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Equilibria and Oscillations of Magnetised Neutron Stars

by Samuel Kenneth Lander

We investigate equilibrium configurations and oscillation spectra of neutron stars,

modelled as rotating magnetised fluid bodies in Newtonian gravity. We also explore

the idea that these model neutron stars could have dynamics analogous to rigid-body

free precession.

In axisymmetry, the equations of magnetohydrodynamics reduce to a purely

toroidal-field case and a mixed-field case (with a purely poloidal-field limit). We

solve these equations using a nonlinear code which finds stationary rotating mag-

netised stars by an iterative procedure. We find that despite the general nature of

our approach, the mixed-field configurations we produce are all dominated by their

poloidal component. We calculate distortions induced both by magnetic fields and

by rotation; our results suggest that the relationship between the magnetic energy

and the induced ellipticity should be close to linear for all known neutron stars.

We then investigate the oscillation spectra of neutron stars, using these station-

ary configurations as a background on which to study perturbations. This is done

by evolving the perturbations numerically, making the Cowling approximation and

specialising to purely toroidal fields for simplicity. The results of the evolutions

show a number of magnetically-restored Alfvén modes. We find that in a rotating

star pure inertial and pure Alfvén modes are replaced by hybrid magneto-inertial

modes. We also show that magnetic fields appear to reduce the effect of the r-mode

instability.

Finally, we look at precession-like dynamics in magnetised fluid stars, using both

analytic and numerical methods. Whilst these studies are only preliminary, they

indicate deficiencies in previous research on this topic. We suggest ways in which

the problem of magnetised-fluid precession could be better understood.
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Chapter 1

Introduction

1.1 Neutron star physics

Of all the objects in the Universe, the properties of neutron stars perhaps rank

them as the most extreme and complex yet observed. These stars contain more

mass than the Sun, contained within a sphere whose radius is only around 10 km.

The binding energy and surface gravity of these objects is hence enormous. The

spacing of nucleons in ordinary nuclear matter is dictated by the nuclear force,

which is strongly repulsive at short distances; however, this repulsion is in part

counter-acted by the great pressure in neutron star interiors. The result is that the

mean mass density of a neutron star is around three times that of heavy nuclei.

The atomic nature of normal matter is replaced, predominantly, by liquid neutron

matter. There are neutron stars that rotate fast enough to tear apart any less-

compact object (neutron star periods may be as short as a millisecond) and others

whose magnetic fields exceed those on Earth by a factor of 1015.

We cannot create the extreme conditions present in neutron stars on Earth, which

means good modelling and observations are essential to understand these objects.

These two disciplines exist in a symbiotic relationship: observations help constrain

theoretical models of neutron stars, whilst theory helps in the understanding of cur-

rent observations and can suggest specific features that observers can look out for.

In the process of studying neutron stars, we also gain an understanding of how ter-

restrial physics changes at the extremes of pressure, density, magnetic field strength

and so on. Many branches of physics contribute to the understanding of these com-

1



Chapter 1: Introduction 2

plex objects: among others, they include General Relativity, plasma physics, nuclear

physics, thermodynamics, superfluidity, superconductivity and particle physics.

Our attempts to understand these stars are obstructed by the difficulty in ob-

serving them. Despite a wealth of data from radio astronomers and some other

sources, our knowledge of neutron star physics is still limited, particularly in the

stellar interior. However, by virtue of their compact nature we should soon have an-

other means of observing them, beyond their signature in the electromagnetic (EM)

spectrum. Gravitational radiation, a phenomenon which emerges when modelling

gravity within General Relativity, can provide information about its source which

could never be seen in the EM data. In a few years from now gravitational-wave

detectors on Earth should be greatly enhancing our knowledge of neutron stars, pro-

vided our theoretical models are good enough; this is an example of the symbiosis

described in the previous paragraph.

More detailed descriptions of various topics mentioned here are given in the rest

of this chapter and other introductory sections throughout this thesis. In addition,

more thorough summaries of the subject may be found in Shapiro and Teukolsky

[126] or Haensel, Potekhin and Yakovlev [62]. The remainder of this chapter dis-

cusses the formation and structure of neutron stars, with a mention of observations.

We then derive the quadrupole formula for gravitational radiation from Einstein’s

field equations and discuss the prospects for observing neutron stars through their

emission of this radiation.

1.1.1 The formation of compact objects

Neutron stars (together with black holes and white dwarfs) belong to the astronom-

ical genus of compact objects, the dense remnants from the death of a normal star.

The mass M of the original star approximately determines which compact object

is formed at the end of its life: the lightest stars (M . 8M⊙)1 form white dwarfs,

while larger ones may form neutron stars or black holes, depending on the details of

their collapse.

Why should a star collapse in the first place? Ordinary stars are stable through

hydrostatic equilibrium — the balance between thermal pressure and gravitational

force. The thermal pressure is sustained by the burning (fusion) of elements within

1We use the symbol M⊙ for the mass of the Sun
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the star, beginning with hydrogen (which requires the lowest ignition temperature

for fusion) and then progressing to the burning of heavier elements with successively

higher ignition temperatures. At some point the star will run out of fuel to sustain

its thermal pressure and its core will undergo gravitational collapse [126].

For stars with M . 8M⊙ the core will have insufficient heat to fuse elements

heavier than those around oxygen and will begin collapse at this point. However its

mass will be lower than the Chandrasekhar mass [20], and will thus be supported

against further collapse by the pressure of degenerate relativistic electrons; this is

a white dwarf. For heavier parent stars (M > 8M⊙), the burning around the core

continues until the temperature is high enough for the fusion of silicon, whilst the

core becomes rich in heavy, iron-group elements. In a complex coda to the evolution,

the core implodes rapidly with neither thermal nor electron pressure able to prevent

it. The formation of a shock front then leads to the violent ejection of all stellar

material apart from the core in a supernova explosion [53].

The nature of the compact object left after the supernova depends on the amount

of material ejected by the explosion. If a sufficent amount of material is ejected the

remaining collapsed core cools and reaches an equilibrium as an object formed of

degenerate neutron-rich matter; this is a neutron star. Finally, if insufficient material

is ejected at the supernova stage, the core exceeds the Oppenheimer-Volkoff mass

limit [105, 11], which in analogy to the Chandrasekhar mass is the maximum mass

that can be sustained against gravitational collapse by degenerate neutron pressure.

In this case the core collapses completely to form a black hole.

1.1.2 Neutron star structure

Having looked at the origins of compact objects2, we now concentrate on neutron

stars and their structure. From the description of their creation above, one might

envisage a neutron star to be like a giant nucleus, but this simple idea highlights

two key differences between neutron stars and more familiar nuclear matter. Firstly,

whilst the nucleus is bound together by the strong nuclear force, a neutron star is

held together by its self-gravity; secondly the proportion of neutrons in a neutron

star is much greater than that of an atomic nucleus. The neutron-rich nature of a

2Note that not all black holes, however, are formed from ordinary stars in the simple manner

described above
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NS comes about from absorption of high-energy electrons by protons in the inverse

beta decay:

p+ e− −→ n+ νe.

This process becomes more energetically favourable at higher densities, reducing the

proportion of protons and increasing the neutron fraction within nuclei. Since all

but the outermost regions of a NS are at high enough density for this process to

occur, the majority of the star will be neutron-rich through this process.

A neutron star has five main regions (see figure 1.1): the inner and outer cores,

the crust, the ocean and the atmosphere; the last two of these regions, labelled as

the outer envelopes on the figure, contain negligible mass but play important roles

in the star’s physics [87].

Outer regions

These outer regions or ‘envelopes’ contain a majority of nuclei rather than free

neutrons. In these regions the nuclei are 56Fe or lighter and the pressure is provided

by degenerate relativistic electrons. The outermost region is the atmosphere, a thin

(∼ 1 cm) layer of plasma where thermal electromagnetic radiation emitted from

the NS is formed. Below this, there is an envelope extending over a distance of

∼ 10 − 100 m where the density increases to a point at which the ions become a

liquid; this region is called the NS ocean.

Crust

Below the thin fluid outer regions the ocean solidifies and the crust of the neutron

star begins. As the density increases the beta capture of electrons becomes more

energetically favourable and protons are converted into neutrons; deeper into the

crust the nuclei thus become more neutron-rich. Eventually, around ∼ 0.3 km into

the star, the ‘neutron drip density’ 4×1011 g cm−3 is reached: at this point neutrons

start to leak out of their nuclei and form a free neutron fluid. For temperatures less

than ∼ 0.1 MeV this crustal neutron fluid is thought to be a superfluid [8], which

may affect the way the neutron star cools, as well as storing angular momentum that

may play a role in pulsar glitches [2]. The crust is sometimes regarded as an outer

and an inner crust, with the outer crust extending down to the neutron drip density

and the inner crust continuing from there. The inner crust consists of a mixture
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Figure 1.1: Cross-section of the main regions of a neutron star, showing

the approximate thicknesses of the largest regions, together with their con-

stituent matter and approximate densities in terms of the nuclear density

ρN = 2.8 × 1014g cm−3. Greek letters represent the corresponding particle

— µ, κ, π are muons, kaons and pions — whilst Z represents ions.

of nuclei surrounded by a neutron superfluid and is thought to be around ∼ 1 km

thick.

Pasta phase

Between the inner crust and the core there may be a transition called nuclear pasta

[114] — see figure 1.2. Here the increasing density causes the remaining nuclei to

align into first a 3D lattice, then a 2D arrangement of lines of nucleonic matter,

then 1D slabs separated by similar slabs of neutron fluid. The nuclei have lost any

‘identity’ by this point; the nucleonic matter also contains neutron fluid, mixed with
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protons, electrons and muons. Deeper still the (neutron superfluid) voids themselves

form a lattice surrounded by nucleonic fluid, before a final smooth transition into

a uniform mixture of nucleonic matter — the outer core. It should be pointed out,

however, that the existence of this pasta layer is highly dependent on the equation

of state used to model the NS[62].
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Figure 1.2: Nuclear pasta. At the right-hand side the neutron drip density

has already been exceeded, and the remaining lattice of nuclei is surrounded

by neutron fluid. As the density is increased (i.e. further into the star) the

remaining nuclei are compressed first into 2D lattice of vertical nucleonic

lines, then nucleonic slabs. Further in still, we may regard the original

neutron fluid as forming a lattice of voids surrounded by nucleonic fluid,

before finally becoming a uniform soup of nucleons on the left-hand side.

Core

The core may contribute up to 99% of the neutron star’s mass and is often predicted

to be composed of two separate regions, the outer and inner core, both several

kilometres thick. The outer core is thought to consist of superfluid neutrons and

superconducting protons, as well as electrons and muons. The density in this region
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increases beyond the nuclear density ρN = 2.8 × 1014 g cm−3 to ∼ 2ρN to a region

where the physics is least certain: the inner core. The extreme densities of this

region — predicted to be as high as ∼ 10ρN at the centre — may contain unfamiliar

kinds of matter that have not been found experimentally in the laboratory. The

inner core may contain an abundance of exotic particles such as hyperons (baryons

with one or more of their three quarks being strange) or perhaps a Bose condensate

of pions or kaons[8, 9].

Like the pasta region, the nature of the inner core differs considerably between

equations of state. It is far from clear, in fact, that the region even exists in real

neutron stars — it requires the star to be sufficiently compact for the central density

to exceed ∼ 2ρN . Otherwise, the core will be entirely composed of the ‘outer core’

matter described above [62].

1.1.3 Equation of state

To build models of neutron stars one needs an equation of state to relate the star’s

pressure P to its mass density ρ and temperature T . This has to encode the prop-

erties of all the different NS regions from centre to surface. For all but very young

neutron stars, the internal temperatures are thought to be around 106 − 108 K —

a number which is ‘hot’ for many physical situations but cold compared with the

Fermi energy TFermi ∼ 1012 K. It is therefore assumed that T = 0, so that the

equation of state is barotropic; P is a function of ρ alone.

Calculations of neutron star equations of state involve detailed consideration of

the microphysics of nuclear interactions. The results are tabulated pressure-density

relations rather than simple analytic models; Haensel, Potekhin and Yakovlev [62]

provide a good survey of these studies. These ‘realistic’ equations of state include

relativistic effects and so are suitable for constructing stellar models in General

Relativity, but by the same token there is no real benefit to using them in Newtonian

gravity.

For Newtonian stars, it is common to use a polytropic EOS P (ρ) = kργ ≡
kρ1+1/N , where k,N and γ are constants. The N = 1 (or equivalently, γ = 2)

polytrope provides a simple neutron star model that nonetheless shares many fea-

tures with more sophisticated models: for example, the pressure-density dependence

P ∝ ρ2 provides a rough approximation of realistic EOSs. Another similarity is in
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the mass-radius relation. For N = 1 polytropes, the radius is given by

R =

√

πk

2G

— see, e.g., Chandrasekhar [22] — and hence is independent of the mass. This is

mirrored by realistic EOSs, where radius is only weakly dependent on mass[86]. In

this thesis, neutron stars are modelled in Newtonian gravity, so we typically use the

N = 1 polytropic EOS.

In much of the literature on neutron stars, and within this thesis, the parameters

of mass and radius are given the ‘canonical’ values of M = 1.4M⊙ and 10 km,

respectively. The former value is more certain than the latter; the mass of a NS is

quite closely constrained on theoretical grounds. Beyond a certain mass a neutron

star will collapse to a black hole, whilst if a NS is too light it will be unstable to radial

oscillations[53]. A recent estimate by Strobel and Weigel [132] has a (nonrotating)

NS mass lying between Mmin = 0.9 − 1.3M⊙ and Mmax = 1.7 − 2.7M⊙; these

estimated ranges are typical for EOSs that assume normal nuclear matter (rather

than any kind of ‘exotic’ matter consisting of hyperons or quarks) [62]. For typical

EOSs the mass of 1.4M⊙ corresponds to a radius of ∼ 10 km; no direct measurements

of NS radii exist.

1.1.4 Observing neutron stars

The prospects for detecting a tiny, dark object (neutron stars do not undergo the

incandescent fusion of ordinary stars) in the sky would seem very poor; for this reason

Baade and Zwicky’s early predictions about the existence of neutron stars[7] received

little attention. However, neutron stars are observed today in many manifestations;

these include radio pulsars, anomalous X-ray pulsars, soft gamma repeaters and

low-mass X-ray binaries (the latter being a binary system with a neutron star and

another less compact star). Depending on the class of neutron star, their visible

emission may be predominantly X-rays, gamma-rays, or most commonly in the radio

spectrum. In many cases, signals from neutron stars are powered by their strong

magnetic fields; details of this are given in section 2.1.

Their characteristically regular radio emission has enabled over 1500 pulsars to

be recorded to date[95], which has greatly increased our knowledge of the properties

of neutron stars. Pulsar timing data has shown that NSs have a wide range of spin
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rates; although rotational periods of around 0.1 − 2 s are typical, there is also a

family of millisecond-period pulsars[94]. Measuring the luminosity of a NS gives

information on its magnetic field; at the stellar surface the field strength may reach

∼ 1012 G for ordinary pulsar-NSs and ∼ 1015 G for magnetars, an exceptionally

highly magnetised class of NS.

Over time a neutron star will lose angular momentum and magnetic field strength.

With some theory about how long these processes take, we are thus able to use ob-

served periods and luminosities to estimate the ages of NSs. An isolated NS will

eventually drop below the ‘death line’, where its luminosity is so low and period

so long that it can no longer be detected. The oldest pulsars we know are those

who form a binary system with a main-sequence star, accreting material from the

companion star and gaining angular momentum. This process results in ‘recycled’

pulsars, who have low surface magnetic fields (∼ 108 G) but periods that may be of

the order of milliseconds.

We conclude this section with an effect that is not seen in many pulsar obser-

vations, but which one might näıvely expect to be very common: precession. We

know that whilst neutron stars are very close to spherical, they are likely to have

some modest degree of distortion due to crustal deformations and their magnetic

fields. If the distortion is not symmetric about the rotation axis, then a rigid-body

analogy suggests that the star should precess; this would be seen as some long-term

modulation of the radio pulses [73]. However precessing pulsars seem to be very rare,

with one strong candidate[92], but few others; the reasons behind this are unknown.

This topic is covered in more detail in chapter 3.

1.2 Gravitational waves

One of the key predictions of General Relativity is the existence of gravitational

waves which, with their promise of carrying information from distant points of the

Universe to Earth with little interference, are of great interest to astrophysicists.

Neutron stars are promising sources of detectable gravitational radiation — and

should we manage to observe NSs through this radiation, not only would we have

another test to confirm GR, but we would also find out a lot more about the physics

of neutron stars.

Here we outline the steps to establishing a wave-generation formalism from the
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Einstein equations. Firstly we linearise the full Einstein equations (1.2.1) in the

metric perturbation hµν and use gauge freedoms to yield a wave equation (1.2.9).

We then solve this wave equation with some general physical assumptions to find

the quadrupole formula (1.2.16), which relates gravitational wave amplitude to the

second time derivative of the source’s mass distribution. We conclude the section

with a discussion of neutron stars as gravitational wave sources.

1.2.1 The linearised Einstein equations

We begin with the Einstein field equations [42, 102]:

Gµν = 8πTµν (1.2.1)

where as usual Tµν is the stress-energy tensor and Gµν = Rµν− 1
2Rgµν is the Einstein

curvature tensor, formed from contractions of the Riemann curvature tensor Rµν =

Rα
µαν and R = Rµ

µ. The Riemann curvature tensor itself is defined by

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

µγΓµ
βδ − Γα

µδΓ
µ
βγ (1.2.2)

where

Γα
βδ = gαµΓµβγ =

1

2
gαµ(gµβ,γ + gµγ,β − gβγ,µ) (1.2.3)

are the connection coefficients or Christoffel symbols.

We now use some general physical assumptions to simplify these equations into a

formalism for calculating gravitational waves. First we use the shortwave approxi-

mation: let λ be the typical wavelength and R the typical radius of curvature of the

background, then we require that λ
2π/R ≪ 1. With this assumption we can average

the metric over several wavelengths to obtain a ‘background curvature’ g
(B)
µν = 〈gµν〉

and then write the full metric as a sum of this background and a perturbation piece:

gµν = g(B)
µν + hµν (1.2.4)

where we have chosen an appropriate coordinate frame so that |hµν | ≪ 1. When

studying weak gravitational field situations we can expand the field equations (1.2.1)

in powers of hµν ; with only the linear terms we have ‘the linearised theory of gravity’,

which we now work with. In this theory, the (linearised) connection coefficients are

Γµ
αβ =

1

2
gµν(B)(hαν,β + hβν,α − hαβ,ν)

=
1

2
(h µ

α ,β + h µ
β ,α − h ,µ

αβ ).

(1.2.5)
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Note that when expanding in powers of hµν we raise and lower indices with gµν(B)

and g
(B)
µν rather than the usual gµν and gµν . With a similar linearisation of the Ricci

tensor Rµν = Γα
µν,α − Γα

µα,ν and defining the trace-reversed pseudotensor

h̄µν ≡ hµν − 1

2
g(B)
µν h (1.2.6)

(where h ≡ hα
α = gαβ(B)hαβ), we find that the linearised field equations are

−h̄ α
µν,α − g(B)

µν h̄
αβ

αβ, + h̄ α
µα, µ + h̄ α

να, µ = 16πTµν . (1.2.7)

We denote the D’Alembertian term by �h̄µν ≡ h̄ α
µν,α and without loss of generality

we may impose the Lorentz gauge conditions

h̄µα
,α = 0 (1.2.8)

under which the equations (1.2.7) become

�h̄µν = −16πTµν . (1.2.9)

So far we have shown that linearising the full Einstein equations (1.2.1) in the

shortwave approximation leads to the wave equation (1.2.9). We now wish to solve

this wave equation to find a formula for gravitational wave generation for slow-

motion sources and weak fields.

1.2.2 The quadrupole formula

Equation (1.2.9) can be solved using a Green’s function to give the retarded integral

h̄µν(t,x) = 4

∫
Tµν(t− |x − x′|,x′)

|x − x′| dx′. (1.2.10)

We proceed using the equations of energy-momentum conservation Tµν
;ν = 0;

neglecting the source’s self-gravity, this set of equations reduces to the flat-space

version (the background metric g
(B)
µν is now just the Minkowski metric ηµν):

Tµν
,ν = 0. (1.2.11)

We work in a globally inertial frame so that coordinate time derivatives xj
,0 are zero

and using the conservation equations find that

T 00
,00x

jxk = (T lmxjxk),lm − 2(T ljxk + T lkxj),l + 2T jk. (1.2.12)
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Integrating (1.2.12) over a volume so that the divergence terms vanish leaves the

expression

2

∫

T jk dx =

∫

T 00
,00x

jxk dx. (1.2.13)

We return to the retarded integral (1.2.10) and rewrite it using |x − x′| = r and

(1.2.12). Then

h̄jk(t,x) =
2

r

d2

dt2

∫

T 00(t− r,x′)x′jx′k dx′. (1.2.14)

Let us assume that the source is moving slowly, in the sense that its velocity v ≪ c.

Then its energy density is dominated by the mass density contribution, T 00 ≈ ρ.

Now defining the mass quadrupole moment as

Ijk ≡
∫

ρxjxk dx (1.2.15)

we see from (1.2.14) that

hjk =
2

r
Ïjk(t− r) (1.2.16)

— this is the quadrupole formula. Finally we recall the definitions of the reduced

quadrupole moment I−jk and moment of inertia Ijk:

I−jk =

∫

ρ
(
xjxk − 1

3r
2δjk

)
dx (1.2.17)

Ijk =

∫

ρ(r2δjk − xjxk) dx. (1.2.18)

In transverse-traceless gauge3 we note that these three tensors are equal (up to a

sign): ITT
jk = I−TT

jk = −ITT
jk . Using (1.2.16) and TT-gauge we arrive at formulae for

gravitational wave polarisations in terms of the moment-of-inertia tensor:

h+ ≡ hTT
11 = −hTT

22 = −2

r
ÏTT
11 (1.2.19)

h× ≡ hTT
12 = hTT

22 = −2

r
ÏTT
12 . (1.2.20)

1.2.3 Gravitational radiation from neutron stars

Having seen how the Einstein field equations predict the existence of gravitational

waves (under certain assumptions), it is natural to ask which astrophysical objects

and events are likely to lead to detectable gravitational wave signals. From (1.2.16)

we see that a signal’s strength depends on the proximity of the source and the

3See Section 3.2 and [102] for more details
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second time derivative of its moment of inertia tensor; i.e. the magnitude of the

acceleration of the source’s mass distribution. Concentrating on this latter attribute,

there are a number of promising sources of gravitational waves (the obvious caveat

is that the nearest of these sources are the best candidates): supernovae, coalescing

binary systems of neutron stars or black holes, the stochastic gravitational radiation

background left from the Big Bang and radiation from isolated neutron stars[123].

In fact, gravitational radiation has already been detected indirectly in a binary

neutron star system. In this system, the Hulse-Taylor binary pulsar PSR 1913+16,

the orbit of the two neutron stars is seen to decrease in a manner that agrees to within

1% with the predictions of the quadrupole formula, providing strong evidence for the

explanation that the binary is losing energy through gravitational radiation[68, 134];

this work won the 1993 Nobel Prize for Physics.
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Figure 1.3: A neutron star will be distorted from a sphere into an oblate

spheroid by the effects of rotation, but this is still a stationary configuration.

However if the NS has an extra distortion (the green lump in this figure)

which is not symmetrical about the rotation axis Ω, then as the NS rotates

this extra distortion will induce time-variation in the star’s mass distribution

and so produce gravitational waves.

The focus of this work is, however, a different class of GW sources — the isolated
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neutron stars. Since neutron stars are so dense, even relatively small deviations

from their predominantly stationary configurations have the potential to induce a

significant time-varying mass distribution and hence a relatively strong gravitational

wave signal. These deviations could be distortions in the density distribution which

are not symmetric about the rotation axis; or from unstable oscillation modes (see,

for example, the reviews by Schutz [123] and Andersson [3]).

Note that whilst the most significant distortion to a NS will usually be its cen-

trifugal bulge (discussed in Chapter 4), this is a stationary effect and so does not

produce GWs; see figure 1.3. Possible off-rotation axis distortions are crustal irreg-

ularities from the star’s geological history and the effect of the star’s magnetic field.

Distortions from the latter are a major focus of this document — see chapters 4 and

6.

Candidates for unstable modes include the r-mode associated with stellar ro-

tation, and the f -mode associated with pressure fluctuations in the star. If these

modes become unstable then their amplitude will grow exponentially (in the ab-

sence of any damping mechanism) — and potentially increase to the point where

the oscillations induced in the stellar density produce detectable GWs.

Prospects for detection of GW signals from neutron stars are greatly improving

with new detector technology. Although the amplitude of signals from isolated NSs

is likely to be low, their continuous nature and regular emission are suited to long-

term observations using interferometers. Techniques like signal recycling, together

with time-integration of a signal over the period of (say) a year will significantly

improve our chances of observing isolated NSs through their gravitational radiation

signals. It is also essential that we understand what signal to expect beforehand,

as searches must be done in a narrow frequency window. Ground-based detectors

like LIGO, VIRGO and GEO600 are most sensitive to frequencies of the order of

100 Hz, which makes them suited to the detection of binary inspirals and isolated

NS signals. Encouragingly, this technology has already set strain limits as low as

∼ 10−25 on the gravitational radiation from known pulsars [45].

The next stage is the upgrade of these detectors with more advanced technology;

the resulting ‘second-generation’ detectors should begin science runs around 2015.

These advanced detectors will be around an order of magnitude more sensitive than

the current ones — a very significant improvement, since current theory suggests that

there should be many prospective GW sources in this improved sensitivity window.
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Looking further ahead, there are already plans for third-generation detectors (for

example, the Einstein Telescope), planned to be another order of magnitude more

sensitive still. The hope is that GW observations from third-generation detectors

will give us a greatly improved understanding of NSs: their equation of state, crustal

deformations, interior magnetic fields and oscillation spectra, among others [4].

1.3 Plan of this thesis

This thesis is organised into nine chapters, which in turn are arranged into four larger

parts: an introductory part (consisting of chapters 1 and 2); a part on analytic work

(chapters 3, 4 and 5); a part on numerical work (chapters 6, 7 and 8); and a final

part with discussion and conclusions (chapter 9).

Each chapter of analytic work has a numerical counterpart: chapters 4 and 6

contain studies of equilibria of stars with rotation and magnetic fields; chapters 5

and 7 both focus on oscillation modes of stars, with the numerical chapter including

work on magnetic modes; finally, chapters 3 and 8 are concerned with the open

problem of precession in magnetised fluid stars.



Chapter 2

Magnetic fields in neutron stars

2.1 Introduction

The magnetic fields in neutron stars are among the strongest known in the Universe:

ordinary neutron stars have surface fields that reach ∼ 1012 gauss, whilst at the

surface of magnetars (an especially highly-magnetised class of neutron star) magnetic

fields are thought to reach ∼ 1015 gauss. For comparison, the magnetic field at the

Earth’s surface is around 0.5 gauss. It is not outlandish to expect NS interior fields

to be an order of magnitude stronger still, i.e. up to around 1016 gauss; such a value

for the field seems to emerge from modelling of magnetar flares [130] and cooling

[76]. We should, therefore, anticipate significant magnetic-field effects in the physics

of neutron stars.

From the point of view of observation, the most important magnetic-field effect

in NSs is that they provide the energy required to make these stars visible from

Earth (in many cases). In this chapter we look at two classes of neutron star,

distinguished by how they are observed and certain other properties: the ‘ordinary

pulsars’ and the ‘magnetars’. The next two subsections are devoted to a summary

of each of these classes of neutron star. In the rest of the chapter we summarise the

literature on magnetic distortions and oscillations, since these are the major focus

of this document, and conclude with a discussion of other aspects of neutron star

physics linked to the magnetic field.

16
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2.1.1 Pulsars

Soon after the first detection of a pulsar [65], it was suggested by Gold [54] that

the extremely regular radio signal could be explained if the source was a rotating

magnetised neutron star; the basic idea is the same today. At the poles of a magne-

tised neutron star, particles are thought to be collimated along the open field lines,

causing the emission of radio-frequency curvature radiation [81] — this is shown in

figure 2.1. Since the magnetic and rotational axes are typically not aligned, this

beam of radiation rotates with the star. The effect is an on-off radio pulsing, like

the signal from a lighthouse: as the beam sweeps across the Earth we see radio

emission; when the beam is facing away from Earth we cannot see it. Pulsars have

to be neutron stars, because the rotation rates observed in many of them would tear

the (less compact) white dwarfs apart.

2.1.2 Magnetars

Magnetars are a class of neutron star with particularly strong magnetic fields, up

to ∼ 1015 G at the stellar surface. Duncan and Thompson [40] have suggested that

these particularly strong fields are generated by a dynamo effect in the first few

seconds after the star’s formation. These fields cause the star to spin down rapidly,

so they are not primarily detected through their radio emission, as most neutron

stars are.

The idea of a magnetar was first postulated to explain the Soft Gamma Repeaters

(SGRs) [40]. SGRs have long rotation periods and appear to spin down more rapidly

than ordinary pulsars. Assuming that this spindown is due to dipole radiation leads

to the estimate that their dipole fields are around 1014 − 1015 G. SGRs are char-

acterised by their soft-gamma/hard-X ray emission and their occasional, extremely

energetic giant flares.

The magnetar model has also been used to explain the behaviour of the Anoma-

lous X-ray Pulsars (AXPs). The anomaly of these objects is that their observed

X-ray luminosity is many times greater than that which could be sourced from the

star’s spindown; but it is easy to account for if these objects have the huge reservoirs

of magnetic energy of a magnetar. Although the two classes of magnetar discussed

here differ in a number of respects — most obviously, that the AXPs do not undergo

the huge bursts of SGRs — it has been suggested that this can be explained through
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varying degrees of twist in their magnetic fields [135].

2.2 Magnetic distortions

It has long been predicted that magnetic fields will distort a fluid star; see Chan-

drasekhar and Fermi [26]. This distortion only becomes appreciable if the magnetic

energy Emag of the star is comparable with its gravitational energy W ; since neu-

tron stars have tremendous self-gravity it follows that one would only expect very

strong magnetic fields to generate any significant distortion. In chapter 6 we will

quantify these comments by scaling our code-generated results to real neutron star

values. For now, we note that the work of Chandrasekhar and Fermi suggests that

magnetars should have the greatest magnetic distortions of all NSs (with the caveat

that this early work is for an incompressible fluid and so is of limited relevance to

NSs).

A number of studies of magnetically deformed stars exist. These have included

work focussed on poloidal, toroidal or mixed fields, and boundary conditions where

the field either vanishes at the surface of the star or decays at infinity. Changing

any of these can lead to very different results, so the uncertainty we have about the

geometry of NS magnetic fields translates into an uncertainty about how distorted

they are.

Analytic approaches have been restricted to weak fields and small deformations,

as the nonlinear nature of stronger magnetic fields rapidly makes the problem in-

tractable. Early work treated deformations of incompressible fluids (see the work of

Roberts, Ferraro, Chandrasekhar and Fermi [118, 43, 26] among others; also section

4.3), a simplifying assumption but not terribly physical for real stars. The first stud-

ies of compressible stars assumed very simplistic density distributions and magnetic

fields confined within the star[143, 141]; later Goossens [56] treated the problem of

a poloidal field matched to an external dipole, extending the work of Ferraro[43].

More recent work by Haskell et al. [64] included a study of deformations in a star

with a mixed poloidal-toroidal field confined within the star.

In addition to analytic work, a number of studies have used numerical methods

to calculate magnetic distortions. Monaghan[103] and Roxburgh [119] calculated

field geometries and surface distortions for various polytropes, allowing for an ex-

terior magnetic field. Their work was perturbative and so restricted to weak fields.
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More recently, Ioka [69] has applied a second-order perturbation technique to study

the strong fields found in magnetars. Other studies of highly magnetised stars have

solved the fully non-linear problem, to allow for more highly deformed configura-

tions than could be accurately determined using a perturbative approach. This was

originally done for strong magnetic fields confined within the star[107], by extend-

ing an earlier self-consistent field method for rapidly-rotating stars[108]. For purely

poloidal fields, Miketinac [101] devised an improved numerical method which enabled

the calculation of highly distorted equilibrium configurations; it was found that for

very strong fields the maximum density of the star could move away from the centre

to make the geometry of the density distribution toroidal. Solutions have also been

found using a mixed-field formalism[137]. Finally, relativistic effects have been con-

sidered: nonlinear studies for purely poloidal [10] and purely toroidal fields [80] and

a perturbative treatment for mixed fields [31]. Another study looked at mixed-field

configurations in Newtonian gravity, but including a relativistic correction [78].

2.3 Magnetic oscillations

Recently, quasi-periodic oscillations have been observed in the aftermath of giant

flares from SGRs [71, 140]. These are thought to be connected with oscillation

modes of the star, thus giving us direct information about its oscillation spectrum

and potentially a probe of the physics of the interior of neutron stars. Understanding

the origin of the QPOs, then, is of great importance for our knowledge of neutron

star physics. These observations provide a substantial motivation for better under-

standing NS modes, in particular their behaviour in a strong magnetic field. Chapter

7 of this document studies the oscillation modes of a simple magnetar model.

Although magnetar QPOs provide fresh motivation for studying oscillations in

a magnetised star, the literature on such magnetic modes predates the discovery

of these QPOs by several decades. The influence of a star’s magnetic field on its

oscillation spectrum can be gauged from the ratio of its magnetic energy to the

gravitational binding energy, M/|W |; this suggests three classes of star where one

should take account of the star’s magnetic field: in addition to NSs, there are also the

rapidly-oscillating type-A peculiar (roAp) stars and magnetic white dwarfs (MWDs).

The earliest studies of magnetic star oscillations were driven by the discovery of

∼ 104 gauss fields — relatively strong for a main-sequence star — in some Ap stars
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[28, 88]. Later, some of these stars were found to be oscillating at high frequency

— the roAp stars — motivating a number of studies of magnetic effects on high-

frequency p-modes [138, 41, 117]. In addition to roAp stars, some white dwarfs

have strong (∼ 109 gauss) magnetic fields; however these have shown no evidence of

pulsation, perhaps due to magnetic suppression of the g-modes that are observed in

weaker-field white dwarfs[142]. Finally, the internal dynamics of neutron stars will

be considerably affected by rotation as well as their strong magnetic fields, leading

to interest in magnetic r-modes [104].

Many publications to date have reported on analytic studies of magnetic stellar

oscillations, necessitating considerable simplications to the problem: typically the

model used is an incompressible star with a force-free background magnetic field.

Some modern work on the problem has been inspired by the observation of magnetar

QPOs, and this has tended to be numerical [128, 127, 19], with the advantages

that more sophisticated physics can be modelled (for example, compressible and

relativistic stars). Chapter 7 of this thesis extends previous work by solving the

system of governing equations self-consistently, allowing for background stars which

may be nonspherical by virtue of both their magnetic fields and their rotation.

2.4 Other magnetic effects

The effects of magnetic fields on equilibrium configurations and oscillation spectra

are of primary interest in this thesis, but a neutron star’s physics is affected in many

other ways by its magnetic field. An obvious observable effect is the spindown of a

neutron star: though this contains a contribution from gravitational radiation, it is

primarily due to magnetic dipole radiation. In particular the magnetars, with their

very strong fields, have correspondingly rapid spindown rates. Magnetic-field effects

are also important in the physics of the atmosphere and the thermal emission [67];

they alter the properties of dense matter and hence the equation of state [62]; and

affect the long-term evolution of the star [111]. A variety of these properties are

discussed in the review by Harding and Lai [63].

Finally, if a neutron star has a magnetic field, Goldreich and Julian [55] showed

that it cannot exist surrounded by a vacuum. Instead it forms a magnetosphere

of electric current beyond the surface of the star, with closed magnetic field lines;

see figure 2.1. In the outer magnetospheric gap (just beyond the closed field-line
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region) high-energy radiation is emitted, in the visible, X-ray and γ-ray bands. Some

neutron stars are visible through this radiation, as well as in the radio band.
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outer gap
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Ω
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Figure 2.1: Diagram of a pulsar and its exterior magnetic field. Field lines (in black)

extend outside the central neutron star (NS); these are open at the poles where the

pulsar radio beam originates and closed in the magnetosphere. In the gap just

beyond the magnetosphere high-energy radiation is generated. The magnetic field

rotates about the Ω axis and has a magnetic field symmetric about the magnetic

axis M, so the radio beam rotates around Ω. An observer sees the beam when it

faces them but not when it has rotated away, and so observes the NS through a

characteristic on-off radio signal.
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Precession

3.1 Introduction

Free precession is a rigid-body effect in which a body’s motion is (in its simplest,

biaxial, form) characterised by two superimposed rotations: one rotation of the

body about a principal axis of inertia (a body axis) and another rotation of this

principal axis about the body’s angular momentum axis; see figure 3.1. If the angular

momentum axis is aligned with a principal axis of inertia, however, the motion will

just be ordinary rotation; it follows that a rigid sphere cannot precess.

It has long been thought that stars may precess (see Ruderman [121], for ex-

ample), in analogy with the case of rigid bodies with misaligned rotation and body

axes. For a star to precess it also needs a source of distortion and a rotation axis

misaligned from any symmetry axis of the distortion. Returning to figure 3.1, one

could imagine stresses distorting the fluid into its biaxial shape, symmetric about

the n3 axis, but being rotated about the J axis. In the absence of other effects the

star would then develop a secondary rotation about the n3 axis to conserve angular

momentum and hence precess; see section 3.4.1.

There are a variety of effects which could distort a neutron star and cause it

to precess: the rigidity of the crust allows it to support deformations which may

arise through the star’s seismic history (like starquakes) or through accretion onto

the crust from a companion star; in addition a strong magnetic field could cause

a significant asphericity in a neutron star. The most significant distortion of a NS

is likely to be the oblateness due to centrifugal forces, but unlike the other effects

23
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ω

α

Ω

n3

J

θ

Figure 3.1: The free precession of a biaxial rigid body. The instantaneous

rotation axis Ω and the body axis n3 rotate around the invariant angular

momentum axis J at a frequency φ̇. We call θ the wobble angle and note

that if θ = 0 or θ = π/2 the motion of the body is simply axial rotation.

listed a centrifugal bulge is a stationary configuration and cannot induce or affect

precessional dynamics [73].

Most pulsar observations are of the on-off radio signal that reaches Earth. In

a few pulsars a modulation in the radio timing data has been observed, with a

periodicity whose timescale is much greater than the ordinary spin period; this

has been interpreted as evidence for precession. The most promising candidate for

precession in a neutron star is pulsar PSR B1828-11, with a possible precession

period of 1009 days and a rather uncertain wobble angle, perhaps 0.02◦ . θ . 3◦.

Other possible precessing pulsars are SN 1987A, PSR B1642-03 and the Vela pulsar

PSR B0833-45 [73].

The paucity of candidates for precession (only a few of the 1500+ known pulsars)
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presents a major problem to the rigid-body analogue neutron star described above.

One would expect off-rotation axis distortions to be reasonably common in NSs,

given that some of them have extremely strong magnetic fields, and assuming a

NS crust is able to support fairly large irregularities; then the rigid-body analogy

suggests that precession should be a generic feature of NSs, rather than a very rare

one. One explanation may be that precession is reasonably common, but that we are

simply unable to observe it in the radio data: if the off-axis distortion is entirely due

to (say) magnetic effects, symmetric about some magnetic axis, then the secondary

rotation of the star (labelled ω in figure 3.1) will be precisely about this axis. In

the inertial frame the magnetic axis will then appear to be simply rotating rigidly.

An extra distortion (like an accreted crust) is needed to produce modulation in the

radio timing data, and hence a signature of precession.

Even if precession is more common than radio timing data would suggest, a

neutron star is certainly a great deal more complicated than a rigid body; effects

like the elastic nature of the crust [36], magnetic coupling [91] and the superfluid

interior of the star [125, 1, 52] may all affect precessional dynamics. Additionally,

as the star loses energy it may drive the wobble angle to θ = 0 or θ = π/2 (see

section 3.3 and Cutler [35]), in both cases damping the precession. Despite the

many complications involved, however, Wassermann has recently suggested that

precession should still be generic to magnetised neutron stars [139].

Precessing neutron stars are interesting as potential sources of detectable grav-

itational radiation (see section 3.2 and the work of Zimmermann [148, 147]), with

distinctive continuous signals which a combination of long interferometer observa-

tions and matched filtering may be able to detect. More recently, Zimmermann’s

calculation has been extended to second order by Van Den Broeck [17]. At this

order a new spectral line emerges in the GW signal, containing direct information

about the star’s wobble angle and asymmetries; such a detection would thus aid our

understanding of neutron star structure. It has been claimed that even stars who

do not undergo mechanical precession may still emit precession-like signals[49, 72].

However at present it seems that precession, at least that due to crustal deformities,

may only result in very small amplitude gravitational waves[74].

In this chapter we calculate the gravitational waves from a freely precessing rigid

body, before a calculation which shows the energy lost in precession damping. We

then explore the problem of the motion of a magnetised fluid star and the analogy
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with rigid-body free precession. This is done with an analytic approach here, and

numerically in chapter 8.

3.2 Gravitational radiation from a freely precessing spheroid

Here we follow the calculation of Zimmermann and Szedenits [148] to use the

quadrupole formula to calculate the expected waveforms from a freely precessing

rigid neutron star. We note that for a slowly rotating body this result should be

accurate, as the post-Newtonian corrections are negligible[136]. At the end we plot

these expected waveforms for some different values of wobble angle.

3.2.1 Finding formulae for precessional waveforms

In the corotating or body frame (whose orthogonal triad we define as (x, y, z)), the

moment of inertia tensor for a rigid biaxial body is given by

Ibody =







I1 0 0

0 I1 0

0 0 I3







(3.2.1)

where I3 is the component along z, the body’s symmetry axis [83].

To find an expression for the moment of inertia tensor Iinert in an inertial frame

requires finding a series of rotations which move from the inertial axes (x′, y′, z′)

back to the body axes (x, y, z): for a general triaxial body, a rotation through each

of the three Euler angles is required; for a biaxial body this reduces to rotations

through two angles θ and φ. Here θ is the angle between the z and z′ axes and φ the

angle between the inertial x′ axis and the line of nodes (where the inertial and body

x-y planes intersect). The z and z′ axes become parallel after a rotation through

angle θ about the x′ axis; a further rotation about the z′ axis through angle φ gives

parallel x–y and x′–y′ planes as well. Hence

Iinert = RφRθIbodyR
T
θ R

T
φ (3.2.2)

where Rφ =







cosφ − sinφ 0

sinφ cosφ 0

0 0 1







and Rθ =







1 0 0

0 cos θ − sin θ

0 sin θ cos θ







.

The Eulerian equation for φ reads φ̇ = Ω where Ω is the star’s angular velocity.
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With this explicit time dependence, we can now take the second time derivative of

this matrix Iinert, needed later for calculation of the gravitational radiation of the

body with the quadrupole formula:

Ïinert =







2 cos 2Ωt sin θ 2 sin 2Ωt sin θ − sinΩt cos θ

2 sin 2Ωt sin θ −2 cos 2Ωt sin θ cos Ωt cos θ

− sinΩt cos θ cos Ωt cos θ 0






I1ǫΩ

2 sin θ (3.2.3)

where ǫ = I3−I1
I1

.

Consider an observer whose axes (x̂, ŷ, ẑ) are arbitrarily inclined to those of the

inertial system (x′, y′, z′), and call the moment of inertia tensor referred to this

observer system Iobs. We wish to find the components of Ïobs transverse to the ẑ

axis. Define a unit vector n parallel to the observer’s ẑ axis by

n =







sin ι cosα

sin ι sinα

cos ι







(3.2.4)

where the inclination to the angular momentum vector J is described by two angles:

the ‘inclination angle’ ι and the ‘azimuthal angle’ α. Using n we define the projection

tensor P

P = δ − n ⊗ n (3.2.5)

or in components:

P j
k = δj

k − njnk (3.2.6)

This gives

P =







1 − sin2 ι cos2 α − sin2 ι cosα sinα − sin ι cos ι cosα

− sin2 ι cosα sinα 1 − sin2 ι sin2 α − sin ι cos ι sinα

− sin ι cos ι cosα − sin ι cos ι sinα 1 − cos2 ι







(3.2.7)

Given the freedom to rotate the observer axes, we choose the x̂–ŷ plane so that the

azimuthal angle α = 0. Then

P =







1 − sin2 ι 0 − sin ι cos ι

0 1 0

− sin ι cos ι 0 1 − cos2 ι







(3.2.8)
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Note that P2 = P as required for a projection. We now use this tensor P to obtain

the projection of Ïinert into the plane orthogonal to n and call the resulting tensor

Ïproj :

Ïproj = PÏinertP − 1

2
PTr(PÏinert) (3.2.9)

This formula ensures Ïproj is a transverse-traceless matrix, which can be confirmed

by checking Ïprojn =







0

0

0







(transverse) and Tr(Ïproj) = 0 (traceless). Now, Ïproj

is a matrix referred to the inertial triad (x′, y′, z′) but with the part transverse to

the vector n projected out. A final rotation Rι is required to obtain Ïobs, the second

time derivative Ï of the moment of inertia tensor with respect to the observer’s triad

(the observer ẑ-axis is the unit vector n). The condition α = 0 means the y′ and ŷ

axes are parallel, so we need a rotation about this axis through angle ι:

Rι =







cos ι 0 − sin ι

0 1 0

sin ι 0 cos ι







(3.2.10)

which gives

Ïobs = RιÏprojR
T
ι =







A B 0

B −A 0

0 0 0






I1Ω

2ǫ sin θ (3.2.11)

where

A = 1
2((3 + cos 2ι) cos2 Ωt sin θ + sinΩt(cos θ sin 2ι− (3 + cos 2ι) sin θ sin Ωt))

B = cos Ωt(4 cos ι sin θ sin Ωt− cos θ sin ι)

(3.2.12)

For comparison with previous work [148, 12] we change our definition of origin of

(retarded) time with the substitution Ωt → Ωt + π
2 . Now using the quadrupole

formula (see Section 2), we find that the gravitational waveforms for a rigid freely

precessing spheroid are given by

h+ = −2

r
Ïobs11

= −2

r
AI1ω

2ǫ sin θ

=
2I1ω

2ǫ sin θ

r

(
(1 + cos2 ι) sin θ cos 2Ωt− sin ι cos ι cos θ cos Ωt

)
(3.2.13)
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and

h× = −2

r
Ïobs12

= −2

r
BI1ω

2ǫ sin θ

=
2I1ω

2ǫ sin θ

r
(−2 cos ι sin θ sin 2Ωt+ sin ι cos θ sinΩt) . (3.2.14)

3.2.2 Waveform plots

We now use typical parameters for a real neutron star to make plots of the gravita-

tional waveforms from a freely precessing solid spheroid — the neutron star model

we are concerned with in this section — setting: the moment of inertia I1 = 1038 kg

m2, the angular velocity as 2π · 100 rad s−1, the ellipticity ǫ = 10−6 (dimensionless)

and the distance from the source as r = 1 kpc = 3.09×1019 m. We also (arbitrarily)

set the inclination angle as ι = π/4. In addition we need to convert from geometrised

units with c = G = 1 back to SI units. Accordingly, using the requirement that the

wave amplitude h must be dimensionless, we find a factor of Gc−4 is needed.

On the final page of this section plots are given of the time variation of the two

polarisation amplitudes h+ and h× using formulae (3.2.13) and (3.2.14) and physical

values as above. For θ = 0 we see from the equations above that the wave amplitude

is zero as expected; a body rotating about its symmetry axis has no time-varying

moment of inertia, required for gravitational radiation. For θ > 0 the plots show

the superposition of two harmonics characteristic of free precession, whilst the final

pair of plots for θ = π/2 have a simple sinusoidal shape as expected when the body

z-axis and the angular momentum axis are orthogonal. In reality signals such as the

model ones given on the next page would need to be observed for months, making

use of matched filtering to bring the effective amplitudes up to, say, the order 10−23

[123].
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Figure 3.2: Plots of the gravitational waveforms for the h+ (left) and h× (right)

polarisations against time (in seconds). From top to bottom these plots correspond

to values of wobble angle θ = π/16, π/8, π/4, 3π/4 and π/2.
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3.3 Precession damping

We argued in the introduction that one might expect precession-like dynamics to

be generic to neutron stars and in the previous section calculated the gravitational

wave emission of such a star. However this precession will not, of course, continue

indefinitely but will be subject to damping effects. Here we calculate the kinetic

energy of a precessing rigid body and see that the effect of kinetic energy loss may be

to reduce the wobble angle and hence damp the precession. It has also been argued

that in certain circumstances a body may lose energy by increasing its wobble angle

until it reaches π/2 (see, e.g., Cutler [35] and references within). In either scenario,

the decrease or increase of wobble angle, one may see how the waveforms should

change by referring to figure 3.2.

We work in the body frame, in which the moment-of-inertia tensor takes the

diagonal form

I =







I1 0 0

0 I1 0

0 0 I3






. (3.3.1)

Now defining an average moment of inertia I0 = (2I1 + I3)/3 and a ‘difference piece’

∆I = I3−I1, we note that I1 = I2 = I0−∆I/3 and I3 = I0+2∆I/3. So the moment-

of-inertia tensor may be rewritten in a useful form as the sum of a ‘spherical piece’

and a ‘non-spherical piece’:

I = I0δ + ∆I(n3 ⊗ n3 − 1
3δ). (3.3.2)

n1

n2

n3

nJ

θ

Figure 3.3: The orthogonal

triad (n1,n2,n3) and the an-

gular momentum unit vector

nJ.
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We next decompose the angular velocity vector Ω using Euler angles (see the

diagram above), picking for simplicity the instant when Ω1 = 0:

Ω = φ̇nJ + ψ̇n3

= φ̇







0

sin θ

cos θ







+ ψ̇







0

0

1






. (3.3.3)

Now

J = JnJ = J







0

sin θ

cos θ







(3.3.4)

and we may also write the angular momentum vector J using the following identity:

J = IΩ =







I1Ω1

I2Ω2

I3Ω3







=







0

I1φ̇ sin θ

I3φ̇ cos θ + ψ̇I3






. (3.3.5)

Comparing (3.3.4) and (3.3.5) gives:

J sin θ = I1φ̇ sin θ ⇒ φ̇ =
J

I1
(3.3.6)

and similarly

ψ̇ = − φ̇ cos θ∆I

I3
. (3.3.7)

We now substitute these two Euler angle relations into the expression (3.3.3) for Ω,

giving

Ω =







0
J
I1

sin θ
J
I1

(

1 − ∆I
I3

)

cos θ






. (3.3.8)

By using the diagonal form (3.3.1) for the moment of inertia tensor together with

(3.3.8), we can now calculate the kinetic energy of a freely precessing rigid body:

EK = 1
2ΩIΩT

=
J2

2I1

(

1 − ∆I

I3
cos2 θ

)

. (3.3.9)

The kinetic energy from the precession itself will then be the difference between EK

evaluated for a wobble angle θ and the kinetic energy when this wobble angle is zero,
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at fixed angular momentum:

Eprec = EK(θ) − EK(0) =
J2

2I1

(

1 − ∆I

I3
(cos2 θ + 1)

)

. (3.3.10)

Equation (3.3.10), then, gives the energy decrease if the wobble angle θ → 0, i.e.

Eprec is the energy lost in alignment of the body n3-axis and the angular momentum

axis nJ. Any non-rigidity in the object could thus damp precession without removing

angular momentum from the star.

3.4 Perturbations in a rotating, magnetised fluid ball

Up until this point we have discussed rigid-body precession, but a neutron star is

predominantly a fluid body; it is not obvious, therefore, whether one should expect

to find precessing neutron stars. In this section we model a neutron star as a

magnetised fluid ball and discuss what effects should contribute to its dynamics. In

particular, we explore the idea that a magnetised fluid body should be dynamically

analogous to a rigid body.

It was originally suggested by Spitzer [129] that a magnetic field threading a fluid

ball could provide some ‘rigidity’ to the body and allow it to maintain an off-rotation

axis distortion. In analogy with the rigid-body situation, one would then expect the

motion of this fluid to resemble (in some sense) precession. Mestel [100, 99] used

this idea to find a relation between the two primary frequencies characterising the

precession, implicitly making a rigid-body ansatz. However, one would not expect

the fluid to actually react in a strictly rigid manner to these superimposed rotations.

To account for this, Mestel defines a displacement field ξ to describe the deviation

of fluid elements from strict precession.

Rigid-body precession and the internal ξ-motions should, therefore, give a de-

scription of the dynamics of a magnetised fluid with misaligned rotation and mag-

netic axes. This would be very useful for modelling of many classes of star; in

particular, Mestel was concerned with how ξ-motions could cause a star to become

an aligned or orthogonal rotator (i.e. the rotation and magnetic axes are aligned or

orthogonal). As seen in the previous section, 3.3, a star can conserve angular mo-

mentum during this transition by dissipation of the precessional energy. In neutron

stars, the orthogonal configuration would be optimal for gravitational-wave emission

[35]. Whilst the magnetised fluid-ball model of a neutron star is rather simplistic, a
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better understanding of the dynamics of this model could help elucidate aspects of

the dynamics of real neutron stars — like the apparent rarity of precession in them.

Since rigid-body precession is well understood, it is the ξ-motions that require

study. In this section we provide a critique of Mestel’s work on this topic, concluding

that his approach contains certain inconsistencies, which cast doubt on the validity

of his ξ-motion solutions. In this section we discuss what is needed to patch up

Mestel’s analytic approach and hence get a better description of the behaviour of

the ξ motions. An alternative, numerical, approach to the problem of precession in

a magnetised fluid body is suggested in chapter 8.

3.4.1 Precession-like fluid motion

In this subsection we follow the perturbative argument of Mestel to establish a

relation between the two characteristic frequencies of a rotating magnetised fluid,

showing that the leading-order correction to the ordinary rotation is a nutation

effect, as for rigid-body free precession. We model a star as a uniformly rotating

fluid ball with a frozen-in magnetic field symmetric about some axis p. This axis is

inclined at some obliquity angle χ to the invariant angular momentum vector, whose

direction we denote k. We form right-handed triads (i, l,p) and (i, j,k) associated

with these magnetic and rotational axes, and denote the spherical polar coordinate

system referred to the p-triad by (r, θ, λ); for the rest of this section we shall work

exclusively in this coordinate system.

A stationary, unmagnetised ball of homogeneous fluid would have a spherically

symmetric density field ρ0(r). Including rotation alone adds on a small extra term

ρα(r, θ, λ) for the effect of the centrifugal bulge on this density distribution; similarly,

the density for a non-rotating magnetised fluid ball could be written as ρ(r, θ) =

ρ0(r) + ρB(r, θ) to take account of magnetic distortions ρB to the density. Hence,

for a rotating, magnetised star we may write the density of an element at the point

(r, θ, λ) as

ρ(r, θ, λ) = ρ0(r) + ρB(r, θ) + ρα(r, θ, λ), (3.4.1)

where we have neglected cross-terms O(ραρB) as higher-order than the other density

components.

The density field of a star rotating with angular velocity αk has the angular
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χ

Figure 3.4: The magnetic and rotational

triads; we assume j, k, l and p are copla-

nar.

i

r

l

p

θ

λ

Figure 3.5: The p-triad and its spher-

ical polar coordinate system.

momentum vector

Jα =

∫

ρr × (αk × r) dV. (3.4.2)

However this alone does not give an invariant angular momentum orientated along

the k direction, as the j-component of (3.4.2) is non-zero:

Jα · j = −α
∫

(j · r)(k · r)ρB dV (3.4.3)

where the contributions from ρ0 and ρα vanish by symmetry. To yield an invariant

angular momentum we require an additional rotation ω (an Eulerian nutation) about

the magnetic axis p with an associated angular momentum JB such that (Jα +JB) ·
j = 0, i.e.

0 = −α
∫

(j · r)(k · r)ρB dV +

∫

ρr × (ωp × r) · j dV. (3.4.4)

We assume that j, k, l and p are instantaneously coplanar and work in spherical

polars with r = r(sin θ cosλ i + sin θ sinλ l + cos θ p). Writing

j = cosχ l + sinχ p, k = − sinχ l + cosχ p and dV = r2 sin θ drdθdλ, we now

evaluate the integral (3.4.3) in the (i, l,p) triad to give

Jα · j = −α
∫

(j · r)(k · r)ρB dV

= 2πα sinχ cosχ

∫∫

ρBP2(µ)r4 drdµ. (3.4.5)



Chapter 3: Precession 36

Here µ ≡ cos θ and P2(µ) = 1
2(3µ2 − 1) is the l = 2 Legendre polynomial. We

evaluate the j-component of JB in a similar fashion to give

JB · j =

∫

ρr × (ωp × r) · j dV

= I0ω sinχ (3.4.6)

where I0 ≡ 8π
3

∫
ρ0r

4 dr is the moment of inertia of the spherically symmetric density

field ρ0; here the two density perturbations are regarded as negligible parts of ρ in

comparison with ρ0. We now use equations (3.4.5), (3.4.6) and the requirement

(Jα + JB) · j = 0 to find the nutation frequency

ω = −2πα cosχ

I0

∫∫

ρBP2(µ)r4 drdµ. (3.4.7)

This result may be expressed in a more familiar form by comparing it with the

difference in moments of inertia of the p-axis and the i-axis due to the magnetic

distortion:

Ipp − Iii =

∫

ρB(r2 − p2) dV −
∫

ρB(r2 − i2) dV =

∫

ρB(i2 − p2) dV.

In spherical coordinates (r, µ ≡ cos θ, λ) we then have

Ipp − Iii =

∫

ρB

(
(1 − µ2) cos2 λ− µ2

)
r4 drdµdλ

= 2π

∫

ρB

(
1 − µ2

2
− µ2

)

r4 drdµ

= −2π

∫

ρBP2(µ)r4 drdµ. (3.4.8)

We may now compare this result with (3.4.7) to see that

ω = α cosχ
Ipp − Iii

I0
. (3.4.9)

This is the usual rigid-body result; see for example the classical mechanics text by

Landau and Lifshitz [83].

3.4.2 Deviation from rigid-body precession in a rotating magne-

tised fluid

The result at the end of the previous subsection suggests that the macroscopic dy-

namics of a rotating magnetised fluid body should resemble free precession; however
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the fluid is clearly not a rigid body. This presents a question as to what degree the

magnetised fluid can be regarded as rigid and hence how similar the motion of a

magnetised fluid is to ‘conventional’ rigid-body precession. Mestel sought to answer

this by considering the microscopic dynamics — the motion of individual fluid ele-

ments. The aim of this subsection is twofold: to elucidate Mestel’s original work on

fluid precession, and to highlight what we believe are its shortcomings.

The notation used in here is as in the rest of this section, with a couple of

additions. Since we will need to distinguish between different frames of reference,

we define for brevity the ‘α-frame’ to be the one comoving with the star’s primary

rotation (at frequency α) and the ‘ω-frame’ to be the co-precessing frame — i.e. the

rigid-body precession frame characterised by the superimposed rotations α and ω.

Let us first recall the two conventional ways of describing perturbations. An

Eulerian perturbation, denoted δ, is the change in a quantity at a fixed point in

space whilst a Lagrangian perturbation ∆ is the change in a quantity moving with

the fluid. We denote the change in position of a fluid element ∆x ≡ ξ(x, t), called

the Lagrangian displacement ; a fluid element initially located at x is moved to a

new location x + ξ(x, t) by the perturbations. From this, it may be seen that the

Eulerian and Lagrangian perturbations in (say) the density are related by

∆ρ = δρ+ ξ · ∇ρ. (3.4.10)

We wish to investigate the deviation of a rotating magnetised fluid star from free

precession. The rigid-body free precession of the fluid may be described as a density

perturbation, whose form is given by (3.4.7); if the fluid precisely obeyed this motion

then each fluid element would be stationary as viewed by the co-precessing observer

in the ω-frame. Since we do not expect exact rigid-body precession here, let us define

the Lagrangian displacement ξ to be the change in position of a fluid element in the

co-precessing frame, with its time derivative ξ̇ giving the velocity of the element as

viewed from the ω-frame. On viewing the star in the inertial frame, we will then see

that the motion of a fluid element is a vector sum of three characteristic velocities:

the normal stellar rotation α about the rotation axis; the slower nutation ω about

the magnetic axis; and the extra velocity field ξ̇.

In a rigid body, free precession precisely describes the motion of an element and

so by definition ξ = 0. However, a fluid is clearly not rigid; it is only able to sustain

a time-varying distortion by virtue of the rigidity bestowed by the magnetic field.
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ω

n3

Figure 3.6: Dynamics in the α-frame, i.e. the frame rigidly rotating with rate α. The

centrifugal contribution to the distortion is assumed to dominate, so that the stellar

surface (the solid black line) and the isopycnic surfaces (the dashed black lines) are

spheroidal. Without a magnetic field, a fluid element will be stationary in this frame;

however the magnetic field induces a slow precessional motion, superimposed on the

normal stellar rotation. This motion will cause a fluid element (the filled red circle)

in the α-frame to rotate about the magnetic axis n3 with period 2π/ω. Over one

period it travels through regions of varying density — it crosses density contours —

because of the nonspherical centrifugal distortion.

It is helpful to consider the motion of a fluid element in the α-frame; see figure 3.6.

In the unmagnetised case the element undergoes only the primary rotation α and

so is stationary in the corotating frame. From section 3.4.1 we anticipate that the

addition of a misaligned magnetic field will cause the star to precess, and a fluid

element in the α-frame will therefore undergo a slow rotation or nutation (with

frequency ω) about the magnetic axis. In doing so, however, the fluid element will

be moved through regions of differing density. Since the background density ρ0 is

spherical and the magnetic distortion ρB is symmetric about its axis, the density

difference will be entirely due to the centrifugal bulge ρα.

This leads us on to a justification of why there should be ξ-motions, on the

grounds of microscopic physics. Whilst fluid elements will be able to sustain small

density variations, those changes which would be experienced by a typical element
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in one precession period (see figure 3.6) are likely to be larger than this. For this

reason there will be a restoring force on each fluid element that acts to return the

element to its original density; hence fluid precession is not rigid, and in general

ξ 6= 0 (only elements along the magnetic axis will have ξ = 0, because they do not

experience the nutation in the first place).

There is also a need for ξ-motions on macroscopic grounds (i.e. considering the

motion of the whole star). Imposing rigid-body precession on a fluid would result

in the nutation of the centrifugal bulge about the n3 axis, potentially taking the

fluid well away from its equilibrium configuration; the global effect of the internal

ξ-motions should then be to restore the star to its stationary equilibrium.

Having described why there should be deviations from rigid-body precession in

the magnetised fluid model considered here, we now investigate the nature of these

ξ-motions. We work in the co-precessing ω-frame unless otherwise stated. First

recall that at some initial time t0 we may write the density of a fluid element using

(3.4.1). After a time δt the element will be rotated through an angle δλ = ωδt; the

change in density will be

δρ ≡ ρ(t0 + δt) − ρ(t0) = ρα(r, θ, λ+ δλ) − ρα(r, θ, λ) = ωδt
∂ρα

∂λ
(3.4.11)

with a similar equation for pressure variation Pα,

δP = Pα(r, θ, λ+ δλ) − Pα(r, θ, λ) = ωδt
∂Pα

∂λ
. (3.4.12)

We define the Lagrangian displacement ξ to be that change in position which

is sourced by the density perturbation δρ (Eulerian in the co-precessing frame); i.e.

the displacement field ξ acts to restore fluid elements to their stationary equilibrium

state. Then the continuity equation yields

δρ = −∇ · (ρξ) ≈ −∇ · (ρ0ξ) = −ξ · ∇ρ0 − ρ0∇ · ξ. (3.4.13)

Now expanding this equation in components of ξ, we see that

δρ = −ξr
dρ0

dr
− ρ0

(
1

r2
∂

∂r
(r2ξr) +

1

r sin θ

∂

∂θ
(ξθ sin θ) +

1

r sin θ

∂ξλ
∂λ

)

. (3.4.14)

From (3.4.11) we know the left-hand side of this equation, but turning to the right-

hand side we see that the problem of solving for a displacement field ξ = (ξr, ξθ, ξλ) is,

so far, underdetermined: the only equation containing ξ is the continuity equation,
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but it contains three unknown components of ξ. If one does not include any extra

physics then there are no other equations to constrain ξ — and hence there is a

whole class of solutions (let us call them {ξfluid}) to the problem.

We note, however, that in (3.4.11) and (3.4.13) the magnetic field is conspicuous

by its absence. Since the star is only able to precess by virtue of this field, it seems

natural that magnetic effects should pick out some particular solution ξmag from the

class {ξfluid}. Mestel claims that such magnetic terms are all of higher order than

the basic perturbations, however, and hence may be ignored.

With no magnetic effects entering his equations, Mestel needs a different ap-

proach to resolve the indeterminacy of the problem — he argues that in certain

zones of a main-sequence star, the ξ-motions will be divergence-free. He does how-

ever acknowledge that this simplification may not be valid for the whole star — and

it is a crude approximation if one is concerned with neutron stars. We repeat his

argument for the field being divergence-free here.

We begin with the adiabatic relation between the Lagrangian variations, ∆p/p =

γ∆ρ/ρ; this is the equation of state for the precessional perturbations. Substituting

the definitions of the variations (3.4.10) and using the continuity equation gives

δP + ξ · ∇p =
γp

ρ
(δρ+ ξ · ∇ρ) =

γp

ρ
(−ρ∇ · ξ). (3.4.15)

Neglecting Pα and PB components of the pressure then gives

δP ≈ −ξ · ∇P0 − γP0∇ · ξ = ωδt
∂Pα

∂λ
. (3.4.16)

In a uniformly rotating star we have the background equation of state, Pα = ρα(dP0/dρ0)+

O(ρ2
α), and equation (3.4.16) becomes

ξ · ∇ρ0 +
γP0

dP0/dρ0
∇ · ξ = −ωδt∂ρα

∂λ
. (3.4.17)

Now combining (3.4.11), (3.4.13) and (3.4.17):

−ωδt∂ρα

∂λ
= ξ · ∇ρ0 +

γP0

dP0/dρ0
∇ · ξ = ξ · ∇ρ0 + ρ0∇ · ξ (3.4.18)

which can be rearranged to give the condition

(
γP0

ρ0(dP0/dρ0)
− 1

)

∇ · ξ = 0. (3.4.19)
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Mestel now assumes the following relation, which he states is valid in a certain

zone of a main-sequence star:

γP0

ρ0(dP0/dρ0)
6= 1 (3.4.20)

in which case (3.4.19) implies that the ξ-motions are divergence-free:

∇ · ξ = 0. (3.4.21)

This condition (3.4.21) implies that the fluid elements move at constant density, ∆ρ,

since

∆ρ = δρ+ ξ · ∇ρ = δρ+ ∇ · (ρξ) − ρ∇ · ξ = −ρ∇ · ξ (3.4.22)

where we have used the definition of the Lagrangian perturbation ∆ρ and the con-

tinuity equation.

We are now able to find an expression for the radial component of the velocity

field ξ̇r. By combining (3.4.17) with the divergence-free condition (3.4.21) and taking

the limit δt→ 0, we have ξr/δt→ ξ̇r and hence

ξ̇r = −ω∂ρα

∂λ

/
dρ0

dr
(3.4.23)

Whilst (3.4.23) is a solution for ξ̇r, a third and final constraint is needed to find

ξ̇θ and ξ̇λ uniquely. Mestel has approached this problem in two ways: in his first

paper on the subject he considers the ‘simplest’ ξ-field, where ξλ = 0 [100], but in

his second paper seeks the solution which minimises the energy of the ξ-motions

[99].

The crucial step in the above argument for ∇ · ξ = 0 is the condition (3.4.20).

This relation is equivalent to the statement that the background and perturbations

are governed by different equations of state:

γback ≡ ρ0

P0

dP0

dρ0
6= γpert. (3.4.24)

Assessing the applicability of this to a main-sequence star is beyond the scope of

this thesis, but we do not expect it to be valid for the bulk of a neutron star. In any

case, it represents an extra piece of physics being added to the problem. Doing so

then gives a class of divergence-free ξ-motions, whilst we expect the actual solution

for fluid neutron star matter will not have this restriction.
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Having argued that Mestel has calculated ξ-motions by including extra physics,

not applicable to neutron stars, we return to the physics which we believe is missing

from the problem: the role of the magnetic field. Examining each term in the

perturbed Euler equation, in the ω-frame, Mestel concludes that each one is of

higher order than the perturbations he is considering and so all may be neglected.

Among these, the perturbed Lorentz force and the nutational Coriolis force have

the same order, O(α2B2), lower than the other perturbed force terms. That is, to

lowest order the perturbed Euler equation is a balance between these two terms.

Rather than separately neglecting these two forces, we believe that they should

be thought of as a restriction on possible ξ-motions. Regarding them in this way,

the only acceptable solution to the problem is the one ξmag that induces a per-

turbed Lorentz force equal to the nutational Coriolis force. This is then a well-posed

problem, which obviates the need to consider ξλ = 0 solutions or ‘minimal-energy’

solutions.

This system of equations may be solved for very simplistic field geometries, but

the general magnetised fluid problem is unlikely to be analytically tractable. In

chapter 8 we formulate the problem in a way that allows it to be studied through

time evolutions of the perturbation equations of MHD; the idea is that if one finds

a precession-like oscillation mode, its frequency can be compared with that mode

frequency a precessing rigid body would have. The discrepancy between predicted

and observed modes would then provide an answer to the question that motivates

this section: how similar are the motion of a magnetised rotating fluid star and a

freely precessing rigid body? To date, however, we have been unable to find such

precessional modes numerically; we suggest reasons for this in section 8.4.
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Rotating and magnetic

equilibria: analytic work

One major aim of this thesis is to understand equilibrium configurations of magne-

tised neutron stars. Neutron stars are believed to be composed predominantly of

fluid matter, which can be approximated reasonably well by an N = 1 polytrope.

Since some neutron stars rotate extremely rapidly and others have very strong mag-

netic fields, we would like to calculate their equilibria in a non-linear fashion, rather

than by using perturbation theory. To accomplish all of this we need to approach

the problem numerically; this is described in chapter 6. In this chapter, however,

we investigate neutron star equilibria analytically. As well as providing an under-

standing of the limitations of this approach, our results will provide a check of later

numerical work.

Before looking at the problem of magnetically deformed stars, we turn to the

simpler problem of distortions of rotating stars. Although a neutron star will have

other sources of distortion too, its centrifugal bulge will typically be the largest as-

phericity. As mentioned before, a uniformly rotating star with no other distortions

will be in a stationary state and so not a candidate for precession or gravitational

wave emission. However the perturbative calculation here is helpful for understand-

ing the problem of precessional fluid dynamics described in section 3.4.2 and also

provides an analytic check of our numerical results in the slow rotation limit.

After the perturbation calculation we present a derivation of the virial theorem,

which is valid in the non-linear regime of strong magnetic fields and fast rotation;

43
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we will later use this theorem to test the numerical accuracy of our code. Finally,

this chapter contains a calculation for the ellipticities of a rotating magnetised star

in terms of components of tensor energy quantities. The major restriction here is

that we need to specialise to incompressible fluids, but the results will still give us

an indication of the nature of the distortions we should expect in the numerical

configurations described in chapter 6.

4.1 Distortions of a rotating polytrope

We wish to find an expression for the Eulerian density perturbation δρ at a point

in a fluid star consequent on adding a (slow) rotation term. From this expression

we will then be able to find the surface shape of a slowly rotating polytrope. We

perform the calculation both with and without the Cowling approximation, to see

how much this simplification affects the result.

4.1.1 Perturbing hydrostatic equilibrium

We begin by supplementing the equations of hydrostatic equilibrium with a rotation

term:
1

ρ
∇P + ∇Φ + Ω × (Ω × r) = 0. (4.1.1)

where the angular velocity is along the z-axis: Ω = Ωez = Ω(cos θer − sin θeθ). The

problem has axial symmetry, so in spherical polars the φ-components are zero. Then

∇ = er
∂
∂r + eθ

1
r

∂
∂θ and equation (4.1.1) becomes the pair

∂P

∂r
= −ρ∂Φ

∂r
+ ρΩ2r sin2 θ (4.1.2)

∂P

∂θ
= −ρ∂Φ

∂θ
+ ρΩ2r2 sin θ cos θ. (4.1.3)

Poisson’s equation in these coordinates is

∇2Φ =
1

r2
∂

∂r

(

r2
∂Φ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

= 4πGρ (4.1.4)

and assuming a polytropic equation of state gives

P = kργ . (4.1.5)

Note that γ is often replaced with the polytropic index N , where 1 + 1
N = γ. By

assuming slow rotation (i.e. that Ω2 is a small term) we can write, to first order,
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each of ρ, P and Φ as a background piece plus a small Eulerian perturbation, e.g.

P = P0 + δP . We first perturb (4.1.2):

∂P

∂r
=

∂P0

∂r
+
∂δP

∂r

= (ρ0 + δρ)Ω2r sin2 θ − (ρ0 + δρ)

(
∂Φ0

∂r
+
∂δΦ

∂r

)

= ρ0Ω
2r sin2 θ − ρ0

∂Φ0

∂r
− ρ0

∂δΦ

∂r
− δρ

∂Φ0

∂r
(4.1.6)

where we have neglected the higher-order terms δρ Ω2r sin2 θ and δρ∂δΦ
∂r . Clearly

hydrostatic equilibrium should be satisfied for the static background configuration

(without rotation), so we can split (4.1.6) into background and perturbation equa-

tions:

∂P0

∂r
= −ρ0

∂Φ0

∂r
(4.1.7)

∂δP

∂r
= ρ0Ω

2r sin2 θ − ρ0
∂δΦ

∂r
− δρ

∂Φ0

∂r
. (4.1.8)

Similarly, perturbing (4.1.3) gives

∂P0

∂θ
= −ρ0

∂Φ0

∂θ
= 0 (4.1.9)

∂δP

∂θ
= ρ0Ω

2r2 sin θ cos θ − ρ0
∂δΦ

∂θ
(4.1.10)

where the θ-derivative term from the first equation vanishes since ∂Φ0

∂θ = 0; the

background star is spherically symmetric and therefore Φ0 = Φ0(r) with no angular

dependence.

We next perturb Poisson’s equation, yielding background and perturbation equa-

tions:

4πGρ0 =
1

r2
d

dr

(

r2
dΦ0

dr

)

(4.1.11)

4πGδρ =
1

r2
∂

∂r

(

r2
∂δΦ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂δΦ

∂θ

)

. (4.1.12)

Finally, turning to the polytropic relation we have:

P = P0 + δP = k(ρ0 + δρ)γ = kργ
0 + γkργ−1

0 δρ+ O(δρ2) (4.1.13)

and so

P0 = kργ
0 (4.1.14)

δP = γkργ−1
0 δρ. (4.1.15)
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The same result can be obtained using the relation between Lagrangian variations

∆P

P0
= γ

∆ρ

ρ0
. (4.1.16)

Using the definition of the Lagrangian variation ∆ = δ + ξ · ∇ into (4.1.16) gives

δP + ξ · ∇P0

P0
= γ

δρ+ ξ · ∇ρ0

ρ0
(4.1.17)

which with the polytropic assumption on the background P0 = kργ
0 becomes:

δP = γkργ−1
0 (δρ+ ξ · ∇ρ0) − ξ · ∇(kργ

0)

= γkργ−1
0 δρ (4.1.18)

as before1. This is not surprising: we have simply plugged the polytropic relation

for the background relation into that of the Lagrangian variations.

4.1.2 Solving the background equations

We first want to find the density distribution of the background, non-rotating star;

this means solving the background system of equations

dP0

dr
= −ρdΦ0

dr
(4.1.19)

1

r2
d

dr

(

r2
dΦ0

dr

)

= 4πGρ0 (4.1.20)

P0 = kργ
0 . (4.1.21)

We begin by replacing the Φ0 derivative in (4.1.20) using (4.1.19):

1

r2
d

dr

(

−r
2

ρ0

dP0

dr

)

= 4πGρ0. (4.1.22)

Now substituting (4.1.21) into (4.1.22) we find, after some algebra, that

−4πGρ0 = kγργ−2
0

(

2

r

dρ0

dr
+ (γ − 2)ρ−1

0

(
dρ0

dr

)2

+
d2ρ0

dr2

)

. (4.1.23)

This equation is clearly greatly simplified for the case γ = 2, which also happens to

be a reasonable approximation for a neutron star (see section 1.1.3). In this case

(4.1.23) becomes:
d2ρ0

dr2
+

2

r

dρ0

dr
+

2πG

k
ρ0 = 0. (4.1.24)

1assuming that the γ in the Lagrangian relation (4.1.16) is the same as the γ of the background

polytropic relation.
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Solving this equation with the boundary condition of a constant central density

ρ0(0) = ρc, we find the density distribution:

ρ0(r) = ρc

sin
√

2πG
k r

√
2πG

k r
. (4.1.25)

4.1.3 Cowling solution

We now turn to the second set of equations from our perturbation analysis, for the

Eulerian variations δP and δρ sourced by the rotation. As a simplest first case, we

also make the Cowling approximation: that derivatives of δΦ may be regarded as

negligible. This reduces the perturbation equations to the set:

∂δP

∂r
= ρ0Ω

2r sin2 θ − δρ
∂Φ0

∂r
(4.1.26)

∂δP

∂θ
= ρ0Ω

2r2 sin θ cos θ (4.1.27)

δP = 2kρ0δρ. (4.1.28)

Note that there is no perturbed Poisson equation in this case, as the Cowling approx-

imation is inconsistent with it (the two together imply, incorrectly, that 4πGδρ = 0).

Now, for our γ = 2 polytrope

dΦ0

dr
= − 1

ρ0

dP0

dr
= − 1

ρ0

d

dr
(kρ2

0) = −2k
dρ0

dr
; (4.1.29)

using this result in (4.1.26) gives

∂δP

∂r
= ρ0Ω

2r sin2 θ + 2kδρ
dρ0

dr
. (4.1.30)

Now, using (4.1.28) we see that

∂δP

∂r
=

∂

∂r
(2kρ0δρ) = 2kρ0

∂δρ

∂r
+ 2kδρ

dρ0

dr
; (4.1.31)

comparing this with (4.1.30) yields

∂δρ

∂r
=

Ω2r sin2 θ

2k
(4.1.32)

which we integrate to give

δρ =
Ω2r2 sin2 θ

4k
+ A(θ) + C1 (4.1.33)
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for some arbitrary function A(θ) and integration constant C1.

Similarly we use (4.1.28) and find that

∂δP

∂θ
=

∂

∂θ
(2kρ0δρ) = 2kρ0

∂δρ

∂θ
(4.1.34)

since ∂ρ0

∂θ = 0; now comparing (4.1.34) with (4.1.28) we see that

∂δρ

∂θ
=

Ω2r2 sin θ cos θ

2k
(4.1.35)

which integrates to give

δρ =
Ω2r2 sin2 θ

4k
+ B(r) + C2 (4.1.36)

where B(r) is an arbitrary purely radial function and C2 some constant.

Now we compare the two perturbation solutions (4.1.33) and (4.1.36), noting

that for consistency we require A(θ) = B(r) = 0 and C1 = C2 ≡ C, and find that:

δρ =
Ω2r2 sin2 θ

4k
+ C

≡ Ω2(r2 sin2 θ −D)

4k
(4.1.37)

where on the last line we have rewritten the integration constant as D = −4kC/Ω2

to reflect the requirement that in the limit Ω → 0 we should recover the background

solution, i.e. δρ = 0.

To complete the solution we need to find the integration constant D. We begin

by finding the radius of the star, which to first order is equal to the radius of

the background configuration. The surface of the polytrope is the first zero of the

function ρ0(r); from (4.1.25) we see that this occurs at

r = R ≡
√

πk

2G
. (4.1.38)

We can extend the continuity equation for a fluid element

δρ+ ∇ · (ρ0ξ) = 0 (4.1.39)

to the whole star by integrating it over the star’s volume, finding that
∫

V

δρ dV = −
∫

V

∇ · (ρ0ξ) dV = −
∫

S

ρ0ξ · dS = 0. (4.1.40)
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We now use this condition and the expression for δρ given by (4.1.37) to deter-

mine the constant D:

0 =

∫

V

δρ dV =

φ=2π∫

0

θ=π∫

0

r=R∫

0

Ω2(r2 sin2 θ −D)

4k
r2 sin θ dr dθ dφ

=
Ω2π2

30G2

√

πk

2G

(
πk

5G
−D

)

(4.1.41)

and hence D = πk
5G . Our final expression for the Eulerian density perturbation in a

slowly-rotating γ = 2 polytrope is therefore

δρ =
Ω2(r2 sin2 θ − πk

5G)

4k
. (4.1.42)

For comparison with the following non-Cowling work we rewrite this result using

µ = cos θ and the Legendre polynomial P2(µ):

δρ =
Ω2(r2 − 3πk

10G)

6k
− Ω2r2P2(µ)

6k
. (4.1.43)

4.1.4 Non-Cowling solution

Perturbation equations

We now return to the original perturbation equations, but this time do not make

the Cowling approximation. For a slowly-rotating γ = 2 polytrope the equations

are now:

∂δP

∂r
= ρ0Ω

2r sin2 θ − δρ
∂Φ0

∂r
− ρ0

∂δΦ

∂r
(4.1.44)

∂δP

∂θ
= ρ0Ω

2r2 sin θ cos θ − ρ0
∂δΦ

∂θ
(4.1.45)

4πGδρ =
1

r2
∂

∂r

(

r2
∂δΦ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂δΦ

∂θ

)

(4.1.46)

δP = 2kρ0δρ. (4.1.47)

We wish to re-express the perturbed force balance equations (4.1.44) and (4.1.45)

in terms of δρ. We first note that the background equation ∂Φ0

∂r = −1
ρ

∂P0

∂r allows us to

eliminate Φ0 from (4.1.44), then replace δP using (4.1.47). This leaves a perturbed

force balance equation in the Eulerian density and gravitational potential variations:

∂δρ

∂r
=

Ω2r sin2 θ

2k
− 1

2k

∂δΦ

∂r
. (4.1.48)
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Similarly, (4.1.45) becomes

∂δρ

∂θ
=

Ω2r2 sin θ cos θ

2k
− 1

2k

∂δΦ

∂θ
. (4.1.49)

Directly integrating (4.1.48) and (4.1.49) shows that the only integration constant

D has to be independent of r and θ. Thus

δρ =
Ω2(r2 sin2 θ −D)

4k
− 1

2k
δΦ. (4.1.50)

Finally we turn to the perturbed Poisson equation (4.1.46) and use (4.1.50) to write

it entirely in terms of δΦ:

∇2δΦ = 4πGδρ = −2πG

k
δΦ +

GπΩ2

k
(r2 sin2 θ −D). (4.1.51)

Definingm ≡
√

2πG/k, (4.1.51) is manifestly a Helmholtz equation with a rotational

source term:

(∇2 +m2)δΦ =
GπΩ2

k
(r2 sin2 θ −D). (4.1.52)

Solving the Poisson equation

To solve (4.1.52) we first consider the Ω = 0 case — the homogeneous Helmholtz

equation

(∇2 +m2)δΦ = 0. (4.1.53)

Our problem is one of axial rotation, so we expect δΦ = δΦ(r, θ) for the homogeneous

problem too. We attempt to solve this by separation of variables and so make the

ansatz δΦ = R(r)Θ(θ). Under this ansatz (4.1.53) becomes

Θ

r2
d

dr

(

r2
dR

dr

)

+
R

r2 sin θ

d

dθ

(

sin θ
dΘ

dθ

)

= −m2RΘ; (4.1.54)

multiplying through by r2/(RΘ) then gives

m2r2 +
1

R

d

dr

(

r2
dR

dr

)

= − 1

Θ sin θ

d

dθ

(

sin θ
dΘ

dθ

)

. (4.1.55)

Since the left hand side is a function of r and the right a function of θ we may set

both sides equal to some constant l(l+1) (this choice will prove useful) to effect the

separation of variables into two equations, one in r and one in θ. The equation in r

1

r2
d

dr

(

r2
dR

dr

)

+

(

m2 − l(l + 1)

r2

)

R = 0 (4.1.56)
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is a rescaled Bessel equation whose solution for each l is a half-integer Bessel function

R(r) =
1√
r
Jl+ 1

2

(mr). (4.1.57)

Mathematically, the Yl+ 1

2

Bessel functions are also admissable as solutions, but

since these diverge at the origin we discard them as unphysical. Next, we turn to

the equation in θ:
1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1)Θ = 0. (4.1.58)

By inspection, this is simply Legendre’s equation whose solution is the Legendre

polynomial Pl(cos θ). The general solution would also include the Legendre Ql func-

tions, but since these have nondifferentiable points we discard them. Our full solu-

tion to (4.1.53), with a set of arbitrary constants {βl}, is thus

δΦhomog = R(r)Θ(θ) =
1√
r

∞∑

l=0

βl Jl+ 1

2

(√
2πG

k r

)

Pl(cos θ). (4.1.59)

We now seek a particular solution of (4.1.52). We may rewrite the right-hand side

of this equation as a sum of the Legendre polynomials P0(cos θ) = 1 and P2(cos θ) =
1
2(3 cos2 θ − 1):

GπΩ2

k
(r2 sin2 θ −D) =

GπΩ2

3k

(
−2r2P2(cos θ) + 2r2 − 3D

)
, (4.1.60)

which suggests that we make the ansatz δΦ = δΦ0(r) + δΦ2(r)P2(cos θ) for our

particular solution and use this to determine the functions δΦ0 and δΦ2. We first

note that, for a purely radial function f(r) and a purely angular one g(θ),

∇2(fg) = g∇2f + f∇2g (4.1.61)

since the cross-term 2∇f ·∇g is zero by orthogonality. Given this, the left-hand side

of (4.1.52) under our ansatz δΦ = δΦ0 + δΦ2P2 is:

∇2δΦ +
2πG

k
δΦ = δΦ′′

0 +
2

r
δΦ′

0 +
2πG

k
δΦ +

(

δΦ′′
2 +

2

r
δΦ2 +

(
2πG

k
− 6

r2

)

δΦ2

)

P2

(4.1.62)

where a prime denotes a derivative with respect to r. We now seek a solution to

(4.1.52) by equating the coefficients of P0 and P2 for the left and right-hand sides,

equations (4.1.62) and (4.1.60) respectively. Equating the P0 coefficients first leaves

the equation

δΦ′′
0 +

2

r
δΦ′

0 +
2πG

k
δΦ0 =

GπΩ2

k

(
2r2

3
−D

)

(4.1.63)
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which we solve to find that

δΦ0 =
Ω2

6

(

2r2 − 3D − 6k

πG

)

. (4.1.64)

We now equate the P2 coefficients, leading to the equation

δΦ′′
2 +

2

r
δΦ′

2 +

(
2πG

k
− 6

r2

)

δΦ2 = −2GπΩ2r2

3k
(4.1.65)

whose solution is

δΦ2 = −Ω2r2

3
. (4.1.66)

Our particular solution is therefore

δΦPS = δΦ0 + δΦ2P2 =
Ω2

6

(

2r2 − 3D − 6k

πG

)

− Ω2r2

3
P2. (4.1.67)

External field perturbations

Outside the star δρ = 0 and Poisson’s equation is

∇2δΦ = 0. (4.1.68)

We may perform a separation of variables in a similar fashion as for the homogeneous

problem; under the ansatz δΦ = R(r)Θ(θ), (4.1.68) becomes the pair of equations

d

dr

(

r2
dR

dr

)

− l(l + 1)R = 0 (4.1.69)

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+ l(l + 1)Θ = 0. (4.1.70)

The latter equation we have solved already, giving Θ = Pl(cos θ) for a particular l.

The former equation may be solved to find

R = r−l−1 (4.1.71)

for some particular l. We see from this that the perturbation in the external potential

is given by an infinite sum over l of each RΘ; however, matching this to an internal

field with P0 and P2 components only enforces the same structure for the exterior

solution, that is

δΦext =
α0

r
+
α2

r3
P2 (4.1.72)

for some constants α0, α2.
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Boundary conditions

Our physical boundary conditions for a star are the requirements that both the

gravitational potential Φ and its gradient vector ∇Φ are continuous at the star’s

surface. This condition is automatically satisfied for the background spherically-

symmetric field Φ0, so since Φ = Φ0 + δΦ we require it to be satisfied separately for

the perturbation δΦ.

From equations (4.1.59) and (4.1.67) we see that inside the star the perturbations

in the gravitational potential are of the form

δΦint = δΦhomog + δΦPS =
β0J 1

2√
r

+
Ω2

6

(

2r2 − 3D − 6k

πG

)

+

(
β0J 5

2√
r

− Ω2r2

3

)

P2.

(4.1.73)

For brevity we have not shown the dependence of the Bessel functions Jn
2

= Jn
2

(
2πG

k r
)

in the above expression. Now, since δΦPS has only P0 and P2 coefficients we ex-

pect the same structure for δΦhomog and have dropped all terms in the sum (4.1.59)

except those for l = 0 and l = 2.

In order to satisfy the boundary conditions, we need to find values of the con-

stants α0, α2 and β0, β2 so that at the surface of the star the internal and external

fields, and their gradients, match. As for the Cowling case, the star’s radius is

R =
√

πk
2G .

We begin with the requirement that the P0 coefficients of δΦint and δΦext should

be equal at the surface, radius R. Solving this for α0 we find that

α0 = Ω2

(
k(π2 − 6)

6G
− πD

2

)√

k

2πG
. (4.1.74)

Next, equating the P2 components of δΦint and δΦext at r = R yields an expression

for α2 in terms of β2:

α2(β2) = 3β2
4

√

k5

8π3G5
− k2π3Ω2

12G2

√

k

2πG
. (4.1.75)

We now turn to the matching of ∇δΦint,ext. First note that for some field f =

f0(r) + f2(r)P2(cos θ):

∇f =
∂

∂r
(f0 + f2P2)r̂ +

1

r

∂

∂θ
(f0 + f2P2)θ̂ (4.1.76)

=

(
∂f0

∂r
+
∂f2

∂r
P2

)

r̂ +
1

r

(

f2
∂P2

∂θ

)

θ̂. (4.1.77)
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This means that matching the θ̂ components of ∇δΦint,ext is equivalent to matching

the P2 components of δΦint,ext, yielding no new information. We see then, that

explicit determination of the four constants α0,2, β0,2 should come from consideration

of the r̂ components of ∇δΦint,ext at r = R. We begin by performing this matching

for the P0 components, which yields an explicit expression for β0:

β0 =
Ω2(π2 − 2)

2

4

√

k5

8π3G5
− Ω2D

4
4

√

2πk

G
. (4.1.78)

Next equating the P2 components, we find explicit expressions for α2 and β2:

α2 = −Ω2(π2 − 15)

12

√

πk5

2G5
(4.1.79)

β2 =
5πkΩ2

12G
4

√

2πk

G
. (4.1.80)

Final result

Substituting our expressions for β0 and β2 into (4.1.73) gives us an explicit solu-

tion δΦint to the perturbed Poisson equation (4.1.52), which satisfies the boundary

conditions; all that remains is to determine the constant D. To this end, we now

substitute the solution δΦint back into (4.1.50), in place of δΦ, to yield an expression

for δρ. As for the Cowling case we may integrate the continuity equation to give the

condition ∫

V

δρ dV = 0. (4.1.81)

With this requirement we may integrate our expression for δρ to fix D, finding that

D =
(π2 − 6)k

3πG
. (4.1.82)

Finally, by substituting this value for D back into the expression for δρ, (and re-

calling that m ≡
√

2πG/k) we are able to write down an expression for density

perturbations in a γ = 2 polytropic star:

δρ =
Ω2

2G

(
1

π
− π

3mr
sinmr

)

+
5Ω2

8Gr

(
k

Gr
cosmr +

2π

m

(
1

3
− 1

m2r2

)

sinmr

)

P2(µ).

(4.1.83)
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4.1.5 Surface shape of a rotating polytrope

Having found an expression for δρ we are now able to calculate the surface distortion

of the star due to the rotation. At the surface of the star the Lagrangian density

perturbations are zero:

0 = ∆ρ(R) ≡ δρ(R) + ξ · ∇ρ|r=R (4.1.84)

where we have used the relation between Lagrangian and Eulerian perturbations;

next we note that to first order ρ = ρ0 and that ∇ρ0 = ∂ρ0

∂r , thus (4.1.84) gives

ξR = − δρ(R)
∂ρ0

∂r (R)
. (4.1.85)

Now evaluating (4.1.83) and differentiating (4.1.25), both at r = R =
√

πk
2G , we find

that the surface displacement (i.e. the surface distortion) is given by

ξR(µ) = Ω2 (2 − 5P2)

4ρcG2

√

kG

2π
(4.1.86)

and the star’s boundary radius at some angle µ = cos θ is just R+ ξR(µ). If we now

define a rescaled dimensionless velocity v and dimensionless radius r by

v ≡ Ω2

2πρcG
(4.1.87)

r ≡ mr =

√

2πG

k
r (4.1.88)

then the star’s boundary r0(µ) is given by

r0(µ) = π + πv

(

1 − 5

2
P2(µ)

)

, (4.1.89)

in agreement with the numerical results of Chandrasekhar[21] (equation 55) where

the boundary is denoted ξ0. We will later use these analytic results as a check of

our stationary equilibrium code; see chapter 6.

Similarly, the fractional distortion is

d(µ) =
ξR(µ)

R
=

(

1 − 5

2
P2(µ)

)

v (4.1.90)

giving an increase in equatorial radius of 9
4v and a decrease of polar radius of 3

2v.

Note that we were able to calculate the surface displacement of the star because

of the boundary condition ∆ρ(R) = 0. We have no similar condition for the interior
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of the star, so the problem of calculating the displacement field there is underde-

termined; we find a similar indeterminacy in the precessing-fluid problem of section

3.4.2. In both problems we conclude that there is no single solution for displace-

ments in a rotating fluid unless there are additional constraints on its motion (for

example elasticity or magnetic fields).

We conclude this section with plots (see figure 4.1) of rotating star surfaces cal-

culated using (4.1.89) and the equivalent Cowling formula (calculated using (4.1.85)

and (4.1.43)):

rcow
0 (µ) = π +

π3v

15

(

1 − 5

2
P2(µ)

)

. (4.1.91)

We see that the Cowling approximation considerably underestimates the surface

distortion of a rotating star. The discrepancy is not too surprising: the Cowling

approximation is best for high values of azimuthal index m, whilst we are dealing

with m = 0 configurations here. This issue is discussed again in chapter 8, where

we find that using the Cowling approximation for m = 1 oscillations leads to the

appearance of a spurious oscillation mode, which is not present in the full non-

Cowling problem.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Figure 4.1: Surface distortions of (one x− z quadrant of) a γ = 2 polytrope due to

rotation. For each plot the black curve is the background spherical star, whilst the

red and blue curves are for rotating stars calculated with the Cowling approximation

(red) and without (blue). The left-hand plot is for v = 0.01R and the right-hand

plot v = 0.02R. We see that the Cowling approximation underestimates the degree

of rotational distortion.
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4.2 Derivation of the tensor virial equations

The virial theorem dictates the balance which must be satisfied between the various

energy quantities in a fluid body at equilibrium; it is a universal criterion which holds

in strong-field regimes as well as in the perturbative limit. The scalar virial equation

is the usual energy balance equation of this theorem. The tensor virial equations are

a generalisation of the scalar equation and provide the stronger result that individual

tensor energy quantities must all satisfy a particular balance criterion. The tensor

virial theorem was first discussed by Lord Rayleigh [115] in 1900, but was only

widely exploited to understand problems in stellar physics some decades later (see,

for example, Chandrasekhar [23]). Here we derive the tensor form of the virial

theorem; the scalar theorem is a corollary which follows by contracting the indices

of the tensor equations.

The virial theorem will be used on a couple of occasions within this thesis.

Firstly, in section 4.3 we follow the working of Ostriker and Gunn [106] to determine

the ellipticities of an ‘orthogonal rotator’ — a star with orthogonal rotational and

magnetic axes. We also look at the nonrotating case, to give a simple proof (with

certain caveats) of the result that poloidal magnetic fields induce oblate distortions,

whilst toroidal fields induce prolate ones. As expected, the nature of magnetic-

field distortions in mixed-field stars depends on the ratio of poloidal to toroidal

components. Studying magnetic distortions analytically is difficult, so we specialise

to considering incompressible stars (i.e. N = 0 polytropes) only.

Secondly, since the virial theorem states that a certain combination of energy

quantities is equal to the acceleration of the mass distribution, we may use it to test

how close a system is to stationarity (i.e. zero acceleration of the mass distribution).

We do so in chapter 6, to give a test of the accuracy of our code for generating

stationary MHD equilibria.
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4.2.1 Preliminaries

Tensor generalisations of energies

We first define tensor generalisations of the energies we shall use in our derivation,

where each tensor contracts to give the corresponding scalar energy quantity2. These

are the kinetic energy tensor

Tik ≡ 1

2

∫

V

ρuiuk dx (4.2.1)

where ui is the fluid velocity; the magnetic energy tensor

Mik ≡ 1

8π

∫

V

BiBk dx (4.2.2)

the gravitational potential energy tensor

Wik ≡ −
∫

V

ρ(x)xk
∂Φ

∂xi
dx (4.2.3)

and an energy term from the pressure p

Pik ≡ δik

∫

V

p dx. (4.2.4)

We denote each associated energy with the same letter but no indices, for example

magnetic energy is written M ≡ Mii = 1
8π

∫

V

|B|2 dx. We will also require the

definition of the quadrupole moment tensor

Iik =

∫

V

ρxixk dx. (4.2.5)

Here we assume that the pressure is isotropic, allowing us to express the gen-

eralised term Pik in terms of the internal energy per unit volume U . Many early

studies using the tensor virial theorem considered anisotropic pressure, but the only

change is that the diagonal tensor δikp is replaced with a more general form pik. The

virial theorem in this case is identical, except that the U term is replaced by Pik.

2except that the convention we follow here means that Pik contracts to give 3(γ − 1) times the

internal energy.



Chapter 4: Analytic results on equilibria 59

In this subsection we derive two useful results: the expression of Pik in terms

of U and the proof that the tensor Wik defined above is symmetric. With these we

then proceed, in the next subsection, to the actual derivation of the tensor virial

theorem.

Expressing P in terms of U

For an adiabatic process we can write the First Law of Thermodynamics as dU =

−p dV . We assume a polytropic form of the pressure p = kργ and integrate the

First Law to give

Utot = −
∫

kργ dV. (4.2.6)

where Utot is the total internal energy. We now use that mass M = ρV and change

the variable of integration from V to ρ:

Utot =

∫

Mkργ−2 dρ (4.2.7)

which integrates to give

Utot =
Mkργ−1

γ − 1
=

V p

γ − 1
(4.2.8)

Now dividing through by V and writing the internal energy as U =
∫

Utot

V dx we

find

U =
1

γ − 1

∫

V

p dx =
P

γ − 1
. (4.2.9)

Proof that Wik is symmetric

We wish to show that Wik can be written in a manifestly symmetric form, viz.:

Wik ≡ −
∫

V

ρ(x)xk
∂Φ

∂xi
dx (4.2.10)

= −G
2

∫

V

∫

V ′

ρ(x)ρ(x′)(xi − x′i)(xk − x′k)

|x − x′|3 dx′ dx. (4.2.11)

We first note that ∂
∂xi

|x − x′| = (xi − x′i)|x − x′|−1, so that

∂

∂xi

ρ(x′)

|x − x′| =
|x − x′|∂ρ(x′)

∂xi
− ρ(x′)(xi − x′i)|x − x′|−1

|x − x′|2
= −ρ(x′)(xi − x′i)|x − x′|−3 (4.2.12)
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where we have used ∂ρ(x′)
∂xi

= 0 — which is true because ρ has only x′ dependence

and not x dependence. Now, using (4.2.12):

Wik ≡ −
∫

V

ρ(x)xk
∂Φ

∂xi
dx

= −
∫

V

ρ(x)xk
∂

∂xi



−G
∫

V ′

ρ(x′)

|x − x′| dx′



 dx

= −G
∫

V

∫

V ′

ρ(x)ρ(x′)xk(xi − x′i)

|x − x′|3 dx′ dx. (4.2.13)

We may transpose the two sets of dummy variables in (4.2.13) above, x → x′ and

x′ → x, to give

+G

∫

V

∫

V ′

ρ(x)ρ(x′)x′k(xi − x′i)

|x − x′|3 dx′ dx. (4.2.14)

So Wik is equal to both the expression in (4.2.13) and (4.2.14), so we may write

Wik = 1
2 [(4.2.13)+(4.2.14)]. The required result follows from this:

Wik = −G
2

∫

V

∫

V ′

ρ(x)ρ(x′)(xi − x′i)(xk − x′k)

|x − x′|3 dx′ dx. (4.2.15)

Rewritten in this form, Wik explicitly contracts to give a standard form for gravita-

tional potential energy W .

4.2.2 Derivation

Consider an inviscid fluid with infinite electrical conductivity and a magnetic field

H(x); we set the permeability µ to unity so that H(x) = µB(x) = B(x). Let us

consider a perfect fluid with polytropic index γ. Suppose further that the only forces

acting on the fluid are the pressure, magnetic field, and the fluid’s self-gravity. Then

by the Euler equation (simply Newton’s second law) the equation of motion for the

fluid is

ρ
dui

dt
= − ∂

∂xi

(

p+
|B|2
8π

)

− ρ
∂Φ

∂xi
+

1

4π

∂

∂xj
BiBj (4.2.16)
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where
d

dt
=

∂

∂t
+ uj

∂

∂xj
. Now multiply (4.2.16) by xk and integrate over the entire

volume V in which the fluid and fields can pervade. The left hand side becomes

∫

V

ρxk
dui

dt
dx =

∫

V

ρxk
d2xi

dt2
dx

=

∫

V

ρ
d

dt

(

xk
dxi

dt

)

dx −
∫

V

ρ
dxk

dt

dxi

dt
dx

=

∫

V

ρ
d

dt

(

xk
dxi

dt

)

dx − 2Tik (4.2.17)

where we have used the product rule in the second line. We now treat the terms on

the right hand side of (4.2.16) in the same manner. Firstly:

−
∫

V

xk
∂

∂xi

(

p+
|B|2
8π

)

dx = −
∫

S

(

p+
|B|2
8π

)

xk dSi + δik

∫

V

(

p+
|B|2
8π

)

dx

= −
∫

S

(

p+
|B|2
8π

)

xk dSi + δik[(γ − 1)U +M ]

(4.2.18)

where we have used the divergence theorem; secondly

−
∫

V

ρxk
∂Φ

∂xi
dx ≡Wik (4.2.19)

and finally

1

4π

∫

V

xk
∂

∂xj
BiBj dx =

1

4π

∫

S

xkBiBj dSj −
1

4π

∫

V

BiBk dx

=
1

4π

∫

S

xkBiBj dSj − 2Mik. (4.2.20)

We now combine (4.2.17), (4.2.18), (4.2.19) and (4.2.20) to give

∫

V

ρ
d

dt

(

xk
dxi

dt

)

dx = 2Tik + δik[(γ − 1)U +M ] +Wik − 2Mik

+
1

8π

∫

S

xk(2BiBj dSj − |B|2 dSi) −
∫

S

pxk dSi.

(4.2.21)
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Since p, ρ and B all vanish on S (the consequence of requiring that V contains the

whole system), we have:

∫

V

ρ
d

dt

(

xk
dxi

dt

)

dx = 2Tik − 2Mik +Wik + δik[(γ − 1)U +M ]. (4.2.22)

All of the tensor quantities on the right hand side of (4.2.22) above are symmetric,

so the left hand side must be symmetric too. Therefore

∫

V

ρ
d

dt

(

xk
dxi

dt

)

dx =

∫

V

ρ
d

dt

(

xi
dxk

dt

)

dx. (4.2.23)

Using this fact and the continuity equation (in the form
∫

V

ρ dx=constant),

∫

V

ρ
d

dt

(

xk
dxi

dt
− xi

dxk

dt

)

dx =
d

dt

∫

V

ρ

(

xk
dxi

dt
− xi

dxk

dt

)

dx = 0. (4.2.24)

This is a statement of conservation of total angular momentum Ltot, since Ltot =
∫

V

x × ρu dx =
∫

V

ρ(xkui − xiuk) dx. Now by (4.2.23) we may replace the left hand

side of (4.2.22) with

1

2

∫

V

ρ
d

dt

(

xk
dxi

dt
+ xi

dxk

dt

)

dx =
1

2

d2

dt2

∫

V

ρxixk dx =
1

2

d2Iik
dt2

. (4.2.25)

Using this in (4.2.22) we arrive at the tensor virial equations:

1

2

d2Iik
dt2

= 2Tik − 2Mik +Wik + δik[(γ − 1)U +M ]. (4.2.26)

If we relax the assumption that pressure is isotropic then the tensor virial equations

take their more general form:

1

2

d2Iik
dt2

= 2Tik − 2Mik +Wik + Pik + δikM. (4.2.27)

We use the tensor virial equations in the next section to calculate the shape of a

rotating magnetised fluid star. In addition, we will use the scalar virial theorem

(the contraction of the tensor equations) as a test of our MHD equilibrium code in

chapter 6.
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4.3 The shape of a rotating magnetised fluid star

In this section we model a neutron star as a rotating magnetised body composed of

incompressible fluid and use the tensor virial equations derived above to determine

the ellipticities generated in the star by the effects of rotation and a magnetic field3.

In particular, we look at the case of an orthogonal rotator — a star with orthogonal

rotational and magnetic axes. Looking at the zero-rotation limit, we then show that

(under certain simplifications) poloidal magnetic fields generate oblate deformations,

whilst toroidal fields generate prolate deformations.

We denote the (orthogonal) magnetic and rotational axes by indices 1 and 3

respectively. We first rewrite Ïik:

Ïik = 2

∫

ρẋiẋk dx +

∫

ρ(ẍixk + xiẍk) dx

= 4Tik +

∫

ρ(ẍixk + xiẍk) dx. (4.3.1)

To simplify Ïik we assume the fluid is a rigidly rotating triaxial body. Now ẋ = Ω×x

and so ẍ = Ω × (Ω × x), where Ω is the angular velocity vector. By assumption

Ω = Ωe3, so we have ẍ = Ω2e3 × (e3 × x). Evaluating this expression gives

ẍ = −Ω2







x1

x2

0






. (4.3.2)

We now use this to evaluate (4.3.1) for the diagonal components of Ïik:

Ï11 = 4T11 + 2

∫

ρẍ1x1 dx

= 4T11 − 2Ω2

∫

ρx2
1 dx

= 4T11 − 2Ω2I11 (4.3.3)

and similarly

Ï22 = 4T22 − 2Ω2I22 (4.3.4)

Ï33 = 4T33. (4.3.5)

3Up until the ellipticity formulae (4.3.16), (4.3.17), (4.3.18), this section follows the working of

Appendix A of Ostriker and Gunn [106].
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The diagonal components of the tensor virial equations are then

I11Ω
2 + P11 − 2M11 +M +W11 = 0

I22Ω
2 + P22 − 2M22 +M +W22 = 0 (4.3.6)

P33 − 2M33 +M +W33 = 0.

We assume the pressure anisotropy has the same symmetry as the magnetic field,

then as a first-order approximation neglect the quantities (M22 −M33), (P22 −P33),

(I11 − I22)Ω
2 and (I33 − I22)Ω

2. Then to first order, equations (4.3.6) become

W11 −W22 = 2(M11 −M22) − (P11 − P22) (4.3.7)

W33 −W22 = I22Ω
2 = 1

3IΩ
2 (4.3.8)

where I = Tr(Iij). We proceed using the following result from Chandrasekhar and

Lebovitz [27] for a homogeneous ellipsoid (no sum over the indices):

W(ii) = − 3
10GM2aiAi (4.3.9)

where

Ai =

∞∫

0

du

(a2
i + u)

√

(a2
1 + u)(a2

2 + u)(a2
3 + u)

(4.3.10)

and ai are the semiaxes. Now define

ǫi =
ai − a

a
(4.3.11)

where a3 ≡ a1a2a3; so to linear order in ǫi we find that

ǫ1 + ǫ2 + ǫ3 = 0. (4.3.12)

Evaluating the integral (4.3.10) and linearising by neglecting products and sums in

ǫi gives

Ai =
2

3a3
(1 − 6

5ǫi). (4.3.13)

Now equation (4.3.9) together with (4.3.12) and (4.3.13) gives

W(ii) −W(jj) = 4
15W (ǫi − ǫj) (4.3.14)

with

W ≡ Tr(Wij) = −3GM2

5a
. (4.3.15)
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Substituting equations (4.3.15) and (4.3.14) into equations (4.3.7) and (4.3.8) enables

us to obtain expressions for the ellipticities ǫi for a rotating, magnetised fluid body:

ǫ1 =
5

4W
[4(M11 −M22) − 2(P11 − P22) − 1

3IΩ
2] (4.3.16)

ǫ2 =
5

4W
[−2(M11 −M22) + (P11 − P22) − 1

3IΩ
2] (4.3.17)

ǫ3 =
5

4W
[−2(M11 −M22) + (P11 − P22) + 2

3IΩ
2]. (4.3.18)

Note that if the stellar pressure is isotropic then P11 = P22 and the ellipticities have

a simpler form.

We conclude by considering two special cases: deformations due purely to rota-

tion and to magnetic effects. In the case of a rotating body with no magnetic field

or pressure anisotropies, we have

ǫ1 = ǫ2 =
5

12|W |IΩ
2 (4.3.19)

ǫ3 = − 5

6|W |IΩ
2 (4.3.20)

— we have made the sign of each ellipticity explicit by noting that the gravitational

energy W is always negative, so that W = −|W |. Since the rotation axis is the body

axis x3 we see that, as expected, a centrifugal force generates an oblate configuration.

This was established for an N = 1 polytrope in section 4.1.5; we find the result is

qualitatively the same for the N = 0 fluid considered here.

We next turn to ellipticities generated solely by a magnetic field. In this case we

have

ǫ1 =
5

|W |(M22 −M11) (4.3.21)

ǫ2 = ǫ3 = − 5

2|W |(M22 −M11). (4.3.22)

Using the same notation as before, the symmetry axis of the problem is now the

body axis x1. Working in cylindrical polar coordinates, we regard this as the z axis.

Hence

M11 =
1

8π

∫

V
B2

1 dx =
1

8π

∫

V
B2

z dx. (4.3.23)

Also, since M = M11 +M22 +M33 = M11 + 2M22 and

M =
1

8π

∫

V
B2

̟ +B2
φ +B2

z dx (4.3.24)
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we conclude that

M22 =
1

16π

∫

V
B2

̟ +B2
φ dx (4.3.25)

and hence that

M22 −M11 =
1

8π

∫

V

1

2
B2

φ +
1

2
B2

̟ −B2
z dx. (4.3.26)

Now, a poloidal field consists of B̟ and Bz components; in a realistic field config-

uration one would not expect either to dominate, so let us suppose that B2
̟ ≈ B2

z .

In this case we may write 1
2B

2
̟ −B2

z ≈ −1
2B

2
z ≈ −1

4(B2
̟ +B2

z ) and

M22 −M11 ≈ 1

8π

∫

V

(
1
2B

2
tor − 1

4B
2
pol

)

dx =
1

2
Etor − 1

4Epol. (4.3.27)

This gives

ǫ1 − ǫ2 ≈ 5

4|W |

(

Etor −
1

2
Epol

)

. (4.3.28)

We now note that if ǫ1 − ǫ2 > 0 the star is prolate, and if ǫ1 − ǫ2 < 0 it is oblate;

so from (4.3.28) we see that if more than (approximately) one third of the magnetic

energy is in the toroidal field then the star will be prolate, whilst if the poloidal

energy is more than double the toroidal energy the star will be oblate. We will find

in chapter 6 that this general result, of poloidal fields generating oblate stars and

toroidal fields prolate stars, also seems to apply to compressible stars and strong

magnetic fields.



Chapter 5

Oscillation modes: introduction

and analytic work

5.1 Introduction

To zeroth order, stars are stationary objects, with large-scale evolution happening

over very long timescales. On smaller scales however, they have rich dynamics; in

particular, they are subject to various kinds of oscillation. Different physical effects

manifest themselves as oscillation modes of different frequency, so observations of

stellar oscillations give us valuable information about the physics that governs them.

Unstable modes are of particular interest in the context of this thesis, since they

could result in sufficiently large disturbances in the mass distribution to produce

detectable gravitational radiation.

In this chapter calculations for two oscillation mode frequencies are presented,

as basic examples of analytic mode solutions. From these analytic results, we also

have a point of reference when looking at the mode spectrum of stars with rotation

and magnetic fields. In both mode derivations given here, the star is assumed to

have no magnetic field. Although there are some analytic calculations for modes of a

magnetised star, they are not only rather involved, but also rely on many simplifying

assumptions. However, some order-of-magnitude estimates for the effect of magnetic

fields on stellar oscillations are given in chapter 7, in addition to numerical results

for oscillations of magnetised stars.

67
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5.1.1 Classes of oscillation mode

Oscillation modes are induced by fluctuations in the various forces present in the

background star; these are called restoring forces and they determine the frequency

of the mode. It is natural, then, to classify a mode based on its restoring force.

We may further distinguish between different modes based on their parity. Using

spherical polar coordinates, a general perturbation may be decomposed with respect

to the basis (Ylmer,∇Ylm, er ×∇Ylm), where Ylm = Ylm(θ, φ) are the usual spherical

harmonics. The first two of these terms transform by multiplication by (−1)l under

parity inversion r 7→ −r, with the latter one transforming as (−1)l+1. Modes whose

sign is given by (−1)l under parity interchange are termed polar modes, whilst those

transforming as (−1)l+1 are called axial modes1. Hybrid modes, consisting of a sum

of axial and polar pieces, are termed axial-led or polar-led based on whether the

lowest-l (i.e. l=m) term of the mode is axial or polar, respectively.

The simplest model of a fluid star is hydrostatic equilibrium — a balance of the

gravitational and pressure forces. Surfaces of constant density are concentric spheres

in this case and the only modes present are the pressure or p-modes. The lowest-

order p-mode (i.e. the one with a nodeless eigenfunction) in each series is termed

the fundamental mode, or f -mode. The f -mode frequency is also the frequency of

the only mode of oscillation of a homogeneous incompressible sphere; in this context

it is known as the Kelvin mode, as it was first studied by Lord Kelvin [77]. The

frequency of this mode is derived in section 5.2. The non-axisymmetric p-modes in

a compressible star are degenerate in the absence of rotation and magnetic fields;

each p-mode has the same frequency for fixed m. These modes are polar in nature.

If a fluid star has thermal or chemical gradients, a new class of modes arises

[98, 116, 44]. To understand these, it is easiest to consider the case when these

gradients result in stratification of the star; that is, the appearance of surfaces over

which the stellar density changes discontinuously. The star’s self-gravity will then

act to oppose these differences, providing the restoring force for these new modes,

called gravity or g-modes. Along with the p-modes, g-modes were first studied by

Cowling [33].

With a rotating background star, a Coriolis force term enters the equations

1Polar modes are also known as spheroidal modes and axial modes as toroidal modes. In this

thesis we will always use the terms ‘axial’ and ‘polar’, however.
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governing the perturbations, which removes the m-degeneracy in the p-modes. The

Coriolis term is the restoring force for a new class of modes: the inertial modes,

which we term i-modes. These modes were first studied in incompressible fluids by

Bryan [18]. In general i-modes are mixed axial and polar even in the slow-rotation

limit, but one class of them are purely axial in this limit: the Rossby or r-modes.

With the barotropic equation of state we employ here, the only r-modes which exist

are those with l=m. The r-mode frequency of a slowly-rotating star is derived in

section 5.3.

Other inertial modes have more complicated eigenfunctions than the r-mode. For

fixed m, Lockitch and Friedman [93] found that inertial modes are not characterised

by a single l, but have an angular dependence consisting of a sum of spherical

harmonics Ylm(θ, φ). However, in all cases they found there was some threshold

value l0, such that the amplitude of Ylm contributions for l > l0 was found to drop

off rapidly. Following their work, we label modes using the notation l0
mik, where k

distinguishes between different modes with the same l0.

Finally, magnetic fields also induce a class of oscillation mode, restored by the

Lorentz force. We term them the Alfvén modes, or a-modes. In addition to gen-

erating a new class of modes, the Lorentz force can lift degeneracies of nonradial

oscillations, causing a splitting in mode frequencies [34]. The addition of the Lorentz

force term in the Euler equation for the perturbations should produce shifts in the

frequencies of the p, r and i modes from their unmagnetised values. Much of chap-

ter 7 is dedicated to investigating the effect of magnetic fields on a star’s oscillation

spectrum.

5.2 The Kelvin mode

The simplest physical model of a star is the incompressible sphere, which has only one

type of oscillation mode; in this section we find its frequency. As well as providing

an example of a mode calculation, the resulting frequency has a similar form to that

of the f -mode of compressible stars [24] and hence is of more general interest within

the context of this thesis.

We begin with the governing equations for the system:

ρ
dv

dt
= −∇P − ρ∇Φ (5.2.1)
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∇2Φ = 4πGρ (5.2.2)

∇ · (ρv) = v · ∇ρ+ ρ∇ · v = 0 (5.2.3)

where ρ0 is a constant; since the star is incompressible, the density is uniform

throughout the stellar interior: ρ = ρ0. The background equations are

−∇P0 − ρ0∇Φ0 = 0 (5.2.4)

∇2Φ0 = 4πGρ0 (5.2.5)

and the (first order) perturbations are governed by

ρ0
dv

dt
= −∇δP − ρ0∇δΦ − δρ∇Φ0 (5.2.6)

∇2δΦ = 4πGδρ (5.2.7)

ρ0∇ · v = −v · ∇ρ0. (5.2.8)

We begin by solving the background equations. Since the background star is

spherically symmetric all quantities are dependent on r alone. The Euler equation

is therefore
dΦ0

dr
= − 1

ρ0

dP0

dr
, (5.2.9)

which may be directly integrated to give

Φ0 = −P0

ρ0
+K. (5.2.10)

Similarly, direct integration of the Poisson equation

1

r2
d

dr

(

r2
dΦ0

dr

)

= 4πGρ0 (5.2.11)

yields

Φ0 =
2πGρ0r

2

3
− C

r
+D. (5.2.12)

Imposing regularity at the origin gives C = 0, whilst D is fixed through the

boundary conditions:

Φint
0 (r = R) = Φext

0 (r = R) (5.2.13)

dΦint
0

dr
(r = R) =

dΦext
0

dt
(r = R) (5.2.14)
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where R is the stellar radius. For the external field

∇2Φ0 =
1

r2
d

dr

(

r2
dΦ0

dr

)

= 0 (5.2.15)

and hence

Φ =
α

r
. (5.2.16)

Now (5.2.13) gives

D =
α

r
− 2πGρ0R

2

3
(5.2.17)

whilst (5.2.14) gives

α = −4πGρ0R
3

3
(5.2.18)

— note that since the stellar massM = 4πρR3/3 this last equation gives the external

potential as Φ = −GM/r, as expected.

From these two equations we find that

D = −2πGρ0R
2 (5.2.19)

and hence the internal field is given by

Φ0 =
2πGρ0(r

2 − 3R2)

3
. (5.2.20)

Now

P0 = ρ0(K − Φ0) = ρ0K +
2πGρ2

0(3R
2 − r2)

3
(5.2.21)

so to ensure P0 goes to zero smoothly at the surface we fix K so that

P0 =
2πGρ2

0(R
2 − r2)

3
. (5.2.22)

Next we turn to the perturbation equations. Because the star is incompressible,

the variation in density at a particular point near the surface will either be δρ = 0

(if the point is inside the star both before and after the perturbation) or δρ = ±ρ0

(if a point out/inside the star ends up in/outside the star after the perturbation).

We deal with this odd behaviour by setting δρ = 0 in the perturbation equations

(true for all points away from the surface) and incorporate the δρ 6= 0 behaviour

into the boundary conditions. Hence our perturbation equations are now

ρ0
dv

dt
= −∇δP − ρ0∇δΦ (5.2.23)

∇2δΦ = 0 (5.2.24)

∇ · v = 0. (5.2.25)
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Taking the divergence of (5.2.23) and using the other two equations reduces our set

of perturbation equations to a pair of Laplace equations in δP and δΦ,

∇2δP = ∇2δΦ = 0. (5.2.26)

The general solution for δP is thus given by

δP =
∑

l,m

ĈlmYlm(Arl +Br−l−1). (5.2.27)

Regularity at the origin r = 0 requires B = 0; defining Clm ≡ AĈlm gives

δP =
∑

l,m

ClmYlmr
l. (5.2.28)

At the surface r = R we have the boundary condition

∆P ≡ δP + ξ · ∇P (5.2.29)

which to leading order is

[

δP + ξr
dP0

dr

]

(r = R) = 0. (5.2.30)

Now using the background solution for P0 and defining ξR ≡ ξr(r = R, θ, φ) we find

ξR =
3δP

4πGρ2
0R

. (5.2.31)

With the general solution for δP and the above expression for ξR, we now turn

to δΦ. The boundary conditions on δΦ for an N = 0 polytrope are different from

the familiar ones, and in this case they are the only point at which the matter dis-

tribution is linked to the other perturbed quantities (since δρ = 0 in the equations).

5.2.1 Boundary conditions

Consider a small volume element δV which passes through the surface of the star,

from radius R− ε to R+ ε. Now we integrate the perturbed Poisson equation over

this small volume: ∫

δV

∇2δΦ dV = 4πG

∫

δV

δρ dV. (5.2.32)
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Using the divergence theorem on the left-hand side of this equation and the boundary

condition ∆ρ ≡ δρ+ ξ = 0 on the right-hand side, we see that

R+ε∫

R−ε

∇δΦ · dS = −4πG

R+ε∫

R−ε

ξ · ∇ρ dV. (5.2.33)

Now,
R+ε∫

R−ε

dρ

dr
dr = [ρ]R+ε

R−ε = −ρ0 (5.2.34)

from which we deduce that dρ
dr = −ρ0δ(r −R) and hence that

R+ε∫

R−ε

ξ · ∇ρ dV = −ρ0

R+ε∫

R−ε

ξrδ(r −R) dV = −ρ0ξR. (5.2.35)

Next we note that neither integrand in (5.2.33) has angular dependence (since

we are considering an infinitesimal volume, over which the stellar surface is flat),

so the angular integrations on each side produce equal contributions which may be

cancelled. On performing the remaining, radial, integration we find that

∂δΦ

∂r
(r = R+ ε) − ∂δΦ

∂r
(r = R− ε) = 4πGρ0ξR. (5.2.36)

A second radial integration then yields

δΦ(r = R+ ε) − δΦ(r = R− ε) = 8πGρ0ξRε. (5.2.37)

Finally we take the limit ε → 0 in equations (5.2.36) and (5.2.37) to yield the

boundary conditions on δΦ:

∂δΦext

∂r
(r=R) =

∂δΦint

∂r
(r=R) + 4πGρ0ξR (5.2.38)

δΦext(r=R) = δΦint(r=R). (5.2.39)

5.2.2 Final solution

The general solution to ∇2δΦ = 0 is

δΦ =
∑

l,m

(Dlmr
l + Elmr

−l−1)Ylm (5.2.40)
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Note that rl → ∞ as r → ∞ whilst r−l−1 → ∞ as r → 0; hence for the interior

solution Elm = 0 whilst for the exterior solution Dlm = 0, for all l,m. Let us pick

some particular l,m. Now by the boundary condition (5.2.39):

Dlm

Elm
= R−2l−1. (5.2.41)

Now applying the other boundary condition (5.2.38) we find that

lRl−1DlmYlm = −(l + 1)R−l−2ElmYlm − 4πGρ0ξR. (5.2.42)

We remove Elm from this equation using (5.2.41), and replace ξR in favour of δP ,

using equation (5.2.31). The result is

YlmDlm = − 3δP (R)

(2l + 1)ρ0Rl
. (5.2.43)

Now since δP (R) = RlClmYlm, we see that

Dlm = − 3

(2l + 1)ρ0
Clm. (5.2.44)

Finally we return to our perturbed Euler equation (5.2.23):

ρ0v̇ = −∇δP − ρ0∇δΦ. (5.2.45)

Now, v = ξ̇ by definition. Since we are looking for oscillatory solutions we make

the ansatz ξ = keiσt. Hence v = ξ̇ = iσξ and v̇ = ξ̈ = −σ2ξ = iσv; hence the

perturbed Euler equation becomes

iσρ0v = −∇δP − ρ0∇δΦ. (5.2.46)

The radial component of this is

vr = − 1

iσρ0

(
∂δP

∂r
+ ρ0

∂δΦ

∂r

)

. (5.2.47)

We return to equation (5.2.31), making the replacement ξR = vR/(iσ):

vR =
3iσδP

4πGρ2
0R

(5.2.48)

and equate this result with equation (5.2.47) evaluated at the surface:

vR =
3iσδP

4πGρ2
0R

= − 1

iσρ0

(
∂δP

∂r
(R) + ρ0

∂δΦ

∂r
(R)

)

. (5.2.49)
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Rearranging this gives

σ2 =
4πGρ0R

3δP

(
∂δP

∂r
(R) + ρ0

∂δΦ

∂r
(R)

)

. (5.2.50)

Now plugging in the solutions

δP = ClmYlmr
l (5.2.51)

δΦ = DlmYlmr
l = − 3

(2l + 1)ρ0
ClmYlmr

l (5.2.52)

to equation (5.2.50) we find, after some algebra, that

σ2 =
4πGρ0

3

2l(l − 1)

(2l + 1)
. (5.2.53)

Finally, we may define a dimensionless frequency Ω by

Ω2 ≡ σ2R3

GM
=

3σ2

4πGρ0
. (5.2.54)

In terms of this quantity we find that the mode frequency is given by

Ω2 =
2l(l − 1)

(2l + 1)
, (5.2.55)

in agreement with Kelvin [77]. As mentioned at the beginning of this section, this

incompressible-fluid result is still of interest in the context of neutron stars (which

are compressible), since the f -mode of compressible stars is closely related to the

Kelvin mode derived here [34, 24].

5.3 First-order r-mode calculation

The f -mode and p-modes are polar in nature; in a fluid nonrotating star the axial

oscillation modes are all zero-frequency solutions. The qualitative change in a rotat-

ing star is that axial oscillations no longer have this trivial nature [109, 122]. Having

already calculated the Kelvin mode, which is similar to the f -mode of compressible

stars, we now present a calculation of the r-mode, as an example of an axial mode.

In chapter 7 we investigate how this mode changes in the presence of a toroidal

magnetic field.
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5.3.1 Dynamics in a rotating frame

In an inertial frame the Euler equation for a rotating fluid star is

dvI

dtI
= −1

ρ
∇P −∇Φ (5.3.1)

where the acceleration is the rate of change of inertial velocity vI in the inertial

frame (d/dtI). We wish to investigate how quantities are changed when we move

from the inertial frame to a frame rotating rigidly with angular velocity Ω; we shall

denote quantities in this frame with the subscript R. Firstly, the two velocities vI

and vR are related by

vI = Ω × r + vR (5.3.2)

— that is, vR is the piece of the velocity which is not rotating rigidly with angular

velocity Ω in the inertial frame. Hence we have

dvI

dtI
=

dvI

dtR
+ Ω × vI (5.3.3)

— note that this equation is valid for vR too.

We replace vI in equation (5.3.3) using (5.3.2):

dvI

dtI
=

d

dtR
(Ω × r + vR) + Ω × (Ω × r + vR) (5.3.4)

= 2Ω × vR + Ω × (Ω × r) +
dvR

dtR
(5.3.5)

since dr/dtR = vR by definition. Now recall that the convective derivative is given

by
dv

dt
=
∂v

∂t
+ (v · ∇)v (5.3.6)

whence the Euler equation in a rotating frame is

∂vR

∂tR
+ (vR · ∇)vR + 2Ω × vR + Ω × (Ω × r) = −1

ρ
∇P −∇Φ. (5.3.7)

Working to first order in the perturbations vR, δP , δρ and δΦ our perturbed Euler

equation is:
∂vR

∂tR
+ 2Ω × vR =

δρ

ρ2
0

∇P0 −
1

ρ0
∇δP −∇δΦ. (5.3.8)

From now on we will drop the R subscripts on v and t, with the understanding

that these quantities will always refer to the rotating frame. The other perturbation

equations — the continuity equation, equation of state and Poisson’s equation —

are the same in the rotating frame as in the inertial frame.
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5.3.2 r-mode calculation

We are looking for the oscillation frequency σ of an axial mode in a slowly rotating

star, and so make the ansatz that our velocity field scales linearly with the stellar

rotation with nonspherical effects being of higher order. Formally, this means that

vR, σ ∝ O(Ω), whilst δρ, δP, δΦ ∝ O(Ω3). Now if we take the curl of equation (5.3.8)

and discard the higher-order terms described above, we are left with the equation

∂

∂t
(∇× v) + 2 ∇× (Ω × v) = 0. (5.3.9)

Since our velocity field is non-radial by assumption, its general form is

v = f(r)r ×∇Ylm, (5.3.10)

and with the ansatz that it is also oscillatory we have v̇ = iσv. With these, equation

(5.3.9) becomes

∇×
{
iσ∇× (r ×∇Ylm) + 2 ∇× (Ω × (r ×∇Ylm))

}
= 0. (5.3.11)

Now Ω = Ω(cos θer − sin θeθ), so

Ω × (r ×∇Y ) = −Ω(r cos θ∇Y + sin θ(eθ · ∇Y )r) (5.3.12)

where we are suppressing the l,m indices of Ylm for brevity. We also have

r ×∇Y = −eθr(∇Y · eφ) + eφr(∇Y · eθ). (5.3.13)

With these identities (5.3.11) becomes

∇×
{
iσ(−eθr(∇Y · eφ) + eφr(∇Y · eθ)) − 2 Ω(r cos θ∇Y + sin θ(eθ · ∇Y )r)

}
= 0.

(5.3.14)

We now recall the vector identity ∇× fA = (∇f)×A+ f∇×A and apply it to all

relevant terms in the previous equation. Together with the identities

∇× er = 0 (5.3.15)

∇× eθ =
1

r
eφ (5.3.16)

∇× eφ =
1

r tan θ
er +

1

r
eθ (5.3.17)

∇Y =
eimφ

r

(
dPlm

dθ
eθ +

imPlm

sin θ
eφ

)

(5.3.18)

∇× (cos θ∇Y ) = − imPlme
imφ

r2
er, (5.3.19)
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equation (5.3.11) becomes

2ΩimeimφPlm

r2
= iσ

{

∇
(
imPlme

imφ

r sin θ

)

× eθ −
eimφPlm,θ

r2 tan θ
−∇

(
eimφPlm,θ

r

)

× eφ

}

.

(5.3.20)

Evaluating the ∇(...) terms and taking the r-component of equation (5.3.20) we

obtain

2ΩmPlm = σ

(
m2Plm

sin2 θ
− Plm,θ

tan θ
− Plm,θθ

)

. (5.3.21)

Finally we recall the associated Legendre equation (whose solutions are the Plm

functions, see Arfken and Weber [6]):

1

sin θ

d

dθ

(

sin θ
dPlm

dθ

)

+

(

l(l + 1) − m2

sin2 θ

)

Plm = 0 (5.3.22)

which we use in (5.3.21) to find the r-mode frequency

σ =
2Ωm

l(l + 1)
. (5.3.23)

In conclusion, we have established that there are indeed axial modes in a rotating

star, with frequencies scaling linearly with the rotational frequency (at least for

slow rotation). This was our ansatz, but it would have led to a zero-frequency

mode frequency if there had been no such non-trivial mode. The formula (5.3.23)

will enable us to identify the r-mode from the results of the time-evolution code

discussed in chapter 7; with this code we are also able to investigate the effect of

strong magnetic fields on the r-mode, which is not an analytically tractable problem.



Chapter 6

Stationary magnetic equilibria:

numerical work

As discussed earlier in this thesis, magnetic distortions of a neutron star are interest-

ing for their potential to produce detectable gravitational radiation (see section 1.2.3)

and because of the possibility that they may allow the star to undergo precession-

like motion (chapter 3). In chapter 4 we were able to establish some results for

MHD equilibria analytically, but to study compressible stars in the fast-rotation

and strong-field regimes, we need a numerical approach. The equilibrium configu-

rations we produce using the code described in this chapter are not only interesting

in their own right: we will also use them as background configurations about which

to perturb. Perturbations and oscillation modes of these stars will be discussed in

chapters 7 and 8.

In this chapter we derive the equations of axisymmetric MHD and solve them

numerically to find equilibrium solutions for rotating magnetised polytropic stars.

We begin with a full derivation for general polytropes in the mixed poloidal-toroidal

field case, leading to the Grad-Shafranov equation [60, 124]. These equations were

also derived by Chandrasekhar and Prendergast [29, 112], but only for incompressible

stars (polytropic index N = 0). Purely poloidal fields follow as a special case of the

mixed-field equations; the result for purely toroidal fields is established separately,

but using a similar method to the mixed-field derivation.

The work reported here is closely related to that of Tomimura and Eriguchi

[137], but we study a wider range of aspects of neutron star physics (including the

79
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relative strengths of the poloidal and toroidal field components, the ratio of internal

to external field, and ellipticities). This chapter is summarised in Lander and Jones

[84].

We begin the chapter with an overview of the fundamental equations of magneto-

hydrodynamics. We then present the derivations of the magnetic equations needed

for the code. After discussing details of the numerical techiques used, we then

present results for stationary equilibria of neutron stars with rotation and magnetic

fields.

6.1 Magnetohydrodynamics

We begin by recalling Maxwell’s equations for electrodynamics:

∇× B = µǫ
∂E

∂t
+ µj (6.1.1)

∇ · B = 0 (6.1.2)

∇× E = −∂B
∂t

(6.1.3)

∇ · E =
ρe

ǫ
(6.1.4)

where B is the magnetic field, E the electric field, j the current, ρe the charge density

and ǫ, µ are the permittivity and permeability of the medium, respectively. These

last two quantities (in free space) are related to the speed of light c: ǫ0µ0 = 1/c2;

if not in free space then the same relation connects ǫ, µ to the speed of light in the

medium. Note that the values of these constants depend on the system of units

used, and ǫ is defined through its relation to µ and c. Electromagnetic units are

based on the cgs (centimetre-gram-second) system used in astronomy, with µ = 4π

and c = 2.998×1010 cm s−1; SI units are based on the metre, kilogram and second,

with µ = 4π × 10−7 and c = 2.998 × 108 m s−1. For comparison with the bulk

of the astronomical literature, we have consistently used electromagnetic units for

derivations in this work.

For nonrelativistic applications, the charge density ρe and displacement current

ǫ∂E

∂t terms will be negligible (see, for example, Davidson [37]); for this reason we
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only require the reduced form of Maxwell’s equations:

∇× B = µj (6.1.5)

∇ · B = 0 (6.1.6)

∇× E = −∂B
∂t

(6.1.7)

∇ · E = 0. (6.1.8)

In addition to these, we have (reduced) expressions for the current j (known as

Ohm’s law) and the Lorentz force L:

j = σ(E + v × B) (6.1.9)

L = j × B (6.1.10)

where v is the velocity of the magnetised fluid.

Having discussed the governing magnetic equations, we now turn to the fluid.

Newton’s second law for an inviscid fluid is the Euler equation:

dv

dt
= −∇P

ρ
−∇Φ. (6.1.11)

To generalise this to the case of a rigidly rotating fluid with a magnetic field, we

need to add on terms corresponding to the centrifugal force and the Lorentz force,

giving us the MHD equilibrium equation

Ω × (Ω × r) = −∇P
ρ

−∇Φ +
L

ρ
. (6.1.12)

where P is fluid pressure, ρ density of fluid, Φ gravitational potential and Ω angular

velocity. The equation may be generalised to an arbitrary rotation law by replacing

Ω × (Ω × r) with the gradient of some centrifugal potential, ∇Φr.

In all of the work in this thesis we make the perfect MHD approximation — that

the conductivity σ of the fluid is infinite — and in this chapter we are concerned

with stationary configurations and so additionally have ∂/∂t = 0. In this case the

MHD equations reduce to

∇× B = µj (6.1.13)

∇ · B = 0 (6.1.14)

L = j × B (6.1.15)

0 = −∇P
ρ

−∇Φ − Ω × (Ω × r) +
L

ρ
. (6.1.16)
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6.2 The equations of axisymmetric MHD

6.2.1 General forms for magnetic field and current

We wish to see how the assumption of axisymmetry constrains the geometry of the

magnetic field and the current; and hence also the form of the Lorentz force. This

is done following the work of Grad and Rubin [60] and Shafranov [124]. Work-

ing in cylindrical polar coordinates, we begin with the equilibrium equation for a

magnetised rotating fluid:

−∇H −∇Φ + ∇
(

Ω2̟2

2

)

+
L

ρ
= 0 (6.2.1)

where we have rewritten (6.1.16) above by replacing the usual ∇P/ρ term with the

gradient of the enthalpy H =
∫ P
0 dP̂ /ρ(P̂ ) and also explicitly written the centrifugal

term as the gradient of a scalar.

If we now take the curl of (6.2.1) then by the vector identity ∇ × ∇f = 0 (for

any scalar field f) we see that

∇×
(

L

ρ

)

= 0, (6.2.2)

implying that L/ρ is also the gradient of some scalar M . Note that ∇M · B = 0,

i.e. M is constant along field lines.

Next we write B in terms of a streamfunction u, defined through the relations

B̟ = − 1

̟

∂u

∂z
, Bz =

1

̟

∂u

∂̟
(6.2.3)

— note that these components give a solenoidal magnetic field, ∇ · B = 0, by

construction. Hence

B = − 1

̟

∂u

∂z
e̟ +Bφeφ +

1

̟

∂u

∂̟
ez. (6.2.4)

Now comparing the equation with

∇u× eφ = −∂u
∂z

e̟ +
∂u

∂̟
ez, (6.2.5)

we see that B may be written as

B =
1

̟
∇u× eφ +Bφeφ. (6.2.6)
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Note that this implies B · ∇u = 0, i.e. u is constant along field lines. Recalling that

M also has this property, we deduce that

M = M(u). (6.2.7)

Next we turn to Ampère’s law in axisymmetry:

4πj = ∇× B = −∂Bφ

∂z
e̟ +

(
∂B̟

∂z
− ∂Bz

∂̟

)

eφ +
1

̟

∂

∂̟
(̟Bφ)ez. (6.2.8)

Now by comparing the poloidal part of the current

jpol = − 1

4π̟

∂

∂z
(̟Bφ)e̟ +

1

4π̟

∂

∂̟
(̟Bφ)ez (6.2.9)

with the quantity

∇(̟Bφ) × eφ = − ∂

∂z
(̟Bφ)e̟ +

∂

∂̟
(̟Bφ)ez, (6.2.10)

we see that

jpol =
1

4π̟
∇(̟Bφ) × eφ. (6.2.11)

Next we consider the toroidal part of the current jtor = jφeφ and rewrite jφ using

the definition of the streamfunction u:

4πjφ =
∂B̟

∂z
− ∂Bz

∂̟
= − 1

̟

(

̟
∂

∂̟

(
1

̟

∂u

∂̟

)

+
∂2u

∂z2

)

. (6.2.12)

For brevity we define a differential operator ∆∗ by

∆∗ ≡
∂2

∂̟2
− 1

̟

∂

∂̟
+

∂2

∂z2
. (6.2.13)

Now using this definition together with (6.2.11) and (6.2.12) we see that the current

may be written as

4πj =
1

̟
∇(̟Bφ) × eφ − 1

̟
∆∗u eφ. (6.2.14)

Our two key results from this section so far are the expressions (6.2.6) and

(6.2.14) for the general form of an axisymmetric magnetic field and current, re-

spectively. Next we consider the form of the Lorentz force arising from these two

quantities. We see that in general

L = j × B = (jpol + jφeφ) × (Bpol +Bφeφ)

= jpol × Bpol
︸ ︷︷ ︸

Ltor

+ jφeφ × Bpol +Bφjpol × eφ
︸ ︷︷ ︸

Lpol

. (6.2.15)
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Returning to our original force balance equation (6.2.1) we note that the pressure,

gravitational and centrifugal forces are axisymmetric (i.e. no φ-dependence); there-

fore L is also axisymmetric and its toroidal component must vanish:

Ltor = jpol × Bpol = 0. (6.2.16)

At this point there are two ways to proceed: either Bpol is non-zero, in which case

Bpol and jpol are parallel; or Bpol = 0. We shall consider these cases separately in

the next two subsections.

6.2.2 Mixed poloidal and toroidal fields; the Grad-Shafranov equa-

tion

We have shown that the requirement (6.2.16) follows from the axisymmetry of our

problem. In this subsection we consider the case where Bpol and jpol are parallel,

corresponding to a magnetic field with both poloidal and toroidal components. We

will see that the case of purely poloidal magnetic fields may be found as a particular

limit of the general mixed-field configuration.

Recall from (6.2.6) and (6.2.11) that

Bpol =
1

̟
∇u× eφ

jpol =
1

4π̟
∇(̟Bφ) × eφ.

Knowing that these two quantities are parallel we see that u and ̟Bφ must be

related by some function f :

̟Bφ = f(u). (6.2.17)

Next we evaluate the non-zero Lorentz force components, i.e. Lpol from (6.2.15).

Using the pair of equations at the start of this subsection, we find that

eφ × Bpol = eφ ×
(

1

̟
∇u× eφ

)

=
1

̟
(∇u− eφ(eφ · ∇u)) =

1

̟
∇u (6.2.18)

and similarly

jpol × eφ = − 1

4π̟
∇(̟Bφ). (6.2.19)

Now using these expressions in (6.2.15), together with the relation jφ = − 1
4π̟∆∗u

from (6.2.14), we find that

L = − 1

4π̟2
∆∗u ∇u− 1

4π̟
Bφ∇(̟Bφ) (6.2.20)
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which, recalling the definitions ∇M = L/ρ and f(u) = ̟Bφ, becomes

4πρ∇M = − 1

̟2
∆∗u ∇u− 1

̟2
f(u)∇f(u). (6.2.21)

Since M and f are both functions of u alone we are able to rewrite ∇M(u) and

∇f(u) using the chain rule, to give

−4πρ
dM

du
∇u =

1

̟2
∆∗u ∇u+

f(u)

̟2

df

du
∇u. (6.2.22)

Now provided ∇u 6= 0 we have

4πρ
dM

du
= − 1

̟2

(

∆∗u+ f(u)
df

du

)

, (6.2.23)

which is the Grad-Shafranov equation [60, 124].

We now return to the general form of an axisymmetric current (6.2.14), replacing

̟Bφ with f(u) and using the chain rule to give:

4πj =
1

̟

df

du
∇u× eφ − 1

̟
∆∗ueφ. (6.2.24)

We now use (6.2.6) to make the replacement 1
̟∇u × eφ = Bpol and the Grad-

Shafranov equation (6.2.23) to eliminate ∆∗u from (6.2.24):

4πj =
df

du
Bpol +

1

̟

(

4π̟2ρ
dM

du
+ f(u)

df

du

)

eφ. (6.2.25)

Finally we use the definition f = ̟Bφ and B = Bpol +Bφeφ to yield an expression

for the current in terms of the magnetic field and the derivatives of the functions

M(u) and f(u):

4πj =
df

du
B + 4πρ̟

dM

du
eφ. (6.2.26)

6.2.3 Purely poloidal field

Having arrived at an expression for an axisymmetric current associated with a mixed

poloidal-toroidal field (6.2.26), we may straightforwardly specialise to purely poloidal

magnetic fields by choosing f(u) as a constant. Then df
du = 0 and the mixed term

vanishes from the expression for j, leaving only a toroidal current

j = ρ̟
dM

du
eφ (6.2.27)

and hence a purely poloidal field, by Ampère’s law.
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6.2.4 Purely toroidal field

In the previous subsection we showed that (6.2.26) may be trivially reduced to the

poloidal-field case. However it is clear from the form of (6.2.26) that there is no

choice of f and M which yields a poloidal current (or equivalently a toroidal field).

Setting M(u) to be a constant, for example, results in the general expression for a

force-free field

4πj =
df

du
B, (6.2.28)

which is of less interest to us, as we aim to study distortions caused by magnetic

fields.

It is clear that the derivation used for mixed fields does not hold in the toroidal-

field case. Previously we were able to use (6.2.16) to simplify the current-field

relation, but no such constraint is provided for a toroidal field, where Bpol = 0.

Accordingly we must return to subsection 6.2.1 where we found that

Bpol =
1

̟
∇u× eφ

jpol =
1

4π̟
∇(̟Bφ) × eφ

(from equations (6.2.6) and (6.2.11)). Since Bpol = 0 we no longer require ̟Bφ to

be a function of u; indeed the streamfunction u will not even enter our final solution.

We also recall that the general form of an axisymmetric Lorentz force is given by

(6.2.15), which in the case of Bpol = 0 reduces to

L = Bφjpol × eφ. (6.2.29)

Using (6.2.11) to replace jpol in this expression then gives

L =
Bφ

4π̟
(∇(̟Bφ) × eφ) × eφ = − Bφ

4π̟
∇(̟Bφ). (6.2.30)

Again recalling previous work in this section, we note that taking the curl of (6.2.1)

shows that ∇ × (L/ρ) = 0. We use this fact together with the vector identity

∇× (f∇g) = ∇f ×∇g to rewrite (6.2.30) as

∇
(
Bφ

ρ̟

)

×∇(̟Bφ) = 0. (6.2.31)

If we write
Bφ

ρ̟ in the above expression as 1
ρ̟2̟Bφ and use the chain rule, some

algebra leads to

− Bφ

ρ2̟3
∇(ρ̟2) ×∇(̟Bφ) = 0. (6.2.32)
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Since Bφ/ρ
2̟3 6= 0 we then deduce that ∇(ρ̟2) × ∇(̟Bφ) = 0 and hence that

ρ̟2 and ̟Bφ are related by some function h, i.e.

̟Bφ = h(ρ̟2). (6.2.33)

As before we now define a magnetic function M through L/ρ = ∇M (note that

here M need not be a function of the streamfunction u of previous sections). From

(6.2.30) and (6.2.33) we then find that

∇M = −h(ρ̟
2)

4πρ̟2
∇h(ρ̟2). (6.2.34)

By the chain rule we have ∇h(γ) = dh
dγ∇γ, where we have introduced the notation

γ = ρ̟2. Given this we have

∇M = −h(γ)
4πγ

dh

dγ
∇γ (6.2.35)

and so

M = − 1

4π

∫ ρ̟2

0

h

γ

dh

dγ
dγ. (6.2.36)

6.2.5 Notation for the rest of the chapter

For prior sections in this chapter, it was convenient to employ the variables M and

f in derivations. Having obtained the required results, we now change notation

for consistency with earlier studies: the analytic work on incompressible fluids by

Chandrasekhar and Prendergast [29, 112] and the numerical study of Tomimura and

Eriguchi [137]. For this, we make the replacements

α(u) ≡ df

du
and κ(u) ≡ 4π

dM

du
. (6.2.37)

The relation linking the magnetic current to the field (6.2.26) now becomes

4πj = α(u)B +̟ρκ(u)eφ. (6.2.38)

6.3 Finding integral equations for MHD in a fluid star

6.3.1 Basic equations for our stellar model

We model a rotating magnetic neutron star by assuming that it is in a stationary

state, axisymmetric with both the magnetic dipole axis and the spin axis aligned,
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and composed of infinitely conducting material (the perfect MHD approximation).

We work in the electromagnetic units discussed at the start of this chapter. The

derivation of the integral equation for Aφ follows the work of Tomimura and Eriguchi

[137].

We begin with the equations of magnetohydrodynamics described earlier. These

are the Euler equation describing hydromagnetic equilibrium:

−1

ρ
∇P −∇Φg + ∇Φr +

L

ρ
= 0 (6.3.1)

where L = j × B is the Lorentz force; together with Ampère’s law:

∇× B = 4πj (6.3.2)

and the solenoidal constraint

∇ · B = 0. (6.3.3)

This system of equations is closed with Poisson’s equation:

∇2Φg = 4πGρ (6.3.4)

and the assumption of a barotropic equation of state:

P = P (ρ). (6.3.5)

In the above equations P, ρ,Φg,Φr, j,B and G are the pressure, density, gravitational

potential, centrifugal potential, current density, magnetic field and gravitational

constant, respectively.

Although the formalism allows for different choices of the centrifugal potential

Φr and equation of state P = P (ρ), we will work with a rigidly rotating star:

Φr =
Ω2

0̟
2

2
, (6.3.6)

where the angular velocity Ω0 is a constant, and a polytropic equation of state:

P = kρ1+1/N (6.3.7)

where k is some constant and N the polytropic index.
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6.3.2 Choices for the magnetic functions

In the previous sections of this chapter we have shown that the equations of perfect

MHD reduce to a mixed-field case (section 6.2.2) and a purely toroidal-field case

(section 6.2.4). In the former case the equations are rewritten in terms of two

magnetic functions α(u) and κ(u) of the streamfunction u; in the latter case one

magnetic function h(γ) is employed (where γ = ρ̟2 as before). Here we outline our

chosen forms for these functions, and in the next subsection we describe why many

alternative choices are not viable.

In the mixed-field case, the two functions α(u) and κ(u) govern different aspects

of the magnetic field: firstly, since L = j × B we have L = ̟ρκeφ × B/4π (from

equation (6.2.38)) — i.e., the Lorentz force is dependent on κ, and so κ governs the

relative contributions of the magnetic and centrifugal forces to the overall distortion

of the star. The role of α is less clear. From equation (6.2.38) we see that α = 0

gives a purely toroidal current and hence poloidal field, whilst increasing α increases

the size of the mixed toroidal-poloidal term αB (and so indirectly increases the

toroidal component of the field). However, there is no limit in which the field is

purely toroidal in this formalism. We can thus only expect α to have some indirect

connection with the relative strengths of the poloidal and toroidal components of

the magnetic field.

Following Tomimura and Eriguchi [137], we choose the functional forms of α(u)

and κ(u) as:

κ(u) = κ0 = const., (6.3.8)

α(u) =







a(u− umax)ζ if u > umax

0 if u ≤ umax,
(6.3.9)

where ζ is some constant and umax is the maximum surface value attained by the

streamfunction u. We find that u < umax for all points outside the star and so

the chosen form of α ensures there is no exterior current. Next we combine the

definitions α ≡ df
du and f(u) ≡ ̟Bφ to see that

∫ u

α(u′) du′ = ̟Bφ (6.3.10)

— i.e., we must enforce the continuity of
∫
α(u) du to ensure the continuity of Bφ.
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We therefore choose the lower limit of the integral of α so that

f(u) ≡
∫ u

α(u′) du′ =







a
ζ+1(u− umax)ζ+1 if u > umax,

0 if u ≤ umax.
(6.3.11)

For our chosen functional forms of α(u) and κ(u) we see that for a specific solution

we need to choose three constants: ζ, a and κ0. We will later drop the zero subscript,

with the understanding that κ always refers to a constant unless otherwise stated.

Tomimura and Eriguchi set ζ = 1, but we have found that a smaller value of ζ allows

for a slightly stronger toroidal-field component; accordingly, we set ζ = 0.1 through-

out this chapter, except in comparing our results with previous work (subsection

6.8.2). We have since found that Yoshida and Eriguchi [145] made the same choice

as us, also motivated by an attempt to achieve poloidal and toroidal components of

similar strength.

For the purely-toroidal field case there is only one magnetic function, h(γ). Un-

like α(u) of the mixed-field case, h is directly related to the toroidal field. We

choose

h(ρ̟2) = λρ̟2 (6.3.12)

where λ is a constant that governs the field strength. With this choice, we have

Bφ = λρ̟.

6.3.3 Restrictions on the magnetic functions

Although the magnetic functions discussed above appear to be arbitrary, there are

a number of restrictions on their functional forms, on either physical grounds or

because they result in trivial solutions.

The functions α(u) and h(γ) both govern the toroidal fields, and so both must

necessarily vanish outside the star to avoid having exterior currents. Since the

streamfunction u in the mixed-field case does not vanish at the star’s surface, some

care is needed when choosing the functional form of α(u) to ensure the toroidal field

is confined within the star. To this end, we define α(u) to have the form shown in

equation (6.3.9). There does not appear to be any other functional form for α which

vanishes outside the star and is dependent only on u, so we conclude that (6.3.9)

is the only acceptable choice for α(u). The functional form of h, similarly, appears

restricted. To vanish outside the star h(γ) cannot contain a constant piece, so let
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us consider a functional form of h(γ) = λγχ where λ and χ are constants. However,

if χ < 1
2 then Bφ = λγχ̟−1 = λρχ̟2χ−1 will diverge at the origin, so we discard

these choices. Additionally, we find that if χ > 1 is chosen, then the field iterates to

zero in our numerical scheme, leading us to choose h(γ) = λγ.

Finally, the function κ(u) is theoretically allowed to depend on the streamfunc-

tion u, but if it is chosen as anything other than a constant then, as for h(γ), we

find that the configuration iterates to a zero-field solution. This may be a limitation

of our numerical scheme rather than a physical restriction, but in either case our

solutions are limited to those with κ being equal to some constant.

We conclude from this that, in fact, the choices made for our functional forms are

not specialised ones and (at least within our scheme) do not result in the exclusion

of physically valid solutions. Rather, we believe that our results are quite generic to

perfectly conducting polytropes in axisymmetry.

6.3.4 Integral forms of the basic equations

Here we use the basic equations from the previous section to derive integral equations

which can be used in a numerical scheme to find stationary configurations of a

rotating magnetised axisymmetric polytrope. For the magnetic integral equation,

we follow the work of Tomimura and Eriguchi [137].

Since ∇ ·B = 0, we can write B in terms of a magnetic vector potential A, viz.:

B = ∇ × A. We use this together with (6.2.38) to reexpress Ampère’s law, which

in components is now

∂

∂z

(
∂Az

∂̟
− ∂A̟

∂z

)

= −α∂Aφ

∂z
, (6.3.13)

∂

∂̟

[

̟

(
∂A̟

∂z
− ∂Az

∂̟

)]

= α
∂̟Aφ

∂̟
, (6.3.14)

∂

∂̟

(
1

̟

∂̟Aφ

∂̟

)

+
∂2Aφ

∂z2
= −α

(
∂A̟

∂z
− ∂Az

∂̟

)

− κρ̟. (6.3.15)

Note that defining the magnetic field B through the vector potential A is equivalent

to defining it through the streamfunction u; both approaches give a field B which

automatically satisfies the solenoidal constraint. In fact, comparing the ̟ and z

components of ∇× A with (6.2.3), we see that

u = ̟Aφ. (6.3.16)
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We define A ≡ ̟
(

∂A̟

∂z − ∂Az

∂̟

)
and A ≡

∫ ̟Aφ

0 α(u′) du′; note that A = A(u). Now,

using the chain rule on equations (6.3.13) and (6.3.14), we see that:

∂A
∂z

= α(u)
∂u

∂z
=
∂A

∂z
(6.3.17)

∂A
∂̟

= α(u)
∂u

∂̟
=
∂A

∂̟
. (6.3.18)

Integrating these two leads to A = A, or

∂A̟

∂z
− ∂Az

∂̟
=

1

̟

∫ ̟Aφ

0
α(u′) du′. (6.3.19)

Using this relation (6.3.19), equation (6.3.15) can be rewritten as follows:

∂2Aφ

∂̟2
+

1

̟

∂Aφ

∂̟
− Aφ

̟2
+
∂2Aφ

∂z2
= − α

̟

∫ ̟Aφ

0
α(u′) du′ − κρ̟. (6.3.20)

By multiplying equation (6.3.20) by sinφ we see that it may be rewritten as

∆(Aφ sinφ) = −
[
α

̟

∫ ̟Aφ

0
α(u′) du′ + κρ̟

]

sinφ (6.3.21)

Next we rewrite the Lorentz force term from (6.3.1):

1

ρ
(j × B) =

1

4π
κ̟eφ × (∇× A)

=
1

4π
κ







(̟Aφ),̟

0

̟Aφ,z







=
1

4π
κ(̟Aφ)∇(̟Aφ) (6.3.22)

and the equation of hydromagnetic equilibrium now becomes

−1

ρ
∇P −∇Φg + ∇Φr +

1

4π
κ(̟Aφ)∇(̟Aφ) = 0. (6.3.23)

For the purposes of numerics we seek integral equations; the integral form of

(6.3.23) is

H = C − Φg + Φr +
1

4π

∫ ̟Aφ

0
κ(u′) du′ (6.3.24)

where C is an integration constant and

H(r) =

∫ P (r)

0

dP ′

ρ(P ′)
(6.3.25)
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is the enthalpy. The integral form of Poisson’s equation (6.3.4) is:

Φg(r) = −G
∫

ρ(r′)

|r − r′| dr′. (6.3.26)

Finally, the integral form for (6.3.21) uses the same Green’s function as for Poisson’s

equation; the result is

Aφ(r) sinφ =
1

4π

∫ α(̟′A′
φ
)

̟′

∫ ̟′A′
φ

0 α(u) du+ κρ̟′

|r − r′| sinφ′ dr′. (6.3.27)

With the three equations (6.3.24), (6.3.26) and (6.3.27) it is possible to calculate sta-

tionary configurations of magnetised rotating stars (together with various specified

functions like α(u) and κ(u)).

6.3.5 Spherical harmonic expansions of the two potential integrals

At this point we switch from cylindrical (̟,φc, z) to the spherical (r, µ, φs) polar

coordinates used in the code. The conversions are:

̟ = r
√

1 − µ2 (6.3.28)

z = rµ (6.3.29)

φc = φs. (6.3.30)

The subscripts c and s on φ are used here for identification, but dropped everywhere

else.

We need to rewrite Poisson’s equation (6.3.26) as a sum for numerical integration.

For this, we expand 1
|r−r′| in terms of spherical harmonics:

1

|r − r′| = 4π

∞∑

l=0

l∑

m=−l

1

2l + 1

rl
<

rl+1
>

Y m
l (µ, φ)Y m∗

l (µ′, φ′) (6.3.31)

=
∞∑

l=0

l∑

m=−l

rl
<

rl+1
>

(l −m)!

(l +m)!
Pm

l (µ)Pm
l (µ′)eim(φ−φ′) (6.3.32)

where µ = cos θ. Now, the density ρ is reflection symmetric and hence an even

function of µ, whilst the polynomials Pl(µ) are even in µ when l is even and odd

when l is odd. So for odd l the integrand of Φg is odd and thus vanishes under

integration, leaving only the even-l terms:

Φg = −2G

∫ ∞

0

∫ 1

0

∫ 2π

0

[
∞∑

l=0

l∑

m=−l

f2l(r
′, r)

(2(l −m))!

(2(l +m))!
P 2m

2l P
2m
2l

′e2im(φ−φ′)

]

ρ(r′, µ′) dφ′dµ′dr′. (6.3.33)
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The radial function f2l is defined as

f2l(r
′, r) =

r2l
<

r2l+1
>

r′2 =







r′2l+2

r2l+1 if r′ < r

r2l

r′2l−1 if r′ > r.
(6.3.34)

We now split the sum over m up into an m = 0 piece and an m 6= 0 sum. Each term

in the m 6= 0 sum will, after integration, contain a term of the form

∫ 2π

0
eim(φ−φ′) dφ′ = 0 (6.3.35)

since the exponential term contains the only φ′ dependence in the sum. It follows

that all terms except the one with m = 0 vanish under integration. Given this,

(6.3.33) reduces to

Φg = −4πG

∫ ∞

0
dr′
∫ 1

0
dµ′ ρ(r′, µ′)

∞∑

l=0

f2l(r
′, r)P2l(µ)P2l(µ

′). (6.3.36)

In a similar way, we can rewrite the equation for the magnetic potential (6.3.27).

We use the decomposition (6.3.32) as before, which for Aφ sinφ is:

Aφ sinφ =
1

4π

∫
[

∞∑

l=0

l∑

m=−l

(l −m)!

(l +m)!
fl(r

′, r)Pm
l (µ)Pm

l (µ′)eim(φ−φ′)

]

M(r′, µ′) sinφ′ dr′ (6.3.37)

where we have defined

M(r′, µ′) =
α(̟′A′

φ)

̟′

∫ ̟′A′
φ

0
α(u) du+ κρ̟′ (6.3.38)

and

fl(r
′, r) =

rl
<r

′2

rl+1
>

=







r′l+2

rl+1 if r′ < r

rl

r′l−1 if r′ > r.
(6.3.39)

Writing the sinφ′ term in its exponential form we may absorb it into the other

exponential term in the sum:

sinφ′eim(φ−φ′) =
eimφ

2i
(eiφ

′(1−m) − e−iφ′(1+m)). (6.3.40)

On integrating the above expression with respect to φ′, all terms vanish except when

m = ±1. Hence (6.3.37) reduces to
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Aφ sinφ =

∫ ∞

0

∫ 1

−1

[
∞∑

l=0

fl(r, r
′)

4i

(
(l − 1)!

(l + 1)!
P 1

l P
1
l
′eiφ − (l + 1)!

(l − 1)!
P−1

l P−1
l

′e−iφ

)]

M(r′, µ′) dµ′dr′

=

∫ ∞

0
dr′
∫ 1

0
dµ′ M(r′, µ′)

∞∑

l=0

fl(r, r
′)

l(l + 1)
P 1

l P
1
l
′ sinφ (6.3.41)

where we have integrated over φ′ and used the following relation for associated

Legendre functions:

P−m
l = (−1)m (l −m)!

(l +m)!
Pm

l . (6.3.42)

Now cancelling the sinφ terms on the LHS and RHS of equation (6.3.41), we

have a relation for Aφ alone which can be numerically integrated:

Aφ(r) =

∫ ∞

0
dr′
∫ 1

0
dµ′ M(r′, µ′)

∞∑

l=0

fl(r, r
′)

l(l + 1)
P 1

l (µ)P 1
l (µ′). (6.3.43)

Finally, the quantity M is an even function of µ, so as for the gravitational potential

we will lose all odd terms after integration. For the gravitational potential that

meant keeping the P2l terms; for the magnetic potential it means keeping the P 1
l

terms with odd l, as it is these functions which are even in µ; P 1
2l is odd in µ. This

leaves us with the following expression for Aφ:

Aφ(r) =

∫ ∞

0
dr′
∫ 1

0
dµ′ M(r′, µ′)

∞∑

l=0

f2l−1(r, r
′)

2l(2l − 1)
P 1

2l−1(µ)P 1
2l−1(µ

′). (6.3.44)

6.3.6 Numerical integration

In the previous subsection we derived expressions for the two potential integrals

(6.3.26) and (6.3.27) in terms of Legendre functions:

Φg(r) = −4πG

∫ ∞

0
dr′
∫ 1

0
dµ′ ρ(r′, µ′)

∞∑

l=0

f2l(r
′, r)P2l(µ)P2l(µ

′) (6.3.45)

Aφ(r) =

∫ ∞

0
dr′
∫ 1

0
dµ′ M(r′, µ′)

∞∑

l=1

f2l−1(r, r
′)

2l(2l − 1)
P 1

2l−1(µ)P 1
2l−1(µ

′). (6.3.46)

Note that these expansions are exactly equal to the original integrals. We now use

Simpson’s three-point formula to approximate these as sums; the resulting expres-

sions will be accurate up to some factor dependent on the step size h and the fourth
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derivative of the integrand:
∫ x3

x1

f(x) dx =
h

3
[f(x1) + 4f(x2) + f(x3)] + O(h5f (4)). (6.3.47)

In the code we will integrate on a µ vs. r grid with kdiv points in the µ-direction

and ldiv points in the r-direction, with grid points in the ranges 0 ≤ µ ≤ 1 and

0 ≤ r ≤ rmax. Hence

rj = rmax
j − 1

ldiv − 1
(6.3.48)

and

µi =
i− 1

kdiv − 1
. (6.3.49)

For the rest of this section we label the unprimed quantity r with the index j, whilst

k labels r′ and l labels P ′
l .

We now integrate the µ′-dependent quantities of an arbitrary element in the sum

(6.3.45) over µ′ using Simpson’s rule:

Vk,l =

∫ 1

0
ρ(r′, µ′)P2l(µ

′) dµ′

=

kdiv−2
∑

i=1,i odd

1

3(kdiv − 1)
[P2l(µi)ρi,k + 4P2l(µi+1)ρi+1,k + P2l(µi+2)ρi+2,k] .

(6.3.50)

Note that the sum is over odd i up to kdiv − 2 (typically we set kdiv = 257 in the

code; in any case it must be an odd number) since
∫ kdiv

1
=

∫ 3

1
+

∫ 5

3
+...+

∫ kdiv

kdiv−2
. (6.3.51)

Next we integrate over r′ to find the quantity

Vl,j =

∫ rmax

0

∫ 1

0
ρ(r′, µ′)P2l(µ

′)f2l(r
′, rj) dµ′dr′

=

∫ rmax

0
Vk,lf2l(r

′, rj) dr′

=

ldiv−2
∑

k=1,k odd

rmax

3(ldiv − 1)
[f2l(rk, rj)Vk,l + 4f2l(rk+1, rj)Vk+1,l

+ f2l(rk+2, rj)Vk+2,l]. (6.3.52)

Finally, we see that the gravitational potential at the grid point (µi, rj) is given by

(Φg)i,j = −4πG
∞∑

l=0

Vl,jP2l(µi). (6.3.53)
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The derivation for the magnetic potential is very similar, with the quantity

M(r′, µ′) =
α(̟′A′

φ
)

̟′

∫ ̟′A′
φ

0 α(u) du + κρ̟′ replacing the ρ(r′, µ′) in the working

above. Given this, we may use (6.3.46) to write down

(Aφ)i,j =

∞∑

l=1

1

2l(2l − 1)
Wl,jP

1
2l−1(µi) (6.3.54)

where, in analogy with the previous derivation, Wl,j is related to the quantity Wk,l

which in turn is related to M:

Wl,j =

ldiv−2
∑

k=1,k odd

rmax

3(ldiv − 1)
[f2l−1(rk, rj)Wk,l + 4f2l−1(rk+1, rj)Wk+1,l

+ f2l−1(rk+2, rj)Wk+2,l] (6.3.55)

Wk,l =

kdiv−2
∑

i=1,i odd

1

3(kdiv − 1)
[P 1

2l−1(µi)Mi,k + 4P 1
2l−1(µi+1)Mi+1,k

+ P 1
2l−1(µi+2)Mi+2,k]. (6.3.56)

In practice one cannot perform the infinite l-sums shown in equations (6.3.53) and

(6.3.54), so we terminate them at some finite lmax. We choose lmax = 16 for the

code; we find that terms of higher l than this produce a negligible contribution to

the sum.

6.4 Details of the code

6.4.1 Non-dimensionalising

For the purposes of numerics it is convenient to work with dimensionless variables

of order unity. We nondimensionalise all variables using G, the maximum density

ρmax and the equatorial radius req. The variables used in the code are then:

ρ̂ =
ρ

ρmax
, (6.4.1)

ˆ̟ =
̟

req
, (6.4.2)

Ω̂2 =
Ω2

Gρmax
, (6.4.3)

κ̂ =
κ√
G/req

, (6.4.4)
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α̂ =
α

1/req
, (6.4.5)

Âφ =
Aφ

r2eqρmax

√
G
. (6.4.6)

All the magnetic rescalings above may be found by starting from the units of the

Lorentz force, plus ∇× B = 4πj, ∇× A = B and equation (6.2.38).

6.4.2 Enthalpy

Since the enthalpy is given by H = (1 +N)P/ρ, we may use this formula together

with (6.3.7) to give a relation between density and enthalpy:

ρ =

(
H

k(1 +N)

)N

. (6.4.7)

6.4.3 Enthalpy boundary condition

Recall that the first integral of the Euler equation is

H = C − Φg +
Ω2̟2

2
+

1

4π

∫ ̟Aφ

0
κ(u′) du′. (6.4.8)

The boundary condition on the enthalpy H is that it must vanish at the surface.

We call the equatorial radius req and the polar radius rp, and rescale the radial

coordinate by dividing by req. Evaluating the boundary condition on the enthalpy

at the equator and at the poles gives

H(req) = 0 = C − Φ(req) +
Ω2

0r
2
eq

2
+
κ0reqAφ(req)

4π
(6.4.9)

H(rp) = 0 = C − Φ(rp). (6.4.10)

Rearranging these in rescaled variables where req = 1 we see that

Ω2
0 = 2

(

Φ(req) − Φ(rp) −
κ0Aφ(req)

4π

)

(6.4.11)

and

C = Φ(req) −
Ω2

0

2
− κ0Aφ(req)

4π
. (6.4.12)
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6.4.4 Numerical scheme

Our code uses the Hachisu self-consistent field (HSCF) method [61] to iteratively find

a stationary solution to the hydromagnetic equilibrium equation (6.3.1). Specifically,

the user specifies a polytropic index N , magnetic functions α(u) and κ(u) and a

deformation (i.e. axis ratio) rp/req and the code determines the angular velocity,

density distribution and other quantities consistent with the user’s input parameters.

The code we use is based on a code for rotating stars written by Nikolaos Stergioulas,

extended here to include magnetic fields.

The original HSCF method was a numerical scheme for calculating the station-

ary equilibrium configurations of an unmagnetised rotating star. We now generalise

it to include axisymmetric magnetic fields; the steps in this modified scheme are:

1. Make an initial guess of ρ=const

2. Find Φg from Poisson’s equation (6.3.53)

3. Guess Aφ=const

4. Find an improved, space-dependent form of Aφ(r) from equation (6.3.54) and the

guesses for ρ and Aφ (this is the iterative step for Aφ)

5. Find Ω2
0 and C from (6.4.11) and (6.4.12), using the potentials Φg and Aφ found

earlier and given a user-specified axis ratio rp/req

6. We now know all right-hand side terms in (6.3.24); use the equation to determine

the enthalpy at all points in the star

7. Find the new (improved) estimate for the density distribution using ρnew(r, µ) =
(

H(r,µ)
Hmax

)N
where N is the polytropic index and Hmax the maximum value of en-

thalpy attained in the star1

8. As the iterative step, return to step 1 but use ρ = ρnew instead of the earlier

density distribution (ρ=const for the first cycle). At step 3 in the new cycle, use the

‘new’ form of Aφ calculated in step 4 of the previous cycle.

This sequence of steps is repeated until the code has converged satisfactorily, i.e.

1The expression here comes from (6.4.7)
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until all the quantities

|(Hmax)n+1 − (Hmax)n|, (6.4.13)

|(Ω2
0)n+1 − (Ω2

0)n|, (6.4.14)

|Cn+1 − Cn| (6.4.15)

are less than some small value δ. The subscript n here represents the value of a

quantity at the n-th iterative step.

6.5 Formulation for a purely toroidal field

The Grad-Shafranov equation (or equivalently equation 6.2.38 for the current) allows

for purely poloidal fields and mixed toroidal-poloidal fields. For a purely toroidal

field a different formalism is needed; this was derived in section 6.2.4. Recall that

one may define a scalar potential M through

∇M =
j × B

ρ
. (6.5.1)

For a purely toroidal field we have B = Bφeφ. In section 3 we found that

Bφ =
1

̟
h(γ) (6.5.2)

M = − 1

4π

∫ ρ̟2

0

h

γ

dh

dγ
dγ (6.5.3)

where h is an arbitrary function of γ = ρ̟2. For simplicity we choose h(ρ̟2) =

λρ̟2 where λ is a constant specified by the user of the code. With this choice of h

we then have

M = −
∫ ρ̟2

0

h(γ)

γ

dh

dγ
dγ = −

∫ ρ̟2

0

λγ

γ
λ dγ = −λ2ρ̟2. (6.5.4)

The first integral of the Euler equation becomes:

H = C − Φ + 1
2Ω2̟2 +M (6.5.5)

= C − Φ + 1
2Ω2̟2 − λ2ρ̟2. (6.5.6)

Also for this choice of h we have Bφ = λρ̟. Note that since ρ is zero at the surface,

the equations which give Ω2 and C in terms of the axis ratio do not feature any
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magnetic term and are just those for a rotating unmagnetised fluid:

Ω2
0 = 2 (Φ(req) − Φ(rp)) (6.5.7)

C = Φ(req) −
Ω2

0

2
(6.5.8)

i.e. (6.4.11) and (6.4.12) with κ = 0. The numerical scheme is simpler than that for

the mixed case as the magnetic term only enters in the Euler equation (6.5.6). The

steps of the code are:

1. Make an initial guess of ρ=const

2. Find Φg from Poisson’s equation (6.3.53)

3. Find Ω2
0 and C from (6.4.11) and (6.4.12), using the gravitational potential Φg

and given a user-specified axis ratio rp/req,

4. Evaluate the magnetic term M using the density distribution ρ and given a user-

specified Lorentz force strength parameter λ,

5. We now know all right-hand side terms in (6.3.24); use the equation to determine

the enthalpy at all points in the star

6. Find the new (improved) estimate for the density distribution using ρnew(r, µ) =
(

H(r,µ)
Hmax

)N
where N is the polytropic index and Hmax the maximum value of en-

thalpy attained in the star

7. As the iterative step, return to step 1 but use ρ = ρnew instead of the earlier

density distribution (ρ=const for the first cycle).

As before this sequence is iterated until the code has achieved satisfactory con-

vergence; the quantities

|(Hmax)n+1 − (Hmax)n|, (6.5.9)

|(Ω2
0)n+1 − (Ω2

0)n|, (6.5.10)

|Cn+1 − Cn| (6.5.11)

should all be less than some small value δ. The subscript n here represents the value

of a quantity at the n-th iterative step.
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6.6 Code-calculated quantities

6.6.1 The magnetic energy

We will wish to calculate the magnetic energy Emag of the star in the code, to

compare with kinetic energy and also to calculate a virial test (see next section).

The familiar definition of Emag is

Emag =

∫

all space

B2

8π
dr, (6.6.1)

but this is not suited to numerical evaluation, since the integrand only decays at

infinite distance; numerical integration would necessarily be over a finite radius

and so introduce truncation error. However some vector identities show that an

equivalent definition for Emag, more useful here, is

Emag =

∫

all space

r · L dr (6.6.2)

— see section 4.2 for details. Now since L = j×B, where the current j is zero outside

the star (see equation (6.2.38)), it is clear that L is also zero outside the star. The

integrand in (6.6.2) will therefore also vanish outside the star, so the integration

need only be performed within the star. We wish to express Emag in terms of the

quantity Aφ which the code calculates. Firstly, since B = ∇× A we have:

B̟ = −Aφ,z (6.6.3)

Bφ = A̟,z −Az,̟ (6.6.4)

Bz = Aφ,̟ +
1

̟
Aφ (6.6.5)

and hence the Lorentz force is:

L = j × B =
1

4π
̟ρκeφ × B (6.6.6)

=
1

4π
̟ρκ







Aφ,̟ + 1
̟Aφ

0

Aφ,z






. (6.6.7)

The integrand is then given by

r · L =
1

4π
̟ρκ(̟Aφ,̟ +Aφ + zAφ,z). (6.6.8)
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The code uses a spherical polar grid based on r and µ = cos θ, whereas the above

expression is in terms of cylindrical polars; we therefore wish to rewrite it.

We recall from earlier the coordinate transformations from cylindrical to spher-

ical polars:

̟ = r
√

1 − µ2 (6.6.9)

z = rµ (6.6.10)

(one may see this by writing the cylindrical coordinates as Cartesians as an inter-

mediate step: ̟ = xCart and z = zCart). Now using the chain rule we have:

∂

∂r
=

∂̟

∂r

∂

∂̟
+
∂z

∂r

∂

∂z
=
√

1 − µ2
∂

∂̟
+ µ

∂

∂z
(6.6.11)

∂

∂µ
=

∂̟

∂µ

∂

∂̟
+
∂z

∂µ

∂

∂z
= − µr

√

1 − µ2

∂

∂̟
+ r

∂

∂z
. (6.6.12)

Rearranging these we see that

∂

∂̟
=

√

1 − µ2
∂

∂r
− µ

√

1 − µ2

r

∂

∂µ
(6.6.13)

∂

∂z
= µ

∂

∂r
+

(1 − µ2)

r

∂

∂µ
. (6.6.14)

We now know the transformations for the coordinates and the derivatives; after some

algebra we find that the integrand (6.6.8) may be reexpressed in terms of spherical

polars as:
1

4π
ρκr
√

1 − µ2(rAφ,r +Aφ). (6.6.15)

At last we are able to write the magnetic energy as a spherical polar integral in

terms of Aφ:

Emag =

∫ 2π

0

∫ −1

1

∫ ∞

0

1

4π
ρκr
√

1 − µ2(rAφ,r +Aφ) r2 drdµdφ (6.6.16)

=

∫ 1

0

∫ R

0
ρκr3

√

1 − µ2(rAφ,r +Aφ) drdµ, (6.6.17)

using the symmetry of the µ-integral, integrating over φ and noting that the inte-

grand is zero outside the surface radius R of the star (by virtue of the ρ term in the

integrand).
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6.6.2 Virial test

We may use the virial theorem as a test of convergence for the code. First take the

trace of the tensor virial equations (4.2.26) (further details are found in section 4.2)

to yield the scalar virial theorem:

1

2

d2I

dt2
= 2T + Emag + 3(γ − 1)U +W (6.6.18)

where I is the moment of inertia and T, Emag, U and W the kinetic, magnetic,

internal and gravitational energies, respectively. For our stationary star I has no

time variation so the first term is zero, whilst the internal energy term may be

rewritten using Π ≡
∫
p dr = (γ − 1)U . Given this, we expect the various energies

for our star to satisfy

2T + Emag + 3Π +W = 0. (6.6.19)

Calculating the quantity on the left-hand side of the above equation tells us the

absolute deviation from zero, but we need to know the relative error. A value of

2T +Emag +3Π+W = 10−5 would appear to indicate acceptable accuracy, but if the

individual energies are of order 10−4 then the relative error is unacceptable: around

10%. For this reason we normalise by dividing through by W and define our virial

test result V C as

V C ≡ |2T + Emag + 3Π +W |
|W | ; (6.6.20)

the smaller the value of V C, the greater the code’s accuracy. In particular, in

the limit V C → 0 the calculated configuration is an exact stationary equilibrium

solution.

6.6.3 Toroidal and poloidal energies for the mixed case

The code variables κ and α are related to the ratio of toroidal to poloidal field

strength, but in a very nontrivial manner. To get a more intuitive, physical, measure

of their respective strengths we would like to know the part of the magnetic energy

contained in the poloidal and toroidal fields, Epol and Etor, respectively.

Since the total magnetic energy is given by

Emag =
1

8π

∫

B · B dV =
1

8π

∫

B2
̟ +B2

φ +B2
z dV (6.6.21)
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we define

Epol =
1

8π

∫

B2
̟ +B2

z dV (6.6.22)

Etor =
1

8π

∫

B2
φ dV. (6.6.23)

As in other places, the integrands have no φ-dependence so the integration over

φ may be done immediately to give 2π, whilst converting from θ to µ and using

reflection symmetry changes the angular integral from
∫ π
0 ... sin θ dθ to 2

∫ 1
0 ...dµ.

Hence our magnetic energy integrals become

Epol =
1

2

∫ 1

0

∫ ∞

0
B2

̟ +B2
z drdµ (6.6.24)

Etor =
1

2

∫ 1

0

∫ ∞

0
B2

φ drdµ. (6.6.25)

We recall the conversions between (̟, z, ∂̟, ∂z) and (r, µ, ∂r, ∂µ) from before; with

these we can rewrite the cylindrical-polar components of B in terms of spherical

polars:

B̟ = −Aφ,z = −µAφ,r −
(1 − µ2)

r
Aφ,µ (6.6.26)

Bz =
Aφ

̟
+Aφ,̟ =

Aφ

r
√

1 − µ2
+
√

1 − µ2Aφ,r −
µ
√

1 − µ2

r
Aφ,µ (6.6.27)

Bφ =
1

r
√

1 − µ2

∫ r
√

1−µ2Aφ

α(u) du. (6.6.28)

We recall here that whilst the upper limit for the integral of α is fixed, the lower

limit is not; we choose it so that there is no constant after integration and hence no

jump in Bφ.

The integral for Etor may now be straightforwardly evaluated, since its integrand

Bφ is confined to the star; however the integral for Epol does not have compact

support. We can get around this by using the fact that Emag = Epol + Etor and so

define Epol in terms of the other two integrals Epol ≡ Emag − Etor; in this manner we

can evaluate the poloidal energy through quantities which extend only over the star.

For a consistency check on our work, we compare this compact-support expression

for Epol with the standard infinite-integral form by plotting the quantity

P ≡
1
2

∫ 1
0

∫ R
0 (B2

̟ +B2
z ) drdµ

Emag − Etor
(6.6.29)
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for increasing integration radius R; see figure 6.1 below. We see from the figure that

P → 1 as R → ∞, confirming that Emag − Etor does indeed give the poloidal-field

energy.

 0.86

 0.88
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 0.96
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 1
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Figure 6.1: Confirming the veracity of our compact-support definition for Epol. The

values on the plot are for a star of axis ratio rp = 0.5 and κ = 17, purely poloidal

field. The convergence also occurs if a toroidal field is included.

6.6.4 Keplerian velocity

The Keplerian (or break-up) velocity ΩK is defined to be the velocity at which the

centrifugal force matches the gravitational force. If a star’s velocity exceeds ΩK , then

it will begin to shed mass. The criterion for mass shedding is therefore Ω = ΩK .

With a view to determining ΩK , we first define a different velocity Ωc through the

relation

Ω2
c ≡ 1

req

∂Φ

∂r
, (6.6.30)

which in dimensionless form is simply

Ω̂2
c ≡ Φ̂,r. (6.6.31)
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We are able to find this quantity by differentiating the equilibrium equation (6.3.24)

in dimensionless form:

Φ,r = −H,r + Ω2r(1 − µ2) +
κ

4π

√

1 − µ2(Aφ + rAφ,r). (6.6.32)

We evaluate this at the equator (i.e. µ = 0), where the centrifugal force is greatest

and hence where mass shedding will occur first. This gives

Ω2
c = Φ,r|eq = −H,r + Ω2 +

κ

4π
(Aφ +Aφ,r). (6.6.33)

In general Ωc as defined above is not the Keplerian velocity — the two are only

equal as the star reaches the mass-shedding limit. When this limit is reached Ω =

Ωc = ΩK , so Ωc is a test of whether the star has reached its mass-shedding limit.

6.6.5 Ellipticity

Recall that the quadrupole moment tensor Ijk is defined as

Ijk =

∫

ρxjxk dV. (6.6.34)

Since our star is axisymmetric we have

Ieq ≡ Ixx = Iyy (6.6.35)

Ipol ≡ Izz. (6.6.36)

Now

Ieq =

∫

ρx2 dV

=

∫

ρ(r, µ) r2(1 − µ2) cos2 φ r2drdµdφ

= 2π

∫ 1

0

∫ R

0
ρr4(1 − µ2) drdµ (6.6.37)

Ip =

∫

ρz2 dV

= 4π

∫ 1

0

∫ R

0
ρr4µ2 drdµ (6.6.38)

There are various ways of defining the ellipticity ǫ, but one is to use these unreduced

quadrupole moments:

ǫ ≡ Ieq − Ip
Ieq

. (6.6.39)
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6.7 Constructing physical sequences of stars

For numerical purposes, we work with dimensionless variables. However, to un-

derstand these results in the context of physical neutron stars we need to redi-

mensionalise them. Making a meaningful study of a group of different equilibrium

configurations entails ensuring that we always compare the effects of magnetic fields

and rotation in the same physical star: we do this by ensuring that we work with

sequences of constant (physical) mass and the same equation of state.

For the former requirement, we need to use the relation

M̂ =
M

ρmaxr3eq
. (6.7.1)

Maintaining a constant mass, then, enforces the above relation between the maxi-

mum density ρmax and req. Secondly, we need to ensure we compare stars with the

same equation of state, i.e. the relation P = kρ1+1/N : this means always using the

same polytropic index N and polytropic constant k. The former is specified when

the code is run and is not a dimensional quantity; for the latter we need to redi-

mensionalise. Using dimensional analysis as before, we find that the nondimensional

code k̂ is related to the physical k by

k̂ =
k

Gr2eqρ
1−1/N
max

. (6.7.2)

Now our nondimensional polytropic relation is P̂ = k̂ρ̂1+1/N , but since the maximum

density is normalised to unity in the code, we have simply

k̂ = P̂max, (6.7.3)

the maximum (code) pressure in the star. From the two equations (6.7.1) and (6.7.2)

(replacing k̂ with P̂max) we are then able to fix the real mass and equation of state;

this allows us to find the values of ρmax and req. We use (6.7.1) to find that

req = 3

√

M

ρmaxM̂
(6.7.4)

and use this to replace req in equation (6.7.2), giving

P̂max =
k

GM̂−2/3M2/3ρ
1/3−1/N
max

. (6.7.5)
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We now fix our neutron star mass as M = 1.4M⊙ = 2.8 × 1033 g (we are working

in cgs units) and our polytropic constant as k = 4.25 × 104 cm5g−1s−2; the latter

coming from rearranging req =
√

πk/2G given an equatorial radius for the spher-

ical ‘background’ star2 of 10 km. See Chandrasekhar [22] for details of polytropic

relations. This gives

ρmax =

(
k

GM̂−2/3M2/3P̂max

)3N/(N−3)

g cm−3 (6.7.6)

= 5.48 × 1015 M̂−1P̂ 3/2
max g cm−3 for an N=1 polytrope. (6.7.7)

Having found ρmax for each star we then find the corresponding equatorial radius

req using the mass relation (6.7.4). For an N = 1 polytrope this is

req = 7.98 × 105 P̂−1/2
max cm = 7.98 P̂−1/2

max km. (6.7.8)

For an axis ratio of unity we find that P̂max = 0.637; substituting this back into the

equation above we recover the background radius of 10 km, as required. With these

two quantities we are now able to redimensionalise any code quantities; in particular

the physical values of magnetic field strengths and rotation rates which generate a

specified axis ratio.

For a measure of the magnetic field strength in the star, we define a volume-

averaged magnetic field B̄ through

B̄2 =
1

V

∫

B2 dV =
8πEmag

V
(6.7.9)

The relation between the physical B̄ and the nondimensional code version ˆ̄B is

B̄ = reqρmax

√
G ˆ̄B = 1.13 × 1018 P̂mM̂

−1 ˆ̄B gauss (6.7.10)

= reqρmax

√
G

√

8πÊmag

V̂
= 5.66 × 1018 P̂mM̂

−1Ê1/2
magV̂

−1/2 gauss.

(6.7.11)

The physical rotation rate is simpler to find, being given by

Ω =
√

GρmaxΩ̂ (6.7.12)

= 1.91 × 104 M̂−1/2P̂ 3/4
m Ω̂ rad s−1 (6.7.13)

= 3.04 × 103 M̂−1/2P̂ 3/4
m Ω̂ Hz. (6.7.14)

2Note that in the context of this chapter, ‘background’ refers to the hydrostatic equilibrium

configuration, with no magnetic fields or rotation. This is completely distinct from the perturbation-

theory connotations of ‘background’.
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The physical values quoted later in this chapter are calculated from the equations

(6.7.9) and (6.7.12). The process of redimensionalising for other polytropic indices

is very similar to the one described here.

6.8 Testing the code

6.8.1 Convergence plots

We begin by demonstrating that both the mixed-field code and the purely toroidal-

field code converge satisfactorily; i.e. that the numerical error decreases as the grid

resolution increases. As a test of this numerical error we evaluate the quantity V C

from (6.6.20):

V C =
|2T + Emag + 3Π +W |

|W | (6.8.1)

since this is zero for a physical stationary configuration, by the virial theorem. We

find that both codes are second-order convergent as required; see figure 6.2.

6.8.2 Comparison with previous work

We are able to confirm the results produced by the code in various regimes. Firstly,

we compare rotating unmagnetised configurations generated numerically with the

analytic result for the fractional distortion (4.1.90) from chapter 4:

d(µ) =
ξR(µ)

R
=

(

1 − 5

2
P2(µ)

)

v. (6.8.2)

Here v is a nondimensional velocity, v ≡ Ω2/2πρcG. We use a different definition

of nondimensional velocity (called Ω̂2) in the code of this chapter, but the two are

related through:

v ≡ Ω2

2πρcG
=

Ω̂2

2π
. (6.8.3)

Note that the central and maximum densities are equal in this case: ρc = ρmax.

We may now work out the perturbative analytic result for the axis ratio of a slowly

rotating N = 1 polytrope:

rp
req

=
1 + d(0)

1 + d(1)
=

1 − 3
4π Ω̂2

1 + 9
8π Ω̂2

. (6.8.4)
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Table 6.1: Comparing numerically-generated rotating stars with results from ana-

lytic work.

Ω̂2 1 − rp

req
(code) 1 − rp

req
(analytic)

6.964e-3 4.17e-3 4.15e-3

1.393e-2 8.33e-3 8.27e-3

3.470e-2 2.08e-2 2.05e-2

8.254e-2 5.00e-2 4.78e-2

1.622e-1 1.00e-1 9.15e-2

The analytic result is only valid in the slow rotation, small distortion limit, so we

compare the code and analytic results in this regime, for a few values of Ω̂2; see

table 6.1.

We are also able to make both qualitative and quantitative comparisons with

work on magnetised stars. Qualitatively, it has long been predicted that poloidal

magnetic fields generate oblate configurations, whilst toroidal fields induce prolate

distortions. A simple analytic indication of this is given by the formula (4.3.28),

derived from early work on magnetised stars in section 4.3. Given the opposing

effects of poloidal and toroidal fields, one would expect a mixed-field magnetic dis-

tortion to depend on the relative strengths of the two field components. For our

mixed-field code, however, we are only able to generate oblate stars; we believe this

is due to the weak nature of toroidal fields within our mixed-field formalism, where

the toroidal-field energy Etor is always less than 7% of the total magnetic energy

Emag.

As a quantitative confirmation of our results, we compare with table 4 from

Tomimura and Eriguchi [137]. Their results are nondimensionalised by dividing by

appropriate powers of ρmax, req and 4πG and these dimensionless quantities are

denoted by a hat; for example

Ω̂2 =
Ω2

4πGρmax
. (6.8.5)

For comparison with their results we must also use ζ = 1 instead of ζ = 0.1 as the

exponent in the functional form of α from (6.3.9). Taking this into account we find

that for a N = 1.5 polytrope, with κ̂ = 0.4 and â = 200, we have the sequence of

configurations given in table 6.2.
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Table 6.2: Comparison between our results and those of Tomimura and Eriguchi.

We present dimensionless energy quantities for a sequence of rotating magnetised

equilibrium configurations with N = 1.5, κ̂ = 0.4, â = 200 and ζ = 1. The numerical

values are our results; the percentages show the differences from Tomimura and

Eriguchi.

rp/req Emag/|W | U/|W | T/|W | |Ŵ | V C

0.588 0.144 0.284 1.21e-3 0.0481 2.97e-5

0.55 0.151 (0.7%) 0.276 (0.0%) 0.0111 (4.7%) 0.0459 (0.4%) 3.10e-5

0.50 0.165 (0.6%) 0.264 (0.0%) 0.0211 (2.9%) 0.0432 (0.5%) 3.33e-5

0.45 0.189 (0.5%) 0.255 (0.4%) 0.0227 (3.2%) 0.0401 (0.2%) 3.63e-5

0.40 0.222 (0.0%) 0.252 (0.0%) 0.0119 (8.2%) 0.0358 (0.3%) 4.02e-5

0.371 0.242 0.252 1.10e-3 0.0331 4.32e-5

Our highest and lowest axis ratios (0.588 and 0.371) differ slightly from those of

Tomimura and Eriguchi [137] (who have 0.589 and 0.372), so we cannot make a direct

comparison for these values. For the other four axis ratios, our values agree with

theirs to within 1% for the magnetic, gravitational and internal energy quantities

but have discrepancies of around 3− 8% in the kinetic energy. Since our virial tests

show smaller relative errors than those of Tomimura and Eriguchi, we suggest that

the discrepancies may simply be due to us having used higher-resolution results.
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Figure 6.2: Logarithmic-scaled plots of the virial test V C against the number of

mesh points MP . The data points are plotted together with a line of gradient two;

we note that this is a good fit to the points and conclude that both codes are second-

order convergent. The plots are for: (a) mixed-field code run with purely poloidal

field, Ω = 0 and axis ratio 0.2; (b) mixed-field code run with a mixed field with

α(u) = 10(u − umax)0.1, Ω = 0 and axis ratio 0.2; (c) toroidal-field code run with

Ω = 0 and axis ratio 1.05.
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6.9 Results

6.9.1 Magnetic field configurations

With the formalism described earlier in this chapter, we are able to examine field

configurations in axisymmetric perfectly conducting polytropes. Since neutron star

matter is thought to have high conductivity and be roughly approximated by an

N = 1 polytrope, the field structures shown here should have some similarity to

those in real neutron stars — although the field strengths here are considerably

higher than those that have been observed so far. There are, nonetheless, some

reasons to consider such strong fields. They provide a demonstration that the code

can compute stellar structures in the nonlinear magnetic regime; we also find many

common features among all configurations, suggesting that they could also exist for

more weakly magnetised stars. In addition, the interior fields of neutron stars could

be considerably stronger than their surface values.

The plots in this subsection show the magnetic field strength given by |B| =
√

B · B, and of the poloidal and toroidal components, |Bpol| =
√

B2
̟ +B2

z and

|Btor| = |Bφ|. The plots are colour-coded, with the peak field strength represented

in yellow, and zero-field regions in black. The stellar surface is represented by the

thick white arc which meets the x-axis at unity. Finally, since the equatorial radius

req = 1 in code units, we will often denote the axis ratio of the star rp/req simply

by the dimensionless polar radius, rp.

All of the magnetic-field results presented here (and discussed in this subsec-

tion) are for nonrotating N = 1 polytropes, unless otherwise stated. We have not

presented extra results for magnetic field configurations in rotating stars, since we

find there is no qualitative difference when rotation is included. In addition, we have

concentrated mostly on mixed-field configurations, since there are strong indications

from both theory [96, 133, 144] and simulations [14, 79, 50] that both purely poloidal

and purely toroidal fields are generically unstable.

In figure 6.3 we plot the poloidal and toroidal components of three mixed-field

stars. Although the plots show stars with very different levels of deformation (axis

ratios of 0.95, 0.5 and 0.0), each magnetic configuration is broadly similar. For

each plot, the poloidal field pervades most of the interior of the star, as well as

extending outside it. This component of the field is highest in the centre except

in the extreme rp = 0.0 case (when the shape of the star becomes toroidal, with
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zero central density). The poloidal fields only go to zero in a small region towards

the edge of the star (seen as the black region on the equator at x ∼ 0.9); Tayler

[96] calls this zero-field point the ‘magnetic axis’. By contrast the toroidal field

reaches its maximum here, and is only non-zero in a small region dictated by the

functional form of α(u) that we use. Whilst the toroidal field energy is always a

small proportion of the total magnetic energy — Etor/Emag < 7% — the maxima of

both field components are comparable in magnitude.

In figure 6.4 we show how the poloidal and toroidal components of the field fit

together by showing how the total field strength varies in two mixed-field stars.

Despite the very different levels of distortion in the two plots, there are again broad

similarities: the field tends to be strongest around the centre (due to its poloidal

component) and in a small region around the equator near the surface (due to the

toroidal component) which corresponds to a torus in the actual 3D star.

The differences in the toroidal field in a mixed-field star compared with a purely

toroidal-field star within our formalism are shown in figure 6.5. The geometry is

somewhat similar, since any toroidal field has to vanish along the pole and at the

surface, but the field in the pure-toroidal star pervades virtually all of the interior

of the star, whereas in the mixed-field case it is confined to a small region. Whilst

the maximum field strengths are similar in both cases, the pure-toroidal field shown

contains far more energy, by virtue of occupying a larger region of the star.

All of the plots so far have given only half of the information about the magnetic

field in these stars — their magnitude. In figure 6.6 we additionally show the direc-

tion of a typical poloidal field by plotting contours of the streamfunction u. These

contours are parallel to magnetic field lines, by the derivation in section 6.2.1. Since

a purely toroidal field has direction vector eφ, the field lines would go into the page

in the x− z plane we employ here; these would form concentric circles in the x− y

plane. Mixed-field lines lie in neither plane so we have not shown them here.

Lastly in this subsection, figure 6.7 shows the dependence of the ratio Bp/B̄ on

the polytropic index N ; we find that there is an approximately linear relationship

between the two, and for all polytropic indices Bp/B̄ is of the same order of mag-

nitude. For N = 1, Bp/B̄ ≈ 0.5, suggesting that neutron stars (approximated as

N = 1 polytropes) with purely poloidal fields are likely to have a B̄ around double

the polar field Bp.
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Table 6.3: Comparing parameters related to the influence of the toroidal component

in a mixed-field star with axis ratio 0.9.
a Etor/Emag Emag/|W | ǫ Bp/B̄

0 0.00 2.43e-02 0.216 0.580

10 9.87e-03 2.55e-02 0.216 0.554

20 3.02e-02 2.82e-02 0.213 0.504

30 3.96e-02 2.93e-02 0.204 0.484

40 4.05e-02 2.92e-02 0.196 0.488

50 3.86e-02 2.88e-02 0.191 0.495

6.9.2 The relationship between a and Etor/Emag

As mentioned earlier, we can increase the proportion of toroidal field in the mixed-

field configurations only indirectly, by varying the code parameter a from equation

(6.3.9). In table 6.3 we show the effect of changing this parameter, for a non-rotating

star with axis ratio rp/req = 0.9. One would expect that increasing a would increase

the toroidal portion of the field, which in turn would lead to a decrease in oblateness

(since toroidal fields induce prolate distortions); one would also expect a reduction

in the ratio Bp/B̄ (since more of the field is toroidal and hence does not extend

outside the star). Looking at the table, we see all of these effects do occur as the

value of a is increased, up until the a = 40 configuration. At this point the larger

value of a is no longer reflected in stronger toroidal-field effects. In all cases changing

a does not strongly affect the value of Emag/|W |, confirming our expectation that it

is the variation in the toroidal component which affects ellipticity and Bp/B̄, rather

than simply a reduction in Emag/|W |. Finally, we note that even for the highest

values of a, the relative contribution of the toroidal portion of the field is very small

— only 4% of the total for the star shown in table 6.3. We shall see later that this

is a generic feature of our formalism together with our boundary condition, where

poloidal fields extend outside the star but toroidal ones vanish at the surface.
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Figure 6.3: Density plots of the magnetic field strength for axis ratios of (top to

bottom) rp = 0.95, rp = 0.5, rp = 0.0. All plots are for mixed toroidal and poloidal

fields in nonrotating stars, with toroidal-field parameter a = 30. This corresponds

to toroidal fields of 3.7%, 5.9% and 6.7% of the total Emag for rp = 0.95, 0.5 and 0.0

respectively. We see that the toroidal component is confined to a far smaller region

than the poloidal one. See text for further details.
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— rp = 0.95 on the left and rp = 0.0 on the right. They do, nonetheless, have

qualitative similarities, with peak field strengths at/near the centre, and another

peak near the equatorial surface.
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Figure 6.5: Density plots of the toroidal magnetic field strength for a pure-toroidal

field star (left) and a mixed-field star (right). In both cases the stars are nonrotating,

with maximum field strengths of 2.8 × 1017 G. Note that whilst both fields are

confined to a torus (this is the geometry of a toroidal field), the pure-toroidal field

star has a toroidal field extending over a far larger portion of the interior.



Chapter 6: Numerical work on equilibria 119

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Figure 6.6: A representation of the magnitude and direction of a purely poloidal mag-

netic field in a nonrotating star. The colours represent the magnetic field strength

and the overlaid black lines are field lines. Field lines for the toroidal component of

a mixed-field star, or for purely toroidal fields, would go into the page and hence we

have not plotted such configurations. The bold white arc represents the surface of

the star.
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of the polytropic index N . The plot is for purely poloidal fields in non-rotating

stars, all with an axis ratio of 0.996. Note that if the field was purely toroidal then

this ratio would be zero, regardless of N , since toroidal fields vanish at the stellar

surface.
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6.9.3 Magnetically-induced distortions

Having looked at field configurations, we now turn to the distortions these fields

produce in the star’s density distribution. The plots in this subsection show plots of

the density in contours of 0.1ρmax, where the maximum density ρmax is normalised

to unity.

For later comparison, we begin by looking at the more familiar effect of rotation

(figure 6.8); this produces an oblate distortion that becomes larger with increasing

rotation rate. The star become more centrally concentrated, in the sense that the

region within the innermost contour — where ρ > 0.9ρmax — becomes smaller, and

the 0 < ρ < 0.1ρmax region grows.

Next we consider purely poloidal fields, confirming the expectation from section

4.3 that these fields induce an oblate distortion; the surface shapes of such stars are

thus similar to those of rotationally distorted stars. However, the interior density

distributions are very different: unlike a centrifugal force, the Lorentz force acts to

pull the point of maximum density away from the centre into a maximum-density

ring. In the extreme limit where the ratio rp/req → 0, the star actually becomes a

torus (figure 6.9). For mixed fields, the effect of increasing the toroidal component is

similar to the effect of adding rotation: it tends to push the maximum density region

back to the centre — see figure 6.10. Note that both the mixed-field stars shown are

oblate though, due to the dominance of the poloidal component; stronger toroidal

fields tend to make stars prolate, but our formalism and boundary condition seem

to generate mixed fields with weak toroidal components only (the 5.5%-toroidal field

of figure 6.10 plot (c) is relatively strongly toroidal, within this context).

The only situation where we are able to study dominantly toroidal fields is the

other limit of our formalism — the pure-toroidal case. In this case we find that,

as expected, the resultant density distribution is prolate. Although the surface

shapes are very close to spherical in all cases (in contrast with the pure-poloidal and

mixed-field cases), the ellipticities may be very large; the innermost density contours

become highly prolate (see figure 6.11).

For weak fields and small distortions, perturbation theory results suggest that

the ellipticity of a star should depend linearly on B2; see, for example, section 4.3.

With our non-linear code we are able to check this, and see how well the perturbative

result holds as field strengths are increased; this is plotted for both poloidal and
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toroidal fields in figure 6.12. The results depart slowly from the linear regime to

begin with, but in the poloidal-field case the field strength required peaks for an

ellipticity of ǫ ∼ 0.8. This peak seems to correspond to roughly the point at which

the maximum density is pulled out into a ring, making the star’s density distribution

toroidally-shaped. We speculate that for extremely distorted configurations this

toroidal density distribution is a lower-energy state than the usual spheroidal one.

In figure 6.11 we found that purely toroidal fields give prolate density distribu-

tions, but never induce significant surface distortions. Because rotation gives rise

to oblateness in stars, it opposes the effect of a toroidal field in a star, and the two

effects can balance to give a rotating magnetised star with zero overall ellipticity.

Note that in this case the stars will have oblate surface shapes but a spherical density

distribution — see figure 6.13.

Next we look at the effect of magnetic fields on the Keplerian velocity ΩK — see

figure 6.14. We find that whilst increasing the field strength causes a slight decrease

in the velocity needed to cause mass shedding, this effect only becomes noticeable

for very strong fields. It seems, therefore, that magnetic fields are unlikely to affect

the stability of a star in this manner.

We have generally presented results for an N = 1 polytrope, as this is regarded as

a reasonable approximation to a neutron star. For our final two figures, however, we

briefly investigate the effect of varying the polytropic index N , whilst maintaining

a mass of 1.4M⊙ and equatorial radius of 10 km in the corresponding unmagnetised

‘background’ polytropic star. In figure 6.15, we plot four stars with the same surface

distortion rp/req = 0.5 but different N . We see that when N is low the density

contours are all close to the edge of the star, with a large (slightly off-centre) high-

density region; in the limiting case N = 0 the star is an incompressible, uniform

density configuration, so all contour lines coincide with the star’s surface. For higher

values of N the high-density region becomes smaller and the low-density outer region

becomes larger. We note that the N = 2 polytrope shown cannot be a neutron star

model, however, as its maximum density of 1.79 × 1014 g cm−3 is lower than the

density of heavy nuclei, ρ0 = 2.4 × 1014 g cm−3.

Finally, in figure 6.16, we look at non-rotating stars with a purely poloidal field

and an axis ratio of 0.95. We plot the dependence of the field strength on polytropic

index N , finding that as N is increased a weaker field is required to support the

same surface distortion.
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Figure 6.8: Contour plots of the density in rotating unmagnetised N = 1 polytropic

stars; the axis ratios are labelled above each plot. We see that the density becomes

more centrally concentrated in the more highly distorted stars. The rotation rates re-

quired to produce axis ratios of rp = 1, 0.9, 0.8, 0.6 are, respectively, 0, 749, 997, 1190

Hz; the respective equatorial radii are req = 10.0, 10.7, 11.5, 14.4 km.
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Figure 6.9: Contour plots of the density in nonrotating N = 1 polytropic stars,

distorted by a purely poloidal field. Note that the maximum density moves away

from the centre of the star for the more distorted configurations. The averaged mag-

netic field strengths for the stars with rp = 1, 0.8, 0.6, 0.5, 0.2, 0.0 are, respectively,

B̄ = 0, 3.38, 4.76, 5.15, 4.70, 4.46 ×1017 gauss. The equatorial radii are, respectively,

req = 10.0, 10.9, 12.1, 12.9, 16.2, 17.0 km.
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Figure 6.10: Density contours in an N = 1 polytropic star with axis ratio of 0.6, with

different sources of distortion. Plots (a), (b) and (c) are nonrotating configurations

with, respectively: purely poloidal field, mixed-field with 3.4% toroidal field, mixed-

field with 5.5% toroidal field. Plot (d) is for a purely rotationally-distorted star

with no magnetic field. All stars have the canonical mass of 1.4M⊙, with equatorial

radii of 12.1, 12.5, 13.2, 14.4 km for stars (a)-(d), respectively. We note that whilst a

purely poloidal field tends to push the maximum density away from the centre, both

toroidal field components and rotation have the effect of increasing the equatorial

radius and making the star more diffuse.
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Figure 6.11: Density contour plots for stars with purely toroidal fields. Whilst the

surface shapes (i.e. the axis ratios, labelled above each plot) are barely aspherical,

one can see from the innermost contours that the density distributions do in fact

become highly prolate. In all cases we use an N = 1 polytrope with Ω = 0. The

magnetic field strengths for rp = 1.00, 1.02, 1.04, 1.06 are B̄ = 0, 1.81, 2.46, 2.82 ×
1017 gauss, respectively; req = 10.0, 10.1, 10.4, 10.6 km.
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Figure 6.12: Top: a graph showing how (poloidal) magnetic distortions vary with the

field strength. 1− rp/req is the surface distortion, whilst ǫ represents the distortion

of the density distribution, as defined in equation (6.6.39). Note that the required

field strength peaks for 1 − rp/req ∼ 0.6 or ǫ ∼ 0.8 and then drops slightly for more

extreme distortions. For small distortions we see that there is a roughly quadratic

dependence on the field strength. Bottom: toroidal-field distortions versus B2. In

this case we only use ǫ to gauge the level of distortion, as the surface shapes remain

nearly spherical.
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Figure 6.13: Two stars with toroidal magnetic fields. The left-hand configuration is

a non-rotating star (and hence has a prolate density distribution), whilst the right-

hand one is the same physical star but with rotation added, with an oblate surface

shape but an overall ellipticity of zero. The average field strength in both cases is

B̄ = 2.4 × 1017 G.
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Figure 6.14: The dependence of Keplerian velocity ΩK on magnetic field strength

B̄, for stars with purely poloidal fields. Note that an appreciable decrease in ΩK

only occurs for very strong fields.
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Figure 6.15: Non-rotating configurations, all with a purely poloidal field and an

axis ratio of rp/req = 0.5. Plots (a) to (d) are for N = 0.5, 1, 1.5, 2 polytropes,

respectively; the corresponding field strengths are B̄ = 7.62, 4.31, 2.98, 1.13 × 1017

G, the maximum densities are 1.67, 1.14, 0.623, 0.179×1015 g cm−3 and the equatorial

radii are req = 10.2, 12.9, 17.6, 29.6 km, respectively.
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Figure 6.16: The poloidal field strength B̄ required to induce a surface distortion of

rp/req = 0.95, plotted for various polytropic indices. We see that the required field

is weaker for higher-N polytropes.
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6.10 Discussion

To understand how strong magnetic distortions may be in highly magnetised objects

like magnetars, realistic models are needed to study the field structure of these

stars. The formalism we use in this work comes directly from the assumptions of

axisymmetry and perfect conductivity, together with a boundary condition that the

poloidal part of the field should only become zero at infinite distance from the star,

rather than vanishing at its surface; we anticipate that these conditions provide a

reasonable model of a neutron star’s magnetic field.

The general formalism of axisymmetric MHD reduces to a mixed-field case and

a purely toroidal-field case, with two (mathematically) arbitrary functions in the

former case (κ(u) and α(u)) and one in the latter (h(γ)). Despite the apparent

freedom in choosing these functions, we found that on physical grounds only one

functional form was satisfactory for each one; see section 6.3.3. We conclude that

the equations we have numerically solved in this work are in fact quite general and

that we have not excluded physically valid branches of solutions with our choices.

Perturbative calculations in the weak-field regime have found that ǫ depends

linearly on B̄2. With the use of our nonlinear code we are able to investigate how

well this approximation holds for larger fields and ellipticities. We can see graphically

that the first few points from both plots in figure 6.12 lie in fairly straight lines and

hence we deduce the relations

ǫpol ∼ 5 × 10−4

(
B̄

1016 G

)2

∼ 2 × 10−3

(
Bp

1016 G

)2

(6.10.1)

for the purely poloidal case (the above relation also uses Bp/B̄ ∼ 0.5 from figure

6.7), and

ǫtor ∼ −3 × 10−4

(
B̄

1016 G

)2

(6.10.2)

for the purely toroidal case; where in both cases we have used a star of mass 1.4M⊙

whose radius would be 10 km if unmagnetised. By comparing these extrapolated

linear-regime formulae with our non-linear code results, we can explore how well

perturbative results are likely to hold in a strong-field regime. We find that the

linear-regime results given by (6.10.1) and (6.10.2) deviate by less than 10% from

the actual non-linear code result (shown in figure 6.12) provided that B̄ . 1.5×1017

G, or equivalently ǫ . 0.15. Alternatively, if we allow the linear relation to differ by
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up to 30% from the nonlinear result, we may use the linear relation as an ‘acceptable’

approximation for B̄ . 3 × 1017 G or ǫ . 0.35 (i.e. it holds for the entire range of

ellipticities we can plot in the toroidal-field case).

This suggests that for all known neutron star field strengths, ǫ is likely to be

linearly dependent on B̄2, to a good approximation. Hence perturbation theory could

provide accurate predictions of NS distortions, provided the neutron star model used

is also a close approximation to real NS physics.

We are also able to compare our linear-regime formulae with the analytic work

of Haskell et al. [64], who also treated pure poloidal fields extending outside the

star and pure toroidal fields vanishing at the stellar surface (as for our work). For

the same mass, radius and polytropic index their formulae give:

ǫpol ∼ 10−2

(
Bs

1016 G

)2

and ǫtor ∼ −2 × 10−4

(
B̄

1016 G

)2

(6.10.3)

where Bs is the surface magnetic field strength, which was assumed constant in their

calculation; we do not have a constant surface field so have compared with their work

using the value of |B| at the pole instead. Since their field geometries are clearly

not identical to ours, and since we had to extrapolate to obtain our formulae, we

would not expect precise agreement. Nonetheless, we feel that the similarities show

that our work makes sensible contact with perturbative calculations.

From figure 6.12, beginning at an unmagnetised spherical star, we find that

in both the poloidal and toroidal-field cases the magnetic field strength required to

induce a certain distortion initially increases for increasing distortion — as would be

expected from perturbative work. However, in the purely poloidal case the required

field strength then peaks at ǫ ∼ 0.8, dropping slightly as ǫ is increased further.

Around the same point the density distribution becomes toroidal in nature — that

is, the point of maximum density moves away from the centre and a high-density

torus forms; this leads us to speculate that at ǫ ∼ 0.8 it becomes energetically

favourable for the density to change from a spheroidal profile (as seen in the weaker-

field stars, e.g. the rp = 0.8 plot of figure 6.9) to a toroidal one (e.g. figure 6.9,

rp = 0.0 plot). It is clear that if the magnetic field in a star is increased beyond

the peak value of ∼ 5 × 1017 G shown in the left-hand plot of figure 6.12 then

one of our initial assumptions must be violated. Since we cannot investigate the

possibilities with our current code, we conclude that a hypothetical star with a field

of B̄ > 6 × 1017 may either have no stationary equilibrium solution (in which case
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it may lose magnetic energy until it is in equilibrium), or that there may be a new

triaxial branch of super-magnetised solutions bifurcating from the biaxial curve at

ǫ ∼ 0.8.

We do not find a similar peaking of the field strength in the purely toroidal

case, however. In this case the largest ellipticities we are able to calculate are

around ǫ ∼ 0.35. Whilst this particular value may represent a limitation of our

numerical scheme, we suggest that a limited range of ellipticities is a consequence of

the formalism for toroidal fields in axisymmetry, where B is directly linked to the

density ρ; in the mixed-field case we have a separate equation to iteratively solve for

the magnetic field. Thus restrictions on the field geometry may restrict the size of

permissible ellipticities.

Of course, whilst the ‘peak field strength’ we discuss here is a theoretical upper

bound on NS fields, there are very probably other physical effects that place a lower

bound than ∼ 5×1017 G on the maximum field. Certainly, if magnetar surface fields

are ∼ 1015 G one would not expect their volume-averaged fields to exceed ∼ 1016 G

significantly.

We have argued that the equations we solve in this chapter lead to quite general

solutions for axisymmetric stars. However, we find that although it is possible to

find solutions with purely poloidal or purely toroidal fields, the range of mixed-field

solutions is very limited. Using Etor/Emag as a gauge of the strength of the toroidal

component in a mixed-field star, we find that for all our stars 0 ≤ Etor/Emag < 0.07.

The other extreme is of course Etor/Emag = 1 for purely toroidal fields. This means

that although the toroidal component does have some influence in a mixed-field star

(see table 6.3), it is dominated by the effect of the poloidal field. In particular all

our mixed-field stars have oblate density distributions.

Mixed-field configurations with weak toroidal components are not peculiar to our

work. Ciolfi et al. [31] studied mixed fields in relativistic stars, with a perturbative

approach and minimising energy at fixed magnetic helicity. Although this approach

is clearly very different from the non-linear work on Newtonian stars reported in

this chapter, a similar result emerges: that the toroidal-field energy is only up to

∼ 10% of the total magnetic energy.

Some studies, similar to ours, have claimed to produce mixed-field configurations

with comparable poloidal and toroidal fields; see for example Yoshida and Eriguchi

[145]. However, they use a different measure for the relative strength of the field
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components: the maximum magnitude of each component, rather than the energy

contained in each one. In this sense, the results in this chapter also contain config-

urations with comparable field components. We believe that the ratio of energies is

a better measure than the ratio of maxima though: we are interested in magnetic

distortions, which are proportional to B2 (or equivalently the magnetic energy), not

to the maximum field.

Our mixed-field stars have the boundary condition that the toroidal component

vanishes at the surface, whilst the poloidal piece only decays at infinity. By contrast,

Haskell et al. [64] considered the problem of mixed-field stars where the total field

vanished at the surface. This results in an eigenvalue problem, with all (discrete)

solutions having prolate density distributions and all having dominantly toroidal

fields. Since the chief difference between our work and theirs seems to be the choice of

boundary condition, we speculate that our boundary condition favours the poloidal

field, whilst that of Haskell et al. favours the toroidal component. We note that

this idea seems to be consistent with the recent work of Duez and Mathis [39].

These authors found MHD equilibria with roughly equal toroidal and poloidal-energy

components using a semi-analytic approach; but like Haskell et al. they consider

only confined fields.

The numerical simulations of Braithwaite [15] suggest that a stable magnetic

field will have 0.20 . Etor/Emag . 0.95. If this result is directly applicable to our

work then it would imply that none of the solutions that exist within our axisym-

metric formalism are stable. However, for numerical reasons these simulations use

a magnetic diffusivity term which is zero within the star and increases through a

transition region to a high, constant value in the exterior (see Braithwaite and Nord-

lund [16] for details). We suggest that this transition region may favour the toroidal

component of a mixed-field star; it would be interesting to see if a similar stability

result emerges from simulations using a boundary condition more similar to ours.

Although we regard our boundary condition as the most natural for a mixed-field

fluid with infinite conductivity, neutron stars are not perfect conductors. In moving

from the fluid interior to the crust and magnetosphere, it is clear that the resistivity

of the medium increases and hence the boundary condition should be adapted to

reflect this. For the poloidal component, this adapted boundary condition should

have a damping effect in the outer regions of the star — and hence could resemble a

surface treatment somewhere between ours (where the poloidal field is unaffected by
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passing through the surface) and that of Haskell et al. [64] (where the poloidal field

vanishes at the surface). Since our boundary condition gives a poloidal-dominated

field and that of Haskell et al. gives a toroidal-dominated field, we suggest that

the inclusion of resistivity would result in configurations where neither component

is universally dominant. In particular, we would not expect magnetic distortions in

real, mixed-field, neutron stars to be universally oblate or prolate. We conclude that

future, more realistic, models of magnetised stars should incorporate a boundary

condition like ours, but modified to take account of the increasing resistivity in the

outer regions of the neutron star.



Chapter 7

Studying magnetic oscillations

through time evolutions

7.1 Introduction

In chapter 2 we discussed some of the roles magnetic fields may play in neutron

stars, including the observation of magnetar QPOs. By improving the modelling

of magnetic stellar oscillations, we may be able to use these QPOs as a probe of

neutron star physics. Whilst magnetars rotate very slowly, there are many other

neutron stars with high angular velocity as well as strong magnetic fields, so it is

desirable to be able to study oscillations in stars at both of these extremes. In

addition, it will prove easier to see magnetic effects on oscillations by looking at

very highly-magnetised configurations. An introduction to stellar oscillation modes,

with details of some of the terminology used in this chapter, is given in chapter 5.

The nonlinear code described in chapter 6 allows us to generate stationary MHD

equilibrium configurations. In this chapter we use these configurations as a back-

ground on which to study perturbations. This is done with a code which evolves

perturbations in time; from this the oscillation spectrum of the system can be found.

More specifically, we study linear perturbations of rotating Newtonian neutron

stars endowed with purely toroidal magnetic fields, making the Cowling approxima-

tion. Since the background configuration may be nonspherical by virtue of rotational

and magnetic effects, the perturbations and background are self-consistent. We are

also able to track modes up to very high magnetic field strengths (∼ 1017 G) and

136
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close to Keplerian velocity. This is in contrast to many previous numerical studies

of magnetic oscillations. Whilst we employ a purely toroidal background field, the

perturbed field is mixed poloidal-toroidal.

The code described here is based on the nonmagnetic code of Jones et al. [75]

and Passamonti et al. [110]; the main work of this chapter has been to extend

this work to oscillations of magnetised stars. We begin by discussing the equations

required to describe perturbations of a rotating magnetised star, then give details

of the boundary conditions and initial data used. We next describe numerical issues

and test the accuracy and convergence properties of the code. Finally, we present

results for magnetic oscillation modes. A condensed report on the work in this

chapter is given in Lander, Jones and Passamonti [85].

7.2 Governing equations

This section consists of a full description of the perturbation problem: the evolution

equations for the velocity, density and magnetic field, together with the boundary

conditions required and the initial data used.

7.2.1 Background and perturbation equations

We model a neutron star as a self-gravitating, rotating, magnetised polytropic fluid

with infinite conductivity. This system is governed by the equations of perfect

magnetohydrodynamics (MHD):

ρ

(
∂v

∂t
+ (v · ∇)v + 2Ω × v

)

= −∇P−ρ∇Φ−ρΩ×(Ω×r)+
1

4π
(∇×B)×B, (7.2.1)

∇2Φ = 4πGρ, (7.2.2)

∂ρ

∂t
= −∇ · (ρv), (7.2.3)

∂B

∂t
= ∇× (v × B), (7.2.4)

P = kργ , (7.2.5)

together with the solenoidal constraint ∇ · B = 0 on the magnetic field. Here v

denotes the part of the fluid’s velocity field which is not rigid rotation Ω; all other

symbols have their usual meanings. Throughout this chapter we work with γ = 2
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polytropes exclusively, as a simple approximation to a neutron star equation of state.

We consider linear Eulerian perturbations of this system by making the standard

ansatz that each physical quantity has a zeroth-order background piece and a first-

order perturbed piece; e.g. the density is written as ρ = ρ0 + δρ.

We assume that our background star is stationary and rigidly rotating, so that

Ω is zeroth-order and v first-order. Equations (7.2.3) and (7.2.4) become trivial and

we are left with

0 = −∇P0 − ρ0∇Φ0 − ρ0Ω × (Ω × r) +
1

4π
(∇× B0) × B0, (7.2.6)

∇2Φ0 = 4πGρ0, (7.2.7)

P0 = kργ
0 . (7.2.8)

Making the additional assumption of axisymmetry one may show that this system of

equations splits into two cases: one where the magnetic field is purely toroidal and a

second mixed-field case (with pure-poloidal fields as a limiting case). Details of the

solution of these equations are given in chapter 6; we use the code described therein

to generate the background configurations used here. Here we merely note that our

background configurations are fully self-consistent, with rotation, magnetic fields

and fluid effects in equilibrium. In contrast to other work on magnetic oscillations,

our background star need not be spherical, but may be distorted by rotational or

magnetic effects, or a combination thereof.

Working in the frame corotating with the background star, the linearised per-

turbation equations are:

ρ0
∂v

∂t
= −∇δP − ρ0∇δΦ− δρ∇Φ0 +

1

4π
(∇×B0)× δB+

1

4π
(∇× δB)×B0, (7.2.9)

∇2δΦ = 4πGδρ, (7.2.10)

∂δρ

∂t
= −∇ · (ρ0v), (7.2.11)

∂δB

∂t
= ∇× (v × B0), (7.2.12)

δP = kγργ−1
0 δρ =

γP0

ρ0
δρ. (7.2.13)
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Here we have assumed that the background and perturbations have the same

equation of state, both with polytropic index γ. Note that, by (7.2.12), ∂t(∇ ·
δB) = 0; i.e. if ∇ · δB = 0 in the initial data then it will remain zero. Since the

background is divergence-free by construction1, a divergence-free initial perturbation

gives ∇ · Btotal = ∇ · B0 + ∇ · δB = 0 for all time.

We now simplify the perturbation equations by making the Cowling approxi-

mation, and use (7.2.13) to eliminate δP terms from the perturbed Euler equation

(7.2.9); the perturbations are then governed by the reduced set of equations

ρ0
∂v

∂t
= −∇

(
γP0δρ

ρ0

)

− δρ∇Φ0 +
1

4π
(∇×B0)× δB +

1

4π
(∇× δB)×B0, (7.2.14)

∂δρ

∂t
= −∇ · (ρ0v), (7.2.15)

∂δB

∂t
= ∇× (v × B0), (7.2.16)

Now using (7.2.6) to replace Φ0, equation (7.2.9) may be rewritten as

∂f

∂t
= −γP0

ρ0
∇δρ+

[

(2 − γ)∇P0 −
1

4π
(∇× B0) × B0

]
δρ

ρ0

+
1

4π
(∇× B0) × δB +

1

4π
(∇× δB) × B0, (7.2.17)

where we have defined f ≡ ρ0v. Working with f simplifies the boundary conditions;

to the same end we define β = ρ0δB. Now

∇× δB = ∇×
(

β

ρ0

)

=
1

ρ0
∇× β − ∇ρ0

ρ2
0

× β (7.2.18)

and

∇× (v × B) = ∇×
(

f

ρ0
× B0

)

=
1

ρ0
∇× (f × B0) −

∇ρ0

ρ2
0

× (f × B0). (7.2.19)

Using these relations, together with the identity ∇P0 = γP0

ρ0
∇ρ0, we arrive at the

final form of our perturbation equations:

1In the mixed-field case we employ the vector potential A; in the purely toroidal-field case the

divergence ∇ · Btor ≡ 0 since ∂/∂φ ≡ 0 in axisymmetry
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ρ0
∂f

∂t
= −γP0∇δρ +

(
(2 − γ)γP0

ρ0
∇ρ0 −

1

4π
(∇× B0) × B0

)

δρ

+
1

4π
(∇× B0) × β +

1

4π
(∇× β) × B0 − 1

4πρ0
(∇ρ0 × β) × B0

(7.2.20)

∂δρ

∂t
= −∇ · f , (7.2.21)

∂β

∂t
= ∇× (f × B0) −

∇ρ0

ρ0
× (f × B0). (7.2.22)

If we rewrite these equations in terms of δP = γP0

ρ0
δρ and set the magnetic field

to zero they reduce to equations (15) and (16) of Passamonti et al. [110] in the

unstratified limit.

Writing out our perturbation equations in terms of components leaves us with

seven scalar equations governing the evolution of the perturbations. We write these

concisely by defining the vector quantities:

A =
1

4π
(∇× B0) × B0 (7.2.23)

B =
1

4π
(∇× B0) × β (7.2.24)

C =
1

4π
(∇× β) × B0 (7.2.25)

D =
1

4π
(∇ρ0 × β) × B0 (7.2.26)

E = ∇× (f × B0) (7.2.27)

F = ∇ρ0 × (f × B0). (7.2.28)

With these definitions our Euler equation becomes:

ρ0∂tfr = −γP0(δρ),r +

(
(2 − γ)γP0

ρ0
ρ0,r −Ar

)

δρ+ Br + Cr −
1

ρ0
Dr (7.2.29)

ρ0∂tfθ = −γP0

r
(δρ),θ +

(
(2 − γ)γP0

ρ0
ρ0,θ −Aθ

)

δρ+ Bθ + Cθ −
1

ρ0
Dθ (7.2.30)

ρ0∂tfφ = − γP0

r sin θ
(δρ),φ −Aφδρ+ Bφ + Cφ − 1

ρ0
Dφ (7.2.31)
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whilst the continuity equation is:

−∂tδρ =
2fr

r
+ fr,r +

fθ

r tan θ
+
fθ,θ

r
+

fφ,φ

r sin θ
. (7.2.32)

Finally the induction equation in components is:

∂tβr = Er −
1

ρ0
Fr (7.2.33)

∂tβθ = Eθ −
1

ρ0
Fθ (7.2.34)

∂tβφ = Eφ − 1

ρ0
Fφ. (7.2.35)

We next write all perturbed quantities as:

δ(t, r, θ, φ) =
∞∑

m=0

δ+m(t, r, θ) cosmφ+ δ−m(t, r, θ) sinmφ. (7.2.36)

We will drop the m subscripts, with the understanding that the following relations

in δ+ and δ− quantities are for a fixed azimuthal index m. This decomposition

removes the φ dependence of the perturbations at the expense of doubling the

number of equations: we now have 2D evolution equations in 14 perturbations:

f+
r , f

−
r , f

+
θ , f

−
θ , f

+
φ , f

−
φ , δρ

+, δρ−, β+
r , β

−
r , β

+
θ , β

−
θ , β

+
φ , β

−
φ . We demonstrate this de-

coupling with the unmagnetised version of the ∂tfr equation:

ρ0∂tfr = −γP0
∂δρ

∂r
+

(2 − γ)γP0

ρ0

∂ρ0

∂r
δρ. (7.2.37)

With the φ decomposition this becomes

ρ0∂t(f
+
r cosmφ + f−r sinmφ)

= −γP0
∂

∂r
(δρ+

r cosmφ+ δρ−r sinmφ)

+
(2 − γ)γP0

ρ0

∂ρ0

∂r
(δρ+

r cosmφ+ δρ−r sinmφ). (7.2.38)

Now equating cosmφ and sinmφ terms we see that

ρ0∂tf
+
r = −γP0

∂δρ+

∂r
+

(2 − γ)γP0

ρ0

∂ρ0

∂r
δρ+. (7.2.39)

ρ0∂tf
−
r = −γP0

∂δρ−

∂r
+

(2 − γ)γP0

ρ0

∂ρ0

∂r
δρ−. (7.2.40)

(7.2.41)

The full, φ-decomposed system of perturbations is given in the appendix, section

A.1.
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Figure 7.1: The numerical grid used in the code. After decomposing the perturbation

variables in φ only a 2D grid is needed. This is evenly divided in θ and in the

coordinate x ≡ x(r, θ), which is fitted to isopycnic surfaces of the star. With suitable

boundary conditions at the equator and pole, only one quarter of a disc is needed

for the evolutions.

7.2.2 Boundary conditions

With suitable boundary conditions and the decomposition in φ, we are able to reduce

our numerical domain from a sphere to one quadrant of a disc, as shown in figure

7.1. We describe these conditions here.

Surface

Rotational and magnetic forces will serve to distort the star’s density distribution

away from spherical symmetry and hence complicate the treatment of perturbations

at the stellar surface. To avoid these complications we replace the radial coordinate

r with one fitted to isopycnic surfaces, x = x(r, θ); even a nonspherical surface will

be defined by one value x = R. With the background density being a function of x
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alone, we have ρ0(x=R) = 0 and hence

f(x=R) = β(x=R) = 0. (7.2.42)

Finally, the Lagrangian pressure perturbation ∆P is zero at the surface by definition.

Relating this to the Eulerian perturbation we have

δP + ξ · ∇P0 = 0 at the surface. (7.2.43)

Using (7.2.6), we see that ∇P0 may be written as two terms proportional to ρ0 and

a term involving the magnetic current ∇×B/4π. Both density and current are zero

at the stellar surface and so ∇P0 must also vanish there. This yields our last surface

boundary condition:

δP (x=R) = 0. (7.2.44)

Our boundary conditions allow us to evolve the interior magnetic field perturba-

tions of our star, but not oscillations of the exterior. By contrast, one would expect

magnetic perturbations in a physical neutron star to reach the surface and produce

electromagnetic radiation extending through the exterior. Whilst our treatment of

the surface does not account for this, we believe that it is the most that can be

done using the equations of perfect MHD: in an infinitely-conducting polytropic

star, a magnetic field that extends to the surface has a corresponding Alfvén speed

cA ≡
√

B2/4πρ which becomes superluminal at some low density and infinite when

ρ = 0 (i.e. the stellar surface and exterior).

Dealing with the surface and exterior thus requires extra physics: a stellar model

more sophisticated than a polytropic fluid with perfect electrical conductivity. One

could employ a low-density numerical atmosphere for the exterior, or assume that

the field is confined or matches to some simplified crust — but these are merely

numerical conveniences rather than good models of actual NS physics. In reality,

perfect MHD ceases to be a good approximation close to the surface of a NS, where

resistive effects become important and the full equations of electromagnetism should

be used. The stellar surface is not fluid but an elastic crust; and the exterior will

have a magnetosphere region rather than a dilute, uniform ‘atmosphere’.

Needless to say, a credible model star which included all these effects would give

an oscillation spectrum closer to that of a real neutron star than the one we study

here. In lieu of such a model, however, we treat oscillations over the fluid, highly-

conductive interior of the star only. With magnetic fields being strongest here and
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∼ 99% of the NS’s mass consisting of a fluid interior, we suggest that dynamics

in this region could dominate the star’s oscillation spectrum; and hence that our

treatment is a reasonable first attempt to understand oscillations in real NSs.

Centre

Next we look at the conditions at the centre of the star. Since we deal with m > 0

perturbations in this study, we should enforce a zero-displacement condition:

δP (x=0) = 0 , f(x=0) = β(x=0) = 0. (7.2.45)

Equator

The equatorial symmetry properties of the perturbations in a fluid star may be

established through analysis of the governing equations. Specifically, one looks at

the behaviour of the equations under reflection about the equator: r 7→ r, θ 7→ π− θ

(we have already decomposed in φ). In many cases, one finds that the variables may

be classed according to their equatorial symmetry — either odd (the perturbation

is zero across the equator) or even (its θ-derivative is zero there). That is, certain

variables will always have one symmetry class (e.g. even) and the other variables

will always have the other symmetry class (odd if the first class are even). If analysis

of all the equations places each variable consistently in the same symmetry class,

then the system is indeed symmetric about the equator; in this case we are able to

reduce our numerical domain to just one 2D quadrant and enforce the perturbation

symmetry at the equator as another set of boundary conditions.

Analysing the perturbation equations for the (unmagnetised) rotating fluid prob-

lem, one finds that the perturbation variables may be divided into the two symmetry

classes {f±r , f±φ , δρ±} and {f±θ }. In the case of a background star with a pure poloidal

field these classes are augmented by magnetic variables, viz. {f±r , f±φ , δρ±, β±θ },
{f±θ , β±r , β±φ }. Note that although the background field is pure-poloidal, the per-

turbed field will still be mixed poloidal-toroidal. For a pure-toroidal background

the magnetic perturbations are again mixed, but they fall into different symme-

try classes from perturbations of a pure-poloidal star: {f±r , f±φ , δρ±, β±r , β±φ } and

{f±θ , β±θ }. It follows that whilst we may separately treat perturbations on either a

pure-poloidal or pure-toroidal background, the perturbations of a mixed-field back-

ground will have no definite equatorial symmetry. Investigating this latter group
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of perturbations requires an extended numerical domain consisting of an upper and

lower quadrant. For the work reported here we concentrate only on oscillations of

stars with purely toroidal background fields.

Pole

Recall from chapter 5 that a general vector perturbation (the velocity is shown here)

can be decomposed as

v = U(r)Ylmer + V (r)∇Ylm +W (r)er ×∇Ylm, (7.2.46)

whilst a scalar perturbation (in this case, the density) will have the form

δρ = T (r)Ylm. (7.2.47)

From the form of these perturbations, their behaviour at the pole may be de-

duced. Although we do not decompose in θ in the code, we will find it convenient

to rewrite the spherical harmonics using Ylm(θ, φ) = Plm(θ)eimφ (the constants are

unimportant; they may be regarded as absorbed into the radial function). The

boundary conditions at the pole θ = 0 are then given by the behaviour of the rele-

vant functions of Plm there. Using recurrence relations (see for example Arfken and

Weber [6]), one may show that a Legendre function Plm contains a sinm θ term and

that its θ-derivative dPlm/dθ contains a sinm+1 θ term and a sinm−1 θ term.

By (7.2.47), it is clear that scalar perturbations have θ-dependence given simply

by Plm; since we are concerned with m 6= 0 perturbations our BC at the pole is that

a scalar perturbation must vanish there.

For vector perturbations, we first re-express (7.2.46) in terms of spherical polar

components:

vr = U(r)Ylm (7.2.48)

vθ = V (r)∇Ylm · eθ +W (r)(er ×∇Ylm) · eθ

=
eimφ

r

(

V (r)Plm,θ −
imW (r)

sin θ
Plm

)

(7.2.49)

vφ = V (r)∇Ylm · eφ +W (r)(er ×∇Ylm) · eφ

=
eimφ

r

(

V (r)Plm,θ +
imW (r)

sin θ
Plm

)

(7.2.50)

From these, it is clear that vr = 0 at the pole for all m 6= 0. vθ and vφ may be

expressed as powers of sin θ as described earlier; the lowest power in each case is
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sinm−1 θ. We deduce that vθ = vφ = 0 at the pole for m ≥ 2, whilst for m = 1 the

boundary condition only requires them to be finite and continuous; in this case the

boundary condition is that the θ-derivatives should vanish at the pole.

In summary, then, the boundary conditions at the pole for δρ,v and β are:

δρ = vr = βr = 0 ∀m 6= 0

vθ = vφ = βθ = βφ = 0 m ≥ 2

vθ,θ = vφ,θ = βθ,θ = βφ,θ = 0 m = 1

7.2.3 Initial data

Let us return again to the general forms of scalar and vector perturbations given by

(7.2.47) and (7.2.46):

v = U(r)Ylmer + V (r)∇Ylm +W (r)er ×∇Ylm

δρ = T (r)Ylm

where the functions U(r) and V (r) are coefficients of the polar part and W (r) is the

coefficient of the axial term in the vector perturbation. The scalar perturbation only

has a polar term, with coefficient T (r). It follows that we should choose different

initial data for evolutions based on whether we wish to study polar or axial oscillation

modes. Considering the nonrotating and unmagnetised case for simplicity, we wish

to see what initial data excites axial modes and what excites polar modes. Velocity

and density perturbations are discussed separately.

Velocity initial data

Assume the initial data is some velocity v. Then by the continuity equation a

perturbation will be induced in the density, governed by

∂δρ

∂t
= −∇ · (ρ0v) = −ρ0∇ · v −∇ρ0 · v. (7.2.51)

Since ρ0 is spherically symmetric (with no rotation or magnetic field to distort it),

we then have
∂δρ

∂t
= −ρ0∇ · v − dρ0

dt
vr. (7.2.52)

Taking the divergence of (7.2.46) gives

∇ · v =
dU

dr
Ylm +

2

r
UYlm + V∇2Ylm +W∇ · (er ×∇Ylm), (7.2.53)
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where we have used the result that the scalar product of orthogonal vectors is zero.

Using Legendre’s equation ∇2Ylm = −l(l + 1)Ylm/r
2 and simplifying then gives

∇ · v =

(
dU

dr
+

2

r
U − l(l + 1)V

r2

)

Ylm +W∇ · (er ×∇Ylm). (7.2.54)

Now consider the final term (whose coefficient is the radial function W (r)). In

spherical polar components we have

er ×∇Ylm =







0
m

r sin θYlm

−1
rYlm,θ






, (7.2.55)

the divergence of which is zero — and so the final term in (7.2.54) is zero, and we

are left with

∇ · v =

(
dU

dr
+

2

r
U − l(l + 1)V

r2

)

Ylm, (7.2.56)

i.e. polar initial data in v induces a perturbation in δρ, but an axial initial v

produces no perturbation in the density (for a spherically symmetric background

star).

Density initial data

Using a similar approach, let us start with some initial δρ and find the induced

velocity perturbation. In this case we need the Euler equation, which is

∂ρ0v

∂t
= ρ0

∂v

∂t
= −γP0

ρ0
∇δρ+

(2 − γ)γP0

ρ0
δρ (7.2.57)

Since the angular dependence of δρ is given simply by Ylm, it is immediately clear

that the induced v consists of a Ylm term and a ∇Ylm term and hence is a polar

perturbation. Therefore, initial data in δρ can only induce a polar velocity pertur-

bation.

Initial data used in the code

From the above analysis, we see that axial initial data in v will produce purely

axial perturbations and no δρ, in the case of a spherically symmetric background.

Adding a distorting effect to the background configuration, the resultant modes will

still be dominantly axial unless the distortion is very large — i.e. fast rotation

or extremely strong magnetic fields. Similarly, an initial δρ will induce only polar
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modes in a spherical star; for a non-spherical star the modes will not be purely polar,

but polar-led modes should still dominate the oscillation spectrum.

Hence, we excite polar/polar-led modes using initial data given by

δρ =
rm

Rm
Ymm(θ) =

(
r sin θ

R

)m

(7.2.58)

and axial/axial-led modes with an initial perturbation of the form

f = ρ0v = ρ0e
(rm/Rm)er ×∇Ymm, (7.2.59)

where R is the stellar radius. Similar choices were used by Jones et al. [75] and

Passamonti et al. [110] for oscillations of unmagnetised stars. We find that these

forms of initial data also efficiently excite oscillations of magnetised configurations.

7.3 Numerics

7.3.1 Plan of code

As described above, our numerical domain is one quadrant of a (2D) disc, with

x ∈ [0, 1] and θ ∈ [0, π/2]; by symmetry and through a φ-decomposition this domain

is sufficient to investigate behaviour over the whole 3D, potentially nonspherical,

star. Upon decomposing in φ, we have a system of fourteen perturbation equations

to evolve in time.

The code we use is written in C and C++ and is divided into a number of

subroutines, which are shown in figure 7.2. The idea is to first generate the requisite

background star, with a chosen rotation rate and magnetic field strength. Initial

data is specified: either the f -mode file, which excites polar and polar-led modes;

or the r-mode or inertial-mode file, which both excite the axial class of oscillations.

Since we have decomposed in φ, we also need to specify the azimuthal index m for

each evolution. Linear perturbation equations are then evolved on this background

and with the given initial conditions, subject to the requisite boundary conditions.
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kinetic

emagpert
divdelta b

outputfft

boundary mag source pred

mag source corr

mccormack

evolve

mix-thnrot tor-thnrot

nsrot.exe

output.out

mag background

openfiles

fmode

rmode

imode

unify

evol.exe

Figure 7.2: Schematic plan of the code. The main routine is unify, and evol.exe is

the executable time-evolution code. In addition to the subroutines shown above, the

code also employs the header files defs.h, globals.h, proto.h and nrutil.h.
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In more detail, the time-evolution code compiles an executable, evol.exe, from

a number of subroutines. To generate the background star, one must first make

the executable nsrot.exe from either tor-thnrot.c or mix-thnrot.c; the former gives

stars with purely toroidal fields, the latter allows for mixed toroidal-poloidal fields

with pure poloidal fields as a special case. Next nsrot.exe is run, with user-specified

parameters related to rotation rate and magnetic field strength. This generates a

large data file output.out containing all background quantities at each grid point.

This is scanned by mag background, a subroutine which imports all this background

data into the time-evolution code proper.

Mag background is in turn called by unify, the highest-level subroutine in the

code — unify itself being used to compile the final executable evol.exe. In addition

to mag background, unify calls three other subroutines: openfiles designates files to

contain information from the running executable, evolve contains the actual code

responsible for evolving the perturbation equations, and finally one of the three

initial data files (fmode, rmode or imode) is called, specified in the header file defs.h.

The subroutine evolve calls two lower subroutines itself. One, outputfft, saves

data from different timesteps — both direct information about the perturbations δρ,

f and β, and combinations of these variables: the kinetic and magnetic energy in

the perturbations, and the divergence of the perturbed field (generated in their own

subroutines kinetic, emagpert and divdelta b respectively). The other subroutine

called from evolve is the key one: mccormack. This subroutine uses the McCormack

predictor-corrector scheme (see the following subsection) to evolve linear perturba-

tions on the background star. These perturbations are evolved in the interior of the

star from sources contained in the subroutines mag source pred and mag source corr

respectively, whilst the boundary conditions are imposed after each timestep using

the boundary-condition subroutine boundary.

7.3.2 McCormack scheme

To evolve the perturbation equations of our system numerically, we employ the

McCormack scheme [97]. This is a ‘predictor-corrector’ method: starting at some

particular timestep tn (where n is an index, not a power), it begins with an estimate

of the values of the variables at the next timestep tn+1 (the predictor step) and

then uses this estimated value to improve the solution at the new timestep tn+1
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(the corrector step). Although both the predictor and corrector steps are only first-

order, they are combined in a way that gives an overall scheme which is second-order

accurate.

More specifically, let us consider the Euler equation. This equation relates the

evolution of the fluid velocity v to quantities involving the background and perturbed

density, pressure and magnetic field. For simplicity we group all of these quantities

into the source term S; the Euler equation is then

∂v

∂t
= S. (7.3.1)

We start at timestep tn, with known values of the velocity vn and the source term

Sn. The predictor step of the McCormack scheme then provides an estimate ṽn+1

for the velocity at the next timestep:

ṽn+1
i = vn

i − ∆t

∆x

(
Sn

i − Sn
i−1

)
(7.3.2)

where the index i labels a spatial point in the grid, ∆t is the size of the timestep

and ∆x the grid spacing. The corrector step then combines the predicted ṽn+1 with

the original vn into a second-order accurate vn+1:

vn+1
i =

1

2

(
ṽn+1

i + vn
i

)
− ∆t

2∆x

(

S̃n+1
i+1 − S̃n+1

i

)

(7.3.3)

where S̃n+1 is the source term evaluated from the predictor-step estimates for quan-

tities at the new timestep.

The continuity equation and the induction equation are evolved in the same

manner as described above for the Euler equation. A full derivation of this scheme,

together with details of its stability are given by Hirsch [66].

7.3.3 Kreiss-Oliger dissipation

Finite difference methods, like the one used for the time evolution code presented

here, approximate a continuum problem by a discrete one. Quantities which should

be smooth are replaced by approximations to their values over a finite number of

points. Because the actual system of PDEs evolved contains this numerical error,

one would expect this discretised system to have oscillations dependent on the grid

spacing h. In particular, there may be solutions of the form exp(at/h), where a > 0.

These are unphysical instabilities, not present in the continuum solution, and need

to be removed.
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To do this, we use Kreiss-Oliger dissipation; this is an extra term added to the

Euler equation [82]. It has the form of a viscosity, which damps out spurious high-

frequency oscillations. This viscosity term is given by some dissipation operator D4

acting on the fluid velocity v; its form (shown in 1D for simplicity) is

(D4v)i = − 1

16h
(vi−2 − 4vi−1 + 6vi − 4vi+1 + vi+2) (7.3.4)

at some gridpoint i [66]. This term is fourth-order in accuracy and so does not affect

the overall order of convergence of the (second-order) code. The magnitude of this

term is resolution-dependent, so that it vanishes in the infinite-resolution continuum

limit.

7.3.4 Artificial resistivity

In addition to this dissipation, two further tricks are required to ensure stability and

accuracy of magnetic evolutions. To stabilise the numerical evolution of the mag-

netic field, we first note that if the electrical resistivity η is non-zero, the induction

equation gains an extra term:

∂B

∂t
= ∇× (v × B) − η∇× (∇× B). (7.3.5)

By including this second term (at a small magnitude) we are able to suppress in-

stabilities which arise from evolving the magnetic field. As for the Kreiss-Oliger

dissipation, this artificial resistivity is added in a resolution-dependent manner, be-

coming zero in the continuum limit. We find that a very small value of η is sufficient

to improve long-term stability, but has negligible physical effect on our evolutions,

since it acts over a far longer timescale than any others in our problem.

7.3.5 Divergence cleaning

Finally, for the long-term accuracy of the code we need to ensure that the perturbed

magnetic field remains solenoidal. This is guaranteed in the continuum limit if the

initial data has no monopolar term, since the divergence of the induction equation

is
∂(∇ · B)

∂t
= ∇ · ∇ × (v × B) ≡ 0, (7.3.6)

but in practice numerical error will be introduced from the finite grid resolution. It

is important to ‘clean’ the field of this class of numerical error, since it has been
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shown that a numerically-generated monopolar field gives rise to a spurious extra

force [13].

There are various approaches to divergence cleaning for numerical schemes. A

review of these may be found in Dedner et al. [38], where in addition a new con-

strained formulation of MHD is proposed, where the condition ∇ ·B = 0 is coupled

to the induction equation through an auxiliary function; we repeat their argument

below.

In the continuum limit the induction equation states that the vector ∂tB has a

divergence-free part only, whereas a general vector can be decomposed into curl-free

and divergence-free parts. Our discretised induction equation will no longer preserve

this divergence-free property exactly and accordingly we add a curl-free term −∇ψ
to the RHS, with ψ being some unknown function. We then couple our augmented

induction equation to a relation for ψ:

∂tB = ∇× (v × B) −∇ψ (7.3.7)

D(ψ) = −∇ · B (7.3.8)

where D is some linear differential operator. The Euler equation and the equation

of mass conservation are unaffected. We now take the divergence of the first relation

and the time derivative of the second:

∂t(∇ · B) = −∇2ψ (7.3.9)

∂tD(ψ) = −∂t(∇ · B) (7.3.10)

which we combine to see that

∂tD(ψ) = ∇2ψ. (7.3.11)

The choice of D determines the way in which divergence errors are removed.

The three basic types of cleaning are elliptic, parabolic and hyperbolic — so named

because they entail solving a Poisson equation, heat equation or wave equation, re-

spectively. Dedner et al. [38] pioneer a mixed hyperbolic-parabolic approach, which

they find to be superior to the simpler divergence-cleaning methods since it allows

for errors to be propagated out of the star (hyperbolic cleaning) whilst simultane-

ously being damped (parabolic cleaning). The third method, elliptic cleaning, has
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the serious disadvantage that it requires the repeated solution of the (computation-

ally expensive) Poisson equation; the mixed-hyperbolic scheme only adds the modest

expense of having to evolve one more quantity — the function ψ.

Hyperbolic-parabolic divergence cleaning involves defining D by

D(ψ) =
1

c2h
∂tψ +

1

c2p
ψ, (7.3.12)

which leads to a telegraph (damped-wave) equation for ψ:

∂ttψ = −c
2
h

c2p
∂tψ + c2h∇2ψ. (7.3.13)

Within the code, we implement this divergence-cleaning method through the evolu-

tion equation

∂tψ = −c
2
h

c2p
ψ − c2h∇ · B (7.3.14)

together with our modified induction equation (7.3.7). Following Price and Mon-

aghan [113] we take ch, the divergence-wave propagation speed, to be related to the

sound cs and Alfvén cA speeds through the relation:

ch =
√

c2s + c2A. (7.3.15)

The other coefficient is physically the inverse of the decay timescale τ of equation

(7.3.13):
c2h
c2p

=
1

τ
(7.3.16)

which Price and Monaghan argue is not universal, but rather should be adapted to

suit some lengthscale λ specific to the problem, i.e.

c2h
c2p

=
1

τ
=
αch
λ
, (7.3.17)

where α is a dimensionless parameter. Using this result, we take λ to be the radial

grid spacing ∆r in our code. Finally then, our evolution equation for the function

ψ is

∂tψ = −
α
√

c2s + c2A

∆r
ψ − (c2s + c2A)∇ · B. (7.3.18)

To close the system we need to give appropriate boundary conditions and initial

data. For the latter we simply set ψ(t = 0) = 0 — this is reasonable because the
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initial data is divergence-free and so the variable ψ, associated with the monopole

part of the magnetic field, should be zero initially.

For the boundary condition at the surface, we choose the Sommerfeld outgoing-

wave condition on ψ:

∂tψ = −
√

c2s + c2A (∂rψ + ψ) . (7.3.19)

This result is for a spherical surface, but we find it still gives satisfactory cleaning

in the case where the background star is spheroidal.

7.3.6 Testing the code

Since we already have confidence in the performance of the code in the nonmag-

netic limit (see Passamonti et al. [110] for details), we now test its accuracy and

convergence properties with the inclusion of magnetic effects. To this end, we wish

to monitor the divergence of the magnetic field and the total energy of the system

(which should be conserved in the continuum limit). Since the background config-

urations are stationary their total energy is automatically conserved. In addition,

the background magnetic fields are also guaranteed divergence-free: in the purely

poloidal/mixed-field case the field is written in terms of the vector potential A, and

so

∇ · B = ∇ · ∇ × A ≡ 0; (7.3.20)

whilst in the pure-toroidal field case

∇ · B =
1

r sin θ

∂Bφ

∂φ
≡ 0 (7.3.21)

since ∂/∂φ ≡ 0 in axisymmetry. Therefore it suffices to check conservation of the

perturbed energy and the value of ∇ · δB.

Divergence of δB

Let us first write ∇ · δB in terms of the code variable β = ρ0δB:

∇ · δB = ∇ ·
(

β

ρ0

)

=
1

ρ0
∇ · β − 1

ρ2
0

∇ρ0 · β. (7.3.22)

Expanding the quantities in the previous equation into components we find that

∇ · β =

(

β+
r,r +

2

r
β+

r +
1

r
β+

θ,θ +
1

r tan θ
β+

θ +
m

r sin θ
β−φ

)

cosmφ

+

(

β−r,r +
2

r
β−r +

1

r
β−θ,θ +

1

r tan θ
β−θ − m

r sin θ
β+

φ

)

sinmφ (7.3.23)
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and

∇ρ0 · β =
∂ρ0

∂r
βr +

1

r

∂ρ0

∂θ
βθ. (7.3.24)

It is clear that ∇ · δB consists of a component with cosmφ dependence and an-

other with sinmφ dependence; we denote these (∇·δB)+ and (∇·δB)− respectively.

To test the divergence-cleaning method of section 7.3.5, we evolve initial data con-

taining a large monopolar piece both with and without divergence cleaning (DC);

the results are shown in figure 7.3. We choose to use (∇ · δB)−, but the results are

the same for (∇·δB)+. After a short time the initially central monopolar region has

been propagated to the edge of the star by the divergence cleaning method; in the

non-DC evolution it is virtually unchanged. At late times, there is no trace of the

initial monopolar data in the DC evolution and the divergence is low throughout the

star. The non-DC evolution, however, illustrates why ∇ · B = 0 must be enforced:

an instability has set in at the centre, with the divergence growing to a huge value.

The test in figure 7.3 shows that any divergence in the field is propagated

throughout the star and leaves when it reaches the surface. This is laborious to

check at all points in the star for each evolution, so we would also like a way of

checking the divergence globally. However, one cannot simply use the volume inte-

gral of ∇ · δB over the star, since ∇ · δB = (∇ · δB)+ cosmφ + (∇ · δB)− sinmφ;

both terms are zero after φ-integration. Instead we define a ‘monopole energy’

D ≡ R2

8π

∫

(∇ · δB)2 dV (7.3.25)

where R is the stellar radius, included to give D the dimensions of an energy for a

meaningful comparison with the perturbed magnetic energy δM (whose explicit form

is given in equation (7.3.30)); we need D to stay small throughout each evolution.

Using the above expressions for ∇ · δB and recalling that sin2mφ and cos2mφ

integrate to π whilst sinmφ cosmφ integrates to zero, we find that

D =
1

8

∫
1

ρ2
0

(

β+
r,r +

2β+
r

r
+
β+

θ,θ

r
+

β+
θ

r tan θ
+

mβ−φ
r sin θ

− ρ0,rβ
+
r

ρ0
− ρ0,θβ

+
θ

rρ0

)2

+
1

ρ2
0

(

β−r,r +
2

r
β−r +

β−θ,θ

r
+

β−θ
r tan θ

−
mβ+

φ

r sin θ
− ρ0,rβ

−
r

ρ0
− ρ0,θβ

−
θ

rρ0

)2

drdθ.

(7.3.26)

For the results presented in this thesis, the divergence of δB was monitored

through the dimensionless quantity D/δM . This value oscillates over time, but we
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Figure 7.3: Testing the divergence-cleaning method used in the code. Monopolar

initial data is evolved without (left column) and with (right column) divergence

cleaning; the value of log[(∇·δB)−] is shown initially, after 1000 timesteps and after

50000 timesteps (from top to bottom). After 1000 timesteps the monopolar region

in the non-DC plot has barely moved from its original location; in the DC plot it

has propagated to the edge of the star, where it leaves the numerical grid. After

50000 timesteps the non-DC evolution has become unstable, with the divergence

exceeding 1010 (in code units) near the centre, whilst the DC plot shows low diver-

gence throughout; in particular the original monopolar field at the centre has been

completely removed.
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find it to be typically of the order ∼ 0.01. This is comparable with the initial value,

suggesting that (with divergence cleaning) the code’s evolutions preserve ∂t(∇ · B)

well.

Conservation of energy

Next we use conservation of (perturbed) energy to test the order of convergence

of our code, using the fact that in the limit of infinite resolution energy should be

exactly conserved.

The total energy of the system is the sum of all constituent energies — the kinetic

T , gravitational W , internal U and magnetic M :

E = T +W + U +M

=

∫ (
1

2
ρV · V − ρΦ +

P

γ − 1
+

1

8π
B · B

)

dV (7.3.27)

where V = Ω + v is the sum of the background rotation and the velocity perturba-

tion. On perturbing each energy term we recover the background energy at zeroth

order, leaving an expression for δE which we evaluate to second order in the per-

turbations, since the first-order terms will be proportional to cosmφ or sinmφ and

hence will integrate to zero. Since we make the Cowling approximation, δΦ = 0 and

so the second-order perturbation in the gravitational energy is zero:

δW = −
∫

δρδΦ dV = 0 (7.3.28)

Next we turn to the perturbed kinetic and magnetic energies, which are straightfor-

wardly expressed:

δT =

∫
1

2
ρ0|v|2 dV, (7.3.29)

δM =

∫
1

8π
|δB|2 dV, (7.3.30)

but the internal-energy perturbation needs more care. Since we are looking for

second-order contributions, when making the perturbative ansatz P = P0 + δP we

now take δP to mean the total perturbation, not simply the first-order piece. We

may naturally find the higher-order piece by using the polytropic relation P = kργ
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in our analysis:

U =
1

γ − 1

∫

kργ dV

=
1

γ − 1

∫

k(ρ0 + δρ)γ dV

=
1

γ − 1

∫

kργ
0

(

1 +
δρ

ρ0

)γ

dV

=
1

γ − 1

∫

P0

(

1 + γ
δρ

ρ0
+
γ(γ − 1)

2

(
δρ

ρ0

)2

+ O
(
δρ

ρ0

)3
)

dV. (7.3.31)

Now the zeroth-order piece is the background relation for U and the first-order piece

integrates to zero, yielding the second-order expression

δU =

∫
γP0

2ρ2
0

δρ2 dV. (7.3.32)

These energies have a simple form when written in the φ-decomposed variables used

in the code. For example, the magnetic energy of a perturbed magnetic field δB is

given by

δM =
1

8π

∫

δB · δB dV =
1

8π

∫
β · β
ρ2
0

dV. (7.3.33)

Now each component of β is decomposed in φ, e.g. βr = β+
r cosmφ + β−r sinmφ.

Taking the square of this gives

β2
r = (β+

r )2 cos2mφ+ (β−r )2 sin2mφ+ 2β+
r β

−
r cosmφ sinmφ. (7.3.34)

On integrating this quantity (or equally β2
θ or β2

φ) over φ ∈ [0, 2π], the cross-term

vanishes and cos2mφ and sin2mφ each integrate to π. Hence,

∫

β · β drdθdφ =

∫

(β2
r + β2

θ + β2
φ) drdθdφ

= π

∫ (

(β+
r )2 + (β−r )2 + ...+ (β−φ )2

)

drdθ (7.3.35)

and so

δM =
1

8

∫
1

ρ2
0

(

(β+
r )2 + (β−r )2 + ...+ (β−φ )2

)

drdθ. (7.3.36)

Since we are making the Cowling approximation, δW = 0 and we are left with

δE = δT + δU + δM =

∫ (
1

2
ρ0|v|2 +

γp0

2ρ2
0

δρ2 +
1

8π
|δB|2

)

dV. (7.3.37)
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This is in agreement with equation (C5) of Friedman and Schutz [46] in the case of

adiabatic perturbations within the Cowling approximation, but with an additional

magnetic energy term.

To evaluate the convergence ratio, we monitor the evolution of the high-resolution

energy δE64×60(t) and the medium-resolution energy δE32×30(t), comparing these

with the initial value of the energy δE(0). In the continuum limit δE will have no

time-dependence and will be equal to its initial value for all time. Hence we are able

to use this exact result to define a convergence ratio:

Oconv =
1

log 2
log

(
δE32×30(t) − δE(0)

δE64×60(t) − δE(0)

)

. (7.3.38)

In figure 7.4 we evaluate Oconv over time, confirming that the code is second-order

convergent.

7.3.7 Nondimensionalising

Throughout the code we employ variables which have been made dimensionless

through division by a suitable combination of powers of gravitational constant G,

central density ρc and equatorial radius req. For example, a dimensionless mode

frequency σ̂ is related to the physical one σ (with units of rad s−1) through the

relation σ̂ = σ/
√
Gρc; the conversion is the same for rotational frequency Ω. Since

dimensionless frequencies of this form are common in oscillation mode literature we

use these throughout this work. Dimensionless magnetic field strengths, however,

are less likely to be familiar and so we quote these in terms of gauss.

When we use dimensional quantities they are for a neutron star with canonical

parameters: an equatorial radius of 10km (in the non-rotating, unmagnetised case)

and a mass of 1.4M⊙ (where M⊙ is solar mass). The relationship between dimen-

sionless frequencies σ̂ (equivalently Ω̂) and their physical counterparts is only weakly

dependent on Ω and B — and hence is roughly linear, with

σ[Hz] ≈ 1890σ̂. (7.3.39)

Finally, we note that in our dimensionless units, the Keplerian (break-up) velocity

ΩK ≈ 0.72. When we plot sequences of modes in rotating stars, we typically track

the modes up to Ω/ΩK ≈ 0.95; that is, rotation rates 95% of the break-up velocity.
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Figure 7.4: We determine the order of convergence of our code by evaluating the

total perturbed energy δE over time; in the exact, continuum limit this quantity will

not deviate from its initial value. The upper plot shows the deviation of δE from its

initial value for (r, θ) grids of 32 × 30 and 64 × 60 points. From these we confirm

that the order of convergence Oconv of the code is equal to 2, as intended (see lower

plot). Oconv is only plotted for t ≥ 10, since at early times the numerical values of

δE cross the continuum value, causing Oconv to oscillate rapidly. The background

configuration for these tests was a star with rotation rate Ω/
√
Gρ = 0.238 and

with an average magnetic field strength B̄ = 2.87 × 1016 G, evolved for 30 f -mode

oscillations.



Chapter 7: Numerical work on oscillations 162

7.4 Results

7.4.1 Mode spectrum of a nonrotating magnetised star

In this section we present results for nonrotating stars, since the mode spectrum

is simpler, leaving rotating stars to the next section. We begin by investigating

the new class of modes present with the addition of a magnetic field: the Alfvén

modes (termed a-modes for brevity). Results are presented for both polar and axial

a-modes.

Let us begin by considering where in the frequency spectrum these modes could

be expected. Now, any mode frequency will be proportional to some characteristic

wave speed. For fluid modes like the f -mode, the frequency should be proportional

to the sound speed cs; similarly the a-mode frequencies should be proportional to

the Alfvén speed cA. Accordingly the ratio of frequencies should scale as

σf

σa
∼
〈
cs
cA

〉

(7.4.1)

where the angle brackets represent a volume average. Now

cs
cA

=

√

γP

ρ

/
√

B2

4πρ
(7.4.2)

and so 〈
cs
cA

〉

=
2
√
πγ <P >

B̄
. (7.4.3)

We find from our background code that a nonrotating unmagnetised γ = 2 polytrope

with a mass of 1.4M⊙ and radius R = 10 km has a volume-averaged pressure <P >

of 3.10× 1034 dyn cm−2. Using this value and B̄ = 1016 G to nondimensionalise, we

find that
σf

σa
∼ 90 ×

(
<P >

3.10 × 1034 dyn cm−2

)1/2( B̄

1016 G

)−1

. (7.4.4)

With the value of <P > varying little with magnetic field strength, let us assume

that it is a constant and that σf/σa scales only with B̄. It then follows that we

should expect σa to be roughly 1/90 of σf for a 1016 G field, but 1/9 of σf for a 1017

G field. This part of the spectrum may be dominated by inertial modes in the case

of unmagnetised rotating stars, but in the absence of rotation we may be confident

that any oscillations at lower frequency than the f -mode are associated with the

magnetic field — see figure 7.5.
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Figure 7.5: Typical FFT results for a pair of nonrotating stars, one magnetised

and the other unmagnetised. We plot mode frequency σ (in a dimensionless form)

against PSD, the power spectral density. We see that the f -mode frequencies are

very close in each case. With no Coriolis force there are no inertial modes, therefore

any peaks at lower frequency than the f -mode must be either noise or Alfvén modes.

We identify the lowest-frequency spike in the magnetic FFT as noise, since there is

a corresponding unphysical peak in the nonmagnetic FFT. The following peaks in

the magnetised-star FFT, however, have no analogue in the nonmagnetic FFT and

so we identify these as Alfvén modes. The duration of the evolution was sufficient

to resolve around 100 Alfvén oscillations.
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Now, with σa ∝< cA > and cA = B/
√

4πρ, it follows that σa ∝ B, provided

that magnetic changes to the density distribution are higher order (which should be

true for all but very high field strengths — see chapter 6). To summarise, a-modes

should scale approximately linearly with field strength and appear as oscillations

with lower frequency than the f -mode. With these expectations, we now turn to

numerical results from our time-evolution code.

In figure 7.6 we track a number of Alfvén mode frequencies up to averaged-field

strengths of order 1017 gauss. For axial initial data and fixed m we find a single

l=m mode2, whilst polar initial data excites two l0 =m + 1 modes for a given m.

The index l0 refers to the highest-l Ylm that contributes significantly to the mode’s

eigenfunction; see chapter 5 or Lockitch and Friedman [93] for more details. In all

cases, we see that as expected there is a near-linear relationship between σa and B̄.

The identification of the a-modes is based on analysis of their eigenfunctions, using

the numerical method of Stergioulas et al. [131]. The labelling used here anticipates

the results of the next section, where we track these modes for increasing rotation

rate.

At the start of this section we showed that the a-mode frequency should vary

linearly with B̄, and this appears to be borne out by our results. We now quantify

this dependence and the deviation from it. By looking at the weak-field results

from our code (where the relationship should be closest to linear), we determine the

constants of proportionality in the relationship

l0
m(σa)k√
Gρc

= l0
mck

(
B̄

1016 G

)

, (7.4.5)

finding that 2
2c = 0.033, 32c1 = 0.030, 32c2 = 0.045, 44c = 0.086, 54c1 = 0.069, 54c2 =

0.090, 66c = 0.146, 76c1 = 0.127, 76c2 = 0.150. We may use the linear relationship

(7.4.5), with the numerically-established constants l0
mck, to test how close our results

are to the linear regime. We find that even for strong fields, the deviation from the

linear regime is always less than 8% — and in most cases is less than 5%.

Finally in this section, we look at the shift in the frequency of the fundamental

mode upon the addition of a magnetic field to the star. This mode is restored by

perturbations in the fluid pressure P in the unmagnetised case, so we anticipate

that in the magnetic problem the restoring force is perturbations of total (fluid

2We also find three axial l0 = m + 2 modes, but these are harder to resolve for high m and so

do not feature in the plots in this section
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Figure 7.6: Polar l0 = m + 1 Alfvén modes (top) and axial l = m Alfvén modes

(bottom), for m=2, 4, 6. Tracking the modes to high field strength, we see that each

mode frequency scales linearly with magnetic field strength, as anticipated. These

results are for a nonrotating star.
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Figure 7.7: The shift in f -mode frequency due to magnetic effects (for nonrotating

stars), for m = 2, 4, 6. On the y-axis we plot percentage increase in σf from its

unmagnetised value; we see that this shift appears to depend quadratically on B̄.

The apparent deviation from this dependence, visible in the weakest-field results, is

attributable to numerical errors in these very small frequency shifts.

plus magnetic) pressure, P + B2/8π. The magnetic shift in σf , then, should be

proportional to B2 — but since magnetic pressure is very modest in magnitude

compared with fluid pressure, we expect the frequency shift to be small. For example,

using our canonical model star, the magnetic pressure is ∼ 1% of the fluid pressure at

B̄ = 1017 G. We confirm these expectations in figure 7.7. In all cases σf is increased

by the inclusion of magnetic effects, but the shifts are only around a couple of percent

even for B̄ ∼ 1017. The relative shift appears to be more pronounced for higher-m

oscillations.
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7.4.2 Mode spectrum of a rotating magnetised star

Armed with knowledge from the previous subsection about the spectrum of magne-

tised nonrotating stars, we next consider rotating magnetised configurations. The

earliest studies of magnetic oscillations (e.g. Chandrasekhar and Limber [28]) sug-

gested that the significance of the magnetic field on the oscillation spectrum should

be linked to the ratio M/|W |; when additionally including rotational effects we

would expect the relative significance of the two effects to be related to M/T [104].

We first consider magnetic shifts in the f -mode frequency for rotating stars.

Rotation splits the f -mode into co- and counter-rotating modes; we expect the

frequencies of both branches of the mode to shift with the addition of magnetic

fields. At low rotation, the magnetic shift for each piece of the f -mode is comparable

with the shift in the nonrotating case, but at higher rotation rates the shift becomes

less significant — see figure 7.8. This bears out our expectation that the magnetic

shift should scale with M/T .

We next turn to a-modes and r-modes of rotating magnetised stars. Based on

our experience so far, we have expectations on how each mode should behave. We

anticipate a rotational splitting of the a-modes into co- and counter-rotating pieces

(as seen for the f -mode); in addition we expect to see some magnetic shift, scaling

with M/T , in the r-mode. We shall see that both of these effects are combined:

the pure r- and a-modes are replaced by a hybrid magneto-inertial mode, which

resembles a magnetically-shifted r-mode when rotation is more important, and a

rotationally-split a-mode when magnetic effects are more significant.

We begin by tracking the axial 2
2a-mode with increasing rotation, finding that as

expected it undergoes rotational splitting (figure 7.9). The lower-frequency branch

of this a-mode appears to tend to zero with increasing Ω (or equivalently, as M/T →
0). The higher-frequency branch of the a-mode tends to the 2

2r-mode frequency as

M/T → 0. We confirm that the magnetic/inertial character of these hybrid modes

depends on M/T by tracking the 2
2a-mode for three different field strengths, finding

that when B̄ is higher the hybrid-mode frequency approaches the r-mode frequency

more slowly. The higher-frequency branch of the 2
2a mode is counter-rotating —

it is this branch that joins up with the (also counter-rotating) 2
2r-mode, whilst the

lower-frequency 2
2a mode corotates with the star.

Having established that the pure 2
2a mode and the pure 2

2r-mode are replaced
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Figure 7.8: Magnetic shift of the m = 2 f -mode frequency for rotating stars. Since

the shift is very small we take a very highly magnetised background star, with

B̄ = 1.17 × 1017 G, for comparison with the nonmagnetic sequence of results. We

find that as the rotation rate Ω increases, magnetic effects become less significant.
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Figure 7.9: Illustrating the hybrid magneto-inertial nature of modes in a rotating

magnetised star. When Ω = 0 there is a pure l = m = 2 a-mode, which is split into

co- and counter-rotating modes by the effect of rotation. The counter-rotating mode

frequency approaches the nonmagnetic 2
2r-mode frequency as Ω increases, while the

corotating branch tends to zero frequency. The upper plot compares the a-mode

with the r-mode, whilst the lower plot shows that the nature of the hybrid mode

depends on the ratio M/T ; when B̄ is larger, the a-mode frequency approaches the

r-mode frequency more slowly. Modes are tracked up to Ω ≈ 0.7 in dimensionless

units, which is over 95% of the break-up velocity. The irregular parts of the curves

may correspond to avoided crossings with other magneto-inertial modes.
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Figure 7.10: The m = 2, l0 = 3, 4 hybrid magneto-inertial modes. Dashed lines

represent the pure inertial (B̄ = 0) modes, whilst solid lines show magneto-inertial

modes, which reduce to pure Alfvén modes in the Ω → 0 limit. The upper plot

shows the l0 = 4 (axial) hybrid modes, whilst the lower plot shows l0 = 3 (polar)

modes. In each case the upper-frequency branch of a hybrid mode is seen to meet

a corresponding i-mode as M/T → 0. For the 3
2a1 mode, we were also able to track

the lower-frequency branch, which appears to reduce to a zero-frequency mode in

the M/T → 0 limit.
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by a hybrid magneto-inertial mode when both magnetic and rotational restoring

forces are present, one would expect to find similar hybrid modes corresponding to

other Alfvén/inertial modes; we confirm this expectation in figure 7.10. As before,

rotation appears to split each a-mode into co- and counter-rotating branches3. We

are able to track the upper-frequency branches of both polar 3
2a-modes to their

inertial counterparts, and all three 4
2a-modes to known inertial modes in the M/T →

0 limit. In addition, we are able to track the lower-frequency branch of the 3
2a1 mode

to high rotation rates; it appears to become a zero-frequency mode in the M/T → 0

limit, as for the lower 2
2a-mode.

7.4.3 The continuous mode spectrum of perfect MHD

The study of oscillation modes of magnetised stars is complicated by the fact that in

the perfect-MHD limit, where the resistivity is zero, discrete modes may be replaced

by a continuum. In this case one may no longer talk of global modes, since different

parts of the star will have different frequencies of oscillation. This phenomenon was

first discovered by researchers in plasma physics: see, for example, Grad [59] and

references therein. Later research argued that continuous spectra are relevant to

astrophysics too [57, 90].

It appears that the continuous parts of the oscillation spectrum are, however, a

somewhat pathological effect peculiar to MHD without dissipation. The inclusion

of resistive effects or perpendicular thermal conduction each remove some of the

continuous spectra, whilst with both effects there are no continua left [70]. Although

many astrophysical situations (like the interior of a neutron star) involve matter of

very high conductivity, their non-zero (albeit small) resistivity may therefore result

in a qualitatively different spectrum from that predicted by perfect MHD: discrete

modes rather than a continuum.

We look for behaviour consistent with a continuous spectrum in figure 7.11.

Here we plot the Fourier transform of β−r at three different points in the star, for

a nonrotating background configuration with an average magnetic field strength

B̄ = 2.87 × 1016 G. The evolutions are for azimuthal index m = 2, so all modes

discussed here are also m = 2. The evolution time in each case was sufficient to

3Note, however, that we are only able to see the lower-frequency branches clearly for the 2
2a and

3
2a1 modes; we believe other lower-frequency branches are harder to track because they undergo

many avoided crossings.
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resolve around 1000 oscillations. The perturbations are not evolved at the pole or

equator (boundary conditions are imposed here), but we pick interior angular points

close to θ = 0 and θ = π/2, and also a central point with θ = π/4. In all cases the

radial value used was r = 0.4R∗. In the plots shown we are able to identify peaks

corresponding to the 2a, 3a1,
3a2 and 4a1 modes; these vary by no more than 1% for

the three positions. The 4a2 and 4a3 modes have very weak peaks in this particular

figure, but may be identified in the Fourier transforms of other perturbed quantities

— it is difficult to resolve all of the higher-l0 a-modes from one plot alone. We place

brackets around these modes in the figure to stress that we have never identified

modes based on such minor peaks in the spectrum.

To summarise: within our work, we find no evidence of continua in the mode

spectrum, although we model stars as perfect conductors in MHD. We believe that

although we only include dissipative effects (Kreiss-Oliger dissipation and artificial

resistivity) for numerical purposes, they may have the side-effect of removing contin-

uous parts of the spectrum, as discussed above. This is not necessarily a weakness

of our approach; our aim is to model neutron stars rather than perfectly conducting

fluids per se, and dissipative effects may act to give a real neutron star a discrete

mode spectrum too. Furthermore, we have found that in the presence of rotation

a-modes become hybrid magneto-inertial modes. With sufficient rotation an a-mode

has predominantly inertial character and hence should become discrete. Rotation

must therefore affect the Alfvén continuum too, perhaps by reducing its width.

7.4.4 Mode instabilities

Whilst an unperturbed rotating star cannot emit gravitational radiation — it is a

stationary configuration — the various non-axisymmetric oscillations of the star can.

This radiation carries angular momentum away from the star, which may drive in-

stabilities in certain oscillation modes. In particular, it was shown by Chandrasekhar

[25] and Friedman and Schutz [46, 47] that all rotating perfect-fluid stars are un-

stable. This radiation-driven effect is known as the CFS instability, from the three

authors of these early studies.

Very briefly, the CFS mechanism works in the following way: in the comoving

frame of a rotating star, there exist both prograde (forward-moving) and retrograde

(backward-moving) modes; these modes have, respectively, positive and negative
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Figure 7.11: Plots showing that the Alfvén mode frequencies in this work are in-

dependent of position within the star (and hence do not form a continuum). We

present typical Fourier-transformed data from evolutions of axial (top) and polar

(bottom) perturbations. The plots show mode frequency σ against power spectral

density PSD. Further details are given in the text.
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angular momentum in this frame. Suppose a mode is retrograde in the rotating

frame but moves with a speed which is lower than the stellar rotation rate. Then

in the inertial frame it will appear prograde. As the star loses angular momentum

due to gravitational radiation, this mode will also lose angular momentum as it

appears prograde; but in the rotating frame its angular momentum becomes more

negative and the mode amplitude grows. At some point this process could induce

an oscillation in the mass distribution of the star large enough to produce detectable

gravitational waves.

A number of modes are subject to this instability, but in general only become

unstable for sufficiently rapid rotation. However, the r-modes are unstable even in

slowly rotating stars, in the absence of viscosity; see Andersson and Kokkotas [5].

We have already seen that magnetic fields significantly alter the behaviour of the r-

mode for slow rotation, so we now consider the effect this has on their stability. For

a counter-rotating mode with frequency σ (positive by convention) in the rotating

frame, the instability criterion is

σ(σ −mΩ) < 0; (7.4.6)

this may also be found in Andersson and Kokkotas. It follows immediately that

radiative instabilities are entirely suppressed when σ > mΩ. In the upper plot of

figure 7.12 we show this threshold frequency, together with the nonmagnetic r-mode

and the hybrid mode that replaces it in the magnetic case. It is clear that whilst

the unmagnetised r-mode is always in the unstable regime, its magnetic equivalent

(the hybrid of the r-mode and the axial l = m a-mode) is stable for sufficiently

low rotation rates. The maximum rotational frequency a star can have before its

2
2r mode goes unstable is presented in the lower plot, as a function of the stellar

magnetic field strength.

Even when magnetic fields are not strong enough to suppress the r-mode insta-

bility, they may slow down its growth. A full calculation of this effect is beyond the

scope of this work, but we may estimate it with some simplifying assumptions. The

growth time τGR of the r-mode instability due to gravitational radiation is given by

1

τGR
= − 1

2E

dE

dt
(7.4.7)

where E is the energy of the mode in the rotating frame. From this one can show

that the growth time τGR scales with the rotating-frame mode frequency σ in the
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Figure 7.12: In a slowly-rotating magnetised star, the r-mode is replaced by the

axial l = m a-mode. From the upper plot we see that this a-mode is not subject to

the CFS instability if Ω is sufficiently small, but at some higher rotational frequency

fCFS (a function of the field strength B) it crosses into the unstable regime. The

lower plot shows the variation of fCFS with average field strength B̄.



Chapter 7: Numerical work on oscillations 176

 1

 2

 3

 4

 5

 6

 7

 0  0.1  0.2  0.3  0.4  0.5

Ω√
Gρc

(τGR)B

(τGR)0

Figure 7.13: A magnetic field changes the growth time of the r-mode instability. Here

we plot an approximation of the ratio of magnetised (τGR)B to unmagnetised (τGR)0

growth timescales, against dimensionless rotation rate. The dashed vertical line

shows where the ratio asymptotes (i.e. when the magnetised mode becomes stable).

We see that in all cases the instability growth is slower with magnetic effects, but

the effect becomes insignificant for rapid rotation. The magnetic timescales shown

here are for a star with a field strength of 2.87 × 1016 G.
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following manner for an l = m r-mode:

1

τGR
∼ σ(σ − lΩ)2l+1 (7.4.8)

— see Andersson and Kokkotas [5] for details. Note that for l = m = 2, the growth

time scales with the sixth power of σ.

We wish to estimate how the growth time for the 2
2r-mode instability changes

when magnetic effects are included. Since τGR contains a factor of σ6, we will

assume that this term has the most significant variation when a magnetic field is

added. Other terms in the expression of E and its derivative will be approximated as

constant. Using the indices 0 and B to denote nonmagnetic and magnetic quantities

(respectively), we then see that

(τGR)B

(τGR)0
≈ σ0(σ0 − 2Ω)5

σB(σB − 2Ω)5
. (7.4.9)

In figure 7.13 we plot this dimensionless quantity as a function of the rotation rate,

finding that a toroidal magnetic field does indeed slow down the instability’s growth.

The importance of the effect depends on the rotation rate: at twice the threshold

frequency for stability of the magnetised r-mode (i.e. when the mode is unstable),

its growth time is still a factor of ∼ 6 longer than in the nonmagnetic r-mode case;

however, for very rapid rotation the difference in growth times is negligible.

7.5 Discussion and conclusions

In this chapter we have investigated oscillation modes of neutron stars with rotation

and magnetic fields, specialising to the case of purely toroidal background fields.

Our numerical approach allows us to study oscillations of rapidly rotating and highly

magnetised stars in a self-consistent manner. We first generate a stationary star in

equilibrium to use as the background configuration, using the work of chapter 6;

this star may have axisymmetric distortions due to magnetic effects and rotation.

We then time-evolve linear perturbations on this background star in order to study

its modes of oscillation.

When a magnetic field is added to a star, the most obvious change to its oscil-

lation spectrum is the presence of Alfvén (a-) modes, a class of stellar oscillation

restored by the Lorentz force. These modes are purely magnetic in nature only for

a nonrotating background star.
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In a rotating magnetised star, we find that the pure a-modes of a nonrotating star

(or equivalently, the purely inertial i-modes of an unmagnetised star) are replaced

by hybrid magneto-inertial modes, whose character is governed by the ratio of the

magnetic M and kinetic T energies, as discussed by Morsink and Rezania [104].

Tracking a star at fixed magnetic field from Ω = 0 through increasing rotation rate,

we see a rotational splitting of the a-modes into co- and counter-rotating modes.

The higher-frequency branches of these modes approach known i-mode frequencies.

In general the lower-frequency branches are harder to track, owing to the dense

nature of the oscillation spectrum, but when we are able to identify them we find

that they appear to become zero-frequency modes in the M/T → 0 limit.

The presence of these hybrid modes has parallels with other work. The evolutions

of Passamonti et al. [110] and Gaertig and Kokkotas [48] found that when tracking g-

modes (i.e. modes restored by composition gradients within the star) for increasingly

rapid rotation, their frequencies approached known i-mode frequencies. One key

difference between stratified and magnetised stars, however, is the behaviour of the

r-mode in each case. Being purely axial in the slow-rotation limit, the r-modes are

unaffected by composition gradients, whereas we have found that the presence of a

magnetic field means that in the slow-rotation limit they become the axial l = m

a-modes.

Our work seems to be consistent with the analysis of Glampedakis and Andersson

[51], who found that magnetic fields could act to suppress instabilities driven by

gravitational radiation (the CFS instability); and in particular, that purely poloidal

or purely toroidal fields should always play a stabilising role in this case. Using σ to

denote a mode frequency as measured in the rotating frame, it is known that modes

satisfying the condition σ(σ − mΩ) < 0 are susceptible to these radiation-driven

instabilities; in particular, this includes the r-mode. In the presence of a magnetic

field we find that the r-mode is replaced by the l = m axial a-mode; for sufficiently

slow rotation we have σa > mΩ and hence the mode is CFS-stable. In the regime

where the star is unstable, we use a simple estimate to suggest that the instability’s

growth will be slower in the presence of a magnetic field.

In addition to the hybrid magneto-inertial modes, there are also magnetic cor-

rections to the f -mode frequency. These corrections are very modest (∼1%) even

up to field strengths of the order 1017 gauss. In addition, as for the magneto-inertial

modes, the magnetic correction becomes less significant still as M/T → 0. However,
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we note that the magnetic correction seems to increase between m = 2 and m = 6,

so although our approach limits us to low m one might expect more appreciable

corrections to high-m f - and p-modes.

Although it would be premature to make a quantitative comparison between our

results and observed magnetar QPOs, we note that there are certain similarities in

the oscillation spectra. The QPOs observed from SGR 1806-20 include 26 and 30 Hz

modes; these cannot be explained as overtones of crustal shear modes because the

spacing is too small (they would need to be integer multiples of some fundamental

frequency for this). By contrast, it is easy to interpret these frequencies as global

modes of a fluid star (i.e. the magnetar’s interior), since we see modes at far smaller

separation than integer multiples. For example, using our fitted relation (7.4.5) we

see that the frequency ratio of the axial 2
2a and polar 3

2a1 modes is 0.030/0.033 ≈ 0.91

— comparable with the observed ratio of 26/30 ≈ 0.87.

This work adds to the picture of magnetic stellar oscillations built up by a number

of other recent numerical studies. The work of Sotani et al. [128] and Cerdá-Durán

et al. [19] investigated axial magnetar oscillations, modelling the star’s magnetic

field as dipolar (and hence purely poloidal). They found two localised families of

QPOs, which they related to observed magnetar QPOs. Colaiuda et al. [32] worked

on a similar problem, but in the more general case of a mixed poloidal-toroidal

background field. Their work complements other studies, but they are also able to

identify a third family of QPOs in their model star. Finally, Sotani and Kokkotas

[127] find a set of polar oscillations of dipolar fields, agreeing with the work of Lee

[89] that a magnetar should have both axial and polar oscillations.

Many of these recent studies have analysed their results in the light of the sug-

gestion that magnetic oscillations of a perfectly-conducting star form a continuum,

rather than discrete modes. This was proposed by Levin [90], revisiting earlier work

by Goossens [57] and others. Various numerical studies [128, 19, 32] have found

results consistent with this proposal, in the case of axial oscillations of a dipole field.

However, Sotani and Kokkotas [127] suggest that polar oscillations of a dipolar-field

star are discrete.

Since our background field is purely toroidal, we cannot make quantitative com-

parisons with work discussed in the last two paragraphs, since those studies assumed

dipolar fields (or mixed poloidal-toroidal fields in the case of Colaiuda et al. [32]).

However, we do find broad similarities — in particular, our a-mode frequencies are
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of the order 100 Hz (for a field of ∼ 1016 gauss), as found from other magnetic

evolutions. With a toroidal field there is less evidence for a continuum of modes,

since work on this phenomenon seems to have focussed on fields with a poloidal

component. Indeed, all our results have shown discrete mode frequencies, with no

dependence on position within the star, up to uncertainties due to resolution and the

finite duration of our simulations (in practice, errors of . 1%). Our polar a-modes

thus share this property with those of Sotani et al. [128], but our axial a-modes are

discrete too.

Purely toroidal fields and purely poloidal fields suffer from generic localised in-

stabilities, so in the absence of damping mechanisms are not viable candidates for

long-lived stellar magnetic fields [144, 133]. Despite this, we have been able to

perform stable evolutions of perturbations about a purely toroidal background for

this work. There may be a number of reasons why these analytically-established

instabilities have not affected our numerical work. Since we only consider first-order

perturbations, higher-order effects are avoided; at the linear level, the greatest in-

stabilities are those for m = 0 and m = 1, whilst we have only considered m ≥ 2

oscillations. Finally, we have included artificial viscosity and resistivity to damp

numerically-generated instabilities, and it is possible that these have prevented the

growth of physical instabilities too.

One way in which pure-poloidal/toroidal fields may be stabilised is through ro-

tation [50, 14, 79], although this effect will be small in the case of the magnetars,

whose rotational periods are very long. Relatively small poloidal components may

stabilise dominantly toroidal fields [15], but it is difficult to draw general conclusions

on the relative strengths of the two components, since other work has found that

apparently general constructions of magnetic stars in equilibrium (in both Newto-

nian and relativistic contexts) result in mixed fields which are dominantly poloidal ;

see chapter 6 and Ciolfi et al. [31].

Given the many uncertainties regarding the nature of stellar magnetic fields,

we believe that it is reasonable to study oscillations of purely toroidal fields, even

though these may suffer certain instabilities, as we have discussed. Furthermore,

a star whose field is dominantly toroidal could be expected to have an oscillation

spectrum with similar features to those discussed in this work.



Chapter 8

m = 1 modes and precession

In literature on neutron star oscillations, the m = 1 modes tend to be neglected;

this is because those with lowest l (i.e. l = m = 1 modes) are dipolar, whereas

the lowest-order contributions to gravitational-wave emission are quadrupolar. The

primary motivation for this chapter is instead to explore the idea (discussed in

section 3.4) that a magnetised fluid star can undergo motion analogous to rigid-

body free precession, by looking for oscillation modes at frequencies expected for

precession. As we shall show, for small-angle free precession these modes are m = 1

to leading order. We describe our approach for exciting precessional modes and

suggest reasons why it has so far proved unsuccessful. We additionally present some

new results about the nature of m = 1 inertial modes in stars approaching break-up

frequency, and find some evidence of the unstable nature of purely toroidal fields and

the stabilising effect of rotation. We believe that this represents the first evidence

of the m = 1 Tayler instability from a global analysis (m = 0 instabilities were

investigated by Kiuchi et al. [79]).

8.1 Initial data for precession

Here we consider a precessing configuration as a perturbation away from the station-

ary background star, and wish to describe this perturbation in terms of the change in

the density δρ and velocity field v. We start with an axisymmetric background star

which is magnetised and rotating, and hence is distorted by both of these effects; its

181
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Figure 8.1: The (x, y, z) frame for the unperturbed system and the rotated (x̃, ỹ, z̃)

frame. In the unperturbed configuration the magnetic and rotational distortions

are symmetric about z; in the perturbed star the magnetic distortion is symmetric

about z̃.

density distribution ρ may be written

ρ(r, θ) = ρ0(r) + ρΩ(r, θ) + ρB(r, θ) (8.1.1)

where ρ0 is the spherical piece of the density distribution, ρΩ the distortion in-

duced by rotation and ρB the magnetically-induced distortion. Whilst our numerical

method for generating MHD equilibria (see chapter 6) does not allow us to disen-

tangle ρB from ρΩ, we may look at the variation of ρB with field strength B for

a nonrotating star and assume that the same relation holds to leading order in a

rotating star.

Now consider a perturbation about this background ρB which has the effect of

rotating the magnetic distortion through some angle α; the new magnetic density

distortion (background plus perturbation) will be denoted by a tilde and is no longer

axisymmetric: ρ̃B = ρ̃B(r, θ, φ). Let us work in the Cartesian coordinate system

where this perturbative rotation of ρB is about the x-axis. We emphasise that this

rotation is different from the ordinary stellar rotation, whose axis in the unperturbed
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star is the original z-axis (not z̃). The original and rotated frames are shown in figure

8.1.

Performing the rotation about the x-axis, the new rotated axes ỹ, z̃ are related

to the original ones y, z by:

ỹ = y cosα+ z sinα

z̃ = z cosα− y sinα.

We use (r, θ, φ) to denote spherical polar coordinates in the (x, y, z) frame and

(r, θ̃, φ̃) for the corresponding coordinates in the (x̃, ỹ, z̃) frame; note that r = r̃.

Now since r sin θ =
√

x2 + y2, we have

r2 sin2 θ̃ = x̃2 + ỹ2. (8.1.2)

Using the usual relations between Cartesian and spherical polar coordinates and

noting that x̃ = x (since the rotation was about the x-axis), we see that the angle

transformation is given by

sin2 θ̃ = (sin θ cosφ)2 + (sin θ sinφ cosα+ cos θ sinα)2. (8.1.3)

To proceed we assume α≪ 1 and Taylor expand ρ̃B:

ρ̃B(r, θ, φ) = ρB(r, θ̃) = ρB(r, θ)+
∂ρB(r, θ)

∂θ
(θ̃−θ)+ 1

2!

∂2ρB(r, θ)

∂θ2
(θ̃−θ)2+. . . (8.1.4)

Working to linear order, we have

δρ = ρ̃B(r, θ, φ) − ρB(r, θ) = (θ̃ − θ)
∂ρB(r, θ)

∂θ
. (8.1.5)

This expression contains both θ and θ̃ terms, whereas we want a result referred

entirely to the original (r, θ, φ) coordinates. However, since θ̃ − θ is small we may

use a trigonometric identity to write

θ̃ − θ ≈ sin(θ̃ − θ) = sin θ̃ cos θ − cos θ̃ sin θ. (8.1.6)

We may now use this expression together with (8.1.3) to write our expression for δρ

as

δρ =
[

cos θ
√

(sin θ cosφ)2 + (sin θ sinφ+ α cos θ)2

− sin θ
√

1 − (sin θ cosφ)2 − (sin θ sinφ+ α cos θ)2
] ∂ρB

∂θ
, (8.1.7)
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where we have made the small-angle approximations sinα ≈ α and cosα ≈ 1, and

neglected the higher-order α2 terms. The expression may be simplified by using the

binomial theorem to expand the square roots; after some algebra we arrive at the

result

δρ = α sinφ
∂ρB

∂θ
. (8.1.8)

The sinφ factor here tells us that small-angle precession may be regarded as an

m = 1 perturbation, to leading order.

We now turn to the effect of precession on the velocity field. For the nonprecess-

ing (i.e. rigidly rotating) background star the velocity is V = Ω × r and so the

precessing configuration has Ṽ = (Ω + δΩ) × r, where δΩ is the off-rotation axis

perturbation in the angular velocity. The velocity perturbation v is then simply

given by

v = Ṽ − V = δΩ × r. (8.1.9)

Since δΩ is the piece of the angular velocity that does not have an ez component,

then by analogy with rigid-body dynamics (see, for example, Jones and Andersson

[73]) we have

δΩ = ǫBαΩey (8.1.10)

to leading order, where ǫB is the (dimensionless) ellipticity induced by the magnetic

field. This gives v = ǫBαΩey × r. Expressing this in terms of spherical polar

coordinates we have

v = ǫBαΩ







0

r cosφ

−r cos θ sinφ






. (8.1.11)

As for δρ, we see that the precession is to leading order an m = 1 perturbation. The

leading order precessional perturbation in the flux f = ρ0v is given by

fr = 0

fθ = ǫBαΩρ0r cosφ (8.1.12)

fφ = ǫBαΩρ0r cos θ sinφ.

8.2 m = 1 modes in an unmagnetised star

Before looking at m = 1 oscillations of magnetised stars, we first need to check

our code reproduces known results for nonmagnetic modes. Yoshida and Lee [146]
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Table 8.1: Comparison between Yoshida-Lee results and those from our time-

evolution code run for a dimensionless rotation rate of Ω̂ = 0.119. All mode frequen-

cies are made dimensionless through division by Ω and calculated in the rotating

frame of the star. As for the chapter 7 results, our mode labelling is consistent

with that of Lockitch and Friedman [93]. In Yoshida and Lee’s results, corotating

modes are shown with a negative mode frequency, whilst we are only able to find

the magnitude. Finally, we were unable to find the 3i1 mode, which we believe is

due to its proximity in frequency space to the strong r-mode peak.

mode Yoshida-Lee time evolution discrepancy

1r 1.000 1.006 0.6%

2i1 -0.4014 0.388 3.3%

2i2 1.413 1.418 0.4%

3i1 -1.032 - -

3i2 0.6906 0.684 1.0%

3i3 1.614 1.611 0.2%

4i1 -1.312 1.241 5.4%

4i2 -0.1788 0.171 4.2%

4i3 1.052 1.021 2.9%

4i4 1.726 1.738 0.7%

included results for m = 1 oscillations in their study of inertial modes of slowly

rotating stars. For our code, the rotation rate is specified through the oblateness

of the star (see section 6.4) and so the minimum rotation rate is limited by grid

spacing; the polar radius needs to be one cell smaller than the equatorial radius.

This means we cannot quite study the Ω → 0 limit. In addition, we work in the

Cowling approximation, which Yoshida and Lee do not. This could be expected to

cause fairly large errors in some cases, since the Cowling approximation is poorer for

low m. Notwithstanding these differences of approach, we find convincing agreement

with their work; see table 8.1.

One oddity of the m = 1 spectrum is that there is no f -mode; a dipolar mode

with no radial node displaces the centre of mass of the star. The absence of the f -

mode could be expected by looking at the analogous case for incompressible fluids:
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Figure 8.2: Axial-led m = 1 inertial modes. The 3i1 mode is missing; it seems to be

obscured in the spectrum by the nearby r-mode, which has a very strong peak.

the Kelvin mode. It was shown in section 5.2 that this mode has frequency

σ2 ∝ 2l(l − 1)

(2l + 1)
, (8.2.1)

which is zero when l = 1. However, if one makes the Cowling approximation then

an f -mode does appear in the frequency spectrum, in its usual place between the

(pressure) p-modes and the (gravity) g-modes. This spurious mode shifts to become

the lowest-order g-mode in the full non-Cowling problem [30].

In addition to finding nine of the ten m = 1 inertial modes described by Yoshida

and Lee, we also see the spurious f -mode described above. Since our background

configuration is generated in a nonlinear manner, we are able to track the inertial

modes up to break-up velocity, where the results of Yoshida and Lee are no longer

valid. We also see avoided crossings between four of the polar inertial modes and

the corotating branch of the f -mode. These results are shown in figures 8.2 and 8.3.
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Figure 8.3: Polar-led m = 1 inertial modes and the spurious f -mode, which has zero

frequency in the full problem but appears as an oscillation mode of the Cowling-

approximation system of equations. Four of the inertial modes have avoided cross-

ings with the corotating branch of the f -mode, where their character changes; note

the difference in labelling of these modes before and after the avoided crossings.
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8.3 Instabilities in purely toroidal fields

In the previous section we established that our time evolution code ran stably for un-

magnetised backgrounds with m = 1, reproducing known results for inertial modes

as well as finding the spurious dipolar f -mode that is an artefact of making the

Cowling approximation. In order to study magnetic precession, we also need to sta-

bly evolve magnetic perturbations. There are, however, additional difficulties here;

as well as numerical instabilities associated with the evolution of finite-differenced

equations, the magnetic field may suffer genuine physical instabilities.

The stability analysis of Tayler [133] established that a large class of toroidal field

configurations suffer localised instabilities; earlier calculations than Tayler’s had in-

volved a global analysis and hence did not find evidence of the unstable nature of

toroidal fields (see, for example, Roxburgh and Durney [120]). Tayler showed that

instabilities tend to occur close to the symmetry axis of the star, with m = 1 oscil-

lations appearing to be the most unstable in the linear regime. These instabilities

occur over short timescales (of the order of the Alfvén crossing time) and also exist

for m 6= 1 perturbations [58].

More recently, there have been numerical studies of purely toroidal fields. With a

local analysis in a small region around the magnetic axis, Braithwaite [14] confirmed

the existence of the Tayler instability for generic toroidal fields and found that

rotation has a stabilising effect on these fields. This study was in Newtonian gravity,

but the later evolutions of Kiuchi et al. [79] found a similar picture for the stability

of relativistic stars.

These studies into toroidal-field instabilities contrast with the work of chapter 7,

in which we are able to time-evolve perturbations on a purely toroidal background

field over long times without seeing evidence of unstable oscillations. However,

our analysis is not a local one about the magnetic axis but an evolution of global

modes. We add small-magnitude viscosity and resistivity terms in order to suppress

numerical instabilities, but these may also damp out genuine unstable oscillations

that are present in the continuum solution. Finally, in the work reported earlier in

this thesis we only considered m ≥ 2 oscillation modes, whereas m = 1 perturbations

are thought to be the most unstable.

To study precession, however, we have to evolve m = 1 magnetic perturbations

— precisely those thought to suffer most from the Tayler instability in the toroidal-
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Figure 8.4: The Tayler instability for toroidal magnetic fields in a nonrotating star.

We plot the magnetic energy δM̂ against time t̂, both in dimensionless form, for

three different grid resolutions. We see that the onset time for the instability is

independent of resolution, and its growth rate converges, suggesting that it may

indeed be a physical instability. The results are for a star with field strength B̄ =

3.0 × 1016 G.

field case. However, it is not clear if we would be better off considering precession in

stars with purely poloidal fields instead, since these are also thought to be unstable

[96, 144, 50]; neither are all mixed-field configurations likely to be stable [15]. Given

this, we choose to continue looking at oscillations of stars with toroidal fields; even

if the localised instabilities appear in our evolutions, they should be suppressed by

rotation — and in any case, rotation of the background star is required for precession.

Our m = 1 evolutions for stars with toroidal fields are consistent with previous

work on instabilities. For evolutions with no rotation, we see from the magnetic

energy of the perturbations δM that the system suffers an instability; see figure 8.4.

We compare evolutions for three different grid resolutions: low (16 × 15), medium

(32 × 30) and high (64 × 60). In all cases the instability seems to set in at the
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Figure 8.5: Showing that the Tayler instability sets in after one Alfvén crossing

time. We plot the magnetic energy against time, as before, and find that the onset

of instability happens sooner for higher field strengths; in particular, the observed

onset time in each case seems to be close to the Alfvén crossing time: τ̂A ≈ 154, 77, 39

for B̄ = 1.5, 3.0, 6.0 × 1016 G respectively.
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Figure 8.6: The stabilising effect of rotation on purely toroidal magnetic fields. The

magnetic energy is plotted against time for three different rotation rates. We see

that increasing the rotation rate decreases the growth timescale of the instability;

i.e. the gradient of δM is reduced in the regime where the instability dominates. As

for the previous plot, each configuration has a field strength of B̄ = 3.0 × 1016 G.
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same point, suggesting it is a physical instability rather than a numerical one. After

the onset of instability, it can be seen that the growth rates differ slightly for the

different resolutions. By comparing the three gradients, we find that the growth rate

converges with resolution at approximately second order (the intended accuracy of

the code).

Tayler suggests that the toroidal-field instability uncovered in his work should

appear after approximately one Alfvén crossing time, i.e. after

τA ≈ 2R∗

<cA>
= 2R∗

√

4π <ρ>

B̄2
, (8.3.1)

using the same notation as in chapter 7. Evaluating this in dimensionless form for

a star with field strength B̄ = 3.0× 1016 G gives τ̂A ≈ 77; this is consistent with the

results shown in figure 8.4, where δM is seen to begin growing rapidly at t̂ ≈ 80−100.

To check that this is not a coincidence, we plot the results for three different field

strengths in figure 8.5. As expected, in each case the instability appears to set in

after one Alfvén crossing time.

Further evidence that we are seeing the Tayler instability is the behaviour of

our m = 1 toroidal-field evolutions in the presence of rotation. This is expected to

reduce the effect of the Tayler instability, which is what we find. In figure 8.6 we

compare the behaviour of δM in rotating and nonrotating evolutions. We see that

the instability becomes visible at considerably later times when the rotation rate of

the background star is increased; this is because the growth of the instability has been

slowed by rotation. Comparing the gradients of the three lines in the regime when

the instability dominates any stable modes, we may estimate the growth timescales.

We find that for Ω̂ = 0.122 the growth timescale is 14 times that of the nonrotating

case; when Ω̂ = 0.237 it is 22 times the nonrotating timescale.

In summary then, when numerically evolving m = 1 perturbations on a back-

ground star with a purely toroidal magnetic field, we find an instability sets in at

early times. We have reason to believe that this is a genuine physical effect, rather

than just a numerical instability, since it bears many of the hallmarks of the insta-

bility described by Tayler [133]. In particular, it sets in after approximately one

Alfvén crossing time (independent of numerical resolution), its growth rate seems to

be convergent and it is reduced by the effect of rotation.
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8.4 A numerical approach to magnetised-fluid preces-

sion

In the rigid-body precession case, the precession period Tprec is related to the rota-

tional period TΩ by

Tprec =
TΩ

ǫB
, (8.4.1)

for small wobble angle; see subsection 3.4.1. The precession frequency (in rad s−1)

is therefore

ωprec =
2πǫB
TΩ

. (8.4.2)

Our expectation from the work of section 8.1 is that evolutions of m = 1 perturba-

tions on a rotating magnetised background star should show evidence of precession

— that is, oscillations whose frequency is approximately given by (8.4.2). The idea

is to identify precession-like modes from these evolutions, and compare their fre-

quencies with the rigid-body result (8.4.2); this would then help us understand to

what degree the motion of a rotating magnetised fluid star resembles free precession

— a problem we discussed with an analytic approach in section 3.4.

Unfortunately, we have been unable to convincingly identify oscillation modes

corresponding to magnetised-fluid precession from our evolutions; that is, we have

been unable to track low-frequency peaks that scale linearly with Ω and ǫB. This is

despite having analytic arguments for the existence of such modes (see section 3.4),

as well as a code which we know performs well for nonmagnetic m = 1 oscillations

(see section 8.2) and magnetic m ≥ 2 oscillations (see chapter 7).

The chief difficulties in resolving precession modes are related to the fact that

the precession frequency is very low — it is proportional to the ellipticity ǫB induced

by the magnetic field. Although we are able to evolve perturbations on background

fields up to around B̄ ∼ 1017 G, the correponding ellipticity in this maximum case

is still only around 0.02; this gives a precession period of Tprec = 50TΩ. To resolve a

precession peak reasonably accurately, we need to run the code for several precession

periods; let us say 10 is the minimum acceptable number. This means that in the

optimal case, we still need an evolution whose duration is 500 rotation periods. Over

such long evolutions, the energy of the perturbations decreases to a small fraction

of its original value, due to dissipative effects in the code. Hence, any precession-

mode peak in Fourier space may be very weak and indistinguishable from noise.
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A secondary issue is the inherent instability of m = 1 perturbations on purely

toroidal-field backgrounds, although we are able to overcome this by looking at

rapidly rotating configurations.

Although the topic of precession in a magnetised fluid star is an old one, it is

still relevant for our understanding of neutron star dynamics. The fluid interiors of

neutron stars seem to have the necessary physics to undergo precession — strong

magnetic fields and rotation — but few candidates for precession exist among them

(see chapter 3). A better understanding of the internal dynamics of a magnetised

fluid could shed light on this issue, and would also be relevant to discussion of other

classes of star (magnetised-fluid precession was first studied in the context of main-

sequence stars [100, 129]). Although the work reported here and in section 3.4 has

not yet borne fruit, we believe it could form the basis of a more thorough study into

the problem.



Chapter 9

Discussion

Among the many extreme aspects of neutron star physics is the exceptional strength

their magnetic fields can reach. In this thesis we have focussed on two particular

roles magnetic fields can play in neutron stars: the distortions they induce in the

star’s equilibrium structure and their effect on the oscillation spectrum. We have

also discussed how a fluid star may precess by virtue of its magnetic field.

We begin with two introductory chapters: chapter 1 discusses general aspects of

neutron star physics and their potential as gravitational wave sources, whilst chapter

2 is a review of theory and observations related to magnetic effects in neutron stars.

These chapters provide two main sources of motivation for studying magnetic fields

in neutron stars. Firstly, magnetically-induced distortions in neutron stars may

produce gravitational waves of a detectable amplitude; secondly, the inclusion of

magnetic effects is likely to be necessary to understand the observed oscillations of

magnetars.

A third motivating factor for modelling magnetised neutron stars, related to

the other two, is the idea that magnetic distortions could allow a fluid star to

undergo motion similar to rigid-body precession. Chapter 3 is predominantly a

review of aspects of neutron star precession and some analytic work, beginning

with a calculation of the gravitational-wave signal which would be expected from a

precessing neutron star. We present the first-order calculation, following the work

of Zimmermann [148], but note that it would be more interesting to detect second-

order effects in the GW spectrum — from these we should gain direct information

about the star’s wobble angle and asymmetries [17].

195
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Following the calculation of GWs in a precessing star, we look at the effect of

damping the precession. This leads to one of two final outcomes. The first is that the

star becomes an aligned rotator, with its axis of distortion (for example, the magnetic

axis) aligned with the rotation axis. This is a stationary configuration and hence

does not produce gravitational radiation. More interestingly, precession damping

may result in an orthogonal rotator — the optimal configuration for gravitational-

wave emission.

At the end of chapter 3, we discussed Mestel’s work on magnetised-fluid pre-

cession [100, 99]. The idea is that a fluid star gains some rigidity from a magnetic

field and hence is able to maintain an distortion not aligned with the rotation axis.

Such a star might be expected to undergo motion similar to rigid-body precession.

However, since the star is not completely rigid, the actual motion will deviate from

precession. We argue that Mestel’s approach to understanding this fluid precession

is not fully consistent and relies on assumptions which are not valid in a neutron

star. We conclude by suggesting ways to rectify this, to give a better description of

the dynamics of the magnetised fluid interior of a neutron star.

We continue with analytic work in chapter 4, where we present calculations of

rotational and magnetic distortions. These will give us an indication of what results

to expect from the numerical work of chapter 6. We begin with a perturbative

calculation for the effect of rotation on the density distribution of a N = 1 polytropic

star, then use the tensor virial theorem to find formulae for the ellipticities of a

rotating magnetised incompressible (N = 0) star, following the work of Ostriker

and Gunn [106]. We show that these formulae lead to the result that poloidal fields

induce oblate distortions and toroidal fields induce prolate ones. Although our work

is in the context of incompressible stars, we establish in chapter 6 that the same

result holds for compressible-fluid stars too.

Chapter 5, the last of the three chapters of analytic work, is an introduction to

stellar oscillation modes. We provide calculations of two mode frequencies: those

of the Kelvin mode and the r-mode. Although all the results in this chapter are

well established, they are helpful for understanding the more complicated problem

of modes in a magnetised star; this is studied numerically in chapter 7.

Chapter 6, a numerical study of equilibrium configurations for rotating magne-

tised stars, is the first chapter of the thesis containing a substantial amount of new

material. We begin by looking at the equations of MHD in axisymmetry, showing
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that they reduce to two cases: one describing mixed-field configurations and another

for purely toroidal fields. The mixed-field case is given by the Grad-Shafranov equa-

tion [60, 124] which describes axisymmetric MHD in terms of two scalar functions;

setting one of these to zero gives a purely-poloidal field case. The toroidal field case

is described with only one scalar function. Although it initially appears that there

is considerable freedom in choosing these magnetic functions, we show that virtually

all choices are ruled out on physical grounds. In practice, we are left with only one

general form for each function.

Next in chapter 6, we describe how to convert the equations of axisymmetric

MHD into forms that can be numerically integrated. These are solved iteratively to

find stationary equilibrium configurations. For ease of comparison, we present all

results for the same physical neutron star model, which has the canonical mass of

1.4M⊙ and (in the nonrotating, unmagnetised case) a radius of 10 km.

Since our code is non-linear, we are able to look at the realm of validity of

the perturbative regime, where the magnetically-induced distortion ǫ is assumed to

depend linearly on B2; we find that this is a good approximation up to B ∼ 1017

G. This suggests that a good model of the neutron star’s field is more important

than including O(B4) terms for ellipticity calculations. We give approximate linear-

regime relations using our work and compare these with the analytic work of Haskell

et al. [64].

Starting with a spherical unmagnetised star, we find that in the purely poloidal-

field case the ellipticity initially increases with increasing field strength (as expected),

but only up to some peak value of B ∼ 5 × 1017 G, corresponding to ǫ ∼ 0.8. If

ǫ is increased beyond this point, the field strength required actually drops again

(though remains of the order of 1017 G). We believe this behaviour can be explained

by looking at the density distribution of the star as the field strength is increased.

To begin with the star is distorted into an oblate spheroid, but around the point

where ǫ ∼ 0.8 the density distribution seems to curve in at the poles. For higher

ǫ the density around the pole is distorted further, leaving the star becoming more

torus-shaped. This leads us to speculate that at ǫ ∼ 0.8 it becomes energetically

favourable for the star to change from a spheroidal to a toroidal profile. Since

the peak-field stationary axisymmetric configuration we have found has B ∼ 5 ×
1017 G, a (hypothetical) configuration with higher B may either have no stationary

equilibrium solution or may be non-axisymmetric. For the purely toroidal case, we
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do not see a similar peaking when looking at field strength versus ellipticity; however,

in this case the greatest distortions we are able to calculate are rather smaller —

around ǫ ∼ 0.35.

We have argued that the equations solved in chapter 6 should give generic so-

lutions for axisymmetric magnetised stars. However, we find that although it is

possible to find solutions with purely poloidal or purely toroidal fields, the range

of mixed-field solutions is very limited, with the poloidal component dominating.

This result is not peculiar to our work: Ciolfi et al.’s study [31] of mixed fields in

relativistic stars, using a perturbative approach and minimal-energy arguments for

fixed magnetic helicity, found the toroidal component only reached around 10% of

the total magnetic energy.

We suggest, based on the results of our work and a number of other studies

[64, 145, 39, 31], that the boundary conditions play an important role in determining

the relative strength of the two field components. In particular, when the poloidal

component extends outside the star it seems to dominate the total magnetic energy;

when it is confined within the star the toroidal component seems larger (in all cases

the toroidal field has to be confined to avoid exterior magnetic current).

The numerical simulations of Braithwaite [15] suggest that a stable magnetic

field will have a toroidal component between 20% and 95% of the total magnetic

energy — suggesting that none of the solutions that exist within our axisymmetric

formalism are stable. However, these simulations employ a magnetic diffusivity term

(added for numerical stability) which is high in the outer part of the star and for

the exterior; given this, we believe it is difficult to judge the general validity of

Braithwaite’s stability criteria.

Although we regard our boundary condition as the most natural for our infinitely-

conducting fluid star, real neutron stars are not entirely fluid or perfect conductors.

In moving from the fluid interior to the crust and magnetosphere, the resistivity

of the medium increases and hence the boundary condition should be adapted to

reflect this. If the relative strength of the magnetic field components is influenced by

boundary conditions in the way we suggest, then configurations including resistivity

may differ greatly from the perfect-MHD models discussed above.

In chapter 7 we investigate oscillation modes of fluid neutron stars with rotation

and magnetic fields, specialising to the case of purely toroidal background fields.

Using the work of chapter 6 to generate our background configurations means we
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are able to study the oscillation spectrum of rapidly rotating and highly magnetised

stars in a self-consistent manner. This is done by time-evolving the perturbation

equations of the system on these background stars.

When a magnetic field is added to a nonrotating star we find a number of Alfvén

(a-) modes, a class of stellar oscillation restored by the Lorentz force. These modes

are purely magnetic in nature only for a nonrotating background star.

In a rotating magnetised star, we find that the pure a-modes of a nonrotating

star (or equivalently, the purely inertial modes of an unmagnetised star) are replaced

by hybrid magneto-inertial modes, whose character is governed by the ratio of the

magnetic and kinetic energies. The presence of these hybrid modes has parallels with

other work. The evolutions of Passamonti et al. [110] and Gaertig and Kokkotas

[48] found that the pure g-modes of stratified nonrotating stars became hybrids with

inertial-mode character in the rotating case.

In addition to the hybrid magneto-inertial modes, there are also magnetic correc-

tions to the f -mode frequency, although these are very modest (∼1%) even for field

strengths up to around 1017 gauss. We also find evidence that the presence of mag-

netic fields reduces the effect of the CFS instability, as suggested by Glampedakis

and Andersson [51].

One feature of magnetic oscillations we do not see in our work is the continuous

mode spectrum of perfect MHD; we find only global, discrete, modes. It is known

that the continuum can be broken by resistivity [70], so one possible explanation is

that the artificial resistivity we employ for numerical stability is having this unin-

tended effect. However, real neutron stars will also have some (albeit small) level of

resistivity, which may give them an entirely discrete oscillation spectrum.

Finally, in chapter 8 we discuss m = 1 evolutions; the work of chapter 7 consid-

ers only m ≥ 2 modes. The main motivation for the work reported in this chapter

is to try to investigate numerically the problem discussed at the end of chapter 3:

how similar magnetised-fluid precession is to the familiar rigid-body form. We be-

gin by showing that to leading order, small-angle precession may be regarded as an

m = 1 perturbation about a rotating magnetised axisymmetric background. The

derived form of the perturbation may then be used as initial data for evolutions,

with the hope that this data will efficiently excite precession-like modes. The idea

is to first establish that such modes exist — i.e., that a magnetised fluid can un-

dergo precession-like motion — and then evaluate the deviation of the actual mode
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frequencies from the rigid-body result. This would then go some way to resolving

the problem considered by Mestel.

In practice, we have not seen convincing precessional modes from the results

of our evolutions. The main difficulty is probably that any such modes will have

very low frequencies — they are proportional to the (small) magnetic distortion —

and hence very long evolutions are needed to resolve a useful number (e.g. 10) of

precession periods. After such long evolutions, the energy of the perturbations has

decreased considerably and this may lead to any precession mode being too weak to

find. Alternatively, it may simply be that the actual motion of a magnetised fluid

differs too much from precession for it to be seen close to the expected rigid-body

frequency.

Despite having no conclusive evidence for precession, the evolutions of chapter 8

have produced other interesting results. Firstly, to confirm that our code performs

correctly we compare our m = 1 inertial-mode frequencies with those of Yoshida and

Lee [146]. We find good agreement for slow rotation, where Yoshida and Lee’s work

is valid, but are also able to look at the behaviour of these modes for fast rotation

— as high as ∼ 95% of the star’s break-up velocity. We also find evidence for the

m = 1 Tayler instability of purely toroidal magnetic fields. We believe this is the first

time the instability has been seen from a global analysis; the m = 0 instability was

investigated by Kiuchi et al. [79]. As expected, we find that the instability sets in

after approximately one Alfvén crossing time, is resolution-independent (suggesting

that it is not simply a numerical instability) and is stabilised through rotation.

The work reported in this thesis could be extended in a variety of ways. Chapter

6 describes a method for numerically solving the MHD equilibrium equations; the

code built on this is nonlinear and hence can find equilibria of stars up to break-

up velocity and with extremely strong magnetic fields. In principle, we could also

include any extra physics that is expressible in integral form; we believe, for example,

that models of superconducting stars could be studied in this manner.

In a similar way, the work of chapter 7 could also be extended. Most obviously,

a straightforward modification of the equatorial boundary conditions should allow

us to study oscillations of stars with purely poloidal fields; whilst mixed-field stars

could be investigated by extending the numerical grid. More advanced work might

include time evolutions of magnetised stars with stratification or superfluid effects.

Finally, the work of chapters 3 and 8 could prove the foundation of a more



201

thorough study into precession-like effects in magnetised fluid stars. This could

help our understanding of the dynamics of neutron star interiors, in particular.

Of separate interest in chapter 8 is the possibility that we have found the Tayler

instability for toroidal fields using a global perturbative study, where most work has

only uncovered it from a local analysis.



Appendix A

The decomposed MHD

perturbation equations

A.1 The evolution equations

After performing a φ-decomposition of the perturbation equations described in chap-

ter 7, we are left with a system of fourteen equations in the fourteen perturbation

variables — the components of the flux f , the density perturbation δρ and the mag-

netic function β. These equations are given here for completeness.
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θ − m

r sin θ
f−φ − 1

r
f+

θ,θ − f+
r,r (A.1.7)

∂tδρ
− = −2

r
f−r − 1

r tan θ
f−θ +

m

r sin θ
f+

φ − 1

r
f−θ,θ − f−r,r (A.1.8)
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∂tβ
+
r =

1

rρ
(−Bθf

+
r +Brf

+
θ )ρ,θ

+
1

r
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m

sin θ
Bφf

−
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θ
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1

tan θ
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)
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1

tan θ
f+
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−Br

( m

sin θ
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(A.1.9)
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sin θ
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tan θ
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tan θ
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−Br

(

− m

sin θ
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sin θ
Bφf

−
θ +Br(f

+
θ + rf+

θ,r)

−Bθ

(

f+
r +

m

sin θ
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A.2 Artificial resistivity

As described in section 7.3.4, we find that a small amount of artificial resistivity

helps to provide long-term stable evolution of the perturbed magnetic field. The

induction equation may be written as

∂B

∂t
= ∇× (v × B) − η∇× (∇× B) (A.2.1)

where η is the resistivity. Note that this reduces to the correct perfect-MHD limit

in the absence of resistivity (η → 0) but not in the limit η → ∞; however only the

former limit concerns us here. By including this resistive term at small magnitude

we are able to stabilise the magnetic evolutions without concern that it will pollute

the results of what is meant to be a perfect-MHD time evolution; when η is small,

resistive effects will occur over a long timescale.

Throughout chapter 7 we have worked with β = ρ0δB, but since ∇×(∇×(β/ρ))

is rather messy we use δB itself to express the resistive term, the components of

which are:

[∇× (∇× δB)]+r =
1

r2

[

δB+
θ,θ − δB+

r,θθ + r δB+
θ,rθ

+
1

tan θ

(

δB+
θ − δB+

r,θ + r δB+
θ,r

)

+
m

sin θ

( m

sin θ
δB+

r + δB−
φ + r δB−

φ,r

)]

(A.2.2)

[∇× (∇× δB)]−r =
1
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θ,θ − δB−
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+
1

tan θ

(

δB−
θ − δB−

r,θ + r δB−
θ,r

)

+
m

sin θ

( m

sin θ
δB−

r − δB+
φ − r δB+

φ,r

)]

(A.2.3)
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[∇× (∇× δB)]+θ =
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