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Abstract

In this study, the sensitivity of the sequential normal-based triple sampling procedure for estimating

the population mean to departures from normality is discussed. We assume only that the underlying

population has finite but unknown first six moments. Two main inferential methodologies are

considered. First point estimation of the unknown population mean is investigated where a squared

error loss function with linear sampling cost is assumed to control the risk of estimating the unknown

population mean by the corresponding sample measure. We find that the behaviour of the estimators

and of the sample size depends asymptotically on both the skewness and kurtosis of the underlying

distribution and we quantify this dependence. Moreover, the asymptotic regret of using the triple

sampling inference instead of the fixed sample size approach, had the nuisance parameter been

known, is a finite but non-vanishing quantity that depends on the kurtosis of the underlying

distribution. We also supplement our findings with a simulation experiment to study the performance

of the estimators and the sample size in a range of conditions and compare the asymptotic and finite

sample results. The second part of the thesis deals with constructing a triple sampling fixed width

confidence interval for the unknown population mean with a prescribed width and coverage while

protecting the interval against Type II error. An account is given of the sensitivity of the normal-based

triple sampling sequential confidence interval for the population when the first six moments are

assumed to exist but are unknown. First, triple sampling sequential confidence intervals for the mean

are constructed using Hall’s (1981) methodology. Hence asymptotic characteristics of the constructed

interval are discussed and justified. Then an asymptotic second order approximation of a continuously

differentiable and bounded function of the stopping time is given to calculate both asymptotic

coverage based on a second order Edgeworth asymptotic expansion and the Type II error probability.

The impact of several parameters on the Type II error probability is explored for various continuous

distributions. Finally, a simulation experiment is performed to investigate the methods in finite sample

cases and to compare the finite sample and asymptotic results.
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Chapter I

Introduction and Review

1.1 Historical background

1.1.1 Historical developments of sequential procedures for inference

Introduction

In statistics, the term sequential analysis refers to a statistical analysis in which the sample size is not

fixed in advance. Instead inference is made within the course of sampling. Further, sampling is

terminated in accordance with a predefined stopping rule upon satisfying certain optimality criteria.

Inferences may be made much earlier by using sequential procedures than would be possible with

classical fixed sample size inference procedures at much lower cost.

Regardless of the type of inference we seek to make, sequential sampling procedures are derived

basically under some optimality criteria. These optimality criteria could involve minimizing a given

loss (cost) function while estimating the unknown parameter(s) by the corresponding sample

measures, or constructing a fixed width confidence interval of a targeted parameter with a

predetermined coverage, or justifying a given claim regarding the unknown parameter(s) while

controlling the Type I and/or Type II error probabilities.

Let *n be the optimal sample size required to satisfy some given optimality criterion. Usually *n is a

function of the underlying population parameters (nuisance parameters). Had *n been known, the

fixed sample size procedure would be an appropriate sampling technique to implement in order to

accomplish the required inference. However *n is unknown because the nuisance parameters are often

unknown. Therefore, it would be impracticable to apply classical inference techniques (fixed sample

size sampling procedures) to make inferences about the targeted parameter(s) and at the same time

satisfy the predetermined optimality criteria. Alternatively, however, we may resort to sequential

sampling procedures by mimicking the form of *n by a sequential stopping rule which will terminate

only if the predetermined optimality criteria are satisfied. Let N be the sequential sample size

required to satisfy certain given criteria. Then clearly N is an integer-valued discrete random variable.

Regarding the performance of sequential sampling procedures, several measures may need to be

satisfied for a certain sequential sampling design to be declared efficient. For example, for point

estimation, a sequential sampling procedure may be deemed to be efficient if it satisfies the following

criteria.

 
*

*) lim 1;
n

i E N n


 that is, on the average, the ratio of the sequential sample size and the optimal

sample size should be asymptotically one. Property (i) is referred to as first order asymptotic

efficiency.
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 
*

*) lim
n

ii E N n K


  , where K is a finite constant unrelated to *n . Property ( )ii reveals that on the

average, the difference between the optimal and sequential sample size is asymptotically bounded by

a finite constant. This property is known as second order asymptotic efficiency.

Let us define the optimal risk of the fixed sample size procedure, had *n been known, as   *E L n

where  L  is the loss function incurred in estimating the targeted parameters and let

  E L N be the risk associated with a multistage sequential procedure as an alternative procedure to

estimate the targeted parameters. Then the regret of using a multistage sequential sampling procedure

instead of the fixed sampling procedure is defined as  *n where        * *n E L N E L n   .

Therefore, for an efficient multistage sequential procedure, it is also required to have

 
*

*) lim
n

iii n


  . Property (iii) ensures that the asymptotic regret is bounded by a finite constant

unrelated to *n and also means that the multistage sequential sampling procedure is as risky as the

corresponding fixed sample size procedure had *n been known.

On the other hand, the efficiency of a fixed width confidence interval sequential sampling procedure

is granted by )i and )ii above in addition to the measure of consistency, which affirms that the

probability that the fixed width confidence interval covers the unknown parameter(s) is at least the

nominal value of  100 1  percent, where1  is the confidence coefficient of the desired

confidence interval. The above requirements are still valid to obtain a confidence region for the mean

vector of a q - variate normal distribution, see Khan 1968.

Moreover, for a sequential hypothesis test to be efficient, both Type I and Type II error probabilities,

 and t , should be controlled through the sample size required to perform the sequential procedure

of the form  
2* 2n n a b d   , where under the normal distribution, a and b are the upper 2

and t critical points of the standard normal distribution,  is the population variance, and  0d  is

a fixed prescribed constant. Usually the operating characteristic function (OC) is used to measure the

performance of a certain test procedure. For more details, see Mukhopadhyay and de Silva (2009).

1.1.2 Historical developments of sequential sampling schemes

The idea of sequential sampling was first developed during World War II as a tool to establish more

efficient quality control in equipment inspection. From Wallis’ view, see Govindarajulu (1987), the

story began with Captain Schyler's advice to Wallis in 1943 that one should be able to achieve some

economy savings in sampling by applying the single sample test sequentially (one sample at a time).

Moreover, Captain Schyler attributed this suggestion to Gwathmay, who, however, seemed to have no

recollection of making such a suggestion. Wallis and Friedman had several discussions about this

sequential setup, both with each other and with Wolfowitz and Paulson. Later, when Wallis and

Friedman realized that the sequential method might involve a higher level of mathematical statistics,

they brought the problem to Wald who actually put forward the formal theory in which optimal tests

are derived for simple statistical hypotheses. Such a sequential test is known as a sequential

probability ratio test (SPRT). Since then the theory and methods have been extended to a wide variety

of statistical problems.
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In the following section, we will demonstrate the main sampling procedures and their properties: the

two stage sampling procedure proposed by Stein (1945, 1949) and Cox (1952) (also referred to as the

double sampling procedure) and the one-by-one purely sequential sampling procedure proposed by

Anscombe (1953), Robbins (1959) and Chow and Robbins (1965). Moreover, we will illustrate briefly

Hall’s (1981) three stage procedure and its properties, also referred to as the triple sampling procedure, as

mentioned in his seminal paper of 1981.

1.1.2.1 Multistage sampling procedures

Multistage sampling procedures are used in statistical inference when no suitable fixed sample size

procedure is available, especially when the optimal fixed sample size needed to meet certain specific goals

depends on unknown nuisance parameters. The word “optimal” refers to the minimum fixed sample size

needed to satisfy certain criteria had the nuisance parameters been known.

Problem

Let  1 2, ,..., nX X X be a random sample drawn from  ,N   , where both parameters are unknown

but finite with  ,   and  0,   . Given  0d  and  0,1  , we wish to construct a

 100 1  percent confidence interval  nI d X d     for  such that the length of the

interval is 2d and   1P I    uniformly for all  and  .

Solution

If  is known, then it can be shown that * 2 2n a d solves the above problem uniformly over all 

and *n is referred to as the optimal fixed sample size required to solve the problem. So
*n is the

optimal fixed sample size required to construct such a confidence interval for  had  been known.

Here a is the upper 2 point of the standard normal distribution. If  is unknown then multistage

sequential procedures should be used to solve the above problem; see Mukhopadhyay and de Silva

(2009) for details.

Stein’s double sampling procedure

Stein (1945, 1949) and Cox (1952) proposed sequential sampling in two stages, known as double

sampling. The procedure was developed mainly for constructing a fixed width confidence interval for a

normal mean with unknown variance  and with a prescribed coverage probability1  .

Let  1 2, ,..., mX X X be a random sample of size  2m  , and let mX and 2
mS be estimators of the

normal mean  and variance  respectively. Then Stein’s stopping rule is

   2 2max , 1 1 ,mN m t m S d   
 

where  x denotes the integer part of x ,  1t m is the upper 2 point of the t distribution with

 1m  degrees of freedom, and  0d  is a fixed prescribed constant.



24 | P a g e

The procedure goes like this: if N m , that is when m is larger than the estimator of *n , then we do

not need to undertake any more sampling at the second stage, while if N m , this indicates that we

have started with too few observations at the pilot stage. Hence, we take new observations

 1 2, ,...,m m NX X X  at the second stage. Finally we have  1 2, ,..., NX X X , and then the interval

 N N
I X d  is the proposed interval estimator of  , while NX is the sequential point estimator of

 .

The properties of Stein’s double sampling procedure are

 ) 1Ni P I    , for all  and 

    
2*

0
) lim 1 1

d
ii E N n t m a


  

 *

0
) lim

d
iii E N n


  

 
0

) lim 1N
d

iv P I 


   , for all  and  .

Property (i) is known as consistency or exact consistency in the sense of Chow and Robbins (1965).

Property (ii) shows that the procedure is first order asymptotically inefficient, also in the sense of

Chow and Robbins (1965). Property (iii) shows that the procedure is second order asymptotically

inefficient, while property (iv) is known as asymptotic consistency or first order consistency, in the

sense of Chow and Robbins (1965) and Ghosh and Mukhopadhyay (1981).

Stein’s procedure has the advantage of reducing the number of sampling operations, and hence reduces the

operational cost. Generally, however, a double sampling procedure will lead to over sampling (i.e. the

procedure is second order asymptotically inefficient). This means that the expectation of N is much

greater than *n as
*n  , i.e. on average, the difference between the optimal and the second stage

sample size is asymptotically unbounded, especially when the initial sample size is chosen much smaller

than the optimal sample size *.n

Remark

The major success of Stein’s double sampling procedure is its exact consistency property.

One-by-one purely sequential procedure

In order to reduce the problem of over sampling in the double sampling procedure, one can estimate the

variance successively in a sequential manner.

Anscombe (1953), Ray (1957) and Chow and Robbins (1965) proposed the core of one-by-one purely

sequential sampling for estimation, where the stopping rule is

 N N d : is the smallest integer  n m for which we observe 2 2 2 .nn a S d

The one-by-one purely sequential procedure is implemented as follows:
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1. In the initial stage we obtain 2
mS based on the pilot sample  1 2, ,..., mX X X ,  2m  and

check whether 2 2 2
mm a S d .

2. If 2 2 2
mm a S d , stop sampling at this stage and record m as the final sample size. If

2 2 2
mm a S d , take one additional observation 1mX  and update the sample variance

estimator to 2
1mS  based on the new sample of size 1m . Next check whether

2 2 2
11 .mm a S d  If so, sampling terminates and the final sample size is 1m , otherwise

continue sampling by taking another one additional observation 2mX  and update the sample.

This process continues until for the first time we arrive at a sample of size n which is at least

as large as 2 2 2
na S d , constructed from  1 2, ,..., nX X X . In other words, stop sampling as

soon as the sample size exceeds the estimate of *n and hence the confidence interval is

constructed.

The asymptotic characteristics of the one-by-one purely sequential procedure based on the above

stopping rule is

 *

0
) lim 1.

d
i E N n


 Asymptotic first order efficiency.

 *

0
) lim .

d
ii E N n


   Asymptotic second order efficiency.

 
0

) lim 1 .N
d

iii P I 


   Asymptotic consistency.

Remarks

1. The asymptotic second order efficiency is stronger than the asymptotic first order efficiency property

since (ii) leads to (i) but the converse is not true.

2. The one-by-one purely sequential procedure does not over-sample as Stein’s double sampling procedure

does, but it fails to have the exact consistency property, unlike Stein’s procedure.

Although the one-by-one purely sequential sampling procedure is more efficient than the Stein (1945,

1949) and Cox (1952) two stage procedures, it is inexact (i.e. it only attains the prescribed coverage

probability asymptotically). The one-by-one purely sequential sampling procedure of Anscombe (1952,

1953), Robbins (1959) and Chow and Robbins (1965) was developed to tackle both point and confidence

interval estimation problems. Specifically, in point estimation generally a loss (cost) function is assumed

and hence the risk incurred in estimating the unknown population parameter by the corresponding sample

measures is calculated. Then the optimal sample size,
*n , required to minimize the associated risk is

obtained. Mimicking the structure of the optimal sample size, a one-by-one purely sequential procedure for

point estimation is then developed. It has been shown (see, for example, Chow and Robbins, 1965 and

Woodroofe, 1977) that the one-by-one purely sequential procedure is asymptotically efficient (first and

second order), while the Stein (1945) and Cox (1952) two stage procedures suffer from lack of efficiency.

On the other hand, the one-by-one purely sequential sampling procedure of Anscombe and of Chow and
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Robbins is not cost effective since it takes time to terminate and becomes impractical. We would also

emphasize that most of these sampling techniques pertain to making inferences about the normal mean.

During the period from 1965 until the early 1980’s, no substantial progress was made towards devising

sequential sampling procedures which satisfy both the operational savings made possible by the two stage

procedure and the asymptotic efficiency of the one-by-one purely sequential procedure. Rather, during this

period the research in sequential inference was devoted mainly to applications of these well established

sequential sampling procedures to other distributions, such as: the exponential distribution (Basu (1971),

Starr and Woodroofe (1972) and Mukhopadhyay (1974)), the negative exponential distribution

(Mukhopadhyay et. al. (1986) and Mukhopadhyay (1988)), the difference of the means of two negative

exponential populations (Mukhopadhyay and Darmanto (1988)), the difference of location parameters of

two negative exponential distributions (Mukhopadhyay and Hamdy (1984)), the uniform distribution

(Graybill and Connell (1964) and Ghosh and Mukhopadhyay (1975b)), the pareto distribution (Wang

(1973) and Mukhopadhyay and Ekwo (1987a)), the Bernoulli distribution (Robbins and Siegmund (1974)

and Cabilio (1977)), the binomial distribution (Wolfowitz (1946), Degroot (1959) and Wasan (1964)), the

negative binomial distribution (Mukhopadhyay and Diaz (1985)), the Poisson distribution (McCabe

(1970)), the hypergeometric distribution (Ifram (1965)), the bivariate normal distribution (Sinha and

Mukhopadhyay (1976)) and the lognormal distribution (Zacks (1966)), the range in a power family

distribution (Mukopadhyay et. al. (1983)) and the multivariate normal distribution (Khan (1968), Wang

(1981), Callahan (1969) and Ghosh et al. (1976)). Other applications involved classes of distributions such

as the one-parameter exponential family; see Lorden (1978), McCabe (1974) and Mukhopadhyay (1974).

Hall’s (1981) triple sampling sequential procedure

In the early 1980’s a three stage procedure was introduced by Hall (1981, 1983) to construct a fixed width

confidence interval for the normal mean  with unknown finite variance  and with a predetermined

coverage probability 1  . His procedure is based on the following stopping rule

  2 2 2
1 max , 1mN m a S d    ,

and

  1

2 2 2
1max , 1 .NN N a S d   

A modified version of his procedure is based on modifying the last stage to

    1

2 2 2 2
1max , 5 2 1 ,NN N a S d a v        

where a is the 2 critical point of  0,1N , 0v  is an arbitrary integer added to improve the

convergence of the procedure,  0d  is a fixed prescribed constant and  is a fixed number between

 .0,1 

We will illustrate Hall’s triple sampling procedure in detail in Chapter II section 2.2.
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The asymptotic characteristics of the triple sampling sequential procedure based on the above

stopping rules are

 *

0
) lim 1.

d
i E N n




 *

0
) lim .

d
ii E N n


  

 
0

) lim 1 .N
d

iii P I 


  

Hall’s asymptotic theory begins with the assumption that for 2m and 1s 

 *lim
m

sup m n 


 and  * sn O m .

Since Hall’s triple sampling procedure is the main focus of this thesis, so it would be better to show

the effect of increasing the arbitrary number v on improving the coverage probability.

Table 1.1 as seen in Hall (1981, p. 1232) shows the effect of increasing the number v on improving

the performance of the coverage probability based on 1000 replicate samples from the standard

normal distribution with 0.5  , 1 0.95  and 10m  . For more details see Hall (1981, p. 1232).

*n 0v  3v  5v  8v 

24 0.950 0.964 0.973 0.978

43 0.956 0.949 0.958 0.963

61 0.949 0.948 0.955 0.962

76 0.953 0.959 0.945 0.952

96 0.930 0.942 0.951 0.953

125 0.948 0.955 0.949 0.951

171 0.936 0.970 0.954 0.954

246 0.956 0.952 0.959 0.958

384 0.958 0.958 0.954 0.954

Table 1.1: The effect of increasing v on the performance of the coverage probability

Remark

The two-stage procedure, the one-by-one purely sequential procedure and the triple sampling

procedure enjoy the property that   1.P N   
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Hall’s three stage procedure combines the efficiency of the Anscombe, Chow and Robbins one-by-one

purely sequential procedure and the operational saving made possible by sampling in bulks by applying

Stein’s group sampling techniques.

Since the introduction of multistage sequential sampling by Hall (1981, 1983), applications to other

distributions and inferences for other parameters have been of interest; see Hamdy and Pallotta (1987),

AlMahmeed et al. (1998, 1990), Hamdy et al. (1995), Mukhopadhyay (1985, 1988, 1990), Mukhopadhyay

and Mauromoustakos (1987) and Mukhopadhyay and Padmanabhan (1993).

Mukhopadhyay (1990) made further developments to triple sampling by focusing on higher order

moments of the stopping variable N . Hamdy (1988) extended Hall's (1983) triple sampling results and

proposed a triple sampling point estimation procedure to estimate the normal mean. The extension of Hall's

results to tackle hypothesis testing problems of the normal mean was developed by Liu (1995). Son et al.

(1997) proposed a triple sampling sequential procedure which yields both a fixed width confidence interval

and a hypothesis test for the normal mean while controlling the Type II error probability. Their procedure

also provided second order approximations to the operating characteristic curves of the inference.

Closely related applications of sequential procedures in clinical trials are found in Whitehead (1983, 1991,

1992, 1994, 1997, 2001 and 2005), Brunier and Whitehead (1993) and Jennison et al. (1999).

Accelerated sequential procedure

We have seen that the one-by-one purely sequential procedure is asymptotically second order efficient, but

it has a disadvantage that we need to record observations one by one until the process terminates. To

accelerate the one-by-one purely sequential procedure and to preserve second order asymptotic efficiency,

we combine the one-by-one purely sampling procedure with an additional stopping rule. Such a procedure

is called an improved accelerated sequential procedure. The procedure as proposed by Mukhopadhyay

(1996) is: start with a pilot sample 1, , mX X of size  2m  and let  be a fixed number between 0

and 1. Then the stopping rule is

 2 2 2
1 min , m

N n m n a S d   ,

and the final sample size is

  1
1

1N N q   ,    1 252q a
  ,

where a is the upper 2 point of the standard normal distribution and  0d  is a fixed prescribed

constant. The final data set is  
1 11 1, , , , ,N N NX X X X  . Then the fixed width confidence interval for

the normal mean is  N N
I X d  . For more details, see Mukhopadhyay (1996).

The asymptotic characteristics of the accelerated sequential procedure are summarized in Mukhopadhyay

(1996) as follows:

   *

0
lim 1
d

E N ni


 , asymptotic first order efficiency.
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   
0

lim 1N
d

P Iii  


   , asymptotic consistency.

   *

0
lim
d

E N niii


  , asymptotic second order efficiency.

Remark

If  is chosen near zero, the accelerated sequential procedure would clearly behave more like Stein’s two

stage procedure, but if chosen near one it would behave more like a one-by-one purely sequential

procedure. Therefore, an accelerated sequential procedure is often implemented with  0.4, 0.5 or 0.6 .

In numerous problems, one tends to use 0.5  ; see Mukhopadhyay and de Silva (2009).

The objective in this thesis is to study the robustness of normal-based triple sampling inference procedures

to departures from normality of the underlying distribution. Therefore, it is useful to give some brief

statements about the meaning of robustness in statistics and its role in the area of sequential sampling.

1.2 Robustness of sequential procedures

Since many statistical methods make specific assumptions about the nature of the underlying

distribution, it has long been a concern of statisticians to determine how far conclusions might be

affected if these assumptions were false. In particular a considerable literature exists on the effect of

non-normality on analysis of variance tests to compare means and on the test to compare the variances

of independent samples; see Geary (1936), Gayen (1950), and Box and Anderson (1955).

The word robustness in statistics was first coined by Box in 1953. Box et al. (1964) studied the

behaviour under non-normality of the probability distribution of a specific criterion. Such specific

property is referred as criterion robustness to non-normality. Moreover, they distinguished between

two types of sensitivity to non-normality: criterion robustness and inference robustness. Criterion

robustness means that the distribution of the statistic used to estimate parameters or test hypotheses

about the parameters under the original model is not substantially affected by changing the model.

Inference robustness means that inferences made about parameters on the basis of the data do not

change substantially with a change in the model. For example, changes in the significance level when

appropriate changes were made in the nature of the criterion to correspond with the changes in the

underlying distribution. An excellent discussion of this distinction between the two types of

robustness was given by Box et al. (1973) where he illustrated this distinction for the t and F
distributions of normal theory statistical inference.

Huber (1964) used the word robustness to mean the insensitivity of a statistical procedure to small

deviations from the assumed assumptions. He was concerned with distributional robustness where the

shape of the true underlying distribution deviates slightly from the assumed model, usually the normal

distribution.

In real life problems, underlying distributions are not perfectly known and can be a member of larger

class of distributions. For example, the distribution of errors which are assumed to be normal could

belong to some larger symmetric class of distributions not necessarily normally distributed; or the true

underlying distribution might be a mixture of several normal distributions or a contaminated normal

distributions. Also in linear models, least square estimators are sensitive to deviations from an

assumed normal distribution of the errors, thus least square estimators are non-robust with respect to

deviations from the assumed normal distribution.
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Pearson (1931) showed the sensitivity of classical ANOVA procedures to departures from the

assumed normal model, mostly in terms of the skewness and kurtosis of the underlying distribution.

Many articles examine the effect of such deviations on the size and power of the ANOVA tests; see

Tukey (1960). The robustness of the t test against mixtures of normal populations that differ in

location parameters has been studied by Tukey and McLaughlin (1963). Subrahmaniam et al. (1975)

studied the robustness of the one-sample t procedure against slight contamination of the population

with another normal population having a different mean.

As we know the t test, based on  t n SX   , is used to test the hypothesis about the

population mean of a normal distribution when the variance is unknown. The power of this test is a

function of the unknown variance. It was shown by Dantzig (1940) that for a fixed sample size there

does not exist a test whose power is independent of the variance. The idea of studying the effect of

non-normality on the t test has been investigated by, for example, Pearson and Adyanthaya (1929),

Bartlett (1935), Geary (1936), Gayen (1949), Ghurye (1949) and Srivastava (1958). Pearson and

Adyanthaya (1929) have shown that the effect of skewness and kurtosis of the underlying distribution

on t may be considerable. Bartlett (1935) confirmed Pearson’s results theoretically by obtaining an

approximate distribution of t in non-normal samples, assuming the underlying distribution can be

represented by the first two terms of Edgeworth series. Geary (1936), obtained the approximate of the

t distribution. Gayen (1949) considered the effect of skewness and kurtosis by using the first four

terms of the Edgeworth series as the density function of the population to derive the distribution of t .

A theoretical study on the effect of non-normality on the power of the t test was first made by Ghurye

(1949) by considering the first two terms of the Edgeworth series and later Srivastava (1958) extended

this work by considering the effects of the skewness and kurtosis of the underlying distribution.

Stein (1945) gave a two sample test for a linear hypothesis whose power is independent of the

unknown variance. He used it to test the hypothesis about the mean of a normal population and to

estimate the mean by a confidence interval of a prescribed width with a given confidence coefficient.

As in other tests of significance, the basic assumption in Stein’s test is the normality of the underlying

distribution. Since this assumption may not hold in practice, Bhattacharjee (1965) was the first to

study the robustness of Stein’s two stage procedure against departures from normality by deriving the

distribution of Stein’s t test for non-normal populations represented by the first four terms of an

Edgeworth series. He considered the power function of Stein’s test and the confidence level of the

fixed width confidence interval. He concluded that the procedure is sensitive to Edgeworth type of

expansion. On the contrary, Blumenthal and Govindarajulu (1977) investigated the departure of

Stein’s two stage results from normality under the assumption that the underlying distribution is a

mixture of two normal populations with common unknown variance but with different means. Both of

these studies are concerned with criterion robustness of the procedure (Box and Tiao, 1973). Their

results indicated that the procedure is remarkably robust. The controversy between these two different

conclusions was settled by Ramkaran (1983) who investigated the same problem and found that the

Stein’s two stage sampling procedure is quite robust even under Edgeworth series model.

Applications of robust statistical procedures can be found in Hampel (1968, 1971), Hampel et al.

(1986), Huber (1964, 1981), Huber and Dutter (1974), Govindarajulu and Leslie (1972) and

Jureckova and Sen (1996).

Although it is vital, as one can see, the quantity of research in the area of robustness in sequential

sampling is limited. However, Jureckova and Sen (1996) devoted several chapters to discuss

robustness of sequential statistical inference (point and interval estimation).
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In this current study the robustness of triple sampling procedures to non-normality of the underlying

distribution will be of greatest importance. The problem arises when the underlying population is

misspecified (normality is assumed when in fact it is not normal). Also for some distributions it is

almost impossible to express the optimal sample size explicitly and therefore, if the normal-based

triple sampling procedure were robust to departures from normality, it would be convenient to use the

triple sampling procedure with normal stopping rule. Several measures are devised to assess the

robustness of sampling procedure. However, in this study we rely on the skewness and kurtosis of the

underlying distribution to measure the extent of departures from normality.

1.3 Skewness and kurtosis

In this section we shall define what we mean by skewness and kurtosis.

It is commonly noted that distributions can be characterized in terms of location or central

tendency, variation and shape. With respect to shape, two important measures are the

skewness  , which is a measure of asymmetry, and the kurtosis  , which is a measure of

peakedness and/or tail behaviour. Higher kurtosis indicates more of the variance is due to

infrequent extreme deviations, as opposed to frequent modestly sized deviations. The

formulae that we will use are given by Abramowitz and Stegun (1972) who define the skewness

and kurtosis as

 
3 3/2E X    and  

4 2E X    , for all ,     .

Note that the kurtosis is always greater than one,  1  if it exists. When appropriate we will also

use the excess kurtosis, * 3   ; see Kenney and Keeping (1951).

In the literature, there are different perspectives for the meaning of kurtosis. Bickel and Lehman

(1975a, 1975b) noticed that there is no agreement on precisely what kurtosis measures, while Balanda

et al. (1988) showed that it is better to define kurtosis obscurely as the location and scale-free

movement of a probability density function from the shoulders of a distribution into its centre and

tails, and to recognize that it can be formalized in many different ways. Pearson (1905) defined

kurtosis as a measure of how flat the top of a symmetric distribution is when compared to a normal

distribution of the same variance, while others like Johnson et al. (1994) illustrated that kurtosis

measures the amount of deviation from normality depending on the relative frequency of values either

near the mean or far from it to values an intermediate distance from the mean. Wilcox (1990) used the

skewness and kurtosis in studies of robustness of normal theory procedures. The Pearson family of

distributions is characterized by the first four moments and skewness and kurtosis may be used to help

to select an appropriate member of this family. All such differences occur because kurtosis is not well

understood and because the role of kurtosis in various statistical analyses is not widely recognized.

For more details about the role of kurtosis, see Hampel (1968, 1974).

The terms mesokurtic, leptokurtic and platykurtic mean as follows:

 i Mesokurtic: Such distributions have a moderate degree of peakedness and represented by a

normal distribution, symmetric around the mean and the three central measures, the mean, the median

and the mode are equal. Note that all normal distributions are mesokurtic and the weight/thickness of
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the tails of a normal distribution is in between the weight/thickness of the tails of distributions that are

leptokurtic or platykurtic.

 ii Leptokurtic: Such distributions have a high degree of peakedness. The tails are heavier\ thicker

than the tails of a mesokurtic distribution. An example of this case is the exponential distribution.

 iii Platykurtic: Such distributions have a low degree of peakedness. The tails are lighter\thinner

than the tails of a mesokurtic distribution. An example of this case is the uniform distribution. See

Sheskin (2004) for more details.

Table 1.2 gives the values of the skewness  and kurtosis  for some distributions that we will use in

later chapters: the normal distribution  ,N   , the uniform distribution  ,U a b , the t distribution

with r degrees of freedom  t r , the beta distribution  ,beta a b , the exponential distribution with

mean  ,  Exp  and the chi-squared distribution with r degrees of freedom  2 r .

Distribution  

 ,N   0 3.0

 ,U a b 0 1.8

 t r 0, 3r    
1

3 2 4 , 4r r r


   

 ,beta a b  
 
2 1

2

b a a b

a b ab

  

 

   
   

2 2 2 23 1 2 2 2

2 3

a b a b ab a b ab

ab a b a b

     

   

 Exp  2 9.0

 2 r 2 2 r 12 3r 

Table 1.2: Skewness and kurtosis for      , ,, ,N U ta b r  , beta  ,a b ,  Exp  and  2 r

distributions
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Chapter II

Statement of the Problem

2.1 Problem setting

Let 1 2 3, , ,...X X X be a sequence of . . .i i d random variables from a continuous distribution function

 .; ,F   , where the two parameters, the mean   and the variance   are assumed

unknown but finite. We also assume that the skewness  and the kurtosis  are both unknown but

finite  and    . The main interest in this study is estimation of  in the presence of the

unknown variance .

Having observed a random sample 1 2, ,..., nX X X , 2n  from the distribution function  .; ,F   ,

we propose to use the sample mean and the sample variance as point estimates of  and 

respectively: 1

1

n

n i
i

X n X



  and    
212

1

1
n

n i n
i

S n X X




   , 2.n 

It is well-known that these estimators are unbiased for their respective parameters and minimal

sufficient statistics in the case of the normal distribution.

In the literature on sequential sampling for inference of the mean for most distributions it is assumed

that the sample size required to satisfy the conditions (i), (ii) and (iii) in section 1.1.1 can take the

general form (2.1) below; see Sen (1985) and Ghosh et al.(1997) for details.

   *2.1 ,n g 

where  depends on some predetermined constants (which may, for example, appear in a loss (cost)

function incurred in point estimation of  or arise from consideration of a fixed width confidence

interval for  with a prescribed coverage probability). Further,  is permitted to tend to infinity if

the optimal sample size *n   . Note that  g  is a positive real valued twice continuously

differentiable function such that ',g g and ''g are bounded. We shall use the representation  2.1 in

this thesis to develop theory for point and interval estimation and for hypothesis testing.

2.2 Triple sampling procedure for inference for the population mean

Since *n in  2.1 is numerically unknown because is unknown, then no fixed sample size

procedure provides the above point estimation for uniformly for 0  . Therefore, we use

sequential sampling procedures to estimate  via estimation of the optimal sample size *n . We now



34 | P a g e

give a rigorous account of the triple sampling procedure as described by Hall (1981). As the name

suggests, triple sampling can be described by the three phases.

Pilot Phase: Here an initial sample 1 2, ,..., mX X X of size 2m is taken at random from the

distribution  .; ,F   , from which mX and 2
mS are calculated as our initial estimates for and 

respectively.

The Main Study Phase: In the main study phase a fraction of *n is estimated during that phase, say,
* ,n where  is a fixed number between 0 and 1. The sample size required to complete the main

study phase is defined by the following stopping rule as

     * 2 *
1 1 12.2 1, max , .mN g S N m N     

where 0 1  and 0    are known constants and  x denotes the integer part of x. Observe

that 1N estimates *n in this phase.

If *
1m N , stop sampling at this stage; otherwise continue to observe an extra random sample of size

1N m from the distribution function  .; ,F   , say
11 2, ,...,m m NX X X  . Hence, we augment the

1N m observations by the previous m observations and calculate
1NX and

2

1NS as new estimates of

 and  respectively.

The fine tuning phase: This is defined according to the following final stage stopping rule

     
1

* 2 *
12.3 1, max , .NN g S N N N  

If *
1N N , then stop at this stage, otherwise continue to sample 1N N more observations

randomly from the distribution  .; ,F   , say
1 11 2, , ,N N NX X X   . Whenever sampling is

terminated and N is realized, then NX is a natural point estimate for , and hence NX is a

sequential point estimator of . Observe that N estimates *n in this phase.

Throughout the thesis, the asymptotic characteristics of triple sampling are developed under the

assumption made by Hall (1981) that for 0 1  and  positive, we assume that

     2.4 , , limsupn m m n m n       and   , 1.sO m s  

where 1s  is a fixed constant. Moreover we assume that
6

1E X   . This moment condition is the

same as that used by Chow and Martinsek (1982) to estimate the mean of an unknown distribution

using the one-by-one purely sequential procedure proposed by Robbins (1959). Although the

assumption
6

1E X   may seem restrictive, but we shall show in the next chapter that second

order approximations of a continuously differentiable function of the stopping sample sizes 1N and
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N depend on the first four moments of the distribution in order to capture both the skewness and

kurtosis of the underlying distribution. Therefore it is clear that one needs more than the first four

moments to be finite to obtain such approximations and ensure that the corresponding error terms tend

to zero. Also, it is necessary to put lower and upper bounds on  in order to ensure that  g  and its

first two derivatives are bounded in the inferential situations we shall investigate later in the thesis.

Lemma 2.1 (Hall 1981)

For the triple sampling rule (2.2) – (2.3) as mwe have

    

   

*
1 1

* 2 1

exp ,

, 0, 10.q

P N N O km

P N N o m k q 

  

   

See Honda (1992) for the proof.

Lemma 2.1 shows essentially that the probability of not completing all three stages is small for large

values of m.

Remarks

1. Mukhopadhyay (1990) noted that if the design factor  is chosen near zero or one, then a

three stage procedure would clearly be rather like Stein’s two stage procedure. Therefore a

three stage procedure is better implemented with   0.4, 0.5 or 0.6. Hall (1981) mentioned

that in practice it seems a reasonable compromise to choose 0.5  .

2. In the context of two stage sampling Seelbinder (1953) and Moshman (1958) developed some

criteria based on prior information about the variance in order to suggest a reasonable choice

of the pilot sample size m , while Mukhopadhyay (2005a) developed an information-based

approach to suggest a reasonable choice of m without any prior information about the

variance.

Notes

1. The objective of Hall (1981) was to construct a fixed width confidence interval for the normal

mean with a prescribed width  0d  and coverage 1  without any concern about the

estimate of the optimal sample size *n . Moreover, he used only the first order approximation

of the stopping sample size N .

2. Mukhopadhyay et al. (1987) treated the same situation as Hall (1981) but they considered

point estimation of the normal mean to achieve the minimum bounded risk.
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In our thesis we deal with inference (point and interval estimation and hypothesis testing) about the

mean of any continuous underlying distribution whose analytical form is unknown and for any

positive twice continuously differentiable and bounded function of . We use the second order

approximations of a suitable continuously differentiable function of the stopping sample sizes 1N and

N in order to evaluate the asymptotic regret in terms of the first four moments of the underlying

distribution.
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Chapter III

Developing Mathematical Results for Triple Sampling

3.1 Preliminary results

Lemma 3.1.1

Let X be a random variable drawn from the continuous distribution function  .; ,F   , where  is

the population mean  ,  is the population variance,  , and with finite skewness  and

kurtosis  . Then, it is easy to show that

 
 

   

3 3/2 3

4 2 3/2 2 4

2 2 3/2 2

) 3 .

) 4 6 .

) 1 4 4 .

i E X

ii E X

iii Var X

   

       

    

  

   

   

Proof: (i) and (ii) follow immediately from the definition of skewness and kurtosis while (iii) follows

from (ii) and the fact that  2 2 .E X   

Lemma 3.1.2

Let 1 2, ,..., mX X X be a random sample of size 2m  drawn from the continuous distribution function

 . ; ,F   with finite mean  , variance , skewness  and kurtosis  . Let mX and 2
mS be the

sample mean and sample variance respectively. Then it follows that

Part (I)

   
    

         

 
   

3 2 3/2 2 3

4 3 2 3/2 2 2 3 4

2 12 2

2 1 3/2

2 2 2 2 1 3/2 2

) 3 .

) .3 3 4 6

) 1 .1 3

) .

) 2 .3

m

m

m

m m

m m

i E X m m m

ii E X m m m m m

iii E S m m m m

iv E X S m

v E X S m mm

   

      

  

  

     









 

  

     

    

 

   
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Part (II)

Define the location shift Z X   . Then

  3/23) .i E Z  

  24)ii E Z   .

Also for a random sample  1 2, ,..., mZ Z Z from the random variable Z above,

 
 
 

 

 

3 2 3/2

4 3 2

2 1 3/2

2 2 2

1

2 2

2 2 2 2

) .

) ( 3 3).

) .

) 1 .

) 2 .

) ( 3).

m

m

m m

m

i m
i

m

i j m
i j

m m

iii E Z m

iv E Z m m

v E Z S m

vi E Z S m

vii E Z Z S

viii E Z S m m

 

 

 

 



 















  



 
   

 

 
  

 

  





Proof:

It suffices to prove part (II) of Lemma 3.1.2. (i) and (ii) are immediate from Lemma 3.1.1., while (iii)

and (iv) follow from Rohatgi (1976, p 303).

Note  
212 2

1

1
m

mm i
i

S m Z m Z




 
   

 
 and

2

2

1 1

m m m

i i i j
i i i j

Z Z Z Z
  

 
  

 
   .

The proof of (v), (vi), (vii) and (viii) follows by taking the expectation over the identities:

 
12 3 2 2 3

1

( 1)
m m

m m i i j m
i i j

Z S m m Z Z Z m Z


 

 
    

 
  ,

 

  

  

212 2 2 2

1 1 1

2
11 2 2

1 1

11 4 2 2 2

1 1

1

1

1 ,

m m m

mi m i i
i i i

m m

i i i j
i i i j

m m

i i j i i j
i i j i i j

Z S m Z Z mZ

m Z m m Z Z Z

m Z Z Z m m Z Z Z



  



  



   

 
   

 

 
   

 

 
    

 

  

  

   



39 | P a g e

2 1 3 2

1 2 2 2

2

( ( 1)) 2 4

i j m i j i j k
i j i j i j k

i j i j k i j k l
i j i j k i j k l

Z Z S m Z Z Z Z Z

m m Z Z Z Z Z Z Z Z Z



   



     

 
  

 

 
    

 

  

   

and

2 2 2 2 2

1

2 2 2 2

1

.

m m

m m i i j m
i i j

m m

i m i j m
i i j

Z S m Z Z Z S

m Z S Z Z S



 



 

  
    

  

 
  

 

 

 

The proof of part (I) follows from part (II) by using the above location shift transformation.

Lemma 3.1.3

Let 1 2, ,..., mX X X be a random sample of size 2m  drawn from the continuous distribution function

 . ; ,F   with finite mean  , variance , skewness  and kurtosis  . Let 2
mS be the sample

variance. Then as m ,     2 20, 1L
mm S N     .

Proof:

The proof follows immediately from the central limit theorem and Lemma 3.1.2 (iii). See also

Serfling (1980) section 2.2 for more results.

3.2 Asymptotic characteristics of the triple sampling sequential procedure for inference

In the following sections 3.2.1 and 3.2.2, we will study the asymptotic characteristics of both the main

study phase given by  2.2 and the fine tuning phase given by  2.3 under the assumption set forward

by Hall (1981) given by  2.4 and our assumption that
6

1E X   .

Definition 3.2.1

A sequence of random variables  , 1nY n  is defined to be uniformly integrable if

  limsup 0n nE Y I Y c  as c  , where  I  is an indicator function of   ; see Serfling

(1980), page 13 for more details. In other words, a sequence of random variables is defined to be

uniformly integrable if it is dominated by some integrable random variable.

Lemma 3.2.1 is found in Chow and Yu (1981) while Lemma 3.2.2 is a uniform integrability result

obtained from Lemmas 2, 4 and 5 of Chow and Yu (1981) and are necessary to establish our proofs

regarding the asymptotic characteristics of 1N and N .
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Lemma 3.2.1

Let  ;0 1aT a  be a family of random variables such that  1 1aP T   . If for some  1 0,1  ,

0, 0p q  we have    1
q pq

aP a T o a  as 0a  , then the family of random variables

  pq
aa T



is uniformly integrable.

Proof: See Lemma 1 in Chow and Yu (1981).

Lemma 3.2.2

Let 1 2, ,Z Z be independent and identically distributed random variables, each with mean zero. Let

nG be   field generated by  1 2, , , nZ Z Z . Let  ;T B  be nG stopping times with

 0,B   Then

(i)
2

1

p
E Z   , 1p     p

T  is uniformly integrable.

(ii)  2
1E Z     p

T 


is uniformly integrable for all 0p  .

(iii)
2

1

p
E Z   , 1p  

2

1

1

pT

i
i

Z


 



   
  
   

 is uniformly integrable.

(iv)
2

1

p
E Z   , 1p  

2

1/2

1

pT

i
i

Z


 



   
  
   

 is uniformly integrable.

(iv)
2

1

p
E Z   , 2p   1/2 2

1

p
T

i
i

Z T


 



   
  

   
 is uniformly integrable.

Proof: See Lemmas 2, 4 and 5 of Chow and Yu (1981).

Theorem 3.2.1 (Anscombe’s Theorem)

Let 1 2, ,Z Z be independent and identically distributed random variables with mean zero and

finite variance . Let  t denote a positive integer-valued random variable for any 0t  such that

in probability as t  . Then   
 

1/2

1

v t

i
i

v t Z



 converges in distribution to a

standard normal distribution as .t  See Renyi (1957) for the proof of the Theorem.

  0t t c  
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3.2.1 Asymptotic characteristics of the main study phase

The asymptotic characteristics of the main study phase of the triple sampling procedure are discussed

through the following Theorems. Theorem 3.2.1.1 provides results regarding the asymptotic characteristics

of the main study phase. Specifically, second order approximations of the expectation and the variance of

the second stage sample mean are given as the initial sample size m gets large. First we introduce some

Lemmas that help us to construct Theorems about 1N . Lemma 3.2.1.1 shows the uniform integrability for

positive and negative powers of 1N , Lemma 3.2.1.2 shows the asymptotic distribution of 1N , Lemma

3.2.1.3 shows the uniform integrability and the asymptotic distribution of
1

2
NS and Lemma 3.2.1.4 gives

some useful results that simplify our proof of Theorem 3.2.1.1.

Lemma 3.2.1.1

For the triple sampling rule given by  2.2 we have

(i) The set   1

p
N is uniformly integrable for every 0.p 

(ii) The set   1

p
N  is uniformly integrable for every 0.p 

Proof: Part (i) follows directly from Lemma 3.2.2 (ii). It also follows from the fact that

 2
1mg S N  , by making use of Lemmas 3 and 4 of Chow and Yu (1981) and Lemma 3.2.1we

obtain the result. Part (ii) follows directly from Lemma 3.2.2 (i). It also follows from  2.2 and the

fact that     2
1

pp

mN g S    where g is a bounded function.

Lemma 3.2.1.2

For the triple sampling rule given by  2.2 and if condition  2.4 holds, then as   ,

.*
1 .a sN n 

Proof:

The proof follows directly from  2.4 and the strong law of large numbers.

Lemma 3.2.1.3

Let 1 2, ,X X be independent and identically distributed random variables from the continuous

distribution function  . ; ,F   such that
6

1E X   . Then

(i) The set   1

1/2 2
p

NS  is uniformly integrable for 0 3p  .



42 | P a g e

(ii)     
1

2 2
1 0, 1L

NN S N     as    .

Proof:

Part (i) can be proved as follows

Recall    
1

1 1

212
1

1

1
N

N i N
i

S N X X




   . Using the transformation i iZ X   , we have

 
1

11

212 2
1 1

1

1
N

NN i
i

S N Z N Z




 
   

 
 . Hence we can write  

1

1/2 2
NS  as follows

   
1 1

1

2

1/2 2 2 1
1

1 11

1

1

N N

N i i
i i

S Z N Z
N


   





 

   
      

    
  .

By making use of Lemmas 3.2.1.1and 3.2.2 parts (iii),(iv) and (v) we obtain the result. Hence the
proof is complete.

Part (ii) Recall that 1 1N n   almost surely as    (Lemma 3.2.1.2 (i)). Then the result

follows by Anscombe’s Theorem.

Lemma 3.2.1.4

Let 1 2, ,..., mZ Z Z be a random sample of size 2m  drawn from the continuous distribution function

 . ; ,F   with mean zero and
6

1E Z   . Let g be a positive, twice continuously differentiable

function such that ',g g and ''g are bounded. Then for the triple sampling rule  2.2 and condition

 2.4 as  we have

    

 

 
    

3 2
1

*
11

2
2 2

22
11

1
( ) ln .

2 11
( ) ln .

m

i
i

m

i
i

d
i E Z g o

N n d

d
ii E Z g o

N n dn

 
 

 

 
 

 







 


 
   

 

 
   

 





 
    

2
2

22
1

1 4
( ) ln .

m

i j
i j

d
iii E Z Z g o

N dn


 








 
  

 


Proof:

The proof of part (i) follows by expanding the function   1
1 1f N N  around n  where  f  is a

continuously differentiable function. Note that ' '',f f and '''f are continuous over *
1,N n   . Then
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             
1 2 3 2 31 '''

1 1 1 1

1
,

6
N n n N n n N n f N n      

              

where  is a positive random variable that lies between 1N and n  . By collecting the above terms

we have

              
1 2 3 321 '''

1 1 1 1

1
3.1 3 3 .

6
N n n N n N f N n    

          

Multiplying  3.1 by
1

m

i
i

Z

 and substituting for  2

1 mN g S  a.s. as ,   we have

             

   

21 2 31 2 2
1

1 1 1 1

3'''
1

1

3.2 3 3

1
.

6

m m m m

i i i m i m
i i i i

m

i
i

N Z Z n Z n g S Z n g S

Z f N n

    

 

     

   





  

 

   



Since g is a bounded twice differentiable function, then 2g is also a bounded function. Hence by

expanding  2
mg S and  2 2

mg S around  we have

   

          

             

   

11
1

1 1

2 2' 2 '' 2
1

1

3 22 2 2' 2 2'' 2
2

1

3'''
1

1

3.3 3

1
3

2

1

2

1
,

6

m m

i i
i i
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where 1 and 2 are random variables that lie between 2
mS and . Taking the expectation over  3.3

and making use of the identity  2 3/2
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m
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To show that the errors vanish as   we proceed as follows. From Jensen’s inequality we have
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where  is a random variable between 1N and
*n . Consider the case

*n  . Then
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The last identity follows from the fact that 1 11
N N

n n  
  for large values 1N , while as    we

have 1 11
N N

n n  
  , such inequality can be justified from Lemma 3.2.1.2 (i) where 1 1N n  

almost surely as    . Since g is bounded there exists a generic constant M independent of
*

1, ,N n  and m such that 3g M . Hence multiplying by  3g  in the numerator and

denominator we obtain

     
1* 3

1
1

m

i
i

E R M n g E Z 
 



 
  

 
 ,

but from central limit theorem    
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Note that from condition  2.4 we have m n   as .m

Consider the case 1N  and the fact that 1N m then
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but from the strong law of large numbers and using Theorem A.3.4 in Mukhopadhyay and de Silva

(2009) page 442 and the fact that  mZ is uniformly integrable, we have 0mE Z  as .m
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where 1 is a random variable between 2
mS and  . Since  ''

1g  is bounded there exists a generic

constant 1K independent of 2 , ,mS m and 1 such that  ''
1 1g K  . Then
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By using lemma 3.2.1.1 (ii) the quantity       
1 22 2 21 1mm S   
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   . Moreover, from the strong law of large numbers and Theorem A.3.4 (as mentioned above),

we have
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uniformly integrable, then     
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A similar procedure can be used to prove that
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where 2K is a generic constant independent of 2 , ,mS m and 2 such that  2''
2 2g K  .

Substituting    3.5 , 3.6 and  3.7 in  3.4 we have
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The proof is now complete.

Part (ii) follows by expanding the function   2
1 1f N N  around n  . Then by collecting the

expansion terms we have
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where  is a random variable that lies between 1N and n  .

Substituting for 1N and expanding  2
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But from Jensen’s inequality and the fact 1 1N n N   we have
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Since g is bounded, there exists a generic constant M independent of *
1, ,N n  and m such that
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Consider the case
*n  . Then multiplying by  3g  in the numerator and denominator and using

the fact that as ,m  m n  we obtain
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Consider the case 1N  and the fact 1N m . Then we have
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as illustrated before as    the quantity       
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A similar procedure can be used to show that
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Hence the proof is complete.
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Part (iii)

The proof of part (iii) follows as for part (ii) except putting
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M n E Z Z M n g E Z Z

    

   

  

   

  

   

      
      

      

      
    

      

 

 

To find
1

m

i j
i j

E Z Z
 

  
 
  
  we proceed as follows. Let   

1

1

1
m

i j
i j

U m m Z Z


 

   . Then it can

be shown that 2
1 1

mU



  in distribution as m ; see Theorem 5.5.1A in Serfling (1980) page

192. This implies that   
1 2

1
1

1 1
m

i j
i j

m Z Z 


 

   as m . If we set 2
1V  , then by

making a linear transformation between U and V , the probability density function of the random

variable U ,  
  
 

exp 1 / 2
, 1

2 1

u
h u u

u

 
    


.

By integration we have   
1 4

1 ,
2

m

i j
i j

E U E m Z Z m
e








    which implies that

 
1/2 4

1
2

m

i j
i j

E m Z Z
e









  as m .

Thus
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     

   

2* 3
1

1* 3

4
1

2

4
0, .

2

E R M n g m
e

M n g
e


 




  



 

 

 

  

Also

 

3 35 5
1 1 1 1 1

2 2
1 2

1 4
0, .

2

m m

i j i j
i j i j

m m

i j i j
i j i j

N E N Z Z N n E N Z Z N

m
E N Z Z E m Z Z m

m e

 





  

 

 

 

   
      

   

    
       

   

 

 

For the other error term, we have

          

      

2 21 '' 2
2 1

1

2 21 2
1

1

,

,

m

i j m
i

m

i j m
i

E R g n E g Z Z S

K g n E Z Z S

   

  

 



 



 
  

 

 
  

 





but   
1

1 0
m

i j
i j

m m Z Z




  in probability and
 
 

 

22

2

2
1

1

mm S 


 





in distribution, as

   . Thus    
21 2

1

1 0
m

i j m
i

E m Z Z S 




 
   

 
 in distribution, as    by Slutsky’s

Theorem, provided that    
21 2

1

1
m

i j m
i

m Z Z S 




 
  

 
 is uniformly integrable. Hence

2 0E R  as .   A similar procedure can be used to show that

          

    

2 22 2'' 2
3 2

1

2 22 2
2

1

3 2

0, .

m

i j m
i

m

i j m
i

E R g n E g Z Z S

K g n E Z Z S

   

   

 



 



 
  

 

 
    

 





The proof is now complete.
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Theorem 3.2.1.1

Let g be a positive, twice continuously differentiable function such that ',g g and ''g are bounded.

Then for the triple sampling rule  2.2 and condition  2.4 as  , we have

       

           
1

1

13/2 * 1

1 2* 2 * 2

) ln .

) 2 3 ln .

N

N

i E X d g d n o

ii Var X n d g d n o

      

       

 

  

  

   

Proof:

To prove (i), consider the transformation Z X   , and we may write

   
1 1

1

1 1
1 1 1

1 1

3.12 .
N N

N i i
i i

E X E N Z E E N Z N  

 

     
       

     
 

Then, conditioning on the  field generated by the random variables 1 2, ,..., mZ Z Z , we have

 
1

1

1
1 1 2

1 1

, ,..., .
Nm

N i i m
i i m

E X E N E Z Z Z Z Z 

  

   
    

   
 

Given 1 2, ,..., mZ Z Z , the first sum is non-random and the second has expectation zero. Hence

   
1

1
1

1

3.13 .
m

N i
i

XE E N Z 



 
   

 


But from Lemma 3.2.1.3 part (i)     
3 2

1

*
11

1
ln .

m

i
i

d
E Z g o

N n d

 
 

 




 
   

 


The remainder term is of order  1o   . By substituting this in  3.13 , (i) follows and hence the proof of (i) is

complete.

To prove (ii), we also write

   
1 1

1

2 2 2
1 1 2

1

3.14 , , ..., .
N N

N i i j m
i i j

XE E E N Z Z Z Z Z Z 

 

   
          

 

The first term in  3.14 , conditional on the  field generated by the random variables

1 2, ,..., mZ Z Z , can be written as



51 | P a g e

 
1 1

2 2 2 2 2
1 1 1 2

1 1 1

3.15 , ,..., .
N Nm

i i i m
i i i m

E N Z E N E Z Z Z Z Z 

   

     
     

     
  

Therefore,

   
1

2 2 2 2 1 2
1 1 1 1

1 1

3.16 .
N m

i i
i i

E N Z E N Z E N m N   

 

   
     

  
 

The first term on the right hand side of  3.16 is in Lemma 3.2.1.3 part (ii). The second term of

 3.16 can be written as

      2 1 1
1 1 1E N N m E N o      , as .

Finally,

           
1 1 22 2 * 2 * 1

1
1

3.17 2 1 ln .
N

i
i

E N Z n n d g d o       
  



 
    

 


Similarly, the second term of  3.14 conditioned on the  field generated by the random variables

1 2, ,..., mZ Z Z , can be written as

 
1 1

2 2
1 1 13.18 , , .

N Nm

i j i j i j m
i j i j i j

E N Z Z E N E Z Z Z Z Z Z 

  

     
     

     
   

The first term of  3.18 is in Lemma 3.2.1.3 part (iii) while the second term tends to zero.

Hence  3.18 leads to

        
1 22 2 * 2

13.19 4 ln ,
N

i j
i j

E N Z Z n d g d o   
 



 
  

 


where we have used Lemma 3.1.2 and the assumption that  g  and its derivatives are bounded. By

adding  3.17 and  3.19 the proof of part (ii) is complete.

It is obvious from ( )i of Theorem 3.2.1.1 that NX may be a biased estimator of  . The bias depends

on the variance  and the skewness  of the underlying distribution, together with the form of the

function  g  , the optimal sample size *n and the design factor . Clearly, if  and  'g  have the

same/different signs, then the bias is negative/positive. Also, the magnitude of the bias increases as

 increases. However, as *n increases the magnitude of the bias decreases and approaches zero as

*n   .



52 | P a g e

From (ii) of Theorem 3.2.1.1,  
1NVar X depends on the form of  g  , the kurtosis  , the variance

of the underlying distribution , and the optimal sample size *n , as well as the design factor . If

 'g  and  * 3   have the same/different signs, then  
1NXVar is less than/greater than

 
1*n 


. Note that if the underlying distribution is normal, then

1NX is an unbiased estimator for

 with variance  
1*n 


. So from Theorem 3.2.1.1, the skewness appears in the expression for the

mean of the estimator
1NX , while the kurtosis appears in the expression for the variance of the

estimator
1NX .

The following results, presented in Lemma 3.2.1.5 and Theorem 3.2.1.2, which involve
1

2
NS , will be

useful in the derivation of asymptotic results for the fine tuning phase.

Lemma 3.2.1.5

For the triple sampling rule  2.2 , if condition  2.4 holds and
6

1E Z   , then conditioning on the

 -field generated by 1 2, ,..., mZ Z Z , we have

    
1 1

1

2 2 2 2 2
1 2 1 1 1

1 1

( ) , ,..., 2 1 .
N N m m

N i j m i j
i i j i i j

i E S Z Z Z Z Z N Z Z N m N m 

   

   
        

   
 

   

 

 

1

1

1

1

2 2 1 4 2 2 2
1 2 1 1

1 1 1

2 1 2 2 2
1 1 1 1 1

2 1 3 2
1 2 1

1 1 1 1

( ) , ,...,

2 .

( ) , ,...,

N m m m

N i m i i j
i i i i j

N m m m m m

N i m i i j i j
i i i i j i i j

ii E S Z Z Z Z N Z N m Z Z

N N mN N m m N

iii E S Z Z Z Z N Z Z Z Z Z

 

 

 



   





     

  
      

   

     

  
     

   

  

   

    1 3/2 2
1 1 1

1

.
m

i
i

N N m Z N m   



 
     

 


 
1

2 1
1 1 2 1

1

( ) , ,..., .
m m

N m i j
i i j

iv E N S Z Z Z N Z Z 

 

   
  
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   

 

  

1

2
2 2 1 4 2

1 1 2 1 1 1
1

1 2 2 2 2 2
1 1 1 1

1

3 2 2 2
1 1 1

1

( ) , ,...,

2

1 .

m

N m i
i

m m

i j
i i j

m m

i j
i i j

v E N S Z Z Z N N Z N m

N Z Z N mN N m m

N Z Z N m N m

  











 



 

           

 
      

 

 
     

 







Proof:

To prove (i), we use the fact that  
1

11

212 2
1 1

1

1
N

NN i
i

S N Z N Z




 
   

 
 .

Then

  
1 1 1 1

1

2

12 1 2
1 1 1

1

1 .
N N N N

N i j i i j i j
i j i i j i j

S Z Z N Z Z Z N N Z Z


   

 
    

 
   

But
1 1 1

2

2 2 24 2 .
N N N

i j i j i j k
i j i j i j k

Z Z Z Z Z Z Z
   

   
    

   
   

By conditioning on the  -field generated by 1 2, ,..., mZ Z Z , we have

 

  

1 1

1

1

2 2 2 2
1 2 1 1 2

2 2 2 2 2
1 1 2

1

2 2 2 2
1 1 1

, ,..., 2 , ,...,

2 , ,...,

2 1 .

N N

N i j m i j m
i j i j

Nm

i j i j m
i j i j m

m

i j
i j

E S Z Z Z Z Z N E Z Z Z Z Z

N E Z Z Z Z Z Z Z

N E Z Z N m N m







 



   





   
     

   

 
   

 

 
      

 

 

  



Similar arguments can be used to prove (ii) and (iii) of Lemma 3.2.1.5.

To prove (iv) we use the identity

 
1 1

1

12 2
1 1

1

1
N N

N i i j
i i j

N S Z N Z Z


 

    .

Thus
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    

 

1

1

12
1 1 2 1 1 2

1 1

1

1
1

, ,..., 1 , ,...,

1 .

Nm

N m i j i j m
i j i j m

m

i j
i j

E N S Z Z Z E N Z Z Z Z Z Z Z

N Z Z




    



 

   
      

   

  

  


Similar arguments and the identity

1 1 1

1

4 1 4 2 2 3 2 2
1 1 1

1

2
N N N

N i i j i j
i i j i j

N S N Z Z Z N Z Z 

  

 
   

 
  

can be used to prove (v).

Theorem 3.2.1.2

For the triple sampling rule  2.2 , if condition  2.4 holds and
6

1E Z   as  , we have

     
1 1

1

12 2 2 * 1

1

( ) 2 2 .
N N

N i j
i i j

i E S Z Z n o    
 

 

 
     

 


     
1

1

2 2 2 1

1

( ) 1 .
N

N i
i

ii E S Z o    



 
    

 


   
1

1

2 3/2 1

1

( ) .
N

N i
i

iii E S Z o    



 
   

 


       
1

12 2 * 1
1( ) 2 ln .N

d
iv E N S n g o

d
    



         

       
1

2 1
2 2 2 * 1

1( ) 1 2 .Nv E N S n o     


     
  

Proof:

To prove (i), we write

   
1 1 1 1

1 1

2 2
1 2

1 1

, ,... .
N N N N

N i j N i j m
i i j i i j

E S Z Z E E S Z Z Z Z Z 
   

     
      

     
 

Hence, from (i) of Lemma 3.2.1.5, we have

    
1 1

1

2 2 2 2 2
1 1 1

1 1

2 1
N N m m

N i j i j
i i j i i j

E S Z Z E N Z Z N m N m 

   

     
         

     
  .

Consider the expansion of 1
1N  and 2

1N  around *n . The first term leads to
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   
12 2 2 2 2 * 1

1
1

2 2 2 ,
m m

i j
i i j

E N Z Z n o   
 

 

   
      
   



and the second term leads to

      2 2 1
1 1 12 1E N N m N m o       ,

where we have used the assumptions in  2.4 and the fact that  g  and its derivatives are bounded,

from which (i) follows.

Similar arguments can be used to verify (ii) and (v) using  
1

1 4 2 1
1

1

N

i
i

E N Z o   



 
  

 
 and

 
1

3 2 2 1
1

N

i j
i j

E N Z Z o  



 
 

 
 .

Part (iii) follows along similar lines and the fact that  1 3 3/2 1
1

1

m

i
i

E N Z o   



 
  

 
 .

To prove (iv), recall (iv) of Lemma 3.2.1.5 and (v), (vi) and (vii) of Lemma 3.1.2.

The proof of Theorem 3.2.1.2 is thus complete. We delete details for brevity.

The following Theorem 3.2.1.3 gives asymptotic results for the estimator of  after the main study

phase.

Theorem 3.2.1.3

Let g be a positive, twice continuously differentiable function such that ',g g and ''g are bounded.

Then for the triple sampling rule  2.2 , if condition  2.4 holds and
6

1E Z   as  , we have:

         

             

       

1

1

1

12 2 * 1

1 14 2 2 * 3 * 1

12 2 * 1

) 1 ln .

) 1 2 1 ln .

) 1 .

N

N

N

i E S d g d n o

ii E S n d g d n o

iii Var S n o

      

         

   

 

  

 

   

     

  

              
1

2* 2 *
1 12 2 * * 1

2
) 1 1/ 2 .N

dn d n
Siv E g g n n o

d d
   

 

  
  

      
   
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Proof:

To prove (i), we write

 

  

1

1

1

2 1 2
1 1 2

1

1

1 1 1 2

, ,...,

1 , ,..., .

N

N i m
i

N

i j m
i j

E S E N E Z Z Z Z

E N N E Z Z Z Z Z









  
   

  

  
    

  





Consequently,

       
1 11 2 2 * 1

1 1 2
1

, ,..., 1 ln ,
N

i m
i

d
E N E Z Z Z Z n g o

d
     



 



    
          



while

    

  

11

1 1 1 2

1

1 1
1

1

3.20 1 , ,...,

1

0.

N

i j m
i j

m m

i j
i i j

m m

i j
i i j

E N N E Z Z Z Z Z

E N N Z Z

E Z Z







 

 

  
   

  

 
  

 

 
  

 







Also from Honda (1992) equation  3.7 we have

 
 

 
1

2

2

1

1 .
m

N

m S
E S E o

N


  

  
   

  

By expanding   1
1 1f N N  around n 

and collecting the terms, we have

         

               

1 1 21 2 2 ' 2
1

1 2 1 21 2'' 2 2'' 2
1 23 2 1 2 ,

m m m

m m

N m S m S n m n g g S

m g n g S m g n g S

    

       

   

   

    

   

where 1 and 2 are random variables that lie between 2
mS and  . By taking the expectation over the above

expression, we have
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                 
        

               
        

1 2 1 211 2 ' 2 '' 2
1 1

1 22 2'' 2
2

1 1 21' 2 '' 2
1

1 22 2'' 2
2

3 2

1 2

1 3 2

1 2 .

m m m

m

m

m

E N m S m n g g E S g n E mg S

g n E mg S

n g g g n E mg S

g n E mg S

      

   

      

   

   

 

  

 

     

 

    

 

But

          

 

1 2 1 2'' 2 2
1 1

1 .

m mn E mg S n k E S

o

    



  



  



Also

          
 

1 2 1 22'' 2 2
2 2

1

,

.

m mn E mg S n k E m S

o

    



  



  



Thus            
11 2 2 1

1 1 ln .m

d
E N m S n g o

d
     



     

The proof is now complete.

To prove (ii), we write

 

  

1

1

1

1

4 2 4
1 1 2

1

2 2 2
1 1 2

2

2 2
1 1 1 2

, ,...,

, ,...,

1 , ,..., .

N

N i m
i

N
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N
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E N E Z Z Z Z Z
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











   
        

  
    

  

  
    
   







Arguments similar to those used to verify  3.17 can be used to prove

  
12 2 2

1 1 1 21 , ,..., 0
N

i j m
i j

E N N E Z Z Z Z Z




  
    

  
 ,

while
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   
1 12 4 2 * 1

1 1 2
1

, ,..., ,
N

i m
i

E N E Z Z Z Z n o  
 



   
        



and

   
1 12 2 2 2 2 * 1

1 1 2, ,...,
N

i j m
i j

E N E Z Z Z Z Z n o   
 



  
     

  
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Part (iii) follows immediately from parts (i) and (ii) which implies that

             

     
1

1 2 22 2 4 1 ' 2

1 2 1

1 1 ,

1 .

NVar S n n g g o
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      

   

    

 

    

  

Also from Lemma 3.2.1.3 (ii) we have
 

 1

2
1

0,1
1

NN S
N



 





in distribution, as .   This

implies that
 
 

 1

2
2

1 2

2
1

1

NN S 


 





in distribution, as .   Using Lemma 3.2.1.3 (i) , we have

 
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1

2
2

1

2
1

1

NN S
E



 

  
 

  

as,    .

Using Lemma 3.2.1.2 part (i)

 
 

 
 

   1 1

2 2
2 2 2

1 1 1

2 2

1
1

1 1

N Nn N S n N S
E E o

n n n

     


      

 



  

        
      

       

.

The proof is now complete.

The proof of (iv) follows by expanding the function  
1

2
NSg around  g  and using (i), (ii) and (iii)

of Theorem 3.2.1.3.

From Theorem 3.2.1.3(i),
1

2
NS may be a biased estimator of  . The bias depends on  , the form of

the function  g  and its derivative  'g  , the kurtosis of the underlying distribution, which is always

positive, the design factor and the optimal sample size *n . However, as *n  the bias of
1

2
NS

tends to zero. Similar arguments can be made regarding ( )ii and ( )iii above.

Moreover a second order asymptotic expansion of the expectation of the function  g  of
1

2
NS as

m can be given in part (iv).



59 | P a g e

3.2.2 Asymptotic characteristics of the fine tuning phase

It is of interest to see whether the fine tuning stage (third stage) reduces the magnitude of the bias

noticed in Theorem 3.2.1.1.

Theorem 3.2.2.1 presents some asymptotic characteristics of the third stage sample, but first we give

some useful lemmas.

Lemma 3.2.2.1

For the triple sampling rule given by  2.3 , if condition  2.4 holds then as   , we have

      

.*

1 2

( ) 1.

( ) 0, 4 1 .

a s

L

i N n

ii N n n N   
 



  

Proof:

Part (i) follows directly from (2.4) and the strong law of large numbers. Part (ii) follows from (i) and
Anscombe’s Theorem.

Lemma 3.2.2.2

For the triple sampling rule given by  2.3 we have

       ,
p p

i N N  are uniformly integrable for 0p  .

     1, 0.
p

ii E N p  

  1/2 2( )
p

Niii S  is uniformly integrable for 0 3.p 

    1/2
p

iv N n  is uniformly integrable for 0p  .

Proof: The first part of (i) follows directly from (2.3), while the second part can be proved as follows:

1n N  a.s. as   , let  I  be an indicator function of   . Then

   
p pn N I N n     for 0p  and thus    

p

n N I N n  is uniformly integrable. To

prove Part (ii) we need first to find  P N n  . Let  0,1  . Then
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      
        

          

1

1

*

2

2

1 2

,

1

max 1 ,

N

N

r s
n

m n n

P N n P g S g

P g S g g

P g g S g O


   

  
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



 

  
 
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   

 
     

 

where *r is an arbitrary fixed positive integer and the last expression valid by using Hajek-Renyi
inequality; see Sung (2008) for more details about the inequality.

Now         
*1

1

,
r

pp p
s sE n N I N n n m P N n O  

 
       

 
    
 
 

which is  1o if we

choose *r to be larger than  1p s  . The proof is now complete. Also part (i) follows from Lemmas

3.2.1.2 and 3.2.3. Parts (iii) and (iv) follows from Honda (1992) and Liu (2002).

Lemma 3.2.2.3

If g is a positive twice continuously differentiable function such that ',g g and ''g are bounded, then

for the triple sampling rule    2.2 2.3 and under condition  2.4 and
6

1E Z   as    we

have
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( ) .

N

i j
i

d d
iii E N Z Z n g n g o

d d

iv E N N N o

     
 



   



  

 
   

 

 



Proof:

Part (i) follows by expanding   1f N N  around
*n , then after collecting the terms we have

   
31 * 1 * 2 2 * 3 1 ''' *3 3 6 .N n Nn N n f N n        

By substituting for  
1

2
NN g S and expanding g and 2g around  g  we obtain
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         

          
           

1 1

1 1

1 1

31 * 1 2 * 2 2 2 2 * 3 1 ''' *

2
* 1 * 2 ' 2 '' 2

1

2 32 * 3 2 2' 2 2'' 2 1 ''' *
2

3.20 3 3 6

3 3 1 2

1 2 6 .

N N

N N

N N

N n g S n g S n f N n

n n g g S g S

n g g S g S f N n

  

     

      

    

 

 

    

     

      

Multiplying  3.20 by
1

1

N

i
i

Z

 we obtain

           
            

1 1 1

1 1

1 1

1 1

2
1 * 1 * 2 ' 2 '' 2

1
1 1 1

2 32 * 3 2 2' 2 2'' 2 1 ''' *
2

1 1

3.21 3 3 1 2

1 2 6 .

N N N

i i N N i
i i i

N N

N N i i
i i

N Z n Z n g g S g S Z

n g g S g S Z f Z N n

     

      

  

  

 

 

     

      

  

 

Taking the expectation over  3.21 and recalling Theorem 3.2.1.2 (iii) we have

       

         

1 1

1

1 1

1

2
1 * 2 ' 3/2 '' 2

1
1 1

2 32 * 3 2' 3/2 2'' 2 1 ''' *
2

1 1

3.23 3 1 2

1 2 6 ,

N N

i i N
i i

N N

i N i
i i

E N Z n g Eg Z S

n g Eg Z S E f Z N n

     

      

 

 

 

 

   
     

   

   
       

   

 

 

but

     
1 13 31 ''' * 4 *

1
1 1

6 .
N N

i i
i i

E R Ef Z N n E Z N n  

 

  
    

  
 

Consider the case

 

 

1

1 1

3* 4 *
1

1

* 4 3 3 * 1

1 1

.

N

i
i

N N

i i
i i

n E R E Z N n

n E Z N Mg n E Z

 







  

 

  
    

  

      
    

      



 

From Anscombe’s Theorem    
1

1/2

1
1

0,1
N

i
i

N Z N




 as    . But since  
1

1/2

1
1

N

i
i

N Z




  
 
  

 is

uniformly integrable, then  
1

1/2

1
1

2N

i
i

E N Z








 as .   Using Lemma 3.2.1.2 (i), we have

1

1

2N

i
i

n
E Z









 as .   Thus
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   3 * 1/2
1

2
0, .E R Mg n


 


   

Whilst

 

 

1

1 1 1

34 *
1

1

1/21 1 1
1

1 1 1

2
0, .

N

i
i

N N N

i i i
i i i

N E R E Z N n

E N Z E N Z E m Z n

 


 







   

  

 
    

 

     
          

     



  

Also,

         
1 1

1 1

2 2
* 2 '' 2 1 * 1 2

2 1 1
1 1

3 2 3 2 .
N N

i N i N
i i

E R n E g Z S g n K E Z S      

 

    
      

    
 

But from Lemma 3.2.1.3 (ii), we have
 
 

1

2
2

1 2
12 1

NN S 


 





in distribution, as    . Moreover

from Govindarajulu (1987),
1

1
1

1

0
N

i
i

N Z



 in probability, as    . Hence from Slutsky’s

Theorem we have     
1

1

212 2

1

1 0
N

i N
i

Z S  




   in distribution, as .   Since from

Lemma 3.2.2 the quantity  
1

1

2
2

1

N

i N
i

Z S 


  
 

  
 is uniformly integrable, then it follows that

 
1

1

2
2

1

0
N

i N
i

E Z S 


  
  

  
 as .   Hence

     
1

1

2
1 * 1 2

2 1
1

3 2 0, .
N

i N
i

E R g n K E Z S   



  
    

  


It can be shown also that      
1

1

2
2 * 1 2

3 2
1

0, .
N

i N
i

E R K g n E Z S   



  
    

  


Hence  3.23 becomes
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         

 
 

 
 

 

   

1
1 * 2 ' 3/2 2 * 3 2' 3/2 1

1

' 2'
* 1 3/2 * 1 3/2 1

2

* 1 3/2 1

3.24 3

3

ln .

N

i
i

E N Z n g n g o

g g
n n o

g g

d
n g o

d

        

 
    

 

   


   



  

 

 
    

 

      
      

      

  



The proof is now complete.

Part (ii) follows by expanding
2N 
around

*n , then substituting for N and expanding g and 2g

around  . We have

    

       

         
            

1 1

1 1

1 1

32 * 2 * 3 * 4 2 ''' *

3* 2 * 3 2 * 4 2 2 2 ''' *

2
* 2 * 3 ' 2 '' 2

1

2 3* 4 2 2 2' 2 2'' 2 ''' *
1

3.25 6 8 3 1 6

6 8 3 1 6

6 8 1 2

3 1 2 1 6 .

N N

N N

N N

N n n N n N f N n

n n g S n g S f N n

n n g g S g S

n g g S g S f N n



  

     

      

   

  

 



    

    

     

      

Multiplying (3.25) by
1

2

1

N

i
i

Z

 gives

            
             

1 1 1

1 1

1 1

1 1

2
2 2 * 2 2 * 3 ' 2 '' 2 2

1
1 1 1

2 3* 4 2 2 2' 2 2'' 2 2 ''' 2 *
1

1 1

3.26 6 8 1 2

3 1 2 1 6 .

N N N

i i N N i
i i i

N N

N N i i
i i

N Z n Z n g g S g S Z

n g g S g S Z f Z N n

     

      

  

  



 

     

      

  

 

Taking the expectation of (3.26), we have

   
 
 

     

 
 

           

1 1

1

1 1

1

'
2

2 2 * 2 * 2 2 * 3 '' 2 2
1 1

1 1

2'
2 3* 2 2 * 4 2 2'' 2 2 ''' 2 *

12
1 1

3.27 8 1 4

3 1 3 2 1 6 .

N N

i i N
i i

N N

i N i
i i

g
E N Z n E N n n Eg Z S

g

g
n n Eg Z S Ef Z N n

g


     




     



   

 

 

 

 
     

 

     

 

 

However,

   
1 13 35 2 * 5 2 *

1
1 1

N N

i i
i i

E R E Z N n E Z N n  

 

   
      

   
 

Consider the case
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 

   

1 1

1 1

3 3* 5 2 * * 5 2 *
1

1 1

* 5 2 3 3 * 5 2 * 2 3
1

1 1

,

N N

i i
i i

N N

i i
i i

n E R E Z N n E n Z N n

E n Z N M n E Z Mn g E N

 

  

 

 

   

 

   
        

   

   
     

   

 

 

by making use of Lemma 3.2.1.1 (ii) we have 1 1
N

E
n 

 
 

 
in probability as   . Hence

 * 1 3
1 0, .E R M n g      

However,

 

 

1 1

1 1

3 35 2 * 5 2 *
1

1 1

12 2 2 2 2

1 1

0, .

N N

i i
i i

N N

i i
i i

N E R E Z N n E N Z N n

E N Z E m Z m n n

 

   

 

 

    

 

   
        

   

   
        

   

 

 

Also

       
1 1

1 1

2 2
* 3 '' 2 2 * 2 1 2 2

2 1 1
1 1

,
N N

i N i N
i i

E R n Eg Z S n g K E Z S     

 

 
    

 
 

 
 

1

2
2

1 2
12 1

NN S 


 





and

1
1 2

1
1

N

i
i

N Z 



 in probability, as    . Hence

 

 

1

1

2
2 2

21
12 1

N

i N
i

Z S 


 









, as    . Since  

1

1

2
2 2

1

N

i N
i

Z S 


 
 

 
 is uniformly integrable from Chow

and Yu (1981), then    
1

1

2
2 2 3

1

1
N

i N
i

E Z S   


 
   

 
 as   . This indicates that

   * 2 1 3
2 1 1 0, .E R n g K       

A similar procedure can be used to show that the last error term

   
1

1

2
* 2 2 2 2

3 2
1

0, .
N

i N
i

E R K n g E Z S   



 
    

 


By substituting the results of the error expectations in  3.26 the proof is complete.

Part (iii) follows by multiplying
1N

i j
i j

Z Z


 in  3.25 and making use of Theorem 3.2.2.1.. Note

here that
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    
1 13 3''' * 5 *

1 .
N N

i j i j
i j i j

E R E f N n Z Z E N n Z Z  

 

    
     

    
 

Consider the case  
1 13* * 5 * 3 * 2

1

N N

i j i j
i j i j

n E R n E N n Z Z M g n E Z Z   

 

   
          

   
 

Note that it can be shown easily that  
1 2N

i j
i j

E Z Z n 






 . Thus

   3 * 2
1 2 0, .E R M g n n       

However, the case

 

   

1 1

1

35 * 2
1

22 2 0, .

N N

i j i j
i j i j

N

i j
i j

N E R E N N n Z Z E N Z Z

E m Z Z n n



    

 

 

  



   
       

   

 
    

 

 



Also

       
1 1

1 1

2 2
* 2 '' 2 * 2 2

2 1 1

N N

N i j N i j
i j i j

E R n E g S Z Z n K E S Z Z   

 

  
       

   
 

To show that    
1

1

21 2
1 1 0

N

i j N
i j

E N Z Z S 




  
   

  
 , as    we proceed as follows.

Using Lemma 3.2.1.3 (i) and (ii), we have
 
 

1

2
2

1 2
12 1

NN S
E




 

  
 

  

, as    . Moreover

  
11

1 1 1 0
N

i j
i j

N N Z Z




  
  

  
 in probability as    . Using Lemma 3.2.1.3 (i) and the fact

that
1N

i j
i j

Z Z


 
 
 
 can be expressed as a linear combination of uniformly integrable terms, that is

1 1 1
2

2

1 1

N N N

i j i i
i j i i

Z Z Z Z
  

   
    
  

   , then it follows from Chow and Yu (1981) that

    
1

1

21 2
1 1

N

N i j
i j

N S Z Z




  
  

  
 is uniformly integrable. Also from Lemma 3.2.1.2 (i) we have
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1 1N n   in probability as    . Then from Slutsky’s Theorem it follows that

 
1

1

2
2 0

N

i j N
i j

E Z Z S 


  
  

  
 in distribution, as    and therefore 2 0E R  as .  

A similar procedure can be used for the remaining error. The proof is then complete.

The proof of part (iv) follows easily from the fact that if 1N N , then

     2 1 1
1 .E N N E N o    

The proof is now complete.

Theorem 3.2.2.1

If g is a positive twice continuously differentiable function, such that ',g g and ''g are bounded, then

for the triple sampling rule  2.3 , if condition  2.4 holds and
6

1E Z   as  , we have

        

         

       

13/2 * 1

1 2* 2 *

2 2 *
123 1 * 2*

2

) ln .

) 2 3 ln

( 1) 2 ln 2 .

N

N

i E X n d g d o

ii Var X n n d g d

d d n
g n on

d d

     

    

    
 

 

 

 

  

  

   
      

    

) Niii X is asymptotically normally distributed with mean and variance given in (i) and (ii)

respectively.

Proof:

To prove (i), conditioning on the  -field generated by the random variables
11 2, ,..., NZ Z Z , we write

   
1

1

1

1
1 2

1 1

3.28 , ,..., .
N N

i i NN
i i N

E E N E Z Z Z Z ZX  

  

   
    

   
 

Again the first sum
1

1

N

i
i

Z


 in  3.28 is non-random. Thus,  3.28 reduces to

   
1

1

1

3.29 .
N

iN
i

E E N ZX  



 
  

 


Applying Lemma 3.2.2.3 part (i) gives the result and the proof is complete.

The proof of (ii) can be obtained directly from the following
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   

  

1 1

1

1

2 2
1 2

1

1 2
1 1 2

, ,...,3.30

, ,..., .

N N

i i j NN
i i j

N

Var E N E Z Z Z Z Z ZX

E E N N N Z Z Z



 

 

  
    

  

 

 

Using Lemma 3.2.2.3 (ii), (iii) and (iv) and substituting them in  3.30 gives the result. The proof is

now complete.

The proof of (iii) can be obtained either by using Anscombe’s Theorem or by using the moment generating

function technique . We proceed first by using moment generating function technique.

Let  u  be a continuously differentiable function around the population mean  such that ' '',u u and
'''u are

continuous over the interval ,NX    . Then a Taylor expansion gives

            
2 3' '' '''1 1

2 6
N N N Nu X u u X u X u X             ,

where  lies between NX and  . Thus

                 2 3' '' '''1 1

2 6
N N N NE u X u u E X u E X E u X             .

If we set     
NN N X

u X exp t X    , and use part s (i) and (ii) of Theorem 3.2.2.1, we obtain

   2 11
1

2NX
M t t o     , as   ,

which is the limiting moment generating function of the standard normal distribution.

Now we need to show that the error term converges to zero as .  

          33''' 3 3 exp .
N NN NX X

E R E u X t E t X          

Consider the case   , 0 exp 1
NX

t t         . Thus

     
3

333 3 3 3 3 3 1

1

3

3 3 3

1

N N N

N

N

NN iX X X
i

N

iX
i

E R t E X t E Z t E N Z

t m E Z

   



   



 



 
     

 
 

 
  

 
 




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By Anscombe’s Theorem    
1/2

1

0,1
N

i
i

N Z N




 as   and since  
3

1/2

1

N

i
i

N Z




  
 
  

 is

uniformly integrable then it follows

   
3 3

1/2 1/2

1 1

2 2 , 2 2 ,
N N

i i
i i

E N Z E N Z      
 

 

      
      

      
  . Using

Lemma 3.2.2.1, it follows that  
3

3/2

1

2 2
N

i
i

E Z n  



  
 

  
 as   . Using condition (2.4),

we have

     
3 3/23 3 2 2 0, .

NX
E R t n n     

    

While if

   , 0 0 0N N NX t X t t X                  . This implies the above case.

The proof is complete.

For more details about the convergence of moment generating functions, see Mukherjea et al. (2006).

Now we proceed to prove (iii) using Theorem 3.2.1. By choosing  t N  and t n in

Lemma 3.2.2.1, we have    
1/2

1

0,1
N

i
i

N Z N




 as .n 

But note that
1 1

N N

i i
i i

Z X N
 

   , which implies that    1 0,1NN X N    as .n  The

proof is now complete.

In view of )i and )ii of Theorem 3.2.2.1, it is worth mentioning that the third stage has indeed

reduced the magnitude of the bias noticed in )i and )ii of Theorem 3.2.1.1.

The expectation of the final stage sample size N and other asymptotic characteristics can be easily

obtained from ( )iv of Theorem 3.2.1.3 above, as given in the following Theorem 3.2.2.2.

Theorem 3.2.2.2

Let g be a positive twice continuously differentiable function, such that ',g g and ''g are bounded and

let N be defined as in  2.3 and assume that condition  2.4 holds with
6

1E Z   then as  ,

we have
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        
1

2 2 *
1* 2 * * *

2
) ( ) 1 ln (1/ 2) 1 .N

d d n
i E N n n n n E o

d d
   

 

   
          

        
1 22 * *) 1 .ii Var N n dn d o    


  

   3 2) | | ,iii E N E N o  

where the random variable     1 1 1

2 21
N NN g S g S     

 
, is defined over the interval  0,1 .

Proof:

To prove part (i), note that  
1

2 1NN g S   
, . .a s except possibly on a set

      1

2 2
1 1 1N mN g S m g S             

of measure zero, such that (1)N dP o


 ;

see, for example, Hall (1981) for details. Hence,

   

      
 

1

1 1 1

1 1

2

2 2 2

2

3.31 1

1

.

N

N N N

N N

N g S

g S g S g S

g S



  

 

  
 

     

 

Thus,       
1 1

2( ) 1N NE N E g S E o    , as m  .

Using Theorem 3.2.1.3 part (iv), we obtain the result.

Proof of (ii):

     
1 1

2 2 2( ) N NVar N Var g S Var g S   , as m

but

          

      

1 1 1

1

2
2 ' 2 '' 2

2' 2 1

1

2

,

N N N

N

SVar g Var g g S g S

g Var S o

   

 

 
     

 

 

where  is a random variable lies between
1

2
NS and . To show that the error vanishes as    we

proceed as follows:

              
     

1 1 1

1

2 2
'' 2 '' 2 '' 2

2 12 2
1 1 1 0, .

N N N

N

E R E g S E g S E g S

K E S K n

    

    


       
 

     
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Here 1K is a generic constant independent of
1

2 ,NS  and  such that  ''
1g K  . By using Theorem

3.2.1.3 part (iii), and the assumption that  g  and its derivatives are bounded, part (ii) of Theorem

3.2.2.2 is complete.

Proof of (iii) can be illustrated as follows

      

 
 

 

1 1

1

33 3 2 2

3
3 2

3 1

2 .

N N

N

E N E N E g S E g S

E g S

o

o





 





  







By using Theorem 3.2.1.3 part (iv), we obtain the required result.

Remark

Hall (1981) proved that when the underlying distribution is normal,
1N is asymptotically uniformly

distributed over the interval  0,1 , i.e.  
1

0,1L
N U  , as  . We show in chapter V section

5.7, using simulation, that this result appears to hold more generally than simply for the case in which

the underlying distribution is normal, see Yousef et al. (2009) for more details. It is also evident that

under the normal distribution, Theorem 1 in Hall’s (1981) paper is a special case of Theorem 3.2.2.2

above when 3  and the optimal sample size *n   provided that  0 0, .    We also

emphasise that both the expectation and variance of N depend on the kurtosis of the underlying

distribution and accordingly will reflect the amount of departure from normality. It is also of interest

to give a general form of the expectation of a real valued continuously differentiable function of the

fine tuning phase sample size N to be able to derive asymptotic results of all moments of N . We

also want to stress that we have not assumed independence of
1NX and 2

mS or of NX and
1

2
NS , and

therefore the above results are more general in that sense (i.e., the estimate of the nuisance parameter

and the estimate of the targeted parameter could be correlated).

Problems which yield independence, such as those of the normal and exponential distributions, may

be treated as special cases of our findings above.

Theorem 3.2.2.3

Let g be a twice continuously differentiable function, such that ',g g and ''g are bounded and let N be

defined as in  2.3 and let ( 0)h  be a continuously differentiable real valued function in a

neighborhood around *n , such that     *'''
n m

Sup h n O h n


 . Then
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                   

      
1

2* 2 *
1 1* 2 * * * * *

2

* 1

' '' '1 1/ 2 1/ 2

' | ''' | .N

dn d n
E h N h n n n h n h n h n

d d

h n E o h

  
 

 

 



                

 

Proof:

The proof follows by expanding the differentiable function  h N around  *h n using Taylor series and

applying the results of Theorem 3.2.2.2. The general form of the second order asymptotic expansion of

the expectation of a real valued continuously differentiable function ( 0)h  enables one to obtain the

expectations of positive and negative moments of N in subsequent analysis.

Moreover, it also helps to provide a second order asymptotic expansion of the coverage probability

while constructing a fixed width confidence interval of the unknown mean  (see Chapter VIII,

section 8.2).

3.3 Asymptotic normality of the stopping variable N

Theorem 3.3.1

Let g be a positive twice continuously differentiable and bounded function of  and let N be defined

as in  2.3 such that  E N   and  Var N   also assume that condition  2.4 holds. Then, as

  , N is asymptotically normal with mean  E N and variance  2
N Var N  ,

      
1 22 2 * *1N n dn d o     


   .

Proof: (using the moment generating function technique)

The proof of Theorem 3.3.1 is a straightforward application of Theorem 3.2.2.3 above by setting

  ,th e   where    * /N n Var N   . This yields

          
*

' 1*2
*

1
1 ln .22 N

N

N n
E Exp t g ott nt

n


  

 


    
        

    

By letting *n  , we have

   
*

121 2
N

N n
E Exp t ot 




   
      

    
,

which is the moment generating function of the standard normal distribution. The proof is complete.

Proof: (By using Anscombe’s Theorem)

The proof follows immediately from Lemma 3.2.2.1 part (i) and from Lemma 3.2.2.2 parts (i) and (ii).

Also see Lemma 3.10 in Honda (1992).
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Use of Theorem 3.3.1 will enable us to find all the moments of N , or a bounded differentiable

function of N , in addition to the distribution function of  
1

2
Ng S , which will facilitate us in proving

theorems about N and  
1

2
Ng S . Bhattacharya et al. (1973) discussed the asymptotic normality of the

stopping times of some sequential procedures and proved that the asymptotic distribution of the

stopping time of a procedure due to Robbins (1959) is normal. Further investigations about Theorem

3.3.1, using simulation, will be discussed in Chapter V section 5.4.

Theorem 3.3.2

Let NX be as in Theorem 3.2.2.1, where N is a triple sampling rule given by  2.3 . Then NX and N

are asymptotically uncorrelated, as   .

Proof:

 

 

1 1

1 1

1

1 1

, , ,

.

N N

N i i
i i

N N

i i
i i

Cov X N Cov N Z N Cov N Z N

E Z E N Z E N

 

 



 

   
     

   

   
    

   

 

 

The first part tends to zero from Wald’s (1947) first equation, while the second part vanishes because

1 1N   ,    
1

0
N

i
i

E Z E Z E N


 
  

 
 and   1

1 1

0
N N

N i i
i i

E Z E N Z E Z

 

   
     

   
  . Hence

 ,NX N are asymptotically uncorrelated. The proof is complete.

It would be fairly difficult in this stage to prove that  ,NX N are asymptotically independent since

the underlying distribution is unknown. Therefore as a conjecture we need to assume that  ,NX N are

asymptotically independent as   . Moreover we will support our conjecture from the side of the

simulation results regarding the asymptotic coverage probability and the asymptotic Type II error

probability when the underlying distribution is normal. We will show that our simulation results under

the normal distribution agree with the results of Hall (1981), Mukhopadhyay et al. (1987), Hamdy

(1988) , Costanza et al. (1995) and Son et al. (1997) . Note here that under the normal distribution,

 ,NX N are independent.

Having constructed the theory of triple sampling given by    2.2 2.3 , we consider in chapter IV the

effect of departures from normality of the underlying distribution on Hall’s (1981) triple sampling

scheme under the squared error loss function. Moreover, we will compute the asymptotic regret in this

case. This will be compared with the corresponding asymptotic regret when the underlying distribution

is known to belong to the one-parameter exponential family.
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Chapter IV

Point Estimation of the Population Mean using the Triple Sampling

Procedure

4.1 Squared error loss function to estimate the mean

In this section our main objective is to develop a triple sampling point estimation procedure to

estimate the mean  of the unknown distribution. Specifically, if a point estimate of the unknown 

is required, we assume that the incurred cost of estimating the mean  by the corresponding sample

mean nX can be approximated by the following squared error loss function in  4.1 with linear

sampling cost. The literature in sequential sampling has considered several forms of higher order loss

(cost) functions to model estimation cost. However, squared error loss functions are recommended

and commonly used in sequential point estimation problems (see, for example, Degroot, 1970).

Therefore, we write the loss (cost) function as

     
2

4.1 , 0, 0n nL A A X C n A C     ,

where C is the known cost per unit sampled. The constant A is permitted to approach infinity and

represents the monetary amount that needs to be paid to achieve the minimum risk, while

 
2

nA X  is the estimation cost. We shall elaborate further on determination of A in subsequent

developments. The risk associated with  4.1 is

        
 

2
4.2

.

n nnR E A E X C nLA A

A n C n





   

 

Treating n as a continuous variable in  4.2 , we differentiate  4.2 with respect to n and equate the

results to zero to obtain the optimal sample size as

  *4.3 n A C .

The numerical value of *n in  4.3 is unknown because the population variance  is unknown in the

context of this thesis. It has been shown by Dantzig (1940), Stein (1945) and Seelbinder (1953) that

no fixed sample size procedure exists to achieve the above optimal requirement uniformly over 0  .

In other words, since the optimal sample size in  4.3 depends on the unknown variance , no fixed

sample size procedure can be used to estimate  optimally over all  . Therefore, the triple sampling

procedure in    2.2 2.3 may be used to estimate  with /A C  and  g   .
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From  4.3 , the value   * *A Cn n  , where  *C n is the cost of optimal sampling, while  *n 

is the total information contained in the sample : the amount of information required to explore a unit

of variance in order to achieve the minimum risk. Hence, A is the cost of perfect information and

contrarily to what has been said that it represents the cost of estimation.

The question arises: how efficient is the triple sampling procedure estimator of  relative to other

estimators?

4.2 The asymptotic regret of triple sampling point estimation under a squared error

loss function

In the literature in sequential point estimation several measures have been developed of the efficiency

of sequential (triple sampling, accelerated sequential schemes) procedures relative to the fixed sample

size counterpart had the form of ( )g  in  2.1 been completely specified; see Ghosh et al. (1977)

and Starr (1966) for details. The regret reflects the expected cost of missed opportunity; it measures

the expected loss in using triple sampling to estimate  rather than using the corresponding fixed

sample size procedure had the nuisance parameter(s) been known. One of the measures that can be

used to assess the efficiency of a sequential procedure is the difference between the sequential risk

and the optimal risk, but such a measure is useless in the case of Stein’s two stage procedure since the

measure goes to infinity. Other weaker measures, like the asymptotic relative efficiency (risk

efficiency) *( ) ( ( )) ( ( ))N n
A E L A E L A  which is the ratio of the triple sampling risk compared to

the optimal risk, may also be used to assess the efficiency of the triple sampling procedure relative to

fixed sample size procedure. For an efficient sampling procedure we expect ( ) 1A  and

( ) 0A  as A where

       * .A E L N E L n  

Note

A procedure is called asymptotically risk-efficient or asymptotically first order risk efficient if

 lim 1
A

A


 , while it is called asymptotically second order risk efficient if  1

0
lim .
c

c A


 

Recall the squared error loss function in  4.1 , the risk function in  4.2 and the optimal sample size

in  4.3 ; the asymptotic characteristics of the efficiency of the estimator of  using triple sampling

are discussed in the following Theorem.

Theorem 4.2.1

For the triple sampling rule    2.2 2.3 , the asymptotic risk for squared error loss  4.1 and under

 g   as m is given by

              
1

*2 3 1 / 11/ 4N N NR A E L A Cn C C C E o             .
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Moreover, the asymptotic relative efficiency of the triple sampling procedure and the asymptotic

regret as A are given by

   1) 1i A o   

          
1

) 3 (1/ 4) 1 / 1 .Nii A C C C E o         

Proof:

Recall Theorem 3.2.2.3, evaluate the terms  E N and  1E N  and consider the optimal risk

 *

*2
n

R A Cn . Then Theorem 4.2.1 is immediate.

It is worth making some comments about Theorem 4.2.1. Firstly, the results for the normal

distribution treated by Mukhopadhyay et al. (1987), Hamdy (1988) and Hamdy et al. (1988) are

special cases. Secondly, for distributions with 3  a non-vanishing positive regret is expected. In

addition, for distributions with 3  (fatter tailed than the normal) we expect either positive or

negative non-vanishing regret, depending on the values of  and  . Specifically, for distributions

with 6  , negative regret is expected when 1/ 2  .

Martinsek (1988) argued that for the one-by-one purely sequential procedure negative regret is

expected when 3  . It is also worth mentioning that the regret of one-by-one purely sequential

procedures involves both kurtosis and skewness of the underlying distribution, as indicated by

Martinsek (1988), while our findings in Theorem 4.2.1 emphasise that the triple sampling procedure

involves only the kurtosis of the underlying distribution and effectively treats underlying distributions

as if they are symmetric. This could be due to the nature of one-by-one purely sequential procedures,

which filter data. This filtration may cause either accelerating or delaying termination of the

procedure (to cross over the boundaries). On the other hand, triple sampling uses bulks (batches) to

decide whether to stop or to continue sampling. Therefore, if an extreme observation presents, it will

not affect the decision compared to the influence of the rest of the bulk at that stage. This may cause

the triple sampling procedure to be less sensitive to extreme observations compared to the one-by-one

purely sequential procedures. Consequently, the skewness does not play a role in determining the

regret of triple sampling.

A general formula for the asymptotic regret incurred in estimating the unknown mean  under

squared error loss (4.1) is

              
   

1

2 2
2 1 * **4.4 2 3 ln 1

1 .N

A C d d C n dn dn

C E o

       




    

 

Obviously, the non-vanishing regret in  4.4 above depends on the kurtosis  , the design factor ,

the cost of unit samplingC , the variance of the underlying distribution  and the form of the

function  g  .
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Consider now the loss function in Martinsek (1988) of the form

   
21 , 0, 0.n

b
n XL A A n A b     

Under the triple sampling scheme and this loss function, it can be shown that the asymptotic regret is

            
1

24.5 .3 1 / 4 1NA b b E o          

The proof of (4.5) follows from Theorem 3.2.2.3 by evaluating the terms  E N and  1E N  and

considering the optimal risk  * 2 b

n
R A A , where * bn A .

The asymptotic regret of the triple sampling procedure in  4.5 is the same as equation (7) of

Martinsek (1988) for symmetric underlying distributions but under the one-by-one purely sequential

procedure proposed by Robbins (1959) and the above loss function and without the design factor

and  
1NE  . The asymptotic regret of Martinsek (1988), equation (7) is

        2 ,3 1 / 4 1A b b o        as .A

4.3 The case of the one parameter exponential family

In previous sections, we have considered the case of an underlying distribution that is completely

unspecified except that the first six moments are finite. We have developed asymptotic results for

triple sampling to estimate  in the presence of the unknown nuisance variance . The results for

triple sampling depend on the skewness and kurtosis of the underlying distribution. A natural question

is: if extra information is known about the structure of the underlying distribution, for example we

know the class to which the distribution belongs, would it improve the results we have obtained under

the assumption that the underlying distribution is unspecified? In this section we consider the case in

which the underlying distribution is known to be in the natural one-parameter exponential family,

defined by

( )( ) ( ), ,x

R

dF x e dP x x R  
   

with respect to a  - finite measure P. The natural parameter space  is an open interval on the real

line R over which:

( ) , , .x

R

e dP x x R    

The function    is convex on the sample space (see, Lehman, 1986, p. 57) satisfying the moment

generating function ( ) ( )( ) ( )tX t
XM t E e e      (see AlMahmeed et al., 1998). Hence the first

four moments are
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       

            

' ''

3 4 2' ''' ' '''' ''

,

, 3 ,

E X Var X

E X E X

   

         

 

    

and hence

    
3/2''' ''/     and     

2'''' ''/ 3.     

AlMahmeed et al. (1998) consider estimating the mean '( )   of the general form of a one-

parameter exponential family using triple sampling procedure under the squared error loss function

with linear sampling cost similar to  4.1 , but with 1C  and A replaced by 2A . However, they

checked the results for the gamma distribution and for the normal distribution with known mean but

unknown variance. They considrerd the following loss function,

 4.6     
22 ' ,n nL A A X n    where 0A  .

The following Lemmas and Theorems are given in AlMahmeed et al. (1998).

The three stage exponential family (triple sampling procedure applied to the one parameter

exponential family) with optimal stopping rule  *n Ag  , where  '   was defined in

AlMahmeed et al. (1998) as follows:

Let 1, , mX X be a random sample of size  2m  from the distribution function  F  to

compute the estimate  mg X of   'g   . Then a fraction  0,1  is selected to determine the

percentage of *n to be estimated in the second stage. Accordingly, the second stage sample size is

determined by the following stopping rule

  1 max , 1mN m Ag X    ,

If the decision is to continue sampling, the initial sample is augmented by a second randomly selected

sample of size 1N m to determine the final sample size from the stopping rule

  11max , 1NN N Ag X    .

If necessary a third batch of size 1N N is randomly selected and combined with the previous 1N

observations to compute the sequential estimator NX for the unknown parameter  '  .

Lemma 4.3.1

For the three stage exponential family rule, see AlMahmeed et al. (1998), if  g  and its derivative

are bounded, then as m  , we have
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      

      

            

1

1

1

' 1

2
' '' 1

' 2 1

) 1/ 2 1 .

) 1 .

) 1/ 4 5 / 2 3 1 .

N

N

N

i AE X o

ii AE X o

iii AE g X g o

   

    

    







   

  

    

Lemma 4.3.1  i shows directly that
1NX may be a biased estimator of  '  . The bias depends

crucially on the skewness of the underlying distribution. If 0  , then
1NX is an unbiased estimator

of  '  . Part  ii shows that        
1

1'' * 1
NVar X n o A  

   , which is obtained by setting

*A n  in (ii), exhibits the same pattern as in Theorem 3.2.1.1(i).

Part (iii), shows that if 0  and 3  , then  
1Ng X is an unbiased estimator of   'g   .

Therefore, the results in Lemma 4.3.1 depend on the structure of the underlying distribution and are

sensitive to the departure from normal theory for moderate sample sizes. However, robustness is

expected asymptotically.

Lemma 4.3.2

Under the conditions in Lemma 4.3.1, we have, as m  , the following

           

       

   

* 2 1

1 '' 2 1

32 *

) 1/ 2 1 1/ 2 5 / 2 3 1

) 1/ 4 1

) 1 .

i E N n o

ii A Var N o

iii A E N n o

  

   



 



     

 

 

Lemma 4.3.2  i shows directly that the mean of the actual sample size N depends on both the

skewness and the kurtosis of the underlying distribution beside the values of the design factor  and

the optimal sample size
*n . Part (ii) shows that the variance of the actual sample size N depends on

the skewness and the variance of the underlying distribution as well as  . Part (iii) shows that the

absolute third moment of the actual sample size N around
*n is of  2o  .

Theorem 4.3.1

Under the condition of Lemma 4.3.1, let  .h be a continuously differentiable function in a

neighbourhood of *n , such that    ''' * *'''( )
n m

Sup h n O h n


 . Then as m  ,

                   
   

* 2 ' * * 2 '' * 1

2

1/ 2 1/ 2 5 / 2 3 1/ 4

| ''' | .

E h N h n h n n h n

o A h A

          


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Proof:

The proof follows by expanding  h N around
*n ; that is, by using a Taylor expansion we have

            ' " '''* * * * * *1 1

2 6
h h h h hN n n N n n N n N n      ,

where  is a number between N and
*n . By taking the expectation and using Lemma 4.3.2, we get

the result. The proof is then complete.

Similarly, the representation above illustrates that the procedure is sensitive to departures from

normality, since it depends on the skewness and the kurtosis of the underlying distribution.

Lemma 4.3.3

Under the condition of Lemma 4.3.1, and as m  , we have

       

               

' 1 1

22 ' * 2 1

( ) 1/ 2

( ) 1/ 4 1/ 2 7 16 1 4 3 10 1 .

N

N

i E X A o A

ii A E X n o

  

       

 



  

        

Although the triple sampling fine tuning stage reduces the magnitude of the bias noticed in Lemma

4.3.1, the results remain sensitive to departures from normality since they depend on the kurtosis and

skewness of the underlying distribution. However, robustness is attained asymptotically.

Theorem 4.3.2

Under the quadratic loss function given by  4.6 , the asymptotic regret of the three stage exponential

family rule is given by

 4.7          2 11/ 4 8 1 3 1A o         , as .m

If 1  in  4.7 then we obtain the asymptotic regret of the one-by-one purely sequential procedure,

which is      2 3 1 ,9 4 o      as m . Moreover, the asymptotic regret in  4.7 is a

non-vanishing quantity that is independent of m and A and which takes negative values when

   2 18 1 31 4       .

Obviously the asymptotic regret for estimating the mean of the one parameter exponential family

 4.7 depends on the skewness and the kurtosis of the underlying distribution and tends to zero in the

case of the normal distribution. In contrast the asymptotic regret when the underlying distribution is

unspecified (Theorem 4.2.1(ii)) depends only on the kurtosis of the underlying distribution and tends

to a non-vanishing but finite quantity in the case of the normal distribution.

Finally, extra knowledge regarding the structure of the underlying distribution undoubtedly will

enhance our knowledge regarding the performance of the triple sampling as justified by the class of
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the one parameter exponential family. In other words, knowing the family of the underlying

distribution will determine the exact values of the skewness and kurtosis and consequently will

provide a precise measure of the risk, while if the underlying distribution is not known then we have

to estimate the skewness and kurtosis and this will ensure more cost (cost of ignorance).

To illustrate the performance of the triple sampling procedure when the underlying distribution is

analytically known, we give the following example.

Example

Let X be an exponential random variable with mean  , then the probability density function of X is

   
1

, exp / , 0f x x x 


   and 0   .

It can be shown easily from Lemma 4.3.2 and Lemma 4.3.3 that the triple sampling asymptotic

characteristics under the one-parameter exponential family with normal stopping rule are as follows

     * 1 11 2E N n o     ,    * 1Var N n o   ,

     1* ,NE X on 
  

and

         
21 * 2* 2 1.5NVar X n on    

     .

However, from Theorem 3.2.5 and Theorem 3.2.3 the asymptotic characteristics under the normal

stopping rule
*n   are

     
1

* 13 1NE N n E o     ,    * 12 ,Var N n o  

     1* ,NE X on 
  

and

         21 2* *5 6NVar X on n  
    .

To illustrate this comparison, consider the case 2  . It follows that 4, 2   and 9  .

By direct substitution in the above formulae with 0.5  we obtain the results in Table 4.1 below.
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Asymptotic characteristics of the triple sampling

under normal stopping rule

Asymptotic characteristics of the triple sampling

under the one parameter exponential family

     
1

* 6 1NE N n E o       * 1.5 1E N n o  

   *4Var N n o      *2Var N n o  

   * 12 2NE X n o        * 12 2NE X n o    

   * *2 24 16NVar X n n o        * *2 24 22NVar X n n o    

   
1

2 1NE o      4 1o  

Table 4.1: Asymptotic characteristics of the triple sampling procedure in two cases: the underlying

distribution is unknown and the underlying distribution known to be exponential distribution with

mean two

Table 4.1 shows the difference between the asymptotic characterstics of the triple sampling procedure

under two cases: firstly, when the underlying distribution is analytically unknown and secondly when

the underlying distribution is known to be a member of the class of a one-parameter exponential

family. It is clear from Table 4.1 that  E N in the second case is less biased than in the first case,

moreover the variance of the stopping sample size N in the second case is less than that in the first

case. Thus the performance of the actual sample size N is better in the case where the family of the

underlying distribution is analytically known. For the sequential estimator NX of , the bias is the

same in both cases, while the variance of NX is slightly less than in the first.

The regrets in both cases are bounded by a non vanishing quantity. Under the first case we have a

negative regret while under the second case the regret is positive. The reason behind this is as follows:

under the first case the stopping rule depends on the nuisance parameter and the estimate of the

nuisance parameter depends on the estimate of the mean, but since their distributions are dependent,

then this creates asymptotically negative regret (see Martinseck, 1988 and Takada, 1992). Under the

second case the stopping rule depends only on the estimate of the mean and is independent of the

nuisance parameter (variance) and this causes a bounded positive regret (see Hamdy et al., 1989).

Collectively, if we derive a triple sampling point estimation procedure under the exponential

distribution, the results would be consistent with the asymptotic theory in terms of *)( nNE  as

0d  ,  N
E X  as

*n  and  is bounded as A   . However, if we are sampling from

the exponential distribution under the normal theory, noticeable deviations from the true values are

present for small values of
*n . This indicates that the triple sampling procedure is sensitive to the

underlying distribution.
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4.4 Other continuous classes of distributions

In section 4.3 we considered the effect of restricting the class of underlying distributions on the triple

sampling point estimation. We now return to the case where no assumptions are made about the

underlying distribution except that the first six moments are finite.

In practice we might use Hall’s triple sampling scheme if we believed that the underlying distribution

was in some sense close to the normal. For example, perhaps a central limit theorem argument may

lead us to believe that our data will be approximately normally distributed. In the classical robustness

literature various authors have argued that approximately normal data are often somewhat fatter tailed

than normal in practice. For example, the location-scale version of the t distribution (Hampel, 1968),

the symmetric contaminated normal distribution (Tukey, 1960) and (Huber, 1964) have been used to

model this situation. Moreover, an asymmetric contaminated normal distribution is often used to

model basically normal data with outliers (Barnett and Lewis, 1994).

In this section we give the results for Hall’s triple sampling method when the unknown underlying

distribution is in fact  t r , Huber’s least favourable or contaminated normal (symmetric and

asymmetric).

4.4.1. The t distribution

Let T be a  t r random variable with r degrees of freedom, where 4r  . Then the first four

moments of T are:

  0E T  ,    2Var T r r  , 0  and    3 2 4r r    .

By direct substitution in Theorem 3.2.2.1, Theorem 3.2.2.2 and Theorem 4.2.1, we have

 
 
 

   
1

* 1 1
0.75 1

4
N

r
E N n E o

r
  

   


,

         
1* 1 42Var N n r r o 


    ,

   1
NE X o   ,

 
       

 

     
 

1

2

2 2* * *

5 16

2 2 4 4 2 4
N

r rr r
Var X o

n r n r r n r r







   

    
,

 
   

1

16 1 1
1

4 2 4
N

C r
C C E o

r r
    
    

  
.

Clearly, the asymptotic behaviour of the triple sampling procedure under the t distribution depends

mainly on the degrees of freedom r and, as r  , the corresponding normal results are obtained:
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   * 10.75 0.5 1E N n o     ,

     1* 2Var N n o 


  ,

   1
N

E oX   ,

       
1 21* * 21.25 ,

N
Var oX n n   

    

   1
0.5 12C C o 


   .

Let  TE  and  TVar  denotes the mean and variance under the t distribution and let  NE  and

 NVar  be the mean and variance under the normal distribution. Then from the above characterstics

we have the following:

1.    T NE EN N , for all 4r  , because      1, 41 4 rr r     with equality

attained only as r  . This indicates that the estimators of the actual sample size N under

the t distribution will on average be less than under the normal distribution (earlier stopping

than normal), and as r increases they nearly attain the same behaviour on average.

2.    T NVar VarN N . As r increases the ratio tends to one as r  .

3.    .T NN N
E EX X

4. To compare  T N
Var X and  N N

Var X directly, let  2r r   in order to match the

variances of the underlying distributions. If 5 8  , then clearly    T NN N
Var VarX X ,

while if 5 8  we have that    T NN N
Var VarX X and if 5 8  , then

   T NN N
Var VarX X . Of course, in the limiting case, as r  , then 1  and in this

case    T NN N
Var VarX X .

Thus, the triple sampling procedure is sensitive to the underlying distribution and hence is not robust

to departures from normality.

4.4.2. Contaminated normal distribution

Let X be a random variable that has a contaminated normal distribution with distribution function

     2 2
1 1 2 2, 1 , ,N NF p F p F     

where  2
1 1,NF   and  2

2 2,NF   are the normal distribution functions at 2
1 1,  and 2

2 2, 

respectively and  0,1p .
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In the classical robustness context p is taken to be relatively large, so that the first component

represents “good” observations, whereas the second component represents an outlier generating

mechanism.

We will consider two cases to illustrate the idea of robustness.

Case (i): 1 2    and 2 2
1 2 

The associated variance and kurtosis are respectively,

 2 2 2 2
2 1 2F p      and      

2
4 4 4 2 2 2
1 2 2 2 1 23 3F p p      



    

For example, if 0  , 1 1  and 2 3  , then the values of the variance and the kurtosis for

selected values of p are shown in Table 4.2.

p 2
F F

0.900 1.800 8.33333

0.950 1.400 7.65306

0.990 1.080 4.62963

0.999 1.008 3.18877

Table 4.2: The variance and kurtosis of the contaminated normal distribution with equal means but

different variances at selected values of p

By substituting in Theorem 3.2.2.1, Theorem 3.2.2.2 and Theorem 4.2.1, we have

        
1

* 11 13 8 F NE N n E o       ,

 
 
  

   
4 4 4

11 2 2*

2
2 2 2
1 2 2

3 3
1 4

p
Var N n o

p

  


  



     
 
  
 

,

   1
N FE X o      ,

and

         21 22*
1

,8N F
Var X on   

  

where
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            
 

22 2 * 2 2 2 * 2 2
1 2 1 2 2 1

1
4 *
2

8 5 8 3 16 5 16 3 2 3 2 5 8
.

8 10

n p p n

n

      


 

           
  

   

Also, the asymptotic regret will be completely specified by the kurtosis of the underlying distribution,

          
1

3 (1/ 4) 1 / 1F F NA C C C E o          .

Obviously,   0NVar X  , as *n  and if 1 2    , then we obtain the case of the normal

distribution, where

   * 10.75 0.5 1 .E N n o    

     
1* .2Var N n o 


 

   1 .NE X o   

       1 22 2 1 2* *1.25 .NVar X on n   
    

The asymptotic regret is    1 12 1 .2 C C o 
   

To illustrate the above equations and show the effect of increasing p on the performance of the actual

sample size N , the estimator NX and the regret  see Tables 4.3, 4.4 and 4.5, which show the

asymptotic characterstics of the triple sampling scheme under the contaminated normal distribution

with equal means but different variances, 0  , 1 1  , 2 3  for 0.9,0.99p  and 0.999. We see

that for a specific value of p ,   *E nN  is fixed for all values of
*n . At 0.9p  the absolute

difference is 5, while at 0.99p  and 0.999 the absolute differences are 2.22 and 1.14 respectively.

The standard deviation of N increases with
*n . It is clear that the mean of NX is asymptotically zero

while its standard deviation decreases as
*n increases. The regret values for 0.9,0.99p  and 0.999

are -1.166665, 0.685185 and 1.405615 respectively.
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*n  E N  . .s d N  N
E X  . .

N
s d X 

24 19 9.3808315 0 0.395504 -1.166665

43 38 12.556539 0 0.259279 -1.166665

61 56 14.955490 0 0.205213 -1.166665

76 71 16.693312 0 0.178337 -1.166665

96 91 18.761663 0 0.154399 -1.166665

125 120 21.408721 0 0.131915 -1.166665

171 166 25.039968 0 0.110137 -1.166665

246 241 30.033315 0 0.089956 -1.166665

500 495 42.817442 0 0.061543 -1.166665

Table 4.3: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with, 0  , 1 1  and 2 3  ; 0.9p  ,  0.5 and  
1

0.5.NE  

*n  E N  . .s d N  N
E X  . .

N
s d X 

24 21.78 6.5996633 0 0.421623 0.685185

43 40.78 8.8338574 0 0.257829 0.685185

61 58.78 10.521583 0 0.195593 0.685185

76 73.78 11.744187 0 0.165682 0.685185

96 93.78 13.199327 0 0.139814 0.685185

125 122.78 15.061602 0 0.116337 0.685185

171 168.78 17.616280 0 0.094504 0.685185

246 243.78 21.129232 0 0.075193 0.685185

500 497.78 30.123204 0 0.049658 0.685185

Table 4.4: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with 0  , 1 1  and 2 3  ; 0.99p  , 0.5  and  
1

0.5.NE  

*n  E N  . .s d N  N
E X  . .

N
s d X 

24 22.86 5.1249689 0 0.429076 1.405615

43 41.86 6.8599325 0 0.260213 1.405615

61 59.86 8.1705357 0 0.196271 1.405615

76 74.86 9.1199490 0 0.165633 1.405615

96 94.86 10.249938 0 0.139218 1.405615

125 123.86 11.696088 0 0.115337 1.405615

171 169.86 13.679924 0 0.093242 1.405615

246 244.86 16.407906 0 0.073825 1.405615

500 498.86 23.392176 0 0.048409 1.405615

Table 4.5: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with 0  , 1 1  and 2 3  ; 0.999p  , 0.5  and  
1

0.5.NE  
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Conclusions

1. As p increases  E N increases and the absolute value between  E N and
*n decreases

while  . .s d N decreases from
* 61n  .

2. As p increases, the asymptotic mean is zero while the  . .
N

s d X decreases from
* 76n  .

3 As p increases, so does the regret.

Case (ii): 1 2  and 2 2 2
1 2   

It can be shown that the values of the skewness and kurtosis are respectively,

         
3 23 2 22 2

1 2 1 2 1 2
,2 1 0.5F p p p p p       



       

and

       

    

4 24 3 2 2 4
1 2 1 2

2
2 22 2

1 2 1 2

3 6 4 6 1 3
.F

p p p p p p

p p

     


    

        


   

For example, if 1 0  , 2 3  and 1  , then the values of the skewness and kurtosis for different

values of p are shown in Table 4.6.

p 2
F F F

0.900 1.81 0.798323 4.023595

0.950 1.4275 0.676762 4.349996

0.990 1.0891 0.230475 3.635901

0.999 1.008991 0.026560 3.079007

Table 4.6: The variance, skewness and kurtosis of the contaminated normal ( 1 20, 3, 1     )

distribution at selected values of .p

The forms of  E N ,  Var N and the asymptotic regret may be found as before. For simplicity,

Let  
2

1 1 2M    . Then

    
  

 
 

3 2
11

1 2 2 2 *
1 1

0.5 1
1N

p Mp p
E X p p o

p M pM n
  


 

    
 

,

       21 2 2*
28N FVar X on   

   ,
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where

   
2 22 2 2

1 2 1 2F p p          ,

and

        
     

2 2* *
2 1

2 4* *
1

8 5 2 5 2 5 81 6 6

16 2 .1 5 4 4 5

p p p Mp n n

p Mp n n

   

  

        

   

Moreover,

       
1

1 4
3 18 NFE N E o 


   ,

where

           

 

2 2 2* * *
3 1 1

4 *

8 3 8 161 13 2 3 2 3 4

2 .3 4

p p p M p Mp pn n n

n

   

 

      

 

   * 1 4
4 FVar N n o     ,

where

       
2 2 2 4

4 1 11 2 1 21 1p M p Mp p p       

and the asymptotic regret is         
1

3 (1/ 4) 1 / 1F F NC C C E o          .

To illustrate the above equations and show the effect of increasing p on the behaviour of N , NX and

the regret, see Tables 4.7, 4.8 and 4.9, which show the asymptotic characteristics of the triple

sampling scheme under the contaminated normal distribution with different means but equal

variances, 1 0  , 2 3  , 1  while p  0.9, 0.99 and 0.999.

We see that at 0.9p  ,   * 2.5177E nN  while for p  0.99 and 0.999 the absolute value

between  E N and
*n are 1.4769 and 1.0593 respectively and for all values of *n . The standard

deviation of N increases with *n . For all values of p , NX is a biased estimator of  and the amount

of bias decreases as
*n increases. Moreover, the standard deviation of NX decreases as *n increases.

The regret values are 0.9882025, 1.1820495 and 1.4604965 respectively.
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*n  E N  . .s d N  N
E X  . .

N
s d X 

24 21.4823 6.02354894 0.32237570 0.2293707 0.9882025
43 40.4823 8.06271017 0.31248875 0.1768155 0.9882025
61 58.4823 9.60310634 0.30880355 0.1501248 0.9882025
76 73.4823 10.71898385 0.30706601 0.1351967 0.9882025
96 93.4823 12.04709783 0.30559392 0.1208176 0.9882025

125 122.4823 13.74680674 0.30429613 0.1062835 0.9882025
171 168.4823 16.07847578 0.30314045 0.0911772 0.9882025
246 243.4823 19.28476603 0.30218299 0.0762292 0.9882025
500 497.4823 27.49361348 0.301074033 0.0536403 0.9882025

Table 4.7: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with 1 0  , 2 3  and 1  ; 0.9p  ,  0.5 and  
1

0.5.NE  

*n  E N  . .s d N  N
E X  . .

N
s d X 

24 22.5231 5.62412792 0.03501090 0.2172883 1.1820495

43 41.5231 7.52807257 0.03279678 0.1607005 1.1820495

61 59.5231 8.96632521 0.03197150 0.1344086 1.1820495

76 74.5231 10.0082090 0.03158239 0.1201983 1.1820495

96 94.5231 11.2482558 0.03125273 0.1067827 1.1820495

125 123.5231 12.8352572 0.03096209 0.0934523 1.1820495

171 169.5231 15.0123135 0.03070330 0.0798029 1.1820495

246 244.5231 18.0059949 0.03044889 0.0664678 1.1820495

500 498.5231 25.6705144 0.030240523 0.0465677 1.1820495

Table 4.8: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with 1 0  , 2 3  and 1  ; 0.99p  , 0.5  and  
1

0.5.NE  

*n  E N  . .s d N  N
E X  . .

N
s d X 

24 22.9407 4.994805561 0.00355582 0.2147986 1.4604965

43 41.9407 6.685704748 0.00331022 0.1572909 1.4604965

61 59.9407 7.963021407 0.00321868 0.1310506 1.4604965

76 74.9407 8.888321639 0.00317552 0.1169789 1.4604965

96 94.9407 9.989611122 0.00313895 0.1037582 1.4604965

125 123.9407 11.39903198 0.00310672 0.0906777 1.4604965

171 169.9407 13.33248246 0.00307801 0.0773359 1.4604965

246 244.9407 15.99118028 0.00305423 0.0643451 1.4604965

500 498.9407 22.79806397 0.00302668 0.0450252 1.4604965

Table 4.9: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with 1 0  , 2 3  and 1  ; 0.999p  , 0.5  and  
1

0.5.NE  
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Conclusion

1. As p increases, the difference between  E N and
*n decreases and the standard deviation

of N also decreases.

2. For all values of p , NX is a biased estimator of  but the bias decreases as
*n increases. The

standard deviation also decreases as
*n increases.

3. As p increases the regret also increases.

In the case with 1 2  , we return to the normal distribution results.

4.4.3. Huber’s least favourable distribution

Huber’s least favourable distribution has density function in the form

 
 

 

2

2

2 ,
2

2 ,
2

a
exp t t k

f t
a

exp k k t t k






 

 
  


,

where
    2

2

2 2 2 2 1

k
a

Exp k k k






   
.

It is easy to show that the variance and kurtosis are respectively,

2
2 1 2

2
3

t

w k w

k w



 and

 
 

4
3 2 4

22
1 2

3
,h

w k w w

w k w







where

        2 2 2
1 2 3 22 1 2 , 2 1 , 2w k exp k w k k w exp k w         and

   6 4 2 2
4 12 24 24 2w k k k exp k     .

The triple sampling asymptotic results are as follows:

         
1

21* * 2
1 1 2 18 NE N n w k w E o 


     ,

where

 * 4 2 2 22
1 2 2 3 4 13 1

3 3 3 33 2k w k w w w ww k w      .
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       
21 * * 2

2 1 24Var N n w k w o 
   ,

where

* 4 2 2 2 4
2 2 3 3 4 1 1 2 23 2w w k w w w w w k w k      .

   1
NE X o   ,

           21 2 2 2*
3 1 2 38NVar X w k w k w on  

     ,

where

       
     

4
3 2 2 3 3 2

2 2
1 2 1 3 4

2
3 4 1

8 33 15 8 5 8

16 5 8 3 88 24

5 5

w w w w w kn

w w kn w w wn

w w w

 

 

    

    

 

and the asymptotic regret is         
1

3 (1/ 4) 1 / 1 .h h NC C C E o         

At 0k  the distribution is the double exponential (or Laplace), which has 6  , while as k 

the normal distribution is obtained. Commonly used values of k in robustness studies 1.0,1.5k  and

2 for which the kurtosis values are respectively 5.371428, 4.303949h  and 3.511003 .

k a
h

0 0 6.0

1.0 0.857176 5.371428

1.5 0.962393 4.303949

2.0 0.991581 3.511003

Table 4.10: The value of a and the kurtosis of Huber’s least favourable distribution for selected

values of k .

Notes

1. From the above we deduce that the triple sampling procedure is sensitive to the underlying

distribution. However, the effect reduces as the skewness and kurtosis of the underlying

distribution approach zero and three respectively.

2. We also see that if the stopping rule depends on the estimates of the parameter of interest,

then an early stopping is expected. This may result in a negative regret (see Martinsek, 1988

and AlMahmeed et al., 1998). Also, if the stopping rule depends on an estimate of a certain

nuisance parameter, which is independent of the targeted estimate, the procedure naturally

terminates with bounded regret (see Hamdy, 1989).
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Chapter V

Simulation Results for Point Estimation of the Population Mean

In this chapter we use simulation to investigate the finite sample properties of the triple sampling

procedure    2.2 2.3 and to compare them to the asymptotic results obtained in the previous

chapters.

5.1 Experimental setup

A series of Monte Carlo studies was carried out in order to investigate the finite sample size

performance of the triple sampling point estimation sampling procedure    2.2 2.3 under the

squared error loss function  4.1 and to compare these results with the asymptotic results.

First we allowed various aspects of the triple sampling scheme to vary: 5,15, 20m  ;

0.3,0.5,0.8  and *n  24, 43, 61, 76, 96, 125, 171, 246 and 500. These values of *n are the same

as those used by Hall (1981) and represent small, moderate and large optimal sample sizes.

In addition various underlying distributions were used to cover symmetric and skewed distributions

and light and heavy tailed distributions: normal, uniform,  t r , beta and exponential. For each

experimental situation 50,000 replicate samples were used (see Costanza et al., 1995).

The following steps explain how we obtain the simulation results. For the i th sample generated for a

particular combination of ,m  and distribution:

1. Take an initial sample of size m (say, 1, ,, ,i m iX X ).

2. Compute the sample mean and sample variance for the pilot sample.

3. Apply the triple sampling procedure, as presented in    2.2 2.3 to determine the stopping

sample size at this iteration whether in the first or second stage (say, *
iN ).

4. Record the resultant sample size and the sample mean  * *, .i iN X

Hence, for each experimental combination we have two vectors of size 50,000 as follows:

Vector I contains all the stopping sizes, say 1 2 50,000, ,..., ,N N N  

and
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Vector II contains all the sample means, * * *
1 2 50,000, , ,X X X .

Here *
iN may be thought of as the estimate of *n and *

iX is the estimate of  at sample i. Let

 
50000

1

50,000i
i

N N 



  and   
50000

*

1

,50,000i
i

X X


  

where N and X are respectively the estimated mean sample size and the estimated mean of the

estimator of the population mean across replicates. Thus  X  may be regarded as an estimate of

the expected value of the estimator of the population mean  .

The standard errors are

  1. . 50,000S E s  , where  
50000 2

1
1

49,999.
i

i

s X 


 

and

  2. . 50,000S E N s , where
50000

2
2

1

( ) 49,999i

i

s N N


  .

To calculate the estimated regret, we proceed as follows. First for simplicity take 1C  and from

(4.3),  
2*A n  . Then  is the point estimate for the asymptotic regret, which is the difference

between the sequential risk and the optimal risk. The optimal risk is *2Cn . Secondly, we calculate the

estimated variance of NX which can be obtained easily from the simulation,    2
1var

N
sX  . Finally,

the estimated regret is obtained as  2
1As N   .

Although our Theorems are valid for all  0,1  we shall concentrate mostly on the case 0.5 

for two reasons. First, this has been recommended previously for practical reasons (see Hall, 1981 and

Mukhopadhyay and de Silva, 2009). Secondly, we shall see later that this is indeed a good choice.

The featured underlying distributions are: standard normal, standard uniform, the t distribution with

5, 25,50r  and 100 degrees of freedom, beta  2,3 and exponential with mean one. These cover a

variety of distributional shapes. Results for other distributions have been omitted but are available

from the author.

We proceed in this chapter by studying the behaviour of NX , the actual sample size N and the regret

at 0.5  and m  5, 15 and 20 from two sides; one from the simulation view and the other from the

asymptotic view obtained from Theorems 3.2.2.1, 3.2.2.2 and 4.2.1 for the above underlying

distributions. Moreover, we show the effect of increasing  on the performance of the above

estimators at 15.m 
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5.2 The behaviour of the estimator of the population mean

From Theorem 3.2.2.1, the mean and variance of the estimator NX under the normal optimal

stopping rule
*n   are

       
1* 15.1 2 ,NE X n o   

   

and

                
1 2* * 1 25.2 3 5 8 1 .NVar X n n o     

        

The estimator NX is a biased estimator of  when the underlying distribution is skewed. The

variance of the estimator depends on the variance and the kurtosis of the underlying distribution as

well as the design factor  . Clearly, as *n  the asymptotic mean and variance of the estimator

NX are respectively  and zero.

In the following subsections we discuss the simulation results in comparison with the asymptotic

results obtained from equations    5.1 5.2 for the underlying distributions mentioned above. Each

table includes  s m and  ssd m (the simulated estimate of  N
E X and its standard deviation at

a specific value of m , where m  5, 15 and 20) and also  N
E X and  N

sd X , the asymptotic

mean and standard deviation of NX . Moreover, we discuss the effect of increasing  on the

performance of the estimator NX through the simulation results arranged in separate tables. Each

table includes  s  and  ssd  : the simulated estimates of  N
E X and its standard deviation at

a specific value of  , where  0.3, 0.5 and 0.8.

5.2.1 Standard normal distribution

From    5.1 5.2 the mean and variance of NX under the above optimal fixed sample size are

   1
NE X o   and          

2* 1 * 21 5 4 .NVar X n n o 
   

The asymptotic mean and variance of NX under the standard normal distribution are both zero as

*n  .

To illustrate the above equations and compare them with the simulation results, Table 5.1 shows the

behaviour of the estimator NX from two sides: one from the simulation view at 0.5  while m

increases from m  5, 15 to 20 and the second from the asymptotic view. From the simulation view,

we see that for all values of m , NX is essentially unbiased. Moreover, the standard deviation

decreases as
*n increases. Asymptotically, the mean of NX is zero and its standard deviation

decreases as
*n increases. Clearly there is good agreement between the simulated and asymptotic
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means. The asymptotic standard deviations are underestimates, but are in good agreement with the

simulated values when n* is 61 or more.

*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 0.00115 0.00082 0.00176 0 0.214492 0.231433 0.252899 0.223383
43 0.00084 0.00069 -0.00095 0 0.156869 0.162339 0.162115 0.180003
61 0.00068 -0.00047 -0.00026 0 0.130634 0.132375 0.130586 0.131928
76 0.00031 -0.00083 0.00021 0 0.116579 0.117394 0.116276 0.117170
96 0.00003 -0.00043 -0.00031 0 0.103382 0.103306 0.103306 0.103530
125 0.00033 0.00011 -0.00003 0 0.090333 0.090561 0.090114 0.090337
171 -0.00027 0.00052 0.00013 0 0.077029 0.077368 0.077144 0.077144
246 0.00021 0.00035 -0.00007 0 0.064081 0.064175 0.063952 0.064175
500 -0.00005 -0.00020 0.00009 0 0.044833 0.044945 0.044721 0.044721

Table 5.1: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under  0,1N as
*n increases and at 5,15, 20m  and 0.5 

To show the impact of increasing  on the performance of the estimator NX at 15m  Table 5.2

shows the simulated estimates the mean and standard deviations of NX at  0.3, 0.5 and 0.8. We

see that the effect of  is small, except at small values of
*n where the performance at is  0.3 is

slightly inferior.

*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 0.00117 0.256701 0.00082 0.252899 0.00002 0.212650
43 0.00053 0.242166 0.00069 0.162115 -0.00004 0.155183
61 -0.00014 0.161891 -0.00047 0.130586 0.00024 0.128798
76 -0.00121 0.124549 -0.00083 0.116276 -0.00036 0.115381
96 -0.00073 0.105319 -0.00043 0.103306 -0.00031 0.103083
125 -0.00039 0.091008 0.00011 0.090114 -0.00017 0.089443
171 0.00003 0.076921 0.00052 0.077144 0.00022 0.076250
246 0.00000 0.064622 0.00035 0.063952 -0.00014 0.063728
500 -0.00005 0.044945 -0.00020 0.044721 0.00011 0.044721

Table 5.2 The simulated estimates of the expected value and standard deviation of NX with  0,1N

underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .
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5.2.2 Standard uniform distribution

From    5.1 5.2 the mean and variance of the estimator NX under the normal optimal fixed sample

size are

     11 2 ,NE X o   

and

           
2* * 1 21 12 1 12 1.2 0.5 .NVar X n n o 
      

The asymptotic mean and variance of NX are  1 2 and zero respectively as *n  .

Table 5.3 shows the behaviour of NX at 0.5  and m  5, 15, 20. We see that NX is essentially

unbiased, in agreement with the asymptotic result. The asymptotic standard deviation of the estimator

tends to be an underestimate but the effect reduces as
*n increases.

*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 0.49974 0.50030 0.49955 0.5 0.0615671 0.0724486 0.0744611 0.0641752
43 0.50012 0.49999 0.49937 0.5 0.0451347 0.0476282 0.0469574 0.0534420
61 0.50008 0.49988 0.50011 0.5 0.0376217 0.0386840 0.0380132 0.0377895
76 0.50008 0.50026 0.50004 0.5 0.0335892 0.0342118 0.0335410 0.0337646
96 0.50003 0.50006 0.50016 0.5 0.0297985 0.0299633 0.0297397 0.0299633
125 0.49990 0.50015 0.49987 0.5 0.0260461 0.0261620 0.0259384 0.0259384
171 0.50000 0.50004 0.50012 0.5 0.0222171 0.0221371 0.0221371 0.0221371
246 0.49995 0.49988 0.49998 0.5 0.0184874 0.0185594 0.0185594 0.0185594
500 0.49991 0.50000 0.50007 0.5 0.0129383 0.0129692 0.0129692 0.0129692

Table 5.3: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under  0,1U as
*n increases and at 5,15, 20m  and 0.5 

To show the effect of increasing  on the performance of the estimator NX at 15m  ,

Table 5.4 shows the simulation estimates of  N
E X and its standard deviation at  0.3, 0.5

and 0.8. We see that the effect of  is small, except at small values of *n where the performance at is

 0.3 is slightly inferior.
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*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 0.50076 0.0742375 0.50030 0.0744611 0.50026 0.0621627
43 0.50045 0.0733430 0.49999 0.0469574 0.50011 0.0453922
61 0.49978 0.0462866 0.49988 0.0380132 0.50036 0.0373423
76 0.49980 0.0351063 0.50026 0.0335410 0.49983 0.0335410
96 0.50005 0.0301869 0.50006 0.0297397 0.50007 0.0297397
125 0.49981 0.0261620 0.50015 0.0259384 0.49995 0.0257148
171 0.49995 0.0223607 0.50004 0.0221371 0.49995 0.0221371
246 0.49993 0.0185594 0.49988 0.0185594 0.49996 0.0183358
500 0.50006 0.0129692 0.50000 0.0129692 0.50002 0.0129692

Table 5.4 The simulated estimates of the expected value and standard deviation of NX with  0,1U

underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .

5.2.3 The t distribution

From    5.1 5.2 the mean of the estimator NX under the normal optimal fixed sample size is

   1 ,NE X o  

while the variances at 5, 25r  and 50 degrees of freedom are respectively,

           
2* * 1 25 3 5 3 6 5 ,NVar X n n o 
     

           
2* * 1 225 23 50 161 1 5 ,NVar X n n o 
     

and

           
2* * 1 225 24 25 552 3 30.625 .NVar X n n o 

     

Clearly, as r increases, the variance of NX decreases and the asymptotic mean and variance of the

estimator NX are both zero as *n  .

Tables 5.5, 5.6 and 5.7 show the effect of r and illustrate the comparison between the simulation

results and the asymptotic results for    ,5 25t t and  50t respectively. Broadly the simulation

results and the corresponding asymptotic results are in good agreement for all three values of r.
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*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 -0.00092 -0.00090 0.00125 0 0.284638 0.292701 0.307907 0.282415
43 -0.00190 0.00010 -0.00068 0 0.205828 0.208849 0.210190 0.227408
61 0.00081 -0.00133 -0.00018 0 0.170628 0.171954 0.170836 0.172624
76 0.00004 -0.00003 -0.00042 0 0.151934 0.152947 0.151829 0.151382
96 -0.00083 -0.00024 -0.00045 0 0.134479 0.134835 0.133940 0.134164
125 -0.00061 -0.00071 -0.00037 0 0.117303 0.117170 0.117170 0.116723
171 -0.00061 -0.00036 0.00020 0 0.099873 0.099505 0.099281 0.099505
246 0.00019 0.00026 -0.00052 0 0.082977 0.082735 0.082511 0.082511
500 -0.00047 -0.00029 -0.00005 0 0.057966 0.057691 0.058138 0.057914

Table 5.5: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under  5t as
*n increases and at 5,15, 20m  and 0.5 

*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 -0.00116 -0.00101 0.00025 0 0.223925 0.240601 0.262514 0.233445
43 0.00055 -0.00037 0.00003 0 0.163676 0.169047 0.169718 0.186041
61 0.00072 -0.00012 -0.00045 0 0.136272 0.138413 0.136400 0.137965
76 0.00046 -0.00076 -0.00042 0 0.121598 0.122313 0.121418 0.121866
96 -0.00084 0.00033 -0.00010 0 0.107823 0.108673 0.108226 0.107555
125 -0.00074 0.00059 -0.00039 0 0.094205 0.094586 0.094362 0.094362
171 0.00009 -0.00007 0.00056 0 0.080325 0.080051 0.080051 0.080498
246 -0.00076 -0.00043 -0.00041 0 0.066818 0.066635 0.066858 0.066635
500 -0.00011 -0.00018 -0.00043 0 0.046745 0.046734 0.046734 0.046957

Table 5.6: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under  25t as
*n increases and at 5,15, 20m  and 0.5 

*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 0.00062 -0.00022 0.00010 0 0.219050 0.235682 0.256477 0.228303
43 -0.00070 0.00029 -0.00024 0 0.160161 0.165693 0.165469 0.182016
61 -0.00017 0.00004 -0.00044 0 0.133362 0.135506 0.133270 0.135059
76 -0.00024 -0.00070 -0.00116 0 0.119008 0.120748 0.118735 0.118959
96 -0.00114 0.00052 -0.00113 0 0.105532 0.105990 0.105766 0.105095
125 0.00000 -0.00080 0.00026 0 0.092207 0.092573 0.092573 0.091902
171 -0.00064 -0.00043 -0.00041 0 0.078625 0.078710 0.078486 0.078710
246 0.00004 -0.00014 0.00011 0 0.065407 0.065517 0.065740 0.065740
500 -0.00070 -0.00027 -0.00018 0 0.045759 0.045839 0.045839 0.045839

Table 5.7: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under  50t as
*n increases and at 5,15, 20m  and 0.5. 
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The impact of  on the performance of the estimator NX is shown in Tables 5.8, 5.9 and 5.10 for

   ,5 25t t and  50t respectively. We see that for a each value of r the higher the value of 

the better the behaviour. However, this effect is small for lager values of *n .

*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 -0.00441 0.329820 -0.00090 0.307907 -0.00113 0.266092
43 -0.00298 0.290242 0.00010 0.210190 0.00133 0.198339
61 0.00063 0.210414 -0.00133 0.170836 -0.00073 0.164798
76 0.00083 0.167034 -0.00003 0.151829 -0.00055 0.147580
96 0.00083 0.138860 -0.00024 0.133940 0.00022 0.130363
125 0.00068 0.118959 -0.00071 0.117170 -0.00003 0.115158
171 -0.00028 0.100623 -0.00036 0.099281 0.00000 0.097940
246 -0.00027 0.083405 0.00026 0.082511 0.00024 0.081393
500 -0.00042 0.058138 -0.00029 0.058138 -0.00003 0.057467

Table 5.8 The simulated estimates of the expected value and standard deviation of NX with  5t

underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .

*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 0.00133 0.269893 -0.00101 0.262514 -0.00117 0.220253
43 0.00117 0.251110 -0.00037 0.169718 -0.00046 0.160773
61 -0.00023 0.168823 -0.00012 0.136400 0.00000 0.135282
76 -0.00021 0.131481 -0.00076 0.121418 -0.00025 0.120077
96 -0.00102 0.110238 0.00033 0.108226 -0.00091 0.106884
125 -0.00001 0.095256 0.00059 0.094362 -0.00020 0.093244
171 -0.00088 0.081169 -0.00007 0.080051 0.00000 0.079828
246 0.00024 0.067306 -0.00043 0.066858 -0.00003 0.066635
500 -0.00057 0.046510 -0.00018 0.046734 -0.00023 0.046734

Table 5.9 The simulated estimates of the expected value and standard deviation of NX with  25t

underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .
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*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 0.00034 0.262514 -0.00022 0.256477 0.00012 0.216899
43 0.00047 0.245967 0.00029 0.165469 -0.00015 0.157643
61 0.00063 0.165022 0.00004 0.133270 -0.00040 0.131257
76 -0.00090 0.126785 -0.00070 0.118735 -0.00026 0.118064
96 0.00010 0.107778 0.00052 0.105766 0.00046 0.104201
125 -0.00047 0.092797 -0.00080 0.092573 -0.00018 0.091902
171 -0.00018 0.079157 -0.00043 0.078486 -0.00094 0.078262
246 0.00009 0.065740 -0.00014 0.065740 -0.00019 0.065070
500 -0.00042 0.045839 -0.00027 0.045839 -0.00032 0.045392

Table 5.10 The simulated estimates of the expected value and standard deviation of NX with  50t

underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .

5.2.4 Beta  2,3 distribution

From    5.1 5.2 the mean and variance of the estimator NX under the normal optimal fixed sample

size are respectively,

       
1* 10.4 1 35 ,NE X n o 

   

and

          
2* * 1 21 25 1 350 9 11.875 .NVar X n n o 

     

Thus as *n   , the asymptotic mean and variance converge to 0.4 and zero respectively.

Table 5.11 shows the simulation results for beta  2,3 and the corresponding asymptotic results.

Clearly the bias of the estimator is small and is in line with the asymptotic result. Again the

asymptotic results for the standard deviation of the estimator are also in reasonable agreement with

the simulated values.
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*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 0.39700 0.39929 0.40022 0.398810 0.0427682 0.0478519 0.0509823 0.0447214
43 0.39887 0.39862 0.39762 0.399336 0.0313184 0.0326466 0.0328702 0.0366715
61 0.39936 0.39927 0.39925 0.399532 0.0260938 0.0266092 0.0263856 0.0263856
76 0.39976 0.39957 0.39942 0.399624 0.0232920 0.0237023 0.0232551 0.0234787
96 0.39957 0.39964 0.39953 0.399702 0.0206596 0.0207954 0.0205718 0.0207954
125 0.39991 0.39967 0.39988 0.399771 0.0180552 0.0181122 0.0181122 0.0181122
171 0.39987 0.39981 0.39994 0.399833 0.0153986 0.0154289 0.0154289 0.0154289
246 0.39974 0.39996 0.39986 0.399884 0.0128120 0.0127456 0.0127456 0.0129692
500 0.39991 0.39996 0.39994 0.399943 0.0089652 0.0089443 0.0089443 0.0089443

Table 5.11: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under beta  2,3 as
*n increases and at 5,15, 20m  and 0.5. 

Table 5.12 shows the behaviour of the estimator NX for different values of  . Once again the

performance at 0.3 is the least good.

*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 0.40019 0.0516532 0.39929 0.0509823 0.39842 0.0431561
43 0.39823 0.0491935 0.39862 0.0328702 0.39949 0.0313050
61 0.39714 0.0328702 0.39927 0.0263856 0.39967 0.0259384
76 0.39902 0.0248204 0.39957 0.0232551 0.39950 0.0232551
96 0.39972 0.0207954 0.39964 0.0205718 0.39977 0.0205718
125 0.39982 0.0181122 0.39967 0.0181122 0.39988 0.0178885
171 0.39984 0.0154289 0.39981 0.0154289 0.39985 0.0152053
246 0.39981 0.0127456 0.39996 0.0127456 0.39980 0.0127456
500 0.39996 0.0089443 0.39996 0.0089443 0.39998 0.0089443

Table 5.12 The simulated estimates of the expected value and standard deviation of NX with beta

 2,3 underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .

5.2.5 Exponential distribution with mean one

The mean and variance of the estimator NX of  under the normal optimal fixed sample size are

respectively,

     
1* 11 ,NE X n o 

   

and

         
2* * 1 21 6 5 .NVar X n n o 
     
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The asymptotic mean and variance of NX are one and zero respectively as *n  .

Table 5.13 shows that the estimator is somewhat more biased and more variable than indicated by the

asymptotic results. However, this effect reduces as the optimal sample size increases.

*n  5s  15s  20s  NE X  Nsd X  5ssd  15ssd  20ssd
24 0.91062 0.96999 0.99486 0.958333 0.220479 0.270564 0.219358 0.215781
43 0.95096 0.95095 0.95662 0.976744 0.159434 0.203482 0.183358 0.172624
61 0.97055 0.97141 0.96587 0.983607 0.132168 0.160326 0.152053 0.154289
76 0.97799 0.98051 0.97832 0.986842 0.117688 0.138636 0.130139 0.132822
96 0.98547 0.98597 0.98632 0.989583 0.104167 0.116723 0.110909 0.112027
125 0.98934 0.99106 0.99068 0.992000 0.090863 0.098834 0.095033 0.094362
171 0.99284 0.99283 0.99342 0.994152 0.077361 0.080722 0.079157 0.079380
246 0.99513 0.99610 0.99518 0.995935 0.064274 0.065517 0.065517 0.065517
500 0.99761 0.99772 0.99795 0.998000 0.044900 0.045392 0.045169 0.045169

Table 5.13: Comparison between the simulated estimates of  N
E X and standard deviation of NX

with the asymptotic results under  1Exp as
*n increases and at 5,15, 20m  and 0.5 

Table 5.14 shows the performance of the estimator for different values of  . Here the standard

deviations tend to decrease as  increases, but the effect reduces with increasing *n .

*n  0.3s  0.3ssd  0.5s  0.5ssd  0.8s  0.8ssd
24 0.99728 0.255135 0.96999 0.219358 0.95964 0.208402
43 0.95447 0.203035 0.95095 0.183358 0.96937 0.167705
61 0.93888 0.175531 0.97141 0.152053 0.98034 0.136847
76 0.95264 0.162562 0.98051 0.130139 0.98446 0.120971
96 0.97270 0.137295 0.98597 0.110909 0.98774 0.105319
125 0.98560 0.108002 0.99106 0.095033 0.99072 0.091455
171 0.99151 0.083182 0.99283 0.079157 0.99376 0.077368
246 0.99505 0.066411 0.99610 0.065517 0.99567 0.063728
500 0.99785 0.045839 0.99772 0.045169 0.99757 0.044721

Table 5.14 The simulated estimates of the expected value and standard deviation of NX with

 1Exp underlying distribution at 15m  and 0.3,0.5,0.8  and selected values of
*n .



103 | P a g e

5.3 The behaviour of the actual sample size N

In this section we investigate the mean and variance of the stopping variable N . By using Theorem

3.2.2.2, the mean and variance of the stopping variable N under the normal optimal fixed sample size

are respectively,

           
1

* 15.3 3 8 1 1 ,NE N n E o      

and

         
1 *5.4 4 1 .Var N n o  


  

We investigate the behaviour of
1N in section 5.5 but to a good approximation it has mean 0.5.

In the following subsections we compare the simulation results with the asymptotic results obtained

from equations    5.3 5.4 for the underlying distributions mentioned above. Each table includes

 sN m and  ssd N m , the simulated mean and the simulated standard deviation of the actual

sample size N at a specific value of m , where 5,15m  and 20, and also  E N ,  sd N , the

asymptotic mean and standard deviation of N .

5.3.1 Standard normal distribution

From    5.3 5.4 the mean and variance of N when the underlying distribution is standard normal

are respectively

   * 10.75 0.5 1 ,E N n o    

and

     
1 *2 .Var N n o 


 

Table 5.15 below presents the simulation and asymptotic results for N at 0.5  and 5,15,20m  .

We see that
*N n (early stopping on average) for all values of

*n and the quantity *N n

decreases as
*n increases. Table 5.15 also shows the performance of the estimator N as the pilot

sample size and the optimal sample size increases in comparison with the asymptotic results.

Problems arise when m is close to n*, but in other cases the asymptotic results are optimistic in that

they tend to underestimate the early stopping and underestimate the variability, particularly for

5.m 
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*n  5sN  15sN  20sN  E N  .s d N  5ssd N  15ssd N  20ssd N

24 22.18 16.36 20.00 23 4.8990 6.4806 4.6356 0.0000
43 41.25 41.11 36.39 42 6.5575 8.2068 8.8318 13.0754
61 59.37 59.78 59.52 60 7.8101 9.5813 8.5404 9.2989
76 74.44 74.90 74.83 75 8.7178 10.4874 9.3295 9.3009
96 94.51 94.88 94.88 95 9.7980 11.6886 10.4245 10.2917
125 123.59 123.90 123.92 124 11.1803 12.9920 11.7378 11.6647
171 169.56 169.83 169.87 170 13.0767 15.1040 13.7169 13.4962
246 244.62 244.95 244.92 245 15.6845 18.0156 16.3383 16.2531
500 498.70 498.82 498.92 499 22.3607 25.3201 23.1905 23.0038

Table 5.15: Comparison between the simulated estimates of  E N and standard deviation of N with

the asymptotic results under  0,1N as
*n increases and at 5,15,20m  and 0.5. 

To show the impact of  on the performance N , we consider Figure 5.1 at 15m  . We see that for

0.3  and 0.5,
*N n (early stopping on average) for all values of

*n , but the amount *N n , is

larger at 0.3  , which means that the procedure tends to terminate much early than in the case of

0.5  , this consequently causes bad estimates at 0.3  . While for 0.8  ,
*N n (over

sampling in average) at
* 246n  and 500. But such behaviour tends to vanish as m increases. This

indicate that the choice of 5.0 is much better than other values of  and this supports Hall
(1981) recommendation.

50
0

24
6

17
1

12
59676614324

500

400

300

200

100

0

Optimal sample size

S
im

u
la

te
d

e
s
ti

m
a

te
s

N(0.3)

N(0.5)

N(0.8)

Variable

Figure 5.1: The simulated estimates of  E N for underlying  0,1N as the optimal sample size

increases at 15m  and 0.3,0.5,0.8. 
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5.3.2 Standard uniform distribution

From    5.3 5.4 the mean and variance for the actual sample size N when the underlying

distribution is standard uniform are respectively,

     
1

* 10.3 1 ,NE N n E o    

and

   1 *0.2 .Var N n o  

Table 5.16 below present the simulation and asymptotic results for N at 0.5  and m  5, 15, 20.

We see the same pattern as in the previous case. Provided m and
*n are not too close, we see that N

has a small negative bias but this is well captured by the asymptotic result. However, the asymptotic

standard deviation underestimates the true variability in N, especially when m = 5.

*n  5sN  15sN  20sN  E N  .s d N  5ssd N  15ssd N  20ssd N

24 23.05 15.24 20.00 23.9 3.0984 4.9817 1.9566 0.0000
43 42.35 42.52 38.15 42.9 4.1473 5.7319 5.5457 11.3579
61 60.52 60.77 60.73 60.9 4.9396 6.2733 5.4940 5.5958
76 75.52 75.82 75.77 75.9 5.5136 6.8513 5.9743 5.9549
96 95.60 95.76 95.80 95.9 6.1968 7.3638 6.6440 6.5669
125 124.62 124.86 124.80 124.9 7.0711 8.2198 7.4689 7.4130
171 170.65 170.86 170.82 170.9 8.2704 9.4713 8.6022 8.6216
246 245.64 245.78 245.83 245.9 9.9197 11.0600 10.2582 10.1725
500 499.69 499.86 499.89 499.9 14.1421 15.4454 14.5423 14.3878

Table 5.16: Comparison between the simulated estimates of  E N and standard deviation of N

with the asymptotic results for underlying  0,1U as *n increases and at 5,15,20m  and 0.5 

To illustrate the effect of increasing  on the performance of the actual sample size N we consider

Figure 5.2 at 15m  . We noticed
*N n (early stopping on average) occurs at 0.3  and 0.5 and

the absolute bias *N n is larger at 0.3  . While at 0.8  we noticed that
*N n for all

* 43n  .
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Figure 5.2: The simulated estimates of  E N for underlying  0,1U as the optimal sample size

increases at 15m  and 0.3,0.5,0.8 

5.3.3 The t distribution

From    5.3 5.4 the mean and variance of N when the underlying distribution is t with 5r 

degrees of freedom are

     
1

* 13 1 ,NE N n E o    

and

     
1 *2 .Var N n o 


 

At 25r  , the mean and variance are

       
1

* 16 7 1 ,NE N n E o    

       
1 *4 7 .Var N n o 


 

At 100r  , the mean and variance are

       
1
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      
1 *33 64 .Var N n o 


 
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Clearly, for a fixed and as r increases, the variance of N decreases. Tables 5.17, 5.18 and 5.19

show the simulation results for r  5, 25 and 50 respectively. From Table 5.10 we observe early

stopping behaviour:
*N n for all values of

*n , while the magnitude of the bias decreases as the m

increases. Similar behaviour occurs at r  25 and 50. Also, note that *N n decreases as r

increases. We see from these tables that the differences between the simulation estimates of N and the

corresponding asymptotic values are: for 5, 15r m  , it is 2.35 and for 5, 20r m  it is 1.97,

while for 25, 15r m  and 20 it is 0.156 and finally for 50, 15r m  it is 0.012 and at r  50 ,

m  20 it is 0.108. This indicates that better estimates occur as r increases and at 15m  . Similar

arguments can be said regarding the ratio between the simulation standard deviation and the

asymptotic standard deviation.

*n  5sN  15sN  20sN  E N  .s d N  5ssd N  15ssd N  20ssd N

24 20.88 17.33 20.32 18.5 9.7980 8.1961 6.3670 2.8087
43 39.66 38.65 34.20 37.5 13.1150 11.7470 12.2199 14.6013
61 57.66 57.65 57.04 55.5 15.6205 14.8871 12.7521 14.1375
76 72.68 72.70 72.73 70.5 17.4355 16.8409 14.3761 14.2860
96 92.72 92.81 92.69 90.5 19.5960 18.7890 16.6569 16.2441
125 121.86 121.68 121.75 119.5 22.3607 22.2898 19.6488 18.6857
171 167.80 167.73 167.60 165.5 26.1535 26.9987 23.2992 23.4483
246 243.19 242.64 242.50 240.5 31.3687 33.3313 28.6809 28.3670
500 498.39 496.85 496.47 494.5 44.7214 54.2577 43.3122 42.6409

Table 5.17: Comparison between the simulated estimates of  E N and standard deviation of N

with the asymptotic results for underlying  5t as *n increases and at 5,15,20m  and 0.5 

*n  5sN  15sN  20sN  E N  .s d N  5ssd N  15ssd N

24 22.02 16.53 20.00 22.786 5.2373 6.6946 4.9066 0.2985
43 41.09 40.94 36.14 41.786 7.0103 8.6156 9.2562 13.3169
61 59.18 59.60 59.34 59.786 8.3495 10.0753 9.0494 9.8421
76 74.27 74.65 74.61 74.786 9.3197 11.2199 9.9038 9.9304
96 94.26 94.66 94.70 94.786 10.4744 12.4200 11.0795 10.9013
125 123.27 123.67 123.67 123.786 11.9522 13.8983 12.4741 12.4428
171 169.49 169.72 169.73 169.786 13.9797 16.0288 14.4569 14.3819
246 244.54 244.71 244.72 244.786 16.7674 19.1620 17.5697 17.3608
500 498.77 498.63 498.63 498.786 23.9045 27.3455 24.7271 24.5377

Table 5.18: Comparison between the simulated estimates of  E N and standard deviation of N

with the asymptotic results for underlying  25t as *n increases and at 5,15,20m  and 0.5. 

 20ssd N
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24 22.14 16.48 20.00 22.902 5.0562 6.5499 4.8250 0.2625
43 41.20 41.05 36.31 41.902 6.7679 8.4957 8.9946 13.1400
61 59.31 59.64 59.46 59.902 8.0608 9.8128 8.7839 9.4170
76 74.40 74.70 74.74 74.902 8.9975 10.7159 9.6140 9.5822
96 94.39 94.76 94.88 94.902 10.1124 11.8632 10.7253 10.5618
12 123.56 123.69 123.83 123.902 11.5392 13.3943 12.1143 11.9873
17 169.43 169.79 169.84 169.902 13.4965 15.6862 14.1161 13.9649
24 244.47 244.84 244.68 244.902 16.1878 18.6126 16.8774 16.6869
50 498.62 498.89 499.01 498.902 23.0782 26.2615 23.7602 23.5959

Table 5.19: Comparison between the simulated estimates of  E N and standard deviation of N

with the asymptotic results for underlying  50t as *n increases and at m  5, 15, 20 and 0.5. 

To show the effect of increasing on the performance of the actual sample size , we consider

Figures 5.3, 5.4 and 5.5.

We noticed that for and 50 we have the following: at and an early stopping

occurs, while at , is over estimating , and the amount of decreases as
*n

increases.

Figure 5.3: The simulated estimates of for underlying as the optimal sample size

increases at and .
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Figure 5.4: The simulated estimates of for underlying as the optimal sample size

increases at and .

Figure 5.5: The simulated estimates of for underlying as the optimal sample size

increases at and .
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5.3.4 Beta distribution

From the mean and variance of when the underlying distribution is beta  2,3 are

respectively

and

Table 5.20 below presents the simulation and asymptotic results for N at 0.5  and m  5, 15, 20.

Regarding the simulation results we have seen same pattern as in the previous cases. Also Table 5.20

shows the comparison between the simulation results and the asymptotic results and similar

arguments can as stated as in the previous cases, but note here that the difference between the

simulation estimates of  E N and its asymptotic value is 0.072 at and 0.122 at .

The asymptotic standard deviation underestimates the simulated standard deviation for all values of

m , especially at 5m  .

24 22.63 15.78 20.00 23.482 4.0356 5.8212 3.5015 0.0000
43 41.78 41.80 37.19 42.482 5.4017 7.1659 7.3627 12.3679
61 59.94 60.28 60.15 60.482 6.4337 8.0981 7.1384 7.5738
76 75.04 75.28 75.37 75.482 7.1813 8.7097 7.8482 7.7167
96 95.06 95.29 95.34 95.482 8.0711 9.5590 8.6209 8.5836
12 124.09 124.36 124.41 124.482 9.2099 10.7197 9.7016 9.7204
17 170.06 170.32 170.45 170.482 10.7720 12.2948 11.3156 11.2078
24 245.20 245.30 245.41 245.482 12.9201 14.6145 13.4678 13.3914
50 499.12 499.41 499.36 499.482 18.4197 20.5264 18.9885 18.8657

Table 5.20: Comparison between the simulated estimates of  E N and standard deviation of N

with the asymptotic results under beta as increases and at and 0.5. 

Figure 5.6 shows the effect of increasing  on the performance of N . Similar arguments as before
can be said here.

 2,3

   5.3 5.4 N

       
1

* 157 112 1 ,NE N n E o    

       
1 *19 56 .Var N n o 


 

15m  20m 

*n  5sN  15sN  20sN  E N  .s d N  5ssd N  15ssd N  20ssd N

 2,3 *n 5,15,20m 
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Figure 5.6: The simulated estimates of  E N for underlying beta as the optimal sample size

increases at and .

5.3.5 Exponential distribution with mean one

From    ,5.3 5.4 the mean and variance for when the underlying distribution is exponential

with mean one are respectively,

and

To show the performance of the simulated estimates of the actual sample size N at   0.5 while

m  5, 15 and 20 and compare the results with the asymptotic values we consider Table 5.21 From

Table 5.21 we see that for all values of and . However, the case of the underlying

exponential distribution is different from the previous distributions because here we see that as

increases, so increases which is opposite to the previous distributions.

We see that the differences between the simulated and asymptotic values of  E N are relatively

small. However, the asymptotic standard deviation tends to underestimate the variability, especially

when m = 5.
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24 19.05 18.00 20.46 18.5 9.7980 9.4548 7.1087 3.2374
43 37.36 36.70 33.97 37.5 13.1149 14.9365 14.2833 15.2229
61 55.27 55.42 54.51 55.5 15.6205 18.5862 16.2180 17.5464
76 70.43 70.67 70.40 70.5 17.4356 21.2979 18.1126 18.1727
96 90.82 90.71 90.50 90.5 19.5959 24.3286 20.4415 19.9214
125 119.63 119.59 119.70 119.5 22.3607 28.1069 23.3593 22.9483
171 166.33 165.67 165.69 165.5 26.1534 33.7398 27.6396 27.0486
246 241.72 241.02 240.62 240.5 31.3688 41.0723 33.5526 32.7117
500 497.95 495.23 495.16 494.5 44.7214 62.3749 48.7127 47.2864

Table 5.21: : Comparison between the simulated estimates of and standard deviation of N

with the asymptotic results under as increases and at and 0.5. 

Figure 5.7 shows the performance of the simulated extimates of for selected values of and .

We see that at , for all values of and the bias of decreases as
*n increases.

However, at we see that *N n for and the bias tends to decrease as
*n increases.

But, the procedure takes more time to overcome such behaviour
*N n for large values of , and

this delay goes to the sharp skewness and high kurtosis of the exponential distribution.

Figure 5.7: The simulated estimates of for underlying as the optimal sample size

increases at and .
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5.4 The asymptotic distribution of the actual sample size

In Theorem 3.3.4 we proved that the asymptotic distribution of is a standard normal distribution.

To investigate the rate of convergence to normality, we ran a FORTRAN program using the IMSL

library at , and all values of as mentioned before. For each of 1000 replicates and

for a specific value of the program runs the triple sampling procedure and stores the stopping

sample size in a vector. At the end for each value of we will have 1000 replicate samples from the

actual sample size . To check the normality of these samples we used two standard goodness of fit

tests for normality: the Anderson-Darling (AD) test and the Kolomogorov-Smirnov (KS) test. The

sample mean, sample standard deviation, sample skewness and sample kurtosis were also recorded for

each .

5.4.1. Standard normal distribution

Table 5.22 shows the p-values for tests of normality of when the underlying distribution is

standard normal and with , and *n  76, 96, 125, 246 and 500 using the AD and KS

tests. It also shows the basic descriptive measures of the distribution of at each value of : sample

mean, sample standard deviation, sample skewness and sample kurtosis.

76 75.005 9.214 -0.24 3.39 <0.005 >0.150

96 94.707 10.404 -0.33 3.15 <0.005 <0.01

125 124.170 11.68 -0.15 2.91 0.005 0.071

171 169.900 13.60 -0.20 3.37 0.031 >0.150

246 243.840 17.24 -0.20 3.66 0.061 >0.150

500 498.260 23.07 -0.05 2.99 0.255 > 0.150

Table 5.22: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying as the

optimal sample size increases.

Figure 5.8 shows the normal probability plot of the simulated values of when the underlying

distribution is standard normal at . We proceed our conclusions by using AD test rather than

KS test, since KS test is not sensitive to the presence of outliers in the tails. Now by using AD test the

p – value is 0.225 and hence we have a good evidence that our data follows the normal distribution,

though the evidence for normality is much weaker for smaller values of
*n , so convergence to

normality appears to be slow.

N
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0.5  15m  *n
*n
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Figure 5.8. Normal probability plot of the actual sample size N for underlying distribution  0,1N

using AD test at *n =500,   0.5 and 15m  ; p – value = 0.255.

5.4.2. Standard uniform distribution

Similarily, Table 5.23 shows the p-values for tests of normality of when the underlying

distribution is standard uniform and with , and *n  76, 96, 125, 246 and 500 using

the AD and KS tests. It also shows the basic descriptive measures of the distribution of at each

value of : sample mean, sample standard deviation, sample skewness and sample kurtosis.

76 75.859 5.893 -0.310 3.070 < 0.005

96 95.676 6.681 -0.330 3.310 < 0.005 0.132

125 124.95 7.47 -0.180 3.340 0.011

171 171.28 8.49 -0.360 3.630 < 0.005 0.029

246 246.02 10.10 -0.260 3.310 < 0.005

500 500.10 14.69 -0.150 3.160 0.042

Table 5.23: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying  0,1U as the

optimal sample size increases.

Figure 5.9 below shows the normal probability plot of the simulated estimates of N when the

underlying distribution is standard uniform at *n  500. By using AD test the p – value is 0.042,

which means that normality is rejected. However, the plot shows that the extent of the departure from

normality is perhaps rather small.
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Figure 5.9. Normal probability plot of the actual sample size N for underlying distribution  0,1U

using AD test at *n =500,   0.5 and 15m  ; p – value = 0.042.

5.4.3. The distribution

Similarily, Table 5.24 shows the p-values for tests of normality of when the underlying

distribution is  5t and with , and *n  76, 96, 125, 246 and 500 using the AD and

KS tests. It also shows the basic descriptive measures of the distribution of at each value of :

sample mean, sample standard deviation, sample skewness and sample kurtosis.

76 72.952 13.797 0.53 5.11 <0.005 <0.01

96 92.600 17.419 2.53 33.75 <0.005 <0.01

125 121.36 19.310 0.89 7.93 <0.005 <0.01

171 168.64 22.940 0.77 5.67 <0.005 <0.01

246 243.10 29.200 1.82 15.53 <0.005 <0.01

500 499.01 48.670 3.07 30.64 <0.005 <0.01

Table 5.24: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying  5t as the optimal

sample size increases.

Figure 5.10 below shows the normal probability plot of the simulated estimates of N when the

underlying distribution is  5t at *n  500. By using AD test the p- value is less than 0.005. The

extreme outliers in the upper tail are clear. Thus, convergence to normality is very slow.
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Figure 5.10. Normal probability plot of the actual sample size N for underlying distribution  5t

using AD test at *n =500,   0.5 and 15m  ; p – value < 0.005.

Similarily, Table 5.25 shows the p-values for tests of normality of when the underlying

distribution is  25t and with , and *n  76, 96, 125, 246 and 500 using the AD and

KS tests. It also shows the basic descriptive measures of the distribution of at each value of :

sample mean, sample standard deviation, sample skewness and sample kurtosis.

76 75.123 9.642 -0.26 3.16 <0.005 0.039

96 94.035 11.201 -0.46 3.78 <0.005 <0.01

125 124.09 12.470 -0.14 3.27 0.245 >0.150

171 169.80 14.280 -0.10 3.43 0.123 >0.150

246 244.70 18.410 -0.13 3.36 0.029 0.107

500 499.49 25.760 -0.11 3.04 0.159 0.118

Table 5.25: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying  25t as the

optimal sample size increases.

Figure 5.11 shows the normal probability plot of the simulated estimates of N at n*=500 when the

underlying distribution is  25t at *n  500. Clearly the normality of N seems plausible here.
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Figure 5.11. Normal probability plot of the actual sample size N for underlying distribution  25t

using AD test at *n =500,   0.5 and 15m  ; p – value = 0.159.

Similarily, Table 5.26 shows the p-values for tests of normality of when the underlying

distribution is  50t and with , and *n  76, 96, 125, 246 and 500 using the AD and

KS tests. It also shows the basic descriptive measures of the distribution of at each value of :

sample mean, sample standard deviation, sample skewness and sample kurtosis.

76 75.279 9.329 -0.25 3.20 <0.005 <0.01

96 94.822 10.802 -0.20 3.22 0.009 0.097

125 124.00 12.36 -0.20 3.34 0.01 <0.01

171 170.39 14.01 -0.25 3.43 <0.005 0.033

246 245.63 16.63 -0.14 3.18 0.044 >0.150

500 499.27 23.16 -0.10 3.08 0.577 >0.150

Table 5.26: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying  50t as the

optimal sample size increases.

As expected, the higher value of r , the nearest the kurtosis to the normal distribution, and thus more

acceleration to normality. Figure 5.12 shows the normal probability plot for the simulated estimates of

N at *n = 500. By using AD test the p – value is 0.577. Clearly the normality is strong here.
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Figure 5.12. Normal probability plot of the actual sample size N for underlying distribution  50t

using AD test at *n =500,   0.5 and 15m  ; p – value = 0.577.

5.4.4. Beta distribution

Similarily, Table 5.27 shows the p-values for tests of normality of when the underlying

distribution is beta  2,3 and with , and *n  76, 96, 125, 246 and 500 using the AD

and KS tests. It also shows the basic descriptive measures of the distribution of at each value of :

sample mean, sample standard deviation, sample skewness and sample kurtosis.

76 75.216 7.893 -0.6 3.95 <0.005 <0.01

96 95.202 8.680 -0.36 3.53 <0.005 0.148

125 124.66 9.72 -0.23 3.04 <0.005 0.037

171 169.98 11.22 -0.27 3.90 <0.005 0.039

246 245.22 13.68 -0.28 3.20 <0.005 0.064

500 499.20 20.33 -0.10 2.91 0.195 >0.150

Table 5.27: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying beta  2, 3 as the

optimal sample size increases.

Figure 5.13 shows the normal probability plot for the simulated estimates of N at *n  500. By using

AD test the p – value is 0.195, so we have a satisfactory evidence for normality here.

 2,3

N

15m  0.5 

N *n

*n N  . .s d N   ADP KSP
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Figure 5.13. Normal probability plot of the actual sample size N for underlying distribution beta

 2,3 using AD test at *n =500,   0.5 and 15m  ; p – value = 0.195.

5.4.5. Exponential distribution with mean one

Similarily, Table 5.28 shows the p-values for tests of normality of when the underlying

distribution is  1Exp and with , and *n  76, 96, 125, 246 and 500 using the AD

and KS tests. It also shows the basic descriptive measures of the distribution of at each value of :

sample mean, sample standard deviation, sample skewness and sample kurtosis.

76 70.205 17.853 -0.20 3.58 <0.005 >0.150

96 91.135 20.012 0.27 3.35 <0.005 0.062

125 120.11 23.280 -0.15 3.51 <0.005 0.033

171 167.00 28.440 0.02 3.48 0.321 >0.150

246 240.77 33.990 0.56 6.61 0.028 >0.150

500 493.90 48.360 0.19 3.81 <0.005 0.06

Table 5.28: The Descriptives: mean, standard deviation, skewness and kurtosis and the p –values for

the AD and KS statistic for testing the asymptotic normality of N for underlying  1Exp as the

optimal sample size increases.

Figure 5.14 below shows the normal probability plot of the simulated estimates of N for underlying

exponential distribution at *n  500. By using AD test the p – value is less than 0.005. Note the non-

normal tail behaviour. Clearly convergence to normality is slow.

N

15m  0.5 

N *n

*n N  . .s d N   ADP KSP
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Figure 5.14. Normal probability plot of the actual sample size N for underlying distribution  1Exp

using AD test at *n =500,   0.5 and 15m  ; p – value < 0.005.

5.5 The behaviour of the asymptotic regret

From Theorem 4.2.1 the asymptotic regret of the triple sampling procedure under the

squared error loss function as A  is

            
1

1
.5.5 4 13 1 NC C C E oA   


     

As stated in Chapter IV, the asymptotic regret depends mainly on the kurtosis of the underlying

distribution. Moreover  1

0
lim
c

C A


  , which means that the triple sampling procedure with

 5.5 have asymptotically second order risk efficient. Equation  5.5 means that the regret due to

using the triple sampling procedure presented in    2.1 2.2 in ignorance of the population

variance is bounded above by the quantity as

. That is in the limit, one loses at most the cost of

observations when using the stopping rule  2.2 instead of the optimal fixed sample size.

Woodroofe (1977) showed that the regret in estimating the normal mean by using the one-by-one

purely sequential procedure under the loss function given in  4.1 is as . In

other words, for normal data the asymptotic regret is half the cost of a single observation. Martinsek

(1983) extended Woodroofe’s result to the non-parametric case (distribution free), showing that the

asymptotic regret of using the one-by-one purely sequential procedure instead of the optimal fixed

   2.2 2.3

 4.1

         
1

1
3 1 4 1NC C CE o   


     

m       
1

1
3 1 4 NC C CE   


    

 1 2 1o   A 
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sample size procedure is , as . He further extended his

results to a more general loss function given by

.

He showed that under this loss function, the asymptotic regret in using the one-by-one purely

sequential procedure instead of the optimal fixed sample size procedure is

, as .

See Martinsek (1988) for details.

Martinsek (1988) argued that the early stopping phenomenon may cause negative regret, and in this

case the triple sampling sequential procedure could perform better estimation than the optimal.

Negative regret occurs when the triple sampling sequential risk is less than the optimal risk, and may

be due to the dependency between and . For more details about negative regret, see Martinsek

(1988) and Takada (1992).

In our case we can expect negative regret when , provided that .

We now compare the regret from the main simulation experiment and the asymptotic regret at

and m  5, 15 and 20 for the same class of distributions as before. Each table given below

includes and , where  s m is the simulated regret at the initial sample size , and

is the asymptotic regret.

5.5.1 Standard normal distribution

From the asymptotic regret under the normal optimal fixed sample size and taking is

Thus the asymptotic regret is bounded by a finite non-vanishing positive quantity ,

which depends on . In particular at the regret is at most 1.5 times the cost of one

observation.

Table 5.29 illustrates the effect of on the regret as the optimal sample size increases.

 22.75 0.75 2 1o      A

   
21 , 0, 0b

n n
L A n A bA X    

        22 11 34 1b b obb       A

N NX

   14 1 4 1     1 4 

0.5 

 s m  m 

 5.5 1C 

   
1

2 1 2 1 .o 


  

 
1

2 1 2



 0.5 

m
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24 5.0388 5.2289 0.7149 1.5
43 4.0344 3.6876 10.3735 1.5
61 2.5455 1.1441 2.3210 1.5
76 2.0155 1.0326 2.2575 1.5
96 0.7541 1.1022 1.6784 1.5
125 1.9341 0.9575 1.5963 1.5
171 2.6415 2.1620 2.0388 1.5
246 2.2415 0.7743 2.5890 1.5
500 3.6976 -0.0303 0.3383 1.5

Table 5.29: Comparison between the simulated estimates of the regret and the asymptotic regret for

underlying at and

The asymptotic regret values at  0.3, 0.5 and 0.8 are respectively  2.166667, 1.5 and 1.125.

The reason of having simulated regret far from the asymptotic value goes to the fact that our chosen

optimal sample sizes are not large enough to ensure the limiting regret. But, still we have a non-

vanishing regret with small quantities and not in a disordered manner.

5.5.2 Standard uniform distribution

From  5.5 the asymptotic regret for underlying standard uniform distribution and under the normal

optimal fixed sample size and taking is

The above equation states that the asymptotic regret is bounded by a finite non-vanishing positive

quantity that depends on  and . At the asymptotic regret is

Table 5.30 shows the behaviour of the regret at 0.5  and as increases and the asymptotic regret.

24 11.3524 5.4707 0.5572 2.1
43 6.6890 5.2190 15.6292 2.1
61 4.9614 2.9704 2.5278 2.1
76 4.6738 2.1537 2.3136 2.1
96 2.4396 1.7100 2.6052 2.1
125 2.9169 1.2865 0.9192 2.1
171 0.7481 1.4656 2.1333 2.1
246 2.3900 5.9230 3.8632 2.1
500 4.1204 7.6406 1.4336 2.1

Table 5.30: Comparison between the simulation estimates of the regret and the asymptotic regret for

underlying at and

*n  5s  15s  20s 

 0,1N 5,15,20m  0.5 

1C 

   
1

11.2 0.2 1 .NE o     

 
1NE  0.5  2.1. 

m

*n  5s  15s  20s 

 0,1U 5,15,20m  0.5 
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The asymptotic regret at 0.3  and 0.8 are respectively and 1.95.

5.5.3 The t distribution

From the asymptotic regret for underlying t distribution and under the normal optimal fixed

sample size and taking at and 50 are respectively,

,

,

and

.

Clearly the regret depends on both the design factor and on . The asymptotic regret values

at and and 50 are -1.5 , 1.35714285 and 1.4347826 respectively. We noticed that

as increases the regret values also increases, and this agree to the fact that as increases we get

closer to the normal distribution which have a positive regret.

Tables 5.31, 5.32 and 5.33 show the behaviour of the regret as increases and also as increases.

24 2.5043 2.1192 -0.1202 -1.5
43 2.0134 1.6830 5.5412 -1.5
61 1.6291 0.7942 1.4883 -1.5
76 1.8168 0.5190 0.2072 -1.5
96 1.4098 0.0544 0.1309 -1.5
125 0.7889 0.3386 -0.4909 -1.5
171 -0.1928 -1.4392 -0.4245 -1.5
246 0.2370 -1.8762 -1.9978 -1.5
500 -1.7375 4.4777 -0.7673 -1.5

Table 5.31: Comparison between the simulated estimates of the regret and the asymptotic regret for

underlying distribution at and

2.366667 

 5.5

1C  5,25r 

   
1

16 2 1NE o      

     
1

12 7 4 7 1NE o      

     
1

13 23 49 92 1NE o      

  
1NE 

0.5  5,25r 

r r

m r

*n  5s  15s  20s 

 5t 5,15,20m  0.5 
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24 4.6844 5.0694 0.9021 1.3571
43 3.6912 3.9828 9.0250 1.3571
61 2.7728 1.3662 2.5277 1.3571
76 1.7548 1.0648 1.4274 1.3571
96 2.2458 2.1484 0.8447 1.3571
125 1.9584 1.4517 1.3883 1.3571
171 0.2642 0.0084 2.1650 1.3571
246 -0.9581 1.4579 -0.2633 1.3571
500 -0.0232 1.5594 6.2678 1.3571

Table 5.32: : Comparison between the simulated estimates of the regret and the asymptotic regret for

underlying distribution at and

24 4.8482 4.8474 0.8401 1.4348
43 3.9371 3.6657 9.0564 1.4348
61 2.9058 1.0596 2.6648 1.4348
76 3.2878 0.7468 1.2739 1.4348
96 1.8918 1.6086 0.5378 1.4348
125 2.0669 2.1794 0.3645 1.4348
171 0.9446 0.9590 1.2998 1.4348
246 1.2752 4.1042 3.1244 1.4348
500 4.7263 1.0304 5.6271 1.4348

Table 5.33: : Comparison between the simulated estimates of the regret and the asymptotic regret for

underlying distribution at and

5.5.4 Beta distribution

From the asymptotic regret under the normal optimal fixed sample size and taking

.

Similarily the asymptotic regret depends on and on the value of . In particular at

the asymptotic regret is .

Table 5.34 shows the effect of increasing the initial sample size on the performance of the regret

as the optimal sample size increases. Clearly, the simulated estimates of the regret are all positive.

The regret values at 0.3  and 0.8 are respectively 2.2738095 and 1.5669643.

*n  5s  15s  20s 

 25t 5,15, 20m  0.5 

*n  5s  15s  20s 

 50t 5,15, 20m  0.5 

 2,3

 5.5 1C 

     
1

19 14 19 56 1NE o     

  
1NE  0.5 

1.821428572

m
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24 7.8013 5.1932 0.6887 1.8214
43 5.2428 5.6713 13.3263 1.8214
61 4.0645 2.5505 3.2058 1.8214
76 3.8069 1.8228 3.0726 1.8214
96 3.5709 1.3700 2.8478 1.8214
125 3.6107 1.2696 1.4720 1.8214
171 2.8993 2.1447 1.3234 1.8214
246 2.4580 0.2243 4.0616 1.8214
500 1.1577 -0.3856 3.6948 1.8214

Table 5.34: Comparison between the simulated estimates of the regret and the asymptotic regret for

underlying beta at and

5.5.5 Exponential distribution with mean one

From  5.5 the asymptotic regret under the normal optimal fixed sample size and taking

.

The above equation states that the limiting regret is bounded by a non vanishing negative quantity

regardless the value of  and the value of . In particular at the asymptotic regret is

. Therefore, one would expect negative regret values.

From Table 5.35 we noticed mostly positive values and little negative values of the regret. The reason

behind this is due to the large value of the kurtosis and the optimal sample sizes are not large

enough. We may also add that the convergence is from above (i.e. through positive values of regret).

This indicates that the sequential procedures are risky as the optimal fixed sample size procedure.

24 17.7940 -1.7872 -0.7321 -1.5
43 32.3492 17.3048 6.4769 -1.5
61 32.0484 22.4790 25.3587 -1.5
76 32.2888 18.6754 23.0115 -1.5
96 26.3778 14.0712 15.7395 -1.5
125 23.7438 11.8602 10.3143 -1.5
171 16.7938 8.7925 8.7394 -1.5
246 10.2735 9.2764 9.0376 -1.5
500 13.6584 7.3364 4.0084 -1.5

Table 5.35: : Comparison between the simulated estimates of the regret and the asymptotic regret for

underlying at and

Finally, the asymptotic regret at 0.3  and 0.8 are respectively 1.16667 and -3.

*n  5s  15s  20s 

 2,3 5,15, 20m  0.5 

1C 

   
1

16 2 1NE o      

 
1NE  0.5 

1.5

9 

*n  5s  15s  20s 

 1Exp 5,15, 20m  0.5 
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It is now clear that the triple sampling procedures with normal stopping rule can result extremely

accurate estimates of the targeted parameters with non normal underlying distributions.

5.6 The probability of early stopping

We also estimated the probability of early stopping in our simulation. During the simulations we

calculated the number of times the triple sampling procedure stops at the first stage, second stage and

third stage. Then we calculated the relative frequency of terminating the procedure at each stage. In

the tables in Appendix B we denote the estimated probabilities of stopping at the first, second and

third stages as ,  1p N and  p N respectively. Note that the sum of these probabilities is

equal to one.

When the underlying distribution is uniform, if the design factor is less than 0.5 and for small

starting sample sizes , the procedure tends to terminate at the first or third stage. However, for fixed

, as m increases, the procedure terminates at the third stage almost surely for large values of (

  ). As increases, the probability of stopping at the second stage increases with .

Specifically, when the initial sample size increases to 20 and at  0.5 and 0.8 the procedure

terminates at the third stage almost surely.

When the underlying distribution is exponential, the triple sampling exhibits almost the same pattern

except that the convergence to one of is slower than in the case of the uniform distribution.

This could be due to the skewness of the exponential distribution, see Appendix B for all

distributions.

The Tables in Appendix B support our conjecture regarding the almost sure termination of the triple

sampling procedure at the third stage, see, chapter III, Theorem 3.2.2.2.

5.7 Investigation of the asymptotic distribution of

In the main simulation experiment we also investigated the distribution of the rounded off portion of

the final stage sample size . Hall (1981) proved that the random variable that appears in our

Theorem 3.2.2.2 is asymptotically uniform over as . His proof only works if the

underlying distribution is normal. A generalization of Hall’s result to other underlying distributions is

not currently available. Meanwhile, we have tested the distribution of the continuous part of the final

stage during simulation for a particular combination of and . We saved the values of

for each replicate. The Kolmogorov-Smirnov test (KS) was used to test the simulated values for

uniformity.

Tables C1, C2 and C3 in Appendix C, give summary statistics regarding the distribution of the

random variable under three different classes of distributions: normal, uniform and exponential at

and m  5, 15 and 20.

From Tables C1, C2 and C3 with and , the p – values of the KS statistic are 0.154,

0.303 and 0.439 respectively for the three underlying distributions. Thus, asymptotic uniformity over

a range of underlying distributions seems plausible. Further, in Theorem 3.2.2.2 we have  
1NE  is

 p m


m

 *n

 m

 p N

1N

N
1N

 0,1 *n 

, ,m  *n
1N

1N

1N

0.5 

15m  * 500n 
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equal to      1 1
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. In all the simulations this value was close to 0.5. More

details concerning the behaviour of the distribution of at and can be found in

Appendix C.

Before we end up this chapter we would like to show the performance of but the method for larger

values of n*. We consider here *n  500, 1000, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 and for

brevity only three underlying distributions: normal, uniform and exponential. Tables 5.29, 5.30 and

5.31 show the effect of increasing the optimal sample size on the performance at 15m  and 0.5 

. In particular they show the behaviour of N, NX and the regret at the above values of
*n . We see

excellent performance for all estimates in comparison with the previous selection of
*n . Moreover the

regret here is mostly negative for all the above underlying distributions. This indicates that the triple

sampling procedure performs better than the fixed sample size procedure for large values of
*n .

*n  15sN   15s  0.5ssd  15s

500 498.92 23.2551 0.000109 0.0447214 0.486

1000 999.04 32.6466 0.000122 0.0315286 -6.474

2000 1998.94 46.2866 -0.000040 0.0223607 -14.264

2500 2499.21 51.2060 -0.000103 0.0199010 -34.768

3000 2998.97 56.3489 -0.000061 0.0181122 -41.039

3500 3498.81 61.2683 -0.000002 0.0167705 -62.163

4000 3999.19 65.2932 -0.000078 0.0156525 -112.354

4500 4499.31 69.5417 -0.000076 0.0147580 -124.769

5000 4999.23 73.1194 -0.000039 0.0138636 -143.308

Table 5.36: Large sample performance for all estimates when the underlying distribution is  0,1N

and 15, 0.5.m  

*n  15sN   15s  0.5ssd  15s

500 499.84 14.5344 0.500138 0.0129692 -1.6559

1000 999.80 20.3482 0.499971 0.0091679 5.7754

2000 1999.99 28.8453 0.499989 0.0064846 -31.9243

2500 2499.80 31.9758 0.499978 0.0058138 -13.7676

3000 2999.81 35.5535 0.499989 0.0051430 -60.8281

3500 3499.81 38.0132 0.500016 0.0049193 -56.5469

4000 4000.00 40.6964 0.499992 0.0044721 -18.3623

4500 4499.98 42.9325 0.500011 0.0042485 -49.5195

5000 4999.69 45.3922 0.500009 0.0040249 -72.9023

Table 5.37: Large sample performance for all estimates when the underlying distribution is  0,1U

and 15, 0.5.m  

1N 5m  20m 

 15ssd N

 15ssd N
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*n  15sN   15s  0.5ssd  15s

500 494.94 48.299 0.997648 0.0451686 6.024

1000 995.59 69.989 0.998916 0.0317522 2.384

2000 1996.58 100.847 0.999557 0.0223607 -18.247

2500 2496.27 113.369 0.999623 0.0199010 -22.274

3000 2997.85 127.009 0.999733 0.0181122 -38.203

3500 3497.97 135.953 0.999742 0.0167705 -70.302

4000 3997.72 146.239 0.999720 0.0156525 -41.623

4500 4498.20 154.512 0.999901 0.0147580 -130.177

5000 4998.80 168.152 0.999914 0.0140872 -76.789

Table 5.38: Large sample performance for all estimates when the underlying distribution is  1Exp

and 15, 0.5.m  

We prefer the asymptotically negative regret values if they provide better estimates because this

indicate that the triple sampling procedure does better than the fixed sample size . Otherwise they may

delay the procedure and cause early stopping and consequently obtain bad estimates.

 15ssd N
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Chapter VI

Triple Sampling Fixed Width Confidence Intervals for the Population

Mean

6.1 Introduction

As before we assume nothing about the underlying distribution except that the first six moments are

finite. The objective of this chapter is to construct a fixed width confidence interval for the population

mean using the triple sampling procedure as presented in . The approach used here

involves using second order Edgeworth approximations. Moreover, we will find the coverage

asymmetric and symmetric confidence intervals. Then we will discuss the sensitivity of triple

sampling fixed width confidence intervals to shifts in the population mean.

In the next section we shed light on some characteristics of the Edgeworth expansion and its

limitations.

6.2 Edgeworth asymptotic expansion

Let be a collection of random variables drawn from the distribution function

, with finite population mean and variance . Let , where

. Then by the central limit theorem , for every fixed

and is the standard normal cumulative distribution function.

Cramer’s Condition

A cumulative distribution function defined over satisfies Cramer’s condition if

.

Remark

All absolutely continuous distribution functions satisfy Cramer’s condition.

The Two-term Edgeworth Expansion Theorem (see, DasGupta 2008) is
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Theorem 6.1.1 (Two-term Edgeworth Expansion)

Suppose the distribution function, satisfies Cramer’s condition and . Then

uniformly in and as , where and are the standard normal density and

distribution functions, and

Proof: See Kokic et al. (1990) and Hall (1992) for the proof.

Note that and are called the skewness and kurtosis corrections of the underlying distribution

function. The Edgeworth expansion is an improvement over the central limit theorem, which fails to

take account of the skewness in the distribution of the sample mean of a given finite sample of size .

Expanding successive terms will capture both the skewness and the kurtosis of the underlying

distribution. Using further terms in the expansion may cause it to become unstable because of the

presence of higher order polynomials. We therefore restrict our expansion to the first two terms. The

error of the leading term in the expansion, the standard normal density, is of provided that

. This suggests that convergence to normality is relatively slow, especially in the tails of the

underlying distribution (see Barndorff-Nielsen and Cox, 1989, chapter 4). Bhattacharya et al. (1978)

mentioned that the error can be improved if one makes more stringent moment assumptions.

We must stress that the Edgeworth expansion in Theorem 6.1.1 is only an asymptotic expansion and

not a convergent series. This means that if the expansion is stopped after a specific number of terms,

then the remainder will be smaller than the last term that has been included; see Hall (1992).

From Theorem 6.1.1, by direct substitutions for and and by taking , we have

the heuristic result
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If the distribution function of an absolutely continuous random variable admits an Edgeworth

expansion, then we can obtain an expansion of the density function heuristically by differentiating

with respect to Hence the probability density function of the Edgeworth expansion is
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Equation shows how to represent a continuous probability density function in terms of

the standardized normal probability density function and which is an approximating standardized

density with the desired and . The density function in is called a standardized

Edgeworth asymptotic expansion; see Johnson et al. (1994).

The Edgeworth expansion is more useful in many applications than asymptotic series such as the

Gauss-Hermite and Gram-Charlier series. This so because first, it is directly connected to the

moments and cumulants of a probability density functions, a property that is lost in the Gauss-Hermite

series. Secondly, it is a true asymptotic expansion since the error of the approximation is controlled by

estimating the error of the expansion until the order . It is worth mentioning the disadvantage

of the Edgeworth series as an approximation to the standardized density function. It was shown by

Barton and Dennis (1952) that the Edgeworth series can give negative values for some values of .

They found the region in the plane of values of skewness and kurtosis where the density is positive.

This region was further studied by Draper and Tierney (1972) in detail using numerical methods.

They found that the validity region that ensures the Edgeworth series to represent a positive definite

and unimodal probability density function is . If the parameters are

lie outside the validity region (as we shall see in the forthcoming examples), the results may be

misleading. Furthur analytical investigations about the validity region were undertaken by Balitskaya

and Zolotuhina (1988).

The first few terms of the series are given in standard references (such as Cramer, 1957,

Abramowitz and Stegun, 1972, and Juszkiewicz et al., 1995). References for the main results on

Edgeworth expansions are Bhattacharya and Ghosh (1978), Barndorff-Nielsen and Cox (1989), Hall

(1992) and Lahiri (2003).

We now give some examples of the Edgeworth asymptotic expansion involving the uniform,

and chi-squared distributions.

6.2.1. Uniform distribution

From , the Edgeworth asymptotic expansion for the standardized uniform distribution

is

,

while the standardized uniform density function is

.
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Figure 6.1. The standardized uniform density and its Edgeworth approximation

Figure 6.1 shows that Edgeworth approximation to the standardized uniform density is poor. Note that

the kurtosis of the uniform distribution, lies outside the validity region.

6.2.2. The distribution

From , the Edgeworth asymptotic expansion for the standardized distribution is

, defined for all .

The standardized density for is

The Edgeworth expansion for depends on and clearly

To illustrate further the role of , consider and .

Case (I):

Figure 6.2 shows the poor performance of the Edgeworth series for the standardized density of the

distribution with 5 degrees of freedom. Here the kurtosis lies outside the validity region.
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Figure 6.2. The standardized density and its Edgeworth approximation

Case (II):

Figure 6.3 shows the good performance of the Edgeworth approximation for the standardized density

of the  10t . Here the skewness and the kurtosis lie inside the validity region.

Figure 6.3. The standardized density and its Edgeworth approximation
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Case (III):

Similarly, Figure 6.4 shows the good performance of the Edgeworth approximation to the

standardized density of the distribution at . Both the skewness and the kurtosis lie inside the

validity region.

Figure 6.4. The standardized density and its Edgeworth approximation

6.2.3. Chi-Squared distribution

The Edgeworth asymptotic expansion for the standardized chi-square distribution with r degrees of

freedom is

The standardized chi-squared density is

, .

The Edgeworth expansion of the chi-square distribution depends on the degrees of freedom. Note also

that .

To illustrate the effect of the increase of the degrees of freedom on the accuracy of the Edgeworth

approximation, we take and 10.
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Case (I):

Clearly, yields the case of an exponential distribution with mean two, and the Edgeworth

expansion for this case is

.

Figure 6.5. The standardized exponential density and its Edgeworth approximation

Figure 6.5 shows the poor performance of the Edgeworth expansion in the case of an exponential

distribution, and the highest order approximation behaves poorly in the upper tail and the oscillations

in the tail are more severe. Here the skewness and kurtosis, , , are both outside the

validity region.

Case (II):

This case leads to a better performance than in Case (I). Note that , , both of which

are outside the validity region. However, the value of the kurtosis is close to the upper bound

specified in the validity region.

2r 

2r 

     6 4 3 21 7 1 11
1

18 12 3 12
f x x x x x x x O

 
       

 

6543210-1

1.0

0.8

0.6

0.4

0.2

0.0

x

d
e

n
s
it

ie
s

edg

exac

Variable

2  9 

5r 

8 5  5.4 



136 | P a g e

Figure 6.6. The standardized chi-squared density with 5 degrees of freedom and its Edgeworth

approximation

Case (III):

Figure 6.7 shows the good performance of the Edgeworth approximation. Note that and

. This is a nice case where the skewness is outside the validity region but the kurtosis is

inside the validity region. Nevertheless the skewness is not large.

Figure 6.7. The standardized chi-squared density with 10 degrees of freedom and its Edgeworth

approximation
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Clearly, the Edgeworth approximations improve as r increases.

The above results illustrate how the values of the skewness and the kurtosis of the underlying

distribution determine the behaviour of the Edgeworth series.

In the following section, the Edgeworth expansion is used to describe the coverage accuracy of triple

fixed width confidence intervals for the unknown population mean. Specifically, an asymptotic

second order expansion of the coverage probability of the proposed interval is given. Then to

guarantee better coverage a triple sampling fixed width confidence interval with a controlled Type II

error is proposed, and its characteristics are assessed. Operating characteristic curves are developed to

study the effect of skewness, kurtosis and the design factor on the probability of committing a Type II

error.

6.3 The coverage probability of the triple sampling sequential procedure

In this section the main objective is to construct a fixed width confidence interval

for , where are predetermined constants, such that the

confidence coefficient is at least the nominal value percent. Assume further that a

random sample for has been observed with sample mean . Hence we construct

the required interval for the unknown mean so that the coverage probability is at least the nominal

value %. This implies that

where is the cumulative distribution function of and from which we may obtain the

necessary sample size required to satisfy the above requirements. Generally, however, investigation of

demonstrates that obtaining an explicit general form of the optimal sample size will be

troublesome for several reasons. Firstly, determination of the cutoff point requires complete

knowledge of the form of the cumulative distribution function and its inverse probability. Secondly,

explicit determination of the optimal sample size in a simple form (as required to define stopping

rules in the case of sequential sampling) may be impossible because of the difficulty of solving

for , as with the beta or gamma distributions, for example.

Let the optimal sample size takes the general form that satisfies and assume

further that the triple sampling sequential procedure is applied to construct a fixed

width confidence interval for the population mean. Then the coverage probability of the required

confidence interval is
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From Theorem 3.2.2.1 (iii), Theorem 3.3.1 and Theorem 3.3.2 we proved that NX and N are

asymptotically normal as   , moreover they are asymptotically uncorrelated as   .

Recalling the conjecture we made in Chapter 3, that is, and N are asymptotically independent as

  then this implies that the events and are asymptotically

independent as  , where is the third stage sample size of the triple sampling sequential

procedure. Moreover, Theorems 3.2.2.2, 3.2.2.3 and 3.3.1 still apply in this case. For ,

equation gives:

and therefore we can use equation to approximate and .

For simplicity, let be a random variable defined by . Thus equation yields the

following coverage

where

and

Equation shows that the coverage probability depends mainly on the values of the skewness

and kurtosis of the underlying distribution.

Hence, using Theorem 3.2.2.3 and for simplicity asymptotically, we obtain an

expression involving the skewness and kurtosis of the underlying distribution, and .
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Theorem 6.3.1

For the triple sampling procedure given by and the optimal fixed sample size

, the coverage probability of , as is

where,

and

Proof:

The proof follows from equations and and then making use of Theorem 3.2.2.3.

This completes the proof.
Theorem 6.3.1 shows that the coverage is completely determined by the values of the skewness,

kurtosis, design factor, optimal sample size and width of the interval.

In the special case where (symmetric intervals) Theorem 6.3.1 reduces to

where
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As , the coverage will be asymptotically insensitive (robust). However, for small

and also for considering symmetric intervals equation will be in the following form

where

and the coverage will be sensitive to values of the skewness and kurtosis of the underlying

distribution and also to the choice of . The coverage is asymptotically robust when the width of the

interval approaches zero, which implies that the optimal sample size goes to infinity.

As a special case, consider the normal distribution, where , and .

Equation gives

which agrees with the corresponding result in Hall (1981). The asymptotic coverage in is less

than the nominal value and approaches it from below as increases. To maintain a coverage
probability of at least the nominal value, Hall (1981) suggested taking an extra sample of size
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after termination of the triple sampling procedure to improve the coverage, as

mentioned in Chapter I.

We now obtain the asymptotic coverage for the uniform, , chi – squared and exponential

distributions.

From , the coverage when the underlying distribution is uniform, where and is

,

where

Similarly, the 100 coverage probability when the underlying distribution is is

where

while from the 100 coverage probability when the underlying distribution is chi-

squared with degrees of freedom is

where
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A special case of is the exponential distribution where . Here, taking the

asymptotic coverage is

where

To illustrate the coverage probabilities based on the Edgeworth asymptotic expansion, we take the

nominal values to be 1 0.9,0.95  and 0.99 with 0.3,0.5  and 0.8 and optimal sample sizes

and 500 respectively. We denote  Cg  as the asymptotic

coverage probability at a specific value of  . We consider the following underlying distributions:

standard normal, standard uniform, , beta and chi-squared.

6.3.1. Standard normal distribution

To illustrate the asymptotic coverage probabilities obtained by Edgeworth approximation at the above

values and n* and at 1 0.95  consider Table 6.1. The coverage probabilities based on the

Edgeworth approximation approach the nominal coverage probability from below.

Cg(0.3) Cg(0.5) Cg(0.8)

24 0.8821 0.9102 0.9260

43 0.9121 0.9278 0.9366

61 0.9233 0.9343 0.9406

76 0.9285 0.9374 0.9424

96 0.9330 0.9401 0.9440

125 0.9370 0.9424 0.9454

171 0.9405 0.9444 0.9466

246 0.9434 0.9461 0.9477

500 0.9467 0.9481 0.9489

Table 6.1: The asymptotic coverage probability when the underlying distribution is standard normal

for various values of and
*n ; .
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6.3.2. Standard uniform distribution

Similarly, to illustrate the asymptotic coverage probability based on an Edgeworth approximation for

different values of and n* with see Table 6.2. We see that the probabilities tend to

increase with and with n*, actually exceeding the nominal value in some cases. However, these

results should be treated with caution since the Edgeworth approximation is poor.

Cg(0.3) Cg(0.5) Cg(0.8)

24 0.925025 0.940078 0.948545

43 0.940320 0.948722 0.953448

61 0.946021 0.951944 0.955275

76 0.948709 0.953463 0.956136

96 0.950986 0.954750 0.956866

125 0.952994 0.955884 0.957510

171 0.954782 0.956895 0.958083

246 0.956263 0.957732 0.958558

500 0.957979 0.958701 0.959108

Table 6.2: The asymptotic coverage probability when the underlying distribution is standardized

uniform for various values of and n*; .

Table 6.3 shows the corresponding asymptotic coverage probabilities when the nominal coverage is

0.99. The effect of the Edgeworth approximation being poor is clear!

Cg(0.3) Cg(0.5) Cg(0.8)

24 0.99135 0.99642 0.99928

43 0.99673 0.99957 1.00116

61 0.99874 1.00074 1.00186

76 0.99969 1.00129 1.00219

96 1.00049 1.00176 1.00247

125 1.00120 1.00217 1.00272

171 1.00183 1.00254 1.00294

246 1.00235 1.00284 1.00312

500 1.00295 1.00320 1.00333

Table 6.3: The asymptotic coverage probability when the underlying distribution is standardized

uniform for various values of and n*;

 1 0.95 



*n

 1 0.95 

*n

 1 0.99 
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6.3.3. The distribution

To study the impact of increasing the degrees of freedom on the performance of the coverage

probability at , we take and 100 while is allowed to vary from 0.3,

0.5 and 0.8.

Case (I):

The asymptotic coverage probability at and is respectively

Case (II)

The asymptotic coverage at and is respectively

Case (III):

The asymptotic coverage at and is respectively

Case (IV):

The asymptotic coverage at and is respectively

Case (V):

The asymptotic coverage at and is respectively

t
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The idea of listing the equations in this way is to show the following

1. The leading coefficients of the term decreases as increases. Moreover, the coefficient

at lies between that of the other values of  .

2. For a specific value of , the last term in the equation is fixed for all values of and

decreases as increases.

3. At the sign of the leading coefficients of the term is positive, while for the

remaining value of the sign is negative. The reason of this nice picture is due to the

kurtosis. Note here that at the kurtosis is 9, which is outside the validity region, while

for the other values of the kurtosis values are inside the validity region.

Table 6.4 shows the asymptotic coverage probabilities for various values of r with 0.5  and
* 500n  for nominal coverage probabilities 90%, 95% and 99%. Clearly as r increases the

asymptotic results approach the nominal values from above at 90% and from below at 95% and 99%.

5 0.924900 0.901800 0.922310
10 0.904155 0.941970 0.978720
20 0.901558 0.946987 0.985770
50 0.900542 0.949006 0.988530

100 0.900260 0.949498 0.989295

Table 6.4: The asymptotic coverage probabilities for underlying distribution with

and 100 and and 0.99 at and * 500n  .

6.3.4. Beta distribution

For the beta distribution the standardized density is

.

The corresponding Edgeworth asymptotic expansion is

For nominal coverage 95% the asymptotic coverages at and 0.8 are
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For and , the and coverage probabilities are 0.897734, 0.954382

and 0.990662 respectively. Clearly, the coverage probability exceeds the nominal value at and

while it is less than the nominal value at

Note that the skewness of the Beta(4, 4) distribution is inside the validity region while the kurtosis

(2.45455) is outside.

6.3.5. Chi-squared distribution with degrees of freedom

Case (I):

Table 6.5 shows the asymptotic coverage probabilities for an underlying exponential distribution at

0.5  for selected *n values at nominal coverage 90%. As with the uniform case, the Edgeworth-

based approach leads to poor results.

Cg(0.3) Cg(0.5) Cg(0.8)

24 0.95759 0.97868 0.99055

43 0.98163 0.99340 1.00002

61 0.99059 0.99889 1.00355

76 0.99481 1.00147 1.00522

96 0.99839 1.00366 1.00663

125 1.00155 1.00560 1.00787

171 1.00436 1.00732 1.00898

246 1.00668 1.00874 1.00990

500 1.00938 1.01039 1.01096

Table 6.5: The asymptotic coverage probability, showing the effect of the poor behaviour of the

Edgeworth approximation under the chi-squared distribution with , .
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The asymptotic coverage probability at and 0.8 is respectively
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The asymptotic coverage probability at and 0.8 is respectively

Case (IV):

The asymptotic coverage probability at and 0.8 is respectively

In Table 6.6 the asymptotic coverage probabilities at , and r=5, 10 and 30 are

shown for nominal coverage probabilities 90%, 95% and 99%. Clearly the asymptotic value

approaches the nominal value as r increases, from above when the nominal coverages are 90% and

95%, and from below at 99%. Note that when r=5 the skewness and kurtosis are both outside the

validity range, while at r=10 and 30 only the skewness is outside.

5 0.945688 0.974790 0.975053

10 0.922844 0.962399 0.982527

30 0.907615 0.954133 0.987509

Table 6.6: The asymptotic coverage probability for underlying chi-squared distribution with

at and .

We shall investigate the accuracy of the asymptotic coverage probabilities in the next chapter using
simulation.

6.4 Sensitivity of triple sampling fixed width confidence intervals to a shift in the
population mean

We now introduce the idea of controlling the probability of committing a Type II error and at the
same time improving the coverage probability along the lines of Costanza et. al. (1995), Son et. al.
(1997) and Hamdy (1997).

Confidence intervals in general provide satisfactory information regarding the quality and the
reliability of inference (see, for example, Nelson, 1990 and 1994). It is also evident that a confidence
interval shows by its width the precision of estimation as well as which parameter values would not be
rejected if they were hypothesized as point null values. This view of the duality between the union of
all non-rejectable point null hypotheses and a single confidence interval is referred to by Tukey
(1991) who said
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“Many of us are familiar with deriving a confidence interval from an infinite array of tests of
significance, one for each potential null hypothesis”.

His point was made in the two following sentences

“Fewer of us perhaps have thought of the use of a confidence interval as the reverse process. This is
the most important reason for a confidence interval…”

Based on his view, the intersection of an infinite array of confidence intervals is used to locate a
single set of plausible point null hypotheses. Lehmann (1986, pp. 89-96) used the concept of
confidence intervals to test hypotheses. He studied the relation between uniformly most powerful one-
sided tests and the corresponding lower or upper confidence bounds.

In order to design and perform tests of hypotheses based on confidence intervals using the idea of
Tukey (1991), we need to consider the idea of controlling the Type II error probabilities. This is
essentially the approach employed when statistical quality control charts are designed to detect shifts
in a process mean; see Montgomery (1982) and Rahim (1993) for details. Such work on the
relationship between confidence intervals and the power of tests has received little attention in the
literature. To the best of our knowledge, no-one has studied the use of triple sampling fixed width
confidence intervals to test hypotheses in the manner of Tukey for the class of continuous
distributions with finite first six moments.

Costanza et. al. (1995) evaluated the sensitivity of fixed width confidence intervals for detecting shifts
in the normal mean based on Hall’s (1981) triple and modified triple sampling against the
corresponding fixed sample size sampling procedure. They found that the usual triple sampling fixed
width confidence intervals were more sensitive to shifts occurring within the intervals than their fixed
sample size counterparts. However, the corresponding Type II error probabilities were still large.

Hall’s triple sampling attains the nominal value asymptotically and his modified triple sampling
improved the coverage probability when the underlying distribution is normal, but it has the
disadvantage of increasing the Type II error probabilities for shifts that occur, both inside and outside
the confidence intervals. The reason is that the usual optimal sample sizes used to establish the triple
sampling estimation procedures do not reflect any requirements regarding the control of Type II error
probabilities. The use of another optimal fixed sample size that actually reflects some form of Type II
error will improve the coverage probability.

In the following section, we will describe the hypotheses to be tested when controlling type II error
probabilities, and derive the coverage and operating characteristic function for symmetrical intervals
based on the new approximate optimal fixed sample size

6.4.1 Triple sampling fixed width confidence intervals with controlled Type II error probability

In this context we formulate the following two hypotheses in order to signify such a shift if it takes

place, where  ,N N N
I X d X d  .

Hypotheses

 
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0 0 0

1 1 0 1
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The null hypothesis asserts that no shift in the has occurred against the alternative that the

parameter value differs from 0 by a “distance” 1 k measured in units of . To clarify this point,

assume that the null parameter value is . If the parameter value has shifted to ,

assessment of the amount of risk associated with the departure from provides an indication of the

ability of to detect such a departure.

In section 6.3, the fixed width confidence interval based on the optimal fixed sample size without

controlling the Type II error probability is . Now we find the fixed width confidence

interval based on controlling the Type II error probability.

It was shown by Brownlee (1965, pp. 117-118) that the optimal fixed sample size required to control

the Type II error probabilities of detecting shifts in  of magnitude  1d k  units away from

0  outside the interval for a prespecified value of k and t is given by

where is the point and is the upper point of the standard normal distribution. Note that

we assume that the value of is located in the centre of the interval in order to provide equal

Type II error probabilities for equidistant shifts to outside the interval in either direction.

Clearly, as approaches zero, the coverage probability based on will be greater than the

nominal value than when using , while for larger values of , the coverage will be less

than when since the effect of increasing the shift will dominate the effect of .

Moreover, we need this modification in the optimal sample size in order to ensure full protection of
the triple sampling sequential fixed width confidence interval against type II error.

It was shown that the optimal fixed sample size for testing is

   
2* 2 ,6.16 n da b  

see Son et al. (1997) for details. The reason behind this choice may be illustrated as follows:

1. It ensures the coverage to be at least the nominal value .

2. It has Type II error probability less than the prescribed 100 at the particular shift of

interest indexed by the value of .

3. It has Type II error probabilities that are uniformly less than those corresponding to (6.16) for

all

4. It is independent of , which facilitates the algebra in computing the coverage of the triple

sampling procedure with controlled optimal sample size as well as the Type II error

probability.
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Thus the triple sampling procedure based on the new optimal fixed sample size is

and

Moreover the same arguments and asymptotic characteristics apply as described in chapter III, and we

propose the confidence interval  ,N N N
I X d X d   for .

Theorem 6.4.1

The coverage probability of based on the triple sampling procedure given by and

the controlled optimal fixed sample size as is given by

where

,

and

Proof:

The proof follows exactly as for the coverage probability in Chapter V, after replacing the usual

optimal fixed sample size by .

Clearly, the modified coverage is greater than the nominal value for any value of since

 6.16

       21 2
16.17 max , 1 ,mN m d a b g S    

  

       1

21 2
16.18 max , 1 .NN N d a b g S     



NI    6.17 6.18

 6.16 0d 

    
 

   2

*

( )
2 1 , ,

288
N

a b a b
P I a b S a b O d

n






 
      

          2 4 6 8

0 1 2 3 4,S a b k k a b k a b k a b k a b        

 

    
       
         
         

2
4

2 2
3

2 * 2
2

2 * * 2 *
1

2 * * 2 *
0

1

3 1 3 16 3 2

15 1 3 2 6 3 2 4 15

45 1 23 5 8 3 12 2 3 10 9 8 72 108

45 1 5 5 3 18 1 4 30 1 4 216 90

k

k

k n

k n n n

k n n n

 

    

     

     

     

 

    

         

          

          

* 2 2n a d  6.16
*n

    
 

   

 
 

   

2

*

2

*

( )
2 1 ,

288

( )
1 , ,

288

N

a b a b
P I a b S a b O d

n

a b a b
S a b O d

n











 
      

 
   



151 | P a g e

The second term will be negligible for most reasonable choices of and and even for small

values of The coverage probability under  6.16 is greater than under * 2 2n a d . Moreover,

the controlled coverage depends mainly on the skewness and kurtosis of the underlying distribution

and . The effect of the design factor is small since it appears only in the negligible term.

6.4.2 Operating characteristic function of Type II error controlled confidence intervals

Our last assertion in this study is to investigate the sensitivity of the constructed confidence interval to

shifts in the population mean .

The probability ( -risk) of not detecting such a shift in the true parameter when, in fact, a shift

has actually occurred is given by

see, for example, Costanza et al. (1995), Son et al. (1997) and Hamdy (1997, 1999) for details.

Therefore, may be written as

Since is asymptotically normally distributed, independent of (Theorem 3.2.2.1, (iii)), then

and the event are asymptotically independent. Therefore, may be

expressed as follows
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Theorem 6.4.2

The operating characteristic function based on the triple sampling procedure given by
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 t

*.n

*n 



tc 0

 1 ,tc NP I H  

tc

   

   

1

1

6.19 ,

.

tc N
n m

N
n m

P X d N n

P X d N n P N n

 











   

    





NX N NX

, 1, 2,...N n n n   tc

   6.17 6.18  6.16 0d 

         2(2 ) , , , , ,tc k a b k a b Q a b o d            



152 | P a g e

where

,

with

and and are the standard normal densities at and .

The proof follows immediately from  6.1 and Theorem 3.2.2.3.

Theorem 6.4.2 shows that the probability of Type II error is completely determined by the shift

and the skewness and kurtosis of the underlying distribution. The influence of is small, which is
different from the case of the coverage as shown in Theorem 6.3.1.

Remark

It was shown by Son et al. (1997) that the operating characterstic function of Hall’s (1981) triple
sampling procedure is greater than the operating characterstic function with controlled optimal sample

size uniformly in .

As a special case of Theorem 6.4.2, consider the case in which the underlying distribution is normal

so that , and thus the operating characteristic function reduces to

as

At the value of .

For a uniform underlying distribution, the probability of Type II error is

So, it is clear that the probability of Type II error for any continuous distribution satisfying the

existence of the first six moments and as is an additively modified version of the Type II

error probability when the underlying distribution is normal.
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Chapter VII

Simulation Results for Triple Sampling Fixed Width Confidence Intervals

for the Population Mean

In this chapter, we use simulation to study the performance of normal based triple sampling fixed

width confidence intervals for small, moderate and large sample sizes. Moreover, we compare the

simulation results with the corresponding asymptotic results found in Chapter VI.

7.1 Experimental setup

As in Chapter V, a series of Monte Carlo studies was carried out in order to study the performance of

normal based triple sampling fixed width confidence intervals and compare them with the confidence

intervals based on the second order Edgeworth asymptotic expansion.

First we allowed aspects of the triple sampling scheme to vary: m  5, 15, 20;  0.3, 0.5, 0.8;
*n 

24, 43, 61, 76, 96, 125, 171, 246, 500 and 1   0.9, 0.95 and 0.99. In addition, we consider the

same class of underlying distributions as in Chapter V in order to enable comparison with the point

estimation results.

For each experimental situation the same 50,000 replicate samples were used as in Chapter V and for

each experimental situation we estimated the coverage probability . The standard error of the

estimated nominal coverage probabilities for the above nominal values are respectively, 0.001341,

0.000974 and 0.000445.

7.2 The coverage probabilities of the triple sampling procedure

In the following subsections, we investigate in detail the coverage probabilities of the triple sampling

fixed width confidence intervals for 5,15, 20m  , 0.5  and 0.05  . Results for other situations

are tabulated in Appendix B.

7.2.1 The underlying distribution is standard normal

From Table B1 in Appendix B we see that the estimated coverage probabilities do not attain the

nominal coverage values for any of our values of m .

Remark

1. The coverage probability improves (attains the nominal value) as increases and also as m
increases.

2. Hall (1981) pointed out that for moderate while for large

values of , as
*n  .

1 

*n

*n   1 ,NP X d    

*n    1NP X d    
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To show the effect of increasing on the performance of the coverage probability at   0.05,

and see Figure 7.1, which shows the simulated estimates of the coverage probability

as n* increases. It is clear that the coverage probabilities do not attain the nominal value under these

conditions.
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Figure 7.1: The simulated estimates of the coverage probability by optimal sample size for underlying

distribution  0,1N at 0.05,    0.5 and m  15.

To realize the effect of  on the coverage probability and compare this with the asymptotic results

obtained in Table 6.1 see Table 7.1, which shows the coverage probability as the optimal sample size

increases. We see that the coverage probability never attains the targeted nominal values at  0.3.

However, at   0.8, the coverage probability exceeds the nominal value but only at large values of
*n (

*n  246 and 500).

By comparing the simulation results in Table 7.1 with the asymptotic results in Table 6.1 we see that

there are consistencies (nearly same values and less than the nominal value) at   0.3 and 0.5 while

at   0.8 the simulation estimates of the coverage probability are greater than the asymptotic results

for large *n .

*n
0.5  15m 
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*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.8801 0.9009 0.9331

43 0.8211 0.9048 0.9308

61 0.8538 0.9192 0.9383

76 0.8833 0.9276 0.9421

96 0.9066 0.9331 0.9444

125 0.9248 0.9383 0.9475

171 0.9337 0.9433 0.9486

246 0.9404 0.9435 0.9508

500 0.9449 0.9463 0.9523

Table 7.1: The simulated estimates of the coverage probability for underlying  0,1N as the optimal

sample size increases,   0.3, 0.5, 0.8 and at   0.05, 15.m 

Figure 7.2. shows the effect of changing  on the coverage probability at . We see from the

graph that the coverage exceeds the nominal value at 0.8  as *n increases. The graph supports our

discussion above and support the choice of taking as a compromise choice.
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Figure 7.2: The effect of changing  on the simulated estimates of the coverage probability when the

underlying distribution is  0,1N , 0.05, 15m   and 0.5. 

15m 


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7.2.2 The underlying distribution is standard uniform

From Table B2 in Appendix B we see that the estimated coverage probabilities do not attain the

nominal coverage values for any of our values of m .

Figure 7.3 below shows the effect of increasing the optimal sample size on the performance of the

coverage probability at   0.05,   0.5 and m  15. It is obvious again that the coverage

probabilities do not attain the nominal value. To show the performance of the coverage probability as
*n increases at 15, 0.5m   and 0.05  see Figure 7.3, which shows the simulated coverage

probability as the optimal sample size increases. Clearly the coverage never attains the nominal value.
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Figure 7.3: The simulated estimates of the coverage probability by optimal sample size for underlying

distribution  0,1U at 0.05,   0.5 and m  15.

To show the effect of  on the coverage probability at 15m  see Table 7.2. At and 0.5 the

simulated estimates of the coverage probability is always less than the nominal value, while at

the coverage exceeds the nominal value only at large values of (
*n  500) but this

behaviour tends to be adjusted and turn back to be less than the nominal value as increases.

In Chapter VI we saw that the asymptotic coverage probabilities in this case are unreliable,

particularly at high nominal coverage values. By comparing the simulation results with the asymptotic

results that are presented in Table 6.2, we see the differences between the asymptotic and simulated

coverage values. Collectively, the coverage probability improves as increases and as m increases

(see Table B2 in Appendix B).

0.3 

0.8  *n
m

*n
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*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.8803 0.8854 0.9209

43 0.7844 0.9062 0.9285

61 0.8572 0.9301 0.9399

76 0.9009 0.9341 0.9411

96 0.9269 0.9387 0.9447

125 0.9361 0.9432 0.9468

171 0.9431 0.9449 0.9480

246 0.9461 0.9470 0.9483

500 0.9484 0.9483 0.9510

Table 7.2: The effect of changing the design factor  on the performance of the coverage probability

when the underlying distribution is  0,1U , 0.05, 15m   and 0.5.  The coverage probability

Figure 7.4 shows the effect of on the coverage probability at  0.05, 15m  . Clearly the graph

support our discussion above.
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Figure 7.4: The effect of changing  on the simulated estimates of the coverage probability for

underlying distribution  0,1U , 0.05, 15m   and 0.5. 





158 | P a g e

7.2.3 The underlying distribution is t

From Tables B3, B4, B5 and B6, we have the following

Regarding the coverage probability, the procedure starts with bad estimates at , and tends to

improve as and increase. While, as increases we noticed improve performance of the

coverage probability as expected.

To show the effect of increasing the optimal sample size on the performance of the coverage

probability under the t distribution we consider Figures 7.5 and 7.6. They show the coverage

probability when the underlying distribution is as the degrees of freedom increases. It is clear from

the graphs that as r increases, we attain better coverage probability. This support the theory that the

limiting distribution of the is normal as .
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5, 25,50r  and 100 as the optimal sample size increases at 0.05,  and 15.m 
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Figure 7.6: Comparison between the simulated estimates of the coverage probability for underlying

 0,1N and t distributions with 25,50r  and 100; 0.05, 15m   and 0.5. 

To show the impact of  on the coverage probability at 15m  and as r increases we consider Tables

7.3, 7.4 and 7.5, which illustrate that the coverage probability under the t distribution improves as r
increases. By comparing the simulation results with the asymptotic results that are presented in Table

6.4, we found that for underlying  5t distribution the simulation estimates of the coverage

probability is larger than the asymptotic value for all values of
*n , and this due to the bad behaviour

of the Edgeworth series in approximating the coverage probability as shown in the previous chapter.

While for underlying  25t and  50t distributions both the simulation estimates of the coverage

probability and the asymptotic coverage are consistent as
*n increases.

*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.8980 0.9232 0.9456

43 0.8477 0.9058 0.9332

61 0.8511 0.9129 0.9374

76 0.8669 0.9181 0.9401

96 0.8886 0.9230 0.9443

125 0.9011 0.9304 0.9475

171 0.9196 0.9353 0.9473

246 0.9292 0.9411 0.9505

500 0.9387 0.9462 0.9536

Table 7.3: The simulated coverage probability for underlying  5t as the optimal sample size

increases; 1  0.95 and 15.m 
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*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.8780 0.9042 0.9336

43 0.8242 0.9048 0.9334

61 0.8538 0.9192 0.9383

76 0.8818 0.9257 0.9406

96 0.9045 0.9327 0.9435

125 0.9223 0.9365 0.9471

171 0.9313 0.9422 0.9479

246 0.9379 0.9431 0.9508

500 0.9445 0.9474 0.9511

Table 7.4: The simulated coverage probability for underlying  25t as the optimal sample size

increases; 1  0.95 and 15.m 

*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.8806 0.9043 0.9349

43 0.8242 0.9049 0.9316

61 0.8531 0.9209 0.9378

76 0.8804 0.9289 0.9425

96 0.9068 0.9316 0.9451

125 0.9213 0.9385 0.9458

171 0.9339 0.9417 0.9486

246 0.9400 0.9460 0.9510

500 0.9447 0.9469 0.9515

Table 7.5: The simulated coverage probability for underlying  50t as the optimal sample size

increases; 1  0.95 and 15.m 

7.2.4 The underlying distribution is beta  2,3

From Table B7 we have the following

Regarding the coverage probability we noticed similar behaviour as the case of normal and uniform.

To show the effect of increasing *n on the coverage probability under the beta distribution see Figure

7.7, which shows the coverage probability when the underlying distribution is beta as *n increases

and 15m  . As before the confidence interval do not attain the coverage probability, and this

supports Hall (1981) that we only attain the coverage asymptotically.
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Figure 7.7: The simulated estimates of the coverage probability for underlying beta  2,3 as the

optimal sample size increases at 0.05,  and 15.m 

To show the effect of  on the coverage see Table 7.6 and Figure 7.8, which show the coverage

probability as *n increases at 15m  . We have same arguments as the previous cases. Similar

arguments can be made regarding the comparison between the simulation results and the asymptotic

results as in the case of the normal distribution.

*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.8792 0.8962 0.9282

43 0.8088 0.9017 0.9276

61 0.8544 0.9228 0.9365

76 0.8887 0.9278 0.9421

96 0.9135 0.9353 0.9435

125 0.9276 0.9405 0.9460

171 0.9362 0.9415 0.9498

246 0.9420 0.9429 0.9487

500 0.9467 0.9490 0.9516

Table 7.6: The simulated coverage probability for underlying beta  2,3 as the optimal sample size

increases; 1  0.95 and 15.m 

0.5 
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Figure 7.8: The effect of changing  on the simulated estimates of the coverage probability for

underlying beta  2,3 distribution at 0.05, 15m   and 0.5. 

7.2.5 The underlying distribution is exponential with mean one

From Table B8 and for brevity we have the following

Regarding the coverage probability, we noticed bad estimates for the coverage, and the reason goes

due to the sharp value of the skewness and high value of the kurtosis, which delay the convergence of

the coverage probability. Better performance expected as both and increase.

Figure 7.9 shows the coverage probability when the underlying distribution is exponential with mean

one,  1Exp   . Clearly the convergence to the nominal coverage is slow..

*n m
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Figure 7.9: The simulated estimates of the coverage probability for underlying distribution  1Exp

as the optimal sample size increases at 0.05,  and 15.m 

Similarly to show the effect of increasing  on the performance of the coverage probability at

1 0.95  , m  15 we consider Table 7.7 and Figure 7.10. Both Table 7.9 and Figure 7.10 support

our discussion above and reflect the poor coverage for all values of  . Recall that the asymptotic

coverage probabilities are unsatisfactory because of the poor approximation provided by the

Edgeworth series.

*n 1 , 0.3   1 , 0.5   1 , 0.8  
24 0.9173 0.8420 0.9496

43 0.8522 0.8706 0.8818

61 0.8128 0.8389 0.8671

76 0.7943 0.8346 0.8754

96 0.7873 0.8463 0.8876

125 0.8085 0.8676 0.9053

171 0.8442 0.8908 0.9207

246 0.8806 0.9141 0.9323

500 0.9245 0.9361 0.9478

Table 7.7: The simulated coverage probability for underlying  1Exp as the optimal sample size

increases; 1  0.95 and 15.m 

0.5 
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Figure 7.10: The effect of changing  on the simulated estimates of the coverage probability for

underlying distribution  1Exp as the optimal sample size increases at 0.05, 15m   and

0.5. 

Before finishing the chapter we show the behaviour of the coverage for a collection of underlying

distributions together. Figure 7.11 shows the behaviour of the coverage probability for the three

distributions: normal, uniform and exponential all treated at 1 0.95  ,   0.5 and . It is

obvious that the coverage probability under the normal distribution is between the coverage

probabilities under the uniform and exponential distributions. As increases all the coverage

probabilities approach the nominal coverage.

15m 

*n
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Figure 7.11: The simulated estimates of the coverage probability for underlying    ,0,1 0,1N U and

 1Exp distributions as the optimal sample size increases at 0.05,  and 15.m 

Figure 7.12 shows the behaviour of the coverage probability for the three distributions for different

values of and as the optimal sample size increases. The graph shows the following: first, the bad

behaviour of the coverage probability under the exponential distribution and secondly, the improved

estimate of the coverage probability occurs as the design factor increases.
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Figure 7.12: The simulated estimates of the coverage probability for underlying    ,0,1 0,1N U and

 1Exp at 0.05,  0.3,0.5,0.8  and 15.m 
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Figure 7.13 below discuss the same point as before but for the following underlying distributions:

normal, uniform, beta and exponential. Obviously, the coverage probability of the normal, uniform

and beta have same behaviour while the case of the exponential is completely different.
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Figure 7.13: The simulated estimates of the coverage probability for underlying    ,0,1 0,1N U ,

beta  2, 3 and  1Exp as the optimal sample size increases at 0.05,  and 15.m 

Finally, the good or bad behaviour of the asymptotic coverage probability is controlled mainly by the

behaviour of the Edgeworth approximation to the underlying distribution and therefore to the values

of the skewness and kurtosis of the underlying distribution. So in the cases where the underlying

distribution is poorly approximated, the asymptotic coverages naturally differ considerably from the

simulated coverage values.

0.5 
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Chapter VIII

Simulation Results of Triple Sampling Fixed Width Confidence Intervals

with Controlled Type II Error Probabilities

In Chapter VI, we obtained an asymptotic mathematical representations for the triple sampling fixed

width confidence intervals with controlled Type II error (Theorem 6.4.1), and also the corresponding

Type II error probability (Theorem 6.4.2).

8.1. Simulation results regarding the triple sampling fixed width confidence interval

with controlled Type II error probability

In order to investigate the performance of the triple sampling fixed width confidence intervals with

controlled Type II error under    ,6.17 6.18 , a series of simulation studies were performed with

small, moderate and large optimal sample sizes. The same class of underlying distributions, design

factors and pilot sample sizes were used as in previous simulation studies for this thesis. Moreover

same number of replicate samples as in the previous simulations.

Tables D1 to D9 in Appendix D represent all the simulation results for the underlying distributions:

standard normal, standard uniform, t with 5,10, 25,50r  and 100 degrees of freedom, beta

and exponential with mean one at   0.05,  0.5 and m  5,15,20. In all cases the coverage

probability under the controlled optimal fixed sample size exceeds the nominal value even for small

values of and for all values of and .

8.2 Simulation results to estimate the Type II error probability

Although the Type II error probability is asymptotically and mathematically expressed in Theorem

6.4.2, it is of interest to estimate the Type II error probability for small, moderate to large optimal

sample sizes and to investigate the effect of underlying distribution,  , m, shift k and *n .

For brevity, we consider here only three underlying distributions: standard normal, standard uniform

and exponential with mean one with 5,15, 20m  , 0.3, 0.5  , 0.8 , 0.05  and 0.05t  .

Tables 8.1, 8.2 and 8.3 show the estimated Type II error probability under the normal, uniform and

exponential distribution respectively at   0.5,   0.05, 0.05t  , 5,15, 20m  and k = 0 (0.01)

0.1 (0.1) 0.5. We see from the tables that cases with uniform and normal underlying distributions

exhibit a similar pattern of Type II error probabilities across values of m , *n , and  . We also

see that for small shift there is a high probability of committing a Type II error, as anticipated. These

probabilities decrease as k increases for both distributions. The exponential case behaves similarly

except with changing m. In this case for fixed k and *n the probability of committing a Type II error

 2,3

*n m 

, t 
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increases with m . One explanation is that symmetric distributions give similar Type II error results

whatever the kurtosis, especially with large values of *n .

* , 5,15, 20n m 

24 76 96 125 246 500

k 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00 .499 .501 .499 .499 .500 .502 .504 .502 .501 .499 .501 .501 .500 .499 .502 .499 .498 .499

.01 .487 .488 .485 .487 .486 .487 .490 .489 .486 .484 .487 .487 .485 .486 .487 .485 .484 .485

.02 .475 .476 .471 .473 .473 .474 .476 .474 .472 .470 .473 .472 .471 .471 .473 .470 .470 .470

.03 .462 .464 .458 .460 .459 .460 .463 .461 .459 .456 .460 .458 .457 .457 .460 .457 .455 .457

.04 .449 .451 .445 .447 .446 .447 .450 .446 .445 .444 .445 .445 .443 .442 .445 .442 .442 .443

.05 .437 .438 .430 .433 .432 .433 .436 .432 .431 .430 .431 .431 .430 .428 .431 .428 .427 .430

.06 .425 .426 .417 .419 .419 .419 .422 .419 .419 .417 .418 .417 .416 .414 .416 .414 .414 .415

.07 .412 .413 .404 .406 .406 .407 .408 .405 .405 .404 .405 .403 .402 .400 .402 .400 .400 .401

.08 .401 .402 .390 .393 .393 .394 .394 .391 .392 .392 .391 .389 .388 .386 .389 .386 .385 .388

.09 .388 .390 .378 .380 .380 .381 .381 .378 .379 .377 .378 .377 .374 .373 .375 .373 .371 .374

.10 .375 .378 .365 .367 .367 .368 .368 .366 .365 .363 .365 .363 .361 .359 .362 .359 .358 .361

.20 .266 .265 .250 .252 .245 .249 .247 .245 .244 .244 .242 .243 .240 .238 .238 .234 .237 .240

.30 .183 .175 .158 .162 .151 .153 .155 .151 .151 .152 .147 .148 .145 .141 .143 .139 .142 .143

.40 .121 .107 .091 .100 .087 .087 .092 .087 .086 .088 .082 .082 .079 .077 .077 .075 .077 .078

.50 .081 .062 .048 .060 .048 .047 .052 .047 .045 .048 .043 .043 .040 .037 .039 .037 .038 .038

Table 8.1: The simulated estimates of Type II error probabilities for underlying  0,1N distribution

as the optimal sample size increases and k increases with 0.05, 0.05, 0.5t     and

5,15, 20m  .
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* , 5,15, 20n m 

24 76 96 125 246 500

K 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00 .502 .500 .501 .497 .497 .498 .494 .504 .500 .495 .503 .499 .498 .495 .499 .503 .500 .501

.01 .489 .488 .487 .483 .484 .484 .480 .490 .486 .481 .489 .485 .484 .481 .484 .487 .485 .487

.02 .476 .475 .473 .470 .470 .470 .466 .476 .471 .467 .475 .471 .469 .467 .471 .473 .471 .472

.03 .463 .464 .460 .457 .456 .455 .452 .462 .457 .454 .460 .458 .455 .453 .456 .458 .455 .458

.04 .451 .452 .447 .443 .442 .442 .438 .447 .443 .440 .445 .444 .441 .440 .442 .444 .440 .443

.05 .439 .440 .434 .430 .428 .428 .425 .433 .429 .426 .432 .431 .427 .425 .427 .429 .426 .429

.06 .426 .429 .421 .417 .415 .413 .412 .419 .416 .412 .418 .417 .412 .411 .414 .415 .412 .415

.07 .414 .417 .409 .404 .401 .399 .398 .405 .402 .399 .404 .403 .398 .397 .399 .402 .398 .401

.08 .401 .405 .396 .391 .388 .384 .385 .391 .389 .386 .390 .389 .384 .383 .386 .388 .384 .387

.09 .388 .394 .383 .377 .375 .371 .371 .377 .375 .373 .377 .376 .372 .370 .373 .375 .371 .374

.10 .377 .382 .370 .364 .362 .358 .360 .364 .361 .360 .363 .363 .359 .357 .359 .362 .358 .359

.20 .269 .276 .254 .247 .241 .240 .241 .242 .241 .238 .239 .239 .236 .235 .236 .236 .235 .237

.30 .185 .188 .161 .155 .147 .146 .149 .147 .147 .145 .144 .144 .140 .140 .141 .141 .140 .141

.40 .126 .121 .094 .091 .083 .083 .085 .081 .082 .081 .080 .079 .078 .076 .077 .075 .074 .076

.50 .088 .073 .050 .052 .044 .043 .048 .041 .041 .042 .040 .040 .038 .037 .038 .037 .036 .036

Table 8.2: The simulated estimates of Type II error probabilities for underlying  0,1U distribution

as the optimal sample size increases and k increases with 0.05, 0.05, 0.5t     and

5,15, 20m  .
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* , 5,15,20n m 

24 76 96 125 246 500

k 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00 .355 .421 .457 .390 .411 .412 .406 .420 .424 .415 .435 .438 .449 .460 .463 .468 .470 .474

.01 .345 .408 .443 .378 .398 .400 .393 .407 .412 .403 .422 .424 .436 .447 .449 .453 .457 .460

.02 .333 .393 .428 .366 .387 .387 .381 .395 .399 .390 .409 .412 .421 .433 .436 .438 .443 .446

.03 .322 .380 .414 .354 .374 .374 .369 .381 .387 .377 .396 .398 .409 .418 .422 .424 .430 .431

.04 .311 .367 .400 .343 .362 .362 .357 .368 .374 .365 .384 .385 .396 .405 .408 .410 .415 .417

.05 .301 .354 .386 .332 .350 .350 .345 .356 .362 .352 .370 .372 .382 .392 .395 .396 .401 .403

.06 .290 .341 .373 .320 .337 .338 .333 .343 .350 .340 .357 .360 .368 .378 .382 .382 .387 .390

.07 .280 .328 .359 .309 .325 .326 .321 .331 .338 .327 .344 .347 .356 .365 .368 .367 .373 .377

.08 .268 .315 .346 .297 .315 .314 .310 .320 .325 .316 .332 .334 .343 .352 .354 .354 .359 .363

.09 .258 .302 .333 .285 .303 .303 .298 .308 .312 .304 .319 .321 .331 .339 .341 .340 .345 .349

.10 .249 .290 .320 .274 .291 .291 .287 .297 .300 .292 .306 .308 .317 .327 .328 .326 .332 .335

.20 .157 .181 .201 .174 .185 .183 .182 .188 .192 .187 .194 .196 .204 .206 .210 .207 .211 .213

.30 .090 .100 .113 .103 .105 .104 .105 .107 .111 .108 .110 .112 .119 .116 .119 .119 .120 .123

.40 .049 .050 .057 .057 .053 .053 .057 .055 .056 .058 .055 .056 .063 .059 .059 .064 .061 .061

.50 .027 .024 .026 .030 .023 .024 .030 .025 .026 .030 .025 .025 .031 .027 .027 .031 .028 .027

Table 8.3: The simulated estimates of Type II error probabilities for underlying  1Exp distribution

as the optimal sample size increases and k increase with 0.05, 0.05, 0.5t     and

5,15, 20m  .

Figures 8.1 to 8.3 show the effect of increasing *n on the estimated Type II error probability for the

three underlying distributions at 15m  , 0.5  , 0.05  and 0.05t  . We see that for small

values of *n and for small values of k (less than 0.1), the probability of committing Type II error gets

as high as 0.5 for both the uniform and the normal, while it gets as high as 0.47 for the exponential.

The difference between the uniform and the normal cases becomes clear for larger values of , while

for the exponential the gap is significant over the entire range of . As *n increases the difference

between the uniform and the normal results becomes small and the gap between the results of the

exponential and the other two distributions gets narrower (see Table E1 for more details).

k

k
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Figure 8.1: Performance of the Type II error probability for underlying  0,1N as the optimal sample

size and k increase at 0.5  , 0.05  , 0.05t  and 15.m 

Figure 8.2: Performance of the Type II error probability for underlying  0,1U as the optimal

sample size and k increase at 0.5  , 0.05  , 0.05t  and 15.m 
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Figure 8.3: Performance of the Type II error probability for underlying  1Exp as the optimal

sample size and k increase at 0.5  , 0.05  , 0.05t  and 15.m 

To illustrate the difference between the simulation results and the asymptotic results obtained in

chapter VI we consider Tables 8.4, 8.5 and 8.6 for the above underlying distributions respectively.

Tables 8.4, 8.5 and 8.6 compare the simulation results and the asymptotic results at 0.05  ,

0.05t  , 0.5  and 15.m  The asymptotic values asy and the corresponding estimated Type II

error probabilities for the normal and the uniform underlying distributions are in broad agreement for

all values of and . Moreover, as increases the difference between the asymptotic and

estimated values decreases. From Table 8.6 we see the bad behaviour of the asymptotic Type II error

probability in comparison with the simulation results in the exponential distribution case, as expected

given the poor performance of the Edgeworth approximation (see Chapter IV, section 6.2).

0.50.40.30.20.10.0

0.5

0.4

0.3

0.2

0.1

0.0

k (Shift)

T
y

p
e

II
e

rr
o

r
p

ro
b

a
b

ilt
y

15(24)

15(61)

15(96)

15(171)

15(246)

15(500)

Variable

Type II error performance as the optimal sample size increases (Exponential)

*n k *n



173 | P a g e

k 24 43 61 76 96 125 171 246 500

.00 0.500 0.501 0.500 0.503 0.500 0.502 0.501 0.499 0.499 0.498

.01 0.486 0.488 0.486 0.489 0.486 0.489 0.487 0.484 0.486 0.484

.02 0.471 0.476 0.473 0.475 0.473 0.474 0.473 0.470 0.471 0.470

.03 0.457 0.464 0.460 0.462 0.459 0.461 0.46 0.455 0.457 0.455

.04 0.443 0.451 0.448 0.448 0.446 0.446 0.445 0.441 0.442 0.442

.05 0.429 0.438 0.434 0.435 0.432 0.432 0.431 0.427 0.428 0.427

.06 0.414 0.426 0.421 0.421 0.419 0.419 0.418 0.414 0.414 0.414

.07 0.400 0.413 0.408 0.409 0.406 0.405 0.405 0.400 0.400 0.400

.08 0.387 0.402 0.396 0.395 0.393 0.391 0.391 0.385 0.386 0.385

.09 0.373 0.390 0.383 0.381 0.380 0.378 0.378 0.372 0.373 0.371

.10 0.359 0.378 0.371 0.368 0.367 0.366 0.365 0.358 0.359 0.358

.20 0.236 0.265 0.253 0.252 0.245 0.245 0.242 0.237 0.238 0.237

.30 0.140 0.175 0.167 0.160 0.151 0.151 0.147 0.143 0.141 0.142

.40 0.075 0.107 0.100 0.095 0.087 0.087 0.082 0.079 0.077 0.077

.50 0.036 0.062 0.059 0.053 0.048 0.047 0.043 0.040 0.037 0.038

Table 8.4: Comparison between the asymptotic and simulation results for the Type II error

probability for underlying distribution  0,1N as the optimal sample size and k increase; 0.05  ,

0.05t  , and .

k 24 43 61 76 96 125 171 246 500

.00 0.500 0.500 0.501 0.503 0.497 0.504 0.503 0.503 0.495 0.500

.01 0.488 0.488 0.489 0.490 0.484 0.490 0.489 0.487 0.481 0.485

.02 0.476 0.475 0.474 0.475 0.470 0.476 0.475 0.473 0.467 0.471

.03 0.463 0.464 0.460 0.462 0.456 0.462 0.460 0.458 0.453 0.455

.04 0.451 0.452 0.447 0.448 0.442 0.447 0.445 0.443 0.440 0.440

.05 0.439 0.440 0.434 0.434 0.428 0.433 0.432 0.429 0.425 0.426

.06 0.427 0.429 0.421 0.421 0.415 0.419 0.418 0.416 0.411 0.412

.07 0.415 0.417 0.408 0.407 0.401 0.405 0.404 0.401 0.397 0.398

.08 0.403 0.405 0.395 0.393 0.388 0.391 0.390 0.387 0.383 0.384

.09 0.391 0.394 0.383 0.380 0.375 0.377 0.377 0.374 0.37 0.371

.10 0.379 0.382 0.371 0.367 0.362 0.364 0.363 0.361 0.357 0.358

.20 0.263 0.276 0.253 0.249 0.241 0.242 0.239 0.236 0.235 0.235

.30 0.162 0.188 0.163 0.153 0.147 0.147 0.144 0.142 0.140 0.140

.40 0.084 0.121 0.100 0.087 0.083 0.081 0.080 0.077 0.076 0.074

.50 0.034 0.073 0.059 0.047 0.044 0.041 0.040 0.039 0.037 0.036

Table 8.5: Comparison between the asymptotic and simulation results for the Type II error

probability for underlying distribution  0,1U as the optimal sample size and k increase; 0.05  ,

0.05t  , and .

asy

0.5  15m 

asy

0.5  15m 
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k 24 43 61 76 96 125 171 246 500

.00 0.633 0.421 0.391 0.401 0.411 0.420 0.435 0.448 0.460 0.470

.01 0.622 0.408 0.379 0.390 0.398 0.407 0.422 0.434 0.447 0.457

.02 0.616 0.393 0.367 0.377 0.387 0.395 0.409 0.421 0.433 0.443

.03 0.615 0.380 0.354 0.364 0.374 0.381 0.396 0.407 0.418 0.430

.04 0.618 0.367 0.342 0.352 0.362 0.368 0.384 0.394 0.405 0.415

.05 0.626 0.354 0.331 0.340 0.350 0.356 0.370 0.381 0.392 0.401

.06 0.638 0.341 0.319 0.328 0.337 0.343 0.357 0.368 0.378 0.387

.07 0.654 0.328 0.308 0.317 0.325 0.331 0.344 0.356 0.365 0.373

.08 0.674 0.315 0.297 0.305 0.315 0.320 0.332 0.343 0.352 0.359

.09 0.698 0.302 0.285 0.293 0.303 0.308 0.319 0.329 0.339 0.345

.10 0.725 0.290 0.274 0.281 0.291 0.297 0.306 0.316 0.327 0.332

Table 8.6: Comparison between the asymptotic and simulation results for the Type II error

probability for underlying distribution  1Exp as the optimal sample size and k increase; 0.05  ,

0.05t  , 0.5  and 15m  .

To compare the simulation results and the asymptotic results for the normal and uniform underlying

distributions at 0.05, 0.05, 0.5t     and 15m  , Figures 8.4 and 8.5 show the estimated

Type II error probabilities in comparison with the corresponding asymptotic values as *n increases.

For brevity we consider only specific values of *n ;
*n  24, 96, 246 and 500. Clearly as *n increases

we attain consistent behaviour between the simulation and the asymptotic results.

Figure 8.4. The difference between the asymptotic and the simulation Type II error probability for the

underlying  0,1N as the optimal sample size and k increase; 0.05, 0.05, 0.5t     and

15.m 
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Figure 8.5. The difference between the asymptotic and the simulation Type II error probability for the

underlying  0,1U as the optimal sample size and k increase; 0.05, 0.05, 0.5t     and

15.m 

To illustrate the asymptotic Type II error probabilities for other underlying distributions, we consider

the case of the t distribution with and 100 degrees of freedom in Table 8.7 and of the

chi-squared distribution with and 50 degrees of freedom in Table 8.8.

Tables 8.7 and 8.8 show the asymptotic Type II error probabilities as r increases and for different

values of for the t and chi-squared underlying distributions respectively. Note that denotes

the asymptotic Type II error probability at a specific value of r .

We see in Table 8.7 that at (no shift occurs) the asymptotic Type II error probability is 0.5 for

all r, while as increases for a fixed value of , the asymptotic Type II error probability decreases.

A s r increases and for a fixed value of > 0.5 the asymptotic Type II error probability increases.
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k (5) (25) (50) (100)

0.00 0.5000 0.5000 0.5000 0.5000

0.01 0.4748 0.4851 0.4854 0.4855

0.02 0.4498 0.4702 0.4708 0.4710

0.03 0.4249 0.4554 0.4562 0.4566

0.04 0.4003 0.4407 0.4417 0.4422

0.05 0.3760 0.4260 0.4273 0.4279

0.06 0.3521 0.4114 0.4130 0.4137

0.07 0.3288 0.3970 0.3988 0.3996

0.08 0.3060 0.3827 0.3848 0.3857

0.09 0.2839 0.3686 0.3709 0.3719

0.10 0.2625 0.3546 0.3571 0.3582

0.20 0.0979 0.2289 0.2325 0.2340

0.30 0.0297 0.1345 0.1373 0.1386

0.40 0.0278 0.0724 0.0736 0.0742

0.50 0.0446 0.0362 0.0359 0.0358

Table 8.7. The asymptotic Type II error probabilities for underlying t distribution with 5, 25,50r 

and 100 as k increases.

In Table 8.8 we see that for a fixed r and as increases and for a fixed and as r increases, the

asymptotic Type II error probability decreases. At k  0, the asymptotic Type II error probability is

0.584 and not 0.5 as in the case of symmetric distributions.

k (5) (10) (50)

0.00 0.5841 0.5595 0.5266

0.01 0.5709 0.5457 0.5124

0.02 0.5593 0.5326 0.4983

0.03 0.5491 0.5201 0.4844

0.04 0.5403 0.5084 0.4708

0.05 0.5329 0.4973 0.4574

0.06 0.5269 0.4870 0.4442

0.07 0.5222 0.4772 0.4313

0.08 0.5188 0.4681 0.4186

0.09 0.5165 0.4596 0.4062

0.10 0.5152 0.4517 0.3941

0.20 0.5411 0.3954 0.2872

0.30 0.5677 0.3533 0.2043

0.40 0.5304 0.2972 0.1398

0.50 0.4270 0.2248 0.0899

Table 8.8. The asymptotic Type II error probabilities for underlying chi- squared distribution with

r  5, 10 and 50 as k increases.

asy asy asy asy

k k

asy asy asy
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We end this section by plotting the simulated estimates of Type II error probabilities for the three

distributions together at 0.05, 0.05, 0.5t     and m  15. Figures 8.6 to 8.9 show this for n*

= 24, 76, 125, 246 and 500 respectively. Clearly the estimated Type II error probabilities in the

normal and uniform cases are very similar, whereas the corresponding probabilities for the

exponential case tend to be lower. However, the difference declines as n* increases.

Figure 8.6: The simulated estimates of Type II error probability for underlying normal, uniform and

exponential distributions as k increases at 0.05, 0.05, 0.5, 15t m      and * 24.n 

Figure 8.7: The simulated estimates of Type II error probability for underlying normal, uniform and

exponential distributions as k increases at 0.05, 0.05, 0.5, 15t m      and * 76.n 
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Figure 8.8: The simulated estimates of Type II error probability for underlying normal, uniform and

exponential distributions as k increases at 0.05, 0.05, 0.5, 15t m      and * 246.n 

Figure 8.9: The simulated estimates of Type II error probability for underlying normal, uniform and

exponential distributions as k increases at 0.05, 0.05, 0.5, 15t m      and * 500.n 
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8.3 The effect of  on the Type II error probability

The effect of  on the estimated Type II probability at 0.05, 0.05t   and 15m  is illustrated

in Tables 8.9, 8.10 and 8.11 for the normal, uniform and exponential underlying distributions

respectively. We see that for small values of *n and by holding other parameters constant the Type II

error probabilities at 0.5  lie between those at 0.3  and 0.8  . As *n increases the estimated

Type II error probabilities tend the coincide for all values of  . This new findings support the choice

of suggested by Hall (1981) even our justification came from different perspective.

*n 24 76 96 125 246 500

k 0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8 

.00 0.501 0.501 0.499 0.500 0.500 0.502 0.496 0.502 0.504 0.500 0.501 0.499 0.496 0.499 0.499 0.501 0.498 0.502

.01 0.489 0.488 0.485 0.487 0.486 0.487 0.482 0.489 0.490 0.486 0.487 0.485 0.481 0.486 0.484 0.487 0.484 0.487

.02 0.478 0.476 0.470 0.475 0.473 0.472 0.469 0.474 0.475 0.473 0.473 0.470 0.468 0.471 0.470 0.474 0.470 0.473

.03 0.466 0.464 0.457 0.462 0.459 0.458 0.455 0.461 0.461 0.460 0.460 0.456 0.454 0.457 0.456 0.460 0.455 0.458

.04 0.455 0.451 0.443 0.450 0.446 0.444 0.441 0.446 0.447 0.446 0.445 0.441 0.441 0.442 0.442 0.445 0.442 0.444

.05 0.444 0.438 0.428 0.437 0.432 0.430 0.429 0.432 0.433 0.432 0.431 0.426 0.428 0.428 0.427 0.432 0.427 0.429

.06 0.433 0.426 0.415 0.424 0.419 0.416 0.416 0.419 0.419 0.419 0.418 0.411 0.414 0.414 0.414 0.419 0.414 0.413

.07 0.422 0.413 0.402 0.412 0.406 0.402 0.404 0.405 0.405 0.405 0.405 0.398 0.401 0.400 0.399 0.406 0.400 0.399

.08 0.411 0.402 0.388 0.400 0.393 0.388 0.392 0.391 0.390 0.392 0.391 0.383 0.387 0.386 0.385 0.392 0.385 0.385

.09 0.399 0.390 0.375 0.387 0.380 0.373 0.379 0.378 0.376 0.379 0.378 0.369 0.374 0.373 0.370 0.378 0.371 0.372

.10 0.388 0.378 0.360 0.374 0.367 0.360 0.366 0.366 0.362 0.366 0.365 0.355 0.361 0.359 0.356 0.364 0.358 0.358

.20 0.286 0.265 0.242 0.261 0.245 0.237 0.251 0.245 0.238 0.247 0.242 0.231 0.240 0.238 0.232 0.239 0.237 0.232

.30 0.198 0.175 0.149 0.173 0.151 0.144 0.162 0.151 0.145 0.153 0.147 0.136 0.147 0.141 0.135 0.145 0.142 0.137

.40 0.129 0.107 0.087 0.110 0.087 0.078 0.098 0.087 0.078 0.091 0.082 0.073 0.081 0.077 0.072 0.078 0.077 0.072

.50 0.078 0.062 0.047 0.069 0.048 0.039 0.056 0.047 0.039 0.050 0.043 0.035 0.041 0.037 0.034 0.038 0.038 0.034

Table 8.9: The effect of increasing  on the simulated estimates of Type II error probability for

underlying  0,1N as the optimal sample size and k increase; 0.05, 0.05, 15.t m   

0.5 
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*n 24 76 96 125 246 500

k 0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8 

.00 0.500 0.500 0.502 0.497 0.497 0.501 0.501 0.504 0.498 0.501 0.503 0.498 0.503 0.495 0.498 0.498 0.500 0.501

.01 0.489 0.488 0.487 0.483 0.484 0.486 0.487 0.490 0.485 0.487 0.489 0.483 0.489 0.481 0.484 0.485 0.485 0.486

.02 0.477 0.475 0.473 0.470 0.470 0.473 0.474 0.476 0.470 0.473 0.475 0.469 0.474 0.467 0.469 0.471 0.471 0.471

.03 0.467 0.464 0.461 0.456 0.456 0.459 0.460 0.462 0.456 0.459 0.460 0.454 0.459 0.453 0.456 0.456 0.455 0.457

.04 0.455 0.452 0.447 0.442 0.442 0.444 0.446 0.447 0.442 0.445 0.445 0.438 0.445 0.440 0.441 0.441 0.440 0.442

.05 0.444 0.440 0.435 0.429 0.428 0.431 0.432 0.433 0.428 0.432 0.432 0.423 0.432 0.425 0.427 0.428 0.426 0.428

.06 0.434 0.429 0.421 0.416 0.415 0.415 0.420 0.419 0.414 0.418 0.418 0.409 0.417 0.411 0.413 0.414 0.412 0.414

.07 0.422 0.417 0.406 0.403 0.401 0.401 0.406 0.405 0.400 0.405 0.404 0.395 0.403 0.397 0.399 0.400 0.398 0.400

.08 0.411 0.405 0.392 0.391 0.388 0.388 0.392 0.391 0.387 0.391 0.390 0.382 0.389 0.383 0.386 0.386 0.384 0.387

.09 0.400 0.394 0.379 0.378 0.375 0.374 0.378 0.377 0.372 0.377 0.377 0.368 0.377 0.370 0.372 0.372 0.371 0.372

.10 0.388 0.382 0.367 0.365 0.362 0.360 0.366 0.364 0.359 0.364 0.363 0.356 0.363 0.357 0.359 0.358 0.358 0.359

.20 0.286 0.276 0.247 0.251 0.241 0.236 0.246 0.242 0.237 0.241 0.239 0.234 0.239 0.235 0.234 0.234 0.235 0.233

.30 0.198 0.188 0.153 0.160 0.147 0.141 0.154 0.147 0.142 0.148 0.144 0.140 0.143 0.140 0.139 0.140 0.140 0.139

.40 0.127 0.121 0.090 0.098 0.083 0.078 0.090 0.081 0.078 0.084 0.080 0.076 0.080 0.076 0.076 0.076 0.074 0.073

.50 0.076 0.073 0.050 0.059 0.044 0.039 0.050 0.041 0.039 0.044 0.040 0.037 0.040 0.037 0.036 0.037 0.036 0.035

Table 8.10: The effect of increasing  on the simulated estimates of Type II error probability for

underlying  0,1U as the optimal sample size and k increase; 0.05, 0.05, 15.t m   
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*n 24 76 96 125 246 500

k 0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8  0.3,0.5,0.8 

.00 0.453 0.421 0.408 0.387 0.411 0.423 0.399 0.420 0.430 0.417 0.435 0.448 0.450 0.460 0.462 0.472 0.470 0.475

.01 0.440 0.408 0.394 0.376 0.398 0.410 0.387 0.407 0.416 0.406 0.422 0.433 0.438 0.447 0.449 0.459 0.457 0.462

.02 0.427 0.393 0.380 0.365 0.387 0.396 0.375 0.395 0.402 0.394 0.409 0.419 0.425 0.433 0.434 0.445 0.443 0.446

.03 0.414 0.380 0.366 0.354 0.374 0.381 0.363 0.381 0.389 0.382 0.396 0.405 0.411 0.418 0.420 0.432 0.430 0.432

.04 0.402 0.367 0.352 0.342 0.362 0.368 0.351 0.368 0.375 0.369 0.384 0.391 0.399 0.405 0.405 0.419 0.415 0.417

.05 0.389 0.354 0.339 0.331 0.350 0.355 0.340 0.356 0.362 0.358 0.370 0.378 0.387 0.392 0.390 0.405 0.401 0.402

.06 0.378 0.341 0.326 0.320 0.337 0.341 0.329 0.343 0.348 0.346 0.357 0.363 0.374 0.378 0.376 0.390 0.387 0.388

.07 0.366 0.328 0.312 0.309 0.325 0.328 0.318 0.331 0.335 0.334 0.344 0.348 0.361 0.365 0.363 0.377 0.373 0.373

.08 0.355 0.315 0.299 0.298 0.315 0.315 0.307 0.320 0.321 0.323 0.332 0.335 0.348 0.352 0.349 0.364 0.359 0.358

.09 0.344 0.302 0.286 0.286 0.303 0.302 0.296 0.308 0.307 0.312 0.319 0.321 0.336 0.339 0.333 0.351 0.345 0.344

.10 0.332 0.290 0.273 0.276 0.291 0.289 0.285 0.297 0.294 0.300 0.306 0.308 0.324 0.327 0.320 0.338 0.332 0.329

.20 0.227 0.181 0.161 0.179 0.185 0.177 0.184 0.188 0.179 0.196 0.194 0.187 0.210 0.206 0.197 0.219 0.211 0.205

.30 0.146 0.100 0.084 0.105 0.105 0.094 0.109 0.107 0.097 0.117 0.110 0.099 0.123 0.116 0.109 0.127 0.120 0.112

.40 0.086 0.050 0.037 0.055 0.053 0.045 0.059 0.055 0.045 0.064 0.055 0.048 0.066 0.059 0.052 0.068 0.061 0.056

.50 0.050 0.024 0.014 0.027 0.023 0.018 0.029 0.025 0.019 0.030 0.025 0.019 0.032 0.027 0.022 0.031 0.028 0.024

Table 8.11: The effect of increasing  on the simulated estimates of Type II error probability for

underlying  1Exp as the optimal sample size and k increase; 0.05, 0.05, 15.t m   

To illustrate the above discussion graphically we consider Figures 8.10 till 8.21. The below graphs are

graphical representations that illustrate the above idea carefully as the optimal sample size increases.

Figure 8.10 till 8.13 represent the effect of changing the design factor  on the performance of the

Type II error under the normal distribution while Figures from 8.14 till 8.17 illustrate the same idea

under the uniform distribution while Figures 8.18 till 8.21 represent the case under the exponential

distribution. We noticed from Figures 8.11 till 8.15 how fast the convergence of the Type II error

probabilities occur at 0.5  while from Figures 8.15 till 8.18 we have same pattern as the normal

distribution while from Figures 8.10 till 8.21 where we can realize the slow convergence of the Type

II error probabilities towards the case 0.5  in comparative with the normal and uniform.
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Figure 8.10: The effect of increasing  on the estimated Type II error probability for underlying

 0,1N as k increases, * 24n  ; 0.05, 0.05, 15.t m   

Figure 8.11: The effect of increasing  on the estimated Type II error probability for underlying

 0,1N as k increases at * 76n  ; 0.05, 0.05, 15.t m   
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Figure 8.12: The effect of increasing  on the estimated Type II error probability for underlying

 0,1N as k increases at * 246n  ; 0.05, 0.05, 15.t m   

Figure 8.13: The effect of increasing  on the estimated Type II error probability for underlying

 0,1N as k increases at * 500n  ; 0.05, 0.05, 15.t m   
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Figure 8.14: The effect of increasing  on the estimated Type II error probability for underlying

 0,1U as k increases at * 24n  ; 0.05, 0.05, 15.t m   

Figure 8.15: The effect of increasing  on the estimated Type II error probability for underlying

 0,1U as k increases at * 96n  ; 0.05, 0.05, 15.t m   

0.50.40.30.20.10.0

0.5

0.4

0.3

0.2

0.1

0.0

k (Shift)

T
y

p
e

II
e

rr
o

r
p

ro
b

a
b

il
it

y

24(0.3)

24(0.5)

24(0.8)

Variable

Type II error performance as the design factor changes (uniform)

0.50.40.30.20.10.0

0.5

0.4

0.3

0.2

0.1

0.0

k (Shift)

T
y

p
e

II
e

rr
o

r
p

ro
b

a
b

il
it

y

96(0.3)

96(0.5)

96(0.8)

Variable

Type II error performance as the design factor changes (uniform)



185 | P a g e

Figure 8.16: The effect of increasing  on the estimated Type II error probability for underlying

 0,1U as k increases at * 246n  ; 0.05, 0.05, 15.t m   

Figure 8.17: The effect of increasing  on the estimated Type II error probability for underlying

 0,1U as k increases at * 500n  ; 0.05, 0.05, 15.t m   
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Figure 8.18: The effect of increasing  on the estimated Type II error probability for underlying

 1Exp as k increases at * 24n  ; 0.05, 0.05, 15.t m   

Figure 8.19: The effect of increasing  on the estimated Type II error probability for underlying

 1Exp as k increases at * 96n  ; 0.05, 0.05, 15.t m   
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Figure 8.20: The effect of increasing  on the estimated Type II error probability for underlying

 1Exp as k increases at * 246n  ; 0.05, 0.05, 15.t m   

Figure 8.21: The effect of increasing  on the estimated Type II error probability for underlying

 1Exp as k increases at * 500n  ; 0.05, 0.05, 15.t m   
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To conclude the thesis, we now summarize our .

We have seen that the results of the sequential triple sampling procedure depend mainly on the

characteristics of the underlying distribution. In particular, the skewness and the kurtosis play a major

role in determining the properties of the procedure.

In point estimation the asymptotic regret is bounded by non vanishing quantities and depends

basically on the kurtosis. On the other hand the asymptotic coverage probability of the fixed width

confidence interval depends on both the skewness and the kurtosis of the underlying distribution.

Moreover, it is common with Hall’s triple sampling for fixed width confidence interval estimation that

we attain the nominal value asymptotically. Hall (1981) recommended a modified sample size
*N by

increasing the sample size N in  4.3 to to modify the coverage up to

the nominal value. We have found that controlling Type II errors during the course of estimation

while building the confidence interval provides coverage with at least the nominal value. Therefore,

we may say that controlling Type II error will act in two ways. First, improving the coverage and

second, signifying any shifts in the targeted mean.

In addition the design factor was recommended by many sequential scientists to be in practical

situations. Intensive simulation results supported this fact from the prospective of controlling Type II

error. Moreover, the rounded off random error , was found by intensive simulations, that their

asymptotic distribution is uniformly distributed over that interval .

 * 2 5 2N N a       

 0.5

1N

 0,1
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Appendix A

Triple Sampling Simulation to Estimate the Optimal Sample Size, the Population Mean

and the Regret at and

Note: Each table is divided into three sub attached tables, the first one at , the second at

and the last at .

TABLE A1

The underlying distribution is a standard normal

24 22.18 0.028982 0.00115 0.001035 5.0388

43 41.25 0.036702 0.00084 0.000726 4.0344

61 59.37 0.042849 0.00068 0.000592 2.5455

76 74.44 0.046901 0.00031 0.000525 2.0155

96 94.51 0.052273 0.00003 0.000462 0.7541

125 123.59 0.058102 0.00033 0.000405 1.9341

171 169.56 0.067547 -0.00027 0.000346 2.6415

246 244.62 0.080568 0.00021 0.000287 2.2415

500 498.70 0.113235 -0.00005 0.000201 3.6976

24 16.36 0.020731 0.00082 0.001131 5.2289

43 41.11 0.039497 0.00069 0.000725 3.6876

61 59.78 0.038194 -0.00047 0.000584 1.1441

76 74.90 0.041723 -0.00083 0.000520 1.0326

96 94.88 0.046620 -0.00043 0.000462 1.1022

125 123.90 0.052493 0.00011 0.000403 0.9575

171 169.83 0.061344 0.00052 0.000345 2.1620

246 244.95 0.073067 0.00035 0.000286 0.7743

500 498.82 0.103711 -0.00020 0.000200 -0.0303

24 20.00 0.000000 0.00176 0.000999 0.7149

43 36.39 0.058475 -0.00095 0.000805 10.3735

61 59.52 0.041586 -0.00026 0.000590 2.3210

76 74.83 0.041595 0.00021 0.000524 2.2575

96 94.88 0.046026 -0.00031 0.000463 1.6784

125 123.92 0.052166 -0.00003 0.000404 1.5963

171 169.87 0.060357 0.00013 0.000345 2.0388

246 244.92 0.072686 -0.00007 0.000287 2.5890

500 498.92 0.102876 0.00009 0.000200 0.3383

5,15, 20m  0.5 

5m 

15m  20m 

*n N . .s e N 


. .s e 





*n N . .s e N 


. .s e 





*n N . .s e N 


. .s e 




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TABLE A2

The underlying distribution is a standard uniform

24 23.05 0.022279 0.49974 0.000324 11.3524

43 42.35 0.025634 0.50012 0.000213 6.6890

61 60.52 0.028055 0.50008 0.000173 4.9614

76 75.52 0.030640 0.50008 0.000153 4.6738

96 95.60 0.032932 0.50003 0.000134 2.4396

125 124.62 0.036760 0.49990 0.000117 2.9169

171 170.65 0.042357 0.50000 0.000099 0.7481

246 245.64 0.049462 0.49995 0.000083 2.3900

500 499.69 0.069074 0.49991 0.000058 4.1204

24 15.24 0.008750 0.50030 0.000333 5.4707

43 42.52 0.024801 0.49999 0.000210 5.2190

61 60.77 0.024570 0.49988 0.000170 2.9704

76 75.82 0.026718 0.50026 0.000150 2.1537

96 95.76 0.029713 0.50006 0.000133 1.7100

125 124.86 0.033402 0.50015 0.000116 1.2865

171 170.86 0.038470 0.50004 0.000099 1.4656

246 245.78 0.045876 0.49988 0.000083 5.9230

500 499.86 0.065035 0.50000 0.000058 7.6406

24 20.00 0.000000 0.49955 0.000287 0.5572

43 38.15 0.050794 0.49937 0.000239 15.6292

61 60.73 0.025025 0.50011 0.000169 2.5278

76 75.77 0.026631 0.50004 0.000151 2.3136

96 95.80 0.029368 0.50016 0.000134 2.6052

125 124.80 0.033152 0.49987 0.000116 0.9192

171 170.82 0.038557 0.50012 0.000099 2.1333

246 245.83 0.045493 0.49998 0.000083 3.8632

500 499.89 0.064344 0.50007 0.000058 1.4336

*n N . .s e N 


. .s e 





*n N . .s e N 


. .s e 





*n N . .s e N 


. .s e 




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TABLE A3

The underlying distribution is

24 20.88 0.036654 -0.00092 0.001309 2.5043

43 39.66 0.052534 -0.00190 0.000934 2.0134

61 57.66 0.066577 0.00081 0.000769 1.6291

76 72.68 0.075315 0.00004 0.000684 1.8168

96 92.72 0.084027 -0.00083 0.000603 1.4098

125 121.86 0.099683 -0.00061 0.000524 0.7889

171 167.80 0.120742 -0.00061 0.000445 -0.1928

246 243.19 0.149062 0.00019 0.000370 0.2370

500 498.39 0.242648 -0.00047 0.000258 -1.7375

24 17.33 0.028474 -0.00090 0.001377 2.1192

43 38.65 0.054649 0.00010 0.000940 1.6830

61 57.65 0.057029 -0.00133 0.000764 0.7942

76 72.70 0.064292 -0.00003 0.000679 0.5190

96 92.81 0.074492 -0.00024 0.000599 0.0544

125 121.68 0.087872 -0.00071 0.000524 0.3386

171 167.73 0.104197 -0.00036 0.000444 -1.4392

246 242.64 0.128265 0.00026 0.000369 -1.8762

500 496.85 0.193698 -0.00029 0.000260 4.4777

24 20.32 0.012561 0.00125 0.001263 -0.1202

43 34.20 0.065299 -0.00068 0.001017 5.5412

61 57.04 0.063225 -0.00018 0.000772 1.4883

76 72.73 0.063889 -0.00042 0.000677 0.2072

96 92.69 0.072646 -0.00045 0.000600 0.1309

125 121.75 0.083565 -0.00037 0.000522 -0.4909

171 167.60 0.104864 0.00020 0.000445 -0.4245

246 242.50 0.126861 -0.00052 0.000369 -1.9978

500 496.47 0.190696 -0.00005 0.000259 -0.7673

 5t

*n N . .s e N 


. .s e 

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

*n N . .s e N 

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



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
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



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TABLE A4

The underlying distribution is

24 22.02 0.029939 -0.00116 0.001076 4.6844

43 41.09 0.038530 0.00055 0.000756 3.6912

61 59.18 0.045058 0.00072 0.000619 2.7728

76 74.27 0.050177 0.00046 0.000547 1.7548

96 94.26 0.055544 -0.00084 0.000486 2.2458

125 123.27 0.062155 -0.00074 0.000423 1.9584

171 169.49 0.071683 0.00009 0.000358 0.2642

246 244.54 0.085695 -0.00076 0.000298 -0.9581

500 498.77 0.122293 -0.00011 0.000209 -0.0232

24 16.53 0.021943 -0.00101 0.001174 5.0694

43 40.94 0.041395 -0.00037 0.000759 3.9828

61 59.60 0.040470 -0.00012 0.000610 1.3662

76 74.65 0.044291 -0.00076 0.000543 1.0648

96 94.66 0.049549 0.00033 0.000484 2.1484

125 123.67 0.055786 0.00059 0.000422 1.4517

171 169.72 0.064653 -0.00007 0.000358 0.0084

246 244.71 0.078574 -0.00043 0.000299 1.4579

500 498.63 0.110583 -0.00018 0.000209 1.5594

24 20.00 0.001335 0.00025 0.001044 0.9021

43 36.14 0.059555 0.00003 0.000832 9.0250

61 59.34 0.044015 -0.00045 0.000617 2.5277

76 74.61 0.044410 -0.00042 0.000545 1.4274

96 94.70 0.048752 -0.00010 0.000481 0.8447

125 123.67 0.055646 -0.00039 0.000422 1.3883

171 169.73 0.064318 0.00056 0.000360 2.1650

246 244.72 0.077640 -0.00041 0.000298 -0.2633

500 498.63 0.109736 -0.00043 0.000210 6.2678

 25t
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TABLE A5

The underlying distribution is

24 22.14 0.029292 0.00062 0.001054 4.8482

43 41.20 0.037994 -0.00070 0.000741 3.9371

61 59.31 0.043884 -0.00017 0.000606 2.9058

76 74.40 0.047923 -0.00024 0.000540 3.2878

96 94.39 0.053054 -0.00114 0.000474 1.8918

125 123.56 0.059901 0.00000 0.000414 2.0669

171 169.43 0.070151 -0.00064 0.000352 0.9446

246 244.47 0.083238 0.00004 0.000293 1.2752

500 498.62 0.117445 -0.00070 0.000205 4.7263

24 16.48 0.021578 -0.00022 0.001147 4.8474

43 41.05 0.040225 0.00029 0.000740 3.6657

61 59.64 0.039283 0.00004 0.000596 1.0596

76 74.70 0.042995 -0.00070 0.000531 0.7468

96 94.76 0.047965 0.00052 0.000473 1.6086

125 123.69 0.054177 -0.00080 0.000414 2.1794

171 169.79 0.063129 -0.00043 0.000351 0.9590

246 244.84 0.075478 -0.00014 0.000294 4.1042

500 498.89 0.106259 -0.00027 0.000205 1.0304

24 20.00 0.001174 0.00010 0.001021 0.8401

43 36.31 0.058764 -0.00024 0.000814 9.0564

61 59.46 0.042114 -0.00044 0.000604 2.6648

76 74.74 0.042853 -0.00116 0.000532 1.2739

96 94.88 0.047234 -0.00113 0.000470 0.5378

125 123.83 0.053609 0.00026 0.000411 0.3645

171 169.84 0.062453 -0.00041 0.000352 1.2998

246 244.68 0.074626 0.00011 0.000294 3.1244

500 499.01 0.105524 -0.00018 0.000205 5.6271

 50t
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TABLE A6

The underlying distribution is

24 22.11 0.029307 -0.00054 0.001051 5.2683

43 41.29 0.037196 -0.00057 0.000728 3.3283

61 59.29 0.043189 -0.00041 0.000599 2.8020

76 74.44 0.047089 -0.00068 0.000532 2.4863

96 94.46 0.052633 -0.00054 0.000469 2.0045

125 123.50 0.059256 -0.00032 0.000412 3.4297

171 169.50 0.068577 0.00004 0.000349 2.0338

246 244.58 0.082121 -0.00013 0.000289 0.9453

500 498.77 0.116592 -0.00028 0.000202 -3.2164

24 16.41 0.021003 -0.00023 0.001142 5.2045

43 41.09 0.039855 0.00043 0.000734 3.9395

61 59.81 0.038443 -0.00002 0.000593 1.9960

76 74.73 0.042378 -0.00002 0.000525 0.8356

96 94.92 0.046767 -0.00060 0.000465 0.4081

125 123.90 0.053644 -0.00048 0.000408 1.1102

171 169.80 0.061847 -0.00007 0.000346 -1.0170

246 244.81 0.074448 -0.00044 0.000290 1.8997

500 498.81 0.105261 -0.00030 0.000204 6.3207

24 20.00 0.000000 0.00164 0.001009 0.7379

43 36.32 0.058804 0.00128 0.000813 10.1842

61 59.55 0.041776 0.00058 0.000599 2.9800

76 74.82 0.041891 0.00046 0.000526 1.0016

96 94.79 0.046664 -0.00064 0.000466 1.0195

125 123.86 0.052835 -0.00029 0.000409 1.7239

171 169.71 0.061537 -0.00085 0.000347 -0.0869

246 244.87 0.073605 -0.00004 0.000288 -0.4451

500 498.92 0.104293 -0.00039 0.000202 -3.5525
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TABLE A7

The underlying distribution is beta

24 22.63 0.026033 0.39700 0.000214 7.8013

43 41.78 0.032047 0.39887 0.000146 5.2428

61 59.94 0.036216 0.39936 0.000119 4.0645

76 75.04 0.038951 0.39976 0.000106 3.8069

96 95.06 0.042749 0.39957 0.000093 3.5709

125 124.09 0.047940 0.39991 0.000081 3.6107

171 170.06 0.054984 0.39987 0.000069 2.8993

246 245.20 0.065358 0.39974 0.000057 2.4580

500 499.12 0.091797 0.39991 0.000040 1.1577

24 15.78 0.015659 0.39929 0.000228 5.1932

43 41.80 0.032927 0.39862 0.000147 5.6713

61 60.28 0.031924 0.39927 0.000118 2.5505

76 75.28 0.035098 0.39957 0.000104 1.8228

96 95.29 0.038554 0.39964 0.000092 1.3700

125 124.36 0.043387 0.39967 0.000081 1.2696

171 170.32 0.050605 0.39981 0.000069 2.1447

246 245.30 0.060230 0.39996 0.000057 0.2243

500 499.41 0.084919 0.39996 0.000040 -0.3856

24 20.00 0.000000 0.40022 0.000200 0.6887

43 37.19 0.055311 0.39762 0.000164 13.3263

61 60.15 0.033871 0.39925 0.000118 3.2058

76 75.37 0.034510 0.39942 0.000105 3.0726

96 95.34 0.038387 0.39953 0.000093 2.8478

125 124.41 0.043471 0.39988 0.000081 1.4720

171 170.45 0.050123 0.39994 0.000069 1.3234

246 245.41 0.059888 0.39986 0.000058 4.0616

500 499.36 0.084370 0.39994 0.000040 3.6948
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TABLE A8

The underlying distribution is exponential with mean one

24 19.05 0.042283 0.91062 0.001210 17.7940

43 37.36 0.066798 0.95096 0.000910 32.3492

61 55.27 0.083120 0.97055 0.000717 32.0484

76 70.43 0.095247 0.97799 0.000620 32.2888

96 90.82 0.108801 0.98547 0.000522 26.3778

125 119.63 0.125698 0.98934 0.000442 23.7438

171 166.33 0.150889 0.99284 0.000361 16.7938

246 241.72 0.183681 0.99513 0.000293 10.2735

500 497.95 0.278949 0.99761 0.000203 13.6584

24 18.00 0.031791 0.96999 0.000981 -1.7872

43 36.70 0.063877 0.95095 0.000820 17.3048

61 55.42 0.072529 0.97141 0.000680 22.4790

76 70.67 0.081002 0.98051 0.000582 18.6754

96 90.71 0.091417 0.98597 0.000496 14.0712

125 119.59 0.104466 0.99106 0.000425 11.8602

171 165.67 0.123608 0.99283 0.000354 8.7925

246 241.02 0.150052 0.99610 0.000293 9.2764

500 495.23 0.217850 0.99772 0.000202 7.3364

24 20.46 0.014478 0.99486 0.000965 -0.7321

43 33.97 0.068079 0.95662 0.000772 6.4769

61 54.51 0.078470 0.96587 0.000690 25.3587

76 70.40 0.081271 0.97832 0.000594 23.0115

96 90.50 0.089091 0.98632 0.000501 15.7395

125 119.70 0.102628 0.99068 0.000422 10.3143

171 165.69 0.120965 0.99342 0.000355 8.7394

246 240.62 0.146291 0.99518 0.000293 9.0376

500 495.16 0.211471 0.99795 0.000202 4.0084
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Appendix B

Triple Sampling Simulation to Estimate the Optimal Sample Size, the Population Mean,

the Probability of Stopping and the Coverage Probability at and

Note: Each table is divided into three sub attached tables, the first one at 5m  , the second at

15m  and the last at 20m  .

TABLE B1

The underlying distribution is a standard normal

24 20.03 0.051 -0.0011 0.0013 0.202 0.076 0.722 0.8651

43 37.92 0.081 0.0007 0.0009 0.079 0.091 0.830 0.8831

61 55.72 0.104 0.0003 0.0008 0.044 0.086 0.870 0.8985

76 70.87 0.120 -0.0001 0.0007 0.031 0.092 0.877 0.9063

96 91.21 0.139 0.0000 0.0006 0.018 0.091 0.891 0.9179

125 120.52 0.164 0.0004 0.0005 0.012 0.092 0.897 0.9254

171 167.48 0.200 -0.0008 0.0004 0.007 0.091 0.902 0.9315

246 244.49 0.249 0.0002 0.0003 0.003 0.089 0.908 0.9394

500 505.39 0.405 -0.0001 0.0002 0.001 0.089 0.910 0.9462

24 19.56 0.038 0.0011 0.0011 0.769 0.000 0.231 0.9009

43 38.12 0.068 -0.0006 0.0008 0.221 0.001 0.779 0.9048

61 56.32 0.081 0.0004 0.0007 0.062 0.004 0.935 0.9192

76 71.55 0.089 0.0002 0.0006 0.022 0.005 0.973 0.9276

96 91.48 0.101 0.0004 0.0005 0.008 0.008 0.985 0.9331

125 120.70 0.113 -0.0003 0.0004 0.002 0.009 0.989 0.9383

171 166.85 0.131 0.0006 0.0004 0.000 0.010 0.990 0.9433

246 242.08 0.156 0.0000 0.0003 0.000 0.010 0.990 0.9435

500 496.69 0.223 0.0001 0.0002 0.000 0.013 0.987 0.9463

24 20.77 0.019 -0.0016 0.0010 0.966 0.000 0.034 0.9297

43 36.25 0.071 -0.0017 0.0008 0.452 0.000 0.548 0.8974

61 55.85 0.084 -0.0001 0.0007 0.133 0.000 0.867 0.9161

76 71.55 0.089 -0.0006 0.0006 0.046 0.001 0.953 0.9269

96 91.71 0.098 0.0001 0.0005 0.012 0.002 0.987 0.9335

125 120.72 0.111 0.0000 0.0004 0.002 0.002 0.996 0.9398

171 166.88 0.127 0.0006 0.0004 0.000 0.003 0.997 0.9411

246 241.63 0.151 0.0001 0.0003 0.000 0.004 0.996 0.9457

500 496.14 0.214 -0.0002 0.0002 0.000 0.005 0.995 0.9487

5,15, 20, 0.5m  

0.05 
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TABLE B2

The underlying distribution is a standard uniform

24 20.92 0.04 0.5 0.0 0.136 0.022 0.842 0.8487

43 39.27 0.06 0.5 0.0 0.047 0.028 0.925 0.8854

61 57.12 0.07 0.5 0.0 0.026 0.029 0.945 0.9040

76 72.20 0.08 0.5 0.0 0.016 0.030 0.953 0.9151

96 92.15 0.09 0.5 0.0 0.011 0.031 0.958 0.9220

125 121.37 0.10 0.5 0.0 0.007 0.032 0.961 0.9319

171 167.75 0.12 0.5 0.0 0.004 0.032 0.965 0.9385

246 243.38 0.14 0.5 0.0 0.001 0.031 0.968 0.9447

500 498.77 0.19 0.5 0.0 0.001 0.032 0.967 0.9481

24 17.89 0.03 0.5 0.0 0.839 0.000 0.161 0.8854

43 40.47 0.05 0.5 0.0 0.112 0.000 0.887 0.9062

61 59.07 0.05 0.5 0.0 0.016 0.000 0.984 0.9301

76 74.21 0.06 0.5 0.0 0.005 0.000 0.995 0.9341

96 94.27 0.06 0.5 0.0 0.001 0.000 0.999 0.9387

125 123.36 0.07 0.5 0.0 0.000 0.000 1.000 0.9432

171 169.32 0.08 0.5 0.0 0.000 0.000 1.000 0.9449

246 244.34 0.10 0.5 0.0 0.000 0.000 1.000 0.9470

500 498.42 0.13 0.5 0.0 0.000 0.000 1.000 0.9483

24 20.03 0.00 0.5 0.0 0.999 0.000 0.001 0.9258

43 37.11 0.06 0.5 0.0 0.381 0.000 0.619 0.8842

61 58.82 0.06 0.5 0.0 0.050 0.000 0.950 0.9230

76 74.25 0.06 0.5 0.0 0.010 0.000 0.990 0.9329

96 94.45 0.06 0.5 0.0 0.001 0.000 0.999 0.9412

125 123.45 0.07 0.5 0.0 0.000 0.000 1.000 0.9447

171 169.47 0.08 0.5 0.0 0.000 0.000 1.000 0.9430

246 244.49 0.09 0.5 0.0 0.000 0.000 1.000 0.9467

500 498.77 0.13 0.5 0.0 0.000 0.000 1.000 0.9470
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TABLE B3

The underlying distribution is  5t

24 19.03 0.08 0 0 0.288 0.117 0.595 0.8741

43 36.68 0.21 0 0 0.130 0.128 0.742 0.8773

61 55.27 0.23 0 0 0.075 0.125 0.800 0.8848

76 70.00 0.24 0 0 0.053 0.123 0.824 0.8927

96 90.62 0.28 0 0 0.035 0.118 0.847 0.8993

125 121.49 0.37 0 0 0.023 0.115 0.863 0.9074

171 171.01 0.44 0 0 0.012 0.115 0.873 0.9216

246 250.70 0.61 0 0 0.006 0.111 0.883 0.9322

500 521.82 1.19 0 0 0.002 0.112 0.887 0.9417

24 20.06 0.05 0 0 0.770 0.007 0.222 0.9232

43 35.45 0.10 0 0 0.348 0.021 0.631 0.9058

61 52.88 0.13 0 0 0.144 0.034 0.821 0.9129

76 67.92 0.16 0 0 0.070 0.040 0.890 0.9181

96 88.02 0.19 0 0 0.027 0.047 0.925 0.9230

125 117.76 0.24 0 0 0.010 0.050 0.941 0.9304

171 164.97 0.29 0 0 0.002 0.053 0.945 0.9353

246 241.67 0.37 0 0 0.000 0.055 0.944 0.9411

500 503.30 0.82 0 0 0.000 0.055 0.945 0.9462

24 22.35 0.04 0 0 0.914 0.003 0.084 0.9417

43 34.76 0.09 0 0 0.553 0.009 0.438 0.9088

61 52.10 0.13 0 0 0.256 0.016 0.728 0.9138

76 66.85 0.14 0 0 0.126 0.022 0.851 0.9191

96 87.19 0.17 0 0 0.050 0.026 0.923 0.9259

125 116.76 0.21 0 0 0.014 0.033 0.954 0.9333

171 163.54 0.26 0 0 0.002 0.037 0.961 0.9354

246 239.37 0.33 0 0 0.000 0.040 0.960 0.9395

500 498.27 0.54 0 0 0.000 0.044 0.956 0.9479
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TABLE B4

The underlying distribution is

24 19.73 0.06 0 0 0.239 0.089 0.671 0.8709

43 37.28 0.10 0 0 0.096 0.103 0.801 0.8802

61 55.23 0.13 0 0 0.053 0.103 0.844 0.8936

76 70.20 0.15 0 0 0.038 0.105 0.857 0.9004

96 91.01 0.17 0 0 0.025 0.101 0.874 0.9104

125 120.92 0.21 0 0 0.016 0.104 0.880 0.9199

171 168.47 0.26 0 0 0.009 0.103 0.889 0.9282

246 246.80 0.34 0 0 0.004 0.105 0.890 0.9363

500 512.31 0.59 0 0 0.001 0.104 0.895 0.9450

24 19.88 0.04 0 0 0.764 0.001 0.235 0.9120

43 37.13 0.08 0 0 0.271 0.006 0.723 0.9040

61 54.98 0.09 0 0 0.090 0.013 0.897 0.9180

76 69.79 0.11 0 0 0.037 0.017 0.947 0.9233

96 89.98 0.12 0 0 0.013 0.020 0.967 0.9283

125 119.38 0.14 0 0 0.003 0.023 0.974 0.9352

171 165.89 0.17 0 0 0.001 0.026 0.973 0.9399

246 241.44 0.20 0 0 0.000 0.029 0.971 0.9440

500 496.88 0.30 0 0 0.000 0.030 0.970 0.9469

24 21.43 0.03 0 0 0.941 0.000 0.059 0.9334

43 35.70 0.07 0 0 0.489 0.001 0.510 0.9020

61 54.35 0.09 0 0 0.180 0.003 0.817 0.9156

76 69.80 0.10 0 0 0.072 0.006 0.923 0.9230

96 89.83 0.12 0 0 0.024 0.008 0.968 0.9298

125 119.01 0.13 0 0 0.005 0.011 0.984 0.9377

171 165.33 0.16 0 0 0.000 0.013 0.987 0.9405

246 240.64 0.19 0 0 0.000 0.015 0.985 0.9439

500 495.78 0.28 0 0 0.000 0.018 0.982 0.9472
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TABLE B5

The underlying distribution is

24 19.85 0.05 0 0 0.215 0.081 0.704 0.8682

43 37.71 0.09 0 0 0.089 0.095 0.817 0.8828

61 55.35 0.11 0 0 0.047 0.096 0.857 0.8940

76 70.92 0.13 0 0 0.033 0.097 0.870 0.9070

96 91.12 0.15 0 0 0.020 0.099 0.881 0.9163

125 120.67 0.18 0 0 0.013 0.094 0.893 0.9236

171 168.38 0.22 0 0 0.007 0.096 0.897 0.9305

246 245.30 0.28 0 0 0.004 0.096 0.900 0.9364

500 508.23 0.46 0 0 0.001 0.095 0.904 0.9482

24 19.68 0.04 0 0 0.769 0.000 0.231 0.9042

43 37.70 0.07 0 0 0.237 0.002 0.761 0.9048

61 55.83 0.08 0 0 0.072 0.006 0.922 0.9192

76 70.95 0.09 0 0 0.027 0.008 0.965 0.9257

96 91.18 0.11 0 0 0.009 0.011 0.980 0.9327

125 119.97 0.12 0 0 0.002 0.013 0.985 0.9365

171 166.24 0.14 0 0 0.000 0.014 0.985 0.9422

246 241.76 0.17 0 0 0.000 0.017 0.983 0.9431

500 496.31 0.24 0 0 0.000 0.019 0.981 0.9474

24 21.01 0.02 0 0 0.957 0.000 0.043 0.9309

43 36.19 0.07 0 0 0.468 0.000 0.531 0.8979

61 55.32 0.09 0 0 0.150 0.001 0.849 0.9160

76 70.89 0.09 0 0 0.055 0.002 0.944 0.9265

96 90.96 0.10 0 0 0.016 0.003 0.981 0.9332

125 120.32 0.12 0 0 0.003 0.004 0.993 0.9375

171 166.48 0.14 0 0 0.000 0.006 0.994 0.9407

246 241.10 0.16 0 0 0.000 0.007 0.993 0.9441

500 495.96 0.23 0 0 0.000 0.009 0.991 0.9480
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TABLE B6

The underlying distribution is

24 19.89 0.05 0 0 0.207 0.078 0.715 0.8697

43 37.70 0.08 0 0 0.085 0.091 0.824 0.8806

61 55.58 0.11 0 0 0.047 0.093 0.861 0.8983

76 70.73 0.12 0 0 0.030 0.091 0.879 0.9080

96 90.92 0.15 0 0 0.020 0.095 0.885 0.9148

125 120.61 0.17 0 0 0.012 0.091 0.897 0.9222

171 168.09 0.21 0 0 0.007 0.091 0.902 0.9328

246 245.03 0.26 0 0 0.003 0.093 0.904 0.9392

500 506.02 0.42 0 0 0.001 0.096 0.903 0.9467

24 19.65 0.04 0 0 0.769 0.000 0.231 0.9043

43 37.95 0.07 0 0 0.226 0.002 0.772 0.9049

61 56.23 0.08 0 0 0.063 0.005 0.932 0.9209

76 71.25 0.09 0 0 0.024 0.006 0.970 0.9289

96 91.27 0.10 0 0 0.008 0.008 0.984 0.9316

125 120.37 0.12 0 0 0.002 0.011 0.987 0.9385

171 166.45 0.14 0 0 0.000 0.012 0.988 0.9417

246 241.69 0.16 0 0 0.000 0.014 0.986 0.9460

500 496.56 0.23 0 0 0.000 0.016 0.984 0.9469

24 20.86 0.02 0 0 0.963 0.000 0.037 0.9294

43 36.16 0.07 0 0 0.463 0.000 0.537 0.8974

61 55.64 0.09 0 0 0.142 0.000 0.858 0.9156

76 71.24 0.09 0 0 0.050 0.001 0.949 0.9276

96 91.26 0.10 0 0 0.014 0.002 0.984 0.9347

125 120.43 0.11 0 0 0.002 0.003 0.995 0.9368

171 166.48 0.13 0 0 0.000 0.004 0.996 0.9429

246 241.59 0.16 0 0 0.000 0.005 0.995 0.9442

500 496.03 0.22 0 0 0.000 0.006 0.994 0.9476
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TABLE B7

The underlying distribution is

24 19.93 0.05 0 0 0.204 0.076 0.721 0.8654

43 37.72 0.08 0 0 0.079 0.090 0.831 0.8834

61 55.67 0.11 0 0 0.044 0.091 0.865 0.8964

76 70.75 0.12 0 0 0.029 0.093 0.878 0.9060

96 90.75 0.14 0 0 0.019 0.092 0.889 0.9151

125 120.49 0.17 0 0 0.012 0.091 0.897 0.9240

171 168.12 0.21 0 0 0.006 0.091 0.903 0.9343

246 245.19 0.26 0 0 0.003 0.093 0.903 0.9407

500 506.01 0.42 0 0 0.001 0.093 0.907 0.9476

24 19.63 0.04 0 0 0.768 0.000 0.232 0.9030

43 38.15 0.07 0 0 0.224 0.001 0.775 0.9047

61 56.40 0.08 0 0 0.066 0.004 0.931 0.9184

76 71.39 0.09 0 0 0.024 0.007 0.969 0.9268

96 91.50 0.10 0 0 0.007 0.008 0.985 0.9322

125 120.47 0.11 0 0 0.002 0.010 0.988 0.9380

171 166.73 0.13 0 0 0.000 0.011 0.989 0.9420

246 241.93 0.16 0 0 0.000 0.012 0.987 0.9450

500 496.91 0.23 0 0 0.000 0.014 0.986 0.9493

24 20.86 0.02 0 0 0.965 0.000 0.035 0.9301

43 36.14 0.07 0 0 0.460 0.000 0.540 0.8974

61 55.71 0.08 0 0 0.137 0.000 0.863 0.9161

76 71.27 0.09 0 0 0.049 0.001 0.950 0.9244

96 91.45 0.10 0 0 0.013 0.001 0.986 0.9335

125 120.58 0.11 0 0 0.003 0.003 0.994 0.9382

171 166.72 0.13 0 0 0.000 0.004 0.996 0.9423

246 242.11 0.15 0 0 0.000 0.005 0.995 0.9446

500 496.06 0.22 0 0 0.000 0.005 0.995 0.9478

 100t

*n N . .s e N 


. .s e 


( )P M 1( )P N ( )P N 1 

*n N . .s e N 


. .s e 


( )P M 1( )P N ( )P N 1 

*n N . .s e N 


. .s e 


( )P M 1( )P N ( )P N 1 



204 | P a g e

TABLE B8

The underlying distribution is beta

24 20.24 0.05 0.61 0 0.173 0.050 0.777 0.8535

43 38.53 0.07 0.60 0 0.064 0.064 0.872 0.8823

61 56.28 0.09 0.60 0 0.033 0.067 0.900 0.8995

76 71.28 0.10 0.60 0 0.023 0.066 0.911 0.9090

96 91.52 0.11 0.60 0 0.014 0.067 0.919 0.9187

125 120.95 0.13 0.60 0 0.009 0.069 0.921 0.9288

171 167.32 0.16 0.60 0 0.004 0.069 0.926 0.9349

246 243.33 0.19 0.60 0 0.003 0.072 0.926 0.9409

500 501.04 0.28 0.60 0 0.001 0.072 0.927 0.9490

24 18.91 0.03 0.60 0 0.788 0.000 0.212 0.8962

43 39.20 0.06 0.60 0 0.172 0.000 0.828 0.9017

61 57.76 0.07 0.60 0 0.037 0.000 0.963 0.9228

76 72.68 0.08 0.60 0 0.012 0.001 0.987 0.9278

96 92.95 0.08 0.60 0 0.004 0.002 0.994 0.9353

125 121.96 0.09 0.60 0 0.001 0.001 0.998 0.9405

171 168.10 0.11 0.60 0 0.000 0.002 0.998 0.9415

246 243.14 0.13 0.60 0 0.000 0.002 0.998 0.9429

500 497.11 0.18 0.60 0 0.000 0.003 0.997 0.9490

24 20.28 0.01 0.60 0 0.986 0.000 0.014 0.9274

43 36.61 0.07 0.60 0 0422 0.000 0.578 0.8909

61 57.33 0.07 0.60 0 0.094 0.000 0.906 0.9167

76 72.69 0.08 0.60 0 0.026 0.000 0.974 0.9310

96 93.04 0.08 0.60 0 0.006 0.000 0.994 0.9341

125 122.16 0.09 0.60 0 0.001 0.000 0.999 0.9401

171 168.26 0.11 0.60 0 0.000 0.000 1.000 0.9435

246 243.34 0.12 0.60 0 0.000 0.000 1.000 0.9458

500 497.13 0.17 0.60 0 0.000 0.000 1.000 0.9477
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TABLE B9

The underlying distribution is exponential with mean one

24 17.71 0.083 0.8701 0.0012 0.388 0.129 0.483 0.7935

43 33.82 0.151 0.8755 0.0011 0.227 0.153 0.620 0.7418

61 50.80 0.213 0.8915 0.0011 0.154 0.152 0.694 0.7544

76 65.89 0.258 0.9061 0.0010 0.117 0.152 0.731 0.7736

96 85.76 0.312 0.9188 0.0009 0.088 0.148 0.765 0.7932

125 116.15 0.399 0.9357 0.0008 0.060 0.141 0.799 0.8209

171 165.41 0.516 0.9517 0.0007 0.039 0.139 0.823 0.8458

246 245.54 0.693 0.9673 0.0006 0.021 0.134 0.845 0.8771

500 525.70 1.277 0.9879 0.0004 0.007 0.133 0.860 0.9169

24 20.49 0.049 0.9621 0.0009 0.745 0.010 0.245 0.8420

43 33.89 0.097 0.9368 0.0008 0.415 0.035 0.550 0.8706

61 49.56 0.136 0.9377 0.0008 0.233 0.055 0.712 0.8389

76 63.51 0.166 0.9440 0.0007 0.150 0.065 0.785 0.8346

96 82.86 0.201 0.9520 0.0007 0.084 0.074 0.842 0.8463

125 112.37 0.249 0.9649 0.0006 0.041 0.078 0.881 0.8676

171 159.19 0.311 0.9753 0.0005 0.015 0.082 0.902 0.8908

246 236.66 0.394 0.9856 0.0004 0.004 0.084 0.912 0.9141

500 500.20 0.635 0.9949 0.0002 0.000 0.083 0.917 0.9361

24 22.90 0.039 0.9808 0.0009 0.880 0.002 0.118 0.9608

43 34.35 0.089 0.9535 0.0008 0.563 0.013 0.424 0.9062

61 49.56 0.128 0.9480 0.0007 0.330 0.026 0.644 0.8666

76 63.10 0.154 0.9502 0.0007 0.213 0.037 0.751 0.8508

96 82.32 0.188 0.9571 0.0006 0.118 0.046 0.835 0.8529

125 111.23 0.227 0.9672 0.0006 0.052 0.056 0.892 0.8731

171 157.35 0.280 0.9777 0.0005 0.017 0.061 0.922 0.8977

246 235.12 0.353 0.9875 0.0003 0.004 0.062 0.934 0.9186

500 493.58 0.553 0.9953 0.0002 0.000 0.069 0.931 0.9363
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Appendix C

Testing the Uniformity of the Round Off Errors Using the One-Sample Kolmogorov-

Smirnov Test

TABLE C1: The underlying distribution is standard normal

Sample mean and sample variance

24 43 61 76 96 125 171 246 500

5m  0.49364 0.49834 0.49812 0.50048 0.49845 0.49906 0.50137 0.50071 0.49853

15m  0.49650 0.49538 0.49810 0.49667 0.49977 0.50109 0.49910 0.49743 0.49820

20m  0.49818 0.49541 0.49534 0.49732 0.49847 0.49827 0.50134 0.50023 0.50016

24 43 61 76 96 125 171 246 500

5m  0.289296 0.288961 0.288435 0.288331 0.288164 0.288462 0.289102 0.289191 0.288560

15m  0.287997 0.288547 0.288268 0.288428 0.288969 0.288467 0.287896 0.288917 0.288368

20m  0.288265 0.289189 0.288286 0.289392 0.288015 0.287741 0.288949 0.289133 0.287682

Kolmogorov-Smirnov Z and asymptotic significance (2-tailed)

24 43 61 76 96 125 171 246 500

5m  2.849 1.024 0.984 0.738 1.194 0.765 0.885 0.693 0.957

p - value 0.000 0.245 0.288 0.648 0.115 0.602 0.413 0.723 0.319

15m  1.677 1.923 1.440 1.798 0.631 0.823 0.823 1.561 1.131

p - value 0.007 0.001 0.032 0.003 0.821 0.507 0.507 0.015 0.154

20m  1.190 1.990 2.375 1.440 1.328 1.087 0.962 0.626 0.818

p - value 0.118 0.001 0.000 0.032 0.059 0.188 0.314 0.828 0.515

*n
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TABLE C2: The underlying distribution is standard uniform

Sample mean and sample variance

24 43 61 76 96 125 171 246 500

5m  0.49590 0.49988 0.50084 0.49959 0.49868 0.49820 0.49737 0.49838 0.49902

15m  0.49613 0.49710 0.50148 0.50055 0.49843 0.49992 0.49840 0.50111 0.49988

20m  0.49954 0.49365 0.49778 0.49908 0.49792 0.50043 0.49915 0.49922 0.50037

24 43 61 76 96 125 171 246 500

5m  0.288914 0.288738 0.288710 0.287476 0.287966 0.289064 0.288151 0.289227 0.289059

15m  0.288364 0.289391 0.288393 0.288332 0.289708 0.288167 0.289492 0.288656 0.287506

20m  0.288685 0.288945 0.289072 0.288661 0.288475 0.289036 0.289519 0.288739 0.289506

Kolmogorov-Smirnov Z and asymptotic significance (2-tailed)

24 43 61 76 96 125 171 246 500

5m  1.816 0.631 0.769 0.948 1.091 0.863 1.216 0.935 0.912

p - value 0.003 0.821 0.595 0.330 0.185 0.446 0.104 0.347 0.376

15m  1.699 1.695 1.020 0.671 1.199 0.894 1.136 1.060 0.970

p - value 0.006 0.006 0.250 0.759 0.113 0.400 0.151 0.211 0.303

20m  0.648 2.379 1.337 0.769 1.140 0.778 0.970 0.859 0.738

p - value 0.794 0.000 0.056 0.595 0.148 0.580 0.303 0.452 0.648

TABLE C3: The underlying distribution is exponential with mean one

Sample mean and sample variance

24 43 61 76 96 125 171 246 500

5m  0.49415 0.49557 0.49810 0.49972 0.49618 0.49862 0.49799 0.49751 0.49877

15m  0.49514 0.49895 0.49812 0.49643 0.49854 0.49855 0.49884 0.49765 0.50121

20m  0.49887 0.49990 0.49724 0.49735 0.49892 0.50013 0.50151 0.49999 0.49979

24 43 61 76 96 125 171 246 500

5m  0.288686 0.288570 0.288959 0.287910 0.289384 0.288984 0.289011 0.288865 0.288169

15m  0.289140 0.289373 0.288103 0.288940 0.288650 0.288360 0.289308 0.288476 0.288297

20m  0.288723 0.287310 0.288421 0.288647 0.288829 0.288311 0.288754 0.288124 0.289311

Kolmogorov-Smirnov Z and asymptotic significance (2-tailed)

24 43 61 76 96 125 171 246 500

5m  2.312 2.312 1.123 0.760 1.641 1.261 1.127 1.440 0.823

p - value 0.000 0.000 0.161 0.610 0.009 0.083 0.158 0.032 0.507

15m  2.446 1.167 1.279 1.588 1.118 1.145 0.953 1.525 0.868

p - value 0.000 0.131 0.076 0.013 0.164 0.145 0.324 0.019 0.439

20m  0.814 0.944 1.476 1.377 0.769 0.792 1.297 0.684 0.868

p - value 0.522 0.335 0.026 0.045 0.595 0.558 0.069 0.737 0.439
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Appendix D

Controlled Triple Sampling Simulation to Estimate the Optimal Sample Size, the

Population Mean and the Coverage Probability at and

Note: Each table is divided into three sub attached tables, the first one at , the second at

and the last at .

TABLE D1

The underlying distribution is a standard normal

24 19.94 0.051 0.0007 0.0013 0.9768

43 37.80 0.081 0.0005 0.0009 0.9780

61 55.67 0.104 -0.0002 0.0008 0.9800

76 70.88 0.120 0.0001 0.0007 0.9841

96 91.16 0.140 -0.0003 0.0006 0.9871

125 120.85 0.164 -0.0005 0.0005 0.9908

171 167.48 0.201 0.0000 0.0004 0.9926

246 244.92 0.250 0.0002 0.0003 0.9962

500 505.86 0.410 -0.0001 0.0002 0.9982

24 19.55 0.038 0.0007 0.0011 0.9966

43 38.16 0.068 -0.0009 0.0008 0.9925

61 56.47 0.081 0.0021 0.0006 0.9946

76 71.51 0.090 0.0006 0.0006 0.9957

96 91.80 0.100 0.0004 0.0005 0.9976

125 120.58 0.114 -0.0002 0.0004 0.9984

171 166.70 0.132 -0.0001 0.0004 0.9989

246 241.86 0.156 0.0002 0.0003 0.9991

500 496.49 0.223 -0.0004 0.0002 0.9994

24 20.79 0.019 0.0007 0.0010 0.9991

43 36.38 0.071 0.0005 0.0008 0.9937

61 55.90 0.083 -0.0003 0.0007 0.9944

76 71.50 0.090 -0.0001 0.0006 0.9963

96 91.71 0.098 -0.0003 0.0005 0.9976

125 120.82 0.111 -0.0001 0.0004 0.9988

171 166.83 0.127 0.0001 0.0004 0.9991

246 242.05 0.151 0.0005 0.0003 0.9995

500 496.43 0.215 -0.0002 0.0002 0.9996

5,15,20, 0.05m   0.5 

5m 

15m  20m 

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 



209 | P a g e

TABLE D2

The underlying distribution is standard uniform

24 20.88 0.04 0.4993 0.0004 0.9528

43 39.25 0.06 0.4997 0.0003 0.9657

61 57.08 0.07 0.4999 0.0002 0.9754

76 72.10 0.08 0.4996 0.0002 0.9813

96 92.45 0.09 0.5001 0.0002 0.9867

125 121.43 0.10 0.5001 0.0002 0.9910

171 167.73 0.12 0.4999 0.0001 0.9948

246 243.32 0.14 0.5001 0.0001 0.9969

500 498.53 0.19 0.4999 0.0001 0.9988

24 17.93 0.03 0.5000 0.0003 0.9962

43 40.32 0.05 0.4999 0.0002 0.9876

61 58.97 0.05 0.4999 0.0002 0.9933

76 74.20 0.06 0.5000 0.0002 0.9964

96 94.38 0.06 0.4999 0.0001 0.9979

125 123.46 0.07 0.5001 0.0001 0.9986

171 169.55 0.08 0.4998 0.0001 0.9993

246 244.45 0.09 0.5000 0.0001 0.9995

500 498.38 0.13 0.4999 0.0001 0.9996

24 20.03 0.00 0.4997 0.0003 0.9991

43 37.02 0.06 0.4999 0.0002 0.9907

61 58.82 0.06 0.5000 0.0002 0.9931

76 74.24 0.06 0.5000 0.0002 0.9968

96 94.45 0.06 0.5000 0.0001 0.9980

125 123.41 0.07 0.5000 0.0001 0.9991

171 169.59 0.08 0.5000 0.0001 0.9994

246 244.59 0.09 0.5000 0.0001 0.9994

500 498.56 0.13 0.5000 0.0001 0.9996
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TABLE D3

The underlying distribution is

24 19.13 0.08 -0.0014 0.0015 0.9851

43 36.93 0.19 -0.0019 0.0012 0.9788

61 54.63 0.19 -0.0006 0.0010 0.9796

76 70.04 0.25 -0.0005 0.0009 0.9801

96 91.49 0.35 0.0000 0.0008 0.9830

125 121.40 0.36 0.0001 0.0006 0.9853

171 169.18 0.50 -0.0018 0.0005 0.9896

246 250.39 0.62 0.0002 0.0004 0.9920

500 525.01 1.15 -0.0005 0.0003 0.9971

24 20.13 0.05 0.0014 0.0013 0.9985

43 35.55 0.09 -0.0004 0.0010 0.9944

61 53.01 0.14 0.0005 0.0009 0.9941

76 67.74 0.16 -0.0003 0.0008 0.9953

96 88.13 0.19 0.0004 0.0007 0.9954

125 117.74 0.24 -0.0008 0.0006 0.9967

171 164.90 0.30 0.0004 0.0005 0.9979

246 242.06 0.41 -0.0008 0.0004 0.9985

500 502.28 0.70 -0.0003 0.0003 0.9993

24 22.32 0.04 0.0001 0.0012 0.9992

43 34.71 0.09 0.0005 0.0010 0.9964

61 51.91 0.12 -0.0005 0.0009 0.9951

76 66.64 0.14 -0.0009 0.0008 0.9955

96 87.39 0.19 -0.0003 0.0007 0.9961

125 116.88 0.23 0.0008 0.0006 0.9976

171 163.58 0.35 0.0000 0.0005 0.9983

246 239.62 0.36 -0.0001 0.0004 0.9988

500 498.40 0.72 -0.0002 0.0003 0.9995
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TABLE D4

The underlying distribution is

24 19.59 0.06 -0.0021 0.0014 0.9813

43 37.44 0.10 -0.0011 0.0010 0.9785

61 55.42 0.13 -0.0012 0.0009 0.9811

76 70.41 0.15 -0.0002 0.0007 0.9824

96 90.76 0.18 0.0003 0.0006 0.9854

125 120.55 0.21 -0.0004 0.0005 0.9881

171 168.65 0.27 0.0001 0.0005 0.9914

246 246.56 0.34 -0.0004 0.0004 0.9949

500 511.53 0.60 -0.0004 0.0002 0.9980

24 19.94 0.04 -0.0014 0.0012 0.9971

43 37.24 0.08 -0.0008 0.0009 0.9930

61 55.15 0.09 -0.0015 0.0007 0.9949

76 69.95 0.11 -0.0004 0.0006 0.9957

96 90.07 0.12 -0.0004 0.0006 0.9972

125 119.57 0.14 -0.0007 0.0005 0.9980

171 165.62 0.16 -0.0004 0.0004 0.9988

246 240.94 0.20 -0.0002 0.0003 0.9990

500 497.18 0.30 -0.0004 0.0002 0.9995

24 21.42 0.03 0.0003 0.0011 0.9990

43 35.68 0.08 0.0005 0.0009 0.9949

61 54.47 0.09 0.0001 0.0007 0.9945

76 70.01 0.10 -0.0002 0.0006 0.9959

96 90.02 0.12 -0.0005 0.0006 0.9972

125 119.14 0.13 -0.0004 0.0005 0.9981

171 165.27 0.16 -0.0004 0.0004 0.9990

246 240.84 0.19 0.0000 0.0003 0.9993

500 495.73 0.28 0.0001 0.0002 0.9996
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TABLE D5

The underlying distribution is

24 19.73 0.05 0.0014 0.0013 0.9782

43 37.59 0.09 0.0011 0.0010 0.9774

61 55.50 0.11 -0.0015 0.0008 0.9806

76 70.63 0.13 -0.0004 0.0007 0.9831

96 91.07 0.15 -0.0005 0.0006 0.9865

125 120.74 0.18 -0.0007 0.0005 0.9895

171 167.78 0.22 -0.0001 0.0004 0.9926

246 245.52 0.28 -0.0002 0.0003 0.9953

500 508.14 0.46 -0.0006 0.0002 0.9985

24 19.66 0.04 -0.0002 0.0011 0.9968

43 37.91 0.07 -0.0008 0.0008 0.9927

61 55.98 0.08 0.0006 0.0007 0.9941

76 70.89 0.10 -0.0004 0.0006 0.9964

96 90.99 0.11 -0.0013 0.0005 0.9971

125 120.28 0.12 0.0000 0.0004 0.9978

171 166.09 0.14 -0.0005 0.0004 0.9987

246 241.34 0.17 0.0000 0.0003 0.9991

500 496.62 0.24 -0.0002 0.0002 0.9995

24 21.02 0.02 -0.0001 0.0010 0.9992

43 36.09 0.07 -0.0009 0.0008 0.9940

61 55.45 0.09 0.0000 0.0007 0.9947

76 70.87 0.09 0.0000 0.0006 0.9954

96 91.13 0.10 -0.0004 0.0005 0.9976

125 120.19 0.12 -0.0004 0.0004 0.9986

171 166.38 0.14 0.0003 0.0004 0.9992

246 241.88 0.16 -0.0007 0.0003 0.9995

500 495.73 0.23 -0.0007 0.0002 0.9995

 25t

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 



213 | P a g e

TABLE D6

The underlying distribution is

24 19.88 0.05 0.0003 0.0013 0.9787

43 37.78 0.08 0.0002 0.0010 0.9772

61 55.81 0.11 -0.0004 0.0008 0.9802

76 70.65 0.12 -0.0008 0.0007 0.9843

96 90.94 0.14 -0.0008 0.0006 0.9865

125 120.46 0.17 0.0001 0.0005 0.9902

171 167.91 0.21 -0.0011 0.0004 0.9927

246 244.88 0.26 -0.0006 0.0003 0.9961

500 507.06 0.43 -0.0003 0.0002 0.9983

24 19.54 0.04 -0.0009 0.0011 0.9967

43 38.10 0.07 -0.0004 0.0008 0.9922

61 56.02 0.08 -0.0003 0.0007 0.9940

76 71.21 0.09 0.0006 0.0006 0.9954

96 91.23 0.10 0.0000 0.0005 0.9970

125 120.52 0.12 -0.0002 0.0004 0.9979

171 166.39 0.14 0.0004 0.0004 0.9990

246 241.67 0.16 -0.0008 0.0003 0.9994

500 496.49 0.23 -0.0005 0.0002 0.9994

24 20.86 0.02 -0.0012 0.0010 0.9990

43 36.25 0.07 -0.0008 0.0008 0.9936

61 55.73 0.09 0.0008 0.0007 0.9948

76 71.15 0.09 -0.0001 0.0006 0.9960

96 91.46 0.10 -0.0006 0.0005 0.9975

125 120.45 0.11 -0.0001 0.0004 0.9984

171 166.78 0.13 -0.0001 0.0004 0.9989

246 241.71 0.16 0.0001 0.0003 0.9995

500 495.86 0.22 -0.0001 0.0002 0.9997
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TABLE D7

The underlying distribution is

24 19.91 0.05 0.0033 0.0013 0.9780

43 37.77 0.08 0.0003 0.0009 0.9773

61 55.55 0.10 -0.0006 0.0008 0.9810

76 70.84 0.12 0.0000 0.0007 0.9832

96 91.00 0.14 0.0000 0.0006 0.9866

125 120.81 0.17 0.0000 0.0005 0.9901

171 167.67 0.20 0.0002 0.0004 0.9936

246 244.61 0.26 -0.0007 0.0003 0.9960

500 506.48 0.42 -0.0002 0.0002 0.9984

24 19.52 0.04 -0.0005 0.0011 0.9968

43 38.09 0.07 0.0001 0.0008 0.9919

61 56.29 0.08 -0.0005 0.0007 0.9945

76 71.38 0.09 0.0006 0.0006 0.9961

96 91.46 0.10 -0.0005 0.0005 0.9970

125 120.57 0.12 0.0003 0.0004 0.9981

171 166.64 0.13 -0.0003 0.0004 0.9989

246 242.02 0.16 0.0002 0.0003 0.9995

500 496.39 0.23 0.0001 0.0002 0.9997

24 20.82 0.02 0.0000 0.0010 0.9990

43 36.25 0.07 -0.0006 0.0008 0.9940

61 55.85 0.08 -0.0008 0.0007 0.9946

76 71.28 0.09 -0.0011 0.0006 0.9961

96 91.65 0.10 -0.0001 0.0005 0.9978

125 120.74 0.11 -0.0007 0.0004 0.9987

171 166.83 0.13 -0.0008 0.0004 0.9991

246 242.03 0.15 -0.0007 0.0003 0.9993

500 496.04 0.22 -0.0003 0.0002 0.9997

 100t

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 
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TABLE D8

The underlying distribution is beta

24 20.29 0.05 0.61 0 0.9651

43 38.40 0.07 0.60 0 0.9709

61 56.25 0.09 0.60 0 0.9779

76 71.24 0.10 0.60 0 0.9824

96 91.39 0.11 0.60 0 0.9862

125 120.78 0.13 0.60 0 0.9891

171 167.72 0.16 0.60 0 0.9938

246 243.44 0.19 0.60 0 0.9964

500 501.39 0.28 0.60 0 0.9985

24 18.85 0.03 0.6 0 0.9967

43 39.22 0.06 0.6 0 0.9902

61 57.74 0.07 0.6 0 0.9915

76 72.74 0.08 0.6 0 0.9948

96 93.04 0.08 0.6 0 0.9970

125 122.04 0.09 0.6 0 0.9983

171 168.08 0.11 0.6 0 0.9991

246 243.12 0.13 0.6 0 0.9994

500 497.35 0.18 0.6 0 0.9996

24 20.30 0.01 0.6 0 0.9993

43 36.62 0.07 0.6 0 0.9929

61 57.28 0.07 0.6 0 0.9917

76 72.91 0.08 0.6 0 0.9951

96 93.09 0.08 0.6 0 0.9975

125 122.00 0.09 0.6 0 0.9984

171 168.32 0.10 0.6 0 0.9991

246 243.19 0.12 0.6 0 0.9994

500 497.58 0.17 0.6 0 0.9996

 3,2

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
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TABLE D9

The underlying distribution is exponential with mean one

24 18.03 0.08 0.8730 0.0012 0.9873

43 34.09 0.15 0.8822 0.0011 0.9231

61 50.94 0.21 0.8987 0.0010 0.8975

76 65.64 0.25 0.9110 0.0010 0.8958

96 86.45 0.31 0.9237 0.0009 0.9010

125 116.01 0.39 0.9395 0.0008 0.9178

171 164.76 0.52 0.9548 0.0007 0.9340

246 247.48 0.71 0.9714 0.0006 0.9563

500 526.05 1.27 0.9884 0.0004 0.9826

24 20.88 0.05 0.9576 0.0009 0.9998

43 34.62 0.10 0.9380 0.0008 0.9959

61 50.04 0.14 0.9397 0.0008 0.9809

76 64.02 0.17 0.9461 0.0007 0.9675

96 83.38 0.20 0.9550 0.0007 0.9599

125 112.43 0.25 0.9650 0.0006 0.9621

171 159.31 0.31 0.9772 0.0005 0.9759

246 237.08 0.39 0.9868 0.0004 0.9876

500 498.73 0.63 0.9948 0.0002 0.9967

24 23.27 0.04 0.9791 0.0009 0.9998

43 35.10 0.09 0.9536 0.0008 0.9986

61 50.13 0.13 0.9490 0.0007 0.9918

76 63.53 0.15 0.9504 0.0007 0.9823

96 82.65 0.19 0.9589 0.0006 0.9720

125 111.11 0.23 0.9672 0.0005 0.9678

171 157.53 0.28 0.9782 0.0005 0.9777

246 234.52 0.36 0.9874 0.0003 0.9894

500 494.99 0.55 0.9952 0.0002 0.9972

*n N . .s e N 


. .s e 
 1 

*n N . .s e N 


. .s e 
 1 
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
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Appendix E

Simulation Results for the Type II Error Probability at

Note: The symbols P, M and L stands for platykurtic (standard uniform), mesokurtic (standard

normal) and leptokurtic (exponential with mean one) respectively.

TABLE E1: The underlying distributions are standard uniform, standard normal and exponential

respectively at and

Selected values of

24 76 96 125 246 500

k P M L P M L P M L P M L P M L P M L

.00 .500 .501 .421 .497 .500 .411 .504 .502 .420 .503 .501 .435 .495 .499 .460 .500 .498 .470

.01 .488 .488 .408 .484 .486 .398 .490 .489 .407 .489 .487 .422 .481 .486 .447 .485 .484 .457

.02 .475 .476 .393 .470 .473 .387 .476 .474 .395 .475 .473 .409 .467 .471 .433 .471 .470 .443

.03 .464 .464 .380 .456 .459 .374 .462 .461 .381 .460 .460 .396 .453 .457 .418 .455 .455 .430

.04 .452 .451 .367 .442 .446 .362 .447 .446 .368 .445 .445 .384 .440 .442 .405 .440 .442 .415

.05 .440 .438 .354 .428 .432 .350 .433 .432 .356 .432 .431 .370 .425 .428 .392 .426 .427 .401

.06 .429 .426 .341 .415 .419 .337 .419 .419 .343 .418 .418 .357 .411 .414 .378 .412 .414 .387

.07 .417 .413 .328 .401 .406 .325 .405 .405 .331 .404 .405 .344 .397 .400 .365 .398 .400 .373

.08 .405 .402 .315 .388 .393 .315 .391 .391 .320 .390 .391 .332 .383 .386 .352 .384 .385 .359

.09 .394 .390 .302 .375 .380 .303 .377 .378 .308 .377 .378 .319 .370 .373 .339 .371 .371 .345

.10 .382 .378 .290 .362 .367 .291 .364 .366 .297 .363 .365 .306 .357 .359 .327 .358 .358 .332

.20 .276 .265 .181 .241 .245 .185 .242 .245 .188 .239 .242 .194 .235 .238 .206 .235 .237 .211

.30 .188 .175 .100 .147 .151 .105 .147 .151 .107 .144 .147 .110 .140 .141 .116 .140 .142 .120

.40 .121 .107 .050 .083 .087 .053 .081 .087 .055 .080 .082 .055 .076 .077 .059 .074 .077 .061

.50 .073 .062 .024 .044 .048 .023 .041 .047 .025 .040 .043 .025 .037 .037 .027 .036 .038 .028

0.05, 0.05t  

0.5  15m 

*n
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TABLE E2: The underlying distribution is a standard normal at and

24 76 96 125 246 500

k 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00 .499 .501 .499 .499 .500 .502 .504 .502 .501 .499 .501 .501 .500 .499 .502 .499 .498 .499

.01 .487 .488 .485 .487 .486 .487 .490 .489 .486 .484 .487 .487 .485 .486 .487 .485 .484 .485

.02 .475 .476 .471 .473 .473 .474 .476 .474 .472 .470 .473 .472 .471 .471 .473 .470 .470 .470

.03 .462 .464 .458 .460 .459 .460 .463 .461 .459 .456 .460 .458 .457 .457 .460 .457 .455 .457

.04 .449 .451 .445 .447 .446 .447 .450 .446 .445 .444 .445 .445 .443 .442 .445 .442 .442 .443

.05 .437 .438 .430 .433 .432 .433 .436 .432 .431 .430 .431 .431 .430 .428 .431 .428 .427 .430

.06 .425 .426 .417 .419 .419 .419 .422 .419 .419 .417 .418 .417 .416 .414 .416 .414 .414 .415

.07 .412 .413 .404 .406 .406 .407 .408 .405 .405 .404 .405 .403 .402 .400 .402 .400 .400 .401

.08 .401 .402 .390 .393 .393 .394 .394 .391 .392 .392 .391 .389 .388 .386 .389 .386 .385 .388

.09 .388 .390 .378 .380 .380 .381 .381 .378 .379 .377 .378 .377 .374 .373 .375 .373 .371 .374

.10 .375 .378 .365 .367 .367 .368 .368 .366 .365 .363 .365 .363 .361 .359 .362 .359 .358 .361

.20 .266 .265 .250 .252 .245 .249 .247 .245 .244 .244 .242 .243 .240 .238 .238 .234 .237 .240

.30 .183 .175 .158 .162 .151 .153 .155 .151 .151 .152 .147 .148 .145 .141 .143 .139 .142 .143

.40 .121 .107 .091 .100 .087 .087 .092 .087 .086 .088 .082 .082 .079 .077 .077 .075 .077 .078

.50 .081 .062 .048 .060 .048 .047 .052 .047 .045 .048 .043 .043 .040 .037 .039 .037 .038 .038

0.5  5,15,20m 
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TABLE E3: The underlying distribution is a standard uniform at and

24 76 96 125 246 500

k 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00 .502 .500 .501 .497 .497 .498 .494 .504 .500 .495 .503 .499 .498 .495 .499 .503 .500 .501

.01 .489 .488 .487 .483 .484 .484 .480 .490 .486 .481 .489 .485 .484 .481 .484 .487 .485 .487

.02 .476 .475 .473 .470 .470 .470 .466 .476 .471 .467 .475 .471 .469 .467 .471 .473 .471 .472

.03 .463 .464 .460 .457 .456 .455 .452 .462 .457 .454 .460 .458 .455 .453 .456 .458 .455 .458

.04 .451 .452 .447 .443 .442 .442 .438 .447 .443 .440 .445 .444 .441 .440 .442 .444 .440 .443

.05 .439 .440 .434 .430 .428 .428 .425 .433 .429 .426 .432 .431 .427 .425 .427 .429 .426 .429

.06 .426 .429 .421 .417 .415 .413 .412 .419 .416 .412 .418 .417 .412 .411 .414 .415 .412 .415

.07 .414 .417 .409 .404 .401 .399 .398 .405 .402 .399 .404 .403 .398 .397 .399 .402 .398 .401

.08 .401 .405 .396 .391 .388 .384 .385 .391 .389 .386 .390 .389 .384 .383 .386 .388 .384 .387

.09 .388 .394 .383 .377 .375 .371 .371 .377 .375 .373 .377 .376 .372 .370 .373 .375 .371 .374

.10 .377 .382 .370 .364 .362 .358 .360 .364 .361 .360 .363 .363 .359 .357 .359 .362 .358 .359

.20 .269 .276 .254 .247 .241 .240 .241 .242 .241 .238 .239 .239 .236 .235 .236 .236 .235 .237

.30 .185 .188 .161 .155 .147 .146 .149 .147 .147 .145 .144 .144 .140 .140 .141 .141 .140 .141

.40 .126 .121 .094 .091 .083 .083 .085 .081 .082 .081 .080 .079 .078 .076 .077 .075 .074 .076

.50 .088 .073 .050 .052 .044 .043 .048 .041 .041 .042 .040 .040 .038 .037 .038 .037 .036 .036

0.5  5,15, 20m 
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TABLE E4: The underlying distribution is exponential with mean one at and

24 76 96 125 246 500

k 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00 .355 .421 .457 .390 .411 .412 .406 .420 .424 .415 .435 .438 .449 .460 .463 .468 .470 .474

.01 .345 .408 .443 .378 .398 .400 .393 .407 .412 .403 .422 .424 .436 .447 .449 .453 .457 .460

.02 .333 .393 .428 .366 .387 .387 .381 .395 .399 .390 .409 .412 .421 .433 .436 .438 .443 .446

.03 .322 .380 .414 .354 .374 .374 .369 .381 .387 .377 .396 .398 .409 .418 .422 .424 .430 .431

.04 .311 .367 .400 .343 .362 0.362 .357 .368 .374 .365 .384 .385 .396 .405 .408 .410 .415 .417

.05 .301 .354 .386 .332 .350 .350 .345 .356 .362 .352 .370 .372 .382 .392 .395 .396 .401 .403

.06 .290 .341 .373 .320 .337 .338 .333 .343 .350 .340 .357 .360 .368 .378 .382 .382 .387 .390

.07 .280 .328 .359 .309 .325 .326 .321 .331 .338 .327 .344 .347 .356 .365 .368 .367 .373 .377

.08 .268 .315 .346 .297 .315 .314 .310 .320 .325 .316 .332 .334 .343 .352 .354 .354 .359 .363

.09 .258 .302 .333 .285 .303 .303 .298 .308 .312 .304 .319 .321 .331 .339 .341 .340 .345 .349

.10 .249 .290 .320 .274 .291 .291 .287 .297 .300 .292 .306 .308 .317 .327 .328 .326 .332 .335

.20 .157 .181 .201 .174 .185 .183 .182 .188 .192 .187 .194 .196 .204 .206 .210 .207 .211 .213

.30 .090 .100 .113 .103 .105 .104 .105 .107 .111 .108 .110 .112 .119 .116 .119 .119 .120 .123

.40 .049 .050 .057 .057 .053 .053 .057 .055 .056 .058 .055 .056 .063 .059 .059 .064 .061 .061

.50 .027 .024 .026 .030 .023 .024 .030 .025 .026 .030 .025 .025 .031 .027 .027 .031 .028 .027

0.5  5,15, 20m 
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TABLE E5: Comparison between the asymptotic and simulation results for Type II error probability

for underlying distribution standard normal at 0.5  and 15.m  is the asymptotic value .

k 24 43 61 76 96 125 171 246 500

.00 0.500 0.501 0.500 0.503 0.500 0.502 0.501 0.499 0.499 0.498

.01 0.486 0.488 0.486 0.489 0.486 0.489 0.487 0.484 0.486 0.484

.02 0.471 0.476 0.473 0.475 0.473 0.474 0.473 0.470 0.471 0.470

.03 0.457 0.464 0.460 0.462 0.459 0.461 0.46 0.455 0.457 0.455

.04 0.443 0.451 0.448 0.448 0.446 0.446 0.445 0.441 0.442 0.442

.05 0.429 0.438 0.434 0.435 0.432 0.432 0.431 0.427 0.428 0.427

.06 0.414 0.426 0.421 0.421 0.419 0.419 0.418 0.414 0.414 0.414

.07 0.400 0.413 0.408 0.409 0.406 0.405 0.405 0.400 0.400 0.400

.08 0.387 0.402 0.396 0.395 0.393 0.391 0.391 0.385 0.386 0.385

.09 0.373 0.390 0.383 0.381 0.380 0.378 0.378 0.372 0.373 0.371

.10 0.359 0.378 0.371 0.368 0.367 0.366 0.365 0.358 0.359 0.358

.20 0.236 0.265 0.253 0.252 0.245 0.245 0.242 0.237 0.238 0.237

.30 0.140 0.175 0.167 0.160 0.151 0.151 0.147 0.143 0.141 0.142

.40 0.075 0.107 0.100 0.095 0.087 0.087 0.082 0.079 0.077 0.077

.50 0.036 0.062 0.059 0.053 0.048 0.047 0.043 0.040 0.037 0.038

TABLE E6: Comparison between the asymptotic and simulation results for Type II error probability

for underlying distribution standard uniform at 0.5  and 15.m  is the asymptotic value.

k 24 43 61 76 96 125 171 246 500

.00 0.500 0.500 0.501 0.503 0.497 0.504 0.503 0.503 0.495 0.500

.01 0.488 0.488 0.489 0.490 0.484 0.490 0.489 0.487 0.481 0.485

.02 0.476 0.475 0.474 0.475 0.470 0.476 0.475 0.473 0.467 0.471

.03 0.463 0.464 0.460 0.462 0.456 0.462 0.460 0.458 0.453 0.455

.04 0.451 0.452 0.447 0.448 0.442 0.447 0.445 0.443 0.440 0.440

.05 0.439 0.440 0.434 0.434 0.428 0.433 0.432 0.429 0.425 0.426

.06 0.427 0.429 0.421 0.421 0.415 0.419 0.418 0.416 0.411 0.412

.07 0.415 0.417 0.408 0.407 0.401 0.405 0.404 0.401 0.397 0.398

.08 0.403 0.405 0.395 0.393 0.388 0.391 0.390 0.387 0.383 0.384

.09 0.391 0.394 0.383 0.380 0.375 0.377 0.377 0.374 0.37 0.371

.10 0.379 0.382 0.371 0.367 0.362 0.364 0.363 0.361 0.357 0.358

.20 0.263 0.276 0.253 0.249 0.241 0.242 0.239 0.236 0.235 0.235

.30 0.162 0.188 0.163 0.153 0.147 0.147 0.144 0.142 0.140 0.140

.40 0.084 0.121 0.100 0.087 0.083 0.081 0.080 0.077 0.076 0.074

.50 0.034 0.073 0.059 0.047 0.044 0.041 0.040 0.039 0.037 0.036

asy

asy

asy

asy
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TABLE E7: Comparison between the asymptotic and simulation results for Type II error probability

for underlying distribution exponential with mean one at 0.5  and 15.m  is the asymptotic

value.

k 24 43 61 76 96 125 171 246 500

.00 0.633 0.421 0.391 0.401 0.411 0.420 0.435 0.448 0.460 0.470

.01 0.622 0.408 0.379 0.390 0.398 0.407 0.422 0.434 0.447 0.457

.02 0.616 0.393 0.367 0.377 0.387 0.395 0.409 0.421 0.433 0.443

.03 0.615 0.380 0.354 0.364 0.374 0.381 0.396 0.407 0.418 0.430

.04 0.618 0.367 0.342 0.352 0.362 0.368 0.384 0.394 0.405 0.415

.05 0.626 0.354 0.331 0.340 0.350 0.356 0.370 0.381 0.392 0.401

.06 0.638 0.341 0.319 0.328 0.337 0.343 0.357 0.368 0.378 0.387

.07 0.654 0.328 0.308 0.317 0.325 0.331 0.344 0.356 0.365 0.373

.08 0.674 0.315 0.297 0.305 0.315 0.320 0.332 0.343 0.352 0.359

.09 0.698 0.302 0.285 0.293 0.303 0.308 0.319 0.329 0.339 0.345

.10 0.725 0.290 0.274 0.281 0.291 0.297 0.306 0.316 0.327 0.332

TABLE E8: The effect of  on the Type II error probability for underlying distribution standard

normal at   0.05, t  0.05 and m  15 .

k 24 76 96 125 246 500

.00 0.501 0.501 0.499 0.500 0.500 0.502 0.496 0.502 0.504 0.500 0.501 0.499 0.496 0.499 0.499 0.501 0.498 0.502

.01 0.489 0.488 0.485 0.487 0.486 0.487 0.482 0.489 0.490 0.486 0.487 0.485 0.481 0.486 0.484 0.487 0.484 0.487

.02 0.478 0.476 0.470 0.475 0.473 0.472 0.469 0.474 0.475 0.473 0.473 0.470 0.468 0.471 0.470 0.474 0.470 0.473

.03 0.466 0.464 0.457 0.462 0.459 0.458 0.455 0.461 0.461 0.460 0.460 0.456 0.454 0.457 0.456 0.460 0.455 0.458

.04 0.455 0.451 0.443 0.450 0.446 0.444 0.441 0.446 0.447 0.446 0.445 0.441 0.441 0.442 0.442 0.445 0.442 0.444

.05 0.444 0.438 0.428 0.437 0.432 0.430 0.429 0.432 0.433 0.432 0.431 0.426 0.428 0.428 0.427 0.432 0.427 0.429

.06 0.433 0.426 0.415 0.424 0.419 0.416 0.416 0.419 0.419 0.419 0.418 0.411 0.414 0.414 0.414 0.419 0.414 0.413

.07 0.422 0.413 0.402 0.412 0.406 0.402 0.404 0.405 0.405 0.405 0.405 0.398 0.401 0.400 0.399 0.406 0.400 0.399

.08 0.411 0.402 0.388 0.400 0.393 0.388 0.392 0.391 0.390 0.392 0.391 0.383 0.387 0.386 0.385 0.392 0.385 0.385

.09 0.399 0.390 0.375 0.387 0.380 0.373 0.379 0.378 0.376 0.379 0.378 0.369 0.374 0.373 0.370 0.378 0.371 0.372

.10 0.388 0.378 0.360 0.374 0.367 0.360 0.366 0.366 0.362 0.366 0.365 0.355 0.361 0.359 0.356 0.364 0.358 0.358

.20 0.286 0.265 0.242 0.261 0.245 0.237 0.251 0.245 0.238 0.247 0.242 0.231 0.240 0.238 0.232 0.239 0.237 0.232

.30 0.198 0.175 0.149 0.173 0.151 0.144 0.162 0.151 0.145 0.153 0.147 0.136 0.147 0.141 0.135 0.145 0.142 0.137

.40 0.129 0.107 0.087 0.110 0.087 0.078 0.098 0.087 0.078 0.091 0.082 0.073 0.081 0.077 0.072 0.078 0.077 0.072

.50 0.078 0.062 0.047 0.069 0.048 0.039 0.056 0.047 0.039 0.050 0.043 0.035 0.041 0.037 0.034 0.038 0.038 0.034

asy

asy
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TABLE E9: The effect of  on the Type II error probability for underlying distribution standard

uniform at   0.05, t  0.05 and m  15 .

k 24 76 96 125 246 500

.00 0.500 0.500 0.502 0.497 0.497 0.501 0.501 0.504 0.498 0.501 0.503 0.498 0.503 0.495 0.498 0.498 0.500 0.501

.01 0.489 0.488 0.487 0.483 0.484 0.486 0.487 0.490 0.485 0.487 0.489 0.483 0.489 0.481 0.484 0.485 0.485 0.486

.02 0.477 0.475 0.473 0.470 0.470 0.473 0.474 0.476 0.470 0.473 0.475 0.469 0.474 0.467 0.469 0.471 0.471 0.471

.03 0.467 0.464 0.461 0.456 0.456 0.459 0.460 0.462 0.456 0.459 0.460 0.454 0.459 0.453 0.456 0.456 0.455 0.457

.04 0.455 0.452 0.447 0.442 0.442 0.444 0.446 0.447 0.442 0.445 0.445 0.438 0.445 0.440 0.441 0.441 0.440 0.442

.05 0.444 0.440 0.435 0.429 0.428 0.431 0.432 0.433 0.428 0.432 0.432 0.423 0.432 0.425 0.427 0.428 0.426 0.428

.06 0.434 0.429 0.421 0.416 0.415 0.415 0.420 0.419 0.414 0.418 0.418 0.409 0.417 0.411 0.413 0.414 0.412 0.414

.07 0.422 0.417 0.406 0.403 0.401 0.401 0.406 0.405 0.400 0.405 0.404 0.395 0.403 0.397 0.399 0.400 0.398 0.400

.08 0.411 0.405 0.392 0.391 0.388 0.388 0.392 0.391 0.387 0.391 0.390 0.382 0.389 0.383 0.386 0.386 0.384 0.387

.09 0.400 0.394 0.379 0.378 0.375 0.374 0.378 0.377 0.372 0.377 0.377 0.368 0.377 0.370 0.372 0.372 0.371 0.372

.10 0.388 0.382 0.367 0.365 0.362 0.360 0.366 0.364 0.359 0.364 0.363 0.356 0.363 0.357 0.359 0.358 0.358 0.359

.20 0.286 0.276 0.247 0.251 0.241 0.236 0.246 0.242 0.237 0.241 0.239 0.234 0.239 0.235 0.234 0.234 0.235 0.233

.30 0.198 0.188 0.153 0.160 0.147 0.141 0.154 0.147 0.142 0.148 0.144 0.140 0.143 0.140 0.139 0.140 0.140 0.139

.40 0.127 0.121 0.090 0.098 0.083 0.078 0.090 0.081 0.078 0.084 0.080 0.076 0.080 0.076 0.076 0.076 0.074 0.073

.50 0.076 0.073 0.050 0.059 0.044 0.039 0.050 0.041 0.039 0.044 0.040 0.037 0.040 0.037 0.036 0.037 0.036 0.035
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TABLE E10: The effect of  on the Type II error probability for underlying distribution exponent

tial with mean one at   0.05, t  0.05 and m  15 .

k 24 76 96 125 246 500

.00 0.453 0.421 0.408 0.387 0.411 0.423 0.399 0.420 0.430 0.417 0.435 0.448 0.450 0.460 0.462 0.472 0.470 0.475

.01 0.440 0.408 0.394 0.376 0.398 0.410 0.387 0.407 0.416 0.406 0.422 0.433 0.438 0.447 0.449 0.459 0.457 0.462

.02 0.427 0.393 0.380 0.365 0.387 0.396 0.375 0.395 0.402 0.394 0.409 0.419 0.425 0.433 0.434 0.445 0.443 0.446

.03 0.414 0.380 0.366 0.354 0.374 0.381 0.363 0.381 0.389 0.382 0.396 0.405 0.411 0.418 0.420 0.432 0.430 0.432

.04 0.402 0.367 0.352 0.342 0.362 0.368 0.351 0.368 0.375 0.369 0.384 0.391 0.399 0.405 0.405 0.419 0.415 0.417

.05 0.389 0.354 0.339 0.331 0.350 0.355 0.340 0.356 0.362 0.358 0.370 0.378 0.387 0.392 0.390 0.405 0.401 0.402

.06 0.378 0.341 0.326 0.320 0.337 0.341 0.329 0.343 0.348 0.346 0.357 0.363 0.374 0.378 0.376 0.390 0.387 0.388

.07 0.366 0.328 0.312 0.309 0.325 0.328 0.318 0.331 0.335 0.334 0.344 0.348 0.361 0.365 0.363 0.377 0.373 0.373

.08 0.355 0.315 0.299 0.298 0.315 0.315 0.307 0.320 0.321 0.323 0.332 0.335 0.348 0.352 0.349 0.364 0.359 0.358

.09 0.344 0.302 0.286 0.286 0.303 0.302 0.296 0.308 0.307 0.312 0.319 0.321 0.336 0.339 0.333 0.351 0.345 0.344

.10 0.332 0.290 0.273 0.276 0.291 0.289 0.285 0.297 0.294 0.300 0.306 0.308 0.324 0.327 0.320 0.338 0.332 0.329

.20 0.227 0.181 0.161 0.179 0.185 0.177 0.184 0.188 0.179 0.196 0.194 0.187 0.210 0.206 0.197 0.219 0.211 0.205

.30 0.146 0.100 0.084 0.105 0.105 0.094 0.109 0.107 0.097 0.117 0.110 0.099 0.123 0.116 0.109 0.127 0.120 0.112

.40 0.086 0.050 0.037 0.055 0.053 0.045 0.059 0.055 0.045 0.064 0.055 0.048 0.066 0.059 0.052 0.068 0.061 0.056

.50 0.050 0.024 0.014 0.027 0.023 0.018 0.029 0.025 0.019 0.030 0.025 0.019 0.032 0.027 0.022 0.031 0.028 0.024
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