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By Niels Stchedroff 

 

This paper discusses the problem of modelling a continuous supply chain efficiently. 

Some existing modelling systems have poor performance, severely limiting their 

utility. The core of this work is the design, implementation and testing of a more 

efficient computational pattern that is claimed to improve performance. While the 

problem is apparently continuous, analysis suggests that this problem can be 

modelled using an adaption of discrete techniques. A pattern involving a 

modification of the Three Phase Approach discrete-event simulation technique was 

developed. Analysis of the way in which the effects of an event spread within the 

system modelled leads to a method by which excessive re-calculation can be 

avoided, yielding a model that is computationally more efficient. The pattern is then 

used in the investigation of automated design of the structure of the supply chain. 

The production, processing, transportation and consumption of Liquid National Gas 

(LNG) and the associated products form a complex supply chain and were selected 

as the example problem to be the subject of this work. The results demonstrate a high 

level of performance – sufficient speed to make experimentation with supply chain 

structure problems, with a real world level of complexity, practical. 
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Chapter 1.  Introduction 

1.1 Background 

Creating an efficient simulation model of a continuous problem is problematic, since 

digital computers are fundamentally discrete state devices. The Liquid National Gas 

(LNG) supply chain is a good example of such a problem – and of particular interest 

to the author.  

The LNG supply chain is complex, technically challenging, and extremely costly to 

operate. Operations require a very high level of safety, and at the same time, a very 

high level of utilization of equipment. To ensure that planned operations are efficient 

and yet safe, high quality modelling is important – speed is essential to running 

sufficient tests to determine if the projected plan is stable in the face of uncertain 

events. 

Models in the field to date have issues in terms of their performance. In the 

experience of the author, simulating a single year of operation might take seconds of 

computer time. While they are generally good software in the sense of the 

implementations, there seems to be an under use of the established concepts of 

simulation. Performance is generally poor as a result – time slicing systems such as 

Witness (Lanner) are popular. The slow models lead to analysis by intuition, backed 

by a limited number of experiments. 
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The concept behind the current work was to do was to review the existing concepts in 

simulation modelling, select an efficient methodology, implement it and then use it to 

demonstrate the possibilities for automated optimisation inherent in a fast system. 

The intent is to create a modified approach to the problem of modelling the LNG 

supply chain. 

1.2 Aims for this thesis 

Given the above the following objectives were formulated for this work – 

To select a suitable simulation methodology 

As a first step analyse the system to be modelled against the existing simulation 

methodologies. Then use the results to select an approach and devise a pattern to 

apply it to the problem 

To investigate the flexibility and performance of the modelling method 

A key requirement is that the model has sufficient performance to support a very large 

number of runs in a useful period of time – a few hours. This enables the model to be 

used for experimentation and effective testing of the configuration for robustness. 

Select experimentation methods 

Find and implement suitable algorithms to enable effective experimentation of some 

aspects of the supply chain structure and operations. 

Investigate the performance of the methods and the possibilities for automating design 

of the supply chain structure.  

Investigate and select the specific parts of the supply chain structure to apply 

optimization techniques to. This includes which objects and their properties to uses as 

parameters and the way in which the supply chain structure are valued. The last part 

of this section of the work involves investigating the performance of the model and 

the results of the optimisation methods employed, given the choices made. 
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1.3 Original work 

The core of this work is to design, implement and test an efficient environment for 

modelling continuous simulation problems. This technique will be validated and then 

used to investigate automated design. The optimization techniques to be used are not 

novel, but their application to this class of problem is. 

1.4 Structure 

In Chapter 2, the Liquid Natural Gas (LNG) supply chain is explained, along with the 

assumptions made in modelling it and the equations required. While detailed 

knowledge of the LNG supply chain is not vital in understanding the methodology 

that forms the backbone of this work, it provides a good illustration of the level of 

complexity involved in a typical real world problem. Chapter 3 deals with choosing 

the methodology – an examination of existing concepts and the selection of the 

chosen idea. In Chapter 4 the detailed design of the new methodology is examined. 

Chapter 5 presents the details of the implementation of the methodology. Chapter 6 

deals with the design of experiments in automated design using the model. Chapters 7 

& 8 sets out the experiments performed used the model and their results. Chapter 9 

contains the conclusions and the suggestions for future work arising from them.  



 

 - 4 - 

Chapter 2.  The LNG Supply Chain 

The liquefaction of natural gas makes it possible to ship it in liquid form to faraway 

markets, which are out of reach for conventional transport by pipeline due to the 

volume reduction achieved in the liquefaction process.  

An LNG supply chain consists at the highest level of loading ports shipping LNG to 

one or more receiving ports. A typical supply chain is depicted in Figure 1. 

 

Figure 1. Overall Structure 
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A primary driver in this process is time – LNG decays over time as the lighter 

chemicals (technically referred to as fractions), which tend to have the highest energy 

coefficients, boil off. Equally, the equipment used is very expensive and minimizing 

the size of installations can save millions or even billions of dollars. The overall aim 

is to keep material flowing through the system, even if it means shutting down 

individual items – though this is to be avoided if possible. 

The loading ports and receiving port structures are depicted in more detail in Figure 2. 

 

Figure 2.  A simplified view of typical port structures 

In the loading ports, gas is produces by wells, and processed before being sent to the 

main plant. The processing included removing the majority of water, present in the 

gas as vapour.  
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At the plant, the slug catchers manage the arrival of the gas from the pipelines – 

controlling flow, pressure and temperature. The gas is cleaned of impurities such as 

water, carbon dioxide and sulphur compounds. As processed gas enters the plant 

through the Gas Transmission System (GTS), slugs of liquid are trapped by the Slug 

Catcher whilst the processed gas continues to flow into the plant. The liquid recovered 

from the slug catcher is too heavy in composition to be acceptable for inclusion in the 

LNG production. Therefore this liquid or condensate is stored in a dedicated 

condensate tank for subsequent export. 

The heavier hydrocarbon components such as Liquefied Petroleum Gas (LPG) and 

condensate are also removed to meet the very exact quality specifications imposed on 

LNG by its customers 

The gas is then converted into LNG by the liquefaction trains – gigantic refrigeration 

facilities. There are two refrigeration cycles in use at an LNG Plant. The first cycle, 

the Pre Cooling Cycle uses pure propane as a refrigerant and chills the natural gas to 

minus 35 degrees centigrade. The second cycle, the Liquefaction Cycle, uses a 

mixture of components (Nitrogen, Methane, Ethane and Propane in varying 

proportions). This refrigerant called Mixed Refrigerant chills and liquefies the Natural 

Gas from minus 35 degrees centigrade to minus 161 degrees centigrade. Alternatively, 

the second cycle can be of the cascade type, where each of the components are used 

separately in a sequence (Finn, A.J, Johnson G.L, Tomlinson, T.R. 2000). The reason 

for cooling to liquid in stages is to separate the fractions being removed as they 

liquefy and to make the refrigeration process more efficient.  

The liquefied gas is stored at -160ºC in above ground tanks. When ships are arrive, 

the LNG is pumped over long jetties to the berths where the ships are waiting – the 

ships are too big to tie up at a quay directly.  Sometimes LNG is directly piped to 

customers at the production facility – but this is relatively rare. 

The receiving ports are much simpler – the LNG is taken ashore and stored. From 

there it is sent to customers, either in liquid form or converted back into gas. 
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Fin(1)  

Fin(n)  

Lc  

Fin(2)  

Fout(1)  

Fout(2)  

Fout(3)  

Fout(m)  

:  

: 

:  

: 

2.1 Object structure and States 

In the supply chain structure all the key objects to be modelled possess a very similar 

basic structure. Figures 1& 2 show that within the ports are a number of substructures, 

such as tanks, pipelines and processing equipment. Each item can be considered to 

have the following basic properties illustrated in Figure 3 & Table 1. This is the level 

that the operations of the supply chain will be modelled at – flow in and out of 

objects, with their internal working represented only by a contents level. 

Figure 3. Basic Item 

Table 1. Basic Item Properties 

Fin(n) Flow into the object from another 

object per unit of time 

Fout(m) Flow out of the object to another 

object per unit of time 

Lc  Current level in the object. 

 

Each object is assumed to have one input and one output point. However, multiple 

objects can be attached to each such point. Note that pipelines and connectors are also 

treated as similar objects under this definition. This approach has the advantage of 

greatly simplifying the executive – the structure to handle this aspect of object 

behaviour can be implemented once and inherited by each object requiring it. 
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An important point is that the rates of flow are considered to be constant, rather than 

ramping up and down over a period of time. While this might appear approximate, the 

rate of change in flow in real life is very rapid compared to the time scale at which the 

modelling takes place. If it takes a minute or so to go from full flow to shutdown and 

visa versa, this is close to instantaneous when considering a model on the hourly or 

daily scale. 

Given the linear nature of operations, the level at any future point can be calculated 

as: 

           

 

   

         

 

   

             

where tf = the future time point, tc = the current time point, lc = the material level at 

the current time, lf = the material level in the object at time tf. 

From the above, we can see that the following basic states that need to be considered. 

2.2 Object Maximum  

In this state, the object has been filled to its maximum internal capacity. As a result, 

the inputs must be scaled back so that: 

       

 

   

         

 

   

 

Dividing the normal total output by the total input that the connecting objects can 

provide does this. This gives the ratio of input that is possible to the ratio of input that 

is being supplied. For example, if the total input can only be 60% of the possible 

amount, then each input is scaled back to 60% of the possible amount: 
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2.3 Object Minimum 

In this state the object has reached the minimum internal level. As a result, output 

must be scaled back to match input, as in the Object Maximum. This is done (as 

before) by calculating the ratio between the total possible and the total actual, and 

using it to scale the outputs accordingly: 

                    

 

   

         

 

   

          

2.4 Object in restricted operation 

In this state the object can only pass through a proportion of its capacity. Outputs are 

scaled back accordingly: 

                     

 

   

    

where e is the effect of the restriction. 

2.5 Object in normal operation 

The object has space from all the input from the connecting objects, and capacity to 

satisfy all the outputs. 

2.6 Ships 

Ships can be considered as above when they are in port, loading or unloading. In the 

former case, there are no outputs, in the latter, no inputs. Leaving and entering ports 

creates an event, which disconnects the ship, causing the jetties to recalculate their 

in/out flow rates.  
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Chapter 3.  Choosing a Methodology 

3.1 Preamble 

This chapter examines the historic usage of simulation in capacity and operations 

planning in the LNG industry, examines the general structural issues involved with 

simulating continuous systems, discusses the various types of methodologies and 

finally, picks an approach. 

3.2 Historic usage of simulation in the LNG field 

Operations in the LNG industry are carefully planned in advance, typically by 

creating an ADP (Annual Delivery Program). This is a schedule for production and 

consumption of LNG, with detailed information on the timing and sizing of the ship 

cargos required.  

Simulation models are used to construct the delivery program in two phases. In the 

first, an ADP is generated with all probabilistic events are temporarily removed from 

consideration and replaced with a fixed contingency (extra time) attached to each ship 

voyage. This is generally referred to as the “Generate” phase. In the second, the ADP 

in question is then tested for robustness by running the model with the random events, 

and detecting whether the model stayed within the ADP. This is generally known as 

the “Test” phase. The results from the second stage can be used to modify the 

contingencies, or the basic structure of the model and the process is repeated. 
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3.3 Structural Issues 

The equations discussed in the previous section are extremely simple. The events that 

cause state changes occur at discrete points in time. This means that calculating the 

future states of the system does not require solution of differential or integral 

equations. In this case continuous methods are not required, leading towards selection 

of a method based on discrete modelling techniques. The differentiation between the 

discrete and continuous simulation is somewhat artificial, in any case. In particular, 

since digital computers cannot operate truly continuously, we can only produce the 

illusion of continuity, as in AweSim, Extend and Witness (Pidd 1998). For example, 

WITNESS can give the impression that it is operating in a truly continuous fashion. It 

is, in fact, calculating values on a next-event basis.  

The overhead of providing threaded program execution for continuous modelling is 

quite high, particularly in the case of complex systems, where large amounts of data 

will be required to be moved in and out of memory. 

In the case of FLEET, the ADGENT models for Shell and some systems created by 

Lanner in WITNESS, shipping systems are modelled in this discrete manner, using 

changes in state at specified times to represent the various operations. 

Performance is an important concern. When validating a configuration or using 

experimentation techniques to create a configuration hundreds or thousands of runs 

may be required. Users of this kind of model have also expressed an interest in being 

able to manipulate the results generated by the system and using the model to validate 

the changes. To be usable this would require nearly instantaneous recalculation. 

The complexity and the stochastic nature of system being modelled require that 

simulation should be used – mathematical programming approaches would not be 

suitable (Pidd 1998). 

3.4 Approaches for Discrete Event Simulation 

The transaction-flow worldview often provides the basis for discrete-event simulation. 

A system is visualised as unit of “traffic” that move from point to point, competing 
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for scarce resources. Discrete event simulation may be defined as one in which the 

state of the model changes only at discrete, but possibly random, set of simulated time 

points. Two or more “traffic units” often have to be dealt with at the same time. This 

is done serially at that time point (Scriber & Brunner, 2000). 

There are four basic methods to be considered– Event, Process and Activity based 

approaches (Mitriani 1982 & Pidd 1998) and Three Phase Approach (Pidd 1998). It 

should be noted that the approaches are equivalent in the functional sense – a given 

model can be implemented in any one (Mitriani 1982 & Pidd 1998). 

The following as some example of the use of Discrete Event Simulation in the 

literature – 

 Beck & Nowak (Beck & Nowak 2000) used discrete event modelling 

combined with activity based costing to create costing models for 

manufacturing environments. 

 Burgsteden, Joustra, Bouwman & Hullegie (Burgsteden, Joustra, Bouwman & 

Hullegie, 2000) used discrete event simulation to model road traffic at Schipol 

airport. 

 Schunk & Plott (Schunk & Plott, 2000) used Micro Saint to create a discrete 

event model for the manufacturing process for vehicles. 

 Andersson & Olsson (Andersson & Olsson, 1998) used Taylor II to construct a 

discrete event model of an assembly line, for capacity & operations planning 

purposes. 

 Kiran & Cetinkaya & Og (Kiran & Cetinkaya & Og, 2000) used ProModel to 

construct a discrete event simulation model of a new international terminal for 

Istanbul Airport. 

 Swedish (Swedish, 1998) used ProModel 4.0, a discrete system to model a 

barge transportation problem. 

 Kyle & Ludka (Kyle & Ludka, 2000) used ProModel to create a discrete 

model for the furniture manufacturing industry. 
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 Trone, Guerin & Clay (Trone, Guerin & Clay, 2000) used Extend to create a 

discrete model for the transportation, processing and disposal of radioactive 

waste. 

 Bruzzone, Giribone & Revetria (Bruzzone, Giribone & Revetria, 1999) used 

C++ to build an object oriented, discrete simulation model for shipping 

container terminals. 

 Daum & Sargent (Daum & Sargent, 1999) examined discrete event simulation 

paradigms in their investigation of scaling and reuse in object oriented 

systems. 

 Joines & Roberts (Joines & Roberts 1999) based their examination of object 

oriented techniques around event and process based systems, and used C++ to 

illustrate methods. 

3.4.1 Event based 

This was once a very common approach, primarily due to its use by SIMSCRIPT 

(Russell 1987). Since latter versions of SIMSCRIPT emphasised the Process based 

approach (see below), this method has fallen out of favour. 

The event based model works by constructing event routines based on the activity-

cycle diagrams for the various parts of the system being modelled. The executive 

creates a list of the events in these routines that are due to occur and executes them. 

When the next event in the list is reached, it is executed, the system clock is advanced 

and a check is made to see if new future events need to be added to the list (Law & 

Kelton 2000). 

The advantage of this approach compared to others is speed (Pidd 1998) – however, 

the weakness is in considering interaction between parts of the model. The advantage 

of this approach is in not checking all the conditional events every time an event 

executes. Instead all the results of an event occurring are dealt with in the event 

routine. This means that all such consequences must be foreseen and built into the 

model. 
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3.4.2 Process based 

In this approach, for each class of entity, the life-cycle (process) of the entity is 

considered (Law & Kelton 2000). For example, an LNG tanker sails between ports, 

docks, loads, unloads etc. Each of these operations of states forms a part of life-cycle. 

The job of the executive, in this case, is to move each entity forward through its 

process, if possible. Underlying the system are lists for future events and for entities 

that have been suspended due to unconditional delays (conditional only on time), and 

conditional (waiting for other specific conditions to occur) (Schriber & Brunner, 

2000). 

Process based simulation is used by SIMCRIPT II.5 (Russell, 1987) and is quite 

common (Pidd 1998). The following are some example of the use of Process based 

systems in the literature – 

 Takakuwa (Takakuwa 1998) used ARENA/SIMAN, a discrete process based 

system to examine methods for transportation/inventory systems. 

 Takakuwa, Takizawa, Ito & Hiraoka (Takakuwa, Takizawa, Ito & Hiraoka, 

2000) used ARENA/SIMAN, a discrete process based system to model the 

operation of warehouses. 

 Golkar, Shekar & Buddhavarapu (Golkar, Shekar &Buddhavarapu, 1998) used 

C++ and SIMAN to construct a discrete, process based system. 

 Kilgore & Burke (Kilgore & Burke 2000) used Java to create a process based, 

object oriented modelling system. 

Huang & Iyer (Huang & Iyer 1998) proposed that process oriented discrete models 

should be converted to event based, in order to improve performance. The analysis of 

their results showed that the equivalent event based model was not only considerably 

quicker running - more importantly, for the process based approach the time taken 

increased non-linearly with complexity, while the event based method did not.  

Perumalla & Fujimoto (Perumalla & Fujimoto 1998) looked at increasing 

performance in process-oriented views. They further argued in favour of process-
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based models, but suggest that the features of the process-oriented model should be 

limited to the point where the model is in fact nearly an event based one. This is done 

to improve performance. 

Pidd (Pidd 1998) pointed out that the process-based approach is broadly equivalent to 

the Three Phase Approach – the conditional and unconditional events have their 

equivalent in the Bs and Cs, and the executive will uses a phased approach. However, 

process based approaches are vulnerable to deadlock. Schriber & Brunner (Schriber & 

Brunner 2000) comment on the key nature of the resources management system in 

discrete simulation. 

Pidd (Pidd 1998) takes the view that for complex systems, the Three-Phase approach 

is preferable, largely for this reason.  

3.4.3 Activity based 

In this approach, the focus is on the activities that are performed in the system, each 

activity has a test head that determines whether the activity can execute. The 

executive scans the activities to find the simulation time at which the next activity (or 

activities) can start, moves the clock to that time, enables the activities and then 

moves to the next suitable time point. 

The activity-based approach is not used very much. A major drawback is that 

simulation programs written using this technique are slower (Pidd 1998). The cause is 

that there is no differentiation between the types of activities – all must be scanned at 

each step. In the Three Phase Approach, which has largely replaced this methodology, 

the activities are separated into Bs (fixed time events) and Cs (events conditional on 

resources etc.). Only the Cs (which are generally fewer) are scanned (Law & Kelton 

2000). 

When Perumalla & Fujimoto (Perumalla & Fujimoto 1998) reviewed the main types 

of discrete simulation – event, activity and processed oriented, they almost ignored 

activity-based methods. 

Activity based models are still used, however – Shi (Shi 2000) discuses an activity 

based, object oriented modelling approach to problems in the construction industry. 
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3.4.4 Three Phase Approach 

The core of the three-phase approach is dividing the way an activity starts into two 

categories – Conditional and Bound. Bound events occur at particular, pre-computed 

times. Conditional events are affected by other factors, such as the availability of 

resources. 

The executive operates in three phases – the first (A phase) finds simulation time 

point when the next event will occur. The second (B phase) executes all the Bound 

tasks that due to occur. The third phase (C Phase) tries all the outstanding Conditional 

events, to see if the required conditions have been met (Law & Kelton 2000; Pidd 

1998). 

There are several advantages to this approach -  

 The dead locking problems of the process-based approach are avoided.  

 The inefficiency of the activity based approach trying the test head for every 

activity is avoided.  

 The complexity of modelling interaction in the event based method (where 

each event routine must contain the actions required to deal with interaction), 

is dealt with in the handling of the conditional events. 

Examples of this approach being used include:  

 Ioannou (Ioannou 1999) using Three Phase Approach simulation to model 

construction work.  

 Marzouk & Mosehli (Marzouk & Moselhi 2000) used C++ to construct a 

Three-Phase system to model earth moving in construction.  

 Pidd & Castro
 
 (Pidd & Castro

 
, 1998) used C++ and Three Phase Approach 

modelling techniques in their examination of problems relating to large-scale 

modelling. 
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3.4.5 Performance 

Several simulation systems have been created in the LNG supply chain modelling 

area – most notably, FLEET for Lloyds of London and ADGENT for Shell. In the 

former case, the performance of the model is such that that for reasonably complex 

models, runtime is in the order of hours. ADGENT is somewhat better. While in both 

cases the performance is adequate, it is my belief that neither has optimised the 

fundamental method of modelling, relying instead on the power of the hardware they 

are run on. Lanner, who are best known for their work on the Witness modelling 

environment, appear to have used time-slicing (the system steps through simulation 

time in regular, fixed increments). This results in extremely slow operation for any 

reasonable level of complexity, particularly when modelling systems that are 

continuous in nature. 

A major aim of this work is to construct a computationally efficient modelling system. 

As we have seen, both Huang & Iyer (Huang & Iyer, 1998) and Perumalla & 

Fujimoto (Perumalla & Fujimoto, 1998) commented extensively on the efficiency of 

the process based approach – in the former, arguing that processes based systems be 

translated into event based ones, and in the second, arguing that by limiting the 

process based approach (to the point of becoming an event based model) higher 

performance can be achieved. The activity-based method is slower inherently – since 

it indiscriminately scans for the start of the next activity, rather than jumping to the 

time of the next event in a list (Pidd, 1998; Law & Kelton 2000). 

The above tends to argue for the adoption of either the event based or three-phase 

methods, which are more efficient (Huang & Iyer, 1998; Pidd, 1998). 

3.4.6 Conclusions on the selection of methodology 

To create a reasonably efficient system, two principles need to apply  

 The level of detail must be variable – if the user wants to build an elaborate 

system of breakdowns, representing the complex systems aboard each tanker, 

he/she is free to do so. By the same token, if the user wants to build a simpler 

model, the computational load should reflect that 
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 The method selected should work on the principle of only doing something if 

there is an event – periodic recalculations (such as in time-slicing) would lead 

to an excessively slow system. 

As previously discussed, the boundary between discrete and continuous modelling is 

to a certain extent, an illusion. Modelling of continuous systems on a digital computer 

is accomplished by computing the values of simulation-time dependent equations at a 

given point. In this case, the nature of the problem indicates a discrete approach. 

Of the discrete system the most flexible and efficient for a reasonable order of 

complexity is the three-phase approach. The time handling is flexible, utilising a 

Future Event List (FEL), and it avoids the complexity of entity interaction associated 

with the event scanning approaches (Banks, Carson, Nelson & Nicol, 2000). As 

previously mentioned several authorities have given the opinion that process based 

systems are less computationally efficient than event based. 

The recommendation therefore is a discrete simulation system, based on the three-

phase approach. 

The key to the three-phase approach is to divide the way an activity starts into two 

event types – Conditional and Bound. Bound events occur at particular, pre-computed 

times. Conditional events are affected by other factors, such as the availability of 

resources. The performance of a simulation model depends very much on an effective 

choice of conditional events, and we discuss this in the next section. 
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Chapter 4.  Modifications to methodology 

The methodology selected, Three-Phase requires some modification to make it 

suitable for use with respect to this problem. This section describes these 

modifications and the reasons that they were made. 

4.1 Basic Concepts 

The executive operates in the traditional Three Phase Approach manner – the first (A 

phase) finds simulation time point when the next event will occur. The second (B 

phase) executes all the Bound tasks that due. The third phase (C Phase) tries all the 

outstanding Conditional events, to see if the required conditions have been met (Law 

& Kelton, 2000; Pidd, 1998). 

The flow through an object is subject to a single limit, for both inputs and outputs. 

This consists of a maximum and minimum flow rate. If the minimum flow rate is not 

met the object must be completely shut down. 

Breakdowns, maintenance etc. are modelled by reducing the maximum flow value – 

to zero, if required. 

4.2 B Events 

B events in the classic Three-Phase model are those that have their start or finish time 

determined in advance (Pidd 1998). This can apply not only to inherently 

deterministic events such as darkness and tides but also probabilistic events such as 
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weather and breakdowns. Pre-computing the time of the next occurrence, using a 

given distribution, can accomplish this. 

In this work the following B events have been implemented: 

Table 2. B Event Types 

BBreakdown A breakdown has occurred on the object affecting flow 

through it. Used in the Test mode of operation of the model 

only. 

BDemand Seasonal demand variation – demand for LNG varies 

between Summer and Winter (for example). Used in both 

the Generate and Test modes for the system 

 

At the start of a run, the B events will be computed and a list of them constructed, 

ordered on start time. In this model B events are actually pairs - a start and an end 

event. Thus in our case a B event is in effect two events. This innovation was driven 

in part by performance – at a given point in time, several B events may be acting on a 

single object. 

B event

B event

B event

B event

Time
 

Figure 4. Original B events affecting the object 

Each object has one or more performance parameters that can be affected by events. 

In this thesis we will be considering events effecting flow of material. This effect will 

continue for an amount of time that is generally probabilistic and hence can be 

calculated before the start of the run. From this it can be seen that combining the 

overlapping B events is possible, and will simplify event handling. Figure 4 shows an 
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example of the original events and Figure 5 shows the corresponding runtime 

versions. 

 

Merged B event

Merged B event

Time
 

Figure 5. Runtime B events for object 

 

Simultaneous events are additive – if two events are occurring at the same time on the 

same object, then the total effect is the sum of the individual effects (Figure 6). 
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Figure 6. B Events for a single object 
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A major concern with this modelling method is speed. For this reason, the obvious 

method of scanning through the events, determining the next one to occur was 

rejected.  

The way that the B events are handled is determined by the way in which the model is 

intended to be used. There are two modes to be considered: 

Table 3. Modes of operation for the model 

Generate A plan of operations is constructed. Probabilistic events are 

represented by adding a fixed amount of time to each ship voyage. 

Only demand change B events are used. 

Test The probabilistic events are turned on, and the model is run a 

number of times, to discover whether the plan is feasible, and if not, 

where it may fail. So far, the breakdown events have been modelled. 

 

The B events themselves are not typically a subject of experimentation when 

designing LNG systems – they are a pre-condition of the equipment used, the tides 

and the weather.  

4.3 C Events 

The C events, in the Three Phase Approach, are those are conditional in nature – that 

is they occur as a result of internal operation of the model. For the LNG supply chain 

model they are the key to the construction of an efficient model. The list of C events 

is given in Table 4. 
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Table 4.  C Event Types 

CFull Object reaches maximum internal level 

CEmpty Object reaches minimum internal level 

CNormal Object returns to a situation where it is neither at the 

maximum or minimum internal level 

CFilling_To_Normal Object has completed refilling back to the normal minimum 

level 

CEmptying_To_Normal Object has completed emptying back to the normal 

maximum level after having exceeded it. 

CEnd_Laden_Voyage Specific to ships – a laden voyage (to a receiving port) has 

been completed. 

CEnd_Empty_Voyage Specific to ships – an empty ship arrives at the loading port. 

CAttach Specific to ships – a ship has actually attached to the flow 

system at a port. 

 

In the classic Three Phase Approach C events generally have a matching B event. Due 

to the nature of this model, it is however, possible to compute when these events will 

occur (and when the event effect will end) at a given time point unless another event 

occurs before this. 

If such an event occurs the matching B event would have to be recomputed 

dynamically during the course of the run – which would make them difficult to handle 

as standard B events. For this reason they are handled as another C event. 

It is possible to consider the C events in this way because the operation of the model 

is deterministic – unless an event occurs, the future state of the model can be 

calculated by applying the time elapsed to the equations governing flow. The time to 

the next C event is also recalculated if the object has been affected by change to a 
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neighbour, or a probabilistic event (a B event), such as weather or a breakdown has 

affected the operation of the object. 

4.4 How the effects of an event propagate 

Let us consider the case of a CFull event affecting a static (non-ship) object connected 

to a supply chain, such as in Figure 7. 

The model reduces inflow into the object affected. This in turn affects the objects that 

feed the object in question. In particular it will affect the rate at which these objects 

are filling or emptying themselves. In other words, the time to the next CFull, CEmpty, 

CFilling_To_Normal or CEmptying_To_Normal  is modified. 

This does not directly affect the other items in the supply chain yet. Since we are not 

trying to predict the effect of one C event on the timing of another, we can consider 

them in isolation – what we are interested in is the time of the next event that will 

occur. 

Figure 7. Objects Affected by the Event  

This also holds good for all other C events – in fact for both B and C events. Consider 

that in each case the events modify the operating capability of an object. When 

estimating the time of the next C event for each object, only the current input and 

Object affected 

Object is 

already full 

 

Extent of effect 

Input and Output affected 

Unaffected 
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output values need to be considered. This is because the estimates for the times of the 

C events are updated when they are affected by a change in object performance. 

Note the case of a neighbouring object inputting into the object affected by the C 

event that is full itself. Here, the input rate into the neighbouring object is affected – 

in turn affecting its inputs. This chain of effects will only continue so far as the effects 

pass through the objects, effecting further objects. 

This is fundamental to the performance of this approach – we only need consider the 

effect of an event on the neighbours of the object affected, as well as the object itself. 

This means that a blanket recalculation of C events is not necessary every time an 

event (both B and C type) executes. 

After an event (of either type) occurs the C events for that object and the objects 

immediately affected by it are recalculated.  

4.5 The Executive 

The approach is the standard Three-Phase model, with some modifications to the 

events types and their handling. This section discusses the modifications. 

4.5.1 Pre Processing 

The ordered list of B events is created, and all the objects are scanned to find the first 

C event(s) – there may be more than one C event occurring at this time point, of 

course. 

4.5.2 B Phase 

Currently only one type of B event is implemented – BFlow which affects flow through 

the object (see figure below). The change is executed, and then the object status is 

checked. If there is too much input, reduce it. If there is too much output, reduce it. If 

the event has less effect than the previous BFlow on the object, try to increase the flow 

into the object. This comes into play when a B event ends – when the end event is 

reached, the model attempts to restore flow. 
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Figure 8. Handling BFlow Event 
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Table 5. B event code 

 

/** 

 * Deal with a B event 
 *  

 * @param clock 

 *            The time 
 */ 

public void bFlow(final double clock) 

{ 
 updatePotentialChanges(); 

 final double effect = getLargestEffect(); 

 final double oldEffect = getBEventModification(); 
 setBEventModification(effect); 

 final double current_inputs = getCurrentFlowFromInputObjects(); 

 final double current_outputs = getCurrentFlowIntoOutputObjects(); 
 double required_change_in = 0.0; 

 double required_change_out = 0.0; 

 
 // If we have too much flow in, reduce if possible 

 if (current_inputs > getMaxFlowIn()) 
 { 

  required_change_in = current_inputs - getMaxFlowIn(); 

 
  decreaseFlowIn(required_change_in); 

 } 

 
 // If we have too much flow out, reduce if possible 

 if (current_outputs > getMaxFlowOut()) 

 { 
  required_change_out = current_outputs - getMaxFlowOut(); 

 

  decreaseFlowOut(required_change_out * getConversionFactorUp()); 
 } 

 

 // Is the effect of the new B event less (i.e. closer to 1.0) 
 if (effect - oldEffect > 0) 

 { 

  double change_in = getPotentialIncreaseInFlowInFromObjects(); 
  final double max_change_in = getMaxFlowIn() - current_inputs; 

  if (change_in > max_change_in) 

  { 
   change_in = max_change_in; 

  } 

 
  increaseFlowIn(change_in); 

 

  if(hasMaxContents()) 
  { 

   double change_out = getPotentialIncreaseInFlowOutToObjects(); 

   final double max_change_out = getMaxFlowOut() - current_outputs; 
   if (change_out > max_change_out) 

   { 

    change_out = max_change_out; 
   } 

 

   increaseFlowOut(change_out); 
  } 

 } 

 
 updatePotentialChanges(); 

 getAffectedObjectsInSim().add(this); 

} 
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4.5.3 C Phase 

The C events generally relate to flow – the apparent exception is the CAttach event 

when a ship arrives at a port. In fact this is handled as a flow change event as well – 

the effects are all to do with flow into the neighbouring objects. 

4.5.3.1 C Phase Object States 

An object can have following states relating to the C events: 

Table 6. C Event Related Object States 

CFull  The object has been filled to its maximum capacity. This means that 

output from the object must be greater or equal input. 

CEmpty The object has reached its minimum internal level. This means that 

input must now equal of exceed output. 

CNormal  The object has an internal level that is between the maximum and 

minimum levels for normal operations (see below) 

CEmptying_To_Normal The object hasn’t yet emptied to the maximum level for normal 

operation (Nmax) 

CFilling_To_Normal The object has an internal level that has risen above, but has not 

reached a given level for the minimum level for normal operation yet 

(Nmin) 

CAttach A new object is attached to the model 

 

Reaching each object state is a C event (Pidd 1998); when they occur, a recalculation 

is undertaken for that part of the model. After each change in state, the time to the 

next state change (C event) is calculated. The following figure shows the state 

transition diagram for the state changes. 
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Figure 9. Object State Transition Diagram 

This is a valid approach because the operation of the model is deterministic. The time 

to the next C event is also recalculated if the object has been affected by change to a 

neighbour, or a probabilistic event (B event), such as weather or a breakdown has 

affected the operation of the object. 

The reason for the emptying and filling states is to prevent the system oscillating 

between Full /Empty and the Normal state, while never giving the structures time to 

return to relatively normal levels. 

The object states relate to the level in the object. These are important because 

reaching specified levels triggers some state changes. These are given in Figure 10. 

 

 

Figure 10. Object Levels 
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The following table shows how these object levels relate to the states outlined above. 

Table 7. Object Level & Corresponding States 

Level Description New State 

LMax The maximum level for the object. If it is exceeded, the object is shut down CFull 

NMax The level at which normal operations resume when the level drops to this 

point, after the object has reached LMax 

CNormal 

Lc Current Level N/A 

NMin The level at which normal operations resume, after the level reaches this point 

after the object level has hit LMin 

CNormal 

Lmin The minimum operating level for the object – when it is reached the object is 

shut down. 

CEmpty 
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4.5.3.2 Handling States when they are reached 

4.5.3.2.1 CFull 
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Figure 11. Handling CFull 
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Initially, the objects potential changes are updated. Next the required change in flow 

is calculated – this is calculated as the amount required to stop the object contents 

increase plus an extra factor (25% as a default), so that the object will start to empty.  

If the required change in flow comes out as zero – the object is full but stable, then the 

required factor is set as the possible decrease in flow out.  

The change in flow required is made by – 

1. First the flow out is increased, if possible,  

2. If more is required, the flow in is decreased – again, if possible.  

3. If the object is now emptying the status is updated. Otherwise the item is shut 

down. 

Table 8. Code for handling CFull 

 

 /** 

  * @throws GenesisRunException 

  * @throws AbortException 

  */ 
 public void cFull() throws GenesisRunException, AbortException 

 { 

  // Set object status 
  setStatus(FlowStatus.SHUT_IN_FULL); 

  updatePotentialChanges(); 

  final double rateOfChange = getRateOfContentsChange(); 
  double required_change = rateOfChange; 

 

  final double rs = getResettingFactor(); 
  final double max = getMaxFlow(); 

 

  final int fc = (int) (rs * max); 
  required_change += fc; 

 

  // The object is full but stable - try to increase flow out 
  if (rateOfChange == 0.0) 

  { 

   required_change = getPotentialIncreaseInFlowOutToObjects(); 
  } 

 

  cFull(required_change); 
 } 

 

 /** 
  * @param requiredChange 

  * @throws GenesisRunException 

  * @throws AbortException 
  */ 

 public void cFull(double requiredChange) throws GenesisRunException, AbortException 

 { 
  // If the object is actually filling... 

  if (requiredChange > 0) 

  { 
   requiredChange = increaseFlowOut(requiredChange); 

 

   requiredChange = getRateOfContentsChange(); 
 

   // if the required change was not entirely done by 
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   // increasing the output, try decreasing input. 

   if (requiredChange > 0) 
   { 

    requiredChange = decreaseFlowIn(requiredChange); 

   } 
  } 

 

  // Have we succeeded? 
  if (isEmptying()) 

  { 

   setStatus(FlowStatus.EMPTYING); 
  } 

 

  if (isStable()) 
  { 

   setStatus(FlowStatus.NORMAL); 

  } 

 } 

 

 

4.5.3.2.2 CEmpty 

First the objects potential changes are updated. Next the required change in flow is 

calculated – this is calculated as the amount required to stop the object contents 

decrease plus an extra factor (25% as a default), so that the object will start filling. If 

the required change in flow comes out as zero – the object is full but stable, then the 

required factor is set as the possible decrease in flow out.  

First the flow in is increased, if possible, then the flow out is decreased if possible. If 

the object is now filling the status is updated. Otherwise the item is shut down. 

Table 9. Code for handling CEmpty 

 

 /** 

  * @throws GenesisRunException 
  * @throws AbortException 

  */ 

 public void cEmpty() throws GenesisRunException, AbortException 
 { 

  // Set object status 

  setStatus(FlowStatus.SHUT_IN_EMPTY); 
  updatePotentialChanges(); 

  final double rateOfChange = getRateOfContentsChange(); 

  final double rs = getResettingFactor(); 
  final double max = getMaxFlow(); 

 

  double required_change = -rateOfChange; 
  final int fc = (int) (rs * max); 

  required_change += fc; 
 

  if (rateOfChange == 0.0) 

  { 
   required_change = getPotentialIncreaseInFlowInFromObjects(); 

  } 

 
  cEmpty(required_change); 

 } 
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 /** 

  * @param requiredChange 
  * @throws GenesisRunException 

  * @throws AbortException 

  */ 
 public void cEmpty(double requiredChange) throws GenesisRunException, AbortException 

 { 

  // If the object is actually emptying... 
  if (requiredChange > 0) 

  { 

   requiredChange = increaseFlowIn(requiredChange); 
 

   requiredChange = -getRateOfContentsChange(); 

 
   // if the required change was not entirely done by 

   // increasing the input, try decreasing output. 

   if (requiredChange > 0) 
   { 

    requiredChange = decreaseFlowOut(requiredChange); 

   } 
  } 

 

  // Have we succeeded? 
  if (isFilling()) 

  { 

   setStatus(FlowStatus.FILLING); 
  } 

 

  if (isStable()) 
  { 

   setStatus(FlowStatus.NORMAL); 

  } 
 } 
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Figure 12. Handle CEmpty 
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4.5.3.2.3 CEmptiedToNormal 

This area differs from the basic CEmpty handling
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Figure 13. Handle CEmptiedToNormal 
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This event is handled in a very similar manner to CEmpty – the difference is at the end 

the object may be emptying, stable or filling.  

Table 10. Code for handling CEmptiedToNormal 

 

 /** 

  * Emptied until the object is at the normal level 
  */ 

 public void cEmptiedToNormal() 

 { 
  setStatus(FlowStatus.NORMAL); 

  updatePotentialChanges(); 

  double required_change = -getRateOfContentsChange(); 
 

  if (required_change == 0.0) 

  { 
   required_change = getPotentialIncreaseInFlowInFromObjects(); 

  } 
 

  // If the object is actually emptying... 

  if (required_change > 0) 
  { 

   required_change = increaseFlowIn(required_change); 

 
   // if the required change was not entirely done by 

   // increasing the input, try decreasing output. 

   if (required_change > 0) 
   { 

    required_change = decreaseFlowOut(required_change); 

   } 
  } 

 

  // Have we succeeded? 
  if (isFilling()) 

  { 

   setStatus(FlowStatus.FILLING); 
  } 

 

  if (isStable()) 
  { 

   setStatus(FlowStatus.NORMAL); 

  } 
 } 
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4.5.3.2.4 CRefilled 

This area differs from the basic CFull handling
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Figure 14. Handling CRefilled 
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This event is handled in a very similar manner to CFull – The difference is that the 

final state may be emptying, stable or filling. 

Table 11. Code for handling CRefilled 

 

 /** 

  * Refilled to the normal level 
  */ 

 public void cRefilled() 

 { 
  setStatus(FlowStatus.NORMAL); 

  updatePotentialChanges(); 

  double required_change = getRateOfContentsChange(); 
 

  // The object is full but stable - try to increase it 

  if (required_change == 0.0) 
  { 

   required_change = getPotentialIncreaseInFlowOutToObjects(); 
  } 

 

  // If the object is actually filling... 
  if (required_change > 0) 

  { 

   required_change = increaseFlowOut(required_change); 
 

   // if the required change was not entirely done by 

   // increasing the output, try decreasing input. 
   if (required_change > 0) 

   { 

    required_change = decreaseFlowIn(required_change); 
   } 

  } 

 
  // Have we succeeded? 

  if (isEmptying()) 

  { 
   setStatus(FlowStatus.EMPTYING); 

  } 

 
  if (isStable()) 

  { 

   setStatus(FlowStatus.NORMAL); 
  } 

 }  
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4.5.3.2.5 CAttach 
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Figure 15. Handling CAttach 

The object is connected to the model. If it has inputs, it is handled as an empty object 

– which will cause flow into it. If it has outputs it will be handled as a full object – 

which will trigger increased flow out. In both cases the objective is to increase the 

flow to the maximum possible, given the maximum flow rates of the objects in 

question. 
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Table 12. Code for handling CAttach 

 

 /** 

  * Handle the object being attached to the rest of the model while it is running. For example, a 
  * ship docking 

  *  

  * @throws GenesisRunException 
  * @throws AbortException 

  */ 

 public void cAttach() throws GenesisRunException, AbortException 
 { 

  setJustAttached(false); 

 
  // If there are now input objects... 

  if (hasInputs()) 

  { 
   // Treat the object as if it is empty - increase the flow in, if 

   // possible 

   cEmptyMaxResponse(); 
   return; 

  } 
 

  if (hasOutputs()) 

  { 
   // Treat the object as full - increase output 

   cFullMaxResponse(); 

   return; 
  } 

 } 

 
 /** 

  * Handle the C Full event by increasing the flow in by the maximum amount possible 

  *  
  * @throws GenesisRunException 

  * @throws AbortException 

  */ 
 public void cEmptyMaxResponse() throws GenesisRunException, AbortException 

 { 

  cEmpty(getMaxFlowIn()); 
 } 

 

 /** 
  * Handle the C Full event by increasing the flow in by the maximu amount possible 

  *  

  * @throws GenesisRunException 
  * @throws AbortException 

  */ 

 public void cFullMaxResponse() throws GenesisRunException, AbortException 
 { 

  cFull(getMaxFlowIn() - getCurrentFlowIn()); 

 } 
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4.5.3.3 Ships 

This section deals with the additional & modified C event types that involve ships. In 

general, while connected to receiving and loading ports, ships behave just like storage 

tanks. Their behaviour when voyages are taken into account is more complicated – the 

results of the Full and Empty states are modified: 

4.5.3.3.1 CEnd_of _Voyage 
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Figure 16. Handling a CEnd_of_Voyage 

The ship has arrived at a port. It tries to attach to berth and connect to the port flow 

structure. If it can’t attach immediately, it waits in a queue for the next available 

berth. 
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Table 13. Code for handling CEnd_of_Voyage 

 

 /** 

  * End of laden voyage event 
  *  

  * @throws GenesisRunException 

  * @throws AbortException 
  */ 

 public void cEndOfLadenVoyage() throws GenesisRunException, AbortException 

 { 
  setVoyageStatus(VoyageTypes.WAITING_FOR_BERTH); 

   

  final boolean berthed = connectToPort(getCurrentRoute().getEndPort()); 
 

  setCurrentRoute(null); 

 
  if (berthed) 

  { 

   cAttach(); 
  } 

 } 
 

 /** 

  * The end of unladen voyage event 
  *  

  * @throws GenesisRunException 

  * @throws AbortException 
  */ 

 public void cEndOfUnladenVoyage() throws GenesisRunException, AbortException 

 { 
  setVoyageStatus(VoyageTypes.WAITING_FOR_BERTH); 

 

  final boolean berthed = connectToPort(getCurrentRoute().getStartPort()); 
 

  setCurrentRoute(null); 

 
  if (berthed) 

  { 

   cAttach(); 
  } 

 } 
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4.5.3.3.2 CEmpty 
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Figure 17. Handling a CEmpty event for a ship 

If the ship is at a Loading port, try to increase the flow into the ship. If it is at a 

receiving port, start an unladen voyage. 

Table 14. Code for handling CEmpty 

 

 /** 

  * @throws AbortException 
  * @throws GenesisRunException 

  * @see com.stchedroff.genesis.core.structure.flow.FlowEvents#cEmpty() 

  */ 

 @Override 

 public void cEmpty() throws GenesisRunException, AbortException 

 { 
  super.cEmpty(); 

 

  switch (getCurrentPortType()) 
  { 

   case RECEIVING_PORT: 

    startUnladenVoyage(); 
    break; 

  } 

 } 
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4.5.3.3.3 CFull 
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Figure 18. Handling a CFull event for a ship 

If the ship is at a Loading port, start a laden voyage. 

Table 15. Code for handling CFull For a ship 

 

 /** 
  * @see com.stchedroff.genesis.core.structure.flow.FlowEvents#cFull() 

  */ 

 @Override 
 public void cFull() throws GenesisRunException, AbortException 

 { 

  super.cFull(); 
 

  switch (getCurrentPortType()) 
  { 

   case LOADING_PORT: 

    startLadenVoyage(); 
    break; 

  } 

 } 
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4.5.3.3.4 CAttach 
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Figure 19. Handle CAttach event for a Ship 

The ship actually attaches to the flow structures at the ports, having found an empty 

berth. 

Table 16. Code for handling CAttach For a ship 

 

 /** 
  * @see com.stchedroff.genesis.core.structure.flow.FlowEvents#cAttach() 

  */ 

 @Override 
 public void cAttach() throws GenesisRunException, AbortException 

 { 

  switch (getCurrentPortType()) 
  { 

   case LOADING_PORT: 
    endUnladenVoyage(); 

    break; 

   case RECEIVING_PORT: 
    endLadenVoyage(); 

    break; 

  } 
 

  super.cAttach(); 

 }  
 

 



 

 - 47 - 

4.6 Making Flow Changes 

There are four types of changes that need to be considered to implement the state 

changes outlined above.  

4.6.1 Increasing the flow into the object 

If we wish to increase the flow into the object, this can only be done if there is 

material in the attached objects “upstream” of the object in question. We can discount, 

therefore, input objects that are empty (Figure 200). 

 

Figure 20. Empty Objects & Inputs 

If the input object has some contents, then we can increase the flow from it, up to its 

maximum flow rate (Figure 211). 
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Figure 21. Increasing Flow In 

The potential increase is the sum of the potential increase in flow rate. 
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Table 17. Code For Increasing Flow In 

 

 /** 

  * Increase the flow into the object, if possible 
  *  

  * @param required 

  *            The amount of extra flow required 
  * @return The amount remaining 

  */ 

 protected double increaseFlowIn(double required) 
 { 

  final double possible = getPotentialIncreaseInFlowInFromObjects(); 

  final double localPossible = getCurrentPotentialIncreaseFlowIn(); 
  final double previous = getCurrentFlowIn(); 

 

  if (required > localPossible) 
  { 

   required = localPossible; 

  } 
 

  // Nothing can be done 
  if (localPossible == 0.0) 

  { 

   final double realInput = getCurrentFlowFromInputObjects(); 
   setCurrentFlowIn(realInput); 

   return required; 

  } 
 

  // The default is to reduce by 100% of possible 

  double percentageRequired = 1.0; 
  double factor = 1.0; 

 

  if (possible > localPossible) 
  { 

   factor = localPossible / possible; 

   // If this is more than we require, reduce only by what is required 
   if ((possible > required) && !Globals.aproxEqual(possible, required)) 

   { 

    percentageRequired = required / localPossible * factor; 
   } 

   else 
   { 
    percentageRequired = percentageRequired * factor; 

   } 

  } 

  else 
  { 

   // If this is more than we require, reduce only by what is required 
   if ((possible > required) && !Globals.aproxEqual(possible, required)) 

   { 

    percentageRequired = required / possible; 
   } 

   else 
   { 
    percentageRequired = percentageRequired * factor; 

   } 

  } 
 

  increaseFlowFromInputs(percentageRequired); 

 
  final double realInput = getCurrentFlowFromInputObjects(); 

 

  setCurrentFlowIn(realInput); 
 

  return required - (realInput - previous); 

 }  
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4.6.2 Decreasing the flow into an object 

Increases are done on the basis of what is the best that can be achieved. Decreases in 

input are absolute – the required decrease is always carried out 
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Figure 22. Decreasing Flow In 

The decreases in flow can only change the rate of flow in from objects that are 

flowing – so again, empty objects can be ignored. 
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Table 18. Code For Decreasing Flow In 

 

 /** 

  * Try to decrease flow in by a specified amount 
  *  

  * @param required 

  *            The amount of decrease required 
  * @return The amount remaining 

  */ 

 protected double decreaseFlowIn(double required) 
 { 

  double factor = 1.0; 

  double possible = getPotentialDecreaseInFlowFromObjects(); 
  final double localPossible = getCurrentPotentialDecreaseFlowIn(); 

  final double previousFlowIn = getCurrentFlowIn(); 

 
  if (required > localPossible) 

  { 

   required = localPossible; 
  } 

 
  if (possible > localPossible) 

  { 

   factor = localPossible / possible; 
   possible = localPossible; 

  } 

 
  // Nothing can be done 

  if (possible == 0) 

  { 
   final double realInput = getCurrentFlowFromInputObjects(); 

   setCurrentFlowIn(realInput); 

   return required; 
  } 

 

  // The default is to reduce by 100% of possible 
  double percentageRequired = 1.0; 

 

  // If this is more than we require, reduce only by what is required 
  if ((possible > required) && !Globals.aproxEqual(possible, required)) 

  { 

   percentageRequired = required / possible * factor; 
  } 

  else 
  { 
   percentageRequired = percentageRequired * factor; 

  } 

 
  decreaseFlowFromInputs(percentageRequired); 

 

  final double realInput = getCurrentFlowFromInputObjects(); 
 

  setCurrentFlowIn(realInput); 

 
  return required - (previousFlowIn - realInput); 

 } 
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4.6.3 Increasing the flow out of an object 
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Figure 23. Increasing Flow Out 

We look for all attached objects – “downstream” that are not already receiving input 

at the maximum rate. 
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Table 19. Code For Increasing Flow Out 

 

 /** 

  * Increase flow out of the object 
  *  

  * @param requested 

  *            The amount of increase requested 
  * @return The amount remaining 

  */ 

 protected double increaseFlowOut(final double requested) 
 { 

  double actual = requested * getConversionFactorDown(); 

  final double previous = getCurrentFlowOut(); 
  double possible = getPotentialIncreaseInFlowOutToObjects(); 

  final double localPossible = getCurrentPotentialIncreaseFlowOut(); 

  double factor = 1.0; 
 

  if (actual > localPossible) 

  { 
   actual = localPossible; 

  } 
 

  if (possible > localPossible) 

  { 
   factor = localPossible / possible; 

   possible = localPossible; 

  } 
 

  // If there is no possible change, or the request is negative/zero... 

  if (possible == 0) 
  { 

   final double realOutput = getCurrentFlowIntoOutputObjects(); 

   setCurrentFlowOut(realOutput); 
   return requested; 

  } 

 
  // The default is 100% of the possible amount 

  double percentageRequested = 1.0; 

 
  if ((actual < possible) && !Globals.aproxEqual(actual, possible)) 

  { 

   percentageRequested = actual / possible * factor; 
  } 

  else 
  { 
   percentageRequested = percentageRequested * factor; 

  } 

   
  increaseFlowToOutputs(percentageRequested); 

 

  final double realOutput = getCurrentFlowIntoOutputObjects(); 
 

  setCurrentFlowOut(realOutput); 

 
  // setCurrentFlowOut(getCurrentFlowOut() + result); 

 

  return (actual - (realOutput - previous)) * getConversionFactorUp(); 
 } 
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This means that output objects that are full can be ignored: 

 

Figure 24. Effects of a full object on modifying output 
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4.6.4 Decreasing the flow out of an object 
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Figure 25. Decreasing Outputs 

This is done as an absolute – the output from the object is reduced as required. The 

reduction per output object is done as a percentage of each of their existing flows. 

Again, full objects can be ignored, since no flow was going to them in the first place. 
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Table 20. Code For Increasing Flow Out 

 

 /** 

  * Decrease the rate at which material flows out of the object (if possible) 
  *  

  * @param requested 

  *            The amount by which we want to decrease the flow out of the object 
  * @return The amount remaining 

  */ 

 protected double decreaseFlowOut(final double requested) 
 { 

  final double previous = getCurrentFlowOut(); 

  double factor = 1.0; 
  double actual = requested * getConversionFactorDown(); 

  double possible = getPotentialDecreaseInFlowOutToObjects(); 

  final double localPossible = getCurrentPotentialDecreaseFlowOut(); 
 

  if (actual > localPossible) 

  { 
   actual = localPossible; 

  } 
 

  if (possible > localPossible) 

  { 
   factor = localPossible / possible; 

   possible = localPossible; 

  } 
 

  // If no change is possible, do nothing 

  if (possible == 0) { return requested; } 
 

  // Default is 100% of what is possible 

  double percentageRequired = 1.0; 
 

  if ((actual < possible) && !Globals.aproxEqual(actual, possible)) 

  { 
   percentageRequired = actual / possible * factor; 

  } 

  else 
  { 

   percentageRequired = percentageRequired * factor; 

  } 
 

  decreaseFlowToOutputs(percentageRequired); 

 
  final double realOutput = getCurrentFlowIntoOutputObjects(); 

 

  setCurrentFlowOut(realOutput); 
 

  return (actual - (previous - realOutput)) * getConversionFactorUp(); 

 } 
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Chapter 5.  Implementation 

5.1 Overview of the Structure Implementation 

Initially C++ was chosen. This was latter change to Java. The reason for the 

change was that Java has the advantage of being platform independent, 

offering higher productivity in writing code and having a large library of 

useful structures, such as PriorityQueue. In recent versions (1.5 and higher) 

Java has achieved speeds very close to that of C++ for a number of tasks 

(Lewis & Neumann, 2004). 

5.2 Basic structure 

The main advantage of the object-oriented approach to structure is that 

functionality is developed once and then inherited by all those structure 

requiring it. Typically the resulting structure is tree like. The major decisions 

are at what level to put particular functionality in the tree – too low and 

duplication of capability is required, too high and object will have properties 

they do not require.  

A subsidiary requirement was to only use single inheritance. While multiple 

inheritance is standard in C++ (and other languages) it can lead to structural 

problems and debugging issues. In particular, if a parent class is inherited 

twice, care needs to be taken to insure that there is only one instance and is 

referenced correctly - the simpler structure avoids this. This also means the 
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structure was re-implemented easily in Java and is compatible with virtually 

any object oriented language. 

Analysis of the various structures to be modelled showed that there were a 

number of data items common to all objects in the model. From this it was an 

obvious step to define a basic “Object” type, common to all items in the 

model. 

The second point from this analysis was that there was a split between the 

equipment that handles the gas & LNG and the meta-structures that contain 

them. These higher structures are the ports and the shipping routes that 

contain them. This leads to the idea of a “Flow Structure” from which all the 

equipment is derived. 

The ports themselves are divided into loading and unloading. This is because 

different equipment is required for each port and the direction of flow is 

important – In a loading port the flow is always towards the jetties, and in a 

receiving port away from them.  

The separation of structures derived from the flow structures was more 

difficult and underwent several revisions. The following options were 

considered – 

1. All objects inherit the same properties – all the functionality would be 

placed in a “Flow Structures”.  

2. Split the flow handling into two classes – “Equipment” and 

“Connectors”. In this paradigm the LNG and Gas types would be 

handled by setting flags in the objects.  

3. Splitting the equipment into the three classes.  

 

Keeping everything in the flow structure(s) was the option finally selected, 

after a number of revisions. The initial decision was to split the Connector 

type from the others. This was done in partly because of functionality issues 

(as above) and partly because of programming convenience. In the end, 

simplifying the code gave the highest benefits in terms of testing and 

maintenance. 
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Similar considerations were linked to the idea of splitting the equipment 

types into Gas Plant & LNG Plant – the behaviour is different and it is easier 

to handle it by splitting the class definitions. 

5.3 Points of interest in the structure implementation 

 

Figure 26. Overall Structure 

 This section provides an overview of interesting features in the 

implementation – much of the structure is a relatively straightforward 

implementation of the properties for each item. The overall structure is given 

in Figure 26. 

5.3.1 GenesisObject 

This structure holds the most basic information for each object – the object, 

name, dates, and the parent object (such as a port) 
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5.3.1.1 The Flow Structures 

This is the set of classes titled Flow<ClassName>. The reason that there is 

more than one class, despite the linear inheritance between them, is that the 

amount of code became unmanageable for one class. 

This level in the hierarchy provides the basic mechanisms to deal with object 

that have flows of gas or LNG passing through them. The highest level 

versions of the functions to handle CNormal, CEmptiedToNormal, CRefilled, CEmpty and 

CFull are implemented. 

In addition, the Flow Structure implements the connection to Connector type 

objects (see below). A single Flow Structure can have several input and 

several output Connectors. 

5.3.1.2 LNG Ship 

The ships are treated as a type of flow structure, with overloaded functions to 

handle the C events CAttach, CEmpty and CFull. This is in addition the functions 

to handle the events that are specific to LNG Ships - CEnd of Laden Voyage and 

CEnd of  Unladen Voyage. 

5.3.1.3 Gas Plant 

This level of structure is used to hold the properties for all the equipment that 

handles natural gas in its normal state – primarily the shrinkage and 

modification factors representing the losses incurred in transport and 

processing. 

5.3.1.4 LNG Plant 

This structure is used to hold the properties for all the equipment that handles 

natural gas in its liquid state – the fuel factor and GCV/NVC modification 

factors that track the reduction in energy value as lighter fractions boil off 

from the LNG. 
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5.3.1.5 Connector  

This is another sub type of the Flow Structure – items that have only one 

input and output. There are three type of Connector – Gas Connectors, Gas 

Pipelines and LNG Connectors. 

5.3.2 Shipping Route 

This is a simple structure, linking two ports to each other. The only parameter 

of interest is the distance between the two ports. In future versions a more 

sophisticated version will be implemented, containing a series of voyage legs, 

which can each have their own weather and other probabilistic effects. 

5.3.3 Port 

This level in the port structures holds the links to the Shipping Routes, and 

the lists of structure that are common to both Loading and Receiving Ports – 

Jetties, Berths, Tanks, Power Stations, Gas Pipelines, Gas Connectors and  

LNG Connectors. 

5.3.4 Loading Port 

Well Groups, Gas Processing Plants, LNG Plant Inlets, Gas Treatment Plants, 

Fractionation Trains and Liquefaction Trains are all unique to Loading ports 

and are held in this structure. 

5.3.5 Receiving Port 

The only structure that only occurs in Receiving Ports is Regasification 

Trains. 

5.3.6 Simulation 

The highest-level structure is a “Simulation”. This structure contains a 

complete layout to be modelled and all the associated data – the list of ships, 

ports and data from the runs. In addition, the functionality to actually run a 

model is implemented as functions of this class. This facilitates having more 

than one model open and running at the same time in the application. 
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The executive is implemented as a set of functions in the Simulation class. 

The highest level is the Generate() function – this is used to generate an ADP 

using a fixed contingency value for each voyage, to represent probabilistic 

events such as weather and breakdowns.  

5.3.6.1 Start up 

The log is emptied, then it loops through all the objects in the model, running 

their own PreRun() functions, resetting their internal values. The runtime list 

of B events is generated from the lists of B events for each object in the 

model. The function that performs this task is CreateRunTimeBEventList(). 

Finally, the initial C events are calculated and placed in the queue, headed by 

the first to happen. 

5.3.6.2 A Phase 

Having obtained the time of the next event (B or C), the simulation clock is 

advanced to that point. This is unchanged from the classic three-phase model 

(Pidd, M. 1998). 

5.3.6.3 B Phase 

This phase of the model is a modification of the classic Three-Phase model 

(Stchedroff & Cheng, 2003). Because the B events have been reduced to 

planned, single time point occurrences, all that is required is to find the time 

for the start of the next B event. 

5.3.6.4 C Phase 

This is a modified version of the standard C Phase (Pidd 1998). C events that 

are occurring at the current time point are executed. Once done, their 

neighbours are added to the list of affected objects. In the event that the 

object is a Ship that is ready to sail on a laden voyage, the appropriate 

destination port is selected before it sails. 

Then repeated passes are made through the objects affected by C events, to 

see if these have in turn caused other C events to occur. This continues until 

there are no more C events left to execute. 
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5.4 Logging the results 

The data from the model is output to a variety of CSV formatted files. A 

main log file contains every action for the run. In addition, there are specific 

log files for the contents levels of the tanks, shut-ins for each of the objects, 

demand vs. supply for each demand point, production data per production 

point and ship operations on a per ship basis. 

5.5 Simplifications 

Compared with the full LNG supply chain modelling specification some 

simplifications were made. The major items were – 

 The receiving port selection algorithm was simplified to sending the 

next ship to the port most behind with deliveries received.  

 Boil off and its effects was not included 

 All ships can go to all ports 

 A number of fixed B events were not modelled – maintenance, dry 

docking and tides were not implemented 

 Weather modelling was not implemented.  

 

These items should not significantly affect the main aim of this work – to 

prove the 3 Phase modelling methodology for a continuous system, operating 

in the Generate phase. 

5.6  Repeatability 

An important part of the design was that all experiments are completely 

repeatable. Ordered structures are used for holding objects. The order of 

processing is randomised where required.  

For example, the order in which a ship examines berths at a port when it tries 

to dock is determined by a pseudo random number generator. The list of 

berths is held in an ordered list. This means that all the logs etc from retried 
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runs will be identical, but that the order in which ships dock at particular 

berths will not be biased towards any one berth. 
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Chapter 6.  Experimental design 

A structure was devised for creating a matrix of experiments across a set of 

variables, given a maximum and minimum value (per variable). This 

collection of experiments is then implemented on the given model – the 

variable values being changed for each run. 

6.1 Model Costing  

6.1.1 Overview 

The “costs” of each model configuration was considered as having two parts. 

 The structural cost of the model – tank capacity, ship speed etc.  

 Performance cost – demand satisfied, shut-in time etc. 

 

Values are assigned to each of these items and a total cost for each model 

configuration is calculated at the end of the run. 

The idea is that an optimal structure or ports and ships will ship the required 

quantity of LNG to the consumers without equipment being shut down (shut-

in) or demand being missed. This tends to increase the size and number of the 

various components of the structure. Opposing this tendency to increased 

capacity/size/flow rate etc. is the cost of the model. What we are looking for 

is the cheapest structure that can deliver the required amount of LNG. 
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6.1.2 Costs 

6.1.2.1 Shut-in time  

This is the amount of time equipment spends shut down. This applies to all 

flow equipments upstream of the LNG tanks at each port. It is assumed that 

jetties, berths and their associated connectors will start and stop as ships 

arrive and leave. In order for the structure to be valid, it should have zero 

shut in time. This is taken as the full period of the model, not just the post run 

in period (the model is initially run for a period until the instabilities from the 

start up have dissipated). If there is any shut-in, the model is aborted. This 

matches the practise for real world systems where shut in during normal 

operation is generally not acceptable. 

6.1.2.2 Demand Unsatisfied 

This is the amount of LNG demanded by each receiving port but not 

delivered, creating a cost. Ideally this would also be zero, but in a real model, 

there would always be cargo despatched at the end of the run, that would not 

be delivered before the end date, for instance. To account for this, a threshold 

of ±100,000 m
3
 of LNG was given for the demand unsatisfied value – below 

this threshold it is ignored. Beyond this, a penalty cost was applied to the 

overall model cost. 

6.1.2.3 Tank Trend 

An important factor in an LNG supply change is stability in the storage tanks 

at the ports. At the end of the model run, the trend for tank contents is 

calculated using the least-squares method. If the trend is changing by less 

than ±0.5 m
3
 per hour, it is ignored. Otherwise a penalty is applied. 

6.1.2.4 Aborts 

If the model has a shut-in (see above), then it is aborted – once a shut-in has 

occurred; there is no point in continuing. The cost of the model is set to the 

extremely high figure of 10
21

 in the actual implantation.  

If the model has a storage tank reach full or empty, there is also an abort. 

Again, the cost of the model is set to an extremely high value. 
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6.1.2.5 Capacity variables 

Capacity variables represent the amount of material that an object could 

contain – such as a storage tank or a ship. They have a lower and upper 

bound. In the case of ships, if as part of an experiment, the value was lower 

than the lower bound, the ship would be discounted for that run. This allows 

evaluation of the effects of a varying number of ships as well as their size, 

which is a key variable in planning real world LNG operations. 

6.1.3 Other Variables 

Two other kinds of variables were considered in the initial work – Start Port 

& Slow Loading Time. These did not have any cost, so do not affect the final 

cost of the model. 

6.1.3.1 Start Port 

The Start Port refers only to ships and defines which port they start at. 

6.1.3.2 Slow Loading Time  

Slow Loading Time refers to the period of time at the end of the loading 

process that a ship loads at a very low rate. This is essentially topping up the 

tanks for lost material while waiting to start a voyage. This period of time is 

used to space out the ship voyages, allowing a model with a small number of 

large ships to deliver evenly spaced loads. 

6.1.4 Experimental methodology 

The experiments were run using the generate mode of the model – random 

events such as breakdowns and weather were not included. The aim was to 

study optimizing layouts of the ports and the number of ships between them. 

The decision was made to concentrate on the number of ships, their capacity 

and the slow loading time. This is one of the major areas of supply chain 

design that is studied in the real world LNG industry.   

The capacity of the storage tanks at each port was considered. However, the 

tank capacity is driven by the requirements of the system in real-world 
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operations, though there are some limits. The goal of system design is that 

the level in the tanks is broadly stable, but oscillating by amounts that closely 

related to the size of the ships coming and going from the port.  

 

 

Figure 27. Typical Tank Level vs. Time (in days) 

The figure (above) shows a typical tank level vs. time graph - it shows the 

tank level as broadly stable over the lifespan of the run, but varying by an 

amount that is consistent with the ship sizes for the particular model. This 

means that the dominant factor in sizing the tanks will be dealing with 

random events such as breakdowns and weather, which would be handled in 

the Testing Phase of modelling a supply chain. 

Since we are working in the Generating Phase (at this point) it makes sense to 

give the tanks excess capacity (10
8 

m
3 
of LNG in this case) and modify the 

tank capacities to realistic values afterwards, based on the necessary buffer 

volume, deliveries and ship capacities that are optimal. 
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6.1.5 Optimisation 

Two methods of direct search optimization were recommended (Fliege, J) – 

Nelder Mead (McKinnon 1999, Nelder & Mead 1965) and Multi-Directional 

(V. Torczon, 1991. Direct search methods can be used when either the 

computation of the derivative is impossible (noisy functions, unpredictable 

discontinuities) or difficult (complexity, computation cost). In the first cases, 

rather than an optimum, a not too bad point is desired. In the latter cases, an 

optimum is desired but cannot be reasonably found (M. H. Wright, 1996). 

This work falls into the first category.  

The two search algorithms were implemented using the Apache common 

math library (Apache 1.2). Some small modifications were made; in the case 

of the Multi-Directional method it was found that the model could become 

trapped when all the values in the simplex were too similar (McKinnon 

1999).  

Both methods take the variables to be computed to be numbers; doubles in 

the case of the Apache Java implementation. In the case of the capacity 

variables, checking was added to catch values that were out of range. If a 

value was out of range, the “cost” of that configuration was given as a very 

large value (10
15

), unless it was capacity for a ship, and the value was too low 

in which case the ship was marked as inactive and the full evaluation of the 

cost of that configuration was run.  

The Start Port variables were handled by assigning an integer to each of the 

ports in the model. Generated values were fixed as these integers, and when 

new values were computed as part of the optimizing process, they were 

rounded down to the integer value. 

To generate the values for the initial simplex, and subsequent additions to it, 

an uncorrelated pseudo-random number generator was used. The values for 

each variable were, of course, limited to the range for that variable.  

After some initial experimentation, the variables selected for the following 

experiments were: 



 

70 

 Ship capacity – the amount of material that the ship could carry. If 

below the minimum, the ship is considered inactive and is ignored 

during the runs of the model. 

 Separation between voyages – the amount of time between laden 

voyages. 

 Start port – which port the ship starts at the beginning of the run. This 

was included so that the model would produce identical results for a 

given configuration when run and to investigate the sensitivity of the 

optimised delivery schedules to changes in start port. 

 

The tank capacities in the ports were set to deliberately high, fixed values. In 

a real world LNG supply chain the emphasis in on reducing the number of 

LNG ships and their capacity. The cost of tank storage is relatively small. So, 

in designing facilities and planning operations, the ship operations are 

optimised and the tanks sized to support this configuration. 

This means that for a give configuration in this series of experiments, the 

number of variables is 24 - the number of ships x 3. 
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Chapter 7.  Experiments 

Five main experiments were undertaken, with increasing complexity. They 

were used as a series of “gates” during the development of this work – each 

one more difficult and complex than the last 

 Experiment A demonstrates the basic concepts in a simple 2 port 

model. 

 Experiment B adds a second receiving port to test the receiving port 

selection and handling functionality. 

 Experiment C uses a more complex design for the loading and 

receiving ports to test the behaviour of the model when events are 

triggered in a more complicated structure. 

 Experiment D adds seasonal demand changes (B events). 

 Experiment E demonstrates the Test model of the model. 
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7.1 Experiment A 

A model was constructed with one loading port and one receiving port. 

Loading port

Receiving Port 1

 

Figure 28. Experiment A overview 

The loading port and receiving port were simple linear structures – a straight 

line of objects with one flowing into the next. The model run time was 5 

years, with a 2 year run in period to allow the system to stabilise. There was a 

maximum of 8 ships. Variables were the number of ships, their starting ports, 

and their capacity and the size of the LNG tanks at each port. 

The aim of this experiment was to test out the concepts involved, validate the 

model and assess the effectiveness of this design strategy. 
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Figure 29. Experiment A: loading & receiving ports 
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7.2 Experiment B 

A model was constructed with one loading port and two receiving ports. 

Loading port

Receiving Port 1 Receiving Port 2

 

Figure 30. Experiment B overview 

The loading port and receiving port were simple linear structures. Both 

receiving ports were identical.  

The loading port was the same as the one used for Experiment A. The 

receiving ports are different – the flow rate between the berths and storage 

tanks are much higher than the rest of receiving model, allowing for a more 

realistic unloading pattern. 

The model run time was 5 years, with a 2 year run in period to allow the 

system to stabilise. There was a maximum of 8 ships. Variables were the 

number of ships, their starting ports, and their capacity and the size of the 

LNG tanks at each port. 
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Figure 31. Experiment B receiving port 

7.3 Experiment C 

This experiment had one loading port and two receiving ports. The loading 

port was given reasonably complex structure equipment (generally) arranged 

in two streams with interconnection between the streams. This is 

representative of the complexity of real life facilities. 

Loading port

Receiving Port 1 Receiving Port 2

 

Figure 32. Experiment C - overview 
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Figure 33. Experiment C – loading port structure 
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The receiving ports are identical, and somewhat less complex. 

 

Figure 34. Experiment C – receiving port layout 

Again, this is representative of real-life complexity. 

7.4 Experiment D 

The structure was identical to Experiment C, but demand variation was 

introduced. Demand was seasonally varied – for the first and last one 

hundred days of the year, demand was reduced by 25%. This was done with 

B events.  
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7.5 Experiment E 

For this experiment, the Test mode for running the system was implemented. 

Firstly, contingency periods were added to end of each voyage. In the 

generate mode, these are a fixed amount. A delivery plan is generated (with 

no B events apart from demand changes) and then fed into the test mode run. 

In the test mode, all B events are active. 

When running in the test mode, if the ship arrives late relative to the 

generated plan, the contingency period is shortened, so that the ship finally 

docks at the planned time. The figure below illustrates this process. 

If the ship arrives so late that the contingency period is insufficient to cover 

the delay, then the delivery program has failed the test. For the purposes of 

this test, the contingency period was set at 3 days. 

 

Figure 35. Contingency for ship voyages 

A small modification was also made to the model methodology at this point – 

the delays that space the voyages out were modified from being slow loading 

to a delay before sailing on the laden voyage. This was done to simply the 

analysis of the ship movements. 

The port and ship structure used for this test are identical to Experiment D. 

The additional events were breakdowns on all the fixed equipment port 

structure, apart from tanks, LNG and gas connectors and berths. Tanks and 
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berths are simple structures with no moving parts – the pumps that move 

material in and out are located in adjacent equipment in the model. Similarly, 

connectors are simple pipes. Failures associated with such structures in real-

world situations are generally caused by the complex equipment associated 

with such structures, not a part of them. 

The B events used were breakdowns affecting the flow through the objects 

concerned – 50% would mean a 50% reduction in the maximum possible 

flow through the object affected for the period of the event. The structures 

modelled in this work are generally complex in their real-life internal 

workings, consisting of many sub-components. Often the sub-components are 

duplicates organized in parallel to prevent a single failure causing a 100% 

loss of a capability.  

The events were modelled with an exponential probability of occurring with 

a Mean Time Between Failure (MTBF) of 1 year. The Mean Time To Repair 

(MTTR) was 6 hours and the Mean Effect (ME) was a 50% failure. This is a 

much higher failure rate than would occur in real-world situations. 
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Chapter 8.  Experimental Results 

8.1 Experiment A 

8.1.1 Nelder Mead Results 

As a test of the effectiveness of the technique a test series was run for Nelder 

Mead; varying the number of starts and maximum number of evaluations 

between 50 and 2000. 

The best model value found used 3 ships, with capacities of 516654, 380843 

and 418728 m
3
 of LNG. Interestingly the number of start seemed not to have 

much effect. The best result was found with 350 starts, though the number of 

evaluations was 1850. 

A further point is that the performance is not discontinuous – suggesting that 

analysis of this kind could be performed by the Direct Search techniques. 
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Figure 36. Experiment A - Nelder Mead for a range of values 

8.1.1.1 Best result 

The best solution showed very stable tanks for both loading and receiving 

ports.  
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Figure 37. Experiment A - loading port tank levels 

The trend line for the loading port is almost perfectly flat – an average 

decrease of 0.101059 m
3
 of LNG per hour over the period of the model. 

The level in the tank at the receiving port is completely flat – it doesn’t 

change. This is because the model is simple - the  maximum input and output 

values for the objects in the receiving port are all the same, and the arrival of 

ships at the receiving port is quick enough that the only the berth itself has 

fluctuations in level. 
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Figure 38. Experiment A – Nelder Mead delivery schedule 

The delivery schedule shows a very regular sequence of deliveries being 

dispatched from the loading port. Demand was completely satisfied by this 

model. 

8.1.2 Multi- Directional 

An identical test series was run with maximum number of evaluations and 

starts between 50 and 2000, for Multi-Directional. 

The best model value found used 2 ships, with capacities of 420086 and 

421302 m
3
 of LNG. This is considerably less capacity in total (and hence a 

cheaper result) than that found by the Nelder Mead (above). 

The number of starts seemed not to have much effect. The best result was 

found with 350 starts, though the number of evaluations was 1850. 

A further point is that the performance is not discontinuous – just as with the 

Nelder Mead method. 
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Figure 39. Experiment A - Multi-Directional for a range of values  

8.1.2.1 Best result 

The loading port contents were even more stable than for the Nelder Mead 

result. 
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Figure 40. Experiment A - loading port tanks for Multi-Directional best result 

This is due to the smaller number of ships and their equality in size. Again, 

the receiving port tank levels were unchanged over the run, due to the simple 

structure of the receiving port. 

 

Figure 41. Experiment A – Multi-Directional delivery schedule 

The delivery schedule was, again, very regular. Demand is completely 

satisfied. 
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8.2 Experiment B 

8.2.1 Nelder Mead Results 

A test series was run varying the number of starts and maximum number of 

evaluations between 50 and 2000  

The best model value found used 5 ships, with capacities of 51317, 94562, 

92165, 112230 and 488357 m
3
 of LNG. The best result was found starting at 

1150 starts and 700 evaluations (approx. since the experiment was 

undertaken with intervals of 50 for both starts and evaluations). 

 

 

Figure 42. Experiment B - Nelder Mead for a range of values  

The best value rapidly heads to a stable “floor” – indicating that further gains 

from increasing the number of starts and evaluations would probably not 

improve the results greatly. 
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8.2.1.1 Best result 

 

Figure 43. Experiment B – loading port levels 

The loading port showed a slight downward trend in level - 0.856249 m
3
 of 

LNG per hour on average. The two receiving ports showed slight gains, of 

0.268398 m
3
 per hour and 0.919182 m

3
 per hour. 

 

Figure 44. Experiment B – receiving port 1 levels 
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Overall, this shows a good level of stability – in an environment with random 

variables (weather etc), these small trends would be lost in the noise. 

 

Figure 45. Experiment B - receiving port 2 levels 

The delivery schedule was very regular and demand was completely 

satisfied. The solution picked by the tool with one large ship and 4 much 

smaller ones to smooth the flow is evident in the following figure. 
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Figure 46. Experiment B – Nelder Mead Delivery Schedule 

8.2.2 Multi-Directional Results 

A test series was run varying the number of starts and maximum number of 

evaluations between 50 and 2000  

The best model value found used 4 ships, with capacities of 283385, 151951, 

131198, and 414444 m
3
 of LNG. This is a considerably better result than for 

the Nelder Mead experiment above.  The best result was found starting at 750 

starts and 2000 evaluations (approximately since the experiment was 

undertaken with intervals of 50 for both starts and evaluations). 

 

 

Figure 47. Experiment B – Multi-Directional for a range of starts and evaluations 

Examining the “floor” of the results shows that as the experiments reached 

the maximum values (2000 starts and 2000 evaluations), small improvements 

were still being observed. 



 

90 

This suggests that it would be useful to examine larger values for both starts 

and evaluations. 

 

Figure 48. Experiment B – Multi-Directional range test (zoomed) 

8.2.2.1 Best result 

The loading port tank levels were very stable – an increase of 0.450228 m
3
 of 

LNG per hour on average. 
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Figure 49. Experiment B – loading port tank levels 

The two receiving ports were decreasing at -0.326085 and -0.347883 m
3
 of 

LNG per hour. 

 

Figure 50. Experiment B – receiving port 1 levels 

 

Figure 51. Experiment B - receiving port 2 levels 

The delivery schedule is very regular and demand was completely satisfied. 

The solution picked uses two large ships and two smaller ones – a very 

different approach to the solution presented by the Nelder Mead algorithm. 
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Figure 52. Experiment B – Multi-Directional delivery schedule 

8.3 Experiment C 

8.3.1 Nelder Mead Results 

A test series was run varying the number of starts and maximum number of 

evaluations between 50 and 2000  

The best model value found used 3 ships, with capacities of 360535, 501775 

and 359501 m
3
 of LNG. The best result was found with 1400 starts and 300 

evaluations (approximately since the experiment was undertaken with 

intervals of 50 for both starts and evaluations). 
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Figure 53. Experiment C – Nelder Mead results for a range of values 

8.3.1.1 Best result 

The loading port was stable – a downward trend of 7.683620 m
3
 of LNG per 

hour 
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Figure 54. Experiment C – Nelder Mead - loading port levels per tank 

The receiving ports were also stable with an upward trend of 4.086805 and 

3.807143 m
3
 of LNG per hour, respectively. 

 

 

Figure 55. Experiment C – Nelder Mead - total tank levels at the loading port 
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Figure 56. Experiment C – Nelder Mead - receiving port 1 tank levels  

 

Figure 57. Experiment C – Nelder Mead - receiving port 2 tank levels 

The delivery schedule was regular – one large ship and two somewhat 

smaller ones. Demand was completely satisfied. 
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Figure 58. Experiment C – Nelder Mead - delivery schedule 

8.3.2 Multi-Directional Results 

A test series was run varying the number of starts and maximum number of 

evaluations between 50 and 2000  

The best model value found used 3 ships, with capacities of 354005, 371502 

and 453149 m
3
 of LNG. This is a considerably better result than the Nelder 

Mead experiment (above).  The best result was found at 1050 starts and 250 

evaluations (approximately since the experiment was undertaken with 

intervals of 50 for both starts and evaluations). 
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Figure 59. Experiment C – Multi-Directional - results for a range of values 

8.3.2.1 Best result 

The loading port was stable – a decrease of 0.782425 m
3
 of LNG per hour 
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Figure 60. Experiment C – Multi-Directional - loading port tank levels 

 

Figure 61. Experiment C – Multi-Directional - overall loading port tank levels 

The receiving ports were also stable – increase of 0.120831 and 0.845390 m
3
 

of LNG per hour. 

 

Figure 62. Experiment C – Multi-Directional - receiving port 1 tank levels 
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Figure 63. Experiment C – Multi-Directional - receiving port 2 tank levels 

Demand was fully satisfied. The delivery schedule is regular – with 3 ships of 

similar size doing the deliveries. 

 

Figure 64. Experiment C – Multi-Directional - delivery schedule 

8.4 Experiment D 

8.4.1 Nelder Mead Results 

A test series was run varying the number of starts and maximum number of 

evaluations between 50 and 2000  
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The best model value found used 5 ships, with capacities of 490316, 82450, 

185310, 452968 and 526843m
3
 of LNG. The best result was found at 1750 

starts and 750 evaluations (approximately since the experiment was 

undertaken with intervals of 50 for both starts and evaluations). 

 

Figure 65. Experiment D – Nelder Mead - results over a range of values 

The discontinuity in the effect of increasing the number of evaluations (at 

around 550 evaluations) is of interest and worthy of further study. It does not, 

however, effect reaching the lowest values, beyond 1750 starts. 

8.4.1.1 Best result 

The loading port tank farm was stable – an average gain of 1.160268 m
3
 of 

LNG per hour. 
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Figure 66. Experiment D – Nelder Mead - loading port tanks 

 

Figure 67. Experiment D – Nelder Mead - Loading port tanks overview 

The receiving ports were stable as well – with falls of -0.078641 and 

1.168479 m
3
 of LNG per hour. 

 

Figure 68. Experiment D – Nelder Mead - receiving port 1 
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Figure 69. Experiment D – Nelder Mead - receiving port 2 

Examining the data for receiving port 2 suggests that the use of a more 

complex trend line method might be useful – the following shows the result 

of fitting a 3
rd

 order polynomial. 

 

Figure 70. Experiment D – Nelder Mead – receiving port 2, polynomial trendline 

The delivery schedule was regular and demand was completely satisfied. The 

solution picked has 3 large ships and 2 much smaller ones to smooth the flow 

as is evident in the following figure. 
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Figure 71. Experiment D – Nelder Mead - delivery schedule 

8.4.2 Multi-Directional Results 

 

Figure 72. Experiment D – Multi-Directional - results for a range of values 

A test series was run varying the number of starts and maximum number of 

evaluations between 50 and 2000  
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The best model value found used 5 ships, with capacities of 196459, 102193, 

324112, 458100 and 343157m
3
 of LNG. The best result was found at 800 

starts and 2000 evaluations (approximately since the experiment was 

undertaken with intervals of 50 for both starts and evaluations). 

8.4.2.1 Best result 

The loading port was stable – with an overall increase of 0.122971 m3 of 

LNG per hour on average. 

 

Figure 73. Experiment D – Multi-Directional - loading port tank levels 

 

Figure 74. Experiment D – Multi-Directional - overall loading port tank levels 

The receiving ports were also stable – reducing by 0.077138 and increasing 

by 0.000232 for Ports 1 and 2 respectively. 
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Figure 75. Experiment D – Multi-Directional - receiving port 1 tank levels 

 

Figure 76. Experiment D – Multi-Directional - receiving port 2 tank levels 

The delivery schedule was regular and demand was completely satisfied. The 

solution picked – 5 ships of a range of sizes is evident in the following figure. 

0

100000

200000

300000

400000

500000

600000

700000

7
3

1

8
5

0

1
0

1
9

1
1

0
1

1
2

9
0

1
5

2
0

1
6

2
9

1
6

7
0

1
8

9
9

2
1

0
8

2
1

9
0

2
3

8
6

2
5

3
5

2
6

6
1

2
8

4
3

2
9

3
5

3
1

7
1

3
2

0
1

3
3

5
1

3
4

6
1

3
5

7
9

3
7

5
1

3
8

0
8

4
0

1
7

4
0

6
7

4
2

4
6

4
2

8
6

Ta
n

k 
Le

ve
l

Days



 

106 

 

Figure 77. Experiment D – Multi-Directional - delivery schedule 

8.5 Experiment E 

The model was run in generate mode and then 10,000 times in test mode. All 

the tests passed. The largest amount of contingency used was 2 days, 3 hours 

and 46 minutes. 
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8.6 Results Summary 

Table 21. Comparison of results 

Exp. A A B B C C D D 

Type MD NM MD NM MD NM MD NM 

Starts 150 1250 750 1150 1050 1400 800 1750 

Evals 1950 300 2000 700 250 300 2000 750 

Total Ship 
Capacity 

421302 991484 697594 787316 1178658 1221812 1227564 1247573 

Ships 2 4 4 5 3 3 5 5 

Loading 
Port tank 
trend 

0.1461 0.1548 0.4502 -0.8562 -0.7824 -7.6836 0.1230 1.1603 

Receiving 
port R1 
tank trend 

0.0000 0.0000 -0.3261 0.2684 0.1208 4.0868 -0.0771 -0.0786 

Receiving 
port R2 
tank trend 

N/A N/A -0.3479 0.9192 0.8454 3.8071 0.0002 -1.1685 

The 
model 
cost 

2.00E+13 4.00E+13 4.00E+13 5.00E+13 3.00E+13 3.00E+13 5.00E+13 5.00E+13 

Total 
Cost 

2.00E+13 4.00E+13 4.00E+13 5.66E+13 3.07E+13 3.99E+13 5.00E+13 5.25E+13 

 

8.6.1 Generating delivery schedules 

The table above gives a summary of the relative results of the various 

experiments and methods. In general, it seems that the Nelder-Mead method 

requires more starts and fewer evaluations to reach the optimum point and 

that the Multi-Directional method has the reverse requirement. In each case, 
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the Multi-Directional method produced better results. This is particularly 

clear for experiment C where Nelder-Mead produced a result with trends for 

the tank levels considerably greater than the 0.5 m
3
 of LNG per hour limit 

and Multi-Directional did considerably better. 

8.6.2 Testing schedules 

Experiment E successfully demonstrated the concept and implementation of 

the B event portion of the executive. The aim of this test was to prove this 

and show that performance in this mode was not excessively affected by the 

extra events. The performance achieved is discussed in the following section. 

8.6.3 Performance 

All tests were carried out on a computer with an Intel 6400 2 Core CPU, 

clocked at 2.13 GHz, with 3 GB of memory. The JVM was allocated 1 GB of 

memory to ensure that the allocation was not exceeded. 

8.6.3.1 Generate mode 

A test series was run for Experiments C and D for 2000 starts and 2000 

evaluations, to establish the performance of the modelling environment. The 

number of configurations is interesting – it suggests that the difference in 

performance noted above for the Multi-Directional and Nelder Mead 

methods is due to the larger number of configurations evaluated by the MD 

method. 

Table 22. Time taken to perform experiments 

 Multi-Directional  Nelder Mead 

C 3 hours 31 mins 30 secs for 
2179065 configurations. 

1 hour 46 mins 29 secs for 
1145832 configurations. 

D 1 hour 48 mins 24 secs for 940680 
configurations. 

44 mins 52 secs for 456139 
configurations. 
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The average time for evaluating each configuration is given below. It should 

be noted that a large number of the configurations will have aborted due to 

tanks becoming empty or full, so that many of the configurations will not 

have run for the full period. 

Table 23. Time per configuration evaluation (ms) 

 Multi-Directional  Nelder Mead 

C 5.809831281 5.550551913 

D 6.888633754 5.787709448 

 

The best case result from Multi-Directional in experiment D was run 10000 

times in generate mode – multiple runs of this took an average of 8.85 

milliseconds. This gives the time taken for a non-aborting run for a model 

with realistic complexity. 

This level of performance is orders of magnitude than earlier models that the 

author is familiar with – milliseconds instead of seconds. 

8.6.3.2 Test Mode 

The best case result from Multi-Directional in experiment E was run 10,000 

times in generate mode. Multiple runs of this took an average of 18.3 

milliseconds. This demonstrates that the additional cost of the probabilistic B 

events is manageable – especially since the number of breakdowns in 

question is much higher than would occur in a real-world modelling situation. 
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Chapter 9.  Conclusions 

The following objectives were formulated for this work – 

To select a suitable simulation methodology 

Following a detailed examination of the field, a modification of the Three 

Phased Approach was chosen. 

To investigate the flexibility and performance of the modelling method 

The approach chosen was implemented and demonstrated using 

representative problems. It has higher performance than existing industry 

standard models, for realistic levels of complexity. Simulating 10 years of 

operation can take a similar number of milliseconds, for problems with a 

real-world level of complexity. Previously, such work would have taken a 

number of seconds. This means that millions of configurations can be 

considered in a few hours (for a basic desktop computer) – making automated 

design practical for the first time 

Select experimentation methods 

Given the performance achieved, and the nature of the experiments required, 

the Nelder-Mead and Multi-Directional methods were selected and have been 

successfully implemented.  
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Investigate the performance of the methods and the possibilities for 

automating design of the supply chain structure.  

Using these two techniques (above), a range of experiments was carried out. 

These validated the concept and indicated the success of the automated 

design methods proposed.  

Both generate and test modes have been implemented and used. This means 

that the complete concept has been demonstrated. In both modes 

representative problems can be modelled and tested in a few hours on a 

single computer. This represents a very useful level of performance. 

The capabilities inherent in this new system would be invaluable to planners 

working on continuous supply chain problems. In the past, performance has 

placed severe restraints on design of LNG supply chains – work has been 

done manually and largely by intuition, rather than by a systematic search 

through the solution space. 

The testing mode has also been evaluated. The performance of the model is 

only moderately affected by the extra events, making the use of this mode 

equal in practicality, compared to the generate mode. 

9.1 Future Steps 

9.1.1 Modelling other systems 

The methodology has been designed to be generic – any continuous (or 

partially continuous) system with a similar type of structure should be able to 

be modelled with it. Oil supply chains, water distribution & treatment and ore 

handling are a few examples of suitable candidates. 

9.1.2 Complete automated design? 

If we can build a schedule in a matter of a few hours and test it in minutes, 

then it makes sense to combine the techniques. A combined system might test 

(by running in the “Test” mode) some of the valid delivery schedules 

(created in the “Generate” phase) as a part of the design process. The 
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schedules that would be selected for testing would be those that show a 

significant level of performance - the top 1000, say. For Experiment E, it 

would be possible to test each one 1,000 times and complete the whole test in 

less than 5 hours, for example. This assumes a single thread running on the 

hardware used for these tests. Using parallelisation, discussed below, could 

reduce this time substantially and allow more sophisticated strategies for 

testing. Testing each successful delivery schedule as it is generated, within 

the design cycle, might become possible. 

9.1.3 Parallelisation 

The direct search techniques used are trivially parallelisable – each start is 

independent of each other. For testing, a single thread per delivery program 

being tested logically suggests running in parallel. The obvious method for 

such parallelisation is to use a grid. Another possibility is using GPU 

(Graphical Processing Unit) computing. Recently, vendors such as NVIDIA 

have begun emphasising the capabilities of their technology for solving more 

generalized problems than merely graphical display. A C1060 

(http://www.nvidia.com/object/product_tesla_c1060_us.html) card, for 

example, contains 240 processors. A standard desktop high performance 

computing setup consists of 4 such cards in high end PC. This gives a total of 

960 processors running at 1.3 GHz.  

A major limiting factor with such equipment is moving data on and off the 

memory on the GPU cards (Albanese, 2008). Since the model itself is not 

large, and the data it produces (the best results) are small in comparison to 

the data requirements of the financial problems that Albanese describes, this 

should a solvable issue. 

If it is possible to adapt the model described in this work to work in a GPU 

computing environment problems could be run in a fraction of the time 

described in the section on performance. The challenge would be to code the 

model and its data to fit within the constraints of the GPU hardware and 

software environment. 

http://www.nvidia.com/object/product_tesla_c1060_us.html
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