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Equilibria and Oscillations of Magnetised Neutron Stars

by Samuel Kenneth Lander

We investigate equilibrium configurations and oscillation spectra of neutron stars,
modelled as rotating magnetised fluid bodies in Newtonian gravity. We also explore
the idea that these model neutron stars could have dynamics analogous to rigid-body
free precession.

In axisymmetry, the equations of magnetohydrodynamics reduce to a purely
toroidal-field case and a mixed-field case (with a purely poloidal-field limit). We
solve these equations using a nonlinear code which finds stationary rotating mag-
netised stars by an iterative procedure. We find that despite the general nature of
our approach, the mixed-field configurations we produce are all dominated by their
poloidal component. We calculate distortions induced both by magnetic fields and
by rotation; our results suggest that the relationship between the magnetic energy
and the induced ellipticity should be close to linear for all known neutron stars.

We then investigate the oscillation spectra of neutron stars, using these station-
ary configurations as a background on which to study perturbations. This is done
by evolving the perturbations numerically, making the Cowling approximation and
specialising to purely toroidal fields for simplicity. The results of the evolutions
show a number of magnetically-restored Alfvén modes. We find that in a rotating
star pure inertial and pure Alfvén modes are replaced by hybrid magneto-inertial
modes. We also show that magnetic fields appear to reduce the effect of the r-mode
instability.

Finally, we look at precession-like dynamics in magnetised fluid stars, using both
analytic and numerical methods. Whilst these studies are only preliminary, they
indicate deficiencies in previous research on this topic. We suggest ways in which

the problem of magnetised-fluid precession could be better understood.
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Chapter 1

Introduction

1.1 Neutron star physics

Of all the objects in the Universe, the properties of neutron stars perhaps rank
them as the most extreme and complex yet observed. These stars contain more
mass than the Sun, contained within a sphere whose radius is only around 10 km.
The binding energy and surface gravity of these objects is hence enormous. The
spacing of nucleons in ordinary nuclear matter is dictated by the nuclear force,
which is strongly repulsive at short distances; however, this repulsion is in part
counter-acted by the great pressure in neutron star interiors. The result is that the
mean mass density of a neutron star is around three times that of heavy nuclei.
The atomic nature of normal matter is replaced, predominantly, by liquid neutron
matter. There are neutron stars that rotate fast enough to tear apart any less-
compact object (neutron star periods may be as short as a millisecond) and others
whose magnetic fields exceed those on Earth by a factor of 10%°.

We cannot create the extreme conditions present in neutron stars on Earth, which
means good modelling and observations are essential to understand these objects.
These two disciplines exist in a symbiotic relationship: observations help constrain
theoretical models of neutron stars, whilst theory helps in the understanding of cur-
rent observations and can suggest specific features that observers can look out for.
In the process of studying neutron stars, we also gain an understanding of how ter-
restrial physics changes at the extremes of pressure, density, magnetic field strength

and so on. Many branches of physics contribute to the understanding of these com-
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plex objects: among others, they include General Relativity, plasma physics, nuclear
physics, thermodynamics, superfluidity, superconductivity and particle physics.

Our attempts to understand these stars are obstructed by the difficulty in ob-
serving them. Despite a wealth of data from radio astronomers and some other
sources, our knowledge of neutron star physics is still limited, particularly in the
stellar interior. However, by virtue of their compact nature we should soon have an-
other means of observing them, beyond their signature in the electromagnetic (EM)
spectrum. Gravitational radiation, a phenomenon which emerges when modelling
gravity within General Relativity, can provide information about its source which
could never be seen in the EM data. In a few years from now gravitational-wave
detectors on Earth should be greatly enhancing our knowledge of neutron stars, pro-
vided our theoretical models are good enough; this is an example of the symbiosis
described in the previous paragraph.

More detailed descriptions of various topics mentioned here are given in the rest
of this chapter and other introductory sections throughout this thesis. In addition,
more thorough summaries of the subject may be found in Shapiro and Teukolsky
[126] or Haensel, Potekhin and Yakovlev [62]. The remainder of this chapter dis-
cusses the formation and structure of neutron stars, with a mention of observations.
We then derive the quadrupole formula for gravitational radiation from Einstein’s
field equations and discuss the prospects for observing neutron stars through their

emission of this radiation.

1.1.1 The formation of compact objects

Neutron stars (together with black holes and white dwarfs) belong to the astronom-
ical genus of compact objects, the dense remnants from the death of a normal star.
The mass M of the original star approximately determines which compact object
is formed at the end of its life: the lightest stars (M < 8Mg)* form white dwarfs,
while larger ones may form neutron stars or black holes, depending on the details of
their collapse.

Why should a star collapse in the first place? Ordinary stars are stable through
hydrostatic equilibrium — the balance between thermal pressure and gravitational

force. The thermal pressure is sustained by the burning (fusion) of elements within

'We use the symbol Mg, for the mass of the Sun
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the star, beginning with hydrogen (which requires the lowest ignition temperature
for fusion) and then progressing to the burning of heavier elements with successively
higher ignition temperatures. At some point the star will run out of fuel to sustain
its thermal pressure and its core will undergo gravitational collapse [126].

For stars with M < 8Mg the core will have insufficient heat to fuse elements
heavier than those around oxygen and will begin collapse at this point. However its
mass will be lower than the Chandrasekhar mass [20], and will thus be supported
against further collapse by the pressure of degenerate relativistic electrons; this is
a white dwarf. For heavier parent stars (M > 8My), the burning around the core
continues until the temperature is high enough for the fusion of silicon, whilst the
core becomes rich in heavy, iron-group elements. In a complex coda to the evolution,
the core implodes rapidly with neither thermal nor electron pressure able to prevent
it. The formation of a shock front then leads to the violent ejection of all stellar
material apart from the core in a supernova explosion [53].

The nature of the compact object left after the supernova depends on the amount
of material ejected by the explosion. If a sufficent amount of material is ejected the
remaining collapsed core cools and reaches an equilibrium as an object formed of
degenerate neutron-rich matter; this is a neutron star. Finally, if insufficient material
is ejected at the supernova stage, the core exceeds the Oppenheimer-Volkoff mass
limit [105, 11], which in analogy to the Chandrasekhar mass is the maximum mass
that can be sustained against gravitational collapse by degenerate neutron pressure.

In this case the core collapses completely to form a black hole.

1.1.2 Neutron star structure

Having looked at the origins of compact objects?, we now concentrate on neutron
stars and their structure. From the description of their creation above, one might
envisage a neutron star to be like a giant nucleus, but this simple idea highlights
two key differences between neutron stars and more familiar nuclear matter. Firstly,
whilst the nucleus is bound together by the strong nuclear force, a neutron star is
held together by its self-gravity; secondly the proportion of neutrons in a neutron

star is much greater than that of an atomic nucleus. The neutron-rich nature of a

2Note that not all black holes, however, are formed from ordinary stars in the simple manner

described above
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NS comes about from absorption of high-energy electrons by protons in the inverse
beta decay:

pt+te —n—+ve.

This process becomes more energetically favourable at higher densities, reducing the
proportion of protons and increasing the neutron fraction within nuclei. Since all
but the outermost regions of a NS are at high enough density for this process to
occur, the majority of the star will be neutron-rich through this process.

A neutron star has five main regions (see figure 1.1): the inner and outer cores,
the crust, the ocean and the atmosphere; the last two of these regions, labelled as
the outer envelopes on the figure, contain negligible mass but play important roles

in the star’s physics [87].

Outer regions

These outer regions or ‘envelopes’ contain a majority of nuclei rather than free
neutrons. In these regions the nuclei are *°Fe or lighter and the pressure is provided
by degenerate relativistic electrons. The outermost region is the atmosphere, a thin
(~ 1 cm) layer of plasma where thermal electromagnetic radiation emitted from
the NS is formed. Below this, there is an envelope extending over a distance of
~ 10 — 100 m where the density increases to a point at which the ions become a

liquid; this region is called the NS ocean.

Crust

Below the thin fluid outer regions the ocean solidifies and the crust of the neutron
star begins. As the density increases the beta capture of electrons becomes more
energetically favourable and protons are converted into neutrons; deeper into the
crust the nuclei thus become more neutron-rich. Eventually, around ~ 0.3 km into
the star, the ‘neutron drip density’ 4 x 10" g cm™3 is reached: at this point neutrons
start to leak out of their nuclei and form a free neutron fluid. For temperatures less
than ~ 0.1 MeV this crustal neutron fluid is thought to be a superfluid [8], which
may affect the way the neutron star cools, as well as storing angular momentum that
may play a role in pulsar glitches [2]. The crust is sometimes regarded as an outer
and an inner crust, with the outer crust extending down to the neutron drip density

and the inner crust continuing from there. The inner crust consists of a mixture
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outer envelopes (~ 0.1km)
e,

~0.5pn pasta phase?

~10pN

~9-12 km ~1-2 k

Figure 1.1: Cross-section of the main regions of a neutron star, showing
the approximate thicknesses of the largest regions, together with their con-
stituent matter and approximate densities in terms of the nuclear density
pN = 2.8 x 10Mg em™3. Greek letters represent the corresponding particle

— W, Kk, ™ are muons, kaons and pions — whilst Z represents ions.

of nuclei surrounded by a neutron superfluid and is thought to be around ~ 1 km
thick.

Pasta phase

Between the inner crust and the core there may be a transition called nuclear pasta
[114] — see figure 1.2. Here the increasing density causes the remaining nuclei to
align into first a 3D lattice, then a 2D arrangement of lines of nucleonic matter,
then 1D slabs separated by similar slabs of neutron fluid. The nuclei have lost any

‘identity’ by this point; the nucleonic matter also contains neutron fluid, mixed with
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protons, electrons and muons. Deeper still the (neutron superfluid) voids themselves
form a lattice surrounded by nucleonic fluid, before a final smooth transition into
a uniform mixture of nucleonic matter — the outer core. It should be pointed out,
however, that the existence of this pasta layer is highly dependent on the equation

of state used to model the NS[62].

increasing density

D neutron superfluid

. nuclei

nucleonic fluid

Figure 1.2: Nuclear pasta. At the right-hand side the neutron drip density
has already been exceeded, and the remaining lattice of nuclei is surrounded
by neutron fluid. As the density is increased (i.e. further into the star) the
remaining nuclei are compressed first into 2D lattice of vertical nucleonic
lines, then nucleonic slabs. Further in still, we may regard the original
neutron fluid as forming a lattice of voids surrounded by nucleonic fluid,

before finally becoming a uniform soup of nucleons on the left-hand side.

Core

The core may contribute up to 99% of the neutron star’s mass and is often predicted
to be composed of two separate regions, the outer and inner core, both several
kilometres thick. The outer core is thought to consist of superfluid neutrons and

superconducting protons, as well as electrons and muons. The density in this region



Chapter 1: Introduction 7

increases beyond the nuclear density py = 2.8 x 104 g cm ™2 to ~ 2py to a region
where the physics is least certain: the inner core. The extreme densities of this
region — predicted to be as high as ~ 10py at the centre — may contain unfamiliar
kinds of matter that have not been found experimentally in the laboratory. The
inner core may contain an abundance of exotic particles such as hyperons (baryons
with one or more of their three quarks being strange) or perhaps a Bose condensate
of pions or kaons[8, 9].

Like the pasta region, the nature of the inner core differs considerably between
equations of state. It is far from clear, in fact, that the region even exists in real
neutron stars — it requires the star to be sufficiently compact for the central density
to exceed ~ 2ppy. Otherwise, the core will be entirely composed of the ‘outer core’

matter described above [62].

1.1.3 Equation of state

To build models of neutron stars one needs an equation of state to relate the star’s
pressure P to its mass density p and temperature 7. This has to encode the prop-
erties of all the different NS regions from centre to surface. For all but very young
neutron stars, the internal temperatures are thought to be around 10° — 10® K —
a number which is ‘hot’ for many physical situations but cold compared with the
Fermi energy Trermi ~ 102 K. It is therefore assumed that 7" = 0, so that the
equation of state is barotropic; P is a function of p alone.

Calculations of neutron star equations of state involve detailed consideration of
the microphysics of nuclear interactions. The results are tabulated pressure-density
relations rather than simple analytic models; Haensel, Potekhin and Yakovlev [62]
provide a good survey of these studies. These ‘realistic’ equations of state include
relativistic effects and so are suitable for constructing stellar models in General
Relativity, but by the same token there is no real benefit to using them in Newtonian
gravity.

For Newtonian stars, it is common to use a polytropic EOS P(p) = kp? =
kp't1V/N | where k, N and v are constants. The N = 1 (or equivalently, v = 2)
polytrope provides a simple neutron star model that nonetheless shares many fea-
tures with more sophisticated models: for example, the pressure-density dependence

P  p? provides a rough approximation of realistic EOSs. Another similarity is in
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the mass-radius relation. For N = 1 polytropes, the radius is given by

wk
=Vs
— see, e.g., Chandrasekhar [22] — and hence is independent of the mass. This is

mirrored by realistic EOSs, where radius is only weakly dependent on mass[86]. In
this thesis, neutron stars are modelled in Newtonian gravity, so we typically use the
N =1 polytropic EOS.

In much of the literature on neutron stars, and within this thesis, the parameters
of mass and radius are given the ‘canonical’ values of M = 1.4My and 10 km,
respectively. The former value is more certain than the latter; the mass of a NS is
quite closely constrained on theoretical grounds. Beyond a certain mass a neutron
star will collapse to a black hole, whilst if a NS is too light it will be unstable to radial
oscillations[53]. A recent estimate by Strobel and Weigel [132] has a (nonrotating)
NS mass lying between M,,;, = 0.9 — 1.3Mg and M4, = 1.7 — 2.7Mg; these
estimated ranges are typical for EOSs that assume normal nuclear matter (rather
than any kind of ‘exotic’ matter consisting of hyperons or quarks) [62]. For typical
EOSs the mass of 1.4M, corresponds to a radius of ~ 10 km; no direct measurements

of NS radii exist.

1.1.4 Observing neutron stars

The prospects for detecting a tiny, dark object (neutron stars do not undergo the
incandescent fusion of ordinary stars) in the sky would seem very poor; for this reason
Baade and Zwicky’s early predictions about the existence of neutron stars[7] received
little attention. However, neutron stars are observed today in many manifestations;
these include radio pulsars, anomalous X-ray pulsars, soft gamma repeaters and
low-mass X-ray binaries (the latter being a binary system with a neutron star and
another less compact star). Depending on the class of neutron star, their visible
emission may be predominantly X-rays, gamma-rays, or most commonly in the radio
spectrum. In many cases, signals from neutron stars are powered by their strong
magnetic fields; details of this are given in section 2.1.

Their characteristically regular radio emission has enabled over 1500 pulsars to
be recorded to date[95], which has greatly increased our knowledge of the properties

of neutron stars. Pulsar timing data has shown that NSs have a wide range of spin



Chapter 1: Introduction 9

rates; although rotational periods of around 0.1 — 2 s are typical, there is also a
family of millisecond-period pulsars[94]. Measuring the luminosity of a NS gives
information on its magnetic field; at the stellar surface the field strength may reach
~ 10" G for ordinary pulsar-NSs and ~ 10'® G for magnetars, an exceptionally
highly magnetised class of NS.

Over time a neutron star will lose angular momentum and magnetic field strength.
With some theory about how long these processes take, we are thus able to use ob-
served periods and luminosities to estimate the ages of NSs. An isolated NS will
eventually drop below the ‘death line’, where its luminosity is so low and period
so long that it can no longer be detected. The oldest pulsars we know are those
who form a binary system with a main-sequence star, accreting material from the
companion star and gaining angular momentum. This process results in ‘recycled’
pulsars, who have low surface magnetic fields (~ 10%® G) but periods that may be of
the order of milliseconds.

We conclude this section with an effect that is not seen in many pulsar obser-
vations, but which one might naively expect to be very common: precession. We
know that whilst neutron stars are very close to spherical, they are likely to have
some modest degree of distortion due to crustal deformations and their magnetic
fields. If the distortion is not symmetric about the rotation axis, then a rigid-body
analogy suggests that the star should precess; this would be seen as some long-term
modulation of the radio pulses [73]. However precessing pulsars seem to be very rare,
with one strong candidate[92], but few others; the reasons behind this are unknown.

This topic is covered in more detail in chapter 3.

1.2 Gravitational waves

One of the key predictions of General Relativity is the existence of gravitational
waves which, with their promise of carrying information from distant points of the
Universe to Earth with little interference, are of great interest to astrophysicists.
Neutron stars are promising sources of detectable gravitational radiation — and
should we manage to observe NSs through this radiation, not only would we have
another test to confirm GR, but we would also find out a lot more about the physics
of neutron stars.

Here we outline the steps to establishing a wave-generation formalism from the
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Einstein equations. Firstly we linearise the full Einstein equations (1.2.1) in the
metric perturbation h,, and use gauge freedoms to yield a wave equation (1.2.9).
We then solve this wave equation with some general physical assumptions to find
the quadrupole formula (1.2.16), which relates gravitational wave amplitude to the
second time derivative of the source’s mass distribution. We conclude the section

with a discussion of neutron stars as gravitational wave sources.
1.2.1 The linearised Einstein equations
We begin with the Einstein field equations [42, 102]:
G = 81Ty, (1.2.1)

where as usual T}, is the stress-energy tensor and G, = R, — %Rg,w is the Einstein
curvature tensor, formed from contractions of the Riemann curvature tensor R, =

R%,0, and R = R",. The Riemann curvature tensor itself is defined by

Raﬁwﬁ - Faﬁ&'y o Faﬁ%é + Famruﬁé - Fauéru,gy (1.2.2)
where
1
Faﬁé = g™ T gy = 59%(9“5,7 + Guvy.8 — 98v.) (1.2.3)

are the connection coefficients or Christoffel symbols.

We now use some general physical assumptions to simplify these equations into a
formalism for calculating gravitational waves. First we use the shortwave approxi-
mation: let A be the typical wavelength and R the typical radius of curvature of the
background, then we require that % /R < 1. With this assumption we can average
the metric over several wavelengths to obtain a ‘background curvature’ gfff) = (Guv)

and then write the full metric as a sum of this background and a perturbation piece:
uv = 9;(5) + h,uu (1.2.4)

where we have chosen an appropriate coordinate frame so that |h,,| < 1. When

studying weak gravitational field situations we can expand the field equations (1.2.1)

in powers of h,,,; with only the linear terms we have ‘the linearised theory of gravity’,

which we now work with. In this theory, the (linearised) connection coefficients are
1

FZB B QQW(B)(h‘Wﬁ + hpva — hagw)
(1.2.5)

1
- i(ha“ﬂ +h ‘fa — haﬁ’“).
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Note that when expanding in powers of h,, we raise and lower indices with gHv(B)

and gff,;) rather than the usual g"” and g,,,. With a similar linearisation of the Ricci

tensor Ry, =1, , -1, , and defining the trace-reversed pseudotensor

_ 1
Py = Ty — 5955)}1 (1.2.6)

(where h = h, = g*?*(B)h,5), we find that the linearised field equations are
e = 95 5 A T+ Py % = 167 (1.2.7)

We denote the D’Alembertian term by DEW = Bm,yao‘ and without loss of generality

we may impose the Lorentz gauge conditions
Rt =0 (1.2.8)
under which the equations (1.2.7) become
Ohpw = —167T),. (1.2.9)

So far we have shown that linearising the full Einstein equations (1.2.1) in the
shortwave approximation leads to the wave equation (1.2.9). We now wish to solve
this wave equation to find a formula for gravitational wave generation for slow-

motion sources and weak fields.

1.2.2 The quadrupole formula

Equation (1.2.9) can be solved using a Green’s function to give the retarded integral

_ T (t — |x — x|, %
hu,,(t,x)zzl/ ot =[x =X, X) g (1.2.10)

[x — x|

We proceed using the equations of energy-momentum conservation 7%, = 0;

neglecting the source’s self-gravity, this set of equations reduces to the flat-space

version (the background metric g,(fj) is now just the Minkowski metric 7, ):

T = 0. (1.2.11)

We work in a globally inertial frame so that coordinate time derivatives 2’ (0 are zero

and using the conservation equations find that

T ol zh = (T zh) 1, — 2(TY ek + T | 4 279%, (1.2.12)
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Integrating (1.2.12) over a volume so that the divergence terms vanish leaves the

expression

2/Tﬂ“ dx = /T00700xjxk dx. (1.2.13)
We return to the retarded integral (1.2.10) and rewrite it using |x — x’| = r and
(1.2.12). Then
Rk (t,x) = 24 /TUO(t —r,x)az 2™ dx’ (1.2.14)
’ r dt? ’ ' -

Let us assume that the source is moving slowly, in the sense that its velocity v < c.
Then its energy density is dominated by the mass density contribution, 7% ~ p.

Now defining the mass quadrupole moment as

Ijk = /pl'jl'k dx (1215)
we see from (1.2.14) that
9.
hjk = ; jk;(t - T’) (1216)

— this is the quadrupole formula. Finally we recall the definitions of the reduced

quadrupole moment Z j; and moment of inertia Ij:
T = /p (:chxk — %rzdjk) dx (1.2.17)
Ly = /p(r25jk —zjx)) dx. (1.2.18)

In transverse-traceless gauge® we note that these three tensors are equal (up to a
sign): IﬁT = f;[,;f = —IﬁT. Using (1.2.16) and TT-gauge we arrive at formulae for

gravitational wave polarisations in terms of the moment-of-inertia tensor:

2.,
hy = hIT=_pIf = ZjIT (1.2.19)
T
2.,
hy = hIF =pfl = ZjIT, (1.2.20)
T

1.2.3 Gravitational radiation from neutron stars

Having seen how the Einstein field equations predict the existence of gravitational
waves (under certain assumptions), it is natural to ask which astrophysical objects
and events are likely to lead to detectable gravitational wave signals. From (1.2.16)

we see that a signal’s strength depends on the proximity of the source and the

3See Section 3.2 and [102] for more details
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second time derivative of its moment of inertia tensor; i.e. the magnitude of the
acceleration of the source’s mass distribution. Concentrating on this latter attribute,
there are a number of promising sources of gravitational waves (the obvious caveat
is that the nearest of these sources are the best candidates): supernovae, coalescing
binary systems of neutron stars or black holes, the stochastic gravitational radiation
background left from the Big Bang and radiation from isolated neutron stars[123].

In fact, gravitational radiation has already been detected indirectly in a binary
neutron star system. In this system, the Hulse-Taylor binary pulsar PSR 1913+16,
the orbit of the two neutron stars is seen to decrease in a manner that agrees to within
1% with the predictions of the quadrupole formula, providing strong evidence for the
explanation that the binary is losing energy through gravitational radiation[68, 134];
this work won the 1993 Nobel Prize for Physics.

Figure 1.3: A neutron star will be distorted from a sphere into an oblate
spheroid by the effects of rotation, but this is still a stationary configuration.
However if the NS has an extra distortion (the green lump in this figure)
which is not symmetrical about the rotation axis €2, then as the NS rotates
this extra distortion will induce time-variation in the star’s mass distribution

and so produce gravitational waves.

The focus of this work is, however, a different class of GW sources — the isolated
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neutron stars. Since neutron stars are so dense, even relatively small deviations
from their predominantly stationary configurations have the potential to induce a
significant time-varying mass distribution and hence a relatively strong gravitational
wave signal. These deviations could be distortions in the density distribution which
are not symmetric about the rotation axis; or from unstable oscillation modes (see,
for example, the reviews by Schutz [123] and Andersson [3]).

Note that whilst the most significant distortion to a NS will usually be its cen-
trifugal bulge (discussed in Chapter 4), this is a stationary effect and so does not
produce GWs; see figure 1.3. Possible off-rotation axis distortions are crustal irreg-
ularities from the star’s geological history and the effect of the star’s magnetic field.
Distortions from the latter are a major focus of this document — see chapters 4 and
6.

Candidates for unstable modes include the r-mode associated with stellar ro-
tation, and the f-mode associated with pressure fluctuations in the star. If these
modes become unstable then their amplitude will grow exponentially (in the ab-
sence of any damping mechanism) — and potentially increase to the point where
the oscillations induced in the stellar density produce detectable GWs.

Prospects for detection of GW signals from neutron stars are greatly improving
with new detector technology. Although the amplitude of signals from isolated NSs
is likely to be low, their continuous nature and regular emission are suited to long-
term observations using interferometers. Techniques like signal recycling, together
with time-integration of a signal over the period of (say) a year will significantly
improve our chances of observing isolated NSs through their gravitational radiation
signals. It is also essential that we understand what signal to expect beforehand,
as searches must be done in a narrow frequency window. Ground-based detectors
like LIGO, VIRGO and GEOG600 are most sensitive to frequencies of the order of
100 Hz, which makes them suited to the detection of binary inspirals and isolated
NS signals. Encouragingly, this technology has already set strain limits as low as
~ 1072° on the gravitational radiation from known pulsars [45].

The next stage is the upgrade of these detectors with more advanced technology;
the resulting ‘second-generation’ detectors should begin science runs around 2015.
These advanced detectors will be around an order of magnitude more sensitive than
the current ones — a very significant improvement, since current theory suggests that

there should be many prospective GW sources in this improved sensitivity window.
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Looking further ahead, there are already plans for third-generation detectors (for
example, the Einstein Telescope), planned to be another order of magnitude more
sensitive still. The hope is that GW observations from third-generation detectors
will give us a greatly improved understanding of NSs: their equation of state, crustal

deformations, interior magnetic fields and oscillation spectra, among others [4].

1.3 Plan of this thesis

This thesis is organised into nine chapters, which in turn are arranged into four larger
parts: an introductory part (consisting of chapters 1 and 2); a part on analytic work
(chapters 3, 4 and 5); a part on numerical work (chapters 6, 7 and 8); and a final
part with discussion and conclusions (chapter 9).

Each chapter of analytic work has a numerical counterpart: chapters 4 and 6
contain studies of equilibria of stars with rotation and magnetic fields; chapters 5
and 7 both focus on oscillation modes of stars, with the numerical chapter including
work on magnetic modes; finally, chapters 3 and 8 are concerned with the open

problem of precession in magnetised fluid stars.



Chapter 2

Magnetic fields in neutron stars

2.1 Introduction

The magnetic fields in neutron stars are among the strongest known in the Universe:
ordinary neutron stars have surface fields that reach ~ 102 gauss, whilst at the
surface of magnetars (an especially highly-magnetised class of neutron star) magnetic
fields are thought to reach ~ 10'5 gauss. For comparison, the magnetic field at the
Earth’s surface is around 0.5 gauss. It is not outlandish to expect NS interior fields
to be an order of magnitude stronger still, i.e. up to around 10'% gauss; such a value
for the field seems to emerge from modelling of magnetar flares [130] and cooling
[76]. We should, therefore, anticipate significant magnetic-field effects in the physics
of neutron stars.

From the point of view of observation, the most important magnetic-field effect
in NSs is that they provide the energy required to make these stars visible from
Earth (in many cases). In this chapter we look at two classes of neutron star,
distinguished by how they are observed and certain other properties: the ‘ordinary
pulsars’ and the ‘magnetars’. The next two subsections are devoted to a summary
of each of these classes of neutron star. In the rest of the chapter we summarise the
literature on magnetic distortions and oscillations, since these are the major focus
of this document, and conclude with a discussion of other aspects of neutron star

physics linked to the magnetic field.

16
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2.1.1 Pulsars

Soon after the first detection of a pulsar [65], it was suggested by Gold [54] that
the extremely regular radio signal could be explained if the source was a rotating
magnetised neutron star; the basic idea is the same today. At the poles of a magne-
tised neutron star, particles are thought to be collimated along the open field lines,
causing the emission of radio-frequency curvature radiation [81] — this is shown in
figure 2.1. Since the magnetic and rotational axes are typically not aligned, this
beam of radiation rotates with the star. The effect is an on-off radio pulsing, like
the signal from a lighthouse: as the beam sweeps across the Earth we see radio
emission; when the beam is facing away from Earth we cannot see it. Pulsars have
to be neutron stars, because the rotation rates observed in many of them would tear

the (less compact) white dwarfs apart.

2.1.2 Magnetars

Magnetars are a class of neutron star with particularly strong magnetic fields, up
to ~ 10 G at the stellar surface. Duncan and Thompson [40] have suggested that
these particularly strong fields are generated by a dynamo effect in the first few
seconds after the star’s formation. These fields cause the star to spin down rapidly,
so they are not primarily detected through their radio emission, as most neutron
stars are.

The idea of a magnetar was first postulated to explain the Soft Gamma Repeaters
(SGRs) [40]. SGRs have long rotation periods and appear to spin down more rapidly
than ordinary pulsars. Assuming that this spindown is due to dipole radiation leads
to the estimate that their dipole fields are around 10 — 10" G. SGRs are char-
acterised by their soft-gamma/hard-X ray emission and their occasional, extremely
energetic giant flares.

The magnetar model has also been used to explain the behaviour of the Anoma-
lous X-ray Pulsars (AXPs). The anomaly of these objects is that their observed
X-ray luminosity is many times greater than that which could be sourced from the
star’s spindown; but it is easy to account for if these objects have the huge reservoirs
of magnetic energy of a magnetar. Although the two classes of magnetar discussed
here differ in a number of respects — most obviously, that the AXPs do not undergo

the huge bursts of SGRs — it has been suggested that this can be explained through
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varying degrees of twist in their magnetic fields [135].

2.2 Magnetic distortions

It has long been predicted that magnetic fields will distort a fluid star; see Chan-
drasekhar and Fermi [26]. This distortion only becomes appreciable if the magnetic
energy Emaqg of the star is comparable with its gravitational energy W; since neu-
tron stars have tremendous self-gravity it follows that one would only expect very
strong magnetic fields to generate any significant distortion. In chapter 6 we will
quantify these comments by scaling our code-generated results to real neutron star
values. For now, we note that the work of Chandrasekhar and Fermi suggests that
magnetars should have the greatest magnetic distortions of all NSs (with the caveat
that this early work is for an incompressible fluid and so is of limited relevance to
NSs).

A number of studies of magnetically deformed stars exist. These have included
work focussed on poloidal, toroidal or mixed fields, and boundary conditions where
the field either vanishes at the surface of the star or decays at infinity. Changing
any of these can lead to very different results, so the uncertainty we have about the
geometry of NS magnetic fields translates into an uncertainty about how distorted
they are.

Analytic approaches have been restricted to weak fields and small deformations,
as the nonlinear nature of stronger magnetic fields rapidly makes the problem in-
tractable. Early work treated deformations of incompressible fluids (see the work of
Roberts, Ferraro, Chandrasekhar and Fermi [118, 43, 26] among others; also section
4.3), a simplifying assumption but not terribly physical for real stars. The first stud-
ies of compressible stars assumed very simplistic density distributions and magnetic
fields confined within the star[143, 141]; later Goossens [56] treated the problem of
a poloidal field matched to an external dipole, extending the work of Ferraro[43].
More recent work by Haskell et al. [64] included a study of deformations in a star
with a mixed poloidal-toroidal field confined within the star.

In addition to analytic work, a number of studies have used numerical methods
to calculate magnetic distortions. Monaghan[103] and Roxburgh [119] calculated
field geometries and surface distortions for various polytropes, allowing for an ex-

terior magnetic field. Their work was perturbative and so restricted to weak fields.
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More recently, Ioka [69] has applied a second-order perturbation technique to study
the strong fields found in magnetars. Other studies of highly magnetised stars have
solved the fully non-linear problem, to allow for more highly deformed configura-
tions than could be accurately determined using a perturbative approach. This was
originally done for strong magnetic fields confined within the star[107], by extend-
ing an earlier self-consistent field method for rapidly-rotating stars[108]. For purely
poloidal fields, Miketinac [101] devised an improved numerical method which enabled
the calculation of highly distorted equilibrium configurations; it was found that for
very strong fields the maximum density of the star could move away from the centre
to make the geometry of the density distribution toroidal. Solutions have also been
found using a mixed-field formalism[137]. Finally, relativistic effects have been con-
sidered: nonlinear studies for purely poloidal [10] and purely toroidal fields [80] and
a perturbative treatment for mixed fields [31]. Another study looked at mixed-field

configurations in Newtonian gravity, but including a relativistic correction [78].

2.3 Magnetic oscillations

Recently, quasi-periodic oscillations have been observed in the aftermath of giant
flares from SGRs [71, 140]. These are thought to be connected with oscillation
modes of the star, thus giving us direct information about its oscillation spectrum
and potentially a probe of the physics of the interior of neutron stars. Understanding
the origin of the QPOs, then, is of great importance for our knowledge of neutron
star physics. These observations provide a substantial motivation for better under-
standing NS modes, in particular their behaviour in a strong magnetic field. Chapter
7 of this document studies the oscillation modes of a simple magnetar model.
Although magnetar QPOs provide fresh motivation for studying oscillations in
a magnetised star, the literature on such magnetic modes predates the discovery
of these QPOs by several decades. The influence of a star’s magnetic field on its
oscillation spectrum can be gauged from the ratio of its magnetic energy to the
gravitational binding energy, M/|W|; this suggests three classes of star where one
should take account of the star’s magnetic field: in addition to NSs, there are also the
rapidly-oscillating type-A peculiar (roAp) stars and magnetic white dwarfs (MWDs).
The earliest studies of magnetic star oscillations were driven by the discovery of

~ 10* gauss fields — relatively strong for a main-sequence star — in some Ap stars
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[28, 88]. Later, some of these stars were found to be oscillating at high frequency
— the roAp stars — motivating a number of studies of magnetic effects on high-
frequency p-modes [138, 41, 117]. In addition to roAp stars, some white dwarfs
have strong (~ 10° gauss) magnetic fields; however these have shown no evidence of
pulsation, perhaps due to magnetic suppression of the g-modes that are observed in
weaker-field white dwarfs[142]. Finally, the internal dynamics of neutron stars will
be considerably affected by rotation as well as their strong magnetic fields, leading
to interest in magnetic r-modes [104].

Many publications to date have reported on analytic studies of magnetic stellar
oscillations, necessitating considerable simplications to the problem: typically the
model used is an incompressible star with a force-free background magnetic field.
Some modern work on the problem has been inspired by the observation of magnetar
QPOs, and this has tended to be numerical [128, 127, 19|, with the advantages
that more sophisticated physics can be modelled (for example, compressible and
relativistic stars). Chapter 7 of this thesis extends previous work by solving the
system of governing equations self-consistently, allowing for background stars which

may be nonspherical by virtue of both their magnetic fields and their rotation.

2.4 Other magnetic effects

The effects of magnetic fields on equilibrium configurations and oscillation spectra
are of primary interest in this thesis, but a neutron star’s physics is affected in many
other ways by its magnetic field. An obvious observable effect is the spindown of a
neutron star: though this contains a contribution from gravitational radiation, it is
primarily due to magnetic dipole radiation. In particular the magnetars, with their
very strong fields, have correspondingly rapid spindown rates. Magnetic-field effects
are also important in the physics of the atmosphere and the thermal emission [67];
they alter the properties of dense matter and hence the equation of state [62]; and
affect the long-term evolution of the star [111]. A variety of these properties are
discussed in the review by Harding and Lai [63].

Finally, if a neutron star has a magnetic field, Goldreich and Julian [55] showed
that it cannot exist surrounded by a vacuum. Instead it forms a magnetosphere
of electric current beyond the surface of the star, with closed magnetic field lines;

see figure 2.1. In the outer magnetospheric gap (just beyond the closed field-line
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region) high-energy radiation is emitted, in the visible, X-ray and ~-ray bands. Some

neutron stars are visible through this radiation, as well as in the radio band.
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Figure 2.1: Diagram of a pulsar and its exterior magnetic field. Field lines (in black)

extend outside the central neutron star (NS); these are open at the poles where the
pulsar radio beam originates and closed in the magnetosphere. In the gap just
beyond the magnetosphere high-energy radiation is generated. The magnetic field
rotates about the 2 axis and has a magnetic field symmetric about the magnetic
axis M, so the radio beam rotates around 2. An observer sees the beam when it
faces them but not when it has rotated away, and so observes the NS through a

characteristic on-off radio signal.



Chapter 3

Precession

3.1 Introduction

Free precession is a rigid-body effect in which a body’s motion is (in its simplest,
biaxial, form) characterised by two superimposed rotations: one rotation of the
body about a principal axis of inertia (a body azis) and another rotation of this
principal axis about the body’s angular momentum axis; see figure 3.1. If the angular
momentum axis is aligned with a principal axis of inertia, however, the motion will
just be ordinary rotation; it follows that a rigid sphere cannot precess.

It has long been thought that stars may precess (see Ruderman [121], for ex-
ample), in analogy with the case of rigid bodies with misaligned rotation and body
axes. For a star to precess it also needs a source of distortion and a rotation axis
misaligned from any symmetry axis of the distortion. Returning to figure 3.1, one
could imagine stresses distorting the fluid into its biaxial shape, symmetric about
the n3 axis, but being rotated about the J axis. In the absence of other effects the
star would then develop a secondary rotation about the ns axis to conserve angular
momentum and hence precess; see section 3.4.1.

There are a variety of effects which could distort a neutron star and cause it
to precess: the rigidity of the crust allows it to support deformations which may
arise through the star’s seismic history (like starquakes) or through accretion onto
the crust from a companion star; in addition a strong magnetic field could cause
a significant asphericity in a neutron star. The most significant distortion of a NS

is likely to be the oblateness due to centrifugal forces, but unlike the other effects

23
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Figure 3.1: The free precession of a biaxial rigid body. The instantaneous
rotation axis €2 and the body axis n3 rotate around the invariant angular
momentum axis J at a frequency (;5 We call 6 the wobble angle and note

that if # = 0 or § = w/2 the motion of the body is simply axial rotation.

listed a centrifugal bulge is a stationary configuration and cannot induce or affect
precessional dynamics [73].

Most pulsar observations are of the on-off radio signal that reaches Earth. In
a few pulsars a modulation in the radio timing data has been observed, with a
periodicity whose timescale is much greater than the ordinary spin period; this
has been interpreted as evidence for precession. The most promising candidate for
precession in a neutron star is pulsar PSR B1828-11, with a possible precession
period of 1009 days and a rather uncertain wobble angle, perhaps 0.02° < 6 < 3°.
Other possible precessing pulsars are SN 1987A, PSR B1642-03 and the Vela pulsar
PSR B0833-45 [73].

The paucity of candidates for precession (only a few of the 1500+ known pulsars)
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presents a major problem to the rigid-body analogue neutron star described above.
One would expect off-rotation axis distortions to be reasonably common in NSs,
given that some of them have extremely strong magnetic fields, and assuming a
NS crust is able to support fairly large irregularities; then the rigid-body analogy
suggests that precession should be a generic feature of NSs, rather than a very rare
one. One explanation may be that precession is reasonably common, but that we are
simply unable to observe it in the radio data: if the off-axis distortion is entirely due
to (say) magnetic effects, symmetric about some magnetic axis, then the secondary
rotation of the star (labelled w in figure 3.1) will be precisely about this axis. In
the inertial frame the magnetic axis will then appear to be simply rotating rigidly.
An extra distortion (like an accreted crust) is needed to produce modulation in the
radio timing data, and hence a signature of precession.

Even if precession is more common than radio timing data would suggest, a
neutron star is certainly a great deal more complicated than a rigid body; effects
like the elastic nature of the crust [36], magnetic coupling [91] and the superfluid
interior of the star [125, 1, 52] may all affect precessional dynamics. Additionally,
as the star loses energy it may drive the wobble angle to # = 0 or § = 7/2 (see
section 3.3 and Cutler [35]), in both cases damping the precession. Despite the
many complications involved, however, Wassermann has recently suggested that
precession should still be generic to magnetised neutron stars [139].

Precessing neutron stars are interesting as potential sources of detectable grav-
itational radiation (see section 3.2 and the work of Zimmermann [148, 147]), with
distinctive continuous signals which a combination of long interferometer observa-
tions and matched filtering may be able to detect. More recently, Zimmermann’s
calculation has been extended to second order by Van Den Broeck [17]. At this
order a new spectral line emerges in the GW signal, containing direct information
about the star’s wobble angle and asymmetries; such a detection would thus aid our
understanding of neutron star structure. It has been claimed that even stars who
do not undergo mechanical precession may still emit precession-like signals[49, 72].
However at present it seems that precession, at least that due to crustal deformities,
may only result in very small amplitude gravitational waves|74].

In this chapter we calculate the gravitational waves from a freely precessing rigid
body, before a calculation which shows the energy lost in precession damping. We

then explore the problem of the motion of a magnetised fluid star and the analogy
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with rigid-body free precession. This is done with an analytic approach here, and

numerically in chapter 8.

3.2 Gravitational radiation from a freely precessing spheroid

Here we follow the calculation of Zimmermann and Szedenits [148] to use the
quadrupole formula to calculate the expected waveforms from a freely precessing
rigid neutron star. We note that for a slowly rotating body this result should be
accurate, as the post-Newtonian corrections are negligible[136]. At the end we plot

these expected waveforms for some different values of wobble angle.

3.2.1 Finding formulae for precessional waveforms

In the corotating or body frame (whose orthogonal triad we define as (x,y, z)), the

moment of inertia tensor for a rigid biaxial body is given by

I 0 0
Iyoty = 0 I 0 (3.2.1)
0 0 I

where I3 is the component along z, the body’s symmetry axis [83].

To find an expression for the moment of inertia tensor I;ner+ in an inertial frame
requires finding a series of rotations which move from the inertial axes (2,1, 2")
back to the body axes (x,y, z): for a general triaxial body, a rotation through each
of the three Euler angles is required; for a biaxial body this reduces to rotations
through two angles 6 and ¢. Here 6 is the angle between the z and 2’ axes and ¢ the
angle between the inertial 2’ axis and the line of nodes (where the inertial and body
x-y planes intersect). The z and 2’ axes become parallel after a rotation through
angle 6 about the 2’ axis; a further rotation about the 2’ axis through angle ¢ gives

parallel z—y and z'—y’ planes as well. Hence

Linert = RgbR@Ibader@TRg (322)
cos¢p —sing 0 1 0 0
where Ry = | sin¢g cos¢ 0 |and Rg=| 0 cosf —sind
0 0 1 0 sinf cos6

The Eulerian equation for ¢ reads ¢ = Q where Q is the star’s angular velocity.
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With this explicit time dependence, we can now take the second time derivative of
this matrix I;eqt, needed later for calculation of the gravitational radiation of the

body with the quadrupole formula:

2c0s20tsinf  2sin20tsin@  — sin Q¢ cos 0
fmert = 2sin2Qtsin@ —2cos20tsinf  cos Qt cos O IeQ?sin 6 (3.2.3)
—sin Qt cos 0 cos 2t cos 6 0

where € = 13[;11
1

Consider an observer whose axes (Z, 9, Z) are arbitrarily inclined to those of the
inertial system (z/,3/,2’), and call the moment of inertia tensor referred to this
observer system [,s. We wish to find the components of fobs transverse to the 2

axis. Define a unit vector n parallel to the observer’s Z axis by

sin ¢ cos
n=| sincsina (3.2.4)

COS L

where the inclination to the angular momentum vector J is described by two angles:

the ‘inclination angle’ ¢ and the ‘azimuthal angle’ a. Using n we define the projection

tensor P
P=6-n®n (3.2.5)
or in components:
Pl =6 —n'ny, (3.2.6)
This gives
1—sin2icos?a  —sin?icosasina  — sin ¢ cos L cos a
P= —sin®crcosasina 1 —sin?ssin?a —sincossin o (3.2.7)
— sin ¢ cos ¢ cos o —sin ¢ cos ¢ sin « 1 —cos?.

Given the freedom to rotate the observer axes, we choose the 2—¢ plane so that the

azimuthal angle o = 0. Then

1—sin?, 0 —sinccost

P= 0 1 0 (3.2.8)

—sinccose 0 1 —cos?.
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Note that P? = P as required for a projection. We now use this tensor P to obtain

the projection of jinert into the plane orthogonal to n and call the resulting tensor

Iproj: .
Iproj = PlipertP — iPTr(PImert) (3.2.9)

This formula ensures fpmj is a transverse-traceless matrix, which can be confirmed
0

by checking Iyomn = [ 0 | (transverse) and Tr(I,.,;) = 0 (traceless). Now, Iy,
0

is a matrix referred to the inertial triad (z/,4’, 2’) but with the part transverse to
the vector n projected out. A final rotation R, is required to obtain fobs, the second
time derivative I of the moment of inertia tensor with respect to the observer’s triad
(the observer Z-axis is the unit vector n). The condition o = 0 means the 3’ and g

axes are parallel, so we need a rotation about this axis through angle ¢:

cost 0 —sine
R, = 0 1 0 (3.2.10)

sinte 0 cose

which gives
A B
jobs = RLj.projRT - B A IlQZE sin 6 (3211)
0

o o O

0

= 2((3+ cos2¢) cos? Ot sinf + sin Qt(cos O sin 20 — (3 + cos 2¢) sin 0 sin Q1))

= cosQt(4 cos ¢ sin O sin Ot — cos O sin )
(3.2.12)

For comparison with previous work [148, 12] we change our definition of origin of
(retarded) time with the substitution Q¢ — Qt + 5. Now using the quadrupole
formula (see Section 2), we find that the gravitational waveforms for a rigid freely

precessing spheroid are given by

9.
h+ = _;Iobsn

2
= —ZALw?esind
,

21 w?esin b
Shwesmy (1+ cos? 1) sin 0 cos 2Qt — sin ¢ cos ¢ cos 0 cos Qt) (3.2.13)
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and

2 ..
h’>< = _;Iobslg

2
= —Z®Bw?esind
T

2I1w?esin 0
_ v esmy (—2costsin@sin2Qt 4+ sinccos@sinQt) . (3.2.14)
r

3.2.2 Waveform plots

We now use typical parameters for a real neutron star to make plots of the gravita-
tional waveforms from a freely precessing solid spheroid — the neutron star model
we are concerned with in this section — setting: the moment of inertia I; = 10%® kg
m?, the angular velocity as 2 - 100 rad s~!, the ellipticity ¢ = 1075 (dimensionless)
and the distance from the source as 7 = 1 kpc = 3.09 x 10! m. We also (arbitrarily)
set the inclination angle as ¢« = 7/4. In addition we need to convert from geometrised
units with ¢ = G = 1 back to SI units. Accordingly, using the requirement that the
wave amplitude » must be dimensionless, we find a factor of G¢™* is needed.

On the final page of this section plots are given of the time variation of the two
polarisation amplitudes hy and hy using formulae (3.2.13) and (3.2.14) and physical
values as above. For § = 0 we see from the equations above that the wave amplitude
is zero as expected; a body rotating about its symmetry axis has no time-varying
moment of inertia, required for gravitational radiation. For 6 > 0 the plots show
the superposition of two harmonics characteristic of free precession, whilst the final
pair of plots for # = 7/2 have a simple sinusoidal shape as expected when the body
z-axis and the angular momentum axis are orthogonal. In reality signals such as the
model ones given on the next page would need to be observed for months, making
use of matched filtering to bring the effective amplitudes up to, say, the order 10723
[123].
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Figure 3.2: Plots of the gravitational waveforms for the h, (left) and hy (right)
polarisations against time (in seconds). From top to bottom these plots correspond

to values of wobble angle § = 7 /16, 7/8, /4,3 /4 and 7/2.
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3.3 Precession damping

We argued in the introduction that one might expect precession-like dynamics to
be generic to neutron stars and in the previous section calculated the gravitational
wave emission of such a star. However this precession will not, of course, continue
indefinitely but will be subject to damping effects. Here we calculate the kinetic
energy of a precessing rigid body and see that the effect of kinetic energy loss may be
to reduce the wobble angle and hence damp the precession. It has also been argued
that in certain circumstances a body may lose energy by increasing its wobble angle
until it reaches 7/2 (see, e.g., Cutler [35] and references within). In either scenario,
the decrease or increase of wobble angle, one may see how the waveforms should
change by referring to figure 3.2.

We work in the body frame, in which the moment-of-inertia tensor takes the

diagonal form

L 0 0
I=| 0o 1, 0 |. (3.3.1)
0 0 Iy

Now defining an average moment of inertia Iy = (2/; + I3)/3 and a ‘difference piece’
Al = Is—1I;, we note that I; = Iy = I[p—AI/3 and I3 = Ip+2AI/3. So the moment-
of-inertia tensor may be rewritten in a useful form as the sum of a ‘spherical piece’

and a ‘non-spherical piece’:
I=1y6 + Al(ng ® n3 — 36). (3.3.2)

nj

ns

Figure 3.3: The orthogonal
ny triad (ni,ng,n3) and the an-
gular momentum unit vector

njy.

n;
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We next decompose the angular velocity vector €2 using Euler angles (see the

diagram above), picking for simplicity the instant when ; = 0:

Q = Jny+ng

0 0
= ¢| sing |+4]| 0 |. (3.3.3)
cos 1
Now
0
J=Jny=J ]| sinf (3.3.4)
cos 6

and we may also write the angular momentum vector J using the following identity:

Iy 0
1393 I3¢COS€ + ¢I3

Comparing (3.3.4) and (3.3.5) gives:

) N
Jsinf = I1¢psinfd = ¢ = /A (3.3.6)
1
and similarly .
- OAT
b= —2eos9AL (3.3.7)
I3
We now substitute these two Euler angle relations into the expression (3.3.3) for €2,
giving
0
Q= £ sin0 . (3.3.8)
% ( - %) cos 0

By using the diagonal form (3.3.1) for the moment of inertia tensor together with

(3.3.8), we can now calculate the kinetic energy of a freely precessing rigid body:

Ex = i1’
J2

The kinetic energy from the precession itself will then be the difference between E

evaluated for a wobble angle 6 and the kinetic energy when this wobble angle is zero,
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at fixed angular momentum:

2 Al
Eprec = EK(Q) — EK(O) = é]fl (1 — Tg(cosz 0+ 1)) . (3.3.10)

Equation (3.3.10), then, gives the energy decrease if the wobble angle § — 0, i.e.
Eprec is the energy lost in alignment of the body n3-axis and the angular momentum
axis ny. Any non-rigidity in the object could thus damp precession without removing

angular momentum from the star.

3.4 Perturbations in a rotating, magnetised fluid ball

Up until this point we have discussed rigid-body precession, but a neutron star is
predominantly a fluid body; it is not obvious, therefore, whether one should expect
to find precessing neutron stars. In this section we model a neutron star as a
magnetised fluid ball and discuss what effects should contribute to its dynamics. In
particular, we explore the idea that a magnetised fluid body should be dynamically
analogous to a rigid body.

It was originally suggested by Spitzer [129] that a magnetic field threading a fluid
ball could provide some ‘rigidity’ to the body and allow it to maintain an off-rotation
axis distortion. In analogy with the rigid-body situation, one would then expect the
motion of this fluid to resemble (in some sense) precession. Mestel [100, 99] used
this idea to find a relation between the two primary frequencies characterising the
precession, implicitly making a rigid-body ansatz. However, one would not expect
the fluid to actually react in a strictly rigid manner to these superimposed rotations.
To account for this, Mestel defines a displacement field & to describe the deviation
of fluid elements from strict precession.

Rigid-body precession and the internal &-motions should, therefore, give a de-
scription of the dynamics of a magnetised fluid with misaligned rotation and mag-
netic axes. This would be very useful for modelling of many classes of star; in
particular, Mestel was concerned with how &-motions could cause a star to become
an aligned or orthogonal rotator (i.e. the rotation and magnetic axes are aligned or
orthogonal). As seen in the previous section, 3.3, a star can conserve angular mo-
mentum during this transition by dissipation of the precessional energy. In neutron
stars, the orthogonal configuration would be optimal for gravitational-wave emission

[35]. Whilst the magnetised fluid-ball model of a neutron star is rather simplistic, a
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better understanding of the dynamics of this model could help elucidate aspects of
the dynamics of real neutron stars — like the apparent rarity of precession in them.

Since rigid-body precession is well understood, it is the &-motions that require
study. In this section we provide a critique of Mestel’s work on this topic, concluding
that his approach contains certain inconsistencies, which cast doubt on the validity
of his &-motion solutions. In this section we discuss what is needed to patch up
Mestel’s analytic approach and hence get a better description of the behaviour of
the & motions. An alternative, numerical, approach to the problem of precession in

a magnetised fluid body is suggested in chapter 8.

3.4.1 Precession-like fluid motion

In this subsection we follow the perturbative argument of Mestel to establish a
relation between the two characteristic frequencies of a rotating magnetised fluid,
showing that the leading-order correction to the ordinary rotation is a nutation
effect, as for rigid-body free precession. We model a star as a uniformly rotating
fluid ball with a frozen-in magnetic field symmetric about some axis p. This axis is
inclined at some obliquity angle y to the invariant angular momentum vector, whose
direction we denote k. We form right-handed triads (i,1,p) and (i, j, k) associated
with these magnetic and rotational axes, and denote the spherical polar coordinate
system referred to the p-triad by (r, 6, \); for the rest of this section we shall work
exclusively in this coordinate system.

A stationary, unmagnetised ball of homogeneous fluid would have a spherically
symmetric density field pg(r). Including rotation alone adds on a small extra term
pa(r, 0, A) for the effect of the centrifugal bulge on this density distribution; similarly,
the density for a non-rotating magnetised fluid ball could be written as p(r,0) =
po(r) + pB(r,0) to take account of magnetic distortions pp to the density. Hence,
for a rotating, magnetised star we may write the density of an element at the point
(r,0,\) as

p(r,0,2) = po(r) + pp(r,0) + pa(r, 0, N), (3.4.1)
where we have neglected cross-terms O(popp) as higher-order than the other density

components.

The density field of a star rotating with angular velocity ak has the angular
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k

Figure 3.4: The magnetic and rotational
& & Figure 3.5: The p-triad and its spher-

triads; we assume j, k, 1 and p are copla- . .
ical polar coordinate system.

nar.

momentum vector

Jo = /pr x (ak x r) dV. (3.4.2)

However this alone does not give an invariant angular momentum orientated along

the k direction, as the j-component of (3.4.2) is non-zero:

Joj= —a/(j r)(k-1)pp AV (3.4.3)

where the contributions from pg and p, vanish by symmetry. To yield an invariant
angular momentum we require an additional rotation w (an Eulerian nutation) about
the magnetic axis p with an associated angular momentum Jp such that (J,+Jp)-
j=0,ie.

O:—oz/(j‘r)(k-r)pB dV—i—/prx(wpxr)-jdV. (3.4.4)

We assume that j, k, 1 and p are instantaneously coplanar and work in spherical
polars with r = r(sinf cos A i +sinfsin A 1 + cosé p). Writing
j=cosyl+siny p, k = —siny 1 + cosy p and dV = r%sinf drdfd), we now
evaluate the integral (3.4.3) in the (i,1, p) triad to give

Jo-j = —a/(j-r)(k-r),oB dv

= 27rozsinxcosx//pBP2(,u)r4 drdp. (3.4.5)
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Here yt = cos® and Pa(p) = 3(3p® — 1) is the | = 2 Legendre polynomial. We

evaluate the j-component of Jp in a similar fashion to give

Jp-j = /prx(wpxr)-jdV
= Jowsiny (3.4.6)
8
3

where Iy = &F [ por® dr is the moment of inertia of the spherically symmetric density

field pg; here the two density perturbations are regarded as negligible parts of p in
comparison with pg. We now use equations (3.4.5), (3.4.6) and the requirement

(Jo +JB)-j =0 to find the nutation frequency

2
w= —w // ppPo(p)rt drdu. (3.4.7)
0

This result may be expressed in a more familiar form by comparing it with the
difference in moments of inertia of the p-axis and the i-axis due to the magnetic

distortion:

Iy — Lii = /pB(r2 —p2) dV — /pB(r2 — i2) dV = /pB(é2 —p2) dv.

In spherical coordinates (r, u = cosf, \) we then have

Lyp—1; = /pB ((1- p?) cos® X — ,u2) r drdpd)

1— 2
= 27r/p3< 2” —,u2>r4drd,u

= —27r/pBP2(u)r4 drdpu. (3.4.8)

We may now compare this result with (3.4.7) to see that

J—

i (3.4.9)

W = QCos Y
This is the usual rigid-body result; see for example the classical mechanics text by

Landau and Lifshitz [83].

3.4.2 Deviation from rigid-body precession in a rotating magne-
tised fluid

The result at the end of the previous subsection suggests that the macroscopic dy-

namics of a rotating magnetised fluid body should resemble free precession; however



Chapter 3: Precession 37

the fluid is clearly not a rigid body. This presents a question as to what degree the
magnetised fluid can be regarded as rigid and hence how similar the motion of a
magnetised fluid is to ‘conventional’ rigid-body precession. Mestel sought to answer
this by considering the microscopic dynamics — the motion of individual fluid ele-
ments. The aim of this subsection is twofold: to elucidate Mestel’s original work on
fluid precession, and to highlight what we believe are its shortcomings.

The notation used in here is as in the rest of this section, with a couple of
additions. Since we will need to distinguish between different frames of reference,
we define for brevity the ‘a-frame’ to be the one comoving with the star’s primary
rotation (at frequency «) and the ‘w-frame’ to be the co-precessing frame — i.e. the
rigid-body precession frame characterised by the superimposed rotations a and w.

Let us first recall the two conventional ways of describing perturbations. An
Eulerian perturbation, denoted ¢, is the change in a quantity at a fixed point in
space whilst a Lagrangian perturbation A is the change in a quantity moving with
the fluid. We denote the change in position of a fluid element Ax = £(x,1), called
the Lagrangian displacement; a fluid element initially located at x is moved to a
new location x + £(x,t) by the perturbations. From this, it may be seen that the

Eulerian and Lagrangian perturbations in (say) the density are related by
Ap=9dp+E&-Vp. (3.4.10)

We wish to investigate the deviation of a rotating magnetised fluid star from free
precession. The rigid-body free precession of the fluid may be described as a density
perturbation, whose form is given by (3.4.7); if the fluid precisely obeyed this motion
then each fluid element would be stationary as viewed by the co-precessing observer
in the w-frame. Since we do not expect exact rigid-body precession here, let us define
the Lagrangian displacement £ to be the change in position of a fluid element in the
co-precessing frame, with its time derivative ﬁ giving the velocity of the element as
viewed from the w-frame. On viewing the star in the inertial frame, we will then see
that the motion of a fluid element is a vector sum of three characteristic velocities:
the normal stellar rotation « about the rotation axis; the slower nutation w about
the magnetic axis; and the extra velocity field £

In a rigid body, free precession precisely describes the motion of an element and
so by definition & = 0. However, a fluid is clearly not rigid; it is only able to sustain

a time-varying distortion by virtue of the rigidity bestowed by the magnetic field.
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Figure 3.6: Dynamics in the a-frame, i.e. the frame rigidly rotating with rate a. The
centrifugal contribution to the distortion is assumed to dominate, so that the stellar
surface (the solid black line) and the isopycnic surfaces (the dashed black lines) are
spheroidal. Without a magnetic field, a fluid element will be stationary in this frame;
however the magnetic field induces a slow precessional motion, superimposed on the
normal stellar rotation. This motion will cause a fluid element (the filled red circle)
in the a-frame to rotate about the magnetic axis ng with period 27 /w. Over one
period it travels through regions of varying density — it crosses density contours —

because of the nonspherical centrifugal distortion.

It is helpful to consider the motion of a fluid element in the a-frame; see figure 3.6.
In the unmagnetised case the element undergoes only the primary rotation o and
so is stationary in the corotating frame. From section 3.4.1 we anticipate that the
addition of a misaligned magnetic field will cause the star to precess, and a fluid
element in the a-frame will therefore undergo a slow rotation or nutation (with
frequency w) about the magnetic axis. In doing so, however, the fluid element will
be moved through regions of differing density. Since the background density pg is
spherical and the magnetic distortion pp is symmetric about its axis, the density
difference will be entirely due to the centrifugal bulge pq.

This leads us on to a justification of why there should be &-motions, on the
grounds of microscopic physics. Whilst fluid elements will be able to sustain small

density variations, those changes which would be experienced by a typical element
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in one precession period (see figure 3.6) are likely to be larger than this. For this
reason there will be a restoring force on each fluid element that acts to return the
element to its original density; hence fluid precession is not rigid, and in general
&€ # 0 (only elements along the magnetic axis will have & = 0, because they do not
experience the nutation in the first place).

There is also a need for &-motions on macroscopic grounds (i.e. considering the
motion of the whole star). Imposing rigid-body precession on a fluid would result
in the nutation of the centrifugal bulge about the ng axis, potentially taking the
fluid well away from its equilibrium configuration; the global effect of the internal
&-motions should then be to restore the star to its stationary equilibrium.

Having described why there should be deviations from rigid-body precession in
the magnetised fluid model considered here, we now investigate the nature of these
&-motions. We work in the co-precessing w-frame unless otherwise stated. First
recall that at some initial time ¢y we may write the density of a fluid element using
(3.4.1). After a time 6t the element will be rotated through an angle 0A = wdt; the
change in density will be

dp = p(to + 0t) — p(to) = palr,0, A+ X)) — pa(r,0,\) = w5t(z9p)(\l (3.4.11)

with a similar equation for pressure variation P,,

0P,
oN

0P = Py(r,0,\ 4+ 6\) — Py(r,0,\) = wit (3.4.12)

We define the Lagrangian displacement & to be that change in position which
is sourced by the density perturbation dp (Eulerian in the co-precessing frame); i.e.
the displacement field & acts to restore fluid elements to their stationary equilibrium

state. Then the continuity equation yields
6p=—V-(p§) = =V (po§) = —&-Vpo — poV - &. (3.4.13)

Now expanding this equation in components of £, we see that

L (1010 L0y
0P =& ar (r28r(r &)+ 5681r10)+7‘81119 8)\>‘ (34.14)

rsin 6 %(
From (3.4.11) we know the left-hand side of this equation, but turning to the right-

hand side we see that the problem of solving for a displacement field & = (&, &y, £)) is,

so far, underdetermined: the only equation containing £ is the continuity equation,
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but it contains three unknown components of £. If one does not include any extra
physics then there are no other equations to constrain & — and hence there is a
whole class of solutions (let us call them {&g,;q4}) to the problem.

We note, however, that in (3.4.11) and (3.4.13) the magnetic field is conspicuous
by its absence. Since the star is only able to precess by virtue of this field, it seems
natural that magnetic effects should pick out some particular solution &,,,, from the
class {&quiq}- Mestel claims that such magnetic terms are all of higher order than
the basic perturbations, however, and hence may be ignored.

With no magnetic effects entering his equations, Mestel needs a different ap-
proach to resolve the indeterminacy of the problem — he argues that in certain
zones of a main-sequence star, the &-motions will be divergence-free. He does how-
ever acknowledge that this simplification may not be valid for the whole star — and
it is a crude approximation if one is concerned with neutron stars. We repeat his
argument for the field being divergence-free here.

We begin with the adiabatic relation between the Lagrangian variations, Ap/p =
~vAp/p; this is the equation of state for the precessional perturbations. Substituting

the definitions of the variations (3.4.10) and using the continuity equation gives
p p
5P+£-Vp:?(5p~l—£'v,o):?(—pV-E). (3.4.15)

Neglecting P, and Pp components of the pressure then gives

OP,
P~ —€£-VPy—yP)V -£ = wéta—)\a. (3.4.16)
In a uniformly rotating star we have the background equation of state, P, = po(dPy/dpo)+

O(p?), and equation (3.4.16) becomes

7P0 8pa
. — T V. €= —wit—2, 4.1
&€ Vpo + dPo/dpov '3 wot o\ (3.4.17)
Now combining (3.4.11), (3.4.13) and (3.4.17):
8pa 7P0
wit—===§ VPOerPO/dev £=&-Vpo+poV - & (3.4.18)

which can be rearranged to give the condition

vFo B
(Po(dPo/dpo) - 1) Va0 (419



Chapter 3: Precession 41

Mestel now assumes the following relation, which he states is valid in a certain

zone of a main-sequence star:

7P

S 3.4.20
po(dPo/dpo) ( )

in which case (3.4.19) implies that the £&-motions are divergence-free:
V-£=0. (3.4.21)

This condition (3.4.21) implies that the fluid elements move at constant density, Ap,
since

Ap=0p+&-Vp=306p+V-(p§) —pV-£=—pV-§ (3.4.22)

where we have used the definition of the Lagrangian perturbation Ap and the con-
tinuity equation.

We are now able to find an expression for the radial component of the velocity
field &,. By combining (3.4.17) with the divergence-free condition (3.4.21) and taking
the limit 8¢ — 0, we have &,/8t — &, and hence

: Opa /d
£ = _"JTPA % (3.4.23)

Whilst (3.4.23) is a solution for &, a third and final constraint is needed to find
é’g and 5 » uniquely. Mestel has approached this problem in two ways: in his first
paper on the subject he considers the ‘simplest’ &-field, where &£, = 0 [100], but in
his second paper seeks the solution which minimises the energy of the &-motions
[99].

The crucial step in the above argument for V - & = 0 is the condition (3.4.20).
This relation is equivalent to the statement that the background and perturbations
are governed by different equations of state:

_ podP

Toack = B 00 # Ypert- (3.4.24)

Assessing the applicability of this to a main-sequence star is beyond the scope of
this thesis, but we do not expect it to be valid for the bulk of a neutron star. In any
case, it represents an extra piece of physics being added to the problem. Doing so
then gives a class of divergence-free £&-motions, whilst we expect the actual solution

for fluid neutron star matter will not have this restriction.



Chapter 3: Precession 42

Having argued that Mestel has calculated &-motions by including extra physics,
not applicable to neutron stars, we return to the physics which we believe is missing
from the problem: the role of the magnetic field. Examining each term in the
perturbed Euler equation, in the w-frame, Mestel concludes that each one is of
higher order than the perturbations he is considering and so all may be neglected.
Among these, the perturbed Lorentz force and the nutational Coriolis force have
the same order, O(a?B?), lower than the other perturbed force terms. That is, to
lowest order the perturbed Euler equation is a balance between these two terms.

Rather than separately neglecting these two forces, we believe that they should
be thought of as a restriction on possible £&-motions. Regarding them in this way,
the only acceptable solution to the problem is the one & ,, that induces a per-
turbed Lorentz force equal to the nutational Coriolis force. This is then a well-posed
problem, which obviates the need to consider £, = 0 solutions or ‘minimal-energy’
solutions.

This system of equations may be solved for very simplistic field geometries, but
the general magnetised fluid problem is unlikely to be analytically tractable. In
chapter 8 we formulate the problem in a way that allows it to be studied through
time evolutions of the perturbation equations of MHD; the idea is that if one finds
a precession-like oscillation mode, its frequency can be compared with that mode
frequency a precessing rigid body would have. The discrepancy between predicted
and observed modes would then provide an answer to the question that motivates
this section: how similar are the motion of a magnetised rotating fluid star and a
freely precessing rigid body? To date, however, we have been unable to find such

precessional modes numerically; we suggest reasons for this in section 8.4.



Chapter 4

Rotating and magnetic

equilibria: analytic work

One major aim of this thesis is to understand equilibrium configurations of magne-
tised neutron stars. Neutron stars are believed to be composed predominantly of
fluid matter, which can be approximated reasonably well by an N = 1 polytrope.
Since some neutron stars rotate extremely rapidly and others have very strong mag-
netic fields, we would like to calculate their equilibria in a non-linear fashion, rather
than by using perturbation theory. To accomplish all of this we need to approach
the problem numerically; this is described in chapter 6. In this chapter, however,
we investigate neutron star equilibria analytically. As well as providing an under-
standing of the limitations of this approach, our results will provide a check of later
numerical work.

Before looking at the problem of magnetically deformed stars, we turn to the
simpler problem of distortions of rotating stars. Although a neutron star will have
other sources of distortion too, its centrifugal bulge will typically be the largest as-
phericity. As mentioned before, a uniformly rotating star with no other distortions
will be in a stationary state and so not a candidate for precession or gravitational
wave emission. However the perturbative calculation here is helpful for understand-
ing the problem of precessional fluid dynamics described in section 3.4.2 and also
provides an analytic check of our numerical results in the slow rotation limit.

After the perturbation calculation we present a derivation of the virial theorem,

which is valid in the non-linear regime of strong magnetic fields and fast rotation;

43
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we will later use this theorem to test the numerical accuracy of our code. Finally,
this chapter contains a calculation for the ellipticities of a rotating magnetised star
in terms of components of tensor energy quantities. The major restriction here is
that we need to specialise to incompressible fluids, but the results will still give us
an indication of the nature of the distortions we should expect in the numerical

configurations described in chapter 6.

4.1 Distortions of a rotating polytrope

We wish to find an expression for the Eulerian density perturbation dp at a point
in a fluid star consequent on adding a (slow) rotation term. From this expression
we will then be able to find the surface shape of a slowly rotating polytrope. We
perform the calculation both with and without the Cowling approximation, to see

how much this simplification affects the result.

4.1.1 Perturbing hydrostatic equilibrium

We begin by supplementing the equations of hydrostatic equilibrium with a rotation
term:

1
~-VP+Vo+Qx (2 xr)=0. (4.1.1)
p

where the angular velocity is along the z-axis: Q = Qe, = Q(cosfe, —sinfey). The
problem has axial symmetry, so in spherical polars the ¢-components are zero. Then

V= er% + eg%% and equation (4.1.1) becomes the pair

P )
gr = —pgr + p2rsin® 0 (4.1.2)
P )
869 = —pga + p2%r? sin 0 cos 6. (4.1.3)
Poisson’s equation in these coordinates is
10 0P 1 0 0P
2 2 .
d— 2 el - — =4 4.1.4
V=00 <T 8r>+r25in080 (Smeae) mGp (4.14)
and assuming a polytropic equation of state gives
P=kp. (4.1.5)

Note that v is often replaced with the polytropic index N, where 1 + % = ~. By

assuming slow rotation (i.e. that Q2 is a small term) we can write, to first order,
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each of p, P and ® as a background piece plus a small Eulerian perturbation, e.g.
P = Py+ 6P. We first perturb (4.1.2):

or _ om  95P
or — Or or
. 0P 6P
= (po+0p)Q%rsin® 6 = (po + dp) ( o +87">

0 B 00D s 0P
or Po or p or
26D

where we have neglected the higher-order terms 6p Q%rsin?6 and dp%,-. Clearly

= poQ%rsin® 0 — po (4.1.6)

hydrostatic equilibrium should be satisfied for the static background configuration

(without rotation), so we can split (4.1.6) into background and perturbation equa-

tions:
0P, 0P
prali poS2°rsin“ 6 — PO~ 5PW' (4.1.8)
Similarly, perturbing (4.1.3) gives
0P, 29
P d
% = poS2%r?sinfcosf — po% (4.1.10)
where the #-derivative term from the first equation vanishes since % = 0; the

background star is spherically symmetric and therefore ®y = ®¢(r) with no angular
dependence.

We next perturb Poisson’s equation, yielding background and perturbation equa-

tions:
10 060 1 9 060
AnGop = ——— (r? — (sinf—— ). 4.1.12
Teor = 3, <"” or ) T 2o 00 <Sm 06 ) (4.1.12)
Finally, turning to the polytropic relation we have:
P =Py+ 6P =k(po+0p)" = kpl +~kpl "6p + O(6p?) (4.1.13)
and so
Py = kp} (4.1.14)

SP = ~kpl 'op. (4.1.15)
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The same result can be obtained using the relation between Lagrangian variations
AP Ap
= ==

Fo Po

Using the definition of the Lagrangian variation A =6 + & - V into (4.1.16) gives

OP+§&-VF dop+E&-Vpo
R -
0 PO

(4.1.16)

(4.1.17)

which with the polytropic assumption on the background Py = kp} becomes:

oP vkpy " (Op+ €+ Vo) — & V(kp])

= ykpl 'op (4.1.18)

1

as before'. This is not surprising: we have simply plugged the polytropic relation

for the background relation into that of the Lagrangian variations.
4.1.2 Solving the background equations

We first want to find the density distribution of the background, non-rotating star;

this means solving the background system of equations

dPy ddg
—_— = —p— 4.1.1
dr p dr ( 9)
—_— " = 4 4.1.2
r2dr (T dr ) mGpo ( 0)
Py = kp. (4.1.21)

We begin by replacing the ®( derivative in (4.1.20) using (4.1.19):

1d r? dPy

—— | ———— | =4nGpy. 4.1.22
r2 dr ( po dr ) o ( )

Now substituting (4.1.21) into (4.1.22) we find, after some algebra, that

(24 dpo\? a2
—4AnGpo = kyp,) 2 (Po +(y—=2)pt <p0> + po) . (4.1.23)

r dr dr dr?

This equation is clearly greatly simplified for the case v = 2, which also happens to
be a reasonable approximation for a neutron star (see section 1.1.3). In this case

(4.1.23) becomes:
d2po 2dp0 21
—— 4+ ——po =0. 4.1.24
2 T rdr R ( )

'assuming that the v in the Lagrangian relation (4.1.16) is the same as the y of the background

polytropic relation.
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Solving this equation with the boundary condition of a constant central density

p0(0) = pe, we find the density distribution:

©
3
Q

sin
po(r) = pe—Fr——. (4.1.25)

"
1

‘
Q
=

4.1.3 Cowling solution

We now turn to the second set of equations from our perturbation analysis, for the
Eulerian variations § P and dp sourced by the rotation. As a simplest first case, we
also make the Cowling approximation: that derivatives of §® may be regarded as

negligible. This reduces the perturbation equations to the set:

0oP 09

_ 2. 29 5 9%0

o = poS2°rsin 0 — dp o (4.1.26)
P

8859 = po%r?sinf cosd (4.1.27)
P = 2kpodp. (4.1.28)

Note that there is no perturbed Poisson equation in this case, as the Cowling approx-
imation is inconsistent with it (the two together imply, incorrectly, that 4wGdp = 0).
Now, for our v = 2 polytrope

dd 1 dRy 1d, , dpo
dr po dr £0 dr( 70) dr’ ( )
using this result in (4.1.26) gives
P
% = poQ%rsin? 6 + 2k5p%. (4.1.30)
Now, using (4.1.28) we see that
osP 0 dép dpo
—— = —(2kpodp) = 2kpo—— + 2kdp——; 4.1.31
5 = oy (2kpodp) = 2kpog = + 2kdp- = ( )

comparing this with (4.1.30) yields

@ B O2rsin? 0

o o (4.1.32)

which we integrate to give

0272 gin26

o TAO+G (4.1.33)

op =
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for some arbitrary function A(#) and integration constant C;.
Similarly we use (4.1.28) and find that

P 9 85p

20 — %(Qkpoép) = 2]{:,0()% (4.1.34)

since % = 0; now comparing (4.1.34) with (4.1.28) we see that

06p  r?sinfcosb
-— = 4.1.
00 2k (4.1.35)

which integrates to give

2.2 o102
5p = QTT‘ZHQ + B(r) + Co (4.1.36)

where B(r) is an arbitrary purely radial function and Co some constant.
Now we compare the two perturbation solutions (4.1.33) and (4.1.36), noting
that for consistency we require A(#) = B(r) = 0 and C; = C2 = C, and find that:

022 sin? 0
op = —+C
P T
02(r?sin? 0 — D)
= 4.1.37
4k ( )
where on the last line we have rewritten the integration constant as D = —4kC/Q?

to reflect the requirement that in the limit {2 — 0 we should recover the background
solution, i.e. dp = 0.

To complete the solution we need to find the integration constant D. We begin
by finding the radius of the star, which to first order is equal to the radius of
the background configuration. The surface of the polytrope is the first zero of the

function po(r); from (4.1.25) we see that this occurs at

7k
r=R=,/oz. (4.1.38)

We can extend the continuity equation for a fluid element
dp+ V- (p§) =0 (4.1.39)

to the whole star by integrating it over the star’s volume, finding that

dpdV == [ V- (po€&) dV = — [ pp&-dS = 0. (4.1.40)
Jo] /
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We now use this condition and the expression for dp given by (4.1.37) to deter-
mine the constant D:

=27 0=mr=R

2
0—/6pdV = / //Q rsm9 D)rsmﬁdrdﬁdgb
\%4
Q27T2\/7]€ wk
= 02V 20 <5G_D> (4.1.41)

and hence D = I%. Our final expression for the Eulerian density perturbation in a

slowly—rotatlng ~v = 2 polytrope is therefore

02(r2sin20 — =k
5p= 0 Slzk ). (4.1.42)

For comparison with the following non-Cowling work we rewrite this result using
u = cos @ and the Legendre polynomial Py(p):
3k
27— 355)  Q2Py(p)

S5p = o —— (4.1.43)

4.1.4 Non-Cowling solution
Perturbation equations

We now return to the original perturbation equations, but this time do not make

the Cowling approximation. For a slowly-rotating v = 2 polytrope the equations

are nNow:
arP 9 09 00D
vl poS%rsin® 0 — 5p 5 P (4.1.44)
0éP 9 00P
20 = poS%r% sin @ cos 6 — po—— 20 (4.1.45)
1 0 [ 5,000 1 0 (. 00
47T'G5p = 7‘725 (7" a'r' > + 1"2 Sine% (Sln 989) (4146)
0P = 2kpodp. (4.1.47)

We wish to re-express the perturbed force balance equations (4.1.44) and (4.1.45)

‘9@0 = —l%ﬂ allows us to
p Or

eliminate @y from (4.1.44), then replace 0 P using (4.1.47). This leaves a perturbed

force balance equation in the Eulerian density and gravitational potential variations:

@ B 02rsin? 0 B i@dfb
or 2k 2k or

(4.1.48)
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Similarly, (4.1.45) becomes

@ B O2r2gin 6 cos B i(%CI)
00 2k 2k 90

(4.1.49)

Directly integrating (4.1.48) and (4.1.49) shows that the only integration constant
D has to be independent of r and 8. Thus
O?(r?sin? 0 — D)

1
S5p = i - 5 0%. (4.1.50)

Finally we turn to the perturbed Poisson equation (4.1.46) and use (4.1.50) to write

it entirely in terms of §®:

2
V26d — 4nGiop — —?5@ + GZQ

(r?sin? § — D). (4.1.51)

Defining m = /27G/k, (4.1.51) is manifestly a Helmholtz equation with a rotational

source term:

G2

(V2 +m?)6d = (r?sin? 0 — D). (4.1.52)

Solving the Poisson equation

To solve (4.1.52) we first consider the 2 = 0 case — the homogeneous Helmholtz
equation

(V2 +m?)6d = 0. (4.1.53)

Our problem is one of axial rotation, so we expect 0® = d®(r, 6) for the homogeneous
problem too. We attempt to solve this by separation of variables and so make the
ansatz 0® = R(r)O(#). Under this ansatz (4.1.53) becomes

© d [ ,dR R d /. dO 9
r2dr <r dr>+r2sin0d9 (Sln9d0> m" 16, (4.1.54)
multiplying through by 7?/(RO) then gives
1d dR 1 d doe
202 2 ([ p2200) — — | sinf— | . 4.1.
T Rar <r dr> ©sind o <Sm9d9> (4.1.55)

Since the left hand side is a function of 7 and the right a function of 8 we may set
both sides equal to some constant /(I + 1) (this choice will prove useful) to effect the
separation of variables into two equations, one in 7 and one in . The equation in r

1d <7"2(31]f> N <m2_l(l;1))R:0 (4.1.56)

r2dr
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is a rescaled Bessel equation whose solution for each [ is a half-integer Bessel function
1
R(r) = WJH%(mT). (4.1.57)
Mathematically, the Y; 1 Bessel functions are also admissable as solutions, but
2
since these diverge at the origin we discard them as unphysical. Next, we turn to

the equation in 0:

sin 6 do do

By inspection, this is simply Legendre’s equation whose solution is the Legendre

L d <sin9d@) +1(1+1)0 = 0. (4.1.58)

polynomial P;(cos ). The general solution would also include the Legendre @Q; func-
tions, but since these have nondifferentiable points we discard them. Our full solu-

tion to (4.1.53), with a set of arbitrary constants {f;}, is thus

6<I>homog = R(’l“)@(@) = \}; Zﬁl Jl—l—% <\/ 27rkG’1“> Pl(COS 9) (4159)
=0

We now seek a particular solution of (4.1.52). We may rewrite the right-hand side
of this equation as a sum of the Legendre polynomials Py(cosf) = 1 and Py(cos ) =
2(3cos? 0 — 1):

Gr)?
3k
which suggests that we make the ansatz 60® = J®g(r) + IP2(r)P2(cosf) for our

Gr Q2

(r?sin?0 — D) = (—2r2P2(cos 6) + 2r? — 3D), (4.1.60)

particular solution and use this to determine the functions 0®y and d®s. We first

note that, for a purely radial function f(r) and a purely angular one g(),
V3(f9) = gV f + Vg (4.1.61)

since the cross-term 2V f - Vg is zero by orthogonality. Given this, the left-hand side
of (4.1.52) under our ansatz 0® = 0Py + JPo P> is:

V250 + 27050 — 50l + 250, + 2 C 50 4+ (504 + 2605 + (27— 5 50, ) P,
k r k r r2

k
(4.1.62)
where a prime denotes a derivative with respect to r. We now seek a solution to
(4.1.52) by equating the coefficients of Py and Py for the left and right-hand sides,
equations (4.1.62) and (4.1.60) respectively. Equating the Py coefficients first leaves

the equation

; (4.1.63)

2 2 02 [2r?
5q>g+;5<1>g+LG _ or <T D>

5D
E 0 k
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which we solve to find that
2

0 6k
Dg=— (292 -3D— — ). 4.1.64
0%o 6<r 3 7TG> ( 64)

We now equate the Ps coeflicients, leading to the equation

2 2rG 6 2GTO?r?
SPY + =6 — = = 0Py =—— 4.1.
2 + r 2 + ( L r2> 2 3]{3 ( 65)
whose solution is
927,2
0Py = — 3 (4.1.66)
Our particular solution is therefore
02 6k 022
§®pg = 0Py + 6PPy = — (29 = 3D — — | — Ps. 4.1.67
PS 0 +0®aPs 6 < r 7TG> 3 12 ( )
External field perturbations
Outside the star dp = 0 and Poisson’s equation is
V235® = 0. (4.1.68)

We may perform a separation of variables in a similar fashion as for the homogeneous

problem; under the ansatz & = R(r)©(f), (4.1.68) becomes the pair of equations

d [ ,dR B
1 d /. do©

The latter equation we have solved already, giving © = Pj(cosf) for a particular [.

The former equation may be solved to find
R=r"t"1 (4.1.71)

for some particular [. We see from this that the perturbation in the external potential
is given by an infinite sum over [ of each RO; however, matching this to an internal
field with Py and P2 components only enforces the same structure for the exterior
solution, that is

Qo a2

6ear = 7 + 5P (4.1.72)

for some constants ag, as.
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Boundary conditions

Our physical boundary conditions for a star are the requirements that both the
gravitational potential ® and its gradient vector V@ are continuous at the star’s
surface. This condition is automatically satisfied for the background spherically-
symmetric field ®q, so since & = ¥y 4 JP we require it to be satisfied separately for
the perturbation J®.

From equations (4.1.59) and (4.1.67) we see that inside the star the perturbations

in the gravitational potential are of the form

BoJ 1 02 6k Gods 022
DPint = 0Phomog + 0Pps = —= + — (2r2 = 3D — — 2 _ Ps.
Oint = OPhomog +0%Ps \/77+6<7"3 WG>+W 3 )
(4.1.73)

For brevity we have not shown the dependence of the Bessel functions J z = J z (%r)
in the above expression. Now, since d®pg has only Py and Py coefficients we ex-
pect the same structure for §®peme, and have dropped all terms in the sum (4.1.59)
except those for [ =0 and [ = 2.

In order to satisfy the boundary conditions, we need to find values of the con-
stants «g, s and [y, G2 so that at the surface of the star the internal and external
fields, and their gradients, match. As for the Cowling case, the star’s radius is
R=,/z.

We begin with the requirement that the Py coefficients of §®;,; and d P, should

be equal at the surface, radius R. Solving this for oy we find that

k(r> —-6) 7D\ | k
— 02 _ —
apg = < o 5 > ek (4.1.74)

Next, equating the Py components of §®;,; and §®.,+ at r = R yields an expression

for arg in terms of Fa:

SR R [k
a2(P2) =30\ 565 ~ Tage \ ara (4.1.75)

We now turn to the matching of Vo®;, cre. First note that for some field f =
fo(r) + fa(r)Pa(cos0):

i

0 10 .
E(f0+f2p2)f‘+;%(f0+fzp2)0 (4.1.76)

([ O0fo  Of .1 PAW:



Chapter 4: Analytic results on equilibria 54

This means that matching the 0 components of V@ cr¢ is equivalent to matching
the Py components of 0®j,t ert, yielding no new information. We see then, that
explicit determination of the four constants ag 2, 3p,2 should come from consideration
of the r components of VO®;y,; ¢t at = R. We begin by performing this matching

for the Py components, which yields an explicit expression for [y:

O%(m? —2) 4] kb 0D |27k
fo = 5 \/8W3G5— T\ o (4.1.78)

Next equating the Po components, we find explicit expressions for as and Js:

O%(n? —15) | 7k®
_ A41.
a2 12 2G5 (4.1.79)

5mkQ? 27k
b= e\ g (4.1.80)

Substituting our expressions for y and [ into (4.1.73) gives us an explicit solu-

Final result

tion 0®;,,; to the perturbed Poisson equation (4.1.52), which satisfies the boundary
conditions; all that remains is to determine the constant D. To this end, we now
substitute the solution §®;,; back into (4.1.50), in place of §®, to yield an expression

for §p. As for the Cowling case we may integrate the continuity equation to give the

condition
/(5p dV =0. (4.1.81)
14
With this requirement we may integrate our expression for dp to fix D, finding that
(72— 6)k
D=-——. 4.1.82
3G ( )

Finally, by substituting this value for D back into the expression for dp, (and re-
calling that m = /27G/k) we are able to write down an expression for density

perturbations in a v = 2 polytropic star:

5 _» 1.7 sin mr +5—Q2 ﬁcosrmﬂ-zf7r o sinmr | Pa(p)
P=5a\% 3mr 8Gr \ Gr m \3 m?2r? 2
(4.1.83)
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4.1.5 Surface shape of a rotating polytrope

Having found an expression for dp we are now able to calculate the surface distortion
of the star due to the rotation. At the surface of the star the Lagrangian density

perturbations are zero:
0=Ap(R)=0p(R)+&-Vp|=r (4.1.84)

where we have used the relation between Lagrangian and Eulerian perturbations;
next we note that to first order p = pg and that Vpy = %, thus (4.1.84) gives

_9p(R)
%2 (R)

r = (4.1.85)
Now evaluating (4.1.83) and differentiating (4.1.25), both at r = R = %, we find
that the surface displacement (i.e. the surface distortion) is given by

(2-5Py) [kG

_ 02

(4.1.86)

and the star’s boundary radius at some angle = cos @ is just R+ &g(p). If we now

define a rescaled dimensionless velocity v and dimensionless radius t by

Q2

= 4.1.87
v 2mp.G ( )
2
t= mr= ZG r (4.1.88)
then the star’s boundary to(p) is given by
5
to(p) =m+mv|1— in(u) , (4.1.89)

in agreement with the numerical results of Chandrasekhar[21] (equation 55) where
the boundary is denoted &. We will later use these analytic results as a check of
our stationary equilibrium code; see chapter 6.

Similarly, the fractional distortion is

o) = &%]g“) _ <1 - ZPQ(M)> v (4.1.90)

giving an increase in equatorial radius of %U and a decrease of polar radius of %v.
Note that we were able to calculate the surface displacement of the star because

of the boundary condition Ap(R) = 0. We have no similar condition for the interior



Chapter 4: Analytic results on equilibria 56

of the star, so the problem of calculating the displacement field there is underde-
termined; we find a similar indeterminacy in the precessing-fluid problem of section
3.4.2. In both problems we conclude that there is no single solution for displace-
ments in a rotating fluid unless there are additional constraints on its motion (for
example elasticity or magnetic fields).

We conclude this section with plots (see figure 4.1) of rotating star surfaces cal-
culated using (4.1.89) and the equivalent Cowling formula (calculated using (4.1.85)

and (4.1.43)): ,

() =+ % <1 - ZPQ(M)> . (4.1.91)

We see that the Cowling approximation considerably underestimates the surface
distortion of a rotating star. The discrepancy is not too surprising: the Cowling
approximation is best for high values of azimuthal index m, whilst we are dealing
with m = 0 configurations here. This issue is discussed again in chapter 8, where
we find that using the Cowling approximation for m = 1 oscillations leads to the
appearance of a spurious oscillation mode, which is not present in the full non-

Cowling problem.

4 4
3 3
2 2
1 1
1 2 3 4 1 2 3 4

Figure 4.1: Surface distortions of (one z — z quadrant of) a v = 2 polytrope due to
rotation. For each plot the black curve is the background spherical star, whilst the
red and blue curves are for rotating stars calculated with the Cowling approximation
(red) and without (blue). The left-hand plot is for v = 0.01R and the right-hand
plot v = 0.02R. We see that the Cowling approximation underestimates the degree

of rotational distortion.
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4.2 Derivation of the tensor virial equations

The virial theorem dictates the balance which must be satisfied between the various
energy quantities in a fluid body at equilibrium; it is a universal criterion which holds
in strong-field regimes as well as in the perturbative limit. The scalar virial equation
is the usual energy balance equation of this theorem. The tensor virial equations are
a generalisation of the scalar equation and provide the stronger result that individual
tensor energy quantities must all satisfy a particular balance criterion. The tensor
virial theorem was first discussed by Lord Rayleigh [115] in 1900, but was only
widely exploited to understand problems in stellar physics some decades later (see,
for example, Chandrasekhar [23]). Here we derive the tensor form of the virial
theorem; the scalar theorem is a corollary which follows by contracting the indices
of the tensor equations.

The virial theorem will be used on a couple of occasions within this thesis.
Firstly, in section 4.3 we follow the working of Ostriker and Gunn [106] to determine
the ellipticities of an ‘orthogonal rotator’ — a star with orthogonal rotational and
magnetic axes. We also look at the nonrotating case, to give a simple proof (with
certain caveats) of the result that poloidal magnetic fields induce oblate distortions,
whilst toroidal fields induce prolate ones. As expected, the nature of magnetic-
field distortions in mixed-field stars depends on the ratio of poloidal to toroidal
components. Studying magnetic distortions analytically is difficult, so we specialise
to considering incompressible stars (i.e. N = 0 polytropes) only.

Secondly, since the virial theorem states that a certain combination of energy
quantities is equal to the acceleration of the mass distribution, we may use it to test
how close a system is to stationarity (i.e. zero acceleration of the mass distribution).
We do so in chapter 6, to give a test of the accuracy of our code for generating

stationary MHD equilibria.
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4.2.1 Preliminaries
Tensor generalisations of energies

We first define tensor generalisations of the energies we shall use in our derivation,
where each tensor contracts to give the corresponding scalar energy quantity?. These

are the kinetic energy tensor

1
T = 5 /puiuk dx (4.2.1)

\%

where u; is the fluid velocity; the magnetic energy tensor

1
My, = 87T/Bin dx (4.2.2)
\%

the gravitational potential energy tensor

0P
Wi = —/p(x)xkaxi dx (4.2.3)
v
and an energy term from the pressure p
Py = 61 /p dx. (4.2.4)

\%4
We denote each associated energy with the same letter but no indices, for example
magnetic energy is written M = M; = S%F [|B|?> dx. We will also require the
\%

definition of the quadrupole moment tensor

Ly, = /pmixk dx. (4.2.5)

v
Here we assume that the pressure is isotropic, allowing us to express the gen-
eralised term Pj; in terms of the internal energy per unit volume U. Many early
studies using the tensor virial theorem considered anisotropic pressure, but the only
change is that the diagonal tensor d;;p is replaced with a more general form p;;. The

virial theorem in this case is identical, except that the U term is replaced by Pj.

2except that the convention we follow here means that P, contracts to give 3(y — 1) times the

internal energy.
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In this subsection we derive two useful results: the expression of P;; in terms
of U and the proof that the tensor W, defined above is symmetric. With these we
then proceed, in the next subsection, to the actual derivation of the tensor virial

theorem.

Expressing P in terms of U

For an adiabatic process we can write the First Law of Thermodynamics as dU =
—p dV. We assume a polytropic form of the pressure p = kp” and integrate the

First Law to give

Utot = _/kp’Y dv. (426)

where Uy, is the total internal energy. We now use that mass M = pV and change

the variable of integration from V' to p:
mm:/MW%%m (4.2.7)

which integrates to give
Mkpr—1 Vv
Upp = ot = TP (4.2.8)
v—1 v—1
Now dividing through by V' and writing the internal energy as U = [ % dx we

find

U=— [pdx=——!. (4.2.9)
Y Y

Proof that W;. is symmetric

We wish to show that W, can be written in a manifestly symmetric form, viz.:

d
Wix = —/p(x)xkgxi dx (4.2.10)
\%4
_ G p(x)p(x) (i — @) (we — 27)
= _2// mm—rE dx’ dx. (4.2.11)
v v’

We first note that %\x — x| = (z; — 2})|x — x| 71, so that

0 px) ‘X_X,‘%;:/)—P(X')(l‘i—xg)\x—x’\—l

ox; |x —x/| |x — x/|?
= —p(x)(z; — 2h)|x — x| 73 (4.2.12)
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where we have used %ﬂ:/) = 0 — which is true because p has only x’ dependence

and not x dependence. Now, using (4.2.12):

od
Wi = —/P(X)fﬂkaxi dx
v
0
= —/p(X) ka:L',L - |X—X/| dx
V /
p(x)p(x)wg(2i —27)
= — i . 4.2.1
G// \x—x’\?’ dx’ dx (4.2.13)

l

We may transpose the two sets of dummy variables in (4.2.13) above, x — x’ and

x' — x, to give

Nl (x; — ah)
+G / / ’f,’3 dx’ dx. (4.2.14)

]X x
Vv
So Wy is equal to both the expression in (4.2.13) and (4.2.14), so we may write
Wik = $[(4.2.13)+(4.2.14)]. The required result follows from this:

Wi — // Y@ =)@k =) G gy (4.2.15)

|X x'|3
Vv

Rewritten in this form, W;; explicitly contracts to give a standard form for gravita-

tional potential energy W.

4.2.2 Derivation

Consider an inviscid fluid with infinite electrical conductivity and a magnetic field
H(x); we set the permeability p to unity so that H(x) = uB(x) = B(x). Let us
consider a perfect fluid with polytropic index . Suppose further that the only forces
acting on the fluid are the pressure, magnetic field, and the fluid’s self-gravity. Then
by the Euler equation (simply Newton’s second law) the equation of motion for the
fluid is

dui 0 B\ 09® 1 0
pdt 8%2

— —B;B; 4.2.16
8 p@xi * 4m Oz B ( )
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d 0 0
where Erialen + Uj g Now multiply (4.2.16) by z; and integrate over the entire
L

volume V' in which the fluid and fields can pervade. The left hand side becomes

du; d2mz’
/pxk & dx = /pxkdtQ dx

v v
- / d da; dx — dag da; dx
- ) Pa P P "ar
v v
d dmi
= /pdt (wk dt) dx — 2T, (4.2.17)
v

where we have used the product rule in the second line. We now treat the terms on

the right hand side of (4.2.16) in the same manner. Firstly:

B, B B|? B|?
_/xkax‘ <p+|87|r> dx = —/<p+’&l>$kd5i+5ik/<p+|87|r> dx

14 S \%4

B[
= —/ Pt S xp dS; + 0a[(y — 1)U + M]

S
(4.2.18)
where we have used the divergence theorem; secondly
0P
—/pl‘k oz, dx =W, (4.2.19)
14
and finally
1 0 1 1
— —B;B;dx = — B;B; dS; — — | B;Bir d
47r/$k8xj e 47r/xk 7 47T/ZkX
1% S v
1
7r
S

We now combine (4.2.17), (4.2.18), (4.2.19) and (4.2.20) to give

[ o () dx = 2ok dullr = 10 + 2] W~ 201
\%

1
+ &T/xk(QBiBj ds; — [BJ* dS;) — /pxk ds;.
S S
(4.2.21)



Chapter 4: Analytic results on equilibria 62

Since p, p and B all vanish on S (the consequence of requiring that V' contains the

whole system), we have:

d [ da
/pdt <33k d:I; > dx = 2T, — 2My + Wi + 5%[(7 — 1)U + M} (4.2.22)
v

All of the tensor quantities on the right hand side of (4.2.22) above are symmetric,

so the left hand side must be symmetric too. Therefore

d da:i d da:k

Rl P — [ pS (255 ax. 4.2.2
/pdt<x’“dt>dx /’Odt<$ dt)dx (4.2.23)
Vv 1%

Using this fact and the continuity equation (in the form [ p dx=constant),
v

d dax; dxy, d dx; dzg
do;  dzk _ 4 _ g, STk —0. (4224
/pdt<xkdt xdt>dx i p<wkdt xdt>dx 0. (4224)
1% 14

This is a statement of conservation of total angular momentum Ly, since Ly, =

[x x pudx = [ p(zgu; — zjuy) dx. Now by (4.2.23) we may replace the left hand
\%4 \%4
side of (4.2.22) with

1 [ d( de  day 1 d? 1d* Iy,

Z — i— | dx = ——= i dx = - . 4.2.2

2/'0dt<xkdt+x dt> * 2dt2/p$$’“ T o (4:2.25)
|4 \%4

Using this in (4.2.22) we arrive at the tensor virial equations:

1 d?I;
2 de?

= 2T5, — 2Myy, + Wi + da[(v — 1)U + M. (4.2.26)
If we relax the assumption that pressure is isotropic then the tensor virial equations
take their more general form:

1d%1;,
2 dt?

= 2T — 2M, + Wi + Pig + 05 M. (4.2.27)

We use the tensor virial equations in the next section to calculate the shape of a
rotating magnetised fluid star. In addition, we will use the scalar virial theorem
(the contraction of the tensor equations) as a test of our MHD equilibrium code in

chapter 6.
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4.3 The shape of a rotating magnetised fluid star

In this section we model a neutron star as a rotating magnetised body composed of
incompressible fluid and use the tensor virial equations derived above to determine
the ellipticities generated in the star by the effects of rotation and a magnetic field>.
In particular, we look at the case of an orthogonal rotator — a star with orthogonal
rotational and magnetic axes. Looking at the zero-rotation limit, we then show that
(under certain simplifications) poloidal magnetic fields generate oblate deformations,
whilst toroidal fields generate prolate deformations.

We denote the (orthogonal) magnetic and rotational axes by indices 1 and 3

respectively. We first rewrite Lk
Izk = 2/p.ﬁi.i'k dX—l—/p(i’Z{I}k —i—xzxk) dx
= ATy + /p(xzxk + z;%) dx. (4.3.1)

To simplify I;, we assume the fluid is a rigidly rotating triaxial body. Now x = @ x x
and so X = Q x (Q x x), where € is the angular velocity vector. By assumption

Q = Qes, so we have X = Q%e3 x (es x x). Evaluating this expression gives

z1
x=-0% 2 |. (4.3.2)
0

We now use this to evaluate (4.3.1) for the diagonal components of L
f11 = 4771 + 2/,0‘%11’1 dx

= 4T11 — 292/p$% dx

= ATy — 2021 (4.3.3)
and similarly

Iy = 4Ty —20%I5 (4.3.4)

Iss = 4Tys. (4.3.5)

3Up until the ellipticity formulae (4.3.16), (4.3.17), (4.3.18), this section follows the working of
Appendix A of Ostriker and Gunn [106].
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The diagonal components of the tensor virial equations are then

InQ®+ Py —2My+M+Wip = 0
I22Q2 + Pog — 2Mos + M +Woy = 0 (436)
P33 —2M33 + M + W33 = 0.
We assume the pressure anisotropy has the same symmetry as the magnetic field,

then as a first-order approximation neglect the quantities (Mag — Ms3), (Pag — Ps3),
(I11 — 152)9Q? and (I33 — I22)Q2. Then to first order, equations (4.3.6) become

W11 — W22 = 2(M11 — Mgg) — (PH — PQQ) (4.3.7)
Wig — Way = I10° = 1102 (4.3.8)

where I = Tr(I;;). We proceed using the following result from Chandrasekhar and

Lebovitz [27] for a homogeneous ellipsoid (no sum over the indices):
W(u) = —%GMQCLZ'Ai (4.3.9)

where

7 du
A, = 4.3.10
O/ (@ +u) /(@ + 0) (a3 + ) a3 + v) )

and a; are the semiaxes. Now define

= 4.3.11
€ a ( )

where a® = ajasas; so to linear order in ¢; we find that
€1+ €3 +e3=0. (4.3.12)

Evaluating the integral (4.3.10) and linearising by neglecting products and sums in
€; gives
2
Ai= =0 - ). (4.3.13)

Now equation (4.3.9) together with (4.3.12) and (4.3.13) gives
Wiy = Wi = 15W (e =€) (4.3.14)

with A2
3
W= Tr(Wij) = — 52/1 . (4.3.15)
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Substituting equations (4.3.15) and (4.3.14) into equations (4.3.7) and (4.3.8) enables

us to obtain expressions for the ellipticities €; for a rotating, magnetised fluid body:

5

@ = (M — M) = 2(Piy = P) — 1197 (4.3.16)
)

€2 = m[_Q(Mll — M) + (P11 — Pa) — 3197 (4.3.17)
)

€ = W[_2(M11 — M) + (P11 — Pa) + 3197). (4.3.18)

Note that if the stellar pressure is isotropic then P;; = Py and the ellipticities have
a simpler form.

We conclude by considering two special cases: deformations due purely to rota-
tion and to magnetic effects. In the case of a rotating body with no magnetic field

or pressure anisotropies, we have

5
- L (0 4.3.1
€1 €9 12|W’ ( 3 9)
5
= ———JO? 4.3.20
s ST (4.3.20)

— we have made the sign of each ellipticity explicit by noting that the gravitational
energy W is always negative, so that W = —|WW|. Since the rotation axis is the body
axis x3 we see that, as expected, a centrifugal force generates an oblate configuration.
This was established for an N = 1 polytrope in section 4.1.5; we find the result is
qualitatively the same for the N = 0 fluid considered here.

We next turn to ellipticities generated solely by a magnetic field. In this case we

have
O (Mps — M) (4.3.21)
€1 = T 22 — 11 cJ.
W
5
Ce = —— (M — Mp). 4.3.22
€9 = €3 2\W|( 22 11) ( )

Using the same notation as before, the symmetry axis of the problem is now the
body axis x;. Working in cylindrical polar coordinates, we regard this as the z axis.

Hence
1 1
My =— | B? dx=— | B? dx. 4.3.23
“87T/V1X87r/vzx ( )

Also, since M = My + Moo + M3z = My1 + 2Ma and

1
M = &T/VB%JrB;JrBE dx (4.3.24)
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we conclude that

1
My =— [ B2 +B2 d 4.3.25
27 16n v w T8 X ( )
and hence that
1 1 1
My — My = — | =B2+ =B2 — B? dx. 4.3.26
22 11 877/‘/2 ¢+2 - » dX ( )

Now, a poloidal field consists of B and B, components; in a realistic field config-
uration one would not expect either to dominate, so let us suppose that B2 ~ BZ.

In this case we may write B2 — B2 ~ —1B? ~ —1(BZ + B?) and

1 1
Mas = My ~ / (%Bfar - %B}%OO dx = =Eior = 1Epol (4.3.27)
T Jv
This gives
5 1
€] — €~ W (gtor — 28p01> . (4328)

We now note that if e — €5 > 0 the star is prolate, and if ¢ — €2 < 0 it is oblate;
so from (4.3.28) we see that if more than (approximately) one third of the magnetic
energy is in the toroidal field then the star will be prolate, whilst if the poloidal
energy is more than double the toroidal energy the star will be oblate. We will find
in chapter 6 that this general result, of poloidal fields generating oblate stars and
toroidal fields prolate stars, also seems to apply to compressible stars and strong

magnetic fields.



Chapter 5

Oscillation modes: introduction

and analytic work

5.1 Introduction

To zeroth order, stars are stationary objects, with large-scale evolution happening
over very long timescales. On smaller scales however, they have rich dynamics; in
particular, they are subject to various kinds of oscillation. Different physical effects
manifest themselves as oscillation modes of different frequency, so observations of
stellar oscillations give us valuable information about the physics that governs them.
Unstable modes are of particular interest in the context of this thesis, since they
could result in sufficiently large disturbances in the mass distribution to produce
detectable gravitational radiation.

In this chapter calculations for two oscillation mode frequencies are presented,
as basic examples of analytic mode solutions. From these analytic results, we also
have a point of reference when looking at the mode spectrum of stars with rotation
and magnetic fields. In both mode derivations given here, the star is assumed to
have no magnetic field. Although there are some analytic calculations for modes of a
magnetised star, they are not only rather involved, but also rely on many simplifying
assumptions. However, some order-of-magnitude estimates for the effect of magnetic
fields on stellar oscillations are given in chapter 7, in addition to numerical results

for oscillations of magnetised stars.

67
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5.1.1 Classes of oscillation mode

Oscillation modes are induced by fluctuations in the various forces present in the
background star; these are called restoring forces and they determine the frequency
of the mode. It is natural, then, to classify a mode based on its restoring force.
We may further distinguish between different modes based on their parity. Using
spherical polar coordinates, a general perturbation may be decomposed with respect
to the basis (Y€, VY, €. X V), where i, = Y7,,(0, ¢) are the usual spherical
harmonics. The first two of these terms transform by multiplication by (—1)! under
parity inversion r — —r, with the latter one transforming as (—1)"*!'. Modes whose
sign is given by (—1)! under parity interchange are termed polar modes, whilst those

+1 are called azial modes'. Hybrid modes, consisting of a sum

transforming as (—1)
of axial and polar pieces, are termed axial-led or polar-led based on whether the
lowest-{ (i.e. [=m) term of the mode is axial or polar, respectively.

The simplest model of a fluid star is hydrostatic equilibrium — a balance of the
gravitational and pressure forces. Surfaces of constant density are concentric spheres
in this case and the only modes present are the pressure or p-modes. The lowest-
order p-mode (i.e. the one with a nodeless eigenfunction) in each series is termed
the fundamental mode, or f-mode. The f-mode frequency is also the frequency of
the only mode of oscillation of a homogeneous incompressible sphere; in this context
it is known as the Kelvin mode, as it was first studied by Lord Kelvin [77]. The
frequency of this mode is derived in section 5.2. The non-axisymmetric p-modes in
a compressible star are degenerate in the absence of rotation and magnetic fields;
each p-mode has the same frequency for fixed m. These modes are polar in nature.

If a fluid star has thermal or chemical gradients, a new class of modes arises
[98, 116, 44]. To understand these, it is easiest to consider the case when these
gradients result in stratification of the star; that is, the appearance of surfaces over
which the stellar density changes discontinuously. The star’s self-gravity will then
act to oppose these differences, providing the restoring force for these new modes,
called gravity or g-modes. Along with the p-modes, g-modes were first studied by
Cowling [33].

With a rotating background star, a Coriolis force term enters the equations

Polar modes are also known as spheroidal modes and axial modes as toroidal modes. In this

thesis we will always use the terms ‘axial’ and ‘polar’, however.
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governing the perturbations, which removes the m-degeneracy in the p-modes. The
Coriolis term is the restoring force for a new class of modes: the inertial modes,
which we term i-modes. These modes were first studied in incompressible fluids by
Bryan [18]. In general i-modes are mixed axial and polar even in the slow-rotation
limit, but one class of them are purely axial in this limit: the Rossby or r-modes.
With the barotropic equation of state we employ here, the only r-modes which exist
are those with [ =m. The r-mode frequency of a slowly-rotating star is derived in
section 5.3.

Other inertial modes have more complicated eigenfunctions than the r-mode. For
fixed m, Lockitch and Friedman [93] found that inertial modes are not characterised
by a single [, but have an angular dependence consisting of a sum of spherical
harmonics Y}, (6, ¢). However, in all cases they found there was some threshold
value [y, such that the amplitude of Y}, contributions for [ > [y was found to drop
off rapidly. Following their work, we label modes using the notation %), where k
distinguishes between different modes with the same [.

Finally, magnetic fields also induce a class of oscillation mode, restored by the
Lorentz force. We term them the Alfvén modes, or a-modes. In addition to gen-
erating a new class of modes, the Lorentz force can lift degeneracies of nonradial
oscillations, causing a splitting in mode frequencies [34]. The addition of the Lorentz
force term in the Euler equation for the perturbations should produce shifts in the
frequencies of the p,r and ¢ modes from their unmagnetised values. Much of chap-
ter 7 is dedicated to investigating the effect of magnetic fields on a star’s oscillation

spectrum.

5.2 The Kelvin mode

The simplest physical model of a star is the incompressible sphere, which has only one
type of oscillation mode; in this section we find its frequency. As well as providing
an example of a mode calculation, the resulting frequency has a similar form to that
of the f-mode of compressible stars [24] and hence is of more general interest within
the context of this thesis.

We begin with the governing equations for the system:

dv

pgy = —VFP - Ve (5.2.1)
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V20 = 47Gp (5.2.2)

V-(pv)=v-Vp+pV-v=0 (5.2.3)

where pg is a constant; since the star is incompressible, the density is uniform

throughout the stellar interior: p = pg. The background equations are
—VPO — p0V<I>0 =0 (5.2.4)

V20, = 471G po (5.2.5)

and the (first order) perturbations are governed by

d
podit’ = —V6P — poV5® — 5pV (5.2.6)
V20 = 4nGop (5.2.7)
poV v =—v-Vpp. (5.2.8)

We begin by solving the background equations. Since the background star is
spherically symmetric all quantities are dependent on r alone. The Euler equation

is therefore

d®g 1 dP
—_— = 5.2.9
dr po dr ( )
which may be directly integrated to give
P
dp= -2+ K. (5.2.10)
Po
Similarly, direct integration of the Poisson equation
—— — | =4nG 5.2.11
r2dr (T dr ) TP ( )
yields
2rGpor?  C
By = ”TW -~ 4D (5.2.12)
r

Imposing regularity at the origin gives C' = 0, whilst D is fixed through the

boundary conditions:

oM(r=R) = O (r = R) (5.2.13)

Aoy dog*t
(r=R) = =R 5.2.14
- (r=R) (=B (5.2.14)
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where R is the stellar radius. For the external field

1 d do
26 — +~ 4 [ 29%0) _
Vo) = 5 <r = ) 0 (5.2.15)
and hence
g (5.2.16)
= 2.
Now (5.2.13) gives
a 2rGpoR?
D=—- 2.1
. 3 (5.2.17)
whilst (5.2.14) gives
ArGpo R
o= _% (5.2.18)

— note that since the stellar mass M = 47pR3/3 this last equation gives the external
potential as ® = —GM /r, as expected.

From these two equations we find that
D = —27GpyR? (5.2.19)

and hence the internal field is given by

_ 2nGpo(r? — 3R?)

D (5.2.20)
3

Now ) ) )

2rGp§ (3R —r
P() = po(K — (I)()) = poK + T pO( 3 ) (5221)

S0 to ensure Py goes to zero smoothly at the surface we fix K so that
2rGp2(R? — r?

py = 2GR =) (5.2.22)

3
Next we turn to the perturbation equations. Because the star is incompressible,
the variation in density at a particular point near the surface will either be dp = 0
(if the point is inside the star both before and after the perturbation) or dp = %pg
(if a point out/inside the star ends up in/outside the star after the perturbation).
We deal with this odd behaviour by setting dp = 0 in the perturbation equations
(true for all points away from the surface) and incorporate the dp # 0 behaviour
into the boundary conditions. Hence our perturbation equations are now

d
pod—: = VP — poVid (5.2.23)

Ve = 0 (5.2.24)
V-v = 0. (5.2.25)
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Taking the divergence of (5.2.23) and using the other two equations reduces our set

of perturbation equations to a pair of Laplace equations in § P and d®,
V5P = V25d = 0. (5.2.26)
The general solution for d P is thus given by

0P = CipYim(Ar' + Br'7h). (5.2.27)

lym

Regularity at the origin » = 0 requires B = 0; defining C,,, = AC), gives

0P = CimYimr". (5.2.28)
Im

At the surface r = R we have the boundary condition

AP=0P+&-VP (5.2.29)
which to leading order is
dP,
[513 + grdﬂ (r=R)=0. (5.2.30)

Now using the background solution for Py and defining {r = &,.(r = R, 0, ¢) we find

30P

Sr= 4rGpER’

(5.2.31)

With the general solution for § P and the above expression for £r, we now turn
to 0®. The boundary conditions on §® for an N = 0 polytrope are different from
the familiar ones, and in this case they are the only point at which the matter dis-

tribution is linked to the other perturbed quantities (since dp = 0 in the equations).

5.2.1 Boundary conditions

Consider a small volume element 0V which passes through the surface of the star,
from radius R — ¢ to R + . Now we integrate the perturbed Poisson equation over
this small volume:
/v25q> dv = 47TG/5p dav. (5.2.32)
oV %
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Using the divergence theorem on the left-hand side of this equation and the boundary
condition Ap = dp + € = 0 on the right-hand side, we see that

R+e R+e

/V&(I)-dS:—éle / £ Vpav. (5.2.33)
R—e¢ R—e
Now,
R+ed
/ L dr = [p)RF = —py (5.2.34)

from which we deduce that d—p = —pod(r — R) and hence that

R+-e R+-e¢

/ £-VpdV = —pg / &o0(r — R) dV = —poég. (5.2.35)
R

Next we note that neither integrand in (5.2.33) has angular dependence (since
we are considering an infinitesimal volume, over which the stellar surface is flat),
so the angular integrations on each side produce equal contributions which may be

cancelled. On performing the remaining, radial, integration we find that
—((r=R+¢e)— —(r=R—¢) =41GpoéR. (5.2.36)
A second radial integration then yields
Io(r=R+¢e)—0P(r =R —¢) =8nGpore. (5.2.37)

Finally we take the limit ¢ — 0 in equations (5.2.36) and (5.2.37) to yield the

boundary conditions on §®:

85@6% a(sq)int
Spert (r=R) = SPpint (r=R). (5.2.39)

5.2.2 Final solution

The general solution to V26® = 0 is

5P = Z(Dlmrl + Epr " HYn (5.2.40)

lm
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~1 — o0 as r — 0; hence for the interior

Note that ! — co as 7 — oo whilst 7!
solution Ej,, = 0 whilst for the exterior solution Dy, = 0, for all I, m. Let us pick

some particular [, m. Now by the boundary condition (5.2.39):

Dy —2l—1
— =R . 5.2.41
o ( )

Now applying the other boundary condition (5.2.38) we find that

LR Dy Yim = = (L + 1)R™' 2By Yin — 47Gpolg. (5.2.42)

We remove Ej, from this equation using (5.2.41), and replace g in favour of J P,

using equation (5.2.31). The result is

Vi Diyn = m. (5.2.43)
Now since § P(R) = R'Cy,,Y}m, we see that
Dipy = ———5 . (5.2.44)
(2l +1)po
Finally we return to our perturbed Euler equation (5.2.23):
pov = V5P — poVod. (5.2.45)

Now, v = & by definition. Since we are looking for oscillatory solutions we make
the ansatz € = ke, Hence v = E = ¢0€ and v = £ = —0%¢ = iov; hence the

perturbed Euler equation becomes
iopgv = —VOP — poVid. (5.2.46)

The radial component of this is

1 00 P 00D

S . 5.2.47
! 1o po < or T ro or ) ( )

We return to equation (5.2.31), making the replacement £ = vg/(io):

3icgd P

= 5.2.48
R 47GpiR ( )

and equate this result with equation (5.2.47) evaluated at the surface:

3icd P 1 6P 6P

= = — R —(R) | . 5.2.49
vh 4rGpiR 10 po < or () + po or ( )> ( )
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Rearranging this gives

47GpoR [ O6P 06D
2
= R —(R) | . 5.2.50
ot = T (B )+ () (5.2.50)
Now plugging in the solutions
6P = CppYimr (5.2.51)
3
00 = DppVipr' = — = Cppp Vi 2.52
im Yim? (2l+1)p0C’l ImT (5.2.52)
to equation (5.2.50) we find, after some algebra, that
A7Gpo 2l(1 — 1
g2 — AmGpo 2= 1) (5.2.53)

3 (204+1)°
Finally, we may define a dimensionless frequency €2 by

o?R3 302

0 = = : 5.2.54
GM  4nGpg ( )
In terms of this quantity we find that the mode frequency is given by
201 —1)
2
= 5.2.55
(20+1)’ ( )

in agreement with Kelvin [77]. As mentioned at the beginning of this section, this
incompressible-fluid result is still of interest in the context of neutron stars (which
are compressible), since the f-mode of compressible stars is closely related to the
Kelvin mode derived here [34, 24].

5.3 First-order r-mode calculation

The f-mode and p-modes are polar in nature; in a fluid nonrotating star the axial
oscillation modes are all zero-frequency solutions. The qualitative change in a rotat-
ing star is that axial oscillations no longer have this trivial nature [109, 122]. Having
already calculated the Kelvin mode, which is similar to the f-mode of compressible
stars, we now present a calculation of the r-mode, as an example of an axial mode.
In chapter 7 we investigate how this mode changes in the presence of a toroidal

magnetic field.
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5.3.1 Dynamics in a rotating frame

In an inertial frame the Euler equation for a rotating fluid star is

dV[ 1
— =——-VP -V 5.3.1
T pV \ (5.3.1)

where the acceleration is the rate of change of inertial velocity v; in the inertial
frame (d/dt;). We wish to investigate how quantities are changed when we move
from the inertial frame to a frame rotating rigidly with angular velocity €2; we shall
denote quantities in this frame with the subscript R. Firstly, the two velocities vy
and vy are related by

vi=Q Xr+vp (5.3.2)

— that is, vy is the piece of the velocity which is not rotating rigidly with angular

velocity €2 in the inertial frame. Hence we have

dvy; dvy
_ 20 3.
T dtR+ X VJ (5.3.3)

— note that this equation is valid for vy too.

We replace vy in equation (5.3.3) using (5.3.2):

d d
YL S Qxrtve)FQx (QxrtvR) (5.3.4)
dt; dtp
dVR
= 2O XVR+Qx (Qxr)+ — (5.3.5)
dtg

since dr/dtr = v by definition. Now recall that the convective derivative is given
by

dv  0v
whence the FEuler equation in a rotating frame is
ovp 1
R

Working to first order in the perturbations vg, P, dp and §® our perturbed Euler
equation is:

5 1
IVE L 90 x v = p—é)VPo — V6P — Vb, (5.3.8)
0

Otr Po
From now on we will drop the R subscripts on v and ¢, with the understanding
that these quantities will always refer to the rotating frame. The other perturbation
equations — the continuity equation, equation of state and Poisson’s equation —

are the same in the rotating frame as in the inertial frame.
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5.3.2 r-mode calculation

We are looking for the oscillation frequency o of an axial mode in a slowly rotating
star, and so make the ansatz that our velocity field scales linearly with the stellar
rotation with nonspherical effects being of higher order. Formally, this means that

VR, 0 o< O(Q), whilst 6p, S P, §® o« O(Q3). Now if we take the curl of equation (5.3.8)

and discard the higher-order terms described above, we are left with the equation
0

a(va) + 2V X (2xv)=0. (5.3.9)
Since our velocity field is non-radial by assumption, its general form is

v = f(r)r x VY, (5.3.10)

and with the ansatz that it is also oscillatory we have v = tov. With these, equation

(5.3.9) becomes
V x {ioV x (r X Vi) +2 V x (@ x (r x VY;,,))} = 0. (5.3.11)
Now Q = Q(cos fe, — sinfey), so
Qx(rxVY)=—-Q(rcosfVY +sinf(ep- VY)r) (5.3.12)
where we are suppressing the [, m indices of Y}, for brevity. We also have
r x VY = —egr(VY -ey) + e4r(VY - eg). (5.3.13)
With these identities (5.3.11) becomes

V x {ioc(—egr(VY -e4) + e4r(VY - eg)) — 2 Q(rcos VY +sinf(eg - VY)r)} = 0.
(5.3.14)
We now recall the vector identity V x fA = (Vf) x A+ fV x A and apply it to all

relevant terms in the previous equation. Together with the identities

Vxe = 0 (5.3.15)
1
Vxe = —eg (5.3.16)
r
V % ! + ! (5.3.17)
e = ——e,+ —e 3.
¢ rtang | 0
e (AP imPym,
VY = 5.3.18
r < a9 " “sing °° ( )
P ime
V X (cosVY) = —Mer, (5.3.19)
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equation (5.3.11) becomes

—QQimeimd)le = o {V <imBmeim¢> X ey — eimd)le’e -V <eim¢le,9> X e¢}

7r2 rsinf r2tan6 r
(5.3.20)

Evaluating the V(...) terms and taking the r-component of equation (5.3.20) we

obtain

’p P
L im tm,6 _ lm,00>‘ (5.3.21)

20mPy, = -
mm U(Sinze tan 6

Finally we recall the associated Legendre equation (whose solutions are the P,
functions, see Arfken and Weber [6]):

1 d dP,, m2
sngag \* 1) - Py, = 3.22
sin 0 do (Sme a0 >+ (l(l+ ) Sin29> im = 0 (5.3.22)

which we use in (5.3.21) to find the r-mode frequency

20m
(1+1)

(5.3.23)

g =

In conclusion, we have established that there are indeed axial modes in a rotating
star, with frequencies scaling linearly with the rotational frequency (at least for
slow rotation). This was our ansatz, but it would have led to a zero-frequency
mode frequency if there had been no such non-trivial mode. The formula (5.3.23)
will enable us to identify the r-mode from the results of the time-evolution code
discussed in chapter 7; with this code we are also able to investigate the effect of

strong magnetic fields on the r-mode, which is not an analytically tractable problem.



Chapter 6

Stationary magnetic equilibria:

numerical work

As discussed earlier in this thesis, magnetic distortions of a neutron star are interest-
ing for their potential to produce detectable gravitational radiation (see section 1.2.3)
and because of the possibility that they may allow the star to undergo precession-
like motion (chapter 3). In chapter 4 we were able to establish some results for
MHD equilibria analytically, but to study compressible stars in the fast-rotation
and strong-field regimes, we need a numerical approach. The equilibrium configu-
rations we produce using the code described in this chapter are not only interesting
in their own right: we will also use them as background configurations about which
to perturb. Perturbations and oscillation modes of these stars will be discussed in
chapters 7 and 8.

In this chapter we derive the equations of axisymmetric MHD and solve them
numerically to find equilibrium solutions for rotating magnetised polytropic stars.
We begin with a full derivation for general polytropes in the mixed poloidal-toroidal
field case, leading to the Grad-Shafranov equation [60, 124]. These equations were
also derived by Chandrasekhar and Prendergast [29, 112], but only for incompressible
stars (polytropic index N = 0). Purely poloidal fields follow as a special case of the
mixed-field equations; the result for purely toroidal fields is established separately,
but using a similar method to the mixed-field derivation.

The work reported here is closely related to that of Tomimura and Eriguchi

[137], but we study a wider range of aspects of neutron star physics (including the

79
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relative strengths of the poloidal and toroidal field components, the ratio of internal
to external field, and ellipticities). This chapter is summarised in Lander and Jones
[84].

We begin the chapter with an overview of the fundamental equations of magneto-
hydrodynamics. We then present the derivations of the magnetic equations needed
for the code. After discussing details of the numerical techiques used, we then

present results for stationary equilibria of neutron stars with rotation and magnetic
fields.

6.1 Magnetohydrodynamics

We begin by recalling Maxwell’s equations for electrodynamics:

VxB = ue%];:—i-uj (6.1.1)

V-B = 0 (6.1.2)
OB

VxE = -= (6.1.3)

V-E = (6.1.4)

€

where B is the magnetic field, E the electric field, j the current, p, the charge density
and €, are the permittivity and permeability of the medium, respectively. These
last two quantities (in free space) are related to the speed of light ¢: equg = 1/c?;
if not in free space then the same relation connects €, 1 to the speed of light in the
medium. Note that the values of these constants depend on the system of units
used, and € is defined through its relation to p and c. FElectromagnetic units are
based on the cgs (centimetre-gram-second) system used in astronomy, with p = 4w
and ¢ = 2.998 x 10'0 cm s™!; ST units are based on the metre, kilogram and second,
with g = 47 x 1077 and ¢ = 2.998 x 10® m s~!'. For comparison with the bulk
of the astronomical literature, we have consistently used electromagnetic units for
derivations in this work.

For nonrelativistic applications, the charge density p. and displacement current

e%—];] terms will be negligible (see, for example, Davidson [37]); for this reason we
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only require the reduced form of Maxwell’s equations:

VxB = uj (6.1.5)

V-B = 0 (6.1.6)
0B

E = — 1.

V x 5 (6.1.7)

V-E = 0. (6.1.8)

In addition to these, we have (reduced) expressions for the current j (known as

Ohm’s law) and the Lorentz force L:

j = o(E+vxB) (6.1.9)
L = jxB (6.1.10)

where v is the velocity of the magnetised fluid.
Having discussed the governing magnetic equations, we now turn to the fluid.
Newton’s second law for an inviscid fluid is the Euler equation:

dv vP
— =——-Vo. 111
dt p v (6 )

To generalise this to the case of a rigidly rotating fluid with a magnetic field, we
need to add on terms corresponding to the centrifugal force and the Lorentz force,
giving us the MHD equilibrium equation
Q x (er):—E—VCD—i-E. (6.1.12)
p P
where P is fluid pressure, p density of fluid, ® gravitational potential and €2 angular
velocity. The equation may be generalised to an arbitrary rotation law by replacing
Q x (2 x r) with the gradient of some centrifugal potential, V®,..
In all of the work in this thesis we make the perfect MHD approximation — that
the conductivity o of the fluid is infinite — and in this chapter we are concerned

with stationary configurations and so additionally have /0t = 0. In this case the

MHD equations reduce to

VxB = 4j (6.1.13)
V-B = 0 (6.1.14)
L = jxB (6.1.15)
0 = —VPP—VCI)—QX(QXI')—i—;:. (6.1.16)
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6.2 The equations of axisymmetric MHD

6.2.1 General forms for magnetic field and current

We wish to see how the assumption of axisymmetry constrains the geometry of the
magnetic field and the current; and hence also the form of the Lorentz force. This
is done following the work of Grad and Rubin [60] and Shafranov [124]. Work-
ing in cylindrical polar coordinates, we begin with the equilibrium equation for a

magnetised rotating fluid:

+==0 (6.2.1)

922
VHV¢+V< w> ﬁ

where we have rewritten (6.1.16) above by replacing the usual VP/p term with the
gradient of the enthalpy H = fOP dp / p(P) and also explicitly written the centrifugal
term as the gradient of a scalar.

If we now take the curl of (6.2.1) then by the vector identity V x Vf = 0 (for
any scalar field f) we see that

L
V X <> =0, (6.2.2)
p
implying that L£/p is also the gradient of some scalar M. Note that VM - B = 0,

i.e. M is constant along field lines.

Next we write B in terms of a streamfunction u, defined through the relations

1 0u 1 Ou
Bo=———,B,=—— 2.
“ wdz’' T wow (6.2.3)
— note that these components give a solenoidal magnetic field, V - B = 0, by
construction. Hence
1 Ou 1 du
B=——— B ——e,. 6.2.4
w@zew—i— ¢e¢+w8wez ( )
Now comparing the equation with
ou ou
= ——ey+ —e,, 6.2.5
Vu x ey 9,© + 5 & ( )
we see that B may be written as
1
B=—Vu x ey + B¢e¢. (6.2.6)

w
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Note that this implies B - Vu = 0, i.e. u is constant along field lines. Recalling that
M also has this property, we deduce that

M = M(u). (6.2.7)

Next we turn to Ampere’s law in axisymmetry:

. 0B, 0B, OB, 10

Now by comparing the poloidal part of the current

Jpol = —Zl;ﬂi(waﬁ)ew + ZL;U(;E(WB(ZS)% (6.2.9)
with the quantity
V(wBy) X e = —%(waew + %(qug)ez, (6.2.10)
we see that
Jpol = ﬁV(wa X €4. (6.2.11)

Next we consider the toroidal part of the current j;o, = jse, and rewrite jg using
the definition of the streamfunction u:

2

0z Ow w wﬁiw @ 0w 922

For brevity we define a differential operator A, by
0? 1 0 0?
0w? wdw 022

Now using this definition together with (6.2.11) and (6.2.12) we see that the current

A,

(6.2.13)

may be written as

1 1
47j = —V(wB — “Aue, 6.2.14
M= (wBy) x eg —Aw ey ( )

Our two key results from this section so far are the expressions (6.2.6) and
(6.2.14) for the general form of an axisymmetric magnetic field and current, re-
spectively. Next we consider the form of the Lorentz force arising from these two

quantities. We see that in general

L=jxB = (jpol +j¢e¢) X (BPOZ + B¢e¢)
= jpol X Bpol —|—j¢e¢ X Bpol + Bd)jpol X €g. (6215)

~~
Lior L:‘pol
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Returning to our original force balance equation (6.2.1) we note that the pressure,
gravitational and centrifugal forces are axisymmetric (i.e. no ¢-dependence); there-

fore L is also axisymmetric and its toroidal component must vanish:
‘Ctor = jpol X Bpol =0. (6216)

At this point there are two ways to proceed: either By, is non-zero, in which case
B,, and j, are parallel; or B,y = 0. We shall consider these cases separately in

the next two subsections.

6.2.2 Mixed poloidal and toroidal fields; the Grad-Shafranov equa-

tion

We have shown that the requirement (6.2.16) follows from the axisymmetry of our
problem. In this subsection we consider the case where B, and j,, are parallel,
corresponding to a magnetic field with both poloidal and toroidal components. We
will see that the case of purely poloidal magnetic fields may be found as a particular
limit of the general mixed-field configuration.

Recall from (6.2.6) and (6.2.11) that

1
Bpol = ;VU X €y
. 1
.]pOl = QV(WB(ZQ X e¢.

Knowing that these two quantities are parallel we see that v and wBg must be
related by some function f:
wBy = f(u). (6.2.17)

Next we evaluate the non-zero Lorentz force components, i.e. L, from (6.2.15).

Using the pair of equations at the start of this subsection, we find that
1 1 1
ey X By = €4 % ;Vu xeg ) =— (Vu —ey(ey - Vu)) = ;Vu (6.2.18)

and similarly

. 1
Jpol X €y = —mv<w3¢) (6219)
Now using these expressions in (6.2.15), together with the relation j, = —ﬁA*u

from (6.2.14), we find that

1 1
= —— Ay - —0B, B 2.2
L yp— u Vu o »V (wBy) (6.2.20)
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which, recalling the definitions VM = L/p and f(u) = wByg, becomes
drpVM = ——A*u Vu — —f( IV f(u). (6.2.21)

Since M and f are both functions of u alone we are able to rewrite VM (u) and

V f(u) using the chain rule, to give

—47rp(ii—MVu = —A Vu+ f()jf (6.2.22)

Now provided Vu # 0 we have

4ﬂp% _ —é ( a+ flu )jD (6.2.23)

which is the Grad-Shafranov equation [60, 124].
We now return to the general form of an axisymmetric current (6.2.14), replacing

wBy with f(u) and using the chain rule to give:

1d 1
Amj = ;éVU X ep — EA*“edr (6.2.24)
We now use (6.2.6) to make the replacement %Vu X e; = By, and the Grad-
Shafranov equation (6.2.23) to eliminate A from (6.2.24):

Ay = ﬂBpol +% <47r 2,44 3o T/ )df> eg. (6.2.25)

du

Finally we use the definition f = wBy and B = B, + Bgey to yield an expression
for the current in terms of the magnetic field and the derivatives of the functions
M (u) and f(u):

. df dM
4y = @B + 4ﬂpwae¢. (6.2.26)

6.2.3 Purely poloidal field

Having arrived at an expression for an axisymmetric current associated with a mixed
poloidal-toroidal field (6.2.26), we may straightforwardly specialise to purely poloidal
magnetic fields by choosing f(u) as a constant. Then % = 0 and the mixed term
vanishes from the expression for j, leaving only a toroidal current

dM

and hence a purely poloidal field, by Ampere’s law.



Chapter 6: Numerical work on equilibria 86

6.2.4 Purely toroidal field

In the previous subsection we showed that (6.2.26) may be trivially reduced to the
poloidal-field case. However it is clear from the form of (6.2.26) that there is no
choice of f and M which yields a poloidal current (or equivalently a toroidal field).
Setting M (u) to be a constant, for example, results in the general expression for a
force-free field

df

dmj= "B, (6.2.28)

which is of less interest to us, as we aim to study distortions caused by magnetic
fields.

It is clear that the derivation used for mixed fields does not hold in the toroidal-
field case. Previously we were able to use (6.2.16) to simplify the current-field
relation, but no such constraint is provided for a toroidal field, where B,, = 0.

Accordingly we must return to subsection 6.2.1 where we found that

1
Bpol = EVU X e¢
. 1
Jpol = mV(WB¢) X e¢

(from equations (6.2.6) and (6.2.11)). Since B, = 0 we no longer require wBy to
be a function of u; indeed the streamfunction u will not even enter our final solution.
We also recall that the general form of an axisymmetric Lorentz force is given by

(6.2.15), which in the case of By, = 0 reduces to
L= B¢jpol X €g. (6229)
Using (6.2.11) to replace jp, in this expression then gives
By By
- B =— By). 2.
L pp— (V(wBy) x eg) x €4 47er(w ») (6.2.30)
Again recalling previous work in this section, we note that taking the curl of (6.2.1)
shows that V x (L£L/p) = 0. We use this fact together with the vector identity
V x (fVg) = Vf x Vg to rewrite (6.2.30) as
By
V(=2) x V(wBy) =0. (6.2.31)

pTo

., By . . .
If we write p—?i in the above expression as p#wB¢ and use the chain rule, some

algebra leads to
By

p2w3

V(pw?) x V(wBy) = 0. (6.2.32)
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Since By/p*w?® # 0 we then deduce that V(pw?) x V(wBg) = 0 and hence that

pww? and wBy are related by some function h, i.e.
wBy = h(pw?). (6.2.33)

As before we now define a magnetic function M through L£/p = VM (note that
here M need not be a function of the streamfunction u of previous sections). From
(6.2.30) and (6.2.33) we then find that

h(pw?)

M= _
v 4 pro?

Vh(pw?). (6.2.34)

By the chain rule we have Vh(y) = %V’y, where we have introduced the notation

v = pw?. Given this we have

B h(vy) dh

and so )
1 [PZ h@

Y h .
ir Jo  ydy

(6.2.36)

6.2.5 Notation for the rest of the chapter

For prior sections in this chapter, it was convenient to employ the variables M and
f in derivations. Having obtained the required results, we now change notation
for consistency with earlier studies: the analytic work on incompressible fluids by
Chandrasekhar and Prendergast [29, 112] and the numerical study of Tomimura and

Eriguchi [137]. For this, we make the replacements

a(u) = % and k(u) = 47r%. (6.2.37)

The relation linking the magnetic current to the field (6.2.26) now becomes

41y = a(u)B + wpk(u)egy. (6.2.38)

6.3 Finding integral equations for MHD in a fluid star

6.3.1 Basic equations for our stellar model

We model a rotating magnetic neutron star by assuming that it is in a stationary

state, axisymmetric with both the magnetic dipole axis and the spin axis aligned,
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and composed of infinitely conducting material (the perfect MHD approximation).
We work in the electromagnetic units discussed at the start of this chapter. The
derivation of the integral equation for Ay follows the work of Tomimura and Eriguchi
[137].

We begin with the equations of magnetohydrodynamics described earlier. These

are the Euler equation describing hydromagnetic equilibrium:

1 c
— VP =V, + V0, + =0 (6.3.1)

where £ = j x B is the Lorentz force; together with Ampere’s law:
V x B = 4nj (6.3.2)

and the solenoidal constraint

V-B=0. (6.3.3)

This system of equations is closed with Poisson’s equation:
V20, = 47Gp (6.3.4)
and the assumption of a barotropic equation of state:
P = P(p). (6.3.5)

In the above equations P, p, ®,4, ®,, j, B and G are the pressure, density, gravitational
potential, centrifugal potential, current density, magnetic field and gravitational
constant, respectively.

Although the formalism allows for different choices of the centrifugal potential
®, and equation of state P = P(p), we will work with a rigidly rotating star:
 Qw?

P, 5

(6.3.6)
where the angular velocity €2y is a constant, and a polytropic equation of state:
P = kp'TUN (6.3.7)

where k is some constant and N the polytropic index.
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6.3.2 Choices for the magnetic functions

In the previous sections of this chapter we have shown that the equations of perfect
MHD reduce to a mixed-field case (section 6.2.2) and a purely toroidal-field case
(section 6.2.4). In the former case the equations are rewritten in terms of two
magnetic functions a(u) and k(u) of the streamfunction u; in the latter case one
magnetic function h(7) is employed (where v = pw? as before). Here we outline our
chosen forms for these functions, and in the next subsection we describe why many
alternative choices are not viable.

In the mixed-field case, the two functions a(u) and x(u) govern different aspects
of the magnetic field: firstly, since £ = j x B we have £ = wprey, x B/4r (from
equation (6.2.38)) — i.e., the Lorentz force is dependent on k, and so x governs the
relative contributions of the magnetic and centrifugal forces to the overall distortion
of the star. The role of « is less clear. From equation (6.2.38) we see that a = 0
gives a purely toroidal current and hence poloidal field, whilst increasing « increases
the size of the mixed toroidal-poloidal term aB (and so indirectly increases the
toroidal component of the field). However, there is no limit in which the field is
purely toroidal in this formalism. We can thus only expect « to have some indirect
connection with the relative strengths of the poloidal and toroidal components of
the magnetic field.

Following Tomimura and Eriguchi [137], we choose the functional forms of o(u)

and k(u) as:

k(u) = ko = const., (6.3.8)
_ ¢ i
a(u —u ifu>u
a(u) = (1 = tmac) e (6.3.9)
0 if u < umaa,

where ( is some constant and ., is the maximum surface value attained by the
streamfunction u. We find that © < ;.. for all points outside the star and so
the chosen form of « ensures there is no exterior current. Next we combine the

definitions o = % and f(u) = wBy to see that
u
/ a(u') du' = wBy (6.3.10)

— l.e., we must enforce the continuity of [ a(u) du to ensure the continuity of By.
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We therefore choose the lower limit of the integral of a so that

+1

(e — Upaz ) if u > Umaa,

flu) = /u a(u) du' = (6.3.11)

0 if u < Umag-

For our chosen functional forms of a/(u) and k(u) we see that for a specific solution
we need to choose three constants: (, a and kg. We will later drop the zero subscript,
with the understanding that s always refers to a constant unless otherwise stated.
Tomimura and Eriguchi set ( = 1, but we have found that a smaller value of { allows
for a slightly stronger toroidal-field component; accordingly, we set ( = 0.1 through-
out this chapter, except in comparing our results with previous work (subsection
6.8.2). We have since found that Yoshida and Eriguchi [145] made the same choice
as us, also motivated by an attempt to achieve poloidal and toroidal components of
similar strength.

For the purely-toroidal field case there is only one magnetic function, h(vy). Un-
like a(u) of the mixed-field case, h is directly related to the toroidal field. We
choose

h(pw?) = \pw? (6.3.12)

where A is a constant that governs the field strength. With this choice, we have

By = A\pw.

6.3.3 Restrictions on the magnetic functions

Although the magnetic functions discussed above appear to be arbitrary, there are
a number of restrictions on their functional forms, on either physical grounds or
because they result in trivial solutions.

The functions a(u) and h(y) both govern the toroidal fields, and so both must
necessarily vanish outside the star to avoid having exterior currents. Since the
streamfunction u in the mixed-field case does not vanish at the star’s surface, some
care is needed when choosing the functional form of a(u) to ensure the toroidal field
is confined within the star. To this end, we define a(u) to have the form shown in
equation (6.3.9). There does not appear to be any other functional form for o which
vanishes outside the star and is dependent only on u, so we conclude that (6.3.9)
is the only acceptable choice for a(u). The functional form of h, similarly, appears

restricted. To vanish outside the star h(y) cannot contain a constant piece, so let



Chapter 6: Numerical work on equilibria 91

us consider a functional form of h(y) = AyX where A and x are constants. However,
if x < % then By = MyXw—! = A\pXw?X~1 will diverge at the origin, so we discard
these choices. Additionally, we find that if x > 1 is chosen, then the field iterates to
zero in our numerical scheme, leading us to choose h(y) = Ay.

Finally, the function x(u) is theoretically allowed to depend on the streamfunc-
tion w, but if it is chosen as anything other than a constant then, as for h(y), we
find that the configuration iterates to a zero-field solution. This may be a limitation
of our numerical scheme rather than a physical restriction, but in either case our
solutions are limited to those with x being equal to some constant.

We conclude from this that, in fact, the choices made for our functional forms are
not specialised ones and (at least within our scheme) do not result in the exclusion
of physically valid solutions. Rather, we believe that our results are quite generic to

perfectly conducting polytropes in axisymmetry.

6.3.4 Integral forms of the basic equations

Here we use the basic equations from the previous section to derive integral equations
which can be used in a numerical scheme to find stationary configurations of a
rotating magnetised axisymmetric polytrope. For the magnetic integral equation,
we follow the work of Tomimura and Eriguchi [137].

Since V- B = 0, we can write B in terms of a magnetic vector potential A, viz.:
B =V x A. We use this together with (6.2.38) to reexpress Ampere’s law, which

in components is now

0 (0A, 0Ag5\ = 0A,
0z (8w 0z ) - %0 (6.3.13)
0 0An  0A\|  O0wdy
Ow [w( oz 8w>] T Ym0 (6.3.14)
0 1 OwAy 82A¢ B 0An 0A.
aw<w o )* 572 —‘0‘( 9z aw> e (6.3.15)

Note that defining the magnetic field B through the vector potential A is equivalent
to defining it through the streamfunction u; both approaches give a field B which
automatically satisfies the solenoidal constraint. In fact, comparing the w and z

components of V x A with (6.2.3), we see that

u=wAg. (6.3.16)
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We define A = w (654; — %‘;Z) and 2A = waA¢ a(u’) du’; note that 2A = A(u). Now,
using the chain rule on equations (6.3.13) and (6.3.14), we see that:

0A ou oA
o5 = O[(u)a =5 (6.3.17)
0A ou  0AU
Integrating these two leads to A =2, or
DA, 0A 1 =4
z === du’. 6.3.19
0z ow w /0 au) du ( )
Using this relation (6.3.19), equation (6.3.15) can be rewritten as follows:
Ay 10As Ay 0*A i
AT ek A v -2 a(u') du' — kpw. (6.3.20)

0w? wow w? 022 @ Jo
By multiplying equation (6.3.20) by sin ¢ we see that it may be rewritten as

. a [ .
A(Apsing) = — [/ a(u') du’ + /{pw] sin ¢ (6.3.21)
0

w

Next we rewrite the Lorentz force term from (6.3.1):
LixB) = 2 X (V x A)
- = —Kwe
P J 47 ¢

(wAp)

wA¢7z

1
= Eﬁ;(wAd,)V(wA(z,) (6.3.22)
and the equation of hydromagnetic equilibrium now becomes
1 1
—;VP - Vo, + Vo, + Eﬁ(wA(z))V(qug) =0. (6.3.23)

For the purposes of numerics we seek integral equations; the integral form of

(6.3.23) is
1

WA¢
H=C-%,+%, + / k(u") du’ (6.3.24)
47 0

where C' is an integration constant and

P(r) /
H(r) = /0 dr (6.3.25)
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is the enthalpy. The integral form of Poisson’s equation (6.3.4) is

_ p(r') v
r) = G/|I’I"| dr'. (6.3.26)

Finally, the integral form for (6.3.21) uses the same Green’s function as for Poisson’s

equation; the result is
/ A/
Ay(r)sing = L
4w |r — r’|
With the three equations (6.3.24), (6.3.26) and (6.3.27) it is possible to calculate sta-

tionary configurations of magnetised rotating stars (together with various specified

) du + kpw’

sin¢’ dr'. (6.3.27)

functions like a(u) and k(u)).

6.3.5 Spherical harmonic expansions of the two potential integrals

At this point we switch from cylindrical (w, ¢, z) to the spherical (r, u, ¢s) polar

coordinates used in the code. The conversions are:

w = ry1—p? (6.3.28)
z = T (6.3.29)
be = o (6.3.30)

The subscripts ¢ and s on ¢ are used here for identification, but dropped everywhere
else.
We need to rewrite Poisson’s equation (6.3.26) as a sum for numerical integration.

For this, we expand in terms of spherical harmonics:

W
1 mx*
lr — r/| - 47TZ Z 2l+1 l+1 V", 0)Y™ (1 ¢') (6.3.31)
=0 m=—
= Z Z z+1 Pm(u)ﬂm(u’)eim(‘b“f") (6.3.32)
1=0 m=—1">

where 1 = cosf. Now, the density p is reflection symmetric and hence an even
function of p, whilst the polynomials P;(u) are even in p when [ is even and odd
when [ is odd. So for odd [ the integrand of ®, is odd and thus vanishes under

integration, leaving only the even-/ terms:

o0

_ o 2 m)) m m/! _2im(d—g¢')
oo [[E 5 poits e

p(r’,,u,’) d¢/dp/dr’.  (6.3.33)
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The radial function fy; is defined as

T/2l+2

21 T
r 3TFT mwr <r
fa(r',r) = 72l<+1 2= N (6.3.34)
rs et it >

We now split the sum over m up into an m = 0 piece and an m # 0 sum. Each term

in the m # 0 sum will, after integration, contain a term of the form

27
/ em™O=9) q¢/ =0 (6.3.35)
0

since the exponential term contains the only ¢’ dependence in the sum. It follows
that all terms except the one with m = 0 vanish under integration. Given this,
(6.3.33) reduces to

00 1 0
P, = —47rG/ dr// du’ p(r', 1) Z Jor(r',7) Poy (1) Poy (). (6.3.36)
0 0 =0

In a similar way, we can rewrite the equation for the magnetic potential (6.3.27).

We use the decomposition (6.3.32) as before, which for Ay sin ¢ is:

l

dguno = [Z > T ) ) P e

4
=0 m=—1
M@ @ )sing’ dr’  (6.3.37)

where we have defined

o Oz(w/A:b) =4 /
M(r',pw') = // a(u) du + Kpw (6.3.38)
w 0
and
1,02 (AR
rer if ' <r
L) =S = (6.3.39)
r> St if >

Writing the sin¢’ term in its exponential form we may absorb it into the other

exponential term in the sum:
eimd)

(e (1mm) _ =i (14m)y (6.3.40)

(3

On integrating the above expression with respect to ¢/, all terms vanish except when
m = £1. Hence (6.3.37) reduces to



Chapter 6: Numerical work on equilibria 95

i < [ [ 152 e )

1=0
M@ p'y dp'dr’

= / dr’ / dp’ M(r', 1) Zfl PlPlllsmgb (6.3.41)

where we have integrated over ¢’ and used the following relation for associated

Legendre functions:

P = (—1)mMJD,m. (6.3.42)

Now cancelling the sin¢ terms on the LHS and RHS of equation (6.3.41), we

have a relation for A, alone which can be numerically integrated:

_ > / ! / o - fl(rvrl) /
—/0 dr /0 dp M(r,u);l(lﬂﬁl(u)ﬂl(u) (6.3.43)

Finally, the quantity M is an even function of u, so as for the gravitational potential
we will lose all odd terms after integration. For the gravitational potential that
meant keeping the Py; terms; for the magnetic potential it means keeping the Pl1
terms with odd [, as it is these functions which are even in p; P21l is odd in p. This

leaves us with the following expression for Ag:

T, ’I"
/ ar’ / ap MG, i) Zf;; fuitnr) PP (6344

6.3.6 Numerical integration

In the previous subsection we derived expressions for the two potential integrals
(6.3.26) and (6.3.27) in terms of Legendre functions:

(o) 1 0
by(r) = —4nG / ar’ / W ole' ) Y Falr P PA) (6349

Agr) = / ar’ / d M, ) Z";?; ;l”" Py (i)Ph (). (6.3.46)

Note that these expansions are exactly equal to the original integrals. We now use
Simpson’s three-point formula to approximate these as sums; the resulting expres-

sions will be accurate up to some factor dependent on the step size h and the fourth
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derivative of the integrand:
[ @) do = G0 + 47(e0) + S(a)] + OGS (6347

In the code we will integrate on a u vs. r grid with kg;, points in the p-direction
and lg;, points in the r-direction, with grid points in the ranges 0 < p < 1 and

0 <7 < rpee- Hence

) — 1
and
1—1
.= . 6.3.49
e ( )

For the rest of this section we label the unprimed quantity » with the index j, whilst
k labels v’ and [ labels P/.
We now integrate the p/-dependent quantities of an arbitrary element in the sum

(6.3.45) over u' using Simpson’s rule:

1
Vir = / p(r's u) Pa(p') dp!
0
kdiv_Q 1
= Y o [Pulpi)pi + APou(tti1)pis1 + Potir2)piron]
it oaa SFaiw = 1)
(6.3.50)

Note that the sum is over odd i up to kg, — 2 (typically we set kg, = 257 in the

code; in any case it must be an odd number) since

Kdiv kdiv
/ / / ot / : (6.3.51)
kqiv—2

Next we integrate over 7’ to find the quantity
Tmaz 1
L; = / / p(r', 1) Poy (i) fr (7, ;) dy/dr’
0 0
Tmaz
- / Vkagl(T/,T’j) d’l”/
0

ldiv72
,
= > (e ) Vit + A (e ) Vi
k=1,k odd 3laiw = 1)

+ for(Th42,75) Vita,]- (6.3.52)

Finally, we see that the gravitational potential at the grid point (p;,7;) is given by

(@g)i; = —47TGZ‘171,jP2l(M)- (6.3.53)
=0
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The derivation for the magnetic potential is very similar, with the quantity

/A/ 'U_JIA/
M@ ) = a(u; o) Jo ¢ a(u) du + kpw' replacing the p(r’, ) in the working
above. Given this, we may use (6.3.46) to write down

- 1
AL = E - 9, . Pl . 3.54
( ¢>’57] — 2l(2l o 1)m]l,3 2[71<,U7,) (6 3.5 )

where, in analogy with the previous derivation, 20; ; is related to the quantity Wy

which in turn is related to M:

ldi'u72
Tmaz
P = Z m[fm*l(rk’rj)wk’l A for1 (P 7)) Wi
k=1,k odd
+ for-1(reg2, 1) Wiya,] (6.3.55)
kdiv72 1
Wk’l - Z .7[P21l71(ui)Mi,k + 4P21[—1(Mi+1)Mi+1,k
i=1,i odd 3(Kdiv — 1)
+ Py (piya) Miga ). (6.3.56)

In practice one cannot perform the infinite [-sums shown in equations (6.3.53) and
(6.3.54), so we terminate them at some finite l,,q,. We choose lyq; = 16 for the
code; we find that terms of higher [ than this produce a negligible contribution to

the sum.

6.4 Details of the code

6.4.1 Non-dimensionalising

For the purposes of numerics it is convenient to work with dimensionless variables
of order unity. We nondimensionalise all variables using G, the maximum density

Pmaz and the equatorial radius r.,. The variables used in the code are then:

) P

p = , 6.4.1
Pmazx ( )
w

T = — 4.2

@ ror (6.4.2)

; 02

Q= 6.4.3
Gpmaa:7 ( )

o= (6.4.4)

\/é/ T'eq 7



Chapter 6: Numerical work on equilibria 98

(07

A pu— — .4-
& reg (6.4.5)
A A¢
A = —t 6.4.6
¢ qupmam\/é ( )

All the magnetic rescalings above may be found by starting from the units of the

Lorentz force, plus V x B = 47j, V x A = B and equation (6.2.38).

6.4.2 Enthalpy

Since the enthalpy is given by H = (1 + N)P/p, we may use this formula together
with (6.3.7) to give a relation between density and enthalpy:

p= (@)N . (6.4.7)

6.4.3 Enthalpy boundary condition

Recall that the first integral of the Euler equation is

H=C-9%,+ =7 / k(u') du'. (6.4.8)
2 4 0

The boundary condition on the enthalpy H is that it must vanish at the surface.
We call the equatorial radius 7., and the polar radius r,, and rescale the radial
coordinate by dividing by r.,. Evaluating the boundary condition on the enthalpy

at the equator and at the poles gives

Q(Qﬂ’gq I KoTeqgAg(Teq)

H(rp) =0 = C—®(rp). (6.4.10)
Rearranging these in rescaled variables where r., = 1 we see that
Ap(re
0% =2 (@(req) — D(rp) — W) (6.4.11)
0

and e Ayren)
_ _ iy KoAg\Teq
C = O(req) 5 in . (6.4.12)
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6.4.4 Numerical scheme

Our code uses the Hachisu self-consistent field (HSCF) method [61] to iteratively find
a stationary solution to the hydromagnetic equilibrium equation (6.3.1). Specifically,
the user specifies a polytropic index N, magnetic functions a(u) and x(u) and a
deformation (i.e. axis ratio) r,/re¢q and the code determines the angular velocity,
density distribution and other quantities consistent with the user’s input parameters.
The code we use is based on a code for rotating stars written by Nikolaos Stergioulas,
extended here to include magnetic fields.

The original HSCF method was a numerical scheme for calculating the station-
ary equilibrium configurations of an unmagnetised rotating star. We now generalise

it to include axisymmetric magnetic fields; the steps in this modified scheme are:

1. Make an initial guess of p=const

2. Find ®, from Poisson’s equation (6.3.53)

3. Guess Ag=const

4. Find an improved, space-dependent form of A4(r) from equation (6.3.54) and the
guesses for p and A, (this is the iterative step for Ag)

5. Find Q2 and C from (6.4.11) and (6.4.12), using the potentials ®, and A, found
earlier and given a user-specified axis ratio 7, /74

6. We now know all right-hand side terms in (6.3.24); use the equation to determine
the enthalpy at all points in the star

7. Find the new (improved) estimate for the density distribution using ppew (7, 1) =
(H (r,p)

HTVLH,JL’

)N where N is the polytropic index and Hj,, the maximum value of en-
thalpy attained in the star!

8. As the iterative step, return to step 1 but use p = ppew instead of the earlier
density distribution (p=const for the first cycle). At step 3 in the new cycle, use the

‘new’ form of A calculated in step 4 of the previous cycle.

This sequence of steps is repeated until the code has converged satisfactorily, i.e.

!The expression here comes from (6.4.7)
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until all the quantities

‘(Hmax)n—i-l - (Hmax)n|a (6413)
’(Q%)n—f—l - (Qg)n’7 (6.4.14)
|Cnt1 — Gy (6.4.15)

are less than some small value §. The subscript n here represents the value of a

quantity at the n-th iterative step.

6.5 Formulation for a purely toroidal field

The Grad-Shafranov equation (or equivalently equation 6.2.38 for the current) allows
for purely poloidal fields and mixed toroidal-poloidal fields. For a purely toroidal
field a different formalism is needed; this was derived in section 6.2.4. Recall that

one may define a scalar potential M through

B
vM =172 (6.5.1)
p
For a purely toroidal field we have B = Bye,. In section 3 we found that

By = (v (6.5.2)

1 [*° hdh
M = —— ——d (6.5.3)

am Jo o ydy

where h is an arbitrary function of v = pw?. For simplicity we choose h(pw?) =
Apw? where ) is a constant specified by the user of the code. With this choice of h

we then have

pw® dh pw?
M = _/ ﬁ — dy = _/ i/\ dy = —)\prQ. (6.5.4)
0 v oody o7

The first integral of the Euler equation becomes:

H = C-0+ 30z + M (6.5.5)
= C—-0+10%% — \pw?. (6.5.6)

Also for this choice of h we have By = Apw. Note that since p is zero at the surface,

the equations which give Q2 and C in terms of the axis ratio do not feature any
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magnetic term and are just those for a rotating unmagnetised fluid:

Q2 = 2(B(reg) — (rp)) (6.5.7)
2
C = @(’r‘eq)—% (6.5.8)

ie. (6.4.11) and (6.4.12) with k = 0. The numerical scheme is simpler than that for
the mixed case as the magnetic term only enters in the Euler equation (6.5.6). The

steps of the code are:

1. Make an initial guess of p=const
2. Find ®, from Poisson’s equation (6.3.53)
3. Find Q2 and C from (6.4.11) and (6.4.12), using the gravitational potential ®,
and given a user-specified axis ratio rp/7eq,
4. Evaluate the magnetic term M using the density distribution p and given a user-
specified Lorentz force strength parameter A,
5. We now know all right-hand side terms in (6.3.24); use the equation to determine
the enthalpy at all points in the star
6. Find the new (improved) estimate for the density distribution using ppey (7, 1) =
<%>N where N is the polytropic index and Hj,q; the maximum value of en-
thalpy attained in the star
7. As the iterative step, return to step 1 but use p = ppew instead of the earlier
density distribution (p=const for the first cycle).

As before this sequence is iterated until the code has achieved satisfactory con-

vergence; the quantities

‘(Hmaac>n+1 - (Hmaac)n’; (659)
()1 — (), (6.5.10)
Gt — Chl (6.5.11)

should all be less than some small value . The subscript n here represents the value

of a quantity at the n-th iterative step.
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6.6 Code-calculated quantities

6.6.1 The magnetic energy

We will wish to calculate the magnetic energy &4y of the star in the code, to
compare with kinetic energy and also to calculate a virial test (see next section).

The familiar definition of &4 is

B2
(S‘mag = / g dr, (661)
all space
but this is not suited to numerical evaluation, since the integrand only decays at
infinite distance; numerical integration would necessarily be over a finite radius
and so introduce truncation error. However some vector identities show that an

equivalent definition for £,,,4, more useful here, is

Emag = / r-L£ dr (6.6.2)

all space
— see section 4.2 for details. Now since £ = jx B, where the current j is zero outside
the star (see equation (6.2.38)), it is clear that £ is also zero outside the star. The
integrand in (6.6.2) will therefore also vanish outside the star, so the integration
need only be performed within the star. We wish to express &,,,44 in terms of the

quantity Ay which the code calculates. Firstly, since B =V x A we have:

B, = —Ay. (6.6.3)
By = Ag.—-A.» (6.6.4)
1
B, = Ao+ —A .6.
b T - é (6.6.5)

and hence the Lorentz force is:

1
L=jxB = __wpre,xB (6.6.6)
, Apm + 54
= 4 PR 0 : (6.6.7)
Ay

The integrand is then given by

1
r- L= prﬁ(quﬁ@ + Ay + 2A42). (6.6.8)
T
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The code uses a spherical polar grid based on r and p = cos , whereas the above
expression is in terms of cylindrical polars; we therefore wish to rewrite it.
We recall from earlier the coordinate transformations from cylindrical to spher-

ical polars:

w = ry1l—pu? (6.6.9)
z = U (6.6.10)

(one may see this by writing the cylindrical coordinates as Cartesians as an inter-

mediate step: w = gt and z = zogrt). Now using the chain rule we have:

0 dw 0 0z 0 0 0

_ = _ —_—— = 4/ — 2 —_—

or or 0w + Or 0z L=u 0w + o> (6.6.11)
g 0w 0 N 9

5 adm e 5 o (6.6.12)

Rearranging these we see that

1— 2
0 el _milzw o (6.6.13)

Ow or r ou
o g (1—-u* o
i ™ (6.6.14)

We now know the transformations for the coordinates and the derivatives; after some
algebra we find that the integrand (6.6.8) may be reexpressed in terms of spherical

polars as:

1
PRV 1 —p2(rAg, + Ag). (6.6.15)

At last we are able to write the magnetic energy as a spherical polar integral in

terms of Ag:

27 —1 © 1
gmag — / / / Zﬂlﬂ" \/ 1-— ,LL2(7"A¢77~ + A¢) 7“2 de,UJdQs (6616)
0 1 0 ™
1 rR
= / / prr3N/1 — p2(rAg, + Ay) drdpu, (6.6.17)
0o Jo

using the symmetry of the p-integral, integrating over ¢ and noting that the inte-
grand is zero outside the surface radius R of the star (by virtue of the p term in the

integrand).
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6.6.2 Virial test

We may use the virial theorem as a test of convergence for the code. First take the
trace of the tensor virial equations (4.2.26) (further details are found in section 4.2)
to yield the scalar virial theorem:

1421
where I is the moment of inertia and 7', &4, U and W the kinetic, magnetic,
internal and gravitational energies, respectively. For our stationary star I has no
time variation so the first term is zero, whilst the internal energy term may be
rewritten using II = [ p dr = (y — 1)U. Given this, we expect the various energies

for our star to satisfy
2T + Eag + 3L+ W = 0. (6.6.19)

Calculating the quantity on the left-hand side of the above equation tells us the
absolute deviation from zero, but we need to know the relative error. A value of
2T +Epag +31+W = 10~° would appear to indicate acceptable accuracy, but if the
individual energies are of order 10~* then the relative error is unacceptable: around
10%. For this reason we normalise by dividing through by W and define our virial

test result VC' as
12T + Emag + 3L+ W

W ’

the smaller the value of VC, the greater the code’s accuracy. In particular, in

VC =

(6.6.20)

the limit VC' — 0 the calculated configuration is an exact stationary equilibrium

solution.

6.6.3 Toroidal and poloidal energies for the mixed case

The code variables x and « are related to the ratio of toroidal to poloidal field
strength, but in a very nontrivial manner. To get a more intuitive, physical, measure
of their respective strengths we would like to know the part of the magnetic energy
contained in the poloidal and toroidal fields, &£,, and &, respectively.

Since the total magnetic energy is given by

1 1
gmag:&T/B.dez&r/B;+Bi+B§dV (6.6.21)
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we define
1
Eu = — [ B2 +B2av 6.6.22
pol 87T w + z ( )
1
Eor = — [ B24V. 6.6.23
t 87r/ ¢ ( )

As in other places, the integrands have no ¢-dependence so the integration over
¢ may be done immediately to give 2mw, whilst converting from 6 to p and using
reflection symmetry changes the angular integral from [ ...sin6 df to 2 fol dye.

Hence our magnetic energy integrals become
1 1 [e's)
Epol = 2/ / B2 4+ B? drdu (6.6.24)
0o Jo

1 1 o)
Etor = = / / B} drdp. (6.6.25)
2.J)o Jo

We recall the conversions between (w, 2, 0, 0.) and (r, i, 0y, 0,,) from before; with

these we can rewrite the cylindrical-polar components of B in terms of spherical

polars:
1— 2

By = —Ag.=—pAy, — (r“)AW (6.6.26)
A A V1—p?

B. = “idgn =t T Ray, - T, (66.07)
w ry/1— p? r

1 ry/1-p2Ay
By = —— a(u) du. (6.6.28)

We recall here that whilst the upper limit for the integral of « is fixed, the lower
limit is not; we choose it so that there is no constant after integration and hence no
jump in Bg.

The integral for &, may now be straightforwardly evaluated, since its integrand
By is confined to the star; however the integral for £,, does not have compact
support. We can get around this by using the fact that &4y = Epo1 + Etor and so
define &,y in terms of the other two integrals £,5 = Enag — Eror; in this manner we
can evaluate the poloidal energy through quantities which extend only over the star.
For a consistency check on our work, we compare this compact-support expression
for &), with the standard infinite-integral form by plotting the quantity
3 fol foR(Bzzz + B2) drdu

Emag — Etor

P = (6.6.29)
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for increasing integration radius R; see figure 6.1 below. We see from the figure that
B — 1 as R — oo, confirming that &4y — Eror does indeed give the poloidal-field

energy.

098 | T .

0.96 [ g

/

/

09} R
/

0.88 |/ i

Figure 6.1: Confirming the veracity of our compact-support definition for &,,. The
values on the plot are for a star of axis ratio r, = 0.5 and k = 17, purely poloidal

field. The convergence also occurs if a toroidal field is included.

6.6.4 Keplerian velocity

The Keplerian (or break-up) velocity Q is defined to be the velocity at which the
centrifugal force matches the gravitational force. If a star’s velocity exceeds Q -, then
it will begin to shed mass. The criterion for mass shedding is therefore 2 = Q.
With a view to determining Qg , we first define a different velocity €2, through the

relation
1 00

Teqg O

02 = (6.6.30)

which in dimensionless form is simply

=9, (6.6.31)

)
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We are able to find this quantity by differentiating the equilibrium equation (6.3.24)

in dimensionless form:

B, =—H, +Q%(1 — )+ %\/1 12 (Ag+1Agy). (6.6.32)

We evaluate this at the equator (i.e. p = 0), where the centrifugal force is greatest

and hence where mass shedding will occur first. This gives
K
P =0,|g=—-H,+0+ E(A¢ + Agpr). (6.6.33)

In general €. as defined above is not the Keplerian velocity — the two are only
equal as the star reaches the mass-shedding limit. When this limit is reached 2 =

Q. = Qp, so . is a test of whether the star has reached its mass-shedding limit.

6.6.5 Ellipticity
Recall that the quadrupole moment tensor I is defined as

L = /pxja:k dv. (6.6.34)
Since our star is axisymmetric we have

Iy = Lg=1, (6.6.35)
Ipol = Izz- (6636)

Now

I, = /pa:2 dv

= [ o) P ) cos? 6 rdrduds

1 rR
= 27?/ / prt(1 — p?) drdpu (6.6.37)
0 JO
I, = / pz* AV
1 rR
= 47‘(’/ / prtp? drdp (6.6.38)
0 JO

There are various ways of defining the ellipticity e, but one is to use these unreduced
quadrupole moments:
e= ————. (6.6.39)
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6.7 Constructing physical sequences of stars

For numerical purposes, we work with dimensionless variables. However, to un-
derstand these results in the context of physical neutron stars we need to redi-
mensionalise them. Making a meaningful study of a group of different equilibrium
configurations entails ensuring that we always compare the effects of magnetic fields
and rotation in the same physical star: we do this by ensuring that we work with
sequences of constant (physical) mass and the same equation of state.

For the former requirement, we need to use the relation

M

Pmazx qu

M= (6.7.1)
Maintaining a constant mass, then, enforces the above relation between the maxi-
mum density pmqe and 7. Secondly, we need to ensure we compare stars with the
same equation of state, i.e. the relation P = kp't1/N: this means always using the
same polytropic index N and polytropic constant k. The former is specified when
the code is run and is not a dimensional quantity; for the latter we need to redi-
mensionalise. Using dimensional analysis as before, we find that the nondimensional

code k is related to the physical k by

k

1-1/N°
Grgqpmax/

k= (6.7.2)

1+1/N

Now our nondimensional polytropic relation is P = l;:f) , but since the maximum

density is normalised to unity in the code, we have simply
k= Praa, (6.7.3)

the maximum (code) pressure in the star. From the two equations (6.7.1) and (6.7.2)
(replacing k with Pmax) we are then able to fix the real mass and equation of state;
this allows us to find the values of py,q, and r¢q. We use (6.7.1) to find that

M
Teqg = { < (6.7.4)

pmaxM

and use this to replace r¢, in equation (6.7.2), giving

A k
Proz = . e
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We now fix our neutron star mass as M = 1.4Mg = 2.8 x 103 g (we are working

in cgs units) and our polytropic constant as k = 4.25 x 10* cm®g~'s~2; the latter

coming from rearranging re, = kaTG given an equatorial radius for the spher-

ical ‘background’ star? of 10 km. See Chandrasekhar [22] for details of polytropic
relations. This gives

k 3N/(N-3) _3
Pmaz = (GM—2/3M2/3]5 > g cm (6.7.6)
= 548 x 10" M1 P32

ax

g cm ™2 for an N=1 polytrope.  (6.7.7)
Having found p,e. for each star we then find the corresponding equatorial radius

Teq Using the mass relation (6.7.4). For an N = 1 polytrope this is

Teq = 7.98 x 10° P12 cm =7.98 P12 km. (6.7.8)

max max

For an axis ratio of unity we find that Pmam = 0.637; substituting this back into the
equation above we recover the background radius of 10 km, as required. With these
two quantities we are now able to redimensionalise any code quantities; in particular
the physical values of magnetic field strengths and rotation rates which generate a
specified axis ratio.

For a measure of the magnetic field strength in the star, we define a volume-

averaged magnetic field B through

_ 1 81€,
B’=_- | B2dv = ¥ 6.7.9
Vv / Vv ( )

The relation between the physical B and the nondimensional code version B is

B = reqpmax\/éé =1.13 x 10'® PmM_lé gauss (6.7.10)

reqpmamxf 87r§/ma,g 5.66 x 108 PmM_léiln/ng_lm gauss.
(6.7.11)
The physical rotation rate is simpler to find, being given by
Q = V/Gpma (6.7.12)
= 1.91 x 10* M~Y2P3/4Q rad s~ (6.7.13)
= 3.04 x 10° M~Y2P3/4Q) Ha. (6.7.14)

2Note that in the context of this chapter, ‘background’ refers to the hydrostatic equilibrium
configuration, with no magnetic fields or rotation. This is completely distinct from the perturbation-

theory connotations of ‘background’.
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The physical values quoted later in this chapter are calculated from the equations
(6.7.9) and (6.7.12). The process of redimensionalising for other polytropic indices

is very similar to the one described here.

6.8 Testing the code

6.8.1 Convergence plots

We begin by demonstrating that both the mixed-field code and the purely toroidal-
field code converge satisfactorily; i.e. that the numerical error decreases as the grid
resolution increases. As a test of this numerical error we evaluate the quantity VC

from (6.6.20):
12T + Epag + 31T+ W

W]

since this is zero for a physical stationary configuration, by the virial theorem. We

VC = (6.8.1)

find that both codes are second-order convergent as required; see figure 6.2.

6.8.2 Comparison with previous work

We are able to confirm the results produced by the code in various regimes. Firstly,
we compare rotating unmagnetised configurations generated numerically with the

analytic result for the fractional distortion (4.1.90) from chapter 4:

) = 53}(3“) _ (1 _ ;Pg(u)> v, (6.8.2)

Here v is a nondimensional velocity, v = Q2/27p.G. We use a different definition
of nondimensional velocity (called QQ) in the code of this chapter, but the two are

related through:
02 02
v= = —.
2rp.G 2w

Note that the central and maximum densities are equal in this case: p. = pPmaz-

(6.8.3)

We may now work out the perturbative analytic result for the axis ratio of a slowly

rotating N = 1 polytrope:

Lp:1+a(0):1—%92 (6.8.4)
g 1+(1) 14202 -
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Table 6.1: Comparing numerically-generated rotating stars with results from ana-

lytic work.

02 1-— % (code) 1— % (analytic)
6.964e-3 4.17e-3 4.15e-3
1.393e-2 8.33e-3 8.27e-3
3.470e-2 2.08e-2 2.05e-2
8.254e-2 5.00e-2 4.78e-2
1.622e-1 1.00e-1 9.15e-2

The analytic result is only valid in the slow rotation, small distortion limit, so we
compare the code and analytic results in this regime, for a few values of Qz; see
table 6.1.

We are also able to make both qualitative and quantitative comparisons with
work on magnetised stars. Qualitatively, it has long been predicted that poloidal
magnetic fields generate oblate configurations, whilst toroidal fields induce prolate
distortions. A simple analytic indication of this is given by the formula (4.3.28),
derived from early work on magnetised stars in section 4.3. Given the opposing
effects of poloidal and toroidal fields, one would expect a mixed-field magnetic dis-
tortion to depend on the relative strengths of the two field components. For our
mixed-field code, however, we are only able to generate oblate stars; we believe this
is due to the weak nature of toroidal fields within our mixed-field formalism, where
the toroidal-field energy &, is always less than 7% of the total magnetic energy
Emag-

As a quantitative confirmation of our results, we compare with table 4 from
Tomimura and Eriguchi [137]. Their results are nondimensionalised by dividing by
appropriate powers of Pz, Teq and 4G and these dimensionless quantities are
denoted by a hat; for example

9 02

0 = T (6.8.5)
For comparison with their results we must also use ( = 1 instead of ( = 0.1 as the
exponent in the functional form of o from (6.3.9). Taking this into account we find
that for a N = 1.5 polytrope, with & = 0.4 and a = 200, we have the sequence of

configurations given in table 6.2.
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Table 6.2: Comparison between our results and those of Tomimura and Eriguchi.
We present dimensionless energy quantities for a sequence of rotating magnetised
equilibrium configurations with N = 1.5, 4 = 0.4, a = 200 and ¢ = 1. The numerical

values are our results; the percentages show the differences from Tomimura and

Eriguchi.
p/Teq  Emag/IW| u/[wl T/|W| W Ve
0.588 0.144 0.284 1.21e-3 0.0481 2.97e-5

0.55  0.151 (0.7%
0.50  0.165 (0.6%

0.276 (0.0%) 0.0111 (4.7% )
0.264 (0.0%) 0.0211 (2.9% )
045  0.189 (0.5%) 0.255 (0.4%) 0.0227 (3.2%) 0.0401 (0.2%) 3.63e-5
040  0.222 (0.0%) 0.252 (0.0%) 0.0119 (8.2%) 0.0358 (0.3%) 4.02e-5
0.371 0.242 0.252 1.10e-3 0.0331 4.32¢-5

0.0459 (0.4%) 3.10e-5

)
) 0.0432 (0.5%) 3.33¢-5
)
)

o — — —

Our highest and lowest axis ratios (0.588 and 0.371) differ slightly from those of
Tomimura and Eriguchi [137] (who have 0.589 and 0.372), so we cannot make a direct
comparison for these values. For the other four axis ratios, our values agree with
theirs to within 1% for the magnetic, gravitational and internal energy quantities
but have discrepancies of around 3 — 8% in the kinetic energy. Since our virial tests
show smaller relative errors than those of Tomimura and Eriguchi, we suggest that

the discrepancies may simply be due to us having used higher-resolution results.
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Figure 6.2: Logarithmic-scaled plots of the virial test V'C' against the number of

mesh points M P. The data points are plotted together with a line of gradient two;

we note that this is a good fit to the points and conclude that both codes are second-

order convergent. The plots are for: (a) mixed-field code run with purely poloidal
field, © = 0 and axis ratio 0.2; (b) mixed-field code run with a mixed field with
a(u) = 10(u — Umaz)??t, @ = 0 and axis ratio 0.2; (c) toroidal-field code run with

) = 0 and axis ratio 1.05.
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6.9 Results

6.9.1 Magnetic field configurations

With the formalism described earlier in this chapter, we are able to examine field
configurations in axisymmetric perfectly conducting polytropes. Since neutron star
matter is thought to have high conductivity and be roughly approximated by an
N = 1 polytrope, the field structures shown here should have some similarity to
those in real neutron stars — although the field strengths here are considerably
higher than those that have been observed so far. There are, nonetheless, some
reasons to consider such strong fields. They provide a demonstration that the code
can compute stellar structures in the nonlinear magnetic regime; we also find many
common features among all configurations, suggesting that they could also exist for
more weakly magnetised stars. In addition, the interior fields of neutron stars could
be considerably stronger than their surface values.

The plots in this subsection show the magnetic field strength given by |B| =
VB - B, and of the poloidal and toroidal components, |B,,| = /B% + B2 and
|Btor| = |Bg|. The plots are colour-coded, with the peak field strength represented
in yellow, and zero-field regions in black. The stellar surface is represented by the
thick white arc which meets the z-axis at unity. Finally, since the equatorial radius
Teq = 1 in code units, we will often denote the axis ratio of the star ry/re, simply
by the dimensionless polar radius, 7.

All of the magnetic-field results presented here (and discussed in this subsec-
tion) are for nonrotating N = 1 polytropes, unless otherwise stated. We have not
presented extra results for magnetic field configurations in rotating stars, since we
find there is no qualitative difference when rotation is included. In addition, we have
concentrated mostly on mixed-field configurations, since there are strong indications
from both theory [96, 133, 144] and simulations [14, 79, 50] that both purely poloidal
and purely toroidal fields are generically unstable.

In figure 6.3 we plot the poloidal and toroidal components of three mixed-field
stars. Although the plots show stars with very different levels of deformation (axis
ratios of 0.95,0.5 and 0.0), each magnetic configuration is broadly similar. For
each plot, the poloidal field pervades most of the interior of the star, as well as
extending outside it. This component of the field is highest in the centre except

in the extreme 7, = 0.0 case (when the shape of the star becomes toroidal, with
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zero central density). The poloidal fields only go to zero in a small region towards
the edge of the star (seen as the black region on the equator at x ~ 0.9); Tayler
[96] calls this zero-field point the ‘magnetic axis’. By contrast the toroidal field
reaches its maximum here, and is only non-zero in a small region dictated by the
functional form of «(u) that we use. Whilst the toroidal field energy is always a
small proportion of the total magnetic energy — Eior/Emag < 7% — the mazima of
both field components are comparable in magnitude.

In figure 6.4 we show how the poloidal and toroidal components of the field fit
together by showing how the total field strength varies in two mixed-field stars.
Despite the very different levels of distortion in the two plots, there are again broad
similarities: the field tends to be strongest around the centre (due to its poloidal
component) and in a small region around the equator near the surface (due to the
toroidal component) which corresponds to a torus in the actual 3D star.

The differences in the toroidal field in a mixed-field star compared with a purely
toroidal-field star within our formalism are shown in figure 6.5. The geometry is
somewhat similar, since any toroidal field has to vanish along the pole and at the
surface, but the field in the pure-toroidal star pervades virtually all of the interior
of the star, whereas in the mixed-field case it is confined to a small region. Whilst
the maximum field strengths are similar in both cases, the pure-toroidal field shown
contains far more energy, by virtue of occupying a larger region of the star.

All of the plots so far have given only half of the information about the magnetic
field in these stars — their magnitude. In figure 6.6 we additionally show the direc-
tion of a typical poloidal field by plotting contours of the streamfunction u. These
contours are parallel to magnetic field lines, by the derivation in section 6.2.1. Since
a purely toroidal field has direction vector ey, the field lines would go into the page
in the x — z plane we employ here; these would form concentric circles in the = — y
plane. Mixed-field lines lie in neither plane so we have not shown them here.

Lastly in this subsection, figure 6.7 shows the dependence of the ratio B,/ B on
the polytropic index N; we find that there is an approximately linear relationship
between the two, and for all polytropic indices B,/B is of the same order of mag-
nitude. For N =1, B,/ B = 0.5, suggesting that neutron stars (approximated as
N = 1 polytropes) with purely poloidal fields are likely to have a B around double
the polar field B,,.
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Table 6.3: Comparing parameters related to the influence of the toroidal component

in a mixed-field star with axis ratio 0.9. -
a 6tor/5mag 6mag/|W| € BP/B

0 0.00 2.43e-02  0.216  0.580
10 9.87e-03  2.55e-02 0.216 0.554
20 3.02e-02  2.82¢-02 0.213 0.504
30 3.96e-02  2.93e-02 0.204 0.484
40  4.05e-02  2.92e-02  0.196 0.488
50  3.86e-02  2.88e-02 0.191 0.495

6.9.2 The relationship between a and &, /&4y

As mentioned earlier, we can increase the proportion of toroidal field in the mixed-
field configurations only indirectly, by varying the code parameter a from equation
(6.3.9). In table 6.3 we show the effect of changing this parameter, for a non-rotating
star with axis ratio rp/req = 0.9. One would expect that increasing a would increase
the toroidal portion of the field, which in turn would lead to a decrease in oblateness
(since toroidal fields induce prolate distortions); one would also expect a reduction
in the ratio B,/B (since more of the field is toroidal and hence does not extend
outside the star). Looking at the table, we see all of these effects do occur as the
value of a is increased, up until the a = 40 configuration. At this point the larger
value of a is no longer reflected in stronger toroidal-field effects. In all cases changing
a does not strongly affect the value of &£,44/|W|, confirming our expectation that it
is the variation in the toroidal component which affects ellipticity and B,/ B, rather
than simply a reduction in &yqy/|W/|. Finally, we note that even for the highest
values of a, the relative contribution of the toroidal portion of the field is very small
— only 4% of the total for the star shown in table 6.3. We shall see later that this
is a generic feature of our formalism together with our boundary condition, where

poloidal fields extend outside the star but toroidal ones vanish at the surface.
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Figure 6.3: Density plots of the magnetic field strength for axis ratios of (top to
bottom) r, = 0.95, r, = 0.5, , = 0.0. All plots are for mixed toroidal and poloidal
fields in nonrotating stars, with toroidal-field parameter a = 30. This corresponds
to toroidal fields of 3.7%,5.9% and 6.7% of the total &4 for r, = 0.95,0.5 and 0.0
respectively. We see that the toroidal component is confined to a far smaller region

than the poloidal one. See text for further details.
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Figure 6.4: Total magnetic field for two mixed-field stars with extremes of axis ratio

— rp = 0.95 on the left and r, = 0.0 on the right. They do, nonetheless, have

qualitative similarities, with peak field strengths at/near the centre, and another

peak near the equatorial surface.
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Figure 6.5: Density plots of the toroidal magnetic field strength for a pure-toroidal

field star (left) and a mixed-field star (right). In both cases the stars are nonrotating,
with maximum field strengths of 2.8 x 10’7 G. Note that whilst both fields are

confined to a torus (this is the geometry of a toroidal field), the pure-toroidal field

star has a toroidal field extending over a far larger portion of the interior.
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Figure 6.6: A representation of the magnitude and direction of a purely poloidal mag-
netic field in a nonrotating star. The colours represent the magnetic field strength
and the overlaid black lines are field lines. Field lines for the toroidal component of
a mixed-field star, or for purely toroidal fields, would go into the page and hence we
have not plotted such configurations. The bold white arc represents the surface of

the star.
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Figure 6.7: The ratio of polar field to volume-averaged field, B,/B, as a function

of the polytropic index N. The plot is for purely poloidal fields in non-rotating

stars, all with an axis ratio of 0.996. Note that if the field was purely toroidal then

this ratio would be zero, regardless of N, since toroidal fields vanish at the stellar

surface.
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6.9.3 Magnetically-induced distortions

Having looked at field configurations, we now turn to the distortions these fields
produce in the star’s density distribution. The plots in this subsection show plots of
the density in contours of 0.1p,,44, Where the maximum density ppq. is normalised
to unity.

For later comparison, we begin by looking at the more familiar effect of rotation
(figure 6.8); this produces an oblate distortion that becomes larger with increasing
rotation rate. The star become more centrally concentrated, in the sense that the
region within the innermost contour — where p > 0.9p,,4: — becomes smaller, and
the 0 < p < 0.1p;mqr region grows.

Next we consider purely poloidal fields, confirming the expectation from section
4.3 that these fields induce an oblate distortion; the surface shapes of such stars are
thus similar to those of rotationally distorted stars. However, the interior density
distributions are very different: unlike a centrifugal force, the Lorentz force acts to
pull the point of maximum density away from the centre into a maximum-density
ring. In the extreme limit where the ratio r,/req — 0, the star actually becomes a
torus (figure 6.9). For mixed fields, the effect of increasing the toroidal component is
similar to the effect of adding rotation: it tends to push the maximum density region
back to the centre — see figure 6.10. Note that both the mixed-field stars shown are
oblate though, due to the dominance of the poloidal component; stronger toroidal
fields tend to make stars prolate, but our formalism and boundary condition seem
to generate mixed fields with weak toroidal components only (the 5.5%-toroidal field
of figure 6.10 plot (c) is relatively strongly toroidal, within this context).

The only situation where we are able to study dominantly toroidal fields is the
other limit of our formalism — the pure-toroidal case. In this case we find that,
as expected, the resultant density distribution is prolate. Although the surface
shapes are very close to spherical in all cases (in contrast with the pure-poloidal and
mixed-field cases), the ellipticities may be very large; the innermost density contours
become highly prolate (see figure 6.11).

For weak fields and small distortions, perturbation theory results suggest that
the ellipticity of a star should depend linearly on B?; see, for example, section 4.3.
With our non-linear code we are able to check this, and see how well the perturbative

result holds as field strengths are increased; this is plotted for both poloidal and
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toroidal fields in figure 6.12. The results depart slowly from the linear regime to
begin with, but in the poloidal-field case the field strength required peaks for an
ellipticity of € ~ 0.8. This peak seems to correspond to roughly the point at which
the maximum density is pulled out into a ring, making the star’s density distribution
toroidally-shaped. We speculate that for extremely distorted configurations this
toroidal density distribution is a lower-energy state than the usual spheroidal one.

In figure 6.11 we found that purely toroidal fields give prolate density distribu-
tions, but never induce significant surface distortions. Because rotation gives rise
to oblateness in stars, it opposes the effect of a toroidal field in a star, and the two
effects can balance to give a rotating magnetised star with zero overall ellipticity.
Note that in this case the stars will have oblate surface shapes but a spherical density
distribution — see figure 6.13.

Next we look at the effect of magnetic fields on the Keplerian velocity 5 — see
figure 6.14. We find that whilst increasing the field strength causes a slight decrease
in the velocity needed to cause mass shedding, this effect only becomes noticeable
for very strong fields. It seems, therefore, that magnetic fields are unlikely to affect
the stability of a star in this manner.

We have generally presented results for an N = 1 polytrope, as this is regarded as
a reasonable approximation to a neutron star. For our final two figures, however, we
briefly investigate the effect of varying the polytropic index N, whilst maintaining
a mass of 1.4My and equatorial radius of 10 km in the corresponding unmagnetised
‘background’ polytropic star. In figure 6.15, we plot four stars with the same surface
distortion ry,/req = 0.5 but different N. We see that when N is low the density
contours are all close to the edge of the star, with a large (slightly off-centre) high-
density region; in the limiting case N = 0 the star is an incompressible, uniform
density configuration, so all contour lines coincide with the star’s surface. For higher
values of NV the high-density region becomes smaller and the low-density outer region
becomes larger. We note that the N = 2 polytrope shown cannot be a neutron star

014

model, however, as its maximum density of 1.79 x 1 g cm ™3 is lower than the

density of heavy nuclei, pg = 2.4 x 10" g cm™3.

Finally, in figure 6.16, we look at non-rotating stars with a purely poloidal field
and an axis ratio of 0.95. We plot the dependence of the field strength on polytropic
index N, finding that as N is increased a weaker field is required to support the

same surface distortion.
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1.2

Figure 6.8: Contour plots of the density in rotating unmagnetised N = 1 polytropic
stars; the axis ratios are labelled above each plot. We see that the density becomes
more centrally concentrated in the more highly distorted stars. The rotation rates re-
quired to produce axis ratios of , = 1,0.9,0.8,0.6 are, respectively, 0, 749,997, 1190
Hz; the respective equatorial radii are 7., = 10.0,10.7,11.5,14.4 km.
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Figure 6.9: Contour plots of the density in nonrotating N = 1 polytropic stars,
distorted by a purely poloidal field. Note that the maximum density moves away
from the centre of the star for the more distorted configurations. The averaged mag-
netic field strengths for the stars with r, = 1,0.8,0.6,0.5,0.2,0.0 are, respectively,
B =0,3.38,4.76,5.15,4.70,4.46 x 10'7 gauss. The equatorial radii are, respectively,
reg = 10.0,10.9,12.1,12.9,16.2,17.0 km.
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1.2

Figure 6.10: Density contours in an N = 1 polytropic star with axis ratio of 0.6, with
different sources of distortion. Plots (a), (b) and (c¢) are nonrotating configurations
with, respectively: purely poloidal field, mixed-field with 3.4% toroidal field, mixed-
field with 5.5% toroidal field. Plot (d) is for a purely rotationally-distorted star
with no magnetic field. All stars have the canonical mass of 1.4M4, with equatorial
radii of 12.1,12.5,13.2,14.4 km for stars (a)-(d), respectively. We note that whilst a
purely poloidal field tends to push the maximum density away from the centre, both
toroidal field components and rotation have the effect of increasing the equatorial

radius and making the star more diffuse.



Chapter 6: Numerical work on equilibria 126

1.2

Figure 6.11: Density contour plots for stars with purely toroidal fields. Whilst the
surface shapes (i.e. the axis ratios, labelled above each plot) are barely aspherical,
one can see from the innermost contours that the density distributions do in fact
become highly prolate. In all cases we use an N = 1 polytrope with €2 = 0. The
magnetic field strengths for r, = 1.00,1.02,1.04,1.06 are B =0,1.81,2.46,2.82 x
1017 gauss, respectively; re, = 10.0,10.1,10.4,10.6 km.
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Figure 6.12: Top: a graph showing how (poloidal) magnetic distortions vary with the
field strength. 1 —ry,/re, is the surface distortion, whilst e represents the distortion
of the density distribution, as defined in equation (6.6.39). Note that the required
field strength peaks for 1 —r)/req ~ 0.6 or € ~ 0.8 and then drops slightly for more
extreme distortions. For small distortions we see that there is a roughly quadratic
dependence on the field strength. Bottom: toroidal-field distortions versus B2. In
this case we only use € to gauge the level of distortion, as the surface shapes remain

nearly spherical.
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Figure 6.13: Two stars with toroidal magnetic fields. The left-hand configuration is

a non-rotating star (and hence has a prolate density distribution), whilst the right-

hand one is the same physical star but with rotation added, with an oblate surface

shape but an overall ellipticity of zero. The average field strength in both cases is

B=24x 107 G.
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Figure 6.14: The dependence of Keplerian velocity Qi on magnetic field strength

B, for stars with purely poloidal fields. Note that an appreciable decrease in Qg

only occurs for very strong fields.
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Figure 6.15: Non-rotating configurations, all with a purely poloidal field and an
axis ratio of rp/req = 0.5. Plots (a) to (d) are for N = 0.5,1,1.5,2 polytropes,
respectively; the corresponding field strengths are B = 7.62,4.31,2.98,1.13 x 107
G, the maximum densities are 1.67,1.14,0.623,0.179x 10" g cm ™2 and the equatorial
radii are req = 10.2,12.9,17.6,29.6 km, respectively.
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Figure 6.16: The poloidal field strength B required to induce a surface distortion of

Tp/Teq = 0.95, plotted for various polytropic indices. We see that the required field

is weaker for higher-N polytropes.
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6.10 Discussion

To understand how strong magnetic distortions may be in highly magnetised objects
like magnetars, realistic models are needed to study the field structure of these
stars. The formalism we use in this work comes directly from the assumptions of
axisymmetry and perfect conductivity, together with a boundary condition that the
poloidal part of the field should only become zero at infinite distance from the star,
rather than vanishing at its surface; we anticipate that these conditions provide a
reasonable model of a neutron star’s magnetic field.

The general formalism of axisymmetric MHD reduces to a mixed-field case and
a purely toroidal-field case, with two (mathematically) arbitrary functions in the
former case (k(u) and a(u)) and one in the latter (h(y)). Despite the apparent
freedom in choosing these functions, we found that on physical grounds only one
functional form was satisfactory for each one; see section 6.3.3. We conclude that
the equations we have numerically solved in this work are in fact quite general and
that we have not excluded physically valid branches of solutions with our choices.

Perturbative calculations in the weak-field regime have found that e depends
linearly on B2. With the use of our nonlinear code we are able to investigate how
well this approximation holds for larger fields and ellipticities. We can see graphically
that the first few points from both plots in figure 6.12 lie in fairly straight lines and

hence we deduce the relations

= 2 2
_ B _ B
€pol ~ 5 x 1074 <1016G> ~2x1073 (1016PG) (6.10.1)

for the purely poloidal case (the above relation also uses B,/B ~ 0.5 from figure
6.7), and

1016 G

for the purely toroidal case; where in both cases we have used a star of mass 1.4M,

B 2
€tor ~ —3 x 1074 < ) (6.10.2)

whose radius would be 10 km if unmagnetised. By comparing these extrapolated
linear-regime formulae with our non-linear code results, we can explore how well
perturbative results are likely to hold in a strong-field regime. We find that the
linear-regime results given by (6.10.1) and (6.10.2) deviate by less than 10% from
the actual non-linear code result (shown in figure 6.12) provided that B < 1.5 x 107
G, or equivalently € < 0.15. Alternatively, if we allow the linear relation to differ by
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up to 30% from the nonlinear result, we may use the linear relation as an ‘acceptable’
approximation for B < 3 x 107 G or € < 0.35 (i.e. it holds for the entire range of
ellipticities we can plot in the toroidal-field case).

This suggests that for all known neutron star field strengths, € is likely to be
linearly dependent on B2, to a good approximation. Hence perturbation theory could
provide accurate predictions of NS distortions, provided the neutron star model used
is also a close approximation to real NS physics.

We are also able to compare our linear-regime formulae with the analytic work
of Haskell et al. [64], who also treated pure poloidal fields extending outside the
star and pure toroidal fields vanishing at the stellar surface (as for our work). For
the same mass, radius and polytropic index their formulae give:

_ By \? _ B \?
€pot ~ 1072 <10168 ) and €rop ~ —2 x 1074 <1016G> (6.10.3)

where B is the surface magnetic field strength, which was assumed constant in their
calculation; we do not have a constant surface field so have compared with their work
using the value of |B| at the pole instead. Since their field geometries are clearly
not identical to ours, and since we had to extrapolate to obtain our formulae, we
would not expect precise agreement. Nonetheless, we feel that the similarities show
that our work makes sensible contact with perturbative calculations.

From figure 6.12, beginning at an unmagnetised spherical star, we find that
in both the poloidal and toroidal-field cases the magnetic field strength required to
induce a certain distortion initially increases for increasing distortion — as would be
expected from perturbative work. However, in the purely poloidal case the required
field strength then peaks at € ~ 0.8, dropping slightly as € is increased further.
Around the same point the density distribution becomes toroidal in nature — that
is, the point of maximum density moves away from the centre and a high-density
torus forms; this leads us to speculate that at ¢ ~ 0.8 it becomes energetically
favourable for the density to change from a spheroidal profile (as seen in the weaker-
field stars, e.g. the 7, = 0.8 plot of figure 6.9) to a toroidal one (e.g. figure 6.9,
rp = 0.0 plot). It is clear that if the magnetic field in a star is increased beyond
the peak value of ~ 5 x 10'7 G shown in the left-hand plot of figure 6.12 then
one of our initial assumptions must be violated. Since we cannot investigate the
possibilities with our current code, we conclude that a hypothetical star with a field

of B > 6 x 10'7 may either have no stationary equilibrium solution (in which case
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it may lose magnetic energy until it is in equilibrium), or that there may be a new
triaxial branch of super-magnetised solutions bifurcating from the biaxial curve at
e~ 0.8.

We do not find a similar peaking of the field strength in the purely toroidal
case, however. In this case the largest ellipticities we are able to calculate are
around € ~ 0.35. Whilst this particular value may represent a limitation of our
numerical scheme, we suggest that a limited range of ellipticities is a consequence of
the formalism for toroidal fields in axisymmetry, where B is directly linked to the
density p; in the mixed-field case we have a separate equation to iteratively solve for
the magnetic field. Thus restrictions on the field geometry may restrict the size of
permissible ellipticities.

Of course, whilst the ‘peak field strength’ we discuss here is a theoretical upper
bound on NS fields, there are very probably other physical effects that place a lower
bound than ~ 5 x 10'7 G on the maximum field. Certainly, if magnetar surface fields
are ~ 10" G one would not expect their volume-averaged fields to exceed ~ 10'6 G
significantly.

We have argued that the equations we solve in this chapter lead to quite general
solutions for axisymmetric stars. However, we find that although it is possible to
find solutions with purely poloidal or purely toroidal fields, the range of mixed-field
solutions is very limited. Using Eior/Emag as a gauge of the strength of the toroidal
component in a mixed-field star, we find that for all our stars 0 < &4y /Enag < 0.07.
The other extreme is of course Eor/Emag = 1 for purely toroidal fields. This means
that although the toroidal component does have some influence in a mixed-field star
(see table 6.3), it is dominated by the effect of the poloidal field. In particular all
our mixed-field stars have oblate density distributions.

Mixed-field configurations with weak toroidal components are not peculiar to our
work. Ciolfi et al. [31] studied mixed fields in relativistic stars, with a perturbative
approach and minimising energy at fixed magnetic helicity. Although this approach
is clearly very different from the non-linear work on Newtonian stars reported in
this chapter, a similar result emerges: that the toroidal-field energy is only up to
~ 10% of the total magnetic energy.

Some studies, similar to ours, have claimed to produce mixed-field configurations
with comparable poloidal and toroidal fields; see for example Yoshida and Eriguchi

[145]. However, they use a different measure for the relative strength of the field
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components: the mazimum magnitude of each component, rather than the energy
contained in each one. In this sense, the results in this chapter also contain config-
urations with comparable field components. We believe that the ratio of energies is
a better measure than the ratio of maxima though: we are interested in magnetic
distortions, which are proportional to B? (or equivalently the magnetic energy), not
to the maximum field.

Our mixed-field stars have the boundary condition that the toroidal component
vanishes at the surface, whilst the poloidal piece only decays at infinity. By contrast,
Haskell et al. [64] considered the problem of mixed-field stars where the total field
vanished at the surface. This results in an eigenvalue problem, with all (discrete)
solutions having prolate density distributions and all having dominantly toroidal
fields. Since the chief difference between our work and theirs seems to be the choice of
boundary condition, we speculate that our boundary condition favours the poloidal
field, whilst that of Haskell et al. favours the toroidal component. We note that
this idea seems to be consistent with the recent work of Duez and Mathis [39].
These authors found MHD equilibria with roughly equal toroidal and poloidal-energy
components using a semi-analytic approach; but like Haskell et al. they consider
only confined fields.

The numerical simulations of Braithwaite [15] suggest that a stable magnetic
field will have 0.20 < Eior/Emag S 0.95. If this result is directly applicable to our
work then it would imply that none of the solutions that exist within our axisym-
metric formalism are stable. However, for numerical reasons these simulations use
a magnetic diffusivity term which is zero within the star and increases through a
transition region to a high, constant value in the exterior (see Braithwaite and Nord-
lund [16] for details). We suggest that this transition region may favour the toroidal
component of a mixed-field star; it would be interesting to see if a similar stability
result emerges from simulations using a boundary condition more similar to ours.

Although we regard our boundary condition as the most natural for a mixed-field
fluid with infinite conductivity, neutron stars are not perfect conductors. In moving
from the fluid interior to the crust and magnetosphere, it is clear that the resistivity
of the medium increases and hence the boundary condition should be adapted to
reflect this. For the poloidal component, this adapted boundary condition should
have a damping effect in the outer regions of the star — and hence could resemble a

surface treatment somewhere between ours (where the poloidal field is unaffected by
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passing through the surface) and that of Haskell et al. [64] (where the poloidal field
vanishes at the surface). Since our boundary condition gives a poloidal-dominated
field and that of Haskell et al. gives a toroidal-dominated field, we suggest that
the inclusion of resistivity would result in configurations where neither component
is universally dominant. In particular, we would not expect magnetic distortions in
real, mixed-field, neutron stars to be universally oblate or prolate. We conclude that
future, more realistic, models of magnetised stars should incorporate a boundary
condition like ours, but modified to take account of the increasing resistivity in the

outer regions of the neutron star.



Chapter 7

Studying magnetic oscillations

through time evolutions

7.1 Introduction

In chapter 2 we discussed some of the roles magnetic fields may play in neutron
stars, including the observation of magnetar QPOs. By improving the modelling
of magnetic stellar oscillations, we may be able to use these QPOs as a probe of
neutron star physics. Whilst magnetars rotate very slowly, there are many other
neutron stars with high angular velocity as well as strong magnetic fields, so it is
desirable to be able to study oscillations in stars at both of these extremes. In
addition, it will prove easier to see magnetic effects on oscillations by looking at
very highly-magnetised configurations. An introduction to stellar oscillation modes,
with details of some of the terminology used in this chapter, is given in chapter 5.
The nonlinear code described in chapter 6 allows us to generate stationary MHD
equilibrium configurations. In this chapter we use these configurations as a back-
ground on which to study perturbations. This is done with a code which evolves
perturbations in time; from this the oscillation spectrum of the system can be found.
More specifically, we study linear perturbations of rotating Newtonian neutron
stars endowed with purely toroidal magnetic fields, making the Cowling approxima-
tion. Since the background configuration may be nonspherical by virtue of rotational
and magnetic effects, the perturbations and background are self-consistent. We are

also able to track modes up to very high magnetic field strengths (~ 10'" G) and

136
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close to Keplerian velocity. This is in contrast to many previous numerical studies
of magnetic oscillations. Whilst we employ a purely toroidal background field, the
perturbed field is mixed poloidal-toroidal.

The code described here is based on the nonmagnetic code of Jones et al. [75]
and Passamonti et al. [110]; the main work of this chapter has been to extend
this work to oscillations of magnetised stars. We begin by discussing the equations
required to describe perturbations of a rotating magnetised star, then give details
of the boundary conditions and initial data used. We next describe numerical issues
and test the accuracy and convergence properties of the code. Finally, we present
results for magnetic oscillation modes. A condensed report on the work in this

chapter is given in Lander, Jones and Passamonti [85].

7.2 Governing equations

This section consists of a full description of the perturbation problem: the evolution
equations for the velocity, density and magnetic field, together with the boundary

conditions required and the initial data used.

7.2.1 Background and perturbation equations

We model a neutron star as a self-gravitating, rotating, magnetised polytropic fluid
with infinite conductivity. This system is governed by the equations of perfect

magnetohydrodynamics (MHD):

P (%‘tf + (v-V)v +2Q x v> = —VP—pVCD—pr(Q><1')+$(V><B)><B7 (7.2.1)

V20 = 47Gp, (7.2.2)
dp
9% _ _y. 2.
5 =~ v (ov), (7.2.3)
%]:’ =V x (vxB), (7.2.4)
P =kp?, (7.2.5)

together with the solenoidal constraint V - B = 0 on the magnetic field. Here v
denotes the part of the fluid’s velocity field which is not rigid rotation €2; all other

symbols have their usual meanings. Throughout this chapter we work with v = 2
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polytropes exclusively, as a simple approximation to a neutron star equation of state.
We consider linear Fulerian perturbations of this system by making the standard
ansatz that each physical quantity has a zeroth-order background piece and a first-
order perturbed piece; e.g. the density is written as p = pg + dp.

We assume that our background star is stationary and rigidly rotating, so that
Q is zeroth-order and v first-order. Equations (7.2.3) and (7.2.4) become trivial and

we are left with

1
0=—-VPy— poVPy — pof2 x (Q X I') + E(V X Bo) x By, (726)
V20, = 471G py, (7.2.7)
Py = kpg. (7.2.8)

Making the additional assumption of axisymmetry one may show that this system of
equations splits into two cases: one where the magnetic field is purely toroidal and a
second mixed-field case (with pure-poloidal fields as a limiting case). Details of the
solution of these equations are given in chapter 6; we use the code described therein
to generate the background configurations used here. Here we merely note that our
background configurations are fully self-consistent, with rotation, magnetic fields
and fluid effects in equilibrium. In contrast to other work on magnetic oscillations,
our background star need not be spherical, but may be distorted by rotational or
magnetic effects, or a combination thereof.

Working in the frame corotating with the background star, the linearised per-

turbation equations are:

ov 1 1

V250 = 4nGop, (7.2.10)

ddp
- _V. 211
ot \Y (pOV)a (7 )
%—B =V x (v x By), (7.2.12)

ot
vPo

0P = lwpo_lép = p—ép. (7.2.13)
0
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Here we have assumed that the background and perturbations have the same
equation of state, both with polytropic index . Note that, by (7.2.12), 0,(V -
0B) = 0; i.e. if V- 9B = 0 in the initial data then it will remain zero. Since the
background is divergence-free by construction', a divergence-free initial perturbation
gives V - Biotat = V- Bg + V - 6B = 0 for all time.

We now simplify the perturbation equations by making the Cowling approxi-
mation, and use (7.2.13) to eliminate J P terms from the perturbed Euler equation

(7.2.9); the perturbations are then governed by the reduced set of equations

ov vPodp 1 1
pogy = -V < p” > —0pVdy + 47T(V x Bg) x 0B + 47r(V x 0B) x By, (7.2.14)
adp
- _V- 2.1
ot V- (pov), (7.2.15)
B
% =V x (v x By), (7.2.16)

Now using (7.2.6) to replace @y, equation (7.2.9) may be rewritten as

of ’YPO 1
o OGS+ (2= 9)VPy — —(V x Bg) x By| 22
5 p” p+|(2-=7)VH 47T( x Bo) x By o

1 1
+E(V x Bp) x 0B + E(V x 0B) x By, (7.2.17)

where we have defined f = pgv. Working with f simplifies the boundary conditions;

to the same end we define 3 = ppéB. Now

1
VxéB:Vx(B>:VxB—v§0xﬁ (7.2.18)
Po Po o
and
Vx(vxB)=Vx (fxB()) :iVx(fxBo)—v—ng(fxBo). (7.2.19)
Po PO Po

Using these relations, together with the identity VP = %Vpo, we arrive at the

final form of our perturbation equations:

'In the mixed-field case we employ the vector potential A; in the purely toroidal-field case the

divergence V - By, = 0 since 9/9¢ = 0 in axisymmetry
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of 2 — P, 1
e —vPyVép + <(7)70W0 - —(V xByp) x Bo) dp
Po 4w
1 1 1
(7.2.20)
ddp
o = -V -f, (7.2.21)
B _g (f x By) — Vo o (f x Bp). (7.2.22)
8t p()

If we rewrite these equations in terms of 0P = %cﬁ and set the magnetic field
to zero they reduce to equations (15) and (16) of Passamonti et al. [110] in the
unstratified limit.

Writing out our perturbation equations in terms of components leaves us with
seven scalar equations governing the evolution of the perturbations. We write these

concisely by defining the vector quantities:

1
A = E(V X Bo) X Bo (7223)
1
B = E(V x Bo) x B (7.2.24)
1
c = E(V x 3) x By (7.2.25)
D = %(Vpo x B) x By (7.2.26)
E = Vx(fxBy) (7.2.27)
F = Vpo x (f x By). (7.2.28)

With these definitions our Euler equation becomes:

2 — P, 1
pDatf'r' = —fyPo(ép)7r -+ ((p’}/)'}/opoyr - AT> 5p + Br + Cr - ;Dr (7229)
0 0
P, 2 — P, 1
poOtfo = —%(5/?),9 + <(Wopo,e - Ae) dp+ By + Co — %De (7.2.30)
vFo

1
poOifp = — (6p).6 — Apdp + By + Cp — %D(z, (7.2.31)

rsin 6
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whilst the continuity equation is:

2fr fo foo | Joo

—0,6p = . d —_— .2.32
%op r +f’+rtan0+ r +’I“SII19 (7.2.32)

Finally the induction equation in components is:

1
B = & ——F (7.2.33)

Po

1
OBy = Eg— —Fy (7.2.34)

Po

1
XBy = Ep— —Fy. (7.2.35)

Po

We next write all perturbed quantities as:

S(t,r, 0, 0) = Z 55 (t,r,0) cosme + 8, (t,r,0) sinme. (7.2.36)

m=0
We will drop the m subscripts, with the understanding that the following relations
in 67 and 0~ quantities are for a fixed azimuthal index m. This decomposition
removes the ¢ dependence of the perturbations at the expense of doubling the
number of equations: we now have 2D evolution equations in 14 perturbations:
fﬁ,f;,f;,f;,f;,f¢_,5p+,6p‘,ﬂj,ﬁ;,ﬂ;,ﬂe_,ﬁg,ﬂ;. We demonstrate this de-

coupling with the unmagnetised version of the 9, f, equation:

dép | (2=7)vPo Ipo 50

Orfr = —vPo—— 7.2.37
PoO:f YR -+ P 5 ( )
With the ¢ decomposition this becomes
podh(fF cosme + £ sinma)
= —vPoaa(&p;r cosmeo + 0p, sinmao)
r
2 —y)vP
—l—w%(ép;r cosme + dp, sinma). (7.2.38)
Po or
Now equating cos m¢ and sin m¢ terms we see that
dép™ 2 — Pyo
it = —py 220 L 2= RO (7.2.39)
or 00 or
_ 00p~ 2— Pyo _
poof, = —BR ap + 2= Oﬂép . (7.2.40)
r 00 or
(7.2.41)

The full, ¢-decomposed system of perturbations is given in the appendix, section
Al
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0=m/2
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Figure 7.1: The numerical grid used in the code. After decomposing the perturbation
variables in ¢ only a 2D grid is needed. This is evenly divided in 6 and in the
coordinate x = xz(r, #), which is fitted to isopycnic surfaces of the star. With suitable
boundary conditions at the equator and pole, only one quarter of a disc is needed

for the evolutions.

7.2.2 Boundary conditions

With suitable boundary conditions and the decomposition in ¢, we are able to reduce
our numerical domain from a sphere to one quadrant of a disc, as shown in figure

7.1. We describe these conditions here.

Surface

Rotational and magnetic forces will serve to distort the star’s density distribution
away from spherical symmetry and hence complicate the treatment of perturbations
at the stellar surface. To avoid these complications we replace the radial coordinate
r with one fitted to isopycnic surfaces, © = z(r,#); even a nonspherical surface will

be defined by one value x = R. With the background density being a function of x
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alone, we have pp(z=R) = 0 and hence
f(r=R) =pB(x=R) =0. (7.2.42)

Finally, the Lagrangian pressure perturbation AP is zero at the surface by definition.

Relating this to the Eulerian perturbation we have
0P +§&-VP) =0 at the surface. (7.2.43)

Using (7.2.6), we see that V Py may be written as two terms proportional to py and
a term involving the magnetic current V x B/4x. Both density and current are zero
at the stellar surface and so V Py must also vanish there. This yields our last surface
boundary condition:

§P(x=R) = 0. (7.2.44)

Our boundary conditions allow us to evolve the interior magnetic field perturba-
tions of our star, but not oscillations of the exterior. By contrast, one would expect
magnetic perturbations in a physical neutron star to reach the surface and produce
electromagnetic radiation extending through the exterior. Whilst our treatment of
the surface does not account for this, we believe that it is the most that can be
done using the equations of perfect MHD: in an infinitely-conducting polytropic
star, a magnetic field that extends to the surface has a corresponding Alfvén speed
cA = \/m which becomes superluminal at some low density and infinite when
p =0 (i.e. the stellar surface and exterior).

Dealing with the surface and exterior thus requires extra physics: a stellar model
more sophisticated than a polytropic fluid with perfect electrical conductivity. One
could employ a low-density numerical atmosphere for the exterior, or assume that
the field is confined or matches to some simplified crust — but these are merely
numerical conveniences rather than good models of actual NS physics. In reality,
perfect MHD ceases to be a good approximation close to the surface of a NS, where
resistive effects become important and the full equations of electromagnetism should
be used. The stellar surface is not fluid but an elastic crust; and the exterior will
have a magnetosphere region rather than a dilute, uniform ‘atmosphere’.

Needless to say, a credible model star which included all these effects would give
an oscillation spectrum closer to that of a real neutron star than the one we study
here. In lieu of such a model, however, we treat oscillations over the fluid, highly-

conductive interior of the star only. With magnetic fields being strongest here and
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~ 99% of the NS’s mass consisting of a fluid interior, we suggest that dynamics
in this region could dominate the star’s oscillation spectrum; and hence that our

treatment is a reasonable first attempt to understand oscillations in real NSs.

Centre

Next we look at the conditions at the centre of the star. Since we deal with m > 0

perturbations in this study, we should enforce a zero-displacement condition:

§P(z=0) =0, f(z=0) = Bz =0) = 0. (7.2.45)

Equator

The equatorial symmetry properties of the perturbations in a fluid star may be
established through analysis of the governing equations. Specifically, one looks at
the behaviour of the equations under reflection about the equator: r +— r,0 +— 7w —0
(we have already decomposed in ¢). In many cases, one finds that the variables may
be classed according to their equatorial symmetry — either odd (the perturbation
is zero across the equator) or even (its f-derivative is zero there). That is, certain
variables will always have one symmetry class (e.g. even) and the other variables
will always have the other symmetry class (odd if the first class are even). If analysis
of all the equations places each variable consistently in the same symmetry class,
then the system is indeed symmetric about the equator; in this case we are able to
reduce our numerical domain to just one 2D quadrant and enforce the perturbation
symmetry at the equator as another set of boundary conditions.

Analysing the perturbation equations for the (unmagnetised) rotating fluid prob-
lem, one finds that the perturbation variables may be divided into the two symmetry
classes { f, fd)i, SpT}and { fei}. In the case of a background star with a pure poloidal
field these classes are augmented by magnetic variables, viz. {f7, f(;t,dpi,ﬁét},
{ fai,ﬂ?, 6;[} Note that although the background field is pure-poloidal, the per-
turbed field will still be mixed poloidal-toroidal. For a pure-toroidal background
the magnetic perturbations are again mixed, but they fall into different symme-
try classes from perturbations of a pure-poloidal star: {f, f;t,épi, B, /B;f} and
{ fgt, 5}}. It follows that whilst we may separately treat perturbations on either a
pure-poloidal or pure-toroidal background, the perturbations of a mixed-field back-

ground will have no definite equatorial symmetry. Investigating this latter group
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of perturbations requires an extended numerical domain consisting of an upper and
lower quadrant. For the work reported here we concentrate only on oscillations of

stars with purely toroidal background fields.

Pole

Recall from chapter 5 that a general vector perturbation (the velocity is shown here)

can be decomposed as
v=U(r)Yime, + V(r)VY,, + W(r)e, x VYj,, (7.2.46)
whilst a scalar perturbation (in this case, the density) will have the form
dp =T(r)Yim. (7.2.47)

From the form of these perturbations, their behaviour at the pole may be de-
duced. Although we do not decompose in 0 in the code, we will find it convenient
to rewrite the spherical harmonics using Y;,, (6, ¢) = Py, (0)e’™? (the constants are
unimportant; they may be regarded as absorbed into the radial function). The
boundary conditions at the pole § = 0 are then given by the behaviour of the rele-
vant functions of Py, there. Using recurrence relations (see for example Arfken and
Weber [6]), one may show that a Legendre function P, contains a sin” 6 term and

m+1 g term and a sin”™ ! 6 term.

that its O-derivative d P, /df contains a sin

By (7.2.47), it is clear that scalar perturbations have #-dependence given simply
by Pj; since we are concerned with m # 0 perturbations our BC at the pole is that
a scalar perturbation must vanish there.

For vector perturbations, we first re-express (7.2.46) in terms of spherical polar

components:
v = Ur)Yim (7.2.48)
vg = V(r)VYy,-eg+W(r)(e, x VYi,) - e
elm imW (r)
= V(r)Pume — ———FPim 7.2.49
r ( (r) B 0 sin 6 ! ) ( )
vy = V(r)VYi-eg+W(r)(e, x VYi,) - e
eime imW (r)
= V(r)P, ——~ P 7.2.50
r < (r) i Uns sin 0 ! ) ( )

From these, it is clear that v, = 0 at the pole for all m # 0. vy and vy may be

expressed as powers of sinf as described earlier; the lowest power in each case is
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sin™ "1 9. We deduce that vg = vy = 0 at the pole for m > 2, whilst for m = 1 the
boundary condition only requires them to be finite and continuous; in this case the
boundary condition is that the 0-derivatives should vanish at the pole.

In summary, then, the boundary conditions at the pole for dp, v and 3 are:

op=v, =0 =0 Vm=#0
vg=vy =0 =0y = 0 m>2

Vg0 = Vo0 = B9 = Bpo = 0 m=1

7.2.3 Initial data

Let us return again to the general forms of scalar and vector perturbations given by

(7.2.47) and (7.2.46):

v = Ur)Yimer +V(r)VYy, + W(r)e, x VY,
op = T(r)Yim

where the functions U(r) and V (r) are coefficients of the polar part and W (r) is the
coefficient of the axial term in the vector perturbation. The scalar perturbation only
has a polar term, with coefficient T'(r). It follows that we should choose different
initial data for evolutions based on whether we wish to study polar or axial oscillation
modes. Considering the nonrotating and unmagnetised case for simplicity, we wish
to see what initial data excites axial modes and what excites polar modes. Velocity

and density perturbations are discussed separately.

Velocity initial data

Assume the initial data is some velocity v. Then by the continuity equation a
perturbation will be induced in the density, governed by
o)
a—tp =—V-(pov) =—poV-v —Vpg-v. (7.2.51)
Since pyg is spherically symmetric (with no rotation or magnetic field to distort it),

we then have

dop dpo
— .y o, 2.52
5 poV v Era (7.2.52)
Taking the divergence of (7.2.46) gives

dU 2
Vv = Vi + S0 + VV i + WV - (& X Vi), (7.2.53)
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where we have used the result that the scalar product of orthogonal vectors is zero.

Using Legendre’s equation V2Y},, = —I(I + 1)Y},,,/r? and simplifying then gives

dU 2 (l+1)V
V- -v= (dr 4 ;U — H742)> Yim + WV - (e, x VY. (7.2.54)

Now consider the final term (whose coefficient is the radial function W(r)). In

spherical polar components we have

0
m oy |, (7.2.55)

7sin 6

e, x VY, =
_1
rLim,0

the divergence of which is zero — and so the final term in (7.2.54) is zero, and we
are left with

V-v= <i€{+iU— l(lt;)v> Yim, (7.2.56)
i.e. polar initial data in v induces a perturbation in dp, but an axial initial v
produces no perturbation in the density (for a spherically symmetric background

star).

Density initial data

Using a similar approach, let us start with some initial ép and find the induced

velocity perturbation. In this case we need the Euler equation, which is

= pp— = 2.
o — Mg (7.2.57)

dpov. OV _LH)V(SPJF (2—7)7P05p
Po

Since the angular dependence of dp is given simply by Y}, it is immediately clear

that the induced v consists of a Y}, term and a VY},, term and hence is a polar

perturbation. Therefore, initial data in dp can only induce a polar velocity pertur-

bation.

Initial data used in the code

From the above analysis, we see that axial initial data in v will produce purely
axial perturbations and no dp, in the case of a spherically symmetric background.
Adding a distorting effect to the background configuration, the resultant modes will
still be dominantly axial unless the distortion is very large — i.e. fast rotation

or extremely strong magnetic fields. Similarly, an initial §p will induce only polar
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modes in a spherical star; for a non-spherical star the modes will not be purely polar,
but polar-led modes should still dominate the oscillation spectrum.
Hence, we excite polar/polar-led modes using initial data given by

Y () = (r“n9>nl (7.2.58)

,rm

:Rim

5
p R

and axial /axial-led modes with an initial perturbation of the form
£ = pov = poe" e, x VYym, (7.2.59)

where R is the stellar radius. Similar choices were used by Jones et al. [75] and
Passamonti et al. [110] for oscillations of unmagnetised stars. We find that these

forms of initial data also efficiently excite oscillations of magnetised configurations.

7.3 Numerics

7.3.1 Plan of code

As described above, our numerical domain is one quadrant of a (2D) disc, with
x €1]0,1] and 6 € [0, 7/2]; by symmetry and through a ¢-decomposition this domain
is sufficient to investigate behaviour over the whole 3D, potentially nonspherical,
star. Upon decomposing in ¢, we have a system of fourteen perturbation equations
to evolve in time.

The code we use is written in C and C++ and is divided into a number of
subroutines, which are shown in figure 7.2. The idea is to first generate the requisite
background star, with a chosen rotation rate and magnetic field strength. Initial
data is specified: either the f-mode file, which excites polar and polar-led modes;
or the r-mode or inertial-mode file, which both excite the axial class of oscillations.
Since we have decomposed in ¢, we also need to specify the azimuthal index m for
each evolution. Linear perturbation equations are then evolved on this background

and with the given initial conditions, subject to the requisite boundary conditions.
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divdelta_b boundary mag_source_pred
emagpert
mag_Source_corr
kinetic \ //
outputfft mccormack
mix-thnrot tor-thnrot
evolve
nsrot.exe
openfiles
fmode
output.out

rmode unify /
imode / \

mag_background

evol.exe

Figure 7.2: Schematic plan of the code. The main routine is unify, and evol.exe is
the executable time-evolution code. In addition to the subroutines shown above, the

code also employs the header files defs.h, globals.h, proto.h and nrutil.h.
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In more detail, the time-evolution code compiles an executable, evol.exe, from
a number of subroutines. To generate the background star, one must first make
the executable nsrot.exe from either tor-thnrot.c or mix-thnrot.c; the former gives
stars with purely toroidal fields, the latter allows for mixed toroidal-poloidal fields
with pure poloidal fields as a special case. Next nsrot.exe is run, with user-specified
parameters related to rotation rate and magnetic field strength. This generates a
large data file output.out containing all background quantities at each grid point.
This is scanned by mag_background, a subroutine which imports all this background
data into the time-evolution code proper.

Mag_background is in turn called by unify, the highest-level subroutine in the
code — unify itself being used to compile the final executable evol.exe. In addition
to mag_background, unify calls three other subroutines: openfiles designates files to
contain information from the running executable, evolve contains the actual code
responsible for evolving the perturbation equations, and finally one of the three
initial data files (fmode, rmode or imode) is called, specified in the header file defs.h.

The subroutine evolve calls two lower subroutines itself. One, outputfft, saves
data from different timesteps — both direct information about the perturbations dp,
f and B, and combinations of these variables: the kinetic and magnetic energy in
the perturbations, and the divergence of the perturbed field (generated in their own
subroutines kinetic, emagpert and divdelta_b respectively). The other subroutine
called from evolve is the key one: mccormack. This subroutine uses the McCormack
predictor-corrector scheme (see the following subsection) to evolve linear perturba-
tions on the background star. These perturbations are evolved in the interior of the
star from sources contained in the subroutines mag_source_pred and mag_source_corr
respectively, whilst the boundary conditions are imposed after each timestep using

the boundary-condition subroutine boundary.

7.3.2 McCormack scheme

To evolve the perturbation equations of our system numerically, we employ the
McCormack scheme [97]. This is a ‘predictor-corrector’ method: starting at some
particular timestep t" (where n is an index, not a power), it begins with an estimate
of the values of the variables at the next timestep ¢"*! (the predictor step) and

then uses this estimated value to improve the solution at the new timestep ¢t"*!
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(the corrector step). Although both the predictor and corrector steps are only first-
order, they are combined in a way that gives an overall scheme which is second-order
accurate.

More specifically, let us consider the Euler equation. This equation relates the
evolution of the fluid velocity v to quantities involving the background and perturbed
density, pressure and magnetic field. For simplicity we group all of these quantities

into the source term S; the Euler equation is then

ov

— =8S. 7.3.1

5t (7.3.1)
We start at timestep t", with known values of the velocity v and the source term

S™. The predictor step of the McCormack scheme then provides an estimate v"*!

for the velocity at the next timestep:

=P — —(SP-S",) (7.3.2)
7 T % i—1

where the index 7 labels a spatial point in the grid, At is the size of the timestep

and Az the grid spacing. The corrector step then combines the predicted v+ with

the original v" into a second-order accurate v"*!:
1, At /- ~
Vit = S (W) - o (S -8 (7.3.3)

where S"* is the source term evaluated from the predictor-step estimates for quan-
tities at the new timestep.

The continuity equation and the induction equation are evolved in the same
manner as described above for the Euler equation. A full derivation of this scheme,

together with details of its stability are given by Hirsch [66].

7.3.3 Kreiss-Oliger dissipation

Finite difference methods, like the one used for the time evolution code presented
here, approximate a continuum problem by a discrete one. Quantities which should
be smooth are replaced by approximations to their values over a finite number of
points. Because the actual system of PDEs evolved contains this numerical error,
one would expect this discretised system to have oscillations dependent on the grid
spacing h. In particular, there may be solutions of the form exp(at/h), where a > 0.
These are unphysical instabilities, not present in the continuum solution, and need

to be removed.
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To do this, we use Kreiss-Oliger dissipation; this is an extra term added to the
Euler equation [82]. It has the form of a viscosity, which damps out spurious high-
frequency oscillations. This viscosity term is given by some dissipation operator Dy
acting on the fluid velocity v; its form (shown in 1D for simplicity) is

1
(D4v)i = _167 (Ui_g —4dv;_q + 6v; —4dv; + UH_Q) (7.3.4)

at some gridpoint ¢ [66]. This term is fourth-order in accuracy and so does not affect
the overall order of convergence of the (second-order) code. The magnitude of this
term is resolution-dependent, so that it vanishes in the infinite-resolution continuum

limit.

7.3.4 Artificial resistivity

In addition to this dissipation, two further tricks are required to ensure stability and
accuracy of magnetic evolutions. To stabilise the numerical evolution of the mag-
netic field, we first note that if the electrical resistivity 7 is non-zero, the induction

equation gains an extra term:
0B
EZVX(VXB)—UVX(VXB). (7.3.5)
By including this second term (at a small magnitude) we are able to suppress in-
stabilities which arise from evolving the magnetic field. As for the Kreiss-Oliger
dissipation, this artificial resistivity is added in a resolution-dependent manner, be-
coming zero in the continuum limit. We find that a very small value of 7 is sufficient
to improve long-term stability, but has negligible physical effect on our evolutions,

since it acts over a far longer timescale than any others in our problem.

7.3.5 Divergence cleaning

Finally, for the long-term accuracy of the code we need to ensure that the perturbed
magnetic field remains solenoidal. This is guaranteed in the continuum limit if the
initial data has no monopolar term, since the divergence of the induction equation
is
o(V-B)
ot

but in practice numerical error will be introduced from the finite grid resolution. It

=V -Vx(vxB)=0, (7.3.6)

is important to ‘clean’ the field of this class of numerical error, since it has been
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shown that a numerically-generated monopolar field gives rise to a spurious extra
force [13].

There are various approaches to divergence cleaning for numerical schemes. A
review of these may be found in Dedner et al. [38], where in addition a new con-
strained formulation of MHD is proposed, where the condition V - B = 0 is coupled
to the induction equation through an auxiliary function; we repeat their argument
below.

In the continuum limit the induction equation states that the vector 9;B has a
divergence-free part only, whereas a general vector can be decomposed into curl-free
and divergence-free parts. Our discretised induction equation will no longer preserve
this divergence-free property exactly and accordingly we add a curl-free term —V
to the RHS, with 1 being some unknown function. We then couple our augmented

induction equation to a relation for :

0B = Vx(vxB)-Vy (7.3.7)
D) = -V-B (7.3.8)

where D is some linear differential operator. The Euler equation and the equation
of mass conservation are unaffected. We now take the divergence of the first relation

and the time derivative of the second:

o(V-B) = —V?% (7.3.9)
oD(p) = —d(V-B) (7.3.10)

which we combine to see that
oD(p) = V. (7.3.11)

The choice of D determines the way in which divergence errors are removed.
The three basic types of cleaning are elliptic, parabolic and hyperbolic — so named
because they entail solving a Poisson equation, heat equation or wave equation, re-
spectively. Dedner et al. [38] pioneer a mixed hyperbolic-parabolic approach, which
they find to be superior to the simpler divergence-cleaning methods since it allows
for errors to be propagated out of the star (hyperbolic cleaning) whilst simultane-

ously being damped (parabolic cleaning). The third method, elliptic cleaning, has
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the serious disadvantage that it requires the repeated solution of the (computation-
ally expensive) Poisson equation; the mixed-hyperbolic scheme only adds the modest
expense of having to evolve one more quantity — the function .

Hyperbolic-parabolic divergence cleaning involves defining D by
1 1
DY) = 50 + 5, (7.3.12)
h p
which leads to a telegraph (damped-wave) equation for v:

2
Ot = =B+ V. (7.3.13)
P

Within the code, we implement this divergence-cleaning method through the evolu-

tion equation

2
O = —%w ~2V-B (7.3.14)
P

together with our modified induction equation (7.3.7). Following Price and Mon-
aghan [113] we take ¢, the divergence-wave propagation speed, to be related to the

sound ¢g and Alfvén c4 speeds through the relation:

ch =1/ + . (7.3.15)

The other coefficient is physically the inverse of the decay timescale 7 of equation
(7.3.13):

2
|
S = (7.3.16)
Cp T

which Price and Monaghan argue is not universal, but rather should be adapted to

suit some lengthscale A specific to the problem, i.e.
S Z = (7.3.17)

where « is a dimensionless parameter. Using this result, we take A\ to be the radial
grid spacing Ar in our code. Finally then, our evolution equation for the function
1 is
ay/c 4+ A
Op = —————v - (2 +4)V-B. (7.3.18)
To close the system we need to give appropriate boundary conditions and initial

data. For the latter we simply set ¥ (t = 0) = 0 — this is reasonable because the
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initial data is divergence-free and so the variable 1), associated with the monopole
part of the magnetic field, should be zero initially.

For the boundary condition at the surface, we choose the Sommerfeld outgoing-

o = —/c2+ A (0 + ). (7.3.19)

This result is for a spherical surface, but we find it still gives satisfactory cleaning

wave condition on :

in the case where the background star is spheroidal.

7.3.6 Testing the code

Since we already have confidence in the performance of the code in the nonmag-
netic limit (see Passamonti et al. [110] for details), we now test its accuracy and
convergence properties with the inclusion of magnetic effects. To this end, we wish
to monitor the divergence of the magnetic field and the total energy of the system
(which should be conserved in the continuum limit). Since the background config-
urations are stationary their total energy is automatically conserved. In addition,
the background magnetic fields are also guaranteed divergence-free: in the purely

poloidal /mixed-field case the field is written in terms of the vector potential A, and

SO
V-B=V .-VxA=0; (7.3.20)
whilst in the pure-toroidal field case
1 0By
.B = —? = 7.3.21
v rsing 0¢ ( )

since 0/0¢ = 0 in axisymmetry. Therefore it suffices to check conservation of the

perturbed energy and the value of V - 6B.
Divergence of /B
Let us first write V - 6B in terms of the code variable 8 = pydB:
1 1
V.-iB=V- <’6> =—V-8- ?V,O(] - B. (7.3.22)
0

o Po

Expanding the quantities in the previous equation into components we find that

rtand
1
rtand

2 1
. _ + L fat ot +
V-8 ( ot ﬂr + 69794- By + rsm&ﬁ¢) cos mao

<ﬁr7~+ -3, + ﬁgg — 0, — r81n96¢>sinm¢(7.3.23)
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and

9po 1 dpo

Voo 3 =-2 - ZF0
poP= g bt e

It is clear that V - §B consists of a component with cosm¢ dependence and an-

other with sin m¢ dependence; we denote these (V-dB)T and (V-6B)~ respectively.

Bo- (7.3.24)

To test the divergence-cleaning method of section 7.3.5, we evolve initial data con-
taining a large monopolar piece both with and without divergence cleaning (DC);
the results are shown in figure 7.3. We choose to use (V - 0B)~, but the results are
the same for (V-6B)". After a short time the initially central monopolar region has
been propagated to the edge of the star by the divergence cleaning method; in the
non-DC evolution it is virtually unchanged. At late times, there is no trace of the
initial monopolar data in the DC evolution and the divergence is low throughout the
star. The non-DC evolution, however, illustrates why V - B = 0 must be enforced:
an instability has set in at the centre, with the divergence growing to a huge value.
The test in figure 7.3 shows that any divergence in the field is propagated
throughout the star and leaves when it reaches the surface. This is laborious to
check at all points in the star for each evolution, so we would also like a way of
checking the divergence globally. However, one cannot simply use the volume inte-
gral of V - B over the star, since V- 6B = (V- §B)T cosm¢ + (V - 6B)~ sinme;
both terms are zero after ¢-integration. Instead we define a ‘monopole energy’

_ RZ/(V-&B)QdV (7.3.25)
8T
where R is the stellar radius, included to give ® the dimensions of an energy for a
meaningful comparison with the perturbed magnetic energy § M (whose explicit form
is given in equation (7.3.30)); we need ®© to stay small throughout each evolution.
Using the above expressions for V - §B and recalling that sin? m¢ and cos® me¢

integrate to m whilst sin m¢ cos m¢ integrates to zero, we find that

2
1 1 2/3 ﬂ /3 m/B 1Y 15} P /3
@ (5T+, r 0,0 0 ¢ 0,rMp 0,079

8 p?) T T rtanf  rsinf £0 700
_ 2
1 2 Bo g By mBy po,B o en
g+ Zp 4 200 . _ PorPr PO, drdo.
+ P} (BT’T * rﬁr * r * rtanf  rsinf 00 TPo "

(7.3.26)

For the results presented in this thesis, the divergence of B was monitored

through the dimensionless quantity ©/0M. This value oscillates over time, but we
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non-DC DC
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Figure 7.3: Testing the divergence-cleaning method used in the code. Monopolar
initial data is evolved without (left column) and with (right column) divergence
cleaning; the value of log[(V -dB) ] is shown initially, after 1000 timesteps and after
50000 timesteps (from top to bottom). After 1000 timesteps the monopolar region
in the non-DC plot has barely moved from its original location; in the DC plot it
has propagated to the edge of the star, where it leaves the numerical grid. After
50000 timesteps the non-DC evolution has become unstable, with the divergence
exceeding 100 (in code units) near the centre, whilst the DC plot shows low diver-
gence throughout; in particular the original monopolar field at the centre has been

completely removed.
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find it to be typically of the order ~ 0.01. This is comparable with the initial value,
suggesting that (with divergence cleaning) the code’s evolutions preserve 0;(V - B)

well.

Conservation of energy

Next we use conservation of (perturbed) energy to test the order of convergence
of our code, using the fact that in the limit of infinite resolution energy should be
exactly conserved.

The total energy of the system is the sum of all constituent energies — the kinetic

T, gravitational W, internal U and magnetic M:

¢ = T+W+U+M

1 P 1
= pV-V—_pb+ —+_—-B-B| d 3.2
/<2p p +'y—1+87r > Vv (7.3.27)

where V = 2 4+ v is the sum of the background rotation and the velocity perturba-
tion. On perturbing each energy term we recover the background energy at zeroth
order, leaving an expression for §¢ which we evaluate to second order in the per-
turbations, since the first-order terms will be proportional to cos m¢ or sinm¢ and
hence will integrate to zero. Since we make the Cowling approximation, §® = 0 and

so the second-order perturbation in the gravitational energy is zero:
oW = —/6/)(5(1) dV =0 (7.3.28)

Next we turn to the perturbed kinetic and magnetic energies, which are straightfor-

wardly expressed:

oT

1

/2p0|v|2 dv, (7.3.29)
1

M = /\6B|2 dv, (7.3.30)
8

but the internal-energy perturbation needs more care. Since we are looking for
second-order contributions, when making the perturbative ansatz P = Py + 0P we
now take J P to mean the total perturbation, not simply the first-order piece. We

may naturally find the higher-order piece by using the polytropic relation P = kp”
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in our analysis:

1
U = —— [ kp?"dV
v—1
1

= ,y_l/k(Po-i-fSP)V dv

1 v
= /k:pg<1+6p> dVv
v—1 P0

2 3
_ Lt [pf14,22020 <5p) +0O <5’)> dv. (7.3.31)
| P0 2 Po Po

Now the zeroth-order piece is the background relation for U and the first-order piece
integrates to zero, yielding the second-order expression
P
U = / 120507 AV (7.3.32)
205
These energies have a simple form when written in the ¢-decomposed variables used
in the code. For example, the magnetic energy of a perturbed magnetic field dB is

given by

SM = - /53 oBav =L [P '25 av. (7.3.33)
8T 8T 0%

Now each component of 3 is decomposed in ¢, e.g. (3. = B, cosm¢ + 5, sinme.
Taking the square of this gives

B2 = (B,7)* cos? me + (B8, ) sin? me + 26,7 B, cos mep sin me. (7.3.34)

On integrating this quantity (or equally (57 or ﬂ;) over ¢ € [0,27], the cross-term

vanishes and cos? m¢ and sin® me¢ each integrate to 7. Hence,
/ BB drdode = / (B? + B35 + 33) drdfde
- w/ ((ﬁjf F (B 4.+ (ﬁ;)2) drdf  (7.3.35)
and so
oM = ;/pl% ((ﬁj)Q + (87 )2+ + (ﬁ;)Q) drde. (7.3.36)

Since we are making the Cowling approximation, 0W = 0 and we are left with

1 1
5E = 6T + 6U + 6M — / Lo+ 05,2 LisBe) av. (7.3.37)
2 2p5 8
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This is in agreement with equation (C5) of Friedman and Schutz [46] in the case of
adiabatic perturbations within the Cowling approximation, but with an additional
magnetic energy term.

To evaluate the convergence ratio, we monitor the evolution of the high-resolution
energy 0€sqx60(t) and the medium-resolution energy d€32x30(t), comparing these
with the initial value of the energy d€(0). In the continuum limit & will have no
time-dependence and will be equal to its initial value for all time. Hence we are able
to use this exact result to define a convergence ratio:

1 log <(5(’332X30(t) - (5(’3(0))
log 2 0€eax60(t) —0€(0) /-

Oeonv = (7.3.38)

In figure 7.4 we evaluate Ogony Over time, confirming that the code is second-order

convergent.

7.3.7 Nondimensionalising

Throughout the code we employ variables which have been made dimensionless
through division by a suitable combination of powers of gravitational constant G,
central density p. and equatorial radius r.,. For example, a dimensionless mode
frequency & is related to the physical one o (with units of rad s=!) through the
relation 6 = o /y/Gp.; the conversion is the same for rotational frequency 2. Since
dimensionless frequencies of this form are common in oscillation mode literature we
use these throughout this work. Dimensionless magnetic field strengths, however,
are less likely to be familiar and so we quote these in terms of gauss.

When we use dimensional quantities they are for a neutron star with canonical
parameters: an equatorial radius of 10km (in the non-rotating, unmagnetised case)
and a mass of 1.4M;, (where Mg is solar mass). The relationship between dimen-

sionless frequencies & (equivalently €2) and their physical counterparts is only weakly

dependent on 2 and B — and hence is roughly linear, with
o[Hz] ~ 18905 (7.3.39)

Finally, we note that in our dimensionless units, the Keplerian (break-up) velocity
Qi ~ 0.72. When we plot sequences of modes in rotating stars, we typically track

the modes up to /Qx =~ 0.95; that is, rotation rates 95% of the break-up velocity.
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Figure 7.4: We determine the order of convergence of our code by evaluating the
total perturbed energy §€& over time; in the exact, continuum limit this quantity will
not deviate from its initial value. The upper plot shows the deviation of €& from its
initial value for (r,0) grids of 32 x 30 and 64 x 60 points. From these we confirm
that the order of convergence Q.o of the code is equal to 2, as intended (see lower
plot). Ocony is only plotted for ¢t > 10, since at early times the numerical values of
0¢& cross the continuum value, causing Oony to oscillate rapidly. The background
configuration for these tests was a star with rotation rate Q/\/Gp = 0.238 and
with an average magnetic field strength B = 2.87 x 10'® G, evolved for 30 f-mode

oscillations.
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7.4 Results

7.4.1 Mode spectrum of a nonrotating magnetised star

In this section we present results for nonrotating stars, since the mode spectrum
is simpler, leaving rotating stars to the next section. We begin by investigating
the new class of modes present with the addition of a magnetic field: the Alfvén
modes (termed a-modes for brevity). Results are presented for both polar and axial
a-modes.

Let us begin by considering where in the frequency spectrum these modes could
be expected. Now, any mode frequency will be proportional to some characteristic
wave speed. For fluid modes like the f-mode, the frequency should be proportional
to the sound speed cg; similarly the a-mode frequencies should be proportional to

the Alfvén speed c4. Accordingly the ratio of frequencies should scale as

oy Cs
— ~ (= 7.4.1
Oa <CA> ( )

where the angle brackets represent a volume average. Now

Cs ~P B2
S ) 42
cA P / dmp (742)

(&) =Hm<Pe

cA B

We find from our background code that a nonrotating unmagnetised v = 2 polytrope

and so
(7.4.3)

with a mass of 1.4M, and radius R = 10 km has a volume-averaged pressure < P >

of 3.10 x 103* dyn em~2. Using this value and B = 10'6 G to nondimensionalise, we

find that » .
of <P> B >_
— ~ 90 x —_— . 7.4.4
Oa <3.10 x 1034 dyn cm2> <1016 G ( )

With the value of < P > varying little with magnetic field strength, let us assume

that it is a constant and that oy/o, scales only with B. It then follows that we
should expect o, to be roughly 1/90 of o for a 10'6 G field, but 1/9 of o for a 10'7
G field. This part of the spectrum may be dominated by inertial modes in the case
of unmagnetised rotating stars, but in the absence of rotation we may be confident
that any oscillations at lower frequency than the f-mode are associated with the

magnetic field — see figure 7.5.
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Figure 7.5: Typical FFT results for a pair of nonrotating stars, one magnetised

and the other unmagnetised. We plot mode frequency o (in a dimensionless form)

against PSD, the power spectral density. We see that the f-mode frequencies are

very close in each case. With no Coriolis force there are no inertial modes, therefore

any peaks at lower frequency than the f-mode must be either noise or Alfvén modes.

We identify the lowest-frequency spike in the magnetic FFT as noise, since there is

a corresponding unphysical peak in the nonmagnetic FFT. The following peaks in

the magnetised-star FFT, however, have no analogue in the nonmagnetic FF'T and

so we identify these as Alfvén modes. The duration of the evolution was sufficient

to resolve around 100 Alfvén oscillations.
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Now, with 0, x<c4 > and ¢y = B/+/4mp, it follows that o, x B, provided
that magnetic changes to the density distribution are higher order (which should be
true for all but very high field strengths — see chapter 6). To summarise, a-modes
should scale approximately linearly with field strength and appear as oscillations
with lower frequency than the f-mode. With these expectations, we now turn to
numerical results from our time-evolution code.

In figure 7.6 we track a number of Alfvén mode frequencies up to averaged-field
strengths of order 10'7 gauss. For axial initial data and fixed m we find a single
[ =m mode?, whilst polar initial data excites two lp=m + 1 modes for a given m.
The index [y refers to the highest-I Y7, that contributes significantly to the mode’s
eigenfunction; see chapter 5 or Lockitch and Friedman [93] for more details. In all
cases, we see that as expected there is a near-linear relationship between o, and B.
The identification of the a-modes is based on analysis of their eigenfunctions, using
the numerical method of Stergioulas et al. [131]. The labelling used here anticipates
the results of the next section, where we track these modes for increasing rotation
rate.

At the start of this section we showed that the a-mode frequency should vary
linearly with B, and this appears to be borne out by our results. We now quantify
this dependence and the deviation from it. By looking at the weak-field results
from our code (where the relationship should be closest to linear), we determine the
constants of proportionality in the relationship

m(0a)k _ 1, o ( b > , (7.4.5)
VGp. ™ 1016 G
finding that 3¢ = 0.033,3¢; = 0.030,3¢; = 0.045,4c = 0.086,5¢c1 = 0.069, ¢y =
0.090,%c = 0.146,fc; = 0.127,fco = 0.150. We may use the linear relationship

(7.4.5), with the numerically-established constants 9 ¢, to test how close our results

are to the linear regime. We find that even for strong fields, the deviation from the
linear regime is always less than 8% — and in most cases is less than 5%.

Finally in this section, we look at the shift in the frequency of the fundamental
mode upon the addition of a magnetic field to the star. This mode is restored by
perturbations in the fluid pressure P in the unmagnetised case, so we anticipate

that in the magnetic problem the restoring force is perturbations of total (fluid

?We also find three axial lp = m + 2 modes, but these are harder to resolve for high m and so

do not feature in the plots in this section
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Figure 7.6: Polar l[p = m + 1 Alfvén modes (top) and axial | = m Alfvén modes
(bottom), for m=2,4,6. Tracking the modes to high field strength, we see that each

mode frequency scales linearly with magnetic field strength, as anticipated. These

results are for a nonrotating star.
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Figure 7.7: The shift in f-mode frequency due to magnetic effects (for nonrotating
stars), for m = 2,4,6. On the y-axis we plot percentage increase in o from its
unmagnetised value; we see that this shift appears to depend quadratically on B.
The apparent deviation from this dependence, visible in the weakest-field results, is

attributable to numerical errors in these very small frequency shifts.

plus magnetic) pressure, P + B?/8w. The magnetic shift in o, then, should be
proportional to B? — but since magnetic pressure is very modest in magnitude
compared with fluid pressure, we expect the frequency shift to be small. For example,
using our canonical model star, the magnetic pressure is ~ 1% of the fluid pressure at
B =10'" G. We confirm these expectations in figure 7.7. In all cases o is increased
by the inclusion of magnetic effects, but the shifts are only around a couple of percent
even for B ~ 10'7. The relative shift appears to be more pronounced for higher-m

oscillations.
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7.4.2 Mode spectrum of a rotating magnetised star

Armed with knowledge from the previous subsection about the spectrum of magne-
tised nonrotating stars, we next consider rotating magnetised configurations. The
earliest studies of magnetic oscillations (e.g. Chandrasekhar and Limber [28]) sug-
gested that the significance of the magnetic field on the oscillation spectrum should
be linked to the ratio M/|W|; when additionally including rotational effects we
would expect the relative significance of the two effects to be related to M /T [104].

We first consider magnetic shifts in the f-mode frequency for rotating stars.
Rotation splits the f-mode into co- and counter-rotating modes; we expect the
frequencies of both branches of the mode to shift with the addition of magnetic
fields. At low rotation, the magnetic shift for each piece of the f-mode is comparable
with the shift in the nonrotating case, but at higher rotation rates the shift becomes
less significant — see figure 7.8. This bears out our expectation that the magnetic
shift should scale with M/T.

We next turn to a-modes and r-modes of rotating magnetised stars. Based on
our experience so far, we have expectations on how each mode should behave. We
anticipate a rotational splitting of the a-modes into co- and counter-rotating pieces
(as seen for the f-mode); in addition we expect to see some magnetic shift, scaling
with M/T, in the r-mode. We shall see that both of these effects are combined:
the pure r- and a-modes are replaced by a hybrid magneto-inertial mode, which
resembles a magnetically-shifted r-mode when rotation is more important, and a
rotationally-split a-mode when magnetic effects are more significant.

We begin by tracking the axial 2a-mode with increasing rotation, finding that as
expected it undergoes rotational splitting (figure 7.9). The lower-frequency branch
of this a-mode appears to tend to zero with increasing €2 (or equivalently, as M /T —
0). The higher-frequency branch of the a-mode tends to the 3r-mode frequency as
M/T — 0. We confirm that the magnetic/inertial character of these hybrid modes
depends on M/T by tracking the 2a-mode for three different field strengths, finding
that when B is higher the hybrid-mode frequency approaches the r-mode frequency
more slowly. The higher-frequency branch of the 3a mode is counter-rotating —
it is this branch that joins up with the (also counter-rotating) 2r-mode, whilst the
lower-frequency 3a mode corotates with the star.

Having established that the pure %a mode and the pure %r—mode are replaced
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Figure 7.8: Magnetic shift of the m = 2 f-mode frequency for rotating stars. Since
the shift is very small we take a very highly magnetised background star, with
B = 1.17 x 10'7 G, for comparison with the nonmagnetic sequence of results. We

find that as the rotation rate €2 increases, magnetic effects become less significant.
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Figure 7.9: Illustrating the hybrid magneto-inertial nature of modes in a rotating

magnetised star. When 2 = 0 there is a pure [ = m = 2 a-mode, which is split into
co- and counter-rotating modes by the effect of rotation. The counter-rotating mode
frequency approaches the nonmagnetic 3r-mode frequency as €2 increases, while the
corotating branch tends to zero frequency. The upper plot compares the a-mode
with the r-mode, whilst the lower plot shows that the nature of the hybrid mode
depends on the ratio M/T; when B is larger, the a-mode frequency approaches the
r-mode frequency more slowly. Modes are tracked up to €2 ~ 0.7 in dimensionless
units, which is over 95% of the break-up velocity. The irregular parts of the curves

may correspond to avoided crossings with other magneto-inertial modes.
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Figure 7.10: The m = 2,lp = 3,4 hybrid magneto-inertial modes. Dashed lines

represent the pure inertial (B = 0) modes, whilst solid lines show magneto-inertial
modes, which reduce to pure Alfvén modes in the 2 — 0 limit. The upper plot
shows the lp =4 (axial) hybrid modes, whilst the lower plot shows lp =3 (polar)
modes. In each case the upper-frequency branch of a hybrid mode is seen to meet
a corresponding i-mode as M /T — 0. For the 3a; mode, we were also able to track
the lower-frequency branch, which appears to reduce to a zero-frequency mode in

the M /T — 0 limit.
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by a hybrid magneto-inertial mode when both magnetic and rotational restoring
forces are present, one would expect to find similar hybrid modes corresponding to
other Alfvén/inertial modes; we confirm this expectation in figure 7.10. As before,
rotation appears to split each a-mode into co- and counter-rotating branches®. We
are able to track the upper-frequency branches of both polar %’a—modes to their
inertial counterparts, and all three ja-modes to known inertial modes in the M /T —
0 limit. In addition, we are able to track the lower-frequency branch of the %al mode
to high rotation rates; it appears to become a zero-frequency mode in the M /T — 0

limit, as for the lower 3a-mode.

7.4.3 The continuous mode spectrum of perfect MHD

The study of oscillation modes of magnetised stars is complicated by the fact that in
the perfect-MHD limit, where the resistivity is zero, discrete modes may be replaced
by a continuum. In this case one may no longer talk of global modes, since different
parts of the star will have different frequencies of oscillation. This phenomenon was
first discovered by researchers in plasma physics: see, for example, Grad [59] and
references therein. Later research argued that continuous spectra are relevant to
astrophysics too [57, 90].

It appears that the continuous parts of the oscillation spectrum are, however, a
somewhat pathological effect peculiar to MHD without dissipation. The inclusion
of resistive effects or perpendicular thermal conduction each remove some of the
continuous spectra, whilst with both effects there are no continua left [70]. Although
many astrophysical situations (like the interior of a neutron star) involve matter of
very high conductivity, their non-zero (albeit small) resistivity may therefore result
in a qualitatively different spectrum from that predicted by perfect MHD: discrete
modes rather than a continuum.

We look for behaviour consistent with a continuous spectrum in figure 7.11.
Here we plot the Fourier transform of 3, at three different points in the star, for
a nonrotating background configuration with an average magnetic field strength
B = 2.87 x 10'6 G. The evolutions are for azimuthal index m = 2, so all modes

discussed here are also m = 2. The evolution time in each case was sufficient to

3Note, however, that we are only able to see the lower-frequency branches clearly for the 2a and
3a1 modes; we believe other lower-frequency branches are harder to track because they undergo

many avoided crossings.
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resolve around 1000 oscillations. The perturbations are not evolved at the pole or
equator (boundary conditions are imposed here), but we pick interior angular points
close to # = 0 and 6 = 7/2, and also a central point with § = 7/4. In all cases the
radial value used was 7 = 0.4R,. In the plots shown we are able to identify peaks
corresponding to the 2a,3ay,3as and “a; modes; these vary by no more than 1% for
the three positions. The “as and a3 modes have very weak peaks in this particular
figure, but may be identified in the Fourier transforms of other perturbed quantities
— it is difficult to resolve all of the higher-ly a-modes from one plot alone. We place
brackets around these modes in the figure to stress that we have never identified
modes based on such minor peaks in the spectrum.

To summarise: within our work, we find no evidence of continua in the mode
spectrum, although we model stars as perfect conductors in MHD. We believe that
although we only include dissipative effects (Kreiss-Oliger dissipation and artificial
resistivity) for numerical purposes, they may have the side-effect of removing contin-
uous parts of the spectrum, as discussed above. This is not necessarily a weakness
of our approach; our aim is to model neutron stars rather than perfectly conducting
fluids per se, and dissipative effects may act to give a real neutron star a discrete
mode spectrum too. Furthermore, we have found that in the presence of rotation
a-modes become hybrid magneto-inertial modes. With sufficient rotation an a-mode
has predominantly inertial character and hence should become discrete. Rotation

must therefore affect the Alfvén continuum too, perhaps by reducing its width.

7.4.4 Mode instabilities

Whilst an unperturbed rotating star cannot emit gravitational radiation — it is a
stationary configuration — the various non-axisymmetric oscillations of the star can.
This radiation carries angular momentum away from the star, which may drive in-
stabilities in certain oscillation modes. In particular, it was shown by Chandrasekhar
[25] and Friedman and Schutz [46, 47| that all rotating perfect-fluid stars are un-
stable. This radiation-driven effect is known as the CFS instability, from the three
authors of these early studies.

Very briefly, the CFS mechanism works in the following way: in the comoving
frame of a rotating star, there exist both prograde (forward-moving) and retrograde

(backward-moving) modes; these modes have, respectively, positive and negative
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Figure 7.11: Plots showing that the Alfvén mode frequencies in this work are in-
dependent of position within the star (and hence do not form a continuum). We
present typical Fourier-transformed data from evolutions of axial (top) and polar
(bottom) perturbations. The plots show mode frequency o against power spectral

density PSD. Further details are given in the text.
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angular momentum in this frame. Suppose a mode is retrograde in the rotating
frame but moves with a speed which is lower than the stellar rotation rate. Then
in the inertial frame it will appear prograde. As the star loses angular momentum
due to gravitational radiation, this mode will also lose angular momentum as it
appears prograde; but in the rotating frame its angular momentum becomes more
negative and the mode amplitude grows. At some point this process could induce
an oscillation in the mass distribution of the star large enough to produce detectable
gravitational waves.

A number of modes are subject to this instability, but in general only become
unstable for sufficiently rapid rotation. However, the r-modes are unstable even in
slowly rotating stars, in the absence of viscosity; see Andersson and Kokkotas [5].
We have already seen that magnetic fields significantly alter the behaviour of the r-
mode for slow rotation, so we now consider the effect this has on their stability. For
a counter-rotating mode with frequency o (positive by convention) in the rotating

frame, the instability criterion is
o(oc —m8) < 0; (7.4.6)

this may also be found in Andersson and Kokkotas. It follows immediately that
radiative instabilities are entirely suppressed when o > mf. In the upper plot of
figure 7.12 we show this threshold frequency, together with the nonmagnetic r-mode
and the hybrid mode that replaces it in the magnetic case. It is clear that whilst
the unmagnetised r-mode is always in the unstable regime, its magnetic equivalent
(the hybrid of the r-mode and the axial [ = m a-mode) is stable for sufficiently
low rotation rates. The maximum rotational frequency a star can have before its
%7’ mode goes unstable is presented in the lower plot, as a function of the stellar
magnetic field strength.

Even when magnetic fields are not strong enough to suppress the r-mode insta-
bility, they may slow down its growth. A full calculation of this effect is beyond the
scope of this work, but we may estimate it with some simplifying assumptions. The

growth time 7o g of the r-mode instability due to gravitational radiation is given by

1 1 dFE
- = 4.
TGR 2F dt (7.4.7)

where F is the energy of the mode in the rotating frame. From this one can show

that the growth time 7gg scales with the rotating-frame mode frequency o in the
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Figure 7.12: In a slowly-rotating magnetised star, the r-mode is replaced by the
axial [ = m a-mode. From the upper plot we see that this a-mode is not subject to
the CFS instability if € is sufficiently small, but at some higher rotational frequency
fcrs (a function of the field strength B) it crosses into the unstable regime. The
lower plot shows the variation of fcpg with average field strength B.
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Figure 7.13: A magnetic field changes the growth time of the r-mode instability. Here

we plot an approximation of the ratio of magnetised (7qr)p to unmagnetised (7¢r)o
growth timescales, against dimensionless rotation rate. The dashed vertical line
shows where the ratio asymptotes (i.e. when the magnetised mode becomes stable).
We see that in all cases the instability growth is slower with magnetic effects, but
the effect becomes insignificant for rapid rotation. The magnetic timescales shown

here are for a star with a field strength of 2.87 x 106 G.
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following manner for an [ = m r-mode:

TG1R ~ oo — 10)2H1 (7.4.8)
— see Andersson and Kokkotas [5] for details. Note that for [ = m = 2, the growth
time scales with the sixth power of o.

We wish to estimate how the growth time for the 3r-mode instability changes
when magnetic effects are included. Since 7gr contains a factor of ¢% we will
assume that this term has the most significant variation when a magnetic field is
added. Other terms in the expression of E and its derivative will be approximated as
constant. Using the indices 0 and B to denote nonmagnetic and magnetic quantities
(respectively), we then see that

(Tar)B - oo(oo — 29)5
(ter)o  oplop —29Q)5"

(7.4.9)

In figure 7.13 we plot this dimensionless quantity as a function of the rotation rate,
finding that a toroidal magnetic field does indeed slow down the instability’s growth.
The importance of the effect depends on the rotation rate: at twice the threshold
frequency for stability of the magnetised r-mode (i.e. when the mode is unstable),
its growth time is still a factor of ~ 6 longer than in the nonmagnetic r-mode case;

however, for very rapid rotation the difference in growth times is negligible.

7.5 Discussion and conclusions

In this chapter we have investigated oscillation modes of neutron stars with rotation
and magnetic fields, specialising to the case of purely toroidal background fields.
Our numerical approach allows us to study oscillations of rapidly rotating and highly
magnetised stars in a self-consistent manner. We first generate a stationary star in
equilibrium to use as the background configuration, using the work of chapter 6;
this star may have axisymmetric distortions due to magnetic effects and rotation.
We then time-evolve linear perturbations on this background star in order to study
its modes of oscillation.

When a magnetic field is added to a star, the most obvious change to its oscil-
lation spectrum is the presence of Alfvén (a-) modes, a class of stellar oscillation
restored by the Lorentz force. These modes are purely magnetic in nature only for

a nonrotating background star.
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In a rotating magnetised star, we find that the pure a-modes of a nonrotating star
(or equivalently, the purely inertial i-modes of an unmagnetised star) are replaced
by hybrid magneto-inertial modes, whose character is governed by the ratio of the
magnetic M and kinetic T energies, as discussed by Morsink and Rezania [104].
Tracking a star at fixed magnetic field from 2 = 0 through increasing rotation rate,
we see a rotational splitting of the a-modes into co- and counter-rotating modes.
The higher-frequency branches of these modes approach known i-mode frequencies.
In general the lower-frequency branches are harder to track, owing to the dense
nature of the oscillation spectrum, but when we are able to identify them we find
that they appear to become zero-frequency modes in the M /T — 0 limit.

The presence of these hybrid modes has parallels with other work. The evolutions
of Passamonti et al. [110] and Gaertig and Kokkotas [48] found that when tracking g-
modes (i.e. modes restored by composition gradients within the star) for increasingly
rapid rotation, their frequencies approached known i-mode frequencies. One key
difference between stratified and magnetised stars, however, is the behaviour of the
r-mode in each case. Being purely axial in the slow-rotation limit, the r-modes are
unaffected by composition gradients, whereas we have found that the presence of a
magnetic field means that in the slow-rotation limit they become the axial [ = m
a-modes.

Our work seems to be consistent with the analysis of Glampedakis and Andersson
[51], who found that magnetic fields could act to suppress instabilities driven by
gravitational radiation (the CFS instability); and in particular, that purely poloidal
or purely toroidal fields should always play a stabilising role in this case. Using o to
denote a mode frequency as measured in the rotating frame, it is known that modes
satisfying the condition o(oc — mf) < 0 are susceptible to these radiation-driven
instabilities; in particular, this includes the r-mode. In the presence of a magnetic
field we find that the r-mode is replaced by the [ = m axial a-mode; for sufficiently
slow rotation we have g, > mf{) and hence the mode is CFS-stable. In the regime
where the star is unstable, we use a simple estimate to suggest that the instability’s
growth will be slower in the presence of a magnetic field.

In addition to the hybrid magneto-inertial modes, there are also magnetic cor-
rections to the f-mode frequency. These corrections are very modest (~1%) even
up to field strengths of the order 10'7 gauss. In addition, as for the magneto-inertial

modes, the magnetic correction becomes less significant still as M /T — 0. However,
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we note that the magnetic correction seems to increase between m = 2 and m = 6,
so although our approach limits us to low m one might expect more appreciable
corrections to high-m f- and p-modes.

Although it would be premature to make a quantitative comparison between our
results and observed magnetar QPOs, we note that there are certain similarities in
the oscillation spectra. The QPOs observed from SGR 1806-20 include 26 and 30 Hz
modes; these cannot be explained as overtones of crustal shear modes because the
spacing is too small (they would need to be integer multiples of some fundamental
frequency for this). By contrast, it is easy to interpret these frequencies as global
modes of a fluid star (i.e. the magnetar’s interior), since we see modes at far smaller
separation than integer multiples. For example, using our fitted relation (7.4.5) we
see that the frequency ratio of the axial 2a and polar 3a; modes is 0.030/0.033 ~ 0.91
— comparable with the observed ratio of 26/30 ~ 0.87.

This work adds to the picture of magnetic stellar oscillations built up by a number
of other recent numerical studies. The work of Sotani et al. [128] and Cerdé-Duran
et al. [19] investigated axial magnetar oscillations, modelling the star’s magnetic
field as dipolar (and hence purely poloidal). They found two localised families of
QPOs, which they related to observed magnetar QPOs. Colaiuda et al. [32] worked
on a similar problem, but in the more general case of a mixed poloidal-toroidal
background field. Their work complements other studies, but they are also able to
identify a third family of QPOs in their model star. Finally, Sotani and Kokkotas
[127] find a set of polar oscillations of dipolar fields, agreeing with the work of Lee
[89] that a magnetar should have both axial and polar oscillations.

Many of these recent studies have analysed their results in the light of the sug-
gestion that magnetic oscillations of a perfectly-conducting star form a continuum,
rather than discrete modes. This was proposed by Levin [90], revisiting earlier work
by Goossens [57] and others. Various numerical studies [128, 19, 32] have found
results consistent with this proposal, in the case of axial oscillations of a dipole field.
However, Sotani and Kokkotas [127] suggest that polar oscillations of a dipolar-field
star are discrete.

Since our background field is purely toroidal, we cannot make quantitative com-
parisons with work discussed in the last two paragraphs, since those studies assumed
dipolar fields (or mixed poloidal-toroidal fields in the case of Colaiuda et al. [32]).

However, we do find broad similarities — in particular, our a-mode frequencies are
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of the order 100 Hz (for a field of ~ 10'® gauss), as found from other magnetic
evolutions. With a toroidal field there is less evidence for a continuum of modes,
since work on this phenomenon seems to have focussed on fields with a poloidal
component. Indeed, all our results have shown discrete mode frequencies, with no
dependence on position within the star, up to uncertainties due to resolution and the
finite duration of our simulations (in practice, errors of < 1%). Our polar a-modes
thus share this property with those of Sotani et al. [128], but our axial a-modes are
discrete too.

Purely toroidal fields and purely poloidal fields suffer from generic localised in-
stabilities, so in the absence of damping mechanisms are not viable candidates for
long-lived stellar magnetic fields [144, 133]. Despite this, we have been able to
perform stable evolutions of perturbations about a purely toroidal background for
this work. There may be a number of reasons why these analytically-established
instabilities have not affected our numerical work. Since we only consider first-order
perturbations, higher-order effects are avoided; at the linear level, the greatest in-
stabilities are those for m = 0 and m = 1, whilst we have only considered m > 2
oscillations. Finally, we have included artificial viscosity and resistivity to damp
numerically-generated instabilities, and it is possible that these have prevented the
growth of physical instabilities too.

One way in which pure-poloidal/toroidal fields may be stabilised is through ro-
tation [50, 14, 79], although this effect will be small in the case of the magnetars,
whose rotational periods are very long. Relatively small poloidal components may
stabilise dominantly toroidal fields [15], but it is difficult to draw general conclusions
on the relative strengths of the two components, since other work has found that
apparently general constructions of magnetic stars in equilibrium (in both Newto-
nian and relativistic contexts) result in mixed fields which are dominantly poloidal;
see chapter 6 and Ciolfi et al. [31].

Given the many uncertainties regarding the nature of stellar magnetic fields,
we believe that it is reasonable to study oscillations of purely toroidal fields, even
though these may suffer certain instabilities, as we have discussed. Furthermore,
a star whose field is dominantly toroidal could be expected to have an oscillation

spectrum with similar features to those discussed in this work.



Chapter 8
m = 1 modes and precession

In literature on neutron star oscillations, the m = 1 modes tend to be neglected;
this is because those with lowest | (i.e. [ =m = 1 modes) are dipolar, whereas
the lowest-order contributions to gravitational-wave emission are quadrupolar. The
primary motivation for this chapter is instead to explore the idea (discussed in
section 3.4) that a magnetised fluid star can undergo motion analogous to rigid-
body free precession, by looking for oscillation modes at frequencies expected for
precession. As we shall show, for small-angle free precession these modes are m = 1
to leading order. We describe our approach for exciting precessional modes and
suggest reasons why it has so far proved unsuccessful. We additionally present some
new results about the nature of m = 1 inertial modes in stars approaching break-up
frequency, and find some evidence of the unstable nature of purely toroidal fields and
the stabilising effect of rotation. We believe that this represents the first evidence
of the m = 1 Tayler instability from a global analysis (m = 0 instabilities were

investigated by Kiuchi et al. [79]).

8.1 Initial data for precession

Here we consider a precessing configuration as a perturbation away from the station-
ary background star, and wish to describe this perturbation in terms of the change in
the density dp and velocity field v. We start with an axisymmetric background star

which is magnetised and rotating, and hence is distorted by both of these effects; its
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=21
Figure 8.1: The (z,y, z) frame for the unperturbed system and the rotated (z, 7, Z)
frame. In the unperturbed configuration the magnetic and rotational distortions
are symmetric about z; in the perturbed star the magnetic distortion is symmetric

about z.

density distribution p may be written

p(r,0) = po(r) + pa(r,0) + pp(r,0) (8.1.1)

where pg is the spherical piece of the density distribution, pg the distortion in-
duced by rotation and pp the magnetically-induced distortion. Whilst our numerical
method for generating MHD equilibria (see chapter 6) does not allow us to disen-
tangle pp from po, we may look at the variation of pp with field strength B for
a nonrotating star and assume that the same relation holds to leading order in a
rotating star.

Now consider a perturbation about this background pp which has the effect of
rotating the magnetic distortion through some angle «; the new magnetic density
distortion (background plus perturbation) will be denoted by a tilde and is no longer
axisymmetric: pp = pp(r,0,¢). Let us work in the Cartesian coordinate system
where this perturbative rotation of pp is about the z-axis. We emphasise that this

rotation is different from the ordinary stellar rotation, whose axis in the unperturbed
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star is the original z-axis (not ). The original and rotated frames are shown in figure
8.1.
Performing the rotation about the z-axis, the new rotated axes ¢, Z are related

to the original ones y, z by:

7 cOs v + 2z sin «

<
Il

ZCcosa — ysin a.

IS
Il

We use (1,0,¢) to denote spherical polar coordinates in the (z,y,z) frame and

(r,0,$) for the corresponding coordinates in the (Z,7, %) frame; note that r = 7.
Now since 7sinf = /22 + y2, we have

rsin? 0 = &% + 2. (8.1.2)

Using the usual relations between Cartesian and spherical polar coordinates and
noting that & = = (since the rotation was about the z-axis), we see that the angle

transformation is given by
sin? @ = (sin @ cos ¢)? + (sin @sin ¢ cos o + cos A sin ). (8.1.3)

To proceed we assume o < 1 and Taylor expand pp:

pp(r,0) = 1 8%pp(r.6)

96 =05 50 (0—0)*+... (8.1.4)

pB(r,0,0) = pp(r,0) = pp(r,0)+

Working to linear order, we have

Opp(r,0)

T (8.1.5)

op = ﬁB(r767¢) - pB(r79> = (é_ 0)

This expression contains both 6 and 0 terms, whereas we want a result referred
entirely to the original (7,6, ¢) coordinates. However, since 6 — 0 is small we may

use a trigonometric identity to write
6 — 6 ~ sin(f — ) = sinf cos § — cos fsin 6. (8.1.6)

We may now use this expression together with (8.1.3) to write our expression for dp

as

bp = [cos 0/ (sin 0 cos ¢)2 + (sin fsin ¢ + v cos )2

—sinf+/1 — (sin  cos ¢)2 — (sin @ sin ¢ + o cos 9)2] %LQB, (8.1.7)
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where we have made the small-angle approximations sina ~ « and cosa ~ 1, and
neglected the higher-order o terms. The expression may be simplified by using the
binomial theorem to expand the square roots; after some algebra we arrive at the
result

op = asinqbag%. (8.1.8)

The sin ¢ factor here tells us that small-angle precession may be regarded as an
m = 1 perturbation, to leading order.

We now turn to the effect of precession on the velocity field. For the nonprecess-
ing (i.e. rigidly rotating) background star the velocity is V. = © X r and so the
precessing configuration has V = (2 4+ 0Q) x r, where §€2 is the off-rotation axis
perturbation in the angular velocity. The velocity perturbation v is then simply
given by

v=V -V =0Qxr. (8.1.9)

Since 0€2 is the piece of the angular velocity that does not have an e, component,
then by analogy with rigid-body dynamics (see, for example, Jones and Andersson
[73]) we have

Q2 = epalle, (8.1.10)

to leading order, where €p is the (dimensionless) ellipticity induced by the magnetic
field. This gives v = epafle, x r. Expressing this in terms of spherical polar

coordinates we have

0
v = egalfd 7 CoS ¢ . (8.1.11)
—rcosfsin ¢
As for §p, we see that the precession is to leading order an m = 1 perturbation. The

leading order precessional perturbation in the flux f = pgv is given by

fr =0
fo = epalpor cos ¢ (8.1.12)
fo = e€pallpgrcosfsin .

8.2 m =1 modes in an unmagnetised star

Before looking at m = 1 oscillations of magnetised stars, we first need to check

our code reproduces known results for nonmagnetic modes. Yoshida and Lee [146]
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Table 8.1: Comparison between Yoshida-Lee results and those from our time-
evolution code run for a dimensionless rotation rate of 2 = 0.119. All mode frequen-
cies are made dimensionless through division by € and calculated in the rotating
frame of the star. As for the chapter 7 results, our mode labelling is consistent
with that of Lockitch and Friedman [93]. In Yoshida and Lee’s results, corotating
modes are shown with a negative mode frequency, whilst we are only able to find
the magnitude. Finally, we were unable to find the %i; mode, which we believe is

due to its proximity in frequency space to the strong r-mode peak.
mode Yoshida-Lee time evolution discrepancy

Ly 1.000 1.006 0.6%
2iy -0.4014 0.388 3.3%
2y 1.413 1.418 0.4%
30y -1.032 - -

3y 0.6906 0.684 1.0%
3is 1.614 1.611 0.2%
4iq -1.312 1.241 5.4%
iy -0.1788 0.171 4.2%
4is 1.052 1.021 2.9%
4iy 1.726 1.738 0.7%

included results for m = 1 oscillations in their study of inertial modes of slowly
rotating stars. For our code, the rotation rate is specified through the oblateness
of the star (see section 6.4) and so the minimum rotation rate is limited by grid
spacing; the polar radius needs to be one cell smaller than the equatorial radius.
This means we cannot quite study the 2 — 0 limit. In addition, we work in the
Cowling approximation, which Yoshida and Lee do not. This could be expected to
cause fairly large errors in some cases, since the Cowling approximation is poorer for
low m. Notwithstanding these differences of approach, we find convincing agreement
with their work; see table 8.1.

One oddity of the m = 1 spectrum is that there is no f-mode; a dipolar mode
with no radial node displaces the centre of mass of the star. The absence of the f-

mode could be expected by looking at the analogous case for incompressible fluids:
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Figure 8.2: Axial-led m = 1 inertial modes. The %i; mode is missing; it seems to be

obscured in the spectrum by the nearby r-mode, which has a very strong peak.

the Kelvin mode. It was shown in section 5.2 that this mode has frequency

, 2(1-1)

“ BT (8.2.1)

which is zero when [ = 1. However, if one makes the Cowling approximation then
an f-mode does appear in the frequency spectrum, in its usual place between the
(pressure) p-modes and the (gravity) g-modes. This spurious mode shifts to become
the lowest-order g-mode in the full non-Cowling problem [30].

In addition to finding nine of the ten m = 1 inertial modes described by Yoshida
and Lee, we also see the spurious f-mode described above. Since our background
configuration is generated in a nonlinear manner, we are able to track the inertial
modes up to break-up velocity, where the results of Yoshida and Lee are no longer
valid. We also see avoided crossings between four of the polar inertial modes and

the corotating branch of the f-mode. These results are shown in figures 8.2 and 8.3.
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0.8

Figure 8.3: Polar-led m = 1 inertial modes and the spurious f-mode, which has zero
frequency in the full problem but appears as an oscillation mode of the Cowling-
approximation system of equations. Four of the inertial modes have avoided cross-
ings with the corotating branch of the f-mode, where their character changes; note

the difference in labelling of these modes before and after the avoided crossings.
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8.3 Instabilities in purely toroidal fields

In the previous section we established that our time evolution code ran stably for un-
magnetised backgrounds with m = 1, reproducing known results for inertial modes
as well as finding the spurious dipolar f-mode that is an artefact of making the
Cowling approximation. In order to study magnetic precession, we also need to sta-
bly evolve magnetic perturbations. There are, however, additional difficulties here;
as well as numerical instabilities associated with the evolution of finite-differenced
equations, the magnetic field may suffer genuine physical instabilities.

The stability analysis of Tayler [133] established that a large class of toroidal field
configurations suffer localised instabilities; earlier calculations than Tayler’s had in-
volved a global analysis and hence did not find evidence of the unstable nature of
toroidal fields (see, for example, Roxburgh and Durney [120]). Tayler showed that
instabilities tend to occur close to the symmetry axis of the star, with m = 1 oscil-
lations appearing to be the most unstable in the linear regime. These instabilities
occur over short timescales (of the order of the Alfvén crossing time) and also exist
for m # 1 perturbations [58].

More recently, there have been numerical studies of purely toroidal fields. With a
local analysis in a small region around the magnetic axis, Braithwaite [14] confirmed
the existence of the Tayler instability for generic toroidal fields and found that
rotation has a stabilising effect on these fields. This study was in Newtonian gravity,
but the later evolutions of Kiuchi et al. [79] found a similar picture for the stability
of relativistic stars.

These studies into toroidal-field instabilities contrast with the work of chapter 7,
in which we are able to time-evolve perturbations on a purely toroidal background
field over long times without seeing evidence of unstable oscillations. However,
our analysis is not a local one about the magnetic axis but an evolution of global
modes. We add small-magnitude viscosity and resistivity terms in order to suppress
numerical instabilities, but these may also damp out genuine unstable oscillations
that are present in the continuum solution. Finally, in the work reported earlier in
this thesis we only considered m > 2 oscillation modes, whereas m = 1 perturbations
are thought to be the most unstable.

To study precession, however, we have to evolve m = 1 magnetic perturbations

— precisely those thought to suffer most from the Tayler instability in the toroidal-
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Figure 8.4: The Tayler instability for toroidal magnetic fields in a nonrotating star.
We plot the magnetic energy M against time ¢, both in dimensionless form, for
three different grid resolutions. We see that the onset time for the instability is
independent of resolution, and its growth rate converges, suggesting that it may
indeed be a physical instability. The results are for a star with field strength B =
3.0 x 106 G.

field case. However, it is not clear if we would be better off considering precession in
stars with purely poloidal fields instead, since these are also thought to be unstable
[96, 144, 50]; neither are all mixed-field configurations likely to be stable [15]. Given
this, we choose to continue looking at oscillations of stars with toroidal fields; even
if the localised instabilities appear in our evolutions, they should be suppressed by
rotation — and in any case, rotation of the background star is required for precession.

Our m = 1 evolutions for stars with toroidal fields are consistent with previous
work on instabilities. For evolutions with no rotation, we see from the magnetic
energy of the perturbations § M that the system suffers an instability; see figure 8.4.
We compare evolutions for three different grid resolutions: low (16 x 15), medium

(32 x 30) and high (64 x 60). In all cases the instability seems to set in at the
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Figure 8.5: Showing that the Tayler instability sets in after one Alfvén crossing
time. We plot the magnetic energy against time, as before, and find that the onset
of instability happens sooner for higher field strengths; in particular, the observed
onset time in each case seems to be close to the Alfvén crossing time: 74 =~ 154,77, 39
for B =1.5,3.0,6.0 x 10'6 G respectively.
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Figure 8.6: The stabilising effect of rotation on purely toroidal magnetic fields. The
magnetic energy is plotted against time for three different rotation rates. We see
that increasing the rotation rate decreases the growth timescale of the instability;
i.e. the gradient of M is reduced in the regime where the instability dominates. As

for the previous plot, each configuration has a field strength of B = 3.0 x 10'6 G.
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same point, suggesting it is a physical instability rather than a numerical one. After
the onset of instability, it can be seen that the growth rates differ slightly for the
different resolutions. By comparing the three gradients, we find that the growth rate
converges with resolution at approximately second order (the intended accuracy of
the code).

Tayler suggests that the toroidal-field instability uncovered in his work should

appear after approximately one Alfvén crossing time, i.e. after

e <2£*> — 2R, L;D, (8.3.1)
using the same notation as in chapter 7. Evaluating this in dimensionless form for
a star with field strength B = 3.0 x 10'6 G gives 74 ~ 77; this is consistent with the
results shown in figure 8.4, where 6 M is seen to begin growing rapidly at ¢ ~ 80—100.
To check that this is not a coincidence, we plot the results for three different field
strengths in figure 8.5. As expected, in each case the instability appears to set in
after one Alfvén crossing time.

Further evidence that we are seeing the Tayler instability is the behaviour of
our m = 1 toroidal-field evolutions in the presence of rotation. This is expected to
reduce the effect of the Tayler instability, which is what we find. In figure 8.6 we
compare the behaviour of 6 M in rotating and nonrotating evolutions. We see that
the instability becomes visible at considerably later times when the rotation rate of
the background star is increased; this is because the growth of the instability has been
slowed by rotation. Comparing the gradients of the three lines in the regime when
the instability dominates any stable modes, we may estimate the growth timescales.
We find that for Q = 0.122 the growth timescale is 14 times that of the nonrotating
case; when ) = 0.237 it is 22 times the nonrotating timescale.

In summary then, when numerically evolving m = 1 perturbations on a back-
ground star with a purely toroidal magnetic field, we find an instability sets in at
early times. We have reason to believe that this is a genuine physical effect, rather
than just a numerical instability, since it bears many of the hallmarks of the insta-
bility described by Tayler [133]. In particular, it sets in after approximately one
Alfvén crossing time (independent of numerical resolution), its growth rate seems to

be convergent and it is reduced by the effect of rotation.
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8.4 A numerical approach to magnetised-fluid preces-

sion

In the rigid-body precession case, the precession period T)e. is related to the rota-
tional period Tq by

Torec = ZS, (8.4.1)
for small wobble angle; see subsection 3.4.1. The precession frequency (in rad s—!)

is therefore

2me
Wprec = TQB . (8.4.2)

Our expectation from the work of section 8.1 is that evolutions of m = 1 perturba-
tions on a rotating magnetised background star should show evidence of precession
— that is, oscillations whose frequency is approximately given by (8.4.2). The idea
is to identify precession-like modes from these evolutions, and compare their fre-
quencies with the rigid-body result (8.4.2); this would then help us understand to
what degree the motion of a rotating magnetised fluid star resembles free precession
— a problem we discussed with an analytic approach in section 3.4.

Unfortunately, we have been unable to convincingly identify oscillation modes
corresponding to magnetised-fluid precession from our evolutions; that is, we have
been unable to track low-frequency peaks that scale linearly with €2 and eg. This is
despite having analytic arguments for the existence of such modes (see section 3.4),
as well as a code which we know performs well for nonmagnetic m = 1 oscillations
(see section 8.2) and magnetic m > 2 oscillations (see chapter 7).

The chief difficulties in resolving precession modes are related to the fact that
the precession frequency is very low — it is proportional to the ellipticity eg induced
by the magnetic field. Although we are able to evolve perturbations on background
fields up to around B ~ 10'7 G, the correponding ellipticity in this maximum case
is still only around 0.02; this gives a precession period of T},... = 50T%. To resolve a
precession peak reasonably accurately, we need to run the code for several precession
periods; let us say 10 is the minimum acceptable number. This means that in the
optimal case, we still need an evolution whose duration is 500 rotation periods. Over
such long evolutions, the energy of the perturbations decreases to a small fraction
of its original value, due to dissipative effects in the code. Hence, any precession-

mode peak in Fourier space may be very weak and indistinguishable from noise.
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A secondary issue is the inherent instability of m = 1 perturbations on purely
toroidal-field backgrounds, although we are able to overcome this by looking at
rapidly rotating configurations.

Although the topic of precession in a magnetised fluid star is an old one, it is
still relevant for our understanding of neutron star dynamics. The fluid interiors of
neutron stars seem to have the necessary physics to undergo precession — strong
magnetic fields and rotation — but few candidates for precession exist among them
(see chapter 3). A better understanding of the internal dynamics of a magnetised
fluid could shed light on this issue, and would also be relevant to discussion of other
classes of star (magnetised-fluid precession was first studied in the context of main-
sequence stars [100, 129]). Although the work reported here and in section 3.4 has
not yet borne fruit, we believe it could form the basis of a more thorough study into

the problem.
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Discussion

Among the many extreme aspects of neutron star physics is the exceptional strength
their magnetic fields can reach. In this thesis we have focussed on two particular
roles magnetic fields can play in neutron stars: the distortions they induce in the
star’s equilibrium structure and their effect on the oscillation spectrum. We have
also discussed how a fluid star may precess by virtue of its magnetic field.

We begin with two introductory chapters: chapter 1 discusses general aspects of
neutron star physics and their potential as gravitational wave sources, whilst chapter
2 is a review of theory and observations related to magnetic effects in neutron stars.
These chapters provide two main sources of motivation for studying magnetic fields
in neutron stars. Firstly, magnetically-induced distortions in neutron stars may
produce gravitational waves of a detectable amplitude; secondly, the inclusion of
magnetic effects is likely to be necessary to understand the observed oscillations of
magnetars.

A third motivating factor for modelling magnetised neutron stars, related to
the other two, is the idea that magnetic distortions could allow a fluid star to
undergo motion similar to rigid-body precession. Chapter 3 is predominantly a
review of aspects of neutron star precession and some analytic work, beginning
with a calculation of the gravitational-wave signal which would be expected from a
precessing neutron star. We present the first-order calculation, following the work
of Zimmermann [148], but note that it would be more interesting to detect second-
order effects in the GW spectrum — from these we should gain direct information

about the star’s wobble angle and asymmetries [17].
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Following the calculation of GWs in a precessing star, we look at the effect of
damping the precession. This leads to one of two final outcomes. The first is that the
star becomes an aligned rotator, with its axis of distortion (for example, the magnetic
axis) aligned with the rotation axis. This is a stationary configuration and hence
does not produce gravitational radiation. More interestingly, precession damping
may result in an orthogonal rotator — the optimal configuration for gravitational-
wave emission.

At the end of chapter 3, we discussed Mestel’s work on magnetised-fluid pre-
cession [100, 99]. The idea is that a fluid star gains some rigidity from a magnetic
field and hence is able to maintain an distortion not aligned with the rotation axis.
Such a star might be expected to undergo motion similar to rigid-body precession.
However, since the star is not completely rigid, the actual motion will deviate from
precession. We argue that Mestel’s approach to understanding this fluid precession
is not fully consistent and relies on assumptions which are not valid in a neutron
star. We conclude by suggesting ways to rectify this, to give a better description of
the dynamics of the magnetised fluid interior of a neutron star.

We continue with analytic work in chapter 4, where we present calculations of
rotational and magnetic distortions. These will give us an indication of what results
to expect from the numerical work of chapter 6. We begin with a perturbative
calculation for the effect of rotation on the density distribution of a N = 1 polytropic
star, then use the tensor virial theorem to find formulae for the ellipticities of a
rotating magnetised incompressible (N = 0) star, following the work of Ostriker
and Gunn [106]. We show that these formulae lead to the result that poloidal fields
induce oblate distortions and toroidal fields induce prolate ones. Although our work
is in the context of incompressible stars, we establish in chapter 6 that the same
result holds for compressible-fluid stars too.

Chapter 5, the last of the three chapters of analytic work, is an introduction to
stellar oscillation modes. We provide calculations of two mode frequencies: those
of the Kelvin mode and the r-mode. Although all the results in this chapter are
well established, they are helpful for understanding the more complicated problem
of modes in a magnetised star; this is studied numerically in chapter 7.

Chapter 6, a numerical study of equilibrium configurations for rotating magne-
tised stars, is the first chapter of the thesis containing a substantial amount of new

material. We begin by looking at the equations of MHD in axisymmetry, showing
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that they reduce to two cases: one describing mixed-field configurations and another
for purely toroidal fields. The mixed-field case is given by the Grad-Shafranov equa-
tion [60, 124] which describes axisymmetric MHD in terms of two scalar functions;
setting one of these to zero gives a purely-poloidal field case. The toroidal field case
is described with only one scalar function. Although it initially appears that there
is considerable freedom in choosing these magnetic functions, we show that virtually
all choices are ruled out on physical grounds. In practice, we are left with only one
general form for each function.

Next in chapter 6, we describe how to convert the equations of axisymmetric
MHD into forms that can be numerically integrated. These are solved iteratively to
find stationary equilibrium configurations. For ease of comparison, we present all
results for the same physical neutron star model, which has the canonical mass of
1.4Mg, and (in the nonrotating, unmagnetised case) a radius of 10 km.

Since our code is non-linear, we are able to look at the realm of validity of
the perturbative regime, where the magnetically-induced distortion € is assumed to
depend linearly on B?; we find that this is a good approximation up to B ~ 107
G. This suggests that a good model of the neutron star’s field is more important
than including O(B*) terms for ellipticity calculations. We give approximate linear-
regime relations using our work and compare these with the analytic work of Haskell
et al. [64].

Starting with a spherical unmagnetised star, we find that in the purely poloidal-
field case the ellipticity initially increases with increasing field strength (as expected),
but only up to some peak value of B ~ 5 x 107 G, corresponding to € ~ 0.8. If
€ is increased beyond this point, the field strength required actually drops again
(though remains of the order of 10'7 G). We believe this behaviour can be explained
by looking at the density distribution of the star as the field strength is increased.
To begin with the star is distorted into an oblate spheroid, but around the point
where € ~ 0.8 the density distribution seems to curve in at the poles. For higher
€ the density around the pole is distorted further, leaving the star becoming more
torus-shaped. This leads us to speculate that at € ~ 0.8 it becomes energetically
favourable for the star to change from a spheroidal to a toroidal profile. Since
the peak-field stationary axisymmetric configuration we have found has B ~ 5 x
10'7 G, a (hypothetical) configuration with higher B may either have no stationary

equilibrium solution or may be non-axisymmetric. For the purely toroidal case, we
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do not see a similar peaking when looking at field strength versus ellipticity; however,
in this case the greatest distortions we are able to calculate are rather smaller —
around € ~ 0.35.

We have argued that the equations solved in chapter 6 should give generic so-
lutions for axisymmetric magnetised stars. However, we find that although it is
possible to find solutions with purely poloidal or purely toroidal fields, the range
of mixed-field solutions is very limited, with the poloidal component dominating.
This result is not peculiar to our work: Ciolfi et al.’s study [31] of mixed fields in
relativistic stars, using a perturbative approach and minimal-energy arguments for
fixed magnetic helicity, found the toroidal component only reached around 10% of
the total magnetic energy.

We suggest, based on the results of our work and a number of other studies
[64, 145, 39, 31], that the boundary conditions play an important role in determining
the relative strength of the two field components. In particular, when the poloidal
component extends outside the star it seems to dominate the total magnetic energy;
when it is confined within the star the toroidal component seems larger (in all cases
the toroidal field has to be confined to avoid exterior magnetic current).

The numerical simulations of Braithwaite [15] suggest that a stable magnetic
field will have a toroidal component between 20% and 95% of the total magnetic
energy — suggesting that none of the solutions that exist within our axisymmetric
formalism are stable. However, these simulations employ a magnetic diffusivity term
(added for numerical stability) which is high in the outer part of the star and for
the exterior; given this, we believe it is difficult to judge the general validity of
Braithwaite’s stability criteria.

Although we regard our boundary condition as the most natural for our infinitely-
conducting fluid star, real neutron stars are not entirely fluid or perfect conductors.
In moving from the fluid interior to the crust and magnetosphere, the resistivity
of the medium increases and hence the boundary condition should be adapted to
reflect this. If the relative strength of the magnetic field components is influenced by
boundary conditions in the way we suggest, then configurations including resistivity
may differ greatly from the perfect-MHD models discussed above.

In chapter 7 we investigate oscillation modes of fluid neutron stars with rotation
and magnetic fields, specialising to the case of purely toroidal background fields.

Using the work of chapter 6 to generate our background configurations means we
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are able to study the oscillation spectrum of rapidly rotating and highly magnetised
stars in a self-consistent manner. This is done by time-evolving the perturbation
equations of the system on these background stars.

When a magnetic field is added to a nonrotating star we find a number of Alfvén
(a-) modes, a class of stellar oscillation restored by the Lorentz force. These modes
are purely magnetic in nature only for a nonrotating background star.

In a rotating magnetised star, we find that the pure a-modes of a nonrotating
star (or equivalently, the purely inertial modes of an unmagnetised star) are replaced
by hybrid magneto-inertial modes, whose character is governed by the ratio of the
magnetic and kinetic energies. The presence of these hybrid modes has parallels with
other work. The evolutions of Passamonti et al. [110] and Gaertig and Kokkotas
[48] found that the pure g-modes of stratified nonrotating stars became hybrids with
inertial-mode character in the rotating case.

In addition to the hybrid magneto-inertial modes, there are also magnetic correc-
tions to the f-mode frequency, although these are very modest (~1%) even for field
strengths up to around 10'” gauss. We also find evidence that the presence of mag-
netic fields reduces the effect of the CFS instability, as suggested by Glampedakis
and Andersson [51].

One feature of magnetic oscillations we do not see in our work is the continuous
mode spectrum of perfect MHD; we find only global, discrete, modes. It is known
that the continuum can be broken by resistivity [70], so one possible explanation is
that the artificial resistivity we employ for numerical stability is having this unin-
tended effect. However, real neutron stars will also have some (albeit small) level of
resistivity, which may give them an entirely discrete oscillation spectrum.

Finally, in chapter 8 we discuss m = 1 evolutions; the work of chapter 7 consid-
ers only m > 2 modes. The main motivation for the work reported in this chapter
is to try to investigate numerically the problem discussed at the end of chapter 3:
how similar magnetised-fluid precession is to the familiar rigid-body form. We be-
gin by showing that to leading order, small-angle precession may be regarded as an
m = 1 perturbation about a rotating magnetised axisymmetric background. The
derived form of the perturbation may then be used as initial data for evolutions,
with the hope that this data will efficiently excite precession-like modes. The idea
is to first establish that such modes exist — i.e., that a magnetised fluid can un-

dergo precession-like motion — and then evaluate the deviation of the actual mode
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frequencies from the rigid-body result. This would then go some way to resolving
the problem considered by Mestel.

In practice, we have not seen convincing precessional modes from the results
of our evolutions. The main difficulty is probably that any such modes will have
very low frequencies — they are proportional to the (small) magnetic distortion —
and hence very long evolutions are needed to resolve a useful number (e.g. 10) of
precession periods. After such long evolutions, the energy of the perturbations has
decreased considerably and this may lead to any precession mode being too weak to
find. Alternatively, it may simply be that the actual motion of a magnetised fluid
differs too much from precession for it to be seen close to the expected rigid-body
frequency.

Despite having no conclusive evidence for precession, the evolutions of chapter 8
have produced other interesting results. Firstly, to confirm that our code performs
correctly we compare our m = 1 inertial-mode frequencies with those of Yoshida and
Lee [146]. We find good agreement for slow rotation, where Yoshida and Lee’s work
is valid, but are also able to look at the behaviour of these modes for fast rotation
— as high as ~ 95% of the star’s break-up velocity. We also find evidence for the
m = 1 Tayler instability of purely toroidal magnetic fields. We believe this is the first
time the instability has been seen from a global analysis; the m = 0 instability was
investigated by Kiuchi et al. [79]. As expected, we find that the instability sets in
after approximately one Alfvén crossing time, is resolution-independent (suggesting
that it is not simply a numerical instability) and is stabilised through rotation.

The work reported in this thesis could be extended in a variety of ways. Chapter
6 describes a method for numerically solving the MHD equilibrium equations; the
code built on this is nonlinear and hence can find equilibria of stars up to break-
up velocity and with extremely strong magnetic fields. In principle, we could also
include any extra physics that is expressible in integral form; we believe, for example,
that models of superconducting stars could be studied in this manner.

In a similar way, the work of chapter 7 could also be extended. Most obviously,
a straightforward modification of the equatorial boundary conditions should allow
us to study oscillations of stars with purely poloidal fields; whilst mixed-field stars
could be investigated by extending the numerical grid. More advanced work might
include time evolutions of magnetised stars with stratification or superfluid effects.

Finally, the work of chapters 3 and 8 could prove the foundation of a more
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thorough study into precession-like effects in magnetised fluid stars. This could
help our understanding of the dynamics of neutron star interiors, in particular.
Of separate interest in chapter 8 is the possibility that we have found the Tayler
instability for toroidal fields using a global perturbative study, where most work has

only uncovered it from a local analysis.



Appendix A

The decomposed MHD

perturbation equations

A.1 The evolution equations

After performing a ¢-decomposition of the perturbation equations described in chap-
ter 7, we are left with a system of fourteen equations in the fourteen perturbation
variables — the components of the flux f, the density perturbation dp and the mag-

netic function 3. These equations are given here for completeness.
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A.2 Artificial resistivity

As described in section 7.3.4, we find that a small amount of artificial resistivity
helps to provide long-term stable evolution of the perturbed magnetic field. The
induction equation may be written as
0B
E:VX(VXB)—’OVX(VXB) (A.2.1)
where 7 is the resistivity. Note that this reduces to the correct perfect-MHD limit
in the absence of resistivity (n — 0) but not in the limit 7 — oo; however only the
former limit concerns us here. By including this resistive term at small magnitude
we are able to stabilise the magnetic evolutions without concern that it will pollute
the results of what is meant to be a perfect-MHD time evolution; when 7 is small,
resistive effects will occur over a long timescale.
Throughout chapter 7 we have worked with 8 = ppdB, but since V x (V x (8/p))

is rather messy we use 0B itself to express the resistive term, the components of

which are:
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