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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF MATHEMATICS

Doctor of Philosophy

GENERIC PLANAR LATTICE PATTERNS IN LIQUID CRYSTALS
by Theresa Lockett

In this thesis we will be studying symmetries and pattern formation within
a planar layer of liquid crystal. Some of the generic equilibrium patterns
(steady states) on a square or hexagonal lattice that bifurcate from a homeotropic
or planar isotropic state were calculated in Chillingworth and Golubitsky
2003 J. Mathematical Physics 44(9) 4201-4219. Continuing this work we
calculate a second set of steady states and go on to calculate the time pe-
riodic solutions resulting from Hopf bifurcations in the same planar layer of
liquid crystal. We describe the possible symmetries of the system by the
group I'y x St (or just Tz in the steady states), I'y = (H x T?) x Zs,
where H is the holohedry of the chosen lattice £, that is the finite group of
rotations and reflections that preserve the lattice, T? = R?/L is the torus
group representing translations on the lattice, Zy represents the reflection in
the xy plane, and S! is the circle group representing time periodicity. We
find the equilibrium solutions by applying the Equivariant Branching Lemma
and finding isotropy subgroups of I'; with fixed-point subspaces of dimen-
sion 1. We then find the time periodic solutions using the Equivariant Hopf
Theorem, finding isotropy subgroups of I' x S! with fixed-point subspaces of
dimension 2 by using the group theory methods shown in Dionne et al 1995
Phil. Trans. Physical Sciences and Engineering 352(1698) 125-168.
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0.1 Introduction

A dynamical system describes the changing state of a physical system over
time and can often be written as a set of differential equations. It is a com-
mon occurrence in these physical systems for some property to be dependent
on a particular parameter. As this parameter is increased or decreased a
critical value is reached at which a sudden change, called a bifurcation, in
the behaviour of the system is affected [1]. For example a uniform layer of
liquid heated uniformly from below will initially have zero velocity but when
a certain temperature is reached the liquid will begin to move under convec-
tion. The velocity of the liquid is dependent on the temperature (assuming
there are no other external forces at work). The temperature is known as the
bifurcation parameter and the critical value at which the onset of convection
takes place is the bifurcation point. In many systems at a bifurcation point
a pattern will form. Much work has been done to understand these pattern-

forming phenomena.

Some of the more commonly studied examples are convection between two
horizontal plates, known as Rayleigh-Benard convection [49]; Faraday waves,
formed by shaking a layer of fluid or sand up and down [25]; and reaction-
diffusion systems where two chemicals are mixed together [64]. Common

patterns are stripes, squares, hexagons and spirals.

In this thesis we will be studying pattern formation in a planar layer of
liquid crystal. These patterns are formed by the orientation of the molecules
within the layer. The probability that a molecule points in a certain direction
can be described by a symmetric 3 x 3 matrix () representing an ellipsoid
[17], see Section 1.6. We will restrict our research to those patterns that are
spatially doubly periodic with respect to a planar lattice and that bifurcate
from one of two trivial states, the planar isotropic state in which all the
molecules lie flat within the plane but pointing in no particular direction and

the homeotropic state in which all the molecules are aligned vertically.
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In Chapter 1 we explain the necessary background to find steady state pat-

terns. We start with a system of partial differential equations

0Q

where Q(x,t) is a matrix valued function of time ¢ € R, and space x € R?,
and A € R is a bifurcation parameter. We assume there is a solution @, (see
Section 1.6.1), for all X, with full Euclidean symmetry. Let L = dF|g, )
denote the equations linearized about )y, and suppose that L is invert-
ible, then by the Implicit Function Theorem [35] there exist solutions to
F(Q,\) =0 near Q, see Section (1.4.1).

Any solution that is spatially doubly periodic, i.e. has translational sym-
metry in two directions, must lie on a planar lattice £ in R? such that
u(x + 1) = u(x) for all [ € £, where [ is a basis vector for the lattice [21].
Therefore we can restrict the differential equations to the space of functions
that are doubly periodic with respect to a planar lattice. This implies that
elements of ker L have plane wave form wy(x) = e*™**Q, k € R2?. This is

explained in Section 1.5.

Since kerL is finite-dimensional we can use Liapunov-Schmidt Reduction [§]
[58] to simplify the problem of searching for equilibria and periodic orbits
bifurcating from a (stable) equilibrium in our system of PDEs to the simpler
problem of finding the equilibria and periodic solutions of a reduced system

of equations, see Section 1.4.

The Equivariant Branching Lemma [65] tells us that generically we will find
equilibrium solutions with symmetry group > € I'; where X is an isotropy
subgroup with dimFix> = 1, see section 1.7. The calculations for the equi-

librium solutions and the resulting patterns are shown in Chapter 2.
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The Equivariant Hopf Theorem [32] states that generically there exist branches
of periodic solutions with period close to 27 having symmetry group > C
I' x S! where ¥ is an isotropy subgroup with dimFix(3) = 2, explained in
Section 3.1. To find these isotropy subgroups and the dimensions of their
fixed-point subspaces we use the group theory methods involving wave pairs
shown in Dionne et al. [21], see Section 3.2. The calculations and some stills

of the resulting patterns are shown in Chapter 4, the moving patterns are on
the attached CD.

0.2 A bit about Liquid Crystals

Before we begin looking at the mathematical methods it is helpful to have a

rough idea of what a liquid crystal is.

The existence of liquid crystals was first observed in the late 1800s by Aus-
trian scientist Friedrich Reinitzer who discovered that cholesterol extracted
from carrots appeared to have two melting points, the first was a transition
from a solid to an opaque liquid and then the second when this liquid became
clear, this process was also reversible [51]. Fellow Austrian Otto Lehmann
identified this intermediate cloudy stage as crystalline. It was Lehmann who
did much of the early research in the field, publishing a book containing
literally hundreds of illustrations of liquid crystals observed through his spe-
cialist (and rather unusual at the time) polarizing microscope [44]. In 1905
Friedrich Rudolf Schenck presented a paper on liquid crystals at the annual
meeting of the Deutsche Bunsengesellschaft in Karlshruhe [57]. The paper
had a mixed reception but Schenck went on to publish a book on the sub-
ject [56], though this was the end of his contribution to the field. A few
years later Daniel Vorlander, a German chemist, realised that a crystalline
fluid necessarily had rod-like molecules [66]. It was not until the 1920’s that
Frenchman Georges Friedel concluded that it was the orientational order of

these molecules that was the key factor of liquid crystals, it was Friedel who

15



introduced the terms nematic and smectic to the field [27]. Translations of
many of the papers cited here can be found it the book by Sluckin, Dunmur

and Stegemeyer [61], or for a concise history see [63].

The following explanation is a paraphrased version of that given in the book
by Michael Fisch [26].

The three classical states of matter are gas, liquid and solid. A useful means
of describing the differences between their molecular structure is to talk about
the relation between the distance between the individual molecules which
we’ll call [, and the diameter of the molecules which we’ll call d. The diam-
eter is a very approximate term since the molecules are by no means always
spherical in fact we will later on be discussing the orientation of individual
molecules according to their major axis, but it will suffice for the moment as

we only need a very basic description of the three states.

Gas
In a gas d < [, the size of the molecules is much smaller than the distance
between them, and the molecules are free to move around. Gases flow, and

will expand to fill a container.

Liquid

In a liquid [ =~ d, the molecules in a liquid are free to move around, it flows
and can be poured, in a container it will settle to the bottom. An isotropic
liquid has a random arrangement of molecules, there is no order of position

or orientation.

Solid
There are two types of solids, crystalline and amorphous, though we only
need concern ourselves with crystalline solids. These also have | ~ d but

there must be a periodic arrangement of the molecules so the molecules are

16



Figure 1: Diagram of a Nematic Liquid Crystal

not free to move. If the molecules are not spherical there is also orientational
order, all the molecules point in the same direction. Solids do not flow, they
retain their shape (except when strong forces are applied in which case they
may be forced to distort), when placed in a container they will not adjust to
fit it in any way. By contrast amorphous solids have no long-range positional

or orientational molecular order though they do retain their shape.

Liquid Crystal

A liquid crystal is a phase of matter between an isotropic liquid and crys-
talline solid displaying some properties of both states. The molecules have
some degree of long range orientational order and may have some positional
order too. Our research is concerned only with nematic liquid crystals, which
display orientational order but no positional order. However there are other
types, for example smectic liquid crystals exhibit orientational order and a
degree of positional order in layers, and chiral liquid crystals appear to have
orientational order locally but over a larger area are seen to follow a helical
pattern, see Sluckin (2000) [62].

Liquid crystal phases exist in many substances between the solid and lig-
uid phases. For example, as observed by Reinitzer a substance may start in
the solid phase, melt to an opaque liquid crystal phase at a certain tempera-

ture, and then melt again at a higher temperature to a clear liquid [51]. For
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a more thorough discussion of the liquid crystal phases see [62]. Within the
liquid crystal phase temperature changes can affect the molecule alignment
causing pattern formation. Other factors that can affect this pattern forma-
tion are electric and magnetic fields and, in the case of some liquid crystal
phases that exist only when the main substance is diluted in another sub-
stance, changes in the concentration of the solution. It is important to note
that liquid crystals are strongly affected by physical boundaries, for example
plates containing a thin layer of liquid crystal between them in experimen-
tal situations. Commonly the molecules will allign themselves parallel to or

perpendicular to the boundaries.

0.3 A Brief Overview of Existing Research

The use of group theory to describe symmetries in bifurcation theory has
been established for some time, see Ruelle (1973) [54] and Sattinger (1979)
[55]. A comprehensive discussion of the subject is given in Golubitsky and
Schaeffer (1985) Volumes 1 and 2 [31], and there are some good modern texts
on the subject, Golubitsky and Stewart (2003) [30] and Hoyle (2006) [37].

Basic equilibrium lattice patterns appear in many papers applied to differ-
ent physical models, for generic results see Golubitsky and Stewart (2003)
[30]. Superlattice equilibrium patterns on square and hexagonal lattices are
covered in Dionne et al (1997) [22]. Square lattice solutions resulting from
a Hopf bifurcation and their stability are discussed in Silber and Knobloch
(1991) [59] and Dawes (2001) [16]. Results for the Hopf bifurcation on a
hexagonal lattice are discussed in Roberts et al (1986) [53]. A good overview
of the Hopf Bifurcation and Its Applications is given in the book by that
name by Marsden and McCracken (1976) [45].

The most commonly studied examples of pattern formation are found in

18



fluid dynamics, Crawford and Knobloch (1991) [12]. In Rayleigh-Bénard
convection equilibrium solutions displaying rolls and hexagonal patterns are
common, see Buzano and Golubitsky (1983) [4] and Golubitsky et al (1984)
[29]. Also square lattice patterns can be found, as shown in Le Gal and Cro-
quette (1988) [43]. Dionne et al (1995) [21] calculated possible time periodic

solutions on the square, hexagonal and rhombic lattices.

Turing patterns found in reaction-diffusion systems can be beautiful and
often unstable, sometimes oscilating between two or more patterns. Hexag-
onal superlattice patterns called ‘black eye’ patterns, as well as rhombs and
stripes, are shown in experiments by Gunaratne et al (1994) [34]. These
Hexagonal black eye patterns also appear in the experiments by Yang et al
(2002) [68] who found a three-phase oscillating hexagonal lattice pattern.
Analysis of basic stripes, squares, hexagons and rhombs as well as superlat-
tice patterns is shown in Judd and Silber (1999) [38]. Three dimensional
Turing patterns are discussed in Callahan and Knobloch (1999) [5].

Faraday experiments have shown a wide variety of patterns including stripes,
squares and hexagons, as shown in Douady and Fauve (1988) [23] and Ku-
drolli and Gollub (1996) [41]; triangles are shown in Miiller (1993) [46]; and
eight and twelve fold quasipatterns are shown in Christiansen et al (1992) [9]
and Edwards and Fauve (1993) [24] respectively. Complicated ‘superlattice’
patterns can also be found, see Crawford et al [13] for squares, and Kudrolli
et al (1998) [40] and Silber et al. (2000) [60] for hexagons.

While this thesis makes no attempt to determine the experimental condi-
tions under which the patterns we discuss can be observed, it is nonetheless
interesting to comment on some examples of pattern forming phenomena in
liquid crystals, see for example Buka (1989) [3]. Observing patterns in liquid
crystals is usually done by shining a light onto the liquid crystal, the spe-

cific allignment of the molecules that are creating the pattern are not visible
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but the orientation of the molecules affects their refractive properties and a
black and white image is created by some areas reflecting back more light
than others.

A liquid crystal light valve consists of a layer of liquid crystal sandwiched
between a glass plate on one side and a mirror and photoconductor plate on
the other side with clear electrodes covering both plates allowing an electric
current to be applied. Light shone onto the photoconductor plate reduces its
resistance and thus changes the voltage that is being applied to the liquid
crystal layer, this results in a change in the orientation of the molecules of
the liquid crystal. Patterns can be seen by shining a light onto the liquid
crystal layer that is then refected back off the mirror, see Residori (2005) [52].
Rolls, squares, hexagons and triangles can all be observed, see Neubecker et
al (1995) [47] and D’Alessandro et al (1995) [15].

In electrohydrodynamic convection a thin layer of nematic liquid crystal is
held between two parallel glass plates and an alternating voltage is applied,
see Cross and Hohenberg (1993) [14]. Roll patterns (called Williams domain)
and chevrons are common, see Huh et al (2000), though squares and travel-
ling rolls are also possible, see Kai and Hirakawa (1978) [39], and Rehberg
et al (1988) [50]. This is a more complicated system since the liquid crystal
molecules are changing position as well as orientation and is therefore not

fully explained by our model.

The use of 3 x 3 symmetric matrices to describe molecular alignment in
liquid crystals has been established for some time, see deGennes (1974) [17].
Since liquid crystals are greatly affected by boundaries, e.g. the plates on
either of the layer described in the examples above, we will be considering
the midplane between these plates. A set of steady state patterns bifurcating
from the homeotropic and planar isotropic states predicted by the Equivari-

ant Branching Lemma in a planar layer of liquid crystal are shown in Chill-
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ingworth and Golubitsky (2003) [7] and Golubitsky (2003) [30]. The paper
by Dionne et al (1995) [21] uses group theory methods and the Equivariant
Hopf Theorem to find time-periodic patterns in Rayleigh-Bénard convection.
These patterns are created by variations in a scalar in R, temperature or
vertical velocity, over the plane R?. This thesis takes the same method
shown in the Dionne paper and applies it to the case of a planar layer of
liquid crystal that is discussed in Chillingworth and Golubitsky (2003) [7]
where patterns are the result of variations in molecular alignment described
by a director field in R? defined on the plane R?.

Finally it is worth mentioning that while much of the investigation in pat-
tern formation has focused on the two dimensional models there is also some
interesting work on the three dimensional case. Equilibrium solutions for
the standard cubic lattices are shown in Dionne and Golubitsky (1992) [20],
classification of the other three-dimensional lattices can be found in Dionne
(1993) [19]. Hopf bifurcations on 3 dimensional lattices are discussed in Gol-
ubitsky and Stewart (1985) [33], Dias and Stewart (1999) [18] and Callahan
(2003) [6].



Preliminaries

1.1 The general strategy

We are looking for generic patterns within a planar layer of liquid crystal
that are spatially doubly periodic with respect to a lattice. How do we go
about finding these patterns? We begin by assuming a trivial state with
approximate Euclidean symmetry in a planar layer of liquid crystal, i.e. it
is invariant to all rotations reflections and translations in the plane. Phys-
ical practicalities mean this is not actually possible since an infinite layer
of liquid crystal does not exist in the physical world, the liquid crystal will
have to be contained in something. However we can ignore the boundaries of
the vessel since we are looking at patterns on a very local scale. We assume
that cooling takes place uniformly across the entire layer, so there are no hot
spots. There are then several different aspects of the problem that need to

be explained.

e An R? director field on R? describes the current state of the planar

layer of liquid crystal.
e Group theory describes the possible symmetries of the system.

e Restricting our research to those patterns that are spatially doubly

22
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periodic with respect to a planar lattice reduces the infinite dimensional

problem to one that is finite dimensional.

e Liapunov-Schmidt Reduction allows us to restrict our attention to a

finite dimensional eigenspace.
e Matrices describe the orientation of the molecules

e The Equivariant Branching Lemma tells us how to find patterns close

to the homeotropic and isotropic states.

1.2 Getting Started

We are looking specifically at patterns in a planar layer of liquid crystal. We
will approximate this layer by the plane R?. We will describe the state of
the liquid crystal by a director field defined on R? that assigns to each point
in the plane a unit vector n (called a director) in R? showing the probable
orientation of the molecules at that point. Since the molecules themselves
have no positive or negative direction we treat the vector —n as being the
same as the vector n. We need to describe how this director field changes
as our bifurcation parameter changes. We start with a system of partial
differential equations (1.1) which express the rate of change of the system

over time in terms of its current state

0Q
— =F(Q, X\ 1.1
2 -FQ) (11)
where Q(x,t) is a 3 x 3 symmetric matrix valued function of time,
t € R, and space, x € R?, with trace= 0, describing the direction of n
(this will be explained in section 1.6), and A € R is a bifurcation parameter,

(eg. temperature)[7].
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An equilibrium/steady state, is a solution Q of this system of PDEs where

0Q
- =F(QN =0 (12)

We describe the symmetry of the solutions using group theory. The Eu-
clidean group FE(2) is the group of all translations, rotations and reflections
in the plane. Elements take the form ¢g(x) = Bx + b where B € O(2) and
b € R?>. We use the group Z, to describe the reflection in the zy plane:
elements take the form ¢ = £1. We define the action of E(2) x Zy on our

A:<Bw)

((9.9) Q)(x,t) = AQ(g ' x, ) A~ V(g,9) € B(2) X Z,.

functions Q by

The same group action applies in Section 1.3 and is explained in Appendix
A.

1.2.1 Group Theory Definitions

Throughout our discussion there are a few group theory terms that we will

be using, as outlined below.

The group of orthogonal matrices O(n) can be regarded as the group of
all rotations and reflections of R™. We use a subgroup of O(n) to describe
the symmetries of a particular system. The group element g € G is a sym-
metry of the dynamical system if for every solution x(¢) of the system, gx(t)

is also a solution.

Representations
A representation of a group G over a field F' is a homomorphism p : G — GL(n, F)
that maps each group element g € G to an invertible nxn matrix p(g). The

matrices act on the vector space V = F". If F' = R then the representation
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is a real representation. The natural representation p: D, — GL(2,R) of a
dihedral group D,, (the group of all rotations and reflections of a regular n
sided polygon) maps each rotation and reflection of the group to the 2 x 2
matrix corresponding to that linear transformation in the plane in coordinate

geometry.

Irreducibility
A subspace W of the vector space V is said to be G-invariant (or just
invariant if G and p are already assumed) under the representation p of the
group G if

p(g)w € W, Vg € G, Yw € W.

A representation p(G) is said to be irreducible if the only G-invariant sub-
spaces of V' are the origin and the whole space. A representation of G is
absolutely irreducible if it is irreducible and the only matrices that commute

with all the matrices of the representation are scalar multiples of the identity.

Equivariance
The function F(v,\) : V x R — V is equivariant with respect to the group

G, given a representation p if

F(p(g)v,A) = p(g)F(v, A)

Isotropy Subgroup
The usotropy subgroup Hy C G of a point x € V = R" is defined to be:

Yx ={g € Glgz = z}.

Fixed-point Subspace
For a subgroup H C G the fized-point subspace Fix(H) is defined as

Fix(H) ={x e R"|hx =x,Vh € H}.
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Figure 1.1: The Square and Hexagonal Lattices (left and right respectively).
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If x € Fix(H) then H C ¥y.

Axial
An isotropy subgroup ¥ is azial if dimFix(X) =1.
Axial isotropy subgroups will play an important role in finding solutions of

Equation (1.2).

1.3 The Symmetry Group ',

The symmetry group for our specific problem will depend on the lattice we
choose. We are looking for those solutions that are periodic with respect to
either the square or hexagonal lattice. First we choose a lattice and call it

L. The symmetry group for our system is
F[;: (H£ D<T2) X Z2

where

e H, is the holohedry of the chosen lattice £, that is the finite group
of rotations about the origin and reflections in lines through the origin
of R? that preserve the lattice, in this case the dihedral groups Dy or
Dg
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e T? = R?/L is the torus group representing translations of R? modulo
the lattice

e 7, represents the action of the reflection in the xy plane since, while
we are looking at a planar layer of liquid crystal where each molecule
will have a position vector in R?, the molecules themselves can point
in any direction including out of the plane so each molecule will have a
director in R? describing which way it points. The Z, represents the

action of the reflection in the xy plane which takes z to —z.

Elements of this group take the form of ordered triples, for example (sr?, vy, 7),
where sr? is a reflection in the holohedry, v; is a vector in the torus group
representing the translations on the lattice, and 7 is the reflection in the zy
plane. Since the construction of the group involves indirect products it is
important to state an order of action as not all the individual elements of
our component groups commute with one another. We will follow the rule
that the group element always acts from right to left, so in our example 7
would act first followed by v; and then by sr? (which by the same rule is
r? followed by s). T' is a subgroup of E(2) x Z, and its elements act on

functions Q in the same way
v = (g,v), where g € E(2) and ¢ = +1 € Z,

g(x) = Bx + b, where B € H; C 0(2), and b € T?

B
A= , — 41
( w) v

v-Q(x,t) = AQ(¢ 'x,t)A™" Wy el

It is perhaps easiest to understand the group action by following the example

shown in Appendix A.

Definition A shifted subgroup K of I'; is a subgroup with no elements that
are purely translations, so K () T? = {0}.
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We will be looking only at these shifted subgroups because if we had a pattern
relating to a subgroup that had an element that was purely translational i.e.
K(T? # {0} we could simply use a smaller lattice. The elements of T?
representing the translations on the lattice will be explained in section 1.5.
First we will outline the information we will need about the dihedral groups
D, and Dg.

1.3.1 Group Theory for Square Lattice

The symmetry group of the square is generated by a rotation anticlockwise

through 7, and a reflection in the x axis, denoted by 7 and s respectively.

Figure 1.2: The Symmetries of the Square

D, = (r'=5"=(rs)>=¢)

= {6,7’,7‘2,7“3,8,87",87“2,87“3}
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Subgroups of Dy

1 = {e}
Zy[r?] {e,r*}
Zs|s] {e, s}
Zs[sr] {e,sr}
Z,[r] {e,r,7?, 13}
Z3[r?, s {e,r?, s,sr%}
Z3[r?, sr] {e,r?, sr, sr3}
Dy[r,s] = {e,r,r?, 13, s, sr, sr2 sr

The natural representation of Dy

p:D,— GL(2,R)

10 0 —1
M@=<01> MﬂZ(l 0)

°}

29



1. PRELIMINARIES

1.3.2 Group Theory for Hexagonal Lattice

The symmetry group of the hexagon is generated by a rotation r anticlock-

wise through %, and a reflection s in the w axis.

Figure 1.3: The Symmetries of the Hexagon
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The natural representation of Dg

p:Dg — GL(2,R)
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1.4 A Reduced Problem

31

Rather than trying to find equilibrium solutions for our system of PDEs

directly we use Liapunov-Schmidt Reduction to obtain a system of reduced

bifurcation equations whose zeros are in one to one correspondence with those

of the original equations. The method is shown here in terms of our specific

model and is derived from the more general method described in Golubitsky

and Schaeffer [31].
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We are trying to find solutions to the set of differential equations (1.1)

F(Q,\) =0
where

e Q(x,t), the unknown to be solved for, is a matrix valued function of

space x € R? and time t € R
e Q is a suitable space of such functions
e )\ is the bifurcation parameter

e F: O xR — Q is a smooth mapping that is s-times differentiable

where 0 < s < 00.

We assume that our system of PDEs has a trivial equilibrium solution with
full Euclidean symmetry, we call this solution Q. Let L = dF|g, ) de-
note the linearization of these equations about )y. We attempt to describe

solutions to this system locally near this solution.

1.4.1 Implicit Function Theorem

Let F be as above. Suppose that F(Qo,0) =0 and dF|,,0 is invertible
Then there exist neighbourhoods U of Qy in @ and V of A\ = 0 in R
and a function X : V' — U such that for every A € V' the set of differential
equations has a unique solution @ = X(\) in U.

Moreover, if F is of class C* so is X. Thus

For proof of the implicit function theorem see Chow and Hale (1982) [8].
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1.4.2 Liapunov-Schmidt Reduction

Let
F:OxR— Q, F(Qo,0)=0

be a smooth mapping. We want to solve the equation
F(Q,\) =0

for Q as a function of x and ¢ near (Qy,0). Let L be the derivative of F
at (Qo,0). We assume that L is Fredholm of index zero.
Since L is Fredholm [31] we know that

e kerl # 0 is a finite-dimensional subspace of Q

e rangel is a closed subspace of Q of finite codimension.

Also, index zero means dimker L = codimrangelL [31].
Since L : @ — O is Fredholm we can choose vector space complements M

and N to kerL and rangel respectively
OQ=kerL M

Q = N @ rangel.

Let E denote the projection of Q onto rangel with ker E = N
E . QO — rangel.

There is a complementary projection
(I-FE):Q— N

with ker(/ — F) = rangel.
If Qe Q then Q=0 iff EQ =0 and (I — E)Q = 0. Thus the system of
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equations F(Q, \) = 0 may be expanded to an equivalent pair of equations
EF(Q,A) =0

(I — E)F(Q,\) = 0.

We can write Q = Q1 + Q2 where Q; € kerL and Qg € M. Apply the
implicit function theorem to solve EF(Q,\) =0 for Q. as a function of Q;
and A. We write this solution as a function W : kerL x R — M such that

EF(Q, + W(Q1,\),\) =0

W (0,0) = 0.

We then substitute W into the second of our two equations to obtain the

reduced mapping f:kerL x R - N

f(Qla >‘) = (I - E)F(Ql + W(Qh /\)7 )‘)

The zeros of this reduced mapping f(Q1, \) are in one to one correspondence
with the zeros of F(Q, \):

f(Q1,N) =0 < F(Qi+W(Q1,\),\) =0.

For a full explanation of Liapunov-Schmidt reduction see Golubitsky and
Schaeffer (1985) Volume 1 [31].

1.5 Lattices

Liapunov-Schmidt reduction gives us a much more manageable task of find-
ing solutions to the reduced problem. However, in order for us to be able to
apply Liapunov-Schmidt reduction to our initial problem the kernel of the

linearization must be finite dimensional whereas in our case rotation sym-
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metry implies that the eigenspace of kerL is infinite dimensional, since for
each eigenvalue there is a circle of infinitely many eigenfunctions. We solve
this problem by restricting ourselves to the problem of finding those solutions
that are doubly periodic with respect to a planar lattice thus making kerL

finite dimensional.

We define a plane wave as a complex-valued function of the form
Wi(x) = e
where k € R? is a wave vector and k = |k| is the wave number, [20].

Translation symmetry means that our eigenfunctions must be £ periodic

functions, so they will be linear combinations of matrices in plane wave form:
ek *Q + c.c.

For each wave number k = |k| there is a smallest ), at which the trivial
solution loses stability to a disturbance with this wave number. Dispersion
curves often have a unique absolute minimum at k., the critical wave num-
ber. The first instability is assumed to occur with wave number equal to k.,
(30].

In the case with full Euclidean symmetry there are infinitely many vectors
starting at the origin with length k.: they define a critical circle centred
at the origin with radius= k.. However, when we restrict ourselves to the
lattice we need only consider those vectors where the critical circle intersects
the vertices of the lattice. It is these vectors that we need to find in order to
find the appropriate eigenfunctions that will enable us to plot the patterns
associated with the solutions to equation (1.2), these patterns are called the
planforms. We need to find the critical vectors of each lattice, ie. those

vectors that lie on a critical circle.
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1.5.1 Lattice Generating Vectors

First we need to find those vectors that define the individual lattices. Each
lattice is generated by a pair of linearly independent vectors [,l, € R?. We

define this lattice by the set
L= {n1l1 + TLQlQ}.

In this model we are looking at the square and hexagonal lattices.

Let X, denote the space of £-periodic functions on R?. The symmetries of
X have the form H;x T? C F(2) = O(2) x R?, where H is the holohedry
of the lattice, and T? = R?/L is the torus of translations modulo the lattice.

The size of the lattice is chosen so that a plane wave with critical wave

number k. is an eigenfunction of the space Q, of matrix functions that are

periodic with respect to £, [7]. Those k € R? for which the scalar plane
2mik-x

wave e is L-periodic are dual wave vectors. We consider only those

lattice sizes where the critical dual wave vectors are of shortest length in £*.

We then define the dual lattice £* to be
L* = {k € R?|e* > is L periodic}
ﬁ* = {n1k1 + TLQkQ}.

Table 1.1: Generators for Lattices and Dual Lattices
lattice holohedry H, | basis of L basis of L*

square D, li =(1,0) k; = (1,0)
ly = (07 ]-) ko = (07 1)
hexagonal Dg L = : k; = (0,1)

1
11
b= (30) k= (423
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1.5.2 Critical Circles and Wave Vectors

We can find the irreducible representations of the group H; + T? (the Z,
will not be relevant at this stage) by looking at where the critical circles

intersect the lattice, shown in figure (1.4).

Figure 1.4: Critical Circles Intersecting the Dual Lattices

T 1 |~

// \\\
\\\ ///

If we restrict our solutions to those that are doubly periodic with respect to
a planar lattice all wave vectors k contributing to the pattern must lie at

the vertices of a dual lattice [37, p13§].

There is a countable infinity of irreducible representations of the symmetry
group for both lattices. These can be grouped into two types for each lattice.
The first type is four-dimensional for the square lattice and six-dimensional
for the hexagonal lattice. The smallest example in both cases is when the
lattice size is chosen to make the critical wavenumber k. = 1, shown by the

inner cirle in each picture in figure (1.4).
u(z,y,t) = 21(t)e™ + 2(t)e™2 + c.c. € C?

u(w,y,t) = 21(t)e™ + 2 (t)e™2 + 23(1)e™s + c.c. € CP

where the K s are given in table 1.2.
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The second type of irreducible representation for the square lattice is eight-

dimensional and is given by
u(z,y, 1) = 21 (1)e™ + 25(1)e™2 + z3(1)e™s + 24(t)e™* + c.c. € C*

The first of these representations occurs when the lattice size is chosen with

k. = /5, shown by the middle circle in the left hand picture of figure (1.4).

The second type of absolutely irreducible representation for the hexagonal

lattice is twelve-dimensional and is given by
u(z,y,t) = 21 (1) 425 (1) ™24 25 (1) ™3 24 (1) e 425 (1) ™5 426 (1) e +-c.c. € C°

The first of these representations occurs when the lattice size is chosen making
k. = /7, shown by the largest circle in the right hand picture of figure (1.4).
[11]

1.5.3 Half Lattice

As stated in Section 1.3 we are only interested in shifted subgroups of I'..
As a result of this the only elements of T? that will be relevent are the half
lattice points since they are the only elements that can be combined with
elements of the holohedry to create an element of I', such that the subgroup

generated by that element has a non-trivial fixed-point subspace.

We introduce the idea of a half lattice %E = %ﬁ[vl,vg] ~ 73 generated
by the vectors v, = %ll and vy = %lg, where [; and [y are the generators of
L. The vectors v; and v, generate a subgroup of T?, the other non-trivial

element being vy = v + vq, [21].

We will use the notation I'1 » = (He X $L) X Zs.
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Table 1.2: Irreducible Representations
lattice dimV | K

square 4 K, =k
square 8 K, = ak; + fks

K2 = —61{1 + Oékg
K3 = Sk + aks
K1 = —Oékl + ﬁkg

hexagonal | 6 K=k +ky
Ky = -k
K; =-k

hexagonal | 12 K, = ak; + Sk,

K = (—a+ 8)ki + ko
Where o and j are integers, and greatest common divisor ged(a, ) =1.
In the square case: a > >0, and a+ § is odd.

In the hexagonal case: a > > a/8 >0, and ged(3,a+5)=1.

1.6 The representations of ',

The material in this section follows the paper by Chillingworth and Golubit-
sky [7], using the Landau - de Gennes model [17] to describe molecular ori-
entation. We are looking for patterns created by the orientation of molecules
within a planar layer of liquid crystal. Each molecule has a position vector
x € R?, and a director n = —n € R?®. We can use an ellipsoid to approx-
imate the probability that the molecule at position x points in a certain
direction. The more elongated the ellipsoid, the higher the probability that
the molecule points in the direction of the elongation. An ellipsoid can be

defined by a real symmetric 3 x 3 matrix.
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O

I

Q. 8
- o
QO = O

™

The space of 3 x 3 symmetric matrices is 6 dimensional, but this is not
absolutely irreducible since those matrices that are scalar multiples of the
identity representing spheres will themselves commute with matrices that are
not scalar multiples of the identity. We are concerned with the elongation
of the ellipsoid, and the direction of the elongation, which describes how the
ellipsoid differs from the sphere, therefore we can take out the 1 dimensional
space of scalar multiples of the identity and look at the five dimensional space
of 3 x 3 symmetric matrices with trace= 0, equivalent to R®. Thus the
matrix represents the standard deviation of the probability that the director

points in a certain direction.

1.6.1 The Trivial States

We assume that the crystal is in an initial equilibrium state that is E(2)-
invariant, where E(2) is the Euclidean group of all symmetries of R*. There
are two such possible states, the homeotropic state where all the molecules
align vertically, and the planar isotropic state where all the molecules lie
flat within the xy plane but with no propensity to point in any particular

direction. These states have the form:
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If a > 0 then there is a single largest eigenvalue with eigenvector pointing
in the z direcetion meaning the matrix represents the homeotropic state. If
a < 0 there are joint largest eigenvalues with eigenvectors pointing in the z
and y directions meaning the matrix represents the planar isotropic state.
The state @)y is also invariant under the reflection in the xy plane, actioned

by conjugating by the matrix:

\]

I
o o
o~ o
o o

This gives us the symmetry group I' = E(2) x Zs(7).

1.6.2 (Q Matrices

From Section 1.5 recall that planar translation symmetry implies that eigen-
functions of L are linear combinations of matrices that have the plane wave
form:

eZﬂ"Lk-XQ +ecc.

Here () € V¢ is a constant matrix where Vi denotes the space of complex

3 X 3 symmetric matrices with trace= 0, and k € R is a wave vector.

For fixed k let
Wi = {2"5*Q + c.c.|Q € Vi)

be the ten-dimensional real linear subspace consisting of such functions. Since
we are always adding the complex conjugate this will ensure we always end
up with a 3 x 3 symmetric matrix with real entries and trace= 0 represent-

ing a real ellipsoid.

Wy can be broken down into four L-invariant subspaces, limiting the possi-

ble forms of (), as follows.
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The symmetries of the system place restriction on the possible forms of ().

L commutes with p, the rotation through = in the xy plane, described

by the matrix.

-1 0 0
0 -1 0
0 0 1

By looking at the action of p on @) we can simplify the form of @) as follows:
p(62ﬂ'ik'XQ) — e27ripk~prp—1 — 6—27Tik-prp—l — e27rik~xm

p(Q) = pQp~*

The kernel of L can be divided into two L-invariant subspaces, the first with
p(Q) = @ and the second with p(Q) = —@Q . Also, translation by }lk implies
that if e>™%*(Q is an eigenfunction then ie?"k*(Q is a (symmetry related)
eigenfuntion. It follows that if p acts as minus the identity on () then it
acts as the identity on i@ [7]. If p acts as the identity it has no effect on
the form of ). This implies that @ has the form

a d ie
Q= d b if
e if —a—0»

The reflection k : y — —y divides Wy into two subspaces: W, where &
acts trivially, this contains even functions in y; and W,_ where x acts as
minus the identity, this contains odd functions in y. Bifurcations based on
even eigenfunctions are called scalar and bifurcations based on odd functions

are called pseudoscalar.
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1 0 0
k=0 -1 0
0
a —d e
kKQr =] —=d b —f
e —f —a-—0»

If k acts trivially then ) has the form:

a 0 e
0 b 0 =Q".
e 0 —a—2>

If k acts non-trivially then ) has the form:

Q.

o Q. O
~~ O X
O - O

So eigenfunctions in Wy lie in one of the two-dimensional subspaces V., V.~
of W7, W~ that have the form

Vk—|— — {627rik~XQ+}

Vk— — {627T’ik'XQ—}‘

Also, L commutes with the reflection in the zy plane

\]

I
o o
o = O

o o
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a d —e
QT ! = d b —f
—e —f —a-—0b

If 7 acts trivially then ) has the form:
a d 0
d b 0
0 0 —a—0»

If 7 acts non-trivially then ) has the form:

o o O
—~- O O
O - O

This further decomposes the L-invariant subspaces according to whether 7

acts trivially or non-trivially.
Vi = Vbt + Vi

Vic = Vet + Vg™

By combining these properties we get four possible forms for ). We identify
the individual forms by double indices Q“ where the first index ¢ = +1
describes the action of x, and the second index v = +1 describes the action

of 7.

The four different forms of () are as follows:
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a 0 0 0 0 ¢
Q=0 0b 0 Q=00 0
0 —a—1b i 0

(1.4)
010 0 0
Q= 00 Q=100 i
000 0 i 0

We are looking at rotations and reflections of ellipsoids, in matrix terms
these linear transformations result from conjugating the ellipsoid matrix by
the appropriate rotation or reflection matrix, hence the elements of the group

I' will act on the matrices @ by conjugation, vyQvy~!.

1.7 Finding the patterns

Now that we have gathered all the components for the eigenfunctions we
can put them together to see that the generalized eigenspace is generated by

expressions of the form
S
~N 2miK ;i -x
Q= E zje J Qj+C.C.
Jj=1

where the K;s are given in Table 1.2. Here Q; = K;Q**(K;)™"', K; is the
linear transformation matrix from the natural representation of H, giving
the rotation through ¢ in the zy plane, and ¢ is the angle K; makes with

the positive x axis.

It is these eigenfunctions we will be plotting so we need to find the com-
plex coefficients z; to input into Q in order to plot the planforms. The
Equivariant Branching Lemma tells us that we will find solutions generically

with symmetry group ¥ € I'x whenever dimFix¥» =1
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1.7.1 The Equivariant Branching Lemma

Lemma 1.7.1. (Equivariant Branching Lemma) [65] [10]
Let G be a compact Lie group acting absolutely irreducibly on R™.
Let x = F(x,\) be a G-equivariant set of differential equations.

Then it follows that:
F(0,)\) =0,V\

DF’(O,A) = C()\)In
Also assume that:

c(0)=0 Bifurcation occurs at X = 0.
g—f\] r—o 7 0  The eigenvalues cross the imaginary

axis with non-zero speed.

Then: For each axial™ isotropy subgroup ¥ C G there exists generically a
unique branch of solutions x(X\) satisfying F(x(\),\) = 0 branching from
the origin and having symmetry 3.

*Recall that an isotropy subgroup ¥ is axial if dimFix(¥) =1.
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1.7.2 The Method

In order to plot the equilibrium solutions we must first find all the isotropy
subgroups of I'y with fixed-point subspace of dimension 1. We will follow

the steps shown below.

Step 1 Calculate all the shifted subgroups K of I';.

Step 2 Calculate the action of each group element on @ by applying each
element of the group to @ and record how it permutes the complex coeffi-

cients z;.

Step 3 Use these group actions to find the fixed-point subspaces of all the

shifted subgroups and their dimensions.
Step 4 Of those cases where dimFix(K) =1 check for equivalent cases.

Step 5 Plot the planforms. This will be done in Matlab.



2

Equilibrium Solutions from 2nd

Representations

In this chapter we will use the method shown in Chapter 1 to find equilibrium
solutions close to isotopic or homeotropic states. There are four possible lat-
tice representations in total, two for each of the square and hexagonal lattices,
shown by the two smallest critical circles on both pictures in Figure 1.4. In
Chillingworth and Golubitsky [7] the equilibria for the smaller representation
(ie. where k. = 1) for both the square and hexagonal lattices are shown.
However, the second possible representation in each case is not covered and
we will show the results for these cases here. The Equivariant Branching
Lemma tells us that to find these solutions we need to find all possible axial

isotropy subgroups and their corresponding fixed-point subspaces.

2.1 The Shifted Subgroups

We begin by listing all the shifted subgroups K of 'y for both the square
and hexagonal cases. Listing all these subgroups may seem like a daunting
task at first but much of the work has already been done for us. In Dionne
et al. [21] the subgroups by conjugacy class of the groups Dy x T? and

D¢ x T? are already calculated; these are shown in the left hand column of

48
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Tables 2.1 and 2.2. Since (e,e,7) commutes with everything it is a simple
task to expand these lists to include all possible conjugacy classes of our
group 'y for both cases. The extra subgroups of I'; are shown in the right
hand column of Tables 2.1 and 2.2.

Table 2.1: Shifted Subgroups of 'y = (D4 x T?) x Z,.

Shifted Subgroups of D, x T? Extra subgroups of I'

1 1

2 Zy[(r? e, e))

3 Zs[(e,e, 7))

4 Zs[(r?% e, 7)]

5  Zs[(s,e,€)]

6 Zs(s,v1,€)]

7T Zs[(sre,e)]

8 Zs[(s,e,7)]

9 Zs[(s,v1,7)]

10 Zy(sr,e,7)]

11 Zy[(r,e,e€)]

12 Z4l(r,e,7)]

13 Z2[(r%,e,e), (s,¢,¢)]

14 Z2[(r? e e), (s,v1,€)]

15 Z2[(r% e, e), (s, v4,€)]

16 Z3[(r?%,e,e), (s,e,7)]

17 Z3[(r?,e,€), (s,v1,7)]
18 Z3((r*, e, ¢), (s,va,7)]
19 Z3[(r?,e,7), (s,e,€)]

20 Z3[(r?,e,7), (s,v1,¢€)]
21 Z3[(r?,e,7), (s5,v4,¢)]
22 Z3[(r?,e,e), (sr,e,€)]

23 Z3[(r?,e,e), (sr,e,T)
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Table 2.1: Shifted Subgroups of I'y = (Dy x T?) X Z.

Shifted Subgroups of Dy x T? Extra subgroups of I',

31 Z3[(r?,e,e), (s,v1,¢€), (e,e,7)]
32 Z3[(r?,e,¢€), (s,v4,€), (e,€,7)]
33 Z3((r% e e), (st e,€), (e, €,7)]

34  Dyl(r,e,e),(s,e,e)]
35 Dyl(r,e,e), (s,v4,¢€)]

36 Dy[(r,e,e), (s, e,7)]

37 Dyl(r, e, e), (s,v4,T)]

38 Dy[(r,e,7), (s, e,¢€)]

39 Dy[(r,e,7), (s,v4,¢€)]

40 Dy(r,e,7),(s,e,7)]

41 Dyl(r,e, 1), (s,v4,T)]

42 Dy[(r,e,¢e),(s,e,€)] X Za[(e, e, T)]
43 Dy[(r,e,e), (s,v4,€)] X Za[(e,e,T)]

Table 2.2: Shifted Subgroups of I'; = (Dg X T?) x Zs.

Shifted Subgroups of Dg x T? Extra subgroups of I',

1 1

2 Z[(r3,e,e))

3 Zs[(e e, 7))

4 Z>((r3,e,7)]

5  Zs(s,e,e)]

6 Zs[(sr3,e )]

7 Zs[(s,e,7)]

8 Zs((sr3,e,7))

9 Z3[(r? e, e))

10 Z5[(r%,e,e), (e, e,7)]
11 Z3[(r3,e,e), (s,e,¢€)]

12 Z3((r3,e,¢e), (s,e,7)]
13 Z3[(r3,e,7), (s,e,¢)]
14 Z3[(r3,e,7),(s,e,7)]
15 Z3[(s,e,e), (e,e,7)]
16 Z3[(sr3,e,e), (e,e,7)]
17 Zg[(r, e, €)]
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Table 2.2: Shifted Subgroups of 'y = (Dg X T?) X Zs.

Shifted Subgroups of Dg x T? Extra subgroups of I',

18 Zg[(r,e,7)]
19 Zs[(r?,e,7)]
20 Ds[(r%e,e), (s, e, ¢)]

21 D3[(r% e,e), (sr,e,¢)]

22 D3[(r2,e,€), (s,e,7)]

23 D3[(r?,e,€), (sr,e,7)]

24 Z3[(r3,e,¢e), (s,e,¢e), (e,e,T)]
25 Zg[(r,e,€)] x Zs|(e, e, T)]
26  Dg[(r,e,e),(s,e,e€)]

27 Dg[(r,e,e),(s,e,7)]

28 Dgl(r,e,7),(s,¢e,€)]

29 Dg[(r,e,7),(s,e,T)]

30 Dg[(r% e, 7), (s,e ¢€)]

31 Dg[(r? e, 1), (sr, e €)]

32 Dgl(r,e,e),(s,e,e)] x Za[(e,e,T)]

2.2 The Action of the Elements of F%.c

Next it is necessary to calculate the action of each group element on Q.
We apply each element of the group to @ and record how it permutes the
complex coefficients z;: an example of this calculation is show in Appendix
A. Since we are only interested in the shifted subgroups we need only look
at the generating elements of the group F% »- The actions of the generating
elements are shown in Tables 2.3 and 2.4. Due to the complicated nature
of calculating the fixed-point subspaces in the next step the actions of all
relevant group elements are shown in Appendix B to make these calculations

easier.
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Table 2.3: The Action of the Generators of (Dy x 1£) x Z,

Action onC? Action onC*

g 9(21, 22) 9(21, 22, 23, 24)

(re,e)  (Z2,21) (%2, 21, Z1, 23)

(s,e.e)  €(z1,7) €(71, 73,72, 71)

(e,v1,€) (—2z1,22) (=21, 22, 23, —24), a 0odd
(21, —22, —23, 24), B odd

(e,v,€) (21,—22) (21, —22, —23, 24), a 0odd
(=21, 29, 23, —24), B odd

(e,v4,€) (—z1,—22) (—21, —29, —23, —24)

(e,e,T) (21, 22) Y(21, 29, 23, 24)

Table 2.4: The Action of the Generators of (Dg x 1L£) x Z,

Action on C?® Action on C°

9 g(z1, 22, 23) 9(21, 22, 23, 24, 25, 26)
(ree) (%,7,%) (22,7, 71, %, %6 21)
(s,e,e) €(z2,71,73) €(26, 25, 24, 23, 22, 21)
(e,v1,€) (=21, 22, —23) (—z1, —29, 23, — 24, 25, —26), @ odd
(21, — 29, —23, 24, —25, —26), 0 odd
(—21, 29, —23, —z5,26), @ and [ odd
(e,v9,€) (—21,—292,23) (21, —22, —23, —2z5, 26), @ odd
(—21, 22, —23 z4,z5,—z6) S odd
(=21, — 22, 23, 24, — 25, —26), @ and  odd

(67677-) w(ZhZZaZ?;) 1/1(21,22723724725,26)

2.3 Fixed-point Subspaces

Having calculated both the actions of the group elements and the full list of

possible subgroups by conjugacy class we combine the two to discover the
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fixed-point subspace of each subgroup and its dimension. This is shown in
Tables 2.5 and 2.6.

Table 2.5: Shifted Subgroups and their Fixed Point Subspaces for the Square
Lattice Cy

Shifted Subgroup

Fixed point subspace

=7
8
=
5

20

21

22

23

24

25

1

N

Zy[(r,e,€)]

4

Z3[(r?%,e,e), (s,e,¢€)]
Z3[(r?,e,e), (s,v1,¢€)]
Z3[(r?,e,e), (s,v4,€)]
Z3[(r?,e,e), (s,e,7)]
Z3[(r?%e,e), (s,v1,7)]
Z3[(r?,e,e), (5,04, T)]
Z3[(r?,e,7), (s,e,€)]

Z3[(r?,e,7), (s5,v1,€)]

Z%[(T2; 677—)7 (vadae)]

Z3[(r?,e,e), (e,e,7)]

C4

z2=Z

C* when ¢ = +1
0 when ¢ = —1

z =72 when ¢ = +1
Re(z) =0 when ¢ = —1
21 = €Z4,29 = €23

21 = —€Z4,22 = €Z3

21 = €23,29 = €24

z1 = €YZy, 20 = €YZ3

21 = —€Z4, 22 = €73
21 = €YZ3, 20 = €2y

2] = 22,23 = 24,2 = 2

21 =Yz2,23 = V24,2 =72

21 = €24,%2 = €23,2 = Z

21 = —€Z4,29 = €23,2 = Z
2] = —€Z4,29 = —€23,2 = Z
21 = €2y, 20 = €23, 2 =Z
21 = —€Z4,29 = €23,2 = Z
21 = —€Z4,29 = —€23,2 = Z

21 = €24,29 = €23,2 = 2z When ¢ = +1

21 = €24, 20 = €23, Re(z) = 0 when ¢p = —1

Z1 = —€z4,20 = €23,2 = Z when 1 = +1

21 = —€24, 29 = €23, Re(z) = 0 when ¢ = —1
21 = —€z4,20 = —€23,2 =z when ¢ = +1

21 = —€24, 20 = —€23, Re(z) = 0 when ¢p = —1

2] = €23,%2 = €24,2 = Z

21 = €z3, 20 = €2y, 2 = Z

21 = €23,29 = €24,2 = 2z When ¢ = +1

21 = €23, 29 = €z4, Re(z) = 0 when ¢p = —1

z =% when ¢ = +1

NN NN NN DN DN DNDNDDNDNDNDNDNDNDNDN & R R R s RO 0 R
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Table 2.5: Shifted Subgroups and their Fixed Point Subspaces for the Square
Lattice C4

Shifted Subgroup Fixed point subspace dimFix
0 when 9 = —1 0
26 Z3[(s,e,e), (e,e,7)] 21 = €Z4, 29 = €23 when ¥ = +1 4
0 when ¢ = 41 0
27 Z3[(s,v1,e),[(e,e, 7)) 21 = —€Z4, 29 = €Z3 when ¢ = +1 4
0 when 9 = +1 0
28 Z3[(sr,e,e), (e e, 7)) 21 = €23, 29 = €z4 When 1) = +1 4
0 when ¢ = —1 0
29 Zy[(r,e,e)] x Zs|(e, e, 7)) 21 = 22,23 = 24,2 = Z when ¢ = +1 2
0 when ¢ = —1 0
30 Z3[(r?,e,e), (s,e,€),(e,e,T)] 21 = €z4,20 = €23,2 = Z when ¢ = +1 2
0 when ¢ = —1 0
31 Z3[(r?,e,e), (s,v1,¢), (e,e,7)] 21 = —€z4, 20 = €23,2 = Z when ¢ = +1 2
0 when ¢ = —1 0
32 Z3[(r?,e,e), (s,v4,¢), (e,6,7)] 21 = —€z4, 20 = —€23,2 = Z when ¢ = +1 2
0 when ¢ = —1 0
33 Z3[(r? e,e), (sr,e,e), (e,e,T)] 21 = €23,22 = €24,2 = Z when ¢ = +1 2
0 when ¢ = —1 0
34 Dyl(r,e,e), (s, e e)] 2] =29 = €23 = €24, 2 = 2 1
35 Dyl(r,e,e),(s,v4,e€)] 2] =29 = —€23 = —€24,2 = Z 1
36 Dy[(r,e,e),(s,e,1)] 21 =23 = €z3 = €Y24,2 =Z 1
37 Dyl(r,e,e), (s,vq,7)] 21 =29 = —€z3 = —ePz4,2 = Z 1
38 Dyl(r,e,7),(s,e,e)] 21 =Yzo = P23 = €24,2 =2 1
39  Dyl(r,e,7),(s,v4,e€)] 21 = Yzo = —€hz3 = —€24,2 = Z 1
40 Dy[(r,e, 1), (s,e,7)] 21 = zg = €23 = €Y24,2 = Z 1
41  Dy[(r,e, 1), (s,v4,T)] 21 =z9 = —€23 = —€z4,2 =2 1
42 Dy|(r,e,e), (s, e, e)] 21 = 79 = €23 = €24,2 = Z when ) = +1 1
xZs[(e, e, 7)) 0 when ¢ = —1 0
43 Dy[(r,e,e), (s,v4,€)] 21 = 29 = —€23 = —€24,2 = Z when ¢ = +1 1
xZs(e, e, )] 0 when ¢ = —1 0
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Table 2.6: Shifted Subgroups and their Fixed Point Subspaces for the Hexag-

onal Lattice Cg.

Shifted Subgroup Fixed Point Subspace dimFix

1 1 (o 12
Zs[(r3,e,€)] z2=%Z 6

3 Zsl(e, e, 7)) CS when 1 = +1 12
0 when ¢ = —1 0
4 Zs[(r3,e,7)] z=7% when ¢ = +1 6
Re(z) =0 when ¢ = —1 6
5  Zs[(s,e,¢)] 21 = €26, 20 = €25,23 = €24 6
6 Zy[(sr®, e e) 21 = €Zg, 29 = €Z5,23 = €24 6
T Zs(s,e,T)] 21 = elzg, 20 = €z5, 23 = €2y 6
8  Zy(srd e, 7)) 21 = €YZg, 22 = €YZ5, 23 = €2y 6
9 Z3[(r? e e)] 21 = 29 = 23,24 = 25 = 2¢ 4
10 Z3[(r3,e,e), (e, e,7)] z =% when ¢ = +1 6
0 when ¢ = —1 0
11 Z2[(r3,e,e), (s,¢e,¢)] 21 = 29 = 23,24 = 25 = 26,2 = % 2
12 Z2[(r3,e,¢), (s,6,7)] 21 = €z, 20 = €z5,23 = €24, 2 = Z 3
13 Z2[(r3,e,7), (s,e,¢€)] 21 = 23 = 23,24 = 25 = 26,2 = Z when ¢y = +1 2
21 = 29 = 23,24 = 25 = 26, Re(z) = 0 when ¢ = —1 2
14 Z2[(r3,e,7), (s,€,7)] 21 = €zg, 20 = €25, 23 = €24,z = Z when 1) = +1 3
21 = ez, 20 = €25, 23 = €hzq, Re(2) =0 when p = -1 3
15 Z3[(s,e,e), (e,e,7)] 21 = €zg, 20 = €25,23 = €24 when ¢ = +1 6
0 when ¢ = —1 0
16 Z3[(sr3,e,¢), (e,e,T)] 21 = €Zg, 20 = €25, 23 = €24 when ¢ = +1 6
0 when ¢ = —1 0
17 Zg[(r, e, e)] 21 =29 = 23,24 = 25 = 26,2 = Z 2
18  Zg[(r,e,7)] 21 =29 = 23,24 = 25 = 26,2 = Z when ¢ = +1 2
0 when ¢ = —1 0
19 Zg[(r? e, 7)) 21 = 29 = 23,24 = 25 = 2 when ¥ = +1 4
0 when ¢ = —1 0
20 Ds[(r% e e), (s,e,¢)] 2] =29 = 23 = €24 = €25 = €25 2
21 D3[(r?%,e,e), (sr, e, €)] 21 = 29 = 23 = €24 = €Z5 = €Zg 2
22 Ds[(r% e e), (s,e,7)] 21 = 23 = 23 = €z4 = €Pz5 = €z 2
23 Ds[(r?,e,¢), (sr,e,7)] 21 = 29 = 23 = €YZy = €YZ5 = €Zg 2
24 Z3[(r3,e,e),(s,e,e), (e,e,7)] 21 = €z6,20 = €25,23 = €24,2 = % 3
25  Zg[(r,e,e)] x Zs[(e, e, 1)] 21 = 79 = 23,24 = 25 = 26,2 = Z when ¢ = +1 2
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Table 2.6: Shifted Subgroups and their Fixed Point Subspaces for the Hexag-

onal Lattice Cg.

Shifted Subgroup Fixed Point Subspace dimFix
0 when ¢ = —1 0
26  Dg[(r,e,e),(s,e,e)] 21 = 29 = 23 = €24 = €25 = €26,2 = % 1
27  Dgl(r, e, e), (s,e,7)] 21 =29 = 23 = €24 = €z5 = €Y26,2 = Z 1
28  Dg[(r,e,7), (s,e,€)] 2] =29 = 23 = €24 = €25 = €%5,2 = Z when ¢ = +1 1
0 when ¢ = —1 0
29 Dg[(r,e, 1), (s,e,7)] 21 = 79 = 23 = €24 = €25 = €2¢,2 = Z when ¢ = +1 1
0 when ¢ = —1 0
30 Dgl(r?,e,7),(s,e,€)] 2] = 29 = 23 = €24 = €25 = €2 when ¢ = +1 2
0 when ¢ = —1 0
31 Dg[(r%e,7), (sr, e ¢e)] 21 = 79 = 23 = €24 = €25 = €Zg when ¢ = +1 2
0 when ¢ = —1 0
32 Dgl(r,e,e), (s, e, e)] 2] =29 = 23 = €24 = €25 = €26,2 = Z when ¢ = +1 1
xZs[(e, e, 7)) 0 when ¢ = -1 0

2.4 Equivalent Cases

It can easily been seen in Tables 2.5 and 2.6 that there are 10 subgroups
in the square lattice case with a one dimensional fixed-point subspace and
5 in the hexagonal case. However, while the subgroups may be different,
Tables 2.7 and 2.8 show that many of the fixed-point subspaces associated
with these subgroups are actually the same. In the square case there are two
possible patterns for each of the four representations, while it may at first
glance seem as though there are more than this for the two representations
where ¢ = —1 all cases with any combination of two +1s and two —1s are
actually equivalent and will produce translations of the same pattern. In the

hexagonal case it is easy to see that there is only one pattern for the two

cases where 1 = +1 and two patterns for each of the cases where v = —1.



2. EQUILIBRIUM SOLUTIONS FROM 2ND REPRESENTATIONS 57

Table 2.7: Fixed-point Subspaces for the Square Lattice

Case Q" Q™ Q+ Q
34 1111 1,111 1,1-1-1 1,1-1-1
35 11-1-1 11-1-1 11,11 1,11,
36 1,111 11-1-1 1,1-1-1 1,1,1,1
37 11-1-1 11,11 11,11 1,1-1-1
38 1,111 1-1-1,1 11-1-1 1-1,1-1
39 11-1-1 1-1,1-1 1,1,1,1 1-1-1,1
40 1111 1-1,1-1 1,01-1-1 1-1-1,1
41 11-1-1 1-1-11 1,111 1-1,1-1
42 1,111 1,1,-1-1
43 1,1-1-1 1,1,1,1

2.5 Phase Portraits

All that remains is to plot the phase portraits. We will plot a director field
that for each point in a square subset of R? will draw a unit length line in
the direction of the eigenvector associated with the largest eigenvalue of the
following real matrix.

Q=CQo+ 52 2K CQFE(K) T 4 e 0 small

J=1

where Qg is one of the two matrices representing the trivial states, either
homeotropic or planar isotropic, and ¢ is small since we are looking for
patterns close to these two trivial states. Given that we are plotting lines of
unit length in R? on a 2 dimensional plane those directors that lie flat within
the zy plane will appear to be of unit length, those directors that in any way
point out of the plane will appear proportionally shorter according to how

much they deviate from the zy plane and vertical lines will appear simply as
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Table 2.8: Fixed-point Subspaces for the Hexagonal Lattice

Case Qtt Qt~ Q Q
2% 111,111 111,111 111-1-1-1 1,1,1-1-1-1
97 1LL11,1,1 11,1-1-1-1 1,1,1-1-1-1 1,1,1,1,1,1
28 1,1,1,1,1,1 1,1,1-1-1-1
29 1,1,1,1,1,1 1,1,1-1-1-1
32 1,1,1,1,1,1 11,1-1-1-1

o8

points. With this in mind it is immediately obvious that we will not get any

pictures for the two cases where ¢ = +1 bifurcating from the homeotropic

state since all the lines are pointing straight up to start with and as Q"

is invariant under conjugation by 7 they will stay pointing straight up, any

deviation from the vertical is only possible when ¢ = —1. We will however

get pictures for these two cases bifurcating from the isotropic state since all

the molecules will stay flat within the xy plane. It is important to note that

not all points are necessarily vertical lines, a point can also mean that there

is a double maximum eigenvalue and therefore no definite direction.
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patterns shown when o = 2

Y

Square Lattice Patterns for e = +1

Figure 2.1

and § =1

Case 35 for Q**, bifurcating from isotropic state

Case 34 for Q**, bifurcating from isotropic state
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Case 34 for Q"7 bifurcating from isotropic state
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Case 35 for Q*7, bifurcating from homeotropic state

Case 34 for Q*7, bifurcating from homeotropic state
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Figure 2.2: Square Lattice Patterns for ¢ = —1; patterns shown when o = 2

and § =1
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Case 35 for Q %, bifurcating from isotropic state
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Case 26 for Q**, bifurcating from isotropic state
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Figure 2.3: Hexagonal Lattice Patterns for e

a=3 and =2
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Figure 2.4: Hexagonal Lattice Patterns for ¢ = —1; patterns shown when

a=3 and =2

Case 26 for Q %, bifurcating from isotropic state

€

39
/
==\
)
S
NS
4

)
4

s
=g
Z

=

K
NN
/

{

E

=
=

]

7\

7
N
N

/
/ﬁ/

]
N
&
=

N
3

S=X
7
\ } e
e

[T
Y
5
N/
=<
)
[~ -

=
Z)
Z

)

{

%

S
&
N
>
o
]

]
)
-
)

=
=
=

\
{]
>
(

]

N\
>
/
&
o
>
/
)

§<
//

\N\—"

=

a0
ML

4
e
&

<
)
§

P2l

S
>
=\

2
=

»

>
(

0N
=
)
—

)
J
N

\
=
i (5

—

R
>
£
%
3>

7
)
7
s
S

—

{

(S
N
B

@)

"

=
)
/-

)

it

{

\
7
\

)

N )=
N
Z.

.
o’

-

>

\

J

&

/|

{

>

N

J

/

{

N/

—

)

—\
\\\/j?) =
<<<g

7
\

)

N« =

Y

<\

i

L

N
»

NN

— [\
=
>

{

-

=
r

N\

D

—

)
"
S

N
\
)
\
7

SN

)

7)
&

=\
7

~)

o

-

s

|

{

(s
AN
~

{

\

N

|

)

!

=4

)

%
—

\

=3

)

—
S
AN
7

|

>
o
\k/

=
—

S

SN
)

X

{

>
N\

7

~ 7

)

NS\
=

Ny

o)

N

)

7

|

N

&

—
s
N

\
{

-

SR
/jz Z

e

N\

.

S~

=

e
\
=)

>

/NS
N
N

/

S
7

(&

=

)

/
\\\\L |

N\

|

/:

(

}

\\<

\

/

o
N

=
i//
G

N
e

I

=

- <

A

)
=4

R

)

)

2
S

77—
N
N
o
A

{

>

7

)

-1

)

N W H NS
0.5

[

{

15}
1
0.5F
0

-0.5-

-1

-1.5

15

-05

-15

Case 27 for Q7 bifurcating from isotropic state

Case 26 for Q ", bifurcating from isotropic state
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Case 27 for Q" bifurcating from homeotropic state

Case 26 for Q, bifurcating from homeotropic state
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3

Hopf Bifurcation and Group
Theory Methods

In Chapters 3 and 4 we will look for patterns that are not only spatially
doubly periodic but also time periodic. Again we start with our system of

differential equations:

9Q
= = FQN) (3.1)

A solution of (3.1) is periodic of period p if there exists p > 0 such that
Q(t, )\0) = Q(t + p, )\0) forall t € R [67]

A Hopf Bifurcation is a bifurcation where a family of periodic orbits bi-
furcates from a path of equilibria. A Hopf bifurcation is called subcritical
when an unstable periodic orbit shrinks toward a stable fixed-point at the
origin and vanishes with the origin becoming unstable as A passes through
zero, and supercritical when the origin is a stable fixed-point that becomes
unstable and throws off a stable periodic orbit as A passes through zero [42],
see Figure 3.1. The Hopf bifurcation is explained in more detail over the

next few pages.

63
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Figure 3.1: Hopf Bifurcation Diagrams
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In a similar way to finding the equilibrium solutions by finding isotropy
subgroups with fixed-point subspaces of dimension one, when looking for
Hopf bifurcations the Equivariant Hopf Theorem tells us that generically we
will find a periodic solution with symmetry group > whenever dimFix¥ = 2.
However, in this case rather than looking for subgroups of I' we need to find
isotropy subgroups of the group I' x S' where the S! accounts for the time

periodicity.

3.1 The Equivariant Hopf Theorem

The following explanation is in terms of our particular model; for a more

general version see [32]
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3.1.1 The Hopf Bifurcation Theorem

Consider our system of differential equations (3) % =F(Q,\)
where F: @ x R — Q is C°° and A\ is the bifurcation parameter.

Suppose that:
F(Qo, )\) =0

so Q = Qg is a steady state solution for all A

A one-parameter family of periodic solutions to (3.1) emanating from (Q, \) =

(Qo,0) can be found if two hypotheses on F are satisfied.
Let Ly = (dF)(g,,» be the linearization of F along steady state solutions.

First Hopf Assumption
Lo has simple eigenvalues =i

Lo has no other eigenvalues lying on the imaginary axis

Ly has simple eigenvalues of the form o(\) £ iw(\), where o(0) = 0,

w(0) =1, and o and w are smooth.

Second Hopf Assumption

We assume that o/(0) # 0, that is the imaginary eigenvalues of L, cross the

imaginary axis with non-zero speed as A crosses zero.

Theorem 3.1.1. (The Hopf Bifurcation Theorem) [/8] [2] [36]
If the first and second Hopf assumptions both hold, then there is a one-

parameter family of periodic solutions to (3.1) bifurcating from Q.

For a translation of Hopf’s 1943 paper [36] see [45].
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3.1.2 The Equivariant Hopf Theorem

The Equivariant Hopf Theorem enables us to find periodic solutions with

symmetry. First we introduce the idea of a space being I'-simple.

Definition The vector space W is I'-simple if either:
1) W=V @&V where V is an absolutely irreducible representation of I", or
2) G acts irreducibly but not absolutely irreducibly on W [30].

The I'-simple representation for Hopf bifurcation is the equivalent of the
absolutely irreducible representation for steady-state bifurcation. This leads

to the following lemma:

Lemma 3.1.2. Generically a Hopf bifurcation is supported by a finite-dimensional

" -simple representation. See [30].

In a Hopf bifurcation with no symmetry a pair of simple eigenvalues +w1
cross the imaginary axis at the bifurcation point. In a Hopf bifurcation with
symmetry we expect these eigenvalues to each have multiplicity m, so the
+wi eigenspace has dimension 2m. Again, without a lattice the eigenspace
would be infinite dimensional, hence we restrict ourselves to a lattice to en-

sure a finite dimensional eigenspace.

As with the steady-state bifurcation we can reduce the original system of

PDEs %—? = F(Q,\) to a system of ODEs % = f(Q1,A). In this case
Qi € Q; where Q; is the fwi eigenspace of Ly = (dF)(g, . This is

different from the steady-state case where Q; € kerL.

Theorem 3.1.3. (Equivariant Hopf Theorem)

Let T be a compact Lie group acting ' -simply on O,

Assume that f: Q1 x R — Qp is I'-equivariant. Then f(Qo,A) = 0 and
there exist real functions o(A\) and w(\) such that the eigenvalues of df |(q,,0)
are o(X) £iw(\) each of multiplicity m and, after time rescaling, w(0) = 1.

We also assume that there is a non-degenerate bifurcation at A = 0, meaning
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c(0) =0 and o1(0) #0.
Then there exist branches of periodic solutions of period close to 27w having

isotropy subgroups ¥ C T' x St whenever dimFix(X) = 2.

For proof of the Equivariant Hopf Theorem see [30, p91].

In our case we are dealing with the group I' = (H x T?) x Z, acting on
the space V', where V is the real part of the eigenspace corresponding to
the eigenvalue 7, so for a Hopf bifurcation we look at the group I' x S! acting
on the space V &V = Q. This action can be more easily imagined if it is

described as the action of I' x S! on V ® C defined by

(7,0)(v® 2) = (y0) ® (e7"2)

where v € V,z € C,v € T',6 € S' [32]. This eigenspace is generated by

expressions of the form

Q _ Z Zje2m'(Kj-x+t)Qj + wj€2m'(ij-x+t)Qj + cec.
j=1
where the K;s are given in Table 1.2. Here Q; = K;Q**(K;)™", K; is the
matrix giving the rotations through ¢ in the xy plane and ¢ is the angle

K; makes with the positive x axis.

3.2 Wave Pairs and Trace Formulae

In Chapter 2 we managed to find the axial isotropy subgroups of I" by in-
spection, simply listing all the possible subgroups by conjugacy class and
checking which had dimFix(3) = 1. See Section 1.2.1 for a reminder of the
group theory definitions. Finding the isotropy subgroups of I' x S! with
dimFix(X) = 2 by inspection would be an arduous task and would most
likely result in several cases being overlooked. However, there is a group

theory method we can use to make the problem much more manageable.
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This method is taken from the paper by Dionne et al [21], though the actual
calculations will differ from those in that paper given that I' in our case has

an extra copy of Z,.

3.2.1 Wave Pair

The symmetries of a time-periodic solution in x, are described by a pair of
subgroups K C G of I', where the elements of G map the periodic trajectory
in phase space onto itself and the elements of K fix the periodic trajectory
pointwise [21]. The Subgroup ¥ C I' x S! can be identified with this pair of

subgroups as follows.
e K=XNT
e G =7r(X) where 7 : ' x S — T is the projection.

Y has the form of a twisted subgroup [32] G® meaning, since S! acts ir-
reducibly on C", there exists a unique homomorphism © : G — S! such
that

Y =G°={(9,0(G)) eI xS' | g€ G}

which gives us

o K =ker(0)

e O(G)=G/K.

We call (G, K) in each case a wave pair [21] and by finding these wave pairs

we can find the relevant isotropy subgroups. To summarize:

Definition The normalizer of a subgroup H in G, written Ng(H) or just
N(H) if G is assumed, is defined as

Ne(H)={geGlg"'Hg=H}
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Definition The pair of subgroups (G, K) of I' forms a wave pair if
e K is a shifted subgroup of T’
e K CG and G/K is a Lie subgroup of S!
e G/K is a maximal Abelian subgroup of Np(K)/K [2§]

where Np(K)={y €Tl |yK~y™' = K} is the Normalizer of K in T

If G/K is cyclic the corresponding solution is called a discrete wave, often,
though not always, producing a standing wave pattern. If G/K = S! the
solution is called a rotating wave: these solutions correspond to travelling

waves in R? and rotating waves in T? [21].

3.2.2 Trace Formulae

We use these wave pairs to find where dimFix Y = 2 by applying the trace

formula.

Theorem 3.2.1. Let G be a compact Lie group acting on V and let ¥ € G
be a Lie subgroup. Then

dimFix(X) = / tr(o),0 € ¥
>

where [ denotes the normalized Haar integral on ¥ and tr(c) is the trace

of ps where p is the linear mapping p, : © — gz [32].

From Theorem 3.2.1 the list of individual formulae shown in Table 3.1 can be
derived, [32]. We can apply these formulae to the dimension of the fixed-point

subspaces of the wave pairs to calculate dimFix(X).

3.3 Extra Lattice Notation

We introduce some extra lattice notation that will simplify our efforts to

describe the normalizers of the shifted subgroups.
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Table 3.1: Trace Formulae

G/K dimFix(GO)
| 2 dimFix(G)
Z, 2(dimFix(K) — dimFix(G))
Z: dimFix(K) — dimFix(G)
74 dimFix(K) — dimFix(M)
where K C M C G and |G/M| =2
Zs dimFix(K) — dimFix(M) — dimFix(L) + dimFix(G)

where K C M C G,|G/M|=2,K C L C G and |G/L| =3

For the hexagonal lattice we will use the vector v, = %ll + %lz that gen-
erates Zs [21].

Other notation we will use, also from [21] is as follows. If ¢ is a reflec-
tion belonging to the holohedry H, then the eigenvalues of p(g) given by

the natural representation are +1 and —1. We define two circles in T?
E*(g) = the projection of the +1 eigenspace into T2

E~(g) = the projection of the —1 eigenspace into T2

For each vector w € R? we can write w = w +w~ where w' € E(g) and
w- € E(g).
Next we define subsets of T? by

F*(g) = {v e T?gv = v}

F~(g) = {v € T?|gv = —v}.



3. HOPF BIFURCATION AND GROUP THEORY METHODS 71

Calculating these subsets for the square lattice gives us:

When ¢ = s, the reflection in the x axis,
E*(s) = {al;]a € R}

E~(s) ={als]Ja € R}

and
Fr(s) = {(z,y) € T0 <z < L,y =0 or y — %} _ E*(s) @ Zo[wa]
F(s)={(z,y) e T?0<y<l,r=00rx = %} = E7(s) ® Zy[v1].
When g = rs, the reflection in the diagonal line z =y,
E*(sr) ={a(ly + L)|a € R} = F*(sr)

E~(sr) ={a(ly — lb)|a € R} = F~(sr).

Next we consider the same for the hexagonal lattice, where g = s, the

reflection in the z axis.
E*(s) = {al|a € R} = F*(s)

E~(s) = {—2al; + alsJa € R} = F*(s).

3.4 The Method

We now have all the tools we need to find those isotropy subgroups that will

give a Hopf bifurcation.

Step 1 List all shifted subgroups K € I'" up to conjugacy in I' and find

their normalizers.



3. HOPF BIFURCATION AND GROUP THEORY METHODS 72

Step 2 Find all subgroups G € I' such that subgroups K and G form a

wave pair in I".

Step 3 For each translation-free irreducible representation of I', deter-
mine those wave pairs that correspond to twisted subgroups G© such that
dimFix(G®) = 2. Recall from Chapter 1 that if the representation is not

translation free we can use a smaller lattice.

Step 4 For each wave pair find the action of the generators of > and its

fixed-point subspace.

Step 5 Plot the phase portraits. This will be done in Matlab.



4

Periodic Solutions

4.1 Shifted Subgroups and their Normalizers

We have already found all the shifted subgroups of Ty = (H; x T?) x Zy
by conjugacy class in Chapter 1; these results are shown in tables 2.1 and
2.2. Recall from Section 3.3 we will be using some extra lattice notation to
describe the normalizers. It is helpful to calculate the action of v;, shown in
Table 4.1, note that the action of v; commutes with every other element in
C? but in C® it commutes only with the other translation elements v; and

Vg .

Table 4.1: The Action of (e, v, e)

Action on C?* Action on C°
g 9(2172’2723) 9(21722723,24725,26)

(6, vy, 6) 6(2m’)/3(217 29, 23) e(2m’)/3(€f(a+5)zl’ 6(2a—ﬁ)227 e(fa+2ﬁ)z37

e(_2a+ﬁ) 247 e(a+ﬁ) 257 e(a_26)26)

From here it is easy to find the normalizers for them by referring to Dionne
et al, [21]. The normalizers in H; x T? of cases 1,2,5,6,7,11,13,14,15,22,34

73
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and 35 for the square lattice and cases 1,2,5,6,9,11,17,20,21 and 26 for the
hexagonal lattice are shown in [21]. Since the only difference between the
Dionne case and our case is the extra copy of Zs generated by 7, and since
7 commutes with every other element of the group, it is obvious that the
normalizer in ', for each of these cases will be the direct product of the
equivalent normalizer in the Dionne case and Zs[7]|. Also, the normalizer for
any case involving 7 will be the same as the normalizer for the case acquired
by simply ignoring any occurrences of 7. The shifted subgroups and their

normalizers are shown in Tables 4.2 and 4.3.
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Table 4.2: Shifted Subgroups and their Normalizers in I' for the Square

Lattice.
Shifted Subgroup Normalizer

1 1 T
2 Zs(r? e, e)] (D4[(r,e,¢), (5,e,e)] X 5L) x Zs[(e,e,T)]
3 Zs(e e, 7)) r
4 Zs[(r?, e, 7)) (Dy[(r,e,e), (s,e,e)] X %E) x Zs[(e, e, T)]
5  Zs[(s,e,€)] Z3[(r?,e,e), (s,e,e), (e,e,T)] x F*(s,e, e)
6 Zs(s,v1,€)] Z3[(r?,e,¢e), (s,e,¢€), (e,e,T)] X FT(s,e,e)
T Zs[(sr e, e)] Z3[(r% e, e), (sr,e,e), (e,e,7)] x ET(sr,e,€)
8  Zs[(s,e, 1) Z3[(r?,e,e), (s,e,e), (e,e,T)] x F*(s,e, e)
9  Zs(s,v1,7)] Z3[(r?,e,e), (s,e,e), (e,e,T)] x F(s,e, e)
10 Zs[(sr,e, 7)) Z3[(r?,e,¢e), (sr,e,e), (e,e,7)] X Et(sr,e,e)
11 Zy[(r,e,€)] Dy[(r, e e), (s,e,¢e)] x Z3[(e,va,€), (e, e,7T)]
12 Zy4[(r,e, 7)) Dy[(r,e,e), (s,e,e)] x Z3[(e,va, €), (e, e,7T)]
13 Z2[(r% e e), (s,¢e,¢)] (Dyl(r,e,€), (s,e,€)] X %ﬁ) x Zs|(e, e, T)]
14 Z2[(r% e e), (s,v1,€)] Z3[(r?,e,e), (s,e,¢€), (e,e,T)] x %E
15 Z2[(r% e, e), (s, v, €)] (Dyl(r,e,e), (s,e,€)] X %,C) x Zs|(e,e,T)]
16 Z2[(r% e e), (s,6,7)) (Dy[(r,e,e), (s,e,e)] X %L) x Zs[(e, e, T)]
17 Z23[(r%,e,e), (s,v1,7)] Z3[(r?,e,e), (s,e,¢e), (e,e,T)] x %E
18  Z2[(r% e e), (s,v4,7)] (Dyl(r,e,e), (s,e,€)] X %L‘) x Zs|(e, e, )]
19 Z2[(r%e,7),(s,¢,¢€)] (Dyl(r,e,e), (s,e,€)] X %/.:) x Zs|(e, e, )]
20  Z3[(r% e,7),(s,v1,¢)] Z3[(r?,e,e), (s,e,¢e), (e,e,T)] x %E
21 Z3[(r% e,7),(s,v4,¢€)] (Dyl(r,e,€), (s,e,€)] X %C) x Zs|(e, e, 7)]
22 Z3[(r% e,e), (sr,e,¢)] Dy[(r,e,e), (s,e,e)] x Z3[(e,va, €), (e, e,7)]
23 Z3[(r% e,e), (sr,e,7)] Dy[(r, e e), (s,e,e)] x Z3[(e,va,€), (e, e,7T)]
24 Z2[(r% e, 7), (s, €,€)] Dy[(r,e,e), (s,e,e)] x Z3[(e,vq,€), (e,e,T)]
25 Z3[(r% e,e), (e,e,7)] (Dyl(r,e,€), (s,e,€)] X %L) x Zs|(e, e, )]
26 Z3[(s,e,e), (e,e,7)] Z3[(r2,e,e), (s,e,€), (e,e,7)] x FF(s,e, e)
27 Z3[(s,v1,e),[(e,e,7)] Z3[(r?,e,e), (s,e,¢€), (e,e,T)] X FT(s,e,e)
28  ZZ2[(sr,e,e), (e, e, 7)) Z3[(r% e, e), (sr,e,e), (e,e,7)] x ET(sr,e,e)
29 Zy[(r,e,e)] x Zs|(e,e,T)] Dy[(r,e,e), (s,e,e)] x Z3[(e,va, €), (e, e,T)]
30 Z3[(r?% e,e), (s,e,€),(e,e,7)]  (Da[(r,e,e), (s,e,€)] x L) x Zs[(e,e,T)]
31 Z3[(r?,e,e), (s,v1,e), (e,e,7)]  Z3[(r% e,e),(s,e,¢), (e,e,7)] X %E
32 Z3[(r% e e),(s,va,€),(e,e,7)]  (D4[(r,e,e),(s,e,e)] X 1£) x Zs[(e, e, T)]
33 Z3[(r?,e,e), (sr,e,e), (e,e,7)]  Dy[(r,e,e), (s e, e)] x Z2[(e,vq,€), (e,e,T)]
34 Dy|(r,e,e), (s, e, e)] Dy[(r,e,e), (s,e,e)] x Z3[(e,va, €), (e, e,7)]
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Table 4.2: Shifted Subgroups and their Normalizers in I' for the Square

Lattice.

Normalizer

Shifted Subgroup
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Table 4.3: Shifted Subgroups and their Normalizers in I' for the Hexagonal

Lattice.

Normalizer

Shifted Subgroup
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4.2 Wave Pairs

In order for a wave pair to exist in each case we need to find a G that satisfies
the conditions described in 3.2 for each shifted subgroup K. We do this by
looking for maximal abelian subgroups of N(K)/K that are either cyclic
or isomorphic to S'. In some cases there is more than one possibility for

N(K)/K, but since they all result in the same wave pair only one is shown.

Rule 1 Since 7 commutes with every other element of I, any case where
Zs[(e,e,7)] € N(K)/K will not produce any wave pairs because for every

other abelian subgroup H # Z[(e,e,7)|, H C H x Zs[(e,e, )] which will

also be abelian and therefore H cannot be maximal abelian.

4.2.1 Square Lattice Wave Pairs

The quotient group Dylr, s]/Zs[r?] is not a subgroup of Dy[r, s|, we introduce
the following notation to allow for this.

Hy = Dylr, s]/Zs[r?] = {{e,r*}, {r,r3}, {s, sr?}, {sr, sr3}} = Z2

Hyy = Dy[r, s|/Z3[r?, s] = {{e,r?, s, sr*}, {r,r®, sr,sr3}} 2 Zy

Hys = Dy[r, s|/Z3[r?, sr| = {{e, 72, sr,sr3}, {r,r3, sr% s}} 2 Zy

Cases without wave pairs The following cases do not have corresponding

wave pairs because of Rule 1 above.

Case N(K)/K

1 T

2,4 (Hu1 % 3L) x Zo[(e,e,T)]

5,6,8,9 Z3[(r%,e,e), (e,e,7)] X F(s,e,e)
7,10 Z3[(r?%,e,e), (e,e,7)] x ET(sr,e,€)
11,12 Z3[(s,e,€), (e,vq4,€), (e,e,T)]
13,15,16,18,19,21 (Hao X 3L) X Zs|(e, e, 7)]

14,17,20 1L x Zy|(e e, )]

22,23,24 Hj x Z3[(e,vq,€), (e,e,7)]

34,35,36,37,38,39,40,41  Z3[(e,vq, ), (e, e, T)]
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Case 3

N(K)/K =Dy x T?

The element (e,vg,e) in T? in commutes with everything so for any abelian
cyclic subgroup H # Z[(e,vq,€)], H C H X Zs[(e,vq,€)] which will also be
abelian and therefore H cannot be maximal abelian, in the same way as rule

1 works for the element (e, e, 7).

Case 25
N(K)/K = Hy X %E
Hy =2 72 and %ﬁ are both maximal abelian but not cyclic therefore there

are not wave pairs for this case.

Cases 26 and 27

N(K)/K = Zs[(r? e, e)|x Ft(s,e,€) = Zs[(r?, e, )| (ET (s, e, €)X Zs[(e, va, €)])
(e,v2,e) commutes with (72, e,e) and ET(s,e,e), but (r? e, e) and E*(s,e,e)
do not commute with each other. This give us two maximal abelian sub-
groups, Z2[(r% e, e), (e,v2,¢€)] and ET(s,e,e) x Zs[(e, v2, €)] neither of which

is cyclic, therefore there are no wave pairs for this case.

Case 28

N(K)/K = Zs[(r* e, e)] x ET(sr,e,e)

This is not abelian. However both Z[(1?, e, ¢)] and E*(sr, e, e) are maximal
abelian and cyclic, therefore there are two possibilities for G and two wave

pairs for this case.

Case 29
N(K)/K = Z%[(Sv €, 6)7 (67 Vd, 6)]
This is maximal abelian but not cyclic, therefore there are no wave pairs for

this case.
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Table 4.4: Wave Pairs for the Square Lattice.

K G G/K
28a  Z3[(sr,e,e), (e,e,7)] Z3[(r?,e,¢e), (sr,e,¢€), (e,e,T)] Zy[(1?,e,¢€))
28b  Z3|[(sr,e,e), (e,e,T)] Z3((sr,e,e), (e,e,7)] x ET(sr,e,€) E*(sr,e,e)
30 Z3[(r% e e), (s,e,€), (e,e,7)]  Dyl(r,e,e), (s, e e)] x Za[(e, e, 7)) Hyy 27y
32 Z3[(r% e e), (s,v4,€), (e,e,7)] Duy(r,e,e), (s,v4,€)] x Za[(e,e,T)] Hyy =27y
42 Dy[(r,e,e),(s,e,€)]x

Zs[(e,e,7)]) Dy[(r,e,e), (s,e,e)] x Z3[(e,vq,€), (e,e,T)] Zs(e,vq,€)]
43 Dy[(r, e, e), (s,v4,€)]x

Zs[(e,e, 7)) Dy[(r, e, e), (s,vq4,€)] x Z3[(e,vq,¢), (e,e,7)]  Zz|(e,vq,e€)]

Cases 30 and 32

N(K)/K = Hyy X %E

(e,v1,e) and (e, v9, e) commute with each other but not with Hy,. This gives
us two maximal abelian subgroups, %ﬁ which is not cyclic, and Hyy = Zo

which is cyclic, giving us one wave pair for each case.

Case 31

1

7L

This is maximal abelian but not cyclic, therefore there are no wave pairs for

this case.

Case 33
N(K)/K = H43 X ZQ[(@, V4, 6)]
This is maximal abelian but not cyclic, therefore there are no wave pairs for

this case.

Cases 42 and 43
N(K)/K = Zs[(e,va, €)]

which is maximal abelian and cyclic.
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4.2.2 Hexagonal Lattice Wave Pairs

The quotient groups Dg[r, s|/Zs[r?] and Dg[r, s|/Z»[r?] are not subgroups
of Dy[r, s], we introduce the following notation to allow for this.
Hey = De[r, s1/Zo[r?) = {{e,r*}, {r, 2}, {r?, 72}, {s, 517}, {sr, sr%}, {572, sr°}} = Dy
Hgy = Dylr, s]/Zs[r?] = {{e,r2, 14}, {r, 73,19}, {5, 512, sr4}, {sr, s, 515} } =2 73
[r,s]/Da[r?,s] = {{e,r%, 74, 5,873, sr*}, {r, 13,15 sr,sr3 515} } =2 Zy
[r 5]

r,s]/D3[r?, sr] = {{e, 72,14, sr, 513 575}, {r,r3,r% sr? srt s} = Zy

Cases without wave pairs The following cases do not have corresponding

wave pairs because of Rule 1 above.

Case N(K)/K

1 r

2,4 (Hg1 %E) x Za[(e, e, 7))

5,7 Z3[(r3,e,¢e), (e,e,7)] x ET(s,e,€)

6,8 Z3[(r3,e,e), (e,e,7)] X E~(s,e,€)

9 Z3[(r3,e,e), (s,e,¢), (e,e,7)] X Z3[(e, vy, €)]
11,12,13,14  Z3[(e, vo,€), (e, e,7)]

17,18 Z3[(s,e,e), (e,e,7)]

20,22 Hgs x Zs[(e,e,T)]

21,23 Hgy x Zs(e,e,7)] x Zs[(e, vy, €)]

Case 3

N(K)/K = Dgl(r,e,e), (s, e,¢e)] x T?

T? is maximal abelian but not cyclic; (13, e,e) commutes with every reflec-
tion in Dg so none of them can generate a maximal abelian subgroup, which
leaves only one maximal abelian subgroup that is cyclic, Zg|r], giving us one

possible wave pair.
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Case 10

N(K)/K = Hgy x AL

(e,v1,€) and (e,vy,e) commute with each other but not with elements of
Hg,, therefore %E is maximal abelian, but since it is not cyclic it will not
produce a wave pair. Hg = D3[(r?,¢,¢e),(s,e,€)] is not abelian but the
groups Zs[(r? e, e)] and Zs[(s,e,e)] are both abelian and cyclic, and since
they commute with nothing else in the group they are both maximal abelian,

hence there are two possible wave pairs for this case.

Case 15

N(K)/K = Zs[(r3,e,e)] x ET(s,e,¢€)

This is not abelian, but the subgroups Z[(r?,e,¢)] and E*(s,e,e) are both
maximal abelian and cyclic therefore there are two possibilities for G and

two wave pairs for this case.

Case 16

N(K)/K = Zs[(r3,e,e)] x E~(s,e,€)

This is not abelian, however both Zy[(r?, e, ¢e)] and E~(s,e,e) are maximal
abelian and cyclic therefore there are two possibilities for G and two wave

pairs for this case.

Case 19
N(K)/K = Hgy X Zs[(e, v, €)])
Hgy and Zs[(e, vy, €)] are both maximal abelian, Hgy = Z3 is not cyclic but

Zs[(e, vy, €)]) is cyclic, so there is one possible wave pair for this case.

Case 24
N(K)/K = Z2[(eav27 6)}
This is maximal abelian and cyclic so G = N(K).
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Case 25
N(K)/K = Z[(s, e, ¢)]
This is maximal abelian and cyclic, therefore G = N(K).

Cases 26,27,28, and 29
N(K)/K = Zs[(e, e, 7)]
This is maximal abelian and cyclic, therefore G = N(K).

Case 30
This is maximal abelian and cyclic, therefore G = N(K).

Case 31
N(K)/K = H64 X Zg[(e,’l)t, 6)]
Hgy and Zs[(e, vy, €)] are both maximal abelian and are also both cyclic so

there are two possible wave pairs for this case.

Case 32
N(K)/K=1
therefore G = N(K) = K.
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Table 4.5: Wave Pairs for the Hexagonal Lattice
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4.3 Wave Pairs corresponding to Twisted Sub-

groups

Now that we have found all the wave pairs for each lattice we need to check
which correspond to twisted subgroups G® such that dimFix(G®) = 2. In
the case of the standing waves we will calculate the dimension of the fixed-
point subspace of each G and K and then apply the trace formula. In the
case of the rotating waves we will calculate the dimension of the fixed-point

subspace of the twisted subgroup G© directly.

It is important to remember that the groups G and K are subgroups of
I'; whereas G® is a subgroup of I'; x S'. The group I' x S! actson V@V .
As we are looking only at shifted subgroups and their normalizers we will
only need the half lattice points and v;, the action of the generating elements
of I'i, x 8' and v on V&V are shown in Tables 4.6 and 4.7.

Table 4.6: The Action of the Generators of (D4 x 3£) X Z5) x S!

Action onC? Action onC*

g 9(z1, 22, w1, wy) 9(z1, 22, 23, 24, W1, Wo, W3, Wy)

((r,e,e),0)  (wq, 21, 22, w1) (wa, 21, W4, 23, 22, W1, 24, W3)

((s,e,€),0)  €(z1,ws,wy, 22) €(waq, w3, wo, w1, 24, 23, 22, 21)

((e,v1,€),0) (=21, 29, —w1, ws) (=21, 22, 23, — 24, —W1, W, W3, —Wy), & 0dd
(21, —22, —23, 24, W1, —Wq, —w3, Wy), 5 odd

((e,v2,€),0) (21, —22, w1, —ws) (21, —22, —23, 24, W1, —W9, —W3,Wy), & 0odd

),

(_Zl7 29, %3y —R4, —W1, W2, W3, —W4

£ odd

((67 Vd, 6)7 0) (_Zla —Z2, —Wq, _w2) (_Zh —R2, TR3, —RZ4, W1, W2, —WS3, _w4)

((676a7—)70) 7#(21,22,11]1,11)2) w(zlazQaZ3az47w17w27w37w4)

((e,e,e),0) €O (21, zp, wy, ws) e?™9 (21, 29, 23, 24, W1, Wo, W3, Wy)
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Table 4.7: The Action of the Generators of ((Dg X $£) X Zy) x S*

Action on C3 Action on C°
g g(zlaz%zf}awl)wQawS) g(Zl,Zg,2'3,24,Z5,ZG,QU1,’[U2,'[U3,1U4,'ZU5,UJ6)
((r,e,e),0) (wa, w3, w1, 22, 23, 21) (wa, w3, w1, ws, We, Wy, 22, 23, 21, 25, 26, 24)
((87676)70) E('U}Q,U)l,w;g,ZQ,Zl,Zg) 6(267257'247'237227217w6>w57w47w3aw27w1)
((670176)70) (—21722,—23,—11)1,’11]2,—'11}3) (_217_227237_247257_267

—wy, —Ws, W3, —Wy, Wy, —Wg), & odd

(21, TR2, TXZ3, %4, —R5, %6,

Wy, —Wg, —W3, Wy, —Ws5, —Ws), [ odd

(—21, 22, TRX3, —R4, —XZ5, %6,

—wy, Wy, —W3, —Wy4, —W5, Ws), & and [ odd
((6,02,3)70) (—21,—227237—101,—?02,?03) (21:_227_237_247_257367

Wy, —Ws, —W3, —Wy, —Ws, W), @ odd

(=21, 22, —23, —24, 25, — 26,

— Wi, W2, —W3, —Wy, Ws, —U)ﬁ), 6 Odd

(—21, TR2, Z3, 24y TR5, T X6,

—wy, —Ws, W3, Wy, —Ws, —wWg), & and J odd
((e,v,€),0)  eP™/3(2 2, 25, w1, Wy, ws) BB (e (@Fh) 5 (a=h) ) (—at28) 5,

e(_20‘+5)24, e(CH-B)ZS7 ela=28) 26

e(a-i-ﬂ)wl, e(—2a+,3)w2’ e(a—%)wg’

6(20‘_5)104, e—(a+ﬁ)w5’ e(—a+25)w6)

((67677-)70) 1/}(2:1,22,23,’1,01,11}2,103) ¢<21722723,Z4,Z5,Zﬁ,U)l,w2,w3,w4,UJ5,w6)

((6767 6)7@> 627ri®(zlaz27z37w17w27w3) €2ﬂi9(21722,2?3,Z4,Z57Z6,w1,w27w3,w4,w5,'lUG)

4.3.1 Square Lattice, Standing Waves

There are five wave pairs for the square lattice where G/K is cyclic, these
are cases 25, 28a, 30, 32, 42, and 43. We have already calculated the action
of (Dy K %E) X Zg in section 2.2 for finding the equilibria. Since every sub-

group involved in these calculations includes Zj|(e, e, 7)] it is important to
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Table 4.8: Square Lattice Standing Waves: Fixed-point Subspaces by Sub-
group for ¢ = +1

Group C Fix(K) dimFix(K)
Z3[(sr,e,e), (e,e,T)] C? 2 =€xn 2
Z2[(sr,e,e), (e,e,T)] C' z1 =€z, 20 =€y 4
Z3[(r2,e,¢e), (sr,e,¢€), (e,e,T)] C? 2 =exm,z2=7% 1
Z3[(r?,e,e), (sr,e,¢e), (e,e,T)] C* 2z =e23,29=€24,2=2 2
Z3[(r?,e,e), (s,e,¢€), (e,e,T)] C? z=zfore=+1 2
0 for e = -1 0
Z3[(r?,e,¢e), (s,e,¢€), (e,e,T)] C* 2y =€, =€z3,2=7%2 2
Dy|(r,e,e), (s, e,e)] x Zs[(e,e,T)] C? 2z =2,z=7fore=+1 1
0 for e =—1 0
Dyl(r,e,e), (s, e,e)] x Zs](e,e,T)] Ct si=m=em=€enu,z2=% 1
Z3[(r2,e,¢e), (s,v4,¢), (e,e,7)] C? 0fore=+1 0
z=7Zzfore=-1 2
Z3[(r?,e,e), (s,v4,€), (e, e,7)] CY 2= —€zy,20 = —€23,2 =2 2
Dy[(r,e,e), (s,v4,€)] X Zza(e, e, T)] C? Ofore=+1 0
71 = 29,2z =% for e = —1 1
Dy|(r,e,e), (s,v4,€)] X Zs|(e, e, T)] C* z1=20=—€m=—€ez,z2=2 1
Dy[(r,e,e), (s,e,e)] x Z3[(e,va,€), (e,e,7)]  C? 0 0
Dy[(r,e,e), (s, e,e)] x Z3[(e,va,€), (e,e,7)]  C* 0 0
Dy[(r,e,€), (s,va, €)] x ZZ[(e,vq,€), (e,e,7)] C? 0 0
Dy[(r, e e), (s,vq,€)] x Z3[(e,vq,€), (e,e,7)] C* 0 0
note that whenever ¢y = —1 the fixed-point subspace will equal zero since

(e,e,7) sends z to —z for all z and the only thing that this fixes is 0.
Therefore table 4.8 shows results for when ¢ = +1 only.

We use the trace formulae shown in Section 3.2 to calculate the dimension
of the fixed-point subspace of the twisted subgroup. In each of our five cases

G/K = Zy so we use the trace formula:

dimFix(G®) = 2(dimFix(K) — dimFix(Q))
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Case 28a

K =Z3[(sr,e,e), (e,e,T)],G = Z3[(r?, e, e) (sr,e,e), (e e, 7)]
28a.2 C? dimFix(G®)=2(2-1)=
28a.4 C* dimFix(G®)=2(4—-2) =

Case 30
K =7Z3[(r% e, e), (s,e,e), (e

(e,e,7)],G = Dy[(r,e,e), (s,e,e)] x Zy[(e, e, T)]
30.21 C? dimFix(G®)

)

)

(2—1)=2 when e=+1
(0— O)—O when € = —1
2-1)=

30.22 C? dimFix(G®
304 C* dimFix(G®

2
2
2

l\D

Case 32

K =7Z3[(r% e,e), (s,vq4,€),
32.21 C? dimFix(G®)
32.22 C? dimFix(G®)
32.4 C* dimFix(G®)

(e,e,7)],G = DA4[(r, e, e), (s,vq,€)] X Zs[(e, e, T)]
2(0—-0)=0 whene=+1

22—-1)=2 whene=-1

22— 1) =2

Case 42
K =Dyl(r,e,e), (s, e,e)|xZs(e,e,7)],G = Dy[(r, e, e), (s, e,e)| xZ3[(e,va, €), (e, e, T)]
4221 C? dimFix(G®) =2(1—0) =2 when e = +1
42.22 C? dimFix(G®) =2(0—-0)=0 when e=—1
424 C!' dimFix(G®) = 2(1 — 0) = 2

Case 43

K =Dyl(r,e,e), (s,va,€)]xZs[(e,e,T)], G = Dy[(r, e, ), (s,v4, €)| x Z2[(€,v4, €), (€, €, T)]
4321 C? dimFix(G®) =2(0—0) =0 when ¢ = +1
43.22 C? dimFix(G®) = 2(
434 €' dimFix(G®) = 2

=2 whene=—1

2(1—0)
2(1—0) =2

4.3.2 Hexagonal Lattice, Standing Waves

There are 12 wave pairs for the hexagonal lattice where G/K is cyclic in

both C? and C°, and an extra three cases just in C®. Here every sub-
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Table 4.9: Hexagonal Lattice Standing Waves: Fixed Point Subspaces by

Subgroup
Group C Fix(K) dimFix(K)
Zs[(e, e, 7)) c c? 6
Zs[(e, e, 7)) cé C¢ 12
Zg[(r,e,e)] x Zs(e, e, )] C? z=20=123,2=7% 1
Zs|(r,e,e)] x Za[(e,e,T)] CC 2y =20=23,20=25=26,2=%2 2
Zs[(12,e,7)] C 2 =2=12 2
Zs[(1?,e,7)] CCO 2y =20 = 23,24 = 25 = 25 4
Z3[(r% e e), (e, e,7)] c 2=z 3
Z3[(r3,e,¢e), (e,e,T)] Cl 2=z 6
Z3[(r3,e,¢e), (s,e,¢€), (e,e,T)] C? 2 =29,2=7%fore=+1 2
21 = —29,23=0,z=Z fore=—1 1
Z3[(r% e.e), (s, e,€), (e, €,7)] C® 21 =ez,20 = ex5, 23 = €24, 2 =7 3
Z3[(r3,e,e), (sr3,¢,¢), (e, e,7)] C? 2 =29,2=7%fore=+1 2
21 = —29,23=0,z=Zfore=—1 1
Z3[(r3,e,¢e), (s,e,¢e), (e,e,T)] CS 2y =ezg,20 = €25,23 = €24, 2 =% 3
Z3[(s,e,e), (e, e,7)] C3 21 =7%3,23 =23 for e = +1 3
z1 = —Z2, Re(z3) =0 for e = —1 3
Z3[(s,e,e), (e, e,7)] CS 21 =e25,220 = €25,23 = €24 6
Z3[(sr3,e,¢), (e,e,7)] C3 2z =2 fore=+1 4
21 = —29,23 =0 fore=—1 2
Z2[(sr3,e,¢), (e,e,7)] CC® 2 =€Z5,20 = €Z5,23 = €21 6
Zs|(12,e,7)] x Z3[(e, v, €)]] c3 0
Zs|(1?,e,7)] x Z3[(e, v, €)]] (o} 0
Z3i[(r3,e,e), (s,e,€), (e,v2,€), (e,6,7)] C% 21 =20=0,2=7%for e = +1 1
0 for e = —1 0
Z3[(r3,e,e), (s,¢,€), (e,va,€), (e,e,7)] C°® z1=e€z5,20=23=24=25=0 1
z =% for a odd
2o = €z5,21 =23 =24 = 26 =0 1
z =7 for B odd
23 = €24,21 = 20 =25 =26 = 0 1
z =% for a, B odd
Dg[(r,e,e), (s, e,e)] x Zs[(e,e,T)] C3 21 =20=123,2=7%fore=+1 1
0 for e =—1 0
Dgl(r, e, €), (s,e,€)] x Za[(e, e, T)] Cl zy=m=my=ey=es=cp,2=2 1
Dg|(r,e,e), (s, e,e)] C? 2y =29 =23,2=72fore=+1 1
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Table 4.9: Hexagonal Lattice Standing Waves: Fixed Point Subspaces by

Subgroup
Group C Fix(K) dimFix(K)
0 for e = —1 0
Dg|(r,e,e), (s, e,e)] Cl si=m=mm=ey=cz3s=€25,2=2 1
Dgl(r, e,€), (s,e,7)] C3 zi=zm=zm,2=Zfore=1 1
0 for e # 0
Dg[(r,e,e), (s,e,7)] CO 21 =20 = 23 = ehzg = €25 = €2 1
Z2=Z
Dgl(r,e,7), (s,e,€)] C3 zy=20=1z3,2z=72fore=+1 1
0 for e =—1 0
Dg|(r,e,7), (s, e,e)] Cl 2y =z2o=z3=€zy=¢€25=€25,2=2 1
Dg[(r,e,7), (s, e,T)] C3 2z =2p=2z3,2=2fore=+1 1
0 for e =—1 0
Dgl(r,e,7), (s,e,T)] Cl zy=zm=23=ey=ex=e€25,2=2 1
Dg[(r2,e,7), (s,e,¢)] C? 2 =29=23,2=7%fore=+1 1
0 for e = —1 0
Dg[(r2,¢e,7), (s,¢,¢)] CO 2 =29 =123 =€24 = €25 = €25 2
Dg[(r2,e,7), (573, e, ¢)] C? 2 =29 =23 fore=+1 2
0 for e = —1 0
Dg[(r2,e,7), (573, ¢, ¢)] CS 21 =20=29=¢Z1=¢Z5 = €Zg 2
Dg[(r2,¢e,7), (s73,¢,e)] X Z3[(e,v,e)]] C3 0
Dg[(r?,e,7), (573, e,€)] X Z3[(e,vs,€)]] C© 0

group includes the action of (e, e, 7) though not necessarily in the form of

Zs[(e,e,7)]. With the single exception of Dg[(r, e, e), (s,e,7)] used in case

27, whenever 1 = —1 the fixed-point subspace will equal zero. Therefore

the table below shows results for when ¢ = +1 only except for the one case

where ¢ = €.

In case 3 G/K = Zg so we use the trace formula

dimFix(G®) = dimFix(K) — dimFix(M) — dimFix(L) + dimFix(G)

where K C M C G,|G/M|=2and K C L C G and |G/L| =3
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Case 3

K =17Zs[(e,e,7)],G = Zg|(r,e,e)] x Zy[(e,e,T)]

L ="73[(r3¢,e),(e,e 1), M= Zg[(r* e,7)]
3.3 C* dimFix(G®)=6-2-3+1=2
3.6 CO dimFix(G®)=12—4—6+2=14

The following cases have G /K = Zy so we use the trace formula:
dimFix(G®) = 2(dimFix(K) — dimFix(G)).

Case 10b

K =Z3[(r%,e,e), (e,e,T)],G = Z3[(13,¢e,¢), (s,e,¢), (e,e,T)]
10b.31 C* dimFix(G®) = 2(3 —2) =2 when e = +1
10b.32 C* dimFix(G®) =2(3—1)=4 when e= —1
10b.6 C° dimFix(G®) =2(6 — 3) =

Case 15a
K = Z3[(s,e,e), (e, e,T

) 5
15a.31 C3 dimFix(G®) = 2(3 — 2)
15a.32 C3 dimFix(Ge) =2(3—-1)=4 whene=—1
15a.6  CS dimFix(GQ) =2(6—-3)=6
Case 16a
K =1Z3[(sr*,e,e), (e,e,7)], G = Z3[(17,e,¢€), (51, €,¢€), (e,e,T)]

16a.31 C?* dimFix(G®)=2(4—2)=4 when e=+1
16a.32 C? dimFix(G®)=2(2—1)=2 when e=—1
16a.6 C° dimFix(G®) =2(6 —3) =
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Case 24

92

K =1Z3[(r3,e,¢e), (s,e,¢e), (e,e,7)],G = Z3[(r3,e,e), (s, e,¢e), (e,va,€), (e,€,T)]

(e, €,
24.31 C?* dimFix(G®) =2
2432 C® dimFix(G®) = 2
246 CS dimFix(G®) =2

Case 25

K =Zg[(r,e,e)] x Zs[(e,e,T)],G = Dg[(r,e,¢), (s,e,¢)] x Zs[(e, e, T)]

[
25.31 C? dimFix(G®)
25.32 C?* dimFix(G®)

(G®)

2(1—1)=0 whene=+1
2(1-0)=2 whene=-1
22— 1) =2

25.6 C5 dimFix(G®

Case 26

K = Dg[(r,e,e),(s,e,e)],G =Dg[(r,e,e), (s,e,e)] x Zs[(e, e, T)]
26.31 C?* dimFix(G®) 1)=0 whene=+1
26.32 C° dimFix(G®) 0)=0 whene=—1
2.6 C° dimFix(GO) 1)=0

2(1
2(0 —
2(1

Case 27

K = Dg[(r,e,e),(s,e,7)],G = Dgl(r,e,e), (s, e, e)] X Zs[(e, e, T)]
27.31 C?* dimFix(G®)=2(1-1)=0 whene=1 =+1
2732 C3 dimFix(G®) =2(1—0) =2 when e =1 = —1
276 C° dimFix(G®)=2(1—-1)=0

Case 28

K = Dgl(r,e,7),(s,e,e)], G =Dg[(r,e,e), (s,e,e)] x Zy|(e, e, T)]
28.31 C?* dimFix(G®)=2(1-1)=0 whene=+1
28.32 C? dimFix(G®) =2(0—0)=0 whene=—1
286 C¢ dimFix(G®) =2(1—1)=0
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Case 29

K = Dg[(r,e,7), (s,e,7)], G = Dgl(r,e,e), (s, e,e)] X Zs[(e, e, T)]
2031 C* dimFix(G®) =2(1—1)=0 when e = +1
29.32 C?* dimFix(G®)=2(0—-0)=0 whene¢=—1

206 C° dimFix(G®) =2(1—1) =0

Case 30
K = Dg[(r? e, 7), (s,¢,€)],G =
30.31 C?* dimFix(G®) =2
30.32 C? dimFix(G®) = 2
30.6 C® dimFix(G®) =2

Dg[(r, e,€), (s,e,e)] X Zs[(e, e, T)]
(1-1)=0 whene=+1

Case 31a
K =Dg[(r? e,7), (s13,¢,€)],G =
3la.31 C? dimFix(G®)
31a.32 C?* dimFix(G®)
3la.6 C® dimFix(G®)

Dg[(r, e, €), (s,e,e)] X Zs|(e, e, T)]
(2—1)=2 whene=+1

2
2(0 — )—0 when € = —1
22-1) =

In cases 10a, 19 and 31b G/K = Z3 so we use the trace formula:

dimFix(G®) = dimFix(K) — dimFix(G)

Case 10a

Z3[(r3,¢e,¢), (e,e,7)],G = Zg[(r, e, e)] x Zs[(e,e,T)]
103 C* dimFix(GO) =3 —1=2
10.6 C® dimFix(G®)=6—-2=4

Case 19

K =Zg[(r? e,7)], G = Z[(r*, e, 7)] X Zs3[(e, vy, €)]
19.3 C* dimFix(G®) =2—0=2

19.6 C® dimFix(G®) =4—0=4
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Case 31b

K =Dg[(r? e,7), (s73,¢e,€)],G = Dg[(r?, e, 7), (573, €, €)] X Z3[(e, vy, €)]]
31b.31 C? dimFix(G®)=2-0=2 when e= +1
31b.32 C? dimFix(G®) =0—-0=0 whene=—1
31b.6  CS dimFix(G®)=2-0=2

In case 32 G/K =1 so we use the trace formula:
dimFiz(G®) = 2dim Fiz(G)

Case 32

K = Dgl(r,e,e),(s,e,e)] xZs|(e, e, )], G = Dg[(r, e, e), (s, €, €)] X Zs[(e, e, T)]
32.31 C?* dimFix(G®)=2-1=2 when e = +1
32.32 C?* dimFix(G®)=2-0=0 when e=—1
326 €S dimFix(G®) =2-1=2

4.3.3 Square Lattice, Rotating Waves

There is only one wave pair for square lattice where G/K = S'.

Case 28b

K="2Z3[(sr,e,e), (e,e,T)], G =Z3[(sr,e,e),(e,e,T)] x ET(sr,e,e)

G is generated by ((sr, e, e),0), ((e,e,7),0) and ((e,0(ly + l2),€),0),
0<f<1,0eR

The actions of these elements on V @ V are as follows:

X = 627r9i
g g(21, 22, w1, w2)
((ST € 8) ) €(U)2, wi, 22, Zl)
((6 € T) ) w(217227w17w2)
((6 0(11 +12) ) 9) (ZlszaXlevxsz)
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g 9(21, 22, 23, 24, W1, W2, W3, Wy)
((sr,e,e),0) e(ws, z4, w1, 22, 23, Wy, 21, W2)
((e,e,7),0) V(21 22, 23, 24, W1, Wa, W3, Wy )
((e,0(l1 +12),),0)  x(x™ T 21, X (T g, (0FF) 25 (a2,

Xy, x O Fwg x ot D, x (ot Huwy)

For both the C? and C* representations this gives us dimFix(G®) = 0 so

there is no Hopf Bifurcation for this case.

4.3.4 Hexagonal Lattice, Rotating Waves

There are two wave pairs for hexagonal lattice where G/K = S'.

Case 15b

K =7Z2[(s,e,e), (e,e,7)], G =Z2[(s,e,¢), (e,e,T)] x ET(s,e,¢)

G is generated by ((s,e,e),0), ((e,e,7),0) and ((e,fls,€),0),0<0 <1,
0eR

Case 16b

K =Z3[(sr3,e,e),(e,e,7)], G=Z3[(sr? e e),(e,e,T)] x E~(s,e,€)

G is generated by ((sr3,e,€),0), ((e,e,7),0) and ((e, —201; + 0l5),¢),0),
0<h#<1,0eR

The actions of these elements on V @& V are as follows

9(21, 22,23, W1, w2,’w3)

(( ,€), ) e(we, w1, ws, 22, 21, 23)

((57" ee€),0 €(22, 21, 23, W2, W1, W3)

((e,e,7), ) (21, 22, 23, w1, w2, w3)

((e, 8l2,e),0) (21,20 29, €270 23 01wy, 2™ w3)
((e, 2011 + 0l3),e),0) (e*™ 2y, et 2y €720 25wy, wa, e5™w3)
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9(21, 22,23, 245 25, 26, W1, W2, w3,’w4,w57w6)

((s,e e),0) €(z6, 25, 24, 23, 22, 21, Wg, W5, W4, W3, Wa, W1 )
((s77,e.€),0) €(we, W5, Wa, W3, Wa, W1, 26, 25, 24, 23, 22, 21)
((e,e,7),0) (21, 29, 23, 24, 25, 26, W1, Wa, W3, Wq, Ws, We )
((e, va e),0) X P21, X% 22, X0 P23, x O P2y, X 25, X P 2,

XPwi, X~ wa, x*Pws, X wa, x T ws, xPwe)
((67 _29l1 + 912)7 6)7 9) X(XQQ_BZD X_a+2622a X_a_ﬁz?n Xu+Bz4a X(X—25Z57 X_2a+6265
X_QOH_Bwlv Xa_2[3w2a Xa+ﬁw3a X_a_ﬁw47 X_a+2ﬁw5a X2a_5w6)

Both of these cases produce fixed-point subspaces of dimension 2 for both
the C?* and C® representations. The fixed-point subspaces are shown along

with those for the standing waves in table 4.13.
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4.4 Fixed-point Subspaces of ¥ = G°

4.4.1 Action of X

In order to find the fixed-point subspace of each twisted subgroup we must
first find the action of each of the generating elements of ¥ = G® = {(g,0(g))|g €
G} where © : G — S*. Tt is the quotient G/K that maps on to S so the
generators of G® will be the generators of K plus the element (§,0(g))
where < § >= G/K . The generators of G® are shown in Tables 4.10 and
4.11. An example of how to find the generators and the fixed-point subspace

of G® is shown in Appendix C.

Table 4.10: Generators of Twisted Subgroups for the Square Lattice

Case G Generators of G°

28a, Z3[(r% e, e), (sr,e,¢), (e,e,7)] ((T2,6,6),%),((ST‘,G,e),O),((6,6,7’),0)

30 Dy[(r, e, e), (s, e,€)] X Za[(e,e,7T)] ((r,e,e), %), ((s,e,e),0),((e,e,1),0)

32 Dyl(r,e,e), (s,vq4,€)] X Za[(e, e, )] ((r,e,e),%),((swd,e),O),((e,e,T),O)

42 Dyl(r,e,e), (s, e,e)] ((r,e,e),0),((s,e,e),0),((e,vq,€),35),((e,e,7),0)
xZ3[(e,vq,€), (e,e,7)]

43 Dy[(r, e, e), (s,vq,€)] ((r7e,e),0)7((s,vd,e),O),((e,vd,e),%),((6,6,7),0)

X

Z3[(e,va,€), (e e, 7))

4.4.2 Fixed-point Subspaces

We use the action of the generating elements to calculate the fixed-point
subspace of each twisted subgroup, shown in Tables 4.12 and 4.13. In each

case dimFixG® = 2.
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Table 4.11: Generators of Twisted Subgroups for the Hexagonal Lattice

Generators of G°

G

Case
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Table 4.12: Fixed-point Subspaces for Standing Waves on the Square Lattice

C4

CQ

Case

= —wy = €ws N/A

Z1 = —€29

28a

28b
30
32

= —€Z3 —m €24 — W1 = —W2 = —€W3 = €Wy

= —W2,€ = +1 Z1 = —Z22

—Z2 = W1

21

= —€wW4y

—W2 = €W3

= —624:’(1)1 =

—Z9 = €23

= —wqg,e=—1 2=

—Z2 =W

21

W1 = Wy = €W3 = €Wy

Z1 = R9 — €23 — €24

Z1 = 29 = w1 = wWo, € =+1

42

—€Z4 = W1 = W2 = —€W3 = —€W4

—€Z3

=2y =

21

Zo = W1 = Wa,€ = —1

Z1

43
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Table 4.13: Fixed-point Subspaces on the Hexagonal Lattice.
X = e%, and @ = +1 unless otherwise stated
Case C3 C¢
3 21 =X’ = Xz, W =2 N/A
10a 21 = X22 = X223, W= —2 N/A
10b 21 = —29,23 =0,w=2ze=+1 N/A
15a 21 =—29,23=0,w=—z,e=+1 N/A
15b Z1 = €Wo,20 = 2z3 =wy; = w3z =0 23 = €24, 2; = w; = 0 otherwise,
when a — =1
0 otherwise
16a 21 =20,23=0,w=—2,e=—1 N/A
16b Wy = €Wo, 21 = 20 =23 =w3 =0 z9 = €ws, z; = w; = 0 otherwise,
when ao — 26 =1
25 = €Ws, z; = w; = 0 otherwise,
when —a+28 =1
0 otherwise
19 21 =29 =23=0 N/A
w1 = we = w3
24 z1 = €29,23 =0, w =2z N/A
25 21 =29 =23, W=2,€6=—1 21 =29 =23 = —€2Z4 = —€25 = —€26,W = 2
27 21=—20,23=0,w=2z2,e=—-1,9=—-1 N/A
30 N/A 21 = 29 = 23 = €24 = €25 = €26, W = —2
3la 21 =29 =23, W=2,6=+1 21 = 29 = 23 = €24 = €25 = €26, W = —2
31b Z1=29=23=0 21 = Z9 = Z3 = €Wy = €W5 = €Wg
w1 = Wy = W3 24 =25 =26 = w1 = wg = w3z =0
if (a+ ) = 1(mod3)
Z4 = 25 = 26 = €W] = €Wy = €W3
21 =29 =23 =wy4 = w5 = wg =0
if (a + 8) = 2(mod3)
32 21 =29 = 23 = W1 = Wy = W3z,€ = +1 21 = 29 = 23 = €24 = €25 = €26, W = %
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4.5 The Planforms

The planforms are plotted using the program shown in Appendix E. In each

2wt or another of the coefficients if z; = 0, and then

case we set 21 = e
write each other coefficient in terms of this, usually either +z; or zero. As
with the equilibrium states shown in Chapter 2 we plot a director field that
for each point in a square subset of R? will draw a unit length line in the
direction of the eigenvector associated with the largest eigenvalue. In this

case the equation is:

Q=Qy+0 Z szQM(Kj'XJ“t)Qj + wje_Zm(Kj‘x_t)Q_j + c.c. 0 small

i=1

The patterns are time periodic and the movies show one full period in each
case. The time interval 0 < ¢ <1 is divided into 360 individual frames, this

number is chosen to make it easy to spot when major changes occur.

4.5.1 Planforms for the Square Lattice

The patterns on the square lattice are fairly straightforward to describe: each
movie switches between two copies of the same pattern, translations of each
other, passing through the isotropic state in between the two copies of the
pattern. The points at which the isotropic state appears, twice in each time

interval 0 <t <1, are dependent on the individual case.

The C? cases

In the C? cases there are three cases that produce patterns for each of the
QT and Q' representations but there is only one distinct pattern for
each representation and each case shows two different translations of the

same pattern.
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Case 28a for Q”, bifurcating from isotropic state, frame 270

15

Case 28a for Q”, bifurcating from isotropic state, frame 90

Figure 4.1: Frames from Square Lattice C? Time Periodic Patterns
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Q" , same pattern as Case 28a, isotropic state appears at ¢t = 90,270
Q ', same pattern as Case 28a, isotropic state appears at ¢t = 90,270

Q™ isotropic state appears at ¢ = 180,0/360
Q™ isotropic state appears at ¢t = 180,0/360

Case 28a
Case 30
Case 32
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Case 30 for Q**, bifurcating from isotropic state, frame 0/360

Case 30 for Q**, bifurcating from isotropic state, frame 180

4. PERIODIC SOLUTIONS
Figure 4.2: Frames from Square Lattice C* Time Periodic Patterns
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Q' , same pattern as Case 28a, isotropic state appears at ¢t = 90,270
Q™ T, same pattern as Case 28a, isotropic state appears at ¢t = 90, 270

In the C* case there are two different patterns, two cases for each.

The C* cases

Case 42
Case 43
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103

Figure 4.3: Frames from Square Lattice C* Time Periodic Patterns
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Case 32 for Q**, bifurcating from isotropic state, frame 0/360

Case 30
Q*+*

—+

Case 32
Q++

—+

isotropic state appears at ¢t = 90, 270
isotropic state appears at ¢t = 90, 270

isotropic state appears at ¢ = 90,270
isotropic state appears at ¢t = 90,270

1.5F /ARSI =T =T 7 1.5F = N
) W/////l )V/////i Wiﬁi/// \/////\W/\\//f//\w/\\/// \W/\\
7 //\\///M /7/\\/?}}\ =D 7@ D /://ﬁ{ D7 /://m © =
i (7//\\/%/éi\<7//\\///%)\<7//\\//2 i L= /\HH/;/:/ /\@H;/j\/ /\@H//
/] / = = =
=) U\///’i/fﬂ U\///’i/fﬂ U 7= //f/\\//H\ /ff/\\//HT/?ff/\
I AN A= N =y =y =
— =7 0 = = =
7 ~—// 1 1 /! —~ P —~ e —~ P
=7 \\///}\,/7 SN AN =AW =N =
~ or /. /. ~ or —\ N N N\ —\ N\
s 20 a2, ===
o4 S ///{ {&):;;/ ///H U\/// ///H U o4 t\/}l}\ //f/\\//l}\ ?/;/\\/}l}rggflt
IS =l =) = I =l =X =X
] 7 N p = —
= \\///}\ =\ AUE =AU =AU =
AR =y =t =LA =)y =<Al))”
/ / / — /7 —
1 e :/{MU/;;/ :/{MU/;;/ :/{MU s ?i//H\ ////\\//H\\/;%lii//w\ /%/1
-15 -1 -0.5 0 0.5 1 -15 -1 -0.5 0 0.5 1 1.5
(a) (b)
Case 32 for Q*, bifurcating from isotropic state, frame 180 Case 32 for Q'+ bifurcating from isotropic state, frame 0/360
1.5F 7, > 1.5F \\ / S /
AN NN ey
\)/i////axy/// = }:////j /,1 \\\ =3 \(/ )= \(/
/; ! /; \\\ A \}
i 2)45%347((2}/4 ((E)/@itvj/{ TSN 42@\\:7\@2@&\:\?\ IS
SESESES SIS S =
o NGNS NG vl AT AT A
AN N NG ST ETy
NEIBNEISNEDS N =\
L )) ﬂ\ (//// ))ﬂ\ (//// ) }/\\\\//// L /—\\>>//)\\ \>>’//\\ ( \>>7/ A\ (/
s o NI ST AT o NN
e N A\ N\ IS = IS =
3 N/~ o< /=" \\< )7\ 71 ==\ —71 ==\ —7 1 =\ —7
ANEAEIA YRR
1 NN | T e ey
N N N == AR AR A (7
+ BT il 1+ SREENL
SEIS IS =S
a4 ONGINEIZANGS a4 GEEAIEGAR
-1.5 -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 1.5
(c) (d)




4. PERIODIC SOLUTIONS

Case 40
Q" , same pattern as Case 30,

Q ", same pattern as Case 30,

Case 42
Q**, same pattern as Case 32,

Q ', same pattern as Case 32,

isotropic state appears at ¢t = 90,270
isotropic state appears at t = 90, 270

isotropic state appears at ¢ = 90,270
isotropic state appears at ¢t = 90,270

104
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4.5.2 Planforms for the Hexagonal Lattice

Figure 4.4: Frames from Hexagonal Lattice C® Time Periodic Patterns

Case 3 for Q**, hifurcating from isotropic state, frame 90

Case 3 for Q**, bifurcating from isotropic state, frame 270
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The patterns for the hexagonal lattice are more complicated to describe than
those for the square lattice. While some do switch between two copies of
the same pattern, there is often much more movement in between these
two stages. Some cases display only one copy of the same pattern between
occurrences of the isotropic or homeotropic state, some switch between two
different patterns, and some are rotating waves so we will see one pattern

moving across the plane.
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Case 10b for Q**, bifurcating from isotropic state, frame 0/360

Case 10b for Q**, bifurcating from isotropic state, frame 180

Figure 4.5: Frames from Hexagonal Lattice C*® Time Periodic Patterns
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Case 16a for Q , bifurcating from isotropic state, frame 270

Case 16a for @, bifurcating from isotropic state, frame 90

Figure 4.6: Frames from Hexagonal Lattice C*® Time Periodic Patterns
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, bifurcating from homeotropic state, frame 270

Case 27 for Q

, bifurcating from homeotropic state, frame 90

Case 27 for Q

4. PERIODIC SOLUTIONS
Figure 4.7: Frames from Hexagonal Lattice C? Time Periodic Patterns
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Figure 4.8: Frames from Hexagonal Lattice C® Time Periodic Patterns
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(c) (d)

The C3 cases

While quite a few cases switch between two copies of the same pattern passing
through the isotropic state in between, for the Q~" representation it is often
necessary to reduce the value § dramatically in order for the isotropic state
to actually appear. This results in the patterns in between being largely
isotropic as well with only small sections of the plane showing non-isotropic
behaviour. Because of this the stills shown in this chapter are produced using

higher values of § for these cases.
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Figure 4.9: Frames from Hexagonal Lattice C® Time Periodic Patterns
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Case 16b for Q**, bifurcating from isotropic state, frame 270
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Case 3

Q™ isotropic state appears at t = 150, 330
Q™ ", isotropic state appears at ¢t = 120, 300
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Figure 4.10: Frames from Hexagonal Lattice C® Time Periodic Patterns

Case 25 for Q**, bifurcating from isotropic state, frame 0/360

Case 25 for Q**, bifurcating from isotropic state, frame 180
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Case 25 for Q*, bifurcating from isotropic state, frame 0/360

Case 25 for Q*, bifurcating from isotropic state, frame 180
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Case 10a

Q. same pattern as Case 3, isotropic state appears at ¢ = 120, 300

Q ', same pattern as Case 3, isotropic state appears at t = 160, 340

Case 10b

Q™ isotropic state appears at t = 90,270

Case 15a

Q™ same pattern as Case 10b, isotropic state appears at ¢t = 180, 0/360
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Figure 4.11: Frames from Hexagonal Lattice C% Time Periodic Patterns

Case 30 for Q**, bifurcating from isotropic state, frame 270

Case 30 for Q**, bifurcating from isotropic state, frame 90
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Case 15b

QT rotating wave travelling from right to left.

Q' rotating wave travelling from right to left.

Case 16a

Q7 isotropic state appears at ¢ = 180,0/360

Case 19

QT isotropic state appears at t = 30,90, 150, 210, 270, 330
Q™ ", isotropic state appears at ¢t = 30,90, 150, 210, 270, 330
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Figure 4.12: Frames from Hexagonal Lattice C% Time Periodic Patterns
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(c) (d)
Case 24

Q**, same pattern as Case 10b, isotropic state appears at t = 90, 270
Q ', same pattern as Case 16a, isotropic state appears at ¢t = 90,270

Case 27
Q™ , bifurcating from isotropic state, isotropic state appears at ¢t = 180, 0/360

Q™ , bifurcating from homeotropic state, homeotropic state appears at
t = 180,0/360
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Case 31a
Q**, isotropic state appears at t = 90, 270

The C® cases

Case 15b
Q' rotating wave travelling from right to left.

Q ", rotating wave travelling from right to left.

Case 16b
Q' rotating wave travelling from bottom to top.
—*+ rotating wave travelling from bottom to top.

Case 25

Qtt
—+ isotropic state appears at t = 90, 270

isotropic state appears at t = 90,270

Case 30

Q++
—*+_ isotropic state appears at t = 90, 270

isotropic state appears at ¢t = 90, 270

Case 31b
Q**, isotropic state appears at t = 30,90, 150, 210, 270, 330
—* isotropic state appears at t = 30,90, 150, 210, 270, 330

Case 32
Q++

—+

same patterns as Case 31b, isotropic state appears at ¢t = 90,270

same patterns as Case 31b, isotropic state appears at ¢t = 90, 270
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Conclusion

Continuing the work of Chillingworth and Golubitsky [7] who calculated the
set of patterns on the hexagonal and square lattices that can bifurcate from a
homeotropic or planar isotropic state in a planar layer of nematic liquid crys-
tal found from the standard representations of the symmetry groups, I have
classified a second set of such patterns found from a second larger represen-
tation of each symmetry group. I have also classified sets of generic time pe-
riodic square and hexagonal patterns bifurcating from the same homeotropic
or planar isotropic state. This is an extension of the work by Dionne et al [21]
using the group theory methods applied in that paper to Rayleigh-Bénard
convection, where the pattern is described by a scalar, to find patterns in
the more complicated liquid crystal model where the pattern is described by
a director in R? defined by a 3 x 3 symmetric matrix with trace= 0. It
is noted that the liquid crystal model produces a larger set of results than
the Rayleigh-Bénard convection model shown in the Dionne paper. This is
partly due to the symmetry group 'y containing a copy of Zs to represent
the reflection in the xy plane that is not present in the Dionne paper, result-
ing in a larger set of possible subgroups of I'; and hence a larger number of
wave pairs which then produce a larger number of twisted subgroups ¥ with
dim Fix(¥) = 2. Also, the four possible representations Q** of 'y give the

potential for four possible results for each wave pair. In actuality this does
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not occur, there are no patterns at all for the Q*~ representation and only
one set of patterns for the ()7~ representation, hexagonal case 27. However
many of the other cases do produce patterns for both the Q™ and Q=
representations. It is important to emphasize that this work does not at-
tempt to predict experimental circumstances in which these patterns may be
found. Instead it provides a catalogue of all those possible patterns that arise
generically where the assumptions we have made about symmetries on lat-
tices hold, and is intended as a useful reference for identification. Therefore
any square or hexagonal lattice pattern observed in a suitable experimental

set-up can be expected to be found in the resutls given here.



Appendix A

Action of the group [',

The action of the group 'y is as follows:

Let v = (g,v¢), where g € E(2) and ¢ = £1 € Zy

g(x) = Bx+b, where B € H: C 0(2), and b € T?

A= b P =+1
w )
The definition of the action of ~ on the function Q is:
7-Q(x,t) = AQ(g'x, t)A™" Wy el
To see that this is indeed a group action we check that
T (12-Q) = (mn)-Q

where y1 = (g1,¢1) and 72 = (g2, 1)

To simplify matters we will look at this in two stages, first we consider just

the action * of g on the space of functions Q : R2x R — X where X ~ R”®
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is the space of real 3 x 3 symmetric matrices with trace= 0.
g*Q: (x,t) — Qg 'z, 1)
This gives us

g*(g*xQ): (z,t) = (g2 Q)(gy '2,t)
Q(g; gy ', 1)
Q((g192) ', 1)
((9192) * Q)(z,1).

Now we look at the group action as a whole.

(12 Q) = ((91,01)((g2,92) - Q) (x, 1) = (g1,91)(Aa((g2 ¥ Q) (, 1)) A3 )
A1 A (g1 * (92 % Q)) (2, 1) Ay T AT
A1 A5(((9192) * Q) (2, 1)) (A1 Az) ™!

= ((91,¥1)(92,12))Q(x, 1) = (m72) - Q.

A.1 Example of a group action calculation

This example of the calculation of the group action on the elements of the
kernel of L is from the standing waves C? case, Q*~ representation. The

standard form of the elements of the kernel written in full is as follows.

Q+— — ZleQm‘(K1~x+t)K1Q+—(Kl)—l + 22627ri(K2~x+t)K2Q+—(KQ)—I
_|_Z—16727ri(K1-x+t)KlQ+_ (Kl)_l + Z—2€f2m'(K2-x+t)K2Q+_ (K2)_1

-1

0 0
3 Klz 0 ) K2: 1
1 0

o s
o = O
_ o O

0
0
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The action of the rotation (r,e,e) on Q1

0 -1
r= , R=1]11 0 0
1 0
0 1

The 1 in the bottom right hand corner of R shows that in this case the

S
|
—
=)

o

reflection in the zy plane 7 acts as the identity.

(rye,e)QT™ = 2 MK I RE QF(K)) T R 4 292K X RIG QT (Ky) " R
Y e 2mKur ) R OF (1) TR + Zpe 2mi(Kar x4 R, 07 (Ky) TR
— Zl€2wi(K2-x+t)K2Q+— (K2>—1 4 226—2m'(K1-x+t)K1Q+7(K1)71
+zre 22X [0, Q= (Ko) ~1 + Ze? MKt ) K QF (K )

This gives the result

(T? ¢, 6)(21, Z2) = (z_2> Zl)

The action of the translation (e,v;,e) on Q*~

(e, vy, e)Q+_ — Zl€2m(K1-(x—v1)+t)K1Q+—(Kl)—l 4 Z2e2m(K2.(x—v1)+t)K2Q+— (K2)—1

_|_Z—1€—27ri(K1~(x—v1)+t) K1Q+— (Kl)_l + Z—2€—Q7ri(K2~(x—v1)+t) K2Q+— (K2)—1

_ Z1627ri(K1-x—%+t)K1Q+f(Kl)fl + Z262m(K2-x—o+t)K2Q+—(KQ)A
+Z—1672wi(K1-xf%+t)KlQ+f(Kl)fl + Zge2miKax—0+) [0, O+ ()1

_ Zle—wiGQTri(K1~x+t) K,Q+t (K1)_1 + Z2€Q7ri(K2-x+t) KyQ+~ (K2>—1
_|_Z—1€7ri€—27ri(K1~x+t)KlQ+— (Kl)—l + 2—26—27ri(K2~X+t)K2Q+— (K2)—1

— Zl(_l)GQni(Kl-x+t)K1Q+f (Kl)fl + ZQGZm'(Kz-ert)KQQJrf (Kg)*l
+Z—1(_1)€—2m(K1-x+t)Kl QJF* (Kl)*l + z_ge_z’ri(Kz'x“)KgQ** (Kz)fl
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Which gives

(e,v1,€)(z1,22) = (—21, 22)
The action of the (r,v;,e) on Q

We can then combine these two elements to find the action of (r,v;,e) on
Qt~. The group clements act from right to left so we need to calculate

(rye,e)((e,v1,€)(z1,22))

(’I", €, 6) (Zlv 22) = (_2’ Zl)

(e,v1,e,)(21,22) = (=21, 22)
(rye,e)((e,v1,€)(z1,22) = (r,e,e)(—z1, 22)
- (2_27 _Zl>
So

(r,vy,e)(z1,22) = (Z2, —21).



Appendix B

Full group action tables

Table B.1: The Action of the Generators of (Dy X 1L) x Zj

Action onC? Action onC*

9 g(z1, 22) 9(21, 22, 73, 24)

(r,e,e) (Z2, 21) (Z3, 21, Z1, 23)

(s,e,e) €(z1,7%2) €(z1,23, 22, 21)

(e,v1,€) (—21, 22) (=21, 22, 23, —24), a 0odd
(21, —22, —23,24), 0 odd

(e,v9,€) (21, —22) (21, —22, —23, 24), a odd
(=21, 29, 23, —24), 0 odd

(e,v4,€) (—21, —22) (=21, —22, —23, —24)

(e,e,T) (21, 22) (21, 29, 23, 24)

(ree)  (71,7) (21, 22, 73, 21)

(sr,e,e) €(z2,71) (%3, 24, 71, 22)

(sr?,e,e)  €(z1, 22) €(zy, 23, 22, 21)

(r,vy,e) (Z2, —21) (Z2, —21, —Z1, 23), o odd

<_Z_27 21,2_4, _Z3>7 5 odd
(T27 (%0 6) (_Z_la Z_2> 6(_2_17 2_27 2_37 _2_4)7 « Odd
€(2_17 _2_27 _2_37 2_4)7 /B Odd

(Sa V1, 6) €<—21,Z_2) E(_Z_47 Z_?n 2_27 _Z_l)a a odd
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Table B.1: The Action of the Generators of (D4 x %L) X Ziy

Action onC?

Action onC*

9 g(z1, 22) 9(21, 22, 23, 24)
€(Z1, =73, — %2, 71), B odd
(sr,v1,e)  €(Z3,—%1) €(z3, —2z4, — 21, 22), @ odd
€(—7z3, 24,71, —22), f odd
(sr?,vi,e) (=71, 20) €(z4, —23, —22,21), @ odd
€(—zy, 23,29, —21), B odd
(r,v9,€) (—Z2, 21) (—%2, 21, 21, —23), a odd
(72, —21, =74, 23), B odd
(r?,ve,e)  (Z1,— % e(z1, — %2, —73,21), @ odd
e(—71, %2, 23, —21), B odd
(s,v9,€) €(z1, —22) €(zz, —%3,—%2,71), @ odd
e(—z1,%2, 73, —Z1), § odd
(sr,ve,€)  €(—Z3,7%1) e(—7z3, 24,71, —22), @ odd
€(z3, —24, — 71, 20), B odd
(sr%,vg,e)  €(Z1, —22) €(2z4, —23, —22,21), @ odd
€(—24, 23, 22, —21), f odd
(7,04, €) (—%2, —21) (—%3, —21, —Z1, —23)
(r*,vg,e)  (—=z1,—72) (=71, —%2, —Z3, —24)
(s,va€)  e(—21,-22)  e(—= —%, —71)
(sr,vg,e)  €(—Z3,—%1) e(—z3 —Z_,—22>
(sr?,vg,e)  e(—71, 20) €(—z4, —23, —22, —21)

Table B.2: The Action of the Generators of (Dg X 1L) x Zj
Action on C®>  Action on C°
g 9(21, 22, 23) 9(21, 22, 23, 24, 25, 26)
(r.e;e)  (2,%,71) (%2, %5, 71, %5, %o, %4)
(s,e,e) €(z3,71,23) €(z6, 25, 24, 23, 22, 21)
(e,

(_Zlv 292, _ZB)

(_Z17 —R2,%23, —Z4,%5, —

26), a odd
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Table B.2: The Action of the Generators of (Dg x $L) x Zj

Action on C* Action on C°

9 g(21, 22, 23) 9(21, 22, 23, 24, 25, 26)

(=1 —23, 24, —25, —26), [ odd

( 21, 29, — 23, —25,26), @ and [ odd
(e,v9,€) (=21, —22, 23) (21, —22, —23, —2z5, 26), @ odd

(=21, 22, —23, —24, 25, —26), [3 odd

(—2z1, —29, 23, 24, —25, —26), @ and [ odd
(e, v, ¢€) €(2m')/3(217 2, 23) (2m)/3(e(°‘+5)21, 6(20 5)/22’ el= a+25)23’

6(_2044‘/3)24, €(a+/3)25, e(a_Qﬁ) 26)

(e,e,T) (21, 22, 23) (21, 22, 23, 24, 25, 26)

(r?,e,e) (23, 21, 22) (23, 21, 22, 26, 24, 25)

(r.ee) (71,2 %) (71, %2, 73, 74, %5, %)

(sr,e,e) €(z3, 22, 21) €(Z1, Z6, 25, 21, 23, 22)

(sr?e,e)  €(z1, 73, 22) €(25, 24, 26, 22, 21, 23)

(sr3,e,e)  €(z2,21,23) ¢(Zs, 75, 24, 23, 23, 21)

(r,v1,€e) (z2, —Z3,—71) Zo, 23, —Z1, 25, — 26, —24), v odd

27 Z?nzla Z_a _2_67_4 ) ﬁ odd
Zg, —Z3, — — 25,26, —24), & and ﬁ odd

3, —R1, —R2, —X6, —R4,R5), X odd

N

(T27U176) (_237 _ZI7Z2)

«a and (8 odd
a odd

21, 2_27 Z37 Z47 2_57 _Z_ﬁ 6 odd

23, TR1,%2,%6, —24, —Z5

(7"3,1}1,6) <—Z_1,Z_2, —2_3) 17 Z27237 24,2_5,— 6

(— )
(=2 )
(Z2 )
( )
(—23, 21, —22, — 26, 24, —25), [ odd
(— ),
(== ),
(=1 ),
(— %),

Z1, 22, — 23, — 24, — 25, 26), @ and 3 odd
(s,v1,€) €(z3, 71, —23) €(—z¢, 25, —24, 23, —22, —21), @ 0dd
€(—z¢, —25, 24, —23, —22, 21), B odd

€(z¢, —25, —24, —23, 22, —21), o and 8 odd
(sr,v1,€)  €(—z3,29,—21) e(—z1, —7%6, 25, — 21, 23, —22), @ odd
€(zz, — %6, — 25, 21, — 23, —22), B odd

e(—z1, %6, — 25, — 21, — 23, 22), & and 8 odd



APPENDIX B. FULL GROUP ACTION TABLES 124

Table B.2: The Action of the Generators of (Dg x $L) x Zj

Action on C* Action on C°

g 9(21722723) g<21,22,23724725,26)

(37"2, U1, 6) 6(_2_17 _2_37 Z_Q) €\%5, =24, —X6, —X2, —X1, Z3) a odd

€(—zs5, 24, —26, —22, 21, —23), B odd

(
(
€(—z5, —24, 26, 22, —21, —23), & and  odd
(sr3,v1,€)  €(z2, —21, —23) e(—Z%¢, 25, —Z4, 23, — 22, —21), o odd
e(—Zs, — 25, 24, — 23, — 22, 21), 0 odd
€(z¢, — 25, — 24, — 23, 22, —21), & and  odd
(r,va,€)  (—%2,7%3, —71) (=%, =73, 21, — %5, 26, —24), @ 0dd
(%2, 73, —71, %5, — %6, —71), B odd
(—%2,%3,—21, — 25, — 26, 24), @ and [ odd
(r?,va,e) (23, —21,—29) (=23, 21, —22, 26, —24, —25), @ odd
(=23, —21, 29, —26, —24, 25), 5 odd
(23, —21, — 29, — 26, 24, —25), @ and (3 odd
(r3,va,e) (=71, —7%2,723) (z1, — %2, — 73, — 24, — 25, %6), @ odd
(—71, %2, %3, — 71, %5, —76), 0 odd
(—%1, %2, %3, 21, — %5, —Z6), @ and (3 odd
(s,v2,€) e(—z3,—71,23) €(z¢, — 25, — 24, —29,21), @ odd
€(—z6, 25, — 24, — 23, 22, —zl) S odd
€(—z¢, —25, 24, 23, —22, —21), o and  odd
(sr,v9,€)  €(z3, —29,—21) e(—21, Z6, —Zs, z_l, —Z3, —22), @ odd
€(=71, — %, %5, — 21, — 23, 22), 3 0dd
€(z1, —Z¢, — 25, — 21, 23, —22),, @ and [ odd
(sr% v9,€) €(—21,23,—22)  €(—25, —24, 26, —22, 21, —23), a odd
6(25,—24,—26,22, —z3), 0 odd
€(—zs, 24, —26, —22, —21, 23), @ and 8 odd
(sr3,v9,e)  €(—29,—21,23) €(Zs, —25, — 24, — 23, — 22, 21), @ odd
e(—Z¢, 25, — 24, — 23, 22, —21), B odd
( —7z1),

«a and (8 odd

[

) 257247237 29 21
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It is worth noting that the action of v; commutes with every other group
element in the C? case but in the C® case it only commutes with the other

translation elements v; and v,.



Appendix C

Example of Fix(G°) calculation

This example shows how to find the generating elements of the twisted sub-
group ¥ = G® and its fixed-point subspace. The example shown is case 28a,

on the square lattice.

K = Z2[(sr,e,e), (e, e,7)]
G = Z%[<T27 ¢, 6)7 (ST7 €, 6)’ (6, € T>]

G/K = Zs[(1r? e, ¢e)]

There are three generators of ¥ = G®. The first two are the generators
of K, that is ((sr,e,e),0) and ((e,e,7),0). The third element is found by
taking the generator of /K , which is the element (r? e, e) and mapping
it onto S', which gives us the element ((r? e, e),3). The actions of these
elements are found by combining the actions of their component parts, recall

that the group acts from right to left.
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Element Action on C3 Action on C¢

g g(ZIJZ27Z37w17w27w3) g(Zl,22723,24725726,11)1,’(1)2,U)g,w4,U)5,UJ6)
((r767€)70) (w2a21a227w1) (/LUQ,Zl,'(U4,23,22,T,U1,Z4,w3)

((s,e,€),0)  e(z1,ws, w1, 22) €(wy, w3, Wy, Wi, 24, 23, 22, 21)

((ST7€76)70) E(w27wlaz2721) E(w3az47w17Z27Z37w47217w2)

((67677—>7O) ¢(Zl722>w1,w2) w(Zl,Zz,Zg,Z4,UJ1,'UJQ,1U3,'(U4)

((rye,e),0)  (wq, 21, 29, w1) (wa, 21, Wy, 23, 22, W1, Z4, W3)

((r*,e,e),0)  (wy,ws, 21, 22) (w1, we, w3, Wy, 21, 22, 23, 24)

((e,e,€),0)  €¥O(21, 29, 23, w1, wo,w3) €™ (21, 29, 23, 24, 25, 26, W1, Wa, W3, Wy, W, W)
(( (—=1)(21, 22, 23, w1, wo,w3)  (—1)(z1, 22, 23, 24, 25, 26, W1, Wa, W3, Wy, W, We)
(( ( (

_1)(w17 Wy, 21, 22) _1)<w17 Wy, W3, Wy, 21, 22, 23, Z4>

Next we find the individual elements’ fixed-point subspaces and from there

it is easy to see what their common fixed-point subspace is.

Element Fixed-point subspace in C? Fixed-point subspace in C*
((srye,e),0) 2z = ews, 2o = ewn 21 = €Ws, 2y = €24, 23 = €W, Wy = €Wy
((e,e,7),0) C? when ¢ = +1 C% when ¢ = +1
0 when ¢ = —1 0 when ¢ = —1
((r?,e,e), %) 21 = —Wq, 29 = —Wy 21 = —Wi, 2y = —Wo, 23 = —W3, 24 = —Wy

From this we can work out the fixed-point subspace of the group G® as

a whole.
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Fix(G®) in C? dimFix(G®) in C?
21 = —€z9 = —wy = €wy when ¢ = +1 2
0 when ¢ = —1 0
Fix(G®) in C* dimFix(G®) in C*
21 = —€23 = —W| = €Ws, 29 = €24 = —Wy = —cwy When ¢ = +1 4
0 when v = —1 0

This confirms the result from Section 4.3.1, there will be a Hopf bifurca-
tion for the C? case when v = +1 because that gives dimFix(G®) = 2, but

not otherwise.



Appendix D

Index of Notation

Base vector of lattice

Lattice

Dual lattice

base vector for Dual lattice

A wave vector

Generic 3 x 3 symmetric matrix with trace= 0 representing an ellipsoid
3 x 3 matrix of the homeotropic or isotropic trivial states

The symmetry group Hy x T? x Z,

The group (H X 3L£) X Z,

The holohedry (group of symmetries) of the lattice £

The torus group R?/L of translations on the lattice

The circle group

The group generated by the half lattice points, isomorphic to Z32

An isotropy subgroup of I'

An element of a group G

A group

The Euclidean group of all translations, rotations and reflections in the plane
The group of orthogonal matrices

The space of matrix functions periodic with respect to £

wave number, the length of a wave vector
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5
a

critical wave number

&
Jr

The projection of the +1 eigenspace of the natural representation of ¢ into T?

SRS
+ +
T~ N /N A/
@ «© @
— N N N

The projection of the +1 eigenspace of the natural representation of g into T?
{v e T?gv = v}
{v e T?gv = —v}

bifurcation parameter

a matrix valued function of x and ¢

A position vector in R?

Time

System of partial differential equations, ‘fl—;‘ =F(u, )

The system of differential equations linearized about Qo, L = dF|(g,,
Chapters 1 and 2, The kernel of L

Chapters 3 and 4, The i eigenspace of L

Generic element of kerlL

reflection z — —z

reflection y — —y

X 3 09 Q= = m Mt Ko >y

direct product
Hy Dy[r, s]/Zs[r?] = {{e,r?}, {r,r3},{s, sr?}, {sr, sr3}} ~ Z2

Hy, Dyr, s|/Z3[r?, s] = {{e,r? s, sr*}, {r,r3 sr,sr®}} =~ Zy

[r, s]/Z3]
Hys Dy[r, s]/Z3[r?, sr] = {{e,r?, sr,sr3}, {r,r3 sr? s}} ~ Zy
He Dq[r, s]/Zs[r?] = {{e,r3}, {r,r?}, {r?, r°}, {s, sr®}, {sr, sr1}, {sr? sr°}} =~ D3
Hgo Dqg[r, s]/Zs[r?] = {{e,r?, 74}, {r, 3, r°}, {s, sr?, sri}, {sr,sr3 s} } ~ Z2
Hgs Dqg[r, s]/Ds[r?, s] = {{e,r?,rt, s, 513, 574}, {r,r3,r% sr,sr3, 515} } ~ Zy
Hg, Dq[r, s]/Ds[r?, sr] = {{e,r?, v, sr, sr3, sr°}, {r,r®, v, sr? sri s}} ~ Zy
Q A space of matrix valued functions of space x € R? and time t € R
Qr A space of matrix valued functions Q(x,t) periodic with respect to the lattice £

Ve The space of complex 3 x 3 symmetric matrices with trace= 0
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Matlab Program

clear
T = 360
for t = 1:T

= 0.5;

= 0.1;
ex = 0.05;
Q =[a00; 0bO0; 00 -a-bl;
N =[001i; 00 0; i 0 0];
9 =[010; 100; 00 0];
9 =[000; 001i; 01 0];

»RO = diag([-1,-1,2]);
RO = diag([1,1,-21);
%RO = diag([0,0,0]1);

zl = exp(2*pi*ixt/T); z2 = exp(2xpixix*t/T);

wl = exp(2*pi*ixt/T); w2 = exp(2xpixix*t/T);
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hresolution of pictures
dx = 1/12;

[x,y] = meshgrid(-1.5: dx : 1.5);

quivscale = 0.5;

N = length(x);

k1 = [1; 0];
k2 = [0; 1];

kidot = k1(1)*x + k1(2)=*y;
el = exp(2xpixixkldot);

k2dot = k2(1)*x + k2(2)*y;
e2 = exp(2*pi*ixk2dot);

C2Ki =[100; 010; 00 1];
C2K2 =[0-10; 100; 00 1];
Q1 = C2K1*Q*inv(C2K1) ;

Q2 = C2K2*Q*inv(C2K2) ;

clf

for m = 1:N

for n = 1:N

Rp = real(zlxel(m,n)*Q1 + z2*xe2(m,n)*Q2
+ wix(el(m,n)) " (-1)*Q1 + w2*(e2(m,n)) " (-1)*Q2);

R = RO + ex*Rp;
E = eig(R);
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[V,D] = eig(R);
[Y,I] = max(E);

VL = norm(V(:,I));
u(m,n) = V(1,I)/VL;
v(m,n) = V(2,I)/VL;
w(m,n) = V(3,I)/VL;
if w(m,n) < O

u(m,n) = -u(m,n); v(m,n) = -v(m,n);
end
YY = sort(E);

% if YY(end) == YY(end-1)

if abs(YY(end) - YY(end-1)) < .0058
w(m,n) = 0;

else w(m,n) = 1;

end

end

end

hquiver (x,y,w.*u,w.*v,quivscale)

quiver(x,y,w.*u,w.*v,quivscale,’.’)
hold on
quiver(x,y,-w.*u,-w.*v,quivscale,’.’)

axis(’equal’)
xlabel(’x’)
ylabel(’y’)

M(t) = getframe;
end

movieview(M, 10)
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Index of programs

Table F.1: Index of Programs for C?

Case Program

Representation Standing or

Isotropic or

Rotating Homeotropic
28a  pp2228ai QT Standing Isotropic
mp2228ai -t Standing Isotropic
28b  pp2228bi QT Rotating Isotropic
mp2228bi -t Rotating Isotropic
30 pp2230i QT Standing Isotropic
32 mp2232i -t Standing Isotropic
42 pp2242i Qtt Standing Isotropic
43 mp2243i -t Standing Isotropic
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Table F.2: Index of Programs for C*
Case Program Representation Standing or Isotropic or
Rotating Homeotropic
30 pp4230i Qtt Standing Isotropic
mp4230i -t Standing Isotropic
32 pp4232i Qtt Standing Isotropic
mp4232i -t Standing Isotropic
42 pp4242i Qtt Standing Isotropic
mp4242i -t Standing Isotropic
43 pp4243i QT Standing Isotropic
mp4243i -t Standing Isotropic
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Table F.3: Index of Programs for C?
Case Program Representation Standing or Isotropic or
Rotating Homeotropic

3 pp323i QT Standing Isotropic
mp323i Q Standing Isotropic

10a  pp3210ai  Q*t+ Standing Isotropic
mp3210ai -t Standing Isotropic

10b  pp3210bi  Q*+ Standing Isotropic

15a  pp3215ai  Q*t+ Standing Isotropic

15b  pp3215bi  Qt* Rotating Isotropic
mp3215bi -t Rotating Isotropic

16a  mp3216ai -t Standing Isotropic

16b  pp3216bi  Qt* Rotating Isotropic
mp3216bi -t Rotating Isotropic

19 pp3219i Qtt Standing Isotropic
mp3219i -t Standing Isotropic

24 pp3224i Qtt Standing Isotropic
mp3224i -t Standing Isotropic

25 mp3225i -t Standing Isotropic

27 mm3227h Q™" Standing Homeotropic
mm32271 Q™ Standing Isotropic

3la  pp323lai Q" Standing Isotropic
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Table F.4: Index of Programs for C°
Case Program Representation Standing or Isotropic or
Rotating Homeotropic
15b  pp6215bi  QFF Rotating Isotropic
mp6215bi -t Rotating Isotropic
15b  pp6216bi  QtF Rotating Isotropic
mp6216bi -t Rotating Isotropic
25 pp6225i Qtt Standing Isotropic
mp6225i -t Standing Isotropic
30 pp6230i QT Standing Isotropic
mp6230i -t Standing Isotropic
3lb  pp6231bi QT Standing Isotropic
mp6231bi -t Standing Isotropic
32 pp6232i Qtt Standing Isotropic
mp6232i -t Standing Isotropic
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