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Abstract

In this study, the sensitivity of the sequential normal-based triple sampling procedure for estimating
the population mean to departures from normality is discussed. We assume only that the underlying
population has finite but unknown first six moments. Two main inferential methodologies are
considered. First point estimation of the unknown population mean is investigated where a squared
error loss function with linear sampling cost is assumed to control the risk of estimating the unknown
population mean by the corresponding sample measure. We find that the behaviour of the estimators
and of the sample size depends asymptoticaly on both the skewness and kurtosis of the underlying
distribution and we quantify this dependence. Moreover, the asymptotic regret of using the triple
sampling inference instead of the fixed sample size approach, had the nuisance parameter been
known, is a finite but non-vanishing quantity that depends on the kurtosis of the underlying
distribution. We aso supplement our findings with a simulation experiment to study the performance
of the estimators and the sample size in a range of conditions and compare the asymptotic and finite
sample results. The second part of the thesis deals with constructing a triple sampling fixed width
confidence interval for the unknown population mean with a prescribed width and coverage while
protecting the interval against Type Il error. An account is given of the sensitivity of the normal -based
triple sampling sequential confidence interval for the population when the first six moments are
assumed to exist but are unknown. First, triple sampling sequential confidence intervals for the mean
are constructed using Hall’s (1981) methodology. Hence asymptotic characteristics of the constructed
interval are discussed and justified. Then an asymptotic second order approximation of a continuously
differentiable and bounded function of the stopping time is given to calculate both asymptotic
coverage based on a second order Edgeworth asymptotic expansion and the Type Il error probability.
The impact of several parameters on the Type Il error probability is explored for various continuous
distributions. Finally, a simulation experiment is performed to investigate the methods in finite sample
cases and to compare the finite sample and asymptotic results.
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Chapter |

I ntroduction and Review

1.1 Historical background
1.1.1 Historical developmentsof sequential proceduresfor inference
I ntroduction

In statistics, the term sequential analysis refers to a statistical analysis in which the sample size is not
fixed in advance. Instead inference is made within the course of sampling. Further, sampling is
terminated in accordance with a predefined stopping rule upon satisfying certain optimality criteria.
Inferences may be made much earlier by using sequentia procedures than would be possible with
classical fixed sample size inference procedures at much lower cost.

Regardless of the type of inference we seek to make, sequential sampling procedures are derived
basically under some optimality criteria. These optimality criteria could involve minimizing a given
loss (cost) function while estimating the unknown parameter(s) by the corresponding sample
measures, or constructing a fixed width confidence interval of a targeted parameter with a
predetermined coverage, or justifying a given claim regarding the unknown parameter(s) while
controlling the Type | and/or Type Il error probabilities.

Let n" be the optimal sample size required to satisfy some given optimality criterion. Usually n” isa
function of the underlying population parameters (nuisance parameters). Had n” been known, the
fixed sample size procedure would be an appropriate sampling technique to implement in order to
accomplish the required inference. However n” is unknown because the nuisance parameters are often
unknown. Therefore, it would be impracticable to apply classical inference techniques (fixed sample
size sampling procedures) to make inferences about the targeted parameter(s) and at the same time
satisfy the predetermined optimality criteria. Alternatively, however, we may resort to sequential
sampling procedures by mimicking the form of n” by a sequential stopping rule which will terminate
only if the predetermined optimality criteria are satisfied. Let N be the sequential sample size
required to satisfy certain given criteria. Then clearly N is an integer-valued discrete random variable.
Regarding the performance of sequential sampling procedures, several measures may need to be
satisfied for a certain sequential sampling design to be declared efficient. For example, for point
estimation, a sequential sampling procedure may be deemed to be efficient if it satisfies the following
criteria

i) lim E( N/n ) =1; that is, on the average, the ratio of the sequential sample size and the optimal

n —ow

sample size should be asymptotically one. Property (i) is referred to as first order asymptotic
efficiency.
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i) lim E(N —n*): K , where K is afinite constant unrelated ton . Property (ii) reveas that on the

n —w

average, the difference between the optimal and sequential sample size is asymptotically bounded by
afinite constant. This property is known as second order asymptotic efficiency.

Let us define the optimal risk of the fixed sample size procedure, had n* been known, as E( L(n* ))

where L(-) is the loss function incurred in estimating the targeted parameters and let

E( L( N )) be the risk associated with a multistage sequential procedure as an alternative procedure to

estimate the targeted parameters. Then the regret of using a multistage sequential sampling procedure
instead of the fixed sampling procedure s defined as o ( ") wheree (n’ ) =E(L(N))- E(L(n* )) .
Therefore, for an efficient multistage sequential procedure, it is also required to have

i) lim co(n* ) < oo . Property (iii) ensures that the asymptotic regret is bounded by a finite constant

n —ow

unrelated to n" and also means that the multistage sequential sampling procedure is as risky as the
corresponding fixed sample size procedure had n”* been known.

On the other hand, the efficiency of afixed width confidence interval sequential sampling procedure
is granted by i) and ii) above in addition to the measure of consistency, which affirms that the

probability that the fixed width confidence interval covers the unknown parameter(s) is at least the
nomina value of 100(1—a)percent, wherel—« is the confidence coefficient of the desired

confidence interval. The above requirements are still valid to obtain a confidence region for the mean
vector of a (- variate normal distribution, see Khan 1968.

Moreover, for a sequentia hypothesis test to be efficient, both Type | and Type |1 error probabilities,
o and f3,, should be controlled through the sample size required to perform the sequential procedure

of theform n>n" = (a+ b)2 Q/d2 , Where under the normal distribution, aand b are the upper «/2

and p, critical points of the standard normal distribution, @ isthe population variance, and d( > O) IS

afixed prescribed constant. Usually the operating characteristic function (OC) is used to measure the
performance of a certain test procedure. For more details, see Mukhopadhyay and de Silva (2009).

1.1.2 Historical developments of sequential sampling schemes

The idea of sequential sampling was first developed during World War 1l as a tool to establish more
efficient quality control in equipment inspection. From Wallis' view, see Govindarajulu (1987), the
story began with Captain Schyler's advice to Wallis in 1943 that one should be able to achieve some
economy savings in sampling by applying the single sample test sequentialy (one sample at a time).
Moreover, Captain Schyler attributed this suggestion to Gwathmay, who, however, seemed to have no
recollection of making such a suggestion. Wallis and Friedman had several discussions about this
sequential setup, both with each other and with Wolfowitz and Paulson. Later, when Wallis and
Friedman realized that the sequential method might involve a higher level of mathematical statistics,
they brought the problem to Wald who actually put forward the formal theory in which optimal tests
are derived for simple statistical hypotheses. Such a sequential test is known as a sequential
probability ratio test (SPRT). Since then the theory and methods have been extended to awide variety
of statistical problems.
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In the following section, we will demonstrate the main sampling procedures and their properties: the
two stage sampling procedure proposed by Stein (1945, 1949) and Cox (1952) (also referred to as the
double sampling procedure) and the one-by-one purely sequential sampling procedure proposed by
Anscombe (1953), Robbins (1959) and Chow and Robbins (1965). Moreover, we will illustrate briefly
Hall’s (1981) three stage procedure and its properties, also referred to as the triple sampling procedure, as
mentioned in his semina paper of 1981.

11.2.1 Multistage sampling procedures

Multistage sampling procedures are used in statistical inference when no suitable fixed sample size
procedure is available, especially when the optima fixed sample size needed to meet certain specific goals
depends on unknown nuisance parameters. The word “optimal” refers to the minimum fixed sample size
needed to satisfy certain criteria had the nuisance parameters been known.

Problem

Let (X, X, ,..., X, ) be arandom sample drawn from N (,6), where both parameters are unknown
but finite with 1 € (—o0,00) and @ €(0,0). Given d(>0)ande €(0,1), we wish to construct a
100(1-c ) percent confidence interval | ={-d < X, —u<d} for usuch that the length of the

interval is 2dand P(u € 1)>1—a uniformly for all g and 6.
Solution

If 6 isknown, then it can be shown that n” = a°0/d? solves the above problem uniformly over all @

and n'is referred to as the optimal fixed sample size required to solve the problem. So n" is the
optimal fixed sample size required to construct such a confidence interval for . had 6 been known.

Here a isthe upper a/ 2 point of the standard normal distribution. If 6 is unknown then multistage

sequential procedures should be used to solve the above problem; see Mukhopadhyay and de Silva
(2009) for details.

Stein’ sdouble sampling procedure

Stein (1945, 1949) and Cox (1952) proposed sequential sampling in two stages, known as double
sampling. The procedure was developed mainly for constructing a fixed width confidence interval for a
normal mean with unknown variance 6 and with a prescribed coverage probability1— o .

Let (X, X,,.... X,,) be a random sample of sizem(>2), and let X ;and S be estimators of the

normal mean u and variance 6 respectively. Then Stein’s stopping rule is

N = max{m,[(t(m—l)sm)2 /d2:|+1},

where [ x] denotes the integer part of X, t(m—1)is the upper ct/2 point of the t distribution with
(m—1) degrees of freedom, and d (> 0) isa fixed prescribed constant.
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The procedure goes like this: if N =m, that is whenmis larger than the estimator of n', then we do

not need to undertake any more sampling at the second stage, while if N > m, this indicates that we
have started with too few observations at the pilot stage. Hence, we take new observations

(Xt s Xipsz v-s Xy ) @ the second stage. Finally we have(X,, X, ..., X ), and then the interval
Iy =()_(N id) IS the proposed interval estimator of u , while )?N is the sequential point estimator of
u.

m+17?

The properties of Stein’s double sampling procedure are

i) P(uely)21-a foral yand 6
i) limE(N/n")=(t(m-1)/a)" >1

iii) IME(N-n")=c0

d—0

V) limP(uely)=1-a foral pand 6.

Property (i) is known as consistency or exact consistency in the sense of Chow and Robbins (1965).
Property (ii) shows that the procedure is first order asymptotically inefficient, also in the sense of
Chow and Robbins (1965). Property (iii) shows that the procedure is second order asymptatically
inefficient, while property (iv) is known as asymptotic consistency or first order consistency, in the
sense of Chow and Robbins (1965) and Ghosh and M ukhopadhyay (1981).

Stein’s procedure has the advantage of reducing the number of sampling operations, and hence reduces the
operational cost. Generally, however, a double sampling procedure will lead to over sampling (i.e. the

procedure is second order asymptotically inefficient). This means that the expectation of N is much

greater than n"as N — o, i.e. on average, the difference between the optimal and the second stage
sample size is asymptotically unbounded, especiadly when the initia sample size is chosen much smaller

than the optimal samplesize n'.

Remark

The mgjor success of Stein’ s double sampling procedureisits exact consistency property.
One-by-one pur ey sequential procedure

In order to reduce the problem of over sampling in the double sampling procedure, one can estimate the
variance successively in a sequential manner.

Anscombe (1953), Ray (1957) and Chow and Robbins (1965) proposed the core of one-by-one purely
sequential sampling for estimation, where the stopping ruleis

N =N(d): isthe smallest integer n(>m) for which we observe n> a’S? /d®.

The one-by-one purely sequential procedure isimplemented as follows:
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1. Inthe initial stage we obtain S based on the pilot sample( X, X, ,..., X
check whether m> &S’ /d” .

), m(22)and

m

2. If m>a’S}/d*, stop sampling at this stage and record m as the final sample size. If
m<a’S:/d?, take one additional observation X, and update the sample variance
estimator to S, based on the new sample of size m+1. Next check whether
m+1>a’S%,/d?. If so, sampling terminates and the final sample size is m+1, otherwise
continue sampling by taking another one additional observation X, .., and update the sample.
This process continues until for the first time we arrive at a sample of size n whichisat least
as large as a°S?/d?, constructed from (Xy, X, X,,) - In other words, stop sampling as

soon as the sample size exceeds the estimate of n and hence the confidence interval is
constructed.

The asymptotic characteristics of the one-by-one purely sequential procedure based on the above
stopping ruleis

i) lim E(N/n")=1. Asymptotic first order efficiency.
i) Idi m E( N-n ) < o0, Asymptotic second order efficiency.
i) lim P{uel,}=1-a. Asymptotic consistency.

Remarks

1. The asymptotic second order efficiency is stronger than the asymptotic first order efficiency property
since (ii) leadsto (i) but the converseisnot true.

2. The one-by-one purely sequentia procedure does not over-sample as Stein’ s double sampling procedure
does, but it failsto have the exact consistency property, unlike Stein’s procedure.

Although the one-by-one purely sequential sampling procedure is more efficient than the Stein (1945,
1949) and Cox (1952) two stage procedures, it is inexact (i.e. it only attains the prescribed coverage
probability asymptotically). The one-by-one purdy sequential sampling procedure of Anscombe (1952,
1953), Robbins (1959) and Chow and Robbins (1965) was devel oped to tackle both point and confidence
interval estimation problems. Specifically, in point estimation generally a loss (cost) function is assumed
and hence the risk incurred in estimating the unknown population parameter by the corresponding sample
measures is calculated. Then the optimal sample size, N, required to minimize the associated risk is
obtained. Mimicking the structure of the optimal sample size, a one-by-one purely sequentia procedure for
point estimation is then developed. It has been shown (see, for example, Chow and Robbins, 1965 and
Woodroofe, 1977) that the one-by-one purely sequentia procedure is asymptoticaly efficient (first and
second order), while the Stein (1945) and Cox (1952) two stage procedures suffer from lack of efficiency.
On the other hand, the one-by-one purely sequential sampling procedure of Anscombe and of Chow and
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Robbins is not cost effective since it takes time to terminate and becomes impractical. We would aso
emphasize that most of these sampling techniques pertain to making inferences about the normal mean.

During the period from 1965 until the early 1980's, no substantial progress was made towards devising
sequentia sampling procedures which satisfy both the operational savings made possible by the two stage
procedure and the asymptotic efficiency of the one-by-one purely sequential procedure. Rather, during this
period the research in sequential inference was devoted mainly to applications of these well established
sequential sampling procedures to other distributions, such as: the exponentia distribution (Basu (1971),
Starr and Woodroofe (1972) and Mukhopadhyay (1974)), the negative exponential distribution
(Mukhopadhyay et. al. (1986) and Mukhopadhyay (1988)), the difference of the means of two negative
exponential populations (Mukhopadhyay and Darmanto (1988)), the difference of location parameters of
two negative exponentia distributions (Mukhopadhyay and Hamdy (1984)), the uniform distribution
(Grayhill and Connell (1964) and Ghosh and Mukhopadhyay (1975b)), the pareto digtribution (Wang
(1973) and Mukhopadhyay and Ekwo (19874)), the Bernoulli distribution (Robbins and Siegmund (1974)
and Cabilio (1977)), the binomid distribution (Wolfowitz (1946), Degroot (1959) and Wasan (1964)), the
negative binomid digtribution (Mukhopadhyay and Diaz (1985)), the Poisson distribution (McCabe
(1970)), the hypergeometric distribution (Ifram (1965)), the bivariate norma distribution (Sinha and
Mukhaopadhyay (1976)) and the lognorma distribution (Zacks (1966)), the range in a power family
distribution (Mukopadhyay et. al. (1983)) and the multivariate norma distribution (Khan (1968), Wang
(1981), Cdlahan (1969) and Ghosh et al. (1976)). Other applications involved classes of distributions such
as the one-parameter exponentia family; see Lorden (1978), McCabe (1974) and Mukhopadhyay (1974).

Hall’s (1981) triple sampling sequential procedure

In the early 1980’ s a three stage procedure was introduced by Hall (1981, 1983) to congtruct a fixed width
confidence interval for the normal mean u with unknown finite variance 8 and with a predetermined

coverage probebility 1 . His procedure s based on the following stopping rule
N, = max{m[§(a’S;/d?) ] +1,

and

N = max{Nl,[(aZS,il/dz)]+l}.

A modified version of his procedure is based on modifying the last stage to

N :max{Nl,[(aZSil/dz)+(5+a2—5)/26}+v+1;,

where a is the a/2critical point of N(0,1) , v>0 is an arbitrary integer added to improve the

convergence of the procedure, d (> O) is a fixed prescribed constant and ¢ is a fixed number between
o€ (0,1).

Wewill illustrate Hall’ s triple sampling procedure in detail in Chapter |1 section 2.2.
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The asymptotic characteristics of the triple sampling sequential procedure based on the above
stopping rules are

i) LiLr(l)E(N/n*):l.

i) LiLr(])E(N—n*)<oo.

i) IdiLrgP{,uelN}zl—a.

Hall’ s asymptotic theory begins with the assumption that form>2 and s>1
mE&pUWH)<5awrf:OOﬁ).

Since Hall’ s triple sampling procedure is the main focus of this thesis, so it would be better to show
the effect of increasing the arbitrary number vV on improving the coverage probability.

Table 1.1 as seen in Hall (1981, p. 1232) shows the effect of increasing the number v on improving
the performance of the coverage probability based on 1000 replicate samples from the standard
normal distributionwithd =0.5, 1—a =0.95and m=10. For more details see Hall (1981, p. 1232).

n v=0 v=3 v=>5 v=_8
24 0.950 0.964 0.973 0.978
43 0.956 0.949 0.958 0.963
61 0.949 0.948 0.955 0.962
76 0.953 0.959 0.945 0.952
96 0.930 0.942 0.951 0.953
125 0.948 0.955 0.949 0.951
171 0.936 0.970 0.954 0.954
246 0.956 0.952 0.959 0.958
384 0.958 0.958 0.954 0.954

Table 1.1: The effect of increasing V on the performance of the coverage probability

Remark

The two-stage procedure, the one-by-one purely sequential procedure and the triple sampling
procedure enjoy the property that P( N < oo) =1
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Hall's three stage procedure combines the efficiency of the Anscombe, Chow and Robbins one-by-one
purely sequential procedure and the operational saving made possible by sampling in bulks by applying
Stein’ s group sampling techniques.

Since the introduction of multistage sequential sampling by Hall (1981, 1983), applications to other
distributions and inferences for other parameters have been of interest; see Hamdy and Pdlotta (1987),
AlMahmeed et al. (1998, 1990), Hamdy et al. (1995), Mukhopadhyay (1985, 1988, 1990), Mukhopadhyay
and Mauromoustakos (1987) and Mukhopadhyay and Padmanabhan (1993).

Mukhopadhyay (1990) made further developments to triple sampling by focusing on higher order
moments of the stopping variable N . Hamdy (1988) extended Hall's (1983) triple sampling results and
proposed atriple sampling point estimation procedure to estimate the normal mean. The extension of Hall's
results to tackle hypothesis testing problems of the norma mean was developed by Liu (1995). Son et al.
(1997) proposed atriple sampling sequentia procedure which yields both a fixed width confidence interval
and a hypothesis test for the normal mean while controlling the Type Il error probability. Their procedure
also provided second order approximations to the operating characteristic curves of theinference.

Closdly related applications of sequentia proceduresin clinical trials are found in Whitehead (1983, 1991,
1992, 1994, 1997, 2001 and 2005), Brunier and Whitehead (1993) and Jennison et al. (1999).

Accderated sequential procedure

We have seen that the one-by-one purely sequentia procedure is asymptotically second order efficient, but
it has a disadvantage that we need to record observations one by one until the process terminates. To
accel erate the one-by-one purely sequential procedure and to preserve second order asymptotic efficiency,
we combine the one-by-one purely sampling procedure with an additional stopping rule. Such a procedure
is caled an improved accelerated sequential procedure. The procedure as proposed by Mukhopadhyay

(1996) is: start with apilot sample X,,..., X, of size m( > 2) and let 5 be afixed number between 0
and 1. Thenthe stopping ruleis

N, =min{n>m, n>sa’S?/d?},
and the final samplesizeis
N={(5’1N1+q)+1} ,q=(26)"(5+a%),

where ais the upper /2 point of the standard normal distribution and d( > O) is a fixed prescribed
congtant. The final data set is {Xl, coon Ky Ky or Xy } . Then the fixed width confidence interval for

thenormal mean u is | =()?N T d) . For more details, see Mukhopadhyay (1996).

The asymptotic characteristics of the accelerated sequential procedure are summarized in Mukhopadhyay
(1996) asfollows:

(i) lim E(N/n") =1, asymptotic first order efficiency.
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(i) Idlrrg P{uel,}=1-oa, asymptotic consistency.
(iii) Lerg E( N —n*)<00,abymptoticsecond order efficiency.

Remark

If O ischosen near zero, the accelerated sequential procedure would clearly behave more like Stein’s two
stage procedure, but if chosen near one it would behave more like a one-by-one purely sequentia
procedure. Therefore, an accelerated sequential procedure is often implemented with 6 =0.4,0.5 or 0.6.
In numerous problems, one tendsto use ¢ = 0.5; see Mukhopadhyay and de Silva (2009).

The objective in this thesisis to study the robustness of normal-based triple sampling inference procedures
to departures from normdity of the underlying distribution. Therefore, it is useful to give some brief
statements about the meaning of robustness in statistics and its role in the area of sequential sampling.

1.2 Robustness of sequential procedures

Since many statistical methods make specific assumptions about the nature of the underlying
distribution, it has long been a concern of satisticians to determine how far conclusions might be
affected if these assumptions were false. In particular a considerable literature exists on the effect of
non-normality on analysis of variance tests to compare means and on the test to compare the variances
of independent samples; see Geary (1936), Gayen (1950), and Box and Anderson (1955).

The word robustness in statistics was first coined by Box in 1953. Box et al. (1964) studied the
behaviour under non-normality of the probability distribution of a specific criterion. Such specific
property is referred as criterion robustness to non-normality. Moreover, they distinguished between
two types of sensitivity to non-normality: criterion robustness and inference robustness. Criterion
robustness means that the distribution of the statistic used to estimate parameters or test hypotheses
about the parameters under the original model is not substantially affected by changing the model.
Inference robustness means that inferences made about parameters on the basis of the data do not
change substantially with a change in the model. For example, changes in the significance level when
appropriate changes were made in the nature of the criterion to correspond with the changes in the
underlying distribution. An excellent discussion of this distinction between the two types of
robustness was given by Box et al. (1973) where he illustrated this distinction for the tand F
distributions of normal theory statistical inference.

Huber (1964) used the word robustness to mean the insensitivity of a statistical procedure to small
deviations from the assumed assumptions. He was concerned with distributional robustness where the
shape of the true underlying distribution deviates dightly from the assumed model, usually the normal
distribution.

In real life problems, underlying distributions are not perfectly known and can be a member of larger
class of distributions. For example, the distribution of errors which are assumed to be normal could
belong to some larger symmetric class of distributions not necessarily normally distributed; or the true
underlying distribution might be a mixture of several normal distributions or a contaminated normal
distributions. Also in linear models, least square estimators are sensitive to deviations from an
assumed normal distribution of the errors, thus least square estimators are non-robust with respect to
deviations from the assumed normal distribution.
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Pearson (1931) showed the sensitivity of classical ANOVA procedures to departures from the
assumed normal model, mostly in terms of the skewness and kurtosis of the underlying distribution.
Many articles examine the effect of such deviations on the size and power of the ANOVA tests; see
Tukey (1960). The robustness of the ttest against mixtures of normal populations that differ in
location parameters has been studied by Tukey and McLaughlin (1963). Subrahmaniam et al. (1975)
studied the robustness of the one-sample t procedure against slight contamination of the population
with another normal population having a different mean.

As we know the ttest, based on t:\/ﬁ()?—ﬂ)/s, is used to test the hypothesis about the

population mean of a normal distribution when the variance is unknown. The power of this test is a
function of the unknown variance. It was shown by Dantzig (1940) that for a fixed sample size there
does not exist a test whose power is independent of the variance. The idea of studying the effect of
non-normality on the ttest has been investigated by, for example, Pearson and Adyanthaya (1929),
Bartlett (1935), Geary (1936), Gayen (1949), Ghurye (1949) and Srivastava (1958). Pearson and
Adyanthaya (1929) have shown that the effect of skewness and kurtosis of the underlying distribution
on tmay be considerable. Bartlett (1935) confirmed Pearson’s results theoretically by obtaining an
approximate distribution of t in non-normal samples, assuming the underlying distribution can be
represented by the first two terms of Edgeworth series. Geary (1936), obtained the approximate of the
tdistribution. Gayen (1949) considered the effect of skewness and kurtosis by using the first four
terms of the Edgeworth series as the density function of the population to derive the distribution of t.
A theoretical study on the effect of non-normality on the power of the t test was first made by Ghurye
(1949) by considering the first two terms of the Edgeworth series and later Srivastava (1958) extended
thiswork by considering the effects of the skewness and kurtosis of the underlying distribution.

Stein (1945) gave a two sample test for a linear hypothesis whose power is independent of the
unknown variance. He used it to test the hypothesis about the mean of a normal population and to
estimate the mean by a confidence interval of a prescribed width with a given confidence coefficient.
Asin other tests of significance, the basic assumption in Stein’stest is the normality of the underlying
distribution. Since this assumption may not hold in practice, Bhattacharjee (1965) was the first to
study the robustness of Stein’s two stage procedure against departures from normality by deriving the
distribution of Stein's t test for non-normal populations represented by the first four terms of an
Edgeworth series. He considered the power function of Stein’s test and the confidence level of the
fixed width confidence interval. He concluded that the procedure is sensitive to Edgeworth type of
expansion. On the contrary, Blumenthal and Govindargjulu (1977) investigated the departure of
Stein's two stage results from normality under the assumption that the underlying distribution is a
mixture of two normal populations with common unknown variance but with different means. Both of
these studies are concerned with criterion robustness of the procedure (Box and Tiao, 1973). Their
results indicated that the procedure is remarkably robust. The controversy between these two different
conclusions was settled by Ramkaran (1983) who investigated the same problem and found that the
Stein’ s two stage sampling procedure is quite robust even under Edgeworth series model.

Applications of robust statistical procedures can be found in Hampel (1968, 1971), Hampel et al.
(1986), Huber (1964, 1981), Huber and Dutter (1974), Govindargjulu and Ledie (1972) and
Jureckova and Sen (1996).

Although it is vital, as one can see, the quantity of research in the area of robustness in sequential
sampling is limited. However, Jureckova and Sen (1996) devoted several chapters to discuss
robustness of sequential statistical inference (point and interval estimation).
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In this current study the robustness of triple sampling procedures to non-normality of the underlying
distribution will be of greatest importance. The problem arises when the underlying population is
misspecified (normality is assumed when in fact it is not normal). Also for some distributions it is
almost impossible to express the optimal sample size explicitly and therefore, if the normal-based
triple sampling procedure were robust to departures from normality, it would be convenient to use the
triple sampling procedure with normal stopping rule. Severa measures are devised to assess the
robustness of sampling procedure. However, in this study we rely on the skewness and kurtosis of the
underlying distribution to measure the extent of departures from normality.

1.3 Skewness and kurtosis
In this section we shall define what we mean by skewness and kurtosis.

It is commonly noted that distributions can be characterized in terms of location or central
tendency, variation and shape. With respect to shape, two important measures are the
skewness y , which is a measure of asymmetry, and the kurtosis §, which is a measure of

peakedness and/or tail behaviour. Higher kurtosis indicates more of the variance is due to
infrequent extreme deviations, as opposed to frequent modestly sized deviations. The
formulae that we will use are given by Abramowitz and Stegun (1972) who define the skewness
and kurtosis as

y=E(X-u)’/6¥ and f=E(X -u)' /0% foral ueR,0cR".

Note that the kurtosis is always greater than one, ( )i >1) if it exists. When appropriate we will also
use the excess kurtosis, 5~ = § —3; see Kenney and Keeping (1951).

In the literature, there are different perspectives for the meaning of kurtosis. Bickel and Lehman
(19754, 1975b) noticed that there is no agreement on precisely what kurtosis measures, while Balanda
et al. (1988) showed that it is better to define kurtosis obscurely as the location and scale-free
movement of a probability density function from the shoulders of a distribution into its centre and
tails, and to recognize that it can be formalized in many different ways. Pearson (1905) defined
kurtosis as a measure of how flat the top of a symmetric distribution is when compared to a hormal
distribution of the same variance, while others like Johnson et al. (1994) illustrated that kurtosis
measures the amount of deviation from normality depending on the relative frequency of values either
near the mean or far from it to values an intermediate distance from the mean. Wilcox (1990) used the
skewness and kurtosis in studies of robustness of normal theory procedures. The Pearson family of
distributions is characterized by the first four moments and skewness and kurtosis may be used to help
to select an appropriate member of this family. All such differences occur because kurtosisis not well
understood and because the role of kurtosis in various statistical analyses is not widely recognized.
For more details about the role of kurtosis, see Hampel (1968, 1974).

The terms mesokurtic, leptokurtic and platykurtic mean as follows:

(i) Mesokurtic: Such distributions have a moderate degree of peakedness and represented by a

normal distribution, symmetric around the mean and the three central measures, the mean, the median
and the mode are equal. Note that all normal distributions are mesokurtic and the weight/thickness of
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thetails of anormal distribution isin between the weight/thickness of thetails of distributions that are
leptokurtic or platykurtic.

(ii) Leptokurtic: Such distributions have a high degree of peakedness. The tails are heavier\ thicker
than the tails of a mesokurtic distribution. An example of this case is the exponential distribution.

(iii) Platykurtic: Such distributions have a low degree of peakedness. The tails are lighter\thinner
than the tails of a mesokurtic distribution. An example of this case is the uniform distribution. See

Sheskin (2004) for more details.

Table 1.2 gives the values of the skewness y and kurtosis g for some distributions that we will usein
|ater chapters: the normal distribution N (,6), the uniform distribution U (a,b), thet distribution
with r degrees of freedom t( r) , the beta distribution beta(a,b), the exponentia distribution with
mean 1, Exp( ) and the chi-squared distribution with r degrees of freedom x*(r).

Distribution /4 i}
N (1,0) 0 30
U(a,b) 0 1.8
t(r) 0, vr>3 3(r-2)(r-4)", vr>4
beta(ab) | 2(b-2) [a+b+l | 3(a+b+1) (2a” +20° - 2ab+ a’b + ab’)
(a+b+2)V ab ab(a+b+2)(a+b+3)
Exp( u) 2 9.0
2%(r) 2,/2/r 12/r +3

Table 1.2: Skewnessand kurtosisfor N (,6),U (a,b),t(r), beta (a,b), Exp( 1) and x*(r)
distributions
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Chapter 11

Statement of the Problem

2.1 Problem setting

Let X,,X,,X,,... be asequence of ii.d.random variables from a continuous distribution function

F( .;,u,@), where the two parameters, the mean e R and the variance 6 € R* are assumed

unknown but finite. We aso assume that the skewness y and the kurtosis  are both unknown but
finitey <ocoand <o . The main interest in this study is estimation of £t in the presence of the
unknown variance .

Having observed a random sample X;, X,,..., X, ¥ n> 2 from the distribution function F( .;/,1,9),
we propose to use the sample mean and the sample variance as point estimates of pand 0

respectively: X, = n’lzn: X, and S :(n—l)_lzn:(xi - X, )2 ,Vn=2,
i=1

i=1

It is well-known that these estimators are unbiased for their respective parameters and minimal
sufficient statistics in the case of the normal distribution.

In the literature on sequential sampling for inference of the mean for most distributions it is assumed
that the sample size required to satisfy the conditions (i), (ii) and (iii) in section 1.1.1 can take the
general form (2.1) below; see Sen (1985) and Ghosh et al.(1997) for details.

(21 n=19(0),

where 4 depends on some predetermined constants (which may, for example, appear in a loss (cost)
function incurred in point estimation of uor arise from consideration of a fixed width confidence

interval for u with a prescribed coverage probability). Further, A is permitted to tend to infinity if
the optimal sample sizen’ — «. Note thatg( . )is a positive real valued twice continuously

differentiable function such that g, and g"are bounded. We shall use the representation (2.1) in
thisthesis to develop theory for point and interval estimation and for hypothesis testing.

2.2 Triple sampling procedurefor inference for the population mean

Since n'in (2.1)is numerically unknown becausef is unknown, then no fixed sample size
procedure provides the above point estimation for ¢ uniformly forv @ > 0. Therefore, we use

sequential sampling procedures to estimate 4 via estimation of the optimal sample sizen™ . We now
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give arigorous account of the triple sampling procedure as described by Hall (1981). As the name
suggests, triple sampling can be described by the three phases.

Pilot Phase: Here an initia sample X, X,,..., X of size m>2 is taken at random from the
distribution F ( .; 14,0, from which X, and S’ are calculated as our initial estimates for 4 and 6
respectively.

The Main Study Phase: In the main study phase a fraction of n’ is estimated during that phase, say,

Sn’,where & is afixed number between 0 and 1. The sample size required to complete the main
study phase is defined by the following stopping rule as

(22) N =[629(S) [+1, N =max{mN;}.

where0< 6 <1 and 0< A < 0 are known constants and [X] denotes the integer part of X. Observe

that N, estimatesSn’ in this phase.

Ifm=> NI , stop sampling at this stage; otherwise continue to observe an extra random sample of size

N,—m from the distribution function F( .;,u,0), say X,.q, X Xy, - Hence, we augment the

me20e
N, —m observations by the previous m observations and calculate )_(Nl and S,il as new estimates of

1 and O respectively.
Thefinetuning phase: Thisis defined according to the following final stage stopping rule

(23) N =29(S{)+1 N=max{N,N"}.

If N,> N, then stop a this stage, otherwise continue to sample N —N, more observations
randomly from the distributionF(.;4,0), say Xy ;, Xy z:--- Xy. Whenever sampling is
terminated and N is redized, then X, is a natural point estimate for i, and hence X, is a
sequential point estimator of 11. Observethat N estimates n” in this phase.

Throughout the thesis, the asymptotic characteristics of triple sampling are developed under the
assumption made by Hall (1981) that for 0<d <1 and A positive, we assume that

(24) —>oo,m:m(n*)—>oo,limsup(m/n*)<5 and 1 =0(m"), s>1.

where s> lisafixed constant. Moreover we assume that E| X, |6 < oo . Thismoment condition isthe

same as that used by Chow and Martinsek (1982) to estimate the mean of an unknown distribution
using the one-by-one purely sequential procedure proposed by Robbins (1959). Although the

assumption E| X, |6 < oo may seem restrictive, but we shall show in the next chapter that second

order approximations of a continuously differentiable function of the stopping sample sizes N, and
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N depend on the first four moments of the distribution in order to capture both the skewness and
kurtosis of the underlying distribution. Therefore it is clear that one needs more than the first four
moments to be finite to obtain such approximations and ensure that the corresponding error terms tend

to zero. Also, it is necessary to put lower and upper bounds on 6 in order to ensure that g (9) and its
first two derivatives are bounded in the inferential situations we shall investigate later in the thesis.

Lemma2.1 (Hall 1981)

For the triple sampling rule (2.2) — (2.3) as m— cowe have

P(N, = N; ) = O(exp(—km)),
P(N=N")=o(m®*?), k>0, g>10.

See Honda (1992) for the proof.

Lemma 2.1 shows essentially that the probability of not completing al three stages is small for large
values of m.

Remarks

1. Mukhopadhyay (1990) noted that if the design factor 6 is chosen near zero or one, then a
three stage procedure would clearly be rather like Stein’s two stage procedure. Therefore a
three stage procedure is better implemented with 6 =0.4, 0.5 or 0.6. Hall (1981) mentioned
that in practice it seems a reasonable compromise to choose s = 0.5.

2. Inthe context of two stage sampling Seelbinder (1953) and Moshman (1958) devel oped some
criteria based on prior information about the variance in order to suggest a reasonable choice
of the pilot sample sizem, while Mukhopadhyay (2005a) developed an information-based
approach to suggest a reasonable choice of mwithout any prior information about the
variance.

Notes

1. Theobjective of Hall (1981) was to construct a fixed width confidence interval for the normal
mean with a prescribed width d( > O) and coverage 1—a without any concern about the

estimate of the optimal sample sizen” . Moreover, he used only the first order approximation
of the stopping sample size N .

2. Mukhopadhyay et al. (1987) treated the same situation as Hall (1981) but they considered
point estimation of the normal mean to achieve the minimum bounded risk.
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In our thesis we deal with inference (point and interval estimation and hypothesis testing) about the
mean of any continuous underlying distribution whose analytical form is unknown and for any
positive twice continuously differentiable and bounded function of 8. We use the second order

approximations of a suitable continuously differentiable function of the stopping sample sizes N, and

N in order to evaluate the asymptotic regret in terms of the first four moments of the underlying
distribution.
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Chapter 111

Developing Mathematical Resultsfor Triple Sampling

3.1 Preliminary results

Lemma3.1.1

Let X be arandom variable drawn from the continuous distribution function F ( g M, 0), where u is

the population meanu e R, @is the population variance, 0 € R™, and with finite skewness y and
kurtosis S . Then, it is easy to show that

E(X®)=y0% +3u0 + °.

) E(X*)=B0"+4uy 0¥ +64°0+ 1",

iii) Var (X?)=60° (B 1)+ 4uy0®” + 4u°0.

Proof: (i) and (ii) follow immediately from the definition of skewness and kurtosis while (iii) follows
from (ii) and the fact that E(X?) = u*+0.

Lemma3.1.2

Let X, X,,..., X,,be arandom sample of size m > 2 drawn from the continuous distribution function
F(.;u0) with finite mean u , varianced, skewness yand kurtosis . Let X, and S’ be the
sample mean and sample variance respectively. Then it follows that

Part (1)

)E(X3)=m?(y 0% +3mud +nm’y’).

i) E(X5)=m>((B+3m-3)0%+4mpuy 6% + 6m° 1’0 + m’p*).
iii) E(S%-0) =(m(m-1)) "((m-1) 8 —(m-3))6>.

V) E(X, S2)=m'y 0% + 6.

V) E()?f1 S,i) =m?0% (B +m-3)+2m uy 6%% + 0.

37| Page




Part (I1)

Definethelocation shift Z = X — i . Then
I) E( Zs)=}/03/2.
i) E(z2*)=p06".

Also for arandom sample (Z,,Z,,...,Z,,) from the random variable Z above,

iii)E(zfn) 2y 6%2,
w)E(ziL) m02 (B +3m—3).
DE(ZnSE) =y 0%
vi)E(Zm:Zf j 2(p+m-1).

vii)E(Zm:ZZ,ZJ s;}——zez.

1#]

viii) E(an sfn) — m%0%(8+m-3).

Proof:

It suffices to prove part (I1) of Lemma3.1.2. (i) and (ii) areimmediate from Lemma 3.1.1., while (iii)
and (iv) follow from Rohatgi (1976, p 303).

Note S} = (Zzz MZun Jand(gZiJ ZthZz Z,.

i#]

The proof of (v), (vi), (vii) and (viii) follows by taking the expectation over the identities:

Z,S:=(m(m-1)) {ZZ +ZZZ Z%- }

i#]

S22 =(m-1)*Y 22 (izﬁ - miij

i=1 i=1 i=1

(32| -(mm-a) Sz y T2z

i=1 i#]

-mi$zy 37z |- mim-1) Sz Y vz,

i i#] i= i#]
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22228, = ml{ZZZZFZ,- +> ZZZEZJZK}

i#] i#] i#jzk

—(m(m—l))‘{z DL HAY DD TT T+ Y ZZZizjzkzi

i#] i#j# i )=kl

and

3

zfnsssmz(@ziz*izz‘zjjs’ij

i#]

:mZ(Zm:zizs;+§m:ZZizjs§].

i=1 i]
The proof of part (I) follows from part (11) by using the above location shift transformation.
Lemma3.1.3

Let X, X,,..., X,,be arandom sample of size m > 2 drawn from the continuous distribution function
F(.;u0) with finite meanu , varianced, skewness yand kurtosis 8. Let S? be the sample

variance. Thenasm—>00,\/ﬁ(3i—0)—L> N(O,(ﬁ—l)@z).

Proof:

The proof follows immediately from the central limit theorem and Lemma 3.1.2 (iii). See aso
Serfling (1980) section 2.2 for more results.

3.2 Asymptotic characteristics of thetriple sampling sequential procedurefor inference

In the following sections 3.2.1 and 3.2.2, we will study the asymptotic characteristics of both the main
study phase given by (2.2) and the fine tuning phase given by ( 2.3) under the assumption set forward

by Hall (1981) given by (2.4) and our assumption that E|X1|6 <.

Definition 3.2.1

A sequence of random variables {Y,,n>1} is defined to be uniformly integrable if
IimsupE{|Yn|I (|Yn|>c)}:0 asC— oo, where | (- )isan indicator function of ( - ); see Serfling

(1980), page 13 for more details. In other words, a sequence of random variables is defined to be
uniformly integrableif it is dominated by some integrable random variable.

Lemma 3.2.1 is found in Chow and Yu (1981) while Lemma 3.2.2 is a uniform integrability result
obtained from Lemmas 2, 4 and 5 of Chow and Yu (1981) and are necessary to establish our proofs

regarding the asymptotic characteristicsof N,and N .
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Lemma3.2.1

Let {T,;0<a<1} beafamily of random variables such that P(T, >1) =1. If for somes, €(0,1),

p>0, >0 we have P(aqTa<5l):o(apq)asa—>0, then the family of random variables

{(aqTa )_p} isuniformly integrable.

Proof: See Lemmalin Chow and Yu (1981).

Lemma3.2.2

Let Z,,Z,,...beindependent and identically distributed random variables, each with mean zero. Let
G, be o —field generated by {Z,,Z,,...,Z,}.Let {T,; 2 € B} be G, stopping times with
Bc(O,oo)Then

()E[Z[" <»,p21= {(Tl/l)p} is uniformly integrable.

(i) E(Z2) <0 = {(TA/A)_p}isuniformlyintegrableforall p>0.

T, 2p
(i) E[Z[" <o, p>1= {[Alzz,j }isuniformlyintegrable.
i=1

T

2p
(V) E[Z[* <0, p21= {[/I”ZZZJ }isuniformlyintegrable.

2
i=1

T/l
(VE|Z[® <o, p>2= ”A”Z(Z z? _le
i=1

p
} isuniformly integrable.

Proof: See Lemmas 2, 4 and 5 of Chow and Yu (1981).

Theorem 3.2.1 (Anscombe's Theorem)

Let Z,,Z,,... beindependent and identically distributed random variables with mean zero and

finite variance®. Let v (t) denote a positive integer-valued random variable for any t > Osuch that

v(t)
v(t)/t - ¢ > 0in probability as t — +oo . Then (9 v(t))_lj2 D" Z, convergesin distribution to a

i=1
standard normal distribution as t — +oo. See Renyi (1957) for the proof of the Theorem.
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3.2.1 Asymptotic characteristics of the main study phase

The asymptotic characteristics of the main study phase of the triple sampling procedure are discussed
through the following Theorems. Theorem 3.2.1.1 provides results regarding the asymptotic characteristics
of the main study phase. Specifically, second order approximations of the expectation and the variance of
the second stage sample mean are given as the initial sample size m gets large. First we introduce some

Lemmas that help us to construct Theorems about N, . Lemma 3.2.1.1 shows the uniform integrability for
positive and negative powers of N;, Lemma 3.2.1.2 shows the asymptotic distribution of N,, Lemma

3.2.1.3 shows the uniform integrability and the asymptotic distribution of Sﬁl and Lemma 3.2.1.4 gives
some useful results that smplify our proof of Theorem 3.2.1.1.

Lemma3.2.1.1

For the triple sampling rule given by (2.2) we have
(i) The set {( 2N, } isuniformly integrable for every p> 0.

(i) The set {( N,/A)" } is uniformly integrable for every p> 0.

Proof: Part (i) follows directly from Lemma 3.2.2 (ii). It also follows from the fact that
6/19(8,?1)3 N, , by making use of Lemmas 3 and 4 of Chow and Yu (1981) and Lemma 3.2.1we

obtain the result. Part (ii) follows directly from Lemma 3.2.2 (i). It also follows from (2.2) and the

fact that (Nl/)u)p ~ (69(3,3]))p < oo where g isabounded function.

Lemma3.2.1.2

For the triple sampling rule given by (2.2) and if condition (2.4) holds, thenas 1 — =,
N,/n —225.

Proof:

The proof follows directly from (2.4) and the strong law of large numbers.

Lemma3.2.1.3

Let X,, X,,...beindependent and identically distributed random variables from the continuous

distribution function F (. ; ,0)such that E|Xl|6 <. Then

(i) The set {| /I”Z(Sﬁl —9)|p} isuniformly integrableforO< p< 3.
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(i) N, (S, -0)——>N(0,0°(B-1)) ss A > 0.
Proof:

Part (i) can be proved asfollows

Recall Sﬁlz(Nl—l)fl (X.—XNI)Z. Using the transformationZ = X, —u, we have

lyz(Sﬁl _9): Nfl{i(zi20)+0Nll(izjz}%.

i=1 i=1

By making use of Lemmas 3.2.1.1and 3.2.2 parts (iii),(iv) and (v) we obtain the result. Hence the
proof is complete.

Part (ii) Recal that Nl/5n* —lamost surely as 4 — oo (Lemma 3.2.1.2 (i)). Then the result
follows by Anscombe’'s Theorem.

Lemma3.2.1.4

LetZ,,Z,,...,Z, be arandom sample of size m > 2 drawn from the continuous distribution function
F(.;u0) with mean zero and E|Zl|6 <. Let gbe a positive, twice continuously differentiable
function such that g,g and g are bounded. Then for the triple sampling rule (2.2)and condition

(2.4) as A — oo we have

(ii) E[iizsz 5‘2* - Zi;(rf)_zl);—e|n(g(9))+o(xz).

(i) E[%iz; zjj: 40° 4 in(g(0))+o0(2?).

(6n* )2 do
Proof:

The proof of part (i) follows by expanding the function f (N, )= N;"around Sn"where f (- )isa

continuously differentiable function. Notethat f', f ‘and f " are continuous over [ N, on ] . Then
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N =(on") " —(6n) " (N, —sn')+(sn") " (N, —on°) +% £ (n)(N,—on'Y,

where 1 is a positive random variable that lies between N,and &n”. By collecting the above terms
we have

(3) N =3(sn°) " =3(6n") * (N +(om ) (N,)?

1

+6f"'(n)(N1—5n*)3.

Multiplying (3.1) by > Z; and substitutingfor N, =5 1 ¢ (Sri) as.as A — o, we have

i=1

Nl—lizi _ 32 Zi (5n* )71 _Bi Zi (5n* )—2 (5/19 (S;))+2Zi (5n* )*3(5/19 (Sri))z

i=1

18 \3
+E;Zif (n)(N,=on")".
Since gis a bounded twice differentiable function, then g°is also a bounded function. Hence by
expanding g(S,i)and gz(S,i) around 6 we have
N7y Z,=3) 7 (6n)"
i=1 i=1
m - . 1
-85z (on ) {a(0)+ 4 O)(S:-0)+ 2o (n)(i -0 |
i=1
m - i 1 .
+37,(sn )3(51)2{g2(6)+gz (0)(S5-0) 29 (nz)(sfn—e)z}
i=1
18 «\3
+€ZZif (m)(N,—sn"),
i=1
where 1, and 1, are random variables that lie between S andd. Taking the expectation over (3.3)

and making use of the identity E{( )Z ,} ¥ 0¥% we have

( 122) 3(sn) “52g'(0)y 0% +(5n°) " (52) g (0)7 6%
~(3/2)82(sn') E{ )22 (Sh- )2}+(J/2)(5,1)2(5n*)35{92”(772)izi(3§—9)2}

i=1
E{lizif"‘( )(N,—&n") }
63

To show that the errors vanish as 4 — oo we proceed as follows. From Jensen’s inequality we have
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(35) ‘E(R)‘:‘E{%gzifm(n)(Nl—én*)B}

sE{n“ Zzi“Nl—&n*f},
i=1
where 7 isarandom variable between N,and 5n’". Consider the casen >SN . Then
1& 3 ) o\—4 m .3
‘E{EZZJ (m)(N,—on") } { Zz } (on) E{‘Zzi }
i=1 i=

<(or) { N2 (o) (or) (5 2
N N, N, ,
The last identity follows from the fact that F—lSFfor large values N, whileas 1 — o we
n n
Nl*_ <
on

amost surely as A — o« . Since gis bounded there exists a generic constant M independent of

i=1

have

(SN—l‘ , such inequality can be justified from Lemma 3.2.1.2 (i) where N1/5n* -1
n

N,,6n",nand msuch that‘ gS‘SM. Hence multiplying by g°(0)in the numerator and
denominator we obtain

E(R) <M (o) 0 (o)

5]

i=1
but from central limit theorem (m@ ZZ - N(O 1)|n distribution as m— oo and since the

ZZ‘}zJZ/_n, m— oo which

quantity ﬂm ”ZZZI‘} is uniformly integrable, then E{(m@ 2

iz,‘}:Jze/n, m—> .

12

-1

implies that E{m

Hence |[E(R)[< M (6n") " g3(0)m*?\/20/x <M, (5n) " 0, 2 .
Note that from condition (2.4) we have myn" ~ § as m— oo

Consider the case 17 > N, and the fact that N, > mthen

‘E{%gzifm(n)(Nl—Sn*f}SE{n“‘iZ::Zi‘ *3}3 E{N;‘iz::zi‘ *3}
< E{Nll .ml | }s E{ml izi:zi ‘}: E{jZ|}
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but from the strong law of large numbers and using Theorem A.3.4 in Mukhopadhyay and de Silva
(2009) page 442 and the fact that {\Zm\} is uniformly integrable, we have E|Zm| —>0as m— .
Also

(36) |E(R)|=0A(on" )Z‘E{g" (nl)zm‘,zi (S —9)2} ,

i=1

where 7,is a random variable between S2and 6. Since g (n,) is bounded there exists a generic

constant K, independent of S%,0,mand 1, such that ‘g" (7]1)‘ <K,. Then

E(R) =5l(5n*)_2‘E{g" >z (s;—e)z}

i=1

m

Szisi-or}

i=1

< Kl(an*)'lgl(e)E{

- . . 2 71 2 2 2 . . - .
By using lemma 3.2.1.1 (ii) the quantity {9 (ﬁ—l)} m(Sm—Q) — x*(1)in distribution as
A — o« . Moreover, from the strong law of large numbers and Theorem A.3.4 (as mentioned above),

m‘lzm: Z

i=1

—>0 as. as m—o. Hence it follows from Slutsky’s Theorem that

"

we have

>7,(si-0)

i=1

(HZ(ﬂ—l))fl Zm:Zi‘(Sri—H)z—)Oin distribution as m—>oo , but since {
i=1

izi‘(s;—e)z}»o as m—» o,

i=1

uniformly integrable, then E {(02 (B —1))_l

A similar procedure can be used to prove that

m

@) [E(R)-() (o) e (252 (5507 |

i=1

m

< Kz(an*)‘lg-z(e)E{z i(si—e)z}ao, Ao,

i=1

where K, is a generic constant independent of SZ, 6, mandn,such that ‘gz"(nz)‘s K,.
Substituting (3.5), (3.6) and (3.7)in (3.4) we have
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m

(3.8) E( N> Z j =-3(5n") 549/ (0)y 0% +(6n)” (1) g% ()7 6%% +0(1)

i=1

The proof is now complete.

Part (ii) follows by expanding the function f(N1)= N,?around &n*. Then by collecting the
expansion terms we have

(39) Ni*=sfor)“-s(om) (M) +3(orr) ‘()P + &

"(m)(N,-en')’,

where nisarandom variable that lies between N,and on".

Substituting for N, and expanding g (Sri) and g° (Srf]) around 0 and entering the expectation over

the terms we obtain

a10) (N2 |- L2 (g0

= on (sn )2 de
E{%Z::Zf £ (n)(Nl—Sn*)g}—Ml(én*)s E{g" (nl)sz(sfn—e)z}
+(3/2)(82)" (sn°) " E{gz" (772)§m:zf(s,2n —0)2}.

i=1

But from Jensen’ sinequality and the fact |Nl - 5n*| < N, we have

E(R)| =‘E{%Z::Zf f"'(n)(Nl—én*)g} <E {nf’ng N, —5n*|3} <E {nsiZ:‘,Zf Nf’}.

Since g isbounded, there exists ageneric constant M independent of N,, & n,n and Msuch that
9% <M . Hence|E(R)| < E{nSZZ Nf}sM 51)° {nSZzz}

Consider the case 11 > & N . Then multi plyingby g° (0) in the numerator and denominator and using

the fact that as m— o0, m= dn* we obtain
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[E(R)| <M (82)°(6n)" {zml:z}

=M (5n) g2 (0)m<Mo(5n) g?(0) >0, 2>

Consider the case 7 > N, and thefact N, > m. Then we have

E(R)|< E{Nf(ng ij}: E{gzﬁ le}g E{mziz::ziz }: m'0 —0, m— .

Also

E(R) =45,1(5n*)S‘E{g“(nl)zm:ziz(s;—e)z}

i=1

< Kl(g(@))‘l(an*)’2 E{Z::zf(s,i —9)2} =0(A?), 2>

asillustrated before as 1 — oo the quantity {92 (B —1)}_1 m(Sﬁ] —9)2 — x%(1)

and m‘lz Zi2 — @in probability as m— oo . Thus, from Slutsky’s Theorem

i=1

(Si—@)zzmlziz — 0°(B—-1) x indistributions as M—> co. since the quantity {(Sri —H)ZZm:ZiZ}
i=1

i=1

m

is uniformly integrable, then E{( 0) >z 2} 0°(B-1), m— .

i-1

Hence it follows that

[E(R)[<K,(g(6)) " (sn") " E{ng(s;—e)z}

=K, (9(6))"(5n) " 0°(B-1) >0, i->en.

A similar procedure can be used to show that

\E(Fg)\=(3/2)(51)2(&,*)*“E{g?'(nz)ng(s;—9)2}
<K,(sn7)" E{ng(sfn—e)z} 50, 1>,

Hence the proof is complete.
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Part (iii)

m m

The proof of part (iii) follows as for part (i) except putting ZZZiZj instead onZiz. Then we
i#] i=1

have the following

(3.11) (NZZZZ,ZJJ (4‘9)2 ddeln(g(e))+E{%gZzizjf'"(n)(Nl—(Sn*f}
_4(9(9))_1(&'*)ZE{Q"(Ul)iZi‘,ZZiZJ(Sri_H)Z}

+@2(a(0) (o) Elo* (1) E X 22 (s2-0) |

But
E{n5

E(R)[=
3 ZZiZj‘|N1—6n*|3}S E{ns

i#j=1

M (5n') " (a2’ E{

E{n5 > Y7z, (N1—5n*)3} <

i=j=1

Y7z \Nl—an*f},

i=j=1

n>én = E{n5

5 y2zn|

i#j=1

}: M (sn')" g3(9)E{ >

> Y2z, >¥zz,

izj=1

}

}we proceed as follows. Let U :(m(m—l))fl i > ZZ, . Thenitcan

i#j=1

> >zz,

i#j=1

Tofind E{

be shown that % - ;(12 —lindistribution asm— oo ; see Theorem 5.5.1A in Serfling (1980) page

192. Thisimpliesthat (6 (m ) z 3227, - yl-lasm—oo.If weset V ~ 7, thenby

izj=1
making alinear transformation between U and V , the probability density function of the random
exp(—(u+1)/2)

variable U , h(u) = ~l<u<oo.
J2r(u+1)
By integration we have E|U|=E‘( ) Z:Z:Z,ZJ — m— oo which impliesthat
i#] e
‘m 1 MZZZZJ‘ — am-—o.
i#] 27Te
Thus
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\2 3 40
E[R[<M(sn") " g?(0) 27Te(m—1)
<M(sn') " g(0) ;ieao, A—w

Also

n>N, :E{N ZZZ,Z,|N 6n|}<E{N DWW |N1|3}

i] i]

{ _ZZZZ'Z} { _ZZZZ'ZJ} mzl)\/—e—>0, m— o,

1#] 1#] m

For the other error term, we have
R )= (s(0) *(on) e s (1) 3322 (51-0f ||
<k, (a(0)) '(on) {322 (-0 |

L m(S2 -0
but (m(m-1)) 12 > Z,Z, —0in probability and ﬁ—)xz(l)in distribution, as
i#] -

A — o . Thus E{

, l‘(S2 ) }—>0in distribution, as A — o by Slutsky’s

Z,(s-6)

E|R,|—>0as 1 — . Asimilar procedurecan be used to show that

Theorem, provided that {m 1

}IS uniformly integrable. Hence

ER)- (329 0)on) a7 (1) 5352 (51-0) |
<K, g‘2(9)(5n*)2E{ : | j‘(si—e)z}ao, Ao,

The proof is now complete.
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Theorem 3.2.1.1

Let g be a positive, twice continuously differentiable function such that g,g and g are bounded.
Then for the triple sampling rule( 2.2) and condition (2.4) as A — oo, we have

E(X,, )=u-76%(dIng(6)/d6)(sn’) +o(27).
ii)Var (X, )=6(sn") " ~26%(5-3)(dIng(6)/de)(sn') " +o(22).
Proof:

To prove (i), consider thetransformationZ = X — u, and we may write

N, N,
(312) E(X\ —u)= E(Nl‘lzzi]: E{E(Nl‘lzzi |N1]}
i=1 i=1
Then, conditioning on the o — field generated by the random variablesZ ,Z ,,...,Z ., we have

E(Xy, —u)= E{Nll E [ il Z + i Z| zl,zz,...,zm}.

i=m+1

GivenZ,,Z,,...,Z,,, thefirst sum is non-random and the second has expectation zero. Hence

(313) E(Xy, —u)= E{Nglézi}.

m 32
But from Lemma 3.2.1.3 part (i) E[Nillzl“ Z j =— y;n* dd_Q In(g(0))+ o(l‘l).

The remainder termis of order 0( }fl) . By substituting this in(3.13) , (i) follows and hence the proof of (i) is
complete.

To prove (ii), we aso write

Nl Nl
(3.14) E(X,, —u)zz E[E{le(z 22 +> 3y 2z, ]|zl,zz,...,sz.
i=1 i]
Thefirst term in(3.14) , conditional on the o — field generated by the random variables
Z,,Z,,..,Z,, canbewritten as
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i=1 i=m+1

Ny m Ny
(3.15) E(Nﬁszjz E{N{ZE(ZZf+ > zi2|zi,zz,...,zm}.
i=1
Therefore,
N; m
(3.16) E(lezzfj:E(lezzizj+0E(Nll—mN12).
i=1 i=1

The first term on the right hand side of (3.16) isin Lemma3.2.1.3 part (ii). The second term of

(3.16) can be written as
E{N,*(N,-m)} <E(N,")=0(1"),as A >c0.

Finally,
(3.17) E{ Nl-zizin =0(sn') " ~26%(p-1)(sn") " (dIng(6)/d6)+o(A?).

Similarly, the second term of (3.14) conditioned on the o — field generated by the random variables

Z,,Z2,,..,Z,, canbewritten as

(3.18) E(Nf%“z;zj}E{Nf E[zm:Zzizj +§:Zzizj |zl,...,zm}

i#] i#] i#]
The first term of (3.18) isin Lemma3.2.1.3 part (iii) while the second term tends to zero.

Hence (3.18) leads to

N; B

(3.19) E{lezz;zj ] =46%(sn') " (dIng(0)/d0)+0(2?),
i#]

where we have used Lemma 3.1.2 and the assumption that g ( . ) and its derivatives are bounded. By

adding (3.17) and (3.19) the proof of part (ii) is complete.

It is obvious from (i) of Theorem 3.2.1.1 that X,, may be a biased estimator of 1 . The bias depends
on the variance 6 and the skewness y of the underlying distribution, together with the form of the
functiong( - ), the optimal sample size n” and the design factor & . Clearly, if ¥ and g (6) havethe

same/different signs, then the bias is negative/positive. Also, the magnitude of the bias increases as
| y | increases. However, as n* increases the magnitude of the bias decreases and approaches zero as

n — .
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From (ii) of Theorem 3.2.1.1, Var ( )?Nl) depends on the form of g( . ) , the kurtosis 8 , the variance
of the underlying distribution@, and the optimal sample sizen, as well as the design factor § . If
g (6)and B (=B —3)have the same/different signs, then Var()?Nl) is less than/greater than
o(sn )71. Note that if the underlying distribution is normal, then X is an unbiased estimator for
o with variance@( on’ )_1. So from Theorem 3.2.1.1, the skewness appears in the expression for the
mean of the estimator )?Nl, while the kurtosis appears in the expression for the variance of the

estimator X,

The following results, presented in Lemma 3.2.1.5 and Theorem 3.2.1.2, which involve Szl, will be
useful in the derivation of asymptotic results for the fine tuning phase.

Lemma3.2.1.5

For the triple sampling rule(2.2), if condition(2.4) holds and E|Zl|6 < o0, then conditioning on the
o -field generatedby Z2,,Z,,...,Z,, we have

9 emo

0 E{( )ZZZ . |zl,zz,...,zm} = —2N12(i§m:zizzf +67 (N, —m)(N, —m—l)j.

i=1 i#] i=1 i#j

(||)E[( )Zz 2,,2,,..., } Nf[izﬁwez (N, —m)+ ZZZZ]

! =1 i#]

+ 07N, (N7 = 2mN, = N, +1m° +m) - 6°N,.

(|||)E{( )Zz|zl,zz, . } N, (Zz3+22222 HZZZ,ZJ]

i=1 i#] i=1 i#]j

+ Nll(yQS’z(Nl—m))+y(izl:Zi2+9(N1—m)j.

(V)E[N,(S}, 02,252, | = —Ngliizizj.

i=1 i#]j
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+ Nll(zmlzm:zfzf +60% (N7 —2mN, - N, + 17 + m)]

il %]

+ Nl‘s(zm:zm:zfzf+92(N1—m)(N1—m—1)j.

=1 0%

Proof:
-1 Ny -2
To prove (i), we usethe fact that S§ = (N, 1) {Z Z?-N,Z Nl} .
i=1

Then
N

$£>Szz = Nllizfizizj —(Nl(Nl—l))‘1(§Zzisz .

i#] i#] i#]
Nl 2 N1 Nl

But (Zzizj] =4£ZZZiZZf+ZZ ZZZiZZjZkJ.
i#] i#] i=]jzk

By conditioning on the o -field generated by Z,, Z Z_, we have

21 s

Ny N,
cl(s o3rzz .zl aveSyaz ..

i#] i#]

m Ny
:—2N;2E{Zszzf+ > >.777%|2,2,,..., zm}

i#] i#j=m+l

i#]

=-2N,? E{Zm:Zzizzf +6% (N, —m)(N, - m—l)}.

Similar arguments can be used to prove (ii) and (iii) of Lemma 3.2.1.5.

To prove (iv) we use the identity

Nl Nl
N,S2 =>72-(N,-1) "> > 7,7, .
i=1

i#]

Thus
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E{N(S},-0)2.2Z,.-, Zm}:—E{(Nl—l)_l{Zm:ZZiZj-ki Zzizl)|zl,z2 ..... zm}

izj=1 i#j=m+1

(Y)Y Y22,

i#j=1
Similar arguments and the identity

N, Ny N,

N,Sy, = N;l(Zz;‘ +Zszzfj+2N;3Zszzf
i=1 i#] i#]

can be used to prove (V).

Theorem 3.2.1.2
For the triple sampling rule(2.2) , if condition(2.4) holds and E|Zl|6 <wasd —> o0, wehave

(i) E[(Si —e)iizizj } =207 +20% (o0 )’l+o(,1-1).

(ii) E[(Sﬁ —9)223}:02([3—1%0(/11).

i=1
Nl

(iii) E[(si —G)Zzi}=y03’2+o(ll).

(iv) E[Nl(sﬁl —9)] =-20°(on )_1(;—9In g(9)j+o(ll).
W) E[Nl(sﬁl —9)2} =02(B-1)+20%(5n") +o(2%).

Proof:

To prove (i), we write

E{(Sﬁ —Q)iizizj} E{E{(Sﬁl —Q)iizizj |zl,zz,...zm}}
Hence, from (i) of Lemma 3.2.1.5, we have
E {(sﬁ, —e)iizi 4 }: E {—2N12(iizfzf +6” (N, —m)(N,-m- )J}

i=1i%] i=li#

Consider the expansion of N, “and N, arounddn’ . Thefirst term leadsto
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E{_sz (zmzm“zfzf]} =-20"+20° (o0 )'1 +o( A7),

i=1 i#]j

and the second term leads to
E{-2N,?(67(N,-m)(N,-m-1))} =o( 1),

where we have used the assumptionsin (2.4) and the fact that g( - ) and its derivatives are bounded,
from which (i) follows.

Nl
Similar arguments can be used to verify (i) and (v) using E {Nllzz;‘} = B 6? +o(l’l) and

i=1

E[Nf’izxzf}:o(zl).

i#]
Part (iii) follows along similar lines and the fact that E [N ;1Zzi3} =y 0% +o(271).

To prove (iv), recall (iv) of Lemma3.2.1.5 and (v), (vi) and (vii) of Lemma 3.1.2.

The proof of Theorem 3.2.1.2 isthus complete. We delete details for brevity.

The following Theorem 3.2.1.3 gives asymptotic results for the estimator of 8 after the main study
phase.

Theorem 3.2.1.3

Let gbe a positive, twice continuously differentiable function such that g,g and g are bounded.

Then for the triple sampling rule( 2.2) , if condition (2.4) holds and E|Zl|6 <wasA —> o, wehave:

E(S)=6- Qz(ﬂ 1)(ding(6)/de)(sn) " +o(2).
i) E(S)=62+6(B-1)(sn") —26°(p-1)(dIng(6)/de)(sn' ) +0(27).
i) Var (S5, ) =6%( - 1(5n)1+o(/1 ).

)

(o[} 000000 1san | )[4 - sols7)
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Proof:

To prove (i), we write

i#]

- E((Nl(Nl—l))_l E( %“ZZiz,. 12,2,,..., sz.

Consequently,

E(Nl‘lE( ii}zﬂzl,z2 ..... sz =0-0°(p-1)(on )_1{%In g(@)}o(l‘l),

while

(3.20) E{(Nl(Nl—l))_lE[iZZiZj|Zl,ZZ ..... sz

i#]

=E((N1(Nl—1))lZm:Zm:ZiZj]

i=l %]

SE[iizizij:o_

=1 i7]
Also from Honda (1992) equation (3.7) we have
2 —
AE(%@)—AE{M}m@).
1
By expanding f (N,)=N;" around 5n”and collecting the terms, we have
N;'m(S2-0)=m(S;-0)(sn") —m(5n*)_1(g'/g)( ,]21—0)2

~3/2m(g(0))"(on") o' (m)(S5-0) +y2m(g(0)) " (6n")  o% (m,)(S%-0)’,
where n,and 17, are random variables that lie between S?and 0. By taking the expectation over the abov

expression, we have
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-1

Thus E{N;'m(S,-0)} =(on")" 6% (B-1)—In(g(0))+0(27).

The proof is now complete.

To prove (ii), we write

Ny
E(S! )= E(N;Z[E{ZZi“j|Zl,ZZ,...,ZmB
i=1
Ny
+ E(N;ZE( ZZZfzﬂzl,zz,...,sz
i#]j
N, 2
+ E((Nl(Nl—l))z E( 3>y z2z, |zl,zz,...,zmj }
i#]
Arguments similar to those used to verify (3.17) can be used to prove

E((Nl(Nl—l))ZE[Eszzﬂzl,zz,...,sz=o,

while
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i=1

E(le(E( izi“jm,zz,..., sz = B6%(sn') " +o( 2,

and
E{leE(iZZfZﬂZl,ZZ,...,ZmB:GZ—92(5n*)1+o(i1).
i#]
Part (iii) follows immediately from parts (i) and (i) which implies that
Var (S )=(sn") "2 (B-1)+(sn") “0*(B-1)(g7g) +o(2?),
=(5n") 02 (B-1)+0(2).

IN (S, -0)
0B -1

Also from Lemma 3.2.1.3 (ii) we have — N(0,1)in distribution, as A — . This

2 2
. . Nl(S\ll_Q) 2 . . . . . .
implies that m—)x (1)|n distribution, as A — o. Using Lemma 3.2.1.3 (i) , we have
N, (s2 -6
M —>las, A —>w.
0*(p-1)
Using Lemma 3.2.1.2 part (i)
SN, (S —0)2 sn'N, (S5 —0)2 0°(B-1)
E WA >1=E = = —~+0(17).
sn'o*(p-1) sn'o*(p-1) on

The proof is now complete.

The proof of (iv) follows by expanding the function g(Sf,l) around g( 0 ) and using (i), (ii) and (iii)
of Theorem 3.2.1.3.

From Theorem 3.2.1.3(i), Sil may be a biased estimator of 6. The bias depends on 6, the form of
thefunctiong( - )and its derivative g ( - ), the kurtosis of the underlying distribution, which is always

positive, the design factor  and the optimal sample sizen”. However, as " — o the bias of Sﬁl

tendsto zero. Similar arguments can be made regarding (ii) and (iii) above.

Moreover a second order asymptotic expansion of the expectation of the function g( . ) of Sﬁl as
M— oo can begivenin part (iv).
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3.2.2 Asymptotic characteristics of the fine tuning phase

It is of interest to see whether the fine tuning stage (third stage) reduces the magnitude of the bias
noticed in Theorem 3.2.1.1.

Theorem 3.2.2.1 presents some asymptotic characteristics of the third stage sample, but first we give
some useful lemmas.

Lemma3.2.2.1

For the triple sampling rule given by (2.3), if condition (2.4) holdsthenas A — o , we have

(i) N/n"—2251,

(i) (N —n*)/JF—L>N(o,(45)‘192(ﬁ—1)).
Proof:

Part (i) follows directly from (2.4) and the strong law of large numbers. Part (ii) follows from (i) and
Anscombe’s Theorem.

Lemma3.2.2.2

For the triple sampling rule given by (2.3) we have

(i) {( N/l)p},{( l/N)p} are uniformly integrable for p > 0.
(i) E{(A/N)"} >1  p>o.

(i) {|/1”2(si —9)|p} is uniformly integrable for 0< p< 3.

(iv) {|A‘1’2(N -n’)

Proof: Thefirst part of (i) follows directly from (2.3), while the second part can be proved as follows:
n"/N—>las. as A—o, let 1{-}be an indicator function of {-}. Then

p} isuniformly integrable for p > 0.

(n"/N)p I {N >5n*} <6 Pfor p>0and thus (n"/N)p I {N >5n*}is uniformly integrable. To
prove Part (i) we need first to find P{N Sén*} .Let § €(0,1). Then
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P{N<on'}<P{ig(S})<629(0)},
<P{lo(Si)-9(0)2(2-5)g(0)|
g’l(Q)(g(Sﬁ)—g(Q))‘ 2(1—5)} :o(,rr‘/s),

SP{ max

msns[b‘ n*]

where r’is an arbitrary fixed positive integer and the last expression valid by using Hajek-Renyi
inequality; see Sung (2008) for more details about the inequality.

0N

Now E{(n*/N)pI{N §5n*}}§(n*/m)pP{N <5n*}—0[lp(15jr5}, which is o(1)if we

choose " to be larger than p(s—1) . The proof is now complete. Also part (i) follows from Lemmas
3.2.1.2 and 3.2.3. Parts (iii) and (iv) follows from Honda (1992) and Liu (2002).

Lemma3.2.2.3

If g isa positive twice continuously differentiable function such that g,g and g are bounded, then

for the triple sampling rule (2.2)—(2.3)and under condition (2.4)and E|Zl|6 <oas A — o we
have

(i) E(Nlizi ] = —y93/2(;j—0|n g(0)+0o(21).

- -2 2 ] 2 * 2 d -2
(ii) E(N ’ zij=95n ~20%(B-1)n @Ing(0)+o(l ).

Part (i) follows by expanding f ( N) =N"around n', then after collecting the terms we have
N =3n" 3NN 2 + N2 3+ 62" ()(N-n)’.

By substituting for N zig(sﬁl)and expanding gand g*around g(6)we obtain
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(320) N*=3n"*- 3,19( 1)” 2, 72 2( )n-3+6‘f (n)('\'—”*)s
=3n"* SAn‘Z{ ( )+9(9)( S\, 0)+2I/29 771( S, 9)}

+,12n*-3{ (0)(S5, -0)+Y29” (n,) (S, 9)2} +671 7 (n)(N-n').

Nl
Multiplying (3.20) by >’ Z, we obtain

i=1

(3.20) N-lizllzi - 3n*-1izll Z, -3 {g(e)+ g'(0)(S, -0)+129 (m)(S}, —e)z}izi

+/12n*3{g2(0)+gz'(0)(sN 0)+129” (n,)(S}, 0)}22 +671f" )izi(N—n*)s.

Taking the expectation over (3.21) and recalling Theorem 3.2.1.2 (iii) we have

(3.23) ( 122] —S/In*z{g (0)y 6%*+12Eg (n,) iz( S%, 9)2}

+12n*3{g2' (0)7 6% +Y2€97 (n,) 3.2, (s —9)2}+61E{ £ (”)Z_;Zi (N-n' )3},
;:Zi“N—n*‘g}

< E{if‘

N, 3
Bz /n-n7|
i=1

Nl
<nE
=

but

[E(R)|=6

n)iNZzi(N—n*)?’

Consider the case

n>n =|E(R)< E{n“‘

it

Ny
From Anscombe's Theorem (0 Nl)_ﬂ2 >.Z - N(0,1)as 2 — o . But since {(

i=1

ZZI‘ 3}< Mgf3 lE{
i=1

Ny
N, )7]]2 Z Z
i=1

}is
Nl

uniformly integrable, then E‘ UZ ZZ,‘ ,/ as A — o. UsingLemma 3.2.1.2 (i), we have

Ny *
Zzi‘: 2001 4 = eo. Thus
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‘E(R)k;Mg*(@)H4”/g@§—+o,l—>w.
T

Whilst
n>N:ﬂHR»sE%4iZﬁ+mT}
i=1

I e BT V2 |20
<E[N'YZ [<E|N'DZ |[<E[m'YZ |<(6n) ", [= >0, 1>
i=1 i=1 i=1 T

Also,

‘EU%N:WZANQ

E{g" 5z (sﬁl—e)z}
NJsi—ef
0*(B-1)

Ny
from Govindargjulu (1987), Nglzzi — 0in probability, as A — «. Hence from Sutsky's

i=1

But from Lemma 3.2.1.3 (ii), we have —>)(12in distribution, as 4 — o . Moreover

Theorem we have (92([3—1))71

i=1

Ny
Zzi‘(Sﬁl—O)zaOin distribution, as A — . Since from

Nl
Z Z (Sﬁ1 - 9)2‘} is uniformly integrable, then it follows that

i=1

Lemma 3.2.2 the quantity {

|

\E(&)\:W(@)n“«&{

N

lei‘(sﬁl —9)2} — OasA — oo. Hence

i=1

Ny

ZF*%—@?%Q&%@

i=1

It can be shown also that ‘E(Ra)‘ <K,g? (H)n*‘l{E

Hence (3.23) becomes
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(3.24) E( Nli z j =-3An"?{g'(0)y 0°*} + 2’0" *{g” (0)y 6°*} +0(2 ™)

— 3t M vz | | 1 92'(9) ve| | (1
- {9«9)”’ } Lf(e)”’ } )
:_n*—ly 93/2;_9|n9(9)+0()’1).

The proof is now complete.

Part (i) follows by expanding N Zaroundn’, then substituting for N and expanding gand g°

around 6. We have

3

(325) N7?=6n"7-8n"°N+3n"*N*+1/6 " (n)(N-n’)
=62 -8n"Ag(S2 ) +3n*2%g? (S )+ /6 f (n)(N -1 )’
—on"=—8n2{g(0)+9'(0) (S5, ~0)+ Y29 ()5, ~0)|
+3n*-4/12{gz(9)+ 0% (0)(S%, ~0)+Y 2% (n,)(S, —0)2}+]/6f"' (m)(N-n')".

Ny
Multiplying (3.25) by > Z? gives

i=1

(326) N*Y.z0=6n *y.77 o %{g() 0 (0)(S5,-0)+1/20 (n)(, ~0) | 2.2
+3n*-4,12{g2(0)+g2'(9)(s§1—9)+J/29 }il 21167 ( )iN_lezf(N—n*)s.

Taking the expectation of (3.26), we have

(327) E[N‘Zizizjzn&ng(Nl) (()) (ﬁ 1) an _SlEg 771 lez( 9)2
+3n 23 ((Z)) 6?(B-1)+(3/2)n"2*Eg” ( i ( _9)2+]/6Ef"'(77)iNzllZi2(N—n*)s.
However,

ER)- Tz (n-n T

Consider the case

N, 3
E{nSsz\N—n*\ }
i=1

63 |Page




Ny Ny
n>n =|E(R)|< E{n-SZziZ|N —n*|3}s E{n*‘5ZZf|N —n*|3}
i=1 i=1
Ny Ny
< E{n*‘5z szS}s Ml‘*n“T{ZZf}s Mn'?g~(0)0E(N,),

i=1 i=1
by making use of Lemma 3.2.1.1 (ii) we have E(aN—l) — 1in probability as 4 — oo . Hence
n

E|R|<Mng=(6)65 -0, 2 — .

However,
n>N=[E(R)< E{n%iZHN —n*|3}§ E{N-F’izfm —n*|3}
=1 i1
= E(N_zi ij < E(m-zizfj =m205n" <0(5n') " 50, 2 >0,
i=1 i-1
Also

|E(R2)|:n**3/1

Eg () 2,278, ~0)

< n*zglKlE{i 2(s, —0)2},
i=1

2
N, (S5 -0 ol
M — 2 and Nl—lzz? — 0 in probability, as A — o« . Hence
Oz(ﬁ—l) =

Ny

Zziz(s’il _9)2 N 2

i 750 — 0y ,as L — o . Since {ZZf(Sﬁl —0) }is uniformly integrable from Chow
- i=1

Nl
and Yu (1981), then E{Z Z! (S —9)2} —6°(B—1)asA — o . Thisindicates that
i=1

[E(R,)|<n?g7K0°(B-1) >0, 2 > .

A similar procedure can be used to show that the last error term
* Ny 2
E(R)[<K,n ZgZE{sz(sil -0) }—>o, A — o0,
i=1
By substituting the results of the error expectationsin (3.26) the proof is complete.

Ny
Part (iii) follows by multiplying D> Z,Z in (3.25) and making use of Theorem 3.2.2.1.. Note
i#]

here that
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ER)- 22z4}

1#]

el

HRAIE

i#]

E[f"'(”)(N —”*)3iZZiZj

i#]

E|[>.> 27,

N

i#]

Consider the casen > n’ :‘E(Rl)‘gn*’SE ‘N n ‘

|

Note that it can be shown easily that E

ZZZ,ZJ‘ \/7 5n . Thus

1# ]

[E(R)|<Mg*n?2/z0(n") >0, 1 >,

However, the case

n>N=|E(R ( |N n|ZZZ,zj (NZiZZin

i#] i#]

E(m_zizzi21j<(5n*)_2\/Z/_EQ(EH*)—)Q PR

i#]

IN

>z,

i#]

|

2
( 1 9)}—)O,as/l—moweproceedasfollows.

<k (5, -of

e g (s -0 Exaz fo

iz]

yyzz

i#]

To show that E{

(S5, -6)

Using Lemma 3.2.1.3 (i) and (ii), we have E{ (ﬁ 1)

}—)xf, as A — . Moreover

Ny
ZZzizj ‘} — 0 in probability as 2 — oo . Using Lemma 3.2.1.3 (i) and the fact

fimou-y)”

Nl
that{ZZZ,ZJ }can be expressed as a linear combination of uniformly integrable terms, that is

I¢j

I} ZZZ then it follows from Chow and Yu (1981) that

yzz

i#]

} isuniformly integrable. Also from Lemma 3.2.1.2 (i) we have
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N1/5n*—>1in probability as A —>w. Then from Slutsky’s Theorem it follows that
A\
E{Zz“zizj

i#]
A similar procedure can be used for the remaining error. The proof is then complete.

2
(Sﬁ1 —9) }—>O in distribution, as 4 — oo and therefore E|R,| — 0 asi — .

The proof of pat (iv) follows easily from the fact that if N <N, then
E(N,N?)<E(N?)=0(27).

The proof is now complete.
Theorem 3.2.2.1

If gisa positive twice continuously differentiable function, such that g, g and g are bounded, then

for the triple sampling rule( 2.3) , if condition(2.4) holds and E|Zl|6 <wasA —> oo, wehave

) E(X,)=u-70%(n) " (dIng(6)/d6)+o(2).
ii)Var (X, )=0(n") " ~202(p-3)(n") " (dIng(0)/do)

+0°(B-15 (' )‘2{2(5—0|n g(@))2 —(2n’ )‘1(220“; Hm(ﬁ).

iii) X, isasymptotically normally distributed with mean and variance givenin (i) and (ii)
respectively.
Proof:

To prove (i), conditioning on the o -field generated by the random variablesZ,,Z,,,..., Z,, , we write

(3.28) E()?N-u)zE{N-lE[_Nzlzi+ i zi|zl,zz,...,lej}

Nl
Again thefirstsum »"Z, in ( 3.28) isnon-random. Thus, (3.28)reducesto

i=1

(329) E(X,-u)= E(Nlizij.

Applying Lemma 3.2.2.3 part (i) givesthe result and the proof is complete.

The proof of (ii) can be obtained directly from the following
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(3.30) Var(X,)= E[ ‘ZE{Z +ZZZ,ZJ\21,ZZ, \ B

1#]

+0E(E(N‘1—N1N‘2

zl,zz,...,le)).
Using Lemma 3.2.2.3 (ii), (iii) and (iv) and substituting them in (3.30) gives the result. The proof is

now complete.

The proof of (iii) can be obtained either by using Anscombe’ s Theorem or by using the moment generating

function technique . We proceed first by using moment generating function technique.

Let u( - ) be acontinuously differentiable function around the population mean i such that U, U and U’ are

continuous over the interval [ X N H] . Then a Taylor expansion gives

(X ) =u(a)+u (1) (R =)+ 50 (1) (Ko =) 420 (7)(Xo - 1)
where 7 lies between X and u . Thus
E(u(X,)) =u(m)+u () E(Xy =)+ 5 (1) E(X, )+ SE{W () (X —0)'}.

If we set u()zN ) = exp(t()?N —,Lt)/GXN ) , and use part s (i) and (ji) of Theorem 3.2.2.1, we obtain

My, (t)z1+%t2+o(ll),as;t — o,

which isthe limiting moment generating function of the standard normal distribution.

Now we need to show that the error term convergesto zeroas 1 — .

E(R)=[Efu (n)(%y - 4] |

Stsa;{i E{exp(t(n —,u)/GXN )|)?N —,u|3}.

T

Consider thecasen < p,t > 0= exp{t(n -u)fo, } <1.Thus

E(R) <t E{|X,—uf| <t E{|ZN|}—t3G‘3EU -ézi

3

N

q%sm@[

i=1
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N
By Anscombe's Theorem (Né?)fﬂ2 z Z — N(0,1)as A — oo and since {

i=1

uniformly integrable then it follows

E{(QN)mg“Zi 3}:2 2/m, A > 0= E{‘(N)”zizi

i=1
Lemma3.2.2.1, it follows that E{

3

}: 20/20/n, A — . Using
N
2.7

i=1

3} = 20(n* )MMas A — o0 . Using condition (2.4),
we have

[E(R)| <t (5n") " 20(n')" J20/x >0, A >e0.

Whileif

n<Xy,t<0=>0<n-pu<Xy-pu=0>t(n-u)>t(Xy-u). Thisimpliesthe above case.

The proof is complete.

For more details about the convergence of moment generating functions, see Mukherjea et al. (2006).

Now we proceed to prove (iii) using Theorem 3.2.1. By choosing v (t) =Nand t=n"in

N
Lemma3.2.2.1, we have (QN)fﬂ2 ZZi — N(0,2)as n" — 0.
i=1

N N

Butnotethat ) Z, = >" X; — N, whichimpliesthat v'N&* (X, — 1) > N(0,1) as n" — o0. The
i=1 i=1

proof is now complete.

Inview of i) and ii) of Theorem 3.2.2.1, it is worth mentioning that the third stage has indeed
reduced the magnitude of the bias noticed in i) and ii) of Theorem 3.2.1.1.

The expectation of the fina stage sample size N and other asymptotic characteristics can be easily
obtained from (iv) of Theorem 3.2.1.3 above, as given in the following Theorem 3.2.2.2.

Theorem 3.2.2.2

Let g be a positive twice continuously differentiable function, such that g, g and g are bounded and

let N be defined asin (2.3) and assume that condition (2.4) holds with E|Z,|° <cothen asA — o,
we have
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)E(N)=n"—6%(B _1)(5n* )—1(n* (;_Qm(n* ))Z —@/ 2)%}r E(gNl)+o(l).
ii)Var (N)=62(5-1)(5n) " (dn'/do)” +o(2).
i) E|N-E(N)F=0(2%),

where the random variable &, = 1—(19(831 ) —[ig (Sﬁ1 )J) , is defined over theinterval (0,1).

Proof:
To prove part (i), notethat N = [/lg (s2, )]+1, a.s. except possibly on aset
£= {(Nl >[29(s2)]+1)u(m>[529(s? )}1)} of measure zero, such that!N dP =o(1);
see, for example, Hall (1981) for details. Hence,
(331) N=[29(S})]|+1
-20(8)-{0(80)-[29(s)] -2
=29(S5, )+ en,
Thus, E(N) =/1E(g(Sf,l))+ E(z,, )+0(1), a8 m— .

Using Theorem 3.2.1.3 part (iv), we obtain the result.

Proof of (ii):

Var (N) =Var (29 (S, ))=4Var (g(S, ), as m—>

but

Vaf(g(si))=Var(9(0 )+9'(0)(S§1—0)+%g"<r)(ssl—e)2j
=(g'(0)) Var (8§, )+o(1?),

where 7 isarandom variable lies between Sf,l and@. To show that the error vanishesas 1 — o we

<e([y o5, o)) <efo ol -of]

<K, E((si —9)2)= }<1¢92(/3—1)(5n*)’l —0, A > .

proceed as follows:

E(R)=|E(9(+)(S},-0))

|9" (r)|
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Here K, isageneric constant independent of Sil, 0 and 7 such that |g" (r)| < K,. By using Theorem

3.2.1.3 part (iii), and the assumption that ¢ ( . ) and its derivatives are bounded, part (ii) of Theorem
3.2.2.2 iscomplete.

Proof of (iii) can beillustrated as follows

3

E[N-E(N) = 2°E|o(S%,)-E(9(S%)
SASE‘g(Sﬁl)g
=2%0(271)
=0( A?).

By using Theorem 3.2.1.3 part (iv), we obtain the required result.

Remark

Hall (1981) proved that when the underlying distribution is normal,gNl is asymptotically uniformly

distributed over the interval (0,1), iegy —-->U(0,1), asA — 0. We show in chapter V section

5.7, using simulation, that this result appears to hold more generally than simply for the case in which
the underlying distribution is normal, see Yousef et al. (2009) for more details. It is also evident that
under the normal distribution, Theorem 1 in Hall’s (1981) paper is a specia case of Theorem 3.2.2.2

above when 8 =3 and the optimal sample size n" = A+/6 provided that 6 <6, (0, ).We aso

emphasise that both the expectation and variance of N depend on the kurtosis of the underlying
distribution and accordingly will reflect the amount of departure from normality. It is also of interest
to give a general form of the expectation of areal valued continuously differentiable function of the

fine tuning phase sample size N to be able to derive asymptotic results of all moments of N . We
also want to stress that we have not assumed independence of X, and S or of X, and & , and

therefore the above results are more general in that sense (i.e., the estimate of the nuisance parameter
and the estimate of the targeted parameter could be correlated).

Problems which yield independence, such as those of the normal and exponential distributions, may
be treated as specia cases of our findings above.

Theorem 3.2.2.3

Let gbeatwice continuously differentiable function, such that g, g and g are bounded and let N be
defined as in (2.3) and let h(>0)be a continuously differentiable real valued function in a

neighborhood around n', suchthat Sup h(n)=0 (h (n )) . Then

nzm
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E(h(N))=h(n")-62(-1)(sn)" {(c;% jz[(n*)lh- ()2 ()] - (n*)i;nz
+h () E(&y, ) +o(27(1h")-

Proof:

The proof follows by expanding the differentiable function h (N ) around h (n* ) using Taylor seriesand

applying the results of Theorem 3.2.2.2. The general form of the second order asymptotic expansion of
the expectation of a real vaued continuoudly differentiable function h(>0) enables one to obtain the

expectations of positive and negative momentsof N in subsequent analysis.

Moreover, it also helps to provide a second order asymptotic expansion of the coverage probability
while constructing a fixed width confidence interval of the unknown mean u (see Chapter VIII,

section 8.2).
3.3 Asymptotic normality of the stopping variable N
Theorem 3.3.1

Let g be a positive twice continuously differentiable and bounded function of @and let N be defined
as in(2.3) such that E(N)<ooand Var (N)<oo also assume that condition(2.4) holds. Then, as

A—o, Nis asymptoticaly normal with mean E(N)and variancecy =Var (N),
0% =6%(p-1)(6n') " (dn'/d6) +0(2).
Proof: (using the moment generating function technique)

The proof of Theorem 3.3.1 is a straightforward application of Theorem 3.2.2.3 above by setting
h(v)=e",wherev =(N-n")//Var (N) . Thisyields

EliExp(t(N_n* m:u(ﬁ/z)_(t% I )+(/20, P2 1n(g (0)) vo(12).

Oy

By lettingn” — oo , we have

E{Exp(t( N-n m ~1+(t?/2)+0(1 ),

Oy

which isthe moment generating function of the standard normal distribution. The proof is complete.

Proof: (By using Anscombe’' s Theorem)

The proof follows immediately from Lemma 3.2.2.1 part (i) and from Lemma 3.2.2.2 parts (i) and (ii).
Also see Lemma 3.10 in Honda (1992).
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Use of Theorem 3.3.1 will enable us to find al the moments of N, or a bounded differentiable

function of N, in addition to the distribution function of g (Sﬁl) , which will facilitate us in proving

theorems about N and g (Sﬁl) . Bhattacharya et al. (1973) discussed the asymptotic normality of the

stopping times of some sequential procedures and proved that the asymptotic distribution of the
stopping time of a procedure due to Robbins (1959) is normal. Further investigations about Theorem
3.3.1, using simulation, will be discussed in Chapter V section 5.4.

Theorem 3.3.2

Let )?N be asin Theorem 3.2.2.1, where N is atriple sampling rule given by(2.3) . Then )?N and N
are asymptotically uncorrelated, asA — o .

Proof:

N

Cov( Xy, N)zCov(N‘lzZi + 1, Nj:Cov(N-lizi, Nj

i=1 i=1

= E(gZiJ—E(NliZJE(N).

i=1

The first part tends to zero from Wald's (1947) first equation, while the second part vanishes because

N*<1,E izi =E(Z)E(N)=0 ad E(Zv)=E Nflizi <E izi =0. Hence
2 g3

( Xy N ) are asymptotically uncorrelated. The proof is complete.

It would be fairly difficult in this stage to prove that ()?N, N)are asymptotically independent since

the underlying distribution is unknown. Therefore as a conjecture we need to assume that ( X v N ) are

asymptotically independent asA — oo . Moreover we will support our conjecture from the side of the
simulation results regarding the asymptotic coverage probability and the asymptotic Type Il error
probability when the underlying distribution is normal. We will show that our simulation results under
the normal distribution agree with the results of Hall (1981), Mukhopadhyay et al. (1987), Hamdy
(1988) , Costanza et al. (1995) and Son et al. (1997) . Note here that under the normal distribution,

()?N N ) are independent.

Having constructed the theory of triple sampling given by (2.2) —(2.3), we consider in chapter IV the

effect of departures from normality of the underlying distribution on Hall’s (1981) triple sampling
scheme under the squared error loss function. Moreover, we will compute the asymptotic regret in this
case. Thiswill be compared with the corresponding asymptotic regret when the underlying distribution
is known to belong to the one-parameter exponential family.
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Chapter 1V

Point Estimation of the Population Mean using the Triple Sampling
Procedure

4.1 Squared error lossfunction to estimate the mean

In this section our main objective is to develop a triple sampling point estimation procedure to
estimate the mean u of the unknown distribution. Specifically, if a point estimate of the unknown u

is required, we assume that the incurred cost of estimating the mean u by the corresponding sample
mean X, can be approximated by the following squared error loss function in (4.1)with linear

sampling cost. The literature in sequential sampling has considered several forms of higher order loss
(cost) functions to model estimation cost. However, squared error loss functions are recommended
and commonly used in sequential point estimation problems (see, for example, Degroot, 1970).
Therefore, we write the loss (cost) function as

(4.1) L,(A)=A(X,~u) +Cn,  A>0,C>0,

where C is the known cost per unit sampled. The constant Ais permitted to approach infinity and
represents the monetary amount that needs to be paid to achieve the minimum risk, while

A(X, - ,u)zis the estimation cost. We shall elaborate further on determination of A in subsequent
developments. The risk associated with ( 4.1)is

(4.2) R(A)=E(L,(A))=AE(X,~u) +Cn
=A(6/n)+Cn.

Treating N as acontinuous variable in(4.2) , we differentiate (4.2) with respect to N and equate the
results to zero to obtain the optimal sample size as

(4.3) n=/A9/C.

The numerical value of n"in (4.3) is unknown because the population variance @ is unknown in the

context of this thesis. It has been shown by Dantzig (1940), Stein (1945) and Seelbinder (1953) that
no fixed sample size procedure exists to achieve the above optimal requirement uniformly over 6 > 0.

In other words, since the optimal sample sizein (4.3) depends on the unknown variance®, no fixed
sample size procedure can be used to estimate u optimally over all 6. Therefore, the triple sampling
procedure in (2.2)—(2.3) may be used to estimate u with A =+~/A/C andg(0) = Jo.
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From(4.3), the value A= (Cn* )(n/@) , Where (C n*)isthe cost of optimal sampling, while (n*/H)

isthe total information contained in the sample : the amount of information required to explore a unit
of variance in order to achieve the minimum risk. Hence, Ais the cost of perfect information and
contrarily to what has been said that it represents the cost of estimation.

The question arises: how efficient is the triple sampling procedure estimator of u relative to other
estimators?

4.2 Theasymptotic regret of triple sampling point estimation under a squared error
loss function

In the literature in sequential point estimation several measures have been developed of the efficiency
of sequential (triple sampling, accelerated sequential schemes) procedures relative to the fixed sample

size counterpart had the form of g(@) in (2.1) been completely specified; see Ghosh et al. (1977)

and Starr (1966) for details. The regret reflects the expected cost of missed opportunity; it measures
the expected loss in using triple sampling to estimate u rather than using the corresponding fixed

sample size procedure had the nuisance parameter(s) been known. One of the measures that can be
used to assess the efficiency of a sequential procedure is the difference between the sequential risk
and the optimal risk, but such a measure is useless in the case of Stein’s two stage procedure since the
measure goes to infinity. Other weaker measures, like the asymptotic relative efficiency (risk

efficiency) n(A) = E(L, (A))/E(Lnk (A)) which is the ratio of the triple sampling risk compared to
the optimal risk, may also be used to assess the efficiency of the triple sampling procedure relative to
fixed sample size procedure. For an efficient sampling procedure we expect n(A) — land

@ (A) > 0 as A— ocowhere

o(A)=E(L(N))-E(L(n)).
Note
A procedureis called asymptotically risk-efficient or asymptotically first order risk efficient if

limn( A)=1, whileitis called asymptotically second order risk efficient if ngg clo(A)<wx

A—wx

Recall the squared error loss function in(4.1) , therisk function in (4.2) and the optimal sample size

in(4.3) ; the asymptotic characteristics of the efficiency of the estimator of u using triple sampling
are discussed in the following Theorem.

Theorem 4.2.1

For the triple sampling rule(2.2)—(2.3), the asymptotic risk for squared error loss (4.1) and under
9(0)= JO as m— o isgiven by

R((A)=E[Ly(A)]=2Cn -C(B-3)+(1/4)(B-1)(C/5)+CE(sy, )+0(1).
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Moreover, the asymptotic relative efficiency of the triple sampling procedure and the asymptotic
regret as A— co are given by

i)n(A)=1+0(27)
i) (A)=—C(B-3)+(1/4)(B-1)(C/5)+CE(s,, )+0(1).
Proof:

Recall Theorem 3.2.2.3, evaluate the terms E (N )and E (N ’1) and consider the optimal risk
R. (A)=2Cn’". Then Theorem 4.2.1 isimmediate.

It is worth making some comments about Theorem 4.2.1. Firstly, the results for the normal
distribution treated by Mukhopadhyay et al. (1987), Hamdy (1988) and Hamdy et al. (1988) are
special cases. Secondly, for distributions with 8 < 3 a non-vanishing positive regret is expected. In

addition, for distributions with g >3 (fatter tailed than the normal) we expect either positive or
negative non-vanishing regret, depending on the values of 8 and o . Specifically, for distributions
with 8 > 6, negative regret is expected when 6 =1/2 .

Martinsek (1988) argued that for the one-by-one purely sequential procedure negative regret is
expected when S > 3. It is also worth mentioning that the regret of one-by-one purely sequential
procedures involves both kurtosis and skewness of the underlying distribution, as indicated by
Martinsek (1988), while our findings in Theorem 4.2.1 emphasise that the triple sampling procedure
involves only the kurtosis of the underlying distribution and effectively treats underlying distributions
as if they are symmetric. This could be due to the nature of one-by-one purely sequentia procedures,
which filter data. This filtration may cause either accelerating or delaying termination of the
procedure (to cross over the boundaries). On the other hand, triple sampling uses bulks (batches) to
decide whether to stop or to continue sampling. Therefore, if an extreme observation presents, it will
not affect the decision compared to the influence of the rest of the bulk at that stage. This may cause
the triple sampling procedure to be less sensitive to extreme observations compared to the one-by-one
purely sequential procedures. Consequently, the skewness does not play a role in determining the
regret of triple sampling.

A general formula for the asymptotic regret incurred in estimating the unknown mean p under
squared error loss (4.1) is

(44) o(A)=-2C0(8-3)(dIn(n')/do)+Co*(p-1)57*(n') " (dn'/d6)’

+C E(5N1)+0(1).
Obviously, the non-vanishing regret in (4.4) above depends on the kurtosis 8, the design factor o ,
the cost of unit samplingC, the variance of the underlying distribution 6 and the form of the

functiong( 0 ).
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Consider now the loss function in Martinsek (1988) of the form

Lo(A)=A6" (X, — ) +n, A>0b>0.

Under the triple sampling scheme and this loss function, it can be shown that the asymptotic regret is
(45) o(A)=—(B-3)b+b*((8-1)/45)+E(s, )+0(1).

The proof of (4.5) follows from Theorem 3.2.2.3 by evaluating theterms E (N ) and E (N ’1) and

considering the optimal risk R. (A)= 2+ A0° ,where n" = A6 .

The asymptotic regret of the triple sampling procedure in (4.5) is the same as equation (7) of

Martinsek (1988) for symmetric underlying distributions but under the one-by-one purely sequential
procedure proposed by Robbins (1959) and the above loss function and without the design factor 6

and E(le) . The asymptotic regret of Martinsek (1988), equation (7) is
o(A)=—(B-3)b+b*((f-1)/4)+0(1), asA—w.

4.3 The case of the one parameter exponential family

In previous sections, we have considered the case of an underlying distribution that is completely
unspecified except that the first sx moments are finite. We have developed asymptotic results for

triple sampling to estimate u in the presence of the unknown nuisance variance 6 . The results for

triple sampling depend on the skewness and kurtosis of the underlying distribution. A natural question
is: if extra information is known about the structure of the underlying distribution, for example we
know the class to which the distribution belongs, would it improve the results we have obtained under
the assumption that the underlying distribution is unspecified? In this section we consider the case in
which the underlying distribution is known to be in the natura one-parameter exponential family,
defined by

dFv(x):jevx‘W‘V)dP(x), XeR, veQ
R

with respect toa o - finite measure P. The natural parameter space Q isan openinterval on the real
line R over which:

IeVXdP(x)<w, xeR, veQ.
R

The function v () is convex on the sample space Q (see, Lehman, 1986, p. 57) satisfying the moment

generating function M (t) = E(e™) =& ")) (see AIMahmeed et al., 1998). Hence the first
four moments are
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E(X) = (v). Var (X) v (1)
E(X—v (v)) =" (v), E(X ' (v)) =p" (v)+3(w"(v)) ",

and hence

2

y=y (V) (v’ () ad B=y"(v)I (v (v)) +3

AlMahmeed et al. (1998) consider estimating the mean 1=y (v) of the general form of a one-
parameter exponential family using triple sampling procedure under the squared error loss function
with linear sampling cost similar to (4.1), but with C =1 and A replaced by A®. However, they

checked the results for the gamma distribution and for the normal distribution with known mean but
unknown variance. They considrerd the following loss function,

(46) L, (A)=A(X, —l//'(v))2+n, where A>0.

The following Lemmas and Theorems are given in AIMahmeed et al. (1998).

The three stage exponential family (triple sampling procedure applied to the one parameter
exponential family) with optimal stopping rule n" = Ag(u), where u=y (v)was defined in
AlMahmeed et al. (1998) as follows:

Let X,,..., X, be arandom sample of size m( > 2) from the distribution function F, ( ) to
compute the estimate g()?m) of g(y/' (v)) Then afraction § €(0,1)is sdlected to determine the

percentage of N’ to be estimated in the second stage. Accordingly, the second stage sample size is
determined by the following stopping rule

N, = max{m,[éAg()?m)]+l} ,

If the decision is to continue sampling, the initial sample is augmented by a second randomly selected
sample of size N, — mto determine the final sample size from the stopping rule

N =max{Nl,[Ag(>?Nl)}+1;.

If necessary a third batch of size N — N, is randomly selected and combined with the previous N,

observations to compute the sequential estimator X, for the unknown parameter v (v).
Lemma4.3.1

For the three stage exponential family rule, see AIMahmeed et al. (1998), if g( . )and its derivative
are bounded, then asm — oo , we have
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i) AE( Xy, —w'(v))=—(1/2)y 5" +0(1).
)

i) AE(X,, —v' (v)) =i’ (v) 5 +0(1).

i) AE(g( Xy, )9 (v (v)))=(1/4)(B~(5/2)y*~3)5* +0(D).

Lemma 4.3.1(i) shows directly that X, may be a biased estimator of ' (v). The bias depends
crucialy on the skewness of the underlying distribution. If y =0, then X N, is an unbiased estimator

ofy (v). Part(ii) shows thatVar (X, )=y (v)(sn’ )" +0(A™), which is obtained by setting
A=n'//0 in (i), exhibits the same pattern asin Theorem 3.2.1.1(i).

Part (iii), shows that if y =0and B =3, then g(X,, ) is an unbiased estimator of g(y'(v)).

Therefore, the results in Lemma 4.3.1 depend on the structure of the underlying distribution and are
sengitive to the departure from normal theory for moderate sample sizes. However, robustness is
expected asymptotically.

Lemma 4.3.2

Under the conditionsin Lemma4.3.1, we have, asm — oo, the following
)E(N)=n"+(1/2)(1+(1/2)(8-(5/2)y*~3)6 *)+0(1)

i) AVar (N) = (1/4) iy (v)y25 7 +0(1)

iii)AzE(|N —n*|3):

Lemma 4.3.2(i)shows directly that the mean of the actual sample size N depends on both the

skewness and the kurtosis of the underlying distribution beside the values of the design factor 6 and

the optimal sample size N . Part (ii) shows that the variance of the actual sample size N depends on
the skewness and the variance of the underlying distribution as well as 6 . Part (iii) shows that the

absolute third moment of the actual sample size N around n'isof o( 12).
Theorem 4.3.1

Under the condition of Lemma 4.3.1, let h() be a continuoudly differentiable function in a

neighbourhood of n*, such that Sup h” (n* ) =0 (|h "'(n*)|) .Thenasm — o,

nzm

E(h(N))=h(n")+(2/2){(8+(2/2)(B~(5/2)y*~3))N () +(@/ H)n'y*h'(n')} 5
+o( A*(Ih"(A)1)).
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Proof:

The proof follows by expanding h( N ) around N ; that is, by using a Taylor expansion we have

h(N)=h(n")+h(n)( N—n*)+%h"(n*)( N—n*)+%h"'(5)( N-n'),

where & is a number between N and N . By taking the expectation and using Lemma 4.3.2, we get
the result. The proof isthen complete.

Similarly, the representation above illustrates that the procedure is sensitive to departures from
normality, since it depends on the skewness and the kurtosis of the underlying distribution.

Lemma4.3.3
Under the condition of Lemma4.3.1, and asm — oo, we have
M E(Xy)=vy

(v)-(1/2)yAt+o(AT)
(il) AE (X, -y

(v)) =" +(1/4){(1/ 2)(7+168)y? ~(1+45) p+(3+105)} 5 * +0(1).
Although the triple sampling fine tuning stage reduces the magnitude of the bias noticed in Lemma

4.3.1, the results remain sensitive to departures from normality since they depend on the kurtosis and
skewness of the underlying distribution. However, robustnessis attained asymptotically.

Theorem 4.3.2

Under the quadratic loss function given by (4.6) , the asymptotic regret of the three stage exponentia
family ruleis given by

(47) ©(A)=(1/4)(85+1)y*6 ™ ~(-3)+0(1),a m— .

Ifo—1in (4.7) then we obtain the asymptotic regret of the one-by-one purely sequential procedure,
which is @ =(9/4)y*—(B-3)+0(1), as m—> . Moreover, the asymptotic regret in (4.7)is a
non-vanishing quantity that is independent of mand Aand which takes negative values when
B>(14)(85+1)y*57"+3.

Obviously the asymptotic regret for estimating the mean of the one parameter exponential family
(4.7) depends on the skewness and the kurtosis of the underlying distribution and tends to zero in the

case of the normal distribution. In contrast the asymptotic regret when the underlying distribution is
unspecified (Theorem 4.2.1(ii)) depends only on the kurtosis of the underlying distribution and tends
to anon-vanishing but finite quantity in the case of the normal distribution.

Finally, extra knowledge regarding the structure of the underlying distribution undoubtedly will
enhance our knowledge regarding the performance of the triple sampling as justified by the class of
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the one parameter exponential family. In other words, knowing the family of the underlying
distribution will determine the exact values of the skewness and kurtosis and consequently will
provide a precise measure of the risk, while if the underlying distribution is not known then we have
to estimate the skewness and kurtosis and this will ensure more cost (cost of ignorance).

To illustrate the performance of the triple sampling procedure when the underlying distribution is
analytically known, we give the following example.

Example

Let X bean exponential random variable with mean 1 , then the probability density function of X is
1

f (% u)=—exp(-x/u), x>0 and O<p <o,
y7i

It can be shown easily from Lemma 4.3.2 and Lemma 4.3.3 that the triple sampling asymptotic
characteristics under the one-parameter exponential family with normal stopping rule are as follows

E(N)=n +(1/2)-6"+0(1), Var(N)=n6"+0(1),
E(Xw)=s-(Vo/n')+o(27),

and

Var (X, )=(6/n')+0(2+155)5*(n") " +0(2?).

However, from Theorem 3.2.5 and Theorem 3.2.3 the asymptotic characteristics under the normal
stopping rule n" = A/0 are

E(N)=n"-35"+E(z, )+0(1),Var (N)=2n'6"+0(2),
E(Xy)=n-(Jo/n)+o(27).

and

Var (X,)=(0/n")+0(5-66)87*(n') " +0(1?).

Toillustrate this comparison, consider the case it =2. It followsthat 6 = 4,y = 2and § =9.

By direct substitution in the above formulae with 6 = 0.5we obtain the resultsin Table 4.1 below.
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Asymptotic characteristics of the triple sampling
under normal stopping rule

Asymptotic characteristics of the triple sampling
under the one parameter exponential family

E(N)=n"-6+E(&y, )+0(1)

E(N)=n -15+0(1)

Var (N)=4n"+0(1)

Var (N)=2n"+0(4)

E(Xy)=2-2/n"+0(1")

E(Xy)=2-2/n"+0(2)

Var (X, )=4/n" +16/n*+0(17?)

Var (X, )=4/n"+22/n*+0(17?)

©=-2+E(s)+0(1)

w=4+0(1)

Table 4.1: Asymptotic characteristics of the triple sampling procedure in two cases: the underlying
digtribution is unknown and the underlying distribution known to be exponential distribution with
mean two

Table 4.1 shows the difference between the asymptotic characterstics of the triple sampling procedure
under two cases: firstly, when the underlying distribution is analytically unknown and secondly when
the underlying distribution is known to be a member of the class of a one-parameter exponential

family. It is clear from Table 4.1 that E( N )in the second case is less biased than in the first case,

moreover the variance of the stopping sample size N in the second case is less than that in the first
case. Thus the performance of the actual sample size N is better in the case where the family of the

underlying distribution is analytically known. For the sequential estimator )?N of u, the bias is the

same in both cases, while the variance of )?N isslightly lessthan in the first.

The regrets in both cases are bounded by a non vanishing quantity. Under the first case we have a
negative regret while under the second case the regret is positive. The reason behind thisis asfollows:
under the first case the stopping rule depends on the nuisance parameter and the estimate of the
nuisance parameter depends on the estimate of the mean, but since their distributions are dependent,
then this creates asymptotically negative regret (see Martinseck, 1988 and Takada, 1992). Under the
second case the stopping rule depends only on the estimate of the mean and is independent of the
nuisance parameter (variance) and this causes a bounded positive regret (see Hamdy et al., 1989).

Collectively, if we derive a triple sampling point estimation procedure under the exponential
distribution, the results would be consistent with the asymptotic theory in terms of E(N) — n' as
d—0,E(X,)—>u asn —>ow and o isbounded as A— oo . However, if we are sampling from
the exponential distribution under the normal theory, noticeable deviations from the true values are

present for small values of n . This indicates that the triple sampling procedure is sensitive to the
underlying distribution.
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4.4 Other continuous classes of distributions

In section 4.3 we considered the effect of restricting the class of underlying distributions on the triple
sampling point estimation. We now return to the case where no assumptions are made about the
underlying distribution except that the first six moments are finite.

In practice we might use Hall’ s triple sampling scheme if we believed that the underlying distribution
was in some sense close to the normal. For example, perhaps a central limit theorem argument may
lead us to believe that our data will be approximately normally distributed. In the classical robustness
literature various authors have argued that approximately normal data are often somewhat fatter tailed
than normal in practice. For example, the location-scale version of the t distribution (Hampel, 1968),
the symmetric contaminated normal distribution (Tukey, 1960) and (Huber, 1964) have been used to
model this situation. Moreover, an asymmetric contaminated normal distribution is often used to
model basically normal data with outliers (Barnett and Lewis, 1994).

In this section we give the results for Hall’s triple sampling method when the unknown underlying
distribution is in fact t( r), Huber’'s least favourable or contaminated norma (symmetric and
asymmetric).

4.41. The tdistribution

Let T beat( r)random variablewith r degrees of freedom, wherer > 4. Then the first four

momentsof T are:
E(T)=0,Var(T)=r/(r-2), y=0and B =3(r-2)/(r -4).

By direct substitution in Theorem 3.2.2.1, Theorem 3.2.2.2 and Theorem 4.2.1, we have

E(N)=r 07551 7Y E(ey, )+0(2),

(r-4)

Var (N)=n" (28 )" (r-1)/(r-4)+0(2),

—-6C 1(r—1

2\r-4

(r_4)+2 jC5‘1+CE(gNl)+o(1).

Clearly, the asymptotic behaviour of the triple sampling procedure under the t distribution depends
mainly on the degrees of freedomr and, asr — oo, the corresponding normal results are obtained:
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E(N)=n"-0.755'+05+0(1),

Var(N)=n"(25 )71+o(l) ,

Var (X, )=6(n')" +1.25057*(n') " +o( 1),
w=C(25)"+0.5C+0(1).

LetE, () and Var, ( - )denotes the mean and variance under the tdistribution and let E, ( - ) and

Var,, ( - ) be the mean and variance under the normal distribution. Then from the above characterstics
we have the following:

1 E(N)<Ey(N), for al r>4, because ((r-1)/(r-4))>1 Vr>4 with equality

attained only as r — oo . Thisindicates that the estimators of the actual sample size N under
the tdistribution will on average be less than under the normal distribution (earlier stopping
than normal), and as r increases they nearly attain the same behaviour on average.

2. Var; (N)>Vary (N).As rincreasestheratio tendstooneas r — .
3 B (Xy)=Ey(Xy).

4. To compare Var, (X, )and Var, (X, )directly, let 6 =r/(r—2)in order to match the
variances of the underlying distributions. If & =5/8, then clearly Var, ()?N ) =Var, ()?N )
while if §<58 we have that Var (X, )>Var (X,)and if &>58, then
Var, (X, ) <Vary (X, ). Of course, in the limiting case, as r — o, then & — 1 and in this

case Var; ( X, ) =Var, (X, ).

Thus, the triple sampling procedure is sensitive to the underlying distribution and hence is not robust
to departures from normality.

4.4.2. Contaminated normal distribution

Let X bearandom variable that has a contaminated normal distribution with distribution function
F=pFK (/111612)"'(1_ p) Fy (/121622)’

where F, (/,tl,of)and Fy (,uz,azz)are the normal digtribution functions a w,,c2and w,,o5

respectively and pe(0,1).
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In the classical robustness context pis taken to be relatively large, so that the first component

represents “good” observations, whereas the second component represents an outlier generating
mechanism.

We will consider two cases to illustrate the idea of robustness.
Case(i): p,=u,=pu and 012 ¢0'22

The associated variance and kurtosis are respectively,
-2

ol =05+ p(of—ozz) and S =(3p(614—03)+30§)(0'22+ p(of—af))

For example, if 1 =0, o, =1 and o, =3, then the values of the variance and the kurtosis for
selected values of p areshownin Table4.2.

P o}l Be
0.900 1.800 8.33333
0.950 1.400 7.65306
0.990 1.080 4.62963
0.999 1.008 3.18877

Table 4.2: The variance and kurtosis of the contaminated normal distribution with equal means but
different variances at selected valuesof p

By substituting in Theorem 3.2.2.1, Theorem 3.2.2.2 and Theorem 4.2.1, we have
E(N)=n"—(3/8)(B: —1)5*+E(&y, ) +0(1),

3p(014 —6§)+3G§

—1|(45) " +o(4),
(p(af—05)+6§)
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. 8(012—022)2(—5/8+(n* +3)5) p*+16(07 ~07) p(5/16+(n" +3/2) 0% - (3/2)(5 -5/8) 07 )
b +0§(8n*5+10) |

Also, the asymptotic regret will be completely specified by the kurtosis of the underlying distribution,
o(A)=-C(B: —3)+(1/4)(B: ~1)(C/5)+CE(z,, )+0(1).

Obviously, Var ()?N ) —0,asn — oo andif o, =0, =0 , then we obtain the case of the normal

distribution, where

E(N)=n"-0.755"+0.5+0(1).

E(Xy)=u+0(A").
Var (X, )=o?(n') +1.256%57(n')" +0(17?).
The asymptotic regretisw = (25 ) ' C+ 2'C+o(1).

To illustrate the above equations and show the effect of increasing p on the performance of the actual

sample size N, the estimator )?N and the regret w see Tables 4.3, 4.4 and 4.5, which show the
asymptotic characterstics of the triple sampling scheme under the contaminated normal distribution
with equal means but different variances, © =0, o, =1,0, =3 for p=0.9,0.99 and 0.999. We see

that for a specific value of p, |E( N )—n*|isfixed for all values of n . At p=0.9 the absolute
difference is 5, while at p=0.99 and 0.999 the absolute differences are 2.22 and 1.14 respectively.
The standard deviation of N increases with N . It is clear that the mean of )?N is asymptotically zero

while its standard deviation decreases as N’ increases. The regret values for p=0.9,0.99 and 0.999
are -1.166665, 0.685185 and 1.405615 respectively.
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n E(N) sd.(N) E(Xy) sd.(X,) @
24 19 9.3808315 0 0.395504 -1.166665
43 38 12.556539 0 0.259279 -1.166665
61 56 14.955490 0 0.205213 -1.166665
76 71 16.693312 0 0.178337 -1.166665
96 91 18.761663 0 0.154399 -1.166665
125 120 21.408721 0 0.131915 -1.166665
171 166 25.039968 0 0.110137 -1.166665
246 241 30.033315 0 0.089956 -1.166665
500 495 42.817442 0 0.061543 -1.166665

Table 4.3: Asymptotic characteristics of the triple sampling scheme with underlying contaminated
normal distribution with, 11 =0,0, =1 and 0, =3; p=0.9,5 = 0.5and E(&,, ) =0.5.

S E(N) sd(N) [ E(X,) | sd(X,) 2
24 21.78 6.5996633 0 0.421623 0.685185
43 40.78 8.8338574 0 0.257829 0.685185
61 58.78 10.521583 0 0.195593 0.685185
76 73.78 11.744187 0 0.165682 0.685185
96 93.78 13.199327 0 0.139814 0.685185
125 122.78 15.061602 0 0.116337 0.685185
171 168.78 17.616280 0 0.094504 0.685185
246 243.78 21.129232 0 0.075193 0.685185
500 497.78 30.123204 0 0.049658 0.685185

Table 4.4: Asymptotic characteristics of the triple sampling scheme with underlying contaminated
normal distribution with 1 =0,6, =1 and o, =3; p=0.99,5 =0.5and E(&,, ) = 0.5.

n E(N) sd.(N) E(X,) sd.(X,) @
24 22.86 5.1249689 0 0.429076 1.405615
43 41.86 6.8599325 0 0.260213 1.405615
61 59.86 8.1705357 0 0.196271 1.405615
76 74.86 9.1199490 0 0.165633 1.405615
9 94.86 10.249938 0 0.139218 1.405615
125 123.86 11.696088 0 0.115337 1.405615
171 169.86 13.679924 0 0.093242 1.405615
246 244.86 16.407906 0 0.073825 1.405615
500 498.86 23.392176 0 0.048409 1.405615

Table 4.5: Asymptotic characteristics of the triple sampling scheme with underlying contaminated
normal distribution with 11 =0,0, =1 and o, =3; p=0.999,5 = 0.5and E(&y, ) = 0.5.
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Conclusions

1. As pincreasesE( N ) increases and the absolute value between E( N )and n’ decreases

whilesd.( N )decreasesfrom n > 61.

2. As P increases, the asymptotic mean is zero while the Sd.()?N )decreasesfrom n >76.
3 As pincreases, so doesthe regret.
Case (ii): w, # p,and o’ =0’ =0

It can be shown that the values of the skewness and kurtosis are respectively,

-3/2

7e =(2p(p-1)(P-05) (st~ 1)’ ) (P (1t~ 1) = P* (1 — 1, +02)

and

_(-3p*+6p°-4p” + p) (1~ p1,)' ~607p(P=1) (1, ~ p1,) +30"
_ . .
(p(,u1_.uz)2_ pz(,u1_,uz)2+02)

F

For example, if 1, =0, u, =3 and o =1, then the values of the skewness and kurtosis for different
valuesof p areshownin Table 4.6.

> e Ye B
0.900 181 0.798323 4.023595
0.950 1.4275 0.676762 4.349996
0.990 1.0891 0.230475 3.635901
0.999 1.008991 0.026560 3.079007

Table 4.6: The variance, skewness and kurtosis of the contaminated normal (u, =0, u, =3,0 =1)
distribution at selected values of p.

The forms of E( N ) , Var ( N ) and the asymptotic regret may be found as before. For simplicity,

Let My = (4~ p1,)". Then

E(Xy)=(pum+(1-p)u,)+ E’éfl\;lo_-i))lsﬁrjiglv)liz +o(2),

Var (X, )=(85)"(n')" &/ o2 +0(A7?),
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where

2

ot =p(m-u) -0 (1 -1,) +07,

and

£ =8p(p-1)((-5/2+(n"+6)5) p*+(5/2—(n +6)5) p+5-5/8)M;
~16po?(p-1)(sn" +5/4)M,+205* (450" +5).

Moreover,

E(N)=(85)"¢&/of +E(sy,)+0(2),

where

£ =8p(p-1)(3/8+(3/2+5n") p*—((3/2+6n)) p)M? ~16p(p-1)o° (50" ~3/4)M,
—25"(3-45n").

Var (N) =116 ¢, /o2 +0(4),

where

&=-p(p-¥2)" (p-)M; - p(p-Do°M, +(/2)o*

and the asymptotic regret is @ =—C (B, —3)+(1/4)(B. ~1)(C/5)+CE(&,, )+0(1).

Toillustrate the above equations and show the effect of increasing |p on the behaviour of N, X y and

the regret, see Tables 4.7, 4.8 and 4.9, which show the asymptotic characteristics of the triple
sampling scheme under the contaminated normal distribution with different means but equal

variances, 1, =0, u, =3 ,0 =1 while p=0.9, 0.99 and 0.999.

Weseethatat p=0.9, |E( N)- n*| =2.5177whilefor p=0.99 and 0.999 the absolute value
between E( N )and n' are 1.4769 and 1.0593 respectively and for al values of n". The standard
deviation of N increaseswith n’". For all valuesof p, )?N is abiased estimator of w and the amount

of bias decreases as N’ increases. Moreover, the standard deviation of X, decreases as n’ increases.
Theregret values are 0.9882025, 1.1820495 and 1.4604965 respectively.
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n E(N) sd.(N) E(X,) sd.(X,) ®

24 21.4823 6.02354894 0.32237570 0.2293707 0.9882025
43 40.4823 8.06271017 0.31248875 0.1768155 0.9882025
61 58.4823 9.60310634 0.30880355 0.1501248 0.9882025
76 73.4823 10.71898385 | 0.30706601 0.1351967 0.9882025
96 93.4823 12.04709783 | 0.30559392 0.1208176 0.9882025
125 122.4823 13.74680674 | 0.30429613 0.1062835 0.9882025
171 168.4823 16.07847578 0.30314045 0.0911772 0.9882025
246 243.4823 19.28476603 | 0.30218299 0.0762292 0.9882025
500 497.4823 27.49361348 | 0.301074033 0.0536403 0.9882025

Table 4.7: Asymptotic characteristics of the triple sampling scheme with underlying contaminated
normal distribution with s, =0, 4, =3 and 6 =1; p=0.9,5 =0.5and E(&y, )= 0.5.

n E(N) sd.(N) E(X,) sd.(Xy) @
24 22.5231 5.62412792 0.03501090 0.2172883 1.1820495
43 41.5231 7.52807257 0.03279678 0.1607005 1.1820495
61 59.5231 8.96632521 0.03197150 0.1344086 1.1820495
76 74.5231 10.0082090 0.03158239 0.1201983 1.1820495
96 94.5231 11.2482558 0.03125273 0.1067827 1.1820495
125 123.5231 12.8352572 0.03096209 0.0934523 1.1820495
171 169.5231 15.0123135 0.03070330 0.0798029 1.1820495
246 2445231 18.0059949 0.03044889 0.0664678 1.1820495
500 498.5231 25.6705144 0.030240523 0.0465677 1.1820495

Table 4.8: Asymptotic characteristics of the triple sampling scheme with underlying contaminated

normal distribution with 1, =0, 11, =3 and o =1; p=0.99,6 = 0.5and E(&,, ) = 0.5.

n E(N) sd.(N) E(X,) sd.(X,) @
24 22.9407 4.994805561 | 0.00355582 0.2147986 1.4604965
43 41.9407 6.685704748 | 0.00331022 0.1572909 1.4604965
61 59.9407 7.963021407 | 0.00321868 0.1310506 1.4604965
76 74.9407 8.888321639 | 0.00317552 0.1169789 1.4604965
96 94.9407 9.989611122 0.00313895 0.1037582 1.4604965
125 123.9407 11.39903198 0.00310672 0.0906777 1.4604965
171 169.9407 13.33248246 0.00307801 0.0773359 1.4604965
246 244.9407 15.99118028 0.00305423 0.0643451 1.4604965
500 498.9407 22.79806397 0.00302668 0.0450252 1.4604965

Table 4.9: Asymptotic characteristics of the triple sampling scheme with underlying contaminated
normal distribution with 1, =0, 11, =3 and o =1; p=0.999,6 = 0.5and E(&,, ) = 0.5.
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Conclusion

1. As pPincreases, the difference between E( N ) and N decreases and the standard deviation
of N also decreases.

2. Fordl vauesof p, )?Nisabiased estimator of 4 but the bias decreases as n’ increases. The

standard deviation also decreases as N’ increases.

3. As pincreasesthe regret also increases.
Inthe casewith 1, = u,, wereturn to the normal distribution results.

4.4.3. Huber’'sleast favourabledistribution

Huber's least favourable distribution has density function in the form

a ) <
- Eexp(—t /2) Jt|<k |
%exp(w/z_w) R

V2rk
2Exp(-K?/2)+~/2wk (20 (k)-1)

where a=

It is easy to show that the variance and kurtosis are respectively,

o Wi k2w, o B = W3(3k4W2 +W4)
t k2w, h (W1+ k2W2)2

where

w, = 2(1+k?)exp(—k*/2), w, = /27 k(@ (k)-1), w, = exp(—k’/2)+w, and
w, = (K°+12k* + 24k* + 24) exp(-k*/2).

Thetriple sampling asymptotic results are as follows:
E(N)=n"+(85)"& (w+k™w,) +E(e, )+o(1),
where

& =3K"WZ +3K? (~3wgk® + 2w, ) W, —Bwyw, + 307
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Var (N) = (461 & (w K ) (),
where
& = 3w, K* +ww, — W —2ww, k* —wZk? .

E(Xy)=0(2"),

Var (X ) =( 85) " (n' )72 (5;‘/((W1 + kzwz)kzws))+o(l_2) :
where

£ =, (351w ~30)5+ (15/8) (58,
+16WW, (-5/8+( 3+1)5 ) k* +(( 8n+24) W, —8w,w, )5
+5WLW, — 5w

and the asymptotic regretis w =—C( 8, —3)+ 1/ 4)(B,-1)(C/5)+C E(5N1)+0(1).

At k=0 the distribution is the double exponential (or Laplace), which has 8 = 6, while as K — o0
the normal distribution is obtained. Commonly used values of Kin robustness studies k =1.0,1.5 and
2 for which the kurtosis values are respectively 8, = 5.371428,4.303949 and 3.511003.

a By

0 6.0
1.0 0.857176 5.371428
15 0.962393 4.303949
2.0 0.991581 3.511003

Table4.10: Thevaueof a and the kurtosis of Huber’ s |east favourabl e distribution for selected
valuesof k.

Notes

1. From the above we deduce that the triple sampling procedure is sensitive to the underlying
distribution. However, the effect reduces as the skewness and kurtosis of the underlying
distribution approach zero and three respectively.

2. We aso see that if the stopping rule depends on the estimates of the parameter of interest,
then an early stopping is expected. This may result in a negative regret (see Martinsek, 1988
and AlIMahmeed et al., 1998). Also, if the stopping rule depends on an estimate of a certain
nuisance parameter, which is independent of the targeted estimate, the procedure naturally
terminates with bounded regret (see Hamdy, 1989).
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Chapter V

Simulation Resultsfor Point Estimation of the Population Mean

In this chapter we use simulation to investigate the finite sample properties of the triple sampling
procedure (2.2) - ( 2.3) and to compare them to the asymptotic results obtained in the previous
chapters.

5.1 Experimental setup

A series of Monte Carlo studies was carried out in order to investigate the finite sample size
performance of the triple sampling point estimation sampling procedure(2.2)—(2.3)under the

squared error loss function (4. 1) and to compare these results with the asymptotic results.

First: we alowed various aspects of the triple sampling scheme to vary:m=5,15,20;

5 =0.3,0.5,0.8and n" =24, 43, 61, 76, 96, 125, 171, 246 and 500. These values of n are the same
as those used by Hall (1981) and represent small, moderate and large optimal sample sizes.

In addition various underlying distributions were used to cover symmetric and skewed distributions
and light and heavy tailed distributions: normal, uniform, t( r), beta and exponential. For each

experimental situation 50,000 replicate samples were used (see Costanza et al., 1995).

The following steps explain how we obtain the simulation results. For the i th sample generated for a
particular combination of m, 6 and distribution:

1. Takeaninitiad sample of size M(say, X;;,..., X,;).

2. Compute the sample mean and sample variance for the pilot sample.

3. Apply thetriple sampling procedure, as presented in (2.2) — ( 2.3) to determine the stopping

sample size at thisiteration whether in the first or second stage (say, Ni* ).

4. Record the resultant sample size and the sample mean ( N, X )
Hence, for each experimental combination we have two vectors of size 50,000 asfollows:
Vector | contains all the stopping sizes, say N;, N3, ..., Ngg o0 »
and
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Vector 11 containsall the sample means, X, X,..., Xg 00 -

Here N,” may be thought of asthe estimate of n" and X, istheestimate of u at samplei. Let
50000

N= S%O(N: /50,000) and p=X = > (X /50,000),
i-1 =1

where N and X are respectively the estimated mean sample size and the estimated mean of the

estimator of the population mean across replicates. Thus ,:1: X may be regarded as an estimate of
the expected value of the estimator of the population mean x .

The standard errors are

50000

S.E.(,Zt) =5/+/50,000 , where s, =\/ > (X _,})2/49,999.

i=1

and

50000

SE.(N) —5,/,/50,000, where s, :\/Z (N —N)? /49,999 .

i=1

To calculate the estimated regret, we proceed as follows. First for smplicity take C =1and from
(4.3), A= (n* )2 / 6. Then o isthe point estimate for the asymptotic regret, which is the difference

between the sequential risk and the optimal risk. The optimal risk is 2Cn" . Secondly, we calculate the

estimated variance of )_(N which can be obtained easily from the simulation, \7&( )?N ) = § Findly,

the estimated regret is obtained as @ = As? — N |

Although our Theorems are valid for all 6 € (O, 1) we shall concentrate mostly on the case 6 = 0.5

for two reasons. First, this has been recommended previoudly for practical reasons (see Hall, 1981 and
Mukhopadhyay and de Silva, 2009). Secondly, we shall see later that thisisindeed a good choice.

The featured underlying distributions are: standard normal, standard uniform, the t distribution with
r =5,25,50 and 100 degrees of freedom, beta(2, 3) and exponential with mean one. These cover a

variety of distributional shapes. Results for other distributions have been omitted but are available
from the author.

We proceed in this chapter by studying the behaviour of X v » the actual sample size N and the regret

a 6 =0.5and m=5, 15 and 20 from two sides; one from the smulation view and the other from the
asymptotic view obtained from Theorems 3.2.2.1, 3.22.2 and 4.2.1 for the above underlying
distributions. Moreover, we show the effect of increasing 6 on the performance of the above
estimatorsat m=15.
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5.2 The behaviour of the estimator of the population mean

From Theorem 3.2.2.1, the mean and variance of the estimator )?N under the normal optimal

stopping rule N’ = 2/0 are

(5.2) E(X,)=u-rvo(2n") +o(2?),

and

(52) Var (X, )=6(n") " ~6(n") " {(B-3)-(5/8)(B-1)5 ) +0(22).

The estimator )?N is a biased estimator of x when the underlying distribution is skewed. The
variance of the estimator depends on the variance and the kurtosis of the underlying distribution as
well as the design factor & . Clearly, as n° — oo the asymptotic mean and variance of the estimator
X, arerespectively u and zero.

In the following subsections we discuss the simulation results in comparison with the asymptotic
results obtained from equations (5.1)—(5.2)for the underlying distributions mentioned above. Each
table includes 4 ( m)and ssd( m) (the simulated estimate of E( X, ) and its standard deviation at
a specific value of M, where m=5, 15 and 20) and dso E(X,,) and sd (X, ), the asymptotic
mean and standard deviation of )?N . Moreover, we discuss the effect of increasing 6 on the
performance of the estimator )?N through the simulation results arranged in separate tables. Each

table includes 1, ( 6 )and ssd( 5 ): the simulated estimates of E( X, )and its standard deviation at
aspecificvalueof 6 , where § =0.3,0.5and 0.8.

5.2.1 Standard normal distribution

From (5.1)—(5.2) the mean and variance of X, under the above optimal fixed sample size are
E(X,)=0(2") and Var (X, )= (Yn")+(5/4)5(n") “+0(2?).

The asymptotic mean and variance of )?N under the standard normal distribution are both zero as
n —ow.

To illustrate the above equations and compare them with the simulation results, Table 5.1 shows the
behaviour of the estimator X, from two sides: one from the simulation view at & = 0.5while m

increases fromm=25, 15 to 20 and the second from the asymptotic view. From the simulation view,
we see that for all values of m, )?Nis essentially unbiased. Moreover, the standard deviation

decreases as N increases. Asymptotically, the mean of )?Nis zero and its standard deviation

decreases as N’ increases. Clearly there is good agreement between the simulated and asymptotic
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means. The asymptotic standard deviations are underestimates, but are in good agreement with the
simulated values when n* is 61 or more.

n | ws(5) | u(15) | ws(20) E(
24 1 0.00115 | 0.00082 | 0.00176
43 | 0.00084 | 0.00069 | -0.00095
61 | 0.00068 | -0.00047 | -0.00026
76 | 0.00031 | -0.00083 | 0.00021
96 | 0.00003 | -0.00043 | -0.00031
1251 0.00033 | 0.00011 | -0.00003
1711 .0.00027 | 0.00052 | 0.00013
246 | 0.00021 | 0.00035 | -0.00007
500 | .0.00005 | -0.00020 | 0.00009

2
N—

sd(X,) | sd(5) [ ssd(15) [ ssd(20)
0.214492 | 0.231433 | 0.252899 | 0.223383
0.156869 | 0.162339 | 0.162115 | 0.180003
0.130634 | 0.132375 | 0.130586 | 0.131928
0.116579 | 0.117394 | 0.116276 | 0.117170
0.103382 | 0.103306 | 0.103306 | 0.103530
0.090333 | 0.090561 | 0.090114 | 0.090337
0.077029 | 0.077368 | 0.077144 | 0.077144
0.064081 | 0.064175 | 0.063952 | 0.064175
0.044833 | 0.044945 | 0.044721 | 0.044721

Table 5.1: Comparison between the simulated estimates of E( Xy ) and standard deviation of X
with the asymptotic resultsunder N (O,l) as N increasesand at m=5,15,20 and & = 0.5

To show the impact of increasing 6 on the performance of the estimator )?N a m=15 Table 5.2
shows the simulated estimates the mean and standard deviations of )?N a §=0.3,05and0.8 We

see that the effect of & issmall, except at small values of n" where the performance at is 8 =0.3 is
dightly inferior.

n | u(03) | sd(03) | u(05) | sd(05) | 4 (08) | ssd(08)
& 0.00117 0.256701 0.00082 0.252899 0.00002 0.212650
“E 0.00053 0.242166 0.00069 0.162115 -0.00004 0.155183
e -0.00014 0.161891 -0.00047 0.130586 0.00024 0.128798
[ -0.00121 0.124549 -0.00083 0.116276 -0.00036 0.115381
e -0.00073 0.105319 -0.00043 0.103306 -0.00031 0.103083
A -0.00039 0.091008 0.00011 0.090114 -0.00017 0.089443
tri 0.00003 0.076921 0.00052 0.077144 0.00022 0.076250
e 0.00000 0.064622 0.00035 0.063952 -0.00014 0.063728
& -0.00005 0.044945 -0.00020 0.044721 0.00011 0.044721

Table 5.2 The simulated estimates of the expected value and standard deviation of X, with N (0,1)
underlying distributionat m=15and 6 =0.3,0.5,0.8 and selected values of n.
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5.2.2 Standard uniform distribution

From (5.1)—(5.2) the mean and variance of the estimator X, under the normal optimal fixed sample

size are
E(Xy)=(¥2)+0(2™),

and

Var (X, ) = (/120" )~ (412)(n') * {-1.2-055 *} + 0(2?).

The asymptotic mean and variance of X, are (1/2)and zero respectively asn’ — oo .

Table 5.3 shows the behaviour of X at § = 0.5and m=5, 15, 20. We see that X, is essentialy
unbiased, in agreement with the asymptotic result. The asymptotic standard deviation of the estimator
tends to be an underestimate but the effect reduces as N’ increases.

7 | m(5) | w(15) | m(20) [ E(X) | 1(X,) | s(5) | sa(15) | sd(20)
24 1 0.49974 | 0.50030 | 0.49955 0.5 0.0615671 | 0.0724486 | 0.0744611 | 0.0641752

43 1 0.50012 | 0.49999 | 0.49937 0.5 0.0451347 | 0.0476282 | 0.0469574 | 0.0534420

61 1 0.50008 | 0.49988 | 0.50011 0.5 0.0376217 | 0.0386840 | 0.0380132 | 0.0377895

76 10.50008 | 0.50026 | 0.50004 0.5 0.0335892 | 0.0342118 | 0.0335410 | 0.0337646

96 10.50003 | 0.50006 | 0.50016 0.5 0.0297985 | 0.0299633 | 0.0297397 | 0.0299633

1251'0.49990 | 0.50015 | 0.49987 0.5 0.0260461 | 0.0261620 | 0.0259384 | 0.0259384

1711'0.50000 | 0.50004 | 0.50012 0.5 0.0222171 | 0.0221371 | 0.0221371 | 0.0221371

246 1.0.49995 | 0.49988 | 0.49998 0.5 0.0184874 | 0.0185594 | 0.0185594 | 0.0185594

5001049991 | 0.50000 | 0.50007 0.5 0.0129383 | 0.0129692 | 0.0129692 | 0.0129692

Table 5.3: Comparison between the smulated estimates of E( X, ) and standard deviation of X
with the asymptotic results under U (0,1) as N increasesand a m=5,15,20 and § = 0.5

To show the effect of increasing § on the performance of the estimator X, a m=15,
Table5.4 shows the simulation estimates of E( X, )and its standard deviation at 6 =0.3, 0.5

and 0.8. We see that the effect of S issmall, except at small values of n where the performance at is
0 =0.3isdightly inferior.
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n ps(0.3) ssd (0.3) 1 (0.5) ssd (0.5) 1 (0.8) ssd (0.8)
24 0.50076 0.0742375 0.50030 0.0744611 0.50026 0.0621627
43 0.50045 0.0733430 0.49999 0.0469574 0.50011 0.0453922
61 0.49978 0.0462866 0.49988 0.0380132 0.50036 0.0373423
76 0.49980 0.0351063 0.50026 0.0335410 0.49983 0.0335410
96 0.50005 0.0301869 0.50006 0.0297397 0.50007 0.0297397
125 0.49981 0.0261620 0.50015 0.0259384 0.49995 0.0257148
171 0.49995 0.0223607 0.50004 0.0221371 0.49995 0.0221371
246 0.49993 0.0185594 0.49988 0.0185594 0.49996 0.0183358
500 0.50006 0.0129692 0.50000 0.0129692 0.50002 0.0129692

Table 5.4 The simulated estimates of the expected value and standard deviation of X, withU (0,1)
underlying distributionat m=15and 6 =0.3,0.5,0.8 and selected values of n.

523 The tdistribution
From (5.1)—(5.2) the mean of the estimator X, under the normal optimal fixed sample sizeis
E(Xy)=0(1"),

while the variances at 1 =5, 25 and 50 degrees of freedom are respectively,

Var (X, ) =(5/3n")~(5/3)(n") “{6-55*} +0(1°2),

Var (X, )=(25/23n")~(50/161)(n") " {1-55 4} +0(2?),

and

Var (X, )=(25/24n") —(25/552)(n’)  {3-30.6256 %} +0(22).

Clearly, as r increases, the variance of )?N decreases and the asymptotic mean and variance of the

estimator X, are both zeroasn’ — oo .

Tables 5.5, 5.6 and 5.7 show the effect of r and illustrate the comparison between the simulation
results and the asymptotic results for t(5),t(25)and t( 50 ) respectively. Broadly the simulation

results and the corresponding asymptotic results are in good agreement for all three values of r.
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n | u(5) | #(15) | u(20) | E(X,) | sd(X,) | ssd(5) | ssd(15) | ssd(20)
24 1 .0.00092 | -0.00090 | 0.00125 0 0.284638 | 0.292701 | 0.307907 | 0.282415
43 1 .0.00190 | 0.00010 | -0.00068 0 0.205828 | 0.208849 | 0.210190 | 0.227408
61 | 0.00081 | -0.00133 | -0.00018 0 0.170628 | 0.171954 | 0.170836 | 0.172624
76 | 0.00004 | -0.00003 | -0.00042 0 0.151934 | 0.152947 | 0.151829 | 0.151382
96 | _0.00083 | -0.00024 | -0.00045 0 0.134479 | 0.134835 | 0.133940 | 0.134164
125 | _0.00061 | -0.00071 | -0.00037 0 0.117303 | 0.117170 | 0.117170 | 0.116723
1711 .0.00061 | -0.00036 | 0.00020 0 0.099873 | 0.099505 | 0.099281 | 0.099505
246 | 0.00019 | 0.00026 | -0.00052 0 0.082977 | 0.082735 | 0.082511 | 0.082511
500 | .0.00047 | -0.00029 | -0.00005 0 0.057966 | 0.057691 | 0.058138 | 0.057914

Table 5.5: Comparison between the simulated estimates of E( Xy ) and standard deviation of X

with the asymptotic results under t( 5) as N increasesand a m=5,15,20 and § =0.5

n | u(5) | #(15) | u(20) | E(X,) | sd(X,) | ssd(5) | ssd(15) | ssd(20)
24 1.0.00116 | -0.00101 | 0.00025 0 0.223925 | 0.240601 | 0.262514 | 0.233445
43 1 0.00055 | -0.00037 | 0.00003 0 0.163676 | 0.169047 | 0.169718 | 0.186041
61 1 0.00072 | -0.00012 | -0.00045 0 0.136272 | 0.138413 | 0.136400 | 0.137965
761 0.00046 | -0.00076 | -0.00042 0 0.121598 | 0.122313 | 0.121418 | 0.121866
96 | .0.00084 | 0.00033 | -0.00010 0 0.107823 | 0.108673 | 0.108226 | 0.107555
125 1.0.00074 | 0.00059 | -0.00039 0 0.094205 | 0.094586 | 0.094362 | 0.094362
1711'0.00009 | -0.00007 | 0.00056 0 0.080325 | 0.080051 | 0.080051 | 0.080498
246 | .0.00076 | -0.00043 | -0.00041 0 0.066818 | 0.066635 | 0.066858 | 0.066635
5001 .0.00011 | -0.00018 | -0.00043 0 0.046745 | 0.046734 | 0.046734 | 0.046957

Table 5.6: Comparison between the simulated estimates of E( X ) and standard deviation of X,

with the asymptotic results under t( 25) as N increasesand a m=5,15,20 and § =0.5

n | (5 | u(15) | u(20) | E(X,) | sd(X,) | ssd(5) | ssd(15) | ssd(20)
24 | 0.00062 | -0.00022 | 0.00010 0 0.219050 | 0.235682 | 0.256477 | 0.228303
43 | -0.00070 | 0.00029 | -0.00024 0 0.160161 | 0.165693 | 0.165469 | 0.182016
61 1.0.00017 | 0.00004 | -0.00044 0 0.133362 | 0.135506 | 0.133270 | 0.135059
/61 -0.00024 | -0.00070 | -0.00116 0 0.119008 | 0.120748 | 0.118735 | 0.118959
9 |.0.00114 | 0.00052 | -0.00113 0 0.105532 | 0.105990 | 0.105766 | 0.105095
1251 0,00000 | -0.00080 | 0.00026 0 0.092207 | 0.092573 | 0.092573 | 0.091902
17171 -0.00064 | -0.00043 | -0.00041 0 0.078625 | 0.078710 | 0.078486 | 0.078710
2461 0.00004 | -0.00014 | 0.00011 0 0.065407 | 0.065517 | 0.065740 | 0.065740
5001 .0.00070 | -0.00027 | -0.00018 0 0.045759 | 0.045839 | 0.045839 | 0.045839

Table 5.7: Comparison between the simulated estimates of E( Xy ) and standard deviation of X,

with the asymptotic results under t( 50) as N increasesand at m=5,15,20 and & = 0.5.
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The impact of ¢ on the performance of the estimator )_(N is shown in Tables 5.8, 5.9 and 5.10 for
t(5),t(25)and t( 50 ) respectively. We see that for a each value of r the higher the value of &

the better the behaviour. However, this effect is small for lager values of n.

n w5 (0.3) ssd (0.3) 15(0.5) sd (0.5) L (0.8) ssd (0.8)
= -0.00441 0.329820 -0.00090 0.307907 -0.00113 0.266092
= -0.00298 0.290242 0.00010 0.210190 0.00133 0.198339
61 0.00063 0.210414 -0.00133 0.170836 -0.00073 0.164798
e 0.00083 0.167034 -0.00003 0.151829 -0.00055 0.147580
96 0.00083 0.138860 -0.00024 0.133940 0.00022 0.130363
= 0.00068 0.118959 -0.00071 0.117170 -0.00003 0.115158
e -0.00028 0.100623 -0.00036 0.099281 0.00000 0.097940
A -0.00027 0.083405 0.00026 0.082511 0.00024 0.081393
500 -0.00042 0.058138 -0.00029 0.058138 -0.00003 0.057467

Table 5.8 The smulated estimates of the expected value and standard deviation of X, witht (5)
underlying distributionat m=15and 6 =0.3,0.5,0.8 and selected values of n.

n | u(03) | sd(03) | w(05) | sd(05) | 4 (08) | ssd(08)
& 0.00133 0.269893 -0.00101 0.262514 -0.00117 0.220253
“E 0.00117 0.251110 -0.00037 0.169718 -0.00046 0.160773
e -0.00023 0.168823 -0.00012 0.136400 0.00000 0.135282
[ -0.00021 0.131481 -0.00076 0.121418 -0.00025 0.120077
e -0.00102 0.110238 0.00033 0.108226 -0.00091 0.106884
L) -0.00001 0.095256 0.00059 0.094362 -0.00020 0.093244
tri -0.00088 0.081169 -0.00007 0.080051 0.00000 0.079828
e 0.00024 0.067306 -0.00043 0.066858 -0.00003 0.066635
& -0.00057 0.046510 -0.00018 0.046734 -0.00023 0.046734

Table 5.9 The simulated estimates of the expected value and standard deviation of X, witht( 25)
underlying distributionat m=15and 6 =0.3,0.5,0.8 and selected values of n.
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n w5 (0.3) ssd (0.3) 15(0.5) sd (0.5) L (0.8) ssd (0.8)
2 0.00034 0.262514 -0.00022 0.256477 0.00012 0.216899
e 0.00047 0.245967 0.00029 0.165469 -0.00015 0.157643
i 0.00063 0.165022 0.00004 0.133270 -0.00040 0.131257
e -0.00090 0.126785 -0.00070 0.118735 -0.00026 0.118064
= 0.00010 0.107778 0.00052 0.105766 0.00046 0.104201
Lz -0.00047 0.092797 -0.00080 0.092573 -0.00018 0.091902
o -0.00018 0.079157 -0.00043 0.078486 -0.00094 0.078262
2 0.00009 0.065740 -0.00014 0.065740 -0.00019 0.065070
0 -0.00042 0.045839 -0.00027 0.045839 -0.00032 0.045392

Table 5.10 The simulated estimates of the expected value and standard deviation of X, witht( 50 )
underlying distribution at m=15and & = 0.3,0.5,0.8and selected valuesof N .

524 Beta (2,3)distribution

From (5.1)—(5.2) the mean and variance of the estimator X, under the normal optimal fixed sample
size are respectively,

E(X,)=04-(y35)(n') +o(1?),

and

Var (X, ) =(1/25n") +(y/350)(n") “{9+11.8755 %} +0(4°2).

Thusasn” — o, the asymptotic mean and variance converge to 0.4 and zero respectively.

Table 5.11 shows the simulation results for beta(2, 3) and the corresponding asymptotic results.

Clearly the bias of the estimator is small and is in line with the asymptotic result. Again the
asymptotic results for the standard deviation of the estimator are also in reasonable agreement with
the simulated values.
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*

n

1,(5)

#,(15)

#,(20)

E(X,)

(X

ssd (5)

s (15)

s (20)

24

0.39700

0.39929

0.40022

0.398810

0.0427682

0.0478519

0.0509823

0.0447214

43

0.39887

0.39862

0.39762

0.399336

0.0313184

0.0326466

0.0328702

0.0366715

61

0.39936

0.39927

0.39925

0.399532

0.0260938

0.0266092

0.0263856

0.0263856

76

0.39976

0.39957

0.39942

0.399624

0.0232920

0.0237023

0.0232551

0.0234787

96

0.39957

0.39964

0.39953

0.399702

0.0206596

0.0207954

0.0205718

0.0207954

125

0.39991

0.39967

0.39988

0.399771

0.0180552

0.0181122

0.0181122

0.0181122

171

0.39987

0.39981

0.39994

0.399833

0.0153986

0.0154289

0.0154289

0.0154289

246

0.39974

0.39996

0.39986

0.399884

0.0128120

0.0127456

0.0127456

0.0129692

500

0.39991

0.39996

0.39994

0.399943

0.0089652

0.0089443

0.0089443

0.0089443

Table 5.11: Comparison between the simulated estimates of E( Xy ) and standard deviation of X,

with the asymptotic results under beta (2,3) as N increasesand a m=5,15,20 and & = 0.5.

Table 5.12 shows the behaviour of the estimator X, for different values of & . Once again the
performance at 6 = 0.3 isthe least good.

n | u(03) | sd(03) | u(05) | sd(05) | 4 (08) | ssd(08)
& 0.40019 0.0516532 0.39929 0.0509823 0.39842 0.0431561
“E 0.39823 0.0491935 0.39862 0.0328702 0.39949 0.0313050
e 0.39714 0.0328702 0.39927 0.0263856 0.39967 0.0259384
[ 0.39902 0.0248204 0.39957 0.0232551 0.39950 0.0232551
e 0.39972 0.0207954 0.39964 0.0205718 0.39977 0.0205718
L) 0.39982 0.0181122 0.39967 0.0181122 0.39988 0.0178885
tri 0.39984 0.0154289 0.39981 0.0154289 0.39985 0.0152053
e 0.39981 0.0127456 0.39996 0.0127456 0.39980 0.0127456
& 0.39996 0.0089443 0.39996 0.0089443 0.39998 0.0089443

Table5.12 The simulated estimates of the expected value and standard deviation of X, with beta
(2, 3) underlying distribution at m=15and 6 =0.3,0.5,0.8 and selected values of n.

525 Exponential distribution with mean one

The mean and variance of the estimator )?N of u under the normal optimal fixed sample size are

respectively,
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The asymptotic mean and variance of X y are one and zero respectively as n —o.

Table 5.13 shows that the estimator is somewhat more biased and more variable than indicated by the
asymptotic results. However, this effect reduces as the optimal sample size increases.

*

n

15(5)

15 (15)

15 (20)

E(X,)

(X

ssd(5) | ssd(15)

s (20)

24

0.91062

0.96999

0.99486

0.958333

0.220479

0.270564 | 0.219358

0.215781

43

0.95096

0.95095

0.95662

0.976744

0.159434

0.203482 | 0.183358

0.172624

61

0.97055

0.97141

0.96587

0.983607

0.132168

0.160326 | 0.152053

0.154289

76

0.97799

0.98051

0.97832

0.986842

0.117688

0.138636 | 0.130139

0.132822

96

0.98547

0.98597

0.98632

0.989583

0.104167

0.116723 | 0.110909

0.112027

125

0.98934

0.99106

0.99068

0.992000

0.090863

0.098834 | 0.095033

0.094362

171

0.99284

0.99283

0.99342

0.994152

0.077361

0.080722 | 0.079157

0.079380

246

0.99513

0.99610

0.99518

0.995935

0.064274

0.065517 | 0.065517

0.065517

500

0.99761

0.99772

0.99795

0.998000

0.044900

0.045392 | 0.045169

0.045169

Table 5.13: Comparison between the simulated estimates of E( Xy ) and standard deviation of X,

with the asymptotic results under Exp( 1) as N increasesand at m=5,15,20 and & = 0.5

Table 5.14 shows the performance of the estimator for different values of & . Here the standard
deviations tend to decrease as & increases, but the effect reduces with increasing n'.

n | u(03) | sd(03) | u(05) | sd(05) | 4 (08) | ssd(08)
& 0.99728 0.255135 0.96999 0.219358 0.95964 0.208402
“E 0.95447 0.203035 0.95095 0.183358 0.96937 0.167705
e 0.93888 0.175531 0.97141 0.152053 0.98034 0.136847
e 0.95264 0.162562 0.98051 0.130139 0.98446 0.120971
e 0.97270 0.137295 0.98597 0.110909 0.98774 0.105319
A 0.98560 0.108002 0.99106 0.095033 0.99072 0.091455
tri 0.99151 0.083182 0.99283 0.079157 0.99376 0.077368
e 0.99505 0.066411 0.99610 0.065517 0.99567 0.063728
& 0.99785 0.045839 0.99772 0.045169 0.99757 0.044721

Table 5.14 The simulated estimates of the expected value and standard deviation of X, with
Exp( 1) underlying distributionat m=15and & =0.3,0.5,0.8and selected values of n'.
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5.3 The behaviour of the actual samplesize N

In this section we investigate the mean and variance of the stopping variable N . By using Theorem
3.2.2.2, the mean and variance of the stopping variable N under the normal optimal fixed sample size
are respectively,

(53) E(N)=n"—(3/8)(8-1)5*+E(&, )+0(1),

and

(5.4) Var(N)=(45)"n' (B-1)+0(1).

We investigate the behaviour of En, in section 5.5 but to a good approximation it has mean 0.5.

In the following subsections we compare the simulation results with the asymptotic results obtained
from equations (5.3)—(5.4) for the underlying distributions mentioned above. Each table includes
Ns(m)and ssdN(m), the smulated mean and the simulated standard deviation of the actual
sample size N at a specific value of m, where m=5,15and 20, and also E( N), sd( N ), the

asymptotic mean and standard deviation of N .

5.3.1 Standard normal distribution

From (5.3) — (5.4) the mean and variance of N when the underlying distribution is standard normal

are respectively

E(N)=n -0.756"+0.5+0(1),

and

Var (N)=(26)"n"+0(1).

Table 5.15 below presents the simulation and asymptotic results for N at § = 0.5andm=>5,15,20.

We see that N<n' (early stopping on average) for al values of N and the quantity |N_n* |

decreases as N increases. Table 5.15 also shows the performance of the estimator N as the pilot
sample size and the optimal sample size increases in comparison with the asymptotic results.
Problems arise when m is close to n*, but in other cases the asymptotic results are optimistic in that
they tend to underestimate the early stopping and underestimate the variability, particularly for
m="5.
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n | Ns(5) | Ns(15) | Ns(20) | E(N) | sd(N) | ssdN(5) | ssdN(15) | ssdN(20)
241 22.18 16.36 20.00 23 4.8990 6.4806 4.6356 0.0000
43 1 41.25 41.11 36.39 42 6.5575 8.2068 8.8318 13.0754
61 | 5937 59.78 59.52 60 7.8101 9.5813 8.5404 9.2989
6| 74.44 74.90 74.83 75 8.7178 10.4874 9.3295 9.3009
9 | 9451 94.88 94.88 95 9.7980 11.6886 10.4245 10.2917
1251 123.59 | 123.90 123.92 124 11.1803 | 12.9920 11.7378 11.6647
1711 169.56 | 169.83 169.87 170 13.0767 | 15.1040 13.7169 13.4962
246 1 244.62 | 244.95 244.92 245 15.6845 | 18.0156 16.3383 16.2531
500 1 498.70 | 498.82 498.92 499 22.3607 | 25.3201 23.1905 23.0038

Table 5.15: Comparison between the simulated estimates of E( N )and standard deviation of N with
the asymptotic results under N (0,1)as n'increasesand at m=5,15,20and § = 0.5.

To show the impact of & on the performance N, we consider Figure 5.1 at m=15. We see that for
5 =0.3and 0.5, N <n (early stopping on average) for all valuesof N, but the amount ‘ N - n*‘ ,is
larger at 6 = 0.3, which means that the procedure tends to terminate much early than in the case of

0 =0.5 , this consequently causes bad estimates at 6 = 0.3. While for 6 =0.8, N>n' (over

sampling in average) at N = 246and 500. But such behaviour tends to vanish as mincreases. This
indicate that the choice of 6 =0.5 is much better than other values of ¢ and this supports Hall

(1981) recommendation.

Simulated estimates

500+

400 -

300+

200+

100

Optimal sample size

Variable
—&— N(0.3)
—#— N(0.5)

N(0.8)

Figure 5.1: The simulated estimates of E( N ) for underlying N (0,1) as the optimal sample size
increasesat m=15and § =0.3,0.5,0.8.
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5.3.2 Standard uniform distribution

From (5.3)—(5.4) the mean and variance for the actual sample size N when the underlying

distribution is standard uniform are respectively,
E(N)=n"-035"+E(s, )+0(1),

and

Var(N)=0.25"n" +0(4).

Table 5.16 below present the ssmulation and asymptotic results for Nat 6 = 0.5and m=5, 15, 20.

We see the same pattern as in the previous case. Provided m and n’ are not too close, we see that N
has a small negative bias but thisis well captured by the asymptotic result. However, the asymptotic
standard deviation underestimates the true variability in N, especially when m=5.

n | Ns(5) | Ns(15) | Ns(20) | E(N) | sd(N) | ssdN(5) | ssdN(15) | ssdN(20)
24 23.05 15.24 20.00 23.9 3.0984 49817 1.9566 0.0000
43 42.35 42.52 38.15 42.9 4.1473 5.7319 5.5457 11.3579
61 60.52 60.77 60.73 60.9 4.9396 6.2733 5.4940 5.5958
76 75.52 75.82 75.77 75.9 5.5136 6.8513 5.9743 5.9549
96 95.60 95.76 95.80 95.9 6.1968 7.3638 6.6440 6.5669
125 | 124.62 124.86 124.80 124.9 7.0711 8.2198 7.4689 7.4130
1711 170.65 170.86 170.82 170.9 8.2704 9.4713 8.6022 8.6216
246 | 245 64 245.78 245.83 245.9 9.9197 11.0600 10.2582 10.1725
500 | 499,69 499.86 499.89 499.9 14.1421 15.4454 14.5423 14.3878

Table 5.16: Comparison between the simulated estimates of E( N ) and standard deviation of N
with the asymptotic results for underlying U (0,1)as n'increasesand at m=5,15,20and 5 = 0.5

To illustrate the effect of increasing 6 on the performance of the actua sample size N we consider
Figure 5.2 & m=15. We noticed N<n (early stopping on average) occurs at ¢ = 0.3and 0.5 and
is larger & & =0.3. While a & =0.8 we noticed that N > n’for al

the absolute bias |N_n*

n >43.

105|Page




Variable
—&— U(0.3)
—m— U(0.5)

U(0.8)

500-
400
(7]
g
;§ 300-
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-}
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® ,///ﬁl
1004 'J;f/»
P
0_
PR P H 4 0

Optima Isample size

Figure5.2: The simulated estimates of E( N for underlying U (0,1)as the optimal sample size
increasesat M=15and § =0.3,0.5,0.8

5.3.3The tdistribution

From (5.3)—(5.4) the mean and variance of N when the underlying distribution ist with r = 5

degrees of freedom are
E(N)=n"-35"+E(s, )+0(1),
and

Var(N)=2(8)"n" +o(4).

At 1 =25, the mean and variance are
E(N)=n"—(6/7)5 *+E (&, )+0(1),
Var (N)=(4/7)(8) "n" +o(A).

At r =100, the mean and variance are

E(N)=n"—(99128)5*+E(z,, )+0(1),

Var (N)=(33/64)(5) 'n +0(A).
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Clearly, for a fixedé and as r increases, the variance of N decreases. Tables 5.17, 5.18 and 5.19
show the simulation results for r =5, 25 and 50 respectively. From Table 5.10 we observe early

stopping behaviour: N <N for al values of n' , While the magnitude of the bias decreases as the m
increases. Similar behaviour occurs at r =25 and 50. Also, note that ‘N_n*‘decreases as r

increases. We see from these tables that the differences between the simulation estimates of N and the
corresponding asymptotic values are: for r =5,m=15, it is 2.35 and for r =5,m=20it is 1.97,
while for r =25 m=15and 20 it is 0.156 and finally for r =50,m=15itis0.012 and a r =50 ,

mM=20 it is 0.108. This indicates that better estimates occur as rincreases and at m=15. Similar
arguments can be said regarding the ratio between the simulation standard deviation and the
asymptotic standard deviation.

n | Ns(5) Ns(15) NS(ZO) E(N)|sd(N) ssdN(5) sst(lS) sadN(zo)
241 20.88 17.33 20.32 18.5 9.7980 8.1961 6.3670 2.8087
43 1 3966 38.65 34.20 37.5 13.1150 | 11.7470 12.2199 14.6013
61 | 57.66 57.65 57.04 55.5 15.6205 | 14.8871 12.7521 14.1375
61 72.68 72.70 72.73 70.5 17.4355 | 16.8409 14.3761 14.2860
9% | 92.72 92.81 92.69 90.5 19.5960 | 18.7890 16.6569 16.2441
1251 121.86 | 121.68 121.75 119.5 | 22.3607 | 22.2898 19.6488 18.6857
1711 167.80 | 167.73 167.60 165.5 | 26.1535 | 26.9987 23.2992 23.4483
246 1 243.19 | 242.64 242.50 240.5 | 31.3687 | 33.3313 28.6809 28.3670
500 | 498.39 | 496.85 496.47 494.5 | 44.7214 | 54.2577 43.3122 42.6409

Table5.17: Comparison between the simulated estimates of E( N ) and standard deviation of N
with the asymptotic results for underlying t( 5) as n increasesand a m=5,15,20and 6 = 0.5

n | Ns(5) | Ns(15) | Ns(20) | E(N) | sd(N) | ssdN(5) | ssdN(15) | ssdN(20)
241 22,02 16.53 20.00 22.786 5.2373 6.6946 4.9066 0.2985
43| 41.09 40.94 36.14 41.786 7.0103 8.6156 9.2562 13.3169
61 | 59.18 59.60 59.34 59.786 8.3495 10.0753 9.0494 9.8421
61 7427 74.65 74.61 74.786 9.3197 11.2199 9.9038 9.9304
% | 9426 94.66 94.70 94.786 | 10.4744 12.4200 11.0795 10.9013
125112327 | 123.67 123.67 | 123.786 | 11.9522 13.8983 12.4741 12.4428
1711°169.49 | 169.72 169.73 | 169.786 | 13.9797 16.0288 14.4569 14.3819
2461 244,54 | 244.71 24472 | 244.786 | 16.7674 19.1620 17.5697 17.3608
00| 498.77 | 498.63 498.63 | 498.786 | 23.9045 27.3455 24.7271 24.5377

Table 5.18: Comparison between the simulated estimates of E( N ) and standard deviation of N
with the asymptotic results for underlying t( 25) as n increasesand a m=5,15,20and § = 0.5.
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*

Ns(5) | Ns(15)

Ns(20) | E(N) | sd(N)| ssdN(5) | ssAN(15) | ssdN(20)

n

241 2214 16.48 20.00 22.902 | 5.0562 6.5499 4.8250 0.2625
43 | 41.20 41.05 36.31 41.902 | 6.7679 8.4957 8.9946 13.1400
61 | 5931 59.64 59.46 59.902 | 8.0608 9.8128 8.7839 9.4170
61 74.40 74.70 74.74 74.902 | 8.9975 10.7159 9.6140 9.5822
9 | 94.39 94.76 94.88 94.902 | 10.1124 | 11.8632 10.7253 10.5618

12

123.56 123.69

123.83 | 123.902 | 11.5392 13.3943 12.1143 11.9873

17

169.43 169.79

169.84 | 169.902 | 13.4965 15.6862 14.1161 13.9649

24

24447 | 244.84

244.68 | 244.902 | 16.1878 18.6126 16.8774 16.6869

50

498.62 | 498.89

499.01 | 498.902 | 23.0782 26.2615 23.7602 23.5959

Table5.19: Comparison between the simulated estimates of E( N ) and standard deviation of N
with the asymptotic results for underlying t( 50 ) as n’ increasesand at m=5, 15, 20 and & = 0.5.

To show the effect of increasing & on the performance of the actual samplesize N, we consider
Figures 5.3, 5.4 and 5.5.

We noticed that for r =5, 25 and 50 we have thefollowing: at 6 =0.3and 6 = 0.5an early stopping

occurs, whileat 5 =0.8, N isover estimating n', and the amount of | N-n'

increases.

decreasesas N’

500+

400+

300+

200+

Simulated estimates

100+

Variable
—&— T5(0.3)
—m— T5(0.5)

T5(0.8)

RSP H e

% |

Optimal sample size

Figure5.3: The simulated estimatesof E( N for underlying t( 5) asthe optimal sample size

increasesat m=15and 6 =0.3,0.5,0.8.
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Figure5.4: The simulated estimates of E( N)for underlying t( 25)as the optimal sample size
increasesat M=15and § =0.3,0.5,0.8.
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Figure 5.5: The simulated estimatesof E( N )for underlying t( 50) as the optimal sample size
increasesat m=15and 6 =0.3,0.5,0.8.
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5.3.4 Beta (2,3)distribution

From (5.3) —(5.4) the mean and variance of N when the underlying distribution is beta (2, 3) are

respectively

E(N)=n"—(57/112)5 * +E(&,, ) +0(1),

and

Var (N) =(19/56)(6) "' +0(4).

Table 5.20 below presents the simulation and asymptotic resultsfor N at 6 = 0.5and m=5, 15, 20.
Regarding the simulation results we have seen same pattern as in the previous cases. Also Table 5.20
shows the comparison between the simulation results and the asymptotic results and similar
arguments can as stated as in the previous cases, but note here that the difference between the

simulation estimates of E( N )and its asymptotic value is 0.072 & m=15and 0.122 at m=20.
The asymptotic standard deviation underestimates the simulated standard deviation for al vaues of
m, especidly a m=5.

n | Ns(5) | Ns(15) | Ns(20) [ E(N) | sd(N) | ssdN(5) | ssdN(15) | ssdN(20)
24| 22.63 15.78 20.00 23.482 4.0356 5.8212 3.5015 0.0000
431 41.78 41.80 37.19 42.482 5.4017 7.1659 7.3627 12.3679
61 | 5994 60.28 60.15 60.482 6.4337 8.0981 7.1384 7.5738
6| 75.04 75.28 75.37 75.482 7.1813 8.7097 7.8482 7.7167
9% | 95.06 95.29 95.34 95.482 8.0711 9.5590 8.6209 8.5836
121 124.09 124.36 124.41 | 124.482 | 9.2099 10.7197 9.7016 9.7204
171 170.06 170.32 170.45 | 170.482 | 10.7720 12.2948 11.3156 11.2078
24 | 245.20 | 245.30 245.41 | 245.482 | 12.9201 14.6145 13.4678 13.3914
50 | 499.12 | 499.41 499.36 | 499.482 | 18.4197 20.5264 18.9885 18.8657

Table 5.20: Comparison between the simulated estimates of E( N ) and standard deviation of N

with the asymptotic results under beta (2,3) as n increasesand a m=5,15,20ands = 0.5.

Figure 5.6 shows the effect of increasing 6 on the performance of N . Similar arguments as before
can be said here.
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Figure5.6: The simulated estimates of E( N ) for underlying beta (2,3)as the optimal sample size
increasesat M=15and & =0.3,0.5,0.8.

5.3.5 Exponential distribution with mean one

From (5.3),( 5.4 )the mean and variance for N when the underlying distribution is exponential
with mean one are respectively,

E(N)=n"-35"+E(s, )+0(1),
and
Var (N)=2(8)"n +o(2).

To show the performance of the simulated estimates of the actual sample size Nat 6 =0.5 while
mM=5, 15 and 20 and compare the results with the asymptotic values we consider Table 5.21 From

Table 5.21 we see that N <n for al values of n and m. However, the case of the underlying
exponentia distribution is different from the previous distributions because here we see that as m

increases, so | N=—n | increases which is opposite to the previous distributions.
We see that the differences between the simulated and asymptotic values of E( N )are relatively

small. However, the asymptotic standard deviation tends to underestimate the variability, especially
whenm=5.
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n | Ns(5)| Ns(15) | Ns(20) | E(N) | sd(N) | sdN(5) | ssdN(15) | ssdN(20)
& 19.05 18.00 20.46 18.5 9.7980 9.4548 7.1087 3.2374
“E 37.36 36.70 33.97 37.5 13.1149 14.9365 14.2833 15.2229
e 55.27 55.42 5451 55.5 15.6205 18.5862 16.2180 17.5464
[ 70.43 70.67 70.40 70.5 17.4356 21.2979 18.1126 18.1727
9% 1 90.82 90.71 90.50 90.5 19.5959 24.3286 20.4415 19.9214
1251119.63 | 119.59 119.70 119.5 22.3607 28.1069 23.3593 22.9483
1711 166.33 | 165.67 165.69 165.5 26.1534 33.7398 27.6396 27.0486
246 1 241,72 | 241.02 240.62 240.5 31.3688 41.0723 33.5526 32.7117
500 1 497,95 | 495.23 495.16 494.5 44.7214 62.3749 48.7127 47.2864

Table 5.21: : Comparison between the simulated estimates of E( N ) and standard deviation of N
with the asymptotic results under Exp(1)as n'increasesand at m=>5,15,20and 6 = 0.5,

Figure 5.7 shows the performance of the simulated extimates of N for selected valuesof N and & .
We seethat at § =0.3, N <n for al values of n and the bias of N decreases as N’ increases.
However, at § =0.8 weseethat N> n'for n' =61 and the bias tends to decrease as N’ increases.

But, the procedure takes more time to overcome such behaviour N >n'for large values of N, and
this delay goes to the sharp skewness and high kurtosis of the exponential distribution.

500+

400

300+

200+

Simulated estimates

100

T
100

T
200

300

Optimal sample size

400 500

Variable
—&— E(0.3)
—#— E(0.5)

E(0.8)

Figure5.7:

The simulated estimates of E( N) for underlying Exp( 1) asthe optimal samplesize
increasesat m=15and § =0.3,0.5,0.8.
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5.4 The asymptotic distribution of the actual samplesize N

In Theorem 3.3.4 we proved that the asymptotic distribution of N isa standard normal distribution.
To investigate the rate of convergence to normality, we ran a FORTRAN program using the IMSL

library at § =0.5, m=15and all values of n" as mentioned before. For each of 1000 replicates and
for a specific value of N the program runs the triple sampling procedure and stores the stopping

sample sizein avector. At theend for each valueof n” we will have 1000 replicate samples from the
actual sample size N . To check the normality of these samples we used two standard goodness of fit
tests for normality: the Anderson-Darling (AD) test and the Kolomogorov-Smirnov (KS) test. The
sample mean, sample standard deviation, sample skewness and sampl e kurtosis were also recorded for

eachn .
5.4.1. Standard normal distribution

Table 5.22 shows the p-values for tests of normality of N when the underlying distribution is
standard normal and with m=15, § =0.5 and n" = 76, 96, 125, 246 and 500 using the AD and KS

tests. It also shows the basic descriptive measures of the distribution of N at each value of n' : sample
mean, sample standard deviation, sample skewness and sample kurtosis.

A~ ~

n N S-d-( N) 14 )5 PAD PKS
76 75.005 9.214 -0.24 3.39 <0.005 >0.150
96 94.707 10.404 -0.33 3.15 <0.005 <0.01
125 124.170 11.68 -0.15 2.91 0.005 0.071
171 169.900 13.60 -0.20 3.37 0.031 >0.150
246 243.840 17.24 -0.20 3.66 0.061 >0.150
500 498.260 23.07 -0.05 2.99 0.255 >0.150

Table 5.22: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and K S statistic for testing the asymptotic normality of N for underlying N (0, 1) asthe
optimal sample sizeincreases.

Figure 5.8 shows the normal probability plot of the ssimulated values of N when the underlying

distribution is standard normal at N =500 . We proceed our conclusions by using AD test rather than
KStest, since KStest is not sensitive to the presence of outliersin the tails. Now by using AD test the
p — value is 0.225 and hence we have a good evidence that our data follows the normal distribution,

though the evidence for normality is much weaker for smaller values of n’, so convergence to
normality appears to be slow.
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Figure 5.8. Normal probability plot of the actual sample size N for underlying distribution N (0, 1)
using AD test at N =500, § =0.5and m=15; p - value = 0.255.

5.4.2. Standard uniform distribution

Similarily, Table 5.23 shows the p-values for tests of normality of N when the underlying

distribution is standard uniform and with m=15, 6 =0.5 and n' = 76, 96, 125, 246 and 500 using
the AD and KS tests. It also shows the basic descriptive measures of the distribution of N at each

value of n' : sample mean, sample standard deviation, sample skewness and sample kurtosis.

n N sd.(N) y B Po P.

76 75.859 5.893 -0.310 3.070 < 0.005 >0.15
96 95.676 6.681 -0.330 3.310 < 0.005 0.132
125 124.95 7.47 -0.180 3.340 0.011 >0.15
171 171.28 8.49 -0.360 3.630 < 0.005 0.029
246 246.02 10.10 -0.260 3.310 < 0.005 >0.15
500 500.10 14.69 -0.150 3.160 0.042 >0.15

Table5.23: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and K S statistic for testing the asymptotic normality of N for underlying U (O, 1) asthe

optimal sample sizeincreases.

Figure 5.9 below shows the normal probability plot of the smulated estimates of N when the

underlying distribution is standard uniform at n” =500. By using AD test the p — vaue is 0.042,
which means that normality is rejected. However, the plot shows that the extent of the departure from
normality is perhaps rather small.
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Figure5.9. Normal probability plot of the actual sample size N for underlying distributionU (0, 1)
using AD test at N =500, § =0.5and m=15; p - value = 0.042.

5.4.3. The tdistribution

Similarily, Table 5.24 shows the p-values for tests of normality of N when the underlying
distribution is t( 5 ) and withm=15, 6 =0.5 and n" =76, 96, 125, 246 and 500 using the AD and

KS tests. It also shows the basic descriptive measures of the distribution of N at each value of n":

sample mean, sample standard deviation, sample skewness and sample kurtoss.

n N Sd-( N) },; 2\3 PAD PKS

76 72.952 13.797 0.53 5.11 <0.005 <0.01
96 92.600 17.419 2.53 33.75 <0.005 <0.01
125 121.36 19.310 0.89 7.93 <0.005 <0.01
171 168.64 22.940 0.77 5.67 <0.005 <0.01
246 243.10 29.200 1.82 15.53 <0.005 <0.01
500 499.01 48.670 3.07 30.64 <0.005 <0.01

Table5.24: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and KS statistic for testing the asymptotic normality of N for underlying t(5) asthe optimal

sample size increases.

Figure 5.10 below shows the nhormal probability plot of the simulated estimates of N when the
underlying distributionis t(5)at n" =500. By using AD test the p- value isless than 0.005. The
extreme outliersin the upper tail are clear. Thus, convergence to normality is very slow.
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Figure5.10. Normal probability plot of the actual sample size N for underlying distribuiti ont( 5)
using AD test at N =500, § =0.5and m=15; p — value < 0.005.

Similarily, Table 5.25 shows the p-values for tests of normality of N when the underlying
distribution is t( 25 )and with m=15, § =0.5 and n" = 76, 96, 125, 246 and 500 using the AD and

KS tests. It also shows the basic descriptive measures of the distribution of N at each value of N :
sample mean, sample standard deviation, sample skewness and sample kurtoss.

n N S-d-(ﬁ) }/; B P Fes
76 75.123 9.642 -0.26 3.16 <0.005 0.039
96 94.035 11.201 -0.46 3.78 <0.005 <0.01
125 124.09 12.470 -0.14 3.27 0.245 >0.150
171 169.80 14.280 -0.10 3.43 0.123 >0.150
246 244.70 18.410 -0.13 3.36 0.029 0.107
500 499.49 25.760 -0.11 3.04 0.159 0.118

Table5.25: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and KS statistic for testing the asymptotic normality of N for underlying t(25) asthe

optimal sample sizeincreases.

Figure 5.11 shows the normal probability plot of the simulated estimates of N at n* =500 when the
underlying distributionis t( 25 )at n" = 500. Clearly the normality of N seems plausible here.
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Figure5.11. Normal probability plot of the actual sample size N for underlying distri butiont( 25)
using AD test at N =500, § =0.5and m=15; p - value = 0.159.

Similarily, Table 5.26 shows the p-values for tests of normality of N when the underlying
distributionis t( 50 )and with m=15, § =0.5 and n" =76, 96, 125, 246 and 500 using the AD and

KS tests. It also shows the basic descriptive measures of the distribution of N at each value of n":
sample mean, sample standard deviation, sample skewness and sample kurtosis.

A~

~

n N S-d-(ﬁ) y B P Fes
76 75.279 9.329 -0.25 3.20 <0.005 <0.01
96 94.822 10.802 -0.20 3.22 0.009 0.097
125 124.00 12.36 -0.20 3.34 0.01 <0.01
171 170.39 14.01 -0.25 3.43 <0.005 0.033
246 245.63 16.63 -0.14 3.18 0.044 >0.150
500 499.27 23.16 -0.10 3.08 0.577 >0.150

Table 5.26: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and KS statistic for testing the asymptotic normality of N for underlying t(50) asthe

optimal sample sizeincreases.

As expected, the higher value of 1, the nearest the kurtosis to the normal distribution, and thus more
acceleration to normality. Figure 5.12 shows the normal probability plot for the simulated estimates of

N at n"=500. By using AD test the p — value is 0.577. Clearly the normality is strong here.
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Figure5.12. Normal probability plot of the actual sample size N for underlying distri butiont( 50 )
using AD test at N =500, § =0.5and m=15; p - vaue = 0.577.

5.4.4. Beta (2,3)distribution

Similarily, Table 5.27 shows the p-values for tests of normality of N when the underlying
distribution is beta (2,3)and with m=15, 6§ =05 and n" =76, 96, 125, 246 and 500 using the AD

and K Stests. It also shows the basic descriptive measures of the distribution of N at each value of n':
sample mean, sample standard deviation, sample skewness and sample kurtosis.

A~

~

n N Sd-( N) 14 B Pao Pes
76 75.216 7.893 -0.6 3.95 <0.005 <0.01
96 95.202 8.680 -0.36 3.53 <0.005 0.148
125 124.66 9.72 -0.23 3.04 <0.005 0.037
171 169.98 11.22 -0.27 3.90 <0.005 0.039
246 245.22 13.68 -0.28 3.20 <0.005 0.064
500 499.20 20.33 -0.10 291 0.195 >0.150

Table5.27: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and KS statistic for testing the asymptotic normality of N for underlying beta(2, 3) asthe

optimal sample sizeincreases.

Figure 5.13 shows the normal probability plot for the simulated estimatesof N a n' = 500. By using
AD test the p - value is 0.195, so we have a satisfactory evidence for normality here.
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Figure 5.13. Normal probability plot of the actual sample size N for underlying distribution beta
(2,3)using AD test at n =500, § =0.5and m=15; p - value= 0.195.

5.4.5. Exponential distribution with mean one

Similarily, Table 5.28 shows the p-values for tests of normality of N when the underlying
distribution is Exp(1)and withm=15, § =05 and n" =76, 96, 125, 246 and 500 using the AD

and KStests. It also shows the basic descriptive measures of the distribution of N at each value of N’ :
sample mean, sample standard deviation, sample skewness and sample kurtosis.

n N S-d-(ﬁ) }A/ 2\3 P Fs
76 70.205 17.853 -0.20 3.58 <0.005 >0.150
96 91.135 20.012 0.27 3.35 <0.005 0.062
125 120.11 23.280 -0.15 3.51 <0.005 0.033
171 167.00 28.440 0.02 3.48 0.321 >0.150
246 240.77 33.990 0.56 6.61 0.028 >0.150
500 493.90 48.360 0.19 3.81 <0.005 0.06

Table5.28: The Descriptives. mean, standard deviation, skewness and kurtosis and the p —values for
the AD and K S statistic for testing the asymptotic normality of N for underlying Exp(l) asthe

optimal sample sizeincreases.

Figure 5.14 below shows the normal probability plot of the smulated estimates of N for underlying

exponential distribution at n* = 500. By using AD test the p — valueis less than 0.005. Note the non-
normal tail behaviour. Clearly convergence to normality is slow.
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Figure5.14. Normal probability plot of the actual sample size N for underlying distribution Exp( 1)
using AD test at N =500, § =0.5and m=15; p - value < 0.005.

5.5 The behaviour of the asymptotic regret

From Theorem 4.2.1 the asymptotic regret of the triple sampling procedure (2.2)—(2.3) under the

sguared error loss function (4.1)as A— wis

(55) o( A)=-C(B-3)+C(-1)(45)" +CE(sy)+0(1).

As stated in Chapter 1V, the asymptotic regret depends mainly on the kurtosis of the underlying
distribution. Moreover Iing C‘la)( A) < oo, which means that the triple sampling procedure with
c—

(5.5 ) have asymptotically second order risk efficient. Equation( 5.5 ) means that the regret due to
using the triple sampling procedure presented in (2.1)—( 2.2) in ignorance of the population
variance @ is bounded above by the quantity —C(8—-3)+C(S —1)(45)_1 + CE(gN1 ) +0(1)as
M—> oo That isin thelimit, one loses at most the cost of —~C(3—3)+C( S —1)(45)_l +CE(8N1)
observations when using the stopping rule ( 2.2 ) instead of the optimal fixed sample size.

Woodroofe (1977) showed that the regret in estimating the normal mean by using the one-by-one
purely sequential procedure under the loss function givenin (4.1)is @ =1/2+0(1) as A—> 0. In

other words, for normal data the asymptatic regret is half the cost of a single observation. Martinsek
(1983) extended Woodroofe's result to the non-parametric case (distribution free), showing that the
asymptotic regret of using the one-by-one purely sequentia procedure instead of the optimal fixed
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sample size procedure is @ =2.75-0.758+2y?+0(1), as A— . He further extended his
results to a more general loss function given by

L,(A)=A6"*(X,-u) +n, A>0b>0.

He showed that under this loss function, the asymptotic regret in using the one-by-one purely
sequential procedure instead of the optimal fixed sample size procedureis

w=(b*/4)(p-1)-b(B-3)+b(b+1)y*+0(1) . as A—> 0.
See Martinsek (1988) for details.

Martinsek (1988) argued that the early stopping phenomenon may cause negative regret, and in this
case the triple sampling sequential procedure could perform better estimation than the optimal.
Negative regret occurs when the triple sampling sequential risk is less than the optimal risk, and may

be due to the dependency between N and X v - For more details about negative regret, see Martinsek
(1988) and Takada (1992).

In our case we can expect negative regret when 3> (145 —1)/( 45 —1), provided that 5 = 1/4.

We now compare the regret from the main simulation experiment and the asymptotic regret at
0 =0.5and m=5, 15 and 20 for the same class of distributions as before. Each table given below

includes w,( M) and @, where (M) isthe simulated regret at the initial samplesize m, and @
is the asymptotic regret.

5.5.1 Standard normal distribution

From (5.5) the asymptotic regret under the normal optimal fixed sample size and taking C =1is
w=(25)"+Y2+0(1).
Thus the asymptotic regret is bounded by a finite non-vanishing positive quantity (25 )_l+1/ 2,

which depends on ¢ . In particular a& 6 =0.5 the regret is a most 1.5 times the cost of one
observation.

Table5.29 illustrates the effect of M on the regret as the optimal sample size increases.
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n o,(5) ,(15) o,(20) @
. 5.0388 5.2289 0.7149 1.5
43 4.0344 3.6876 10.3735 1.5
61 2.5455 1.1441 2.3210 1.5
e 2.0155 1.0326 2.2575 1.5
= 0.7541 1.1022 1.6784 1.5
e 1.9341 0.9575 1.5963 1.5
e 2.6415 2.1620 2.0388 1.5
A 2.2415 0.7743 2.5890 1.5
500 3.6976 -0.0303 0.3383 1.5

Table 5.29: Comparison between the simulated estimates of the regret and the asymptotic regret for
underlying N (0,1)at m=5,15,20 and 5 = 0.5

The asymptotic regret values at 6 =0.3, 0.5 and 0.8 are respectively @ =2.166667, 1.5 and 1.125.
The reason of having simulated regret far from the asymptotic value goes to the fact that our chosen
optimal sample sizes are not large enough to ensure the limiting regret. But, still we have a non-
vanishing regret with small quantities and not in a disordered manner.

5.5.2 Standard uniform distribution

From ( 5.5 ) the asymptotic regret for underlying standard uniform distribution and under the normal
optimal fixed sasmplesizeandtaking C =1 is

w=12+025"+E(&, )+0(1).

The above equation states that the asymptotic regret is bounded by a finite non-vanishing positive
quantity that depends on ¢ and E(le) .At 6 =0.5 theasymptotic regretis o = 2.1.

Table 5.30 shows the behaviour of theregret at 6 = 0.5and as mincreases and the asymptotic regret.

. o,(5) 0,(15) 0,(20) ®
2 11.3524 5.4707 0.5572 2.1
& 6.6890 5.2190 15.6292 2.1
61 4.9614 2.9704 2.5278 2.1
[ 4.6738 2.1537 2.3136 2.1
96 2.4396 1.7100 2.6052 2.1
125 2.9169 1.2865 0.9192 2.1
Lo 0.7481 1.4656 2.1333 2.1
2 2.3900 5.9230 3.8632 2.1
500 4.1204 7.6406 1.4336 2.1

Table 5.30: Comparison between the simul ation estimates of the regret and the asymptotic regret for
underlying U (0,1)at m=5,15,20 and 6 = 0.5
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The asymptotic regret at 6 = 0.3and 0.8 are respectively @ = 2.366667 and 1.95.
5.5.3Thet distribution

From ( 5.5) the asymptotic regret for underlying t distribution and under the normal optimal fixed
samplesizeand taking C =1at r =5,25and 50 are respectively,

®=-6+25"+E(&,)+0(D),
w=-2/T+(4/7)6*+E(&y,)+0(D),
and

w=-3/23+(49/92)5 ™+ E(&y, ) +0(1).

Clearly the regret depends on both the design factor 6 andon E (8,\,1 ) . The asymptotic regret values

a 6=05and r =525and 50 are-1.5, 1.35714285 and 1.4347826 respectively. We noticed that

as r increases the regret values also increases, and this agree to the fact that as r increases we get
closer to the normal distribution which have a positive regret.

Tables 5.31, 5.32 and 5.33 show the behaviour of the regret as mincreases and also as r increases.

n w,(5) w,(15) w,(20) 1)

2 2.5043 2.1192 -0.1202 -1.5
& 2.0134 1.6830 5.5412 -1.5
61 1.6291 0.7942 1.4883 -1.5
i 1.8168 0.5190 0.2072 -1.5
< 1.4098 0.0544 0.1309 -1.5
— 0.7889 0.3386 -0.4909 -1.5
Lo -0.1928 -1.4392 -0.4245 -1.5
2 0.2370 -1.8762 -1.9978 -1.5
500 -1.7375 4.4777 -0.7673 -1.5

Table 5.31: Comparison between the simulated estimates of the regret and the asymptotic regret for
underlying distribution t( 5) at m=5,15,20 and 6 =0.5
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n w,(5) w,(15) w,(20) ®

2 4.6844 5.0694 0.9021 1.3571
& 3.6912 3.9828 9.0250 1.3571
61 2.7728 1.3662 2.5277 1.3571
i 1.7548 1.0648 1.4274 1.3571
< 2.2458 2.1484 0.8447 1.3571
— 1.9584 1.4517 1.3883 1.3571
Lo 0.2642 0.0084 2.1650 1.3571
2 -0.9581 1.4579 -0.2633 1.3571
500 -0.0232 1.5594 6.2678 1.3571

Table 5.32: : Comparison between the simulated estimates of the regret and the asymptotic regret for
underlying distribution t( 25)at m=5,15,20 and § =0.5

n w,(5) w,(15) w,(20) ®

2 4.8482 4.8474 0.8401 1.4348
e 3.9371 3.6657 9.0564 1.4348
i 2.9058 1.0596 2.6648 1.4348
e 3.2878 0.7468 1.2739 1.4348
96 1.8918 1.6086 0.5378 1.4348
= 2.0669 2.1794 0.3645 1.4348
e 0.9446 0.9590 1.2998 1.4348
2 1.2752 4.1042 3.1244 1.4348
0 4.7263 1.0304 5.6271 1.4348

Table 5.33: : Comparison between the simulated estimates of the regret and the asymptotic regret for
underlying distribution t( 50)at m=5,15,20 and § =0.5

5.5.4 Beta (2,3)distribution

From (5.5) the asymptotic regret under the normal optimal fixed sample size and taking C =1

®=9/14+(19/56)5 ' + E(&y, ) +0(1).

Similarily the asymptotic regret dependson 6 and on the value of E(ENl) .Inparticular at 6 =0.5
the asymptotic regret is 1.821428572 .

Table 5.34 shows the effect of increasing theinitial sample size m on the performance of the regret
asthe optimal sample size increases. Clearly, the simulated estimates of the regret are all positive.

Theregret valuesat 6 = 0.3and 0.8 are respectively 2.2738095 and 1.5669643.
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n w,(5) w,(15) w,(20) )

2 7.8013 5.1932 0.6887 1.8214
& 5.2428 5.6713 13.3263 1.8214
61 4.0645 2.5505 3.2058 1.8214
i 3.8069 1.8228 3.0726 1.8214
< 3.5709 1.3700 2.8478 1.8214
— 3.6107 1.2696 1.4720 1.8214
Lo 2.8993 2.1447 1.3234 1.8214
2 2.4580 0.2243 4.0616 1.8214
500 1.1577 -0.3856 3.6948 1.8214

Table 5.34: Comparison between the simulated estimates of the regret and the asymptotic regret for
underlying beta (2,3)at m=5,15,20 and 5 = 0.5

5.5.5 Exponential distribution with mean one

From ( 55 ) the asymptotic regret under the normal optimal fixed samplesizeandtaking C =1

®=-6+25"+E(&y )+0(D).

The above equation states that the limiting regret is bounded by a non vanishing negative quantity
regardless the value of 6 and the value of E(ENl) . In particular a 6 = 0.5the asymptotic regret is

—1.5. Therefore, one would expect negative regret values.

From Table 5.35 we noticed mostly positive values and little negative values of the regret. The reason
behind this is due to the large value of the kurtosis 8 =9and the optimal sample sizes are not large
enough. We may also add that the convergence is from above (i.e. through positive values of regret).

Thisindicates that the sequential procedures are risky as the optimal fixed sample size procedure.

n o,(5) ,(15) o (20) @

= 17.7940 -1.7872 -0.7321 -1.5
= 32.3492 17.3048 6.4769 -1.5
i 32.0484 22.4790 25.3587 -1.5
[ 32.2888 18.6754 23.0115 -1.5
96 26.3778 14.0712 15.7395 -1.5
125 23.7438 11.8602 10.3143 -1.5
L 16.7938 8.7925 8.7394 -1.5
26 10.2735 9.2764 9.0376 -1.5
=g 13.6584 7.3364 4.0084 -1.5

Table 5.35: : Comparison between the simulated estimates of the regret and the asymptotic regret for

Finally, the asymptotic regret at 6 = 0.3and 0.8 are respectively 1.16667 and -3.

underlying Exp(1)at m=5,15,20 and 6 =0.5
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It is now clear that the triple sampling procedures with normal stopping rule can result extremely
accurate estimates of the targeted parameters with non normal underlying distributions.

5.6 The probability of early stopping

We aso estimated the probability of early stopping in our simulation. During the simulations we
calculated the number of times the triple sampling procedure stops at the first stage, second stage and
third stage. Then we calculated the relative frequency of terminating the procedure at each stage. In
the tables in Appendix B we denote the estimated probabilities of stopping at the first, second and

third stagesas p(m), p( N, )and p( N ) respectively. Note that the sum of these probabilities is
equal to one.

When the underlying distribution is uniform, if the design factor & is less than 0.5 and for smal
starting sample sizes m, the procedure tends to terminate at the first or third stage. However, for fixed

S , as m increases, the procedure terminates at the third stage almost surely for large values of n’ (
A—> ). As & increases, the probability of stopping a the second stage increases with m.

Specifically, when the initial sample size increases to 20 and a 6 =0.5 and 0.8 the procedure
terminates at the third stage almost surely.

When the underlying distribution is exponential, the triple sampling exhibits amost the same pattern
except that the convergence to one of p(N) is slower than in the case of the uniform distribution.

This could be due to the skewness of the exponentia distribution, see Appendix B for al
distributions.

The Tables in Appendix B support our conjecture regarding the almost sure termination of the triple
sampling procedure at the third stage, see, chapter 111, Theorem 3.2.2.2.

5.7 Investigation of the asymptotic distribution of &

In the main simulation experiment we aso investigated the distribution of the rounded off portion of
the final stage sample size N . Hall (1981) proved that the random variable &y, that appears in our

Theorem 3.2.2.2 is asymptoticaly uniform over (0,1)as N —oo. His proof only works if the

underlying distribution is normal. A generalization of Hall’ s result to other underlying distributionsis
not currently available. Meanwhile, we have tested the distribution of the continuous part of the final

stage during simulation for a particular combination of §,m,« and n" . We saved the values of En,
for each replicate. The Kolmogorov-Smirnov test (KS) was used to test the simulated &y, values for
uniformity.

Tables C1, C2 and C3 in Appendix C, give summary statistics regarding the distribution of the
random variable ¢, under three different classes of distributions: normal, uniform and exponential at

0 =0.5and m=5, 15 and 20.

From Tables C1, C2 and C3with m=15 and n =500, the p — values of the KS statistic are 0.154,
0.303 and 0.439 respectively for the three underlying distributions. Thus, asymptotic uniformity over

arange of underlying distributions seems plausible. Further, in Theorem 3.2.2.2 we have E(le) IS
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equal to E{l—(ﬂ,g(Sil)—[ﬂ,g(Si1 )J)} In all the simulations this value was close to 0.5. More

details concerning the behaviour of the distribution of &, a m=>5and m=20can be found in
Appendix C.

Before we end up this chapter we would like to show the performance of but the method for larger

values of n*. We consider here n” = 500, 1000, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 and for
brevity only three underlying distributions: normal, uniform and exponential. Tables 5.29, 5.30 and
5.31 show the effect of increasing the optimal sample size on the performanceat m=15 and 6 = 0.5

. In particular they show the behaviour of N, )?N and the regret at the above values of n' . We see

excellent performance for all estimates in comparison with the previous selection of n” . Moreover the
regret here is mostly negative for all the above underlying distributions. This indicates that the triple

sampling procedure performs better than the fixed sample size procedure for large valuesof ' .

n Ns(15) ssiN(15) 115(15) ssd (0.5) o,(15)
500 498.92 23.2551 0.000109 0.0447214 0.486
1000 999.04 32.6466 0.000122 0.0315286 -6.474
2000 1998.94 46.2866 -0.000040 0.0223607 -14.264
2500 2499.21 51.2060 -0.000103 0.0199010 -34.768
3000 2998.97 56.3489 -0.000061 0.0181122 -41.039
3500 3498.81 61.2683 -0.000002 0.0167705 -62.163
4000 3999.19 65.2932 -0.000078 0.0156525 -112.354
4500 4499.31 69.5417 -0.000076 0.0147580 -124.769
5000 4999.23 73.1194 -0.000039 0.0138636 -143.308

Table 5.36: Large sample performance for all estimates when the underlying distributionis N (O, 1)
and m=15,6 =0.5.

n Ns(15) ssiN(15) 11,(15) ssd (0.5) o,(15)
500 499.84 14.5344 0.500138 0.0129692 -1.6559
1000 999.80 20.3482 0.499971 0.0091679 5.7754
2000 1999.99 28.8453 0.499989 0.0064846 -31.9243
2500 2499.80 31.9758 0.499978 0.0058138 -13.7676
3000 2999.81 35.5535 0.499989 0.0051430 -60.8281
3500 3499.81 38.0132 0.500016 0.0049193 -56.5469
4000 4000.00 40.6964 0.499992 0.0044721 -18.3623
4500 4499.98 42.9325 0.500011 0.0042485 -49.5195
5000 4999.69 45.3922 0.500009 0.0040249 -72.9023

Table 5.37: Large sample performance for al estimates when the underlying distribution is U (O, 1)
and m=15,6 =0.5.
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n Ns(15) ssiN(15) 115(15) ssd (0.5) o, (15)
500 494.94 48.299 0.997648 0.0451686 6.024
1000 995.59 69.989 0.998916 0.0317522 2.384
2000 1996.58 100.847 0.999557 0.0223607 -18.247
2500 2496.27 113.369 0.999623 0.0199010 -22.274
3000 2997.85 127.009 0.999733 0.0181122 -38.203
3500 3497.97 135.953 0.999742 0.0167705 -70.302
4000 3997.72 146.239 0.999720 0.0156525 -41.623
4500 4498.20 154.512 0.999901 0.0147580 -130.177
5000 4998.80 168.152 0.999914 0.0140872 -76.789

Table 5.38: Large sample performance for al estimates when the underlying distribution is Exp(l)
and m=15,6 =0.5.
We prefer the asymptotically negative regret values if they provide better estimates because this

indicate that the triple sampling procedure does better than the fixed sample size . Otherwise they may
delay the procedure and cause early stopping and consequently obtain bad estimates.
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Chapter VI

Triple Sampling Fixed Width Confidence Intervals for the Population
Mean

6.1 Introduction

As before we assume nothing about the underlying distribution except that the first six moments are
finite. The objective of this chapter isto construct a fixed width confidence interval for the population

mean using the triple sampling procedure as presented in (2.2)—(2.3). The approach used here

involves using second order Edgeworth approximations. Moreover, we will find the coverage
asymmetric and symmetric confidence intervals. Then we will discuss the sensitivity of triple
sampling fixed width confidence intervals to shiftsin the popul ation mean.

In the next section we shed light on some characteristics of the Edgeworth expansion and its
l[imitations.

6.2 Edgeworth asymptotic expansion

Let X,,..., X, be a collection of i.i.d.random variables drawn from the distribution function
F(.;u,0), with finite population mean u and variance @ <. Let F, (x)=P(Z, <x), where
Z, =~In (X, —ut)/~6 . Then by the central limit theorem lim F, ( x) = x) , for every fixed x

and ® (x) is the standard normal cumulative distribution function.

Cramer’s Condition

A cumulative distribution function F(.;,u,H)defined over ‘R satisfies Cramer’s condition if

IimSup|EF (e )|<1.

t—o0
Remark
All absolutely continuous distribution functions satisfy Cramer’ s condition.

The Two-term Edgeworth Expansion Theorem (see, DasGupta 2008) is
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Theorem 6.1.1 (Two-term Edgeworth Expansion)

Suppose the distribution function, F ( . /,1,0) satisfies Cramer’s condition and E (X 4) <. Then

F.(X)=®(x)+¢ pd(x)/Vn+(c, p,+c, p,)$(x)/n+0(n %)

uniformly in x and as N — oo, where ¢(x) and (I)(x )arethe standard normal density and

-3 2
02=M1 C3=7/_, p,=1-%*, p,=3x-x%and

distribution functions, ¢, = z ,
6 24 72

p, =—15x+10x% - X°.
Proof: See Kokic et al. (1990) and Hall (1992) for the proof.

Note that ¢, and c, are called the skewness and kurtosis corrections of the underlying distribution

function. The Edgeworth expansion is an improvement over the central limit theorem, which fails to
take account of the skewness in the distribution of the sample mean of a given finite sample of size n .
Expanding successive terms will capture both the skewness and the kurtosis of the underlying
distribution. Using further terms in the expansion may cause it to become unstable because of the
presence of higher order polynomials. We therefore restrict our expansion to the first two terms. The

error of the leading term in the expansion, the standard normal density, is of O(n'” 2) provided that

y # 0. This suggests that convergence to normality is relatively slow, especially in the tails of the
underlying distribution (see Barndorff-Nielsen and Cox, 1989, chapter 4). Bhattacharya et al. (1978)

mentioned that the error O ( n¥ 2) can be improved if one makes more stringent moment assumptions.

We must stress that the Edgeworth expansion in Theorem 6.1.1 is only an asymptotic expansion and
not a convergent series. This means that if the expansion is stopped after a specific number of terms,
then the remainder will be smaller than the last term that has been included; see Hall (1992).

From Theorem 6.1.1, by direct substitutions for ¢,,c,,C,, p;, p,and p,and by taking n=1, we have
the heuristic result

(6.1 F(x)=d(x)—¢(x)X(x*~10x* +15)y* /72— (x)(X* ~1) 7 /6
—p(x)x(X* =3)(B-3)/24+0(1).

If the distribution function F ( . ) of an absolutely continuous random variable admits an Edgeworth

expansion, then we can obtain an expansion of the density function heuristically by differentiating
(6.1) with respect to X. Hence the probability density function of the Edgeworth expansion is
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1+;/x(x2—3.)/6+(ﬂ—3.)(x“—6x2 +3)/24

(62) f(x)=¢(x) 72 (X ~15x" + 45¢ —15)/72

+0(1).

Equation (6.2) shows how to represent a continuous probability density function f (X) in terms of
the standardized normal probability density function and which is an approximating standardized
density with the desired y and S . The density function f (x) in (6.2) is called a standardized
Edgeworth asymptotic expansion; see Johnson et al. (1994).

The Edgeworth expansion is more useful in many applications than asymptotic series such as the
Gauss-Hermite and Gram-Charlier series. This so because first, it is directly connected to the
moments and cumulants of a probability density functions, a property that islost in the Gauss-Hermite
series. Secondly, it is atrue asymptotic expansion since the error of the approximation is controlled by

estimating the error of the expansion until the order O ( n¥? ) . It isworth mentioning the disadvantage

of the Edgeworth series as an approximation to the standardized density function. It was shown by
Barton and Dennis (1952) that the Edgeworth series can give negative values for some values of X.
They found the region in the plane of values of skewness and kurtosis where the density is positive.
This region was further studied by Draper and Tierney (1972) in detail using numerical methods.
They found that the validity region that ensures the Edgeworth series to represent a positive definite

and unimodal probability density functionis R, ={| | < 0.45,3.0< 8 <5.35} . If the parameters are

lie outside the validity region (as we shall see in the forthcoming examples), the results may be
misleading. Furthur analytical investigations about the validity region were undertaken by Balitskaya
and Zolotuhina (1988).

The first few terms of the series (6.2) are given in standard references (such as Cramer, 1957,

Abramowitz and Stegun, 1972, and Juszkiewicz et al., 1995). References for the main results on
Edgeworth expansions are Bhattacharya and Ghosh (1978), Barndorff-Nielsen and Cox (1989), Hall
(1992) and Lahiri (2003).

We now give some examples of the Edgeworth asymptotic expansion involving the uniform, t( r)
and chi-sguared distributions.

6.2.1. Uniform distribution U (a,b)

From (6.2) , the Edgeworth asymptotic expansion for the standardized uniform distribution U (a,b)
is

f (x)=¢(x){0.85+0.3x* ~0.05x*} +O(1),

while the standardized uniform density function is

g(x)zz—jé,—\/g<x<\/§.

131 |Page




0.35 Variable
—@— edg
—— exac
0.30+
| o 1 1 b ] S 5 =-a
w 0.25-
2
=
(7]
=
()]
© 0.20-
0.15-
0.10- T T T T T
2 1 0 1 2
X

Figure6.1. The standardized uniform density and its Edgeworth approximation

Figure 6.1 shows that Edgeworth approximation to the standardized uniform density is poor. Note that
the kurtosis of the uniform distribution, 8 =1.8 lies outside the validity region.

6.2.2. The tdistribution

From (6.2) , the Edgeworth asymptotic expansion for the standardized t( r) distributionis

f (x):¢(x){1+ 4(r1_4)(x4_6xz +3)}+O(l) , defined for al r > 4.

The standardized density for t( r)is

1

Cr((r+1)/2) 2 Y17
ol X)_F(r/z)\/n( r-2) (1+r—2j

The Edgeworth expansion for t( r ) dependson r and clearly lim f (x)=¢(x)+0O(1).

I —o0

, —00< X<oo, > 2.

Toillustrate further theroleof r , consider r =5,10and 20.
Case(l): r=5

Figure 6.2 shows the poor performance of the Edgeworth series for the standardized density of the t
distribution with 5 degrees of freedom. Here the kurtosis lies outside the validity region.
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Figure6.2. The standardized t ( 5 ) density and its Edgeworth approximation

Case(Il): r=10

Figure 6.3 shows the good performance of the Edgeworth approximation for the standardized density
of the t (10) . Here the skewness and the kurtosis lie inside the validity region.

Variable
—e— T(10)
0.4+ —B— Exacl0
0.3+
")
2
=
2
S 0.2
°
0.1+
0.0+
T T T T T T T
3 2 1 0 1 2 3
X

Figure 6.3. The standardized t( 10 ) density and its Edgeworth approximation
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Case(Ill): r=20

Similarly, Figure 6.4 shows the good performance of the Edgeworth approximation to the
standardized density of the t distribution at r = 20. Both the skewness and the kurtosis lie inside the
validity region.

Variable
0.4 —o— T(20)
—B— Exac20

0.3+

0.2+

densities

0.1+

0.0+

Figure 6.4. The standardizedt ( 20 ) density and its Edgeworth approximation

6.2.3. Chi-Squared distribution

The Edgeworth asymptotic expansion for the standardized chi-square distribution with r degrees of
freedomis

f (x)=4(x) Mx(xz—3)+3(6r1—81r)+ x2(2x421x2+36)}+o(1).

The standardized chi-squared density is

N Ia —(r++2r
g(x):rzrz/z)(rh/fx)2 exp w L x> —\r/2.

The Edgeworth expansion of the chi-sgquare distribution depends on the degrees of freedom. Note also
that lim f (x)=¢(x)+O(1).
r—o

To illustrate the effect of the increase of the degrees of freedom r on the accuracy of the Edgeworth
approximation, we take r = 2,5 and 10.
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Case(l): r=2

Clearly, r =2 yields the case of an exponentia distribution with mean two, and the Edgeworth
expansion for thiscaseis

f(x):¢(x){%xﬁ—éx4+%x3+x2—x+%}+o(l).

Variable
1.0 * —0— edg
—B— exac

0.8+

-
s

0.6

densities

0.4+

0.2

0.0

Figure 6.5. The standardized exponentia density and its Edgeworth approximation

Figure 6.5 shows the poor performance of the Edgeworth expansion in the case of an exponential
distribution, and the highest order approximation behaves poorly in the upper tail and the oscillations

in the tail are more severe. Here the skewness and kurtosis, y =2, [ =9, are both outside the
validity region.

Case(ll): r=5

This case leads to a better performance than in Case (I). Notethat y =/8/5, S =5.4, both of which

are outside the validity region. However, the value of the kurtosis is close to the upper bound
specified in the validity region.
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Figure 6.6. The standardized chi-squared density with 5 degrees of freedom and its Edgeworth

approximation

Case (Il): r =10

Figure 6.7 shows the good performance of the Edgeworth approximation. Note that y =+/0.8 and
[ =4.2. This is a nice case where the skewness is outside the validity region but the kurtosis is

inside the validity region. Nevertheless the skewnessis not large.
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Variable
—@— edg
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Figure 6.7. The standardized chi-squared density with 10 degrees of freedom and its Edgeworth

approximation
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Clearly, the Edgeworth approximationsimprove as r increases.

The above results illustrate how the values of the skewness and the kurtosis of the underlying
distribution determine the behaviour of the Edgeworth series.

In the following section, the Edgeworth expansion is used to describe the coverage accuracy of triple
fixed width confidence intervals for the unknown population mean. Specifically, an asymptotic
second order expansion of the coverage probability of the proposed interval is given. Then to
guarantee better coverage a triple sampling fixed width confidence interval with a controlled Type |1
error is proposed, and its characteristics are assessed. Operating characteristic curves are developed to
study the effect of skewness, kurtosis and the design factor on the probability of committing a Type Il
error.

6.3 The coverage probability of the triple sampling sequential procedure

In this section the main objective is to construct a fixed d,—d,(>0) width confidence interval

l,=(X,-d,,X,—d,)for u, whered, < d, are predetermined constants, such that the
confidence coefficient is at least the nominal value 100( 1- ¢ ) percent. Assume further that a
random sample X,..., X, for n>2 has been observed with sample mean X . Hence we construct
the required interval for the unknown mean 1 so that the coverage probability is at least the nominal
value 100(1- &) %. Thisimpliesthat

(6.3) P(uel,)= P(dlé )zn—uédz)
=P(dn/0 <7, <d,n/6)
=H(d,Vn/0)-H(dVn/0)=(1-a),

where H (- )is the cumulative distribution function of Z, and from which we may obtain the
necessary sample size required to satisfy the above requirements. Generally, however, investigation of
(6.3) demonstrates that obtaining an explicit general form of the optimal sample size n" will be

troublesome for severa reasons. Firstly, determination of the cutoff point requires complete
knowledge of the form of the cumulative distribution function and its inverse probability. Secondly,
explicit determination of the optima sample size in a simple form (as required to define stopping

rules in the case of sequential sampling) may be impossible because of the difficulty of solving (6.3)
for n, aswith the beta or gamma distributions, for example.

Let the optimal sample size N takes the general form n” = Ag (6) that satisfies (6.3) and assume

further that the triple sampling sequential procedure is applied to construct a fixed d, — d1(> O)

width confidence interval for the population mean. Then the coverage probability of the required
confidence interval is
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= P(d,< X —u<d, [N=n)P(N =n)

From Theorem 3.2.2.1 (iii), Theorem 3.3.1 and Theorem 3.3.2 we proved that )?N and N are
asymptotically normal as A — oo, moreover they are asymptotically uncorrelated as A — .
Recalling the conjecture we made in Chapter 3, that is, X v and N are asymptotically independent as
A — oo then this implies that the events {dl <X —u< dz} and {N =n} are asymptotically

independent asA — oo, where N is the third stage sample size of the triple sampling sequentia
procedure. Moreover, Theorems 3.2.2.2, 3.2.2.3 and 3.3.1 still apply in this case. Forn" — oo,
equation (6.4) gives:

(65) P(uely) ( znstM)P(N=n)
:EN(H JINTo))- EN(H(dlm))z(l—a)

and therefore we can use equation (6.1) to approximate H (dl N/Q)and H (d2 N/Q).

For simplicity, let uy be arandom variable defined by u,, = \/N/6 . Thus equation (6.5) yields the
following coverage

(6.6) P(uely)=Ey{®(duy)-®(duy)+(172)(4(duy) f,+6(dyuy) f,)}+O(),
where

f,=dpug % +3d7ug (B-3-(10/3)y*) +12y d? uf —9d, u, (B -3-(5/3)r°) 127,
and

f,=—d;uy % -3d; uf (B -3-(10/3)y%)-12y d] ui +9d, u, (B -3—(5/3)y°)+12y.

Equation (6.6) shows that the coverage probability depends mainly on the values of the skewness
and kurtosis of the underlying distribution.

Hence, using Theorem 3.2.2.3 and for simplicity E(gNl)z:I/Z asymptotically, we obtain an

expression involving the skewness and kurtosis of the underlying distribution, § and n’.
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Theorem 6.3.1

For the triple sampling procedure given by (2.2)—(2.3)and the optimal fixed sample size
n" =a’9/d?, the coverage probability of I, as d =0 is
P(uely)=a(2d,a/d)-®(2d,a/d)-t,7/6+ Y (ay,B,5,d)+0(d?),

where,

t, :an(‘//ldln_llfz dzn)' d :(dz_dl)’ Vi :¢(2d1a/d)' L P :¢(2d2a/d)’

(-1 4)tvd ™ +(2/3)yt,v,d 2 +(1/3)tvd
Y(a,7,8,6,d)=(n")" | ~(¥3)7t,y,d™ +(4/9)tv,d " +(4/3)ytv,d® |,
+(2/3)t,v,d 7" +(8/9) y *tov,d~®

The proof follows from equations ( 6.4),( 6.5) and ( 6.6)and then making use of Theorem 3.2.2.3.

This completes the proof.
Theorem 6.3.1 shows that the coverage is completely determined by the values of the skewness,

kurtosis, design factor, optimal sample size and width of the interval.

In the special case where d, =—d, (symmetric intervals) Theorem 6.3.1 reduces to

(6.7) P(ue IN):(l—a)—%g(%+&a2+kz a'+k,a°+k,a’)+o(d?),

where
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k,=7*(B-1).

k=3(B-1)(B-3-(16/3)7%)-2ys.

k, =—-15(B—1)(B—3-2y)+{-6(B~3)+2(4n" +15)y°}s.

k= —45(8 ~1)( B - 23/5-(8/3)y°) + {12(2n" +3) B ~10(9+8n" ) y* - 72n" ~108} 5.
ky =45(8 —1)(B+5-(5/3)7*)+{-18(1+4n") B +30(L+4n" )y +216n" —90} 5.

Asd >0, n" — o the coverage will be asymptotically insensitive (robust). However, for small n’
and also for considering symmetric intervals equation (6.7) will be in the following form

(6.8) P(ye|N):(1-@-%(%%&+k2a4+k3a6+k4a8)

where
k,=7*(B-1).
ky=(B-1)(38-9-16y°)-4y"5E 2y, ).

k,=-15(8-1)(B -3~ 2y2)+{—12ﬁE(gNl)+4(2n* +15E &y, ))7® +36E 2y, )} 5.

24(n" +3E —20(9E an’ )2
k1_3(ﬂ1)(15ﬁ6940y2)+{ (n + (8N1))ﬁ ( (8N1)+ N )y )

-72n - 216E(8N1)

-36( E 2n 60| E on )2
ko= 15(ﬁ_1)(3ﬂ+15—5y2)+{ (E(ey,)+2n") B +60(E(zy, )+ 20" )y )

+216n" —180E (8N1)

and the coverage will be sensitive to values of the skewness and kurtosis of the underlying
distribution and also to the choice of o . The coverage is asymptotically robust when the width of the

interval approaches zero, which implies that the optimal sample size n’ goesto infinity.

As a specia case, consider the normal distribution, where y =0, g =3and E(gNl):lIZ .
Equation (6.8) gives

a¢Ea)(a2_5+5)+o(1),

(69) Pluely)=(1-a)-—=<

which agrees with the corresponding result in Hall (1981). The asymptotic coverage in (6.9) isless

than the nominal value 1—a and approaches it from below as n” increases. To maintain a coverage
probability of at least the nominal value, Hall (1981) suggested taking an extra sample of size
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[( a’-o+ 5) / 20 ] after termination of the triple sampling procedure to improve the coverage, as
mentioned in Chapter .

We now obtain the asymptotic coverage for the uniform, t( r ) chi — sguared and exponentia
distributions.

From (6.7) , the coverage when the underlying distribution is uniform, where y =0and  =1.8is

(6.10) P(ue IN)=(1—a)—%(ko+k1a2+k2a4+k3a6)+o(d2),
where

k, =—2.88.

k, =14.4+7.25.

k, =100.8—{28.8n" +43.2}5.
k, = 244.8+{86.4n" ~122.4} 5.

Similarly, the 100 (1- )% coverage probability when the underlying distribution is t(r)is
ap(a)

(6.12) P(ue|N)=(1—a)—m{kﬁaﬁ+k4a4+k2a2+k0}+o(d2),

where

ke = (r-1).

k,=(-5-8)r+(5+495).

k, =4r?+(-35+(4n+6)5)r +31+(-16n-24)5.

Ky = (—45 +20)r? +[ —85+(-12n+29)5 |r + 65+ (~52+48n)s.

while from (6.7)the 100(1—-« )% coverage probability when the underlying distribution is chi-
squared with r degrees of freedomis

ap(a)
18r25n’

(6.12) P(uely)=(1-a)- {kor? +kir +k, | +0(d?),

where

k, =(9a%—95 +45).
I<1:a8+(—§—5ja6+ E+(4n+2—1j5 a4+(§+(—22n—18)5ja2+ %+(6n+§j5 :
2 2 2 2 2 2

k, = 6a° —69a° + 45a" + 315a° — 45.
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A special case of (6.12)is the exponential distribution where I =2. Here, taking E(gNl) =1/ 2the

asymptotic coverageis
(6.13) P(uely)=(1-a)-T+o(d?),

where

_ ap(a) |(8a" - 922" + 60" +564a’ + 660) + 5 (-2a° + 21" - 362" - 33)

726N |45 (8at - 442’ +12)

To illustrate the coverage probabilities based on the Edgeworth asymptotic expansion, we take the
nominal values to be 1-a =0.9,0.95and 0.99 with 6 =0.3,0.5and 0.8 and optimal sample sizes

n =24,4361,76,96,125,171,246 and 500 respectively. We denote Cg(§) as the asymptotic
coverage probability at a specific value of 6 . We consider the following underlying distributions:

standard normal, standard uniform, t, beta and chi-squared.

6.3.1. Standard normal distribution

To illustrate the asymptotic coverage probabilities obtained by Edgeworth approximation at the above
values 6 and n* and at 1-«a =0.95consider Table 6.1. The coverage probabilities based on the

Edgeworth approximation approach the nominal coverage probability from below.

n' Cg(0.3) Cg(0.5) Cg(0.8)
24 0.8821 0.9102 0.9260
43 0.9121 0.9278 0.9366
61 0.9233 0.9343 0.9406
76 0.9285 0.9374 0.9424
96 0.9330 0.9401 0.9440
125 0.9370 0.9424 0.9454
171 0.9405 0.9444 0.9466
246 0.9434 0.9461 0.9477
500 0.9467 0.9481 0.9489

Table 6.1: The asymptotic coverage probability when the underlying distribution is standard normal

for variousvaluesof § and n ; 1-a =0.95.
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6.3.2. Standard uniform distribution

Similarly, to illustrate the asymptotic coverage probability based on an Edgeworth approximation for
different valuesof 6 and n* with 1-a =0.95see Table 6.2. We see that the probabilities tend to

increase with 0 and with n*, actually exceeding the nominal value in some cases. However, these

results should be treated with caution since the Edgeworth approximation is poor.

n Cg(0.3) Cg(0.5) Cg(0.8)

24 0.925025 0.940078 0.948545
43 0.940320 0.948722 0.953448
61 0.946021 0.951944 0.955275
76 0.948709 0.953463 0.956136
96 0.950986 0.954750 0.956866
125 0.952994 0.955884 0.957510
171 0.954782 0.956895 0.958083
246 0.956263 0.957732 0.958558
500 0.957979 0.958701 0.959108

Table 6.2: The asymptotic coverage probability when the underlying distribution is standardized

uniform for variousvaluesof 6 and n*; 1-a =0.95.

Table 6.3 shows the corresponding asymptotic coverage probabilities when the nominal coverageis

0.99. The effect of the Edgeworth approximation being poor is clear!

n’ Cg(0.3) Cg(0.5) Cg(0.8)
24 0.99135 0.99642 0.99928
43 0.99673 0.99957 1.00116
61 0.99874 1.00074 1.00186
76 0.99969 1.00129 1.00219
96 1.00049 1.00176 1.00247
125 1.00120 1.00217 1.00272
171 1.00183 1.00254 1.00294
246 1.00235 1.00284 1.00312
500 1.00295 1.00320 1.00333

Table 6.3: The asymptotic coverage probability when the underlying distribution is standardized

uniform for variousvaluesof 6 and n*; 1—-a =0.99

143 |Page




6.3.3. The tdistribution

To study the impact of increasing the degrees of freedom on the performance of the coverage
probability at 1-o =0.95, we take r =5,10, 20,50 and 100 while 6 is alowed to vary from 0.3,

0.5and 0.8.
Case(l): r=5

The asymptotic coverage probability at 6 = 0.3,0.5and 0.8is respectively

P(uely)=095+(4.630692279/n") - 0.04820022046 +0( d°).
P(uely)=095+(2.771017473/n") - 0.04820022046 +0( d*).
P(uely)=0.95+(1.724950396/n" ) - 0.04820022046 +0( d?).

Case(ll) r=10
The asymptotic coverageat 6 = 0.3,0.5and 0.8is respectively

P(uely)=095-(17746865840/n" )~ 0.008033370077+0( d?).
P(uely)=095-(1.0469542250/n") - 0.008033370077+0( d°).
P(uely)=095-(0.6376047727/n" ) - 0.008033370077+0( d?).

Case(Ill): r=20

The asymptotic coverageat & = 0.3,0.5and 0.8isrespectively

P(uely)=0.95-(17403333110/n")-0.003012513779+0( d*).
P(uely)=0.95-(1.0231853080/n" ) - 0.003012513779+0( d*).
P(uely)=0.95-(0.6197895568/n" ) —0.003012513779+0( d?).

Case (IV): r =50
The asymptotic coverageat 6 = 0.3,0.5and 0.8isrespectively

P(uely)=095-(1.6603389800/n" ) —0.0009940518632+0( d*).
P(uely)=0.95-(0.9740748628/n") —0.0009940518632+0( d*).
P(uely)=0.95-(0.5880512975/n")—0.0009940518632+0( d?).

Case (V): r =100

The asymptotic coverageat 6 = 0.3,0.5and 0.8is respectively
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P(ue
P(ue
P(ue

l,)=0.95—(16535712050/n" ) —0.00050208563+0( d?).
) =0.95-(0.9695495681/n" ) - 0.00050208563+0( d?).
) =0.95-(0.5847873977/n" ) —0.00050208563+0( d?).

Theidea of listing the equationsin thisway isto show the following

1

3.

Table6.

The leading coefficients of the term 1/n’ decreases as & increases. Moreover, the coefficient
a 6 =0.5 liesbetween that of the other valuesof & .

For a specific value of r, the last term in the equation is fixed for all values of ¢ and
decreases as r increases.

At r =5the sign of the leading coefficients of the term l/n* is positive, while for the

remaining value of rthe sign is negative. The reason of this nice picture is due to the
kurtosis. Note here that at r = 5the kurtosisis 9, which is outside the validity region, while
for the other values of r the kurtosis values are inside the validity region.

4 shows the asymptotic coverage probabilities for various values of r with 6 = 0.5 and

n' =500 for nominal coverage probabilities 90%, 95% and 99%. Clearly as r increases the
asymptotic results approach the nominal values from above at 90% and from below at 95% and 99%.

r 90% 95% 99%

5 0.924900 0.901800 0.922310
10 0.904155 0.941970 0.978720
20 0.901558 0.946987 0.985770
50 0.900542 0.949006 0.988530

100 0.900260 0.949498 0.989295

Table 6.4: The asymptotic coverage probabilities for underlying t distribution with r =5,10, 20,50

and 100and 1- ¢ =0.9,0.95and 0.99at 6 =0.5 and n" =500.

6.3.4. Beta (4,4) distribution

For the beta(4,4) distribution the standardized density is

g( x) =0.000500114( 9—x*)*, —3< x<3.

The corresponding Edgeworth asymptotic expansionis

f(x)=

$(x){1-0.022727272(x* - 6x +3){ + O(1).

For nominal coverage 95% the asymptotic coveragesat & = 0.3,0.5and 0.8 are
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P(uely)=0.95-(13518654720/n")+0.00438183823+0( d?).
P(uely)=0.95-(0.7854552756/n" ) + 0.00438183823+0( d?).
P(uely)=0.95-(0.4668495391/n" ) +0.00438183823+0( d?).

For n"=500and & = 0.5, the 90%,95% and 99% coverage probabilities are 0.897734, 0.954382

and 0.990662 respectively. Clearly, the coverage probability exceeds the nominal value at 95%and
99% whileit is lessthan the nominal valuea 90%.

Note that the skewness of the Beta(4, 4) distribution isinside the validity region while the kurtosis
(2.45455) is outside.

6.3.5. Chi-squared distribution with r degreesof freedom
Case(l): r=2

Table 6.5 shows the asymptotic coverage probabilities for an underlying exponential distribution at

& = 0.5for selected n' values at nominal coverage 90%. As with the uniform case, the Edgeworth-
based approach leads to poor results.

= Cg(0.3) Cg(0.5) Cg(0.8)
24 0.95759 0.97868 0.99055
43 0.98163 0.99340 1.00002
61 0.99059 0.99839 1.00355
76 0.99481 1.00147 1.00522
% 0.99839 1.00366 1.00663
125 1.00155 1.00560 1.00787
171 1.00436 1.00732 1.00898
246 1.00668 1.00874 1.00990
500 1.00938 1.01039 1.01096

Table 6.5: The asymptotic coverage probability, showing the effect of the poor behaviour of the
Edgeworth approximation under the chi-squared distribution with r =2, 1-« =0.9.

Case(ll) r=5

The asymptotic coverage probability at 6 = 0.3,0.5and 0.8 is respectively
P(uely)=095-(2488184025/n")+0.02479709643+0( d*).
P(uely)=095-(1485587290/n" )+ 0.02479709643+0( d°).
P(uely)=095-(0.921626627/n")+0.02479709643+0( d?).

Case(Ill): r =10
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The asymptotic coverage probability at 6 = 0.3,0.5and 0.8 is respectively

P(uely)=0.95-(2224000864/n")+0.01239854821+0( d?).
P(uely)=0.95-(1319284531/n")+0.01239854821+0( d?).
P(uely)=0.95-(0.810381594/n" ) +0.01239854821+0( d*).

Case (IV): r=30

The asymptotic coverage probability at 6 = 0.3,0.5and 0.8 is respectively

P(uely)=0.95-(1865008892/n" ) +0.004132849406+0( d*).
P(uely)=095-(1098694106/n" )+0.004132849406+0( d?).
P(uely)=0.95-(0.667642039/n" )+0.004132849406+0( d?).

In Table 6.6 the asymptotic coverage probabilities a8 § =0.5, n" =500and r=5, 10 and 30 are
shown for nominal coverage probabilities 90%, 95% and 99%. Clearly the asymptotic value
approaches the nominal value as r increases, from above when the nominal coverages are 90% and
95%, and from below at 99%. Note that when r=5 the skewness and kurtosis are both outside the
validity range, while at r=10 and 30 only the skewness is outside.

I 90% 95% 99%

5 0.945688 0.974790 0.975053
10 0.922844 0.962399 0.982527
30 0.907615 0.954133 0.987509

Table 6.6: The asymptatic coverage probability for underlying chi-squared distribution with
r =5,10,30at n =500and § =0.5.

We shall investigate the accuracy of the asymptotic coverage probabilities in the next chapter using
simulation.

6.4 Sensitivity of triple sampling fixed width confidenceintervalsto a shift in the
population mean

We now introduce the idea of controlling the probability of committing a Type Il error and at the
same time improving the coverage probability along the lines of Costanza et. al. (1995), Son et. al.
(1997) and Hamdy (1997).

Confidence intervals in general provide satisfactory information regarding the quality and the
reliability of inference (see, for example, Nelson, 1990 and 1994). It is also evident that a confidence
interval shows by its width the precision of estimation as well as which parameter values would not be
rejected if they were hypothesized as point null values. This view of the duality between the union of
al non-rejectable point null hypotheses and a single confidence interval is referred to by Tukey
(1991) who said
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“Many of us are familiar with deriving a confidence interval from an infinite array of tests of
significance, one for each potential null hypothesis”.

His point was made in the two following sentences

“Fewer of us perhaps have thought of the use of a confidence interval as the reverse process. Thisis
the most important reason for a confidence interval...”

Based on his view, the intersection of an infinite array of confidence intervals is used to locate a
single set of plausible point null hypotheses. Lehmann (1986, pp. 89-96) used the concept of
confidence intervals to test hypotheses. He studied the relation between uniformly most powerful one-
sided tests and the corresponding lower or upper confidence bounds.

In order to design and perform tests of hypotheses based on confidence intervas using the idea of
Tukey (1991), we need to consider the idea of controlling the Type Il error probabilities. This is
essentially the approach employed when statistical quality control charts are designed to detect shifts
in a process mean; see Montgomery (1982) and Rahim (1993) for details. Such work on the
relationship between confidence intervals and the power of tests has received little attention in the
literature. To the best of our knowledge, no-one has studied the use of triple sampling fixed width
confidence intervals to test hypotheses in the manner of Tukey for the class of continuous
distributions with finite first six moments.

Costanza et. al. (1995) evaluated the sensitivity of fixed width confidence intervals for detecting shifts
in the normal mean based on Hall's (1981) triple and modified triple sampling against the
corresponding fixed sample size sampling procedure. They found that the usua triple sampling fixed
width confidence intervals were more sensitive to shifts occurring within the intervals than their fixed
sample size counterparts. However, the corresponding Type Il error probabilities were still large.

Hall’s triple sampling attains the nominal value asymptotically and his modified triple sampling
improved the coverage probability when the underlying distribution is normal, but it has the
disadvantage of increasing the Type Il error probabilities for shifts that occur, both inside and outside
the confidence intervals. The reason is that the usual optimal sample sizes used to establish the triple
sampling estimation procedures do not reflect any requirements regarding the control of Type Il error
probabilities. The use of another optimal fixed sample size that actualy reflects some form of Type |
error will improve the coverage probability.

In the following section, we will describe the hypotheses to be tested when controlling type 11 error
probabilities, and derive the coverage and operating characteristic function for symmetrical intervals
based on the new approximate optimal fixed sample size

6.4.1 Triple sampling fixed width confidenceintervalswith controlled Typell error probability

In this context we formulate the following two hypotheses in order to signify such a shift if it takes
place, where | ()?N —d, X +d).

Hypotheses

(6.14) Hy:u=py, poely
VS
Hl:yzulzuoid(lJrk), wely,,vk>0
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The null hypothesis asserts that no shift in the u, has occurred against the aternative that the
parameter value differs from , by a“distance” 1+ K measured in units of d . To clarify this point,
assume that the null parameter value is u,. If the parameter value hes shifted to 11, > (<),
assessment of the amount of risk associated with the departure from 1, provides an indication of the
ability of |, to detect such a departure.

In section 6.3, the fixed width confidence interval based on the optimal fixed sample size without
controlling the Type I error probability is n" =a’0/d? . Now we find the fixed width confidence
interval based on controlling the Type Il error probability.

It was shown by Brownlee (1965, pp. 117-118) that the optimal fixed sample size required to control
the Type Il error probabilities of detecting shifts in 1 of magnitude id(1+ k )units away from

U =, outsidetheinterval for a prespecified value of kand f,is given by

2
(6.15) n = M,
d*(1+k)
where a isthe a/ 2 point and b is the upper B, point of the standard normal distribution. Note that
we assume that the value of 1 = p, islocated in the centre of the interval in order to provide equal
Type Il error probabilities for equidistant shifts to =, outside the interval in either direction.
Clearly, as k approaches zero, the coverage probability based on ( 6.15)Wi|| be greater than the
nominal value than when using n' = a’0/d? , while for larger values of K, the coverage will be less

than when n" = a’0/d” since the effect of increasing the shift k will dominate the effect of b.

Moreover, we need this maodification in the optimal sample size in order to ensure full protection of
the triple sampling sequential fixed width confidence interval against type Il error.

It was shown that the optimal fixed sample size for testing (6.14) is
(6.16) n =(a+b)’0/d?
see Son et al. (1997) for details. The reason behind this choice may beillustrated as follows:

1. It ensuresthe coverage to be at least the nominal value 100(1— a ) % .

2. It has Type Il error probability less than the prescribed 100 ,% at the particular shift of
interest indexed by the value of K.

3. IthasType I error probabilities that are uniformly less than those corresponding to (6.16) for
al k>0.

4. 1tisindependent of k, which facilitates the algebra in computing the coverage of the triple
sampling procedure with controlled optimal sample size as well as the Type Il error
probability.
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Thus the triple sampling procedure based on the new optimal fixed sample size(6.16) is

(6.17) N, = max{m,[ 5(d*(a+b)) g(Sri)}rl},

and
(6.18) N= max{Nl,[ (d*(a+b)) g(S,il)}l}.

Moreover the same arguments and asymptotic characteristics apply as described in chapter 111, and we
propose the confidence interval | = ( Xy —d, X + d) for 4.

Theorem 6.4.1

The coverage probability of | based on the triple sampling procedure given by (6.17) — (6.18) and
the controlled optimal fixed sample size (6.16) as d — O is given by

a+b)g(a+b)
288n 6

P(,ueIN):(ZCD(a+b)—1)—( S(a,b)+0(d?),

where
S(a,b)=(k+k (a+b)” +k, (a+b)" +k(a+b)’ +k, (a+b)’),

and

k,= 72(ﬂ _1)
ky =3(B-1)(B—-3-(16/3)y%)-2/%
k,=-15(8-1)(f-3- 2y2)+{—6(/3 ~3)+2(4n’ +15)y2}5
k, =-45(8-1)( —23/5—(8/3)y2)+{12(2n* +3)3-10(9+8n" )y —72n’ —108}5
ko =45(8-1)(B +5—(5/3)y2)+{—18(1+ 4n") B+30(1+4n")y? +216n’ —90}5

Proof:

The proof follows exactly as for the coverage probability in Chapter V, after replacing the usua
optimal fixed sample size n =a’0/d* by (6.16).

Clearly, the modified coverage is greater than the nominal value for any value of n" since

(a+b)g(a+b)
288n'S

a+b)o(a+b

>(1_a)_( +28)8¢n(*5+ :

P(uely)=(20(a+b)-1)- S(a,b)+0(d?)

S(a,b)+0(d?),
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The second term will be negligible for most reasonable choices of o and S, and even for small

valuesof n’". The coverage probability under ( 6.16)is greater than under n' = a’0/d”. Moreover,
the controlled coverage depends mainly on the skewness and kurtosis of the underlying distribution
and n'. Theeffect of the design factor & issmall sinceit appears only in the negligible term.

6.4.2 Oper ating char acteristic function of Typell error controlled confidence intervals

Our last assertion in this study is to investigate the sensitivity of the constructed confidence interval to
shiftsin the population mean ¢ .

The probability ( S,.-risk) of not detecting such a shift in the true parameter 11, when, in fact, a shift
has actually occurred is given by

B = P(,u ely |H1)!
see, for example, Costanza et al. (1995), Son et al. (1997) and Hamdy (1997, 1999) for details.

Therefore, 3, may be written as

(6.19) B.= ZP(|X ~|<d,N=n)
ip(|>?N—y1|sd|N:n)P(N=n).

Since )?N is asymptotically normally distributed, independent of N (Theorem 3.2.2.1, (iii)), then )?N

andtheevent N =n,n+1,n+2,... are asymptotically independent. Therefore, B,. may be
expressed as follows

OO

(6.20) B, = P(|X,-m|<d)P(N=n)

n=m

=3 P(~(2+k)d< X, -, <—kd)P(N =n)

n=m

= By (H (~kdyN/8))-Ey (H (~( 2+k ) dNJO)).

Theorem 6.4.2

The operating characteristic function based on the triple sampling procedure given by
(6.17)—(6.18) and controlled optimal fixed samplesize (6.16)as d -0 is

B =®(-k(a+b))-®(~(2+k)(a+b))+Q(ab,y,8.5)+0o(d?),
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where

Q(ab,y,B.6)=(Y72)(de - ).

with

g =7"(a+b) k®+3(8-3-(10/3)y*)(a+b) k*+(125 (B -1-35/2))(a+b) Kk*
~9(a+b)k(B-3-(5/3)y*)+12y

e, =y’ (a+b)’ (k+2)°+3(a+b)’ (k+2)’(B-3-(10/3)y*)-12y (a+b)’ (k+2)’
~9(a+b)(k+2)(B-3-(5/3)y%)+12y,

and ¢, and ¢, are the standard normal densitiesat —k( a+b) and —( 2+k )(a+b).
The proof followsimmediately from ( 6.1) and Theorem 3.2.2.3.

Theorem 6.4.2 shows that the probability of Type Il error f3,. is completely determined by the shift k

and the skewness and kurtosis of the underlying distribution. The influence of ¢ is small, which is
different from the case of the coverage as shown in Theorem 6.3.1.

Remark
It was shown by Son et al. (1997) that the operating characterstic function of Hall’s (1981) triple
sampling procedure is greater than the operating characterstic function with controlled optimal sample

sizeuniformly in k.

As a specia case of Theorem 6.4.2, consider the case in which the underlying distribution is normal
sothat € =e, =0, and thus the operating characteristic function reduces to

B =®(-k(a+b))-®(~(2+k)(a+b))+o(d?*) as d —0.
At k =0thevaueof B,=1/2.

For a uniform underlying distribution, the probability of Typell error is

B =®(-k(a+b))-®(~(2+k)(a+b))+Q(ab,y =0, =1.8,5)+0(d?).

So, it is clear that the probability of Type Il error for any continuous distribution satisfying the
existence of the first six moments and as m — oo is an additively modified version of the Type Il
error probability when the underlying distribution is normal.
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Chapter VII

Simulation Results for Triple Sampling Fixed Width Confidence Intervals
for the Population Mean

In this chapter, we use simulation to study the performance of normal based triple sampling fixed
width confidence intervals for small, moderate and large sampl e sizes. Moreover, we compare the
simulation results with the corresponding asymptotic results found in Chapter V1.

7.1 Experimental setup

Asin Chapter V, a series of Monte Carlo studies was carried out in order to study the performance of
normal based triple sampling fixed width confidence intervals and compare them with the confidence
intervals based on the second order Edgeworth asymptotic expansion.

First we allowed aspects of the triple sampling scheme to vary: m=5, 15, 20;5 =0.3, 0.5, 0.8;n =
24, 43, 61, 76, 96, 125, 171, 246, 500 and 1-a =0.9, 0.95 and 0.99. In addition, we consider the
same class of underlying distributions as in Chapter V in order to enable comparison with the point
estimation results.

For each experimental situation the same 50,000 replicate samples were used as in Chapter V and for

each experimental situation we estimated the coverage probability 1—q . The standard error of the
estimated nomina coverage probabilities for the above nominal values are respectively, 0.001341,
0.000974 and 0.000445.

7.2 The cover age probabilities of thetriple sampling procedure

In the following subsections, we investigate in detail the coverage probabilities of the triple sampling
fixed width confidence intervals form=5,15,20, 6 = 0.5and o = 0.05. Results for other situations
aretabulated in Appendix B.

7.2.1 The underlying distribution is standard normal

From Table B1 in Appendix B we see that the estimated coverage probabilities do not attain the
nominal coverage values for any of our values of m.

Remark

1. The coverage probability improves (attains the nominal valug) as n” increases and also as m
increases.

2. Hall (1981) pointed out that for moderate n’ P{‘YN —u‘éd} <1-a, while for large

valuesof n’, P{RN—H‘Sd}—)(l—a)as n —>w.
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To show the effect of increasing N on the performance of the coverage probability at o =0.05,
0 =0.5and m=15see Figure 7.1, which shows the smulated estimates of the coverage probability
as n* increases. It is clear that the coverage probabilities do not attain the nomina value under these
conditions.

0.951
0.94 1
2
2 0.931
Qo
[=]
s
[}
€ 0.92
o
>
o
(8]
0.91
0.901
PRSP g 4> N §»
Optimal sample size

Figure 7.1: The ssimulated estimates of the coverage probability by optimal sample size for underlying
distribution N(0,1) at o =0.05, 5 =0.5and m=15.

To realize the effect of & on the coverage probability and compare this with the asymptotic results
obtained in Table 6.1 see Table 7.1, which shows the coverage probability as the optimal sample size
increases. We see that the coverage probability never attains the targeted nominal values at 6 =0.3.
However, at 6 = 0.8, the coverage probability exceeds the nominal value but only at large values of

n (N =246 and 500).

By comparing the simulation results in Table 7.1 with the asymptotic results in Table 6.1 we see that
there are consistencies (nearly same values and less than the nominal value) a ¢ =0.3 and 0.5 while
at 6 =0.8 the simulation estimates of the coverage probability are greater than the asymptotic results

for largen’.
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n 1-0,6 =03 1-a,6 =05 1-0,6 =08
24 0. 8801 0.9009 0.9331
43 0.8211 0.9048 0.9308
61 0. 8538 0.9192 0.9383
76 0.8833 0.9276 0.9421
96 0. 9066 0.9331 0.9444
125 0.9248 0.9383 0. 9475
171 0. 9337 0.9433 0. 9486
246 0. 9404 0. 9435 0. 9508
500 0. 9449 0.9463 0.9523

Table 7.1: The simulated estimates of the coverage probability for underlying N (0,1) asthe optimal

sample sizeincreases, § =0.3,0.5,0.8 and at o =0.05, m=15.

Figure 7.2. shows the effect of changing 6 on the coverage probability at m=15. We see from the

graph that the coverage exceeds the nominal value at § = 0.8as n increases. The graph supports our
discussion above and support the choice of taking 6 as acompromise choice.

Figure 7.2: The effect of changing 6 on the simulated estimates of the coverage probability when the

Coverage probability

Variable
0.954 —o— N(0.3)
—m— N(0.5)
N(0.8)
0.90+
0.854
0.80+
FOCS P > g &
Optimal sample size

underlying distributionis N (0,1),a = 0.05,m=15and 5 =0.5.
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7.2.2 Theunderlying distribution is standard uniform

From Table B2 in Appendix B we see that the estimated coverage probabilities do not attain the
nominal coverage values for any of our values of m.

Figure 7.3 below shows the effect of increasing the optimal sample size on the performance of the
coverage probability at o =0.05, 6 =0.5 and mM=15. It is obvious again that the coverage
probahilities do not attain the nominal value. To show the performance of the coverage probability as

n increases @ m=15,5 =0.5and a =0.05see Figure 7.3, which shows the simulated coverage
probability as the optimal sample size increases. Clearly the coverage never attains the nominal value.

0.95+

0.94+

0.93+

0.92+

0.91+

Coverage probability

0.90+

0.89+

0.88+

Optimal sample size

Figure 7.3: The ssimulated estimates of the coverage probability by optimal sample size for underlying
distribution U (0,1) at & =0.05, § =0.5 and m=15.

To show the effect of 6 on the coverage probability at m=15see Table 7.2. At § =0.3and 0.5 the
simulated estimates of the coverage probability is aways less than the nomina value, while at

5 = 0.8 the coverage exceeds the nominal value only at large values of n" (N =500) but this
behaviour tends to be adjusted and turn back to be less than the nominal value as mincreases.

In Chapter VI we saw that the asymptotic coverage probabilities in this case are unreliable,
particularly at high nominal coverage values. By comparing the simulation results with the asymptotic
results that are presented in Table 6.2, we see the differences between the asymptotic and simulated

coverage values. Collectively, the coverage probability improves as n' increases and as m increases
(see Table B2 in Appendix B).
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n 1-0,6 =03 1-a,6 =05 1-0,6 =08
24 0. 8803 0. 8854 0.9209
43 0.7844 0.9062 0.9285
61 0. 8572 0.9301 0.9399
76 0. 9009 0.9341 0.9411
96 0. 9269 0.9387 0. 9447
125 0. 9361 0.9432 0. 9468
171 0.9431 0. 9449 0. 9480
246 0. 9461 0. 9470 0. 9483
500 0.9484 0.9483 0.9510

Table 7.2: The effect of changing the design factor & on the performance of the coverage probability
when the underlying distribution is U (0,1),a = 0.05,m=15and & = 0.5. The coverage probability

Figure 7.4 shows the effect of & on the coverage probability at o =0.05,m=15. Clearly the graph
support our discussion above.

Variable

0.951 v — —9 —— U(0.3)

—|— U(0.5)
u(0.8)

0.90+

0.85+

Coverage probability

0.80+

PRGCS H &
a

Optima Isampl e size

Figure 7.4 The effect of changing 6 on the simulated estimates of the coverage probability for
underlying distribution U (0,1), = 0.05,m=15and 6 = 0.5.
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7.2.3 Theunderlying distribution is t
From Tables B3, B4, B5 and B6, we have the following

Regarding the coverage probability, the procedure starts with bad estimates a r =5, and tends to

improve as N and mincrease. While, as r increases we noticed improve performance of the
coverage probability as expected.

To show the effect of increasing the optima sample size on the performance of the coverage
probability under the tdistribution we consider Figures 7.5 and 7.6. They show the coverage
probability when the underlying distribution is t as the degrees of freedom increases. It is clear from
the graphs that as r increases, we attain better coverage probability. This support the theory that the

limiting distribution of the t( r )isnormal as r — .

1
T5(0.5)*n T25(0.5)*n
V‘”/'/.—/—‘ i —e 0%
’f.«"'/ﬁ L 0.90

- 0.85

- 0.80

T50(0.5)*n T100(0.5)*n
0.95 ’//.—*”‘_“ '/,.»/*—’—’
0.90

0.854

Coverage probability

0.80

T T L T T T
Q> F Qjo o q?b é)Q

Optimal sample size

Figure 7.5: The simulated estimates of the coverage probability for underlying t distribution with
r =5,25,50 and 100 as the optimal sample sizeincreasesat a = 0.05, § = 0.5and m=15.
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Figure 7.6: Comparison between the simulated estimates of the coverage probability for underlying
N(0,1)and t distributionswith r = 25,50 and 100; & = 0.05,m=15and § =0.5.

To show theimpact of & on the coverage probability a8 m=215and as r increases we consider Tables
7.3, 7.4 and 7.5, which illustrate that the coverage probability under the t distribution improves as r
increases. By comparing the simulation results with the asymptotic results that are presented in Table

6.4, we found that for underlying t(5)distribution the simulation estimates of the coverage

probability is larger than the asymptotic value for all values of N, and this due to the bad behaviour
of the Edgeworth series in approximating the coverage probability as shown in the previous chapter.

While for underlying t( 25)and t( 50 )distributions both the simulation estimates of the coverage

probability and the asymptotic coverage are consistent as N’ increases.

n 1-0,6 =0.3 1-a,8 =05 1-0,5 =0.8
24 0. 8980 0.9232 0. 9456
43 0. 8477 0.9058 0.9332
61 0.8511 0.9129 0.9374
76 0. 8669 0.9181 0. 9401
96 0. 8886 0.9230 0.9443
125 0.9011 0. 9304 0.9475
171 0.9196 0. 9353 0. 9473
246 0.9292 0.9411 0. 9505
500 0. 9387 0. 9462 0. 9536

Table 7.3: The simulated coverage probability for underlying t( 5 ) asthe optimal sample size
increases; 1- o =0.95 and m=15.
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n 1-0,6 =03 1-a,6 =05 1-a,6 =038
24 0. 8780 0.9042 0.9336
43 0. 8242 0.9048 0.9334
61 0. 8538 0.9192 0.9383
76 0.8818 0.9257 0. 9406
96 0. 9045 0.9327 0.9435
125 0.9223 0. 9365 0.9471
171 0.9313 0. 9422 0. 9479
246 0.9379 0.9431 0. 9508
500 0. 9445 0.9474 0.9511

Table 7.4: The simulated coverage probability for underlying t ( 25 ) asthe optimal sample size

increases; 1—a =0.95 and m=15.

n 1-a,56 =03 1-a,6 =05 1-0,5 =0.8
24 0. 8806 0.9043 0. 9349
43 0. 8242 0. 9049 0.9316
61 0. 8531 0. 9209 0.9378
76 0. 8804 0.9289 0.9425
96 0. 9068 0.9316 0.9451
125 0.9213 0. 9385 0. 9458
171 0.9339 0. 9417 0. 9486
246 0. 9400 0. 9460 0.9510
500 0. 9447 0. 9469 0.9515

Table 7.5: The simulated coverage probability for underlying t ( 50) asthe optimal sample size

increases; 1— o =0.95 and m=15.
7.24 Theunderlying distribution isbeta(2,3)

From Table B7 we have the following

Regarding the coverage probability we noticed similar behaviour as the case of normal and uniform.

To show the effect of increasing n” on the coverage probability under the beta distribution see Figure
7.7, which shows the coverage probability when the underlying distribution is beta as n' increases
and m=15. As before the confidence interval do not attain the coverage probability, and this

supports Hall (1981) that we only attain the coverage asymptotically.
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Figure 7.7: The simulated estimates of the coverage probability for underlying beta (2, 3) asthe
optimal sample sizeincreasesat a = 0.05, 6 = 0.5and m=15.

To show the effect of & on the coverage see Table 7.6 and Figure 7.8, which show the coverage

probability as n' increases a8 M=15. We have same arguments as the previous cases. Similar
arguments can be made regarding the comparison between the simulation results and the asymptotic
results asin the case of the normal distribution.

n 1-0,6 =03 1-a,6 =05 1-a,6 =038
24 0. 8792 0. 8962 0.9282
43 0. 8088 0. 9017 0. 9276
61 0. 8544 0. 9228 0. 9365
76 0. 8887 0.9278 0. 9421
96 0.9135 0. 9353 0. 9435
125 0.9276 0. 9405 0. 9460
171 0. 9362 0. 9415 0. 9498
246 0. 9420 0. 9429 0. 9487
500 0. 9467 0. 9490 0. 9516

Table 7.6: The simulated coverage probability for underlying beta (2, 3) as the optimal sample size
increases; 1-a =0.95 and m=15.
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Figure 7.8: The effect of changing ¢ on the simulated estimates of the coverage probability for
underlying beta(2,3) distribution at o = 0.05,m=15and & = 0.5.

7.2.5 The underlying distribution is exponential with mean one
From Table B8 and for brevity we have the following

Regarding the coverage probability, we noticed bad estimates for the coverage, and the reason goes
due to the sharp value of the skewness and high value of the kurtosis, which delay the convergence of

the coverage probability. Better performance expected asboth n and mincrease.

Figure 7.9 shows the coverage probability when the underlying distribution is exponential with mean
one, Exp( u= 1) . Clearly the convergence to the nominal coverageisslow..
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Figure 7.9: The simulated estimates of the coverage probability for underlying distribution Exp( 1)
asthe optimal samplesizeincreasesat « = 0.05, § = 0.5and m=15.

Similarly to show the effect of increasing 6 on the performance of the coverage probability at
1-a =0.95, m=15we consider Table 7.7 and Figure 7.10. Both Table 7.9 and Figure 7.10 support
our discussion above and reflect the poor coverage for all values of ¢ . Recall that the asymptotic
coverage probabilities are unsatisfactory because of the poor approximation provided by the
Edgeworth series.

n 1-0,6 =03 1-a,6 =05 1-a,6 =038
24 0.9173 0.8420 0. 9496
43 0. 8522 0.8706 0.8818
61 0.8128 0.8389 0.8671
76 0.7943 0. 8346 0.8754
96 0.7873 0. 8463 0. 8876
125 0. 8085 0.8676 0. 9053
171 0.8442 0.8908 0. 9207
246 0. 8806 0.9141 0. 9323
500 0. 9245 0. 9361 0. 9478

Table 7.7: The simulated coverage probability for underlying Exp( 1) asthe optimal sample size

increases; 1—a =0.95 and m=15.

163 | Page




Variable
0.95+ —e— E(03)
_—m —&— E(0.5)
E(0.8)

>
= 0.90
=
©
Q2
[=]
s
Q
(2]
T 0.851
[
>
Q
O

0.80+

FOORE P > &
Optima Isampl e size

Figure 7.10: The effect of changing 6 on the simulated estimates of the coverage probability for
underlying distribution Exp( 1) as the optimal sample sizeincreasesat o = 0.05,m=15and
0 =05

Before finishing the chapter we show the behaviour of the coverage for a collection of underlying
distributions together. Figure 7.11 shows the behaviour of the coverage probability for the three
distributions: normal, uniform and exponentia al treated at 1— o =0.95, 6 =05 and m=15. Itis
obvious that the coverage probability under the normal distribution is between the coverage
probabilities under the uniform and exponential distributions. As N increases al the coverage
probabilities approach the nominal coverage.
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Figure 7.11: The simulated estimates of the coverage probability for underlying N (0,1),U (0,1)and
Exp(1) distributions asthe optimal sample sizeincreasesat o =0.05, § =0.5and m=15.

Figure 7.12 shows the behaviour of the coverage probability for the three distributions for different
values of ¢ and as the optimal sample size increases. The graph shows the following: first, the bad
behaviour of the coverage probability under the exponential distribution and secondly, the improved
estimate of the coverage probability occurs as the design factor increases.
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Figure 7.12: The simulated estimates of the coverage probability for underlying N(0,1),U (0,1)and
Exp(1) a a =0.05, 6 =0.3,0.5,0.8and m=15.
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Figure 7.13 below discuss the same point as before but for the following underlying distributions:
normal, uniform, beta and exponential. Obviously, the coverage probability of the normal, uniform
and beta have same behaviour while the case of the exponential is completely different.

PNV FORMIII S s
1 1 1 1 1 1 1
N(0.5)*n U(0.5)*n
3 - o—o—o————— o095
/r’/v - 0.90

- 0.85

- 0.80

E(0.5)*n Beta(0.5)*n
0.954
o //4—0———0—/—’

0.854

Coverage probability

0.80

T T L T T T
A o Qjo o q?b é)Q

Optimal sample size

Figure 7.13: The simulated estimates of the coverage probability for underlying N (0,1) U (O, 1) :
beta (2, 3)and Exp( 1) asthe optimal samplesizeincreasesat a = 0.05, § =0.5and m=15.

Finally, the good or bad behaviour of the asymptotic coverage probability is controlled mainly by the
behaviour of the Edgeworth approximation to the underlying distribution and therefore to the values
of the skewness and kurtosis of the underlying distribution. So in the cases where the underlying
distribution is poorly approximated, the asymptotic coverages naturally differ considerably from the
simulated coverage values.
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Chapter VIII

Simulation Results of Triple Sampling Fixed Width Confidence Intervals
with Controlled Typell Error Probabilities

In Chapter VI, we obtained an asymptotic mathematical representations for the triple sampling fixed
width confidence intervals with controlled Type Il error (Theorem 6.4.1), and also the corresponding
Type |l error probability (Theorem 6.4.2).

8.1. Simulation results regarding the triple sampling fixed width confidence interval
with controlled Typell error probability

In order to investigate the performance of the triple sampling fixed width confidence intervals with
controlled Type Il error under( 6.17 ),( 6.18 ), a series of simulation studies were performed with

small, moderate and large optimal sample sizes. The same class of underlying distributions, design
factors and pilot sample sizes were used as in previous simulation studies for this thesis. Moreover
same number of replicate samples asin the previous simulations.

Tables D1 to D9 in Appendix D represent al the smulation results for the underlying distributions:
standard normal, standard uniform, t with r = 5,10, 25,50 and 100 degrees of freedom, beta( 2, 3)

and exponential with mean one at o =0.05,6 =0.5 and m=5,15,20. In al cases the coverage
probability under the controlled optimal fixed sample size exceeds the nominal value even for small

valuesof n"and for al valuesof mand S .

8.2 Simulation resultsto estimatethe Typell error probability

Although the Type Il error probability is asymptoticaly and mathematically expressed in Theorem
6.4.2, it is of interest to estimate the Type Il error probability for small, moderate to large optimal

sample sizes and to investigate the effect of underlying distribution, & , m, shift kand n’.

For brevity, we consider here only three underlying distributions: standard normal, standard uniform
and exponential with mean one with m=5,15,20, § =0.3,0.5,0.8,a =0.05 and f, =0.05.

Tables 8.1, 8.2 and 8.3 show the estimated Type Il error probability under the normal, uniform and
exponential distribution respectively at 6 =0.5, a =0.05, f, =0.05, m=5,15,20and k = 0 (0.01)
0.1 (0.1) 0.5. We see from the tables that cases with uniform and normal underlying distributions
exhibit asimilar pattern of Type Il error probabilities across values of m, n*' a,B, and 6 . Wedso

see that for small shift there is a high probability of committing a Type Il error, as anticipated. These
probabilities decrease as k increases for both distributions. The exponential case behaves similarly

except with changing m. In this case for fixed k and n' the probability of committing a Type Il error
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increases with M. One explanation is that symmetric distributions give similar Type Il error results
whatever the kurtosis, especialy with large valuesof n' .

n,m=5,15,20
24 76 9% 125 246 500
k| 5 s [ 2] 5 [15 [ 2[5 [1s]2] 5 [15[2][s5 [15]2/][s5]15]2

.00|.499(.501|.499].499|.500(.502|.504|.502|.501|.499|.501|.501(.500|(.499|.502].499]|.498|.499

.01|.487|.488|.485(.487|.486|.487|.490|.489|.486|.484|.487|.487|.485|.486|.487|.485|.484|.485

.02|.475|.476|.471(. 473 |. 473 |.474|.476|.474|.472)|.470|.473|.472|.471|.471|.473|.470|.470|.470

.03|.462|.464|.458(.460|.459|.460|.463|.461|.459|.456|.460.458]|.457|.457|.460]|.457|.455|. 457

.04(.449|.451|.445(. 447 |.446|.447|.450|.446|.445|.444|.445|.445|.443|.442|.445].442|.442|. 443

.05(.437|.438|.430(.433|.432|.433|.436|.432|.431|.430|.431|.431|.430|.428|.431|.428]|.427|.430

.06|.425|.426|.417(.419|.419|.419|.422|.419|.419|.417|.418|.417|.416|.414|.416|.414|.414|.415

.07|.412|.413|.404(.406|.406|.407|.408|.405|.405]|.404|.405|.403|.402|.400|.402(.400]|.400]|. 401

.08[.401|.402|.390(.393|.393|.394].394(.391|.392].392|.391|.389(.388|.386|.389(.386|.385|.388

.09(.388|.390|.378(.380(|.380|.381|.381|.378|.379|.377|.378|.377|.374|.373|.375[.373|.371|.374

.10|.375|.378|.365(.367|.367|.368]|.368|.366|.365|.363|.365|.363(.361|.359|.362(.359]|.358]|.361

.20|. 266 |. 265|. 250 (. 252 |. 245|.249|. 247 |. 245|. 244 . 244 |. 242 |. 243 |. 240|. 238 |. 238|. 234 |. 237 |. 240

.30(. 183 |.175|.158(. 162 |.151|.153|.155|. 151 |.151|.152|. 147 (. 148|.145|. 141 |. 143|.139|. 142 |. 143

.40(.121|.107|.091(.100|.087|.087].092|.087|.086|.088|.082.082(.079|.077|.077|.075|.077|.078

.50(.081|.062|.048(.060|.048|.047]|.052|.047|.045]|.048|.043|.043|.040|.037|.039(.037|.038|.038

Table 8.1: The simulated estimates of Type |1 error probabilities for underlying N (0,1) distribution

as the optimal sample size increases and k increases witha = 0.05, 8, = 0.05,6 = 0.5and
m=5,15,20.
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n,m=5,15,20

24 76 96 125 246 500

.00|. 502|. 500]|. 501|.497|.497|.498]|.494|.504|.500]|.495|.503|.499].498|.495|.499].503|.500]|.501

.01|. 489|. 488|.487|.483|.484|.484|.480(.490|.486|.481|.489|.485|.484|.481|.484|.487|.485].487

.02|. 476|. 475|.473|.470|.470|.470|.466|.476|.471|.467|.475|.471|.469|.467|.471|.473|.471|.472

.03|. 463|. 464 |. 460|. 457 |. 456 |.455|.452|.462|.457|.454|. 460 |.458|.455|.453|.456|.458|. 455|. 458

.04|. 451|. 452|. 447|. 443 |. 442 |.442|.438|. 447 |.443|.440|.445|.444|.441|.440|.442|.444|.440]|. 443

.05|. 439|. 440|. 434|.430|.428|.428|.425|.433|.429|.426|.432|.431|.427|.425|.427].429|.426|.429

.06|. 426|. 429|. 421|. 417 |.415|.413|.412|.419|.416|.412|.418|.417|.412|.411|.414].415|.412]. 415

.07|. 414|. 417|. 409|. 404 |.401|.399].398|.405|.402].399|.404|.403]|.398|.397|.399].402|.398].401

.08|. 401|. 405|.396|.391|.388|.384|.385(.391|.389]|.386|.390|.389|.384|.383|.386]|.388|.384].387

.09|. 388|.394|.383|.377|.375|.371|.371|.377|.375].373|.377|.376|.372|.370|.373]|.375|.371|.374

.10|. 377|. 382|.370|. 364 |.362|.358]|.360|.364|.361]|.360|.363|.363|.359|.357|.359].362|.358].359

.20|. 269|. 276|. 254|. 247 |. 241 |.240|.241|.242|.241|.238|.239|.239].236|.235|.236].236|.235]|. 237

.30|. 185(. 188|. 161|. 155 |.147|.146|.149|. 147 |.147|.145|. 144 |.144|.140|. 140 |.141].141|.140]|. 141

.40|. 126{. 121|.094|.091|.083|.083]|.085|.081|.082].081|.080|.079]|.078|.076|.077].075|.074|.076

.50|. 088|. 073|. 050(. 052 |.044|.043]|.048|.041|.041].042|.040|.040|.038|.037|.038].037|.036|.036

Table 8.2: Thesimulated estimates of Type |1 error probabilities for underlying U (0, 1) distribution

asthe optimal sample sizeincreases and k increases witha = 0.05, 8, = 0.05,6 = 0.5and
m=5,15,20.
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n,m=5,15,20
24 76 9% 125 246 500
k| 5 [155[ 20| 5 [ 15 ] 20 [ 5 [15 ][ 20| 5 [ 15 [ 20| 5 [ 15 | 20 | 5 | 15 | 20

.00|. 355|. 421|.457(.390|.411|.412|.406|.420|.424|.415|.435|.438|.449|.460|.463|.468|.470|.474

.01|. 345|. 408|. 443|.378|.398|.400(.393|.407|.412|.403|.422|.424|.436|.447|.449].453|.457|.460

.02|. 333|. 393|.428|.366|.387|.387|.381|.395|.399|.390(.409|.412|.421|.433|.436].438|.443|.446

.03|. 322|. 380|.414|.354|.374|.374|.369|.381|.387|.377|.396|.398|.409|.418|.422|.424|.430|.431

.04|. 311|. 367|.400(.343|.362|.362|.357|.368|.374]|.365|.384|.385|.396|.405|.408].410|.415|. 417

.05|. 301|. 354|.386(.332|.350|.350(.345|.356|.362|.352(.370|.372].382|.392|.395].396(.401|.403

.06|. 290|. 341|.373|.320|.337|.338|.333|.343|.350|.340(.357|.360|.368|.378|.382].382(.387]|.390

.07|. 280|. 328|.359(.309|.325|.326|.321|.331|.338]|.327|.344|.347|.356|.365|.368|.367|.373]|.377

.08|. 268|. 315|. 346(.297|.315|.314|.310|.320|.325|.316(.332|.334|.343|.352|.354]|.354|.359]|.363

.09|. 258|. 302|. 333|.285|.303|.303(.298|.308|.312|.304(.319|.321|.331|.339|.341].340(.345].349

.10|. 249|. 290|. 320(.274|.291|.291|.287|.297|.300]|.292|.306|.308|.317|.327|.328].326(.332]|.335

.20|. 157|. 181|.201(.174|.185|.183|.182|.188|.192|. 187 |.194|.196].204|.206|.210].207|.211|.213

.30[. 090|. 100|. 113|. 103|.105|. 104 |.105|.107|.111].108|.110|.112).119|.116|.119].119(.120|. 123

.40|. 049|. 050|. 057|. 057 |.053|.053|.057|.055|.056|.058|.055|.056|.063|.059|.059]|.064|.061|.061

.50|. 027|. 024|. 026(. 030 |.023|.024|.030|.025|.026].030(.025|.025|.031|.027|.027].031(.028].027

Table 8.3: The simulated estimates of Type Il error probabilities for underlying Exp(l) distribution

asthe optimal sample sizeincreases and k increase withar = 0.05, 8, = 0.05,6 = 0.5and
m=5,15,20.

Figures 8.1 to 8.3 show the effect of increasing n" on the estimated Type |1 error probability for the
three underlying distributions aam=15, 6 =0.5, a =0.05and S, =0.05. We see that for small

values of n and for small values of K (less than 0.1), the probability of committing Type Il error gets
as high as 0.5 for both the uniform and the normal, while it gets as high as 0.47 for the exponential.
The difference between the uniform and the normal cases becomes clear for larger values of k, while
for the exponential the gap is significant over the entire range of k. As n increases the difference
between the uniform and the normal results becomes small and the gap between the results of the
exponentia and the other two distributions gets narrower (see Table E1 for more details).
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Type Il error performance as the optimal sample size increases (normal)
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Figure8.1: Performance of the Type Il error probability for underlying N (0, 1) asthe optimal sample
sizeand Kincreaseat 6 =0.5,a =0.05, B, =0.05and m=15.

Type |l error performance as the optimal sample size increases ( Uniform)
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Figure 8.2: Performance of the Type Il error probability for underlying U (0,1) asthe optimal
samplesizeand kincreaseat 6 =0.5,a =0.05, 5, =0.05and m=15.
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Type Il error performance as the optimal sample size increases (Exponential)
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Figure 8.3: Performance of the Type |l error probability for underlying Exp( 1) asthe optimal
samplesizeand Kincreaseatd = 0.5, =0.05, B, = 0.05and m=15.

To illustrate the difference between the simulation results and the asymptotic results obtained in
chapter VI we consider Tables 8.4, 8.5 and 8.6 for the above underlying distributions respectively.

Tables 8.4, 85 and 8.6 compare the simulation results and the asymptotic results ator = 0.05,
B, =0.05,6 =0.5 and m=15. The asymptotic values 3, and the corresponding estimated Type ||

error probabilities for the normal and the uniform underlying distributions are in broad agreement for

al values of n and k. Moreover, as n’ increases the difference between the asymptotic and
estimated values decreases. From Table 8.6 we see the bad behaviour of the asymptotic Type Il error
probability in comparison with the simulation results in the exponential distribution case, as expected
given the poor performance of the Edgeworth approximation (see Chapter 1V, section 6.2).
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k ﬂ 24 43 61 76 96 125 171 246 500
asy
.00 0.500 0.501 0.500 0.503 0.500 0.502 0.501 0.499 0.499 0.498
.01 0.486 0.488 0.486 0.489 0.486 0.489 0.487 0.484 0.486 0.484
.02 0.471 0.476 0.473 0.475 0.473 0.474 0.473 0.470 0.471 0.470
.03 0.457 0.464 0.460 0.462 0.459 0.461 0.46 0.455 0.457 0.455
.04 0.443 0.451 0.448 0.448 0.446 0.446 0.445 0.441 0.442 0.442
.05 0.429 0.438 0.434 0.435 0.432 0.432 0.431 0.427 0.428 0.427
.06 0.414 0.426 0.421 0.421 0.419 0.419 0.418 0.414 0.414 0.414
.07 0.400 0.413 0.408 0.409 0.406 0.405 0.405 0.400 0.400 0.400
.08 0.387 0.402 0.396 0.395 0.393 0.391 0.391 0.385 0.386 0.385
.09 0.373 0.390 0.383 0.381 0.380 0.378 0.378 0.372 0.373 0.371
.10 0.359 0.378 0.371 0.368 0.367 0.366 0.365 0.358 0.359 0.358
.20 0.236 0.265 0.253 0.252 0.245 0.245 0.242 0.237 0.238 0.237
.30 0.140 0.175 0.167 0.160 0.151 0.151 0.147 0.143 0.141 0.142
.40 0.075 0.107 0.100 0.095 0.087 0.087 0.082 0.079 0.077 0.077
.50 0.036 0.062 0.059 0.053 0.048 0.047 0.043 0.040 0.037 0.038

Table 8.4: Comparison between the asymptotic and simulation results for the Type Il error
probability for underlying distribution N (0, 1) asthe optimal sample size and kincrease; o = 0.05,

p,=0.05,5 =0.5and m=15.

k ﬁ 24 43 61 76 96 125 171 246 500
asy
.00 0.500 0.500 0.501 0.503 0.497 0.504 0.503 0.503 0.495 0.500
.01 0.488 0.488 0.489 0.490 0.484 0.490 0.489 0.487 0.481 0.485
.02 0.476 0.475 0.474 0.475 0.470 0.476 0.475 0.473 0.467 0.471
.03 0.463 0.464 0.460 0.462 0.456 0.462 0.460 0.458 0.453 0.455
.04 0.451 0.452 0.447 0.448 0.442 0.447 0.445 0.443 0.440 0.440
.05 0.439 0.440 0.434 0.434 0.428 0.433 0.432 0.429 0.425 0.426
.06 0.427 0.429 0.421 0.421 0.415 0.419 0.418 0.416 0.411 0.412
.07 0.415 0.417 0.408 0.407 0.401 0.405 0.404 0.401 0.397 0.398
.08 0.403 0.405 0.395 0.393 0.388 0.391 0.390 0.387 0.383 0.384
.09 0.391 0.394 0.383 0.380 0.375 0.377 0.377 0.374 0.37 0.371
.10 0.379 0.382 0.371 0.367 0.362 0.364 0.363 0.361 0.357 0.358
.20 0.263 0.276 0.253 0.249 0.241 0.242 0.239 0.236 0.235 0.235
.30 0.162 0.188 0.163 0.153 0.147 0.147 0.144 0.142 0.140 0.140
.40 0.084 0.121 0.100 0.087 0.083 0.081 0.080 0.077 0.076 0.074
.50 0.034 0.073 0.059 0.047 0.044 0.041 0.040 0.039 0.037 0.036

Table 8.5: Comparison between the asymptotic and simulation results for the Type |l error
probability for underlying distribution U (O, 1) asthe optimal sample size and kincrease; o =0.05,

B, =0.05,5=05and m=15.
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k ﬁ 24 43 61 76 96 125 171 246 500
asy

.00 0.633 0.421 0.391 0. 401 0.411 0.420 0.435 0. 448 0. 460 0. 470
.01 0.622 0. 408 0. 379 0.390 0.398 0. 407 0.422 0.434 0. 447 0. 457
.02 0.616 0. 393 0. 367 0.377 0. 387 0.395 0. 409 0.421 0.433 0. 443
.03 0.615 0. 380 0. 354 0. 364 0.374 0.381 0.396 0. 407 0.418 0. 430
.04 0.618 0. 367 0. 342 0. 352 0. 362 0. 368 0.384 0.394 0. 405 0. 415
.05 0.626 0. 354 0.331 0. 340 0. 350 0. 356 0.370 0. 381 0. 392 0. 401
.06 0.638 0.341 0.319 0.328 0.337 0.343 0. 357 0. 368 0. 378 0. 387
.07 0.654 0.328 0.308 0.317 0.325 0.331 0.344 0. 356 0. 365 0. 373
.08 0.674 0.315 0.297 0. 305 0.315 0.320 0.332 0. 343 0. 352 0. 359
.09 0.698 0.302 0.285 0.293 0.303 0.308 0.319 0. 329 0. 339 0. 345
.10 0.725 0.290 0.274 0.281 0.291 0.297 0. 306 0. 316 0. 327 0. 332

Table 8.6: Comparison between the asymptotic and simulation results for the Type |l error
probability for underlying distribution Exp( 1) as the optimal sample size and k increase; o = 0.05,

B, =0.05,6 =0.5 and m=15.

To compare the simulation results and the asymptotic results for the normal and uniform underlying
distributions at o =0.05, 8, =0.05,6 =0.5and m=15, Figures 8.4 and 85 show the estimated

Type |1 error probabilities in comparison with the corresponding asymptotic values as N’ increases.

For brevity we consider only specific valuesof n"; N =24, 96, 246 and 500. Clearly as N’ increases
we attain consistent behaviour between the simulation and the asymptotic results.

Asymptotic and simulation results for Type Il error probability (normal)
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Figure 8.4. The difference between the asymptotic and the simulation Type |1 error probability for the
underlying N (0,1) as the optimal sample size and k increase; o =0.05, B, =0.05,6 = 0.5and

m=15.
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Asymptotic and simulation results for Type Il error probability (uniform)
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Figure 8.5. The difference between the asymptotic and the simulation Type |l error probability for the
underlyingU (0,1) as the optimal samplesizeand k increase; a = 0.05, 8, = 0.05,6 = 0.5and

m=15.

To illustrate the asymptotic Type Il error probabilities for other underlying distributions, we consider
the case of the tdistribution with r =5,25,50 and 100 degrees of freedom in Table 8.7 and of the

chi-squared distribution with r = 5,10 and 50 degrees of freedomin Table 8.8.

Tables 8.7 and 8.8 show the asymptotic Type Il error probabilities as r increases and for different
values of kfor thet and chi-squared underlying distributions respectively. Note that ﬂasy( r ) denotes

the asymptotic Type Il error probability at a specific valueof r .

We seein Table 8.7 that at k = 0 (no shift occurs) the asymptotic Type Il error probability is 0.5 for
al r, while as kincreases for afixed value of r , the asymptotic Type Il error probability decreases.
A s rincreases and for afixed value of k > 0.5 the asymptotic Type Il error probability increases.
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k B.s (5) B.s, (25) B.s, (50) Basy (100)
0.00 0.5000 0.5000 0.5000 0.5000
0.01 0.4748 0.4851 0.4854 0.4855
0.02 0.4498 0.4702 0.4708 0.4710
0.03 0.4249 0.4554 0.4562 0.4566
0.04 0.4003 0.4407 0.4417 0.4422
0.05 0.3760 0.4260 0.4273 0.4279
0.06 0.3521 0.4114 0.4130 0.4137
0.07 0.3288 0.3970 0.3988 0.3996
0.08 0.3060 0.3827 0.3848 0.3857
0.09 0.2839 0.3686 0.3709 0.3719
0.10 0.2625 0.3546 0.3571 0.3582
0.20 0.0979 0.2289 0.2325 0.2340
0.30 0.0297 0.1345 0.1373 0.1386
0.40 0.0278 0.0724 0.0736 0.0742
0.50 0.0446 0.0362 0.0359 0.0358

Table 8.7. The asymptotic Type |l error probabilities for underlying t distribution with r = 5,25,50

and 100 as K increases.

In Table 8.8 we see that for afixed r and as kincreases and for afixed kand as r increases, the
asymptotic Type Il error probability decreases. At k =0, the asymptotic Type Il error probability is

0.584 and not 0.5 asin the case of symmetric distributions.

k B.s (5) B (10) Besy (50)
0.00 0.5841 0.5595 0.5266
0.01 0.5709 0.5457 0.5124
0.02 0.5593 0.5326 0.4983
0.03 0.5491 0.5201 0.4844
0.04 0.5403 0.5084 0.4708
0.05 0.5329 0.4973 0.4574
0.06 0.5269 0.4870 0.4442
0.07 0.5222 0.4772 0.4313
0.08 0.5188 0.4681 0.4186
0.09 0.5165 0.4596 0.4062
0.10 0.5152 0.4517 0.3941
0.20 0.5411 0.3954 0.2872
0.30 0.5677 0.3533 0.2043
0.40 0.5304 0.2972 0.1398
0.50 0.4270 0.2248 0.0899

Table 8.8. Theasymptotic Type Il error probabilities for underlying chi- squared distribution with
r =5,10and 50 as k increases.
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We end this section by plotting the simulated estimates of Type Il error probabilities for the three
distributions together at o = 0.05, 8, = 0.05,6 = 0.5and m=15. Figures 8.6 to 8.9 show thisfor n*
=24, 76, 125, 246 and 500 respectively. Clearly the estimated Type |1 error probabilitiesin the

normal and uniform cases are very similar, whereas the corresponding probabilities for the
exponential case tend to be lower. However, the difference declines as n* increases.

Type Il error performance for the three distributions opt. n=24
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Figure 8.6: The ssimulated estimates of Type Il error probability for underlying normal, uniform and
exponential distributions as kincreasesat a = 0.05, 8, =0.05,6 =0.5,m=15 and n =24.

Type Il error performance for the three distributions at opt. n=76
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Figure 8.7: The simulated estimates of Type Il error probability for underlying normal, uniform and
exponential distributions as k increasesat a = 0.05, §, =0.05,6 =0.5,m=15 and n =76.
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Type |l error performance for the three distributions at opt. n=246
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Figure 8.8: The ssimulated estimates of Type Il error probability for underlying normal, uniform and
exponential distributions as kincreasesat « = 0.05, 5, =0.05,6 =0.5,m=15 and n = 246.

Type Il error performance for the three distributions at opt. n=500
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Figure 8.9: The simulated estimates of Type Il error probability for underlying normal, uniform and
exponential distributions as k increasesat a = 0.05, 5, =0.05,6 =0.5,m=15 and n" =500.

178 |Page




8.3 Theeffect of & onthe Typell error probability

The effect of & on the estimated Type I probability at o = 0.05, 8, =0.05and m=15is illustrated
in Tables 8.9, 8.10 and 8.11 for the normal, uniform and exponential underlying distributions
respectively. We see that for small values of N and by holding other parameters constant the Type I
error probabilities at & = 0.5 lie between those at § = 0.3andS = 0.8. As n' increases the estimated

Type |l error probabilities tend the coincide for all values of & . This new findings support the choice
of 6 =0.5 suggested by Hall (1981) even our justification came from different perspective.

24 76 96 125 246 500

0=0.30508|6=030508|6=030508 | 6§=03050.8 | 6=030.508 | 6 =030.5,0.8
.00 |0.501|0.501|0.499 | 0.500 | 0.500 | 0.502 | 0.496 | 0.502 | 0.504 | 0.500 | 0.501 | 0.499 | 0.496 | 0.499 | 0.499 | 0.501 | 0.498 | 0.502

~|°.

.01 [ 0.489|0.488|0.485|0.487 | 0.486 | 0.487|0.482|0.489|0.490 [ 0.486 | 0.487 | 0.485|0.481 | 0.486 | 0.484 | 0.487 | 0.484 | 0.487

.02 (0.478|0.476|0.470|0.475{0.473|0.472|0.469|0.474|0.475|0.473 |0.473|0.470| 0.468 | 0.471 (0.470|0.4740.470 | 0.473

.03 [ 0.466 |0.464|0.457 | 0.462 | 0.459 | 0.458 | 0.455|0.461 | 0.461 | 0.460 | 0.460 | 0.456 | 0.454 | 0.457 | 0.456 | 0.460 | 0.455 | 0.458

.04 | 0.455|0.451|0.443|0.450(0.446|0.444|0.441|0.446|0.447 | 0.446 |0.445|0.441|0.441|0.442 (0.442|0.445|0.442 | 0.444

.05 [ 0.444|0.438|0.428|0.437(0.432|0.430|0.429|0.432|0.433{0.432|0.431|0.426 | 0.428 | 0.428 | 0.427 | 0.4320.427 | 0.429

.06 [ 0.433/0.426|0.415|0.424{0.419|0.416|0.416|0.419|0.419|0.419|0.418|0.411|0.414 | 0.414 {0.414 | 0.419|0.414 | 0.413

.07 [ 0.422|0.413|0.402|0.412 | 0.406 | 0.402 | 0.404 | 0.405 | 0.405 [ 0.405 | 0.405 | 0.398 | 0.401 | 0.400 { 0.399 | 0.406 | 0.400 | 0.399

.08 [ 0.411|0.402|0.388|0.400(0.393|0.388|0.392|0.391|0.390{0.392|0.391|0.383 | 0.387 | 0.386 | 0.385|0.392 | 0.385| 0.385

.09 (0.399(0.390|0.375|0.387{0.380(0.373|0.379|0.378 | 0.376 {0.379|0.378 | 0.369 | 0.374 | 0.373 (0.370 | 0.378 | 0.371 | 0.372

.10 [ 0.388|0.378|0.360|0.374 | 0.367 | 0.360 | 0.366 | 0.366 | 0.362 | 0.366 | 0.365 | 0.355 | 0.361 | 0.359 | 0.356 | 0.364 | 0.358 | 0.358

.20 [ 0.286|0.265|0.242|0.261 | 0.245|0.237|0.251|0.245|0.238 { 0.247 | 0.242|0.231| 0.240 | 0.238 (0.232|0.239| 0.237 | 0.232

.30 ({0.198|0.175|0.149|0.173{0.151|0.144|0.162 | 0.151 | 0.145{0.153 | 0.147 | 0.136 | 0.147 | 0.141 | 0.135 | 0.145 | 0.142 | 0.137

.40 (0.129|0.107|0.087|0.110{0.087 | 0.078|0.098 | 0.087 | 0.078 | 0.091 | 0.082 | 0.073 | 0.081 | 0.077 | 0.072 | 0.078 | 0.077 | 0.072

.50 [0.078|0.062|0.047 | 0.069 | 0.048 | 0.039|0.056 | 0.047 | 0.039 | 0.050 | 0.043 | 0.035|0.041|0.037 | 0.034 | 0.038|0.038 | 0.034

Table 8.9: The effect of increasing 6 on the simulated estimates of Type Il error probability for
underlying N (0,1) as the optimal sample size and kiincrease; o = 0.05, 3, = 0.05,m=15,
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24

76

96

125

246

500

~ |-,

6 =0.305,0.8

6 =0.3,05,0.8

6=0.305,0.8

0 =0.3050.8

6 =0.305,0.8

0 =0.3050.8

.00

0.500 | 0.500|0.502

0.497(0.497|0.501

0.5010.504 | 0.498

0.5010.503|0.498

0.503 (0.495|0.498

0.498|0.500|0.501

.01

0.489(0.488|0.487

0.483(0.484|0.486

0.487(0.490|0.485

0.4870.489|0.483

0.489(0.481|0.484

0.485|0.485|0.486

.02

0.477(0.475|0.473

0.470(0.470|0.473

0.474|0.476|0.470

0.4730.475|0.469

0.474|0.467|0.469

0.471|0.471|0.471

.03

0.467 |0.464 | 0.461

0.456 (0.456|0.459

0.460|0.462 | 0.456

0.4590.460|0.454

0.459(0.453|0.456

0.456|0.455|0.457

.04

0.455(0.452|0.447

0.442(0.442|0.444

0.446 (0.447)0.442

0.445)0.445|0.438

0.445(0.440|0.441

0.4410.440|0.442

.05

0.444(0.440|0.435

0.429(0.428|0.431

0.432|0.433|0.428

0.43210.432|0.423

0.432(0.425|0.427

0.428|0.426|0.428

.06

0.4340.429|0.421

0.416 (0.415|0.415

0.420|0.419|0.414

0.418|0.418|0.409

0.417(0.411|0.413

0.414|0.412|0.414

.07

0.422(0.417|0.406

0.403 (0.401|0.401

0.406 | 0.405 | 0.400

0.405|0.404 | 0.395

0.403 (0.397|0.399

0.400|0.398|0.400

.08

0.411(0.405|0.392

0.391(0.388|0.388

0.392(0.391|0.387

0.3910.390|0.382

0.389(0.383|0.386

0.386|0.384|0.387

.09

0.400(0.394|0.379

0.378(0.375|0.374

0.3780.377|0.372

0.377|0.377|0.368

0.377(0.370|0.372

0.372|0.371|0.372

.10

0.3880.382|0.367

0.365(0.362|0.360

0.366 (0.364|0.359

0.364|0.363|0.356

0.363(0.357|0.359

0.3580.358|0.359

.20

0.286 (0.276|0.247

0.251(0.241|0.236

0.246 (0.242]0.237

0.2410.239|0.234

0.239(0.235|0.234

0.2340.235|0.233

.30

0.198 (0.188|0.153

0.160(0.147|0.141

0.154 (0.147|0.142

0.148|0.144|0.140

0.143(0.140|0.139

0.140|0.140|0.139

.40

0.127(0.121|0.090

0.098 (0.083|0.078

0.0900.081|0.078

0.084|0.080|0.076

0.080(0.076|0.076

0.076|0.074|0.073

.50

0.076 (0.073|0.050

0.059(0.044|0.039

0.050(0.041]0.039

0.0440.040|0.037

0.040(0.037|0.036

0.0370.036|0.035

Table 8.10: The effect of increasing 6 on the simulated estimates of Type Il error probability for
underlyingU (0,1) as the optimal sample sizeand k increase; o = 0.05, 8, = 0.05,m=15.
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24 76 96 125 246 500

6=030508 | 6§=030508 | 6=030.508 | 6=03050.8 | 6=0.30508 | 6=030.5,0.8

~|=.

.00 | 0.453|0.421|0.408|0.387|0.411{0.423 | 0.399|0.420 | 0.430| 0.417 | 0.435|0.448 | 0.450 | 0.460 | 0.462 | 0.472 | 0.470 | 0.475

.01 | 0.440|0.408 | 0.394 | 0.376 | 0.398 | 0.410 | 0.387 | 0.407 | 0.416 | 0.406 | 0.422 | 0.433 | 0.438 | 0.447 | 0.449 | 0.459 | 0.457 | 0.462

.02 | 0.427|0.393|0.380 | 0.365|0.387 [ 0.396 | 0.375| 0.395 | 0.402 | 0.394 | 0.409 | 0.419 | 0.425 | 0.433 | 0.434 | 0.445 | 0.443 | 0.446

.03 | 0.414|0.380|0.366 | 0.354|0.374 { 0.381 | 0.363 | 0.381 | 0.389 | 0.382 | 0.396 | 0.405 | 0.411 | 0.418 | 0.420 | 0.432 | 0.430| 0.432

.04 | 0.402 | 0.367 [ 0.352 | 0.342 | 0.362 [ 0.368 | 0.351 | 0.368 | 0.375 | 0.369 | 0.384 | 0.391 | 0.399 | 0.405 | 0.405 | 0.419 | 0.415 | 0.417

.05 | 0.389|0.354|0.339|0.331|0.350 | 0.355 | 0.340 | 0.356 | 0.362 | 0.358 | 0.370 | 0.378 | 0.387 | 0.392 | 0.390 | 0.405 | 0.401 | 0.402

.06 | 0.378|0.341|0.326 | 0.320| 0.337 { 0.341 | 0.329 | 0.343 | 0.348 | 0.346 | 0.357 | 0.363 | 0.374 | 0.378 | 0.376 | 0.390 | 0.387 | 0.388

.07 | 0.366 | 0.328 (0.312| 0.309 | 0.325(0.328 | 0.318 | 0.331 | 0.335| 0.334| 0.344 | 0.348 | 0.361 | 0.365 | 0.363 | 0.377 | 0.373 | 0.373

.08 | 0.355|0.315|0.299|0.298 | 0.315 [ 0.315 | 0.307 | 0.320 { 0.321 | 0.323 | 0.332 | 0.335 [ 0.348 | 0.352 | 0.349 | 0.364 | 0.359 | 0.358

.09 | 0.344|0.302 | 0.286 | 0.286 | 0.303 [ 0.302 | 0.296 | 0.308 | 0.307 | 0.312|0.319|0.321 { 0.336 | 0.339 | 0.333 | 0.351 | 0.345 | 0.344

.10 | 0.332|0.290 | 0.273 | 0.276 | 0.291 | 0.289 | 0.285| 0.297 | 0.294 | 0.300 | 0.306 | 0.308 | 0.324 | 0.327 | 0.320 | 0.338 | 0.332 | 0.329

.20 | 0.227|0.181{0.161|0.179|0.185(0.177 | 0.184|0.188 | 0.179 | 0.196 | 0.194 | 0.187 | 0.210 | 0.206 | 0.197 | 0.219 | 0.211 | 0.205

.30 | 0.146 | 0.100 | 0.084 | 0.105| 0.105 [ 0.094 | 0.109 | 0.107 | 0.097 | 0.117| 0.110 | 0.099 | 0.123 | 0.116 | 0.109 | 0.127 | 0.120 | 0.112

.40 | 0.086 | 0.050 | 0.037 | 0.055| 0.053 [ 0.045 | 0.059 | 0.055 | 0.045 | 0.064 | 0.055 | 0.048 | 0.066 | 0.059 | 0.052 | 0.068 | 0.061 | 0.056

.50 | 0.050|0.024 | 0.014 | 0.027 | 0.023 | 0.018 | 0.029 | 0.025 | 0.019 | 0.030| 0.025 | 0.019 | 0.032 | 0.027 | 0.022 | 0.031 | 0.028 | 0.024

Table 8.11: The effect of increasing 6 on the simulated estimates of Type Il error probability for
underlying Exp( 1) as the optimal sample size and k increase; o = 0.05, 3, = 0.05,m=15.

To illustrate the above discussion graphically we consider Figures 8.10 till 8.21. The below graphs are
graphical representations that illustrate the above idea carefully as the optimal sample size increases.
Figure 8.10 till 8.13 represent the effect of changing the design factor 6 on the performance of the
Type |l error under the normal distribution while Figures from 8.14 till 8.17 illustrate the same idea
under the uniform distribution while Figures 8.18 till 8.21 represent the case under the exponential
distribution. We noticed from Figures 8.11 till 8.15 how fast the convergence of the Type Il error
probabilities occur at6 = 0.5 while from Figures 8.15 till 8.18 we have same pattern as the normal
distribution while from Figures 8.10 till 8.21 where we can realize the slow convergence of the Type
Il error probabilities towards the case 6 = 0.5in comparative with the normal and uniform.
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Type |l error performance as the design factor changes (normal)
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Figure 8.10: The effect of increasing o on the estimated Type |1 error probability for underlying
N(0,1)as kincreases, n" = 24; a =0.05, 8, =0.05,m=15.

Type Il error performance as the design factor changes (normal)
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Figure 8.11: The effect of increasing 6 on the estimated Type I error probability for underlying
N(0,1)as kincreasesat n' = 76; a =0.05, 3, =0.05,m=15.
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Type |l error performance as the design factor changes (normal)
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Figure 8.12: The effect of increasing o on the estimated Type |1 error probability for underlying
N(0,1)as kincreasesat n" = 246;a = 0.05, B, = 0.05,m=15.

Type Il error probability as the design factor changes (normal)
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Figure 8.13: The effect of increasing o on the estimated Type |1 error probability for underlying
N(0,1)as kincreasesat n" =500;a = 0.05, B, = 0.05,m=15.
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Type Il error performance as the design factor changes (uniform)
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Figure 8.14: The effect of increasing 6 on the estimated Type I error probability for underlying
U (0,1)as kincreasesat n" = 24; a =0.05, 8, =0.05,m=15.

Type Il error performance as the design factor changes (uniform)
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Figure 8.15: The effect of increasing 6 on the estimated Type I error probability for underlying
U (0,1)as kincreasesat n" =96; a =0.05, 8, =0.05,m=15.
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Type |l error probability

Type Il error performance as the design factor increases (uniform)
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Figure 8.16: The effect of increasing 6 on the estimated Type I error probability for underlying

U (0,1)as kincreasesat n' = 246; a = 0.05, B, = 0.05,m=15.

Type Il error probability

Type Il error performance as the design factor increases (uniform)
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Figure 8.17: The effect of increasing 6 on the estimated Type I error probability for underlying

U (0,1)as kincreasesat n' =500; a = 0.05, B, = 0.05,m=15.
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Type Il error performance as the design factor changes (exponential)
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Figure 8.18: The effect of increasing 6 on the estimated Type I error probability for underlying
Exp(1)as kincreasesat n' =24; o =0.05, 8, =0.05,m=15.

Type Il error performance as the design factor changes (exponential)

0.4+

0.3+

0.2+

Type Il error probability

0.1+

0.0

Variable
—&— 96(0.3)
—m— 96(0.5)

96(0.8)

0.0

0.1

0.2

k (Shift)

Figure 8.19: The effect of increasing 6 on the estimated Type I error probability for underlying
Exp(1)as kincreasesat n' =96;  =0.05, 8, =0.05,m=15.
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Type Il error performance as the design factor changes (exponential)
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Figure 8.20: The effect of increasing o on the estimated Type |1 error probability for underlying
Exp(1)as kincreasesat n' = 246; a =0.05, §, = 0.05,m=15.

Type Il error performance as the design factor increases (exponential)
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Figure 8.21: The effect of increasing o on the estimated Type |1 error probability for underlying
Exp(1)as kincreasesat n' =500; a =0.05, 5, = 0.05,m=15.
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To conclude the thesis, we now summarize our .

We have seen that the results of the sequential triple sampling procedure depend mainly on the
characterigtics of the underlying distribution. In particular, the skewness and the kurtosis play a major
role in determining the properties of the procedure.

In point estimation the asymptotic regret is bounded by non vanishing quantities and depends
basically on the kurtosis. On the other hand the asymptotic coverage probability of the fixed width
confidence interval depends on both the skewness and the kurtosis of the underlying distribution.
Moreover, it is common with Hall’ s triple sampling for fixed width confidence interval estimation that

we attain the nominal value asymptotically. Hall (1981) recommended a modified sample size N” by
increasing the samplesize N in (4.3)to N" =N +[(a2 -5+ 5)/25] to modify the coverage up to
the nominal value. We have found that controlling Type Il errors during the course of estimation
while building the confidence interval provides coverage with at least the nominal value. Therefore,

we may say that controlling Type Il error will act in two ways. First, improving the coverage and
second, signifying any shifts in the targeted mean.

In addition the design factor 6 was recommended by many sequential scientiststo be 0.5in practical
situations. Intensive simulation results supported this fact from the prospective of controlling Type 11

error. Moreover, the rounded off random errorg,, , was found by intensive simulations, that their

asymptotic distribution is uniformly distributed over that interval (O, 1) :
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Appendix A

Triple Sampling Simulation to Estimate the Optimal Sample Size, the Population Mean
and the Regret at m=5,15,20and 6 =0.5

Note: Each tableis divided into three sub attached tables, thefirst oneat m=15, the second at
m=15andthelastat m=20.

TABLE Al

The underlying distribution is a standard nor mal

n N seN Iz seq @
24 22.18 0. 028982 0. 00115 0. 001035 5. 0388
43 41. 25 0. 036702 0. 00084 0. 000726 4.0344
61 59. 37 0. 042849 0. 00068 0. 000592 2.5455
76 74. 44 0. 046901 0. 00031 0. 000525 2. 0155
96 94.51 0. 052273 0. 00003 0. 000462 0. 7541
125 123. 59 0. 058102 0. 00033 0. 000405 1.9341
171 169. 56 0. 067547 - 0. 00027 0. 000346 2.6415
246 244.62 0. 080568 0. 00021 0. 000287 2.2415
500 498. 70 0.113235 - 0. 00005 0. 000201 3. 6976
n' N seN H senu 2]
24 16. 36 0. 020731 0. 00082 0.001131 5.2289
43 41.11 0. 039497 0. 00069 0. 000725 3.6876
61 59.78 0. 038194 - 0. 00047 0. 000584 1. 1441
76 74.90 0. 041723 -0.00083 0. 000520 1. 0326
96 94. 88 0. 046620 -0.00043 0. 000462 1.1022
125 123. 90 0. 052493 0. 00011 0. 000403 0. 9575
171 169. 83 0. 061344 0. 00052 0. 000345 2.1620
246 244,95 0. 073067 0. 00035 0. 000286 0. 7743
500 498. 82 0. 103711 -0. 00020 0. 000200 -0.0303
n N seN H se.u o
24 20. 00 0. 000000 0. 00176 0. 000999 0.7149
43 36. 39 0. 058475 - 0. 00095 0. 000805 10. 3735
61 59. 52 0. 041586 -0. 00026 0. 000590 2.3210
76 74.83 0. 041595 0. 00021 0. 000524 2. 2575
96 94. 88 0. 046026 -0.00031 0. 000463 1.6784
125 123. 92 0. 052166 -0. 00003 0. 000404 1.5963
171 169. 87 0. 060357 0.00013 0. 000345 2.0388
246 244,92 0. 072686 - 0. 00007 0. 000287 2.5890
500 498. 92 0. 102876 0. 00009 0. 000200 0. 3383
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TABLE A2

The underlying distribution is a standard uniform

n N seN H se.u @
24 23. 05 0. 022279 0. 49974 0. 000324 11. 3524
43 42. 35 0. 025634 0.50012 0. 000213 6. 6890
61 60. 52 0. 028055 0. 50008 0.000173 4.9614
76 75.52 0. 030640 0. 50008 0. 000153 4.6738
96 95. 60 0. 032932 0. 50003 0.000134 2.4396
125 124. 62 0. 036760 0. 49990 0. 000117 2.9169
171 170. 65 0. 042357 0. 50000 0. 000099 0. 7481
246 245. 64 0. 049462 0. 49995 0. 000083 2. 3900
500 499. 69 0. 069074 0. 49991 0. 000058 4.1204
n N seN p seu @
24 15. 24 0. 008750 0. 50030 0. 000333 5. 4707
43 42.52 0. 024801 0. 49999 0. 000210 5.2190
61 60. 77 0. 024570 0. 49988 0. 000170 2.9704
76 75. 82 0. 026718 0. 50026 0. 000150 2.1537
96 95.76 0. 029713 0. 50006 0.000133 1.7100
125 124. 86 0. 033402 0. 50015 0. 000116 1.2865
171 170. 86 0. 038470 0. 50004 0. 000099 1. 4656
246 245.78 0. 045876 0. 49988 0. 000083 5.9230
500 499. 86 0. 065035 0. 50000 0. 000058 7.6406
n N seN Iz sen @
24 20. 00 0. 000000 0. 49955 0. 000287 0.5572
43 38. 15 0. 050794 0. 49937 0. 000239 15. 6292
61 60. 73 0. 025025 0.50011 0. 000169 2.5278
76 75.77 0. 026631 0. 50004 0. 000151 2.3136
96 95. 80 0. 029368 0. 50016 0. 000134 2. 6052
125 124. 80 0. 033152 0. 49987 0. 000116 0.9192
171 170. 82 0. 038557 0.50012 0. 000099 2.1333
246 245. 83 0. 045493 0. 49998 0. 000083 3.8632
500 499, 89 0. 064344 0. 50007 0. 000058 1.4336
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The underlying distribution is t( 5)

TABLE A3

n N seN H Se.u o

24 20. 88 0. 036654 -0. 00092 0. 001309 2.5043
43 39. 66 0. 052534 -0. 00190 0. 000934 2.0134
61 57. 66 0. 066577 0. 00081 0. 000769 1.6291
76 72.68 0. 075315 0. 00004 0. 000684 1.8168
96 92.72 0. 084027 - 0. 00083 0. 000603 1. 4098
125 121. 86 0. 099683 - 0. 00061 0. 000524 0. 7889
171 167. 80 0. 120742 - 0. 00061 0. 000445 -0.1928
246 243.19 0. 149062 0. 00019 0. 000370 0. 2370
500 498. 39 0. 242648 - 0. 00047 0. 000258 -1.7375
n N seN Iz seu 10

24 17. 33 0. 028474 - 0. 00090 0. 001377 2.1192
43 38. 65 0. 054649 0. 00010 0. 000940 1. 6830
61 57. 65 0. 057029 -0.00133 0. 000764 0.7942
76 72.70 0. 064292 - 0. 00003 0. 000679 0.5190
96 92.81 0. 074492 - 0. 00024 0. 000599 0. 0544
125 121. 68 0. 087872 - 0. 00071 0. 000524 0. 3386
171 167.73 0. 104197 - 0. 00036 0. 000444 -1.4392
246 242. 64 0. 128265 0. 00026 0. 000369 -1.8762
500 496. 85 0. 193698 - 0. 00029 0. 000260 4. 4777
n N seN Iz sep @

24 20. 32 0. 012561 0. 00125 0. 001263 -0.1202
43 34. 20 0. 065299 - 0. 00068 0. 001017 5.5412
61 57. 04 0. 063225 - 0. 00018 0. 000772 1. 4883
76 72.73 0. 063889 - 0. 00042 0. 000677 0.2072
96 92. 69 0. 072646 - 0. 00045 0. 000600 0. 1309
125 121.75 0. 083565 - 0. 00037 0. 000522 -0.4909
171 167. 60 0. 104864 0. 00020 0. 000445 -0.4245
246 242.50 0. 126861 - 0. 00052 0. 000369 -1.9978
500 496. 47 0. 190696 - 0. 00005 0. 000259 -0.7673
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The underlying distribution is t( 25 )

TABLE A4

n N seN H Se.u o

24 22.02 0. 029939 -0.00116 0.001076 4. 6844
43 41. 09 0. 038530 0. 00055 0. 000756 3.6912
61 59. 18 0. 045058 0. 00072 0. 000619 2.7728
76 74.27 0. 050177 0. 00046 0. 000547 1. 7548
96 94. 26 0. 055544 - 0. 00084 0. 000486 2.2458
125 123. 27 0. 062155 - 0. 00074 0. 000423 1.9584
171 169. 49 0.071683 0. 00009 0. 000358 0. 2642
246 244.54 0. 085695 - 0. 00076 0. 000298 -0.9581
500 498. 77 0. 122293 -0. 00011 0. 000209 -0.0232
n N seN Iz seu 10

24 16. 53 0. 021943 -0. 00101 0.001174 5. 0694
43 40. 94 0. 041395 - 0. 00037 0. 000759 3.9828
61 59. 60 0. 040470 - 0. 00012 0. 000610 1. 3662
76 74.65 0. 044291 - 0. 00076 0. 000543 1. 0648
96 94. 66 0. 049549 0. 00033 0. 000484 2.1484
125 123. 67 0. 055786 0. 00059 0. 000422 1. 4517
171 169. 72 0. 064653 - 0. 00007 0. 000358 0. 0084
246 244,71 0. 078574 - 0. 00043 0. 000299 1. 4579
500 498. 63 0.110583 -0. 00018 0. 000209 1.5594
n N seN Iz sep @

24 20. 00 0. 001335 0. 00025 0. 001044 0.9021
43 36. 14 0. 059555 0. 00003 0. 000832 9. 0250
61 59. 34 0. 044015 - 0. 00045 0. 000617 2.5277
76 74.61 0. 044410 - 0. 00042 0. 000545 1. 4274
96 94.70 0. 048752 - 0. 00010 0. 000481 0. 8447
125 123. 67 0. 055646 - 0. 00039 0. 000422 1.3883
171 169. 73 0. 064318 0. 00056 0. 000360 2.1650
246 244,72 0. 077640 - 0. 00041 0. 000298 -0.2633
500 498. 63 0. 109736 - 0. 00043 0. 000210 6. 2678
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The underlying distribution is t( 50)

TABLE A5

n N seN H Se.u o

24 22. 14 0. 029292 0. 00062 0.001054 4. 8482
43 41. 20 0. 037994 - 0. 00070 0. 000741 3.9371
61 59. 31 0. 043884 - 0. 00017 0. 000606 2.9058
76 74. 40 0. 047923 - 0. 00024 0. 000540 3.2878
96 94. 39 0. 053054 -0.00114 0. 000474 1.8918
125 123. 56 0. 059901 0. 00000 0. 000414 2. 0669
171 169. 43 0. 070151 - 0. 00064 0. 000352 0. 9446
246 244. 47 0. 083238 0. 00004 0. 000293 1.2752
500 498. 62 0. 117445 - 0. 00070 0. 000205 4.7263
n N seN Iz seu 10

24 16. 48 0.021578 -0. 00022 0.001147 4.8474
43 41. 05 0. 040225 0. 00029 0. 000740 3. 6657
61 59. 64 0. 039283 0. 00004 0. 000596 1. 0596
76 74.70 0. 042995 - 0. 00070 0. 000531 0. 7468
96 94.76 0. 047965 0. 00052 0. 000473 1. 6086
125 123. 69 0. 054177 - 0. 00080 0. 000414 2.1794
171 169. 79 0. 063129 - 0. 00043 0. 000351 0. 9590
246 244. 84 0. 075478 - 0. 00014 0. 000294 4.1042
500 498. 89 0. 106259 - 0. 00027 0. 000205 1. 0304
n N seN Iz sep @

24 20. 00 0.001174 0. 00010 0. 001021 0. 8401
43 36. 31 0. 058764 - 0. 00024 0. 000814 9. 0564
61 59. 46 0. 042114 - 0. 00044 0. 000604 2.6648
76 74.74 0. 042853 -0.00116 0. 000532 1.2739
96 94. 88 0. 047234 -0.00113 0. 000470 0. 5378
125 123. 83 0. 053609 0. 00026 0. 000411 0. 3645
171 169. 84 0. 062453 - 0. 00041 0. 000352 1.2998
246 244. 68 0. 074626 0. 00011 0. 000294 3.1244
500 499. 01 0. 105524 -0. 00018 0. 000205 5.6271
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TABLE A6

The underlying distribution is t( 100 )

n N seN Iz sen @

24 22. 11 0. 029307 -0. 00054 0. 001051 5.2683
43 41. 29 0. 037196 -0. 00057 0. 000728 3.3283
61 59. 29 0. 043189 -0.00041 0. 000599 2.8020
76 74.44 0. 047089 -0. 00068 0. 000532 2.4863
96 94. 46 0. 052633 -0. 00054 0. 000469 2. 0045
125 123. 50 0. 059256 -0.00032 0. 000412 3. 4297
171 169. 50 0. 068577 0. 00004 0. 000349 2.0338
246 244.58 0. 082121 -0.00013 0. 000289 0. 9453
500 498. 77 0.116592 -0. 00028 0. 000202 -3.2164
n N seN H se. 5
24 16. 41 0. 021003 -0.00023 0.001142 5.2045
43 41. 09 0. 039855 0. 00043 0. 000734 3. 9395
61 59. 81 0. 038443 -0. 00002 0. 000593 1.9960
76 74.73 0. 042378 -0. 00002 0. 000525 0. 8356
96 94. 92 0. 046767 -0. 00060 0. 000465 0. 4081
125 123. 90 0. 053644 -0.00048 0. 000408 1.1102
171 169. 80 0. 061847 - 0. 00007 0. 000346 -1.0170
246 244. 81 0. 074448 -0. 00044 0. 000290 1.8997
500 498. 81 0. 105261 -0. 00030 0. 000204 6. 3207
o N seN T sef @
24 20. 00 0. 000000 0. 00164 0. 001009 0. 7379
43 36. 32 0. 058804 0. 00128 0. 000813 10. 1842
61 59. 55 0. 041776 0. 00058 0. 000599 2.9800
76 74. 82 0. 041891 0. 00046 0. 000526 1. 0016
96 94.79 0. 046664 - 0. 00064 0. 000466 1. 0195
125 123. 86 0. 052835 - 0. 00029 0. 000409 1.7239
171 169. 71 0. 061537 - 0. 00085 0. 000347 -0. 0869
246 244.87 0. 073605 - 0. 00004 0. 000288 -0.4451
500 498. 92 0. 104293 - 0. 00039 0. 000202 -3.5525
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TABLE A7

The underlying distribution is beta (2,3)

n N seN A se.u %)

24 22.63 0. 026033 0. 39700 0. 000214 7.8013
43 41.78 0. 032047 0. 39887 0. 000146 5.2428
61 59. 94 0. 036216 0. 39936 0. 000119 4.0645
76 75. 04 0. 038951 0. 39976 0. 000106 3. 8069
96 95. 06 0. 042749 0. 39957 0. 000093 3.5709
125 124. 09 0. 047940 0. 39991 0. 000081 3. 6107
171 170. 06 0. 054984 0. 39987 0. 000069 2.8993
246 245. 20 0. 065358 0. 39974 0. 000057 2. 4580
500 499. 12 0. 091797 0. 39991 0. 000040 1. 1577
n N seN Iz senu 1)

24 15.78 0. 015659 0. 39929 0. 000228 5.1932
43 41. 80 0. 032927 0. 39862 0. 000147 5.6713
61 60. 28 0. 031924 0. 39927 0. 000118 2. 5505
76 75. 28 0. 035098 0. 39957 0. 000104 1.8228
96 95. 29 0. 038554 0. 39964 0. 000092 1. 3700
125 124. 36 0. 043387 0. 39967 0. 000081 1. 2696
171 170. 32 0. 050605 0. 39981 0. 000069 2.1447
246 245. 30 0. 060230 0. 39996 0. 000057 0.2243
500 499. 41 0. 084919 0. 39996 0. 000040 - 0. 3856
n N seN Iz sen @

24 20. 00 0. 000000 0. 40022 0. 000200 0. 6887
43 37.19 0. 055311 0. 39762 0. 000164 13. 3263
61 60. 15 0. 033871 0. 39925 0. 000118 3. 2058
76 75. 37 0. 034510 0. 39942 0. 000105 3. 0726
96 95. 34 0. 038387 0. 39953 0. 000093 2.8478
125 124. 41 0. 043471 0. 39988 0. 000081 1. 4720
171 170. 45 0. 050123 0. 39994 0. 000069 1. 3234
246 245.41 0. 059888 0. 39986 0. 000058 4.0616
500 499. 36 0. 084370 0. 39994 0. 000040 3. 6948

195 | Page




TABLE A8

The underlying distribution is exponential with mean one

n N seN A se. ®

24 19. 05 0. 042283 0.91062 0.001210 17. 7940
43 37. 36 0. 066798 0. 95096 0. 000910 32. 3492
61 55. 27 0. 083120 0. 97055 0. 000717 32. 0484
76 70. 43 0. 095247 0.97799 0. 000620 32. 2888
96 90. 82 0. 108801 0. 98547 0. 000522 26.3778
125 119. 63 0. 125698 0. 98934 0. 000442 23.7438
171 166. 33 0. 150889 0. 99284 0. 000361 16. 7938
246 241.72 0. 183681 0.99513 0. 000293 10. 2735
500 497. 95 0. 278949 0.99761 0. 000203 13. 6584
n N seN H se.u @

24 18. 00 0. 031791 0. 96999 0. 000981 -1.7872
43 36.70 0. 063877 0. 95095 0. 000820 17.3048
61 55. 42 0. 072529 0.97141 0. 000680 22.4790
76 70. 67 0. 081002 0. 98051 0. 000582 18. 6754
96 90.71 0. 091417 0. 98597 0. 000496 14. 0712
125 119. 59 0. 104466 0. 99106 0. 000425 11. 8602
171 165. 67 0. 123608 0.99283 0. 000354 8. 7925
246 241.02 0. 150052 0. 99610 0. 000293 9. 2764
500 495. 23 0.217850 0.99772 0. 000202 7.3364
n N seN Iz senu 2]

24 20. 46 0.014478 0. 99486 0. 000965 -0.7321
43 33.97 0. 068079 0. 95662 0. 000772 6. 4769
61 54.51 0. 078470 0. 96587 0. 000690 25. 3587
76 70. 40 0. 081271 0.97832 0. 000594 23.0115
96 90. 50 0. 089091 0. 98632 0. 000501 15. 7395
125 119.70 0.102628 0. 99068 0. 000422 10. 3143
171 165. 69 0. 120965 0. 99342 0. 000355 8. 7394
246 240. 62 0. 146291 0.99518 0. 000293 9. 0376
500 495. 16 0.211471 0. 99795 0. 000202 4.0084

196 |Page




Appendix B

Triple Sampling Simulation to Estimate the Optimal Sample Size, the Population Mean,
the Probability of Stopping and the Coverage Probability at m=5,15,20, 6 =0.5 and

a=0.05

Note: Each tableisdivided into three sub attached tables, thefirst oneat m=>5, the second at
mM=15and thelastat m=20.

TABLE B1

The underlying distribution is a standard normal

n N seN T sep | P(M) [ P(N) | P(N) | 1-¢

24 20. 03 0. 051 -0.0011 0. 0013 0. 202 0.076 0.722 0. 8651
43 37.92 0. 081 0. 0007 0. 0009 0.079 0.091 0. 830 0. 8831
61 55.72 0.104 0. 0003 0. 0008 0. 044 0. 086 0. 870 0. 8985
76 70. 87 0.120 -0. 0001 0. 0007 0.031 0. 092 0. 877 0. 9063
96 91.21 0. 139 0. 0000 0. 0006 0.018 0.091 0. 891 0.9179
125 120. 52 0. 164 0. 0004 0. 0005 0.012 0. 092 0. 897 0. 9254
171 167. 48 0. 200 -0.0008 0. 0004 0. 007 0.091 0. 902 0. 9315
246 244. 49 0. 249 0. 0002 0. 0003 0. 003 0. 089 0. 908 0.939%4
500 505. 39 0. 405 -0. 0001 0. 0002 0. 001 0. 089 0.910 0. 9462
n N seN T sep | P(M) [ P(N) | P(N) | 1-¢

24 19. 56 0.038 0.0011 0.0011 0.769 0. 000 0.231 0. 9009
43 38. 12 0. 068 -0. 0006 0. 0008 0.221 0. 001 0.779 0.9048
61 56. 32 0. 081 0. 0004 0. 0007 0. 062 0. 004 0. 935 0.9192
76 71.55 0. 089 0. 0002 0. 0006 0. 022 0. 005 0.973 0.9276
96 91. 48 0.101 0. 0004 0. 0005 0. 008 0. 008 0. 985 0.9331
125 120. 70 0.113 -0.0003 0. 0004 0. 002 0. 009 0. 989 0.9383
171 166. 85 0.131 0. 0006 0. 0004 0. 000 0. 010 0. 990 0. 9433
246 242. 08 0. 156 0. 0000 0. 0003 0. 000 0. 010 0. 990 0. 9435
500 496. 69 0. 223 0. 0001 0. 0002 0. 000 0.013 0. 987 0. 9463
n N | seN T seg | P(M) | P(N) | P(N) | 1-¢

24 20. 77 0. 019 -0.0016 0. 0010 0. 966 0. 000 0. 034 0. 9297
43 36. 25 0.071 -0. 0017 0. 0008 0. 452 0. 000 0. 548 0.8974
61 55. 85 0. 084 -0. 0001 0. 0007 0.133 0. 000 0. 867 0.9161
76 71.55 0. 089 -0. 0006 0. 0006 0. 046 0. 001 0. 953 0. 9269
96 91.71 0. 098 0. 0001 0. 0005 0.012 0. 002 0. 987 0. 9335
125 120. 72 0.111 0. 0000 0. 0004 0. 002 0. 002 0. 996 0. 9398
171 166. 88 0.127 0. 0006 0. 0004 0. 000 0. 003 0.997 0.9411
246 241. 63 0.151 0. 0001 0. 0003 0. 000 0. 004 0. 996 0. 9457
500 496. 14 0. 214 -0. 0002 0. 0002 0. 000 0. 005 0. 995 0. 9487
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TABLE B2

The underlying distribution is a standard uniform

n N seN | &4 | sea | P(M) | P(N) | P(N) | 1-¢4
24 20. 92 0. 04 0.5 0.0 0.136 0. 022 0. 842 0. 8487
43 39. 27 0. 06 0.5 0.0 0. 047 0. 028 0. 925 0. 8854
61 57.12 0. 07 0.5 0.0 0. 026 0. 029 0. 945 0. 9040
76 72. 20 0. 08 0.5 0.0 0. 016 0. 030 0. 953 0.9151
96 92.15 0. 09 0.5 0.0 0. 011 0.031 0. 958 0.9220
125 121. 37 0.10 0.5 0.0 0. 007 0. 032 0. 961 0. 9319
171 167. 75 0.12 0.5 0.0 0. 004 0. 032 0. 965 0. 9385
246 243. 38 0.14 0.5 0.0 0. 001 0.031 0. 968 0. 9447
500 498. 77 0.19 0.5 0.0 0. 001 0. 032 0. 967 0. 9481
- N seN | # | sea | P(M) | P(N) | P(N) | 1-¢4
24 17.89 0.03 0.5 0.0 0. 839 0. 000 0. 161 0. 8854
43 40. 47 0. 05 0.5 0.0 0.112 0. 000 0. 887 0. 9062
61 59. 07 0. 05 0.5 0.0 0. 016 0. 000 0.984 0. 9301
76 74.21 0. 06 0.5 0.0 0. 005 0. 000 0. 995 0.9341
96 94. 27 0. 06 0.5 0.0 0. 001 0. 000 0. 999 0. 9387
125 123. 36 0. 07 0.5 0.0 0. 000 0. 000 1. 000 0.9432
171 169. 32 0.08 0.5 0.0 0. 000 0. 000 1. 000 0. 9449
246 244, 34 0.10 0.5 0.0 0. 000 0. 000 1. 000 0.9470
500 498. 42 0.13 0.5 0.0 0. 000 0. 000 1. 000 0.9483
n N seN | 4 | sea | PM) [ P(N) | P(N) | 1-¢4
24 20. 03 0. 00 0.5 0.0 0. 999 0. 000 0. 001 0. 9258
43 37.11 0. 06 0.5 0.0 0. 381 0. 000 0.619 0. 8842
61 58. 82 0. 06 0.5 0.0 0. 050 0. 000 0. 950 0. 9230
76 74. 25 0. 06 0.5 0.0 0. 010 0. 000 0. 990 0. 9329
96 94. 45 0. 06 0.5 0.0 0. 001 0. 000 0. 999 0.9412
125 123. 45 0. 07 0.5 0.0 0. 000 0. 000 1. 000 0. 9447
171 169. 47 0.08 0.5 0.0 0. 000 0. 000 1. 000 0. 9430
246 244. 49 0.09 0.5 0.0 0. 000 0. 000 1. 000 0. 9467
500 498. 77 0.13 0.5 0.0 0. 000 0. 000 1. 000 0.9470
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TABLE B3

The underlying distributionis t( 5)

n N seN | & | seg | P(M) | P(N) | P(N) | 1-¢4

24 19. 03 0.08 0 0 0. 288 0.117 0.595 0.8741
43 36. 68 0.21 0 0 0.130 0.128 0.742 0.8773
61 55. 27 0.23 0 0 0.075 0. 125 0. 800 0.8848
76 70. 00 0.24 0 0 0.053 0.123 0.824 0.8927
96 90. 62 0.28 0 0 0.035 0.118 0.847 0.8993
125 121.49 0. 37 0 0 0.023 0.115 0.863 0.9074
171 171.01 0.44 0 0 0.012 0.115 0.873 0.9216
246 250.70 0.61 0 0 0. 006 0.111 0.883 0.9322
500 521. 82 1.19 0 0 0. 002 0.112 0.887 0.9417
n N seN | & | seg | P(M) | P(N) | P(N) | 14

24 20. 06 0.05 0 0 0.770 0. 007 0.222 0.9232
43 35. 45 0.10 0 0 0.348 0. 021 0.631 0.9058
61 52. 88 0.13 0 0 0.144 0. 034 0.821 0.9129
76 67.92 0.16 0 0 0.070 0. 040 0. 890 0.9181
96 88. 02 0.19 0 0 0.027 0. 047 0.925 0.9230
125 117.76 0.24 0 0 0.010 0. 050 0.941 0.9304
171 164.97 0.29 0 0 0. 002 0. 053 0. 945 0.9353
246 241.67 0. 37 0 0 0. 000 0. 055 0.944 0.9411
500 503. 30 0.82 0 0 0. 000 0. 055 0. 945 0.9462
n N seN | p | sea | P(M) | P(N) | P(N) | 1-4

24 22.35 0.04 0 0 0.914 0. 003 0.084 0.9417
43 34.76 0.09 0 0 0.553 0. 009 0.438 0.9088
61 52.10 0.13 0 0 0. 256 0.016 0.728 0.9138
76 66. 85 0.14 0 0 0.126 0. 022 0.851 0.9191
96 87.19 0.17 0 0 0. 050 0. 026 0.923 0.9259
125 116.76 0.21 0 0 0.014 0. 033 0.954 0.9333
171 163. 54 0.26 0 0 0. 002 0. 037 0.961 0.9354
246 239. 37 0.33 0 0 0. 000 0. 040 0. 960 0.9395
500 498. 27 0.54 0 0 0. 000 0. 044 0. 956 0.9479
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TABLE B4

The underlying distribution is t(10)

n N seN | 4 | sea | P(M) | P(N) | P(N) | 1-4

24 19.73 0.06 0 0 0. 239 0. 089 0.671 0. 8709
43 37.28 0.10 0 0 0. 096 0. 103 0. 801 0. 8802
61 55. 23 0.13 0 0 0. 053 0. 103 0. 844 0. 8936
76 70. 20 0.15 0 0 0. 038 0. 105 0. 857 0. 9004
96 91.01 0.17 0 0 0. 025 0.101 0.874 0.9104
125 120. 92 0.21 0 0 0.016 0. 104 0. 880 0.9199
171 168. 47 0.26 0 0 0. 009 0. 103 0. 889 0.9282
246 246. 80 0.34 0 0 0. 004 0. 105 0. 890 0.9363
500 512. 31 0.59 0 0 0. 001 0. 104 0. 895 0. 9450
o N | seN | & | sea | P(M) | P(N) | P(N) | 1-4

24 19. 88 0.04 0 0 0.764 0.001 0.235 0.9120
43 37.13 0.08 0 0 0.271 0. 006 0.723 0. 9040
61 54. 98 0.09 0 0 0. 090 0.013 0. 897 0.9180
76 69.79 0.11 0 0 0. 037 0.017 0. 947 0.9233
96 89. 98 0.12 0 0 0.013 0. 020 0. 967 0.9283
125 119. 38 0.14 0 0 0. 003 0.023 0.974 0. 9352
171 165. 89 0.17 0 0 0. 001 0. 026 0.973 0. 9399
246 241. 44 0.20 0 0 0. 000 0. 029 0.971 0. 9440
500 496. 88 0.30 0 0 0. 000 0. 030 0. 970 0. 9469
. N seN | 4 | sea | P(M) | P(N) | P(N) | 1-4

24 21.43 0.03 0 0 0.941 0. 000 0. 059 0. 9334
43 35.70 0.07 0 0 0. 489 0. 001 0.510 0. 9020
61 54. 35 0.09 0 0 0.180 0. 003 0.817 0. 9156
76 69. 80 0.10 0 0 0.072 0. 006 0.923 0. 9230
96 89. 83 0.12 0 0 0. 024 0. 008 0. 968 0. 9298
125 119. 01 0.13 0 0 0. 005 0.011 0.984 0. 9377
171 165. 33 0.16 0 0 0. 000 0.013 0. 987 0. 9405
246 240. 64 0.19 0 0 0. 000 0.015 0.985 0. 9439
500 495, 78 0.28 0 0 0. 000 0.018 0.982 0. 9472
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TABLE BS

The underlying distribution is t( 25 )

n N seN | # | seg | P(M) | P(N) | P(N) | 1-¢4
24 19. 85 0.05 0 0 0.215 0.081 0.704 0. 8682
43 37.71 0.09 0 0 0. 089 0. 095 0.817 0.8828
61 55. 35 0.11 0 0 0. 047 0. 096 0.857 0. 8940
76 70. 92 0.13 0 0 0. 033 0. 097 0.870 0. 9070
96 91.12 0.15 0 0 0. 020 0. 099 0.881 0.9163
125 120. 67 0.18 0 0 0.013 0. 094 0.893 0. 9236
171 168. 38 0.22 0 0 0. 007 0. 096 0. 897 0. 9305
246 245. 30 0.28 0 0 0. 004 0. 096 0. 900 0. 9364
500 508. 23 0.46 0 0 0. 001 0. 095 0. 904 0. 9482
n N seN | & | sea | P(M) | P(N) | P(N) | 1-¢4
24 19. 68 0.04 0 0 0. 769 0. 000 0.231 0. 9042
43 37.70 0.07 0 0 0. 237 0. 002 0. 761 0. 9048
61 55. 83 0.08 0 0 0.072 0. 006 0.922 0. 9192
76 70. 95 0.09 0 0 0. 027 0. 008 0. 965 0. 9257
96 91.18 0.11 0 0 0. 009 0.011 0. 980 0. 9327
125 119. 97 0.12 0 0 0. 002 0.013 0.985 0. 9365
171 166. 24 0.14 0 0 0. 000 0.014 0.985 0. 9422
246 241.76 0.17 0 0 0. 000 0.017 0.983 0. 9431
500 496. 31 0.24 0 0 0. 000 0.019 0.981 0. 9474
i N | seN | &4 | seqg | P(M) | P(N) | P(N) | 1-¢
24 21.01 0.02 0 0 0. 957 0. 000 0.043 0. 9309
43 36.19 0.07 0 0 0. 468 0. 000 0.531 0. 8979
61 55. 32 0.09 0 0 0.150 0. 001 0. 849 0. 9160
76 70. 89 0.09 0 0 0. 055 0. 002 0.944 0. 9265
96 90. 96 0.10 0 0 0.016 0. 003 0.981 0. 9332
125 120. 32 0.12 0 0 0. 003 0. 004 0. 993 0.9375
171 166. 48 0.14 0 0 0. 000 0. 006 0. 994 0. 9407
246 241.10 0.16 0 0 0. 000 0. 007 0. 993 0. 9441
500 495. 96 0.23 0 0 0. 000 0. 009 0.991 0. 9480
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TABLE B6

The underlying distribution is t( 50)

n N seN | &4 | seg | P(M) | P(N) | P(N) | 1_4
24 19. 89 0.05 0 0 0. 207 0.078 0.715 0. 8697
43 37.70 0.08 0 0 0. 085 0. 091 0.824 0. 8806
61 55. 58 0.11 0 0 0. 047 0. 093 0. 861 0. 8983
76 70.73 0.12 0 0 0. 030 0. 091 0.879 0. 9080
96 90. 92 0.15 0 0 0. 020 0. 095 0. 885 0.9148
125 120. 61 0.17 0 0 0.012 0. 091 0. 897 0.9222
171 168. 09 0.21 0 0 0. 007 0. 091 0. 902 0.9328
246 245. 03 0.26 0 0 0. 003 0. 093 0. 904 0. 9392
500 506. 02 0.42 0 0 0. 001 0. 096 0.903 0. 9467
n N seN | &4 | seug | P(M) [ P(N) | P(N) | 14
24 19. 65 0.04 0 0 0. 769 0. 000 0.231 0. 9043
43 37.95 0.07 0 0 0.226 0. 002 0.772 0. 9049
61 56. 23 0.08 0 0 0. 063 0. 005 0.932 0. 9209
76 71.25 0.09 0 0 0.024 0. 006 0. 970 0. 9289
96 91. 27 0.10 0 0 0. 008 0. 008 0.984 0. 9316
125 120. 37 0.12 0 0 0. 002 0.011 0.987 0. 9385
171 166. 45 0.14 0 0 0. 000 0.012 0.988 0. 9417
246 241. 69 0.16 0 0 0. 000 0.014 0. 986 0. 9460
500 496. 56 0.23 0 0 0. 000 0. 016 0.984 0. 9469
n N seN | 4 | seg | P(M) | P(N) | P(N) | 1_¢4
24 20. 86 0.02 0 0 0. 963 0. 000 0. 037 0. 9294
43 36. 16 0.07 0 0 0. 463 0. 000 0.537 0.8974
61 55. 64 0.09 0 0 0. 142 0. 000 0.858 0. 9156
76 71. 24 0.09 0 0 0. 050 0.001 0. 949 0.9276
96 91. 26 0.10 0 0 0.014 0. 002 0.984 0. 9347
125 120. 43 0.11 0 0 0. 002 0. 003 0. 995 0. 9368
171 166. 48 0.13 0 0 0. 000 0. 004 0. 996 0. 9429
246 241.59 0.16 0 0 0. 000 0. 005 0. 995 0. 9442
500 496. 03 0.22 0 0 0. 000 0. 006 0. 994 0. 9476
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TABLE BY

The underlying distribution is t (100 )

n N seN H sep | P(M) | P(N) [ P(N) | 14

24 19.93 0.05 0 0 0.204 0.076 0.721 0. 8654
43 37.72 0.08 0 0 0. 079 0. 090 0.831 0.8834
61 55. 67 0.11 0 0 0. 044 0. 091 0. 865 0. 8964
76 70.75 0.12 0 0 0. 029 0. 093 0.878 0. 9060
96 90.75 0.14 0 0 0. 019 0. 092 0.889 0. 9151
125 120. 49 0.17 0 0 0.012 0. 091 0.897 0. 9240
171 168. 12 0.21 0 0 0. 006 0. 091 0.903 0. 9343
246 245.19 0.26 0 0 0. 003 0. 093 0.903 0. 9407
500 506. 01 0.42 0 0 0. 001 0. 093 0. 907 0. 9476
- N seN H sea | P(M) | P(N) [ P(N) | 14

24 19. 63 0. 04 0 0 0.768 0. 000 0.232 0. 9030
43 38. 15 0.07 0 0 0.224 0. 001 0.775 0. 9047
61 56. 40 0.08 0 0 0. 066 0. 004 0.931 0.9184
76 71. 39 0.09 0 0 0. 024 0. 007 0. 969 0. 9268
96 91. 50 0.10 0 0 0. 007 0. 008 0. 985 0. 9322
125 120. 47 0.11 0 0 0. 002 0. 010 0.988 0. 9380
171 166. 73 0.13 0 0 0. 000 0.011 0.989 0. 9420
246 241.93 0.16 0 0 0. 000 0.012 0.987 0. 9450
500 496. 91 0.23 0 0 0. 000 0.014 0. 986 0. 9493
n N seN T seg | P(M) | P(N) | P(N) | 14

24 20. 86 0.02 0 0 0. 965 0. 000 0.035 0.9301
43 36. 14 0.07 0 0 0. 460 0. 000 0. 540 0.8974
61 55.71 0.08 0 0 0.137 0. 000 0. 863 0.9161
76 71.27 0.09 0 0 0. 049 0. 001 0. 950 0. 9244
96 91. 45 0.10 0 0 0.013 0. 001 0. 986 0. 9335
125 120. 58 0.11 0 0 0. 003 0.003 0. 994 0.9382
171 166. 72 0.13 0 0 0. 000 0. 004 0. 996 0.9423
246 242.11 0.15 0 0 0. 000 0. 005 0. 995 0. 9446
500 496. 06 0.22 0 0 0. 000 0. 005 0. 995 0. 9478
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TABLE B8

The underlying distribution is beta (3, 2)

n N seN H seu | P(M) | P(N) | P(N) | 1-4
24 20. 24 0.05 0.61 0 0.173 0. 050 0.777 0. 8535
43 38.53 0.07 0. 60 0 0. 064 0. 064 0.872 0. 8823
61 56. 28 0.09 0. 60 0 0. 033 0. 067 0. 900 0. 8995
76 71.28 0.10 0. 60 0 0. 023 0. 066 0.911 0. 9090
96 91.52 0.11 0. 60 0 0.014 0. 067 0.919 0.9187
125 120. 95 0.13 0. 60 0 0. 009 0. 069 0.921 0.9288
171 167. 32 0.16 0. 60 0 0. 004 0. 069 0. 926 0. 9349
246 243,33 0.19 0. 60 0 0. 003 0.072 0. 926 0. 9409
500 501. 04 0.28 0. 60 0 0. 001 0.072 0.927 0. 9490
n N seN H sea | PM) | P(N) | P(N) | 1-¢4
24 18.91 0.03 0. 60 0 0.788 0. 000 0.212 0. 8962
43 39. 20 0.06 0. 60 0 0.172 0. 000 0.828 0.9017
61 57.76 0.07 0.60 0 0. 037 0. 000 0. 963 0.9228
76 72.68 0.08 0.60 0 0.012 0. 001 0. 987 0.9278
96 92.95 0.08 0.60 0 0. 004 0. 002 0. 994 0. 9353
125 121. 96 0.09 0.60 0 0. 001 0. 001 0. 998 0. 9405
171 168. 10 0.11 0.60 0 0. 000 0. 002 0. 998 0. 9415
246 243. 14 0.13 0. 60 0 0. 000 0. 002 0.998 0. 9429
500 497.11 0.18 0.60 0 0. 000 0. 003 0. 997 0. 9490
| N | seN| & | seq | P(M) | P(N) | P(N) | 1-¢
24 20. 28 0.01 0.60 0 0. 986 0. 000 0.014 0.9274
43 36. 61 0.07 0.60 0 0422 0. 000 0.578 0. 8909
61 57.33 0.07 0.60 0 0.094 0. 000 0. 906 0.9167
76 72.69 0.08 0.60 0 0.026 0. 000 0.974 0.9310
96 93. 04 0.08 0.60 0 0. 006 0. 000 0. 994 0. 9341
125 122.16 0.09 0.60 0 0.001 0. 000 0. 999 0. 9401
171 168. 26 0.11 0.60 0 0. 000 0. 000 1. 000 0. 9435
246 243. 34 0.12 0.60 0 0. 000 0. 000 1. 000 0. 9458
500 497.13 0.17 0.60 0 0. 000 0. 000 1. 000 0. 9477
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TABLE B9

The underlying distribution is exponential with mean one

"] N | seN| & | ser | PM) | P(N) | PON) | 1_4
24 17.71 0.083 0.8701 0. 0012 0. 388 0.129 0. 483 0. 7935
43 33.82 0.151 0. 8755 0. 0011 0. 227 0. 153 0. 620 0.7418
61 50. 80 0.213 0. 8915 0. 0011 0. 154 0. 152 0. 694 0. 7544
76 65. 89 0. 258 0. 9061 0. 0010 0.117 0. 152 0.731 0.7736
96 85.76 0. 312 0.9188 0. 0009 0. 088 0. 148 0. 765 0. 7932
125 116. 15 0. 399 0. 9357 0. 0008 0. 060 0.141 0. 799 0. 8209
171 165. 41 0. 516 0. 9517 0. 0007 0. 039 0.139 0. 823 0. 8458
246 245, 54 0. 693 0.9673 0. 0006 0. 021 0.134 0. 845 0.8771
500 525.70 1.277 0. 9879 0. 0004 0. 007 0.133 0. 860 0. 9169
. N seN T sepg | P(M) | P(N) | P(N) | 1-¢
24 20. 49 0.049 | 0.9621 | 0.0009 | 0. 745 0.010 0.245 | 0.8420
43 33. 89 0. 097 0. 9368 0. 0008 0. 415 0. 035 0. 550 0. 8706
61 49. 56 0. 136 0.9377 0. 0008 0. 233 0. 055 0.712 0. 8389
76 63.51 0. 166 0. 9440 0. 0007 0. 150 0. 065 0. 785 0. 8346
96 82. 86 0.201 0. 9520 0. 0007 0. 084 0.074 0. 842 0. 8463
125 112. 37 0. 249 0. 9649 0. 0006 0. 041 0.078 0. 881 0. 8676
171 159. 19 0.311 0. 9753 0. 0005 0. 015 0.082 0. 902 0. 8908
246 236. 66 0. 394 0. 9856 0. 0004 0. 004 0. 084 0.912 0.9141
500 500. 20 0.635 0. 9949 0. 0002 0. 000 0. 083 0.917 0.9361
n N seN T sea | P(M) | P(N) | P(N) | 14
24 22.90 0. 039 0. 9808 0. 0009 0. 880 0. 002 0.118 0. 9608
43 34. 35 0. 089 0. 9535 0. 0008 0.563 0.013 0. 424 0. 9062
61 49. 56 0.128 0. 9480 0. 0007 0. 330 0. 026 0. 644 0. 8666
76 63. 10 0. 154 0. 9502 0. 0007 0.213 0. 037 0. 751 0. 8508
96 82. 32 0.188 0. 9571 0. 0006 0.118 0. 046 0. 835 0. 8529
125 111. 23 0.227 0.9672 0. 0006 0. 052 0. 056 0. 892 0.8731
171 157. 35 0. 280 0.9777 0. 0005 0.017 0. 061 0.922 0.8977
246 235.12 0. 353 0. 9875 0. 0003 0. 004 0. 062 0.934 0.9186
500 493. 58 0. 553 0. 9953 0. 0002 0. 000 0. 069 0.931 0. 9363
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Appendix C

Testing the Unifor mity of the Round Off ErrorsUsing the One-Sample K olmogor ov-

Smirnov Test

TABLE C1: The underlying distribution is standard normal

Sample mean and sample variance

n 24 43 61 76 % 125 171 246 500
m=5 049364 | 049834 | 049812 | 050048 | 049845 | 049906 | 050137 | 050071 | 0.49853
Mm=15 | 04950 | 049538 | 049810 | 049667 | 049977 | 050109 | 049910 | 049743 | 0.49820
m=20 | 049818 | 049541 | 049534 | 049732 | 049847 | 049827 | 050134 | 050023 | 050016

n 24 43 61 76 % 125 171 246 500
m=05 | 028929 | 0288961 | 0288435 | 0.288331 | 0.288164 | 0288462 | 0289102 | 0289191 | 0.288560

Mm=15 | 0287997 | 0288547 | 0288268 | 0283428 | 0.288969 | 0.288467 | 0.28789% | 0.288917 | 0.283368
m=20 | 0288265 | 0289189 | 0288286 | 0.289392 | 0.288015 | 0287741 | 0288949 | 0289133 | 0.287682
Kolmogorov-Smirnov Z and asymptotic significance (2-tailed)

n 24 43 61 76 % 125 171 246 500
m=5 2.849 1.024 0.984 0.738 1.194 0.765 0.885 0.693 0.957
P - value 0.000 0.245 0.288 0.648 0.115 0.602 0413 0.723 0.319
m=15 1677 1923 1.440 1798 0.631 0.823 0.823 1561 1131
P - value 0.007 0.001 0.032 0.003 0.821 0.507 0507 0.015 0.154

m= 20 1.190 1990 2375 1440 1.328 1.087 0.962 0.626 0.818
P - value 0.118 0.001 0.000 0.032 0.059 0.183 0.314 0.828 0515
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TABLE C2: The underlying distribution is standard uniform

Sample mean and sample variance

n 24 43 61 76 % 125 171 246 500
m=05 | 04959 | 049988 | 050084 | 049959 | 049868 | 049820 | 049737 | 049838 | 049902
m=15 | 049%13 | 049710 | 050148 | 050055 | 049843 | 049992 | 049840 | 050111 | 049988
m=20 | 04994 | 049365 | 049778 | 049908 | 049792 | 050043 | 049915 | 049922 | 050087

n 24 43 61 76 % 125 171 246 500

m=05 | 0283914 | 0288738 | 0.288710 | 0287476 | 0287966 | 0.289064 | 0288151 | 0.289227 | 0.289059
m=15 | 0283364 | 0289391 | 0.288393 | 0283332 | 0289708 | 0.288167 | 0289492 | 0.288656 | 0.287506
M= 20 | 0288685 | 0288945 | 0289072 | 0.288661 | 0288475 | 0.289036 | 0.289519 | 0288739 | 0.289506

Kolmogorov-Smirnov Z and asymptotic significance (2-tailed)

n 24 43 61 76 % 125 171 246 500
m=5 1816 0.631 0.769 0.948 1.091 0.863 1216 0.935 0.912
P - value 0.003 0.821 0595 0.330 0.185 0.446 0.104 0.347 0.376
m=15 1699 1.695 1.020 0671 1.199 0.894 1.136 1.060 0.970
P - value 0.006 0.006 0.250 0.759 0.113 0.400 0.151 0.211 0.303

m= 20 0.648 2379 1337 0.769 1.140 0.778 0.970 0.859 0.738

P - value 0.794 0.000 0.056 0595 0.148 0.580 0.303 0.452 0.648

TABLE C3: The underlying distribution is exponential with mean one
Sample mean and sample variance

n 24 43 61 76 % 125 171 246 500
m=05 | 049415 | 049557 | 049810 | 049972 | 04918 | 049862 | 049799 | 049751 | 049877
Mm=15 | 04914 | 049895 | 049812 | 04943 | 049854 | 049855 | 049884 | 049765 | 050121

Mm=20 | 049887 | 049990 | 049724 | 049735 | 049892 | 050013 | 050151 | 049999 | 049979

n 24 43 61 76 % 125 171 246 500
m=05 | 0288686 | 0283570 | 0288959 | 0287910 | 0289384 | 0.288984 | 0289011 | 0.288865 | 0288169
Mm=15 | 0289140 | 0289373 | 0288103 | 0.288940 | 0.288650 | 0288360 | 0.289308 | 0288476 | 0.288297

Mm=20 | 0288723 | 0287310 | 0288421 | 0.288647 | 0.288829 | 0288311 | 0288754 | 0288124 | 0.289311
Kolmogorov-Smirnov Z and asymptotic significance (2-tailed)

n 24 43 61 76 % 125 171 246 500
m=5 2312 2312 1123 0.760 1641 1.261 1127 1440 0.823
p-value | 0.000 0.000 0.161 0610 0.009 0.083 0.158 0.032 0507
m=15 2.446 1.167 1279 1583 1118 1.145 0.953 1525 0.868
p-value | 0.000 0.131 0.076 0.013 0.164 0.145 0.324 0.019 0439

m= 20 0.814 0.944 1476 1377 0.769 0.792 1297 0.684 0.868

p-vaue | 0522 0.335 0.026 0.045 0595 0.558 0.069 0.737 0439
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Appendix D

Controlled Triple Sampling Simulation to Estimate the Optimal Sample Size, the
Population Mean and the Coverage Probability at m=5,15,20, « =0.05 and 6 =0.5

Note: Each tableisdivided into three sub attached tables, the first oneat m=5, the second at
m=15and thelastat m=20.

TABLE D1

The underlying distribution is a standard normal

n N seN z Se.[ 1-a
24 19.94 0. 051 0. 0007 0. 0013 0.9768
43 37.80 0.081 0. 0005 0. 0009 0.9780
61 55. 67 0. 104 -0. 0002 0. 0008 0. 9800
76 70. 88 0.120 0. 0001 0. 0007 0.9841
96 91. 16 0. 140 -0.0003 0. 0006 0.9871
125 120. 85 0. 164 - 0. 0005 0. 0005 0. 9908
171 167. 48 0. 201 0. 0000 0. 0004 0. 9926
246 244.92 0. 250 0. 0002 0. 0003 0. 9962
500 505. 86 0. 410 -0.0001 0. 0002 0.9982
o N seN H seu 1-a
24 19.55 0.038 0. 0007 0.0011 0. 9966
43 38. 16 0. 068 -0. 0009 0. 0008 0. 9925
61 56. 47 0. 081 0. 0021 0. 0006 0. 9946
76 71.51 0. 090 0. 0006 0. 0006 0. 9957
96 91. 80 0. 100 0. 0004 0. 0005 0.9976
125 120. 58 0.114 -0. 0002 0. 0004 0.9984
171 166. 70 0.132 -0. 0001 0. 0004 0.9989
246 241. 86 0. 156 0. 0002 0. 0003 0.9991
500 496. 49 0.223 -0. 0004 0. 0002 0.9994
o N seN 7 se.p 1-a
24 20.79 0.019 0. 0007 0. 0010 0.9991
43 36. 38 0.071 0. 0005 0. 0008 0. 9937
61 55. 90 0.083 -0.0003 0. 0007 0.9944
76 71.50 0. 090 -0. 0001 0. 0006 0. 9963
96 91.71 0. 098 -0.0003 0. 0005 0.9976
125 120. 82 0.111 -0. 0001 0. 0004 0.9988
171 166. 83 0.127 0. 0001 0. 0004 0.9991
246 242.05 0.151 0. 0005 0. 0003 0. 9995
500 496. 43 0. 215 -0. 0002 0. 0002 0. 9996
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TABLE D2

The underlying distribution is standard uniform

n N seN A se.f 1-a

24 20. 88 0.04 0.4993 0. 0004 0. 9528
43 39. 25 0. 06 0. 4997 0. 0003 0. 9657
61 57.08 0. 07 0. 4999 0. 0002 0. 9754
76 72.10 0. 08 0. 4996 0. 0002 0.9813
96 92. 45 0. 09 0. 5001 0. 0002 0. 9867
125 121. 43 0.10 0. 5001 0. 0002 0. 9910
171 167.73 0.12 0. 4999 0. 0001 0.9948
246 243. 32 0.14 0. 5001 0. 0001 0. 9969
500 498. 53 0.19 0. 4999 0. 0001 0. 9988
n N seN 7 sef 1-a

22 17.93 0.03 0. 5000 0. 0003 0. 9962
43 40. 32 0. 05 0. 4999 0. 0002 0.9876
61 58. 97 0. 05 0. 4999 0. 0002 0. 9933
76 74. 20 0. 06 0. 5000 0. 0002 0. 9964
96 94. 38 0. 06 0. 4999 0. 0001 0.9979
125 123. 46 0. 07 0. 5001 0. 0001 0. 9986
171 169. 55 0.08 0. 4998 0. 0001 0. 9993
246 244. 45 0.09 0. 5000 0. 0001 0. 9995
500 498. 38 0.13 0. 4999 0. 0001 0. 9996
n N seN T sej i)

24 20. 03 0. 00 0. 4997 0. 0003 0.9991
43 37.02 0. 06 0. 4999 0. 0002 0. 9907
61 58. 82 0. 06 0. 5000 0. 0002 0.9931
76 74. 24 0. 06 0. 5000 0. 0002 0. 9968
96 94. 45 0. 06 0. 5000 0. 0001 0. 9980
125 123. 41 0. 07 0. 5000 0. 0001 0.9991
171 169. 59 0.08 0. 5000 0. 0001 0.9994
246 244,59 0.09 0. 5000 0. 0001 0. 9994
500 498. 56 0.13 0. 5000 0. 0001 0. 9996
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TABLE D3

The underlying distribution is t( 5)

n N seN T sef 1-a
24 19. 13 0.08 -0.0014 0. 0015 0.9851
43 36. 93 0.19 -0.0019 0. 0012 0.9788
61 54. 63 0.19 -0. 0006 0. 0010 0. 9796
76 70. 04 0. 25 - 0. 0005 0. 0009 0.9801
96 91. 49 0.35 0. 0000 0. 0008 0. 9830
125 121. 40 0. 36 0. 0001 0. 0006 0. 9853
171 169. 18 0. 50 -0.0018 0. 0005 0. 9896
246 250. 39 0.62 0. 0002 0. 0004 0. 9920
500 525. 01 1.15 - 0. 0005 0. 0003 0.9971
S N seN H se.u 1-a
24 20. 13 0. 05 0. 0014 0. 0013 0. 9985
43 35.55 0. 09 - 0. 0004 0. 0010 0.9944
61 53.01 0.14 0. 0005 0. 0009 0. 9941
76 67.74 0.16 - 0. 0003 0. 0008 0. 9953
96 88. 13 0.19 0. 0004 0. 0007 0. 9954
125 117.74 0.24 - 0. 0008 0. 0006 0. 9967
171 164. 90 0. 30 0. 0004 0. 0005 0.9979
246 242. 06 0.41 - 0. 0008 0. 0004 0. 9985
500 502. 28 0.70 - 0. 0003 0. 0003 0. 9993
n N seN H seu 1-a
24 22.32 0. 04 0. 0001 0. 0012 0. 9992
43 34.71 0. 09 0. 0005 0. 0010 0. 9964
61 51.91 0.12 - 0. 0005 0. 0009 0. 9951
76 66. 64 0.14 - 0. 0009 0. 0008 0. 9955
96 87. 39 0.19 - 0. 0003 0. 0007 0. 9961
125 116. 88 0.23 0. 0008 0. 0006 0. 9976
171 163. 58 0.35 0. 0000 0. 0005 0.9983
246 239. 62 0. 36 -0. 0001 0. 0004 0. 9988
500 498. 40 0.72 - 0. 0002 0. 0003 0. 9995
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The underlying distributionis t(10)

TABLE D4

n N seN H Se.u 1-a

24 19. 59 0. 06 -0.0021 0. 0014 0.9813
43 37.44 0.10 -0.0011 0. 0010 0.9785
61 55. 42 0.13 -0.0012 0. 0009 0.9811
76 70. 41 0.15 -0. 0002 0. 0007 0.9824
96 90. 76 0.18 0. 0003 0. 0006 0. 9854
125 120. 55 0.21 -0. 0004 0. 0005 0.9881
171 168. 65 0. 27 0. 0001 0. 0005 0.9914
246 246. 56 0.34 -0. 0004 0. 0004 0. 9949
500 511.53 0. 60 -0. 0004 0. 0002 0. 9980
n N seN H seu 1-a

24 19.94 0.04 -0.0014 0. 0012 0.9971
43 37.24 0. 08 -0. 0008 0. 0009 0. 9930
61 55. 15 0. 09 -0. 0015 0. 0007 0. 9949
76 69. 95 0.11 - 0. 0004 0. 0006 0. 9957
96 90. 07 0.12 - 0. 0004 0. 0006 0.9972
125 119. 57 0.14 - 0. 0007 0. 0005 0. 9980
171 165. 62 0.16 - 0. 0004 0. 0004 0. 9988
246 240.94 0.20 - 0. 0002 0. 0003 0. 9990
500 497. 18 0. 30 - 0. 0004 0. 0002 0. 9995
n N seN H seu 1-a

24 21.42 0.03 0. 0003 0. 0011 0. 9990
43 35. 68 0. 08 0. 0005 0. 0009 0. 9949
61 54. 47 0. 09 0. 0001 0. 0007 0. 9945
76 70.01 0.10 - 0. 0002 0. 0006 0. 9959
96 90. 02 0.12 - 0. 0005 0. 0006 0.9972
125 119. 14 0.13 - 0. 0004 0. 0005 0.9981
171 165. 27 0.16 - 0. 0004 0. 0004 0. 9990
246 240. 84 0.19 0. 0000 0. 0003 0. 9993
500 495. 73 0.28 0. 0001 0. 0002 0. 9996
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TABLE D5

The underlying distribution is t( 25 )

n N seN H sef 1-a
24 19.73 0.05 0. 0014 0. 0013 0.9782
43 37.59 0.09 0. 0011 0. 0010 0.9774
61 55. 50 0.11 -0. 0015 0. 0008 0. 9806
76 70. 63 0.13 -0. 0004 0. 0007 0.9831
96 91. 07 0.15 -0. 0005 0. 0006 0. 9865
125 120. 74 0.18 -0. 0007 0. 0005 0. 9895
171 167.78 0.22 -0. 0001 0. 0004 0. 9926
246 245.52 0.28 -0. 0002 0. 0003 0. 9953
500 508. 14 0.46 -0. 0006 0. 0002 0. 9985
S N seN A se.u 1-a
24 19. 66 0.04 -0. 0002 0. 0011 0. 9968
43 37.91 0.07 -0. 0008 0. 0008 0. 9927
61 55. 98 0.08 0. 0006 0. 0007 0. 9941
76 70. 89 0.10 -0. 0004 0. 0006 0. 9964
96 90. 99 0.11 -0. 0013 0. 0005 0. 9971
125 120. 28 0.12 0. 0000 0. 0004 0. 9978
171 166. 09 0.14 -0. 0005 0. 0004 0. 9987
246 241. 34 0.17 0. 0000 0. 0003 0. 9991
500 496. 62 0.24 -0. 0002 0. 0002 0. 9995
o N seN T sefl 1-a
24 21.02 0.02 -0. 0001 0. 0010 0. 9992
43 36. 09 0.07 -0. 0009 0. 0008 0. 9940
61 55. 45 0.09 0. 0000 0. 0007 0. 9947
76 70. 87 0.09 0. 0000 0. 0006 0. 9954
96 91.13 0.10 -0. 0004 0. 0005 0. 9976
125 120. 19 0.12 -0.0004 0. 0004 0. 9986
171 166. 38 0.14 0. 0003 0. 0004 0. 9992
246 241. 88 0.16 -0.0007 0. 0003 0. 9995
500 495. 73 0.23 -0. 0007 0. 0002 0. 9995
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The underlying distribution is t( 50)

TABLE D6

n N seN H sepu B
24 19. 88 0.05 0. 0003 0. 0013 0. 9787
43 37.78 0.08 0. 0002 0. 0010 0.9772
61 55. 81 0.11 -0. 0004 0. 0008 0. 9802
76 70. 65 0.12 -0. 0008 0. 0007 0. 9843
96 90. 94 0.14 -0. 0008 0. 0006 0. 9865
125 120. 46 0.17 0. 0001 0. 0005 0. 9902
171 167.91 0.21 -0. 0011 0. 0004 0. 9927
246 244. 88 0.26 -0. 0006 0. 0003 0. 9961
500 507. 06 0.43 -0. 0003 0. 0002 0. 9983
S N seN A se.u 1-a
24 19. 54 0.04 -0. 0009 0. 0011 0. 9967
43 38.10 0.07 -0. 0004 0. 0008 0. 9922
61 56. 02 0.08 -0. 0003 0. 0007 0. 9940
76 71.21 0.09 0. 0006 0. 0006 0. 9954
96 91.23 0.10 0. 0000 0. 0005 0. 9970
125 120. 52 0.12 -0.0002 0. 0004 0. 9979
171 166. 39 0.14 0. 0004 0. 0004 0. 9990
246 241. 67 0.16 -0.0008 0. 0003 0. 9994
500 496. 49 0.23 -0. 0005 0. 0002 0. 9994
o N seN T sefl 1-a
24 20. 86 0.02 -0.0012 0. 0010 0. 9990
43 36. 25 0.07 -0. 0008 0. 0008 0. 9936
61 55.73 0.09 0. 0008 0. 0007 0. 9948
76 71.15 0.09 -0. 0001 0. 0006 0. 9960
96 91. 46 0.10 -0. 0006 0. 0005 0. 9975
125 120. 45 0.11 -0.0001 0. 0004 0. 9984
171 166. 78 0.13 -0. 0001 0. 0004 0. 9989
246 241.71 0.16 0. 0001 0. 0003 0. 9995
500 495. 86 0.22 -0. 0001 0. 0002 0. 9997
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TABLE DY

The underlying distribution is t( 100 )

n N seN H sef 1-a
24 19.91 0.05 0. 0033 0. 0013 0. 9780
43 37.77 0.08 0. 0003 0. 0009 0.9773
61 55. 55 0.10 -0. 0006 0. 0008 0. 9810
76 70. 84 0.12 0. 0000 0. 0007 0. 9832
96 91. 00 0.14 0. 0000 0. 0006 0. 9866
125 120. 81 0.17 0. 0000 0. 0005 0. 9901
171 167. 67 0.20 0. 0002 0. 0004 0. 9936
246 244. 61 0.26 -0. 0007 0. 0003 0. 9960
500 506. 48 0.42 -0. 0002 0. 0002 0. 9984
n N seN H sep 1-a
24 19. 52 0.04 -0. 0005 0. 0011 0. 9968
43 38. 09 0.07 0. 0001 0. 0008 0. 9919
61 56. 29 0.08 -0. 0005 0. 0007 0. 9945
76 71.38 0.09 0. 0006 0. 0006 0. 9961
96 91. 46 0.10 -0. 0005 0. 0005 0. 9970
125 120. 57 0.12 0.0003 0. 0004 0. 9981
171 166. 64 0.13 -0. 0003 0. 0004 0. 9989
246 242.02 0.16 0. 0002 0. 0003 0. 9995
500 496. 39 0.23 0. 0001 0. 0002 0. 9997
o N seN T sef 1-a
24 20. 82 0.02 0. 0000 0. 0010 0. 9990
43 36. 25 0.07 -0. 0006 0. 0008 0. 9940
61 55. 85 0.08 -0. 0008 0. 0007 0. 9946
76 71.28 0.09 -0.0011 0. 0006 0. 9961
96 91. 65 0.10 -0. 0001 0. 0005 0. 9978
125 120. 74 0.11 -0.0007 0. 0004 0. 9987
171 166. 83 0.13 -0. 0008 0. 0004 0. 9991
246 242.03 0.15 -0.0007 0. 0003 0. 9993
500 496. 04 0.22 -0. 0003 0. 0002 0. 9997
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TABLE D8

The underlying distribution is beta (3, 2)

n N seN H seu 1-a

24 20. 29 0.05 0.61 0 0. 9651
43 38. 40 0. 07 0. 60 0 0. 9709
61 56. 25 0. 09 0. 60 0 0. 9779
76 71.24 0.10 0. 60 0 0.9824
96 91. 39 0.11 0. 60 0 0. 9862
125 120. 78 0.13 0. 60 0 0.9891
171 167.72 0.16 0. 60 0 0. 9938
246 243. 44 0.19 0. 60 0 0. 9964
500 501. 39 0.28 0. 60 0 0. 9985
n N seN T sejl 1-a

24 18. 85 0.03 0.6 0 0. 9967
43 39.22 0.06 0.6 0 0. 9902
61 57. 74 0.07 0.6 0 0. 9915
76 72.74 0.08 0.6 0 0. 9948
96 93. 04 0.08 0.6 0 0. 9970
125 122. 04 0.09 0.6 0 0. 9983
171 168. 08 0.11 0.6 0 0. 9991
246 243.12 0.13 0.6 0 0. 9994
500 497. 35 0.18 0.6 0 0. 9996
i N seN T sef 1-a

24 20. 30 0.01 0.6 0 0. 9993
43 36. 62 0.07 0.6 0 0. 9929
61 57.28 0.07 0.6 0 0. 9917
76 72.91 0.08 0.6 0 0. 9951
96 93. 09 0.08 0.6 0 0. 9975
125 122.00 0.09 0.6 0 0. 9984
171 168. 32 0.10 0.6 0 0. 9991
246 243.19 0.12 0.6 0 0. 9994
500 497.58 0.17 0.6 0 0. 9996
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TABLE D9

The underlying distribution is exponential with mean one

n N seN H seu 1-a
24 18. 03 0.08 0. 8730 0. 0012 0.9873
43 34.09 0.15 0.8822 0. 0011 0.9231
61 50. 94 0.21 0. 8987 0. 0010 0. 8975
76 65. 64 0.25 0. 9110 0. 0010 0. 8958
96 86. 45 0.31 0. 9237 0. 0009 0. 9010
125 116. 01 0.39 0. 9395 0. 0008 0.9178
171 164. 76 0.52 0. 9548 0. 0007 0. 9340
246 247. 48 0.71 0.9714 0. 0006 0. 9563
500 526. 05 1.27 0. 9884 0. 0004 0. 9826
n N seN 7 sejl 1-a
24 20. 88 0.05 0. 9576 0. 0009 0. 9998
43 34.62 0.10 0. 9380 0. 0008 0. 9959
61 50. 04 0.14 0. 9397 0. 0008 0. 9809
76 64. 02 0.17 0. 9461 0. 0007 0. 9675
96 83. 38 0.20 0. 9550 0. 0007 0. 9599
125 112. 43 0.25 0. 9650 0. 0006 0. 9621
171 159. 31 0.31 0.9772 0. 0005 0. 9759
246 237.08 0.39 0. 9868 0. 0004 0. 9876
500 498.73 0.63 0. 9948 0. 0002 0. 9967
n N seN T sejl 1-a
24 23.27 0. 04 0.9791 0. 0009 0. 9998
43 35.10 0.09 0. 9536 0. 0008 0. 9986
61 50. 13 0.13 0. 9490 0. 0007 0. 9918
76 63. 53 0.15 0. 9504 0. 0007 0. 9823
96 82. 65 0.19 0. 9589 0. 0006 0. 9720
125 111. 11 0.23 0.9672 0. 0005 0. 9678
171 157. 53 0.28 0.9782 0. 0005 0.9777
246 234.52 0.36 0.9874 0. 0003 0. 9894
500 494. 99 0.55 0. 9952 0. 0002 0. 9972
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Appendix E

Simulation Resultsfor the Typell Error Probability at a =0.05, 8, = 0.05

Note: The symbols P, M and L stands for platykurtic (standard uniform), mesokurtic (standard
normal) and leptokurtic (exponential with mean one) respectively.

TABLE E1: The underlying distributions are standard uniform, standard normal and exponential

respectively at 6 =0.5and m=15

Selected values of

24 76 96

125

246

500

.00|.500|.501(.421|.497|.500|.411|.504|.502]|.420](.503|.

501

. 435

. 495

. 499

. 460

. 500

. 498

. 470

.01|.488|.488|.408|.484|.486|.398(.490|.489|.407]|.489]|.

487

. 422

. 481

. 486

. 447

. 485

. 484

. 457

.02|.475|.476|.393(.470|.473|.387(.476|.474|.395].475

473

. 409

. 467

. 471

. 433

471

. 470

. 443

.03|.464|.464|.380|.456|.459|.374(.462|.461|.381|. 460

. 460

. 396

. 453

. 457

. 418

. 455

. 455

. 430

.04|.452|.451|.367|.442|.446|.362(.447|.446|.368]. 445

. 445

. 384

. 440

. 442

. 405

. 440

. 442

. 415

.05|.440|.438|.354|.428|.432|.350(.433|.432|.356|.432

. 431

. 370

. 425

. 428

. 392

. 426

. 427

. 401

.06|.429|.426(.341|.415|.419|.337(.419|.419|.343|. 418

. 418

. 357

. 411

. 414

. 378

. 412

. 414

. 387

.07|.417|.413|.328(.401|.406|.325(.405|.405]|.331].404

. 405

344

. 397

. 400

. 365

. 398

. 400

. 373

.08|.405|.402(.315|.388|.393|.315(.391|.391|.320(.390|.

391

. 332

. 383

. 386

. 352

. 384

. 385

. 359

.09].394|.390|.302(.375|.380|.303(.377|.378]|.308].377

378

. 319

. 370

. 373

. 339

. 371

. 371

. 345

.10[.382|.378(.290(.362|.367|.291(.364|.366|.297]|.363|.

365

. 306

. 357

. 359

. 327

. 358

. 358

. 332

.20|.276|.265(.181|.241|.245|.185|(. 242|.245]|.188|. 239

. 242

. 194

. 235

. 238

. 206

. 235

. 237

. 211

.30(.188|.175|.100(. 147 |.151|.105(. 147 |.151|.107]. 144

. 147

. 110

. 140

. 141

. 116

. 140

. 142

. 120

.40|.121|.107(.050|.083|.087|.053(.081|.087|.055|.080

. 082

. 055

. 076

. 077

. 059

.074

. 077

. 061

.50|.073|.062(.024]|.044|.048|.023(.041|.047|.025]|. 040

. 043

. 025

. 037

. 037

. 027

. 036

. 038

. 028
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TABLE E2: The underlying distribution isa standard normal at 6 = 0.5and m=5,15, 20

24 76 96 125 246 500

20

.00|.499(.501|.499].499|.500(.502|.504|.502|.501].499(.501|.501|.500/|.499|.502(.499|. 498

. 499

.01|.487|.488|.485|.487|.486|.487|.490|.489|.486|.484(.487|.487|.485|.486|.487|.485|. 484

. 485

.02|.475|.476|.471|.473|. 473 |.474|.476|.474|.472|.470|.473|.472|.471|.471|.473|.470]. 470

. 470

.03|.462|.464|.458].460|.459|.460|.463|. 461 |.459|.456|.460|. 458]|.457|.457|.460|. 457 |. 455

. 457

.04|.449|.451|.445|.447|.446|.447|.450|.446|.445|.444|.445|. 445|.443|.442|.445|.442|. 442

. 443

.05|.437|.438|.430|.433|.432|.433|.436|.432|.431|.430(.431|.431|.430|.428|.431|.428]|. 427

. 430

.06|.425|.426|.417|.419|.419|.419|.422|.419|.419|.417|.418|.417|.416|.414|.416|. 414 . 414

. 415

.07|.412|. 413 |.404].406|.406|.407|.408|.405|.405|.404|.405|.403]|.402|.400|.402|(.400/. 400

. 401

.08|.401.402|.390]|.393|.393|.394.394|.391|.392].392|.391|.389]|.388|.386|.389(.386|.385

. 388

.09].388(.390|.378].380|.380(.381|.381|.378/|.379|.377|.378|.377]|.374|.373|.375(.373]|.371

. 374

.10|.375|.378|. 365|. 367 |.367|.368|.368|. 366|.365|.363|.365|.363|.361|.359|.362(.359|. 358

. 361

.20|. 266 |. 265|. 250 |. 252 |. 245 |. 249|. 247 |. 245|. 244 |. 244 |. 242 |. 243|. 240|. 238 |. 238|. 234 |. 237

. 240

.30[.183|.175|.158].162|. 151 |. 153 |.155|. 151|. 151|. 152 . 147 |. 148]. 145|. 141 |. 143|. 139. 142

. 143

.40|. 121 (.107|.091].100|.087|.087|.092|.087|.086|.088|.082|.082]|.079|.077|.077|.075|. 077

. 078

.50[.081|.062|.048].060|.048|.047|.052|.047|.045]|.048|.043|.043]|.040|.037|.039(.037|.038

. 038
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TABLE E3: The underlying distribution is a standard uniformat 6 =0.5and m=5,15,20

24 76 96 125 246 500

k| s 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00|. 502|. 500(. 501|.497|.497|.498|.494|.504|.500|.495|.503|.499].498|.495|.499].503|.500|.501
.01|. 489|. 488|.487|.483|.484|.484)|.480|.490(.486|.481|.489|.485|.484|.481|.484|.487|.485|. 487
.02|. 476|.475|. 473|.470(.470|.470|.466|.476|.471|.467|.475|.471|.469|.467|.471|.473|.471|. 472
.03|. 463|. 464 |. 460|. 457 |. 456 |. 455|.452|. 462 |. 457 |.454|. 460 |. 458 |.455|.453|. 456 |.458|. 455|. 458
.04|. 451|.452|. 447|.443|. 442 |. 442 |.438|. 447 |.443|.440|.445|.444].441|.440|.442].444|.440|. 443
.05|. 439|. 440|. 434|.430|. 428 |.428|.425|.433|.429|.426|.432|.431|.427|.425|.427].429|.426|. 429
.06|. 426|. 429|. 421|. 417 |.415|.413|.412|.419|.416|.412|.418|.417|.412|.411|. 414].415|.412|. 415
.07|. 414|. 417|. 409|.404|.401|.399|.398|.405(.402|.399|.404|.403].398|.397(.399].402|.398|. 401
.08|. 401|. 405|.396|.391|.388|.384|.385|.391(.389|.386(.390|.389|.384|.383|.386]|.388|.384|.387
.09|. 388|.394|.383|.377(.375|.371|.371|.377|.375|.373|.377|.376].372|.370(.373].375|.371|.374
.10|. 377|. 382|. 370|.364|. 362 |.358|.360|.364|.361|.360|.363|.363|.359|.357|.359].362|.358|.359
.20|. 269|. 276|. 254|. 247 |. 241 |. 240|.241|.242|. 241 |.238|.239|.239].236|.235|.236|.236|.235|. 237
.30|. 185|. 188|. 161|. 155|. 147 |. 146 |.149|. 147 |. 147 |.145|. 144 |. 144].140|. 140 |. 141]. 141 |. 140|. 141
.40|. 126|. 121|. 094|.091|.083|.083|.085|.081(.082|.081|.080|.079|.078|.076|.077].075|.074|.076
.50|. 088|. 073|. 050|.052|.044|.043]|.048|.041(.041|.042|.040|.040].038|.037|.038].037|.036|.036
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TABLE E4: The underlying distribution is exponential with mean oneat 6 =0.5and m=5,15, 20
24 76 96 125 246 500

k 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20

.00|. 355|.421|.457|.390|.411|.412|.406|.420|.424|.415|.435|.438].449|.460|.463|.468|.470|.474
.01|. 345|. 408|.443|.378|.398|.400(.393|.407|.412|.403|.422|.424|.436|.447|.449].453|.457|. 460
.02|. 333|. 393|.428|.366|.387(.387.381|.395(.399].390|.409|.412|.421|.433|.436|.438|.443|.446
.03|. 322|.380|.414|.354|.374|.374.369|.381|.387|.377|.396|.398|.409|.418|.422].424|.430].431
.04|. 311|. 367|.400|.343|.3620.362|.357|.368|.374]|.365|.384|.385|.396|.405|.408].410|.415]. 417
.05|. 301|. 354|.386|.332|.350(.350(.345|.356(.362].352|.370|.372|.382|.392|.395].396|.401|.403
.06|. 290|. 341|. 373|.320|.337|.338|.333|.343|.350).340|.357|.360|.368|.378|.382].382|.387|.390
.07|. 280|. 328|. 359(|.309|.325|.326(.321|.331|.338|.327|.344|.347|.356|.365|.368]|.367|.373|.377
.08|. 268|. 315|. 346|.297|.315|.314|.310|.320(|.325].316|.332|.334|.343|.352|.354].354|.359].363
.09|. 258]|. 302|. 333|.285|.303|.303|.298|.308|.312].304|.319|.321|.331|.339(.341].340/(.345].349
.10|. 249|. 290|. 320|.274|.291|.291|.287|.297|.300].292|.306|.308|.317|.327|.328].326|.332|.335
.20|. 157|.181|. 201|.174|.185|.183|.182|.188|.192].187|.194|.196|.204|.206|.210].207|.211|. 213
.30|. 090|. 100|.113|.103|.105(.104|.105|.107|.111).108|.110|.112|.119|.116|.119].119|.120|.123
.40|. 049|. 050|. 057|. 057 |.053|.053|.057|.055|.056].058|.055|.056|.063|.059|.059]|.064|.061|.061
.50|. 027|. 024|. 026|.030|.023|.024.030|.025|.026].030|.025|.025|.031|.027|.027].031|.028|.027
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TABLE E5: Comparison between the asymptotic and simulation results for Type Il error probability
for underlying distribution standard normal & 6 =0.5and m=15. g, isthe asymptotic value .

k ﬂ 24 43 61 76 96 125 171 246 500
ay
.00 0.500 0.501 0.500 0.503 0.500 0.502 0.501 0.499 0.499 0.498
.01 0.486 0.488 0.486 0.489 0.486 0.489 0.487 0.484 0.486 0.484
.02 0.471 0.476 0.473 0.475 0.473 0.474 0.473 0.470 0.471 0.470
.03 0.457 0.464 0.460 0.462 0.459 0.461 0.46 0.455 0.457 0.455
.04 0.443 0.451 0.448 0.448 0.446 0.446 0.445 0.441 0.442 0.442
.05 0.429 0.438 0.434 0.435 0.432 0.432 0.431 0.427 0.428 0.427
.06 0.414 0.426 0.421 0.421 0.419 0.419 0.418 0.414 0.414 0.414
.07 0.400 0.413 0.408 0.409 0.406 0.405 0.405 0.400 0.400 0.400
.08 0.387 0.402 0.396 0.395 0.393 0.391 0.391 0.385 0.386 0.385
.09 0.373 0.390 0.383 0.381 0.380 0.378 0.378 0.372 0.373 0.371
.10 0.359 0.378 0.371 0.368 0.367 0.366 0.365 0.358 0.359 0.358
.20 0.236 0.265 0.253 0.252 0.245 0.245 0.242 0.237 0.238 0.237
.30 0.140 0.175 0.167 0.160 0.151 0.151 0.147 0.143 0.141 0.142
.40 0.075 0.107 0.100 0.095 0.087 0.087 0.082 0.079 0.077 0.077
.50 0.036 0.062 0.059 0.053 0.048 0.047 0.043 0.040 0.037 0.038

TABLE E6: Comparison between the asymptotic and simulation results for Type Il error probability
for underlying distribution standard uniformat 6 = 0.5and m=15. B isthe asymptotic value.

k ﬂ 24 43 61 76 96 125 171 246 500
asy

.00 0.500 0.500 0.501 0.503 0.497 0.504 0.503 0.503 0.495 0.500
.01 0.488 0.488 0.489 0.490 0.484 0.490 0.489 0.487 0.481 0.485
.02 0.476 0.475 0.474 0.475 0.470 0.476 0.475 0.473 0.467 0.471
.03 0.463 0.464 0.460 0.462 0.456 0.462 0.460 0.458 0.453 0.455
.04 0.451 0.452 0.447 0.448 0.442 0.447 0.445 0.443 0.440 0.440
.05 0.439 0.440 0.434 0.434 0.428 0.433 0.432 0.429 0.425 0.426
.06 0.427 0.429 0.421 0.421 0.415 0.419 0.418 0.416 0.411 0.412
.07 0.415 0.417 0.408 0.407 0.401 0.405 0.404 0.401 0.397 0.398
.08 0.403 0.405 0.395 0.393 0.388 0.391 0.390 0.387 0.383 0.384
.09 0.391 0.394 0.383 0.380 0.375 0.377 0.377 0.374 0.37 0.371
.10 0.379 0.382 0.371 0.367 0.362 0.364 0.363 0.361 0.357 0.358
.20 0.263 0.276 0.253 0.249 0.241 0.242 0.239 0.236 0.235 0.235
.30 0.162 0.188 0.163 0.153 0.147 0.147 0.144 0.142 0.140 0.140
.40 0.084 0.121 0.100 0.087 0.083 0.081 0.080 0.077 0.076 0.074
.50 0.034 0.073 0.059 0.047 0.044 0.041 0.040 0.039 0.037 0.036
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TABLE E7: Comparison between the asymptotic and simulation results for Type Il error probability
for underlying distribution exponential with mean oneat 6 =0.5and m=15. B, isthe asymptotic

value.

k

Pasy

24

43

61

76

96

125

171

246

500

.00

0.633

421

391

401

411

420

435

448

460

470

.01

0.622

408

379

390

398

407

422

434

447

457

.02

0.616

393

367

377

387

395

409

421

433

443

.03

0.615

380

354

364

374

381

396

407

418

430

.04

0.618

367

342

352

362

368

384

394

405

415

.05

0.626

354

331

340

350

356

370

381

392

401

.06

0.638

341

319

328

337

343

357

368

378

387

.07

0.654

328

308

317

325

331

344

356

365

373

.08

0.674

315

297

305

315

320

332

343

352

359

.09

0.698

302

285

293

303

308

319

329

339

345

.10

0.725

O 2 @ 2 L 2 9 9 Q e e

290

O 2 @ 2 L 2 9 9 Q e e

274

O O S S 2 2 2 o o 9 e

281

O O @ 2 L 2 9 9 Q e e

291

O O S S 2 2 2 o o 9 e

297

O 2 @ 2 L 2 9 9 Q e e

306

O 2 2 S o 2 o o o 9 e

316

O 2 2 S o 2 o o o 9 e

327

O O 2 S o 2 o o o 9 e

332

TABLE E8: The effect of 6 onthe Type Il error probability for underlying distribution standard
normal a o =0.05, B, =0.05and mM=15.

Kk

24

76

96

125

246

500

.00

0.501

0.501 | 0.499

0.500 | 0.500

0.502 | 0.496

0.502

0.504

0.500

0.501

0.499

0.496 [ 0.499

0.499

0.501

0.498

0.502

.01

0.489

0.488|0.485

0.487(0.486

0.487(0.482

0.489

0.490

0.486

0.487

0.485

0.481(0.486

0.484

0.487

0.484

0.487

.02

0.478

0.476 | 0.470

0.475(0.473

0.472{0.469

0.474

0.475

0.473

0.473

0.470

0.468(0.471

0.470

0.474

0.470

0.473

.03

0.466

0.464 | 0.457

0.462 | 0.459

0.458 | 0.455

0.461

0.461

0.460

0.460

0.456

0.454(0.457

0.456

0.460

0.455

0.458

.04

0.455

0.451{0.443

0.450 | 0.446

0.444|0.441

0.446

0.447

0.446

0.445

0.441

0.441(0.442

0.442

0.445

0.442

0.444

.05

0.444

0.438|0.428

0.437(0.432

0.430(0.429

0.432

0.433

0.432

0.431

0.426

0.428(0.428

0.427

0.432

0.427

0.429

.06

0.433

0.426 | 0.415

0.42410.419

0.416|0.416

0.419

0.419

0.419

0.418

0.411

0.414(0.414

0.414

0.419

0.414

0.413

.07

0.422

0.413{0.402

0.412 | 0.406

0.402 | 0.404

0.405

0.405

0.405

0.405

0.398

0.401(0.400

0.399

0.406

0.400

0.399

.08

0.411

0.402 | 0.388

0.400{0.393

0.388(0.392

0.391

0.390

0.392

0.391

0.383

0.387(0.386

0.385

0.392

0.385

0.385

.09

0.399

0.390(0.375

0.387{0.380

0.373{0.379

0.378

0.376

0.379

0.378

0.369

0.374(0.373

0.370

0.378

0.371

0.372

.10

0.388

0.378|0.360

0.374{0.367

0.360 | 0.366

0.366

0.362

0.366

0.365

0.355

0.361(0.359

0.356

0.364

0.358

0.358

.20

0.286

0.265(0.242

0.261(0.245

0.237(0.251

0.245

0.238

0.247

0.242

0.231

0.240(0.238

0.232

0.239

0.237

0.232

.30

0.198

0.175(0.149

0.173{0.151

0.144{0.162

0.151

0.145

0.153

0.147

0.136

0.147(0.141

0.135

0.145

0.142

0.137

.40

0.129

0.107 | 0.087

0.110{0.087

0.078 | 0.098

0.087

0.078

0.091

0.082

0.073

0.081(0.077

0.072

0.078

0.077

0.072

.50

0.078

0.062 | 0.047

0.069 | 0.048

0.039|0.056

0.047

0.039

0.050

0.043

0.035

0.041(0.037

0.034

0.038

0.038

0.034
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TABLE E9: Theeffect of 6 on the Type Il error probability for underlying distribution standard
uniformat a =0.05, 5, =0.05and m=15.

k 24 76 96 125 246 500

.00 | 0.500|0.500 | 0.502 (0.497 | 0.497|0.501 | 0.501 | 0.504 | 0.498 | 0.501 | 0.503 | 0.498 [ 0.503 | 0.495 | 0.498 | 0.498 | 0.500 | 0.501

.01 | 0.489|0.488|0.487(0.483|0.484|0.486 | 0.487 | 0.490 | 0.485|0.487 | 0.489 | 0.483 | 0.489 | 0.481|0.484 | 0.485 | 0.485 | 0.486

.02 | 0.477|0.475|0.473(0.470|0.470|0.473 | 0.474 | 0.476 |0.470|0.473 | 0.475 | 0.469 | 0.474 | 0.467 | 0.469 | 0.471 | 0.471 | 0.471

.03 | 0.467|0.464 | 0.461|0.456 | 0.456 | 0.459 | 0.460 | 0.462 | 0.456 | 0.459 | 0.460 | 0.454 | 0.459 | 0.453 | 0.456 | 0.456 | 0.455 | 0.457

.04 | 0.455|0.452|0.447(0.442|0.442|0.444|0.446 | 0.447 |0.442|0.445|0.445|0.438 | 0.445 | 0.440| 0.441 | 0.441 | 0.440 | 0.442

.05 | 0.444|0.440{0.435(0.429|0.428|0.431|0.432|0.433(0.428|0.432|0.432|0.423 (0.432|0.425|0.427 | 0.428 | 0.426 | 0.428

.06 | 0.434|0.429(0.421(0.416|0.415|0.415|0.420{0.419|0.414|0.418|0.418 | 0.409 { 0.417 |0.411|0.413 | 0.414 | 0.412 | 0.414

.07 | 0.422|0.417 | 0.406 | 0.403 | 0.401 | 0.401 | 0.406 | 0.405 | 0.400 | 0.405 | 0.404 | 0.395 [ 0.403 | 0.397| 0.399 | 0.400 | 0.398 | 0.400

.08 | 0.411|0.405|0.392(0.391|0.388|0.388|0.392 {0.391 (0.387|0.391|0.390 | 0.382 | 0.389 | 0.383 | 0.386 | 0.386 | 0.384 | 0.387

.09 | 0.400|0.394|0.379(0.378|0.375|0.374|0.378 | 0.377|0.372|0.377|0.377 | 0.368 | 0.377 | 0.370| 0.372| 0.372 | 0.371 | 0.372

.10 | 0.388|0.382 | 0.367 [0.365|0.362 | 0.360 | 0.366 | 0.364 | 0.359 | 0.364 | 0.363 | 0.356 | 0.363 | 0.357 | 0.359 | 0.358 | 0.358 | 0.359

.20 | 0.286|0.276 {0.247 (0.251|0.241|0.236 | 0.246 | 0.242 | 0.237| 0.241|0.239| 0.234 { 0.239(0.235|0.234| 0.234 | 0.235(0.233

.30 | 0.198|0.188|0.153 (0.160|0.147|0.141|0.154 | 0.147 | 0.142| 0.148 | 0.144 | 0.140 { 0.143 | 0.140| 0.139| 0.140 | 0.140 { 0.139

.40 | 0.127|0.121{0.090 | 0.098 | 0.083 | 0.078 | 0.090 | 0.081 | 0.078 | 0.084 | 0.080 | 0.076 | 0.080 | 0.076 | 0.076 | 0.076 | 0.074 | 0.073

.50 | 0.076|0.073 | 0.050 | 0.059|0.044|0.039 | 0.050 | 0.041 | 0.039|0.044 | 0.040 | 0.037 | 0.040 | 0.037 | 0.036 | 0.037 | 0.036 | 0.035
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TABLE E10: The effect of 6 onthe Type Il error probability for underlying distribution exponent
tid with mean oneat o =0.05, B, =0.05and m=15.

Kk

24

76

96

125

246

500

.00

0.453

0.421

0.408

0.387

0.411

0.423

0.399

0.420

0.430

0.417

0.435

0.448

0.450

0.460

0.462

0.472

0.470

0.475

.01

0.440

0.408

0.394

0.376
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