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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

GENERIC PLANAR LATTICE PATTERNS IN LIQUID CRYSTALS

by Theresa Lockett

In this thesis we will be studying symmetries and pattern formation within

a planar layer of liquid crystal. Some of the generic equilibrium patterns

(steady states) on a square or hexagonal lattice that bifurcate from a homeotropic

or planar isotropic state were calculated in Chillingworth and Golubitsky

2003 J. Mathematical Physics 44(9) 4201-4219. Continuing this work we

calculate a second set of steady states and go on to calculate the time pe-

riodic solutions resulting from Hopf bifurcations in the same planar layer of

liquid crystal. We describe the possible symmetries of the system by the

group ΓL × S1 , (or just ΓL in the steady states), ΓL = (H n T2) × Z2 ,

where H is the holohedry of the chosen lattice L , that is the finite group of

rotations and reflections that preserve the lattice, T2 = R2/L is the torus

group representing translations on the lattice, Z2 represents the reflection in

the xy plane, and S1 is the circle group representing time periodicity. We

find the equilibrium solutions by applying the Equivariant Branching Lemma

and finding isotropy subgroups of ΓL with fixed-point subspaces of dimen-

sion 1. We then find the time periodic solutions using the Equivariant Hopf

Theorem, finding isotropy subgroups of Γ×S1 with fixed-point subspaces of

dimension 2 by using the group theory methods shown in Dionne et al 1995

Phil. Trans. Physical Sciences and Engineering 352(1698) 125-168.
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0.1 Introduction

A dynamical system describes the changing state of a physical system over

time and can often be written as a set of differential equations. It is a com-

mon occurrence in these physical systems for some property to be dependent

on a particular parameter. As this parameter is increased or decreased a

critical value is reached at which a sudden change, called a bifurcation, in

the behaviour of the system is affected [1]. For example a uniform layer of

liquid heated uniformly from below will initially have zero velocity but when

a certain temperature is reached the liquid will begin to move under convec-

tion. The velocity of the liquid is dependent on the temperature (assuming

there are no other external forces at work). The temperature is known as the

bifurcation parameter and the critical value at which the onset of convection

takes place is the bifurcation point. In many systems at a bifurcation point

a pattern will form. Much work has been done to understand these pattern-

forming phenomena.

Some of the more commonly studied examples are convection between two

horizontal plates, known as Rayleigh-Benard convection [49]; Faraday waves,

formed by shaking a layer of fluid or sand up and down [25]; and reaction-

diffusion systems where two chemicals are mixed together [64]. Common

patterns are stripes, squares, hexagons and spirals.

In this thesis we will be studying pattern formation in a planar layer of

liquid crystal. These patterns are formed by the orientation of the molecules

within the layer. The probability that a molecule points in a certain direction

can be described by a symmetric 3 × 3 matrix Q representing an ellipsoid

[17], see Section 1.6. We will restrict our research to those patterns that are

spatially doubly periodic with respect to a planar lattice and that bifurcate

from one of two trivial states, the planar isotropic state in which all the

molecules lie flat within the plane but pointing in no particular direction and

the homeotropic state in which all the molecules are aligned vertically.
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In Chapter 1 we explain the necessary background to find steady state pat-

terns. We start with a system of partial differential equations

∂Q

∂t
= F(Q, λ)

where Q(x, t) is a matrix valued function of time t ∈ R , and space x ∈ R2 ,

and λ ∈ R is a bifurcation parameter. We assume there is a solution Q0 , (see

Section 1.6.1), for all λ , with full Euclidean symmetry. Let L = dF|(Q0,λ)

denote the equations linearized about Q0 , and suppose that L is invert-

ible, then by the Implicit Function Theorem [35] there exist solutions to

F(Q, λ) = 0 near Q0 , see Section (1.4.1).

Any solution that is spatially doubly periodic, i.e. has translational sym-

metry in two directions, must lie on a planar lattice L in R2 such that

u(x + l) = u(x) for all l ∈ L , where l is a basis vector for the lattice [21].

Therefore we can restrict the differential equations to the space of functions

that are doubly periodic with respect to a planar lattice. This implies that

elements of ker L have plane wave form wk(x) = e2πik·xQ , k ∈ R2 . This is

explained in Section 1.5.

Since ker L is finite-dimensional we can use Liapunov-Schmidt Reduction [8]

[58] to simplify the problem of searching for equilibria and periodic orbits

bifurcating from a (stable) equilibrium in our system of PDEs to the simpler

problem of finding the equilibria and periodic solutions of a reduced system

of equations, see Section 1.4.

The Equivariant Branching Lemma [65] tells us that generically we will find

equilibrium solutions with symmetry group Σ ∈ ΓL where Σ is an isotropy

subgroup with dimFix Σ = 1, see section 1.7. The calculations for the equi-

librium solutions and the resulting patterns are shown in Chapter 2.
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The Equivariant Hopf Theorem [32] states that generically there exist branches

of periodic solutions with period close to 2π having symmetry group Σ ⊂
Γ× S1 where Σ is an isotropy subgroup with dimFix(Σ) = 2 , explained in

Section 3.1. To find these isotropy subgroups and the dimensions of their

fixed-point subspaces we use the group theory methods involving wave pairs

shown in Dionne et al. [21], see Section 3.2. The calculations and some stills

of the resulting patterns are shown in Chapter 4, the moving patterns are on

the attached CD.

0.2 A bit about Liquid Crystals

Before we begin looking at the mathematical methods it is helpful to have a

rough idea of what a liquid crystal is.

The existence of liquid crystals was first observed in the late 1800s by Aus-

trian scientist Friedrich Reinitzer who discovered that cholesterol extracted

from carrots appeared to have two melting points, the first was a transition

from a solid to an opaque liquid and then the second when this liquid became

clear, this process was also reversible [51]. Fellow Austrian Otto Lehmann

identified this intermediate cloudy stage as crystalline. It was Lehmann who

did much of the early research in the field, publishing a book containing

literally hundreds of illustrations of liquid crystals observed through his spe-

cialist (and rather unusual at the time) polarizing microscope [44]. In 1905

Friedrich Rudolf Schenck presented a paper on liquid crystals at the annual

meeting of the Deutsche Bunsengesellschaft in Karlshruhe [57]. The paper

had a mixed reception but Schenck went on to publish a book on the sub-

ject [56], though this was the end of his contribution to the field. A few

years later Daniel Vorländer, a German chemist, realised that a crystalline

fluid necessarily had rod-like molecules [66]. It was not until the 1920’s that

Frenchman Georges Friedel concluded that it was the orientational order of

these molecules that was the key factor of liquid crystals, it was Friedel who

15



introduced the terms nematic and smectic to the field [27]. Translations of

many of the papers cited here can be found it the book by Sluckin, Dunmur

and Stegemeyer [61], or for a concise history see [63].

The following explanation is a paraphrased version of that given in the book

by Michael Fisch [26].

The three classical states of matter are gas, liquid and solid. A useful means

of describing the differences between their molecular structure is to talk about

the relation between the distance between the individual molecules which

we’ll call l , and the diameter of the molecules which we’ll call d . The diam-

eter is a very approximate term since the molecules are by no means always

spherical in fact we will later on be discussing the orientation of individual

molecules according to their major axis, but it will suffice for the moment as

we only need a very basic description of the three states.

Gas

In a gas d � l , the size of the molecules is much smaller than the distance

between them, and the molecules are free to move around. Gases flow, and

will expand to fill a container.

Liquid

In a liquid l ≈ d , the molecules in a liquid are free to move around, it flows

and can be poured, in a container it will settle to the bottom. An isotropic

liquid has a random arrangement of molecules, there is no order of position

or orientation.

Solid

There are two types of solids, crystalline and amorphous, though we only

need concern ourselves with crystalline solids. These also have l ≈ d but

there must be a periodic arrangement of the molecules so the molecules are

16



Figure 1: Diagram of a Nematic Liquid Crystal

not free to move. If the molecules are not spherical there is also orientational

order, all the molecules point in the same direction. Solids do not flow, they

retain their shape (except when strong forces are applied in which case they

may be forced to distort), when placed in a container they will not adjust to

fit it in any way. By contrast amorphous solids have no long-range positional

or orientational molecular order though they do retain their shape.

Liquid Crystal

A liquid crystal is a phase of matter between an isotropic liquid and crys-

talline solid displaying some properties of both states. The molecules have

some degree of long range orientational order and may have some positional

order too. Our research is concerned only with nematic liquid crystals, which

display orientational order but no positional order. However there are other

types, for example smectic liquid crystals exhibit orientational order and a

degree of positional order in layers, and chiral liquid crystals appear to have

orientational order locally but over a larger area are seen to follow a helical

pattern, see Sluckin (2000) [62].

Liquid crystal phases exist in many substances between the solid and liq-

uid phases. For example, as observed by Reinitzer a substance may start in

the solid phase, melt to an opaque liquid crystal phase at a certain tempera-

ture, and then melt again at a higher temperature to a clear liquid [51]. For

17



a more thorough discussion of the liquid crystal phases see [62]. Within the

liquid crystal phase temperature changes can affect the molecule alignment

causing pattern formation. Other factors that can affect this pattern forma-

tion are electric and magnetic fields and, in the case of some liquid crystal

phases that exist only when the main substance is diluted in another sub-

stance, changes in the concentration of the solution. It is important to note

that liquid crystals are strongly affected by physical boundaries, for example

plates containing a thin layer of liquid crystal between them in experimen-

tal situations. Commonly the molecules will allign themselves parallel to or

perpendicular to the boundaries.

0.3 A Brief Overview of Existing Research

The use of group theory to describe symmetries in bifurcation theory has

been established for some time, see Ruelle (1973) [54] and Sattinger (1979)

[55]. A comprehensive discussion of the subject is given in Golubitsky and

Schaeffer (1985) Volumes 1 and 2 [31], and there are some good modern texts

on the subject, Golubitsky and Stewart (2003) [30] and Hoyle (2006) [37].

Basic equilibrium lattice patterns appear in many papers applied to differ-

ent physical models, for generic results see Golubitsky and Stewart (2003)

[30]. Superlattice equilibrium patterns on square and hexagonal lattices are

covered in Dionne et al (1997) [22]. Square lattice solutions resulting from

a Hopf bifurcation and their stability are discussed in Silber and Knobloch

(1991) [59] and Dawes (2001) [16]. Results for the Hopf bifurcation on a

hexagonal lattice are discussed in Roberts et al (1986) [53]. A good overview

of the Hopf Bifurcation and Its Applications is given in the book by that

name by Marsden and McCracken (1976) [45].

The most commonly studied examples of pattern formation are found in

18



fluid dynamics, Crawford and Knobloch (1991) [12]. In Rayleigh-Bénard

convection equilibrium solutions displaying rolls and hexagonal patterns are

common, see Buzano and Golubitsky (1983) [4] and Golubitsky et al (1984)

[29]. Also square lattice patterns can be found, as shown in Le Gal and Cro-

quette (1988) [43]. Dionne et al (1995) [21] calculated possible time periodic

solutions on the square, hexagonal and rhombic lattices.

Turing patterns found in reaction-diffusion systems can be beautiful and

often unstable, sometimes oscilating between two or more patterns. Hexag-

onal superlattice patterns called ‘black eye’ patterns, as well as rhombs and

stripes, are shown in experiments by Gunaratne et al (1994) [34]. These

Hexagonal black eye patterns also appear in the experiments by Yang et al

(2002) [68] who found a three-phase oscillating hexagonal lattice pattern.

Analysis of basic stripes, squares, hexagons and rhombs as well as superlat-

tice patterns is shown in Judd and Silber (1999) [38]. Three dimensional

Turing patterns are discussed in Callahan and Knobloch (1999) [5].

Faraday experiments have shown a wide variety of patterns including stripes,

squares and hexagons, as shown in Douady and Fauve (1988) [23] and Ku-

drolli and Gollub (1996) [41]; triangles are shown in Müller (1993) [46]; and

eight and twelve fold quasipatterns are shown in Christiansen et al (1992) [9]

and Edwards and Fauve (1993) [24] respectively. Complicated ‘superlattice’

patterns can also be found, see Crawford et al [13] for squares, and Kudrolli

et al (1998) [40] and Silber et al. (2000) [60] for hexagons.

While this thesis makes no attempt to determine the experimental condi-

tions under which the patterns we discuss can be observed, it is nonetheless

interesting to comment on some examples of pattern forming phenomena in

liquid crystals, see for example Buka (1989) [3]. Observing patterns in liquid

crystals is usually done by shining a light onto the liquid crystal, the spe-

cific allignment of the molecules that are creating the pattern are not visible
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but the orientation of the molecules affects their refractive properties and a

black and white image is created by some areas reflecting back more light

than others.

A liquid crystal light valve consists of a layer of liquid crystal sandwiched

between a glass plate on one side and a mirror and photoconductor plate on

the other side with clear electrodes covering both plates allowing an electric

current to be applied. Light shone onto the photoconductor plate reduces its

resistance and thus changes the voltage that is being applied to the liquid

crystal layer, this results in a change in the orientation of the molecules of

the liquid crystal. Patterns can be seen by shining a light onto the liquid

crystal layer that is then refected back off the mirror, see Residori (2005) [52].

Rolls, squares, hexagons and triangles can all be observed, see Neubecker et

al (1995) [47] and D’Alessandro et al (1995) [15].

In electrohydrodynamic convection a thin layer of nematic liquid crystal is

held between two parallel glass plates and an alternating voltage is applied,

see Cross and Hohenberg (1993) [14]. Roll patterns (called Williams domain)

and chevrons are common, see Huh et al (2000), though squares and travel-

ling rolls are also possible, see Kai and Hirakawa (1978) [39], and Rehberg

et al (1988) [50]. This is a more complicated system since the liquid crystal

molecules are changing position as well as orientation and is therefore not

fully explained by our model.

The use of 3 × 3 symmetric matrices to describe molecular alignment in

liquid crystals has been established for some time, see deGennes (1974) [17].

Since liquid crystals are greatly affected by boundaries, e.g. the plates on

either of the layer described in the examples above, we will be considering

the midplane between these plates. A set of steady state patterns bifurcating

from the homeotropic and planar isotropic states predicted by the Equivari-

ant Branching Lemma in a planar layer of liquid crystal are shown in Chill-
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ingworth and Golubitsky (2003) [7] and Golubitsky (2003) [30]. The paper

by Dionne et al (1995) [21] uses group theory methods and the Equivariant

Hopf Theorem to find time-periodic patterns in Rayleigh-Bénard convection.

These patterns are created by variations in a scalar in R , temperature or

vertical velocity, over the plane R2 . This thesis takes the same method

shown in the Dionne paper and applies it to the case of a planar layer of

liquid crystal that is discussed in Chillingworth and Golubitsky (2003) [7]

where patterns are the result of variations in molecular alignment described

by a director field in R3 defined on the plane R2 .

Finally it is worth mentioning that while much of the investigation in pat-

tern formation has focused on the two dimensional models there is also some

interesting work on the three dimensional case. Equilibrium solutions for

the standard cubic lattices are shown in Dionne and Golubitsky (1992) [20],

classification of the other three-dimensional lattices can be found in Dionne

(1993) [19]. Hopf bifurcations on 3 dimensional lattices are discussed in Gol-

ubitsky and Stewart (1985) [33], Dias and Stewart (1999) [18] and Callahan

(2003) [6].



1

Preliminaries

1.1 The general strategy

We are looking for generic patterns within a planar layer of liquid crystal

that are spatially doubly periodic with respect to a lattice. How do we go

about finding these patterns? We begin by assuming a trivial state with

approximate Euclidean symmetry in a planar layer of liquid crystal, i.e. it

is invariant to all rotations reflections and translations in the plane. Phys-

ical practicalities mean this is not actually possible since an infinite layer

of liquid crystal does not exist in the physical world, the liquid crystal will

have to be contained in something. However we can ignore the boundaries of

the vessel since we are looking at patterns on a very local scale. We assume

that cooling takes place uniformly across the entire layer, so there are no hot

spots. There are then several different aspects of the problem that need to

be explained.

• An R3 director field on R2 describes the current state of the planar

layer of liquid crystal.

• Group theory describes the possible symmetries of the system.

• Restricting our research to those patterns that are spatially doubly

22
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periodic with respect to a planar lattice reduces the infinite dimensional

problem to one that is finite dimensional.

• Liapunov-Schmidt Reduction allows us to restrict our attention to a

finite dimensional eigenspace.

• Matrices describe the orientation of the molecules

• The Equivariant Branching Lemma tells us how to find patterns close

to the homeotropic and isotropic states.

1.2 Getting Started

We are looking specifically at patterns in a planar layer of liquid crystal. We

will approximate this layer by the plane R2 . We will describe the state of

the liquid crystal by a director field defined on R2 that assigns to each point

in the plane a unit vector n (called a director) in R3 showing the probable

orientation of the molecules at that point. Since the molecules themselves

have no positive or negative direction we treat the vector −n as being the

same as the vector n . We need to describe how this director field changes

as our bifurcation parameter changes. We start with a system of partial

differential equations (1.1) which express the rate of change of the system

over time in terms of its current state

∂Q

∂t
= F(Q, λ) (1.1)

where Q(x, t) is a 3× 3 symmetric matrix valued function of time,

t ∈ R , and space, x ∈ R2 , with trace= 0 , describing the direction of n

(this will be explained in section 1.6), and λ ∈ R is a bifurcation parameter,

(eg. temperature)[7].
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An equilibrium/steady state, is a solution Q of this system of PDEs where

∂Q

∂t
= F(Q, λ) = 0 (1.2)

We describe the symmetry of the solutions using group theory. The Eu-

clidean group E(2) is the group of all translations, rotations and reflections

in the plane. Elements take the form g(x) = Bx + b where B ∈ O(2) and

b ∈ R2 . We use the group Z2 to describe the reflection in the xy plane:

elements take the form ψ = ±1 . We define the action of E(2)× Z2 on our

functions Q by

A =

(
B

ψ

)
((g, ψ) ·Q)(x, t) = AQ(g−1x, t)A−1 ∀(g, ψ) ∈ E(2)× Z2.

The same group action applies in Section 1.3 and is explained in Appendix

A.

1.2.1 Group Theory Definitions

Throughout our discussion there are a few group theory terms that we will

be using, as outlined below.

The group of orthogonal matrices O(n) can be regarded as the group of

all rotations and reflections of Rn . We use a subgroup of O(n) to describe

the symmetries of a particular system. The group element g ∈ G is a sym-

metry of the dynamical system if for every solution x(t) of the system, gx(t)

is also a solution.

Representations

A representation of a group G over a field F is a homomorphism ρ : G→ GL(n, F )

that maps each group element g ∈ G to an invertible n×n matrix ρ(g) . The

matrices act on the vector space V = F n . If F = R then the representation
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is a real representation. The natural representation ρ : Dn → GL(2,R) of a

dihedral group Dn (the group of all rotations and reflections of a regular n

sided polygon) maps each rotation and reflection of the group to the 2 × 2

matrix corresponding to that linear transformation in the plane in coordinate

geometry.

Irreducibility

A subspace W of the vector space V is said to be G -invariant (or just

invariant if G and ρ are already assumed) under the representation ρ of the

group G if

ρ(g)w ∈ W, ∀g ∈ G, ∀w ∈ W.

A representation ρ(G) is said to be irreducible if the only G -invariant sub-

spaces of V are the origin and the whole space. A representation of G is

absolutely irreducible if it is irreducible and the only matrices that commute

with all the matrices of the representation are scalar multiples of the identity.

Equivariance

The function F(v, λ) : V ×R→ V is equivariant with respect to the group

G , given a representation ρ if

F(ρ(g)v, λ) = ρ(g)F(v, λ)

Isotropy Subgroup

The isotropy subgroup Hx ⊆ G of a point x ∈ V = Rn is defined to be:

Σx = {g ∈ G|gx = x}.

Fixed-point Subspace

For a subgroup H ⊆ G the fixed-point subspace Fix(H) is defined as

Fix(H) = {x ∈ Rn|hx = x,∀h ∈ H}.
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Figure 1.1: The Square and Hexagonal Lattices (left and right respectively).

If x ∈ Fix(H) then H ⊆ Σx .

Axial

An isotropy subgroup Σ is axial if dimFix(Σ) = 1 .

Axial isotropy subgroups will play an important role in finding solutions of

Equation (1.2).

1.3 The Symmetry Group ΓL

The symmetry group for our specific problem will depend on the lattice we

choose. We are looking for those solutions that are periodic with respect to

either the square or hexagonal lattice. First we choose a lattice and call it

L . The symmetry group for our system is

ΓL = (HL n T2)× Z2

where

• HL is the holohedry of the chosen lattice L , that is the finite group

of rotations about the origin and reflections in lines through the origin

of R2 that preserve the lattice, in this case the dihedral groups D4 or

D6
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• T2 = R2/L is the torus group representing translations of R2 modulo

the lattice

• Z2 represents the action of the reflection in the xy plane since, while

we are looking at a planar layer of liquid crystal where each molecule

will have a position vector in R2 , the molecules themselves can point

in any direction including out of the plane so each molecule will have a

director in R3 describing which way it points. The Z2 represents the

action of the reflection in the xy plane which takes z to −z .

Elements of this group take the form of ordered triples, for example (sr2, v1, τ) ,

where sr2 is a reflection in the holohedry, v1 is a vector in the torus group

representing the translations on the lattice, and τ is the reflection in the xy

plane. Since the construction of the group involves indirect products it is

important to state an order of action as not all the individual elements of

our component groups commute with one another. We will follow the rule

that the group element always acts from right to left, so in our example τ

would act first followed by v1 and then by sr2 (which by the same rule is

r2 followed by s ). Γ is a subgroup of E(2) × Z2 and its elements act on

functions Q in the same way

γ = (g, ψ), where g ∈ E(2) and ψ = ±1 ∈ Z2

g(x) = Bx + b, where B ∈ HL ⊂ 0(2), and b ∈ T2

A =

(
B

ψ

)
, ψ = ±1

γ ·Q(x, t) = AQ(g−1x, t)A−1 ∀γ ∈ Γ.

It is perhaps easiest to understand the group action by following the example

shown in Appendix A.

Definition A shifted subgroup K of ΓL is a subgroup with no elements that

are purely translations, so K
⋂

T2 = {0} .
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We will be looking only at these shifted subgroups because if we had a pattern

relating to a subgroup that had an element that was purely translational i.e.

K
⋂

T2 6= {0} we could simply use a smaller lattice. The elements of T2

representing the translations on the lattice will be explained in section 1.5.

First we will outline the information we will need about the dihedral groups

D4 and D6 .

1.3.1 Group Theory for Square Lattice

The symmetry group of the square is generated by a rotation anticlockwise

through π
2

, and a reflection in the x axis, denoted by r and s respectively.

Figure 1.2: The Symmetries of the Square

r

s

x

y

D4 = 〈r4 = s2 = (rs)2 = e〉

= {e, r, r2, r3, s, sr, sr2, sr3}
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Subgroups of D4

1 = {e}
Z2[r2] = {e, r2}
Z2[s] = {e, s}

Z2[sr] = {e, sr}
Z4[r] = {e, r, r2, r3}

Z2
2[r2, s] = {e, r2, s, sr2}

Z2
2[r2, sr] = {e, r2, sr, sr3}
D4[r, s] = {e, r, r2, r3, s, sr, sr2, sr3}

The natural representation of D4

ρ : D4 → GL(2,R)

ρ(e) =

(
1 0

0 1

)
ρ(r) =

(
0 −1

1 0

)

ρ(r2) =

(
−1 0

0 −1

)
ρ(r3) =

(
0 1

−1 0

)

ρ(s) =

(
1 0

0 −1

)
ρ(sr) =

(
0 −1

−1 0

)

ρ(sr2) =

(
−1 0

0 1

)
ρ(sr3) =

(
0 1

1 0

)
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1.3.2 Group Theory for Hexagonal Lattice

The symmetry group of the hexagon is generated by a rotation r anticlock-

wise through π
3

, and a reflection s in the x axis.

Figure 1.3: The Symmetries of the Hexagon

r

s

x

y

D6 = 〈r6 = s2 = (rs)2 = e〉
= {e, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}

Subgroups of D6

1 = {e}
Z2[r3] = {e, r3}
Z2[s] = {e, s}

Z2[sr3] = {e, sr3}
Z3[r2] = {e, r2, r4}
Z6[r] = {e, r, r2, r3, r4, r5}

Z2
2[r3, s] = {e, r3, s, sr3}

D3[r2, s] = {e, r2, r4, s, sr2, sr4}
D3[r2, sr] = {e, r2, r4, sr, sr3, sr5}

D6[r, s] = {e, r, r2, r3, r4, r5, s, sr, sr2, sr3, sr4, sr5}
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The natural representation of D6

ρ : D6 → GL(2,R)

ρ(e) =

(
1 0

0 1

)
ρ(r) =

(
1/2 −

√
3

2√
3

2
1/2

)

ρ(r2) =

(
−1/2 −

√
3

2√
3

2
−1/2

)
ρ(r3) =

(
0 1

−1 0

)

ρ(r4) =

(
−1/2

√
3

2

−
√

3
2
−1/2

)
ρ(r5) =

(
1/2

√
3

2

−
√

3
2

1/2

)

ρ(s) =

(
1 0

0 −1

)
ρ(sr) =

(
1/2 −

√
3

2

−
√

3
2
−1/2

)

ρ(sr2) =

(
−1/2 −

√
3

2

−
√

3
2
−1/2

)
ρ(sr3) =

(
0 1

1 0

)

ρ(sr4) =

(
−1/2

√
3

2√
3

2
1/2

)
ρ(sr5) =

(
1/2

√
3

2√
3

2
−1/2

)

1.4 A Reduced Problem

Rather than trying to find equilibrium solutions for our system of PDEs

directly we use Liapunov-Schmidt Reduction to obtain a system of reduced

bifurcation equations whose zeros are in one to one correspondence with those

of the original equations. The method is shown here in terms of our specific

model and is derived from the more general method described in Golubitsky

and Schaeffer [31].
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We are trying to find solutions to the set of differential equations (1.1)

F(Q, λ) = 0

where

• Q(x, t) , the unknown to be solved for, is a matrix valued function of

space x ∈ R2 and time t ∈ R

• Q is a suitable space of such functions

• λ is the bifurcation parameter

• F : Q × R → Q is a smooth mapping that is s -times differentiable

where 0 ≤ s ≤ ∞ .

We assume that our system of PDEs has a trivial equilibrium solution with

full Euclidean symmetry, we call this solution Q0 . Let L = dF|(Q0,λ) de-

note the linearization of these equations about Q0 . We attempt to describe

solutions to this system locally near this solution.

1.4.1 Implicit Function Theorem

Let F be as above. Suppose that F(Q0, 0) = 0 and dF|(Q0,0) is invertible

Then there exist neighbourhoods U of Q0 in Q and V of λ0 = 0 in R

and a function X : V → U such that for every λ ∈ V the set of differential

equations has a unique solution Q = X(λ) in U .

Moreover, if F is of class Cs so is X . Thus

F(X(λ), λ) = 0, X(λ0) = Q0

For proof of the implicit function theorem see Chow and Hale (1982) [8].
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1.4.2 Liapunov-Schmidt Reduction

Let

F : Q×R→ Q, F(Q0, 0) = 0

be a smooth mapping. We want to solve the equation

F(Q, λ) = 0

for Q as a function of x and t near (Q0, 0) . Let L be the derivative of F

at (Q0, 0) . We assume that L is Fredholm of index zero.

Since L is Fredholm [31] we know that

• ker L 6= 0 is a finite-dimensional subspace of Q

• range L is a closed subspace of Q of finite codimension.

Also, index zero means dim ker L = codim range L [31].

Since L : Q → Q is Fredholm we can choose vector space complements M

and N to ker L and range L respectively

Q = ker L⊕M

Q = N ⊕ range L.

Let E denote the projection of Q onto range L with kerE = N

E : Q → range L.

There is a complementary projection

(I − E) : Q → N

with ker(I − E) = range L .

If Q ∈ Q then Q = 0 iff EQ = 0 and (I − E)Q = 0. Thus the system of
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equations F(Q, λ) = 0 may be expanded to an equivalent pair of equations

EF(Q, λ) = 0

(I − E)F(Q, λ) = 0.

We can write Q = Q1 + Q2 where Q1 ∈ ker L and Q2 ∈ M . Apply the

implicit function theorem to solve EF(Q, λ) = 0 for Q2 as a function of Q1

and λ . We write this solution as a function W : ker L×R→M such that

EF(Q1 +W (Q1, λ), λ) ≡ 0

W (0, 0) = 0.

We then substitute W into the second of our two equations to obtain the

reduced mapping f : ker L×R→ N

f(Q1, λ) = (I − E)F(Q1 +W (Q1, λ), λ).

The zeros of this reduced mapping f(Q1, λ) are in one to one correspondence

with the zeros of F(Q, λ) :

f(Q1, λ) = 0 ⇐⇒ F(Q1 +W (Q1, λ), λ) = 0.

For a full explanation of Liapunov-Schmidt reduction see Golubitsky and

Schaeffer (1985) Volume 1 [31].

1.5 Lattices

Liapunov-Schmidt reduction gives us a much more manageable task of find-

ing solutions to the reduced problem. However, in order for us to be able to

apply Liapunov-Schmidt reduction to our initial problem the kernel of the

linearization must be finite dimensional whereas in our case rotation sym-
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metry implies that the eigenspace of ker L is infinite dimensional, since for

each eigenvalue there is a circle of infinitely many eigenfunctions. We solve

this problem by restricting ourselves to the problem of finding those solutions

that are doubly periodic with respect to a planar lattice thus making ker L

finite dimensional.

We define a plane wave as a complex-valued function of the form

Wk(x) = eik·x

where k ∈ R2 is a wave vector and k = |k| is the wave number, [20].

Translation symmetry means that our eigenfunctions must be L periodic

functions, so they will be linear combinations of matrices in plane wave form:

eik·xQ+ c.c.

For each wave number k = |k| there is a smallest λk at which the trivial

solution loses stability to a disturbance with this wave number. Dispersion

curves often have a unique absolute minimum at kc , the critical wave num-

ber. The first instability is assumed to occur with wave number equal to kc ,

[30].

In the case with full Euclidean symmetry there are infinitely many vectors

starting at the origin with length kc : they define a critical circle centred

at the origin with radius= kc . However, when we restrict ourselves to the

lattice we need only consider those vectors where the critical circle intersects

the vertices of the lattice. It is these vectors that we need to find in order to

find the appropriate eigenfunctions that will enable us to plot the patterns

associated with the solutions to equation (1.2), these patterns are called the

planforms. We need to find the critical vectors of each lattice, ie. those

vectors that lie on a critical circle.
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1.5.1 Lattice Generating Vectors

First we need to find those vectors that define the individual lattices. Each

lattice is generated by a pair of linearly independent vectors l1, l2 ∈ R2 . We

define this lattice by the set

L = {n1l1 + n2l2}.

In this model we are looking at the square and hexagonal lattices.

Let XL denote the space of L -periodic functions on R2 . The symmetries of

XL have the form HLnT2 ⊂ E(2) = O(2)nR2 , where HL is the holohedry

of the lattice, and T2 = R2/L is the torus of translations modulo the lattice.

The size of the lattice is chosen so that a plane wave with critical wave

number kc is an eigenfunction of the space QL of matrix functions that are

periodic with respect to L , [7]. Those k ∈ R2 for which the scalar plane

wave e2πik·x is L -periodic are dual wave vectors. We consider only those

lattice sizes where the critical dual wave vectors are of shortest length in L∗ .

We then define the dual lattice L∗ to be

L∗ = {k ∈ R2|e2πik·x is L periodic}

L∗ = {n1k1 + n2k2}.

Table 1.1: Generators for Lattices and Dual Lattices

lattice holohedry HL basis of L basis of L∗
square D4 l1 = (1, 0) k1 = (1, 0)

l2 = (0, 1) k2 = (0, 1)

hexagonal D6 l1 =
(

1√
3
, 1
)

k1 = (0, 1)

l2 =
(

2√
3
, 0
)

k2 =
(√

3
2
, −1

2

)
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1.5.2 Critical Circles and Wave Vectors

We can find the irreducible representations of the group HL + T2 (the Z2

will not be relevant at this stage) by looking at where the critical circles

intersect the lattice, shown in figure (1.4).

Figure 1.4: Critical Circles Intersecting the Dual Lattices

If we restrict our solutions to those that are doubly periodic with respect to

a planar lattice all wave vectors k contributing to the pattern must lie at

the vertices of a dual lattice [37, p138].

There is a countable infinity of irreducible representations of the symmetry

group for both lattices. These can be grouped into two types for each lattice.

The first type is four-dimensional for the square lattice and six-dimensional

for the hexagonal lattice. The smallest example in both cases is when the

lattice size is chosen to make the critical wavenumber kc = 1, shown by the

inner cirle in each picture in figure (1.4).

u(x, y, t) = z1(t)eiK1 + z2(t)eiK2 + c.c. ∈ C2

u(x, y, t) = z1(t)eiK1 + z2(t)eiK2 + z3(t)eiK3 + c.c. ∈ C3

where the Kj s are given in table 1.2.
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The second type of irreducible representation for the square lattice is eight-

dimensional and is given by

u(x, y, t) = z1(t)eiK1 + z2(t)eiK2 + z3(t)eiK3 + z4(t)eiK4 + c.c. ∈ C4

The first of these representations occurs when the lattice size is chosen with

kc =
√

5 , shown by the middle circle in the left hand picture of figure (1.4).

The second type of absolutely irreducible representation for the hexagonal

lattice is twelve-dimensional and is given by

u(x, y, t) = z1(t)eiK1+z2(t)eiK2+z3(t)eiK3+z4(t)eiK4+z5(t)eiK5+z6(t)eiK6+c.c. ∈ C6

The first of these representations occurs when the lattice size is chosen making

kc =
√

7 , shown by the largest circle in the right hand picture of figure (1.4).

[11]

1.5.3 Half Lattice

As stated in Section 1.3 we are only interested in shifted subgroups of ΓL .

As a result of this the only elements of T2 that will be relevent are the half

lattice points since they are the only elements that can be combined with

elements of the holohedry to create an element of ΓL such that the subgroup

generated by that element has a non-trivial fixed-point subspace.

We introduce the idea of a half lattice 1
2
L = 1

2
L[v1, v2] ≈ Z2

2 generated

by the vectors v1 = 1
2
l1 and v2 = 1

2
l2 , where l1 and l2 are the generators of

L . The vectors v1 and v2 generate a subgroup of T2 , the other non-trivial

element being vd = v1 + v2 , [21].

We will use the notation Γ 1
2
L = (HL n 1

2
L)× Z2 .
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Table 1.2: Irreducible Representations

lattice dimV Ks

square 4 K1 = k1

K2 = k2

square 8 K1 = αk1 + βk2

K2 = −βk1 + αk2

K3 = βk1 + αk2

K1 = −αk1 + βk2

hexagonal 6 K1 = k1 + k2

K2 = −k2

K3 = −k1

hexagonal 12 K1 = αk1 + βk2

K2 = (−α + β)k1 − αk2

K3 = −βk1 + (α− β)k2

K4 = αk1 + (α− β)k2

K5 = −βk1 − αk2

K6 = (−α + β)k1 + βk2

Where α and β are integers, and greatest common divisor gcd(α, β) = 1 .
In the square case: α > β > 0 , and α+ β is odd.

In the hexagonal case: α > β > α/β > 0 , and gcd(3, α+ β) = 1 .

1.6 The representations of ΓL

The material in this section follows the paper by Chillingworth and Golubit-

sky [7], using the Landau - de Gennes model [17] to describe molecular ori-

entation. We are looking for patterns created by the orientation of molecules

within a planar layer of liquid crystal. Each molecule has a position vector

x ∈ R2 , and a director n = −n ∈ R3 . We can use an ellipsoid to approx-

imate the probability that the molecule at position x points in a certain

direction. The more elongated the ellipsoid, the higher the probability that

the molecule points in the direction of the elongation. An ellipsoid can be

defined by a real symmetric 3× 3 matrix.
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Q =


a d e

d b f

e f c



The space of 3 × 3 symmetric matrices is 6 dimensional, but this is not

absolutely irreducible since those matrices that are scalar multiples of the

identity representing spheres will themselves commute with matrices that are

not scalar multiples of the identity. We are concerned with the elongation

of the ellipsoid, and the direction of the elongation, which describes how the

ellipsoid differs from the sphere, therefore we can take out the 1 dimensional

space of scalar multiples of the identity and look at the five dimensional space

of 3 × 3 symmetric matrices with trace= 0 , equivalent to R5 . Thus the

matrix represents the standard deviation of the probability that the director

points in a certain direction.

Q =


a d e

d b f

e f −a− b


1.6.1 The Trivial States

We assume that the crystal is in an initial equilibrium state that is E(2) -

invariant, where E(2) is the Euclidean group of all symmetries of R2 . There

are two such possible states, the homeotropic state where all the molecules

align vertically, and the planar isotropic state where all the molecules lie

flat within the xy plane but with no propensity to point in any particular

direction. These states have the form:

Q0 = α


−1 0 0

0 −1 0

0 0 2

 (1.3)
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If α > 0 then there is a single largest eigenvalue with eigenvector pointing

in the z direcetion meaning the matrix represents the homeotropic state. If

α < 0 there are joint largest eigenvalues with eigenvectors pointing in the x

and y directions meaning the matrix represents the planar isotropic state.

The state Q0 is also invariant under the reflection in the xy plane, actioned

by conjugating by the matrix:

τ =


1 0 0

0 1 0

0 0 −1


This gives us the symmetry group Γ = E(2)× Z2(τ) .

1.6.2 Q Matrices

From Section 1.5 recall that planar translation symmetry implies that eigen-

functions of L are linear combinations of matrices that have the plane wave

form:

e2πik·xQ+ c.c.

Here Q ∈ VC is a constant matrix where VC denotes the space of complex

3× 3 symmetric matrices with trace= 0 , and k ∈ R is a wave vector.

For fixed k let

Wk = {e2πik·xQ+ c.c.|Q ∈ VC}

be the ten-dimensional real linear subspace consisting of such functions. Since

we are always adding the complex conjugate this will ensure we always end

up with a 3× 3 symmetric matrix with real entries and trace= 0 represent-

ing a real ellipsoid.

Wk can be broken down into four L -invariant subspaces, limiting the possi-

ble forms of Q , as follows.
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The symmetries of the system place restriction on the possible forms of Q .

L commutes with ρ , the rotation through π in the xy plane, described

by the matrix. 
−1 0 0

0 −1 0

0 0 1


By looking at the action of ρ on Q we can simplify the form of Q as follows:

ρ(e2πik·xQ) = e2πiρk·xρQρ−1 = e−2πik·xρQρ−1 = e2πik·xρQρ−1

ρ(Q) = ρQρ−1

The kernel of L can be divided into two L -invariant subspaces, the first with

ρ(Q) = Q and the second with ρ(Q) = −Q . Also, translation by 1
4
k implies

that if e2πik·xQ is an eigenfunction then ie2πik·xQ is a (symmetry related)

eigenfuntion. It follows that if ρ acts as minus the identity on Q then it

acts as the identity on iQ [7]. If ρ acts as the identity it has no effect on

the form of Q . This implies that Q has the form

Q =


a d ie

d b if

ie if −a− b


The reflection κ : y → −y divides Wk into two subspaces: W+

k where κ

acts trivially, this contains even functions in y ; and W−
k where κ acts as

minus the identity, this contains odd functions in y . Bifurcations based on

even eigenfunctions are called scalar and bifurcations based on odd functions

are called pseudoscalar.
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κ =


1 0 0

0 −1 0

0 0 1



κQκ−1 =


a −d e

−d b −f
e −f −a− b


If κ acts trivially then Q has the form:

a 0 e

0 b 0

e 0 −a− b

 = Q+.

If κ acts non-trivially then Q has the form:
0 d 0

d 0 f

0 f 0

 = Q−.

So eigenfunctions in Wk lie in one of the two-dimensional subspaces V +
k ,V −k

of W+
k ,W−

k that have the form

V +
k = {e2πik·xQ+}

V −k = {e2πik·xQ−}.

Also, L commutes with the reflection in the xy plane

τ =


1 0 0

0 1 0

0 0 −1


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τQτ−1 =


a d −e
d b −f
−e −f −a− b


If τ acts trivially then Q has the form:

a d 0

d b 0

0 0 −a− b

 .

If τ acts non-trivially then Q has the form:
0 0 e

0 0 f

e f 0

 .

This further decomposes the L -invariant subspaces according to whether τ

acts trivially or non-trivially.

V +
K = V ++

K + V +−
K

V −K = V −+
K + V −−K

By combining these properties we get four possible forms for Q . We identify

the individual forms by double indices Qεψ where the first index ε = ±1

describes the action of κ , and the second index ψ = ±1 describes the action

of τ .

The four different forms of Q are as follows:
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Q++ =


a 0 0

0 b 0

0 0 −a− b

 Q+− =


0 0 i

0 0 0

i 0 0



Q−+ =


0 1 0

1 0 0

0 0 0

 Q−− =


0 0 0

0 0 i

0 i 0


(1.4)

We are looking at rotations and reflections of ellipsoids, in matrix terms

these linear transformations result from conjugating the ellipsoid matrix by

the appropriate rotation or reflection matrix, hence the elements of the group

Γ will act on the matrices Q by conjugation, γQγ−1 .

1.7 Finding the patterns

Now that we have gathered all the components for the eigenfunctions we

can put them together to see that the generalized eigenspace is generated by

expressions of the form

Q̃ =
s∑
j=1

zje
2πiKj ·xQj + c.c.

where the Kj s are given in Table 1.2. Here Qj = KjQ
±±(Kj)

−1 , Kj is the

linear transformation matrix from the natural representation of HL giving

the rotation through φ in the xy plane, and φ is the angle Kj makes with

the positive x axis.

It is these eigenfunctions we will be plotting so we need to find the com-

plex coefficients zj to input into Q̃ in order to plot the planforms. The

Equivariant Branching Lemma tells us that we will find solutions generically

with symmetry group Σ ∈ ΓL whenever dimFix Σ = 1
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1.7.1 The Equivariant Branching Lemma

Lemma 1.7.1. (Equivariant Branching Lemma)[65] [10]

Let G be a compact Lie group acting absolutely irreducibly on Rn .

Let ẋ = F(x, λ) be a G -equivariant set of differential equations.

Then it follows that:

F(0, λ) = 0,∀λ

DF|(0,λ) = c(λ)In

Also assume that:

c(0) = 0 Bifurcation occurs at λ = 0.
dc
dλ
|λ=o 6= 0 The eigenvalues cross the imaginary

axis with non-zero speed.

Then: For each axial* isotropy subgroup Σ ⊆ G there exists generically a

unique branch of solutions x(λ) satisfying F(x(λ), λ) = 0 branching from

the origin and having symmetry Σ .

*Recall that an isotropy subgroup Σ is axial if dimFix(Σ) = 1 .
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1.7.2 The Method

In order to plot the equilibrium solutions we must first find all the isotropy

subgroups of ΓL with fixed-point subspace of dimension 1. We will follow

the steps shown below.

Step 1 Calculate all the shifted subgroups K of ΓL .

Step 2 Calculate the action of each group element on Q̃ by applying each

element of the group to Q̃ and record how it permutes the complex coeffi-

cients zi .

Step 3 Use these group actions to find the fixed-point subspaces of all the

shifted subgroups and their dimensions.

Step 4 Of those cases where dimFix(K) = 1 check for equivalent cases.

Step 5 Plot the planforms. This will be done in Matlab.



2

Equilibrium Solutions from 2nd

Representations

In this chapter we will use the method shown in Chapter 1 to find equilibrium

solutions close to isotopic or homeotropic states. There are four possible lat-

tice representations in total, two for each of the square and hexagonal lattices,

shown by the two smallest critical circles on both pictures in Figure 1.4. In

Chillingworth and Golubitsky [7] the equilibria for the smaller representation

(ie. where kc = 1) for both the square and hexagonal lattices are shown.

However, the second possible representation in each case is not covered and

we will show the results for these cases here. The Equivariant Branching

Lemma tells us that to find these solutions we need to find all possible axial

isotropy subgroups and their corresponding fixed-point subspaces.

2.1 The Shifted Subgroups

We begin by listing all the shifted subgroups K of ΓL for both the square

and hexagonal cases. Listing all these subgroups may seem like a daunting

task at first but much of the work has already been done for us. In Dionne

et al. [21] the subgroups by conjugacy class of the groups D4 n T2 and

D6 n T2 are already calculated; these are shown in the left hand column of

48
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Tables 2.1 and 2.2. Since (e, e, τ) commutes with everything it is a simple

task to expand these lists to include all possible conjugacy classes of our

group ΓL for both cases. The extra subgroups of ΓL are shown in the right

hand column of Tables 2.1 and 2.2.

Table 2.1: Shifted Subgroups of ΓL = (D4 n T2)× Z2.

Shifted Subgroups of D4 nT2 Extra subgroups of ΓL

1 1

2 Z2[(r2, e, e)]

3 Z2[(e, e, τ)]

4 Z2[(r2, e, τ)]

5 Z2[(s, e, e)]

6 Z2[(s, v1, e)]

7 Z2[(sr, e, e)]

8 Z2[(s, e, τ)]

9 Z2[(s, v1, τ)]

10 Z2[(sr, e, τ)]

11 Z4[(r, e, e)]

12 Z4[(r, e, τ)]

13 Z2
2[(r2, e, e), (s, e, e)]

14 Z2
2[(r2, e, e), (s, v1, e)]

15 Z2
2[(r2, e, e), (s, vd, e)]

16 Z2
2[(r2, e, e), (s, e, τ)]

17 Z2
2[(r2, e, e), (s, v1, τ)]

18 Z2
2[(r2, e, e), (s, vd, τ)]

19 Z2
2[(r2, e, τ), (s, e, e)]

20 Z2
2[(r2, e, τ), (s, v1, e)]

21 Z2
2[(r2, e, τ), (s, vd, e)]

22 Z2
2[(r2, e, e), (sr, e, e)]

23 Z2
2[(r2, e, e), (sr, e, τ)]

24 Z2
2[(r2, e, τ), (sr, e, e)]

25 Z2
2[(r2, e, e), (e, e, τ)]

26 Z2
2[(s, e, e), (e, e, τ)]

27 Z2
2[(s, v1, e), [(e, e, τ)]

28 Z2
2[(sr, e, e), (e, e, τ)]

29 Z4[(r, e, e)]× Z2[(e, e, τ)]

30 Z3
2[(r2, e, e), (s, e, e), (e, e, τ)]
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Table 2.1: Shifted Subgroups of ΓL = (D4 n T2)× Z2.

Shifted Subgroups of D4 nT2 Extra subgroups of ΓL

31 Z3
2[(r2, e, e), (s, v1, e), (e, e, τ)]

32 Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)]

33 Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)]

34 D4[(r, e, e), (s, e, e)]

35 D4[(r, e, e), (s, vd, e)]

36 D4[(r, e, e), (s, e, τ)]

37 D4[(r, e, e), (s, vd, τ)]

38 D4[(r, e, τ), (s, e, e)]

39 D4[(r, e, τ), (s, vd, e)]

40 D4[(r, e, τ), (s, e, τ)]

41 D4[(r, e, τ), (s, vd, τ)]

42 D4[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

43 D4[(r, e, e), (s, vd, e)]× Z2[(e, e, τ)]

Table 2.2: Shifted Subgroups of ΓL = (D6 n T2)× Z2.

Shifted Subgroups of D6 nT2 Extra subgroups of ΓL

1 1

2 Z2[(r3, e, e)]

3 Z2[(e, e, τ)]

4 Z2[(r3, e, τ)]

5 Z2[(s, e, e)]

6 Z2[(sr3, e, e)]

7 Z2[(s, e, τ)]

8 Z2[(sr3, e, τ)]

9 Z3[(r2, e, e)]

10 Z2
2[(r3, e, e), (e, e, τ)]

11 Z2
2[(r3, e, e), (s, e, e)]

12 Z2
2[(r3, e, e), (s, e, τ)]

13 Z2
2[(r3, e, τ), (s, e, e)]

14 Z2
2[(r3, e, τ), (s, e, τ)]

15 Z2
2[(s, e, e), (e, e, τ)]

16 Z2
2[(sr3, e, e), (e, e, τ)]

17 Z6[(r, e, e)]
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Table 2.2: Shifted Subgroups of ΓL = (D6 n T2)× Z2.

Shifted Subgroups of D6 nT2 Extra subgroups of ΓL

18 Z6[(r, e, τ)]

19 Z6[(r2, e, τ)]

20 D3[(r2, e, e), (s, e, e)]

21 D3[(r2, e, e), (sr, e, e)]

22 D3[(r2, e, e), (s, e, τ)]

23 D3[(r2, e, e), (sr, e, τ)]

24 Z3
2[(r3, e, e), (s, e, e), (e, e, τ)]

25 Z6[(r, e, e)]× Z2[(e, e, τ)]

26 D6[(r, e, e), (s, e, e)]

27 D6[(r, e, e), (s, e, τ)]

28 D6[(r, e, τ), (s, e, e)]

29 D6[(r, e, τ), (s, e, τ)]

30 D6[(r2, e, τ), (s, e, e)]

31 D6[(r2, e, τ), (sr, e, e)]

32 D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

2.2 The Action of the Elements of Γ1
2L

Next it is necessary to calculate the action of each group element on Q̃ .

We apply each element of the group to Q̃ and record how it permutes the

complex coefficients zi : an example of this calculation is show in Appendix

A. Since we are only interested in the shifted subgroups we need only look

at the generating elements of the group Γ 1
2
L . The actions of the generating

elements are shown in Tables 2.3 and 2.4. Due to the complicated nature

of calculating the fixed-point subspaces in the next step the actions of all

relevant group elements are shown in Appendix B to make these calculations

easier.
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Table 2.3: The Action of the Generators of (D4 n 1
2
L)× Z2

Action onC2 Action onC4

g g(z1, z2) g(z1, z2, z3, z4)

(r, e, e) (z2, z1) (z2, z1, z4, z3)

(s, e, e) ε(z1, z2) ε(z4, z3, z2, z1)

(e, v1, e) (−z1, z2) (−z1, z2, z3,−z4), α odd

(z1,−z2,−z3, z4), β odd

(e, v2, e) (z1,−z2) (z1,−z2,−z3, z4), α odd

(−z1, z2, z3,−z4), β odd

(e, vd, e) (−z1,−z2) (−z1,−z2,−z3,−z4)

(e, e, τ) ψ(z1, z2) ψ(z1, z2, z3, z4)

Table 2.4: The Action of the Generators of (D6 n 1
2
L)× Z2

Action on C3 Action on C6

g g(z1, z2, z3) g(z1, z2, z3, z4, z5, z6)

(r, e, e) (z2, z3, z1) (z2, z3, z1, z5, z6, z4)

(s, e, e) ε(z2, z1, z3) ε(z6, z5, z4, z3, z2, z1)

(e, v1, e) (−z1, z2,−z3) (−z1,−z2, z3,−z4, z5,−z6), α odd

(z1,−z2,−z3, z4,−z5,−z6), β odd

(−z1, z2,−z3,−z4,−z5, z6), α and β odd

(e, v2, e) (−z1,−z2, z3) (z1,−z2,−z3,−z4,−z5, z6), α odd

(−z1, z2,−z3,−z4, z5,−z6), β odd

(−z1,−z2, z3, z4,−z5,−z6), α and β odd

(e, e, τ) ψ(z1, z2, z3) ψ(z1, z2, z3, z4, z5, z6)

2.3 Fixed-point Subspaces

Having calculated both the actions of the group elements and the full list of

possible subgroups by conjugacy class we combine the two to discover the
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fixed-point subspace of each subgroup and its dimension. This is shown in

Tables 2.5 and 2.6.

Table 2.5: Shifted Subgroups and their Fixed Point Subspaces for the Square
Lattice C4

Shifted Subgroup Fixed point subspace dimFix

1 1 C4 8

2 Z2[(r2, e, e)] z = z 4

3 Z2[(e, e, τ)] C4 when ψ = +1 8

0 when ψ = −1 0

4 Z2[(r2, e, τ)] z = z when ψ = +1 4

Re(z) = 0 when ψ = −1 4

5 Z2[(s, e, e)] z1 = εz4, z2 = εz3 4

6 Z2[(s, v1, e)] z1 = −εz4, z2 = εz3 4

7 Z2[(sr, e, e)] z1 = εz3, z2 = εz4 4

8 Z2[(s, e, τ)] z1 = εψz4, z2 = εψz3 4

9 Z2[(s, v1, τ)] z1 = −εψz4, z2 = εψz3 4

10 Z2[(sr, e, τ)] z1 = εψz3, z2 = εψz4 4

11 Z4[(r, e, e)] z1 = z2, z3 = z4, z = z 2

12 Z4[(r, e, τ)] z1 = ψz2, z3 = ψz4, z = z 2

13 Z2
2[(r2, e, e), (s, e, e)] z1 = εz4, z2 = εz3, z = z 2

14 Z2
2[(r2, e, e), (s, v1, e)] z1 = −εz4, z2 = εz3, z = z 2

15 Z2
2[(r2, e, e), (s, vd, e)] z1 = −εz4, z2 = −εz3, z = z 2

16 Z2
2[(r2, e, e), (s, e, τ)] z1 = εψz4, z2 = εψz3, z = z 2

17 Z2
2[(r2, e, e), (s, v1, τ)] z1 = −εz4, z2 = εz3, z = z 2

18 Z2
2[(r2, e, e), (s, vd, τ)] z1 = −εz4, z2 = −εz3, z = z 2

19 Z2
2[(r2, e, τ), (s, e, e)] z1 = εz4, z2 = εz3, z = z when ψ = +1 2

z1 = εz4, z2 = εz3, Re(z) = 0 when ψ = −1 2

20 Z2
2[(r2, e, τ), (s, v1, e)] z1 = −εz4, z2 = εz3, z = z when ψ = +1 2

z1 = −εz4, z2 = εz3, Re(z) = 0 when ψ = −1 2

21 Z2
2[(r2, e, τ), (s, vd, e)] z1 = −εz4, z2 = −εz3, z = z when ψ = +1 2

z1 = −εz4, z2 = −εz3, Re(z) = 0 when ψ = −1 2

22 Z2
2[(r2, e, e), (sr, e, e)] z1 = εz3, z2 = εz4, z = z 2

23 Z2
2[(r2, e, e), (sr, e, τ)] z1 = εψz3, z2 = εψz4, z = z 2

24 Z2
2[(r2, e, τ), (sr, e, e)] z1 = εz3, z2 = εz4, z = z when ψ = +1 2

z1 = εz3, z2 = εz4, Re(z) = 0 when ψ = −1 2

25 Z2
2[(r2, e, e), (e, e, τ)] z = z when ψ = +1 4
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Table 2.5: Shifted Subgroups and their Fixed Point Subspaces for the Square
Lattice C4

Shifted Subgroup Fixed point subspace dimFix

0 when ψ = −1 0

26 Z2
2[(s, e, e), (e, e, τ)] z1 = εz4, z2 = εz3 when ψ = +1 4

0 when ψ = +1 0

27 Z2
2[(s, v1, e), [(e, e, τ)] z1 = −εz4, z2 = εz3 when ψ = +1 4

0 when ψ = +1 0

28 Z2
2[(sr, e, e), (e, e, τ)] z1 = εz3, z2 = εz4 when ψ = +1 4

0 when ψ = −1 0

29 Z4[(r, e, e)]× Z2[(e, e, τ)] z1 = z2, z3 = z4, z = z when ψ = +1 2

0 when ψ = −1 0

30 Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] z1 = εz4, z2 = εz3, z = z when ψ = +1 2

0 when ψ = −1 0

31 Z3
2[(r2, e, e), (s, v1, e), (e, e, τ)] z1 = −εz4, z2 = εz3, z = z when ψ = +1 2

0 when ψ = −1 0

32 Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)] z1 = −εz4, z2 = −εz3, z = z when ψ = +1 2

0 when ψ = −1 0

33 Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] z1 = εz3, z2 = εz4, z = z when ψ = +1 2

0 when ψ = −1 0

34 D4[(r, e, e), (s, e, e)] z1 = z2 = εz3 = εz4, z = z 1

35 D4[(r, e, e), (s, vd, e)] z1 = z2 = −εz3 = −εz4, z = z 1

36 D4[(r, e, e), (s, e, τ)] z1 = z2 = εψz3 = εψz4, z = z 1

37 D4[(r, e, e), (s, vd, τ)] z1 = z2 = −εψz3 = −εψz4, z = z 1

38 D4[(r, e, τ), (s, e, e)] z1 = ψz2 = εψz3 = εz4, z = z 1

39 D4[(r, e, τ), (s, vd, e)] z1 = ψz2 = −εψz3 = −εz4, z = z 1

40 D4[(r, e, τ), (s, e, τ)] z1 = ψz2 = εz3 = εψz4, z = z 1

41 D4[(r, e, τ), (s, vd, τ)] z1 = ψz2 = −εz3 = −εψz4, z = z 1

42 D4[(r, e, e), (s, e, e)] z1 = z2 = εz3 = εz4, z = z when ψ = +1 1

×Z2[(e, e, τ)] 0 when ψ = −1 0

43 D4[(r, e, e), (s, vd, e)] z1 = z2 = −εz3 = −εz4, z = z when ψ = +1 1

×Z2[(e, e, τ)] 0 when ψ = −1 0
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Table 2.6: Shifted Subgroups and their Fixed Point Subspaces for the Hexag-
onal Lattice C6.

Shifted Subgroup Fixed Point Subspace dimFix

1 1 C6 12

2 Z2[(r3, e, e)] z = z 6

3 Z2[(e, e, τ)] C6 when ψ = +1 12

0 when ψ = −1 0

4 Z2[(r3, e, τ)] z = z when ψ = +1 6

Re(z) = 0 when ψ = −1 6

5 Z2[(s, e, e)] z1 = εz6, z2 = εz5, z3 = εz4 6

6 Z2[(sr3, e, e)] z1 = εz6, z2 = εz5, z3 = εz4 6

7 Z2[(s, e, τ)] z1 = εψz6, z2 = εψz5, z3 = εψz4 6

8 Z2[(sr3, e, τ)] z1 = εψz6, z2 = εψz5, z3 = εψz4 6

9 Z3[(r2, e, e)] z1 = z2 = z3, z4 = z5 = z6 4

10 Z2
2[(r3, e, e), (e, e, τ)] z = z when ψ = +1 6

0 when ψ = −1 0

11 Z2
2[(r3, e, e), (s, e, e)] z1 = z2 = z3, z4 = z5 = z6, z = z 2

12 Z2
2[(r3, e, e), (s, e, τ)] z1 = εψz6, z2 = εψz5, z3 = εψz4, z = z 3

13 Z2
2[(r3, e, τ), (s, e, e)] z1 = z2 = z3, z4 = z5 = z6, z = z when ψ = +1 2

z1 = z2 = z3, z4 = z5 = z6, Re(z) = 0 when ψ = −1 2

14 Z2
2[(r3, e, τ), (s, e, τ)] z1 = εψz6, z2 = εψz5, z3 = εψz4, z = z when ψ = +1 3

z1 = εψz6, z2 = εψz5, z3 = εψz4, Re(z) = 0 when ψ = −1 3

15 Z2
2[(s, e, e), (e, e, τ)] z1 = εz6, z2 = εz5, z3 = εz4 when ψ = +1 6

0 when ψ = −1 0

16 Z2
2[(sr3, e, e), (e, e, τ)] z1 = εz6, z2 = εz5, z3 = εz4 when ψ = +1 6

0 when ψ = −1 0

17 Z6[(r, e, e)] z1 = z2 = z3, z4 = z5 = z6, z = z 2

18 Z6[(r, e, τ)] z1 = z2 = z3, z4 = z5 = z6, z = z when ψ = +1 2

0 when ψ = −1 0

19 Z6[(r2, e, τ)] z1 = z2 = z3, z4 = z5 = z6 when ψ = +1 4

0 when ψ = −1 0

20 D3[(r2, e, e), (s, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6 2

21 D3[(r2, e, e), (sr, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6 2

22 D3[(r2, e, e), (s, e, τ)] z1 = z2 = z3 = εψz4 = εψz5 = εψz6 2

23 D3[(r2, e, e), (sr, e, τ)] z1 = z2 = z3 = εψz4 = εψz5 = εψz6 2

24 Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] z1 = εz6, z2 = εz5, z3 = εz4, z = z 3

25 Z6[(r, e, e)]× Z2[(e, e, τ)] z1 = z2 = z3, z4 = z5 = z6, z = z when ψ = +1 2
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Table 2.6: Shifted Subgroups and their Fixed Point Subspaces for the Hexag-
onal Lattice C6.

Shifted Subgroup Fixed Point Subspace dimFix

0 when ψ = −1 0

26 D6[(r, e, e), (s, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6, z = z 1

27 D6[(r, e, e), (s, e, τ)] z1 = z2 = z3 = εψz4 = εψz5 = εψz6, z = z 1

28 D6[(r, e, τ), (s, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6, z = z when ψ = +1 1

0 when ψ = −1 0

29 D6[(r, e, τ), (s, e, τ)] z1 = z2 = z3 = εz4 = εz5 = εz6, z = z when ψ = +1 1

0 when ψ = −1 0

30 D6[(r2, e, τ), (s, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6 when ψ = +1 2

0 when ψ = −1 0

31 D6[(r2, e, τ), (sr, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6 when ψ = +1 2

0 when ψ = −1 0

32 D6[(r, e, e), (s, e, e)] z1 = z2 = z3 = εz4 = εz5 = εz6, z = z when ψ = +1 1

×Z2[(e, e, τ)] 0 when ψ = −1 0

2.4 Equivalent Cases

It can easily been seen in Tables 2.5 and 2.6 that there are 10 subgroups

in the square lattice case with a one dimensional fixed-point subspace and

5 in the hexagonal case. However, while the subgroups may be different,

Tables 2.7 and 2.8 show that many of the fixed-point subspaces associated

with these subgroups are actually the same. In the square case there are two

possible patterns for each of the four representations, while it may at first

glance seem as though there are more than this for the two representations

where ψ = −1 all cases with any combination of two +1s and two −1s are

actually equivalent and will produce translations of the same pattern. In the

hexagonal case it is easy to see that there is only one pattern for the two

cases where ψ = +1 and two patterns for each of the cases where ψ = −1 .
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Table 2.7: Fixed-point Subspaces for the Square Lattice

Case Q++ Q+− Q−+ Q−−

34 1,1,1,1 1,1,1,1 1,1,-1,-1 1,1,-1,-1

35 1,1,-1,-1 1,1,-1,-1 1,1,1,1 1,1,1,1

36 1,1,1,1 1,1,-1,-1 1,1,-1,-1 1,1,1,1

37 1,1,-1,-1 1,1,1,1 1,1,1,1 1,1,-1,-1

38 1,1,1,1 1,-1,-1,1 1,1,-1,-1 1,-1,1,-1

39 1,1,-1,-1 1,-1,1,-1 1,1,1,1 1,-1,-1,1

40 1,1,1,1 1,-1,1,-1 1,1,-1,-1 1,-1,-1,1

41 1,1,-1,-1 1,-1,-1,1 1,1,1,1 1,-1,1,-1

42 1,1,1,1 1,1,-1,-1

43 1,1,-1,-1 1,1,1,1

2.5 Phase Portraits

All that remains is to plot the phase portraits. We will plot a director field

that for each point in a square subset of R2 will draw a unit length line in

the direction of the eigenvector associated with the largest eigenvalue of the

following real matrix.

Q = Q0 + δ

s∑
j=1

zje
2πiKj ·xKjQ

±±(Kj)
−1 + c.c. δ small

where Q0 is one of the two matrices representing the trivial states, either

homeotropic or planar isotropic, and δ is small since we are looking for

patterns close to these two trivial states. Given that we are plotting lines of

unit length in R3 on a 2 dimensional plane those directors that lie flat within

the xy plane will appear to be of unit length, those directors that in any way

point out of the plane will appear proportionally shorter according to how

much they deviate from the xy plane and vertical lines will appear simply as
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Table 2.8: Fixed-point Subspaces for the Hexagonal Lattice

Case Q++ Q+− Q−+ Q−−

26 1,1,1,1,1,1 1,1,1,1,1,1 1,1,1,-1,-1,-1 1,1,1,-1,-1,-1

27 1,1,1,1,1,1 1,1,1,-1,-1,-1 1,1,1,-1,-1,-1 1,1,1,1,1,1

28 1,1,1,1,1,1 1,1,1,-1,-1,-1

29 1,1,1,1,1,1 1,1,1,-1,-1,-1

32 1,1,1,1,1,1 1,1,1,-1,-1,-1

points. With this in mind it is immediately obvious that we will not get any

pictures for the two cases where ψ = +1 bifurcating from the homeotropic

state since all the lines are pointing straight up to start with and as Qε+

is invariant under conjugation by τ they will stay pointing straight up, any

deviation from the vertical is only possible when ψ = −1 . We will however

get pictures for these two cases bifurcating from the isotropic state since all

the molecules will stay flat within the xy plane. It is important to note that

not all points are necessarily vertical lines, a point can also mean that there

is a double maximum eigenvalue and therefore no definite direction.
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Figure 2.1: Square Lattice Patterns for ε = +1; patterns shown when α = 2
and β = 1
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Figure 2.2: Square Lattice Patterns for ε = −1 ; patterns shown when α = 2
and β = 1
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Figure 2.3: Hexagonal Lattice Patterns for ε = +1; patterns shown when
α = 3 and β = 2
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Figure 2.4: Hexagonal Lattice Patterns for ε = −1 ; patterns shown when
α = 3 and β = 2
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Hopf Bifurcation and Group

Theory Methods

In Chapters 3 and 4 we will look for patterns that are not only spatially

doubly periodic but also time periodic. Again we start with our system of

differential equations:

∂Q

∂t
= F(Q, λ) (3.1)

A solution of (3.1) is periodic of period p if there exists p > 0 such that

Q(t, λ0) = Q(t+ p, λ0) for all t ∈ R [67].

A Hopf Bifurcation is a bifurcation where a family of periodic orbits bi-

furcates from a path of equilibria. A Hopf bifurcation is called subcritical

when an unstable periodic orbit shrinks toward a stable fixed-point at the

origin and vanishes with the origin becoming unstable as λ passes through

zero, and supercritical when the origin is a stable fixed-point that becomes

unstable and throws off a stable periodic orbit as λ passes through zero [42],

see Figure 3.1. The Hopf bifurcation is explained in more detail over the

next few pages.

63
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Figure 3.1: Hopf Bifurcation Diagrams
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In a similar way to finding the equilibrium solutions by finding isotropy

subgroups with fixed-point subspaces of dimension one, when looking for

Hopf bifurcations the Equivariant Hopf Theorem tells us that generically we

will find a periodic solution with symmetry group Σ whenever dimFix Σ = 2.

However, in this case rather than looking for subgroups of Γ we need to find

isotropy subgroups of the group Γ× S1 where the S1 accounts for the time

periodicity.

3.1 The Equivariant Hopf Theorem

The following explanation is in terms of our particular model; for a more

general version see [32]
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3.1.1 The Hopf Bifurcation Theorem

Consider our system of differential equations (3) ∂Q
∂t

= F(Q, λ)

where F : Q×R→ Q is C∞ and λ is the bifurcation parameter.

Suppose that:

F(Q0, λ) ≡ 0

so Q = Q0 is a steady state solution for all λ

A one-parameter family of periodic solutions to (3.1) emanating from (Q, λ) =

(Q0, 0) can be found if two hypotheses on F are satisfied.

Let Lλ = (dF)(Q0,λ) be the linearization of F along steady state solutions.

First Hopf Assumption

L0 has simple eigenvalues ±i
L0 has no other eigenvalues lying on the imaginary axis

Lλ has simple eigenvalues of the form σ(λ) ± iω(λ) , where σ(0) = 0 ,

ω(0) = 1 , and σ and ω are smooth.

Second Hopf Assumption

We assume that σ′(0) 6= 0, that is the imaginary eigenvalues of Lλ cross the

imaginary axis with non-zero speed as λ crosses zero.

Theorem 3.1.1. (The Hopf Bifurcation Theorem) [48] [2] [36]

If the first and second Hopf assumptions both hold, then there is a one-

parameter family of periodic solutions to (3.1) bifurcating from Q0 .

For a translation of Hopf’s 1943 paper [36] see [45].
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3.1.2 The Equivariant Hopf Theorem

The Equivariant Hopf Theorem enables us to find periodic solutions with

symmetry. First we introduce the idea of a space being Γ-simple.

Definition The vector space W is Γ -simple if either:

1) W = V ⊕ V where V is an absolutely irreducible representation of Γ , or

2) G acts irreducibly but not absolutely irreducibly on W [30].

The Γ-simple representation for Hopf bifurcation is the equivalent of the

absolutely irreducible representation for steady-state bifurcation. This leads

to the following lemma:

Lemma 3.1.2. Generically a Hopf bifurcation is supported by a finite-dimensional

Γ -simple representation. See [30].

In a Hopf bifurcation with no symmetry a pair of simple eigenvalues ±ωi
cross the imaginary axis at the bifurcation point. In a Hopf bifurcation with

symmetry we expect these eigenvalues to each have multiplicity m , so the

±ωi eigenspace has dimension 2m . Again, without a lattice the eigenspace

would be infinite dimensional, hence we restrict ourselves to a lattice to en-

sure a finite dimensional eigenspace.

As with the steady-state bifurcation we can reduce the original system of

PDEs ∂Q
∂t

= F(Q, λ) to a system of ODEs dQ
dt

= f(Q1, λ) . In this case

Q1 ∈ Q1 where Q1 is the ±ωi eigenspace of Lλ = (dF)(Q0,λ) . This is

different from the steady-state case where Q1 ∈ ker L .

Theorem 3.1.3. (Equivariant Hopf Theorem)

Let Γ be a compact Lie group acting Γ -simply on Q1

Assume that f : Q1 × R → Q1 is Γ -equivariant. Then f(Q0, λ) = 0 and

there exist real functions σ(λ) and ω(λ) such that the eigenvalues of df |(Q0,0)

are σ(λ)± iω(λ) each of multiplicity m and, after time rescaling, ω(0) = 1 .

We also assume that there is a non-degenerate bifurcation at λ = 0 , meaning
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σ(0) = 0 and σ′(0) 6= 0 .

Then there exist branches of periodic solutions of period close to 2π having

isotropy subgroups Σ ⊂ Γ× S1 whenever dimFix(Σ) = 2 .

For proof of the Equivariant Hopf Theorem see [30, p91].

In our case we are dealing with the group Γ = (H n T2) × Z2 acting on

the space V , where V is the real part of the eigenspace corresponding to

the eigenvalue i , so for a Hopf bifurcation we look at the group Γ×S1 acting

on the space V ⊕ V = Q1 . This action can be more easily imagined if it is

described as the action of Γ× S1 on V ⊗C defined by

(γ, θ)(v ⊗ z) = (γv)⊗ (e−iθz)

where v ∈ V, z ∈ C, γ ∈ Γ, θ ∈ S1 [32]. This eigenspace is generated by

expressions of the form

Q̃ =
s∑
j=1

zje
2πi(Kj ·x+t)Qj + wje

2πi(−Kj ·x+t)Qj + c.c.

where the Kj s are given in Table 1.2. Here Qj = KjQ
±±(Kj)

−1 , Kj is the

matrix giving the rotations through φ in the xy plane and φ is the angle

Kj makes with the positive x axis.

3.2 Wave Pairs and Trace Formulae

In Chapter 2 we managed to find the axial isotropy subgroups of Γ by in-

spection, simply listing all the possible subgroups by conjugacy class and

checking which had dimFix(Σ) = 1 . See Section 1.2.1 for a reminder of the

group theory definitions. Finding the isotropy subgroups of Γ × S1 with

dimFix(Σ) = 2 by inspection would be an arduous task and would most

likely result in several cases being overlooked. However, there is a group

theory method we can use to make the problem much more manageable.
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This method is taken from the paper by Dionne et al [21], though the actual

calculations will differ from those in that paper given that Γ in our case has

an extra copy of Z2 .

3.2.1 Wave Pair

The symmetries of a time-periodic solution in χL are described by a pair of

subgroups K ⊂ G of Γ , where the elements of G map the periodic trajectory

in phase space onto itself and the elements of K fix the periodic trajectory

pointwise [21]. The Subgroup Σ ⊂ Γ×S1 can be identified with this pair of

subgroups as follows.

• K = Σ ∩ Γ

• G = πΓ(Σ) where πΓ : Γ× S1 → Γ is the projection.

Σ has the form of a twisted subgroup [32] GΘ meaning, since S1 acts ir-

reducibly on Cn , there exists a unique homomorphism Θ : G → S1 such

that

Σ = GΘ ≡ {(g,Θ(G)) ∈ Γ× S1 | g ∈ G}

which gives us

• K = ker(Θ)

• Θ(G) ∼= G/K .

We call (G,K) in each case a wave pair [21] and by finding these wave pairs

we can find the relevant isotropy subgroups. To summarize:

Definition The normalizer of a subgroup H in G , written NG(H) or just

N(H) if G is assumed, is defined as

NG(H) = {g ∈ G|g−1Hg = H}
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Definition The pair of subgroups (G,K) of Γ forms a wave pair if

• K is a shifted subgroup of Γ

• K ⊂ G and G/K is a Lie subgroup of S1

• G/K is a maximal Abelian subgroup of NΓ(K)/K [28]

where NΓ(K) = {γ ∈ Γ | γKγ−1 = K} is the Normalizer of K in Γ

If G/K is cyclic the corresponding solution is called a discrete wave, often,

though not always, producing a standing wave pattern. If G/K ∼= S1 the

solution is called a rotating wave: these solutions correspond to travelling

waves in R2 and rotating waves in T2 [21].

3.2.2 Trace Formulae

We use these wave pairs to find where dimFix Σ = 2 by applying the trace

formula.

Theorem 3.2.1. Let G be a compact Lie group acting on V and let Σ ∈ G
be a Lie subgroup. Then

dimFix(Σ) =

∫
Σ

tr(σ), σ ∈ Σ

where
∫

denotes the normalized Haar integral on Σ and tr(σ) is the trace

of ρσ where ρ is the linear mapping ρg : x→ gx [32].

From Theorem 3.2.1 the list of individual formulae shown in Table 3.1 can be

derived, [32]. We can apply these formulae to the dimension of the fixed-point

subspaces of the wave pairs to calculate dimFix(Σ) .

3.3 Extra Lattice Notation

We introduce some extra lattice notation that will simplify our efforts to

describe the normalizers of the shifted subgroups.
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Table 3.1: Trace Formulae

G/K dimFix(GΘ)

1 2 dimFix(G)

Z2 2(dimFix(K)− dimFix(G))

Z3 dimFix(K)− dimFix(G)

Z4 dimFix(K)− dimFix(M)

where K ⊂M ⊂ G and |G/M | = 2

Z6 dimFix(K)− dimFix(M)− dimFix(L) + dimFix(G)

where K ⊂M ⊂ G, |G/M | = 2, K ⊂ L ⊂ G and |G/L| = 3

For the hexagonal lattice we will use the vector vt = 1
3
l1 + 1

3
l2 that gen-

erates Z3 [21].

Other notation we will use, also from [21] is as follows. If g is a reflec-

tion belonging to the holohedry H , then the eigenvalues of ρ(g) given by

the natural representation are +1 and −1 . We define two circles in T2

E+(g) = the projection of the +1 eigenspace into T2

E−(g) = the projection of the −1 eigenspace into T2.

For each vector w ∈ R2 we can write w = w+ +w− where w+ ∈ E+(g) and

w− ∈ E−(g) .

Next we define subsets of T2 by

F+(g) = {v ∈ T2|gv = v}

F−(g) = {v ∈ T2|gv = −v}.
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Calculating these subsets for the square lattice gives us:

When g = s , the reflection in the x axis,

E+(s) = {αl1|α ∈ R}

E−(s) = {αl2|α ∈ R}

and

F+(s) = {(x, y) ∈ T2|0 ≤ x < 1, y = 0 or y =
1

2
} = E+(s)⊕ Z2[v2]

F−(s) = {(x, y) ∈ T2|0 ≤ y < 1, x = 0 or x =
1

2
} = E−(s)⊕ Z2[v1].

When g = rs , the reflection in the diagonal line x = y ,

E+(sr) = {α(l1 + l2)|α ∈ R} = F+(sr)

E−(sr) = {α(l1 − l2)|α ∈ R} = F−(sr).

Next we consider the same for the hexagonal lattice, where g = s , the

reflection in the x axis.

E+(s) = {αl2|α ∈ R} = F+(s)

E−(s) = {−2αl1 + αl2|α ∈ R} = F+(s).

3.4 The Method

We now have all the tools we need to find those isotropy subgroups that will

give a Hopf bifurcation.

Step 1 List all shifted subgroups K ∈ Γ up to conjugacy in Γ and find

their normalizers.
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Step 2 Find all subgroups G ∈ Γ such that subgroups K and G form a

wave pair in Γ .

Step 3 For each translation-free irreducible representation of Γ , deter-

mine those wave pairs that correspond to twisted subgroups GΘ such that

dimFix(GΘ) = 2 . Recall from Chapter 1 that if the representation is not

translation free we can use a smaller lattice.

Step 4 For each wave pair find the action of the generators of Σ and its

fixed-point subspace.

Step 5 Plot the phase portraits. This will be done in Matlab.



4

Periodic Solutions

4.1 Shifted Subgroups and their Normalizers

We have already found all the shifted subgroups of ΓL = (HL n T2) × Z2

by conjugacy class in Chapter 1; these results are shown in tables 2.1 and

2.2. Recall from Section 3.3 we will be using some extra lattice notation to

describe the normalizers. It is helpful to calculate the action of vt , shown in

Table 4.1, note that the action of vt commutes with every other element in

C3 but in C6 it commutes only with the other translation elements v1 and

v2 .

Table 4.1: The Action of (e, vt, e)

Action on C3 Action on C6

g g(z1, z2, z3) g(z1, z2, z3, z4, z5, z6)

(e, vt, e) e(2πi)/3(z1, z2, z3) e(2πi)/3(e−(α+β)z1, e
(2α−β)z2, e

(−α+2β)z3,

e(−2α+β)z4, e
(α+β)z5, e

(α−2β)z6)

From here it is easy to find the normalizers for them by referring to Dionne

et al, [21]. The normalizers in HL × T2 of cases 1,2,5,6,7,11,13,14,15,22,34

73
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and 35 for the square lattice and cases 1,2,5,6,9,11,17,20,21 and 26 for the

hexagonal lattice are shown in [21]. Since the only difference between the

Dionne case and our case is the extra copy of Z2 generated by τ , and since

τ commutes with every other element of the group, it is obvious that the

normalizer in ΓL for each of these cases will be the direct product of the

equivalent normalizer in the Dionne case and Z2[τ ] . Also, the normalizer for

any case involving τ will be the same as the normalizer for the case acquired

by simply ignoring any occurrences of τ . The shifted subgroups and their

normalizers are shown in Tables 4.2 and 4.3.
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Table 4.2: Shifted Subgroups and their Normalizers in Γ for the Square
Lattice.

Shifted Subgroup Normalizer

1 1 Γ

2 Z2[(r2, e, e)] (D4[(r, e, e), (s, e, e)] n 1
2L)× Z2[(e, e, τ)]

3 Z2[(e, e, τ)] Γ

4 Z2[(r2, e, τ)] (D4[(r, e, e), (s, e, e)] n 1
2L)× Z2[(e, e, τ)]

5 Z2[(s, e, e)] Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] n F+(s, e, e)

6 Z2[(s, v1, e)] Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] n F+(s, e, e)

7 Z2[(sr, e, e)] Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] n E+(sr, e, e)

8 Z2[(s, e, τ)] Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] n F+(s, e, e)

9 Z2[(s, v1, τ)] Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] n F+(s, e, e)

10 Z2[(sr, e, τ)] Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] n E+(sr, e, e)

11 Z4[(r, e, e)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

12 Z4[(r, e, τ)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

13 Z2
2[(r2, e, e), (s, e, e)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

14 Z2
2[(r2, e, e), (s, v1, e)] Z3

2[(r2, e, e), (s, e, e), (e, e, τ)]× 1
2L

15 Z2
2[(r2, e, e), (s, vd, e)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

16 Z2
2[(r2, e, e), (s, e, τ)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

17 Z2
2[(r2, e, e), (s, v1, τ)] Z3

2[(r2, e, e), (s, e, e), (e, e, τ)]× 1
2L

18 Z2
2[(r2, e, e), (s, vd, τ)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

19 Z2
2[(r2, e, τ), (s, e, e)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

20 Z2
2[(r2, e, τ), (s, v1, e)] Z3

2[(r2, e, e), (s, e, e), (e, e, τ)]× 1
2L

21 Z2
2[(r2, e, τ), (s, vd, e)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

22 Z2
2[(r2, e, e), (sr, e, e)] D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)]

23 Z2
2[(r2, e, e), (sr, e, τ)] D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)]

24 Z2
2[(r2, e, τ), (sr, e, e)] D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)]

25 Z2
2[(r2, e, e), (e, e, τ)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

26 Z2
2[(s, e, e), (e, e, τ)] Z3

2[(r2, e, e), (s, e, e), (e, e, τ)] n F+(s, e, e)

27 Z2
2[(s, v1, e), [(e, e, τ)] Z3

2[(r2, e, e), (s, e, e), (e, e, τ)] n F+(s, e, e)

28 Z2
2[(sr, e, e), (e, e, τ)] Z3

2[(r2, e, e), (sr, e, e), (e, e, τ)] n E+(sr, e, e)

29 Z4[(r, e, e)]× Z2[(e, e, τ)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

30 Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

31 Z3
2[(r2, e, e), (s, v1, e), (e, e, τ)] Z3

2[(r2, e, e), (s, e, e), (e, e, τ)]× 1
2L

32 Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)] (D4[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

33 Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)]

34 D4[(r, e, e), (s, e, e)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]
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Table 4.2: Shifted Subgroups and their Normalizers in Γ for the Square
Lattice.

Shifted Subgroup Normalizer

35 D4[(r, e, e), (s, vd, e)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

36 D4[(r, e, e), (s, e, τ)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

37 D4[(r, e, e), (s, vd, τ)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

38 D4[(r, e, τ), (s, e, e)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

39 D4[(r, e, τ), (s, vd, e)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

40 D4[(r, e, τ), (s, e, τ)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

41 D4[(r, e, τ), (s, vd, τ)] D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)]

42 D4[(r, e, e), (s, e, e)]×
Z2[(e, e, τ)] D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)]

43 D4[(r, e, e), (s, vd, e)]×
Z2[(e, e, τ)] D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)]
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Table 4.3: Shifted Subgroups and their Normalizers in Γ for the Hexagonal
Lattice.

Shifted Subgroup Normalizer

1 1 Γ

2 Z2[(r3, e, e)] (D6[(r, e, e), (s, e, e)] n 1
2L)× Z2[(e, e, τ)]

3 Z2[(e, e, τ)] Γ

4 Z2[(r3, e, τ)] (D6[(r, e, e), (s, e, e)] n 1
2L)× Z2[(e, e, τ)]

5 Z2[(s, e, e)] Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] n E+(s, e, e)

6 Z2[(sr3, e, e)] Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] n E−(s, e, e)

7 Z2[(s, e, τ)] Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] n E+(s, e, e)

8 Z2[(sr3, e, τ)] Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] n E−(s, e, e)

9 Z3[(r2, e, e)] (D6[(r, e, e), (s, e, e)] n Z3[(e, vt, e)])× Z2[(e, e, τ)]

10 Z2
2[(r3, e, e), (e, e, τ)] (D6[(r, e, e), (s, e, e)] n 1

2L)× Z2[(e, e, τ)]

11 Z2
2[(r3, e, e), (s, e, e)] Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)]

12 Z2
2[(r3, e, e), (s, e, τ)] Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)]

13 Z2
2[(r3, e, τ), (s, e, e)] Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)]

14 Z2
2[(r3, e, τ), (s, e, τ)] Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)]

15 Z2
2[(s, e, e), (e, e, τ)] Z3

2[(r3, e, e), (s, e, e), (e, e, τ)] n E+(s, e, e)

16 Z2
2[(sr3, e, e), (e, e, τ)] Z3

2[(r3, e, e), (s, e, e), (e, e, τ)] n E−(s, e, e)

17 Z6[(r, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

18 Z6[(r, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

19 Z6[(r2, e, τ)] (D6[(r, e, e), (s, e, e)] n Z3[(e, vt, e)])× Z2[(e, e, τ)]

20 D3[(r2, e, e), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

21 D3[(r2, e, e), (sr, e, e)] (D6[(r, e, e), (s, e, e)] n Z3[(e, vt, e)])× Z2[(e, e, τ)]

22 D3[(r2, e, e), (s, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

23 D3[(r2, e, e), (sr, e, τ)] (D6[(r, e, e), (s, e, e)] n Z3[(e, vt, e)])× Z2[(e, e, τ)]

24 Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)]

25 Z6[(r, e, e)]× Z2[(e, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

26 D6[(r, e, e), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

27 D6[(r, e, e), (s, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

28 D6[(r, e, τ), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

29 D6[(r, e, τ), (s, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

30 D6[(r2, e, τ), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

31 D6[(r2, e, τ), (sr, e, e)] (D6[(r, e, e), (s, e, e)] n Z3[(e, vt, e)])× Z2[(e, e, τ)]

32 D6[(r, e, e), (s, e, e)]×
Z2[(e, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]
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4.2 Wave Pairs

In order for a wave pair to exist in each case we need to find a G that satisfies

the conditions described in 3.2 for each shifted subgroup K. We do this by

looking for maximal abelian subgroups of N(K)/K that are either cyclic

or isomorphic to S1 . In some cases there is more than one possibility for

N(K)/K , but since they all result in the same wave pair only one is shown.

Rule 1 Since τ commutes with every other element of Γ , any case where

Z2[(e, e, τ)] ( N(K)/K will not produce any wave pairs because for every

other abelian subgroup H 6= Z[(e, e, τ)] , H ⊂ H × Z2[(e, e, τ)] which will

also be abelian and therefore H cannot be maximal abelian.

4.2.1 Square Lattice Wave Pairs

The quotient group D4[r, s]/Z2[r2] is not a subgroup of D4[r, s] , we introduce

the following notation to allow for this.

H41 = D4[r, s]/Z2[r2] = {{e, r2}, {r, r3}, {s, sr2}, {sr, sr3}} ∼= Z2
2

H42 = D4[r, s]/Z2
2[r2, s] = {{e, r2, s, sr2}, {r, r3, sr, sr3}} ∼= Z2

H43 = D4[r, s]/Z2
2[r2, sr] = {{e, r2, sr, sr3}, {r, r3, sr2, s}} ∼= Z2

Cases without wave pairs The following cases do not have corresponding

wave pairs because of Rule 1 above.

Case N(K)/K

1 Γ

2,4 (H41 n 1
2L)× Z2[(e, e, τ)]

5,6,8,9 Z2
2[(r2, e, e), (e, e, τ)] n F+(s, e, e)

7,10 Z2
2[(r2, e, e), (e, e, τ)] n E+(sr, e, e)

11,12 Z3
2[(s, e, e), (e, vd, e), (e, e, τ)]

13,15,16,18,19,21 (H42 n 1
2L)× Z2[(e, e, τ)]

14,17,20 1
2L × Z2[(e, e, τ)]

22,23,24 H3 × Z2
2[(e, vd, e), (e, e, τ)]

34,35,36,37,38,39,40,41 Z2
2[(e, vd, e), (e, e, τ)]
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Case 3

N(K)/K = D4 n T2

The element (e, vd, e) in T2 in commutes with everything so for any abelian

cyclic subgroup H 6= Z[(e, vd, e)] , H ⊂ H × Z2[(e, vd, e)] which will also be

abelian and therefore H cannot be maximal abelian, in the same way as rule

1 works for the element (e, e, τ) .

Case 25

N(K)/K = H41 n 1
2
L

H41
∼= Z2

2 and 1
2
L are both maximal abelian but not cyclic therefore there

are not wave pairs for this case.

Cases 26 and 27

N(K)/K = Z2[(r2, e, e)]nF+(s, e, e) = Z2[(r2, e, e)]n(E+(s, e, e)×Z2[(e, v2, e)])

(e, v2, e) commutes with (r2, e, e) and E+(s, e, e) , but (r2, e, e) and E+(s, e, e)

do not commute with each other. This give us two maximal abelian sub-

groups, Z2
2[(r2, e, e), (e, v2, e)] and E+(s, e, e)×Z2[(e, v2, e)] neither of which

is cyclic, therefore there are no wave pairs for this case.

Case 28

N(K)/K = Z2[(r2, e, e)] n E+(sr, e, e)

This is not abelian. However both Z2[(r2, e, e)] and E+(sr, e, e) are maximal

abelian and cyclic, therefore there are two possibilities for G and two wave

pairs for this case.

Case 29

N(K)/K = Z2
2[(s, e, e), (e, vd, e)]

This is maximal abelian but not cyclic, therefore there are no wave pairs for

this case.



4. PERIODIC SOLUTIONS 80

Table 4.4: Wave Pairs for the Square Lattice.

K G G/K

28a Z2
2[(sr, e, e), (e, e, τ)] Z3

2[(r2, e, e), (sr, e, e), (e, e, τ)] Z2[(r2, e, e)]

28b Z2
2[(sr, e, e), (e, e, τ)] Z2

2[(sr, e, e), (e, e, τ)] n E+(sr, e, e) E+(sr, e, e)

30 Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] D4[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] H42

∼= Z2

32 Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)] D4[(r, e, e), (s, vd, e)]× Z2[(e, e, τ)] H42

∼= Z2

42 D4[(r, e, e), (s, e, e)]×
Z2[(e, e, τ)]) D4[(r, e, e), (s, e, e)]× Z2

2[(e, vd, e), (e, e, τ)] Z2[(e, vd, e)]

43 D4[(r, e, e), (s, vd, e)]×
Z2[(e, e, τ)] D4[(r, e, e), (s, vd, e)]× Z2

2[(e, vd, e), (e, e, τ)] Z2[(e, vd, e)]

Cases 30 and 32

N(K)/K = H42 n 1
2
L

(e, v1, e) and (e, v2, e) commute with each other but not with H42 . This gives

us two maximal abelian subgroups, 1
2
L which is not cyclic, and H42

∼= Z2

which is cyclic, giving us one wave pair for each case.

Case 31
1
2
L

This is maximal abelian but not cyclic, therefore there are no wave pairs for

this case.

Case 33

N(K)/K = H43 × Z2[(e, vd, e)]

This is maximal abelian but not cyclic, therefore there are no wave pairs for

this case.

Cases 42 and 43

N(K)/K = Z2[(e, vd, e)]

which is maximal abelian and cyclic.
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4.2.2 Hexagonal Lattice Wave Pairs

.

The quotient groups D6[r, s]/Z3[r2] and D6[r, s]/Z2[r3] are not subgroups

of D4[r, s] , we introduce the following notation to allow for this.

H61 = D6[r, s]/Z2[r3] = {{e, r3}, {r, r4}, {r2, r5}, {s, sr3}, {sr, sr4}, {sr2, sr5}} ∼= D3

H62 = D6[r, s]/Z3[r2] = {{e, r2, r4}, {r, r3, r5}, {s, sr2, sr4}, {sr, sr3, sr5}} ∼= Z2
2

H63 = D6[r, s]/D3[r2, s] = {{e, r2, r4, s, sr3, sr4}, {r, r3, r5, sr, sr3, sr5}} ∼= Z2

H64 = D6[r, s]/D3[r2, sr] = {{e, r2, r4, sr, sr3, sr5}, {r, r3, r5, sr2, sr4, s}} ∼= Z2

Cases without wave pairs The following cases do not have corresponding

wave pairs because of Rule 1 above.

Case N(K)/K

1 Γ

2,4 (H61 n 1
2L)× Z2[(e, e, τ)]

5,7 Z2
2[(r3, e, e), (e, e, τ)] n E+(s, e, e)

6,8 Z2
2[(r3, e, e), (e, e, τ)] n E−(s, e, e)

9 Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] n Z3[(e, vt, e)]

11,12,13,14 Z2
2[(e, v2, e), (e, e, τ)]

17,18 Z2
2[(s, e, e), (e, e, τ)]

20,22 H63 × Z2[(e, e, τ)]

21,23 H64 × Z2[(e, e, τ)]× Z3[(e, vt, e)]

Case 3

N(K)/K = D6[(r, e, e), (s, e, e)] n T2

T2 is maximal abelian but not cyclic; (r3, e, e) commutes with every reflec-

tion in D6 so none of them can generate a maximal abelian subgroup, which

leaves only one maximal abelian subgroup that is cyclic, Z6[r] , giving us one

possible wave pair.
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Case 10

N(K)/K = H61 n 1
2
L

(e, v1, e) and (e, v2, e) commute with each other but not with elements of

H61 , therefore 1
2
L is maximal abelian, but since it is not cyclic it will not

produce a wave pair. H61
∼= D3[(r2, e, e), (s, e, e)] is not abelian but the

groups Z3[(r2, e, e)] and Z2[(s, e, e)] are both abelian and cyclic, and since

they commute with nothing else in the group they are both maximal abelian,

hence there are two possible wave pairs for this case.

Case 15

N(K)/K = Z2[(r3, e, e)] n E+(s, e, e)

This is not abelian, but the subgroups Z2[(r3, e, e)] and E+(s, e, e) are both

maximal abelian and cyclic therefore there are two possibilities for G and

two wave pairs for this case.

Case 16

N(K)/K = Z2[(r3, e, e)] n E−(s, e, e)

This is not abelian, however both Z2[(r3, e, e)] and E−(s, e, e) are maximal

abelian and cyclic therefore there are two possibilities for G and two wave

pairs for this case.

Case 19

N(K)/K = H62 n Z3[(e, vt, e)])

H62 and Z3[(e, vt, e)] are both maximal abelian, H62
∼= Z2

2 is not cyclic but

Z3[(e, vt, e)]) is cyclic, so there is one possible wave pair for this case.

Case 24

N(K)/K = Z2[(e, v2, e)]

This is maximal abelian and cyclic so G = N(K) .
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Case 25

N(K)/K = Z2[(s, e, e)]

This is maximal abelian and cyclic, therefore G = N(K) .

Cases 26,27,28, and 29

N(K)/K = Z2[(e, e, τ)]

This is maximal abelian and cyclic, therefore G = N(K) .

Case 30

N(K)/K = H63

This is maximal abelian and cyclic, therefore G = N(K) .

Case 31

N(K)/K = H64 n Z3[(e, vt, e)]

H64 and Z3[(e, vt, e)] are both maximal abelian and are also both cyclic so

there are two possible wave pairs for this case.

Case 32

N(K)/K = 1

therefore G = N(K) = K .
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Table 4.5: Wave Pairs for the Hexagonal Lattice

K G G/K

3 Z2[(e, e, τ)] Z6[(r, e, e)]× Z2[(e, e, τ)] Z6[(r, e, e)]

10a Z2
2[(r3, e, e), (e, e, τ)] Z6[(r, e, e)]× Z2[(e, e, τ)] Z3[(r2, e, e)]

10b Z2
2[(r3, e, e), (e, e, τ)] Z3

2[(r3, e, e), (s, e, e), (e, e, τ)] Z2[(s, e, e)]

15a Z2
2[(s, e, e), (e, e, τ)] Z3

2[(r3, e, e), (s, e, e), (e, e, τ)] Z2[(r3, e, e)]

15b Z2
2[(s, e, e), (e, e, τ)] Z2

2[(s, e, e), (e, e, τ)] n E+(s, e, e) E+(s, e, e)

16a Z2
2[(sr3, e, e), (e, e, τ)] Z3

2[(r3, e, e), (s, e, e), (e, e, τ)] Z2[(r3, e, e)]

16b Z2
2[(sr3, e, e), (e, e, τ)] Z2

2[(sr3, e, e), (e, e, τ)] n E−(s, e, e) E−(s, e, e)

19 Z6[(r2, e, τ)] Z6[(r2, e, τ)] n Z3[(e, vt, e)] Z3[(e, vt, e)]

24 Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)] Z2[(e, v2, e)]

25 Z6[(r, e, e)]× Z2[(e, e, τ)]) D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] Z2[(s, e, e)]

26 D6[(r, e, e), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] Z2[(e, e, τ)]

27 D6[(r, e, e), (s, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] Z2[(e, e, τ)]

28 D6[(r, e, τ), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] Z2[(e, e, τ)]

29 D6[(r, e, τ), (s, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] Z2[(e, e, τ)]

30 D6[(r2, e, τ), (s, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] H63
∼= Z2

31a D6[(r2, e, τ), (sr3, e, e)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] H64
∼= Z2

31b D6[(r2, e, τ), (sr3, e, e)] D6[(r2, e, τ), (sr3, e, e)] n Z3[(e, vt, e)]] Z3[(e, vt, e)]

32 D6[(r, e, e), (s, e, e)]×
Z2[(e, e, τ)] D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] 1
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4.3 Wave Pairs corresponding to Twisted Sub-

groups

Now that we have found all the wave pairs for each lattice we need to check

which correspond to twisted subgroups GΘ such that dimFix(GΘ) = 2 . In

the case of the standing waves we will calculate the dimension of the fixed-

point subspace of each G and K and then apply the trace formula. In the

case of the rotating waves we will calculate the dimension of the fixed-point

subspace of the twisted subgroup GΘ directly.

It is important to remember that the groups G and K are subgroups of

ΓL whereas GΘ is a subgroup of ΓL×S1 . The group Γ×S1 acts on V ⊕V .

As we are looking only at shifted subgroups and their normalizers we will

only need the half lattice points and vt , the action of the generating elements

of Γ 1
2
L × S1 and vt on V ⊕ V are shown in Tables 4.6 and 4.7.

Table 4.6: The Action of the Generators of ((D4 n 1
2
L)× Z2)× S1

Action onC2 Action onC4

g g(z1, z2, w1, w2) g(z1, z2, z3, z4, w1, w2, w3, w4)

((r, e, e), 0) (w2, z1, z2, w1) (w2, z1, w4, z3, z2, w1, z4, w3)

((s, e, e), 0) ε(z1, w2, w1, z2) ε(w4, w3, w2, w1, z4, z3, z2, z1)

((e, v1, e), 0) (−z1, z2,−w1, w2) (−z1, z2, z3,−z4,−w1, w2, w3,−w4), α odd

(z1,−z2,−z3, z4, w1,−w2,−w3, w4), β odd

((e, v2, e), 0) (z1,−z2, w1,−w2) (z1,−z2,−z3, z4, w1,−w2,−w3, w4), α odd

(−z1, z2, z3,−z4,−w1, w2, w3,−w4), β odd

((e, vd, e), 0) (−z1,−z2,−w1,−w2) (−z1,−z2,−z3,−z4,−w1,−w2,−w3,−w4)

((e, e, τ), 0) ψ(z1, z2, w1, w2) ψ(z1, z2, z3, z4, w1, w2, w3, w4)

((e, e, e),Θ) e2πiΘ(z1, z2, w1, w2) e2πiΘ(z1, z2, z3, z4, w1, w2, w3, w4)



4. PERIODIC SOLUTIONS 86

Table 4.7: The Action of the Generators of ((D6 n 1
2
L)× Z2)× S1

Action on C3 Action on C6

g g(z1, z2, z3, w1, w2, w3) g(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((r, e, e), 0) (w2, w3, w1, z2, z3, z1) (w2, w3, w1, w5, w6, w4, z2, z3, z1, z5, z6, z4)

((s, e, e), 0) ε(w2, w1, w3, z2, z1, z3) ε(z6, z5, z4, z3, z2, z1, w6, w5, w4, w3, w2, w1)

((e, v1, e), 0) (−z1, z2,−z3,−w1, w2,−w3) (−z1,−z2, z3,−z4, z5,−z6,

−w1,−w2, w3,−w4, w5,−w6), α odd

(z1,−z2,−z3, z4,−z5,−z6,

w1,−w2,−w3, w4,−w5,−w6), β odd

(−z1, z2,−z3,−z4,−z5, z6,

−w1, w2,−w3,−w4,−w5, w6), α and β odd

((e, v2, e), 0) (−z1,−z2, z3,−w1,−w2, w3) (z1,−z2,−z3,−z4,−z5, z6,

w1,−w2,−w3,−w4,−w5, w6), α odd

(−z1, z2,−z3,−z4, z5,−z6,

−w1, w2,−w3,−w4, w5,−w6), β odd

(−z1,−z2, z3, z4,−z5,−z6,

−w1,−w2, w3, w4,−w5,−w6), α and β odd

((e, vt, e), 0) e(2πi)/3(z1, z2, z3, w1, w2, w3) e(2πi)/3(e−(α+β)z1, e
(2α−β)z2, e

(−α+2β)z3,

e(−2α+β)z4, e
(α+β)z5, e

(α−2β)z6

e(α+β)w1, e
(−2α+β)w2, e

(α−2β)w3,

e(2α−β)w4, e
−(α+β)w5, e

(−α+2β)w6)

((e, e, τ), 0) ψ(z1, z2, z3, w1, w2, w3) ψ(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((e, e, e),Θ) e2πiΘ(z1, z2, z3, w1, w2, w3) e2πiΘ(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

4.3.1 Square Lattice, Standing Waves

There are five wave pairs for the square lattice where G/K is cyclic, these

are cases 25, 28a, 30, 32, 42, and 43. We have already calculated the action

of (D4 n 1
2
L)× Z2 in section 2.2 for finding the equilibria. Since every sub-

group involved in these calculations includes Z2[(e, e, τ)] it is important to
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Table 4.8: Square Lattice Standing Waves: Fixed-point Subspaces by Sub-
group for ψ = +1

Group C Fix(K) dimFix(K)

Z2
2[(sr, e, e), (e, e, τ)] C2 z1 = εz2 2

Z2
2[(sr, e, e), (e, e, τ)] C4 z1 = εz3, z2 = εz4 4

Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] C2 z1 = εz2, z = z 1

Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] C4 z1 = εz3, z2 = εz4, z = z 2

Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] C2 z = z for ε = +1 2

0 for ε = −1 0

Z3
2[(r2, e, e), (s, e, e), (e, e, τ)] C4 z1 = εz4, z2 = εz3, z = z 2

D4[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] C2 z1 = z2, z = z for ε = +1 1

0 for ε = −1 0

D4[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] C4 z1 = z2 = εz3 = εz4, z = z 1

Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)] C2 0 for ε = +1 0

z = z for ε = −1 2

Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)] C4 z1 = −εz4, z2 = −εz3, z = z 2

D4[(r, e, e), (s, vd, e)]× Z2[(e, e, τ)] C2 0 for ε = +1 0

z1 = z2, z = z for ε = −1 1

D4[(r, e, e), (s, vd, e)]× Z2[(e, e, τ)] C4 z1 = z2 = −εz3 = −εz4, z = z 1

D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)] C2 0 0

D4[(r, e, e), (s, e, e)]× Z2
2[(e, vd, e), (e, e, τ)] C4 0 0

D4[(r, e, e), (s, vd, e)]× Z2
2[(e, vd, e), (e, e, τ)] C2 0 0

D4[(r, e, e), (s, vd, e)]× Z2
2[(e, vd, e), (e, e, τ)] C4 0 0

note that whenever ψ = −1 the fixed-point subspace will equal zero since

(e, e, τ) sends z to −z for all z and the only thing that this fixes is 0.

Therefore table 4.8 shows results for when ψ = +1 only.

We use the trace formulae shown in Section 3.2 to calculate the dimension

of the fixed-point subspace of the twisted subgroup. In each of our five cases

G/K = Z2 so we use the trace formula:

dimFix(GΘ) = 2(dimFix(K)− dimFix(G))
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Case 28a

K = Z2
2[(sr, e, e), (e, e, τ)], G = Z3

2[(r2, e, e), (sr, e, e), (e, e, τ)]

28a.2 C2 dimFix(GΘ) = 2(2− 1) = 2

28a.4 C4 dimFix(GΘ) = 2(4− 2) = 4

Case 30

K = Z3
2[(r2, e, e), (s, e, e), (e, e, τ)], G = D4[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

30.21 C2 dimFix(GΘ) = 2(2− 1) = 2 when ε = +1

30.22 C2 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

30.4 C4 dimFix(GΘ) = 2(2− 1) = 2

Case 32

K = Z3
2[(r2, e, e), (s, vd, e), (e, e, τ)], G = D4[(r, e, e), (s, vd, e)]× Z2[(e, e, τ)]

32.21 C2 dimFix(GΘ) = 2(0− 0) = 0 when ε = +1

32.22 C2 dimFix(GΘ) = 2(2− 1) = 2 when ε = −1

32.4 C4 dimFix(GΘ) = 2(2− 1) = 2

Case 42

K = D4[(r, e, e), (s, e, e)]×Z2[(e, e, τ)], G = D4[(r, e, e), (s, e, e)]×Z2
2[(e, vd, e), (e, e, τ)]

42.21 C2 dimFix(GΘ) = 2(1− 0) = 2 when ε = +1

42.22 C2 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

42.4 C4 dimFix(GΘ) = 2(1− 0) = 2

Case 43

K = D4[(r, e, e), (s, vd, e)]×Z2[(e, e, τ)], G = D4[(r, e, e), (s, vd, e)]×Z2
2[(e, vd, e), (e, e, τ)]

43.21 C2 dimFix(GΘ) = 2(0− 0) = 0 when ε = +1

43.22 C2 dimFix(GΘ) = 2(1− 0) = 2 when ε = −1

43.4 C4 dimFix(GΘ) = 2(1− 0) = 2

4.3.2 Hexagonal Lattice, Standing Waves

There are 12 wave pairs for the hexagonal lattice where G/K is cyclic in

both C3 and C6 , and an extra three cases just in C6 . Here every sub-
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Table 4.9: Hexagonal Lattice Standing Waves: Fixed Point Subspaces by
Subgroup

Group C Fix(K) dimFix(K)

Z2[(e, e, τ)] C3 C3 6

Z2[(e, e, τ)] C6 C6 12

Z6[(r, e, e)]× Z2[(e, e, τ)] C3 z1 = z2 = z3, z = z 1

Z6[(r, e, e)]× Z2[(e, e, τ)] C6 z1 = z2 = z3, z4 = z5 = z6, z = z 2

Z6[(r2, e, τ)] C3 z1 = z2 = z3 2

Z6[(r2, e, τ)] C6 z1 = z2 = z3, z4 = z5 = z6 4

Z2
2[(r3, e, e), (e, e, τ)] C3 z = z 3

Z2
2[(r3, e, e), (e, e, τ)] C6 z = z 6

Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] C3 z1 = z2, z = z for ε = +1 2

z1 = −z2, z3 = 0, z = z for ε = −1 1

Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] C6 z1 = εz6, z2 = εz5, z3 = εz4, z = z 3

Z3
2[(r3, e, e), (sr3, e, e), (e, e, τ)] C3 z1 = z2, z = z for ε = +1 2

z1 = −z2, z3 = 0, z = z for ε = −1 1

Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] C6 z1 = εz6, z2 = εz5, z3 = εz4, z = z 3

Z2
2[(s, e, e), (e, e, τ)] C3 z1 = z2, z3 = z3 for ε = +1 3

z1 = −z2, Re(z3) = 0 for ε = −1 3

Z2
2[(s, e, e), (e, e, τ)] C6 z1 = εz6, z2 = εz5, z3 = εz4 6

Z2
2[(sr3, e, e), (e, e, τ)] C3 z1 = z2 for ε = +1 4

z1 = −z2, z3 = 0 for ε = −1 2

Z2
2[(sr3, e, e), (e, e, τ)] C6 z1 = εz6, z2 = εz5, z3 = εz4 6

Z6[(r2, e, τ)] n Z3[(e, vt, e)]] C3 0 0

Z6[(r2, e, τ)] n Z3[(e, vt, e)]] C6 0 0

Z4
2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)] C3 z1 = z2 = 0, z = z for ε = +1 1

0 for ε = −1 0

Z4
2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)] C6 z1 = εz6, z2 = z3 = z4 = z5 = 0 1

z = z for α odd

z2 = εz5, z1 = z3 = z4 = z6 = 0 1

z = z for β odd

z3 = εz4, z1 = z2 = z5 = z6 = 0 1

z = z for α, β odd

D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] C3 z1 = z2 = z3, z = z for ε = +1 1

0 for ε = −1 0

D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] C6 z1 = z2 = z3 = εz4 = εz5 = εz6, z = z 1

D6[(r, e, e), (s, e, e)] C3 z1 = z2 = z3, z = z for ε = +1 1
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Table 4.9: Hexagonal Lattice Standing Waves: Fixed Point Subspaces by
Subgroup

Group C Fix(K) dimFix(K)

0 for ε = −1 0

D6[(r, e, e), (s, e, e)] C6 z1 = z2 = z3 = εz4 = εz5 = εz6, z = z 1

D6[(r, e, e), (s, e, τ)] C3 z1 = z2 = z3, z = z for ε = ψ 1

0 for ε 6= ψ 0

D6[(r, e, e), (s, e, τ)] C6 z1 = z2 = z3 = εψz4 = εψz5 = εψz6 1

z = z

D6[(r, e, τ), (s, e, e)] C3 z1 = z2 = z3, z = z for ε = +1 1

0 for ε = −1 0

D6[(r, e, τ), (s, e, e)] C6 z1 = z2 = z3 = εz4 = εz5 = εz6, z = z 1

D6[(r, e, τ), (s, e, τ)] C3 z1 = z2 = z3, z = z for ε = +1 1

0 for ε = −1 0

D6[(r, e, τ), (s, e, τ)] C6 z1 = z2 = z3 = εz4 = εz5 = εz6, z = z 1

D6[(r2, e, τ), (s, e, e)] C3 z1 = z2 = z3, z = z for ε = +1 1

0 for ε = −1 0

D6[(r2, e, τ), (s, e, e)] C6 z1 = z2 = z3 = εz4 = εz5 = εz6 2

D6[(r2, e, τ), (sr3, e, e)] C3 z1 = z2 = z3 for ε = +1 2

0 for ε = −1 0

D6[(r2, e, τ), (sr3, e, e)] C6 z1 = z2 = z3 = εz4 = εz5 = εz6 2

D6[(r2, e, τ), (sr3, e, e)] n Z3[(e, vt, e)]] C3 0 0

D6[(r2, e, τ), (sr3, e, e)] n Z3[(e, vt, e)]] C6 0 0

group includes the action of (e, e, τ) though not necessarily in the form of

Z2[(e, e, τ)] . With the single exception of D6[(r, e, e), (s, e, τ)] used in case

27, whenever ψ = −1 the fixed-point subspace will equal zero. Therefore

the table below shows results for when ψ = +1 only except for the one case

where ψ = ε .

In case 3 G/K = Z6 so we use the trace formula

dimFix(GΘ) = dimFix(K)− dimFix(M)− dimFix(L) + dimFix(G)

where K ⊂M ⊂ G, |G/M | = 2 and K ⊂ L ⊂ G and |G/L| = 3
.
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Case 3

K = Z2[(e, e, τ)], G = Z6[(r, e, e)]× Z2[(e, e, τ)]

L = Z2
2[(r3, e, e), (e, e, τ)],M = Z6[(r2, e, τ)]

3.3 C3 dimFix(GΘ) = 6− 2− 3 + 1 = 2

3.6 C6 dimFix(GΘ) = 12− 4− 6 + 2 = 4

The following cases have G/K = Z2 so we use the trace formula:

dimFix(GΘ) = 2(dimFix(K)− dimFix(G)).

Case 10b

K = Z2
2[(r3, e, e), (e, e, τ)], G = Z3

2[(r3, e, e), (s, e, e), (e, e, τ)]

10b.31 C3 dimFix(GΘ) = 2(3− 2) = 2 when ε = +1

10b.32 C3 dimFix(GΘ) = 2(3− 1) = 4 when ε = −1

10b.6 C6 dimFix(GΘ) = 2(6− 3) = 6

Case 15a

K = Z2
2[(s, e, e), (e, e, τ)], G = Z3

2[(r3, e, e), (s, e, e), (e, e, τ)]

15a.31 C3 dimFix(GΘ) = 2(3− 2) = 2 when ε = +1

15a.32 C3 dimFix(GΘ) = 2(3− 1) = 4 when ε = −1

15a.6 C6 dimFix(GΘ) = 2(6− 3) = 6

Case 16a

K = Z2
2[(sr3, e, e), (e, e, τ)], G = Z3

2[(r3, e, e), (sr3, e, e), (e, e, τ)]

16a.31 C3 dimFix(GΘ) = 2(4− 2) = 4 when ε = +1

16a.32 C3 dimFix(GΘ) = 2(2− 1) = 2 when ε = −1

16a.6 C6 dimFix(GΘ) = 2(6− 3) = 6
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Case 24

K = Z3
2[(r3, e, e), (s, e, e), (e, e, τ)], G = Z4

2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)]

24.31 C3 dimFix(GΘ) = 2(2− 1) = 2 when ε = +1

24.32 C3 dimFix(GΘ) = 2(1− 0) = 2 when ε = −1

24.6 C6 dimFix(GΘ) = 2(3− 1) = 4

Case 25

K = Z6[(r, e, e)]× Z2[(e, e, τ)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

25.31 C3 dimFix(GΘ) = 2(1− 1) = 0 when ε = +1

25.32 C3 dimFix(GΘ) = 2(1− 0) = 2 when ε = −1

25.6 C6 dimFix(GΘ) = 2(2− 1) = 2

Case 26

K = D6[(r, e, e), (s, e, e)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

26.31 C3 dimFix(GΘ) = 2(1− 1) = 0 when ε = +1

26.32 C3 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

26.6 C6 dimFix(GΘ) = 2(1− 1) = 0

Case 27

K = D6[(r, e, e), (s, e, τ)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

27.31 C3 dimFix(GΘ) = 2(1− 1) = 0 when ε = ψ = +1

27.32 C3 dimFix(GΘ) = 2(1− 0) = 2 when ε = ψ = −1

27.6 C6 dimFix(GΘ) = 2(1− 1) = 0

Case 28

K = D6[(r, e, τ), (s, e, e)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

28.31 C3 dimFix(GΘ) = 2(1− 1) = 0 when ε = +1

28.32 C3 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

28.6 C6 dimFix(GΘ) = 2(1− 1) = 0



4. PERIODIC SOLUTIONS 93

Case 29

K = D6[(r, e, τ), (s, e, τ)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

29.31 C3 dimFix(GΘ) = 2(1− 1) = 0 when ε = +1

29.32 C3 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

29.6 C6 dimFix(GΘ) = 2(1− 1) = 0

Case 30

K = D6[(r2, e, τ), (s, e, e)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

30.31 C3 dimFix(GΘ) = 2(1− 1) = 0 when ε = +1

30.32 C3 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

30.6 C6 dimFix(GΘ) = 2(2− 1) = 2

Case 31a

K = D6[(r2, e, τ), (sr3, e, e)], G = D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)]

31a.31 C3 dimFix(GΘ) = 2(2− 1) = 2 when ε = +1

31a.32 C3 dimFix(GΘ) = 2(0− 0) = 0 when ε = −1

31a.6 C6 dimFix(GΘ) = 2(2− 1) = 2

In cases 10a, 19 and 31b G/K = Z3 so we use the trace formula:

dimFix(GΘ) = dimFix(K)− dimFix(G)

Case 10a

Z2
2[(r3, e, e), (e, e, τ)], G = Z6[(r, e, e)]× Z2[(e, e, τ)]

10.3 C3 dimFix(GΘ) = 3− 1 = 2

10.6 C6 dimFix(GΘ) = 6− 2 = 4

Case 19

K = Z6[(r2, e, τ)], G = Z6[(r2, e, τ)] n Z3[(e, vt, e)]

19.3 C3 dimFix(GΘ) = 2− 0 = 2

19.6 C6 dimFix(GΘ) = 4− 0 = 4
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Case 31b

K = D6[(r2, e, τ), (sr3, e, e)], G = D6[(r2, e, τ), (sr3, e, e)] n Z3[(e, vt, e)]]

31b.31 C3 dimFix(GΘ) = 2− 0 = 2 when ε = +1

31b.32 C3 dimFix(GΘ) = 0− 0 = 0 when ε = −1

31b.6 C6 dimFix(GΘ) = 2− 0 = 2

In case 32 G/K = 1 so we use the trace formula:

dimFix(GΘ) = 2dimFix(G)

Case 32

K = D6[(r, e, e), (s, e, e)]×Z2[(e, e, τ)], G = D6[(r, e, e), (s, e, e)]×Z2[(e, e, τ)]

32.31 C3 dimFix(GΘ) = 2 · 1 = 2 when ε = +1

32.32 C3 dimFix(GΘ) = 2 · 0 = 0 when ε = −1

32.6 C6 dimFix(GΘ) = 2 · 1 = 2

4.3.3 Square Lattice, Rotating Waves

There is only one wave pair for square lattice where G/K ∼= S1 .

Case 28b

K=Z2
2[(sr, e, e), (e, e, τ)] , G = Z2

2[(sr, e, e), (e, e, τ)] n E+(sr, e, e)

G is generated by ((sr, e, e), 0) , ((e, e, τ), 0) and ((e, θ(l1 + l2), e), θ) ,

0 ≤ θ < 1, θ ∈ R

The actions of these elements on V ⊕ V are as follows:

χ = e2πθi

g g(z1, z2, w1, w2)

((sr, e, e), 0) ε(w2, w1, z2, z1)

((e, e, τ), 0) ψ(z1, z2, w1, w2)

((e, θ(l1 + l2), e), θ) (z1, z2, χ
2w1, χ

2w2)
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g g(z1, z2, z3, z4, w1, w2, w3, w4)

((sr, e, e), 0) ε(w3, z4, w1, z2, z3, w4, z1, w2)

((e, e, τ), 0) ψ(z1, z2, z3, z4, w1, w2, w3, w4)

((e, θ(l1 + l2), e), θ) χ(χ−(α+β)z1, χ
(−α+β)z2, χ

−(α+β)z3, χ
−(α−β)z4,

χ(α+β)w1, χ
(α−β)w2, χ

(α+β)w3, χ
(−α+β)w4)

For both the C2 and C4 representations this gives us dimFix(GΘ) = 0 so

there is no Hopf Bifurcation for this case.

4.3.4 Hexagonal Lattice, Rotating Waves

There are two wave pairs for hexagonal lattice where G/K ∼= S1.

Case 15b

K = Z2
2[(s, e, e), (e, e, τ)] , G = Z2

2[(s, e, e), (e, e, τ)] n E+(s, e, e)

G is generated by ((s, e, e), 0) , ((e, e, τ), 0) and ((e, θl2, e), θ), 0 ≤ θ < 1 ,

θ ∈ R

Case 16b

K = Z2
2[(sr3, e, e), (e, e, τ)] , G = Z2

2[(sr3, e, e), (e, e, τ)] n E−(s, e, e)

G is generated by ((sr3, e, e), 0) , ((e, e, τ), 0) and ((e,−2θl1 + θl2), e), θ) ,

0 ≤ θ < 1 , θ ∈ R

The actions of these elements on V ⊕ V are as follows
g g(z1, z2, z3, w1, w2, w3)

((s, e, e), 0) ε(w2, w1, w3, z2, z1, z3)

((sr3, e, e), 0) ε(z2, z1, z3, w2, w1, w3)

((e, e, τ), 0) ψ(z1, z2, z3, w1, w2, w3)

((e, θl2, e), θ) (z1, e
4πθiz2, e

2πθiz3, e
4πθiw1, w2, e

2πθiw3)

((e,−2θl1 + θl2), e), θ) (e4πθiz1, e
4πθiz2, e

−2πθiz3, w1, w2, e
6πθiw3)
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g g(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((s, e, e), 0) ε(z6, z5, z4, z3, z2, z1, w6, w5, w4, w3, w2, w1)

((sr3, e, e), 0) ε(w6, w5, w4, w3, w2, w1, z6, z5, z4, z3, z2, z1)

((e, e, τ), 0) ψ(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((e, θl2, e), θ) χ(χ−βz1, χ
αz2, χ

−α+βz3, χ
−α+βz4, χ

αz5, χ
−βz6,

χβw1, χ
−αw2, χ

α−βw3, χ
α−βw4, χ

−αw5, χ
βw6)

((e,−2θl1 + θl2), e), θ) χ(χ2α−βz1, χ
−α+2βz2, χ

−α−βz3, χ
α+βz4, χ

α−2βz5, χ
−2α+βz6,

χ−2α+βw1, χ
α−2βw2, χ

α+βw3, χ
−α−βw4, χ

−α+2βw5, χ
2α−βw6)

Both of these cases produce fixed-point subspaces of dimension 2 for both

the C3 and C6 representations. The fixed-point subspaces are shown along

with those for the standing waves in table 4.13.
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4.4 Fixed-point Subspaces of Σ = GΘ

4.4.1 Action of Σ

In order to find the fixed-point subspace of each twisted subgroup we must

first find the action of each of the generating elements of Σ = GΘ = {(g,Θ(g))|g ∈
G} where Θ : G→ S1 . It is the quotient G/K that maps on to S1 so the

generators of GΘ will be the generators of K plus the element (ĝ,Θ(ĝ))

where < ĝ >= G/K . The generators of GΘ are shown in Tables 4.10 and

4.11. An example of how to find the generators and the fixed-point subspace

of GΘ is shown in Appendix C.

Table 4.10: Generators of Twisted Subgroups for the Square Lattice

Case G Generators of GΘ

28a Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)] ((r2, e, e), 1

2 ), ((sr, e, e), 0), ((e, e, τ), 0)

30 D4[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] ((r, e, e), 1
2 ), ((s, e, e), 0), ((e, e, τ), 0)

32 D4[(r, e, e), (s, vd, e)]× Z2[(e, e, τ)] ((r, e, e), 1
2 ), ((s, vd, e), 0), ((e, e, τ), 0)

42 D4[(r, e, e), (s, e, e)] ((r, e, e), 0), ((s, e, e), 0), ((e, vd, e),
1
2 ), ((e, e, τ), 0)

×Z2
2[(e, vd, e), (e, e, τ)]

43 D4[(r, e, e), (s, vd, e)] ((r, e, e), 0), ((s, vd, e), 0), ((e, vd, e),
1
2 ), ((e, e, τ), 0)

×Z2
2[(e, vd, e), (e, e, τ)]

4.4.2 Fixed-point Subspaces

We use the action of the generating elements to calculate the fixed-point

subspace of each twisted subgroup, shown in Tables 4.12 and 4.13. In each

case dimFixGΘ = 2.
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Table 4.11: Generators of Twisted Subgroups for the Hexagonal Lattice

Case G Generators of GΘ

3 Z6[(r, e, e)]× Z2[(e, e, τ)] ((r, e, e) 1
6 ), ((e, e, τ), 0)

10a Z6[(r, e, e)]× Z2[(e, e, τ)] ((r, e, e), 1
3 ), ((e, e, τ), 0)

10b Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] ((r3, e, e), 0), ((s, e, e), 1

2 ), ((e, e, τ), 0)

15a Z3
2[(r3, e, e), (s, e, e), (e, e, τ)] ((r3, e, e), 1

2 ), ((s, e, e), 0), ((e, e, τ), 0)

16a Z3
2[(r3, e, e), (sr3, e, e), (e, e, τ)] ((r3, e, e), 1

2 ), ((sr3, e, e), 0), ((e, e, τ), 0)

19 Z6[(r2, e, τ)] n Z3[(e, vt, e)] ((r2, e, τ), 0), ((e, vt, e),
1
3 )

24 Z4
2[(r3, e, e), (s, e, e), (e, v2, e), (e, e, τ)] ((r3, e, e), 0), ((s, e, e), 0), ((e, v2, e),

1
2 ), ((e, e, τ), 0)

25 D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] ((r, e, e), 0), ((s, e, e), 1
2 ), ((e, e, τ), 0)

27 D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] ((r, e, e), 0), ((s, e, e), 0), ((e, e, τ), 1
2 )

30 D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] ((r, e, e), 1
2 ), ((s, e, e), 0), ((e, e, τ), 0)

31a D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] ((r, e, e), 1
2 ), ((s, e, e), 0), ((e, e, τ), 0)

31b D6[(r2, e, τ), (sr, e, e)] n Z3[(e, vt, e)]] ((r2, e, τ), 0), ((sr, e, e), 0), ((e, vt, e),
1
3 )

32 D6[(r, e, e), (s, e, e)]× Z2[(e, e, τ)] ((r, e, e), 0), ((s, e, e), 0), ((e, e, τ), 0)

Table 4.12: Fixed-point Subspaces for Standing Waves on the Square Lattice

Case C2 C4

28a z1 = −εz2 = −w1 = εw2 N/A

28b 0 0

30 z1 = −z2 = w1 = −w2, ε = +1 z1 = −z2 = −εz3 = εz4 = w1 = −w2 = −εw3 = εw4

32 z1 = −z2 = w1 = −w2, ε = −1 z1 = −z2 = εz3 = −εz4 = w1 = −w2 = εw3 = −εw4

42 z1 = z2 = w1 = w2, ε = +1 z1 = z2 = εz3 = εz4 = w1 = w2 = εw3 = εw4

43 z1 = z2 = w1 = w2, ε = −1 z1 = z2 = −εz3 = −εz4 = w1 = w2 = −εw3 = −εw4
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Table 4.13: Fixed-point Subspaces on the Hexagonal Lattice.
χ = e

2πi
3 , and ψ = +1 unless otherwise stated

Case C3 C6

3 z1 = χ2z2 = χz3, w = z N/A

10a z1 = χz2 = χ2z3, w = −z N/A

10b z1 = −z2, z3 = 0, w = z, ε = +1 N/A

15a z1 = −z2, z3 = 0, w = −z, ε = +1 N/A

15b z1 = εw2, z2 = z3 = w1 = w3 = 0 z3 = εz4, zi = wj = 0 otherwise,

when α− β = 1

0 otherwise

16a z1 = z2, z3 = 0, w = −z, ε = −1 N/A

16b w1 = εw2, z1 = z2 = z3 = w3 = 0 z2 = εw5, zi = wj = 0 otherwise,

when α− 2β = 1

z5 = εw2, zi = wj = 0 otherwise,

when −α+ 2β = 1

0 otherwise

19 z1 = z2 = z3 = 0 N/A

w1 = w2 = w3

24 z1 = εz2, z3 = 0, w = z N/A

25 z1 = z2 = z3, w = z, ε = −1 z1 = z2 = z3 = −εz4 = −εz5 = −εz6, w = z

27 z1 = −z2, z3 = 0, w = z, ε = −1, ψ = −1 N/A

30 N/A z1 = z2 = z3 = εz4 = εz5 = εz6, w = −z
31a z1 = z2 = z3, w = z, ε = +1 z1 = z2 = z3 = εz4 = εz5 = εz6, w = −z
31b z1 = z2 = z3 = 0 z1 = z2 = z3 = εw4 = εw5 = εw6

w1 = w2 = w3 z4 = z5 = z6 = w1 = w2 = w3 = 0

if (α+ β) ≡ 1(mod3)

z4 = z5 = z6 = εw1 = εw2 = εw3

z1 = z2 = z3 = w4 = w5 = w6 = 0

if (α+ β) ≡ 2(mod3)

32 z1 = z2 = z3 = w1 = w2 = w3, ε = +1 z1 = z2 = z3 = εz4 = εz5 = εz6, w = z
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4.5 The Planforms

The planforms are plotted using the program shown in Appendix E. In each

case we set z1 = e2πi t
T , or another of the coefficients if z1 = 0, and then

write each other coefficient in terms of this, usually either ±z1 or zero. As

with the equilibrium states shown in Chapter 2 we plot a director field that

for each point in a square subset of R2 will draw a unit length line in the

direction of the eigenvector associated with the largest eigenvalue. In this

case the equation is:

Q = Q0 + δ

s∑
j=1

zje
2πi(Kj ·x+t)Qj + wje

−2πi(Kj ·x−t)Qj + c.c. δ small

The patterns are time periodic and the movies show one full period in each

case. The time interval 0 < t ≤ 1 is divided into 360 individual frames, this

number is chosen to make it easy to spot when major changes occur.

4.5.1 Planforms for the Square Lattice

The patterns on the square lattice are fairly straightforward to describe: each

movie switches between two copies of the same pattern, translations of each

other, passing through the isotropic state in between the two copies of the

pattern. The points at which the isotropic state appears, twice in each time

interval 0 < t ≤ 1 , are dependent on the individual case.

The C2 cases

In the C2 cases there are three cases that produce patterns for each of the

Q++ and Q−+ representations but there is only one distinct pattern for

each representation and each case shows two different translations of the

same pattern.
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Figure 4.1: Frames from Square Lattice C2 Time Periodic Patterns
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Case 28a for Q−+, bifurcating from isotropic state, frame 270

(d)

Case 28a

Q++ , isotropic state appears at t = 180, 0/360

Q−+ , isotropic state appears at t = 180, 0/360

Case 30

Q++ , same pattern as Case 28a, isotropic state appears at t = 90, 270

Case 32

Q−+ , same pattern as Case 28a, isotropic state appears at t = 90, 270
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Figure 4.2: Frames from Square Lattice C4 Time Periodic Patterns
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Case 30 for Q−+, bifurcating from isotropic state, frame 0/360

(d)

Case 42

Q−+ , same pattern as Case 28a, isotropic state appears at t = 90, 270

Case 43

Q−+ , same pattern as Case 28a, isotropic state appears at t = 90, 270

The C4 cases

In the C4 case there are two different patterns, two cases for each.
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Figure 4.3: Frames from Square Lattice C4 Time Periodic Patterns
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Case 32 for Q−+, bifurcating from isotropic state, frame 0/360

(d)

Case 30

Q++ , isotropic state appears at t = 90, 270

Q−+ , isotropic state appears at t = 90, 270

Case 32

Q++ , isotropic state appears at t = 90, 270

Q−+ , isotropic state appears at t = 90, 270
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Case 40

Q++ , same pattern as Case 30, isotropic state appears at t = 90, 270

Q−+ , same pattern as Case 30, isotropic state appears at t = 90, 270

Case 42

Q++ , same pattern as Case 32, isotropic state appears at t = 90, 270

Q−+ , same pattern as Case 32, isotropic state appears at t = 90, 270
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4.5.2 Planforms for the Hexagonal Lattice

Figure 4.4: Frames from Hexagonal Lattice C3 Time Periodic Patterns
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Case 3 for Q−+, bifurcating from isotropic state, frame 270

(d)

The patterns for the hexagonal lattice are more complicated to describe than

those for the square lattice. While some do switch between two copies of

the same pattern, there is often much more movement in between these

two stages. Some cases display only one copy of the same pattern between

occurrences of the isotropic or homeotropic state, some switch between two

different patterns, and some are rotating waves so we will see one pattern

moving across the plane.
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Figure 4.5: Frames from Hexagonal Lattice C3 Time Periodic Patterns
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Figure 4.6: Frames from Hexagonal Lattice C3 Time Periodic Patterns
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Figure 4.7: Frames from Hexagonal Lattice C3 Time Periodic Patterns
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Case 27 for Q−−, bifurcating from homeotropic state, frame 270

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Case 27 for Q−−, bifurcating from isotropic state, frame 90
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Figure 4.8: Frames from Hexagonal Lattice C6 Time Periodic Patterns
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(d)

The C3 cases

While quite a few cases switch between two copies of the same pattern passing

through the isotropic state in between, for the Q−+ representation it is often

necessary to reduce the value δ dramatically in order for the isotropic state

to actually appear. This results in the patterns in between being largely

isotropic as well with only small sections of the plane showing non-isotropic

behaviour. Because of this the stills shown in this chapter are produced using

higher values of δ for these cases.
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Figure 4.9: Frames from Hexagonal Lattice C6 Time Periodic Patterns
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(d)

Case 3

Q++ , isotropic state appears at t = 150, 330

Q−+ , isotropic state appears at t = 120, 300
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Figure 4.10: Frames from Hexagonal Lattice C6 Time Periodic Patterns
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(d)

Case 10a

Q++ , same pattern as Case 3, isotropic state appears at t = 120, 300

Q−+ , same pattern as Case 3, isotropic state appears at t = 160, 340

Case 10b

Q++ , isotropic state appears at t = 90, 270

Case 15a

Q++ , same pattern as Case 10b, isotropic state appears at t = 180, 0/360
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Figure 4.11: Frames from Hexagonal Lattice C6 Time Periodic Patterns
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(c)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Case 30 for Q−+, bifurcating from isotropic state, frame 270

(d)

Case 15b

Q++ , rotating wave travelling from right to left.

Q−+ , rotating wave travelling from right to left.

Case 16a

Q−+ , isotropic state appears at t = 180, 0/360

Case 19

Q++ , isotropic state appears at t = 30, 90, 150, 210, 270, 330

Q−+ , isotropic state appears at t = 30, 90, 150, 210, 270, 330
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Figure 4.12: Frames from Hexagonal Lattice C6 Time Periodic Patterns
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Case 31b for Q−+, bifurcating from isotropic state, frame 0/360

(d)

Case 24

Q++ , same pattern as Case 10b, isotropic state appears at t = 90, 270

Q−+ , same pattern as Case 16a, isotropic state appears at t = 90, 270

Case 27

Q−− , bifurcating from isotropic state, isotropic state appears at t = 180, 0/360

Q−− , bifurcating from homeotropic state, homeotropic state appears at

t = 180, 0/360



4. PERIODIC SOLUTIONS 114

Case 31a

Q++ , isotropic state appears at t = 90, 270

The C6 cases

Case 15b

Q++ , rotating wave travelling from right to left.

Q−+ , rotating wave travelling from right to left.

Case 16b

Q++ , rotating wave travelling from bottom to top.

Q−+ , rotating wave travelling from bottom to top.

Case 25

Q++ , isotropic state appears at t = 90, 270

Q−+ , isotropic state appears at t = 90, 270

Case 30

Q++ , isotropic state appears at t = 90, 270

Q−+ , isotropic state appears at t = 90, 270

Case 31b

Q++ , isotropic state appears at t = 30, 90, 150, 210, 270, 330

Q−+ , isotropic state appears at t = 30, 90, 150, 210, 270, 330

Case 32

Q++ , same patterns as Case 31b, isotropic state appears at t = 90, 270

Q−+ , same patterns as Case 31b, isotropic state appears at t = 90, 270



5

Conclusion

Continuing the work of Chillingworth and Golubitsky [7] who calculated the

set of patterns on the hexagonal and square lattices that can bifurcate from a

homeotropic or planar isotropic state in a planar layer of nematic liquid crys-

tal found from the standard representations of the symmetry groups, I have

classified a second set of such patterns found from a second larger represen-

tation of each symmetry group. I have also classified sets of generic time pe-

riodic square and hexagonal patterns bifurcating from the same homeotropic

or planar isotropic state. This is an extension of the work by Dionne et al [21]

using the group theory methods applied in that paper to Rayleigh-Bénard

convection, where the pattern is described by a scalar, to find patterns in

the more complicated liquid crystal model where the pattern is described by

a director in R3 defined by a 3 × 3 symmetric matrix with trace= 0 . It

is noted that the liquid crystal model produces a larger set of results than

the Rayleigh-Bénard convection model shown in the Dionne paper. This is

partly due to the symmetry group ΓL containing a copy of Z2 to represent

the reflection in the xy plane that is not present in the Dionne paper, result-

ing in a larger set of possible subgroups of ΓL and hence a larger number of

wave pairs which then produce a larger number of twisted subgroups Σ with

dim Fix(Σ) = 2 . Also, the four possible representations Q±± of ΓL give the

potential for four possible results for each wave pair. In actuality this does
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not occur, there are no patterns at all for the Q+− representation and only

one set of patterns for the Q−− representation, hexagonal case 27. However

many of the other cases do produce patterns for both the Q++ and Q−+

representations. It is important to emphasize that this work does not at-

tempt to predict experimental circumstances in which these patterns may be

found. Instead it provides a catalogue of all those possible patterns that arise

generically where the assumptions we have made about symmetries on lat-

tices hold, and is intended as a useful reference for identification. Therefore

any square or hexagonal lattice pattern observed in a suitable experimental

set-up can be expected to be found in the resutls given here.



Appendix A

Action of the group ΓL

The action of the group ΓL is as follows:

Let γ = (g, ψ), where g ∈ E(2) and ψ = ±1 ∈ Z2

g(x) = Bx + b, where B ∈ HL ⊂ 0(2), and b ∈ T2

A =

(
B

ψ

)
, ψ = ±1

The definition of the action of γ on the function Q is:

γ ·Q(x, t) = AQ(g−1x, t)A−1 ∀γ ∈ Γ.

To see that this is indeed a group action we check that

γ1 · (γ2 ·Q) = (γ1γ2) ·Q

where γ1 = (g1, ψ1) and γ2 = (g2, ψ2) .

To simplify matters we will look at this in two stages, first we consider just

the action ∗ of g on the space of functions Q : R2×R→ X where X ≈ R5
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is the space of real 3× 3 symmetric matrices with trace= 0 .

g ∗Q : (x, t) 7→ Q(g−1x, t)

This gives us

g1 ∗ (g2 ∗Q) : (x, t) 7→ (g2 ∗Q)(g−1
1 x, t)

= Q(g−1
2 g−1

1 x, t)

= Q((g1g2)−1x, t)

= ((g1g2) ∗Q)(x, t).

Now we look at the group action as a whole.

γ1 · (γ2 ·Q) = ((g1, ψ1)((g2, ψ2) ·Q))(x, t) = (g1, ψ1)(A2((g2 ∗Q)(x, t))A−1
2 )

= A1A2((g1 ∗ (g2 ∗Q))(x, t))A−1
2 A−1

1

= A1A2(((g1g2) ∗Q)(x, t))(A1A2)−1

= ((g1, ψ1)(g2, ψ2))Q(x, t) = (γ1γ2) ·Q.

A.1 Example of a group action calculation

This example of the calculation of the group action on the elements of the

kernel of L is from the standing waves C2 case, Q+− representation. The

standard form of the elements of the kernel written in full is as follows.

Q̃+− = z1e
2πi(K1·x+t)K1Q

+−(K1)−1 + z2e
2πi(K2·x+t)K2Q

+−(K2)−1

+z1e
−2πi(K1·x+t)K1Q+−(K1)−1 + z2e

−2πi(K2·x+t)K2Q+−(K2)−1

Q+− =


0 0 i

0 0 0

i 0 0

 , K1 =


1 0 0

0 1 0

0 0 1

 , K2 =


0 −1 0

1 0 0

0 0 1


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The action of the rotation (r, e, e) on Q̃+−

r =

(
0 −1

1 0

)
, R =


0 −1 0

1 0 0

0 0 1


The 1 in the bottom right hand corner of R shows that in this case the

reflection in the xy plane τ acts as the identity.

(r, e, e)Q̃+− = z1e
2πi(K1·r−1x+t)RK1Q

+−(K1)−1R−1 + z2e
2πi(K2·r−1x+t)RK2Q

+−(K2)−1R−1

+z1e
−2πi(K1·r−1x+t)RK1Q+−(K1)−1R−1 + z2e

−2πi(K2·r−1x+t)RK2Q+−(K2)−1R−1

= z1e
2πi(K2·x+t)K2Q

+−(K2)−1 + z2e
−2πi(K1·x+t)K1Q+−(K1)−1

+z1e
−2πi(K2·x+t)K2Q+−(K2)−1 + z2e

2πi(K1·x+t)K1Q
+−(K1)−1

This gives the result

(r, e, e)(z1, z2) = (z2, z1)

The action of the translation (e, v1, e) on Q̃+−

v1 =

(
1

2
, 0

)

(e, v1, e)Q̃
+− = z1e

2πi(K1·(x−v1)+t)K1Q
+−(K1)−1 + z2e

2πi(K2·(x−v1)+t)K2Q
+−(K2)−1

+z1e
−2πi(K1·(x−v1)+t)K1Q+−(K1)−1 + z2e

−2πi(K2·(x−v1)+t)K2Q+−(K2)−1

= z1e
2πi(K1·x− 1

2
+t)K1Q

+−(K1)−1 + z2e
2πi(K2·x−0+t)K2Q

+−(K2)−1

+z1e
−2πi(K1·x− 1

2
+t)K1Q+−(K1)−1 + z2e

−2πi(K2·x−0+t)K2Q+−(K2)−1

= z1e
−πie2πi(K1·x+t)K1Q

+−(K1)−1 + z2e
2πi(K2·x+t)K2Q

+−(K2)−1

+z1e
πie−2πi(K1·x+t)K1Q+−(K1)−1 + z2e

−2πi(K2·x+t)K2Q+−(K2)−1

= z1(−1)e2πi(K1·x+t)K1Q
+−(K1)−1 + z2e

2πi(K2·x+t)K2Q
+−(K2)−1

+z1(−1)e−2πi(K1·x+t)K1Q+−(K1)−1 + z2e
−2πi(K2·x+t)K2Q+−(K2)−1
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Which gives

(e, v1, e)(z1, z2) = (−z1, z2)

The action of the (r, v1, e) on Q̃+−

We can then combine these two elements to find the action of (r, v1, e) on

Q̃+− . The group elements act from right to left so we need to calculate

(r, e, e)((e, v1, e)(z1, z2))

(r, e, e)(z1, z2) = (z2, z1)

(e, v1, e, )(z1, z2) = (−z1, z2)

(r, e, e)((e, v1, e)(z1, z2) = (r, e, e)(−z1, z2)

= (z2,−z1)

So

(r, v1, e)(z1, z2) = (z2,−z1).



Appendix B

Full group action tables

Table B.1: The Action of the Generators of (D4 n 1
2
L)× Z2

Action onC2 Action onC4

g g(z1, z2) g(z1, z2, z3, z4)

(r, e, e) (z2, z1) (z2, z1, z4, z3)

(s, e, e) ε(z1, z2) ε(z4, z3, z2, z1)

(e, v1, e) (−z1, z2) (−z1, z2, z3,−z4), α odd

(z1,−z2,−z3, z4), β odd

(e, v2, e) (z1,−z2) (z1,−z2,−z3, z4), α odd

(−z1, z2, z3,−z4), β odd

(e, vd, e) (−z1,−z2) (−z1,−z2,−z3,−z4)

(e, e, τ) ψ(z1, z2) ψ(z1, z2, z3, z4)

(r2, e, e) (z1, z2) (z1, z2, z3, z4)

(sr, e, e) ε(z2, z1) ε(z3, z4, z1, z2)

(sr2, e, e) ε(z1, z2) ε(z4, z3, z2, z1)

(r, v1, e) (z2,−z1) (z2,−z1,−z4, z3), α odd

(−z2, z1, z4,−z3), β odd

(r2, v1, e) (−z1, z2) ε(−z1, z2, z3,−z4), α odd

ε(z1,−z2,−z3, z4), β odd

(s, v1, e) ε(−z1, z2) ε(−z4, z3, z2,−z1), α odd
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Table B.1: The Action of the Generators of (D4 n 1
2
L)× Z2

Action onC2 Action onC4

g g(z1, z2) g(z1, z2, z3, z4)

ε(z4,−z3,−z2, z1), β odd

(sr, v1, e) ε(z2,−z1) ε(z3,−z4,−z1, z2), α odd

ε(−z3, z4, z1,−z2), β odd

(sr2, v1, e) ε(−z1, z2) ε(z4,−z3,−z2, z1), α odd

ε(−z4, z3, z2,−z1), β odd

(r, v2, e) (−z2, z1) (−z2, z1, z4,−z3), α odd

(z2,−z1,−z4, z3), β odd

(r2, v2, e) (z1,−z2) ε(z1,−z2,−z3, z4), α odd

ε(−z1, z2, z3,−z4), β odd

(s, v2, e) ε(z1,−z2) ε(z4,−z3,−z2, z1), α odd

ε(−z1, z2, z3,−z4), β odd

(sr, v2, e) ε(−z2, z1) ε(−z3, z4, z1,−z2), α odd

ε(z3,−z4,−z1, z2), β odd

(sr2, v2, e) ε(z1,−z2) ε(z4,−z3,−z2, z1), α odd

ε(−z4, z3, z2,−z1), β odd

(r, vd, e) (−z2,−z1) (−z2,−z1,−z4,−z3)

(r2, vd, e) (−z1,−z2) (−z1,−z2,−z3,−z4)

(s, vd, e) ε(−z1,−z2) ε(−z4,−z3,−z2,−z1)

(sr, vd, e) ε(−z2,−z1) ε(−z3,−z4,−z1,−z2)

(sr2, vd, e) ε(−z1, z2) ε(−z4,−z3,−z2,−z1)

Table B.2: The Action of the Generators of (D6 n 1
2
L)× Z2

Action on C3 Action on C6

g g(z1, z2, z3) g(z1, z2, z3, z4, z5, z6)

(r, e, e) (z2, z3, z1) (z2, z3, z1, z5, z6, z4)

(s, e, e) ε(z2, z1, z3) ε(z6, z5, z4, z3, z2, z1)

(e, v1, e) (−z1, z2,−z3) (−z1,−z2, z3,−z4, z5,−z6), α odd
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Table B.2: The Action of the Generators of (D6 n 1
2
L)× Z2

Action on C3 Action on C6

g g(z1, z2, z3) g(z1, z2, z3, z4, z5, z6)

(z1,−z2,−z3, z4,−z5,−z6), β odd

(−z1, z2,−z3,−z4,−z5, z6), α and β odd

(e, v2, e) (−z1,−z2, z3) (z1,−z2,−z3,−z4,−z5, z6), α odd

(−z1, z2,−z3,−z4, z5,−z6), β odd

(−z1,−z2, z3, z4,−z5,−z6), α and β odd

(e, vt, e) e(2πi)/3(z1, z2, z3) e(2πi)/3(e(α+β)z1, e
(2α−β)z2, e

(−α+2β)z3,

e(−2α+β)z4, e
(α+β)z5, e

(α−2β)z6)

(e, e, τ) ψ(z1, z2, z3) ψ(z1, z2, z3, z4, z5, z6)

(r2, e, e) (z3, z1, z2) (z3, z1, z2, z6, z4, z5)

(r3, e, e) (z1, z2, z3) (z1, z2, z3, z4, z5, z6)

(sr, e, e) ε(z3, z2, z1) ε(z4, z6, z5, z1, z3, z2)

(sr2, e, e) ε(z1, z3, z2) ε(z5, z4, z6, z2, z1, z3)

(sr3, e, e) ε(z2, z1, z3) ε(z6, z5, z4, z3, z2, z1)

(r, v1, e) (z2,−z3,−z1) (−z2, z3,−z1, z5,−z6,−z4), α odd

(−z2,−z3, z1,−z5,−z6, z4), β odd

(z2,−z3,−z1,−z5, z6,−z4), α and β odd

(r2, v1, e) (−z3,−z1, z2) (z3,−z1,−z2,−z6,−z4, z5), α odd

(−z3, z1,−z2,−z6, z4,−z5), β odd

(−z3,−z1, z2, z6,−z4,−z5), α and β odd

(r3, v1, e) (−z1, z2,−z3) (−z1,−z2, z3,−z4, z5,−z6), α odd

(z1,−z2,−z3, z4,−z5,−z6), β odd

(−z1, z2,−z3,−z4,−z5, z6), α and β odd

(s, v1, e) ε(z2,−z1,−z3) ε(−z6, z5,−z4, z3,−z2,−z1), α odd

ε(−z6,−z5, z4,−z3,−z2, z1), β odd

ε(z6,−z5,−z4,−z3, z2,−z1), α and β odd

(sr, v1, e) ε(−z3, z2,−z1) ε(−z4,−z6, z5,−z1, z3,−z2), α odd

ε(z4,−z6,−z5, z1,−z3,−z2), β odd

ε(−z4, z6,−z5,−z1,−z3, z2), α and β odd
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Table B.2: The Action of the Generators of (D6 n 1
2
L)× Z2

Action on C3 Action on C6

g g(z1, z2, z3) g(z1, z2, z3, z4, z5, z6)

(sr2, v1, e) ε(−z1,−z3, z2) ε(z5,−z4,−z6,−z2,−z1, z3), α odd

ε(−z5, z4,−z6,−z2, z1,−z3), β odd

ε(−z5,−z4, z6, z2,−z1,−z3), α and β odd

(sr3, v1, e) ε(z2,−z1,−z3) ε(−z6, z5,−z4, z3,−z2,−z1), α odd

ε(−z6,−z5, z4,−z3,−z2, z1), β odd

ε(z6,−z5,−z4,−z3, z2,−z1), α and β odd

(r, v2, e) (−z2, z3,−z1) (−z2,−z3, z1,−z5, z6,−z4), α odd

(z2,−z3,−z1, z5,−z6,−z4), β odd

(−z2, z3,−z1,−z5,−z6, z4), α and β odd

(r2, v2, e) (z3,−z1,−z2) (−z3, z1,−z2, z6,−z4,−z5), α odd

(−z3,−z1, z2,−z6,−z4, z5), β odd

(z3,−z1,−z2,−z6, z4,−z5), α and β odd

(r3, v2, e) (−z1,−z2, z3) (z1,−z2,−z3,−z4,−z5, z6), α odd

(−z1, z2,−z3,−z4, z5,−z6), β odd

(−z1,−z2, z3, z4,−z5,−z6), α and β odd

(s, v2, e) ε(−z2,−z1, z3) ε(z6,−z5,−z4,−z3,−z2, z1), α odd

ε(−z6, z5,−z4,−z3, z2,−z1), β odd

ε(−z6,−z5, z4, z3,−z2,−z1), α and β odd

(sr, v2, e) ε(z3,−z2,−z1) ε(−z4, z6,−z5, z1,−z3,−z2), α odd

ε(−z4,−z6, z5,−z1,−z3, z2),, β odd

ε(z4,−z6,−z5,−z1, z3,−z2),, α and β odd

(sr2, v2, e) ε(−z1, z3,−z2) ε(−z5,−z4, z6,−z2, z1,−z3), α odd

ε(z5,−z4,−z6, z2,−z1,−z3), β odd

ε(−z5, z4,−z6,−z2,−z1, z3), α and β odd

(sr3, v2, e) ε(−z2,−z1, z3) ε(z6,−z5,−z4,−z3,−z2, z1), α odd

ε(−z6, z5,−z4,−z3, z2,−z1), β odd

ε(−z6,−z5, z4, z3,−z2,−z1), α and β odd
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It is worth noting that the action of vt commutes with every other group

element in the C3 case but in the C6 case it only commutes with the other

translation elements v1 and v2 .



Appendix C

Example of Fix(GΘ) calculation

This example shows how to find the generating elements of the twisted sub-

group Σ = GΘ and its fixed-point subspace. The example shown is case 28a

on the square lattice.

K = Z2
2[(sr, e, e), (e, e, τ)]

G = Z3
2[(r2, e, e), (sr, e, e), (e, e, τ)]

G/K = Z2[(r2, e, e)]

There are three generators of Σ = GΘ . The first two are the generators

of K , that is ((sr, e, e), 0) and ((e, e, τ), 0) . The third element is found by

taking the generator of G/K , which is the element (r2, e, e) and mapping

it onto S1 , which gives us the element ((r2, e, e), 1
2
) . The actions of these

elements are found by combining the actions of their component parts, recall

that the group acts from right to left.
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Element Action on C3 Action on C6

g g(z1, z2, z3, w1, w2, w3) g(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((r, e, e), 0) (w2, z1, z2, w1) (w2, z1, w4, z3, z2, w1, z4, w3)

((s, e, e), 0) ε(z1, w2, w1, z2) ε(w4, w3, w2, w1, z4, z3, z2, z1)

((sr, e, e), 0) ε(w2, w1, z2, z1) ε(w3, z4, w1, z2, z3, w4, z1, w2)

((e, e, τ), 0) ψ(z1, z2, w1, w2) ψ(z1, z2, z3, z4, w1, w2, w3, w4)

((r, e, e), 0) (w2, z1, z2, w1) (w2, z1, w4, z3, z2, w1, z4, w3)

((r2, e, e), 0) (w1, w2, z1, z2) (w1, w2, w3, w4, z1, z2, z3, z4)

((e, e, e),Θ) e2πiΘ(z1, z2, z3, w1, w2, w3) e2πiΘ(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((e, e, e), 1
2
) (−1)(z1, z2, z3, w1, w2, w3) (−1)(z1, z2, z3, z4, z5, z6, w1, w2, w3, w4, w5, w6)

((r2, e, e), 1
2
) (−1)(w1, w2, z1, z2) (−1)(w1, w2, w3, w4, z1, z2, z3, z4)

Next we find the individual elements’ fixed-point subspaces and from there

it is easy to see what their common fixed-point subspace is.

Element Fixed-point subspace in C2 Fixed-point subspace in C4

((sr, e, e), 0) z1 = εw2, z2 = εw1 z1 = εw3, z2 = εz4, z3 = εw1, w2 = εw4

((e, e, τ), 0) C2 when ψ = +1 C6 when ψ = +1

0 when ψ = −1 0 when ψ = −1

((r2, e, e), 1
2
) z1 = −w1, z2 = −w2 z1 = −w1, z2 = −w2, z3 = −w3, z4 = −w4

From this we can work out the fixed-point subspace of the group GΘ as

a whole.
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Fix(GΘ) in C2 dimFix(GΘ) in C2

z1 = −εz2 = −w1 = εw2 when ψ = +1 2

0 when ψ = −1 0

Fix(GΘ) in C4 dimFix(GΘ) in C4

z1 = −εz3 = −w1 = εw3, z2 = εz4 = −w2 = −εw4 when ψ = +1 4

0 when ψ = −1 0

This confirms the result from Section 4.3.1, there will be a Hopf bifurca-

tion for the C2 case when ψ = +1 because that gives dimFix(GΘ) = 2 , but

not otherwise.
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Index of Notation

lj Base vector of lattice

L Lattice

L∗ Dual lattice

kj base vector for Dual lattice

Kj A wave vector

Q Generic 3× 3 symmetric matrix with trace= 0 representing an ellipsoid

Q0 3× 3 matrix of the homeotropic or isotropic trivial states

ΓL The symmetry group HL n T2 × Z2

Γ 1
2
L The group (HL n 1

2
L)× Z2

HL The holohedry (group of symmetries) of the lattice L
T2 The torus group R2/L of translations on the lattice

S1 The circle group
1
2
L The group generated by the half lattice points, isomorphic to Z2

2

Σ An isotropy subgroup of Γ

g An element of a group G

G A group

E(2) The Euclidean group of all translations, rotations and reflections in the plane

O(n) The group of orthogonal matrices

FL The space of matrix functions periodic with respect to L
k wave number, the length of a wave vector

129



APPENDIX D. INDEX OF NOTATION 130

kc critical wave number

E+(g) The projection of the +1 eigenspace of the natural representation of g into T2

E+(g) The projection of the +1 eigenspace of the natural representation of g into T2

F+(g) {v ∈ T2|gv = v}
F−(g) {v ∈ T2|gv = −v}
λ bifurcation parameter

u a matrix valued function of x and t

x A position vector in R2

t Time

F System of partial differential equations, du
dt

= F(u, λ)

L The system of differential equations linearized about Q0, L = dF|(Q0,λ)

V Chapters 1 and 2, The kernel of L

V Chapters 3 and 4, The i eigenspace of L

Q̃ Generic element of kerL

τ reflection z → −z
κ reflection y → −y
× direct product

H41 D4[r, s]/Z2[r2] = {{e, r2}, {r, r3}, {s, sr2}, {sr, sr3}} ≈ Z2
2

H42 D4[r, s]/Z2
2[r2, s] = {{e, r2, s, sr2}, {r, r3, sr, sr3}} ≈ Z2

H43 D4[r, s]/Z2
2[r2, sr] = {{e, r2, sr, sr3}, {r, r3, sr2, s}} ≈ Z2

H61 D6[r, s]/Z2[r3] = {{e, r3}, {r, r4}, {r2, r5}, {s, sr3}, {sr, sr4}, {sr2, sr5}} ≈ D3

H62 D6[r, s]/Z3[r2] = {{e, r2, r4}, {r, r3, r5}, {s, sr2, sr4}, {sr, sr3, sr5}} ≈ Z2
2

H63 D6[r, s]/D3[r2, s] = {{e, r2, r4, s, sr3, sr4}, {r, r3, r5, sr, sr3, sr5}} ≈ Z2

H64 D6[r, s]/D3[r2, sr] = {{e, r2, r4, sr, sr3, sr5}, {r, r3, r5, sr2, sr4, s}} ≈ Z2

Q A space of matrix valued functions of space x ∈ R2 and time t ∈ R

QL A space of matrix valued functions Q(x, t) periodic with respect to the lattice L
VC The space of complex 3× 3 symmetric matrices with trace= 0
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Matlab Program

clear

T = 360

for t = 1:T

a = 0.5;

b = 0.1;

ex = 0.05;

Q = [ a 0 0; 0 b 0; 0 0 -a-b];

%Q = [ 0 0 i; 0 0 0; i 0 0];

%Q = [ 0 1 0; 1 0 0; 0 0 0];

%Q = [ 0 0 0; 0 0 i; 0 i 0];

%R0 = diag([-1,-1,2]);

R0 = diag([1,1,-2]);

%R0 = diag([0,0,0]);

z1 = exp(2*pi*i*t/T); z2 = exp(2*pi*i*t/T);

w1 = exp(2*pi*i*t/T); w2 = exp(2*pi*i*t/T);
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%resolution of pictures

dx = 1/12;

[x,y] = meshgrid(-1.5: dx : 1.5);

quivscale = 0.5;

N = length(x);

k1 = [1; 0];

k2 = [0; 1];

k1dot = k1(1)*x + k1(2)*y;

e1 = exp(2*pi*i*k1dot);

k2dot = k2(1)*x + k2(2)*y;

e2 = exp(2*pi*i*k2dot);

C2K1 = [ 1 0 0; 0 1 0; 0 0 1];

C2K2 = [ 0 -1 0; 1 0 0; 0 0 1];

Q1 = C2K1*Q*inv(C2K1);

Q2 = C2K2*Q*inv(C2K2);

clf

for m = 1:N

for n = 1:N

Rp = real(z1*e1(m,n)*Q1 + z2*e2(m,n)*Q2

+ w1*(e1(m,n))^(-1)*Q1 + w2*(e2(m,n))^(-1)*Q2);

R = R0 + ex*Rp;

E = eig(R);
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[V,D] = eig(R);

[Y,I] = max(E);

VL = norm(V(:,I));

u(m,n) = V(1,I)/VL;

v(m,n) = V(2,I)/VL;

w(m,n) = V(3,I)/VL;

if w(m,n) < 0

u(m,n) = -u(m,n); v(m,n) = -v(m,n);

end

YY = sort(E);

% if YY(end) == YY(end-1)

if abs(YY(end) - YY(end-1)) < .0058

w(m,n) = 0;

else w(m,n) = 1;

end

end

end

%quiver(x,y,w.*u,w.*v,quivscale)

quiver(x,y,w.*u,w.*v,quivscale,’.’)

hold on

quiver(x,y,-w.*u,-w.*v,quivscale,’.’)

axis(’equal’)

xlabel(’x’)

ylabel(’y’)

M(t) = getframe;

end

movieview(M,10)
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Index of programs

Table F.1: Index of Programs for C2

Case Program Representation Standing or Isotropic or

Rotating Homeotropic

28a pp2228ai Q++ Standing Isotropic

mp2228ai Q−+ Standing Isotropic

28b pp2228bi Q++ Rotating Isotropic

mp2228bi Q−+ Rotating Isotropic

30 pp2230i Q++ Standing Isotropic

32 mp2232i Q−+ Standing Isotropic

42 pp2242i Q++ Standing Isotropic

43 mp2243i Q−+ Standing Isotropic
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Table F.2: Index of Programs for C4

Case Program Representation Standing or Isotropic or

Rotating Homeotropic

30 pp4230i Q++ Standing Isotropic

mp4230i Q−+ Standing Isotropic

32 pp4232i Q++ Standing Isotropic

mp4232i Q−+ Standing Isotropic

42 pp4242i Q++ Standing Isotropic

mp4242i Q−+ Standing Isotropic

43 pp4243i Q++ Standing Isotropic

mp4243i Q−+ Standing Isotropic
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Table F.3: Index of Programs for C3

Case Program Representation Standing or Isotropic or

Rotating Homeotropic

3 pp323i Q++ Standing Isotropic

mp323i Q−+ Standing Isotropic

10a pp3210ai Q++ Standing Isotropic

mp3210ai Q−+ Standing Isotropic

10b pp3210bi Q++ Standing Isotropic

15a pp3215ai Q++ Standing Isotropic

15b pp3215bi Q++ Rotating Isotropic

mp3215bi Q−+ Rotating Isotropic

16a mp3216ai Q−+ Standing Isotropic

16b pp3216bi Q++ Rotating Isotropic

mp3216bi Q−+ Rotating Isotropic

19 pp3219i Q++ Standing Isotropic

mp3219i Q−+ Standing Isotropic

24 pp3224i Q++ Standing Isotropic

mp3224i Q−+ Standing Isotropic

25 mp3225i Q−+ Standing Isotropic

27 mm3227h Q−− Standing Homeotropic

mm3227i Q−− Standing Isotropic

31a pp3231ai Q++ Standing Isotropic
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Table F.4: Index of Programs for C6

Case Program Representation Standing or Isotropic or

Rotating Homeotropic

15b pp6215bi Q++ Rotating Isotropic

mp6215bi Q−+ Rotating Isotropic

15b pp6216bi Q++ Rotating Isotropic

mp6216bi Q−+ Rotating Isotropic

25 pp6225i Q++ Standing Isotropic

mp6225i Q−+ Standing Isotropic

30 pp6230i Q++ Standing Isotropic

mp6230i Q−+ Standing Isotropic

31b pp6231bi Q++ Standing Isotropic

mp6231bi Q−+ Standing Isotropic

32 pp6232i Q++ Standing Isotropic

mp6232i Q−+ Standing Isotropic
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[51] F. Reinitzer. Beiträge zur kenntniss des cholesterins. Monatshefte für

Chemie (Wien), 9:421–441, 1888.

[52] S. Residori. Patterns, fronts and structures ina liquid-crystal-light-valve

with optical feedback. Physics Reports, 416:201–272, 2005.



BIBLIOGRAPHY 143

[53] J.W. Wagner D.H. Roberts, M. Swift. The hopf bifurcation on a hexago-

nal lattice. In Multiparameter bifurcation theory, (Contemporary Math-

ematics vol 56), pages 238–318.

[54] D. Ruelle. Bifurcations in the presence of a symmetry group. Archive

for Rational Mechanics and Analysis, 51:136–152, 1973.

[55] D.H. Sattinger. Group Theoretic Methods in Bifurcation Theory.

Springer-Verlag, 1979.

[56] F.R. Schenck. Kristallinische flüssigkeiten und flüssige kristalle. W.

Engelmann, Leipzig, 1905.
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