HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

A SIMULATION METHODOLOGY FOR CONTINUQOUS SYSTEMS

Niels Stchedroff

MATHEMATICS DEPARTMENT

OF THE

UNIVERSITY OF SOUTHAMPTON

MPHIL THESIS

SEPTEMBER 2009

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF MATHEMATICS

Master of Philosophy

By Niels Stchedroff

This paper discusses the problem of modelling a continuous supply chain efficiently.
Some existing modelling systems have poor performance, severely limiting their
utility. The core of this work is the design, implementation and testing of a more
efficient computational pattern that is claimed to improve performance. While the
problem is apparently continuous, analysis suggests that this problem can be
modelled using an adaption of discrete techniques. A pattern involving a
modification of the Three Phase Approach discrete-event simulation technique was
developed. Analysis of the way in which the effects of an event spread within the
system modelled leads to a method by which excessive re-calculation can be
avoided, yielding a model that is computationally more efficient. The pattern is then
used in the investigation of automated design of the structure of the supply chain.
The production, processing, transportation and consumption of Liquid National Gas
(LNG) and the associated products form a complex supply chain and were selected
as the example problem to be the subject of this work. The results demonstrate a high
level of performance — sufficient speed to make experimentation with supply chain

structure problems, with a real world level of complexity, practical.

TABLE OF CONTENTS

Chapter 1. INrOQUCTION.oiuiiiiiiiiieieeei e 1
1.1 BaCKGrOUNGc.ooiiiiiiiee s 1
1.2 AIMS TOr thiS thESIS.....iiiiiiiiiiiiciee s 2
1.3 OFginal WOTKooiiieiiiie e 3
L4 SITUCTUIE ...ttt n e e nnne s 3

Chapter 2. The LNG Supply Chaincccoiviieiiiiiee e 4
2.1 Object structure and STAtEScccvevreiiieiiere e 7
2.2 ODJECt MAXIMUM ...ttt bbb 8
2.3 ODJECt MINIMUIM ..ottt 9
2.4 Object in restricted OPErationccoceeereririniinieiee e 9
2.5 Object in NOrmal OPeration............ccccveieiieie i 9
2.6 SHIPS .t ae e e e naeens 9

Chapter 3. Choosing a Methodologycccooeiiiiiiiiiiiece e 10
3L PreambIe . ..o s 10
3.2 Historic usage of simulation in the LNG fieldccccocoovveiiiiiiinine 10
3.3 STUCKUFAL ISSUES ...oveevieieiesie sttt 11
3.4 Approaches for Discrete Event Simulationccccooceveiineninniicienenn, 11

Chapter 4. Modifications to methodology.........cccocvevveiiiiiiieeie e, 19
4.1 BaSIC CONCEPLS ..ottt bbbttt 19
4.2 B EVENTS ..ottt 19
A3 CEVENLS ..ottt ettt be e nnee s 22
4.4 How the effects of an event propagateccceevvveeiievecieseece e 24
45 ThE EXECULIVE ..ottt 25
4.6 MaKing FIOW ChangeS..........ccoveieeiiiiieie et 47

Chapter 5. IMpIemMENtationcccveoiiiiiiieiecie e 57
5.1 Overview of the Structure Implementationccccoocevererieiiininieieienn, 57
T = T) [l 1 U od (F =SS 57
5.3 Points of interest in the structure implementation..............ccocoenviiiienenn, 59
5.4 Logging the reSUITScveiviiiiiiicieeee s 63
55 SIMPLFICAtIONS.......ccieiiicic e 63
5.6 RePeatabIItY......ccovieiiiiii e 63

Chapter 6. Experimental deSignccoveieiiiiie e 65
6.1 MOAel COSHING ...ocuvieiiiiiiccie e 65

Chapter 7. EXPEITMENTSooviiiiiiiiieisieiee et 71
T.1 EXPEIIMENT A oo be e e 72
7.2 EXPEriMeNnt B ..ot 74
7.3 EXPEriMENt C...oooeieec e 75
T4 EXPEIIMENT D ..ot 77
7.5 EXPEIIMENTE ..o 78

Chapter 8. Experimental RESUILSccviieiiiiiiieie e 80

8.1 EXPEIIMENT A Lo 80
8.2 EXPEIIMENT B....ooiiiiiei e 86
8.3 EXPEIIMENT C..ooe e 92
8.4 EXPErIMENT D ...ooiiiieieiice ettt 99
8.5 EXPErIMENt E.....cceiiiiiie et 106
8.6 RESUILS SUMMAIYccoviiiiieeie ettt 107
Chapter 9. CONCIUSIONS.......ccuiiieiieie et sre e enes 110
0.1 FULUIE STEPS .. iiiiiiiie ettt ettt et be e e s e e enes 111
BIDHOGraPNY ..o 113

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.

LIST OF TABLES

BasiC 1tEM PrOPEITIESoiiiieiieieice e 7
B EVENT TYPBS. ittt 20
Modes of operation for the model.............cccooeviiiiiiiice 22
C EVENE TYPES ..ottt 23
B BVENT COUR......oeiiiieie e e 27
C Event Related ODJect States.........ccccvvevverieiieeieeie e 28
Object Level & Corresponding Statescccvvevevieeiveresieseese e 30
Code TOr NANAIING Crull «vveeeeeeiierieie e 32
Code for handling Cempty.....evveerreriiiiiii e, 33
Code for handling CemptiedToNOMMal «++«sesererererrririeiriseiesree e, 37
Code fOr NaNAliNG CRefilled - «e-xveereerreermerreeirerresireseesesieeseessesseseessesssessens 39
Code TOr NANAIING CAttach-«+«eereeereerremrerrreernmreeseeseesiesseeseessesseesseessesseessens 41
Code for handling Cend_of Voyage «-«+-ereereresrerinimininiii e, 43
Code for haNAIING Campty.«.eeevevererrerireirieie s 44
Code for handling Cryii FOr @ ship......cccveiveieiicieece e 45
Code for handling Cagtach FOr @ SNip....coovveiiiiiiiee e 46
Code For Increasing FIOW 1N ... 49
Code For Decreasing FIOW IN ... 51
Code For Increasing FIOW OUL...........cccooveiiiiciicc e 53
Code For Increasing FIOW OUL............cccooveiiiiiciice e 56
CompPariSoN OF FESUITScoviieieieic e 107
Time taken to perform exXperimentS.........ccocovviveeiene s 108
Time per configuration evaluation (MS)ccccccevievieiie i, 109

LIST OF FIGURES

Figure 1. OVerall STrUCLUE.........cviieee et 4
Figure 2. A simplified view of typical port StrUCTUIESccccvvvieiiriiiii e, 5
FIQUIE 3. BASIC ITBIM ..ottt nneas 7
Figure 4. Original B events affecting the object ..., 20
Figure 5. Runtime B events for ODJeCtccoovviiieiiiie e 21
Figure 6. B Events for a Single ODJECtcooviiiiieiiee e 21
Figure 7. Objects Affected by the EVENL..........ccoiieiiiiiiieceee e, 24
Figure 8. Handling Briow EVENL.....ccvvoiiiiiiee e 26
Figure 9. Object State Transition Diagramccccceeveiieiieiesie s, 29
Figure 10. ODJECE LEVEIS ..o 29
Figure 11. HandlNg Crull «veeeereeeeereeneeiesiesie e siee e sttt sie et eneesseenneens 31
Figure 12. HanAIe Campty .. veeerrererieiriiiiiiieinisiee s 35
Figure 13. Hand1e CemptiedToNOMal «+«-«seeerererrerermsriinresirietirisieessesessssese s 36
Figure 14. HandliNg CRefilled «««-x«eereeereereerreemeerermreesseessemseeseessemeeseessesssesesssesseesessseens 38
FIgure 15. HaNAIING Cattach.««eeeereesreereemreemeerurmreeseesseaeesseesseseeseessesssssesssesseessessseans 40
Figure 16. HandliNg @ Ceng of Voyage «««-«reserrerereeriremmeririeiiniseisieesrese s 42
Figure 17. Handling a Cempty €VeNnt for a ship.........cccoveiviiiiiciicccces 44
Figure 18. Handling a Cryjevent for @ Shipcoocvevveeiieieee e 45
Figure 19. Handle Cagtach €VeNt TOr @ SNIP....cvveiiiieciee e 46
Figure 20. Empty ODbJects & INPULScoeiieiiiiieciece e 47
Figure 21. Increasing FIOW IN........ccooiiiiiiiic e 48
Figure 22. Decreasing FIOW IN..........cccoiiiiiiiii e 50
Figure 23. Increasing FIOW OUL ... 52
Figure 24. Effects of a full object on modifying output............cccccceeviviiiiiiicieeen, 54
Figure 25. Decreasing OULPULS.........cciiiiiieiie et 55
Figure 26. OVerall StrUCTUIE........cc.oiiii e 59
Figure 27. Typical Tank Level vs. Time (in days).......ccccvvrrreienenencneneseeeens 68
Figure 28. EXPErimeNnt A OVEIVIEWcccviiuieiieeiiieiieesiee e e see st sve et 72
Figure 29. Experiment A: loading & receiving POItS.........cccocvvvvvievieiieesiieeiee e 73
Figure 30. EXPEriment B OVEIVIEWcuiieiiieiienienie et 74
Figure 31. Experiment B reCeiving POIT.......cooeriiiiiiiniiisieeese e 75

-Vi-

Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42,
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47,
Figure 48.
Figure 49.
Figure 50.
Figure 51,
Figure 52.
Figure 53.
Figure 54,
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.

EXPEriment C - OVEIVIEWccveieiieie et ie s 75
Experiment C — loading port StrUCTUIE............cceieeriiiie e 76
Experiment C — receiving port 1ayout.............cooovvveiineniineeee, 77
Contingency for Ship VOYAQEScccveveeieiieiieie e 78
Experiment A - Nelder Mead for a range of values............c.ccccccevveiennen. 81
Experiment A - loading port tank levels..........c.coceoveveiieeie i, 82
Experiment A — Nelder Mead delivery schedule.............cccoeiiiiiincnnn, 83
Experiment A - Multi-Directional for a range of valuescc........ 84
Experiment A - loading port tanks for Multi-Directional best result 85
Experiment A — Multi-Directional delivery scheduleccccovevne. 85
Experiment B - Nelder Mead for a range of values.............c.ccccocvvnennne, 86
Experiment B — loading port 1eVels ..., 87
Experiment B — receiving port L 1evelscocoveviiiiiicie e, 87
Experiment B - receiving port 2 [eVels...........cccovevviieiicie e, 88
Experiment B — Nelder Mead Delivery Schedulecc.ccooeovciiincnnn, 89
Experiment B — Multi-Directional for a range of starts and evaluations..89
Experiment B — Multi-Directional range test (zoomed)cccccvevvenen. 90
Experiment B — loading port tank [eVels ..., 91
Experiment B — receiving port 1 1eVels ..., 91
Experiment B - receiving port 2 1eVels...........ccooiviiiieiciieeee, 91
Experiment B — Multi-Directional delivery schedule............c...ccccooevne. 92
Experiment C — Nelder Mead results for a range of values...................... 93
Experiment C — Nelder Mead - loading port levels per tank.................... 94
Experiment C — Nelder Mead - total tank levels at the loading port........ 94
Experiment C — Nelder Mead - receiving port 1 tank levels.................... 95
Experiment C — Nelder Mead - receiving port 2 tank levels..................... 95
Experiment C — Nelder Mead - delivery schedule...........c..cccccovvininennn, 96
Experiment C — Multi-Directional - results for a range of values............ 97
Experiment C — Multi-Directional - loading port tank levels................... 98
Experiment C — Multi-Directional - overall loading port tank levels....... 98
Experiment C — Multi-Directional - receiving port 1 tank levels............. 98
Experiment C — Multi-Directional - receiving port 2 tank levels............. 99
Experiment C — Multi-Directional - delivery schedulecc..ccoe... 99
Experiment D — Nelder Mead - results over a range of values............... 100

- Vii -

Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77,

Experiment D — Nelder Mead - loading port tanks.............cccccvevervennenn, 101
Experiment D — Nelder Mead - Loading port tanks overview 101
Experiment D — Nelder Mead - receiving port 1........ccccoovvvvivniveieinennn, 101
Experiment D — Nelder Mead - receiving port 2.........c.ccoevvvvveiveieinennn, 102
Experiment D — Nelder Mead — receiving port 2, polynomial trendline 102
Experiment D — Nelder Mead - delivery schedulecccccoeovernennen. 103
Experiment D — Multi-Directional - results for a range of values.......... 103
Experiment D — Multi-Directional - loading port tank levels................. 104
Experiment D — Multi-Directional - overall loading port tank levels104
Experiment D — Multi-Directional - receiving port 1 tank levels........... 105
Experiment D — Multi-Directional - receiving port 2 tank levels........... 105
Experiment D — Multi-Directional - delivery schedule........................... 106

- viii -

Acknowledgements

This thesis is dedicated to the memory of my mother, Vivien Stchedroff, who

persuaded me to turn my ideas into formal research.

I would like to especially thank my supervisors, Professor Chris Potts and Professor

Russell Cheng, for their help in getting me to the conclusion of this work.

I would also like to thank Professor Jorg Fliege for his suggestions regarding

optimization techniques which formed the basis for latter portion of this thesis.

Thanks are also due to the administrative staff of the School of Mathematics (most
recently Garry Hancock) for helping me navigate some of the complexities of being
a part-time student.

Academic Thesis: Declaration Of Authorship

I, Niels Stchedroff declare that this thesis and the work presented in it are my own

and has been generated by me as the result of my own original research.
Title: A SIMULATION METHODOLOGY FOR CONTINUOUS SYSTEMS
I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly
attributed,

4. Where | have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

I have acknowledged all main sources of help;

Where the thesis is based on work done by myself jointly with others, | have

made clear exactly what was done by others and what | have contributed myself;

7. Parts of this work have been published as:

oo

Stchedroff N. & Cheng, R.C.H. "Modelling A Continuous Process With Discrete
Simulation Techniques And Its Application To LNG Supply Chains",
Proceedings of The Winter Simulation Conference, 2003

Signed:

Date:

Chapter 1. Introduction

1.1 Background

Creating an efficient simulation model of a continuous problem is problematic, since
digital computers are fundamentally discrete state devices. The Liquid National Gas
(LNG) supply chain is a good example of such a problem — and of particular interest

to the author.

The LNG supply chain is complex, technically challenging, and extremely costly to
operate. Operations require a very high level of safety, and at the same time, a very
high level of utilization of equipment. To ensure that planned operations are efficient
and yet safe, high quality modelling is important — speed is essential to running
sufficient tests to determine if the projected plan is stable in the face of uncertain

events.

Models in the field to date have issues in terms of their performance. In the
experience of the author, simulating a single year of operation might take seconds of
computer time. While they are generally good software in the sense of the
implementations, there seems to be an under use of the established concepts of
simulation. Performance is generally poor as a result — time slicing systems such as
Witness (Lanner) are popular. The slow models lead to analysis by intuition, backed

by a limited number of experiments.

The concept behind the current work was to do was to review the existing concepts in
simulation modelling, select an efficient methodology, implement it and then use it to

demonstrate the possibilities for automated optimisation inherent in a fast system.

The intent is to create a modified approach to the problem of modelling the LNG
supply chain.

1.2 Aims for this thesis

Given the above the following objectives were formulated for this work —
To select a suitable simulation methodology

As a first step analyse the system to be modelled against the existing simulation
methodologies. Then use the results to select an approach and devise a pattern to

apply it to the problem
To investigate the flexibility and performance of the modelling method

A key requirement is that the model has sufficient performance to support a very large
number of runs in a useful period of time — a few hours. This enables the model to be

used for experimentation and effective testing of the configuration for robustness.
Select experimentation methods

Find and implement suitable algorithms to enable effective experimentation of some

aspects of the supply chain structure and operations.

Investigate the performance of the methods and the possibilities for automating design

of the supply chain structure.

Investigate and select the specific parts of the supply chain structure to apply
optimization techniques to. This includes which objects and their properties to uses as
parameters and the way in which the supply chain structure are valued. The last part
of this section of the work involves investigating the performance of the model and

the results of the optimisation methods employed, given the choices made.

1.3 Original work

The core of this work is to design, implement and test an efficient environment for
modelling continuous simulation problems. This technique will be validated and then
used to investigate automated design. The optimization techniques to be used are not
novel, but their application to this class of problem is.

1.4 Structure

In Chapter 2, the Liquid Natural Gas (LNG) supply chain is explained, along with the
assumptions made in modelling it and the equations required. While detailed
knowledge of the LNG supply chain is not vital in understanding the methodology
that forms the backbone of this work, it provides a good illustration of the level of
complexity involved in a typical real world problem. Chapter 3 deals with choosing
the methodology — an examination of existing concepts and the selection of the
chosen idea. In Chapter 4 the detailed design of the new methodology is examined.
Chapter 5 presents the details of the implementation of the methodology. Chapter 6
deals with the design of experiments in automated design using the model. Chapters 7
& 8 sets out the experiments performed used the model and their results. Chapter 9

contains the conclusions and the suggestions for future work arising from them.

Chapter 2. The LNG Supply Chain

The liquefaction of natural gas makes it possible to ship it in liquid form to faraway
markets, which are out of reach for conventional transport by pipeline due to the

volume reduction achieved in the liquefaction process.

An LNG supply chain consists at the highest level of loading ports shipping LNG to

one or more receiving ports. A typical supply chain is depicted in Figure 1.

Loading Ports Receiving Ports

Shipping Routes

Figure 1. Overall Structure

A primary driver in this process is time — LNG decays over time as the lighter
chemicals (technically referred to as fractions), which tend to have the highest energy
coefficients, boil off. Equally, the equipment used is very expensive and minimizing
the size of installations can save millions or even billions of dollars. The overall aim
is to keep material flowing through the system, even if it means shutting down

individual items — though this is to be avoided if possible.

The loading ports and receiving port structures are depicted in more detail in Figure 2.

Loading Port Receiving Port

Well

Groups Berth

Gas
Processing
Plants |

Plant
Inlet/Slug
Catchers |

i
| :Electricity

1
Gas : | Power
Treatment ' i Station
Plants | :

| Power et o :
© Station 1 Fractionation !

Trains

Direction of flow
[
i
i
i
i
[
[

Liquefaction |
Trains

................ - — s

Berth ! — -
i Gas Pipeline

Figure 2. A simplified view of typical port structures

In the loading ports, gas is produces by wells, and processed before being sent to the
main plant. The processing included removing the majority of water, present in the

gas as vapour.

At the plant, the slug catchers manage the arrival of the gas from the pipelines —
controlling flow, pressure and temperature. The gas is cleaned of impurities such as
water, carbon dioxide and sulphur compounds. As processed gas enters the plant
through the Gas Transmission System (GTS), slugs of liquid are trapped by the Slug
Catcher whilst the processed gas continues to flow into the plant. The liquid recovered
from the slug catcher is too heavy in composition to be acceptable for inclusion in the
LNG production. Therefore this liquid or condensate is stored in a dedicated
condensate tank for subsequent export.

The heavier hydrocarbon components such as Liquefied Petroleum Gas (LPG) and
condensate are also removed to meet the very exact quality specifications imposed on

LNG by its customers

The gas is then converted into LNG by the liquefaction trains — gigantic refrigeration
facilities. There are two refrigeration cycles in use at an LNG Plant. The first cycle,
the Pre Cooling Cycle uses pure propane as a refrigerant and chills the natural gas to
minus 35 degrees centigrade. The second cycle, the Liquefaction Cycle, uses a
mixture of components (Nitrogen, Methane, Ethane and Propane in varying
proportions). This refrigerant called Mixed Refrigerant chills and liquefies the Natural
Gas from minus 35 degrees centigrade to minus 161 degrees centigrade. Alternatively,
the second cycle can be of the cascade type, where each of the components are used
separately in a sequence (Finn, A.J, Johnson G.L, Tomlinson, T.R. 2000). The reason
for cooling to liquid in stages is to separate the fractions being removed as they

liquefy and to make the refrigeration process more efficient.

The liquefied gas is stored at -160°C in above ground tanks. When ships are arrive,
the LNG is pumped over long jetties to the berths where the ships are waiting — the
ships are too big to tie up at a quay directly. Sometimes LNG is directly piped to

customers at the production facility — but this is relatively rare.

The receiving ports are much simpler — the LNG is taken ashore and stored. From

there it is sent to customers, either in liquid form or converted back into gas.

2.1 Object structure and States

In the supply chain structure all the key objects to be modelled possess a very similar
basic structure. Figures 1& 2 show that within the ports are a number of substructures,
such as tanks, pipelines and processing equipment. Each item can be considered to
have the following basic properties illustrated in Figure 3 & Table 1. This is the level
that the operations of the supply chain will be modelled at — flow in and out of

objects, with their internal working represented only by a contents level.

I:out(l)
E:
() I:out(2)
Fin@) \ I Fout(3)
: 3
Fin(n) /
I:out(m)

Figure 3. Basic Item

Table 1. Basic Item Properties

Finy | Flow into the object from another

object per unit of time

Foutqm) | Flow out of the object to another

object per unit of time

L. Current level in the object.

Each object is assumed to have one input and one output point. However, multiple
objects can be attached to each such point. Note that pipelines and connectors are also
treated as similar objects under this definition. This approach has the advantage of
greatly simplifying the executive — the structure to handle this aspect of object

behaviour can be implemented once and inherited by each object requiring it.

-7-

An important point is that the rates of flow are considered to be constant, rather than
ramping up and down over a period of time. While this might appear approximate, the
rate of change in flow in real life is very rapid compared to the time scale at which the
modelling takes place. If it takes a minute or so to go from full flow to shutdown and
visa versa, this is close to instantaneous when considering a model on the hourly or

daily scale.

Given the linear nature of operations, the level at any future point can be calculated
as:

n m
ly = z Fingiy = z Fout(y { X (& = te) + Lo
i=1 =1

where t; = the future time point, t; = the current time point, |, = the material level at

the current time, I; = the material level in the object at time t;.

From the above, we can see that the following basic states that need to be considered.
2.2 Object Maximum

In this state, the object has been filled to its maximum internal capacity. As a result,
the inputs must be scaled back so that:

n m
z Fin(i) < z Fout(j)
i=1 j=1

Dividing the normal total output by the total input that the connecting objects can
provide does this. This gives the ratio of input that is possible to the ratio of input that
is being supplied. For example, if the total input can only be 60% of the possible

amount, then each input is scaled back to 60% of the possible amount:

m n
Fnew_in(x) = Z Fout(i) /z Fin(j) X Fin(x)
i=1 =1

2.3 Object Minimum

In this state the object has reached the minimum internal level. As a result, output
must be scaled back to match input, as in the Object Maximum. This is done (as
before) by calculating the ratio between the total possible and the total actual, and
using it to scale the outputs accordingly:

n m
Fnew_out(x) = Z Fin(i) /z Fout(j) X Fout(x)
i=1 =1

2.4 Object in restricted operation

In this state the object can only pass through a proportion of its capacity. Outputs are

scaled back accordingly:

m
Fnew_out(x) = {z Fout(i)} Xe

=1

where € is the effect of the restriction.

2.5 Object in normal operation

The object has space from all the input from the connecting objects, and capacity to

satisfy all the outputs.
2.6 Ships

Ships can be considered as above when they are in port, loading or unloading. In the
former case, there are no outputs, in the latter, no inputs. Leaving and entering ports
creates an event, which disconnects the ship, causing the jetties to recalculate their

in/out flow rates.

Chapter 3. Choosing a Methodology

3.1 Preamble

This chapter examines the historic usage of simulation in capacity and operations
planning in the LNG industry, examines the general structural issues involved with
simulating continuous systems, discusses the various types of methodologies and

finally, picks an approach.
3.2 Historic usage of simulation in the LNG field

Operations in the LNG industry are carefully planned in advance, typically by
creating an ADP (Annual Delivery Program). This is a schedule for production and
consumption of LNG, with detailed information on the timing and sizing of the ship

cargos required.

Simulation models are used to construct the delivery program in two phases. In the
first, an ADP is generated with all probabilistic events are temporarily removed from
consideration and replaced with a fixed contingency (extra time) attached to each ship
voyage. This is generally referred to as the “Generate” phase. In the second, the ADP
in question is then tested for robustness by running the model with the random events,
and detecting whether the model stayed within the ADP. This is generally known as
the “Test” phase. The results from the second stage can be used to modify the

contingencies, or the basic structure of the model and the process is repeated.

-10 -

3.3 Structural Issues

The equations discussed in the previous section are extremely simple. The events that
cause state changes occur at discrete points in time. This means that calculating the
future states of the system does not require solution of differential or integral
equations. In this case continuous methods are not required, leading towards selection
of a method based on discrete modelling techniques. The differentiation between the
discrete and continuous simulation is somewhat artificial, in any case. In particular,
since digital computers cannot operate truly continuously, we can only produce the
illusion of continuity, as in AweSim, Extend and Witness (Pidd 1998). For example,
WITNESS can give the impression that it is operating in a truly continuous fashion. It

is, in fact, calculating values on a next-event basis.

The overhead of providing threaded program execution for continuous modelling is
quite high, particularly in the case of complex systems, where large amounts of data

will be required to be moved in and out of memory.

In the case of FLEET, the ADGENT models for Shell and some systems created by
Lanner in WITNESS, shipping systems are modelled in this discrete manner, using
changes in state at specified times to represent the various operations.

Performance is an important concern. When validating a configuration or using
experimentation techniques to create a configuration hundreds or thousands of runs
may be required. Users of this kind of model have also expressed an interest in being
able to manipulate the results generated by the system and using the model to validate

the changes. To be usable this would require nearly instantaneous recalculation.

The complexity and the stochastic nature of system being modelled require that
simulation should be used — mathematical programming approaches would not be
suitable (Pidd 1998).

3.4 Approaches for Discrete Event Simulation

The transaction-flow worldview often provides the basis for discrete-event simulation.

A system is visualised as unit of “traffic” that move from point to point, competing

-11-

for scarce resources. Discrete event simulation may be defined as one in which the
state of the model changes only at discrete, but possibly random, set of simulated time
points. Two or more “traffic units” often have to be dealt with at the same time. This

is done serially at that time point (Scriber & Brunner, 2000).

There are four basic methods to be considered— Event, Process and Activity based
approaches (Mitriani 1982 & Pidd 1998) and Three Phase Approach (Pidd 1998). It
should be noted that the approaches are equivalent in the functional sense — a given
model can be implemented in any one (Mitriani 1982 & Pidd 1998).

The following as some example of the use of Discrete Event Simulation in the

literature —

e Beck & Nowak (Beck & Nowak 2000) used discrete event modelling
combined with activity based costing to create costing models for

manufacturing environments.

e Burgsteden, Joustra, Bouwman & Hullegie (Burgsteden, Joustra, Bouwman &
Hullegie, 2000) used discrete event simulation to model road traffic at Schipol

airport.

e Schunk & Plott (Schunk & Plott, 2000) used Micro Saint to create a discrete

event model for the manufacturing process for vehicles.

e Andersson & Olsson (Andersson & Olsson, 1998) used Taylor Il to construct a
discrete event model of an assembly line, for capacity & operations planning

purposes.

e Kiran & Cetinkaya & Og (Kiran & Cetinkaya & Og, 2000) used ProModel to
construct a discrete event simulation model of a new international terminal for

Istanbul Airport.

e Swedish (Swedish, 1998) used ProModel 4.0, a discrete system to model a

barge transportation problem.

e Kyle & Ludka (Kyle & Ludka, 2000) used ProModel to create a discrete

model for the furniture manufacturing industry.
-12 -

e Trone, Guerin & Clay (Trone, Guerin & Clay, 2000) used Extend to create a
discrete model for the transportation, processing and disposal of radioactive

waste.

e Bruzzone, Giribone & Revetria (Bruzzone, Giribone & Revetria, 1999) used
C++ to build an object oriented, discrete simulation model for shipping

container terminals.

e Daum & Sargent (Daum & Sargent, 1999) examined discrete event simulation
paradigms in their investigation of scaling and reuse in object oriented
systems.

e Joines & Roberts (Joines & Roberts 1999) based their examination of object
oriented techniques around event and process based systems, and used C++ to

illustrate methods.
3.4.1 Event based

This was once a very common approach, primarily due to its use by SIMSCRIPT
(Russell 1987). Since latter versions of SIMSCRIPT emphasised the Process based
approach (see below), this method has fallen out of favour.

The event based model works by constructing event routines based on the activity-
cycle diagrams for the various parts of the system being modelled. The executive
creates a list of the events in these routines that are due to occur and executes them.
When the next event in the list is reached, it is executed, the system clock is advanced
and a check is made to see if new future events need to be added to the list (Law &
Kelton 2000).

The advantage of this approach compared to others is speed (Pidd 1998) — however,
the weakness is in considering interaction between parts of the model. The advantage
of this approach is in not checking all the conditional events every time an event
executes. Instead all the results of an event occurring are dealt with in the event
routine. This means that all such consequences must be foreseen and built into the

model.

-13 -

3.4.2 Process based

In this approach, for each class of entity, the life-cycle (process) of the entity is
considered (Law & Kelton 2000). For example, an LNG tanker sails between ports,
docks, loads, unloads etc. Each of these operations of states forms a part of life-cycle.
The job of the executive, in this case, is to move each entity forward through its
process, if possible. Underlying the system are lists for future events and for entities
that have been suspended due to unconditional delays (conditional only on time), and
conditional (waiting for other specific conditions to occur) (Schriber & Brunner,
2000).

Process based simulation is used by SIMCRIPT I1.5 (Russell, 1987) and is quite
common (Pidd 1998). The following are some example of the use of Process based

systems in the literature —

e Takakuwa (Takakuwa 1998) used ARENA/SIMAN, a discrete process based

system to examine methods for transportation/inventory systems.

e Takakuwa, Takizawa, Ito & Hiraoka (Takakuwa, Takizawa, Ito & Hiraoka,
2000) used ARENA/SIMAN, a discrete process based system to model the

operation of warehouses.

e Golkar, Shekar & Buddhavarapu (Golkar, Shekar &Buddhavarapu, 1998) used
C++ and SIMAN to construct a discrete, process based system.

e Kilgore & Burke (Kilgore & Burke 2000) used Java to create a process based,
object oriented modelling system.

Huang & lyer (Huang & lyer 1998) proposed that process oriented discrete models
should be converted to event based, in order to improve performance. The analysis of
their results showed that the equivalent event based model was not only considerably
quicker running - more importantly, for the process based approach the time taken

increased non-linearly with complexity, while the event based method did not.

Perumalla & Fujimoto (Perumalla & Fujimoto 1998) looked at increasing

performance in process-oriented views. They further argued in favour of process-

-14 -

based models, but suggest that the features of the process-oriented model should be
limited to the point where the model is in fact nearly an event based one. This is done

to improve performance.

Pidd (Pidd 1998) pointed out that the process-based approach is broadly equivalent to
the Three Phase Approach — the conditional and unconditional events have their
equivalent in the Bs and Cs, and the executive will uses a phased approach. However,
process based approaches are vulnerable to deadlock. Schriber & Brunner (Schriber &
Brunner 2000) comment on the key nature of the resources management system in

discrete simulation.

Pidd (Pidd 1998) takes the view that for complex systems, the Three-Phase approach

is preferable, largely for this reason.
3.4.3 Activity based

In this approach, the focus is on the activities that are performed in the system, each
activity has a test head that determines whether the activity can execute. The
executive scans the activities to find the simulation time at which the next activity (or
activities) can start, moves the clock to that time, enables the activities and then

moves to the next suitable time point.

The activity-based approach is not used very much. A major drawback is that
simulation programs written using this technique are slower (Pidd 1998). The cause is
that there is no differentiation between the types of activities — all must be scanned at
each step. In the Three Phase Approach, which has largely replaced this methodology,
the activities are separated into Bs (fixed time events) and Cs (events conditional on
resources etc.). Only the Cs (which are generally fewer) are scanned (Law & Kelton
2000).

When Perumalla & Fujimoto (Perumalla & Fujimoto 1998) reviewed the main types
of discrete simulation — event, activity and processed oriented, they almost ignored

activity-based methods.

Activity based models are still used, however — Shi (Shi 2000) discuses an activity

based, object oriented modelling approach to problems in the construction industry.

-15 -

3.4.4 Three Phase Approach

The core of the three-phase approach is dividing the way an activity starts into two
categories — Conditional and Bound. Bound events occur at particular, pre-computed
times. Conditional events are affected by other factors, such as the availability of

resources.

The executive operates in three phases — the first (A phase) finds simulation time
point when the next event will occur. The second (B phase) executes all the Bound
tasks that due to occur. The third phase (C Phase) tries all the outstanding Conditional
events, to see if the required conditions have been met (Law & Kelton 2000; Pidd
1998).

There are several advantages to this approach -
e The dead locking problems of the process-based approach are avoided.

e The inefficiency of the activity based approach trying the test head for every

activity is avoided.

e The complexity of modelling interaction in the event based method (where
each event routine must contain the actions required to deal with interaction),

is dealt with in the handling of the conditional events.
Examples of this approach being used include:

e loannou (loannou 1999) using Three Phase Approach simulation to model

construction work.

e Marzouk & Mosehli (Marzouk & Moselhi 2000) used C++ to construct a

Three-Phase system to model earth moving in construction.

e Pidd & Castro (Pidd & Castro, 1998) used C++ and Three Phase Approach
modelling techniques in their examination of problems relating to large-scale

modelling.

-16 -

3.4.5 Performance

Several simulation systems have been created in the LNG supply chain modelling
area — most notably, FLEET for Lloyds of London and ADGENT for Shell. In the
former case, the performance of the model is such that that for reasonably complex
models, runtime is in the order of hours. ADGENT is somewhat better. While in both
cases the performance is adequate, it is my belief that neither has optimised the
fundamental method of modelling, relying instead on the power of the hardware they
are run on. Lanner, who are best known for their work on the Witness modelling
environment, appear to have used time-slicing (the system steps through simulation
time in regular, fixed increments). This results in extremely slow operation for any
reasonable level of complexity, particularly when modelling systems that are

continuous in nature.

A major aim of this work is to construct a computationally efficient modelling system.
As we have seen, both Huang & lyer (Huang & lyer, 1998) and Perumalla &
Fujimoto (Perumalla & Fujimoto, 1998) commented extensively on the efficiency of
the process based approach — in the former, arguing that processes based systems be
translated into event based ones, and in the second, arguing that by limiting the
process based approach (to the point of becoming an event based model) higher
performance can be achieved. The activity-based method is slower inherently — since
it indiscriminately scans for the start of the next activity, rather than jumping to the
time of the next event in a list (Pidd, 1998; Law & Kelton 2000).

The above tends to argue for the adoption of either the event based or three-phase
methods, which are more efficient (Huang & lyer, 1998; Pidd, 1998).

3.4.6 Conclusions on the selection of methodology
To create a reasonably efficient system, two principles need to apply

e The level of detail must be variable — if the user wants to build an elaborate
system of breakdowns, representing the complex systems aboard each tanker,
he/she is free to do so. By the same token, if the user wants to build a simpler
model, the computational load should reflect that

-17 -

e The method selected should work on the principle of only doing something if
there is an event — periodic recalculations (such as in time-slicing) would lead

to an excessively slow system.

As previously discussed, the boundary between discrete and continuous modelling is
to a certain extent, an illusion. Modelling of continuous systems on a digital computer
is accomplished by computing the values of simulation-time dependent equations at a

given point. In this case, the nature of the problem indicates a discrete approach.

Of the discrete system the most flexible and efficient for a reasonable order of
complexity is the three-phase approach. The time handling is flexible, utilising a
Future Event List (FEL), and it avoids the complexity of entity interaction associated
with the event scanning approaches (Banks, Carson, Nelson & Nicol, 2000). As
previously mentioned several authorities have given the opinion that process based
systems are less computationally efficient than event based.

The recommendation therefore is a discrete simulation system, based on the three-

phase approach.

The key to the three-phase approach is to divide the way an activity starts into two
event types — Conditional and Bound. Bound events occur at particular, pre-computed
times. Conditional events are affected by other factors, such as the availability of
resources. The performance of a simulation model depends very much on an effective

choice of conditional events, and we discuss this in the next section.

-18 -

Chapter 4. Modifications to methodology

The methodology selected, Three-Phase requires some modification to make it
suitable for use with respect to this problem. This section describes these
modifications and the reasons that they were made.

4.1 Basic Concepts

The executive operates in the traditional Three Phase Approach manner — the first (A
phase) finds simulation time point when the next event will occur. The second (B
phase) executes all the Bound tasks that due. The third phase (C Phase) tries all the
outstanding Conditional events, to see if the required conditions have been met (Law
& Kelton, 2000; Pidd, 1998).

The flow through an object is subject to a single limit, for both inputs and outputs.
This consists of a maximum and minimum flow rate. If the minimum flow rate is not

met the object must be completely shut down.

Breakdowns, maintenance etc. are modelled by reducing the maximum flow value —

to zero, if required.
4.2 B Events

B events in the classic Three-Phase model are those that have their start or finish time
determined in advance (Pidd 1998). This can apply not only to inherently

deterministic events such as darkness and tides but also probabilistic events such as
-19 -

weather and breakdowns. Pre-computing the time of the next occurrence, using a

given distribution, can accomplish this.
In this work the following B events have been implemented:

Table2. B Event Types

Bgreakdown A breakdown has occurred on the object affecting flow
through it. Used in the Test mode of operation of the model
only.

Bpemand Seasonal demand variation — demand for LNG varies
between Summer and Winter (for example). Used in both

the Generate and Test modes for the system

At the start of a run, the B events will be computed and a list of them constructed,
ordered on start time. In this model B events are actually pairs - a start and an end
event. Thus in our case a B event is in effect two events. This innovation was driven
in part by performance — at a given point in time, several B events may be acting on a

single object.

‘ B event ‘

‘ B event ‘

Time

Figure 4. Original B events affecting the object

Each object has one or more performance parameters that can be affected by events.
In this thesis we will be considering events effecting flow of material. This effect will
continue for an amount of time that is generally probabilistic and hence can be
calculated before the start of the run. From this it can be seen that combining the

overlapping B events is possible, and will simplify event handling. Figure 4 shows an

-20 -

example of the original events and Figure 5 shows the corresponding runtime

versions.

‘ Merged B event ‘

Merged B event ‘

Time

Figure 5. Runtime B events for object

Simultaneous events are additive — if two events are occurring at the same time on the

same object, then the total effect is the sum of the individual effects (Figure 6).

Effect A

v

Time

suels 'g
Z
suels °g
spu3 'g
spu3 °g

Figure 6. B Events for a single object

-21-

A major concern with this modelling method is speed. For this reason, the obvious
method of scanning through the events, determining the next one to occur was
rejected.

The way that the B events are handled is determined by the way in which the model is

intended to be used. There are two modes to be considered:

Table 3. Modes of operation for the model

Generate | A plan of operations is constructed. Probabilistic events are
represented by adding a fixed amount of time to each ship voyage.

Only demand change B events are used.

Test The probabilistic events are turned on, and the model is run a
number of times, to discover whether the plan is feasible, and if not,
where it may fail. So far, the breakdown events have been modelled.

The B events themselves are not typically a subject of experimentation when

designing LNG systems — they are a pre-condition of the equipment used, the tides
and the weather.

4.3 C Events

The C events, in the Three Phase Approach, are those are conditional in nature — that
is they occur as a result of internal operation of the model. For the LNG supply chain
model they are the key to the construction of an efficient model. The list of C events

is given in Table 4.

-22 -

Table 4. C Event Types

Crun Object reaches maximum internal level
Cempty Object reaches minimum internal level
Crormal Obiject returns to a situation where it is neither at the

maximum or minimum internal level

CFi"ing To Normal Object has completed refilling back to the normal minimum

level

CEmptying To Normal | ©bject has completed emptying back to the normal

maximum level after having exceeded it.

Cend Laden Voyage Specific to ships — a laden voyage (to a receiving port) has

been completed.

Cend Empty. Voyage Specific to ships — an empty ship arrives at the loading port.

Cattach Specific to ships — a ship has actually attached to the flow

system at a port.

In the classic Three Phase Approach C events generally have a matching B event. Due
to the nature of this model, it is however, possible to compute when these events will
occur (and when the event effect will end) at a given time point unless another event

occurs before this.

If such an event occurs the matching B event would have to be recomputed
dynamically during the course of the run — which would make them difficult to handle

as standard B events. For this reason they are handled as another C event.

It is possible to consider the C events in this way because the operation of the model
is deterministic — unless an event occurs, the future state of the model can be
calculated by applying the time elapsed to the equations governing flow. The time to
the next C event is also recalculated if the object has been affected by change to a

-23-

neighbour, or a probabilistic event (a B event), such as weather or a breakdown has

affected the operation of the object.
4.4 How the effects of an event propagate

Let us consider the case of a Cgy event affecting a static (non-ship) object connected
to a supply chain, such as in Figure 7.

The model reduces inflow into the object affected. This in turn affects the objects that
feed the object in question. In particular it will affect the rate at which these objects
are filling or emptying themselves. In other words, the time to the next Cryii, Cempy,

CFiIIing_To_NormaI or CEmptying_To_NormaI is modified.

This does not directly affect the other items in the supply chain yet. Since we are not
trying to predict the effect of one C event on the timing of another, we can consider
them in isolation — what we are interested in is the time of the next event that will

occur.

--=-% Inputand Output affected
—» Unaffected

\ ObIEC affected
V ﬁ
ﬁ N Extent of effect ‘ﬁ(
. 4 '
' Object is

already full

T

mﬁ

d

Figure 7. Objects Affected by the Event

This also holds good for all other C events — in fact for both B and C events. Consider
that in each case the events modify the operating capability of an object. When
estimating the time of the next C event for each object, only the current input and

-4 -

output values need to be considered. This is because the estimates for the times of the

C events are updated when they are affected by a change in object performance.

Note the case of a neighbouring object inputting into the object affected by the C
event that is full itself. Here, the input rate into the neighbouring object is affected —
in turn affecting its inputs. This chain of effects will only continue so far as the effects

pass through the objects, effecting further objects.

This is fundamental to the performance of this approach — we only need consider the
effect of an event on the neighbours of the object affected, as well as the object itself.
This means that a blanket recalculation of C events is not necessary every time an

event (both B and C type) executes.

After an event (of either type) occurs the C events for that object and the objects

immediately affected by it are recalculated.
4.5 The Executive

The approach is the standard Three-Phase model, with some modifications to the

events types and their handling. This section discusses the modifications.
4.5.1 Pre Processing

The ordered list of B events is created, and all the objects are scanned to find the first
C event(s) — there may be more than one C event occurring at this time point, of

course.
45.2 B Phase

Currently only one type of B event is implemented — Brow Which affects flow through
the object (see figure below). The change is executed, and then the object status is
checked. If there is too much input, reduce it. If there is too much output, reduce it. If
the event has less effect than the previous By 0N the object, try to increase the flow
into the object. This comes into play when a B event ends — when the end event is

reached, the model attempts to restore flow.

-25-

Start

Update potential

flow change
values

Execute the B
event

Is there more input
than the max flow in?

Try to reduce
the input

Is there more
output than the max
flow out?

Try to reduce
the output

Increase flow into
the object to
match the new
effect level

Is the effect of the
current effect less than any
previous B effect?

Add this objec to
the list of those
affected by events

A
Finish

Figure 8. Handling Bgo, Event

-26 -

Table 5. B event code

/**

* Deal with a B event

*

* @param clock

*

*/

The time

public void bFlow(final double clock)

{

updatePotentialChanges();

final double effect = getLargestEffect();

final double oldEffect = getBEventModification();
setBEventModification(effect);

final double current_inputs = getCurrentFlowFromInputObjects();
final double current_outputs = getCurrentFlowIntoOutputObjects();
double required_change_in = 0.0;

double required_change_out = 0.0;

/I If we have too much flow in, reduce if possible
if (current_inputs > getMaxFlowIn())

required_change_in = current_inputs - getMaxFlowIn();

decreaseFlowIn(required_change_in);

}

/1 1f we have too much flow out, reduce if possible
if (current_outputs > getMaxFlowOut())

required_change_out = current_outputs - getMaxFlowOut();

decreaseFlowOut(required_change_out * getConversionFactorUp());

}

/1 1s the effect of the new B event less (i.e. closer to 1.0)
if (effect - oldEffect > 0)

{
double change_in = getPotentialIncreaselnFlowInFromObjects();
final double max_change_in = getMaxFlowIn() - current_inputs;
if (change_in > max_change_in)
change_in = max_change_in;
}
increaseFlowIn(change_in);
if(hasMaxContents())
{
double change_out = getPotentialIncreaselnFlowOutToObjects();
final double max_change_out = getMaxFlowOut() - current_outputs;
if (change_out > max_change_out)
change_out = max_change_out;
}
increaseFlowOut(change_out);
}
}

updatePotentialChanges();
getAffectedObjectsInSim().add(this);

-27 -

45.3 C Phase

The C events generally relate to flow — the apparent exception is the Cagach €vent
when a ship arrives at a port. In fact this is handled as a flow change event as well —

the effects are all to do with flow into the neighbouring objects.

45.3.1 C Phase Object States

An object can have following states relating to the C events:

Table 6. C Event Related Object States

Crun The object has been filled to its maximum capacity. This means that

output from the object must be greater or equal input.

Cempty The object has reached its minimum internal level. This means that
input must now equal of exceed output.

Chormal The object has an internal level that is between the maximum and

minimum levels for normal operations (see below)

Cemptying To_Normal The object hasn’t yet emptied to the maximum level for normal
operation (Nmax)

Chilling_To_Normal The object has an internal level that has risen above, but has not
reached a given level for the minimum level for normal operation yet
(Nimin)

Cattach A new object is attached to the model

Reaching each object state is a C event (Pidd 1998); when they occur, a recalculation
is undertaken for that part of the model. After each change in state, the time to the
next state change (C event) is calculated. The following figure shows the state

transition diagram for the state changes.

-28 -

©
0

0
0

Figure 9. Object State Transition Diagram

This is a valid approach because the operation of the model is deterministic. The time
to the next C event is also recalculated if the object has been affected by change to a
neighbour, or a probabilistic event (B event), such as weather or a breakdown has

affected the operation of the object.

The reason for the emptying and filling states is to prevent the system oscillating
between Full /Empty and the Normal state, while never giving the structures time to

return to relatively normal levels.

The object states relate to the level in the object. These are important because
reaching specified levels triggers some state changes. These are given in Figure 10.

Figure 10. Object Levels

-29.-

The following table shows how these object levels relate to the states outlined above.

Table 7. Object Level & Corresponding States

Level Description New State

Lvax The maximum level for the object. If it is exceeded, the object is shut down Crun

Nmax The level at which normal operations resume when the level drops to this Chrormal
point, after the object has reached L.y

L, Current Level N/A

Nwmin The level at which normal operations resume, after the level reaches this point | Cormal
after the object level has hit Ly,

Linin The minimum operating level for the object — when it is reached the object is Cempty

shut down.

-30-

4.5.3.2 Handling States when they are reached

453.2.1 Cru

Start

4

Update potential
changes to the
object

4

Calculate required
change in flow

Is the rate of
contents change 0?

Set the required
change to be the

Yes— possible increase

in flow out of the

object
¢
No
Is there a required
change in flow?
Yes
Increase the flow
out
Is there still a
required change in No——Ro
flow?
Yes
Decrease the flow
in
D

<

Set status to

“Emptying” +—Yes

Figure 11. Handling Cgy

-31-

No—p

Set status to “Shut
in full”

Initially, the objects potential changes are updated. Next the required change in flow
is calculated — this is calculated as the amount required to stop the object contents

increase plus an extra factor (25% as a default), so that the object will start to empty.

If the required change in flow comes out as zero — the object is full but stable, then the

required factor is set as the possible decrease in flow out.
The change in flow required is made by —

1. First the flow out is increased, if possible,
2. If more is required, the flow in is decreased — again, if possible.

3. If the object is now emptying the status is updated. Otherwise the item is shut

down.
Table 8. Code for handling Cgy
/**
* GenesisRunException
* AbortException
*/

public void cFull() throws GenesisRunException, AbortException

/I Set object status
setStatus(FlowStatus.SHUT_IN_FULL);
updatePotentialChanges();

final double rateOfChange = getRateOfContentsChange();
double required_change = rateOfChange;

final double rs = getResettingFactor();
final double max = getMaxFlow();

final int fc = (int) (rs * max);
required_change += fc;

/I The object is full but stable - try to increase flow out
if (rateOfChange == 0.0)

{
required_change = getPotentialIncreaselnFlowOutToObjects();
}
cFull(required_change);
}
/**
* requiredChange
* GenesisRunException
* AbortException
*/

public void cFull(double requiredChange) throws GenesisRunException, AbortException

/1 1f the object is actually filling...
if (requiredChange > 0)

requiredChange = increaseFlowOut(requiredChange);

requiredChange = getRateOfContentsChange();

/[if the required change was not entirely done by

-32-

/I increasing the output, try decreasing input.
if (requiredChange > 0)
{
requiredChange = decreaseFlowlIn(requiredChange);
}
}
/I Have we succeeded?
if (iIsEmptying())
{
setStatus(FlowStatus.EMPTYING);
}
if (isStable())
{
setStatus(FlowStatus.NORMAL);
}
}

First the objects potential changes are updated. Next the required change in flow is
calculated — this is calculated as the amount required to stop the object contents
decrease plus an extra factor (25% as a default), so that the object will start filling. If
the required change in flow comes out as zero — the object is full but stable, then the

required factor is set as the possible decrease in flow out.

First the flow in is increased, if possible, then the flow out is decreased if possible. If

the object is now filling the status is updated. Otherwise the item is shut down.

Table9. Code for handling Cempy

/**
* GenesisRunException
* AbortException
*/
public void cEmpty() throws GenesisRunException, AbortException
{
/I Set object status
setStatus(FlowStatus.SHUT_IN_EMPTY);
updatePotentialChanges();
final double rateOfChange = getRateOfContentsChange();
final double rs = getResettingFactor();
final double max = getMaxFlow();
double required_change = -rateOfChange;
final int fc = (int) (rs * max);
required_change += fc;
if (rateOfChange == 0.0)
{
required_change = getPotential IncreaseInFlowInFromObjects();
}
cEmpty(required_change);
}

-33-

/**
* @param requiredChange
* @throws GenesisRunException
* @throws AbortException
*/
public void cEmpty(double requiredChange) throws GenesisRunException, AbortException
{
II'If the object is actually emptying...
if (requiredChange > 0)

requiredChange = increaseFlowIn(requiredChange);
requiredChange = -getRateOfContentsChange();

/I if the required change was not entirely done by

/l increasing the input, try decreasing output.

if (requiredChange > 0)

requiredChange = decreaseFlowOut(requiredChange);

}

/I Have we succeeded?
if (isFilling())
{

setStatus(FlowStatus.FILLING);

}
if (isStable())
{
setStatus(FlowStatus.NORMAL);
}

-34 -

Start

A

Update potential
changes to the
object

A

Calculate required
change in flow

Is the rate of
contents change 0?

Set the required
change to be the
possible increase
in flow into the
object

Is there a required

change in flow?

Yes
v

Increase the flow
in

Is there still a
required change in
flow?

Yes

v

Decrease the flow
out

Set status to

“Filing” [¢ 'S

Emptying?

No—p

Set status to “Shut
in Empty”

L S

Figure 12. Handle Cegmpry

-35-

453.2.3

CEmptiedToNormaI

Update potential
changes to the
object

v

Calculate required
change in flow

Is the rate of contents
change 0?

Yes—p

Set the required
change to be the
possible increase
in flow into the
object

Is there a required
change in flow?

Yes
v

Increase the flow
in

Is there still a
required change in
flow?

Decrease the flow

out

No———o

Set status to
“Emptying”

| setstatusto | oo Filling? <
Filling
No
4
Set status to
“Stable” 4+—Yes No—
» Finish <«

This area differs from the basic Cempy handling

Figure 13. Handle CemptiedToNormal

-36 -

This event is handled in a very similar manner to Cempy — the difference is at the end

the object may be emptying, stable or filling.

Table 10. Code for handling Cemptiedtonormal

/**

* Emptied until the object is at the normal level
*/

public void cEmptiedToNormal()

{
setStatus(FlowStatus.NORMAL);

updatePotentialChanges();
double required_change = -getRateOfContentsChange();
if (required_change == 0.0)

required_change = getPotential IncreaseInFlowInFromObjects();

}

/I'If the object is actually emptying...
if (required_change > 0)
{

required_change = increaseFlowIn(required_change);

/I'if the required change was not entirely done by
/l increasing the input, try decreasing output.
if (required_change > 0)
required_change = decreaseFlowOut(required_change);

}

/I Have we succeeded?
if (isFilling())
{

setStatus(FlowStatus.FILLING);
}

if (isStable())
{

setStatus(FlowStatus.NORMAL);

-37 -

45.3.2.4 Chrefilled

Update potential
changes to the
object

v

Calculate required
change in flow

Set the required
change to be the
Yes— possible increase
in flow out of the
object

Is the rate of contents
change 0?

Is there a required
change in flow?

Yes
v

Increase the flow
out

Is there still a
required change in
flow?

Yes

v

Decrease the flow
in

<

) 4

Set status to
“Emptying”

4—Yes—— Emptying?

No

4

Se“t status" to l€—Ves No Se} s_tgtui to
Stable Filling

This area differs from the basic Cr, handling

Figure 14. Handling Crefilleq

-38 -

This event is handled in a very similar manner to Cgy; — The difference is that the

final state may be emptying, stable or filling.

Table 11. Code for handling Chrefilled

/**

* Refilled to the normal level
*/

public void cRefilled()

{
setStatus(FlowStatus.NORMAL);

updatePotentialChanges();
double required_change = getRateOfContentsChange();

/I The object is full but stable - try to increase it
if (required_change == 0.0)

required_change = getPotentialIncreaselnFlowOutToObjects();

}

/I If the object is actually filling...
if (required_change > 0)

required_change = increaseFlowOut(required_change);
/I if the required change was not entirely done by
/I increasing the output, try decreasing input.
if (required_change > 0)
required_change = decreaseFlowIn(required_change);

}

/I Have we succeeded?
if (iIsEmptying())
{

setStatus(FlowStatus.EMPTYING);
}

if (isStable())
{

setStatus(FlowStatus.NORMAL);

-39-

4.5.3.2.5 Cattach

Start

t

Mark as attached

Handle asa C
empty event — but
Yes—ptry to increase flow —
in to the maximum

possible

*

No
Handle as a C full
event — but try to
Yes—p| increase flow out
to the maximum
possible
No

Finish

A
A

Figure 15. Handling Cattacn

The object is connected to the model. If it has inputs, it is handled as an empty object
—which will cause flow into it. If it has outputs it will be handled as a full object —
which will trigger increased flow out. In both cases the objective is to increase the
flow to the maximum possible, given the maximum flow rates of the objects in

question.

- 40 -

Table 12. Code for handling Cagach

/**

* Handle the object being attached to the rest of the model while it is running. For example, a
* ship docking

*

* @throws GenesisRunException
* @throws AbortException

*/
public void cAttach() throws GenesisRunException, AbortException
{
setJustAttached(false);
/I If there are now input objects...
if (hasInputs())
{
/I Treat the object as if it is empty - increase the flow in, if
/I possible
cEmptyMaxResponse();
return;
}
if (hasOutputs())
/I Treat the object as full - increase output
cFullMaxResponse();
return;
}
}
/**

* Handle the C Full event by increasing the flow in by the maximum amount possible

*

* GenesisRunException
* AbortException
*/

public void cEmptyMaxResponse() throws GenesisRunException, AbortException

{
}

[**

* Handle the C Full event by increasing the flow in by the maximu amount possible
*

cEmpty(getMaxFlowlIn());

* GenesisRunException
* AbortException
*/

public void cFullMaxResponse() throws GenesisRunException, AbortException

{
}

cFull(getMaxFlowIn() - getCurrentFlowIn());

-41 -

4.5.3.3 Ships

This section deals with the additional & modified C event types that involve ships. In
general, while connected to receiving and loading ports, ships behave just like storage
tanks. Their behaviour when voyages are taken into account is more complicated — the

results of the Full and Empty states are modified:

45331 CEnd_of_Voyage

Start

4

Set object status
as waiting for a
berth

4

Try and sail into a
berth

Trigger a C Attach

Berthed?
event

Figure 16. Handling a Cegng of voyage

The ship has arrived at a port. It tries to attach to berth and connect to the port flow

structure. If it can’t attach immediately, it waits in a queue for the next available
berth.

=42 -

Table 13. Code for handling Ceng_of voyage

/**
* End of laden voyage event
*

* GenesisRunException

AbortException

*
*/
public void cEndOfLadenVoyage() throws GenesisRunException, AbortException
{
setVoyageStatus(VoyageTypes.WAITING_FOR_BERTH);
final boolean berthed = connectToPort(getCurrentRoute().getEndPort());

setCurrentRoute(null);

if (berthed)
{
cAttach();
}
}
/**

* The end of unladen voyage event

*

*

GenesisRunException
AbortException

pL/Jb“C void cEndOfUnladenVoyage() throws GenesisRunException, AbortException
{ setVoyageStatus(\VVoyage Types.WAITING_FOR_BERTH);
final boolean berthed = connectToPort(getCurrentRoute().getStartPort());
setCurrentRoute(null);
i{f (berthed)

cAttach();

-43 -

45332 Cempy

Start

Call the standard C
empty event handler

Start the ship on a
Is the ship at a voyage to a
= Yes—)
receiving port? loading port
(unladen)
No

Figure 17. Handling a Cgpyy event for a ship

If the ship is at a Loading port, try to increase the flow into the ship. Ifitisat a

receiving port, start an unladen voyage.

Table 14. Code for handling Cempy

/**
* @throws AbortException
* @throws GenesisRunException
* @see com.stchedroff.genesis.core.structure.flow.FlowEvents#cEmpty()
*
/
@Override
public void cEmpty() throws GenesisRunException, AbortException

{
super.cEmpty();

switch (getCurrentPortType())
case RECEIVING_PORT:

startUnladenVoyage();
break;

- 44 -

4.5.3.3.3 Crul

Start

Call the standard C full
event handler

Start the ship on a
Is the_ ship at a Yes voyage toa
loading port? receiving port
(laden)
No

Figure 18. Handling a Cg, event for a ship

If the ship is at a Loading port, start a laden voyage.

Table 15. Code for handling Cg For a ship

/**

* com.stchedroff.genesis.core.structure.flow. FlowEvents#cFull()
*/

@Ouverride

public void cFull() throws GenesisRunException, AbortException
super.cFull();

switch (getCurrentPortType())

{
case LOADING_PORT:
startLadenVoyage();
break;
}

- 45 -

4.5.3.3.4 Cattach

End an unladen
voyage

At a loading
port?

At a receiving port
— end the laden
voyage

A 4
Call main C Attach
event handler
Figure 19. Handle Cagach €vent for a Ship

The ship actually attaches to the flow structures at the ports, having found an empty

berth.

Table 16. Code for handling Cagach FoOr a ship

/**
* com.stchedroff.genesis.core.structure.flow.FlowEvents#cAttach()
*/
@Override
public void cAttach() throws GenesisRunException, AbortException
{
switch (getCurrentPortType())
case LOADING_PORT:
endUnladenVoyage();
break;
case RECEIVING_PORT:
endLadenVoyage();
break;
}
super.cAttach();
}

- 46 -

4.6 Making Flow Changes

There are four types of changes that need to be considered to implement the state

changes outlined above.
4.6.1 Increasing the flow into the object

If we wish to increase the flow into the object, this can only be done if there is
material in the attached objects “upstream” of the object in question. We can discount,

therefore, input objects that are empty (Figure 200).

These objects are Object affected
not empty, so may
affect the input to
the object in
question — if they

are working.

-

ﬁ
~§ 48
4
S

so ignored

Figure 20. Empty Objects & Inputs

If the input object has some contents, then we can increase the flow from it, up to its

maximum flow rate (Figure 211).

-47 -

C

Start

v

)

Work out the possible
increase in flow in

Is the possible
change from attached objects
greater than this object
can manage?

Set possible to
local value

Yes

Is any change
possible?

Yes

v

Calculate the required
percentage change for
the input objects

v

Try to increase the
flow in by the
required amount

v

Finish

—()

Figure 21. Increasing Flow In

The potential increase is the sum of the potential increase in flow rate.

- 48 -

Table 17. Code For Increasing Flow In

/**

* Increase the flow into the object, if possible
*

* required

* The amount of extra flow required

* The amount remaining

*/

protected double increaseFlowIn(double required)
{

final double possible = getPotentiallncreaselnFlowInFromObjects();
final double localPossible = getCurrentPotentiallncreaseFlowlIn();
final double previous = getCurrentFlowIn();

if (required > localPossible)

required = localPossible;

}

/I Nothing can be done
if (localPossible == 0.0)

{
final double reallnput = getCurrentFlowFromInputObjects();
setCurrentFlowIn(real Input);
return required;

}

/I The default is to reduce by 100% of possible
double percentageRequired = 1.0;
double factor = 1.0;

if (possible > localPossible)
factor = localPossible / possible;
/I'If this is more than we require, reduce only by what is required

if ((possible > required) && !Globals.aproxEqual(possible, required))

percentageRequired = required / localPossible * factor;

}
else
{ : .
percentageRequired = percentageRequired * factor;
}
}
else
{
/1'If this is more than we require, reduce only by what is required
if ((possible > required) && !Globals.aproxEqual(possible, required))
percentageRequired = required / possible;
}
else
{
percentageRequired = percentageRequired * factor;
}
}

increaseFlowFromInputs(percentageRequired);
final double reallnput = getCurrentFlowFromInputObjects();
setCurrentFlowIn(real Input);

return required - (reallnput - previous);

- 49 -

4.6.2 Decreasing the flow into an object

Increases are done on the basis of what is the best that can be achieved. Decreases in

input are absolute — the required decrease is always carried out

Work out the possible
decrease in flow in

Is the possible
change from attached objects
greater than this object
can manage?

Set possible to
local value

Yes

Is any change
possible?

Yes

v

Calculate the required
percentage change for
the input objects

No ¢
Try to decrease

the flow in by the
required amount

Figure 22. Decreasing Flow In

The decreases in flow can only change the rate of flow in from objects that are

flowing — so again, empty objects can be ignored.

-50 -

Table 18. Code For Decreasing Flow In

/**

* Try to decrease flow in by a specified amount
*

* required

* The amount of decrease required

* The amount remaining

*/

protected double decreaseFlowIn(double required)
{

double factor = 1.0;

double possible = getPotentialDecreaselnFlowFromObjects();
final double localPossible = getCurrentPotentialDecreaseFlowlIn();
final double previousFlowIn = getCurrentFlowlIn();

if (required > localPossible)

{
required = localPossible;

}

if (possible > localPossible)

{
factor = localPossible / possible;
possible = localPossible;

}

/I Nothing can be done
if (possible == 0)
{

final double reallnput = getCurrentFlowFromInputObjects();
setCurrentFlowIn(real Input);
return required;

}

/I The default is to reduce by 100% of possible
double percentageRequired = 1.0;

/I'If this is more than we require, reduce only by what is required
if ((possible > required) && !Globals.aproxEqual(possible, required))

percentageRequired = required / possible * factor;
}
else

{
}

decreaseFlowFromInputs(percentageRequired);

percentageRequired = percentageRequired * factor;

final double reallnput = getCurrentFlowFromInputObjects();
setCurrentFlowIn(real Input);

return required - (previousFlowIn - reallnput);

-51 -

4.6.3 Increasing the flow out of an object

< Start >

A

Work out the possible
increase in flow out

Is the possible
change from attached objects
greater than this object
can manage?

Set possible to
local value

Yes

Is any change
possible?

Yes

v

Calculate the required
percentage change for
the output objects

A

Try to increase the
flow out by the
required amount

A

—»(Finish)

Figure 23. Increasing Flow Out

We look for all attached objects — “downstream” that are not already receiving input

at the maximum rate.

-52-

Table 19. Code For Increasing Flow Out

/**

* Increase flow out of the object

*
*
*
*

*/

requested
The amount of increase requested
The amount remaining

protected double increaseFlowOut(final double requested)

{

double actual = requested * getConversionFactorDown();

final double previous = getCurrentFlowOut();

double possible = getPotentialIncreaselnFlowOutToObjects();

final double localPossible = getCurrentPotentialIncreaseFlowOut();
double factor = 1.0;

if (actual > localPossible)

{
}

if (possible > localPossible)

actual = localPossible;

factor = localPossible / possible;
possible = localPossible;

}

/1 If there is no possible change, or the request is negative/zero...
if (possible == 0)
{

final double realOutput = getCurrentFlowIntoOutputObjects();
setCurrentFlowOut(realOutput);
return requested,;

}

/I The default is 100% of the possible amount
double percentageRequested = 1.0;

if ((actual < possible) && !Globals.aproxEqual(actual, possible))
percentageRequested = actual / possible * factor;

}

else

{
}

increaseFlowToOutputs(percentageRequested);

percentageRequested = percentageRequested * factor;

final double realOutput = getCurrentFlowIntoOutputObjects();
setCurrentFlowOut(realOutput);
/I setCurrentFlowOut(getCurrentFlowOut() + result);

return (actual - (realOutput - previous)) * getConversionFactorUp();

-B3-

This means that output objects that are full can be ignored:

v These object is not
! full, so may affect the
2 input to the object in
\ question — if itis

\ / working.
\ .
\
\
Object full so it /

is ignored

’ N
i '\. Object affected

\

|

\
\

Figure 24. Effects of a full object on modifying output

-54 -

4.6.4 Decreasing the flow out of an object

Work out the possible
decrease in flow out

Is the possible
change from attached objects
greater than this object
can manage?

Set possible to
local value

Yes

Is any change
possible?

Yes

v

Calculate the required
percentage change for
the output objects

No ¢
Try to decrease

the flow out by the
required amount

Figure 25. Decreasing Outputs

This is done as an absolute — the output from the object is reduced as required. The
reduction per output object is done as a percentage of each of their existing flows.
Again, full objects can be ignored, since no flow was going to them in the first place.

-55-

Table 20. Code For Increasing Flow Out

/**

* Decrease the rate at which material flows out of the object (if possible)

*
*
*
*

*/

requested

The amount by which we want to decrease the flow out of the object

The amount remaining

protected double decreaseFlowOut(final double requested)

{

final double previous = getCurrentFlowOut();

double factor = 1.0;

double actual = requested * getConversionFactorDown();

double possible = getPotentialDecreaseInFlowOutToObjects();

final double localPossible = getCurrentPotentialDecreaseFlowOut();

if (actual > localPossible)

{
}

if (possible > localPossible)

actual = localPossible;

factor = localPossible / possible;
possible = localPossible;

}

/'1f no change is possible, do nothing
if (possible == 0) { return requested; }

/I Default is 100% of what is possible
double percentageRequired = 1.0;

if ((actual < possible) && !Globals.aproxEqual(actual, possible))
percentageRequired = actual / possible * factor;

}

else

{
}

decreaseFlowToOutputs(percentageRequired);

percentageRequired = percentageRequired * factor;

final double realOutput = getCurrentFlowIntoOutputObjects();
setCurrentFlowOut(realOutput);

return (actual - (previous - realOutput)) * getConversionFactorUp();

-56 -

Chapter 5. Implementation

5.1 Overview of the Structure Implementation

Initially C++ was chosen. This was latter change to Java. The reason for the
change was that Java has the advantage of being platform independent,
offering higher productivity in writing code and having a large library of
useful structures, such as PriorityQueue. In recent versions (1.5 and higher)
Java has achieved speeds very close to that of C++ for a number of tasks
(Lewis & Neumann, 2004).

5.2 Basic structure

The main advantage of the object-oriented approach to structure is that
functionality is developed once and then inherited by all those structure
requiring it. Typically the resulting structure is tree like. The major decisions
are at what level to put particular functionality in the tree — too low and
duplication of capability is required, too high and object will have properties
they do not require.

A subsidiary requirement was to only use single inheritance. While multiple
inheritance is standard in C++ (and other languages) it can lead to structural
problems and debugging issues. In particular, if a parent class is inherited
twice, care needs to be taken to insure that there is only one instance and is

referenced correctly - the simpler structure avoids this. This also means the

57

structure was re-implemented easily in Java and is compatible with virtually

any object oriented language.

Analysis of the various structures to be modelled showed that there were a
number of data items common to all objects in the model. From this it was an
obvious step to define a basic “Object” type, common to all items in the

model.

The second point from this analysis was that there was a split between the
equipment that handles the gas & LNG and the meta-structures that contain
them. These higher structures are the ports and the shipping routes that
contain them. This leads to the idea of a “Flow Structure” from which all the

equipment is derived.

The ports themselves are divided into loading and unloading. This is because
different equipment is required for each port and the direction of flow is
important — In a loading port the flow is always towards the jetties, and in a

receiving port away from them.

The separation of structures derived from the flow structures was more
difficult and underwent several revisions. The following options were

considered —

1. All objects inherit the same properties — all the functionality would be
placed in a “Flow Structures”.

2. Split the flow handling into two classes — “Equipment” and
“Connectors”. In this paradigm the LNG and Gas types would be
handled by setting flags in the objects.

3. Splitting the equipment into the three classes.

Keeping everything in the flow structure(s) was the option finally selected,
after a number of revisions. The initial decision was to split the Connector
type from the others. This was done in partly because of functionality issues
(as above) and partly because of programming convenience. In the end,
simplifying the code gave the highest benefits in terms of testing and
maintenance.

58

Similar considerations were linked to the idea of splitting the equipment
types into Gas Plant & LNG Plant — the behaviour is different and it is easier
to handle it by splitting the class definitions.

5.3 Points of interest in the structure implementation

«interfaces |
© GenesisEventOhjectinterface e

A

|
|
| |
| |
|
: l & Port | | © ShippingRoute | A
- rﬁﬁ
l [© LoadingPort I l © ReceivingPort | ‘
| g :
' A
: | & FlowEvents I—{>{ & FlowBasicCalculation I—{>i & FlowCurrent I—{>{ & FlowPotential l—(}{ & FlowBasic I
|
[& Ship | l (& StaticFlowStructure l
A
| I | | | l | |
[& Demand I l © Berth I ‘ (Connector I | © LNGPIlantinlet | ‘ GasPlant l [© Tank I ‘ © Jetty I [© LNGPIant I ‘ & Production |
A
K © PowerStation I [© LngDemand I | © FractionationTrain | | © GasProcessingPlant I [© GasTreatmentPlant |
[© GasPipeline l [© GasConnector I ’ (& LNGConnector I [@ LiquefactionTrain I [© RegasificationTrain | I © WellGroup

Figure 26. Overall Structure

This section provides an overview of interesting features in the
implementation — much of the structure is a relatively straightforward
implementation of the properties for each item. The overall structure is given

in Figure 26.
5.3.1 GenesisObject

This structure holds the most basic information for each object — the object,

name, dates, and the parent object (such as a port)

59

5.3.1.1 The Flow Structures

This is the set of classes titled Flow<ClassName>. The reason that there is
more than one class, despite the linear inheritance between them, is that the

amount of code became unmanageable for one class.

This level in the hierarchy provides the basic mechanisms to deal with object
that have flows of gas or LNG passing through them. The highest level
versions of the functions to handle Cnormat, CemptiedtoNormal, Crefitled, Cempty @nd

Crun are implemented.

In addition, the Flow Structure implements the connection to Connector type
objects (see below). A single Flow Structure can have several input and

several output Connectors.

5.3.1.2 LNG Ship

The ships are treated as a type of flow structure, with overloaded functions to
handle the C events Caach, Cempty @nd Cryn. This is in addition the functions
to handle the events that are specific to LNG Ships - Cend of Laden Voyage and

CEnd of Unladen Voyage-

5.3.1.3 Gas Plant

This level of structure is used to hold the properties for all the equipment that
handles natural gas in its normal state — primarily the shrinkage and
modification factors representing the losses incurred in transport and

processing.

5.3.1.4 LNG Plant

This structure is used to hold the properties for all the equipment that handles
natural gas in its liquid state — the fuel factor and GCV/NVC modification
factors that track the reduction in energy value as lighter fractions boil off
from the LNG.

60

5.3.1.5 Connector

This is another sub type of the Flow Structure — items that have only one
input and output. There are three type of Connector — Gas Connectors, Gas

Pipelines and LNG Connectors.
5.3.2 Shipping Route

This is a simple structure, linking two ports to each other. The only parameter
of interest is the distance between the two ports. In future versions a more
sophisticated version will be implemented, containing a series of voyage legs,

which can each have their own weather and other probabilistic effects.
5.3.3 Port

This level in the port structures holds the links to the Shipping Routes, and
the lists of structure that are common to both Loading and Receiving Ports —
Jetties, Berths, Tanks, Power Stations, Gas Pipelines, Gas Connectors and
LNG Connectors.

5.3.4 Loading Port

Well Groups, Gas Processing Plants, LNG Plant Inlets, Gas Treatment Plants,
Fractionation Trains and Liquefaction Trains are all unique to Loading ports
and are held in this structure.

5.3.5 Receiving Port

The only structure that only occurs in Receiving Ports is Regasification

Trains.
5.3.6 Simulation

The highest-level structure is a “Simulation”. This structure contains a
complete layout to be modelled and all the associated data — the list of ships,
ports and data from the runs. In addition, the functionality to actually run a
model is implemented as functions of this class. This facilitates having more

than one model open and running at the same time in the application.

61

The executive is implemented as a set of functions in the Simulation class.
The highest level is the Generate() function — this is used to generate an ADP
using a fixed contingency value for each voyage, to represent probabilistic
events such as weather and breakdowns.

5.3.6.1 Startup

The log is emptied, then it loops through all the objects in the model, running
their own PreRun() functions, resetting their internal values. The runtime list
of B events is generated from the lists of B events for each object in the
model. The function that performs this task is CreateRunTimeBEventList().
Finally, the initial C events are calculated and placed in the queue, headed by

the first to happen.

5.3.6.2 A Phase

Having obtained the time of the next event (B or C), the simulation clock is
advanced to that point. This is unchanged from the classic three-phase model
(Pidd, M. 1998).

5.3.6.3 B Phase

This phase of the model is a modification of the classic Three-Phase model
(Stchedroff & Cheng, 2003). Because the B events have been reduced to
planned, single time point occurrences, all that is required is to find the time

for the start of the next B event.

5.3.6.4 C Phase
This is a modified version of the standard C Phase (Pidd 1998). C events that

are occurring at the current time point are executed. Once done, their
neighbours are added to the list of affected objects. In the event that the
object is a Ship that is ready to sail on a laden voyage, the appropriate

destination port is selected before it sails.

Then repeated passes are made through the objects affected by C events, to
see if these have in turn caused other C events to occur. This continues until

there are no more C events left to execute.

62

5.4 Logging the results

The data from the model is output to a variety of CSV formatted files. A
main log file contains every action for the run. In addition, there are specific
log files for the contents levels of the tanks, shut-ins for each of the objects,
demand vs. supply for each demand point, production data per production

point and ship operations on a per ship basis.
5.5 Simplifications

Compared with the full LNG supply chain modelling specification some

simplifications were made. The major items were —

e The receiving port selection algorithm was simplified to sending the
next ship to the port most behind with deliveries received.

e Bolil off and its effects was not included

e All ships can go to all ports

e A number of fixed B events were not modelled — maintenance, dry
docking and tides were not implemented

e Weather modelling was not implemented.

These items should not significantly affect the main aim of this work — to
prove the 3 Phase modelling methodology for a continuous system, operating

in the Generate phase.
5.6 Repeatability

An important part of the design was that all experiments are completely
repeatable. Ordered structures are used for holding objects. The order of

processing is randomised where required.

For example, the order in which a ship examines berths at a port when it tries
to dock is determined by a pseudo random number generator. The list of

berths is held in an ordered list. This means that all the logs etc from retried

63

runs will be identical, but that the order in which ships dock at particular

berths will not be biased towards any one berth.

64

Chapter 6. Experimental design

A structure was devised for creating a matrix of experiments across a set of
variables, given a maximum and minimum value (per variable). This
collection of experiments is then implemented on the given model — the

variable values being changed for each run.
6.1 Model Costing

6.1.1 Overview
The “costs” of each model configuration was considered as having two parts.

e The structural cost of the model — tank capacity, ship speed etc.

e Performance cost — demand satisfied, shut-in time etc.

Values are assigned to each of these items and a total cost for each model

configuration is calculated at the end of the run.

The idea is that an optimal structure or ports and ships will ship the required
quantity of LNG to the consumers without equipment being shut down (shut-
in) or demand being missed. This tends to increase the size and number of the
various components of the structure. Opposing this tendency to increased
capacity/size/flow rate etc. is the cost of the model. What we are looking for

is the cheapest structure that can deliver the required amount of LNG.

65

6.1.2 Costs

6.1.2.1 Shut-in time

This is the amount of time equipment spends shut down. This applies to all
flow equipments upstream of the LNG tanks at each port. It is assumed that
jetties, berths and their associated connectors will start and stop as ships
arrive and leave. In order for the structure to be valid, it should have zero
shut in time. This is taken as the full period of the model, not just the post run
in period (the model is initially run for a period until the instabilities from the
start up have dissipated). If there is any shut-in, the model is aborted. This
matches the practise for real world systems where shut in during normal

operation is generally not acceptable.

6.1.2.2 Demand Unsatisfied

This is the amount of LNG demanded by each receiving port but not
delivered, creating a cost. Ideally this would also be zero, but in a real model,
there would always be cargo despatched at the end of the run, that would not
be delivered before the end date, for instance. To account for this, a threshold
of +100,000 m* of LNG was given for the demand unsatisfied value — below
this threshold it is ignored. Beyond this, a penalty cost was applied to the

overall model cost.

6.1.2.3 Tank Trend

An important factor in an LNG supply change is stability in the storage tanks
at the ports. At the end of the model run, the trend for tank contents is
calculated using the least-squares method. If the trend is changing by less

than +0.5 m® per hour, it is ignored. Otherwise a penalty is applied.

6.1.2.4 Aborts

If the model has a shut-in (see above), then it is aborted — once a shut-in has
occurred; there is no point in continuing. The cost of the model is set to the

extremely high figure of 10* in the actual implantation.

If the model has a storage tank reach full or empty, there is also an abort.

Again, the cost of the model is set to an extremely high value.

66

6.1.2.5 Capacity variables

Capacity variables represent the amount of material that an object could
contain — such as a storage tank or a ship. They have a lower and upper
bound. In the case of ships, if as part of an experiment, the value was lower
than the lower bound, the ship would be discounted for that run. This allows
evaluation of the effects of a varying number of ships as well as their size,

which is a key variable in planning real world LNG operations.
6.1.3 Other Variables

Two other kinds of variables were considered in the initial work — Start Port
& Slow Loading Time. These did not have any cost, so do not affect the final

cost of the model.

6.1.3.1 Start Port

The Start Port refers only to ships and defines which port they start at.

6.1.3.2 Slow Loading Time

Slow Loading Time refers to the period of time at the end of the loading
process that a ship loads at a very low rate. This is essentially topping up the
tanks for lost material while waiting to start a voyage. This period of time is
used to space out the ship voyages, allowing a model with a small number of

large ships to deliver evenly spaced loads.
6.1.4 Experimental methodology

The experiments were run using the generate mode of the model — random
events such as breakdowns and weather were not included. The aim was to

study optimizing layouts of the ports and the number of ships between them.

The decision was made to concentrate on the number of ships, their capacity
and the slow loading time. This is one of the major areas of supply chain

design that is studied in the real world LNG industry.

The capacity of the storage tanks at each port was considered. However, the

tank capacity is driven by the requirements of the system in real-world

67

operations, though there are some limits. The goal of system design is that
the level in the tanks is broadly stable, but oscillating by amounts that closely

related to the size of the ships coming and going from the port.

5200000
5150000 -

WNWH‘N [|
5100000 N r i ' rr. ! l’ll"' i
5050000

T 5000000
U
Z 4950000
I I I s |02\ 0
4900000
4850000
4800000
4750000 TITTTITT I T T T I T T I T T T T T T T T T I T I T T T I T T T T T T T T T I T I T T T I T T T T T T T T T I T T T T T T I T I T I I T I T T IoTTIT Tl
~ ~ M W M~ o O~ w!nw W oo g m mMm os W~
[T~ o W T v o T o B o Y oV N~ o S S o 0 TR B o N Ui O W Y o o B s B R o B W |
~ 00 O v O NN M = = 1 W oo o ;O A Moo=t s W
!—1\ !—T !—T !—T !—T !—T !—|\!—| !—T !—T N‘h N‘h N‘h N\r\r N\
Days

Figure 27. Typical Tank Level vs. Time (in days)

The figure (above) shows a typical tank level vs. time graph - it shows the
tank level as broadly stable over the lifespan of the run, but varying by an
amount that is consistent with the ship sizes for the particular model. This
means that the dominant factor in sizing the tanks will be dealing with
random events such as breakdowns and weather, which would be handled in

the Testing Phase of modelling a supply chain.

Since we are working in the Generating Phase (at this point) it makes sense to
give the tanks excess capacity (108 m® of LNG in this case) and modify the
tank capacities to realistic values afterwards, based on the necessary buffer

volume, deliveries and ship capacities that are optimal.

68

6.1.5 Optimisation

Two methods of direct search optimization were recommended (Fliege, J) —
Nelder Mead (McKinnon 1999, Nelder & Mead 1965) and Multi-Directional
(V. Torczon, 1991. Direct search methods can be used when either the
computation of the derivative is impossible (noisy functions, unpredictable
discontinuities) or difficult (complexity, computation cost). In the first cases,
rather than an optimum, a not too bad point is desired. In the latter cases, an
optimum is desired but cannot be reasonably found (M. H. Wright, 1996).
This work falls into the first category.

The two search algorithms were implemented using the Apache common
math library (Apache 1.2). Some small modifications were made; in the case
of the Multi-Directional method it was found that the model could become
trapped when all the values in the simplex were too similar (McKinnon
1999).

Both methods take the variables to be computed to be numbers; doubles in
the case of the Apache Java implementation. In the case of the capacity
variables, checking was added to catch values that were out of range. If a
value was out of range, the “cost” of that configuration was given as a very
large value (10™), unless it was capacity for a ship, and the value was too low
in which case the ship was marked as inactive and the full evaluation of the

cost of that configuration was run.

The Start Port variables were handled by assigning an integer to each of the
ports in the model. Generated values were fixed as these integers, and when
new values were computed as part of the optimizing process, they were

rounded down to the integer value.

To generate the values for the initial simplex, and subsequent additions to it,
an uncorrelated pseudo-random number generator was used. The values for

each variable were, of course, limited to the range for that variable.

After some initial experimentation, the variables selected for the following

experiments WEere:

69

e Ship capacity — the amount of material that the ship could carry. If
below the minimum, the ship is considered inactive and is ignored
during the runs of the model.

e Separation between voyages — the amount of time between laden
voyages.

e Start port — which port the ship starts at the beginning of the run. This
was included so that the model would produce identical results for a
given configuration when run and to investigate the sensitivity of the
optimised delivery schedules to changes in start port.

The tank capacities in the ports were set to deliberately high, fixed values. In
a real world LNG supply chain the emphasis in on reducing the number of
LNG ships and their capacity. The cost of tank storage is relatively small. So,
in designing facilities and planning operations, the ship operations are
optimised and the tanks sized to support this configuration.

This means that for a give configuration in this series of experiments, the
number of variables is 24 - the number of ships x 3.

70

Chapter 7. Experiments

Five main experiments were undertaken, with increasing complexity. They
were used as a series of “gates” during the development of this work — each

one more difficult and complex than the last

e Experiment A demonstrates the basic concepts in a simple 2 port
model.

e Experiment B adds a second receiving port to test the receiving port
selection and handling functionality.

e Experiment C uses a more complex design for the loading and
receiving ports to test the behaviour of the model when events are
triggered in a more complicated structure.

e Experiment D adds seasonal demand changes (B events).

e Experiment E demonstrates the Test model of the model.

71

7.1 Experiment A

A model was constructed with one loading port and one receiving port.

Loading port

v

Receiving Port 1

Figure 28. Experiment A overview

The loading port and receiving port were simple linear structures — a straight
line of objects with one flowing into the next. The model run time was 5
years, with a 2 year run in period to allow the system to stabilise. There was a
maximum of 8 ships. Variables were the number of ships, their starting ports,
and their capacity and the size of the LNG tanks at each port.

The aim of this experiment was to test out the concepts involved, validate the

model and assess the effectiveness of this design strategy.

72

Wwell Group
Mame : LwvellGroup 1
Madc Flow - BO000.00
Meax Contents : 0.00

Gas Pipsline
Mame : L Pipeline 1
hzoc Flow: : G0000.00

Gas Processing Plant
Hame : L Plart 1

M Flow: | 50000.00
Mex Contents : 0000.00

Gas Pipeline
Mame : L Pipeline 2
hzoc Flow: : G0000.00

LNG Plant Inlet

Mame : L Plart Inlst 1
Max Flows ; 60000.00
ax Contents : 50000.00

Gaz Connectar
Mame : L Connector 1
Menx Flowy : E0000 .00

Gas Trestment Plant
Mame : L Trestment 1
e Flowe 6000000
Max Contents : 60000.00

Gaz Connectar
Mame : L Connector 2
Max Flowy : 0000.00

Fractionation Train
Mame : L Fract. Train 1
Iz Flow: G0000.00
Max Contents : 50000.00

Gas Connector
Mame : L Connectar 3
Max Flowy : 60000 .00

Liguetaction Train
Mame - L Ligu. Train. 1

Max Contents : 50000.00

LMG Connector
Mame : L LNG Connectar 1
Max Flowe - 86 00

Tank

Mame ; L Tank 1

Mg Flow 200,00

Man Contents - 10000000 .00

LNG Connector
Mame : L LNG Connector 2
Mzix Flow : 200.00

Jetty

Mane : L Jetty 1

Max Flow 20000
Max Contents : 200,00

LNG Connector
Mame : L LNG Connector 3
Mz Flavw : 200.00

Max Contents ; 200,00

Figure 29. Experiment A:

73

Berth

Mame : R Port 1 R Berth 1
Mz Flow - 95.00

ez Contents : 1000.00

LG Connectar
Mame : R Port 1 R LNG Con 1

hax Flows - 5500

Jetty

Mame : R Part 1 R Jetty 1
e Flowe © 8600

ez Contents : 96.00

LG Connector
Mame : R Port 1 R LMG Con 2

hia Flawy © 95.00

Tank
Mame : R Port 1 R Tank 1
hdax Flowe : 95

oo
ez Contents : 10000000.00

LNG Connector
Mame : R FORDBR LNG Con 3

Max Flow : 061

Regasifisation Train
Name : R Port 1 R Regasification Train 1
M Flow : 06.00

hime Conterts : 96.00

Gas Connector
Name : R Port | R Gas Con 1

Mx Flow : 6000000

Demand Point

Name : R Port 1 R Demand 1
Max Flow : G0000.00

Max Conterts :-1.00

loading & receiving ports

7.2 Experiment B

A model was constructed with one loading port and two receiving ports.

Loading port

v

Receiving Port 1

A

Receiving Port 2

Figure 30. Experiment B overview

The loading port and receiving port were simple linear structures. Both

receiving ports were identical.

The loading port was the same as the one used for Experiment A. The
receiving ports are different — the flow rate between the berths and storage

tanks are much higher than the rest of receiving model, allowing for a more

realistic unloading pattern.

The model run time was 5 years, with a 2 year run in period to allow the
system to stabilise. There was a maximum of 8 ships. Variables were the

number of ships, their starting ports, and their capacity and the size of the

LNG tanks at each port.

74

Mame : R 1 R Berth 1
Mz Flowy © 1000.00

Berth
Max Contents : 1000.00

NG Connector
Mame : R 1 RLNG Con1
Max Flowy - 1000

ﬁ
L

Jetty

Mathe: R 1 R Jethy 1
Max Flowy : 1000.00
Max Contents : 1000.00

LMNG Connector
Mame R 1 R LMNG Con 2
Mz Flowy : 1000

i

Tank

Mame : R 1 R Tank 1

Max Flowy - 1000.00

Max Contents : 10000000.00

L Connector
Mame : R 1 RLNG Con 3
Max Flows - 86.00

Mame: B 1 R Regasification Train 1
M Flowy : 96,00
Max Contents : 96.00

Regasification Train

3as Connectar
Mame: R1 R Gas Con1
e Flow © G0000.00

Mame @ R 1 R Demand 1
Max Flowy © 60000 00

Demand Point
Max Contents @ -1.00

Figure 31. Experiment B receiving port

7.3 Experiment C

This experiment had one loading port and two receiving ports. The loading
port was given reasonably complex structure equipment (generally) arranged
in two streams with interconnection between the streams. This is

representative of the complexity of real life facilities.

Receiving Port 1 Receiving Port 2

Figure 32. Experiment C - overview

75

Well Group
Name : L WellGroup 1
Max Flow : 60000.00
Max Contents : 0.00

Well Group

Name : L WellGroup 2
Max Flow : 50000.00
Max Conterts : 0.00

Well Group
Name : L WellGroup 3
Max Flow : 10000.00
Max Conterts : 0.00

Gas Pipeline
Name : L Pipeiine 1
Masx Flow : 60000.00

Gas Pipeline
Name : L Pipeline 3
Masx Flow : 50000.00

/

Gas Processing Plant
Name : L Plant 1

Max Flow : 11000000

Max Contents : 1100000.00

Gas Processing Plant
Name : L Plant 2

Max Flow : 10000.00

Max Contents : 100000.00

Gas Pipeline
Name : L Pipeiine 2
Max Flow : 110000.00

Gas Pipeline
Name : L Pipeline 5
Max Flow : 10000.00

LNG Plant Inlet
Name : L Plant Inlet 1

Max Flow : 120000.00
Max Contents : 120000.00

Gas Connector
Name : L Con 1
Max Flow : 60000.00

Gas Connector
Name : L Con 11
Max Flow : 60000.00

Gas Treatment Plant
Name : L Treatment 1
Max Flow : 60000.00
Max Conterts : 600000.00

Gas Treatment Plant
Name : L Treatment 2
Max Flow : 60000.00

Max Conterts : 600000.00

Gas Connector

Name : L Con 2
Max Flow : 60000.00

Gas Connector

Name : L Con 12
Max Flow : 60000.00

Fractionation Train

Name : L Fract. Train. 1
Max Flow : 60000.00

Max Contents : 600000.00

Fractionation Train

Name : L Fract. Train. 2
Max Flow : 50000.00

Max Contents : 600000.00

Gas Connector
Name : L Con 3
Max Flow : 60000.00

Gas Connector
Name: L Con13
Max Flow : 60000.00

Liguetaction Train

Name : L Liou. Train. 1
Max Flow : 60000.00

Max Contents : 600000.00

Liguetaction Train

Name : L Ligu. Train. 2
Max Flow : 60000.00

Max Contents : 600000.00

Gas Pipeline
Name : L Pipeline 4
Measx Flow : 10000.00

LNG Connector
Name : L LNG Con 1
Max Flow : 64.00

LNG Connector
Name : L LNG Con 11
Maix Flow : 64.00

LNG Connector
Name : L LNG Con 12
Max Flow : 32.00

Tank

Name : L Tank 1

Max Flow : 10000.00

Max Contents : 100000000.00

Tank

Name : L Tank 2

Max Flow : 10000.00

Max Contents : 100000000.00

Tank

Name : L Tank 3

Max Flow : 10000.00

Max Contents : 100000000.00

LNG Connector
Name : L LNG Con 2
Max Flow : 10000.00

LNG Connector
Name : L LNG Con 21
Max Flow : 10000.00

LNG Connector
Name : L LNG Con 22
Max Flow : 10000.00

Jetty

Name : L Jetty 1

Max Flow : 2000000
Max Contents : 20000.00

Jetty

Name : L Jetty 2

Max Flow : 10000 00
Max Contents : 10000.00

LNG Connector
Name : L LNG Con 3
Max Flow : 20000.00

LNG Connector
Name : L LNG Con 24

Berth

Name : L Berth 1

Max Flow : 20000.00
Max Contents : 100.00

Max Flow : 10000.00
Berth

Name : L Berth 2
Max Flow : 10000.00
Max Contents : 100.00

LNG Connector
Name : L LNG Con 13

Max Flow : 32.00

Figure 33. Experiment C — loading port structure

76

The receiving ports are identical, and somewhat less complex.

Berth

Name : R 1 Berth 1

Max Flow : 10000.00
Max Conterts : 10000.00

Berth

Name : R 1 Berth 2

Max Flowy : 10000.00
Max Contents : 10000.00

Max Flow : 10000.00 Max Flow : 10000.00

Jetty

Name : R 1 Jetty 1
Max Flow : 20000.00
Max Conterts : 20000.00

LNG Connector LNG Connector
Name : R 1 LNG Con 1 Name : R 1 LNG Con 11

LNG Connector
Name : R 1 LNG Con 2
Max Flow : 20000.00

.

Tank

Name : R1 Tank 1

Max Flow : 20000.00

Max Contents : 1000000.00

LNG Connector
Mame : R 1 LNG Con 3
Max Flow : 96.00

Regasification Train
Name : R 1 Regas Train 1

Max Flow : 96.00
Max Conterts : 9600.00

Gas Connector
Name : R 1 Gas Con 1
Max Flow : 60000.00

Demand Poirt

MName : R 1 Demand 1
Max Flow : 60000.00
Max Contents : -1.00

Figure 34. Experiment C — receiving port layout
Again, this is representative of real-life complexity.
7.4 Experiment D

The structure was identical to Experiment C, but demand variation was
introduced. Demand was seasonally varied — for the first and last one
hundred days of the year, demand was reduced by 25%. This was done with
B events.

77

7.5 Experiment E

For this experiment, the Test mode for running the system was implemented.
Firstly, contingency periods were added to end of each voyage. In the
generate mode, these are a fixed amount. A delivery plan is generated (with
no B events apart from demand changes) and then fed into the test mode run.

In the test mode, all B events are active.

When running in the test mode, if the ship arrives late relative to the
generated plan, the contingency period is shortened, so that the ship finally
docks at the planned time. The figure below illustrates this process.

If the ship arrives so late that the contingency period is insufficient to cover
the delay, then the delivery program has failed the test. For the purposes of

this test, the contingency period was set at 3 days.

/
! [—]
\ | Late arrival
using part of the
contingency

Late arrival

e exceeding the
-,—— l contingency

Loading Port Receiving Port

Figure 35. Contingency for ship voyages

A small modification was also made to the model methodology at this point —
the delays that space the voyages out were modified from being slow loading
to a delay before sailing on the laden voyage. This was done to simply the

analysis of the ship movements.

The port and ship structure used for this test are identical to Experiment D.
The additional events were breakdowns on all the fixed equipment port
structure, apart from tanks, LNG and gas connectors and berths. Tanks and

78

berths are simple structures with no moving parts — the pumps that move
material in and out are located in adjacent equipment in the model. Similarly,
connectors are simple pipes. Failures associated with such structures in real-
world situations are generally caused by the complex equipment associated

with such structures, not a part of them.

The B events used were breakdowns affecting the flow through the objects
concerned — 50% would mean a 50% reduction in the maximum possible
flow through the object affected for the period of the event. The structures
modelled in this work are generally complex in their real-life internal
workings, consisting of many sub-components. Often the sub-components are
duplicates organized in parallel to prevent a single failure causing a 100%

loss of a capability.

The events were modelled with an exponential probability of occurring with
a Mean Time Between Failure (MTBF) of 1 year. The Mean Time To Repair
(MTTR) was 6 hours and the Mean Effect (ME) was a 50% failure. This is a

much higher failure rate than would occur in real-world situations.

79

Chapter 8. Experimental Results

8.1 Experiment A

8.1.1 Nelder Mead Results

As a test of the effectiveness of the technique a test series was run for Nelder
Mead; varying the number of starts and maximum number of evaluations
between 50 and 2000.

The best model value found used 3 ships, with capacities of 516654, 380843
and 418728 m® of LNG. Interestingly the number of start seemed not to have
much effect. The best result was found with 350 starts, though the number of

evaluations was 1850.

A further point is that the performance is not discontinuous — suggesting that
analysis of this kind could be performed by the Direct Search techniques.

80

5.2E+13

S5E+13

4.8E+13

4.6E+13

4.4E+13

4.2E+13

4E+13

3.8E+13

1100
1250
1400
1550
1700
1850
2000

Evaluations

Figure 36. Experiment A - Nelder Mead for a range of values

8.1.1.1 Best result

The best solution showed very stable tanks for both loading and receiving
ports.

81

5150000

5100000 i 1 | 4 1 . | . | . | [

5050000 v

5000000

LNG m?

4950000

4900000

4850000 TTTTTTTTT T I T IT I I T I T T I T IO T I T I T I I T TT T TT T T T I T T T I T IT T I T I I T IT I I T IT I I 10T

Lo T = T T o N o R T s Y W Y ot e R =0 e e B U I o T B W o IR W B R
M N W Oy 0 N W M~ MmO G 00 W st W oA MmN~
M~ 00 0 OO < ™~ M < 1N WO WwWM~O OO A 8 oo

L e T e T B B B B B I I A VI I I I o

Days

Figure 37. Experiment A - loading port tank levels

The trend line for the loading port is almost perfectly flat — an average

decrease of 0.101059 m® of LNG per hour over the period of the model.

The level in the tank at the receiving port is completely flat — it doesn’t
change. This is because the model is simple - the maximum input and output
values for the objects in the receiving port are all the same, and the arrival of
ships at the receiving port is quick enough that the only the berth itself has

fluctuations in level.

82

200000
180000

160000

140000
120000

Load Size 100000 B LNG Ship0
80000 B LNG Shipl

60000 LNG Ship2

40000

20000 ~

O T

771

855
1020
1103
1269
1352
1601
1766
1849

2015
2098
2263

Figure 38. Experiment A — Nelder Mead delivery schedule

The delivery schedule shows a very regular sequence of deliveries being
dispatched from the loading port. Demand was completely satisfied by this

model.
8.1.2 Multi- Directional

An identical test series was run with maximum number of evaluations and
starts between 50 and 2000, for Multi-Directional.

The best model value found used 2 ships, with capacities of 420086 and
421302 m® of LNG. This is considerably less capacity in total (and hence a
cheaper result) than that found by the Nelder Mead (above).

The number of starts seemed not to have much effect. The best result was

found with 350 starts, though the number of evaluations was 1850.

A further point is that the performance is not discontinuous — just as with the
Nelder Mead method.

83

B LNG Ship6

4.8E+13

4.3E+13

3.8E+13 Cost

2.8E+13 \\\ I i

336413 TR \~ ““‘"-~—---_: [TTTT T
"‘i\ttat\\‘tem@\\gﬁ._|nnnnmmmniiinu
2.3E+13 Hil !",'_l"l

1.8E+13

1100
1400
1550
1700

Evaluations

Figure 39. Experiment A - Multi-Directional for a range of values

8.1.2.1 Best result

The loading port contents were even more stable than for the Nelder Mead
result.

84

5140000
5120000
5100000
5080000
5060000
5040000
5020000
5000000
4980000
4960000
4940000

LNG m3

Figure 40.

DO N M T NS00 o N M (o]
[o\} o O 0 > LN < ™ —

LN
o

132
14
151
16
16
17
18
196
20
215
22
23
2425

Experiment A - loading port tanks for Multi-Directional best result

This is due to the smaller number of ships and their equality in size. Again,

the receiving port tank levels were unchanged over the run, due to the simple

structure of the

250000
200000

150000

Load Size

100000

50000

0

receiving port.

® LNG Ship0
® LNG Ship5

733 916 1098 1281 1463 1646 1829 2011 2194 2376

Days

Figure 41. Experiment A — Multi-Directional delivery schedule

The delivery schedule was, again, very regular. Demand is completely

satisfied.

85

8.2 Experiment B

8.2.1 Nelder Mead Results

A test series was run varying the number of starts and maximum number of
evaluations between 50 and 2000

The best model value found used 5 ships, with capacities of 51317, 94562,
92165, 112230 and 488357 m® of LNG. The best result was found starting at
1150 starts and 700 evaluations (approx. since the experiment was

undertaken with intervals of 50 for both starts and evaluations).

'.;\::

4

0)
stas'ﬁ-
oy

e
z
A

/ {o;;.‘
%

.

()
i
i
i
0

|
.;};

Starts

Evaluations

Figure 42. Experiment B - Nelder Mead for a range of values

The best value rapidly heads to a stable “floor” — indicating that further gains
from increasing the number of starts and evaluations would probably not

improve the results greatly.

86

Cost

8.2.1.1 Best result

LNG m?

7800000

7700000

7600000

7500000

7400000

7300000

7200000

7100000

e
e
L]
= |
-=:$_
-.;
=

.r-':
L—]

Figure 43. Experiment B — loading port levels

The loading port showed a slight downward trend in level - 0.856249 m® of

LNG per hour on average. The two receiving ports showed slight gains, of

0.268398 m® per hour and 0.919182 m* per hour.

LNG m?

5100000
5050000
5000000
4950000
4900000
4850000
4800000
4750000
4700000
4650000
4600000

731

00 = M W O O O W W oW oa ™~
MmO O O N N o0~ O O s M Ww o
Mo O N M S NN W WM
= =~ =~ o o o o~ e~ e~ e~

Days

Figure 44. Experiment B — receiving port 1 levels

87

1,889

1,923

2,049

2,145
2,175
2,281

2,400

2,408

2,528

Overall, this shows a good level of stability — in an environment with random

variables (weather etc), these small trends would be lost in the noise.

5250000
5200000
5150000
5100000 - ¥ ¥
5050000

5000000 »—

4950000
I | | | ' :
4900000

4850000
4800000
4750000

LNG m3

Figure 45. Experiment B - receiving port 2 levels

The delivery schedule was very regular and demand was completely
satisfied. The solution picked by the tool with one large ship and 4 much

smaller ones to smooth the flow is evident in the following figure.

250000
200000
150000 B LNG Ship0
Load Size ® LNG Ship3
100000 .
= LNG Ship4
B LNG Ship5
50000
0 1L |||| I‘II T e, ‘III LLLLLLLLLL ‘III LLULULLULULLLLLLLS ‘III |||||||| LI ‘III LLLLLLULLLLL
N O 0 N N OO 0 < &N 00 < 1D N O 0 un
Mm O 0 « < O O M O - N O N
N 00 OO 44 N D < 10D O N OO O 4 NN N
i i i i L} L i i o o o (V] N
Days

88

Figure 46. Experiment B — Nelder Mead Delivery Schedule
8.2.2 Multi-Directional Results

A test series was run varying the number of starts and maximum number of
evaluations between 50 and 2000

The best model value found used 4 ships, with capacities of 283385, 151951,
131198, and 414444 m* of LNG. This is a considerably better result than for
the Nelder Mead experiment above. The best result was found starting at 750
starts and 2000 evaluations (approximately since the experiment was

undertaken with intervals of 50 for both starts and evaluations).

1.998E+14
1798E+414 — .
1598E+14 —

13986414 — -

1.198E+14 —

9.98E+13

7.98E+13 ===

TR ITTTT =
‘\\. St D iiinm
P R N Rl [] "“---'.." =
souens S)] 5%
- \‘\ s L LTSS = S

<
- == SR Tt =
398413 oy, N s =g
- T T — —
D o e e 1)5()
Te] o T e e e e
S o ST T At e AT R R 1450
“m 2239 o TRz 1650
- - e e
e n 8 o 4 TR 1850
L
9N 2 3 9 o Starts
=
Evaluations - 4~ 2 3
— (s 0]
— o
o~

Figure 47. Experiment B — Multi-Directional for a range of starts and evaluations

Examining the “floor” of the results shows that as the experiments reached

the maximum values (2000 starts and 2000 evaluations), small improvements
were still being observed.

89

This suggests that it would be useful to examine larger values for both starts
and evaluations.

LT
e
s — LTI vﬂﬂ'ﬂﬂﬂﬁn

4.02E+13
4E+13

3.98E+13 .

1100
1250
1400
1550

Evaluations

1700
1850
2000

Figure 48. Experiment B — Multi-Directional range test (zoomed)

8.2.2.1 Best result

The loading port tank levels were very stable — an increase of 0.450228 m® of

LNG per hour on average.

7800000

7700000

7600000 -

7500000 ==

LNG m3

7400000 -

7300000

7200000

7100000

\\\\\\\\\\\\\\\\\\\\

90

Figure 49. Experiment B — loading port tank levels

The two receiving ports were decreasing at -0.326085 and -0.347883 m?® of
LNG per hour.

5200000
5150000 IV" N i
SIOOOOO—HV _F,. v v v
5050000
E 5000000 -
[C)
5 4950000 ' ' '
4900000
4850000
4800000
— 00 O S N N OO N0 N J = O N W - 0O O < N N O N
M N N O~ O O N M Wn W o O A N < < O O 4 N M
N 00 OO OO O N N < < 1D W OW O 0O O O A A1 NN < < W
T ddddddddgdad NN
Days
Figure 50. Experiment B — receiving port 1 levels
5200000
5100000 - r,"vﬂ . —]
"t 5000000 A | !
C)
< 4900000 — — 1 1
4800000
4700000 -
I 00 00 < N < 00N O AN o N N DN 1D O 0O +H 10D m on o0 N~
N N < O 00 O O 1 M N N 0 OO ON < DN 00 O 4 N <
I e A B O A O O N S S G N A
™ = o - = - e e -+ = N N AN AN NN

Days

Figure 51. Experiment B - receiving port 2 levels

The delivery schedule is very regular and demand was completely satisfied.
The solution picked uses two large ships and two smaller ones — a very
different approach to the solution presented by the Nelder Mead algorithm.

91

250000 -
200000
& 150000
o .
B W NG Ship0
S 100000 B LNGShipd
LNG Ship5
>0000 B NG Ship7
0 LILILIL mrrrrTt mrrrrrrrert mrrrrrrreersry rrrrrrrererereT mrrrrrt LILIL
N =t =f 00 00 M ™~ ~ W W A O O = st oy o0 00 ™
[T T T Vo T o o TR oV R o R~ I TR e B Y 5 T (B U B 0 T o 0 T B o
~ o0 o © A M s WM~ 0 o O =N s
L T e B B I e e B A B o A ot N ot I et I s B
Days

Figure 52. Experiment B — Multi-Directional delivery schedule

8.3 Experiment C

8.3.1 Nelder Mead Results

A test series was run varying the number of starts and maximum number of

evaluations between 50 and 2000

The best model value found used 3 ships, with capacities of 360535, 501775
and 359501 m® of LNG. The best result was found with 1400 starts and 300
evaluations (approximately since the experiment was undertaken with

intervals of 50 for both starts and evaluations).

92

9.5E+13

8.5E+13

7.5E+13

6.5E+13

5.5E+13

456413

3.5E+13

1100
1250
1400
1700
1850
2000

Evaluations

Figure 53. Experiment C — Nelder Mead results for a range of values

8.3.1.1 Best result

The loading port was stable — a downward trend of 7.683620 m* of LNG per
hour

93

160,000,000.00

140,000,000.00
120,000,000.00
100,000,000.00

80,000,000.00

ME W LTank 3

G

> 60,000,000.00 W [Tank 2
40,000,000.00 WL Tank 1

20,000,000.00

0.00
N M~ = M M~ = o0~ 0000 O 00 O
MmO o0 0 0 M~ W O oMo WwWw oM™~ W
~o O NN s n M~ 0 mMm s W o0 O M W
e T T T T B I o I o I A o A o I o' T o o T o o T o O R o
Days

Figure 54. Experiment C — Nelder Mead - loading port levels per tank

The receiving ports were also stable with an upward trend of 4.086805 and
3.807143 m® of LNG per hour, respectively.

1.52E+08

1.51E+08

1.51E+08 — fi

1.50E+08 - A

Tank Level 1.50E+08

1.49E+08
1.49E+08
1.48E+08
1.48E+08 T T T
00 W W WO 0NN WY NN~ OO 0o St
[=T e B o T o T = o T o Y S S e B o S B o N o T = & T oV N S W T s Y S N L I Vs
~ o0 O = mMm s M~ O N Mm s WSO MW W o Om
L B B I T B B T ot T ot N o N o o N o T o A T T o T o T o T~ L~
Days

Figure 55. Experiment C — Nelder Mead - total tank levels at the loading port

94

6000000

5000000 Wwﬂ%wm@%w%
. 4000000
€
o 3000000
2
-
2000000
1000000
0 .
N g d O O NN ANNOONNNDNL NSNS NO
N 0) O O O W M MO ANMNNANOST OO NO OO SN O
N O O =S NN < DN O AT AN NN ENNO NS N OO M
e A A A AN AN AN AN AN AN NOOOOO OO NN S S
Days
Figure 56. Experiment C — Nelder Mead - receiving port 1 tank levels
6000000
5000000 meém&mﬂwvm—wﬁ
4000000
E
v 3000000
=
|
2000000
1000000
0 TTTTTTTTT T T T T I T I T T T T I T T T I T T T T T T T T I T T T T T T I T TTTT T T T T T T T T T T I T T T T T T T T T I T T I T I T T T T T T T T TTTaTT
— M W o0 M = ™~ W oo~ O NN N N~ Ny o=
Mm ™~ = < = O ™M ™~ o W M~ v ™~ = 00 M ~ WO = 0 O W
~ o0 © N M n W ™~ OO0 0O 8 mMnon W M~ O Mo sTWwo~S O N
B B B o e B B o Y ot A ot NN ot N o Y o I o T o N o 0 O o 0 TR o 0 TR~ S
Days

Figure 57. Experiment C — Nelder Mead - receiving port 2 tank levels

The delivery schedule was regular — one large ship and two somewhat
smaller ones. Demand was completely satisfied.

95

300000

250000
‘g 200000
v
E 150000 m LNG Shipl
|
100000 - B LNG Ship2
50000 LNG Ship5
0 TTrrrrrrrrrrrrrrrrrrrr T rrrrrrrrrrrrrrrrrrTrrTTTTT mmrrrrrrrsrt 1
~N O~ = WO OO W o WM~ 0N =y O
0 o0 O <t o0 N+ W A oM o0 W W st o~
~ o A m s n ™~ O < M = WO ™~ O = WO o
L T B B T I U A o A o o A o A oV A 0 T 2 2 T 0 T B
Days

Figure 58. Experiment C — Nelder Mead - delivery schedule

8.3.2 Multi-Directional Results

A test series was run varying the number of starts and maximum number of
evaluations between 50 and 2000

The best model value found used 3 ships, with capacities of 354005, 371502
and 453149 m® of LNG. This is a considerably better result than the Nelder
Mead experiment (above). The best result was found at 1050 starts and 250
evaluations (approximately since the experiment was undertaken with

intervals of 50 for both starts and evaluations).

96

7E+13

6.5E+13

6E+13

5.5E+13

5E+13

4.5E+13

4E+13

3.5E+13

3E+13

Evaluations

=
ST RS

A

=5

1700
1850

i
I
iy .&.‘\.;.};:!'\{\l||

e

Wiiiie
wim

ll,"'ll'
-'.ii il
LT 77

3

Starts

Figure 59. Experiment C — Multi-Directional - results for a range of values

8.3.2.1 Best result

The loading port was stable — a decrease of 0.782425 m® of LNG per hour

LNG m?

1.60E+08
1.40E+08
1.20E+08
1.00E+08
8.00E+07
6.00E+07
4.00E+07
2.00E+07
0.00E+00

731
901
1088
1211

1586
1772
1852

1995
2143
2218

97

2375
2457

Days

2674

2821

3010

3086
3462
3574
3728
3881

4068
4294

Cost

wLTank 3
WLTank 2

ELTank 1

Figure 60. Experiment C — Multi-Directional - loading port tank levels

1.52E+08
1.51E+08

1.51E+08 wﬁ@
1.50E+08 A

E
2 1.50E+08 - ,
1.49E+08
1.49E+08
1.48E+08
o = R o T ' TR I o B o B O U o T R o B = o T W B W0 I o o I o I = o B = o B U B o N W B o o]
M O ™S M~ M~ WM~WmOOOWW A WM~ s N W st O o
~ 00 O o < W0 M~ 80 Oy = — ™~ = = 0 0 O O — = W0 M™~GWO ™~ ™M
L B B B e B (O o Y o A o Y ot N ot Y ot A o T o N o T O o T o 0 T o B o 0 T~ L~ L
Days
Figure 61. Experiment C — Multi-Directional - overall loading port tank levels
The receiving ports were also stable — increase of 0.120831 and 0.845390 m®
of LNG per hour.
6000000
5000000 éﬁ*ﬁéﬁwﬂ!ﬁc\a&%m
4000000
€ 3000000
Q
Z 2000000
1000000
0 TTTTTTTTIT I I I I I T T I T I T T T T I T T I T T T T T IT T T T T T T I T T I T T T I T T T T I ITITTTTTTTITITTITITTT]
= O o 0 M~ W s 0 00 W M M~ 00 NN NN O N
m M~ @ 0 = W W 0 A M 4 W 0 O o N = O — ™~ O
~ o O — ™ W M~ 0 A ~N s 1 O oo 0O « wn L o0 O
o I I e T A T o Y oY AN o A oV VA o o R o T o o O o R w0 R~ S~
Days

Figure 62. Experiment C — Multi-Directional - receiving port 1 tank levels

98

6000000

5000000 —%WW
" 4000000
o 3000000

Z

= 2000000
1000000

0 TTTTTTTTTIT T T I T I T T T T I T I T I T T I T T T T T I T T T I T T I T T T T T T I T T TT T T I T T TT T T I T T T T T I T T T T T ITTT T T TTTTTITTITTTTTITTITTTTTI

— @ H 00NN WN~O S N~NCA ST A OO N o~ S W0

M W O~ N~ = N MmN M S W M S O O 0 O

~N @ OO 4 1N WO o4 M S VU N~NO O S WO NGO A M

s B B o B o B o R ot A o N o Y o 0 TR o T o o N o T o 0 T o T o 0 B~ L~

Days

Figure 63. Experiment C — Multi-Directional - receiving port 2 tank levels

Demand was fully satisfied. The delivery schedule is regular — with 3 ships of

similar size doing the deliveries.

250000
200000 1
& 150000
wv
B B LNG Ship0
S 100000
B LNG Ship4d
50000 = LNG Ship7
O 1 1 T T T T LI T T T T T T T T T T T T T T LI T T LI T T 1
Mm O Mm I &N O N 00 O N 1N & N SN N n O
N N NN O d O 4 4 O 00 4 N M O O 0
N OO A0 < OO0 N < DN O 4 n O O -
T 4 4 4 N N N N N O OO N n N <
Days

Figure 64. Experiment C — Multi-Directional - delivery schedule

8.4 Experiment D

8.4.1 Nelder Mead Results

A test series was run varying the number of starts and maximum number of
evaluations between 50 and 2000

99

The best model value found used 5 ships, with capacities of 490316, 82450,
185310, 452968 and 526843m? of LNG. The best result was found at 1750
starts and 750 evaluations (approximately since the experiment was
undertaken with intervals of 50 for both starts and evaluations).

[TTTI 1‘. .
|| LT

7.7E+13

7.2E+13

6.7E+13

6.2E+13

5.7E+13

5.2E+13 ==
o
o
N o
o o e
"B 832 o o e 1650 Starts
o0 (o) — n 9
— a ©
— o = Q o
. - S n 2 5 o
Evaluations = ~ @B S
— = g

Figure 65. Experiment D — Nelder Mead - results over a range of values

The discontinuity in the effect of increasing the number of evaluations (at
around 550 evaluations) is of interest and worthy of further study. It does not,
however, effect reaching the lowest values, beyond 1750 starts.

8.4.1.1 Best result

The loading port tank farm was stable — an average gain of 1.160268 m*® of
LNG per hour.

100

Cost

1.60E+08

1.40E+08
_ 1.20E+08
S 1.00£+08
= 8.00E+07)
S 6.00E+07 wlTank3
F 4.00E407 W LTank 2
2.00E+07)
0.00E+00 mlTankl
=~ 00 00 W = T W WO WM~ 00~ OO WS
M~ 0y ™~ ™~ MQOC 0O O < 0O WwOoouww—0oO
~o0 A N = O M~0 =t OO O < M~O oy
e B T B T B O o A o O A o O o A o o o o T o B L~ o
Days
Figure 66. Experiment D — Nelder Mead - loading port tanks
1.51E+08
1.51E+08
1.50E+08 -
T 1.50E+08 -
3 1.50E+08 ! ! 1
1.50E+08
1.50E+08
1.49E+08
L I e T T o T S W T o T o T e O ' O T o Y e I T o T o N e IO W T T o T
T = S T T e = T o 2 T B o R~ o W TR U B oo B o 0 T I oV o TR W TR N T = o B o R s I o B o
o I B B I o e B Bt B Y A ot I o e A et A VA 0 S T 2 N 2 0
Days
Figure 67. Experiment D — Nelder Mead - Loading port tanks overview
The receiving ports were stable as well — with falls of -0.078641 and
1.168479 m® of LNG per hour.
600000
500000
w 400000
© 300000
2
= 200000 - 1
100000
0 .
NN N d OO AN 00 O W MmO W oo N «+d O n m © < O
Mm 0 M O 0 O M «+ 0O « O AN M M I~ O© OO M «—«+ O 1N 0 0 W
N N OO NN O O O 1 N O 0 O O 1 N < 1N N 0 = oM
™ H H AN AN NN AN O OO o0 N onon S S

Days

Figure 68. Experiment D — Nelder Mead - receiving port 1

101

800000
700000
600000
500000
400000
300000
200000
100000

0]

LNG m?

e 4

=

I'u ¥ =—Tank Level
| |
— Linear (Tank Level})

— 00 M~ MW OO W0 st = 0000 Mm O WD
MW oo~ OOO s WM~ Wwmwe O o0
M~ o0 O s O~ W oy Y sF M~ O~

o T B I T T o N o N o I o I o o T o T o T o T L

Days

Figure 69. Experiment D — Nelder Mead - receiving port 2

Examining the data for receiving port 2 suggests that the use of a more

complex trend line method might be useful — the following shows the result

of fitting a 3" order polynomial.

800000
700000
600000
500000
400000
300000
200000
100000

0]

LNG m?

Figure 70.

] . | .
v =—=Tank Level
L | L J
—— Poly. (Tank Level)
— 0~ O W0 st = 0000 mMm N O WD
Mo O O~ OO s W M~W A NN O 0
~ o0 O™ sFf O~ A N W oy sF ™~ oy -
o e e B e A o ot O ot Y ot A ot o N T o T T~ L o
Days

Experiment D — Nelder Mead — receiving port 2, polynomial trendline

The delivery schedule was regular and demand was completely satisfied. The

solution picked has 3 large ships and 2 much smaller ones to smooth the flow

as is evident in the following figure.

102

300000 -

250000
& 200000
% 150000
S 100000
50000

0 I|II|III T UL I| III I|III T III T ||M| II T II|I II

< NN OO 1IN 0O N O O 3 SN In o0 n O

Mm MmO O N 1N 00 N MO < /Mm o0 00 0 «— W uwn

N O 24 N DN O MO 1N 0 OO N < N O

I 4 4 4 N N N N N MO N n N <<

Days

Figure 71. Experiment D — Nelder Mead - delivery schedule

8.4.2 Multi-Directional Results

6.4E+13
6.2E+13
6E+13

BANRNNRgy
5.8E+13 il i'“llll

e lllllllllﬁllllll
T

5.6E+13

5.4E+13

5.2E+13

5E+13

4.8E+13

1100
1250
1400
1550
1700
1850
2000

Evaluations

Figure 72. Experiment D — Multi-Directional - results for a range of values

1650 Starts

® LNG Ship0
® LNG Ship1l
= LNG Ship2
® LNG Ship3
= LNG Ship7

A test series was run varying the number of starts and maximum number of

evaluations between 50 and 2000

103

The best model value found used 5 ships, with capacities of 196459, 102193,
324112, 458100 and 343157m® of LNG. The best result was found at 800
starts and 2000 evaluations (approximately since the experiment was
undertaken with intervals of 50 for both starts and evaluations).

8.4.2.1 Best result

The loading port was stable — with an overall increase of 0.122971 m3 of

LNG per hour on average.

1.60E+08
1.40E+08
1.20E+08
1.00E+08
8.00E+07
6.00E+07
4.00E+07
2.00E+07
0.00E+00

LNG m?

731
927
1095
1225
1366
1545
1729
1914
2023
2185
2759
2931
3167
3346
3456
3655
3827
4013
4241

Figure 73. Experiment D — Multi-Directional - loading port tank levels

1.51E+08
1.51E+08
1.50E+08
1.50E+08
1.50E+08
1.50E+08
1.50E+08
1.49E+08

LNG m?

Figure 74.

W LTank 3

W LTank 2
HmLTank 1

731
847
1016 -
1106
1254 -
1435
1545 -
1666
1834 -
1944
3575 A
3753
3834 A

Experiment D — Multi-Directional - overall loading port tank levels

The receiving ports were also stable — reducing by 0.077138 and increasing

by 0.000232 for Ports 1 and 2 respectively.

104

4062

4241 A

4352

700000

600000

500000
400000

300000
200000

Tank Level

100000

O'Tmmmmmmmm

731

Figure 75

850
1019

1101
1290
1520

1629
1670
1899
2108
2190

O 1N = N N

0 M O I MmN~

M 1N O 0 O

NN AN AN AN
Days

3201

3351
3461
3579
3751

. Experiment D — Multi-Directional - receiving port 1 tank levels

3808
4017

4067

4246
4286

700000

600000

500000
400000

300000

Tank Level

200000

100000

731

836
1019

1080
1258
1339
1547
1669
1838
1918

Figure 76. Experiment D — Multi-Directional - receiving port 2 tank levels

The delivery schedule was regular and demand was completely satisfied. The

solution picked — 5 ships of a range of sizes is evident in the following figure.

105

1
O—Tmmmmmmmm

250000 +

200000
§ 150000 m LNG Ship0
}3 B LNG Shipl
S 100000
= LNG Ship2
50000 | m LNG Ship5
® LNG Ship6
0 T LIL} LILILI T LIL} T LIL LIL} T LIL T r T T T LIL T T T LILIL} LILIL} LI}
w uw oW M WM wm oA D N~ I~ WMo
o =4 O mMm = = ™~ 00 M = N o~ = = o0 W =
oo O — M M~ O < = W O o s~ OO ™y
L B B s T B o A ot I o N o A o A o T o T 0 T o T o 0 TR~ L~ o
Days

Figure 77. Experiment D — Multi-Directional - delivery schedule

8.5 Experiment E

The model was run in generate mode and then 10,000 times in test mode. All
the tests passed. The largest amount of contingency used was 2 days, 3 hours

and 46 minutes.

106

8.6 Results Summary

Table 21. Comparison of results
Exp. A A B B C C D D
Type MD NM MD NM MD NM MD NM
Starts 150 1250 750 1150 1050 1400 800 1750
Evals 1950 300 2000 700 250 300 2000 750
E‘;La{; csnhylp 421302 | 991484 | 697594 | 787316 | 1178658 | 1221812 | 1227564 | 1247573
Ships 2 4 4 5 3 3 5 5
Loading
Port tank 0.1461 0.1548 0.4502 -0.8562 | -0.7824 | -7.6836 0.1230 1.1603
trend
Receiving
port R1 0.0000 0.0000 -0.3261 0.2684 0.1208 4.0868 -0.0771 | -0.0786
tank trend
Receiving
port R2 N/A N/A -0.3479 0.9192 0.8454 3.8071 0.0002 -1.1685
tank trend
The
model 2.00E+13 | 4.00E+13 | 4.00E+13 | 5.00E+13 | 3.00E+13 | 3.00E+13 | 5.00E+13 | 5.00E+13
cost
E‘(’)ﬁ' 2.00E+13 | 4.00E+13 | 4.00E+13 | 5.66E+13 | 3.07E+13 | 3.99E+13 | 5.00E+13 | 5.25E+13

8.6.1 Generating delivery schedules

The table above gives a summary of the relative results of the various

experiments and methods. In general, it seems that the Nelder-Mead method

requires more starts and fewer evaluations to reach the optimum point and

that the Multi-Directional method has the reverse requirement. In each case,

107

the Multi-Directional method produced better results. This is particularly
clear for experiment C where Nelder-Mead produced a result with trends for
the tank levels considerably greater than the 0.5 m® of LNG per hour limit
and Multi-Directional did considerably better.

8.6.2 Testing schedules

Experiment E successfully demonstrated the concept and implementation of
the B event portion of the executive. The aim of this test was to prove this
and show that performance in this mode was not excessively affected by the

extra events. The performance achieved is discussed in the following section.
8.6.3 Performance

All tests were carried out on a computer with an Intel 6400 2 Core CPU,
clocked at 2.13 GHz, with 3 GB of memory. The JVM was allocated 1 GB of
memory to ensure that the allocation was not exceeded.

8.6.3.1 Generate mode

A test series was run for Experiments C and D for 2000 starts and 2000
evaluations, to establish the performance of the modelling environment. The
number of configurations is interesting — it suggests that the difference in
performance noted above for the Multi-Directional and Nelder Mead

methods is due to the larger number of configurations evaluated by the MD

method.
Table 22. Time taken to perform experiments
Multi-Directional Nelder Mead
C 3 hours 31 mins 30 secs for 1 hour 46 mins 29 secs for
2179065 configurations. 1145832 configurations.

D 1 hour 48 mins 24 secs for 940680 44 mins 52 secs for 456139
configurations. configurations.

108

The average time for evaluating each configuration is given below. It should
be noted that a large number of the configurations will have aborted due to
tanks becoming empty or full, so that many of the configurations will not
have run for the full period.

Table 23. Time per configuration evaluation (ms)

Multi-Directional Nelder Mead

C 5.809831281 5.550551913

D 6.888633754 5.787709448

The best case result from Multi-Directional in experiment D was run 10000
times in generate mode — multiple runs of this took an average of 8.85
milliseconds. This gives the time taken for a non-aborting run for a model

with realistic complexity.

This level of performance is orders of magnitude than earlier models that the

author is familiar with — milliseconds instead of seconds.

8.6.3.2 Test Mode

The best case result from Multi-Directional in experiment E was run 10,000
times in generate mode. Multiple runs of this took an average of 18.3
milliseconds. This demonstrates that the additional cost of the probabilistic B
events is manageable — especially since the number of breakdowns in

question is much higher than would occur in a real-world modelling situation.

109

Chapter 9. Conclusions

The following objectives were formulated for this work —
To select a suitable simulation methodology

Following a detailed examination of the field, a modification of the Three

Phased Approach was chosen.
To investigate the flexibility and performance of the modelling method

The approach chosen was implemented and demonstrated using
representative problems. It has higher performance than existing industry
standard models, for realistic levels of complexity. Simulating 10 years of
operation can take a similar number of milliseconds, for problems with a
real-world level of complexity. Previously, such work would have taken a
number of seconds. This means that millions of configurations can be
considered in a few hours (for a basic desktop computer) — making automated

design practical for the first time
Select experimentation methods

Given the performance achieved, and the nature of the experiments required,
the Nelder-Mead and Multi-Directional methods were selected and have been

successfully implemented.

110

Investigate the performance of the methods and the possibilities for

automating design of the supply chain structure.

Using these two techniques (above), a range of experiments was carried out.
These validated the concept and indicated the success of the automated

design methods proposed.

Both generate and test modes have been implemented and used. This means
that the complete concept has been demonstrated. In both modes
representative problems can be modelled and tested in a few hours on a

single computer. This represents a very useful level of performance.

The capabilities inherent in this new system would be invaluable to planners
working on continuous supply chain problems. In the past, performance has
placed severe restraints on design of LNG supply chains — work has been
done manually and largely by intuition, rather than by a systematic search

through the solution space.

The testing mode has also been evaluated. The performance of the model is
only moderately affected by the extra events, making the use of this mode

equal in practicality, compared to the generate mode.

9.1 Future Steps

9.1.1 Modelling other systems

The methodology has been designed to be generic — any continuous (or
partially continuous) system with a similar type of structure should be able to
be modelled with it. Oil supply chains, water distribution & treatment and ore

handling are a few examples of suitable candidates.
9.1.2 Complete automated design?

If we can build a schedule in a matter of a few hours and test it in minutes,
then it makes sense to combine the techniques. A combined system might test
(by running in the “Test” mode) some of the valid delivery schedules
(created in the “Generate” phase) as a part of the design process. The

111

schedules that would be selected for testing would be those that show a
significant level of performance - the top 1000, say. For Experiment E, it
would be possible to test each one 1,000 times and complete the whole test in
less than 5 hours, for example. This assumes a single thread running on the
hardware used for these tests. Using parallelisation, discussed below, could
reduce this time substantially and allow more sophisticated strategies for
testing. Testing each successful delivery schedule as it is generated, within
the design cycle, might become possible.

9.1.3 Parallelisation

The direct search techniques used are trivially parallelisable — each start is
independent of each other. For testing, a single thread per delivery program
being tested logically suggests running in parallel. The obvious method for
such parallelisation is to use a grid. Another possibility is using GPU
(Graphical Processing Unit) computing. Recently, vendors such as NVIDIA
have begun emphasising the capabilities of their technology for solving more
generalized problems than merely graphical display. A C1060
(http://www.nvidia.com/object/product tesla c1060_us.html) card, for

example, contains 240 processors. A standard desktop high performance
computing setup consists of 4 such cards in high end PC. This gives a total of

960 processors running at 1.3 GHz.

A major limiting factor with such equipment is moving data on and off the
memory on the GPU cards (Albanese, 2008). Since the model itself is not
large, and the data it produces (the best results) are small in comparison to
the data requirements of the financial problems that Albanese describes, this

should a solvable issue.

If it is possible to adapt the model described in this work to work in a GPU
computing environment problems could be run in a fraction of the time
described in the section on performance. The challenge would be to code the
model and its data to fit within the constraints of the GPU hardware and

software environment.

112

http://www.nvidia.com/object/product_tesla_c1060_us.html

Bibliography

Albanese, C. “ GPU Computing for Financial Engineering”, seminar at

King's College London, 2008

Andersson, M. & Olsson, G. "A Simulation Based Decision Support
Approach for Operational Capacity Planning in a Customer Order
Driven Assembly Line", Proceedings of The Winter Simulation
Conference, 1998

Apache Commons Maths Library, http://commons.apache.org/math/

Banks, J; Carson, J.S; Nelson, B.L. & Nicol, D.M. "Discrete-Event System
Simulation, Third Edition", Prentice Hall, 2000

Beck, U & Nowak, J. W. “The Merger of Discrete Event Simulation with
Activity Based Costing for Cost Estimation in Manufacturing

Environments”, Proceedings of The Winter Simulation Conference,

2000

Bruzzone, A. G; Giribone, P. & Revetria, R. "Operative Requirements and
Advances for the New Generation Simulators in Multimodal
Container Terminals”, Proceedings of The Winter Simulation
Conference, 1999

Burgsteden, M. C; Joustra P. E; Bouwman M. R. & Hullegie, M. “Modeling
Road Traffic on Airport Premises”, Proceedings of The Winter

Simulation Conference, 2000

Daum, T & Sargent R. G. "Scaling, Hierarchical Modeling, and Reuse in an
Obiject-Oriented Modeling and Simulation System", Proceedings of
The Winter Simulation Conference, 1999

Finn, A.J, Johnson G.L & Tomlinson, T.R. “LNG Technology For Offshore
And Midscale Plants”, 79th Annual GPA Convention, Atlanta, 2000

Fliege, J. - Prof. Dr. Jorg Fliege, FORS, Director of CORMSIS, University of

Southampton. Personal communication to author.

Golkar, J; Shekar, A. & Buddhavarapu, S. "Panama Canal Simulation
Model", Proceedings of The Winter Simulation Conference, 1998

113

Huang, Y & lyer, R. K. "An Object-Oriented Environment for Fast
Simulation Using Compiler Techniques”, Proceedings of The Winter

Simulation Conference, 1998

loannou, P. G. "Construction of a Dam Embankment with Nonstationary
Queues", Proceedings of The Winter Simulation Conference, 1999

Joines, J. A. & Roberts, S. D. "Simulation in an Object-Oriented World",
Proceedings of The Winter Simulation Conference, 1999

Kilgore, R. A. & Burke, E. "Object-Oriented Simulation of Distributed
Systems Using Java® and Silk®", Proceedings of The Winter

Simulation Conference, 2000

Kiran, A. S; Cetinkaya, T & Og, S. "Simulation Modeling and Analysis of
New International Terminal”, Proceedings of The Winter Simulation
Conference, 2000

Kyle, R. G. & Ludka, C. R. "Simulating the Furniture Industry", Proceedings
of The Winter Simulation Conference, 2000

Law, A.M. & Kelton, W.D. "Simulation Modeling and Analysis", Third
edition, McGraw-Hill, 2000

Lewis J.P. & Neumann U. "Performance of Java versus C++", University of
Southern California, 2004,
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html

Marzouk, M. & Moselhi, O. "Optimizing Earthmoving Operations Using
Object-Oriented Simulation™, Proceedings of The Winter Simulation
Conference, 2000

McKinnon, K.1.M. "Convergence of the Nelder-Mead simplex method to a
non-stationary point"”, SIAM J Optimization, 1999, vol. 9, pp148-158.

Mitriani, 1. "Simulation Techniques for Discrete Event Systems”, Cambridge

University Press, 1982

Nelder, J.A. & Mead, R. "A simplex method for function minimization",
Computer Journal, 1965, vol. 7, pp 308-313

114

Perumalla, K & Fujimoto, R. "Efficient Large-Scale Process-Oriented
Parallel Simulations", Proceedings of The Winter Simulation
Conference, 1998

Pidd, M & Castro, R. B. "Hierarchical Modular Modeling In Discrete
Simulation”, Proceedings of The Winter Simulation Conference, 1998

Pidd, M. "Computer Simulation in Management Science", Wiley, 1998

Russell, E. C. "SIMSCRIPT I11.5 Programming Language", CACI, La Jolla,
C. A. 1987

Schriber, T. J. & Brunner, D. T. "Inside Discrete-Event Simulation Software:
How It Works and Why It Matters", Proceedings of The Winter
Simulation Conference, 2000, 1999, 1998, 1997

Schunk D. & Plott B. "Using Simulation to Analyze Supply Chains",

Proceedings of The Winter Simulation Conference, 2000

Shi, J. J. "Object-Oriented Technology for Enhancing Activity-Based
Modeling Functionality", Proceedings of The Winter Simulation
Conference, 2000

Stchedroff N. & Cheng, R.C.H. "Modelling A Continuous Process With
Discrete Simulation Techniques And Its Application To LNG Supply

Chains", Proceedings of The Winter Simulation Conference, 2003

Swedish, J. A. "Simulation of an Inland Waterway Barge Fleet Distribution

Network", Proceedings of The Winter Simulation Conference, 1998

Takakuwa, S. "A Practical Module-Based Simulation Model for
Transportation Inventory Systems", Proceedings of The Winter
Simulation Conference, 1998

Takakuwa, S; Takizawa, H; Ito K. & Hiraoka, S. "Simulation and Analysis of
Non-Automated Distribution Warehouses", Proceedings of The

Winter Simulation Conference, 2000

Torczon, V. "On The Convergence Of The Multidirectional Search
Algorithm", 1991

115

Trone, J; Guerin, A. & Clay, A. D. "Simulation of Waste Processing,
Transportation, and Disposal Operations"”, Proceedings of The Winter

Simulation Conference, 2000

Wright, Margaret H. "Direct search methods: Once scorned, now
respectable”, 1996

116

