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Abstract

Accurate, instantaneous and high resolution spatial air-quality informa-

tion can better inform the public and regulatory agencies of the air pollution

levels that could cause adverse health effects. The most direct way to ob-

tain accurate air quality information is from measurements made at surface

monitoring stations across a study region of interest. Typically, however, air

monitoring sites are sparsely and irregularly spaced over large areas. That is

why, it is now very important to develop space-time models for air pollution

which can produce accurate spatial predictions and temporal forecasts.

This thesis focuses on developing spatio-temporal models for interpolating

and forecasting ground level ozone concentration levels over a vast study

region in the eastern United States. These models incorporate output from a

computer simulation model known as the Community Multi-scale Air Quality

(Eta-CMAQ) forecast model that can forecast up to 24 hours in advance.

However, these forecasts are known to be biased. The models proposed here

are shown to improve upon these forecasts for a two-week study period during

August 2005.

The forecasting problems in both hourly and daily time units are investi-

gated in detail. A fast method, based on Gaussian models is constructed for

instantaneous interpolation and forecasts of hourly data. A more complex

dynamic model, requiring the use of Markov chain Monte Carlo (MCMC)

techniques, is developed for forecasting daily ozone concentration levels. A

set of model validation analyses shows that the prediction maps that are gen-

erated by the aforementioned models are more accurate than the maps based

solely on the Eta-CMAQ forecast data. A non-Gaussian measurement error

model is also considered when forecasting the extreme levels of ozone con-

centration. All of the methods presented are based on Bayesian methods and

MCMC sampling techniques are used in exploring posterior and predictive

distributions.
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Chapter 1

Introduction

As we enter a new age where air pollution data can be accessed in real-time,

new space-time models are needed to provide continuous, updated maps of

current and future air pollution levels. The most direct way to obtain accu-

rate air quality information is from measurements made at surface monitoring

stations across particular study regions. Typically, however, air monitoring

sites are sparsely and irregularly spaced over large areas. Thus, it is now

important to develop computationally efficient models to combine sparsely

observed air monitoring data and numerical model output available every-

where, in a coherent way for better prediction of air pollution over a short

period of time.

This thesis is motivated by the need to:

1. capture spatio-temporal variation in air pollution,

2. improve biased forecasts from numerical model output,

3. fuse ground level observation data with deterministic computer model

output,

4. quantify uncertainty in forecasts through the use of Bayesian methods,

5. produce high resolution maps of air pollution.
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These core problems are considered in a holistic framework in this thesis.

Tools and methods such as Kriging, time series analysis, data assimilation,

Bayesian hierarchical modelling, and extreme value theory are used exten-

sively towards solving the core problems in studying air pollution–ozone con-

centration levels in particular in the eastern United States (US).

The structure of the rest of this chapter is as follows: Section 1.1 provides

a brief outline of the chemical properties, measurement and regulation laws

relating to ozone concentration; Section 1.2 introduces the data set that is

used throughout this thesis. Sections 1.3-1.7 address the five core scientific

problems; Section 1.8 presents the outline of the thesis and contribution it

can make to the subject area. Finally Section 1.9 summarises this chapter.

1.1 Ozone

Ozone is an odourless and colourless gas composed of three oxygen atoms,

which can be found both in the earth’s upper atmosphere and at ground

level. At ground level, ozone can cause a number of respiratory and health

problems like coughing, throat irritation, congestion, bronchitis, emphysema

and asthma especially for people who are sensitive to high air pollution levels.

In the earth’s troposphere, ozone is indirectly created by automobile en-

gines, industrial boilers, power plants and refineries; these sources emit hy-

drocarbons and nitrogen oxides (NOx) that react chemically in the presence of

sunlight. Meteorological conditions such as sunlight intensity, temperature,

wind direction and speed hugely influence the concentration and distribution

of ozone. In the US, ground level ozone concentration levels are usually high

during mid April to the end of September due to presence of sunlight and

high temperature.

Ground level ozone concentration is usually measured by unattended pho-

tometers (Hedges, 1999). The measurements are affected by surrounding

2
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conditions but the monitoring locations chosen are usually sparsely and ir-

regularly spaced due to administrative reasons. The automatic instruments

can malfunction and as a result may record inaccurate measurements con-

tinuously until rectified by human intervention. Often, this leads to a series

of consecutive missing observations.

The US Environmental Protection Agency (USEPA) have developed the

Air Quality Index (AQI) to indicate the levels of ozone and other common

air pollutants at ground level. The index is based on the level of ozone

concentration measured by a nationwide monitoring system from more than

a thousand locations across the country. The AQI is measured against the air

quality standards established by USEPA under the Clean Air Act to protect

public health and the environment, as a useful safety indicator for the general

public and also for the policy makers in the USEPA. For example, at ozone

levels between 80 and 120 parts per billion (ppb), it is suggested that even

moderate outdoor exertion for longer periods of time can increase one’s risk

in experiencing ozone-related effects.

Apart from observations, ground level ozone concentration levels can also

be predicted by computer simulation models based on conservation laws and

fluid dynamics. The predictions obtained from such models are known to be

biased. More details regarding these predictions and ground level monitoring

observations are discussed in the following sections.

1.2 Data

1.2.1 Observed Data

Ozone concentration data are obtained from n = 390 monitoring stations

covering the region in the US between –84.70oW and –68oW from 2nd–15th

August in 2005. Locations of sites are irregularly-spaced over the region, see

Figure 1.1 for more details. Samples at each location are obtained for every

3
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hour. Thus, 312 × 390 observations are obtained in total. There are about

20% of the data missing which we assume to have occurred completely at

random. The concentration values vary from 0−192ppb with a mean of about

34ppb. Data from 40 randomly chosen sites are set aside for model validation

purposes and data from the remaining 350 sites are used for modelling and

estimation.

1.2.2 Eta-CMAQ Computer Simulation Output

The National Oceanic and Atmospheric Administration (NOAA) in the United

States designed the Community Multi-scale Air Quality (CMAQ) modelling

system (http://www.epa.gov/amad/CMAQ/index.html) to forecast levels of

various air pollutants such as ground level ozone concentration (Ching and

Byun, 1999). The CMAQ forecasting model is not a statistical one but a

deterministic differential equations model which takes several inputs based

on emission, meteorology, transportation dynamics and ground characteris-

tics that affect the level of air pollutants. It contains an interface processor

which incorporates information from different modules such as meteorology,

emissions and photolysis rates. The modules are mainly developed by first

principles and requisite information for initial and boundary conditions is

prepared as preprocessors. These modules are actually smaller computer

programmes which provide information to the Chemical Transition Model

(CTM) and also act as components in the system that can be replaced if

they are not satisfactory enough. The CTM itself consists of six physical

and chemical process components: (1) advection and diffusion, (2) gas phase

chemistry, (3) plume-in-grid modelling, (4) particle modelling and visibility,

(5) cloud processes, and (6) photolysis rates.

The conceptual structure of the CTM is shown in Figure 1.2. The CTM

performs chemical transport modelling for multiple pollutants on multiple

scales under certain physical assumptions such as incompressible atmosphere

4
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and non-divergent flow field assumptions. The philosophy behind this is to

provide a modelling system in “one atmosphere” which makes the simula-

tion as realistic as the real world. The Meteorology Modeling System version

5(MM5) mentioned in Figure 1.2 is a complex community model that in-

cludes proper grid definitions, physical models and a four-dimensional data

assimilation scheme, and it produces the meteorological fields for the CTM.

The CMAQ modelling systems also contain the following processors and in-

terfaces:

• Meteorology-Chemistry Interface Processor (MCIP) translates and pro-

cesses data generated from the MM5 for the CTM. MCIP interpolates

the meteorological data needed, converts between coordinate systems,

and computes the cloud, surface and planetary boundary layer parame-

ters. It also imports information derived from the land use information

from land use processor.

• Emission-Chemistry Interface Processor (ECIP) translates data from

the Model-3 Emissions Processor and Projection System (MEPPS) for

the CTM. ECIP generates hourly three-dimensional emission data for

Eta-CMAQ. Meteorological data required for predicting emissions come

from MCIP and MM5.

• Initial Conditions (ICON) and Boundary Conditions (BCON) provide

concentration fields for chemicals for the initial simulation state and for

the grids surrounding the modelling domains respectively. The ICON

and BCON use raw data or previously modelled simulation data.

• Photolysis Processor (JPROC) deals with the temporally varying pho-

tolysis rates. JPROC uses ozone, temperature aerosol number density

and earth’s surface albedo (sunlight reflectivity) raw data to produce

the initial photolysis rates and a table of photo-dissociation reaction

rates for the CTM.

6
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Figure 1.2: A graphical illustration of the Eta-CMAQ modelling systems

structure (Ching and Byun, 1999).

The last stage of the CMAQ modelling systems is process analysis and

aggregation. Process analysis is a pre-processor programme which aims to

detect any error and uncertainties in a model through the parametrisation

schemes and the input data. Aggregation is a statistical procedure which can

derive the required seasonal and annual estimates without executing multiple

model runs. This is not useful for many short-term predictions but the output

can be an indicator of any short-term change.

There are many possible versions of CMAQ models depending on the

particular choices of the component modules and initial conditions. In this

thesis we shall use output from a particular version known as the Eta-CMAQ

model. This model produces the forecast for each hour as an average con-

centration level for a 12 square-kilometre grid cell. There are 259×268 such

grid cells covering much of the continental US. In our study region of the

eastern US there are only 9119 such grid cells, see Figure 1.3.
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Note that observed ozone concentration levels may have been fed into the

Eta-CMAQ model through the ICON processor. However, the Eta-CMAQ

model produces forecasts of ozone concentration levels up-to 48 hours in ad-

vance. Obviously, these forecasts do not use any observed data during this

forecasting period of 48 hours. That is why it is reasonable to assume that

the observed data are independent of the Eta-CMAQ forecasts. Moreover,

the Eta-CMAQ forecasts are average hourly values for a grid cell while the

observed data correspond to hourly values at a particular location referenced

by a latitude-longitude pair. This gives rise to a spatial mis-alignment prob-

lem between the Eta-CMAQ forecasts and observed data. This problem is

well-known in the literature, see Section 1.5.

In this thesis we shall use the Eta-CMAQ forecasts as a regressor for the

ozone concentration levels since it is reasonable to expect that these two will

be very similar. Indeed, see Figure 1.4 where we plot the hourly recorded

data with the Eta-CMAQ forecast for the grid cell covering that location

for the period 2nd–15th August, 2005 for two randomly chosen sites. It is

noted that the Eta-CMAQ forecasts sometimes capture the measurement

processes very well but may fail at other times due to various reasons. This

is also supported by the fact that the average correlation between the hourly

Eta-CMAQ forecasts for the period 2nd–15th August and the corresponding

observed data for the 390 monitoring sites is 0.54.

8



1.2. Data 9

")

") ")

")

")

")

")

Virginia

Ohio

North Carolina

West Virginia

Kentucky

Maryland

Pennsylvania

Tennessee

New Jersey

Delaware

South Carolina

District of Columbia

Dover

Raleigh

Richmond

Columbus

Charleston

-80°

-80°

4
0

°

_̂

_̂

_̂

_̂ _̂

_̂ _̂
_̂_̂

_̂ _̂ _̂

_̂
_̂ _̂

_̂
_̂

_̂
_̂

_̂ _̂

_̂
_̂

_̂ _̂
_̂

_̂_̂

_̂
_̂

_̂

Dover

BostonAlbany

Jackson

Atlanta

Raleigh

Trenton

LansingMadison

Augusta

Richmond

Columbus

Hartford

St. Paul

Frankfort

Montpelier

Montgomery

Charleston

Des Moines

Baton Rouge Tallahassee

Little Rock

Springfield

Indianapolis
Jefferson City

Nashville-Davidson

-90°

-90°

-80°

-80°

-70°

-70°

-60°

3
0

°

3
0

°

4
0

°

4
0

°

0 50 100 150 20025
Kilometers

0 500 1,000 1,500 2,000250
Kilometers

CMAQ Grids 
in the Eastern United States

Figure 1.3: Left: an enlarged view of the centroids of the grids cells; Right:

all 9119 grid cells in the eastern United States. Note that, for easy reference,

centroids are shown instead of grid cells.

9



1.2. Data 10

time/hour

oz
on

e 
co

nc
en

tr
at

io
n/

pp
b

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Location in NY State, MSE =  299

CMAQ
Ozone

time/hour

oz
on

e 
co

nc
en

tr
at

io
n/

pp
b

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Location in MD State, MSE =  754
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1.3 Capturing Spatio-Temporal Variation

Geostatistics methods developed by Matheron (1971) give a good foundation

on capturing spatial variation. Time series analysis (for example, Chatfield,

2004) gives a concrete foundation on the temporal evolution of the mete-

orological fields. However, those methods do not consider the space-time

variation simultaneously. It is especially of interest to consider large space-

time domain because data from such a domain usually gives a large variation.

Long range and large scale spatio-temporal variations, in general, are easier

to capture than smaller ones which we will describe mathematically in terms

of notion of covariance functions in Chapter 3.

1.4 Improving Biased Forecasts

Forecasting is a key focus of this thesis. Le and Zidek (2006) point out that

forecasting weather more than two or three days ahead would be difficult

since tiny perturbations in initial conditions can propagate large changes in

model output. Although computer model outputs are useful, a more reliable

forecast will be the synthesis of both statistical and deterministic computer

simulation model. The forecasts should update the computer model output

in the light of new observations. We pursue forecasting in Chapters 4 and 5

of this thesis.

Lorenz (1963) studies an atmosphere analogy of a deterministic system

of non-linear ordinary differential equations. The experimental results show

that the solution of a weather system is unstable and non-periodic. This

makes it very difficult to make long-range predictions. Unlike the studies in

Bayarri et al. (2007) and Kennedy and O’Hagan (2001), this thesis is not

going to analyse the relationship between the Eta-CMAQ forecasts and input

meteorological parameters since for some unobserved parameters, the input

parameters themselves are computer modules. Also, the initial conditions in

11
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these models are unknown.

1.5 Fusing Observations with Computer Sim-

ulation Model Output

Often, probability forecasts are more informative than the deterministic point

estimates. The probabilistic forecasts can be produced by combining obser-

vations and computer simulation models. Fusing observations with computer

model data is called data assimilation (DA) in the meteorology community.

However, DA can be easily interpreted as a problem in Bayesian statistics.

Kolmogorov (1941) is the first to consider the problem on fitting, interpo-

lating and smoothing from different sources of data. Gandin (1963) further

develops this idea and introduces optimal interpolation in minimising root

mean square error sum of squares. This method is of more statistical inter-

est than before. Matheron (1971) generalises Kriging in his seminal work

but he considers it as an interpolation method rather than a data assimi-

lation method. Lorenc (1986) points out that the methodology in optimal

interpolation is very similar to Kriging.

Wikle and Berliner (2006), from a Bayesian settings, review the rela-

tionship to optimal/Kriging interpolation with a numerical example. Their

model is not hierarchical and the structure is restricted to a relatively small

class. But a conceptual example on hierarchical models has also been pro-

posed. A Bayesian hierarchical model can be formed by a general three-stage

factorisation consisting of model equations for data, processes and parame-

ters, see Section 2.4 for further details. This approach allows us to adopt

complex models which are not accessible in either with universal Kriging or

with least square fitting and prediction.

In relation to the problem in fusing observation and computer model out-

put, numerous Bayesian approaches have been proposed. Lorenc (1986) is

12
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the first to consider the data fusion problem in a Bayesian setting. With the

development of Markov chain Monte Carlo (MCMC) algorithms in the 1990s,

many high dimensional model-based Bayesian approaches have been devel-

oped: 1) Jun and Stein (2004) compare the correlation structure of computer

model and observations; 2) Fuentes and Raftery (2005) combine computer

model output (CMAQ) and observation by joint multivariate normal distri-

butions; 3) Zimmerman and Holland (2005) use different data sources with

different measurement errors and biases. However, none of them deal with

space-time forecasts at the same time as is done here.

1.6 Quantifying Uncertainty

As detailed in Section 1.2.2, the existing deterministic ozone concentration

models are based on numerous physical first principles in Newtonian mechan-

ics, laws of thermodynamics and fluid dynamics and so on. Philosophically,

many scientists believe that if one possesses the exact knowledge on the cur-

rent state of the universe, “clever” enough to understand and compute all

the physical laws then the real world will exactly follow the physical model

constructed. In 1814, Laplace gives a general comment on his view on de-

terminism and probability in the introduction of Essai philosophique sur le

probabilités (see details in Grattan-Guinness, 2005):

“If an intelligence, at a given instant, knew all the forces that animate nature

and the position of each constituent being; if, moreover, this intelligence were

sufficiently great to submit these data to analysis, it could embrace in the same

formula the movements of the greatest bodies of the universe and those of the

smallest atoms: to this intelligence nothing would be uncertain, and the future, as

the past, would be present to its eyes.”

and also,

“The regularity which astronomy shows us in the movements of the comets

doubtless occurs in all phenomena. The curve described by a simple molecule of

13
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air or water vapour is regulated in a manner just as certain as the orbits of the

planets; the only difference between these is that introduced by our ignorance.

Probability is relative in part to this ignorance, and in part to our knowledge.”

Although there are many ways to address the uncertainty in physical dy-

namical systems, the above belief establishes the viewpoint that using prob-

ability to deal with uncertainty is perhaps the best method. Bernardo and

Smith (1994) view uncertainty as an “incomplete knowledge in relation to a

specified object”. Under the Bayesian paradigm uncertainty is often evalu-

ated by calculating the posterior distribution formed using the likelihood and

the prior distribution, see Section 2.4. This method quantifies uncertainty

via a probability distribution. For practical purposes, by assessing the pos-

terior distributions, answering questions such as :“what is the chance that

tomorrow’s ozone concentration will be higher than a certain value?” and

“what location has over 95% chance that the ozone concentration level will

be lower than 70ppb?” will be possible. See Section 5.2 where we make this

sort of inference.

1.7 Producing High Resolution Maps

There is a need for a high resolution visualisation of inferential atmospheric

information. An accurate, colourful map is a good way to show the mete-

orological properties to the general public. These inferential characteristics

are originally represented as properties of posterior predictive distributions.

The posterior mean/median and standard deviation at various locations are

of interest to the general public and policy makers. These statistics provide

information on what is expected along with the degree of uncertainty. The

linkage between the inference and the posterior predictive distributions will

be discussed in Chapter 2 under a hierarchical Bayesian framework. A map

representing the probability of the occurrence of a certain event can also be

14
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of interest to the general public. A general review of important methods

in spatial statistics will be detailed in the next chapter. See Section 2.7

where issues regarding mapping, map projections and distance calculation

have been discussed.

1.8 Thesis Outline

The work in this thesis shows the implementation of statistical techniques

for solving the core problems discussed in this chapter. Bayesian inference

methods are used throughout this thesis. Chapter 2 provides a review of

statistical modelling and important methods in spatial statistics. Chapter

3 investigates the possible covariance structures for atmospheric processes.

Chapter 4 discusses a fast forecasting approach for hourly recorded ozone

concentration levels. In Chapter 5 the spatio-temporal models and forecast-

ing issues for the daily 8-hour maximum ozone concentration are considered.

Chapter 6 discusses the non-Gaussian error models for extreme events, while

Chapter 7 concludes the thesis and provides some possible future research

directions. An appendix contains definitions and properties of the common

statistical distributions used in the thesis.

1.9 Summary

In this chapter, the details of the observed data and Eta-CMAQ numerical

model output are discussed. Five closely related scientific problems are also

addressed in Sections 1.3-1.7. The motivations of the problems considered

in this thesis have been introduced. A unified framework for putting these

purposes together is needed. A Bayesian statistical framework appears to be

a persuasive way to solve the problem. These form the foundations of the

work in the rest of the thesis.

15



Chapter 2

Review of Statistical Modelling

of Spatial Data

Spatial statistics, in a very wide sense, is the study of analysing spatially

dependent data. Many approaches have been developed over the last 40

years in this field since Matheron’s (1971) seminal work was published. The

literature in this area has its own unique set of keywords such as Kriging

and variogram. Methodologies in spatial statistics are especially needed in

a wide range of applications in mining, air pollution modelling, property

market pricing, epidemiology, assessing flood risk and so on.

In this chapter we first describe different types of spatially dependent data

and then discuss the main issues in statistical modelling of such data under

the Bayesian paradigm. We then review Bayesian methods and present a

number of Bayesian model choice criteria. We discuss a number of important

methods in spatial statistics including many variants of Kriging. Finally,

we discuss general issues regarding mapping, map projections and distance

calculations between two locations. The general discussions on modelling

framework laid down in this chapter will be used in developing the modelling

strategies adopted in the subsequent chapters.

16
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2.1 Types of Spatially Dependent Data

Let s be a point in the d-dimensional Euclidean space R
d. Suppose the

attribute we observe at location index s is Z (s). A spatial process in d

dimensions can be formulated by the collection of random variables,

{

Z (s) : s ∈ S ⊂ R
d
}

,

where S is a continuous geographically referenced region and is a subset of

R
d. If we observe the attribute at n spatial locations s1, s2, . . . , sn then we

have an observation vector Z = (Z(s1), Z(s2), . . . , Z(sn))′. The notation z

will denote the actual realisation of Z.

2.1.1 Point-referenced Data

Following Cressie (1993, Chapter 1), we classify spatial data sets into three

important types. The location index s varies continuously over S , where

S is a fixed subset of R
d. It means the observation Z (s) can be taken

at any point within S . The number of points in S is thus, theoretically

infinite. The collection of Z (s) is also called geo-referenced or usually named

as geostatistical data. The USEPA ozone concentration data is an example,

see Figure 1.1 for a map where these data were observed.

2.1.2 Areal Data

Areal data, sometimes called lattice data, are defined on a fixed and countable

domain S . This means that the observation Z (s) in S is taken from an area

or a region rather than a point. Although the number of such regions can

be infinite, in practice the number of regions in S is finite, for example the

number of postcode districts in England is finite. The study region can be

either regularly or irregularly-spaced. The standardised mortality ratios of lip

cancer data in Scotland is an example of irregular areal data (see Figure 2.1,

17



2.1. Types of Spatially Dependent Data 18

Clayton and Kaldor, 2005); our computer simulation output data described

in Section 1.2.2 are of the regular type.

2.1.3 Point Pattern Data

Assume that the domain of data collection points is stochastic; its index set

will demonstrate the locations of random events in a spatial point pattern,

see the example in Figure 2.2 (Mark and Esler, 1970). A more rigorous

mathematical approach is to regard it as a random countable subset of the

surface S. To make it computationally tractable, the realisations of the

processes are locally finite subsets of S.

In this thesis we only concentrate on analysing the first two types of

spatial data. Therefore, the collection of observation locations is assumed to

be fixed rather than stochastic.

2.1.4 Spatio-temporal Data

Spatial data are often observed repeatedly in time. The temporal compo-

nent of spatial data is always important in statistical analysis. In many

spatio-temporal problems where there is no obvious trend over time, tempo-

ral observations are often regarded as replicates in the spatial domain. This

kind of set-up, however, is not always realistic. Schabenberger and Gotway

(2005) point out that the problem can be tackled by one of the followings:

1. separate spatial analysis for T time points;

2. separate temporal analysis for n locations;

3. spatio-temporal data analysis with methods for random fields in R
d+1.

The first two approaches can be considered as conditional methods because

the former is obviously T sets of pure spatial problems and the latter is merely

18



2.1. Types of Spatially Dependent Data 19

(29) <  100.0

(13)   100.0 -   200.0

(8)   200.0 -   300.0

(2)   300.0 -   400.0

(3)   400.0 -   500.0

(1) >=  500.0

values for SMRhat

  200.0km

N

Figure 2.1: An areal representation of the standardised mortality ratios of

lip cancer in Scotland.
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Figure 2.2: Point pattern showing locations of trees found in a forest in

New Zealand: the black circle indicates the locations of trees in a plot. The

diameter of each tree is also recorded.
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n sets of time-series problems. These two approaches are not attractive to

modellers and the main difficulties are as follows:

• The observations may contain some missing data and this will in turn

complicate the two-stage methods. In some designs, the space-time

coordinates may be irregularly distributed and this mis-alignment may

result in the failure of the method.

• Separate analysis in space will allow predictions in space only. It is a

difficult task to incorporate the space-time interactions.

The third approach is, often, the most preferable one. To express the

space-time process, we should expand our previous formulation of a stochastic

process in the following way,

{

Z (s , t) : s ∈ S ⊂ R
d, t ∈ T ⊂ R

}

.

20
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2.2 Modelling Principles

We first discuss the following important issues in practical modelling of spa-

tially and temporally dependent data.

2.2.1 Modelling Purpose

We construct models in order to explain the reality. The word “explain”

can have two separate meanings. In a narrow sense, explanatory power of

a model means “explain what we have already known”. Whereas, the pre-

dictive power of a model means “explain what we do not know yet”, e.g., a

time series forecasting problem where it is necessary to predict future events.

Model calibration and testing scientific hypothesis are generally regarded as

explanatory while forecasting and validation problems are always predictive.

Prediction can be either interpolative or extrapolative. Some models may

be weak in extrapolation but strong in interpolation. This usually happens

in non-parametric spline models. Once we make the purpose clear, a good

model which satisfies our objectives can be created. Our interest here is

mainly on predictions but explanatory ability is also required for a better

understanding of the real world.

2.2.2 Model Simplicity

Often, a simpler model is preferred to a more complex one. If, according

to our model choice criterion, the performance of two models are about the

same, then the simplest model must be chosen. A simpler model would be

easier to implement and interpret. By removing unnecessary assumptions, a

“simple” model can sometimes be obtained. For a covariance function, non-

separability corresponds to the interaction between space and time while non-

stationarity corresponds to the local differences in the dependency between

different spatial locations.
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2.2.3 Speed of Computation

Computation speed is often of paramount importance in many problems.

For example, when predicting tomorrow’s weather based on today’s data it

is imperative that the forecasts are issued as easily as possible. A simpler

model may allow us to obtain the forecasts quite speedily but forecasts may

be somewhat inaccurate.

2.3 Steps in Statistical Modelling

Statistical modelling is the process to generate realisations of real world sys-

tems. We will discuss the view of the process of statistical analysis with

emphasis on problems motivated by the environment.

2.3.1 Deciding the Modelling Purposes

Le and Zidek (2006, Chapter 5) give a series of possible modelling purposes

for environmental modelling such as prediction, hypothesis testing, impact

assessment, data summary and knowledge representation. All of these influ-

ence our ways of constructing models and methods for model choice. A valid

model provides an accurate representation of the phenomenon of interest in

here. The word“accurate” is used to denote how well it matches with the

modelling purposes. The model can be valid in several ways. Davis (1992)

suggests that model validation can be divided into three different types: de-

scriptive, predictive and structural validity.

Descriptive validity means that a model is able to explain the phenomenon.

For regression models, measurements like the goodness of fit and the root

mean square error may represent how well a model fits the data. In Bayesian

context, we can use the deviance information criterion (DIC) (Spiegelhalter

et al., 2002) and other criteria based on posterior predictive loss to assess

22
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descriptive validity.

Predictive validity means that a model can predict desired features of a

complex system. The predictive performance is often assessed via numerical

criteria such as the root mean square error and other measures.

Structural validity means that a model can accommodate the relationship

between certain attributes or objects which appear in the real world. Many

deterministic models are particularly strong due to their physical nature. For

environmental modelling, this kind of model can incorporate the scientific

knowledge from physical and chemical processes.

2.3.2 Exploratory Data Analysis (EDA)

EDA often gives us a preliminary idea of whether models are useful. There

are well established graphical EDA tools in statistics for postulating suit-

able models, see for example, Tukey (1977). Tukey (1980) further asserts

that EDA should play a major role in statistical modelling and not merely

used as a bundle of descriptive statistical tools. A careful exploratory anal-

ysis helps to clarify the modelling purposes and identify the key features in

the real world systems. The most obvious EDA tool is a map of the data.

A map plotting build-in function can be usually found in many statistical

programming languages. In addition, in spatial statistics, evaluating esti-

mated variogram plot is an important exploratory work for assessing spatial

dependency, see Section 3.1.3 for further details.

2.3.3 Model Specification

Once the scientific question is clear, a set of plausible models can be sug-

gested. For the problems in meteorology, a plausible statistical model should

capture some major features of the real world such as space-time depen-

dency, measurement error and missing values of data. From a Bayesian
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point of view, in this stage, we have to specify both the likelihood and prior

distributions. However, prior knowledge for complex systems is sometimes

too difficult to specify subjectively. A natural conjugate prior may be used

in this case. Some further discussion on prior specification is provided in

Chapter 4.

2.3.4 Model Choice and Validation

A suitable model choice criterion is often used for selecting models from a set

of candidate models. Given a finite set of candidate models, a good model

selection technique must strike a balance between goodness of fit and penalty

on model complexity.

Model validation is a procedure to review the plausibility of the model

describing the data. Using an example psychology, Gelman et al., (2004)

show that the fitted model captures a general pattern of the data but misses

some key features. Thus, checking the goodness of fit and the model assump-

tions is an important step to judge if the model is adequate for the modelling

purposes.

Hodges and Dewar (1992) point out that the standard of quality for a

model should be based on its intended uses. The validity of a model is not

decided by a yes-no question but by its degree of credibility. Section 2.5

below lists a number of Bayesian model choice criteria.

2.3.5 Inference and Remodelling

A modeller often chooses at least one model using the adopted model choice

criteria. Statistical inference using the chosen model is a formal process to

make conclusion using data. Usually, estimates of important features of the

posterior distribution are provided. Since many models under hierarchical

framework are quite complex, the posterior distribution is often approxi-
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mated by MCMC methods. From the approximated posterior distribution,

point estimations, credible intervals and predictions can be easily evaluated.

See Section 2.4 for a brief review.

Often, it is a good idea to review the modelling purposes on the light of

the inferences made using the adopted model. Further investigation may also

be necessary if a single model does not emerge as the best one according to a

multiplicity of model choice criteria. Both of these may suggest re-modelling

of the data.

2.4 Bayesian Modelling

All the modelling and analysis work in this thesis are under the Bayesian

paradigm. This paradigm is more natural than the traditional frequentist

approach and lets us deal with the uncertainty in the model and its parame-

ters. The total uncertainty can be interpreted by a probability distribution.

For an environmental application, it is important to evaluate the uncertainty

and to give a scientific interpretation using probability statements. For more

detailed introduction on Bayesian modelling, see Bernardo and Smith (1994).

They provide a theoretical introduction while Banerjee et al. (2004) describe

a framework on the applications in spatial and spatio-temporal modelling.

2.4.1 Bayesian Inference

For a full Bayesian inference, we first construct a likelihood model f(z|θ) for

observed data z = (z1, . . . , zn) given unknown parameters θ = (θ1, . . . , θk).

For the specification of the unknown parameters, we add a prior distribution

π(θ). Using the Bayes theorem, we obtain the posterior distribution as:

π(θ | z) =
f(z|θ)π(θ)

∫

f(z|θ)π(θ)dθ
(2.1)
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where the integral in the denominator is over the whole parameter space for

θ. The denominator,

π(z) =

∫

f(z|θ)π(θ)dθ, (2.2)

is known as the marginal likelihood or the prior predictive distribution of

data, z and is a constant free of θ. That is why the posterior distribution

π(θ|z) is often written as proportional to the product of the likelihood and

the prior distribution.

The Bayes theorem can be used to develop complex hierarchical models,

see e.g. Wikle (2003). In this set up the likelihood of the data is written

as a conditional distribution of data given underlying processes and param-

eters controlling the underlying process. In the second stage the conditional

distribution of the processes is specified given the values of the parameters

and in the third stage of the hierarchy a suitable prior distribution for the

parameters is specified. The Bayes theorem can then be used to obtain the

posterior distribution of the processes and parameters in the following way:

π(process, parameters | data)

∝ f(data | process, parameters) × π(process | parameters) × π(parameters).

In this hierarchical Bayesian setup, the ability to utilise scientific knowledge

and to characterise uncertainty under the three-stage model building is very

strong and useful. This can be extended to a fourth stage to account for

uncertainties in the hyper-parameters present in the prior distribution of the

parameters. In such a case a prior distribution on those hyper-parameters

must be specified and included in the above hierarchical specification. The

models we develop in the later chapters are all based on this setup of hierar-

chical Bayesian modelling.

These complex hierarchical models are often analytically intractable and

are hard to fit. A numerical integration algorithm such as the MCMC algo-

rithms is usually needed in practice to evaluate the posterior distribution for

making inference.
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2.4.2 Markov Chain Monte Carlo

Recent development in high speed computational facilities enables the possi-

bilities of using more complex models in statistical data analysis. The MCMC

methods provide Monte Carlo integration techniques for exploring posterior

distributions in Bayesian analysis.

Gibbs Sampler

The Gibbs sampler introduced by Geman and Geman (1984) and developed

by Gelfand and Smith (1990) for applied Bayesian statistical modelling en-

ables dependent sampling from non-normalised high-dimensional posterior

distributions. The samples are iteratively drawn from lower dimensional full

conditional distributions, e.g., {π(θi | θj 6=i,z), i = 1, . . . , k}. Starting from an

initial value θ(0), at iteration j, the Gibbs sampler draws:

θ
(j)
1 ∼ π(θ1 | θ(j−1)

2 , . . . , θ
(j−1)
k ,z)

θ
(j)
2 ∼ π(θ2 | θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
k ,z)

...

θ
(j)
k ∼ π(θk | θ(j)

1 , . . . , θ
(j)
k−1,z).

Note that always the most recent value of θ is used in conditioning. Non-

standard conditional distributions can be sampled using adaptive rejection

Metropolis sampling proposed by Gilks and Wild (1992). Features of π(θ|z)
are estimated by forming suitable averages of θ(j), j = 1, . . . , L for a large

value of L. This type of Monte Carlo integration strategy is used throughout

the thesis.

Metropolis-Hastings Algorithm

The raison d’être of the Metropolis-Hastings algorithm (Metropolis et al.,

1953 and Hastings, 1970) is to draw samples from non-standard posterior dis-

tributions by rejecting samples obtained from a proposal distribution which
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is much easier to sample from. Given a density π(θ|z) that we wish to sam-

ple from, a proposal density q(θ′ | θ) is chosen, where θ′ denotes the new

sample values. The proposal density q(θ′ | θ) usually is an easy-to-sample

distribution conditional on the present value θ. The acceptance probability

of the proposed value is

α(θ,θ′) = min

{

1,
π(θ′|z)q(θ | θ′)

π(θ|z)q(θ′ | θ)

}

. (2.3)

The sampling algorithm of every single sampling from a conditional distri-

bution can be summarised as follows:

1. sample a candidate value θ′ from the proposal density q(θ′ | θ),

2. obtain the acceptance probability α(θ,θ′) in Equation (2.3),

3. sample a uniform distributed random variable U on (0, 1).

4. if U < α(θ,θ′) then accept the candidate value θ′ else, assign the

present value θ to the new value.

The Gibbs sampling is a special case of the algorithm which has a zero

rejection rate. Therefore a Gibbs sampler can be easily embedded within a

Metropolis routine. See for example Gilks et al. (1996) for an overview of

the related topics.

2.5 Bayesian Model Choice Criteria

The Bayesian model choice criteria defined in this section are all based on the

notion of predictive distributions. The prior predictive distribution has been

defined as the marginal likelihood in Equation (2.2). The Bayes factor defined

below compares the marginal likelihoods for two competing models. Many

other Bayesian model choice criteria are based on the posterior predictive
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distribution defined by:

π(zrep|z) =

∫

f(zrep|θ)π(θ|z)dθ (2.4)

where zrep is a future replicate of the observed data.

Often, the Bayesian model choice criteria are approximated using samples

obtained from the MCMC algorithms, see Appendix A. Let z
(j)
rep denote the

jth sample from the posterior predictive distribution (2.4), j = 1, . . . , L.

2.5.1 Bayes Factor

A pure Bayesian method for comparing models is to use the Bayes factor.

The Bayes factor B12 for comparing models M1 and M2 with data z is given

by,

B12 =
π(z|M1)

π(z|M2)
(2.5)

where π(z|Mi) is the marginal likelihood for model Mi, i = 1, 2 defined

by (2.2). The Bayes factor is interpreted by the rounded scale based on

Jeffreys (1961), see also Raftery (1996).

B12 2 logB12 Evidence for M1

< 1 < 0 Negative

1 − 3 0 − 2.2 Not worth more than bare mention

3 − 20 2.2 − 6 Positive

20 − 150 6 − 10 Strong

> 150 > 10 Very Strong

There are many methods available for approximating marginal likelihoods for

calculating the Bayes factor, see for example, Newton and Raftery (1994),Chib

(1995) and Meng and Wong (1996). The Bayes factor, however, is more dif-

ficult to compute for large dimensional problems and is not considered any

further in this thesis. Instead we turn to the following model choice criteria

which is most suitable when the Gaussian distribution is employed at the

first stage of a hierarchical Bayesian model.
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2.5.2 Predictive Model Choice Criterion

Gelfand and Ghosh (1998) proposed the following model choice criterion

based on ideas discussed in Laud and Ibrahim (1995). The predictive model

choice criterion (PMCC) is given by:

PMCC =
n
∑

i=1

E(Zi,rep − zi)
2 +

n
∑

i=1

V ar(Zi,rep). (2.6)

The first term in the above is a goodness of fit term while the second is a

penalty term for model complexity. The model with the smallest value of

PMCC is selected among the competing models. Thus, to be selected a model

must strike a good balance between goodness of fit and model complexity.

In practice, PMCC is calculated using samples z
(j)
i,rep, j = 1, . . . , L from the

posterior predictive distribution (2.4).

2.5.3 Prediction Quality

For our modelling purpose, we are mostly concerned with the predictive

validity of a model due to the forecasting aims of this thesis. Some criteria

for assessing prediction quality (see for example, Atkinson and Lloyd, 1998,

Moyeed and Papritz, 2002 and Stephenson, 2006) are given below:

Root Mean Square Error: RMSE =
{

1
m

∑m
i=1 (ẑi − zi)

2}
1

2 ,

Mean Absolute Error: MAE = 1
m

∑m
i=1 |ẑi − zi|,

Relative Bias: rBIAS =
Pm

i=1
(ẑi−zi)

mz̄
,

Relative Mean Separation: rMSEP =
Pm

i=1
(ẑi−zi)

2

Pm
i=1

(z̄p−zi)
2 ,

where m is the total number of observations we want to validate, zi is the

observation value and ẑi is the prediction value, z̄ is the arithmetic mean of

the observations, z̄p is the arithmetic mean of the predictions.

The first two criteria represent the discrepancy between the model predic-

tions and the measurements while the latter two represent the bias between

the predictions and the real values which can be either positive or negative.
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We can compare our prediction values with the näıve regression, Eta-CMAQ

prediction and all the candidate models to see the difference between them.

Using these criteria is advantageous since the Eta-CMAQ model is a deter-

ministic model and we are unable to assess its uncertainty directly.

2.6 Methods of Geostatistics

Geostatistics often refers to the techniques proposed by the Ecole des Mines

de Paris in Fontainebleau led by statistician Georges Matheron in the 1970s

(Chilès and Delfiner, 1999, Preface). The materials we cover in this chapter

are related to geostatistics and Matheron (1971) gives the following definition:

“Geostatistics are the application of the theory of the regionalised variables

to the estimation of mineral deposits (with all that this implies). A regionalised

variable f (s) is a function which denotes the value at the spatial point s.”

The primary aim of geostatistics is to construct a statistical model to

explain and predict spatial data. The geostatistical prediction methods are

tools for predicting the regionalised variable at a new location from obser-

vations. The collection of methods is known as Kriging, a term coined by

G. Matheron in honour of the South African mining engineer D. G. Krige

who documented the technique on estimating ore-grade of gold mine in his

masters thesis in 1951. These methods have been generalised as an essential

part of geostatistics.

2.6.1 Inverse Distance Weighting

Spatial interpolation is essential to produce high resolution maps. In many

interpolation methods, the response at a new location is usually assumed

as a weighted sum of the known values. A popular but crude method for

irregularly-spaced data is the Inverse Distance Weighting (IDW) (Shepard,

1968) method. Using the IDW method, the interpolated value at location s′
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is

Z (s′) =

∑n
i=1

1
dp

i
z(si)

∑n
i=1

1
dp

i

, (2.7)

where p is an arbitrary positive real number, di is the distance between the

interpolated point, s′ and the location of the ith observation, si. This method

assumes that there is no uncertainty in the observed data. It is obvious that

more reliable values can be obtained for the locations near to the observation

sites. However, this method becomes problematic when a prediction point is

out of the convex polygon bounded by the observation locations.

2.6.2 Simple Kriging

Assume the following model structure with known parameters µ (s) and Σ.

Z (s) = µ (s) + ω (s) , (2.8)

where ω = (ω (s1) , . . . , ω (sn))T has mean 0 and covariance matrix Σ. El-

ements of this covariance matrix depend on the assumption of covariance

function for the field Z(s) and will discussed in detail in Chapter 3. Thus,

E [Z (s)] = µ (s) and V ar [Z (s)] = Σ. To minimise the mean square error of

the prediction of Z (s′), we assume a linear estimator Ẑ (s′) = λ0 + λ′Z (s).

The mean square error (MSE) can be formulated as

E

[

(

Ẑ (s′) − Z (s′)
)2
]

= V ar [λ′Z (s) − Z (s′)] + (λ0 + {λ′µ (s) − µ (s′))}2
.

Obviously this becomes a simple optimisation problem and can be solved as-

suming Σ to be non-singular. Let V ar [Z (s′)] = σ2
ǫ and Cov (Z(s),Z(s′)) =

ρ. The best linear predictor under the squared-error loss corresponds to:

λ0 = µ (s′) − λ′µ (s) ,

λ = Σ−1ρ.

The optimal predictor is given by

Ẑ (s′) = µ (s′) + ρ′Σ−1 (Z (s) − µ (s)) .
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2.6.3 Ordinary Kriging

In ordinary Kriging it is assumed that µ(s) = µ for all s in (2.8) where µ is

an unknown parameter. The prediction problem minimises:

Q = E

[

(

Ẑ (s′) − Z (s′)
)2
]

− 2κ (λ′1 − 1) . (2.9)

where κ is a Lagrange multiplier with respect to the constraint
∑n

i=1 λi = 1

and 1 is a vector with all elements equal to 1. The optimal predictor is given

by

Ẑ (s′) = µ̂+ ρ′Σ−1 (Z (s) − µ̂1) ,

where µ̂ = (1′Σ−11)
−1

1′Σ−1Z (s). Note that µ̂ is free of s′.

2.6.4 Universal Kriging

In universal Kriging, we assume a model structure where Σ is known and

µ (s) is unknown and allow it to vary over space in the linear form µ (s) =

Xβ. The model (2.8) is modified to

Z (s) = Xβ + ω (s) . (2.10)

Suppose that the best linear predictor is restricted to be in the form of

Ẑ (s′) = a′Z (s) for unknown values of a. The mean-squared prediction error

is given by:

E
[

(a′Z (s) − Z (s′))2] = V ar [a′Z (s)] + V ar [Z (s′)] − 2Cov [a′Z (s) , Z (s′)]

= a′Σ (s) a + σ2
ǫ − 2a′ρ.

We obtain the optimal value of a as:

a = Σ−
Xρ + Σ−1X

(

X′Σ−1X
)−1

x (s′) ,

where Σ−
X = Σ−1 − Σ−1X {X′Σ−1X}−1

X′Σ−1 and x(s′) is the vector of

covariate values at s′.
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The optimal predictor is given by

Ẑ (s′) = a′Z (s) = x (s′)
′
β̂GLS + ρ′Σ−1

(

Z (s) − Xβ̂GLS

)

,

where β̂GLS = (X′Σ−1X)
−1

XΣ−1Z (s) is the generalised least squares esti-

mator of β.

2.6.5 Hierarchical Bayesian Kriging

Bayesian version of Kriging has been developed over the years. By now there

is already a substantial amount of literature written on this field, see for ex-

ample, Le and Zidek (1992), Handcock and Stein (1993), Ecker and Gelfand

(1997), Banerjee et al (2004) and the references therein. Bayesian hierar-

chical modelling provides a more powerful and flexible framework for both

explanatory and predictive inference. First, we work with the simplest form

of hierarchical spatial model under the framework of Banerjee et al.(2004,

Chapter 5) and we call this Gaussian random effects (GRE) model. The

model is the sum of three components given by:

Z (si) = µ (si) + w (si) + ǫ (si) , (2.11)

where Z (si) is the observed data, µ (si) is the mean function at location si,

i = 1, . . . , n and ǫ(si) is, from a regression point of view, the error term.

From a geostatistical point of view, the residual Z (si)− µ (si) is partitioned

into two pieces: the partial sill w (si) and the nugget effect ǫ (si). The partial

sill vector w = (w(s1), . . . , w(sn))T is assumed to be normally distributed

with a zero mean and a covariance matrix σ2Σ independent of the nugget

which is independently normally distributed with a zero mean and a variance

σ2
ǫ . The sum w (si) + ǫ (si) represents the sill which is also distributed as a

Gaussian random variable. The meaning of the terms nugget and partial sill

is discussed in Chapter 3 in Section 3.1.3.
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Let θ denote the vector of all the model parameters. The posterior pre-

dictive distribution of the observation at an unobserved site s′ is given by:

f(z(s′) | z) =

∫

f(z(s′) | w(s′),θ)π(w(s′)|w,θ)π(w,θ|z)dw(s′)dwdθ,

(2.12)

where the f(z(s′)|w(s′),θ) is the probability density of the observation at an

unobserved site given w(s′), and θ; π(w(s′)|w,θ) is the probability density

of w(s′) given w, and θ; π(w,θ|z) is the joint posterior distribution of w

and θ given z. In general, the distribution (2.12) is analytically intractable.

Evaluation of this distribution requires numerical integration algorithms such

as the MCMC techniques (Gilks et al., 1996). The hierarchical modelling

setup allows us to handle any missing data values that are often found in

practical applications.

2.7 Issues in Mapping

Spatial data are often interpreted as geographically referenced and are pre-

sented as maps. Cartographer may represent those data on a map together

with a valid coordinate system. The earth is three-dimensional. However, we

seldom deal with all three dimensions in practice and usually work with the

two-dimensional surface. To link the two-dimensional map and the actual

surface of the earth, we need to construct a projection mapping between the

reality and the imaginary topologies.

2.7.1 Cartography

The world is not a perfect sphere but is an irregular shape which makes it

difficult to model precisely. The most typical projection is called the Merca-

tor projection which projects a spherical surface to a plane map. This kind

of projection distorts the surface very much although they may be visually
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user-friendly. On the other hand, a perfect sphere gives a fairly good approx-

imation of the earth. Despite the irregularity of the surface, Maling (1992)

points out that it is appropriate to think of the earth as a sphere with its

radius varying by about 10 km on either side, with an average value of 6371

km.

Distance is one of the most important measurements for a surface. In-

tuitively, a projection to a R2 space would be a very good solution as we

can calculate the Euclidean distance between any two spatial points instead

of more complicated ones. However, this possibility is precluded by Gauss’

Theorema Egregium (Remarkable Theorem in English) which shows the local

isometry between R2 and the reality is impossible. In the nineteenth cen-

tury in Göttingen, Germany, Karl Friedrich Gauss was trying to draw such

a map on a plain paper without any distortion in distance but failed to do

so (see details in Montiel and Ros, 2005). The theorem ensures that local

isometry is invariant through a constant Gauss curvature, since the Gauss

curvatures over the plane and the surface of sphere are not identical, this

kind of projection turns out to be impossible to work with.

2.7.2 Metric Space

In a very wide sense, the concept of distance does not only refer to the

Euclidean distance. Euclidean distance is a popular approximation in the

spatial statistics community due to its mathematical elegance. The distance

sometimes measures the shortest path from one spatial location to another.

However, such a measurement may not be realistic in some contexts. Con-

structing a suitable distance function is essential for modellers.

Let S be a non-empty set. A metric is a map d : S × S → [0,∞) which

satisfies following properties, ∀si, sj, sk ∈ s,

1. d (si, sj) ≥ 0 and d (si, sj) = 0 if and only if si = sj.
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Figure 2.3: Projections may distort the area, distance and angle. (The actual

area of south pole in two projections are different.)

2. d (si, sj) = d (sj, si).

3. d (si, sk) ≤ d (si, sj) + d (sj, sk).

This gives the distance from location si to sj. Thus, all functions d

satisfying these axioms could be understood as a realisation of the general

concept of distance. There are some examples of useful metrics in R
2.

‖h‖1 = | x1 − x2 | + | y1 − y2 | (City Block)

‖h‖2 =
√

(x1 − x2)
2 + (y1 − y2)

2 (Euclidean)

‖h‖∞ = max (| x1 − x2 |, | y1 − y2 |) (Dominant)

where si = (xi, yi) .

Curriero (2006) shows that the above metrics are vector norms of si and

sj and all vector norms metrics are positive definite for the exponential co-

variance function defined in Section 3.1.6.
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2.7.3 Calculating Geodesic Distances

Figure 2.4: Chordal and Geodesic Distances.

Two of the most common coordinate systems used in the ellipsoid earth

projection are spherical polar coordinate system and geographical coordinate

system. These two systems can be transformed to each other with simple

formula: λ = longitude × π ÷ 180 and θ = latitude × π ÷ 180.

For any 2 points on the surface, the shortest distance can be formulated

by the geodesic path which is a curve along the spherical surface between 2

points.

Using elementary trigonometry, we first consider the three-dimensional

Cartesian coordinate system on Euclidean space, see Figure 2.4,

(x, y, z) = (R cos θ cosλ,R cos θ sinλ,R sin θ) .

Then d is the arc distance between two points P1 and P2,

d = R cos−1 (sin θ1 sin θ2 + cos θ1 cos θ1 cos (λ1 − λ2)) .

Although no analytical proof has been found to prove the validity of the

metric d, the metric is positive definite since this is an approximation of the

Euclidean norm in terms of spherical polar coordinate. See Banerjee (2005)

for further justifications for using this metric.
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2.8 Summary

This chapter has presented many important issues related to spatial data

modelling. It also has reviewed a number of key concepts in Bayesian mod-

elling and computation. A number of important methods in geostatistics

such as Kriging have been discussed. Some issues in map projection have

been discussed and the concept of distance in two and three dimensions has

been reviewed. Subsequent chapters will use these concepts to demonstrate

the problems that arises in practical environmental monitoring. As for the

theoretical side, the hierarchical Bayesian Kriging methods will be further

developed by adopting a more complex model structure and we shall remove

many simple assumptions regarding the mean and covariance structure that

have been made here.
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Chapter 3

On Choosing a Space-time

Covariance Function

In spatio-temporal modelling, covariance structure of data is often of par-

ticular interest. In environmental forecasting applications, capturing spatio-

temporal covariance structure is one of the core parts of modelling. A model

can be demonstrably wrong but fit for some purposes such as forecasting and

interpolation. A number of currently used models for space time covariance

function is presented in this chapter.

This chapter is organised as follows. In Section 3.1 we discuss the key

concepts regarding covariance functions in space with many examples. We

devote Section 3.2 to discuss a number of well known strategies for construct-

ing non-stationary covariance functions. Section 3.3.1 develops covariance

functions in space and time. In Section 3.4 we review the literature on hy-

pothesis testing for covariance structure. Section 3.5 illustrates a problem

in joint estimation of parameters describing the assumed covariance function

and other model parameters for mean and variance. Section 3.6 experiments

with a number of models for covariance function for the US EPA ozone con-

centration data example introduced in Chapter 1. This section chooses the
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3.1. Covariance Functions in Space 41

exponential covariance function that we use heavily in the later chapters. We

conclude the chapter with a few summary remarks.

3.1 Covariance Functions in Space

A covariance function C (si, sj) ≡ Cov (Z(si), Z(sj)) describes the depen-

dency of random variables. Sometimes we may write it as Cs (si, sj) or Cs (h)

where (h = ||si − sj||) which gives more emphasis on spatial dependency and

the distance. A spatial process, Z is said to be Gaussian, if Z follows a

multivariate normal distribution. To formulate the spatial response over a

surface, it is usually assumed that the response values from sites which are

closer would have larger values of correlation.

3.1.1 Stationarity

We borrow the idea of stationarity from the general theory of stochastic

processes. The heuristic idea of a stationary spatial process means that the

covariance of the responses at two different sites is translational invariant.

Definition 3.1. A process is said to be strictly stationary (also called strongly

stationary) if, for any given n ≥ 1, any set of n sites {s1, . . . , sn} and for any

h ∈ R
d,

P (Z (s1) , . . . , Z (sn)) = P (Z (s1 + h) , . . . , Z (sn + h))

In practice, it is more useful to define a weaker form of stationarity.

Definition 3.2. A process Z(s) is said to be weakly stationary(also called

second-order stationarity) if, Cov (Z((s) , Z((s + h)) = C(s + h,h) ≡ C (h)

for all h ∈ R
d such that s and s + h both lie within S.
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3.1. Covariance Functions in Space 42

It is easy to show that strict stationarity implies weak stationarity. The

converse is valid for Gaussian processes only. We adopt the concept of weak

stationary in the thesis and the term stationary is used to mean this.

3.1.2 Isotropy

A process is said to be isotropic if the covariance function depends only on dis-

tance which is rotational and translational invariant. Otherwise, the process

is called anisotropic. The advantage of using isotropic covariance function is

that this kind of function is easy to formulate with just a set of parametric

families of covariance functions of distance only. The representation of an

isotropic covariance function can be simplified to

C (s + h, s) = C (h) , (3.1)

where h is the distance between sites s + h and s.
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Figure 3.1: Some Covariance Functions.
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3.1.3 Variogram

Exploratory Data Analysis (EDA) is usually implemented on the data before

we actually formulate the model. Variogram is a useful add-on to those

EDA tools like the Box plot, Scatter plot and histogram which have been

introduced by John Tukey (1977). These tools together give us a better

understanding of the behaviour of a spatially dependent stochastic process.

The theoretical variogram γ (si, sj) is defined as:

2γ (si, sj) = E
[

{Z (si) − Z (sj)}2] (3.2)

Sometimes, the function γ (si, sj) is also called a semi-variogram. For a sta-

tionary process, Z(s) we have

2γ (s + h, s) = V ar (Z (s + h) − Z (s))

= V ar (Z (s + h)) + V ar (Z (s)) − 2Cov (Z (s + h) , Z (s))

= C (0) + C (0) − 2C (h)

= 2 [C (0) − C (h)]

However, the above definition does not include the white noise process.

We further narrow down the process to isotropic making it more accessible,

i.e.: γ(h) = γ(s + h,h) where h is the distance between the locations s + h

and s. The isotropic variogram is empirically estimated by:

γ̂ (h) =
1

2Nh

∑

(i,j)|hi,j
∼=h

(z(si) − z(sj))
2 (3.3)

where Nh represents the discrete number of point combinations that are

roughly h distance apart, and hi,j is the distance between two locations si and

sj. The covariance function is usually only of mathematical interest but the

variogram offers a clearer picture on the illustrations of the nugget, sill, partial

sill and range, see Figure 3.2 for an illustration. With limh→0+ γ(h) = σ2
ǫ , the

nuggets of Gaussian and exponential functions are about 0.6 unit while for
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Figure 3.2: Some Variograms.

the Matèrn class example it is 0.5 unit in Figure 3.2. The nugget describes

the asymptotic behaviour of the variogram when the distance is close to

zero. The sill describes the saturated variogram which can be represented by

limh→∞ γ(h) = σ2
ǫ + σ2. The partial sill σ2

ǫ is the sill minus the nugget. The

range is defined as the minimum value of the distance at which γ(h) first

reaches the sill.

3.1.4 Positive Definiteness

A covariance function is valid if and only if the function is positive definite,

i.e: for any ai and aj ∈ R

n
∑

i=1

n
∑

j=1

aiajC (si, sj) ≥ 0.

Since every valid covariance function is positive definite, the inverse of a

covariance matrix can be obtained by the Cholesky decomposition. This is

advantageous compared to the method by matrix inversion using the first
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principle. The speed of the algorithm is O(n3) and the accuracy of the

results can be well-preserved by making some of the multiplication using

double precision.

3.1.5 Spectral Representation and Bochner’s Theorem

Sometimes, the covariance function can be represented in a spectral form.

The Bochner’s theorem (Bochner, 1960) states that, for a measure F (ω) and

a random process in R, the covariance function must be of the form:

C(h) =

∫

cos(ωh)dF (ω). (3.4)

This is obviously a Fourier transform. This deduces a corollary that a para-

metric covariance function must have a corresponding parametric form of

spectral density. The spectral density of a covariance function can be further

simplified via:

f (ω) =
1

π

∫ ∞

0

cos (ωh)C (h) dh. (3.5)

Similarly,

C (h) =
1

π

∫ ∞

0

cos (ωh) f (ω) dω. (3.6)

3.1.6 Some Parametric Covariance Functions

Below we list a set of popular parametric covariance functions often used in

practice.

Exponential:

C (h) =







σ2 exp (−φh) , h > 0

σ2, otherwise
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Gaussian:

C (h) =







σ2 exp (−φh2) , h > 0

σ2, otherwise

Matèrn:

C (h) =







σ2 1
2v−1Γ(v)

(αh)v Kv (αh) , h > 0

σ2 otherwise

where Γ (.) is the usual gamma function and Kv (.) is the modified Bessel

function of order v (see, e.g., Abramowitz and Stegun, 1965, Chapter 9).

Spherical:

C (h) =







σ2(1 − 3
2

h
α

+ 1
2
( h

α
)3), h ≤ α

σ2 otherwise.

Wave:

C (h) =







σ2 sin(φh)
φh

, h > 0

σ2 otherwise

Model Covariance Function Spectral Density

C (h) Representation f (ω)

Exponential exp (−φh) φ
π(φ2+ω2)

Gaussian exp (−φh2) 1
2
√

φπ
exp (−ω2/ (4φ))

Matèrn 1
2v−1Γ(v)

(αh)v Kv (αh) α2vΓ(v+1/2)
Γ(v)Γ(1/2)

(α2 + ω2)

Spherical (1 − 3
2

h
α

+ 1
2
( h

α
)3) 3

2πα3ω4 (α
2ω2 − 2 cos(αω) − 2αω sin(αω) + 2)

Wave sin(φh)/(φt) 1/(2φ) for φ > ω

Table 3.1: Table of parametric family of covariance functions and their spec-

tral densities.
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In Table 3.1 we can see both the exponential and Gaussian covariance

functions have simple parametric forms. The evaluation of spectral density

is also straightforward. The Matèrn class model is more important since it in-

cludes the special cases of the exponential and Gaussian covariance functions

(with v = 1/2 and v → ∞ respectively). The spherical and wave covariance

functions are not very practically useful and they have complicated spectral

densities which are often more difficult to work with.

3.2 Non-stationary Covariance Functions

The covariance functions described in the previous section are all based on the

assumption of stationarity. In this section we describe a number of methods

for constructing non-stationary covariance functions.

Sampson-Guttorp Method

Sampson and Guttorp (1992) propose an elegant deformation method which

projects a stationary imaginary plane (D-field) to the non-stationary real ge-

ographical plane (G-field). The approach is non-parametric, see the Bayesian

implementation in Schmidt and O’Hagan (2003).

Parametric Non-stationary Covariance Functions

Hughes-Oliver et al. (1998) give a parametric point source model which

considers the distance of a particular spatial point from the point source c,

Cs (si, sj) = exp(−δ1h exp[δ2 | ei − ej | +δ3 min(ei, ej)]) (3.7)

where δ1, δ2 and δ3 are parameters controlling the degree of non-stationarity

and ei is the distance between the point si and the point source c. We regard

the | ei − ej | as a new metric. A similar approach can be adopted by mixing

two covariance functions with two different metrics. However, the application

of this covariance function is limited to some point-source pollution problems.

Convolution Method

Higdon et al. (1999) propose a convolution method to handle non-stationarity.
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A valid covariance function can be obtained by using the convolution:

C(si, sj; θ) =

∫

D

K(si − s)K(sj − s)Cθ(s)(si, sj)ds (3.8)

where K(·) is a kernel function. Epanechnikov (1969) kernel is usually used

since this is an optimal kernel for estimation of non-stationarity. Fuentes

and Raftery (2005) provide a practical example illustrating this method.

However, the bandwidth parameter in K(·) is difficult to decide which is

more important than the choice of a kernel (Wand and Jones, 1994).

Mixture of different metric models

Cressie et al. (2006) use the weighted mixture of two different covariance

functions for Euclidean and stream distance metrics to obtain a non-stationary

covariance function. This covariance function incorporates both geographical

and hydrological information from the data.

Non-stationary adaptive spectrum

Pintore and Holmes (2004) give a general procedure to construct a non-

stationary covariance function via tempering. A positive tempering process

function η (s) is used to weight the stationary spectrum at location s. The

new spectrum is a function of frequency ω and a spatial location s,

fNS (ω, s) = f
(s)
NS (ω) ∝ [f (ω)]η(s) (3.9)

so that a valid spectrum for a valid covariance function can be formed:

fNS (ω, si, sj) = f
(si,sj)
NS (ω) = f (si) (ω)1/2 f (sj) (ω)1/2 ∝ [f (ω)]

η(si)+η(sj)
2 .

(3.10)

This formula gives us a possibility to generate a non-parametric covariance

function. However, it would be very difficult to obtain Fourier transform

integrals for the most common covariance functions by usual numerical inte-

gration methods. For example, consider an exponential covariance spectrum

with φ = 0.01,
0.01

π(0.012 + ω2)
, (3.11)
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then the fourth derivative of an exponential covariance spectrum becomes,

f
′′′′

(ω) =
3.84 × ω4

π(0.012 + ω2)5
+

2.88 × ω2

π(0.012 + ω2)4
+

0.24 × ω4

π(0.012 + ω2)3
.

Therefore, limω→0 f
′′′′

(ω) ≈ 7.64 × 1010, which is too large for making a

reasonable precision in many numerical integration methods.

3.3 Covariance Functions in Space and Time

The space-time processes discussed in Section 2.1.4 is an example of multi-

variate spatial data. However, spatial data can also be multivariate without

replication in time, for example, ozone and particulate matter concentra-

tions in atmosphere are usually measured at the same monitoring station

and highly correlated due to their physical and chemical properties (Le and

Zidek, 2006, page 110). Furthermore, a monitoring network measuring mul-

tiple pollutants makes data multivariate.

3.3.1 Separable Covariance Functions

Let vk denote the index for assigning fields at the same spatial location. A

covariance function for multivariate data is called separable if

C (Z(si, vk), Z(sj, vl)) = Cs (si, sj)Cv (vk, vl) , (3.12)

where Z(si, vk) is the response at si and vk. The covariance matrix Σ of

Z(s1, v1), . . . , Z(sn, vp) can also be represented in matrix form

Σ = Σs ⊗ V , (3.13)

where V is a p×pmatrix capturing inter-field covariance; Σs is a n×nmatrix

capturing spatial covariance, ⊗ is the Kronecker product operator. A set of

spatio-temporal data, from a mathematical perspective, is also multivariate

and makes no difference to a set of spatial data with an extra dimension.
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From the definition in (3.12), a separable spatio-temporal covariance function

is given by

C (si, sj, tk, tl) = Cs (si, sj)Ct (tk, tl) .

This can be viewed as a special case of multivariate separable model in

(3.12) and (3.13). The matrix representation is given by

Σs,t = Σs ⊗ Σt, (3.14)

where Σs,t denotes the covariance matrix of Z(s1, 1), . . . , Z(sn, T ); (Σs)i,j =

Cs (si, sj); (Σt)i,j = Ct (ti, tj). A separable model is advantageous for com-

putation. For example, Σs,t = Σs ⊗ Σt and |Σs,t| = |Σs|T |Σt|n can largely

simplify the computation by these simple identities (for more details, see in

Graham, 1981).

3.3.2 Non-separable Covariance Functions

The positive definiteness of a function is a necessary and sufficient condition

for it to be a valid covariance function, see Section 3.1.4. Apart from the con-

ventional family of isotropic separable covariance functions, there are many

ways to construct valid models for the covariance function.

As we mentioned earlier in Equation (3.12) a separable covariance func-

tion can be formulated by assuming

Cov (Z (si, tk) , Z (sj, tl)) = Cs (si, sj)Ct (tk, tl) , (3.15)

for all possible values of i, j, k and l. Assuming isotropy we can rewrite

(3.15) as:

C (h, u) = Cs (h)Ct (u) (3.16)

where h is the distance of two spatial locations and u is the difference between

two time points.

A covariance model which does not obey the above property is called a

non-separable model. Due to the epistemic uncertainty of the actual process,
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separable covariance model is sometimes used even when we know that there

exists a non-separable space-time interaction. In a practical sense, a separa-

ble covariance model can dramatically reduce the number of parameters and

facilitate complicated mathematical representation much more easily. For

example, Genton (2007) uses a separable approximation to a non-separable

covariance function by Frobenius norm optimisation.

Cressie-Huang Models

Cressie and Huang (1999) have shown a method to construct non-separable

stationary covariance functions. Under the conditions C1 and C2 below, the

covariance function C(h, u) is valid if

C(h, u) =

∫

e−ihωρ(ω, u)k(ω)dω (3.17)

where

C1. For each ω ∈ R, ρ(ω, u) is a continuous autocorrelation function and
∫

ρ(ω, u)du <∞.

C2. 0 <
∫

k(ω)dω <∞.

However, Cressie-Huang models limit the covariance functions into a rela-

tively small class which can be easily covered by other models. We will

not use the covariance function generated from this approach but a similar

Fourier-transform based method will be used instead.

Gneiting Models

Gneiting (2002) proposed the following general class of valid non-separable,

stationary covariance functions for random spatio-temporal processes. The

class of covariance function is given by:

C (h, u) =
σ2

ψ (u2)
d
2

ϕ

(

h2

ψ (u2)

)

(3.18)

where ϕ (.) denotes a completely monotone function and ψ denotes a function

with completely monotone derivative and σ2 > 0. Tables 3.2 and 3.3 provide
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a set of choices for the functions ϕ (.) and ψ (.) as suggested by Gneiting and

Sasvári (1999) and Gneiting (2002).

Mixture Type Non-separable Models

The fact that the sum of two positive definite functions is positive definite

allows us to form new valid covariance functions by finite mixtures. A mix-

ture covariance function can define a non-separable covariance function in

space and time. For example, Gilleland and Nychka (2006) use a mixture

of exponential covariance functions with different decay parameters to cap-

ture short range and long range spatial dependencies. A mixture covariance

model is a weighted sum of a set of covariance functions and is defined by:

C(h) =
m
∑

i=1

wiCi(h) (3.19)

where the weights w1, . . . , wm are non-negative and
∑m

i=1wi = 1; Ci(h) is a

valid spatial covariance function. Also, for a spatio-temporal process, a non-

separable covariance function can be formed by combining a set of separable

covariance functions.

C(h, u) =
m
∑

i=1

wiCs,i(h)Ct,i(u) (3.20)

where the weights w1, . . . , wm are non-negative and
∑m

i=1wi = 1; Cs,i(h) is

a valid spatial covariance function and Ct,i(u) is a valid temporal covariance

function.

Function Parameters

ϕ(t) = exp(−ctτ ) c > 0, 0 < τ ≤ 1

ϕ(t) = (2v−1Γ(v))−1(ct1/2)vKv(ct
1/2) c > 0, v > 0

ϕ(t) = (1 + ctτ )−v c > 0, 0 < τ ≤ 1, v > 0

ϕ(t) = 2v(exp(ct1/2) + exp(−ct1/2))−v c > 0, v > 0

Table 3.2: Some completely monotone functions ϕ (.), t ≥ 0.
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Function Parameters

ψ(t) = (atα + 1)δ c > 0, a > 0, 0 < α ≤ 1, 0 ≤ δ ≤ 1

ψ(t) = log(atα + b)/ log(b) a > 0, b > 1, 0 < α ≤ 1

ψ(t) = (atα + b)/(b(atα + 1)) a > 0, 0 < b ≤ 1, 0 < α ≤ 1

Table 3.3: Some functions ψ (.), t ≥ 0 with completely monotone derivatives.

Note that the covariance function C(h, u) defined by (3.20) can be non-

separable in time and space. De Cesare, Myers and Posa (2001) introduce

the following covariance function:

C (h, u) = k1Cs (h)Ct (u) + k2Cs (h) + k3Ct (u) (3.21)

where k1, k2 and k3 are positive real numbers.

3.4 Hypothesis Tests for Covariance Struc-

ture

The hierarchical Bayesian spatio-temporal modelling methods adopted in

this thesis rely heavily on some suitable assumptions on space-time covari-

ance functions. Assumptions such as stationarity and separability are widely

accepted because of their mathematical simplicity and ability to interpret.

To assess the validity of the models, conventional approaches usually formu-

late problems as a test of hypothesis. A number of such approaches have been

suggested by Dutilleul (1999), and Mitchell et al. (2005). These methods

need replicated space-time data. Fuentes and Raftery (2005) develop a spec-

tral density approach to assess separability. Furthermore, Li et al. (2007a,

2007b) develop a hypothesis test for separability based on the asymptotics

where no data replication is necessary. Guan et al. (2004) propose a non-

parametric test for a more specific spatial isotropy. However, all the papers
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we mentioned above assume simpler setup without any covariates adjust-

ment.

A specific covariance structure is usually adopted when modelling the

space-time variation of a process. However, choosing a suitable covariance

structure is sometimes controversial for modellers. Gelman (2007) suggests

that the purpose of model checking is not to reject a model (hypothesis)

but rather to understand the ways in which it does not fit the data. It

would be inappropriate to use a single scalar test statistic to look at the

validity of a space-time structure since this is only a part of a full model.

A more appropriate approach is to assess the whole model structure with

the understanding of our original purposes. For example, rejecting the null

hypothesis of separability in a space-time meteorological forecasting problem

does not necessarily mean that the meteorological field is intrinsically non-

separable, but it may also mean that a wrong model has been used.

3.5 Inconsistent Estimation for Covariance Pa-

rameters

Consider the model (2.11) Z (si) = µ (si) +w (si) + ǫ (si) , i = 1, . . . , n where

the nugget effect, ǫ (si) ∼ N(0, σ2
ǫ ) independent of the spatial random effects

w(si), i = 1, . . . , n which are assumed to follow the normal distributions with

zero means and the Matèrn covariance function as given in Section 3.1.6, i.e.

Cov(Z(si), Z(sj)) = σ2 1
2v−1Γ(v)

(αh)v Kv (αh) where h is the distance between

si and sj; α, v, and σ2 are unknown parameters. Also assume that µ (si) = µ

for i = 1, . . . , n. Now consider joint estimation of all the five parameters

µ, σ2
ǫ , σ

2, α and v.

Zhang (2004) shows that, regardless of the estimation method used, all

five parameters cannot be estimated consistently from observed data. More-

over, Stein (1999) shows that spatial interpolation is sensitive to the product
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σ2α2v but not to the parameters individually. In Bayesian inference settings

the notion of inconsistent estimation is equivalent to weak identifiability of

the parameters under non-informative prior specification, see, for example,

Banerjee et al. (2008). In practical implementation using Gibbs sampling

joint estimation is often poorly behaved due to this weak identifiability and

extreme slow-mixing of the associated Markov chains under vague prior dis-

tributions for the parameters.

We illustrate the above result using the following simulation example.

We simulate n = 20 data points from the model (2.11) with µ = 5.0, σ2
ǫ =

0.1, σ2 = 0.5, α = 0.015 and v = 0.5.

We assume the prior distributions: µ ∼ N(0, 104), σ2
ǫ ∼ IG(2, 1), σ2 ∼

IG(2, 1), α ∼ IG(3, 0.5), v ∼ IG(2, 1). The proper inverse gamma prior,

IG(2, 1) for the variance components avoids the possibility of having an im-

proper posterior distribution and is used throughout this thesis. The 2.5%,

50% and 97.5% quantiles of the assumed inverse gamma distribution are

0.36, 1.66 and 5.50 respectively which covers a reasonable range of sill for

the square-root of the ozone values. We have performed several sensitivity

studies for the chosen values but the inferential conclusions never changed

substantially and hence we do not report those in the thesis.

Figure 3.3 provides the trace plots of all five parameters for the first

10,000 iterations of the Metropolis-Hasting Algorithm. As expected, the

plots show very slow mixing as individual parameters make long excursions

away from their mean values. In addition, we also provide a scatter plot of

the two variance components in Figure 3.4 which shows very high correlation

between the sampled values.

Abt and Welch (1998) show that the asymptotic Fisher information ma-

trix for the above five parameters is singular. These problems in estimation

are explained in the literature using the notion of microergodicity, see Math-

eron (1989) who first defined this concept. The book by Stein (1999) gives
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Figure 3.3: MCMC trace plots of all five parameters of a hierarchical spatial

model with the Matèrn covariance function.
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Figure 3.4: A scatter plot of the MCMC samples of the logarithm of two

variance components σ2 and σ2
ǫ .
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a precise mathematical definition of microergodicity for spatial processes. In

this thesis, however, we do not investigate these theoretical problems any

further; instead, we devote our attention to practical model building for

space-time data.

While implementing the Gibbs sampler for practical Bayesian models, we

often find that the full conditional distributions for the parameters describing

the spatial dependence, for example, α and v above, are not conjugate and

sampling those requires expensive likelihood evaluations in each iteration.

These difficulties are exacerbated by the large number of locations-time point

combinations we work with in this thesis as well as the desire to do spatial

prediction over large spatial domains, for example the whole of eastern US in

Chapters 4 and 5. For these reasons, we shall choose optimal values of these

parameters using a validation mean square error criterion and estimate the

variances conditional on those values. We note that this approach falls within

the general empirical Bayes (EB) methodology. In the subsequent chapters

the adopted EB methodology allows us to use a grid search technique for

estimating the parameters describing the covariance function. Subsequent

inference methods are conditional on the optimal values; for example, we

estimate the variances which have conjugate full conditional distributions

under our conjugate prior distribution assumptions.

3.6 US EPA Data Example

We return to the hourly ozone data set observed at 350 monitoring locations

over 168 hours as described in Section 1.2. Fitting a spatio-temporal model

with a non-separable covariance function will require storage and inversion of

matrices of order 58,800 (=350 ×168). This is computationally prohibitive

especially in our Bayesian setting with the use of MCMC computation al-

gorithms. Therefore, we illustrate with a subset of the original data set to
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reduce the computational burden. We take a subset of 20 locations from the

full data set, see Figure 3.5. We also consider data from a reduced time win-

dow of 24 hours starting from 3pm on 2nd August, 2005. Our aim here is to

compare the performances of various models, all based on Equation (3.22),

but each with a different covariance function.

*

***

**

*
*

*

*

Figure 3.5: Blue circles: 20 sites for fitting; orange asterisks: 10 sites for

validation.

3.6.1 Hierarchical Model

Let z(si, t) denote the observed square root of the ozone concentration level

at site si and at time t. Consider the following hierarchical Bayesian model,

Z (si, t) = β0 + β1x (si, t) + ω (si, t) + ǫ (si, t) (3.22)

where x (si, t) is the square root of the Eta-CMAQ model ouput of the

grid cell containing the site si. The square root transformation is adapted

throughout the thesis since it stabilises the variance and encourages normal-

ity, see Sahu et al. (2007) for further justification.

As in Section 3.5 we assume the N(0, 104) distribution for β0 and β1

to have a flat prior for these mean parameters. Also following the ratio-
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nale noted there we assume the inverse gamma distribution, IG(2, 1) for the

nugget effect σ2
ǫ and σ2, the variance of the spatio-temporal effect w(si, t).

Apart from the covariance functions mentioned in Table 3.1, we also con-

sider a non-separable covariance function introduced by Gneiting (2002). In

particular, we consider the following special case of the general space-time

covariance function (3.18) given by:

C (h, u) =
σ2

auτ + 1
exp

(

−c h
(auτ + 1)

δ
2

)

, (3.23)

where h and u denote the spatial and temporal distance between two locations

and two time points, respectively, and a, c, τ and δ are parameters. The

parameter δ ∈ [0, 1] controls the degree of space-time interaction. The special

case δ = 0 corresponds to a separable model. As δ increases from 0, the

space-time interaction strengthens.

From our discussion in Section 3.5 we note that we cannot estimate all

of these parameters together with all the parameters describing the mean

function and variances consistently. That is why in our illustration below we

assume that the parameters (a, c, τ, δ) are known.

3.6.2 Fitting Empirical Variogram

We use a distance-time auto-correlation plot to examine the covariance struc-

ture following Raftery, Haslett and McColl (1982). The idea is to fit a special

case of separable model then to generalise it to a more general non-separable

model. Haslett and Raftery (1989) used the graph of purely spatial corre-

lation to fit the variograms while Gneiting (2002) fitted the variogram by

considering space and time separately. Here we not only fit the variogram

by using Equation (3.23) but also consider a number of other classes of var-

iograms. Figure 3.6 shows the empirical spatial variogram and the correlo-

gram of the temporal component from 409 sites and 7 days data. From the
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empirical variogram, the appropriate range of the spatial variogram is about

450 kilometres. This choice of the range leads us to the following assumption

for the purely spatial correlation function:

C (h, 0) = exp (−0.0066h) . (3.24)

Thus this choice implies that we take c = 0.0066 in (3.23). Similarly, from

the temporal correlogram we estimate that a = 0.11 and τ = 1.47. Thus, we

now have:

C (0, u) =
1

0.11u1.47 + 1
. (3.25)

With these choices for a, c and τ , the covariance function (3.23) reduces to:

C (h, u) =
σ2

0.11u1.47 + 1
exp

(

−0.0066h

(0.11u1.47 + 1)
δ
2

)

. (3.26)
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Figure 3.6: Empirical Variogram in spatial domain and Correlogram in time

domain
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3.6.3 Candidate Models for Space-Time Covariance Func-

tion

In this subsection we list a number of possible space-time covariance func-

tions for the space-time process w(si, t) in the hierarchical model (3.22). We

consider the covariance function in Equation (3.26) with δ = 0 and δ = 1. We

also fit a separable covariance model with the exponential covariance func-

tion for both the spatial and temporal components. We call this Separable

Model A. We also introduce four non-separable mixture models in Equation

(3.20) with different weight parameters wi. We now consider the following

candidate models:

(1) Separable Gneiting model (3.26) with δ = 0.

(2) Non-separable Gneiting model (3.26) with δ = 1.

(3) A separable model: Kronecker product of an exponential covariance

function, e−φsh and a temporal covariance function, e−φtu where φs =

0.0066 and φt = 0.43.

(4) Mixture model A: a mixture of a separable Gneiting model (1) and a

separable exponential model (3) above with weights 0.7 and 0.3 respec-

tively.

(5) Mixture model B: a mixture of a separable Gneiting model (1) and a

separable exponential model (3) above with weights 0.9 and 0.1 respec-

tively.

(6) Mixture model C: a mixture of a separable Gneiting model (1) and a

separable exponential model (3) above with weights 0.5 and 0.5 respec-

tively.
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(7) Mixture model D: a mixture of a separable Gneiting model (1) and a

separable exponential model (3) above with weights 0.3 and 0.7 respec-

tively.

(8) A separable model: Kronecker product of a Gaussian spatial covariance

function, e−φsh2

and an exponential temporal covariance function, e−φtu

where φs = 1.5 × 10−5 and φt = 0.43.

3.6.4 Results

The model choice criteria for comparing the above models are provided in

Table 3.4. The spatio-temporal models outperform the Eta-CMAQ and näıve

linear regression predictions as expected. With more parameters, the mix-

ture model A gives the best RMSE. The mixture models cannot be separated

by multiplication and hence, they are non-separable. The exponential covari-

ance model (3) gives a good prediction result which is slightly less accurate

than the mixture model A. Gneiting models of covariance functions (see con-

tour plot in Figure 3.7) and the models (1), (2), and (8) do not provide a

better result than the simple separable exponential covariance function in

descriptive or predictive senses. A possible explanation for this appears in

Huang et al. (2007). Their empirical example shows a larger ratio of smooth-

ing parameter σ2 to nugget parameter σ2
ǫ which provides a better fit using a

simpler model. A simulation study for checking the predictive performance

of non-separable covariance models is also performed for this thesis but the

results are found to be inconclusive. Henceforth, we do not use Gneiting’s

model and, instead set up a separable covariance structure for the regression

models for the rest of the thesis instead.
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Model RMSE MAE rBIAS rMSEP×10−5 PMCC

CMAQ 25.133 18.878 16.610 1.311 ×105

Linear Regression 15.559 12.016 2.915 2.116 4164.5

(1) Gneiting Model, δ = 0 14.797 11.046 -2.136 1.919 130.4

(2) Gneiting Model, δ = 1 14.721 11.350 0.434 1.897 114.4

(3) Separable Model 12.164 9.507 -1.382 1.297 142.6

(4) Mixture Model A 11.948 9.243 -1.364 1.251 82.9

(5) Mixture Model B 12.176 9.200 -2.186 1.300 104.8

(6) Mixture Model C 12.211 9.462 -1.587 1.307 72.6

(7) Mixture Model D 12.497 9.826 0.243 1.367 68.4

(8) Gaussian Model 13.637 10.716 0.088 1.628 935.4

Table 3.4: Performance of all candidate models: the model (4) gives the

lowest value of RMSE and MAE while the model (3) gives the second lowest

value of RMSE and MAE.
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Figure 3.7: Contour plots of some simulated models with the degree of sepa-

rability parameters δ = 0 and δ = 1. The contour lines denote the correlation.

Some models show similar patterns regardless of the choice of the degree of

separability parameters.
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3.7 Summary

Identifying the modelling purposes is a crucial step in the statistical mod-

elling. These influence the model choice criteria to be adopted for the partic-

ular modelling exercise. Covariance functions play a crucial role in space-time

data modelling. The parametric covariance functions introduced in Chapter 2

are further generalised to non-separable and non-stationary cases. This chap-

ter illustrates how to choose a space-time covariance function using Bayesian

model choice criteria. The methods are illustrated with a real life data set

on ozone concentration levels. In this example, the exponential covariance

function performs very well when it is used within the GRE hierarchical

model. The exploratory and the preliminary work here forms the basis of

model construction and remodelling in the latter chapters.
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Chapter 4

Interpolating and Forecasting

Hourly Ozone Concentration

Levels

4.1 Introduction

Real-time air quality information provides the general public a good insight

to on the passive respiratory diseases and their prevention measures. Infor-

mation is often presented in an illustrative rather than descriptive manner

for example, using a multi-colour map. Producing an accurate, instanta-

neous and high resolution map is an easy way to visualise the information,

however, we cannot produce such a map only with the measurements since

they are often observed in sparse and spatially irregular monitoring networks.

A natural choice is to extract the forecast information from high resolution

numerical simulation output. However, the classical work by Lorenz (1963)

shows that it is impossible to make detailed meteorological forecasts beyond

a certain time limit due to extreme sensitivity to the initial conditions of

the atmospheric dynamical systems. Thus, the computer simulation outputs
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alone are not good enough for drawing the maps. Fusing information from

the observed data and numerical simulation output appears to be a possible

approach but suitable statistical methods linking two information sources are

needed.

There are four possible scenarios in this prediction problem. The first

one is a point-wise prediction problem which is methodologically same as the

Kriging problem introduced in Section 2.6. The second scenario is an areal

prediction problem which uses a set of areal data to obtain another set of areal

predictions. The third scenario is still the areal prediction problem using ob-

served point-referenced data often called up-scaling. As the fourth scenario a

downscaling approach uses areal level data to predict point-referenced ones.

The fourth scenario is usually more challenging because information lies in

aggregated level data is used for making inference at a higher resolution. We

usually fuse areal level data and point-referenced data with different support

points to obtain a set of point-referenced prediction. This problem is often

called the change of support problem in the spatial statistics literature. Sev-

eral authors have addressed this problem, for example Gelfand et al. (2001)

propose a unifying approach for prediction in above four scenarios. More

recently, Gelfand and Sahu (2009) give a review on recent developments in

data fusion.

For this type of applications, Fuentes and Raftery (2005) use Gaussian

random fields to jointly model areal level computer model output and point

level observed data. The Eta-CMAQ computer model output (see Sec-

tion 1.2) is treated as linearly biased information for ground truth repre-

sented by the observed data. However, in this approach, the measurement

errors in the observed data are not taken into account. A similar approach

is developed by Zimmerman and Holland (2005). They modelled data from

environmental monitoring networks on wet deposition as correlated variables

by adopting the technique of Co-Kriging. Cowles and Zimmermann (2003)
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propose a method to examine the temporal trend of the wet sulfate deposi-

tion data from two monitoring networks with different measurement errors,

bias and variability. Information from data obtained from two networks have

the effect of reducing uncertainty in the predictions.

The remainder of this chapter is organised as follows. In Section 4.2

we use a Gaussian random effects type model with exponential covariance

function for modelling the hourly ozone concentration data. We present the

models in a hierarchical setting and provide results for an example using a

subset of the full data set. This method turns out to be very slow and as a

result is not fit for the instantaneous prediction and forecasting problem for

the hourly data. Section 4.3 develops an alternative Bayesian model which

enables instantaneous forecasting of hourly ozone levels without resorting to

MCMC. Section 4.3.3 presents the analytical results for achieving this. We

then develop methods for forecasting the current hour’s 8-hour average ozone

concentration level. We illustrate with the data introduced in Chapter 1 and

end the chapter with a few summary remarks.

4.2 A Model with Nugget Effect for Hourly

Data

Let Zl(s, t) denote the observed square-root ozone concentration,
√

Ql(s, t),

at location s and at hour t (t = 0, . . . , 23) of day l (l = 1, . . . , 7 = r) and

Ol(s, t) denote the true value corresponding to Zl(s, t). We develop models

for data from n stations denoted by s1, . . . , sn, for a running window of r = 7

days and 24 hours (= T ).

Further, let xl(s, t) denote the square-root of the Eta-CMAQ ozone fore-

cast value at the grid cell which includes location s and at hour t of day l. The

work in Chapter 3 shows that xl(si, t) can be a good predictor of Zl(si, t).

Figure 1.4 also shows heavy daily cycles in both ozone concentration and
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their Eta-CMAQ forecasts.

We model these daily periodicities by including sine and cosine terms.

The sine and cosine terms account for the seasonal (hourly) variations in the

data. We define the mean function as follows:

µl(si, t) = ξ + β1 xl(si, t) +
6
∑

k=1

[

ak sin

(

2πtk

24

)

+ bk cos

(

2πtk

24

)]

, (4.1)

for i = 1, . . . , n, t = 0, . . . , 23 and l = 1, . . . , 7. Let β denote the collection of

p(= 14) un-known parameters ξ, β1 and ak, bk, k = 1, . . . , 6 to be estimated

from data. Note that sine and cosine series describe the within day peaks

and as a result are common for all the days.

We write the mean function (4.1) using the µ = Xβ where X, is the

nrT × p design matrix and µ = (µ1(s1, 1), µ1(s1, 2), . . . , µr(sn, T )) is the

vector obtained by concatenating the mean function first by the T = 24

hours, then by the r = 7 days and then by the n sites.

4.2.1 Hierarchical Spatio-temporal Model

We adopt the hierarchical modelling framework (Section 2.6.5) for spatial

and temporal data. The full hierarchical Bayesian modelling formulation

includes the nugget term given by

Zl(si, t) = Ol(si, t) + ǫl(si, t), (4.2)

where

Ol(si, t) = µl(si, t) + wl(si, t) (4.3)

for i = 1, . . . , n, l = 1, . . . , 7, t = 0, . . . , 23, the ǫl(si, t) are assumed to

be independently and identically distributed N(0, σ2
ǫ ) random variables, the

space-time process wl(si, t) is treated as a spatio-temporal random effect.

The spatio-temporal process wl(si, t) is assumed to be a zero-mean process

with a separable covariance structure, given by:

Cov
{

wl(si, t), wl′(sj, t
′)
}

= σ2
w ρs(si − sj;φs) ρt(dl,t,l′,t′ ;φt), (4.4)
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where dl,t,l′,t′ is the number of hours between the tth hour on day l and t′th

hour on day l′. For convenience, the two ρ’s are taken to be exponential

covariance functions, i.e., ρ(d;φ) = exp (−φ|d|). In Section 3.5 we remarked

that the decay parameter φ is weakly identifiable. We would treat the φs and

φt as unknown parameters and estimate them using the prediction quality

criteria discussed in Section 2.5.3.

Let w = (w∗,1,0, . . . ,w∗,7,23) and let H(φ) denote the correlation matrix

of w using the covariance function (4.4). The spatio-temporal process w is

now assumed to be:

w ∼ N
(

0, σ2
wH(φ)

)

. (4.5)

Note that this model reduces to the usual regression model with indepen-

dent errors when we take H(φ) = I. We compare this linear base model with

the full spatio-temporal model in Section 4.2.4.

For convenience, we work with the precisions τ 2
ǫ = 1

σ2
ǫ

and τ 2
w = 1

σ2
w
. The

joint prior distribution of θ = (β, τ 2
ǫ , τ

2
w) is given by:

π(β, τ 2
ǫ , τ

2
w) = N

(

β0,
V

τ 2
ǫ

)

G(a, b)G(a, b), (4.6)

where β0 and V are suitable hyper-parameters and τ 2
ǫ and τ 2

w follow the

gamma distribution with mean a/b, independently. We set the hyper-parameters,

β0 = 0 and V = 104I. As justified in Section 3.5 we take a = 2, b = 1,

A = 104.

4.2.2 Computation Details

The log-likelihood is written as:

l(θ,w; z) ∝ nrT

2
log(τ 2

ǫ ) − τ 2
ǫ

2
(z −Xβ − w)′(z −Xβ − w),
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where z denote the vector of all the data points. The log of the joint posterior

distribution is given by

log
{

π(θ,w, |z)
}

∝ nrT
2

log(τ 2
ǫ ) − τ 2

ǫ
2

(z −Xβ − w)′(z −Xβ − w)

+ nrT
2

log(τ 2
w) − τ 2

w
2

w′H−1(φ)w

+ p
2
log(τ 2

ǫ ) − τ 2
ǫ
2

(β − β0)
′V −1(β − β0)

+ (aǫ − 1) log(τ 2
ǫ ) − bǫτ

2
ǫ + (aw − 1) log(τ 2

w) − bwτ
2
w.

This model is fitted using a Gibbs sampler. Development of the full condi-

tional distributions with related discussion is provided below. Straightfor-

ward calculation yields the following full conditional distributions:

τ 2
ǫ |... ∼ G

[

nrT
2

+ p
2

+ aǫ, bǫ + 1
2
(z −Xβ − w)′(z −Xβ − w) +

1
2
(β − β0)

′V −1(β − β0)
]

τ 2
w|... ∼ G

[

nrT
2

+ aw, bw + w′H−1(φ)w
]

,

β|... ∼ N [V1 {X ′(z − w − β0) + V −1β0} , V1]

where V1 = (V −1 + X ′X)−1 and |... is used to denote conditioning on the

remaining parameters and observations.

The complete conditional distribution of wl(si, t) is obtained in blocks as

follows. Let w∗j denote the vector of wl(sj, t) for l = 1, . . . , r, t = 1, . . . , T .

The prior complete conditional distribution of w∗j for j = 1, . . . , n given all

other columns i 6= j, i = 1, . . . , n is normal with mean ζj and covariance Λj

where

ζj = −
n
∑

i6=j,i=1

(Σs)
−1
ij

(Σs)
−1
jj

w∗i, and Λj = σ2
w

1

(Σs)
−1
jj

Σt.

The likelihood contribution for w∗j is also normal with

mean = ξj = z∗j − µ∗j, and covariance = σ2
ǫ I,

where I is the identity matrix of appropriate order. The posterior full condi-

tional distribution given the remaining parameters and observations is now

seen to be normal with mean

χj = Ωj

(

1

σ2
ǫ

ξj + Λ−1
j ζj

)

and covariance Ωj =

(

I

σ2
ǫ

+ Λ−1
j

)−1

.
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These are sampled en-bloc in the Gibbs Sampler.

4.2.3 Spatial Interpolation and Forecasting

Using the above models we can interpolate the spatial surface at any time

point t′ which can be any time in the past or the future. For convenience,

use the notation Z(s′, t′) to actually denote Zl′(s
′, t′). A consequence of this

is that we shall use the index t to run from 1 to rT rather than t = 1, . . . , T .

For a new location s′ at time t′, Z(s′, t′) is conditionally independent of

z given w(s′, t′) with its distribution given by

Z(s′, t′) ∼ N (µ(s′, t′) + w(s′, t′), σ2
ǫ ) , (4.7)

according to models (4.2) and (4.3). The posterior predictive distribution (see

the general form in Equation (2.12)) of Z(s′, t′) is obtained by integrating

over the unknown parameters with respect to the joint posterior distribution,

that is:

π (Z(s′, t′)|z) =

∫

π (Z(s′, t′)|w(s′, t′),θ) π (w(s′, t′)|w,θ) π(θ,w|z)

dw(s′, t′) dw dθ. (4.8)

When using MCMC methods to draw samples from the posterior, the pre-

dictive distribution (4.8) is sampled by composition; draws from the pos-

terior, π(θ,w|z) enable draws for w(s′, t′) (see below for the derivation of

π (w(s′, t′)|w, σ2
w)), and thus draws for Z(s′, t′). To report the predictions on

the original scale, we simply work with the square of the predictive realisa-

tions drawn from (4.8).

To derive the distribution π (w(s′, t′)|w, σ2
w), note that





w(s′, t′)

w



 ∼

N









0

0



 , σ2
w





1 Σ′
s(s − s′) ⊗ Σ′

t(t − t′)

Σs(s − s′) ⊗ Σt(t − t′) Σs ⊗ Σt








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where Σs(s − s′) is an n × 1 column vector with the ith entry given by

σ(si − s′) = ρs(si − s′;φs) and Σt(t − t′) is a rT × 1 column vector with

entries obtained using the temporal correlation function ρt(t− t′;φt). Hence,

w(s′, t′)|w ∼ N

(

n
∑

j=1

rT
∑

k=1

bjk(s
′, t′)w(sj, k), σ

2
wC(s′, t′)

)

(4.9)

where

bjk(s
′, t′) =

n
∑

i=1

rT
∑

m=1

σ(si − s′)σ(m− t′)(Σs)
−1
ij (Σt)

−1
mk (4.10)

C(s′, t′) = 1 − Σ12H
−1 (φ) Σ21 (4.11)

where Σ12 is a 1 × nT matrix with entry Σ′
12 = (σ(s1 − s′)σ(1 − t′), . . .

, σ(sn − s′)σ(T − t′)) and Σ21 = Σ′
12. The above expressions for bjk(s

′, t′)

and C(s′, t′) simplify considerably under the separability assumption, see

Section 4.3.3 for further details.

4.2.4 Results

We consider a smaller subset of our full data set to reduce the computational

burden. The ozone concentration data are obtained from n = 116 sites in the

states of Ohio, Pennsylvania, Maryland, Virginia, West Virginia, Kentucky

and Washington D.C from 4th to 10th, August, 2005. Also, we set aside data

from 43 sites for validation purposes; these sites are plotted in Figure 4.1.

In addition to addressing the instantaneous forecasting problem for a few

hours ahead of the current hour, here we also investigate the capability of the

models for forecasting for the next 27 hours so that we can forecast the next

day’s 8-hour maximum ozone concentration levels. This forecasting problem

will be discussed fully in the next chapter where we formally define the daily

8-hour maximum ozone concentration levels. The aim here is to see if this

model for hourly data can forecast for such a long lead time in advance.

73



4.2. A Model with Nugget Effect for Hourly Data 74

As mentioned in Section 3.5 the decay parameters φs and φt in the

model (4.4) cannot be jointly estimated consistently along with other pa-

rameters. By using empirical methods (as done in Section 3.6.2) we set the

values φs and φt equal to 0.01 and 0.3, respectively. These correspond to a

spatial range of 300 kilometers and a temporal range of 10hours.

The parameter estimates are presented in Table 4.1. We observe that

most of the 95% credible intervals do not include zero; thus most of the

parameters are significantly different from zero. We also see a significant

positive effect of eta-CMAQ values. The 95% credible intervals for the Fourier

series terms ak and bk do not both include zero until k = 6 implying that

a6 and b6 can be dropped from the model. The estimates of the variance

components show that the spatial random effects explain more variation than

the nugget effect.

To compare the performance of the fitted hierarchical spatio-temporal

model we also consider a simple linear regression sub-model with independent

error distribution. From Table 4.2, we see that the PMCC of the spatio-

temporal model is smaller than that for the linear base model. However

the RMSE for the spatio-temporal model is only slightly better than that

for the linear base model. However, in terms of the RMSE both the linear

base model and the spatio-temporal model is better than the eta-CMAQ

forecasting model. This fact is further evident in Figure 4.2 which also shows

that the eta-CMAQ model produces upwardly biased forecasts.

The spatio-temporal model relies heavily on the Gibbs sampler which

takes a long time, over 10 hours in an ordinary duo-processors personal com-

puter, to run even for this small data set. However, this model is not able

to improve the forecasts from a basic linear regression model significantly.

Thus, an alternative model with less computational complexity and better

forecasting ability is needed for obtaining instantaneous forecasts. We de-

velop such a model by removing the nugget effect and improving the mean
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structure in the next section.
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Figure 4.1: Plot of the 116 data sites and 43 validation sites in the study

region.
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Parameter Mean Standard Deviation 2.5 percentile 97.5 percentile

ξ 5.2722 0.1150 5.0717 5.5239

β1 0.0349 0.0137 0.0052 0.0584

a1 -0.1902 0.0664 -0.3031 -0.0805

b1 -2.5279 0.0380 -2.6037 -2.4715

a2 0.0885 0.0209 0.0379 0.1260

b2 0.4096 0.0325 0.3436 0.4675

a3 -0.3163 0.0317 -0.3895 -0.2635

b3 -0.2285 0.0238 -0.2760 -0.1900

a4 0.0458 0.0300 0.0023 0.1045

b4 0.0339 0.0227 -0.0040 0.0821

a5 -0.0452 0.0178 -0.0783 -0.0115

b5 0.0452 0.0178 0.0102 0.0763

a6 -0.0072 0.0165 -0.0426 0.0254

b6 -0.0247 0.0190 -0.0608 0.0124

σ2
ǫ 0.0490 0.0025 0.0443 0.0538

σ2
ω 1.9944 0.0288 1.9370 2.0506

Table 4.1: Parameter estimates of the hierarchical spatio-temporal model in

motivating example in Section 4.2.4. Most of the predictive intervals of the

parameters do not include zero.

RMSE PMCC

Eta-CMAQ 27.53 −−
Linear base Model 12.80 89051.93

Spatio-Temporal Model 12.67 6430.32

Table 4.2: Table for the comparison of the descriptive and predictive perfor-

mance for various models.
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Figure 4.2: Validation plot for the comparison of prediction performance

for (a) Eta-CMAQ Model (b) Linear Base Model, and (c) Spatio-Temporal

Model. The y = x line is superimposed in all the plots.
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4.3 A Regression Model without Nugget Ef-

fect

In this section we develop a spatio-temporal model which can be fitted by

exact methods. This is important since one of the objectives here is to obtain

instantaneous hourly prediction surfaces. We re-formulate the models from

Equation (4.2) and (4.3) by removing the nugget effect ǫl(s, t) and developing

a new mean function as follows. The full model is given by:

Zl(si, t) = β0 xl(si, t) + ξ(t) + wl(si, t), i = 1, . . . , n, t = 1, . . . , T, (4.12)

where β0 is an unknown regression co-efficient and ξ(t) is the hourly intercept.

We assume that the hourly intercept at any given hour remains constant for

different days. The hourly intercept is defined by ξ(t) = βj, where the hour

t(= 1, . . . , T ) corresponds to the jth hour of the day, j = 1, . . . , 24. This

mean structure provides much more direct interpretation using the hourly

intercepts that the one given in Equation (4.1) we assumed previously in

Section 4.2. This is also preferred by the USEPA and hence the reason for

its adoption here. Note that we continue to model ozone concentration levels

in the square-root scale.

Note that the model (4.12) is in the form: noisy data equal to the

true mean level plus a random error where the true mean level is given by

β0 xl(si, t) + ξ(t) and the random error term, dependent in space and time,

is given by wl(si, t). Let β denote the unknown parameters (β0, β1, . . . , β24)

and p = 25 denote the dimensionality of β.

As before in Section 4.2 we assume that the spatio-temporal process

wl(si, t) is zero-mean Gaussian process with a separable covariance struc-

ture given by Equation (4.4). Thus we assume w to have the specification

given by (4.5). We obtain optimal values of the decay parameters by a grid

search as done previously in Section 4.2.1. The exact optimal values are
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reported in the results Section 4.3.5.

For convenience, we work with the precision τ 2
w = 1

σ2
w
. The joint prior

distribution of β and τ 2
w is given by:

π(β, τ 2
w) = N

(

β0,
V

τ 2
w

)

G(aw, bw), (4.13)

where β0 and V are suitable hyper-parameters and τ 2
w follows the gamma

distribution with mean a/b. We use the same values of the hyper-parameters

as in Section 4.2.1.

4.3.1 Posterior Distributions

The model in (4.12) can be written as

Z ∼ N
(

Xβ, σ2
wH (φ)

)

.

The joint posterior distribution of β and τ 2
w, π (β, τ 2

w|z), is:

∝ (τ 2
w)

nrT+p
2

+aw−1
exp

[

− τ2
w

2
(z −Xβ)′H−1 (φ) (z −Xβ)

− τ2
w

2
(β − β0)

′V −1(β − β0) − bwτ
2
w

]

∝ (τ 2
w)

nrT+p
2

+aw−1
exp

[

− τ2
w

2

{

(z −Xβ)′H−1 (φ) (z −Xβ)

+(β − β0)
′V −1(β − β0) + 2bw}] .

Now we use the matrix identity:

(z −Xβ)′H−1(φ)(z −Xβ) + (β − β0)
′V −1(β − β0) + 2bw

= (β − β∗)′(V ∗)−1(β − β∗) + 2b∗w

where

V ∗ =
(

V −1 +X ′H−1(φ)X
)−1

(4.14)

β∗ = V ∗ (V −1β0 +X ′H−1(φ)z
)

(4.15)

b∗w = bw +
{

β′
0V

−1β0 + z′H−1(φ)z − (β∗)′(V ∗)−1(β∗)
}

/2. (4.16)
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Hence the joint posterior distribution is given by

π
(

β, τ 2
w|z
)

∝
(

τ 2
w

)
nrT+p

2
+aw−1

exp

[

−τ
2
w

2

{

(β − β∗)′(V ∗)−1(β − β∗) + 2b∗w
}

]

.

Now we have the following results:

β|z, τ 2
w ∼ N (β∗, σ2

wV
∗) (4.17)

τ 2
w|z,β ∼ G

(

nrT + p

2
+ aw,

1

2
(β − β∗)′(V ∗)−1(β − β∗) + b∗w

)

(4.18)

β|z ∼ St

(

β∗, 2b∗w
V ∗

nrT + 2aw

, nrT + 2aw

)

(4.19)

τ 2
w|z ∼ G (nrT/2 + aw, b

∗
w) (4.20)

where Y ∼ St(µ,Σ, ν) has the density

f(y|µ,Σ, ν) =
Γ
(

ν+p
2

)

Γ
(

ν
2

)

(νπ)p/2
|Σ|−1/2

{

1 +
(y − µ)′Σ−1(y − µ)

ν

}−(ν+p)/2

.

4.3.2 Predictive Distributions

Using the above models we can interpolate the spatial surface at any time

point t′ which can be any time in the past or the future. As before, for

notational convenience, we drop the sub-script l′ for day, i.e. we use the

notation Z(s′, t′) to actually denote Zl′(s
′, t′). Let the regression vector at

this new location-time combination be given by x0. We construct the joint

distribution:




Z (s′, t′)

Z



 ∼ N











x′
0β

Xβ



 , σ2
w





1 Σ12

Σ21 H (φ)











,

where Σ12 and Σ21 are obtained appropriately using the covariance func-

tion (4.4). Now we obtain the conditional distribution

Z (s′, t′) |z,β, σ2
w ∼ N

{

x′
0β + Σ12H

−1 (φ) (z −Xβ) , σ2
w

(

1 − Σ12H
−1 (φ) Σ21

)}

.
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Therefore,

π(Z (s′, t′) |z,β, σ2
w) ∝ (τ 2

w)1/2 exp
[

− τ2
w

2m
{z (s′, t′)

−x′
0β − Σ12H

−1 (φ) (z −Xβ)}2
]

∝ (τ 2
w)1/2 exp

[

− τ2
w

2m
{z (s′, t′) − Σ12H

−1 (φ) z − x′
0β

+Σ12H
−1 (φ)Xβ}2

]

∝ (τ 2
w)1/2 exp

[

− τ2
w

2m
{z∗ − (x′

0 − Σ12H
−1 (φ)X)β}2

]

∝ (τ 2
w)1/2 exp

[

− τ2
w

2m
{z∗ − g′β}2

]

where

m = (1 − Σ12H
−1 (φ) Σ21)

z∗ = z (s′, t′) − Σ12H
−1 (φ) z

g′ = x′
0 − Σ12H

−1 (φ)X.

This shows that

Z∗|z,β, τ 2
w ∼ N

(

g′β, σ2
w m

)

.

But we have already seen that

β|z, τ 2
w ∼ N

(

β∗, σ2
w V

∗) .

Hence by integrating out β we have

Z∗|z, τ 2
w ∼ N

(

g′β∗, σ2
w(m+ g′V ∗g)

)

.

Now since the posterior distribution of τ 2
w is G(nrT/2+ aw, b

∗
w) the posterior

predictive distribution of Z∗ given z is:

Z∗|z ∼ St(g′β∗, 2b∗w
1 − Σ12H

−1 (φ) Σ21 + g′V ∗g

nrT + 2aw

, nrT + 2aw).

Now we obtain the posterior predictive distribution Z(s′, t′)|z as follows:

Z(s′, t′)|z ∼ St
(

x′
0β

∗ + Σ12H
−1 (φ) (z −Xβ∗) ,

2b∗w
1 − Σ12H

−1 (φ) Σ21 + g′V ∗g

nrT + 2aw

, nrT + 2aw

)

. (4.21)
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The posterior predictive distribution we are using here is on the square-

root scale. We can predict on the original scale by evaluating below simple

equality:

E(Z2(s′, t′) | z) = {E(Z(s′, t′) | z)}2 + V ar {E(Z(s′, t′) | z)}
= {x′

0β
∗ + Σ12H

−1 (φ) (z −Xβ∗)}2
+

2b∗w
1−Σ12H−1(φ)Σ21+g′V ∗g

nrT+2aw−2

The variance of these predictions can be calculated using the fourth order

of moment of the t-distribution. From Equation (4.21), let µz∗ = x′
0β

∗ +

Σ12H
−1 (φ) (z −Xβ∗), σ2

z∗ = 2b∗w
1−Σ12H−1(φ)Σ21+g′V ∗g

nrT+2aw
and νz∗ = nrT + 2aw.

The variance of the response in original scale Z2 is

V ar(Z2) =
2σ2

z∗ν
2
z∗(νz∗ − 1)

(νz∗ − 4)(νz∗ − 2)
+ 8σ2

z∗µz∗
νz∗

νz∗ − 2
. (4.22)

Although this can be used to assess uncertainty in the predictions, this exact

formula for variance of Z2 is not sufficient to construct prediction intervals

since the distribution of the square of a non-central t is not a standard distri-

bution. Besides, this type of exact formula cannot be derived if some other

transformation, e.g. the logarithm had been used instead of the square-root

used here. Hence there is a need for looking alternative methods for evalu-

ating the uncertainty.

Apart from the above exact formula for variance of the predictions, there

are three alternative methods of assessing uncertainty in the predictions us-

ing approximations. The first is a Monte Carlo method. We generate a large

number of samples of Z(j)2(s′, t′), j = 1, . . . , 1000 from the posterior predic-

tive distribution and use those to estimate the prediction variance and the

prediction intervals.

This approach, however, will be slower than the second method based

on the normal approximation for the square of the t-distribution (4.21) we

adopt here. The approximation is justified by the fact that the degrees of

freedom nT + 2aw is very large (more than 2500 in our application). The
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approximate 95% prediction interval is given by

E(Z2(s′, t′)|z) ± 1.96 ×
√

Var(Z2(s′, t′)|z).

The third and final one is an approximation method using the well-known

delta method (Oehlert, 1992), any continuous transformation g(X)’s variance

can be approximated by V ar(X)g′(E(X))2. This method is quicker than the

Monte Carlo method.

4.3.3 Simplifying the Computation

Spatio-temporal modelling often involves high dimension matrices. It takes

unnecessary long time to compute those matrices by the first principles and

also require storage of huge matrices. Analytical simplification of the expres-

sions Σ12H
−1 (φ) and Σ12H

−1 (φ) Σ21 is possible because of the assumption

of separability. As a result the computation becomes much faster.

Note that




1 Σ12

Σ21 H (φ)



 =





1 Σ′
s(s − s′) ⊗ Σ′

t(t − t′)

Σs(s − s′) ⊗ Σt(t − t′) Σs ⊗ Σt





where Σs(s − s′) is an n × 1 column vector with the ith entry given by

σ(si − s′) = ρs(si − s′;φs) and Σt(t − t′) is a rT × 1 column vector with

entries obtained using the temporal correlation function ρt(t− t′;φt).

Here H−1 (φ) = Σ−1
s ⊗ Σ−1

t . Hence the 1 × nrT vector Σ12H
−1 (φ) will

have elements (for j = 1, . . . , n and k = 1, . . . , rT )

bjk(s
′, t′) =

n
∑

i=1

rT
∑

m=1

σ(si − s′)σ(m− t′)(Σs)
−1
ij (Σt)

−1
mk

=
n
∑

i=1

σ(si − s′)(Σs)
−1
ij

rT
∑

m=1

σ(m− t′)(Σt)
−1
mk

= bs(j, s
′) bt(k, t

′), (4.23)
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where

bs(j, s
′) =

n
∑

i=1

σ(si − s′)(Σs)
−1
ij , and bt(k, t

′) =
rT
∑

m=1

σ(m− t′)(Σt)
−1
mk.

The quantity bt (k, t′) can be simplified considerably by noting that it re-

sembles the inner product of a multiple of a particular column of Σt and a

particular row of Σ−1
t . First, consider the case t′ ≤ rT . In this case bt (k, t′)

is the inner product of the t′th column of Σt and kth row of Σ−1
t . Hence

bt (k, t′) will be 1 if t′ = k and 0 otherwise. Now consider the case t′ > rT .

Suppose that we can write

σ(m− t′) = σ(t′ − rT )σ(rT −m)

for m = 1, . . . , rT , thus bt (k, t′) will be σ(t′ − rT ) times the inner product

of the rT th column of Σt and kth row of Σ−1
t . (The above identity holds

for the adopted exponential covariance function.) Thus we have proved the

following results:

bt (k, t′) =







δk,t′ , if t′ ≤ rT

δk,rT exp [−φt (t′ − rT )] , if t′ > rT

where δi,j = 1 if i = j and 0 otherwise.

Now we simplify the expression for the conditional variance. For the

exponential covariance function, this provided a very convenient simplified

form for bl(k, k
′); there is no need to perform any summation at all. Let

C(s′, t′) = 1 − Σ12H
−1 (φ) Σ21

= 1 −
n
∑

i=1

n
∑

j=1

rT
∑

m=1

rT
∑

k=1

σ(si − s′)σ(m− t′) (4.24)

(Σs)
−1
ij (Σt)

−1
mkσ(sj − s′)σ(k − t′)

= 1 − as(s
′) at(t

′), (4.25)

where

as(s
′) =

n
∑

i=1

n
∑

j=1

σ (si − s′)
(

Σ−1
s

)

ij
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and

at(t
′) =

rT
∑

m=1

rT
∑

k=1

σ (m− t′)
(

Σ−1
t

)

mk
σ (k − t′) =

rT
∑

k=1

bt(k, t
′)σ (k − t′) .

By substituting the values of bt(k, t
′) we obtain:

at (t′) =







1, if t′ ≤ rT

exp [−2φt (t′ − rT )] , if t′ > rT.

Now we have the following results:

C(s′, t′) =







1 − as(s
′), if t′ ≤ rT

1 − as(s
′) exp [−2φt (t′ − rT )] , if t′ > rT.

This greatly simplifies the expression C(s′, t′) involving four different sum-

mations. Now a sum over only two indices is all that is required to evaluate

C(s′, t′).

Apart from giving an equation for each spatial and time point, the ex-

pression Σ12H
−1 (φ) can also be represented in a matrix form. For some

statistical programming languages, the calculation could be done via matrix

multiplication. Consider the following identity (see Graham, 1981):

(ABC)S = (CT ⊗ A)BS (4.26)

where S is a stack operator for a m×n matrix with comprising m dimension

n× 1 vectors. If A and C are positive definite, we have the following:

(ABC)S = (CT ⊗ A)BS

⇒ ((ABC)S)T = (BS)T (CT ⊗ A)T

⇒ ((ABC)S)T = (BS)T (C ⊗ AT )

The right hand side of the identity is in the form of Σ12H
−1 (φ), so the

expression Σ12H
−1 (φ) can be written as:

Σ12H
−1 (φ) = ((Σ−1

t (Σ−S
12 )t×sΣ

−1
s )S)T (4.27)
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where −S is an inverse of stack operator that forms a 1 ×mn matrix back

into a n × m matrix. The running time is originally O(n2m2) and now is

reduced to O(n2m) for n > m. For the spatio-temporal models we fitted, the

Big O is reduced by rT = 168 times.

4.3.4 Predicting the Eight-hour Map

One of the useful applications of the hourly modelling is the ability to pre-

dict the 8-hour average ozone concentration at the current hour. In the

EPA AIRNow environment air quality standard, the 8-hour average ozone

concentration at the current hour t is the simple average of the 8-hourly con-

centrations at the current hour t, four past hours (t − 1, t − 2, t − 3, t − 4),

and the three future hours (t+ 1, t+ 2, and t+ 3). The 8-hour ozone at time

t, location s′ is given by:

Q8(s, t) =
1

8

3
∑

k=−4

Z2(s, t+ k). (4.28)

The 8-hour averages are centred at the middle of 8 hours, for example, the 8-

hour average at 4 pm is the average value obtained from the eight one-hourly

measurements observed from 12 pm to 7 pm.

Here we use Z2 since ozone is modelled in the square-root scale. Note that

at any un-observed site s′, Z2(s′, t) for any t is the square of the non-central t-

distribution with parameters as given in (4.21). The posterior predictive dis-

tribution of O8(s
′, t), defined as the sum of the non-central F-distributed ran-

dom variables, is not available in closed form. As a result, we use Monte Carlo

simulation to find the mean and standard deviation of the posterior predictive

distribution of O8(s
′, t) given the observed data z as follows. We generate a

large number L of independent random variables, Z(j)(s′, t+ k), j = 1, . . . , B

for each k = −4,−3, . . . , 3 at each hour t at the given location s′. Now we

obtain O
(j)
8 (s′, t) = 1

8

∑3
k=−4 Z

(j)2(s′, t+k) for each j = 1, . . . , B. The 8-hour
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average is estimated by the sample mean, Ō8(s
′, t) = L−1

∑L
j=1O

(j)
8 (s′, t) and

the sample standard deviation of O
(j)
8 (s′, t) is used as an uncertainty estimate

of the posterior predictive distribution. In the Monte Carlo simulation, we

use independent samples Z(j)2(s′, t + k), k = −4, . . . , 3 for each j. In effect,

we perform marginal predictions of Z
2

(s′, t + k) for each k, just as we do

marginal predictions at all the different locations s′ in the predictive grid of

3000 sites. Joint predictions and forecasting is computationally prohibitive

in the instantaneous prediction problem of this chapter and are not pursued

here.

4.3.5 Results

We use n = 350 sites real-time hourly ozone concentrations data covering

the eastern U.S for a two-week period, 2nd-14th August, 2005. We set aside

40 additional for model validation. We only include data for 168 hours in

our model: a simple linear regression result shows that the more distant past

data do not improve the prediction. Using data hourly data from 2nd-15th

August we form 30 data sets each having a start day between 2nd-7th August

(giving six possible start days) and a start hour between 2PM-6PM (giving

five possible start hours) to examine the prediction performance for repeated

data sets.

Apart from validation, we also predict high resolution map for visualising

the inferential output. We use the Eta-CMAQ forecast for 3000 randomly

sampled grid cells out of available 9119 grid cells. As discussed in Chapter

3, over 90% of high ozone concentrations occurs between 2pm and 6pm.

Therefore, our scientific interests would only concentrate on that period.

We will first examine the 3-hours-ahead forecasts. All the model based

forecasts outperform the Eta-CMAQ forecasts. Validation plots in Figure

4.3 and 4.4 give the best and the worst prediction in 30 sets of the validation

data.
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The optimal/decay parameters are found out using a grid search. The grid

search procedure is to select a set of parameters from choosing the one with

the smallest RMSE. The optimal decay parameters φs and φt vary over the

eight hours under the RMSE criterion. Thus, it is not worthwhile to use the

same set of parameters for all hours. Alternatively, we can use the optimal

decay parameters under the RMSE criterion to generate eight-hour ozone

level, see Table 4.5 for an illustration. Most of the parameter estimates of φs

and φt from 1-to-3-hours-ahead forecasts are the same. For the interpolation

side, for those 5-hours, φs tend to have a larger value (shorter range). We use

Monte Carlo simulation to find the eight-hour ozone level estimator Q̂8(s
′, t)

at time t and location s′. The predictive quality can be checked by the

validation mean-square error at time t which is given by,

RMSE(t) =

[

1

nv′

40
∑

i=1

(

Q8(s
′
i, t) − Q̂8(s

′
i, t)
)2

I(Q8(s
′
i, t))

]
1

2

(4.29)

where I(Q(s′i, t)) = 1 if O8(s
′
i, t) is available, and 0 otherwise, and nv′ =

∑40
i=1 I(Q(s′i, t)) is the total number of available observations at the 40 vali-

dation sites. In terms of the eight-hour scale RMSE, the model based method

outperforms both the Eta-CMAQ forecast and the linear base model as well.

For example, at 3pm on August 11, the RMSE for Eta-CMAQ and linear

model is 24.61 and 8.99 respectively but only 4.82 for our model, see Fig-

ure 4.6 for the validation plot.

The prediction map in both Figures 4.8 and 4.9 also show an agreement

to the superimposed observed data. From Figure 4.5, we observe that there

is not much discrepancy between the Monte Carlo and delta method compu-

tations for the standard deviations.

Note that the 8-hour average predictions have lower uncertainties than

the 3-hour ahead forecasts, as expected. A usual linear regression model is

also examined which has no spatial correlation term. In both Figures 4.7 and

4.10, the linear regression model fails to exhibit the spatial variation in the
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map and the predictive values do not show any spatial variation.

We also note that RMSE tends to increase as the length of the forecast

period is increased. Table 4.6 shows uniform reductions in mean-square error

that result in using the proposed Bayesian spatial-temporal model in relate

to the regression model.

4.4 Summary

This Chapter has demonstrated that, as a data assimilation problem, prob-

ability forecasts of instantaneous short-term air quality information can be

obtained from our model based method. In the example in Section 4.2.4,

the hierarchical Bayesian spatio-temporal model shows a better descriptive

power but fails to provide a better predictive performance than that of a

simple linear regression model.

High resolution prediction map can be produced using Bayesian meth-

ods without an extensive MCMC computation. For scientific interpretation,

probability statements from the forecast output is easier to address than us-

ing physical numerical model. The validation analyses in Section 4.3.5 show

that the model based approaches can consistently outperform the computer

simulation model.

One disadvantage for using the hierarchical models of this chapter is their

weakness in forecasting far ahead in time. Hence we abandon the hope of

predicting daily ozone concentration levels using a model for hourly data.

In the next Chapter, we incorporate an auto-regressive space-time model for

daily data for forecasting the next day’s 8-hour maximum ozone concentra-

tion levels.
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RMSE MAE rBIAS rMSEP

CMAQ 13.11 10.13 0.05855 0.6168

Linear 12.37 10.05 0.06989 0.5417

Bayes 10.98 9.16 0.06588 0.4289

Table 4.3: Predictive quality indicators for 3-hours ahead forecast at 2pm on

9th August.

RMSE MAE rBIAS rMSEP

CMAQ 15.46 11.73 0.05211 0.6417

Linear 19.36 16.73 -0.1919 0.7961

Bayes 13.19 10.48 -0.03318 0.4776

Table 4.4: Predictive quality indicators for 3-hours ahead forecast at 2pm on

12th August.
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Figure 4.3: Validation plot for 2PM on 9th August when the proposed model

performs the best.
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Figure 4.4: Validation plot for 2PM on 12th August when the proposed

model performs the worst.

15
25
35
45
55
65

15
25
35
45
55
65

Figure 4.5: Left panel is the standard deviation map produced by Monte

Carlo method for model-based 3-hours forecasts at 3pm on 11th August

and right panel is for the same standard deviation map generated by delta

method.
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Figure 4.6: Validation plot of 8-hour average at 3pm on 11th August
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Figure 4.7: Left panel is the 8-hour average Eta-CMAQ map at 3pm on 11th

August and right panel is the same map using an independent error regression

model. Observed values from some selected sites are superimposed. (For

visual clarity we present only a subset of the monitoring data).
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Figure 4.8: Left panel is the 8-hour average model based map at 3pm on 11th

August and right panel is the standard deviation map. Observed values from

some selected sites are superimposed. (For visual clarity we present only a

subset of the monitoring data).
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Figure 4.9: Left panel is the 3-hours ahead model based map at 3pm on 11th

August and right panel is the standard deviation map. Observed values from

some selected sites are superimposed. (For visual clarity we present only a

subset of the monitoring data).
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Figure 4.10: Left panel is for the 3-hours ahead Eta-CMAQ map at 3pm on

11th August and right panel is for the same map using an independent error

regression model. Observed values from some selected sites are superimposed.

(For visual clarity we present only a subset of the monitoring data).

Hour 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm

φs 0.06 0.012 0.06 0.06 0.012 0.006 0.006 0.006

φt 0.13 0.25 1.00 1.00 0.5 0.13 0.13 0.13

Table 4.5: Optimal decay parameters for 8-hour average at 3pm on August

11th.
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Day Start Hour

2pm 3pm 4pm 5pm 6pm

Last hour interpolation

Aug 2 124.7 124.8 141.0 103.0 84.3

Aug 3 98.2 104.9 115.6 83.4 105.5

Aug 4 94.1 99.6 118.6 141.4 192.4

Aug 5 35.5 83.8 48.6 92.0 194.8

Aug 6 117.4 82.1 65.1 74.2 148.0

Aug 7 80.9 104.3 131.2 114.8 141.2

One hour ahead forecasts

Aug 2 80.0 76.9 63.7 86.4 137.6

Aug 3 43.4 50.6 53.9 81.5 129.4

Aug 4 117.5 144.4 206.1 282.3 327.8

Aug 5 170.5 172.4 190.1 231.4 257.7

Aug 6 118.5 125.0 150.6 160.4 150.7

Aug 7 74.1 81.5 103.6 115.6 126.7

Two hours ahead forecasts

Aug 2 88.1 71.3 40.4 82.7 148.3

Aug 3 58.9 58.2 53.5 63.8 138.6

Aug 4 119.9 137.1 199.1 298.7 375.1

Aug 5 167.8 180.5 227.3 235.2 267.0

Aug 6 104.4 117.0 171.3 190.3 141.6

Aug 7 80.2 79.1 96.6 143.2 133.4

Three hours ahead forecasts

Aug 2 44.5 40.3 72.0 125.1 168.1

Aug 3 10.4 20.7 38.2 102.1 157.3

Aug 4 109.2 164.6 267.0 339.3 277.6

Aug 5 161.7 205.3 191.4 233.9 240.3

Aug 6 117.4 172.5 182.2 127.9 114.1

Aug 7 58.8 68.9 135.3 114.7 87.8

Table 4.6: Differences in mean square errors
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Chapter 5

Bayesian Fusion for Daily

8-hour Maximum Ozone

Concentration Levels

5.1 Introduction

The last Chapter developed methodologies for predicting a real-time 8-hour

ozone concentration map at every hour. In this Chapter, we turn to the direct

problem of modelling the daily maximum 8-hour average ozone concentration

levels since it is necessary to have the forecasts for these one-day in advance.

The definition of the daily 8-hour maximum in the last Chapter given by

Q8,max(s) =
23

max
t=0

Q8(s, t)

where Q8(s, t) has been defined in Equation (4.28) as the average of the

8-successive hours’ ozone concentration levels.

In this chapter we develop models for Q8,max(s) for a number of different

sites and days. For convenience, we shall use the Z(si, t) notation to de-

note the square-root of the daily 8-hour maximum ozone concentration level,

Q8,max(s) for a particular day, t. Similarly, we define x(si, t) to be the daily
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8-hour maximum eta-CMAQ forecast for a grid cell containing the site si on

day t.

Modelling of the daily data instead of the hourly data greatly reduces

the computation problem. The daily model can be developed to be a more

complex realistic model. We can also use spatially non-stationary time series

models such as an auto-regressive model (ARM) for capturing both spatial

variation and temporal evolution.

The plan for the remainder of this chapter is follows. In Section 5.2

we re-postulate the hierarchical Bayesian model from Section 4.2 for daily

data. Section 5.3 develops the ARM and compares its performance with the

previous model. The chapter ends with a few summary remarks.

5.2 A Gaussian Random Effect Model

The Bayesian hierarchical GRE models take the spatio-temporal random

effects into account and assume a hierarchical structure

Z (si, t) = µ (si, t) + ǫ (si, t) , (5.1)

µ (si, t) = β0 + β1x (si, t) + w (si, t) , (5.2)

The time scale used here is T = 1, . . . , 7 days. The nugget effect ǫ (si, t) is

assumed to follow the normal distribution with zero mean and variance σ2
ǫ

and w ∼ N (0, σ2
wΣ). We assume Σ to be a separable correlation matrix

given by Σ = Σs ⊗ Σt, where Σs(ij) = ρ (d(si, sj);φs), Σtk,tl = ρ (|tk − tl|;φt),

where ρ(d;φ) = exp(−φd). We assume the following prior distribution:

σ2
ǫ ∼ IG (a, b) , σ2

w ∼ IG (a, b) , β ∼ N (0, A2) ,

where IG(a, b) denotes the inverse gamma distribution. We take a = 2, b = 1

and A2 = 104 following the justification provided in Section 3.5.
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The data model (5.1) represents the measurement error process. Equa-

tion (5.2) represents the process model which is obtained by a linear adjust-

ment of computer model output that varies according to space and time.

5.2.1 Results

The original data set, described in Section 1.2, is transformed into a daily

scale by calculating daily 8-hour maximum observed concentration levels and

eta-CMAQ forecasts for each site. We model data from n = 350 sites and

set aside data from 40 randomly selected sites for validation purposes.

We model the daily 8-hour maximum ozone concentration levels for a

running window of T = 7 days and forecast one-day-ahead. The daily 8-

hour maximum ozone concentration levels during 10th-13th August can be

forecasted from the original data. In particular, we can forecast the levels

for August 10th by modelling 7-days’ data from August 3rd-9th and so on.

We do this to repeatedly test out the methodologies to be adopted for the

real problem.

For producing high resolution forecasting map, we obtain the Eta-CMAQ

forecasts for 3000 randomly sampled grid points out of the total 9119 grid

points in the eastern US. However, all the available data should be used in

order to obtain a more accurate and a higher resolution result.

As discussed in Section 3.5, we fix the decay parameters φ at optimal

values by searching among candidate values in a grid. The candidate values

correspond to range values of 50km, 250km, 500km in space and 1-day, 3-

days, and 7-days in time. The values corresponding to 250km and 3-days

provide the smallest RMSE.

From Table 5.1, all the one-day ahead forecasts derived from the hier-

archical GRE models outperform their Eta-CMAQ counterparts in terms

of RMSE. For the model bias, all rBIAS in Bayesian hierarchical model is

smaller except for the one on the 10th which is slightly worse than Eta-
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CMAQ forecasts. Overall, the Bayesian hierarchical model for the period

10th-13th August provides better prediction.

Figure 5.1 shows the validation plot for the forecasts based on Eta-CMAQ

and GRE model. It shows that the Eta-CMAQ forecasts are upwardly biased

while the GRE model forecasts are downwardly biased. The RMSE of Bayes

GRE forecasts is 17.49ppb when the observed values are larger than 80ppb

while the RMSE is only 9ppb otherwise. This validation analysis shows that

the Bayesian hierarchical GRE model forecasts reduce the bias in numerical

model output through assimilation. However, in the example, the model

cannot capture the upper tail of the distribution very well.

The standard deviation map in Figure 5.2 shows that the forecasts for

higher values are associated with larger standard deviations.

The probability maps (panels (c) and (d)) in Figure 5.2) show that many

areas in Pennsylvania, West Virginia, New York and Connecticut will have

their daily 8-hour maximum ozone concentration for August much larger

than 80ppb with a very high probability.

Table 5.1: RMSEs and rBIAS

RMSE rBIAS

Validation Days Eta-CMAQ Bayes GRE Eta-CMAQ Bayes GRE

Aug 10 18.66 7.82 0.2917 -0.05075

Aug 11 14.83 13.94 0.1204 -0.1235

Aug 12 12.70 9.72 0.1388 -0.08586

Aug 13 14.78 7.97 0.1867 -0.03447

Aug 10-13 15.41 10.22 0.1807 -0.07480
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Figure 5.1: Validation plot for the period 10th-13th August of the Eta-CMAQ

forecasts and the forecasts under the GRE model.

5.3 An Auto-regressive Model with Spatially

Varying Slope

Following Sahu, Gelfand and Holland (2006, 2007), the pollutant process

is modelled as a high-resolution space-time process. Although their work

does not deal with data assimilation, this approach can be used to combine

computer model output and observed data. A conceptual graph in Figure

5.3 shows the dependent structure of the modelling mechanism.

Corresponding to Z(si, t), let O(si, t) denote the true square-root ozone

concentration level at si and at time t. We first assume:

Z (s, t) = O(si, t) + ǫ (s, t) , (5.3)

where ǫ(si, t) is a white noise process, assumed to follow N(0, σ2
ǫ ) indepen-

dently. Thus σ2
ǫ , taken to be homogeneous in space and time, is the so called

nugget effect.

Now we consider modelling O(si, t) as a function of previous values of
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Figure 5.2: GRE model forecasts: (a) one-day-ahead forecasts of ozone level

on 10th Aug. (b) standard deviation of one-day-ahead forecasts of ozone level

on August 10 (c) probability of one-day-ahead forecasts exceeding 80ppb on

August 10 (d) probability of one-day-ahead forecasts exceeding 70ppb on

August 10.
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ozone levels and the square root of the eta-CMAQ output x(si, t) for the

grid-cell containing the site si. The qualitative information of the atmo-

spheric science tells us the ozone concentration level at a particular space-

time point evolves from the successive state (day). In addition, from the

EDA in Chapter 3, there is an auto-correlation between the successive day’s

ozone concentration measurement. The Eta-CMAQ forecast is also highly

relevant for prediction of ozone levels. We add a spatially varying regression

term (“slope”) and the square root of the original Eta-CMAQ forecast as a

predictor. Thus, we assume that,

O(si, t) = ξt + ρO(si, t− 1) + (β0 + β(si))x(si, t) + η(si, t), (5.4)

for i = 1, . . . , n, t = 1, . . . , T where ξt is a random walk process ξt ∼
N(ξt−1, σ

2
ξ ), ρO(si, t − 1) is the auto-regressive term with 0 < ρ < 1,

(β0 + β(si))x(si, t) is the spatially varying regression term and η(si, t) is a

spatially correlated but temporally independent error term. The term β(si)

is particularly attractive because it is a Gaussian process centred at 0 allow-

ing a non-stationary structure. The inclusion of the spatially-varying term

β0 and β(si) leads to a non-stationary model. A stationary sub-model with

β(si) = 0 is a special case for this model.

Another sub-model can be obtained by reducing the random walk process

ξt to a single constant term. Then T parameters ξ1, . . . , ξT would reduce

to one. We expect that the full model to give a better fit than the sub-

model but extra variability is introduced due to additional parameters. The

systematic equation requires a corresponding initial condition for O(si, 0)

which we choose to be grand mean of the data.

For computational convenience, we shall use the following vector nota-

tions: Zt = (Z(s1, t), . . . , Z(sn, t))
′, Ot = (O(s1, t), . . . , O(sn, t))

′, xt =

(x(s1, t), . . . , x(sn, t))
′, where Xt is a diagonal matrix whose ith diagonal

entry is x(si, t), and ǫt = (ǫ(s1, t), · · · , ǫ(sn, t))
′. Now we write the above
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models using vectors and matrices to facilitate computation. The first model

equation will be the same as the equation (5.1) in GRE models:

Zt = Ot + ǫt, (5.5)

for t = 1, . . . , T , where ǫt = (ǫ(s1, t), · · · , ǫ(sn, t))
′. Let 1 be the vector of

dimension n with all elements unity and β = (β(s1), . . . , β(sn))′ . From (5.4)

we have:

Ot = ξt1 + ρOt−1 + β0xt +Xtβ + ηt, (5.6)

for t = 1, . . . , T , where ηt = (η(s1, t), . . . , η(sn, t))
′ .

For the measurement error in (5.5) we assume that ǫt ∼ N(0, σ2
ǫ In),

t = 1, . . . , T , independently, where 0 is the vector with all elements zero

and In is the identity matrix of order n. For the term ξt, we define it as

a random walk process that ξt ∼ N(ξt−1, σ
2
ξ ). For the spatially correlated

error we assume that ηt ∼ N(0,Ση), t = 1, . . . , T where Ση has elements

ση(i, j) = σ2
ηρη(si−sj;φη). We take ρη(si−sj;φη) = exp (−φηd(si, sj)) where

d(si, sj) is the distance between sites si and sj, i, j = 1, . . . , n. We choose

the exponential covariance structure due to its mathematical elegance.

The spatially varying coefficients β ∼ N(0,Σβ) where Σβ has elements

σβ(i, j) = σ2
βρ(si − sj;φβ). The parameters φη and φβ are determined using

grid-search methods similar to the one described in Section 4.2.4. For future

reference we define Sη and Sβ by the relations:

Ση = σ2
ηSη, Σβ = σ2

βSβ.

Let ϑt = ξt1+ ρOt−1 +β0xt +Xtβ, for t = 1, . . . T. Further, let θ denote

all the parameters, β0, β, ρ, σ2
ǫ , σ

2
η, σ

2
β, σ2

ξ and ξ = (ξ1, . . . , ξT )T . Let w

denote all the augmented data, ot and the missing data, denoted by z∗(si, t),

for i = 1, . . . , n, t = 1, . . . , T , and z denote all the non-missing data z(si, t),

for i = 1, . . . , n, t = 1, . . . , T . The log of the posterior distribution, denoted
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by log π(θ,w|z), can be written as

−nT
2

log(σ2
ǫ ) − 1

2σ2
ǫ

∑T
t=1(Zt − Ot)

′(Zt − Ot)

−nT
2

log(σ2
η) − 1

2σ2
η

∑T
t=1(Ot − ϑt)

′S−1
η (Ot − ϑt)

−T
2

log(σ2
ξ ) − 1

2σ2
ξ

∑T
t=2(ξt − ξt−1)

2

−n
2

log(σ2
β) − 1

2σ2
β

β′S−1
β β + log

(

π(ξ, β0, ρ, σ
2
ǫ , σ

2
η, σ

2
β, σ

2
ξ )
)

where π(ξ, ρ, β0, σ
2
ǫ , σ

2
η, σ

2
β, σ

2
ξ ) is the prior distribution. We assume that a-

priori β0 is independently normally distributed with mean 0 and variance

104. The auto-regressive coefficient ρ is specified the N(0, 104) distribution

but restricted to the interval I(0 < ρ < 1). The inverse of the variance

components, 1

σ2
ǫ

, 1

σ2
η

, 1

σ2
β

, 1

σ2
ξ

are assumed to follow G(a, b) independently,

where the distribution G(a, b) has the mean a/b. For the constant ξ sub-

model, ξ is normally distributed with mean 0 and variance 104 a-priori .

In our implementation we take a = 2 and b = 1 to have a proper prior

specification for each of these variance components, see Section 3.5 for further

justifications.

We label the three sub-models as follows:

1. ARM(1): auto-regressive model with constant ξ and no spatially vary-

ing regression term.

2. ARM(2): auto-regressive model with varying ξ and no spatially varying

regression term.

3. ARM(3): auto-regressive model with constant ξ and a spatially varying

regression term.

5.3.1 Conditional Distributions for Gibbs Sampling

Conditional Distributions for: σ2
ǫ , σ

2
η, σ

2
β, σ

2
ξ , Ot, ρ, β0 and β
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Historical Data Forecasts

Observation

True Value

CMAQ

Z(s, t)

O(s, t)

x(s, t)

O(s, t− 1) O(s, t+ 1)

x(s, t+ 1)

ǫ(s, t)
6

6 6

- -

Measurement Equation: Z(s, t) = O(s, t) + ǫ(s, t)

System Equation: O(si, t) = ξt + ρO(si, t− 1) + (β0 + β(si))x(si, t) + η(si, t)

Figure 5.3: Conceptual graph of the ARM framework.
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Any missing value, Z(s, t) is to be sampled from N(O(s, t), σ2
ǫ ), t = 1, . . . , T .

Straightforward calculation yields the following complete conditional distri-

butions:

1

σ2
ǫ

∼ G
(

nT
2

+ a, b+ 1
2

∑T
t=1(Zt − Ot)

′(Zt − Ot)
)

,

1

σ2
η

∼ G
(

nT
2

+ a, b+ 1
2

∑T
t=1(Ot − ϑt)

′S−1
η (Ot − ϑt)

)

,

1

σ2
β

∼ G
(

n
2

+ a, b+ 1
2
β′S−1

β β
)

,

1

σ2
ξ

∼ G
(

T
2

+ a, b+ 1
2

∑T
t=2(ξt − ξt−1)

2
)

.

Let Qη = Σ−1
η . The full conditional distribution of Ot is N(Λtχt, Λt) where

Case 1: For 1 ≤ t < T − 1:

Λ−1
t =

In
σ2

ǫ

+ (1 + ρ2)Qη,

χt =
Zt

σ2
ǫ

+Qη {ξ1 + ρOt−1 + β0xt +Xtβ + ρ (Ot+1 − ξ1 − β0xt+1 −Xt+1β)} .

Case 2: For t = T

Λ−1
t =

In
σ2

ǫ

+Qη,

χt =
Zt

σ2
ǫ

+Qη {ξ1 + ρOt−1 + β0xt +Xtβ} .

The full conditional distribution of ρ is N(Λχ, Λ) where

Λ−1 =
T
∑

t=1

O′
t−1QηOt−1 + 10−4, χ =

T
∑

t=1

O′
t−1Qη(Ot − ξ1 − β0xt −Xtβ),

restricted in the interval (0, 1).

The full conditional distribution of β0 is N(Λχ, Λ) where

Λ−1 =
T
∑

t=1

x′
tQηxt + 10−4, χ =

T
∑

t=1

x′
tQη(Ot − ξ1 − ρOt−1 −Xtβ),

The full conditional distribution of β is N(Λξ, Λ) where

Λ−1 =
T
∑

t=1

X ′
tQηXt + Σ−1

β , and
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ξ =
T
∑

t=1

X ′
tQη(Ot − ξ1 − ρOt−1 − β0xt).

The full conditional distribution for random walk ξt is N(Λtχt, Λt) where

Case 1: For 1 ≤ t < T − 1:

Λ−1 =
2

σ2
ξ

+ 1′Qη1, χ = 1′Qηat +
ξt−1 + ξt+1

σ2
ξ

.

Case 2: For t = T

Λ−1 =
1

σ2
ξ

+ 1′Qη1, χ = 1′Qηat +
ξt−1

σ2
ξ

.

For constant ξ sub-model, the full conditional distribution of ξ isN(Λχ, Λ)

where

Λ−1 =
1

σ2
ξ

+ T1′Qη1, χ = 1′Qη

T
∑

t=1

at

where at = Ot − ρOt−1 − β0xt −Xtβ.

5.3.2 Prediction Details

Prediction methods used for interpolation and forecast of a space-time point

are slightly different. We first develop the methods of spatial interpolation

of ozone levels at a new location s′ ∈ S and any time t, t = 1, . . . , T . We

then look at the one step-ahead forecasting at time t = T + 1 for any new

location within the region S .

Spatial interpolation at location s′ and time t is based upon the pre-

dictive distribution of Z(s′, t) given in the model equations (5.4) and (5.5).

According to Figure 5.3, Z(s′, t), has the distribution:

Z(s′, t) ∼ N (O(s′, t), σ2
ǫ ) (5.7)

and

O(s′, t) = ξt + ρO(s′, t− 1) + (β0 + β(s′))x(s′, t) + η(s′, t). (5.8)
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From the system equations in (5.8), the auto-regressive O(s′, t) can only be

sequentially determined from all the previous values. Hence, we introduce

the notation O(s, [t]) to denote the vector (O(s, 1), . . . , O(s, t))′ for t ≥ 1.

The posterior predictive distribution of Z(s′, t) is obtained by integrating

over the unknown quantities in (5.7) with respect to the joint posterior dis-

tribution, i.e.,

π (Z(s′, t)|z) =

∫

π (Z(s′, t)|O(s′, [t]), σ2
ǫ ) π (O(s′, [t])|β(s′),θ,w)

π (β(s′)|θ) dO(s′, [t]) dβ(s′) dθ dw. (5.9)

When using MCMC methods to draw samples from the posterior, the predic-

tive distribution (5.9) is sampled by composition. Draws from the posterior

distribution π(θ|z,w), and the conditional distributions π (β(s′)|θ) facilitate

evaluation of the above integral, details provided below.

To sample β(s′) we have




β(s′)

β



 ∼ N









0

0



 , σ2
β





1 Sβ,12

Sβ,21 Sβ







 ,

where Sβ,12 is 1×n with the ith entry given by exp(−φβd(si, s
′)) and Sβ,21 =

S ′
β,12. Therefore,

β(s′)|θ ∼ N
(

Sβ,12S
−1
γ β, σ2

β

(

1 − Sβ,12S
−1
β Sβ,21

))

. (5.10)

We draw O(s′, t) from its conditional distribution given θ,w and O(s′, [t−1]).

Analogous to (5.6), we obtain for t ≥ 0




O(s′, t)

Ot



 ∼ N









ξ + ρO(s′, t− 1) + (β0 + β(s′))x(s′, t)

ξ1 + ρOt−1 + β0xt +Xtβ



 , σ2
η





1 Sη,12

Sη,21 Sη









where Sη,12 is 1×n with the ith entry given by exp(−φηd(si, s
′)) and Sη,21 =

S ′
η,12. Hence,

O(s′, t)|β(s′),Ot,θ,w ∼ N(χ, Λ) (5.11)
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where Λ = σ2
η

(

1 − Sη,12S
−1
η Sη,21

)

and

χ = ξt+ρO(s′, t−1)+(β0+β(s′))x(s′, t)+Sη,12S
−1
η (Ot − ξt1 − ρOt−1 − β0xt −Xtβ) .

In summary, we implement the following algorithm to predict Z(s′, t), t =

1, . . . , T .

1. Draw a sample θ(j),w(j), j ≥ 1 from the posterior distribution.

2. Draw β(j)(s′) using (5.10).

3. Draw O(j)(s′, [t]) sequentially using (5.11). Note that the initial value

value O(j)(s′, 0) is a constant for all s′.

4. Finally draw Z(j)(s′, t) from N
(

O(j)(s′, t), σ2
ǫ
(j)
)

.

The ozone concentration in the original scale is the square of Z(j)(s′, t). If

we want the predictions of the smooth ozone concentration process without

the nugget term we would simply omit the last step in the above algorithm

and square the realisations O(j)(s, t). We use the median of the MCMC

samples and the lengths of the 95% intervals to summarise the predictions.

The median as a summary measure preserves the one-to-one relationships

between summaries for O and Z, and for O2 and Z2.

The one-step ahead Bayesian forecast at a location s′ is given by the poste-

rior predictive distribution of Z(s′, T+1) which is determined by O(s′, T+1).

Note that using (5.11) we already have the conditional distribution of O(s′, T )

given β(s′),Ot,θ, and w. We use model equation (5.4) to advance this con-

ditional distribution one unit at a time in the future. The mean of the one

step-ahead forecast distribution is given by ξt+ρO(s′, T )+(β0+β(s′))x(s′, T ),

according to (5.4), and O(s′, T+1) should be equal to this if we are interested

in forecasting the mean. However, if we want to forecast an observation at

location s′ we simulate O(s′, T +1) from the marginal distribution which has

the above mean and variance σ2
η. We work with this marginal distribution
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rather than the conditional distribution since conditioning with respect to

the observed information (i.e. Kriging) up to time T at the observation loca-

tions s1, . . . , sn has already been done in (5.11), and at the future time T +1

there is no new available information to condition on except for using the

Eta-CMAQ output as regressor values. Then we follow the above algorithm

and the MCMC output symmetrisation methods to evaluate the forecasts.

5.3.3 Results

We again use the same data set as in the previous example in Section 5.2.1.

Models ARM(1), ARM(2) and ARM(3) are used in this analysis. Tables

5.2 to 5.13 provide the validation results for these models for validating on

August 10, 11, 12 and 13. We can see that the performances of ARM(1) and

ARM(2) are very close to each other. Although ARM(3) has a more complex

structure than ARM(1), it does not outperform either models according to

most of the criteria.

Figure 5.6 provides a plot of forecasts against observations for August

11 under the Eta-CMAQ model, and ARM(1) and ARM(3) models. Both

these last two models perform better than the former, Eta-CMAQ model.

At a higher ozone concentration level, the summary of prediction seems to

be weaker than that for a lower value. However, these forecasts are much

better than the forecasts based on the GRE model analysed previously in

Section 5.2.

Figure 5.7 plots the 95% credible intervals for β(si), i = 1, . . . , 350. Most

of these intervals include zero which implies that a spatially varying slope

parameter is not significant. Hence, a spatially non-stationary model is not

required for these data; henceforth we use the ARM(1) for analysis.

In Figure 5.4 we provide a map of the one-day ahead forecast surfaces

on 11th Aug for ARM(1) and Eta-CMAQ. The observed ozone concentration

levels are also superimposed on the graph. The maps show that the Bayesian
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forecasts from ARM(1) are more accurate prediction than those from Eta-

CMAQ model. Also note that the average ozone concentration in the model

based map is significantly lower than that from Eta-CMAQ forecast map.

Figure 5.5 provides a map of the Bayesian forecasts from ARM(1) (left

panel) for August 11 along with its uncertainty estimates (right panel). These

give us a rough idea on what locations are forecasted to have high concen-

tration levels with their associated uncertainties.

In Table 5.14, a comparison of hit and error rate of Eta-CMAQ and

ARM(1) forecasts is shown. Here, hit is defined as the event where both the

validation observation and the forecast for it were either both greater or less

than 80ppb. The error, on the other hand, is defined as the event where the

actual observation is less than 80ppb but the forecast is greater than 80ppb.

The hit rate for the Bayes model is generally 10% higher than that for the

Eta-CMAQ forecasts.

5.4 Summary

This Chapter provides a framework in modelling the order statistics (8-

hour maximum ozone concentration levels here) of hourly recorded spatio-

temporal ozone concentration data. Since the dimension is enormously re-

duced due to a lower temporal resolution, it allows extra computational power

to adopt a more complex model. A spatially varying auto-regressive model

enables inclusion of regional variation directly in the model. This chapter

also demonstrates that it is possible to forecast at a future time point with

the ARM by combining information from data and computer model out-

put. Although the ARM improves the forecasting accuracy, it is still unable

to predict the high ozone concentration values very accurately. In the next

Chapter, the Gaussian assumption is removed by incorporating an additional

hierarchy to address non-normality of the data.
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Figure 5.4: The one-day ahead forecast surfaces on August 11 for ARM(1)

(left panel) and Eta-CMAQ (right panel). The observed ozone concentration

level are superimposed on the graph.

Table 5.2: RMSEs, MAEs, rBIAS and rMSEP of ARM(1) on Aug 10: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 18.66 16.62 0.2917 0.8294

Bayes 11.08 9.302 -0.1051 0.6101

Interpolation
Eta-CMAQ 15.15 12.02 0.1886 0.5293

Bayes 6.996 5.367 -0.006381 0.1514

Total
Eta-CMAQ 15.7 12.67 0.2029 0.5748

Bayes 7.705 5.923 -0.02001 0.1962
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Figure 5.5: The one-day ahead forecast surface on August 11 for ARM(1)

(left panel) and the length of 95% forecast intervals (right panel).
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Figure 5.6: Validation plot for one-day ahead forecast on August 11 for

Eta-CMAQ, ARM(1) (Bayes) and ARM(3) (SVbetas). The line y = x is

superimposed.
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Figure 5.7: 95% creidible intervals for the 350 parameters, β(si), i =

1, . . . , 350 under the ARM(3) model when the data used in the fitting are for

days August 4-10, 2005.

Table 5.3: RMSEs, MAEs, rBIAS and rMSEP of ARM(1) on Aug 11: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.83 11.94 0.1204 0.9529

Bayes 13.48 11.18 -0.1061 0.8283

Interpolation
Eta-CMAQ 16.34 13.39 0.225 0.6324

Bayes 6.688 5.172 -0.0129 0.1627

Total
Eta-CMAQ 16.14 13.19 0.2094 0.6585

Bayes 7.981 6.004 -0.02681 0.2391
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Table 5.4: RMSEs, MAEs, rBIAS and rMSEP of ARM(1) on Aug 12: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 12.7 10.01 0.1388 0.5212

Bayes 12.48 10.71 -0.129 0.5235

Interpolation
Eta-CMAQ 16.37 13.31 0.2232 0.7724

Bayes 6.384 5.017 -0.00982 0.1938

Total
Eta-CMAQ 15.92 12.86 0.2089 0.689

Bayes 7.518 5.798 -0.03003 0.2346

Table 5.5: RMSEs, MAEs, rBIAS and rMSEP of ARM(1) on Aug 13: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.78 12.29 0.1867 0.6879

Bayes 7.926 6.41 -0.02694 0.358

Interpolation
Eta-CMAQ 15.61 12.85 0.2119 0.6447

Bayes 6.807 5.315 -0.0133 0.1877

Total
Eta-CMAQ 15.51 12.79 0.2084 0.6299

Bayes 6.952 5.447 -0.01522 0.193
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Table 5.6: RMSEs, MAEs, rBIAS and rMSEP of ARM(2) on Aug 10: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 18.66 16.62 0.2917 0.8294

Bayes 11.21 9.522 -0.105 0.6246

Interpolation
Eta-CMAQ 15.15 12.02 0.1886 0.5293

Bayes 6.815 5.172 -0.01005 0.1436

Total
Eta-CMAQ 15.7 12.67 0.2029 0.5748

Bayes 7.592 5.787 -0.02317 0.1902

Table 5.7: RMSEs, MAEs, rBIAS and rMSEP of ARM(2) on Aug 11: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.83 11.94 0.1204 0.9529

Bayes 12.56 10.8 -0.03709 0.8518

Interpolation
Eta-CMAQ 16.34 13.39 0.225 0.6324

Bayes 6.996 5.308 -0.007965 0.1783

Total
Eta-CMAQ 16.14 13.19 0.2094 0.6585

Bayes 8.000 6.069 -0.01231 0.2417
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Table 5.8: RMSEs, MAEs, rBIAS and rMSEP of ARM(2) on Aug 12: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 12.7 10.01 0.1388 0.5212

Bayes 10.62 8.353 -0.05676 0.4765

Interpolation
Eta-CMAQ 16.37 13.31 0.2232 0.7724

Bayes 6.804 5.221 -0.01247 0.2199

Total
Eta-CMAQ 15.92 12.86 0.2089 0.689

Bayes 7.443 5.651 -0.01998 0.2313

Table 5.9: RMSEs, MAEs, rBIAS and rMSEP of ARM(2) on Aug 13: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.78 12.29 0.1867 0.6879

Bayes 7.965 6.334 0.005847 0.3675

Interpolation
Eta-CMAQ 15.61 12.85 0.2119 0.6447

Bayes 6.677 5.274 -0.008957 0.1808

Total
Eta-CMAQ 15.51 12.79 0.2084 0.6299

Bayes 6.845 5.402 -0.006878 0.1882
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Table 5.10: RMSEs, MAEs, rBIAS and rMSEP of ARM(3) on Aug 10: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 18.66 16.62 0.2917 0.8294

Bayes 8.91 6.944 -0.005075 0.4705

Interpolation
Eta-CMAQ 15.15 12.02 0.1886 0.5293

Bayes 6.751 5.363 -0.01391 0.1408

Total
Eta-CMAQ 15.7 12.67 0.2029 0.5748

Bayes 7.096 5.586 -0.01269 0.1667

Table 5.11: RMSEs, MAEs, rBIAS and rMSEP of ARM(3) on Aug 11: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.83 11.94 0.1204 0.9529

Bayes 14.5 10.98 -0.1345 0.864

Interpolation
Eta-CMAQ 16.34 13.39 0.225 0.6324

Bayes 7.005 5.665 -0.02627 0.1776

Total
Eta-CMAQ 16.14 13.19 0.2094 0.6585

Bayes 8.449 6.402 -0.04244 0.2647
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Table 5.12: RMSEs, MAEs, rBIAS and rMSEP of ARM(3) on Aug 12: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 12.7 10.01 0.1388 0.5212

Bayes 17.16 15.05 -0.1912 0.7588

Interpolation
Eta-CMAQ 16.37 13.31 0.2232 0.7724

Bayes 6.599 5.277 -0.01703 0.2065

Total
Eta-CMAQ 15.92 12.86 0.2089 0.689

Bayes 8.828 6.617 -0.04656 0.318

Table 5.13: RMSEs, MAEs, rBIAS and rMSEP of ARM(3) on Aug 13: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.78 12.29 0.1867 0.6879

Bayes 13.13 10.93 -0.1298 0.7107

Interpolation
Eta-CMAQ 15.61 12.85 0.2119 0.6447

Bayes 6.525 5.352 -0.004788 0.1727

Total
Eta-CMAQ 15.51 12.79 0.2084 0.6299

Bayes 7.63 6.025 -0.02234 0.2325
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Period Eta-CMAQ Hit Error Bayes Hit Error

Aug 2-9 84.76 15.24 95.12 4.88

Aug 3-10 82.20 17.80 94.24 5.76

Aug 4-11 82.05 17.95 94.36 5.64

Aug 5-12 84.78 15.22 94.92 5.08

Aug 6-13 83.92 16.08 93.97 6.03

Table 5.14: Hit and error percentages for O3 exceeding 80ppb. Here, hit is

defined as the event where both the validation observation and the forecast

for it were either both greater or less than 80ppb. The error, on the other

hand, is defined as the event where the actual observation is less than 80ppb

but the forecast is greater than 80ppb.
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Chapter 6

Non-Gaussian Measurement

Error Models

6.1 Introduction

The models we have considered so far in this thesis are all based on Gaussian

distribution. Often in many environmental data modelling problems it is of

interest to model the extreme values. For example, in the previous chapter

we have modelled the daily maximum 8-hour average ozone concentration

levels. Although these are averages of 8-successive hourly values, the end

statistic is the maximum of the 24 8-hour averages for a day. The Gaussian

distribution, though used somewhat successfully in the previous chapter, is

not an appropriate model for the largest order statistic.

This chapter will develop an extreme value distribution (Section 6.2) for

the daily maximum 8-hour average ozone concentration levels as an alter-

native to the Gaussian distribution assumed in the previous chapter. After

a brief introduction to the spatial extreme values (Section 6.3) we describe

the models and develop MCMC computation algorithms. We also provide

details for prediction at unobserved location and also for future time points.
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We illustrate the methods with a simulation and a real data example in

Section 6.4. A few summary remarks are provided at the end.

6.2 Extremes and Spatial Extremes

It is often of interest to study the extremes of atmospheric fields. Many

meteorological indicators can be regarded as fields of extremes. These kinds

of fields can be understood as order statistics of fields of independent and

identically-distributed or short-range dependent random variables. In gen-

eral, there is no analytical form for most of the distributions but asymptotic

forms can usually be obtained. The extreme value theory gives us a starting

point on the asymptotic distribution of such a field. Gumbel (1958) and

Galambos (1978) provide overviews on the theoretical foundation. A recent

work by Coles (2001) gives a more practical review on the subject. Most of

the classical theories treat the issue as a univariate statistical problem. How-

ever, many atmospheric science problems are indeed multivariate especially

the ones spatio-temporally referenced. It is important to consider spatial

extremes as a fusion of extreme value theory and multivariate statistics. For

spatially-referenced extremes, Coles and Casson (1999) propose a spatial re-

gression for extremes based on the Generalised Extreme Value distribution.

6.2.1 Generalised Extreme Value (GEV) Distribution

The problem is originally addressed by Fisher and Tippett (1928) for as-

sessing the limiting behaviour of normalised random variables. Assuming

that X1, X2, . . . , Xn are independently and identically-distributed random

variables with distribution F , the maximum Mn = max {X1, X2, . . . , Xn}
converges to the cumulative distribution H (Mn) as n → ∞, the cumulative
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GEV distribution function is given by,

H (Mn) =







exp
[

−
{

1 + ξ
(

Mn−µ
σ

)}−1/ξ
]

, 1 + ξ (Mn − µ) /σ > 0, ξ 6= 0

exp
{

− exp
[

− (Mn−µ)
σ

]}

, ξ = 0

The model has three parameters: a location parameter, µ; a scale parame-

ter, σ; and a shape parameter, ξ. The representation Mn ∼ GEV (µ, ξ, σ)

often refers to Mn following a GEV distribution with the above cumulative

distribution function.

Gumbel (1958) provides a theorem that the distribution of the maximum

Mn is either asymptotically Fréchet, Gumbel or Weibull distributed which

can be re-parametrised to a GEV distribution. The GEV distribution with

ξ = 0 is a special case that leads to the Gumbel distribution. This refers to a

light-tailed distribution with finite higher order moments. With the Gumbel

distribution, the shape parameter can be removed to reduce the dimension of

the parameter space. If ξ is negative, the distribution belongs to the Fréchet

distribution and bounded from above. If ξ is positive, the distribution belongs

to the Weibull distribution which is heavy-tailed with infinite higher order

moments. The support of the Gumbel distribution is on the real number

line but it is not the same for the other two distributions. The support for

these depend on the parameters. The likelihood function of the parameters

under the full model is analytically intractable and can behave very badly

unlike the ones based on standard distributions such as the normal, gamma

and beta distributions. Modelling with the parameter ξ(6= 0) is much more

challenging than that with the Gumbel sub-model corresponding to ξ = 0.

Prescott and Walden (1980, 1983) propose the maximum likelihood esti-

mation methods for fitting the GEV distribution. Consider the log-likelihood

function for the GEV parameters with m independent and identically dis-
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tributed random variables z1, . . . , zm, for ξ 6= 0 but 1 + ξ zi−µ
σ

> 0,

l(µ, σ, ξ) = −m log σ−(1+1/ξ)
m
∑

i=1

log

[

1 + ξ

(

zi − µ

σ

)]

−
m
∑

i=1

[

1 + ξ

(

zi − µ

σ

)]−1/ξ

,

(6.1)

when for ξ = 0,

l(µ, σ) = −m log σ −
m
∑

i=1

(

zi − µ

σ

)

−
m
∑

i=1

exp

{

−
(

zi − µ

σ

)}

. (6.2)

The maximum likelihood estimates cannot be found analytically. Some it-

erative numerical solution methods are usually required. Such numerical

algorithms behave much better, i.e., show more stability when applied to the

ξ = 0 case. Apart from the maximum likelihood approach, Hosking, Wallis

and Wood (1985) use a weighted moment based technique. More recently,

Coles and Powell (1996) give a general review in a Bayesian context by using

MCMC methods.

Generating GEV Random Variables

Generating GEV random variables is straightforward. Given the parameters,

GEV random number zp can be always generated from the inverse of the

cumulative distribution function:

zp =







µ− σ
ξ

{

1 − [− log(U [0, 1])−ξ]
}

, 1 + ξ (x− µ) /σ > 0, ξ 6= 0

µ− σ log(− log(U [0, 1])), ξ = 0

where U [0, 1] is a pseudo-random sample from a uniform distribution bounded

by 0 and 1. The intuitive interpretation of random sample zp is the level

exceeded by the annual maximum in any particular year with probability

U [0, 1].
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6.3 Spatio-temporal Models for Extreme Value

Location parameter µ, scale parameter σ and shape parameter ν can be

replaced by the spatio-temporally-varying µ(s, t), σg(s, t) and ν(s, t) to model

the spatio-temporal data as follows:

H (z(s, t)) =































exp

[

−
{

1 + ν(s, t)
(

z(s,t)−µ(s,t)
σg(s,t)

)}−1/ν(s,t)
]

,

1 + ν (z(s,t)−µ(s,t))
σg(s,t)

> 0,

ν(s, t) 6= 0

exp
{

− exp
[

− (z(s,t)−µ(s,t))
σg(s,t)

]}

, ν(s, t) = 0.

(6.3)

However, this general model is seldom applied in real situation due to its high

complexity. The parameter ν is often physically regarded as fixed over the

spatio-temporal space which represents the consistency of the tail behaviour.

6.3.1 An Extreme Value Theory Extension to the ARM

Following Huerta and Sansò (2007) and Sang and Gelfand (2007), we incor-

porate the generalised extreme value distribution for the response Z(s, t)2 =

Zo(s, t) in the original scale. The measurement equation can be replaced by

Zo(s, t) ∼ GEV (µ(s, t), σg, ν) with the cumulative distribution function:

H (Zo(s, t)) =



















exp

[

−
{

1 + ν
(

zo(s,t)−µ(s,t)
σg

)}−1/ν
]

,
1 + ν (Zo(s,t)−µ(s,t))

σg
> 0,

ν 6= 0

exp
{

− exp
[

− (zo(s,t)−µ(s,t))
σg

]}

, ν = 0

(6.4)

and the location parameter µt is time-varying which forms a ARM model

with the same transition equation as in the last chapter:

µ(si, t) = O(si, t) + ǫ(si, t), (6.5)

In a vector representation, we write:

µt = Ot + ǫt, (6.6)
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where µt = (µ(s1, t), . . . , µ(sn, t))
′. We also recall the transition equation:

O(si, t) = ξt + ρO(si, t− 1) + (β0 + β(si))x(si, t) + η(si, t). (6.7)

The addition of the random walk ξt makes the forecast depend more on the

recent than past data. The Gaussian process ARM treats the error term

σ2
ǫ as the measurement error. In this setting, the measurement error of the

predictor variable is not taken into account. The term ǫt in Equation (6.6)

is no longer defined as a measurement error, the term is simply the nugget

effect describing small scale spatial variability. We assume that there is no

difference between the response Zo(s, t) and the latent true value except for

the measurement error which is presumably epistemologically different.

6.3.2 Posterior Distribution and Gibbs Sampling

The posterior distribution is derived similarly as in the last chapter. In

the derivation below we keep the same notation as much as possible. Let

θ denote all the parameters, β0, β, ρ, σ2
ǫ , σ

2
η, σ

2
β, σ2

ξ , ξ = (ξ1, . . . , ξT ), ν,

µ = (µ1, . . . ,µT ) and σg. Let w denote all the augmented data, ot and the

missing data, denoted by z∗o(si, t), for i = 1, . . . , n, t = 1, . . . , T , and z denote

all the non-missing data Zo(si, t), for i = 1, . . . , n, t = 1, . . . , T . The log of

the posterior distribution, denoted by log π(θ,w|z), can be written as

−∑n
i=1

∑T
t=1

{

1 + ν(Zo(si,t)−µ(si,t)
σg

)
}1/ν

−nT
2

log(σ2
ǫ ) − 1

2σ2
ǫ

∑T
t=1(µt − Ot)

′(µt − Ot)

−nT
2

log(σ2
η) − 1

2σ2
η

∑T
t=1(Ot − ϑt)

′S−1
η (Ot − ϑt)

−T
2

log(σ2
ξ ) − 1

2σ2
ξ

∑T
t=2(ξt − ξt−1)

2

−n
2

log(σ2
β) − 1

2σ2
β

β′S−1
β β + log

(

π(ξ, β0, ρ, σ
2
ǫ , σ

2
η, σ

2
β, σ

2
ξ , ν,µ, σg)

)

where π(ξ, ρ, β0, σ
2
ǫ , σ

2
η, σ

2
β, σ

2
ξ , ν,µ, σg) is the prior distribution. The full con-

ditional distributions needed for Gibbs sampling can be derived similarly as
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has been done in the last chapter. Here we only need to derive the full

conditional distributions for the three new parameters µ, ξ and σ (which

are non-standard) and then discuss sampling methods using the Metropolis-

Hastings algorithm. The distributions of all µ, ξ and σ are:

f(µ(si, t) | θ−) ∝ gGEV (zo(si, t);µ(si, t), ν, σg)Nµ(si,t)(0, 104)NO(si,t)(µ(si, t), σ
2
ǫ )

f(ν | θ−) ∝
∏n

i=1

∏T
t=1 gGEV (zo(si, t);µ(si, t), ν, σg)Nν(0, 104)

f(σg | θ−) ∝
∏n

i=1

∏T
t=1 gGEV (zo(si, t);µ(si, t), ν, σg)IGσg(a, b),

where gGEV (·, ·) is the probability density function of the generalised extreme

value distribution, notation θ− denotes the set of all parameters in θ except

the one going to be sampled; IGx(·) is the density function of the inverse

gamma distribution. These conditional distributions are non-standard, and

as a result we use the random-walk Metropolis-Hastings algorithm to sample

from them. However, note that µ and 1/σg can be sampled by adaptive

rejection sampling (Gilks and Wild, 1992) since their distributions are log-

concave.

6.3.3 Prediction Details

We adopt the Bayesian prediction techniques of the last chapter to predict un-

der the spatial GEV model. The posterior predictive distribution of Zo(s
′, t)

is obtained by integrating over the unknown quantities in Equation (5.7)

with respect to the joint posterior distribution, i.e.,

π (Zo(s
′, t)|z) =

∫

π (Zo(s
′, t)|µ(s′, [t])) π (µ(s′, t)|O(s′, [t]), σ2

ǫ )

π (O(s′, [t])|β(s′),θ,w) π (β(s′)|θ)

dO(s′, [t]) dβ(s′) dθ dw. (6.8)

When using MCMC methods to draw samples from the posterior, the predic-

tive distribution (6.8) is sampled by composition. In summary, we implement

the following algorithm to predict Z(s′, t), t = 1, . . . , T .
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1. Draw a sample θ(j) from the full conditional distributions.

2. Draw β(j)(s′) using (5.10).

3. For 1 ≤ t ≤ T , draw ξt sequentially from the posterior distribution.

4. Draw O(j)(s′, [t]) sequentially using (5.11). Note that the initial value

value O(j)(s′, 0) is a constant for all s′.

5. Finally draw Z(j)(s′, t) from GEV
(

µ(j)(s′, t), ν(j), σg
(j)
)

.

The posterior predictive distribution of ozone concentration is directly ob-

tained in original scale. We use the median of the MCMC samples and the

length of the 95% intervals to summarise the predictions.

The Bayesian forecast at a location s′ and time point T + 1 is given by

the posterior predictive distribution of Zo(s
′, T + 1). We employ a similar

algorithm to the one in Section 5.3.2 as follows:

1. draw ξT+1 from N(ξT , σ
2
ξ ),

2. evaluate O(j)(s′, T + 1) = ξT+1 + ρO(j)(s′, T ) + (β0 + β(s′))x(s′, T ),

3. draw µ(j)(s′, T + 1) from N
(

O(j)(s′, T ), σ2
ǫ
(j)
)

,

4. finally draw Z(j)(s′, T + 1) from GEV
(

µ(j)(s′, T + 1), ν(j), σg
(j)
)

.

6.4 Examples

6.4.1 A Simulation Study

The proposed full model based on the GEV distribution is very complicated

due to its constraint support. Theoretically, a multivariate prior distribution

for all the location, scale and shape parameters can be assumed. However,

such a prior distribution is difficult to specify and the analysis gets much
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more difficult, see e.g. Coles et al. (2003). Henceforth, we work with the

Gumbel sub-model of the full GEV based model. For simplicity, we assume

β = 0 in the simulation model. Parameter estimates, provided in Table 6.1,

are very close to the simulation parameters. We now proceed to modelling

real ozone concentration data using the Gumbel sub-model.

6.4.2 Analysis of Ozone Concentration Data

As mentioned before, we work with the Gumbel sub-model corresponding to

ν = 0. Following the previous chapter we take β = 0 since non-zero β did

not lead to model improvement. We compare the model with time-varying

ξ(t) with the fixed ξ model.

We run the MCMC algorithm with a Metropolis-Hastings within Gibbs

sampling for 5000 iterations after 1000 burn-in iterations. By trial and error

the parameters of the transition kernel for updating µ and σg have been

tuned to produce acceptance rates between 25% and 30% - this is close to

the theoretical optimal acceptance rate of 0.234 derived by Roberts, Gelman

and Gilks (1997).

The predictions outperform the Eta-CMAQ forecasts but are not as good

as those from ARM(1) and ARM(3) in terms of the RMSE, MAE, rBIAS

and rMSEP, see Tables 6.3, 6.4, 6.5, and 6.6. However, the models here

demonstrate interesting results. Forecasts for August 13 show that the GEV

based model (EVTARM) is better in the upper tails. Table 6.2 shows that

EVTARM has smaller RMSE than that from the ARM(1) when the observed

values are high. The validation plot in Figure 6.1 shows that the EVTARM

forecasts are more accurate in the upper tail although those are globally

inferior. Therefore, this method is still promising but further exploration

needs to be done.
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Table 6.1: Simulation parameters and their estimates for the Gumbel sub-

model (ν = 0).

True Parameter Posterior Median 2.5% 97.5%

ρ = 0.7 0.6872 0.5742 0.8007

ξ = 10.0 13.1187 5.2083 21.2047

σ2
ǫ = 10.0 0.7843 0.1932 2.3623

σ2
ω = 400.0 476.6424 359.3349 624.5331

σg = 8.0 8.5442 7.2130 10.1263

6.5 Summary

In this Chapter, an extreme value distribution model has been developed

for modelling ozone concentration data. The model is shown to improve

the forecasts corresponding to the high observations in the tail. The model,

however, does not globally outperform the Gaussian ARM of the previous

chapter due to the presence of some low values. Often, the environmental

impact is assessed using the upper tail of the distributions, and hence the

GEV model proposed here is of considerable value to the modelling commu-

nity. This and other non-Gaussian models using transformations will form

the basis of future work.

Table 6.2: RMSE of the upper tail on Aug 13th

Observed Value ARM(1) EVTARM

All 6.94 7.37

> 50 7.26 7.30

> 60 7.64 7.61

> 70 8.59 8.28

> 80 10.53 9.45
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Figure 6.1: A validation plot of the upper tail on Aug 13th for the Gumbel

Sub-model and ARM(1).

Table 6.3: RMSEs, MAEs, rBIAS and rMSEP of EVTARM on Aug 10: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 18.66 16.62 0.2917 0.8294

Bayes 8.623 6.688 0.006629 0.4407

Interpolation
Eta-CMAQ 15.15 12.02 0.1886 0.5293

Bayes 8.91 7.413 0.05506 0.2388

Total
Eta-CMAQ 15.7 12.67 0.2029 0.5748

Bayes 8.87 7.311 0.04837 0.2549
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Table 6.4: RMSEs, MAEs, rBIAS and rMSEP of EVTARM on Aug 11: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.83 11.94 0.1204 0.9529

Bayes 15.22 12.55 -0.1648 0.843

Interpolation
Eta-CMAQ 16.34 13.39 0.225 0.6324

Bayes 8.867 6.388 -0.05929 0.2762

Total
Eta-CMAQ 16.14 13.19 0.2094 0.6585

Bayes 9.99 7.241 -0.07504 0.355

Table 6.5: RMSEs, MAEs, rBIAS and rMSEP of EVTARM on Aug 12: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 12.7 10.01 0.1388 0.5212

Bayes 10.72 8.908 -0.07087 0.4698

Interpolation
Eta-CMAQ 16.37 13.31 0.2232 0.7724

Bayes 8.009 6.531 0.03444 0.3006

Total
Eta-CMAQ 15.92 12.86 0.2089 0.689

Bayes 8.432 6.857 0.01658 0.2974
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Table 6.6: RMSEs, MAEs, rBIAS and rMSEP of EVTARM on Aug 13: The

forecasts rows represent the one-day-ahead (1×40 = 40) set-aside validation

sites. The interpolation rows represent the previous seven days (7×40 = 280)

set-aside validation sites. The two rows corresponding to Total represent all

the validation data used (8 × 40 = 320).

RMSE MAE rBIAS rMSEP

Forecasts
Eta-CMAQ 14.78 12.29 0.1867 0.6879

Bayes 9.563 8.18 -0.08053 0.4585

Interpolation
Eta-CMAQ 15.61 12.85 0.2119 0.6447

Bayes 8.477 6.249 -0.07033 0.2754

Total
Eta-CMAQ 15.51 12.79 0.2084 0.6299

Bayes 8.615 6.482 -0.07176 0.2804
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has been motivated by the forecasting problem of environmental

data. The aim of this investigation has been to produce more accurate fore-

casts of ozone concentration levels along with their uncertainty measures. A

number of models with varying degree of forecasting ability has been pro-

posed and experimented with. The major contributions of this thesis are:

• Hierarchical Gaussian random effects models for producing

probabilistic forecasts for hourly data

A fast and analytical GRE model has been shown to predict the 8-

hour average ozone concentration of the current hour and the two hours

ahead. The Eta-CMAQ model outputs are assimilated to the observed

data as further information contributing to reconstructing the ground

truth. A novel dimension reduction method is also developed. An alter-

native way based on delta method in approximating spatially-varying

variance is also highlighted. High resolution model based Bayesian pre-

dictive maps are obtained and displayed for dissemination purposes. A

portion of the work, written as Sahu, Yip and Holland (2010), presented
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here has been published. Simulation and real data examples show that

the spatio-temporal GRE models outperform the non-spatial models in

terms of both predictions and model fitting. The use of geostatistical

and exploratory data analysis tools are also emphasised.

• Dynamic linear models for data assimilation of the daily 8-

hour maximum ozone concentration data

Again the Eta-CMAQ output acts as further information to the mod-

elling but this time also for the daily 8-hour maximum concentration

data. An auto-regressive model for the mean response along with the

Eta-CMAQ output as a co-variate has been shown to work well for the

purposes of forecasting the next day’s ozone level. A paper based on

the modelling developments of this chapter has appeared as Sahu, Yip

and Holland (2009).

• Dynamic linear models with generalised extreme value distri-

bution

The top level Gaussianity assumption of the previous chapter is re-

placed by the GEV distribution to accommodate non-Gaussianity of

the spatial extremes. The complexity of the support constraints has

forced us to work with the Gumbel sub-model of the GEV distribu-

tion. Model fitting has been done by using the Metropolis-Hastings

algorithm within the Gibbs sampler. A simulation and a real data ex-

ample show better forecasts corresponding to the observation values

which are higher. This shows that the GEV models are promising for

modelling spatial extremes, though further investigation is necessary

to understand the full capability of the models.
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7.2 Future Work

7.2.1 Non-Gaussian Measurement Error Models Based

on Skew-Normal Distribution

The non-Gaussian measurement error models can be further improved by

using other family of distributions. A random variable X has a skew-normal

distribution (see e.g. Sahu et al., 2003) with location parameter µ, scale

parameter σ and skewness parameter α, denoted X ∼ SN(µ, σ, α) and it has

the density function,

f(x) = 2φ

(

x− µ

σ

)

Φ

(

α
x− µ

σ

)

.

Its mean and variance are

E(x) = µ+ σ

√

2

π
δ and Var(x) = σ2(1 − 2

π
δ)

where φ and Φ are the density and cumulative distribution function of the

standard normal distribution. The parameters α and δ have the relationship

that α(δ) = δ/
√

1 − δ2 and δ(α) = α/
√

1 + α2.

There is a proposition (Dalla Valle, 2004) that ensures the skew-normal

random variable can be generated from two normal i.i.d. random variables.

If Y and W are independent N ∼ (0, 1) random variables, and Z is set

equal to Y conditionally on αY > W , then Z ∼ SN(0, 1, α). It is sufficient

to generate Y and W i.i.d. N ∼ (0, 1), and put Z = Y if αY > W and

Z = −Y if αY ≤ W . Therefore the random variable X ∼ SN(µ, σ, α) can

be generated by X = µ+ σZ.

From a well-known theorem (see example in Dalla Valle, 2004) that the

maximum of two independent normally distributed random variables is a

skewed-normal variable. Intuitively this can be viewed as an approximation

to the daily 8-hour maximum ozone concentration levels since the proportion

of all the daily 8-hour maxima in our data attributed to 4pm and 5pm is

136



7.2. Future Work 137

greater than 60%. The suggested model is similar to the extreme-value-

theory-based model in terms of its hierarchical structure.

7.2.2 Two-stage Joint Modelling Approach

Sahu, Gelfand and Holland (2010) develop a framework for joint modelling

of point and grid referenced spatio-temporal data for wet deposition. This

method incorporates at least two hierarchical structures. In the framework,

the Eta-CMAQ output is no longer counted as a covariate but given a sep-

arable hierarchical structure. The observed deposition and the precipitation

are highly related. In the model, biased Eta-CMAQ output serve as extra

information for the observed data. This methodology is close to the work

of Fuentes and Raftery (2005). The same approach can be applied to the

forecasting problems here, but it is noted that slower MCMC methods will

be required to obtain the results.

7.2.3 Heteroscedastic Models

In many applications, the variance also varies over region and changes with

time due to the change in meteorological conditions and economic activities.

Usually, in many financial applications, heteroscedastic models such as auto-

regressive conditionally heteroscedastic (or ARCH) models and generalised

auto-regressive conditionally heteroscedastic (or GARCH) models are used

to capture the stochastic change of variance (Chatfield, 2004). The tech-

nique here uses a local conditional variance. A typical example is stochastic

volatility model. For example, a stochastic volatility model for the nugget

effect can be defined as a random walk process with another “white noise”

component,

log
(

σ2
ǫ (t)
)

∼ N
(

log(σ2
ǫ (t− 1)), σ2

E

)

(7.1)
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where σ2
E is a “white noise” term for the above process. As the spatial ef-

fect is multivariate, the stochastic volatility (variance) is spatially dependent.

The technique of discounted variance learning method (West and Harrison,

1997 and Pitt and Shephard, 1999) uses the inverse Wishart distribution

to capture the spatial variation. This method is analogous to an AR pro-

cess for the covariance matrix but in a multivariate context. Although this

model complicates the computation a lot, it will be useful if the number of

parameters of the matrix can be reduced.
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Appendix A

Common Statistical

Distributions

Here we list the definitions, first moments, variances and other important

issues of the probability distributions that were used in this thesis.

A.1 Univariate Normal Distribution

X has the normal distribution with mean µ and variance σ2, denoted X ∼
N(µ, σ2) if it has the probability density function:

f(x) =
1√

2πσ2
exp

[

− 1

2σ2
(x− µ)2

]

, −∞ < x <∞.

A.2 Student’s t Distribution

X has a Student’s t distribution on ν degrees of freedom, denoted X ∼ tν

and it has a density function,

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(

1 +
x2

ν

)−(ν+1)/2

, −∞ < x <∞.
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The mean and variance are

E(X) = 0 and Var(X) = ν/(ν − 2), when ν > 2.

A.3 Gamma Distribution

X has a gamma distribution on two parameters α and β, denoted X ∼
Γ(α, β) and it has a density function,

f(x) =
βα

Γ(α)
xα−1 exp(−βx) for 0 < x <∞.

Its mean and variance are

E(X) = α/β and Var(X) = α/β2.

A.4 Inverse Gamma Distribution

X has an inverse gamma distribution on two parameters α and β, denoted

X ∼ IG(α, β). If 1/X ∼ Γ(α, β), thenX ∼ IG(α, β). Its mean and variance

are

E(X) =
β

α− 1
and Var(X) =

β2

(α− 1)2(α− 2)
, when α > 2.

A.5 Multivariate Normal Distribution

Multivariate normal distribution is a multivariate generalisation of univariate

normal distribution. A vector X has a multivariate normal distribution with

mean vector µ and variance-covariance matrix Σ, denoted X ∼ N(µ,Σ). A

real random variable X is said to be normally distributed with mean vector

µ and covariance Σ if and only if

f(x) = (2πΣ)−1/2 exp

[

−1

2
(x − µ)′Σ−1x − µ)

]

, −∞ < x <∞.
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A.6 Multivariate Student’s t Distribution

A k-dimensional random vector X has a multivariate student t distribution,

denoted X ∼ St(µ,Σ, α) and it has a density function,

f(x) = c

[

1 +
1

α
(x − µ)′Σ−1(x − µ)

]−(α+k)/2

where c =
Γ( 1

2
(α+k))

Γ( 1

2
α)(απ)k/2

| Σ |−1/2 . Its mean and variance are

E(X) = µ and Var(X) =
α

α− 2
Σ, when α > 2.
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