondent -0.042 0.009 -0.042 0.009 -0.044 0.009

Interaction Terms of White and :

Type of Worker
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Table 7.8 – continued from previous page

IGLS PWIGLS (1) PWIGLS (2)

Coeff Rob.SE Coeff SE Coeff SE

(Employer as baseline)

Informal -0.058 0.036 -0.082 0.038 -0.086 0.037

Formal -0.103 0.037 -0.117 0.039 -0.120 0.039

Military service -0.142 0.044 -0.153 0.045 -0.154 0.044

Self-Employed -0.015 0.031 -0.021 0.031 -0.025 0.031

Contextual Effects:

Prop of Formal -1.817 0.220 -1.619 0.243 -1.667 0.243

Prop of Informal -2.159 0.252 -1.940 0.277 -1.974 0.278

Prop of Military -2.017 0.246 -1.944 0.268 -1.963 0.269

Prop of Self-Employed -2.209 0.250 -1.901 0.278 -1.935 0.278

Average Education 0.071 0.006 0.082 0.007 0.081 0.007

σ̂2
u0 0.278 5.158† 0.288 7.306† 0.287 7.252†

σ̂2
u1 -0.004 0.187† -0.004 0.264† -0.004 0.263†

σ̂u01 0.001 0.012† 0.001 0.025† 0.001 0.025†

σ̂2
e 0.045 0.323† 0.041 1.280† 0.041 1.268†

−2× Log-Likelihood 20,747

AIC 20,859

BIC 21,239

Note: † Values at 10−3.

7.3.2 Application of PWIGLS to Multivariate Multilevel

Models

This section presents a similar analysis to the previous one but now considering the

fit of multivariate multilevel models. The main difference here is that the extended

PWIGLS procedure for the multivariate multilevel model accommodates the PSU

level. Hence, this level does not need to be omitted from the analysis and the

between PSU variance term can be estimated.

The model fitted in this section is an equivalent model to the one in equa-

tion 5.2 fitted in Chapter 5. As already defined, this is a two-level model where

level two represents the PSUs, level one the heads of household and the different

measurement occasions define the multivariate structure. The general linear lag-

dependent covariance structure is imposed to the models fitted, which started with

the same set of covariates as those in the models in Chapter 5. For comparison,

the same model is fitted also imposing the Toeplitz covariance structure. However,

it is not presented in Table 7.10. Table 7.10 presents the results for the models

fitted through standard IGLS, robust methods and PWIGLS. When PWIGLS was

adopted, the set of weights used were the w∗j for the PSU level and the adjusted

w∗i|j(8) for the heads of household level. These weights were defined in Section 7.2.2.

Note that the level one weights (heads of household) are not necessarily constant
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within the level two units (PSUs). Therefore, the scaling method applied to the

level one weights is expected to have an effect on the parameter estimates.

Table 7.9 presents the results for the estimated covariance and autocorrela-

tion matrices for the models imposing first the general linear and then the Toeplitz

correlation structure. Results are presented for models without accounting for the

weights and models accounting for the weights. The comparison between the es-

timated covariance terms for the models with and without the weights indicates

that the differences are usually of one point in the second decimal place. The small

impact of weights on these estimates could be an indication that the sampling of

higher level units is not informative (Pfeffermann et al., 1998). One other possi-

bility is that, after the scaling, the level one weights become quite small and close

to one. In addition, as also identified in Skinner and Holmes (2003), these level

one weights are only weakly correlated (around 0.2) with the outcome variable.

Table 7.10 presents the estimated regression coefficients and their SEs for the

multivariate model imposing the general linear lag-dependent covariance structure.

A similar behaviour to that observed for the random coefficients model, in the

previous section, when comparing robust and standard SEs is observed here. The

SEs for the PWIGLS fit of the model are similar to those for the IGLS fit with

robust SEs, but are larger for some of the variables. As before, the estimated

regression coefficients differ when comparing the results for the two estimation

procedures. Differences are also observed for the significance level of some of the

interaction terms. This, as before, indicates the need for further model selection

when applying the PWIGLS.

Extra model selection was then performed. It started by initially excluding

the interaction terms between the variable for males and the variable for duration

of employment and its squared term. It was also observed that the interaction

terms between the categorical variable for type of activity and the variable for

males are no longer significant. One other variable that was no longer significant

was the one for the number of household members. The decision to exclude vari-

ables when applying the PWIGLS can only be through the examination of the

Wald test statistic, for the single parameter, or through the multivariate Wald

test statistic, for multiple parameters.
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Table 7.10: Multivariate Multilevel Models

IGLS PWIGLS

Coeff SE Rob.SE Coeff SE

Dummies for occasion

d0 6.232 0.249 0.285 5.979 0.292

d1 6.237 0.249 0.285 5.982 0.292

d2 6.235 0.249 0.285 5.974 0.293

d3 6.241 0.249 0.285 5.986 0.292

d12 6.270 0.249 0.285 6.011 0.292

d13 6.265 0.249 0.285 6.007 0.292

d14 6.264 0.249 0.285 6.004 0.293

d15 6.269 0.249 0.285 6.011 0.293

Males 0.650 0.075 0.138 0.574 0.167

White 0.226 0.023 0.036 0.216 0.039

Age (@ wave 1) 4.336† 1.395† 1.48† 2.827† 1.858†

squared term -0.439† 0.043† 0.056† -0.467† 0.069†

Education (@ wave 1) -0.067 0.011 0.012 -0.082 0.014

Squared term 0.009 0.001 0.001 0.010 0.001

Type of Worker

(Employer as baseline)

Informal -0.137 0.016 0.029 -0.097 0.032

Formal -0.045 0.016 0.029 -0.019 0.032

Military service -0.007 0.021 0.034 0.042 0.037

Self-Employed -0.174 0.014 0.024 -0.168 0.026

Type of Activity

(Manufacturing as baseline)

Building 0.030 0.036 0.037 0.024 0.053

Commerce -0.023 0.016 0.026 -0.037 0.028

Financial 0.040 0.020 0.027 0.043 0.028

Social Services 0.067 0.020 0.026 0.074 0.031

Domestic Services -0.001 0.019 0.031 0.008 0.034

Other Services 0.001 0.018 0.026 0.015 0.026

Other Activities 0.037 0.061 0.060 -0.018 0.069

Duration of Employment (× 120) 0.038 0.008 0.013 0.034 0.018

Squared term -0.021 0.004 0.006 -0.023 0.007

Working Hours (in Log) 0.252 0.011 0.029 0.257 0.035

Proxy Respondent 0.002 0.006 0.008 0.008 0.008

Number of HH members 0.005 0.003 0.004 0.005 0.004

Metropolitan Region

(Recife as baseline)

Salvador 0.039 0.033 0.033 0.015 0.039

Belo Horizonte 0.244 0.032 0.029 0.254 0.032

Rio de Janeiro 0.212 0.029 0.028 0.217 0.029

São Paulo 0.359 0.032 0.030 0.368 0.032

Porto Alegre 0.226 0.034 0.033 0.239 0.035

Interaction Terms of Male and :

Age (@ wave 1) 0.003 0.002 0.002 0.005 0.002

Education (@ wave 1) 0.054 0.013 0.014 0.074 0.016

Squared term -0.003 0.001 0.001 -0.005 0.001

Type of Activity

(Manufacturing as baseline)

Building -0.045 0.037 0.041 -0.046 0.057

Commerce -0.021 0.018 0.028 -0.009 0.030

Financial -0.057 0.022 0.030 -0.063 0.032

Social Services -0.042 0.023 0.032 -0.056 0.038

Domestic Services -0.122 0.034 0.054 -0.081 0.043

Other Services -0.037 0.020 0.029 -0.061 0.032

173



Chapter 7 Longitudinal Multilevel Modelling Compensating for Panel Non-response

Table 7.10 – continued from previous page

IGLS PWIGLS

Coeff SE Rob.SE Coeff SE

Other Activities -0.083 0.065 0.072 0.004 0.075

Duration of Employment (× 120) 0.018 0.009 0.015 0.020 0.020

Squared term 0.010 0.005 0.007 0.011 0.008

Working Hours (in Log) -0.087 0.014 0.034 -0.087 0.041

Proxy Respondent -0.041 0.007 0.009 -0.039 0.010

Interaction Terms of White and :

Type of Worker

(Employer as baseline)

Informal -0.060 0.020 0.035 -0.086 0.040

Formal -0.104 0.020 0.037 -0.114 0.043

Military service -0.144 0.026 0.045 -0.179 0.050

Self-Employed -0.015 0.017 0.031 -0.013 0.033

Contextual Effects:

Prop of Formal -1.847 0.211 0.234 -1.705 0.237

Prop of Informal -2.181 0.248 0.267 -1.997 0.268

Prop of Military -2.068 0.233 0.272 -2.094 0.300

Prop of Self-Employed -2.281 0.245 0.273 -1.977 0.282

Average Education 0.072 0.006 0.007 0.086 0.008

−2× Log-Likelihood 20,050

AIC 20,190

BIC 20,573

Note: † Values at 10−3.

Table 7.11 presents the results for the “final” multivariate multilevel model

selected using the PWIGLS fitting which accounts for the multilevel weights. This

table also presents the results for the equivalent model estimated using IGLS with

robust estimation methods for the SEs. The residual diagnostics for both models

are presented in Appendix C. It is worth mentioning that this model does not

include the interaction terms between the occasion dummies and the education

and duration of employment variables. These terms were included and then tested

through multivariate Wald test but were no longer significant. Table 7.13 presents

the estimated residual covariance and autocorrelation matrices for the models in

Table 7.11. The PSU level variance was estimated to be equal to 0.010 with SE

equal to 0.003. These values are not shown in any of the tables.

7.3.3 Interpretation of the Fixed Parameters Estimates

The fixed part of the model estimated via PWIGLS in Table 7.11 can interpreted

as follows:

Time Effect
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As this is a multivariate model, the time effect is represented by the different

effects of the occasion dummies. They represent different intercepts for each of

the occasions. The results in Table 7.11 indicate that the average log-income of

heads of household is different for the different occasions. There is an increasing

trend with time (keeping all other variables constant and for a baseline head of

household).

Gender and Skin Colour Effects

Like in the model presented in Chapter 4, the main effects of the variables

for male heads of household and white heads of household cannot be interpreted

on their own. These two variables interact with other variables in the model.

Observe that the baseline income differential between males and females is now

around 70% and between whites and others is around 24%.

Age effect - Experience in Labour Market

Like in the model presented in Chapter 4, age was also considered with a

significant squared term and also interacts with the variable for males. This means

that the effect of age on income is different for male and female heads of household.

The linear term for age has a positive effect and the squared term has a negative

effect. This indicates that for both males and females the impact of age on income

has an inverted U-shape, as expected. Graphical investigation of these effects, in

Figure 7.2(a), shows that by using age as a proxy for experience older male heads

of household benefit more from extra years of experience in the labour market

than female heads of household. However, at younger ages this behaviour is the

opposite, benefiting female heads of household.

Education effect and Duration of Employment

The education variable interacts with the indicator for males. Hence, educa-

tional returns are different for male and female heads of household. Figure 7.2(b)

shows that the more educated the heads of the household, the higher is the return

for education on their labour income. In addition, these returns are even higher for

males than for females. The impact of duration of employment on income has an

inverted U-shape showing that income initially increases rapidly with experience.

This variable is centred on the average of eight years of experience in the firm.

This is a similar behaviour as in the model presented in Chapter 4.
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Table 7.11: Final Multivariate Multilevel Model: Fixed Parameters Estimates

IGLS PWIGLS

Coeff Rob.SE Coeff SE z Pr. > |z|
Dummies for occasion

d0 6.290 0.285 6.019 0.293 20.58 0.000

d1 6.295 0.285 6.022 0.292 20.59 0.000

d2 6.293 0.285 6.014 0.293 20.54 0.000

d3 6.299 0.285 6.026 0.292 20.60 0.000

d12 6.328 0.285 6.052 0.293 20.69 0.000

d13 6.323 0.285 6.048 0.292 20.68 0.000

d14 6.322 0.285 6.044 0.293 20.66 0.000

d15 6.327 0.285 6.052 0.293 20.68 0.000

Males 0.599 0.137 0.530 0.164 3.22 0.001

White 0.226 0.036 0.216 0.039 5.51 0.000

Age (@ wave 1) 3.485† 1.429† 2.062† 1.767† 1.17 0.243

squared term -0.45† 0.056† -0.474† 0.07† -6.77 0.000

Education (@ wave 1) -0.069 0.012 -0.083 0.014 -5.91 0.000

squared term 0.009 0.001 0.010 0.001 11.69 0.000

Type of Worker (Employer as baseline)

Informal -0.135 0.029 -0.096 0.032 -2.98 0.003

Formal -0.044 0.029 -0.018 0.032 -0.57 0.566

Military service -0.006 0.034 0.042 0.037 1.12 0.261

Self-Employed -0.175 0.024 -0.169 0.026 -6.47 0.000

Type of Activity (Manufacturing as baseline)

Building -0.008 0.014 -0.015 0.016 -0.94 0.345

Commerce -0.041 0.009 -0.044 0.011 -4.02 0.000

Financial -0.006 0.012 -0.009 0.012 -0.72 0.473

Social Services 0.033 0.015 0.028 0.016 1.74 0.082

Domestic Services -0.045 0.023 -0.033 0.023 -1.47 0.142

Other Services -0.029 0.011 -0.035 0.014 -2.43 0.015

Other Activities -0.028 0.034 -0.011 0.024 -0.46 0.648

Duration of Employment (× 120) 0.053 0.006 0.050 0.009 5.85 0.000

squared term -0.014 0.003 -0.014 0.004 -3.56 0.000

Working Hours (in Log) 0.251 0.029 0.257 0.036 7.20 0.000

Proxy Respondent 0.004 0.008 0.009 0.008 1.16 0.246

Metropolitan Region (Recife as baseline)

Salvador 0.037 0.033 0.013 0.040 0.32 0.748

Belo Horizonte 0.244 0.029 0.254 0.032 8.03 0.000

Rio de Janeiro 0.211 0.028 0.217 0.029 7.46 0.000

São Paulo 0.360 0.030 0.368 0.032 11.55 0.000

Porto Alegre 0.226 0.033 0.239 0.035 6.76 0.000

Interaction Terms of Male and :

Age (@ wave 1) 0.004 0.002 0.006 0.002 2.94 0.003

Education (@ wave 1) 0.057 0.014 0.076 0.016 4.69 0.000

squared term -0.004 0.001 -0.005 0.001 -4.81 0.000

Working Hours (in Log) -0.085 0.034 -0.088 0.041 -2.13 0.033

Proxy Respondent -0.042 0.009 -0.040 0.010 -4.08 0.000

Interaction Terms of White and :

Type of Worker (Employer as baseline)

Informal -0.062 0.035 -0.086 0.040 -2.14 0.032

Formal -0.105 0.038 -0.114 0.043 -2.66 0.008

Military service -0.146 0.045 -0.180 0.050 -3.59 0.000

Self-Employed -0.015 0.031 -0.014 0.033 -0.41 0.684

Contextual Effects:

Prop of Formal -1.845 0.234 -1.690 0.237 -7.13 0.000

Prop of Informal -2.175 0.268 -1.979 0.268 -7.39 0.000

Prop of Military -2.069 0.273 -2.086 0.299 -6.97 0.000
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Table 7.11 – continued from previous page

IGLS PWIGLS

Coeff Rob.SE Coeff SE z Pr. > |z|
Prop of Self-Employed -2.280 0.274 -1.963 0.282 -6.96 0.000

Average Education 0.072 0.007 0.086 0.008 10.64 0.000

−2× Log-Likelihood 20,098

AIC 20,218

BIC 20,547

Number of Observations

Clusters 1,762

Individuals 6,524

Time Points 8

Note: † Values at 10−3.

Figure 7.2: Impact of Education, Age and Duration of Employment on Income

(a) Age (b) Education

(c) Duration of Employment

Type of worker and Type of Activity

Type of worker interacts with the indicator for white heads of household

while type of activity no longer has a significant interaction with the indicator

for male. Taking firstly the results for type of activity, compared with manufac-

turing activity, all other activities, except Social Services, have a negative effect

on income. Compared to employers, almost any other type of worker earns less
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except for others in the military service. The income gap between informal or

self-employed compared to employer is narrower for others than for whites. This

is also observed for formal workers, where the gap between employers and formal

others is quite small. However, this same gap is quite significant for whites. In

the military service the race differential is about 2%.

Table 7.12: Percentage Impact on Average Real Labour Income

Females Males
Interaction Terms of Male and :
Working Hours (in Log) 29.31 18.46
Proxy Respondent 0.90 (3.02)

Others Whites
Interaction Terms of White and :
Type of Worker (Employer as baseline)

Informal (9.12) (16.63)
Formal (1.80) (12.40)
Military service 4.26 (12.92)
Self-Employed (15.55) (16.69)

Note: Values in parentheses indicate % decrease.

Working Hours

Working hours is included in the model on the logarithm scale. The income

elasticity is 0.26% for female heads of household and 0.16% for male heads of

household (for an increase of 1% in the working hours).

Proxy Respondent

The variable for proxy respondent is a control for those heads of household

which are hard to count. Table 7.12 shows that the use of proxy respondents

have a negative impact on the income of male heads of household (it could be

interpreted as the proxy tending to declare a lower income) but a small positive

effect for female heads of household.

Metropolitan Regions

The metropolitan region of Salvador has an income differential of about 1%

compared to the baseline. However, this is not significantly different from the

baseline which is Recife. When compared to Recife, the Southern regions have

income differentials in their favour varying from 24% to 28%. The richest region

of São Paulo, however, has the highest differential of 45%.

Other Cluster level effects

Like in the previous models PSU or contextual variables were considered,

mostly for empirical reasons, to improve the model fit. They represent how the
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make up of the PSU is associated with the income of the heads of household. In

this final model, however, some of the previous PSU variables were not considered.

In a general interpretation for those in Table 7.11, compared to the proportion of

employers in the PSUs, the other proportions have a negative effect on the income

of the heads of household. In addition, the higher the average education for the

PSU the higher is the effect on income of the heads of household in the PSU.

Table 7.13 presents the estimated covariance and autocorrelation matrices

for this final model. This table also contains, for comparison, the results for the

equivalent model fitted using IGLS and robust methods for the estimation of the

standard errors. There is a decreasing trend with time in the autocorrelation ma-

trix. When comparing the results for the models estimated via IGLS with robust

methods and PWIGLS the autocorrelations differ mostly in the second decimal

place. This can also be observed in Figure 7.3, which presents the autocorrelation

function by lag. The figure shows that the correlations for the model estimated via

PWIGLS lie very slightly above those of the model estimated via IGLS with robust

methods. However, this might still be an indication of a weak effect of weights.

Furthermore, this figure shows the fall in the correlation between measurements

taken at lag 9.

Figure 7.3: Autocorrelation Function

.2
.4

.6
.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lag

GLLD − Robust GLLD − PWIGLS
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7.4 One Further Comparison

This section presents the fit of a multivariate multilevel model to a less restrictive

data set than the one analysed so far. The aim of this section is to provide one

further model comparison, comparing the results presented here with those from

the models in Tables 7.11 and 5.7.

The data set to be used in this section includes all employed heads of house-

holds who were employed when observed in the working data set (see Chapter 3).

Furthermore, to maintain consistency with the longitudinal data set analysed in

this chapter and Chapter 5, only the heads of households that by design should

have all eight interviews completed were considered. However, here, a complete-

case balanced data set is no longer required. Therefore, this unbalanced data set

includes heads of household with intermittent wave non-response and also those

who dropped out from the panel at some point of the survey. This data selection

strategy generates a data set with a variable number of repeated observations for

the heads of households in the sample. This variable number of observations is

either due to wave non-response or panel attrition and is presented in Table 7.14.

Notice that the total number of heads of households per interview time varies and

these numbers can be compared to the total number of 6,524 heads of households

analysed previously in this chapter and Chapter 5. It is also worth mentioning

that only heads of household with valid income data were included. Furthermore,

the same criteria to match heads of household used in Chapter 5 was used here.

Table 7.14: Number of Heads of Household per Interview Time

Interview Time Number of HoHH
1 8,592
2 8,318
3 8,240
4 8,126
5 7,163
6 7,312
7 7,320
8 7,264

The multivariate multilevel model fitted to this unbalanced data set is equiv-

alent to the one fitted in the previous section and presented in Table 7.11. The

results for when the model is fitted to the unbalanced data set are presented in

Table 7.15. Notice that the error correlation structure imposed in this model was

the general linear lag dependent structure. This was to allow comparison. Fur-

thermore, this is one of the structures that accommodates unbalanced data sets.

For brevity, the model fitted in this section is referred to hereafter to the compar-

ative model. One other important point to observe is that the comparative model
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was estimated via IGLS estimation. This is because no longitudinal weights were

required to account for panel non-response. The less restrictive data set, used in

this section, already accounts for panel non-response by incorporating the records

for heads of households with incomplete responses.

Firstly, the results of the model presented in Table 7.11 are compared to the

comparative model. Therefore, initially, the comparison is between a model fitted

via PWIGLS to a balanced data set and using the longitudinal weights to account

for panel non-response (as the one in Table 7.11) and a model fitted via IGLS

to an unbalanced data set which includes the units with panel non-response (as

the one in Table 7.15). The results for both models are very similar for most of

the variables considered. The differences in the coefficient estimates are usually in

the second decimal place which leads to no major differences in the interpretation

already given in the previous section. Differences are observed mostly for the

coefficients of the cluster level variables and for the occasion dummies. For the

comparative model the average labour income for these heads of households was

estimated to be slightly higher than for the PWIGLS model in Table 7.11. It is also

observed that this average tends to increase with time on the first four occasions

which is different from the previous model where the average income presented a

small drop in the third occasion. The income dynamics behaviour in the second

half for both models are generally quite similar.

Table 7.15 also provides the standard errors and the robust standard errors

for the comparative model. For most of the variables in the models, the robust

standard errors for the comparative model and the standard errors for the model

estimated via PWIGLS are very similar, with those for the latter model always

larger. Differences are found mostly in the third decimal place, except for the

occasion dummies and some of the cluster level variables where the differences are

at the second decimal place. Such differences were not enough to lead to different

conclusions about the income dynamics for the heads of household.

In Chapter 5 multilevel models were fitted to the same balanced data set

as the one used previously in this chapter. However, the robust methods for the

estimation of the standard errors were not employed there. The main difference

between the models in this chapter and the final model of Chapter 5 is the pres-

ence of interaction terms between the occasion dummies and some other variables.

As already mentioned in the previous sections, these interaction terms lost their

significance once robust methods for the estimation of the standard errors of the

coefficient estimates were employed. This lack of consistent results indicates cau-

tion is necessary when including these terms in the models. However, comparison
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between the multivariate model in Table 5.7 and the comparative model, reveals

that the effects for the variables in both models do not differ greatly.

Table 7.15: Multivariate Multilevel Model: Fixed Parameters Estimates

IGLS

Coeff SE Rob.SE

Dummies for occasion

d0 6.306 0.216 0.263

d1 6.311 0.216 0.263

d2 6.312 0.216 0.263

d3 6.317 0.216 0.263

d12 6.346 0.216 0.263

d13 6.339 0.216 0.263

d14 6.339 0.216 0.263

d15 6.343 0.216 0.263

Males 0.575 0.068 0.122

White 0.204 0.021 0.033

Age (@ wave 1) 3.821† 1.168† 1.223†

squared term -0.430† 0.037† 0.054†

Education (@ wave 1) -0.058 0.010 0.010

squared term 0.008 0.001 0.001

Type of Worker (Employer as baseline)

Informal -0.148 0.015 0.027

Formal -0.057 0.015 0.027

Military service -0.021 0.020 0.032

Self-Employed -0.184 0.013 0.023

Type of Activity (Manufacturing as baseline)

Building -0.009 0.009 0.013

Commerce -0.040 0.006 0.008

Financial -0.011 0.008 0.011

Social Services 0.029 0.010 0.014

Domestic Services -0.054 0.014 0.020

Other Services -0.028 0.007 0.011

Other Activities -0.042 0.021 0.029

Duration of Employment (× 120) 0.055 0.004 0.006

squared term -0.012 0.002 0.003

Working Hours (in Log) 0.257 0.010 0.026

Proxy Respondent -0.003 0.006 0.007

Metropolitan Region (Recife as baseline)

Salvador 0.044 0.029 0.031

Belo Horizonte 0.225 0.027 0.027

Rio de Janeiro 0.199 0.025 0.026

São Paulo 0.332 0.028 0.028

Porto Alegre 0.214 0.029 0.030

Interaction Terms of Male and :

Age (@ wave 1) 0.004 0.001 0.001

Education (@ wave 1) 0.053 0.012 0.012

squared term -0.003 0.001 0.001

Working Hours (in Log) -0.078 0.013 0.030

Proxy Respondent -0.035 0.006 0.008

Interaction Terms of White and :

Type of Worker (Employer as baseline)

Informal -0.052 0.018 0.033

Formal -0.094 0.019 0.035

Military service -0.120 0.024 0.042

Self-Employed -0.016 0.016 0.030

183



Chapter 7 Longitudinal Multilevel Modelling Compensating for Panel Non-response

Table 7.15 – continued from previous page

IGLS

Coeff SE Rob.SE

Contextual Effects:

Prop of Formal -1.913 0.183 0.214

Prop of Informal -2.252 0.216 0.247

Prop of Military -2.168 0.205 0.241

Prop of Self-Employed -2.421 0.215 0.250

Average Education 0.077 0.005 0.006

−2× Log-Likelihood 29,089

AIC 29,209

BIC 29,542

Note: † Values at 10−3.

The main aim of Chapter 5 was to account for the panel design while also

modelling the error covariance structure via multivariate multilevel models. Table

7.16 presents the estimated covariance and autocorrelation matrices for the com-

parative model. The results in this table can be compared to those in Tables 5.6,

for the model imposing the general linear lag-dependent structure, and 7.13 for the

model estimated via PWIGLS. Figure 7.4 presents the autocorrelation functions

for these three models for better comparison. The model estimated via PWIGLS

in the previous section has slightly larger correlations and the comparative model

is the one with less strong correlations per lag. Still these differences are small

and in the second decimal place.

The model fitted in this section explored the potential of the multilevel model

approach in the analysis of an unbalanced complex panel data set. The results for

the model fitted here to a less restrictive data set were compared to those for the

models presented in Tables 7.11 and 5.7. The observed differences were not enough

to lead to different insights about the income dynamics for the heads of households.

However, it does reinforce the small effect of the sampling weights. The use of the

sampling weights in the models presented in this chapter mainly increased the

estimates of the standard errors of the coefficient estimates. However, the use of

robust methods for the estimation of the standard errors, not accounting for the

sampling weights, is still advisable as it protects against model misspecification.

It is also important to notice that with this comparative model certain types of

correlation structures could not be applied, such as the autoregressive ones. This

is because the procedure used to fit the models with these structures require the

data to be balanced and the observations to be measured at equally spaced time

points, and this is not the case for the less restrictive data set used in this section.
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Table 7.16: Covariance Components and Autocorrelation Matrices - Multivari-

ate Multilevel Model

General Linear Lag Dependent

Σ̂r



0.3032

0.2588 0.3032

0.2528 0.2588 0.3032

0.2479 0.2528 0.2588 0.3032

0.2150 0.2164 0.2213 0.2219 0.3032

0.2126 0.2150 0.2164 0.2213 0.2588 0.3032

0.2107 0.2126 0.2150 0.2164 0.2528 0.2588 0.3032

0.2089 0.2107 0.2126 0.2150 0.2479 0.2528 0.2588 0.3032



P̂r



1.0000

0.8536 1.0000

0.8338 0.8536 1.0000

0.8176 0.8338 0.8536 1.0000

0.7091 0.7137 0.7299 0.7319 1.0000

0.7012 0.7091 0.7137 0.7299 0.8536 1.0000

0.6949 0.7012 0.7091 0.7137 0.8338 0.8536 1.0000

0.6890 0.6949 0.7012 0.7091 0.8176 0.8338 0.8536 1.0000



Figure 7.4: Autocorrelation Function
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7.5 Summary and Discussion

This chapter aimed to provide some contribution to the debate on the use of the

sampling weights when fitting multilevel models. It started by developing a set

of longitudinal weights for the PME data under study. Longitudinal weights were

computed based on the logistic regression methodology for calculating response

probabilities. Weight adjustments were computed as the inverse of the predicted

response probabilities. The base weights were conditionally adjusted to account

for the wave-by-wave panel drop-out. The final set of completers with data for

eight occasions were weighted to compensate for panel attrition.

Longitudinal weights only accounted for the drop-out. Therefore, some data

were eliminated because of wave non-response. An alternative way to account for

wave non-response patterns is to use the data until the first non-response occurs

and add these extra data to the attrition samples. This approach was not taken

here. It is believed that, for the data under study, those who do not respond on

one specific occasion but return to the survey afterwards, might be different to

those who drop-out from the survey completely. This belief is based upon the

problems identified when trying to perform data linkage for the PME data, as

non-response for this specific survey might be due to mismatching of individual

records or replacement of families in the selected sampled household, for example.

However, it is recognized that this method is possibly the appropriate one for other

longitudinal surveys. It is worth mentioning that logistic random intercept models

were tested for the prediction of the response probabilities. If these were to be

considered, one point for further discussion would be the inclusion or not of the

estimated random effects in the calculation of the predicted response probabilities.

However, for the data under study, these models were shown not to be better

than one-level logistic models; so this issue did not arise. It is worth mentioning

that there are other methods for calculating longitudinal weights in the literature.

However, the exploration of such methods goes beyond the scope of this chapter

and thesis.

The application of PWIGLS for both random slope models and multivariate

longitudinal models was presented. For random slope models the procedure only

accommodates two-level data structure. Further extensions are necessary to ac-

commodate the extra cluster level. However, multivariate models allow for both

the imposition of the general linear lag-dependent structure and the inclusion of

the random intercept at the cluster level. Results for models fitted using weights

were compared with those obtained using both robust and standard estimation
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methods. It was observed that the standard errors were larger for the models esti-

mated via robust methods when compared to standard methods. However, these

were smaller when comparing with those for the models estimated accounting for

the sampling weights. Nonetheless, a strong effect of weights was not observed.

Reasons were given as the possible non-informativeness of the sampling design.

Other potential reasons were due to the very small and not too variable individ-

ual weights, which are weakly correlated with the outcome variable, log-income.

The model fitted using the weights was also compared to an equivalent model

fitted to an extended data set which included the non-respondents. However, the

small differences found between these models were not enough to lead to different

conclusions.

The final longitudinal analysis presented accounted for the PME data com-

plexities: the data hierarchy was accommodated through the two-level multivari-

ate model including the PSU random intercept; the 4-8-4 rotation scheme was

accommodated by imposing the general linear lag-dependent structure for the

error covariance; and finally, further features of the sampling design and panel

non-response were accommodated via the estimation of the models through the

PWIGLS method.
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Chapter 8

Conclusions and Further Research

8.1 Introduction

Methods for the analysis of complex panel data were proposed in this thesis. These

methods followed the multilevel modelling framework which is based on strong

assumptions. This thesis demonstrated how some of these modelling assumptions

can be relaxed in order to adapt the methods to better incorporate the complexities

of the data: the hierarchical data structure; the complex structure of the residual

correlation and the complex sampling design including the rotating panels, the

panel attrition and the sampling weights. This chapter provides a summary of

this thesis followed by a discussion of the main research contributions, limitations

and areas for future research. The key conclusions drawn from this study are then

summarised.

8.2 Summary of the Thesis

The data sets commonly used in the social sciences are often obtained from surveys

with a complex multistage sampling design selected from populations with natural

hierarchical structure. These surveys are sometimes conducted in a repeated man-

ner, comprising separate waves of data collection from the same sampling units

over time. When the resulting data set is formed of a large number of sampling

units observed over a short period of time, this characterizes a typical panel data

set. Panel data can also be generated from a rotating sampling scheme which in-

volves the stratification of the selected sample into panels that are rotated in and

out of the survey for a particular period of time. For example, the majority of the
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labour force surveys in the world adopt rotating sample designs, which are either

of a consecutive or of a non-consecutive pattern. Compared to cross-sectional data

analysis, panel data analysis has a number of advantages. This type of analysis

allows the direct study of individual change and the identification of different ef-

fects on change. However, there are also disadvantages to the analysis of panel

data, which can be affected by different sources of bias and require more complex

methods of analysis.

There are different approaches available for the analysis of panel data and this

thesis focussed on methods under the multilevel modelling framework, reviewed

in Chapter 2. Panel data sets can be analysed under this framework by assum-

ing that the repeated occasions represent the level one units t, which are nested

within individuals i that can be nested within clusters j. Three main multilevel

model formulations were reviewed. The random intercept model is the simplest

model formulation and assumes that the residual terms are mutually independent,

homoscedastic, normally distributed and uncorrelated with the covariates in the

model. Furthermore, it assumes that the occasion level residuals are exchangeable,

which is not always a plausible assumption particularly when the measurements

are taken close in time. The growth curve model relaxes this assumption, by treat-

ing the effect of the continuous variable for time as random at the individual level.

This causes the residual covariance matrix at the individual level to depend on

the metric used for the time variable. The multivariate multilevel model extends

the growth curve model by assuming conditional correlation between the repeated

outcomes within the same individuals. In addition, this model usually treats time

as a discrete variable and allows the modelling of the residual covariance matrix.

The Brazilian labour force survey (the PME) motivated many of the aims of

this thesis. The data set from this survey was used throughout the thesis where

the labour income dynamics of employed heads of households was investigated.

Chapter 3 presented a description of the PME sampling design which includes

a non-consecutive rotating panel scheme characterised as 4-8-4. Problems with

the matching of the monthly PME data are well known and the low household

matching rates are partly caused by panel non-response. In order to investigate

change at the individual level an alternative was to consider data for only heads

of household. These are the household reference unit and are easier to identify

from the data set. Further matching criteria were used to ensure a more accurate

matching of the set of heads of households.

Chapter 4 presented a brief review of the Brazilian economy, focussing on
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some studies of labour income determination mostly based upon the Mincer equa-

tion model. This chapter also presented a full cross-sectional multilevel analysis of

the determinants of the log of the real labour income. This analysis accounted for

the PSU and the heads of household levels. The fitted model was a more elaborate

model than the one specified by the Mincer equation and it served as the basis for

the applications in the later chapters. The data set considered in this analysis was

composed of the first interview for employed heads of household that were first

included in the PME survey from January 2004 till December 2005. The filter for

employed heads of household was used because only those classified as employed

have data for job earnings.

Following this cross-sectional modelling application, Chapter 5 analysed the

longitudinal working data set containing complete sets of eight interviews. The

main aim of this chapter was to fit multilevel longitudinal models incorporating

the rotating sample design of the PME. This was achieved by expressing the time

variable as (0, 1, 2, 3, 12, 13, 14, 15) instead of (0, 1, 2, 3, 4, 5, 6, 7) in the fitting of

growth curve models. The incorporation of the rotating sample design into the fit-

ting of multivariate multilevel models was not straightforward. However, this was

achieved by constraining the residual covariance matrix to impose a lag-dependent

structure. Different structures were considered, but most of them are only appro-

priate to equally spaced panel data, which is not the case for the PME rotating

design. Two modified lag-dependent covariance structures were considered: the

temporal power and the general linear lag-dependent. Multivariate multilevel mod-

els were fitted utilizing the alternative structures. The model using the general

linear lag-dependent structure provided good results overall. However, the model

using an unconstrained structure, again, provided a better fit. The unconstrained

model imposed no constraint on the covariance structure in which the effect of

the rotating design was completely determined by the data. The model impos-

ing the general linear lag-dependent structure was a more parsimonious choice.

Chapter 6 presented a detailed description of the probability-weighted iterative

generalised least squares (PWIGLS) as presented by Pfeffermann et al. (1998). In

order to allow for the estimation of multivariate multilevel models via PWIGLS,

this method needed to be extended. This extension was presented in Chapter 6

and the necessary computer codes were presented in the appendix.

Chapter 7 dealt with the estimation of longitudinal multilevel models through

PWIGLS. For that, longitudinal sampling weights that compensated for panel at-

trition in the PME data were constructed based upon the fitting of logistic re-

gression models to estimate response probabilities. Two main applications of the
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PWIGLS method were presented: for a two-level growth curve model and for mul-

tivariate multilevel models. In both applications only the set of completers from

the PME longitudinal data set was considered. The results for the applications of

the PWIGLS method were compared with results obtained by the fitting of models

using robust estimation methods for the standard errors of the regression coeffi-

cients. In general, a strong effect of the sampling weights was not observed. This

was identified as possibly being due to the non-informativeness of the sampling

design or due to the individual level weights having values close to one and being

not too variable and weakly correlated with the outcome variable. Those results

were also compared to a less restricted data set that included the non-respondents

but no different insights on income dynamics were raised.

The final longitudinal analysis presented in Section 7.3 accounted for the

main data complexities in a single modelling exercise. The data hierarchy was

accounted for by the fitting the two-level multivariate model which also accounted

for the rotation scheme by constraining the error covariance to be lag-dependent.

Furthermore, both the sampling weights and panel non-response were accounted

for through the use of the extended PWIGLS method for fitting multivariate mul-

tilevel models.

8.3 Main Contributions

This thesis provides both methodological and substantive contributions. The main

methodological contribution was the development of a modelling framework moti-

vated by the data complexities generated by the design of complex panel surveys.

This framework consists of the estimation of longitudinal multilevel models via the

PWIGLS method, with the use of longitudinal sampling weights and with the com-

plex residual covariance structure of the data being accounted for. The extended

methods can be applied to both longitudinal data sets or cross sectional data sets.

The developed framework accommodates different error covariance structures pro-

vided that they are expressed as linear functions of the covariance parameters. The

specific contributions of this thesis are as follows.

• The application of multivariate multilevel models in the analysis of

complex panel data. Multivariate multilevel models have been used in the

analysis of longitudinal data sets but not vastly explored in the literature.

They are extensions to growth curve models and the applications presented in
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this thesis provided a demonstration of the modelling of different covariance

structures.

• The proposal of alternative modified covariance structures. This

was pursued in order to adapt some of the conventional structures to accom-

modate the rotating design features. The alternative covariance structures

were classified as lag-dependent structures, i.e. as being dependent on the

time span between the different occasions. These structures can be further

applied to any general rotating sampling schemes.

• The construction of longitudinal weights. The incorporation of the

sampling weights in the analysis of multilevel models has been discussed.

Furthermore, a method for constructing longitudinal weights, which ac-

counted for the panel attrition in the PME data under study, was developed

and implemented.

• The extension of the PWIGLS method. The PWIGLS method was

extended to accommodate the estimation of multivariate multilevel models.

Applications of the PWIGLS estimation method were pursued for both the

growth curve model and the multivariate multilevel model using modified

alternative covariance structures and the longitudinal weights constructed

for the data under study. The extended PWIGLS method can also be applied

to general multivariate regression models.

• Computational aspects. Computer codes were developed to fit the growth

curve model and the multivariate multilevel model via PWIGLS. These codes

were written in the MATA language for the STATA package.

Substantive contributions from this thesis are identified below.

• Elaborate modelling and analysis of labour income dynamics. Al-

though the focus of this thesis was methodological, the applications pre-

sented a more elaborate model for the labour income determinants than the

ones reviewed in this thesis. Interpretation of the effects of the coefficients

estimated in the models was also provided.

• Use of the PME data set. Most of the analyses using the PME data set,

as reviewed in the literature, consisted of repeated cross-sectional analyses.

This thesis demonstrated how to take advantage of the PME panel compo-

nent. Difficulties when dealing with the data set of this survey, with regard

to the matching individual records, may represent a drawback. However,
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this data set can still be used in the investigation of important dynamic

processes of the Brazilian economy.

8.4 Limitations and Recommendations for Fur-

ther Research

The results of this thesis have led to the identification of limitations and areas

requiring further research. These are summarised below.

The extended PWIGLS method only accommodates linear covariance struc-

tures. Therefore, structures such as the autoregressive or the temporal power

cannot be modelled within the extended method. Further extensions would be

necessary to allow for this. Extensions would also be necessary to the PWIGLS

method to accommodate the estimation of three-level growth curve models. Com-

puter codes also need to be developed for this situation.

The method adopted to construct the longitudinal weights only considered

individuals who followed one of the attrition patterns and the completers. This

resulted in the elimination of individuals with intermittent non-response patterns.

An alternative method identified in the literature is to transform the wave non-

response patterns into attrition patterns by considering the individual data until

their first non-responses occur. As mentioned, this method was not undertaken

in this thesis. The assumption that wave non-response and panel drop-out were

fundamentally different in the data under study supported the decision to only

deal with the attrition patterns. However, a possible extension of this analysis

is to investigate the effect of considering the wave non-response patterns when

calculating the longitudinal weights for the specific data under study. Another

topic of further research is to explore the other methods for calculating longitudinal

weights and other methods for modelling the drop-out mechanism.

In most of the applications presented in this thesis, the data set considered

was a complete-case set. One of the advantages of analysing panel data under the

multilevel model framework is that this framework allows the fitting of unbalanced

and unequally spaced longitudinal data. The decision to keep a complete-case data

set throughout the thesis was taken for simplicity and due to the methodological

motivations. Although the comparison between models fitted to the complete-

case data set and a data set including non-respondents was provided this could

still be extended to also consider the inclusion of units that, by design, do not
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contain all the waves of the data. However, this would also represent not only

panel non-response but also panel censoring.

It was also observed in the longitudinal analysis that the income for the heads

of household was relatively stable over time. In other words, not much individual

change was observed in the analyses presented in this thesis. This limitation might

be due to the design of the PME, which collects monthly data on income, and its

short time span. This income stability could also be a result of the selection of only

heads of household as the units of analysis, due to the problems in the matching of

the monthly PME data. If these problems could have been overcome, the selection

of the units of analysis could be extended to include, for example, all household

members. One other point to observe was the small effect of the weights on the

estimates when compared with models fitted using robust or standard methods.

This might also be a reflection of the sampling design of the PME, indicating

that the sampling is not informative. However, the data set used in this thesis

served its purpose which was the demonstration of the applicability of the methods

developed in this thesis.

8.5 Concluding Remarks

This thesis aimed to develop methods for the analysis of complex panel data

using the multilevel modelling framework. A modelling estimation procedure was

developed to account for data complexities such as the hierarchical data structure,

the complex residual correlation and the features of the sampling design which

included the sampling weights, the rotating panels and the panel non-response.

This procedure is based upon the probability-weighted iterative generalised least

squares estimation (Pfeffermann et al., 1998) and can be applied to both complex

longitudinal data and cross-sectional data sets.

The applicability of the different model formulations under the multilevel

model framework for the analysis of longitudinal data was explored and com-

pared. These methods are already quite robust. However, analyses accounting

for the sampling design features can be compared to those using the iterative

generalised least squares (IGLS) estimation method with and without robust es-

timation methods for the standard errors. Large differences in the results of these

analyses are indications of either informativeness of the sampling weights or model

misspecification.

Under informative panel sampling design and given the availability of the
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design variables and sampling weights, the PWIGLS framework developed in this

thesis provides appropriate tools for the analysis of complex panel survey data.

In the absence of such variables, robust methods that protect against model mis-

specification should be employed. Multivariate multilevel models which allow the

modelling of the correlation between the repeated outcomes are a preferable ap-

proach. Lag-dependent residual covariance structures can be developed and used

with the multivariate multilevel models. These can be compared to the conven-

tional growth curve models, which when applied should carefully account for the

appropriate metric of time. Random intercept models are not advisable if the

main objective of the analysis is to account for the various data complexities of

complex panel survey data.
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SAS Computer Codes

A.1 Fitting the Temporal Power Structure

proc mixed data=long_w8_sas covtest noclprint noinfo method=reml;

class cluster HH_ID wave015;

model log_incomeR=wave015 / noint solution ddfm=bw;

random intercept / subject=cluster type=un;

repeated wave015 / subject=HH_ID(cluster) type=sp(pow)(wave015)

r;

run;

quit;

A.2 Fitting the General Linear Lag Dependent

Structure

data glls;

input parm row col1-col8;

datalines;

1 1 1 0 0 0 0 0 0 0

1 2 0 1 0 0 0 0 0 0

1 3 0 0 1 0 0 0 0 0

1 4 0 0 0 1 0 0 0 0

1 5 0 0 0 0 1 0 0 0

1 6 0 0 0 0 0 1 0 0

1 7 0 0 0 0 0 0 1 0

1 8 0 0 0 0 0 0 0 1

2 1 1 1 0 0 0 0 0 0

2 2 1 1 1 0 0 0 0 0

2 3 0 1 1 1 0 0 0 0

2 4 0 0 1 1 0 0 0 0

2 5 0 0 0 0 1 1 0 0

2 6 0 0 0 0 1 1 1 0

2 7 0 0 0 0 0 1 1 1

2 8 0 0 0 0 0 0 1 1

3 1 1 0 1 0 0 0 0 0

3 2 0 1 0 1 0 0 0 0

3 3 1 0 1 0 0 0 0 0

3 4 0 1 0 1 0 0 0 0

3 5 0 0 0 0 1 0 1 0

3 6 0 0 0 0 0 1 0 1

3 7 0 0 0 0 1 0 1 0

3 8 0 0 0 0 0 1 0 1
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4 1 1 0 0 1 0 0 0 0

4 2 0 1 0 0 0 0 0 0

4 3 0 0 1 0 0 0 0 0

4 4 1 0 0 1 0 0 0 0

4 5 0 0 0 0 1 0 0 1

4 6 0 0 0 0 0 1 0 0

4 7 0 0 0 0 0 0 1 0

4 8 0 0 0 0 1 0 0 1

5 1 1 0 0 0 0 0 0 0

5 2 0 1 0 0 0 0 0 0

5 3 0 0 1 0 0 0 0 0

5 4 0 0 0 1 1 0 0 0

5 5 0 0 0 1 1 0 0 0

5 6 0 0 0 0 0 1 0 0

5 7 0 0 0 0 0 0 1 0

5 8 0 0 0 0 0 0 0 1

6 1 1 0 0 0 0 0 0 0

6 2 0 1 0 0 0 0 0 0

6 3 0 0 1 0 1 0 0 0

6 4 0 0 0 1 0 1 0 0

6 5 0 0 1 0 1 0 0 0

6 6 0 0 0 1 0 1 0 0

6 7 0 0 0 0 0 0 1 0

6 8 0 0 0 0 0 0 0 1

7 1 1 0 0 0 0 0 0 0

7 2 0 1 0 0 1 0 0 0

7 3 0 0 1 0 0 1 0 0

7 4 0 0 0 1 0 0 1 0

7 5 0 1 0 0 1 0 0 0

7 6 0 0 1 0 0 1 0 0

7 7 0 0 0 1 0 0 1 0

7 8 0 0 0 0 0 0 0 1

8 1 1 0 0 0 1 0 0 0

8 2 0 1 0 0 0 1 0 0

8 3 0 0 1 0 0 0 1 0

8 4 0 0 0 1 0 0 0 1

8 5 1 0 0 0 1 0 0 0

8 6 0 1 0 0 0 1 0 0

8 7 0 0 1 0 0 0 1 0

8 8 0 0 0 1 0 0 0 1

9 1 1 0 0 0 0 1 0 0

9 2 0 1 0 0 0 0 1 0

9 3 0 0 1 0 0 0 0 1

9 4 0 0 0 1 0 0 0 0

9 5 0 0 0 0 1 0 0 0

9 6 1 0 0 0 0 1 0 0

9 7 0 1 0 0 0 0 1 0

9 8 0 0 1 0 0 0 0 1

10 1 1 0 0 0 0 0 1 0

10 2 0 1 0 0 0 0 0 1

10 3 0 0 1 0 0 0 0 0

10 4 0 0 0 1 0 0 0 0

10 5 0 0 0 0 1 0 0 0

10 6 0 0 0 0 0 1 0 0

10 7 1 0 0 0 0 0 1 0

10 8 0 1 0 0 0 0 0 1

11 1 1 0 0 0 0 0 0 1

11 2 0 1 0 0 0 0 0 0

11 3 0 0 1 0 0 0 0 0

11 4 0 0 0 1 0 0 0 0

11 5 0 0 0 0 1 0 0 0

11 6 0 0 0 0 0 1 0 0

11 7 0 0 0 0 0 0 1 0
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11 8 1 0 0 0 0 0 0 1

;

run;

proc mixed data=long_w8_sas covtest noclprint noinfo method=reml;

class cluster HH_ID wave015;

model log_incomeR=wave015 / noint solution ddfm=bw;

random intercept / subject=cluster type=un;

repeated wave015 / subject=HH_ID(cluster) type=lin(11) ldata=glld r;

run;

quit;
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Additional Tables and Figures for
Chapter 5

B.1 Level One Residuals

B.1.1 Multivariate Model with General Linear Lag Depen-
dent Covariance Structure

Figure B.1: Residual Diagnostic - Level one residuals
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B.1.2 Multivariate Model with Unconstrained Covariance
Structure

Figure B.2: Residual Diagnostic - Level one residuals

B.2 Level Two Residuals

B.2.1 Multivariate Model with General Linear Lag Depen-
dent Covariance Structure

Figure B.3: Residual Diagnostic - Level two residuals
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B.2.2 Multivariate Model with Unconstrained Covariance
Structure

Figure B.4: Residual Diagnostic - Level two residuals
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Additional Tables and Figures for
Chapter 7

C.1 Level One Residuals

C.1.1 Multivariate Multilevel Model Estimated via IGLS
with Robust Estimation Methods for the SEs

Figure C.1: Residual Diagnostic - Level one residuals
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C.1.2 Multivariate Multilevel Model Estimated via
PWIGLS

Figure C.2: Residual Diagnostic - Level one residuals

C.2 Level Two Residuals

C.2.1 Multivariate Multilevel Model Estimated via IGLS
with Robust Estimation Methods for the SEs

Figure C.3: Residual Diagnostic - Level two residuals
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C.2.2 Multivariate Multilevel Model Estimated via
PWIGLS

Figure C.4: Residual Diagnostic - Level two residuals
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Computer Codes for the PWIGLS

D.1 Computer Code: Probability Weighted It-

erative Generalized Least Squares for Ran-

dom Slope Model

Based on the computer codes published in Corrêa (2001). These codes were de-
veloped in Mata for Stata.

/******************************************************************************/

/* Probability Weighted Iterative Generalized Least Squares */

/* for two level random coefficient models */

/******************************************************************************/

version 9

mata:

void pwigls_2l_adcv( string varlist, dep, string varlist1, cluster_var, _wj_rep, _wi_j )

{

start= st_global("c(current_time)")

today= st_global("c(current_date)")

x = st_data(., tokens(varlist))

y = st_data(.,tokens(dep))

z = st_data(.,tokens(varlist1))

cluster_var = st_data(.,tokens(cluster_var))

cluster= uniqrows(cluster_var)

wj_rep = st_data(.,tokens(_wj_rep))

wi_j = st_data(.,tokens(_wi_j))

nvar = cols(x)

ncluster = rows(cluster)

nsubjc_t=rows(y)

q = cols(z)

s = ((q*(q+1))/2)+1

h_matrix= ((I(s)[vec(makesymmetric(invvech(1::s-1))), ]))’

name1 = tokens(varlist)

name3 = ("sigma2_u0","sigma_u10","sigma2_u1" ,"sigma2_e")

lambidaj = J(nsubjc_t,1,0)

info_j=panelsetup(cluster_var,1)

cluster_wgt=J(ncluster,1,0)
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/***************************************************************/

/*-------------- Calculating the Scaled Weights --------------*/

/*-------------- Scaling Method 2 --------------*/

/***************************************************************/

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

kwi_j=panelsubmatrix(wi_j, i, info_j)

np = rows(nsubjc)

k =mean(kwi_j)

parte = J(np,1,k)

a=info_j[i,1]

b=info_j[i,2]

lambidaj[a..b,]=parte

wj_rep_j=panelsubmatrix(wj_rep, i, info_j)

cluster_wgt[i,]=uniqrows(wj_rep_j)

}

wi_j_star = wi_j :/ lambidaj

wj_star = cluster_wgt / mean(cluster_wgt)

wjesc_r = wj_rep / mean(cluster_wgt)

/***************************************************************/

/* --------- Calculating Beta_zero and Theta_zero--------------*/

/***************************************************************/

mat_t1j = J(ncluster,nvar^2,0)

mat_t3j = J(ncluster,nvar,0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

np = rows(nsubjc)

wi_j_starj=panelsubmatrix(wi_j_star, i, info_j)

diag = diag(wi_j_starj)

wj = wj_star[i,]

mat_t1j[i,] = (vec( ( xj’ * diag * xj ) * wj ))’

mat_t3j[i,] = (vec( ( xj’ * diag * yj ) * wj))’

}

somat1 = rowshape(colsum(mat_t1j),nvar)

somat3 = colsum(mat_t3j)

beta0 = cholinv(somat1) * (somat3’)

vec_t6 = J(ncluster,1,0)

vec_aux = J(ncluster,1,0)

theta0 = (vech(diag(0.5):*I(q))\0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

np = rows(nsubjc)

wi_j_starj=panelsubmatrix(wi_j_star, i, info_j)

wj = wj_star[i,]

resid = yj - xj * beta0

uj0 = (wi_j_starj’ * resid ) / colsum(wi_j_starj)

vec_t6[i,] = (wi_j_starj’ * ( (resid :- uj0) :^ 2 ) ) * wj

vec_aux[i,]= wj * (colsum(wi_j_starj)- 1 )

}

206



Appendix D

theta0[s,]=colsum(vec_t6)/colsum(vec_aux)

/*************************************************/

/*----------- ITERATIVE MODULE-------------------*/

/*************************************************/

matp = J(ncluster,nvar^2,0)

matq = J(ncluster,nvar,0)

beta_ant = beta0

beta = beta_ant:*2

theta_ant=theta0

theta=theta_ant :* 2

itera = 1

while (itera<=200 & (any(abs((theta-theta_ant)):> 0.000001) | any(abs((beta-beta_ant)):

> 0.000001) ))

{

/*--------------looping for beta------------------*/

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

v=panelsubmatrix(wi_j_star, i, info_j)

diag = diag(v)

wj = wj_star[i,]

t1j = ( xj’ * diag * xj )

t2j = ( xj’ * diag * zj )

t3j = ( xj’ * diag * yj )

t4j = ( zj’ * diag * yj )

t5j = ( zj’ * diag * zj )

if (itera ~= 1) {

aj= cholinv( t5j + theta[s,]:*(cholinv(invvech(theta[1..(s-1),]))))

}

else {

aj= cholinv( t5j + theta0[s,]:*(cholinv(invvech(theta0[1..(s-1),]))))

}

matp[i,] = (vec ( wj :* (t1j - t2j * aj * t2j’) ) )’

matq[i,] = (vec ( wj :* (t3j - t2j * aj * t4j ) ) )’

}

/*----------- beta-------------- */

s_matp = rowshape(colsum(matp),nvar)

s_matq = colsum(matq)

if (itera ~= 1){

beta_ant = beta

}

beta = cholinv(s_matp) * (s_matq’)

/*-------- looping for theta=inv(R)x S -------------*/

q = cols(z)

s = ((q*(q+1))/2)+1

R = J(ncluster,s*s,0)

S = J(ncluster,s,0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)
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yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

v=panelsubmatrix(wi_j_star, i, info_j)

diag = diag(v)

wi_j_starj=panelsubmatrix(wi_j_star, i, info_j)

wj = wj_star[i,]

t1j = ( xj’ * diag * xj )

t2j = ( xj’ * diag * zj )

t3j = ( xj’ * diag * yj )

t4j = ( zj’ * diag * yj )

t5j = ( zj’ * diag * zj )

eij = yj - xj * beta

Rklj = J(s,s,0)

Skj = J(s,1,0)

B= J(s,q*q,0)

C = J(s,q*q,0)

H = h_matrix

delta = J(1,s,0)

delta[.,s]=1

if (itera ~= 1)

{

aj= cholinv( t5j + theta[s,]:*(cholinv(invvech(theta[1..(s-1),]))))

for (k=1; k<=s ; k++){

B[k,]=(vec(theta[s,]*aj*cholinv(invvech(theta[1..(s-1),]))* rowshape(H[k,],q)- delta[,k]*aj ))’

C[k,]=(vec(-delta[,k]*aj + rowshape(B[k,],q)’ - rowshape(B[k,],q)’* t5j * aj ))’

for (l=1; l<=s ; l++){

Rklj[k,l]= wj*(delta[.,k]*delta[.,l]*colsum(v) + delta[.,l]*trace(t5j*rowshape(C[k,],q)’)+

delta[.,k]*trace(t5j*rowshape(H[l,],q))+trace(t5j*rowshape(C[k,],q)’*t5j*rowshape(H[l,],q)))

}

Skj[k,]= wj*(delta[.,k]*trace(eij’*diag*eij) +trace(eij’*diag*zj * rowshape(C[k,],q)’ *

zj’*diag*eij))

}

}

else

{

aj= cholinv( t5j + theta0[s,]:*(cholinv(invvech(theta0[1..(s-1),]))))

for (k=1; k<=s ; k++){

B[k,]=(vec( theta0[s,]*aj*cholinv(invvech(theta0[1..(s-1),]))* rowshape(H[k,],q)- delta[,k]*aj ))’

C[k,]=(vec(-delta[,k]*aj + rowshape(B[k,],q)’ - rowshape(B[k,],q)’*t5j*aj))’

for (l=1; l<=s ; l++){

Rklj[k,l]= wj*(delta[.,k]*delta[.,l]*colsum(v) + delta[.,l]*trace(t5j*rowshape(C[k,],q)’)+

delta[.,k]*trace(t5j*rowshape(H[l,],q))+trace(t5j*rowshape(C[k,],q)’*t5j*rowshape(H[l,],q)))

}

Skj[k,]= wj*(delta[.,k]*trace(eij’*diag*eij) +trace(eij’*diag*zj * rowshape(C[k,],q)’ *

zj’*diag*eij))

}

}

R[i,]=(vec(Rklj))’

S[i,]=(vec(Skj))’

}

matr=colsum(R)

mats=colsum(S)

r_mat = rowshape(matr,s)

s_mat = rowshape(mats,s)

if (itera ~= 1) {

theta_ant = theta

}

theta = cholinv(r_mat) * s_mat
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itera = itera + 1

}

/* Number of Iterations*/

n_it = itera - 1

/**************************************************/

/*----------End of iterative process--------------*/

/**************************************************/

/*****************************************************/

/*------------------ Residuals-----------------------*/

/*****************************************************/

u = J(ncluster,q, 0)

var_u = J(ncluster,q*q,0)

dp_u = J(ncluster,q,0)

yhat = J(nsubjc_t,1, 0)

v = J(nsubjc_t,1, 0)

var_v = J(nsubjc_t,1, 0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

ej = yj - xj * beta

a=info_j[i,1]

b=info_j[i,2]

Sigmau=(invvech(theta[1..(s-1),]))

Rhj = Sigmau* zj’

Vj = zj * Sigmau * zj’ + theta[s,] :* I(np)

aux = Rhj * cholinv(Vj)

u[i,] = (aux * ej)’

var_u[i,] = (vec(Sigmau - aux * Rhj’))’

dp_u[i,] = (vec(sqrt(diagonal(rowshape(var_u[i,],q) ))))’

yhat1 = xj * beta + zj*u[i,]’

yhat[a..b,] = yhat1

vj = ej - zj*u[i,]’

v[a..b,] = vj

aux = theta[s,] :* ( 1 - (1/np) )

var = J(np,1,aux)

var_v[a..b,] = var

}

u_pad = u :/ dp_u

v_pad = v :/ sqrt(var_v)

/**********************************************************/
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/*-------------- Variances of Beta and Theta--------------*/

/**********************************************************/

mat_c = J(ncluster,nvar^2,0)

mat_d = J(ncluster,s*s,0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

wj = wj_star[i,]

v = panelsubmatrix(wi_j_star, i, info_j)

diag = diag(v)

/*----------beta----------*/

ej = yj - xj * beta

t2j = ( xj’ * diag * zj )

t4j = ( zj’ * diag * yj )

t5j = ( zj’ * diag * zj )

t7j = ( xj’ * diag * ej )

t8j = ( ej’ * diag * zj )

aj= cholinv( t5j + theta[s,]*(cholinv(invvech(theta[1..(s-1),]))))

cj = t7j - ( t2j * aj * t8j’)

mat_c[i,] = (vec( (wj:^2) * (cj * cj’) ))’

/*----------theta----------*/

Rklj=rowshape(R[i,],s)

Skj=rowshape(S[i,],s)

Dkj = (Skj-Rklj*theta)*(Skj-Rklj*theta)’

mat_d[i,]=(vec(Dkj))’

}

/**********************************************************/

/*----------------------Variances-------------------------*/

/**********************************************************/

var_beta = cholinv(s_matp)*((ncluster /( ncluster-1))*rowshape(colsum(mat_c),nvar))

*cholinv(s_matp)

dp_beta = sqrt(diagonal(var_beta))

var_theta = cholinv(r_mat)*ncluster/(ncluster-1)* rowshape(colsum(mat_d),s)* cholinv(r_mat)

dp_theta = sqrt(diagonal(var_theta))

finish= st_global("c(current_time)")

today1= st_global("c(current_date)")

z_star = beta:/dp_beta

z_star2= theta:/dp_theta

z_star_l= beta-abs(invnormal(0.025)):*dp_beta

z_star_u= beta+abs(invnormal(0.025)):*dp_beta

pz_star= 2:*(1:-normal(abs(z_star)))

z_star2_l= theta-abs(invnormal(0.05)):*dp_theta

z_star2_u= theta+abs(invnormal(0.05)):*dp_theta

pz_star2= 2:*(1:-normal(abs(z_star2)))

st_matrix("beta",beta)

st_matrix("var_beta",var_beta)

printf("\n")
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printf("{hline 87}\n")

printf(" Probability Weighted Iterative Generalized Least Squares \n")

printf("{hline 87}\n")

printf("General Information\n")

printf("\n")

printf("Response Variable = {txt}%19s \n", dep)

printf("Weight at Level 2 = {txt}%19s \n", _wj_rep)

printf("Weight at Level 1 = {txt}%19s \n", _wi_j)

printf("\n")

printf("Start running on %s at %s\n", today , start)

printf("Number of Iterations = %3.0f\n", n_it)

printf("Number of Level 1 units = %3.0f\n", nsubjc_t)

printf("Number of Level 2 units = %3.0f\n", ncluster)

printf("\n")

printf("{hline 87}\n")

printf(" Fixed Effects{c |} Coef. Std.Err. z P>|z| [95%sConf.Interval]

Init.Val.\n","%")

printf("{hline 20}{c +}{hline 66}\n")

for (mi=1; mi<= nvar; mi++) {

printf("{txt}%19s {c |} {res}%8.0g %8.0g %6.2f %6.3f %8.0g %8.0g %8.0g\n",name1[.,mi]’,

beta[mi,.], dp_beta[mi,.],z_star[mi,.], pz_star[mi,.] , z_star_l[mi,.],z_star_u[mi,.],

beta0[mi,.] )

}

printf("{hline 87}\n")

printf("\n")

printf("{hline 87}\n")

printf(" Variance Components{c |} Coef. Std.Err. z P>|z| [95%sConf.Interval]

Init.Val.\n","%")

printf("{hline 20}{c +}{hline 66}\n")

for (mi=1; mi<= s; mi++) {

printf("{txt}%19s {c |} {res}%8.0g %8.0g %6.2f %6.3f %8.0g %8.0g %8.0g\n",name3[.,mi]’,

theta[mi,.], dp_theta[mi,.],z_star2[mi,.], pz_star2[mi,.] , z_star2_l[mi,.],z_star2_u[mi,.],

theta0[mi,.] )

}

printf("{hline 87}\n")

printf("Note: Robust Standard Errors \n")

printf(" Finish running on %s at %s\n", today1 , finish)

printf("{hline 87}\n")

}

mata mosave pwigls_2l_adcv(), replace

end

D.2 Computer Code: Probability-weighted Iter-

ative Generalized Least Squares for General

Linear Lag-dependent Covariance Structure

/*******************************************************************************/

/* Probability Weighted Iterative Generalized Least Squares for two level */

/* multivariate models with General Lag Linear dependent covariance structure */

/*******************************************************************************/

version 9

mata:

void pwigls_genlin_adcv( string varlist, dep, string varlist2, string varlist1, cluster_var,

_wj_rep, _wi_j )

{

start= st_global("c(current_time)")

today= st_global("c(current_date)")

x = st_data(., tokens(varlist))

y = st_data(.,tokens(dep))

z = st_data(.,tokens(varlist1))

time_var = st_data(.,tokens(varlist2))

cluster_var = st_data(.,tokens(cluster_var))
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cluster= uniqrows(cluster_var)

wj_rep = st_data(.,tokens(_wj_rep))

wi_j = st_data(.,tokens(_wi_j))

nvar = cols(x)

ncluster = rows(cluster)

nsubjc_t=rows(y)

q = cols(z)

t = cols(time_var)

s = 12

/*-------------- H matrices --------------*/

h_matrix= ((I(s)[1, ]))’

h_matrix

/*-------------- Delta matrices --------------*/

delta_matrix=J(s,64,0)

delta_matrix[2,]=(1,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,

0,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0,

0,0,0,0,0,1,0,0,

0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,1)

delta_matrix[3,]=(1,1,0,0,0,0,0,0,

1,1,1,0,0,0,0,0,

0,1,1,1,0,0,0,0,

0,0,1,1,0,0,0,0,

0,0,0,0,1,1,0,0,

0,0,0,0,1,1,1,0,

0,0,0,0,0,1,1,1,

0,0,0,0,0,0,1,1)

delta_matrix[4,]=(1,0,1,0,0,0,0,0,

0,1,0,1,0,0,0,0,

1,0,1,0,0,0,0,0,

0,1,0,1,0,0,0,0,

0,0,0,0,1,0,1,0,

0,0,0,0,0,1,0,1,

0,0,0,0,1,0,1,0,

0,0,0,0,0,1,0,1)

delta_matrix[5,]=(1,0,0,1,0,0,0,0,

0,1,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,

1,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,1,

0,0,0,0,0,1,0,0,

0,0,0,0,0,0,1,0,

0,0,0,0,1,0,0,1)

delta_matrix[6,]=(1,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,

0,0,0,1,1,0,0,0,

0,0,0,1,1,0,0,0,

0,0,0,0,0,1,0,0,

0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,1)

delta_matrix[7,]=(1,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,

0,0,1,0,1,0,0,0,

0,0,0,1,0,1,0,0,

0,0,1,0,1,0,0,0,

0,0,0,1,0,1,0,0,

0,0,0,0,0,0,1,0,
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0,0,0,0,0,0,0,1)

delta_matrix[8,]=(1,0,0,0,0,0,0,0,

0,1,0,0,1,0,0,0,

0,0,1,0,0,1,0,0,

0,0,0,1,0,0,1,0,

0,1,0,0,1,0,0,0,

0,0,1,0,0,1,0,0,

0,0,0,1,0,0,1,0,

0,0,0,0,0,0,0,1)

delta_matrix[9,]=(1,0,0,0,1,0,0,0,

0,1,0,0,0,1,0,0,

0,0,1,0,0,0,1,0,

0,0,0,1,0,0,0,1,

1,0,0,0,1,0,0,0,

0,1,0,0,0,1,0,0,

0,0,1,0,0,0,1,0,

0,0,0,1,0,0,0,1)

delta_matrix[10,]=(1,0,0,0,0,1,0,0,

0,1,0,0,0,0,1,0,

0,0,1,0,0,0,0,1,

0,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0,

1,0,0,0,0,1,0,0,

0,1,0,0,0,0,1,0,

0,0,1,0,0,0,0,1)

delta_matrix[11,]=(1,0,0,0,0,0,1,0,

0,1,0,0,0,0,0,1,

0,0,1,0,0,0,0,0,

0,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0,

0,0,0,0,0,1,0,0,

1,0,0,0,0,0,1,0,

0,1,0,0,0,0,0,1)

delta_matrix[12,]=(1,0,0,0,0,0,0,1,

0,1,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,

0,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,0,

0,0,0,0,0,1,0,0,

0,0,0,0,0,0,1,0,

1,0,0,0,0,0,0,1)

rowshape(delta_matrix[1,],8)

rowshape(delta_matrix[2,],8)

rowshape(delta_matrix[3,],8)

rowshape(delta_matrix[4,],8)

rowshape(delta_matrix[5,],8)

rowshape(delta_matrix[6,],8)

rowshape(delta_matrix[7,],8)

rowshape(delta_matrix[8,],8)

rowshape(delta_matrix[9,],8)

rowshape(delta_matrix[10,],8)

rowshape(delta_matrix[11,],8)

rowshape(delta_matrix[12,],8)

name1 = tokens(varlist)

name3 = ("Sigma_u_2","Genlin(1)","Genlin(2)","Genlin(3)","Genlin(4)","Genlin(5)","Genlin(6)",

"Genlin(7)","Genlin(8)","Genlin(9)","Genlin(10)","Genlin(11)","Genlin(12)")

lambidaj = J(nsubjc_t,1,0)

info_j=panelsetup(cluster_var,1)

cluster_wgt=J(ncluster,1,0)

/***************************************************************/

/*-------------- Calculating the Scaled Weights --------------*/
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/*-------------- Scaling Method 2 --------------*/

/***************************************************************/

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

kwi_j=panelsubmatrix(wi_j, i, info_j)

np = rows(nsubjc)

k =mean(kwi_j)

parte = J(np,1,k)

a=info_j[i,1]

b=info_j[i,2]

lambidaj[a..b,]=parte

wj_rep_j=panelsubmatrix(wj_rep, i, info_j)

cluster_wgt[i,]=uniqrows(wj_rep_j)

}

wi_j_star = wi_j :/ lambidaj

wj_star = cluster_wgt / mean(cluster_wgt)

wjesc_r = wj_rep / mean(cluster_wgt)

/********************************************************************/

/*-------------- Calculating Beta_zero and Theta_zero --------------*/

/********************************************************************/

mat_t1j = J(ncluster,nvar^2,0) // it is necessary to declare a matrix

mat_t3j = J(ncluster,nvar,0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

np = rows(nsubjc)

wi_j_starj=panelsubmatrix(wi_j_star, i, info_j)

diag = diag(wi_j_starj)

wj = wj_star[i,]

mat_t1j[i,] = (vec( ( xj’ * diag * xj ) * wj ))’

mat_t3j[i,] = (vec( ( xj’ * diag * yj ) * wj))’

}

somat1 = rowshape(colsum(mat_t1j),nvar)

somat3 = colsum(mat_t3j)

beta0 = invsym(somat1) * (somat3’)

vec_t6 = J(ncluster,1,0)

vec_aux = J(ncluster,1,0)

theta0 = J(s,1,.5)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

np = rows(nsubjc)

wi_j_starj=panelsubmatrix(wi_j_star, i, info_j)

wj = wj_star[i,]

resid = yj - xj * beta0

uj0 = (wi_j_starj’ * resid ) / colsum(wi_j_starj)

vec_t6[i,] = (wi_j_starj’ * ( (resid :- uj0) :^ 2 ) ) * wj

vec_aux[i,]= wj * (colsum(wi_j_starj)- 1 )

}

theta0[2,]=colsum(vec_t6)/colsum(vec_aux)

/*************************************************/

/*----------- ITERATIVE MODULE-------------------*/

/*************************************************/

matp = J(ncluster,nvar^2,0)
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matq = J(ncluster,nvar,0)

beta_ant = beta0

beta = beta_ant:*2

theta_ant=theta0

theta=theta_ant :* 2

itera = 1

while (itera<=200 & (any(abs((theta-theta_ant)):> 0.000001) |

any(abs((beta-beta_ant)):> 0.000001) ))

{

/*-------------- looping for beta --------------*/

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

v=panelsubmatrix(wi_j_star, i, info_j)

diag = diag(v)

wj = wj_star[i,]

if (itera ~= 1) {

theta_genlin=theta[2,]*rowshape(delta_matrix[2,],8)+ theta[3,]*rowshape(delta_matrix[3,],8)+

theta[4,]*rowshape(delta_matrix[4,],8)+ theta[5,]*rowshape(delta_matrix[5,],8)+

theta[6,]*rowshape(delta_matrix[6,],8)+theta[7,]*rowshape(delta_matrix[7,],8)

+theta[8,]*rowshape(delta_matrix[8,],8)+theta[9,]*rowshape(delta_matrix[9,],8)

+theta[10,]*rowshape(delta_matrix[10,],8)+theta[11,]*rowshape(delta_matrix[11,],8)

+theta[12,]*rowshape(delta_matrix[12,],8)

sigma=I(np/t)#theta_genlin

aj= invsym(invsym(theta[1,])+zj’*(diag*invsym(sigma))*zj)

invvj=diag*invsym(sigma)-diag*invsym(sigma)*zj*aj*zj’*diag*invsym(sigma)

}

else {

theta0_genlin=theta0[2,]*rowshape(delta_matrix[2,],8)+ theta0[3,]*rowshape(delta_matrix[3,],8)

+theta0[4,]*rowshape(delta_matrix[4,],8)+ theta0[5,]*rowshape(delta_matrix[5,],8)+

theta0[6,]*rowshape(delta_matrix[6,],8)+theta0[7,]*rowshape(delta_matrix[7,],8)

+theta0[8,]*rowshape(delta_matrix[8,],8)+theta0[9,]*rowshape(delta_matrix[9,],8)

+theta0[10,]*rowshape(delta_matrix[10,],8)+theta0[11,]*rowshape(delta_matrix[11,],8)

+theta0[12,]*rowshape(delta_matrix[12,],8)

sigma0=I(np/t)#theta0_genlin

aj=invsym(invsym(theta0[1,])+zj’*(diag*invsym(sigma0))*zj)

invvj=diag*invsym(sigma0)-diag*invsym(sigma0)*zj*aj*zj’*diag*invsym(sigma0)

}

matp[i,] = (vec ( wj :* xj’*invvj*xj ))’

matq[i,] = (vec ( wj :* xj’*invvj*yj ))’

}

/*----------- beta-------------- */

s_matp = rowshape(colsum(matp),nvar)

s_matq = colsum(matq)

if (itera ~= 1){

beta_ant = beta

}

beta = invsym(s_matp) * (s_matq’)

/*-------------- looping for theta=inv(R)x S --------------*/

q = cols(z)

s = 12

R = J(ncluster,s*s,0)

S = J(ncluster,s,0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)
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yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

v=panelsubmatrix(wi_j_star, i, info_j)

diag = diag(v)

wj = wj_star[i,]

ej = yj - xj * beta

Rklj = J(s,s,0)

Skj = J(s,1,0)

H = h_matrix

delta=delta_matrix

if (itera ~= 1) {

theta_genlin=theta[2,]*rowshape(delta_matrix[2,],8)+ theta[3,]*rowshape(delta_matrix[3,],8)

+theta[4,]*rowshape(delta_matrix[4,],8)+ theta[5,]*rowshape(delta_matrix[5,],8)

+theta[6,]*rowshape(delta_matrix[6,],8)+theta[7,]*rowshape(delta_matrix[7,],8)

+theta[8,]*rowshape(delta_matrix[8,],8)+theta[9,]*rowshape(delta_matrix[9,],8)

+theta[10,]*rowshape(delta_matrix[10,],8)+theta[11,]*rowshape(delta_matrix[11,],8)

+theta[12,]*rowshape(delta_matrix[12,],8)

sigma=I(np/t)#theta_genlin

aj= invsym(invsym(theta[1,])+zj’*(diag*invsym(sigma))*zj)

invvj=diag*invsym(sigma)-diag*invsym(sigma)*zj*aj*zj’*diag*invsym(sigma)

}

else {

theta0_genlin=theta0[2,]*rowshape(delta_matrix[2,],8)+ theta0[3,]*rowshape(delta_matrix[3,],8)

+theta0[4,]*rowshape(delta_matrix[4,],8)+ theta0[5,]*rowshape(delta_matrix[5,],8)

+theta0[6,]*rowshape(delta_matrix[6,],8)+theta0[7,]*rowshape(delta_matrix[7,],8)

+theta0[8,]*rowshape(delta_matrix[8,],8)+theta0[9,]*rowshape(delta_matrix[9,],8)

+theta0[10,]*rowshape(delta_matrix[10,],8)+theta0[11,]*rowshape(delta_matrix[11,],8)

+theta0[12,]*rowshape(delta_matrix[12,],8)

sigma0=I(np/t)#theta0_genlin

aj=invsym(invsym(theta0[1,])+zj’*(diag*invsym(sigma0))*zj)

invvj=diag*invsym(sigma0)-diag*invsym(sigma0)*zj*aj*zj’*diag*invsym(sigma0)

}

for (k=1; k<=s ; k++) {

for (l=1; l<=s ; l++) {

Rklj[k,l]= wj*(trace((invvj*(zj*h_matrix[k,]*zj’ + I(np/t)#rowshape(delta_matrix[k,],t)’ *

invsym(diag))) * (invvj*(zj*h_matrix[l,]*zj’ + I(np/t)#rowshape(delta_matrix[l,],t)’

*invsym(diag)))))

}

Skj[k,]= wj*(trace(invvj*(zj*h_matrix[k,]*zj’ +

I(np/t)#rowshape(delta_matrix[k,],t)’*invsym(diag))*invvj*(ej*ej’)))

}

R[i,]=(vec(Rklj))’

S[i,]=(vec(Skj))’

}

matr=colsum(R)

mats=colsum(S)

r_mat = rowshape(matr,s)

s_mat = rowshape(mats,s)

if (itera ~= 1) {

theta_ant = theta

}

theta = invsym(r_mat) * s_mat

itera = itera + 1

}

n_it = itera - 1

/**************************************************/

/*----------End of iterative process--------------*/
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/**************************************************/

/************************************************/

/*------------------ Residuals------------------*/

/************************************************/

u = J(ncluster,q, 0)

var_u = J(ncluster,q*q,0)

dp_u = J(ncluster,q,0)

yhat = J(nsubjc_t,1, 0)

v = J(nsubjc_t,1, 0)

var_v = J(nsubjc_t,1, 0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

ej = yj - xj * beta

a=info_j[i,1]

b=info_j[i,2]

Sigmau=(invvech(theta[1,]))

Rhj = Sigmau* zj’

theta_genlin=theta[2,]*rowshape(delta_matrix[2,],8)+ theta[3,]*rowshape(delta_matrix[3,],8)+

theta[4,]*rowshape(delta_matrix[4,],8)+ theta[5,]*rowshape(delta_matrix[5,],8)+

theta[6,]*rowshape(delta_matrix[6,],8)+theta[7,]*rowshape(delta_matrix[7,],8)

+theta[8,]*rowshape(delta_matrix[8,],8)+theta[9,]*rowshape(delta_matrix[9,],8)

+theta[10,]*rowshape(delta_matrix[10,],8)+theta[11,]*rowshape(delta_matrix[11,],8)

+theta[12,]*rowshape(delta_matrix[12,],8)

sigma=I(np/t)#theta_genlin

Vj = zj * Sigmau * zj’ + sigma

aux = Rhj * invsym(Vj)

u[i,] = (aux * ej)’

var_u[i,] = (vec(Sigmau - aux * Rhj’))’

dp_u[i,] = (vec(sqrt(diagonal(rowshape(var_u[i,],q) ))))’

yhat1 = xj * beta + zj*u[i,]’

yhat[a..b,] = yhat1

vj = ej - zj*u[i,]’

v[a..b,] = vj

}

resindex01 = st_addvar("float","u")

st_store((1,rows(u)),resindex01,u)

resindex0 = st_addvar("float","se")

st_store((1,rows(dp_u)),resindex0,dp_u)

resindex = st_addvar("float","resid")

st_store((1,rows(res)),resindex,res)

resindex1 = st_addvar("float","yhat1")

st_store((1,rows(yhat)),resindex1,yhat)

resindex2 = st_addvar("float","clusteru")

st_store((1,rows(cluster)),resindex2,cluster)

217



Appendix D

/**********************************************************/

/*-------------- Variances of Beta and Theta--------------*/

/**********************************************************/

mat_c = J(ncluster,nvar^2,0)

mat_d = J(ncluster,s*s,0)

for (i=1; i<=rows(info_j) ; i++){

nsubjc=panelsubmatrix(cluster_var, i, info_j)

yj=panelsubmatrix(y, i, info_j)

xj=panelsubmatrix(x, i, info_j)

zj=panelsubmatrix(z, i, info_j)

np = rows(nsubjc)

wj = wj_star[i,]

v = panelsubmatrix(wi_j_star, i, info_j)

diag = diag(v)

/*----------- beta-------------- */

ej = yj - xj * beta

theta_genlin=theta[2,]*rowshape(delta_matrix[2,],8)+ theta[3,]*rowshape(delta_matrix[3,],8)+

theta[4,]*rowshape(delta_matrix[4,],8)+ theta[5,]*rowshape(delta_matrix[5,],8)+

theta[6,]*rowshape(delta_matrix[6,],8)+theta[7,]*rowshape(delta_matrix[7,],8)

+theta[8,]*rowshape(delta_matrix[8,],8)+theta[9,]*rowshape(delta_matrix[9,],8)

+theta[10,]*rowshape(delta_matrix[10,],8)+theta[11,]*rowshape(delta_matrix[11,],8)

+theta[12,]*rowshape(delta_matrix[12,],8)

sigma=I(np/t)#theta_genlin

aj= invsym(invsym(theta[1,])+zj’*(diag*invsym(sigma))*zj)

invvj=diag*invsym(sigma)-diag*invsym(sigma)*zj*aj*zj’*diag*invsym(sigma)

cj = xj’*invvj*ej

mat_c[i,] = (vec( (wj:^2) * (cj * cj’) ))’

/*----------- theta-------------- */

Rklj=rowshape(R[i,],s)

Skj=rowshape(S[i,],s)

Dkj = (Skj-Rklj*theta)*(Skj-Rklj*theta)’

mat_d[i,]=(vec(Dkj))’

}

/**********************************************************/

/*----------------------Variances-------------------------*/

/**********************************************************/

var_beta = invsym(s_matp)*((ncluster /( ncluster-1))*rowshape(colsum(mat_c),nvar))*

invsym(s_matp)

dp_beta = sqrt(diagonal(var_beta))

var_theta = invsym(r_mat)*ncluster/(ncluster-1)* rowshape(colsum(mat_d),s)* invsym(r_mat)

dp_theta = sqrt(diagonal(var_theta))

finish= st_global("c(current_time)")

today1= st_global("c(current_date)")

z_star = beta:/dp_beta

z_star2= theta:/dp_theta

z_star_l= beta-abs(invnormal(0.025)):*dp_beta

z_star_u= beta+abs(invnormal(0.025)):*dp_beta

pz_star= 2:*(1:-normal(abs(z_star)))

z_star2_l= theta-abs(invnormal(0.05)):*dp_theta

z_star2_u= theta+abs(invnormal(0.05)):*dp_theta

pz_star2= 2:*(1:-normal(abs(z_star2)))

theta_genlin=theta[2,]*rowshape(delta_matrix[2,],8)+ theta[3,]*rowshape(delta_matrix[3,],8)+

theta[4,]*rowshape(delta_matrix[4,],8)+ theta[5,]*rowshape(delta_matrix[5,],8)+

theta[6,]*rowshape(delta_matrix[6,],8)+theta[7,]*rowshape(delta_matrix[7,],8)

+theta[8,]*rowshape(delta_matrix[8,],8)+theta[9,]*rowshape(delta_matrix[9,],8)

+theta[10,]*rowshape(delta_matrix[10,],8)+theta[11,]*rowshape(delta_matrix[11,],8)
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+theta[12,]*rowshape(delta_matrix[12,],8)

TOEP=theta_genlin

Sigma_r=theta[1]*J(t,t,1)+ TOEP

st_matrix("beta",beta)

st_matrix("var_beta",var_beta)

/**********************************************************/

/*--------------- Printing results -----------------------*/

/**********************************************************/

printf("\n")

printf("{hline 87}\n")

printf(" Probability Weighted Iterative Generalized Least Squares \n")

printf("{hline 87}\n")

printf("General Information\n")

printf("\n")

printf("Response Variable = {txt}%19s \n", dep)

printf("Weight at Level 2 = {txt}%19s \n", _wj_rep)

printf("Weight at Level 1 = {txt}%19s \n", _wi_j)

printf("\n")

printf("Start running on %s at %s\n", today , start)

printf("Number of Iterations = %3.0f\n", n_it)

printf("Number of Time points = %3.0f\n", t)

printf("Number of Level 1 units = %3.0f\n", nsubjc_t/t)

printf("Number of Level 2 units = %3.0f\n", ncluster)

printf("\n")

printf("{hline 87}\n")

printf(" Fixed Effects{c |} Coef. Std.Err. z P>|z| [95%sConf.Interval]

Init.Val.\n","%")

printf("{hline 20}{c +}{hline 66}\n")

for (mi=1; mi<= nvar; mi++) {

printf("{txt}%19s {c |} {res}%8.0g %8.0g %6.2f %6.3f %8.0g %8.0g %8.0g\n",name1[.,mi]’,

beta[mi,.], dp_beta[mi,.],z_star[mi,.], pz_star[mi,.] , z_star_l[mi,.],z_star_u[mi,.]

,beta0[mi,.] )

}

printf("{hline 87}\n")

printf("\n")

printf("{hline 87}\n")

printf(" Variance Components{c |} Coef. Std.Err. z P>|z| [95%sConf.Interval]

Init.Val.\n","%")

printf("{hline 20}{c +}{hline 66}\n")

for (mi=1; mi<= s; mi++) {

printf("{txt}%19s {c |} {res}%8.0g %8.0g %6.2f %6.3f %8.0g %8.0g %8.0g\n",name3[.,mi]’,

theta[mi,.], dp_theta[mi,.],z_star2[mi,.], pz_star2[mi,.] , z_star2_l[mi,.],z_star2_u[mi,.],

theta0[mi,.] )

}

printf("{hline 87}\n")

printf("\n\n General Linear Matrix\n")

TOEP

printf("\n\n Total Variance\n")

Sigma_r

printf("{hline 87}\n")

printf("Note: Robust Standard Errors \n")

printf(" Finish running on %s at %s\n", today1 , finish)

printf("{hline 87}\n")

}

bb2=0

mata mosave pwigls_genlin_adcv(), replace

end
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D.3 Output for the Final Multivariate Multi-

level Model Estimated via PWIGLS

---------------------------------------------------------------------------------------

Probability Weighted Iterative Generalized Least Squares

---------------------------------------------------------------------------------------

General Information

Response Variable = log_incomeR

Weight at Level 2 = wj

Weight at Level 1 = wi_j

Start running on 3 Jun 2009 at 23:03:47

Number of Iterations = 7

Number of Time points = 8

Number of Level 1 units = 6524

Number of Level 2 units = 1762

---------------------------------------------------------------------------------------

Fixed Effects| Coef. Std.Err. z P>|z| [95%Conf.Interval] Init.Val.

--------------------+------------------------------------------------------------------

wav015_1 | 6.01923 .292544 20.58 0.000 5.44585 6.59261 5.03989

wav015_2 | 6.02227 .29244 20.59 0.000 5.4491 6.59544 5.04101

wav015_3 | 6.01442 .292825 20.54 0.000 5.44049 6.58835 5.03244

wav015_4 | 6.02598 .292496 20.60 0.000 5.45269 6.59926 5.04339

wav015_5 | 6.05161 .292528 20.69 0.000 5.47826 6.62495 5.06866

wav015_6 | 6.0475 .2924 20.68 0.000 5.47441 6.62059 5.06172

wav015_7 | 6.04417 .292575 20.66 0.000 5.47073 6.61761 5.06012

wav015_8 | 6.05173 .292677 20.68 0.000 5.47809 6.62536 5.06692

RM_29 | .012752 .039629 0.32 0.748 -.06492 .090424 .026273

RM_31 | .253822 .031615 8.03 0.000 .191859 .315786 .276608

RM_33 | .216725 .029061 7.46 0.000 .159765 .273684 .247782

RM_35 | .36807 .031863 11.55 0.000 .305621 .43052 .389173

RM_43 | .239461 .035441 6.76 0.000 .169997 .308925 .272588

age_w1 | .002062 .001767 1.17 0.243 -.0014 .005525 -.000731

age_w1_sq | -.000474 .00007 -6.77 0.000 -.000611 -.000337 -.000409

male | .529592 .164284 3.22 0.001 .207602 .851582 .61145

white_w1 | .216118 .039241 5.51 0.000 .139206 .293029 .170516

informal | -.095638 .03212 -2.98 0.003 -.158592 -.032685 -.386507

formal | -.0182 .031743 -0.57 0.566 -.080415 .044015 -.230513

emp_other | .041726 .037099 1.12 0.261 -.030986 .114438 -.002263

self_emp | -.169009 .026107 -6.47 0.000 -.220178 -.117841 -.522254

int_vd20_2 | -.015092 .015988 -0.94 0.345 -.046428 .016244 -.051027

int_vd20_3 | -.04361 .010839 -4.02 0.000 -.064853 -.022366 -.130819

int_vd20_4 | -.008754 .012194 -0.72 0.473 -.032653 .015145 -.033797

int_vd20_5 | .028476 .016354 1.74 0.082 -.003578 .06053 -.10124

int_vd20_6 | -.033176 .022618 -1.47 0.142 -.077506 .011154 -.161429

int_vd20_7 | -.0346 .01423 -2.43 0.015 -.06249 -.00671 -.081988

int_vd20_8 | -.01077 .023555 -0.46 0.648 -.056937 .035397 -.307713

educa_w1 | -.083486 .014133 -5.91 0.000 -.111186 -.055786 -.091485

educa_w1_sq | .009575 .000819 11.69 0.000 .00797 .01118 .009543

dur_emp_c | .000415 .000071 5.83 0.000 .000275 .000554 .001602

dur_emp_c_sq | -9.6e-07 2.7e-07 -3.63 0.000 -1.5e-06 -4.4e-07 -2.5e-06

log_hours | .257011 .035692 7.20 0.000 .187057 .326966 .471453

entrevist_2 | .008961 .00773 1.16 0.246 -.00619 .024112 .004061

int_malXage_w_1 | .005696 .00194 2.94 0.003 .001895 .009498 .004826

int_malXeduca_1 | .075799 .016174 4.69 0.000 .044098 .1075 .069797

int_malXeducaa1 | -.004585 .000953 -4.81 0.000 -.006453 -.002716 -.003996

int_malXlog_h_1 | -.087637 .041216 -2.13 0.033 -.168418 -.006856 -.137124

int_malXent_1_2 | -.039626 .009715 -4.08 0.000 -.058668 -.020585 -.002829

int_whiXinfor_1 | -.086287 .040238 -2.14 0.032 -.165152 -.007422 -.084352

int_whiXforma_1 | -.114203 .042926 -2.66 0.008 -.198336 -.03007 -.067152

int_whiXemp_o_1 | -.180046 .050087 -3.59 0.000 -.278214 -.081878 -.242086

int_whiXself__1 | -.013537 .033306 -0.41 0.684 -.078815 .051742 .044826

CEformal | -1.69013 .23689 -7.13 0.000 -2.15442 -1.22583 -1.20669

CEinformal | -1.97866 .267583 -7.39 0.000 -2.50311 -1.45421 -1.31177

CEemp_other | -2.08551 .299279 -6.97 0.000 -2.67209 -1.49893 -1.73421

CEself_emp | -1.96288 .281953 -6.96 0.000 -2.5155 -1.41026 -1.28446

CEeduca | .085814 .008067 10.64 0.000 .070002 .101625 .0933

---------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------

Variance Components| Coef. Std.Err. z P>|z| [95%Conf.Interval] Init.Val.

--------------------+------------------------------------------------------------------

Sigma_u_2 | .009565 .00318 3.01 0.003 .004334 .014795 .5

Genlin(1) | -2.04916 .071627 -28.61 0.000 -2.16698 -1.93135 .238071

Genlin(2) | .266337 .008247 32.30 0.000 .252772 .279901 .5

Genlin(3) | .261529 .008083 32.36 0.000 .248234 .274824 .5

Genlin(4) | .257416 .008075 31.88 0.000 .244134 .270698 .5

Genlin(5) | .229741 .008488 27.07 0.000 .215779 .243702 .5

Genlin(6) | .229 .008283 27.65 0.000 .215376 .242624 .5

Genlin(7) | .226347 .008102 27.94 0.000 .21302 .239673 .5

Genlin(8) | .224365 .008007 28.02 0.000 .211194 .237535 .5

Genlin(9) | .222241 .007945 27.97 0.000 .209173 .235309 .5

Genlin(10) | .219888 .007872 27.93 0.000 .206939 .232836 .5

Genlin(11) | .217683 .007904 27.54 0.000 .204682 .230684 .5

---------------------------------------------------------------------------------------

General Linear Matrix

[symmetric]

1 2 3 4 5

+-----------------------------------------------------------------------

1 | .3053804604

2 | .2663367367 .3053804604

3 | .2615288685 .2663367367 .3053804604

4 | .2574159714 .2615288685 .2663367367 .3053804604

5 | .2243645655 .2263465302 .228999806 .2297405771 .3053804604

6 | .2222409588 .2243645655 .2263465302 .228999806 .2663367367

7 | .2198878267 .2222409588 .2243645655 .2263465302 .2615288685

8 | .2176827283 .2198878267 .2222409588 .2243645655 .2574159714

+-----------------------------------------------------------------------

6 7 8

-------------------------------------------+

6 .3053804604 |

7 .2663367367 .3053804604 |

8 .2615288685 .2663367367 .3053804604 |

-------------------------------------------+

Total Variance

[symmetric]

1 2 3 4 5

+-----------------------------------------------------------------------

1 | .31494527

2 | .2759015462 .31494527

3 | .2710936781 .2759015462 .31494527

4 | .266980781 .2710936781 .2759015462 .31494527

5 | .233929375 .2359113397 .2385646155 .2393053866 .31494527

6 | .2318057683 .233929375 .2359113397 .2385646155 .2759015462

7 | .2294526362 .2318057683 .233929375 .2359113397 .2710936781

8 | .2272475379 .2294526362 .2318057683 .233929375 .266980781

+-----------------------------------------------------------------------

6 7 8

-------------------------------------------+

6 .31494527 |

7 .2759015462 .31494527 |

8 .2710936781 .2759015462 .31494527 |

-------------------------------------------+

---------------------------------------------------------------------------------------

Note: Robust Standard Errors

Finish running on 3 Jun 2009 at 23:47:54

---------------------------------------------------------------------------------------
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Glossary

β the vector of all p fixed regression coefficients.

rj the vector of composite residuals for cluster j.

xij the vector of all p explanatory variables.

Y j the vector with the response variable.

zij the vector of explanatory variables considered as random.

Σ̂r the estimated block diagonal matrix of the total covariance of

the observations.

⊗ the Kronecker product.

πj the selection probability for cluster j.

ρ the intra-cluster correlation coefficient.

σ2
e the within level two units variance.

σ2
u the between level two units variance.

σ2
v the between level three units variance.

σu01 the covariance between the random intercepts and the random

slopes.

eij the raw residuals (level one).

i the individual level subscript.

j the cluster level subscript.

m the total number of observations:
∑

j nj.

n the number of clusters.

nj the number of individuals within clusters.

p the total number of covariates.

p(1) the level one covariates.

p(2) the level two covariates.

pij((t−1),t) the predicted probabilities of the model using data of occasion

t− 1 and response indicator for occasion t.

pjh the PSU selection probability.

t the occasion level subscript.

Tij the number of measurements occasions.

uj the cluster specific effects.
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Glossary

V the variance matrix of the composite residuals.

w∗ij(1) the base weights.

w∗ij(8) the longitudinal weight to be used in the analysis of the data set

including data from the first to the eighth occasion.

w∗ij(t) the adjusted weights for occasion t that compensates for the

panel drop-out.

wj the inverse of πj - the level two weights.

w∗ijh the PME sampling weights corrected for unit non-response.

w∗jh the PSU level weights.

log-income Logarithmic of the Real Labour Income.

occasions Measurement occasions representing the interview number.

wave Interview time, also referred to as the time variable.

AR(1) First Order Autoregressive.

CPS Current Population Survey.

GEE Generalized Estimation Equation.

GLS Generalized Least Squares.

HH Households

HoHH Heads of Household.

IBGE Instituto Brasileiro de Geografia e Estat́ıtica.

IGLS Iterative Generalized Least Squares.

ILO International Labour Organization.

LFS Labour Force Survey.

LRT Likelihood Ratio Test.

ML Maximum Likelihood.

OLS Ordinary Least Squares.

PME Pesquisa Mensal de Emprego.

PML Pseudo-maximum likelihood.

PNAD Pesquisa Nacional por Amostra de Domićılios.

PPS Probability Proportional to Size Sampling.

PSU Primary Sampling Units.

PWIGLS Probability-weighted Iterative Generalized Least Squares.

R$ Brazilian currency Real (Reais in the plural).

REML Restricted maximum likelihood.

RIGLS Restricted Iterative Generalized Least Squares.

SE Standard error of the coefficients estimated.

SSU Secondary Sampling Units.
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Brasil. Instituto de Pesquisa Econômica Aplicada, Rio de Janeiro. In Por-

tuguese.

Menezes-Filho, N., Fernandes, R., and Picchetti, P. (2000). A evolução da dis-
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