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Abstract

A simultaneous confidence band provides useful information on the plausible range of an

unknown regression model. For a simple linear regression model, the most frequently

quoted bands in the statistical literature include the two-segment band, the three-segment

band and the hyperbolic band, and for a multiple linear regression model, the most com-

mon bands in the statistical literature include the hyperbolic band and the constant width

band. The optimality criteria for confidence bands include the Average Width criterion

considered by Gafarian (1964) and Naiman (1984) among others, and the Minimum Area

Confidence Set (MACS) criterion of Liu and Hayter (2007). A concise review of the

construction of two-sided simultaneous confidence bands in simple and multiple linear re-

gressions and their comparison under the two mentioned optimality criteria is provided in

the thesis. Two families of confidence bands, the inner-hyperbolic bands and the outer-

hyperbolic bands, which include the hyperbolic and three-segment bands as special cases,

are introduced for a simple linear regression. Under the MACS criterion, the best con-

fidence band within each family is found by numerical search and compared with the

hyperbolic band, the best three-segment band and with each other. The inner-hyperbolic

family of confidence bands, which include the hyperbolic and constant-width bands as

special cases, is also constructed for a multiple linear regression model over an ellipsoidal

covariate region and the best band within the family is found by numerical search. For

a multiple linear regression model over a rectangular covariate region (i.e. the predictor

variables are constrained in intervals), no method of constructing exact simultaneous con-

fidence bands has been published so far. A method to construct exact two-sided hyperbolic

and constant width bands over a rectangular covariate region and compare between them

is provided in this thesis when there are up to three predictor variables. A simulation

method similar to the ones used by Liu et al. (2005a) and Liu et al. (2005b) is also

provided for the calculation of the average width and the minimum volume of confidence

set when there are more than three predictor variables. The methods used in this thesis

are illustrated with numerical examples and the Matlab programs used are available upon

request.
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1.2.2 Distributions of b̂, ê and σ̂2 . . . . . . . . . . . . . . . . . . . . . . . 3
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Chapter 1

Introduction to linear regression

analysis and simultaneous

confidence bands

The term “regression” originates from the 14th century, where it had a biological meaning

as “the act of going back”. It was first adapted to a more general statistical context by the

well-known statisticians Udny Yule and Karl Pearson. However, its first statistical form

was published by Legendre (1805) and by Gauss (1809) in the field of astronomy, where

they applied the method of least squares to the problem of determining orbits of bodies

about the Sun. Since then, regression analysis has been widely applied to the study of

biology, behavioral and social sciences and more recently in finance, industry and many

other practical aspects of real life.

The first widely studied form of regression analysis has been linear regression, due

to the simplicity of the model and the statistical properties of the estimators. Linear

regression is usually used for the purpose of hypothesis testing or for the purpose of

prediction and forecasting. Many statistical methods and techniques have emerged from

its study and one of them is the simultaneous confidence band. This chapter provides a

general review of linear regression and presents some preliminary results necessary for the

construction and comparison of simultaneous confidence bands throughout the thesis.

1.1 Linear regression models

Linear regression analysis is a statistical technique used to model data consisting of a

dependent random variable and one or more independent variables, so as to evaluate the

relationship between the dependent variable and the independent variables. Specifically,

the dependent variable y is expressed as a function of the independent variables x1, . . . , xk,

the corresponding parameters b0, b1, . . . , bk and an error term e as in

y = b0 + b1x1 + b2x2 + . . .+ bkxk + e. (1.1)

1



The error term e is a random variable that represents the unexplained variation in the

dependent variable y. If a sample of n observations are available with the ith observation

given by (yi, xi1, xi2, . . . , xik) for i = 1, . . . , n, the ith observation is assumed to satisfy the

relationship

yi = b0 + b1xi1 + b2xi2 + . . .+ bkxik + ei

where b0, b1, . . . , bk are the same for all observations. The linear regression model can also

be represented in the matrix form

Y = Xb + e (1.2)

where Y =















y1

y2

...

yn















X =















1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
. . .

...

1 xn1 xn2 · · · xnk















b =















b0

b1
...

bk















e =















e1

e2
...

en















The matrix X is called the design matrix as its components can be suitably chosen via

design. Moreover, the linear regression model is subject to the following assumptions:

• The errors follow a normal distribution with the mean zero and constant variance

σ2 > 0 and they are independent.

• The independent variables x1, . . . , xk are error-free and the design matrix X has full

column rank k + 1.

1.2 Parameter estimation

1.2.1 Least squares estimates

From the sample of n observations, the linear regression model can be used to evaluate the

relationship between the dependent variable y and the independent variables x1, . . . , xk by

estimating the parameters of the model. These include the k + 1 coefficients b0, b1, . . . , bk

and the variance σ2 of the error term e. In order that all the k + 2 parameters can be

estimated from the sample data, there should be at least n ≥ k + 2 observations. A

common method of estimating the parameters is the method of least squares.

Let b̂ = (b̂0, b̂1, . . . , b̂k)
T estimate b = (b0, b1, . . . , bk)

T and let σ̂2 estimate σ2. Then, b̂

estimates b by minimizing the sum of squares
∑n

i=1(yi−bT xi)
2 where xi = (1, xi1, xi2, . . . , xik)

T .

Note that

n
∑

i=1

(yi − bT xi)
2

= (Y −Xb)T (Y −Xb) = ‖Y −Xb‖2

= Y T Y − Y TXb − bTXT Y + bTXTXb

= Y T Y − 2bTXT Y + bTXTXb

2



since Y TXb is a scalar and its transpose bTXT Y is the same scalar. Now

∂

∂b
(Y T Y − 2bTXT Y + bTXTXb)

= −2XT Y + 2XTXb

= 0 at b = b̂.

Hence, XTXb̂ = XT Y and if X has full column rank, then XTX is non-singular and so

b̂ = (XTX)−1XT Y . (1.3)

Since e1, e2, . . . , en are identically and independently distributed as N(0, σ2), b̂ is also the

maximum likelihood estimator of b. The fitted values for Y are Ŷ = Xb̂, the residuals

are given by

ê = (ê1, ê2, . . . , ên)T

= Y − Ŷ

= Y −Xb̂,

and

σ̂2 = (residual sum of squares) / (n − k − 1)

=

n
∑

i=1

(êi)
2 / (n− k − 1)

= êT ê / (n− k − 1)

= (Y −Xb̂)T (Y −Xb̂) / (n− k − 1)

=
‖Y −Xb̂‖2

(n− k − 1)
. (1.4)

1.2.2 Distributions of b̂, ê and σ̂2

Note that b̂ = (XTX)−1XT Y , that is b̂ is a linear transformation of Y , and Y ∼
N(Xb, σ2). Therefore, b̂ follows a normal distribution with mean

E(b̂) = E
[

(XTX)−1XT Y
]

= (XTX)−1XTE(Y )

= (XTX)−1XTXb

= b

and variance

V ar(b̂) = Cov
[

(XTX)−1XT Y , (XTX)−1XT Y
]

= (XTX)−1XTCov(Y , Y )X(XTX)−1

= σ2(XTX)−1.

Therefore,

b̂ ∼ N(b, σ2(XTX)−1).
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Since ê = Y −Xb̂ = (In −X(XTX)−1XT )Y , that is ê is a linear transformation of

Y , ê also follows a normal distribution with mean

E(ê) = E(Y −Xb̂)

= E(Y −X(XTX)−1XT Y )

= E
[

(In −X(XTX)−1XT )Y
]

= (In −X(XTX)−1XT )E(Y )

= (In −X(XTX)−1XT )Xb

= Xb −X(XTX)−1XTXb

= 0

and variance

V ar(ê) = Cov
[

(In −X(XTX)−1XT )Y , (In −X(XTX)−1XT )Y
]

= (In −X(XTX)−1XT )Cov(Y , Y )(In −X(XTX)−1XT )

= σ2(In −X(XTX)−1XT )

since (In −X(XTX)−1XT ) is an idempotent matrix. Therefore,

ê ∼ N
(

0, σ2(In −X(XTX)−1XT )
)

.

For the distribution of σ̂2, note that

σ̂2 =
‖Y −Xb̂‖2

(n− k − 1)

where

‖Y −Xb̂‖2

= (Y −Xb̂)T (Y −Xb̂)

= êT ê

=
[

(In −X(XTX)−1XT )Y
]T [

(In −X(XTX)−1XT )Y
]

= Y T (In −X(XTX)−1XT )Y (since (In −X(XTX)−1XT ) is idempotent)

= (Xb + e)T (In −X(XTX)−1XT )(Xb + e)

= eT (In −X(XTX)−1XT )e.

Note that

trace(In −X(XTX)−1XT )

= trace(In) − trace(X(XTX)−1XT )

= n− trace
(

(XTX)−1XTX
)

(since trace(AB) = trace(BA))

= n− (k + 1).
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Furthermore, In −X(XTX)−1XT is an idempotent matrix and so its rank is given by its

trace. Therefore, there exists an n× n orthogonal matrix G such that

In −X(XTX)−1XT = GT















In−(k+1) 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















G.

Let D = (D1,D2, . . . ,Dn)T = Ge/σ so that Ge = σD. Since e/σ ∼ N(0, In) and G is

orthogonal, D ∼ N(0, In). Hence,

‖Y −Xb̂‖2 = eT (In −X(XTX)−1XT )e

= eTGT















In−(k+1) 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















Ge

= σ2DTD

= σ2(D2
1 +D2

2 + . . . +D2
n−k−1)

∼ σ2χ2
n−k−1.

Therefore, the distribution of σ̂2 is given by

σ̂2 =
‖Y −Xb̂‖2

n− k − 1
∼
σ2χ2

n−k−1

n− k − 1

1.2.3 Independence of b̂ and ê and independence of b̂ and σ̂2

Since b̂ and ê are normal random vectors and

Cov(b̂, ê) = Cov
[

(XTX)−1XT Y , (In −X(XTX)−1XT )Y
]

= σ2(XTX)−1XT (In −X(XTX)−1XT )

= 0,

b̂ and ê are independent. Since σ̂2 = êT ê / (n− k − 1), b̂ and σ̂2 are also independent.

1.3 Uses of linear regression analysis

1.3.1 Hypothesis testing

Given a linear regression model, one can test whether some regression coefficients b satisfy

certain constraints Hb = h, where H is a given r × (k + 1) matrix with full row rank

r ≤ k + 1 and h is a given vector in ℜr. For this, one tests

H0 : Hb = h

against H1 : Hb 6= h.
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A size α test takes the form:

Reject H0 if and only if

(

‖Y −Xb̂H‖2 − ‖Y −Xb̂‖2
)

/r

‖Y −Xb̂‖2/(n − k − 1)
> fα

r,n−k−1

where b̂H is the least squares estimate of b, under the constraints Hb = h and fα
r,n−k−1

is the upper α point of an F distribution with degrees of freedom r and n − k − 1. This

test can also be derived as the likelihood ratio test.

One common hypothesis test is to assess whether a predictor variable of interest xl

add significantly to the prediction of the response y. In this case, the regression coefficient

bl is set to zero, H is set as a 1 × (k + 1) matrix with the (1, l + 1) entry equal to 1 and

all the other entries equal to zero, and h is set to 0.

1.3.2 Confidence and prediction intervals

Confidence and prediction intervals provide useful ways of assessing the quality of predic-

tion at a single point. When considering the mean response xT b of a model at a chosen

x = (1, x1, x2, . . . , xk)
T , a confidence interval can be constructed to provide useful infor-

mation on where the mean response lies. Since xT (b̂ − b) ∼ N(0, σ2xT (XTX)−1x) and

since b̂ is independent of σ̂2,

xT (b̂ − b)

σ̂
√

xT (XTX)−1x
∼ tn−k−1

where tn−k−1 is a t distribution with n−k−1 degrees of freedom. Hence, a 1−α confidence

level for xT b has the form:

P

{

xT b ∈ xT b̂ ± t
α/2
n−k−1σ̂

√

xT (XTX)−1x

}

= 1 − α

where t
α/2
n−k−1 is the upper α/2 point of a t distribution with n− k− 1 degrees of freedom.

Moreover, when considering the value of future observation yf at a chosen x =

(1, x1, x2, . . . , xk)
T , a prediction interval can be constructed to provide useful informa-

tion on where yf lies. In that case, yf = xT b+ ef where ef is the random error associated

with yf . Note that

yf − xT b̂ = xT b + ef − xT b̂

= ef − xT (b̂ − b)

∼ N(0, σ2 + σ2xT (XTX)−1x).

since ef ∼ N(0, σ2) and is independent of b̂ and

yf − xT b̂

σ̂
√

1 + xT (XTX)−1x
∼ tn−k−1.

Hence, a 1 − α prediction interval for yf can be derived from

P

{

yf ∈ xT b̂ ± t
α/2
n−k−1σ̂

√

1 + xT (XTX)−1x

}

= 1 − α.
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1.4 Simultaneous confidence bands

When the entire range of values of the predictor variables is of interest, a simultaneous

confidence band is used to make simultaneous confidence statements about the mean

response xT b for all the possible values of x within the range of interest. A simultaneous

confidence band provides useful information on where the true but unknown regression

lies. A linear regression model xT b0 is a plausible candidate for the unknown regression

xT b if and only if xT b0 is contained completely inside the confidence band

Simultaneous confidence bands can take various forms depending on the preferences

and requirements of the user. For instance, if one wishes to have a confidence band which

has simultaneous coverage probability of 1 − α and whose width is proportional to the

standard error of the estimated regression function, then the Scheffé band can be used

(see Scheffé, 1953). It has the form:

xT b ∈ xT b̂ ± σ̂
√

(k + 1)fα
k+1,n−k−1

√

xT (XTX)−1x ∀x ∈ ℜk+1

where fα
k+1,n−k−1 is the upper α point of the F distribution with degrees of freedom k+ 1

and n− k − 1.

Simultaneous confidence bands have now become a standard form of graphical illus-

tration of results from statistical analysis. Although they are widely used nowadays, their

construction is still a difficult problem for various regression models. Hence, the con-

struction and comparison of exact two-sided confidence bands for various linear regression

models are the main problems addressed in this thesis.

1.5 Outline of the thesis

The thesis consists of two main parts. The first part, which includes Chapter 2 and

Chapter 3, covers the exact construction and optimality for two-sided simultaneous con-

fidence bands in simple linear regression. The second part, which includes Chapter 4 and

Chapter 5, covers the exact construction and optimality for two-sided simultaneous con-

fidence bands in multiple linear regression. Specifically, in Chapter 2, the construction

and comparison of some exact simultaneous confidence bands for simple linear regression

are reviewed. Analytical and numerical methods are also carried out to show that D-

optimal designs lead to the best confidence bands under a certain optimality criterion.

In Chapter 3, two new families of simultaneous confidence bands are introduced and the

best band within each family is identified numerically and compared to frequently quoted

bands in the statistical literature. In Chapter 4, the construction and comparison of exact

simultaneous two-sided confidence bands in multiple linear regression when the predictor

variables are constrained in an ellipsoidal region are reviewed and a new family of simul-

taneous confidence bands is also introduced. A method to construct and compare of exact

simultaneous two-sided confidence bands in multiple linear regression when the predic-

tor variables are constrained in a rectangular region is proposed in Chapter 5. Finally,

concluding remarks and possible future work are presented in Chapter 6.

7



Chapter 2

Exact simultaneous confidence

bands in simple linear regression

2.1 The simple linear regression model

In simple linear regression, there is only one predictor variable in the regression model.

The general model (1.1) is reduced to the response variable y being expressed as a function

of the independent variable x and corresponding parameters b0, b1 and the error term e:

y = b0 + b1x+ e. (2.1)

For a sample of n observations where the jth observation is given by (yj, xj) for j = 1, . . . , n,

the jth observation is assumed to satisfy the relationship:

yj = b0 + b1xj + ej .

The model in matrix form is the same as (1.2), that is Y = Xb + e. However, in

simple linear regression, X denotes the design matrix whose ith row is given by (1, xi)

for i = 1, . . . , n. So,

X =















1 x1

1 x2

...
...

1 xn















and

(XTX)−1 =
1

∑n
j=1(xj − x̄)2





∑n
j=1 x2

j

n −x̄
−x̄ 1





where x̄ = 1
n

∑n
j=1 xj. The least squares estimates of b = (b0, b1)

T and σ are de-

noted by b̂ = (b̂0, b̂1)
T and σ̂ respectively. In the simple linear regression case, b̂ ∼

N2(b, σ
2(XTX)−1) and σ̂

σ ∼
√

χ2
ν

ν where ν = n− k − 1 = n− 2.

A 1−α level confidence band (l(x), u(x)) for the regression line b0+b1x over an interval

x ∈ (a,A) has the form

inf
−∞<b0,b1<∞,σ>0

P{l(x) < b0 + b1x < u(x) ∀x ∈ (a,A)} = 1 − α (2.2)
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where l(x) and u(x) are given functions representing the lower and upper parts respectively

of the band, and −∞ ≤ a < A ≤ ∞ and α ∈ (0, 1) are given constants. The construction

of simultaneous confidence bands for simple linear regression dates back to Working and

Hotelling (1929) who obtained confidence bands for linear models when the variance is

known. Since then, a considerable literature and work in the field has been made. For

the case of unknown variance, Scheffé (1953) constructed hyperbolic confidence bands

and Bowden and Graybill (1966) constructed straight line confidence bands. Wynn and

Bloomfield (1971) and Uusipaikka (1983) provided exact confidence bands with width

proportional to the standard error when the only predictor variable is restricted to an

interval or union of intervals. Recent papers include Liu and Hayter(2007) who compare

between confidence bands in simple linear regression and Liu, Lin and Piegorsch (2008)

who provide methods for the construction of exact simultaneous confidence bands in simple

linear regression.

In this chapter, we review the construction of the three most frequently quoted exact

simultaneous confidence bands in the statistical literature, namely the two-segment band,

the three-segment band and the hyperbolic band. More specifically, the two-sided confi-

dence bands are considered, where the bands are symmetric about the estimated regression

line b̂0 + b̂1x and l(x) and u(x) are given by

l(x) = b̂0 + b̂1x− σ̂H(x), u(x) = b̂0 + b̂1x+ σ̂H(x)

where σ̂H(x) > 0 is the half width of the band at x and H(x) determines the shape of the

band.

2.2 Preliminaries

Before focusing on the construction of each of the three bands, some preliminary results

used in the construction of the bands are presented. Let U be the unique square root

matrix of (XTX)−1 so that (XTX)−1 = U2. Using the results from Section 1.2.2 and

applying them to simple linear regression, it is clear that

b̂ ∼ N2(b, σ
2(XTX)−1),

σ̂

σ
∼

√

χ2
n−2

n− 2

and b̂ and σ̂ are independent. Hence, N = U−1(b̂ − b)/σ ∼ N2(0, I2) and T = N/( σ̂
σ ) =

U−1(b̂− b)/σ̂ follows a bivariate t distribution (see Tong, 1990) whose probability density

function is given by

fT (t1, t2) =
1

2π

[

1 +
1

ν
(t21 + t22)

]− (ν+2)
2

, (t1, t2) ∈ ℜ2.

Moreover, denote the polar coordinates of N = (N1, N2)
T and T = (t1, t2)

T by

(RN , θN) and (RT , θT ) respectively. For RN ≥ 0 and θN ∈ [0, 2π),

N1 = RN cos θN,
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N2 = RN sin θN.

Then, RN =
√

N2
1 +N2

2 ∼
√

χ2
2, θN has a uniform distribution on the interval [0, 2π),

and RN and θN are independent random variables. Therefore,

RT = RN/(
σ̂

σ
) ∼

√

χ2
2

√

χ2
n−2/(n − 2)

=
√

2F2,n−2

where Fk1,k2 denotes an F random variable with degrees of freedom k1 and k2. Further-

more, θT has a uniform distribution on the interval [0, 2π) and RT and θT are independent

random variables. The cumulative distribution function of RT is given by

FRT
(x) = P{RT < x}

= P{
√

2F2,n−2 < x}

= P{F2,n−2 <
x2

2
}

=

∫ x2

2

0

(

1 +
2u

ν

)− ν+2
2

du

since the pdf of the random variable F2,n−2 is given by f2,ν(u) =
(

1 + 2u
ν

)− ν+2
2 , where

ν = n− 2. Therefore,

FRT
(x) = 1 −

(

1 +
x2

ν

)− ν
2

. (2.3)

For a given vector v ∈ ℜ2 and constant r > 0, the set

{

T : vT T /‖v‖ < c
}

⊂ R2

is made up of all the points that are on the same side as the origin of the straight line

vT T /‖v‖ = c, where vT T /‖v‖ = c is perpendicular to the vector v and c distance away, in

the direction of v, from the origin. Hence, the set
{

T :
∣

∣vT T
∣

∣ /‖v‖ < c
}

⊂ R2, which can

be expressed as
{

T : vT T /‖v‖ < c
}

∩
{

T : (−v)T T /‖(−v)‖ < c
}

, is the stripe bounded

by the parallel lines vT T /‖v‖ = c and vT T /‖v‖ = −c. Finally, define a function v(c, d)

as

v(c, d) = V ar
{

(c, d)b̂
}

/σ2

=
(

c d
)

(XTX)−1

(

c

d

)

=

{

U

(

c

d

)}T {

U

(

c

d

)}

=

∥

∥

∥

∥

∥

U

(

c

d

)∥

∥

∥

∥

∥

2

which will be used in deriving the form and confidence level of the bands.
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Figure 2.1: Two-sided two-segment band

2.3 Some exact simultaneous confidence bands

2.3.1 Two-sided two-segment bands

A two-sided two-segment band has

H2,2(x) = c2,2,1

√

v(1, x̄) + c2,2,2|x− x̄|
√

v(0, 1), x ∈ (−∞,∞) (2.4)

where the critical constants c2,2,1 and c2,2,2 are chosen so that the confidence level of the

band is equal to 1 − α. The form of the two-sided two-segment band is illustrated in

Figure 2.1. The band satisfies the following probability:

P{b0 + b1x ∈ b̂0 + b̂1x± σ̂H2,2(x) ∀x ∈ (−∞,∞)} = 1 − α.

The probability can also be expressed as

P

{

sup
x∈(−∞,∞)

|(1, x)(b̂ − b)/σ̂|
H2,2(x)

< 1

}

= 1 − α.

Note that
∂

∂x

{[

(1, x)(b̂ − b)/σ̂

H2,2(x)

]}

has a fixed sign, either positive or negative, over x < x̄ and x > x̄. The supreme is

therefore attained at either x = x̄ or limits x → −∞ or x → ∞. So, the confidence level

can be further expressed as

P

{

sup
x=−∞ or x̄ or ∞

|(1, x)(b̂ − b)/σ̂|
H2,2(x)

< 1

}

= P{T ∈ R2}
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Figure 2.2: The region R2

where R2 = R2(−∞) ∩R2(x̄) ∩R2(∞) with

R2(x̄) =

{

T :
|(1, x̄)(b̂ − b)/σ̂|

H2,2(x̄)
< 1

}

=







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

x̄

)}T

T

∣

∣

∣

∣

∣

∣

/ c2,2,1

√

v(1, x̄) < 1







=







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

x̄

)}T

T

∣

∣

∣

∣

∣

∣

/

∥

∥

∥

∥

∥

U

(

1

x̄

)∥

∥

∥

∥

∥

< c2,2,1







and

R2(−∞) = R2(∞) =

{

T : lim
x→∞

|(1, x)(b̂ − b)/σ̂|
H2,2(x)

< 1

}

=







T :

∣

∣

∣

∣

∣

∣

{

U

(

0

1

)}T

T

∣

∣

∣

∣

∣

∣

/

∥

∥

∥

∥

∥

U

(

0

1

)∥

∥

∥

∥

∥

< c2,2,2







.

Using the results from Section 2.2, R2 is hence found to be the region given by a paral-

lelogram whose sides are given by the lines which are c2,2,2 and c2,2,1 distance away from

the origin and perpendicular to the vectors U(0, 1)T and U(1, x̄)T respectively. R2 is illus-

trated in Figure 2.2. The angle formed by the vectors U(0, 1)T and U(1, x̄)T is π/2 since

the cosine of that angle is given by

{

U

(

0

1

)}T {

U

(

1

x̄

)}

∥

∥

∥

∥

∥

U

(

0

1

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U

(

1

x̄

)∥

∥

∥

∥

∥

=

(

0 1
)

(XTX)−1

(

1

x̄

)

∥

∥

∥

∥

∥

U

(

0

1

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U

(

1

x̄

)∥

∥

∥

∥

∥

= 0.

Therefore, R2 is given by a rectangular region. The confidence level of the two-sided

two-segment band is given by the probability of T in R2. Let R∗
2 be the region that

12



Figure 2.3: The region R∗

2

is resulted from rotating R2 around the origin to the position so that U(1, x̄)T is in the

direction of the t1-axis and U(0, 1)T is in the direction of the t2-axis, as shown in Figure 2.3.

Due to the rotational invariance of the probability distribution of T , the probability of T

in R∗
2 is equal to the probability of T in R2. Furthermore, the probability of T in R∗

2 is

equal to twice the probability of T in the top-right half of R∗
2, which can be expressed as

{T : θT ∈ [−(π − η2), ξ2] , RT cos θT ≤ c2,2,1} ∪ {T : θT ∈ [ξ2, η2] , RT cos (θT − π/2) ≤ c2,2,2}

where the angles ξ2 and η2 are depicted in Figure 2.3 and given by

ξ2 = sin−1





c2,2,2
√

c22,2,2 + c22,2,1





and

η2 = cos−1





−c2,2,1
√

c22,2,2 + c22,2,1



 .

Hence, the probability of T in R2 is given by

P{T ∈ R2}

= 2P {T : θT ∈ [−(π − η2), ξ2] , RT cos θT ≤ c2,2,1}

+ 2P {T : θT ∈ [ξ2, η2] , RT cos (θT − π/2) ≤ c2,2,2}

= 2

∫ ξ2

−(π−η2)

1

2π
P{RT cos θ ≤ c2,2,1} dθ

+ 2

∫ η2

ξ2

1

2π
P{RT cos

(

θ − π

2

)

≤ c2,2,2} dθ (2.5)

=
1

π

∫ ξ2

−(π−η2)
FRT

(c2,2,1

cos θ

)

dθ +
1

π

∫ η2−π
2

ξ2−π
2

FRT

(c2,2,2

cos θ

)

dθ (2.6)

13



Figure 2.4: Two-sided three-segment band

where the function FRT
(x) is defined by expression (2.3), equality (2.5) follows directly

from the uniform distribution of θT and equality (2.6) follows directly from the cumulative

distribution function of RT .

2.3.2 Two-sided three-segment bands

A two-sided three-segment band has

H3,2(x) =
1

A− a
{(x− a)c3,2,1

√

v(1, A) + (A− x)c3,2,2

√

v(1, a)}, x ∈ (a,A) (2.7)

where the critical constants c3,2,1 and c3,2,2 are chosen so that the confidence level of the

band is equal to 1 − α. The form of the two-sided three-segment band is illustrated in

Figure 2.4. For x outside of (a,A), the band is formed of straight lines corresponding to

the diagonal extensions of the band within (a,A) and thus, the upper and lower parts of

the band each consists of three line segments. The band satisfies

P{b0 + b1x ∈ b̂0 + b̂1x± σ̂H3,2(x) ∀x ∈ (a,A)} = 1 − α.

The probability on the left side of the equality can be expressed as

P

{

sup
x∈(a,A)

|(1, x)(b̂ − b)/σ̂|
H3,2(x)

< 1

}

.

As in section 2.3.1,

∂

∂x

{[

(1, x)(b̂ − b)/σ̂

H3,2(x)

]}

has a fixed sign, either positive or negative, over x ∈ (a,A). The supreme is therefore

attained at either x = a or x = A. So, the confidence level can be further expressed as

P

{

sup
x=a or A

|(1, x)(b̂ − b)/σ̂|
H3,2(x)

< 1

}

= P{T ∈ R3}
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Figure 2.5: The region R3

where R3 = R3(a) ∩R3(A) with

R3(a) =

{

T :
|(1, a)(b̂ − b)/σ̂|

H3,2(a)
< 1

}

=







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

a

)}T

T

∣

∣

∣

∣

∣

∣

/ c3,2,2

√

v(1, a) < 1







=







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

a

)}T

T

∣

∣

∣

∣

∣

∣

/

∥

∥

∥

∥

∥

U

(

1

a

)∥

∥

∥

∥

∥

< c3,2,2







.

Similarly,

R3(A) =







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

A

)}T

T

∣

∣

∣

∣

∣

∣

/ c3,2,1

√

v(1, A) < 1







=







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

A

)}T

T

∣

∣

∣

∣

∣

∣

/

∥

∥

∥

∥

∥

U

(

1

A

)∥

∥

∥

∥

∥

< c3,2,1







.

The region R3 is given by a parallelogram whose sides are given by the lines which are

c3,2,1 and c3,2,2 distance away from the origin and perpendicular to the vectors U(1, a)T

and U(1, A)T respectively. The region R3 is illustrated in Figure 2.5. The angle φ is

formed by the vectors U(1, a)T and U(1, A)T and can be calculated from

cosφ =

{

U

(

1

a

)}T {

U

(

1

A

)}

∥

∥

∥

∥

∥

U

(

1

a

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U

(

1

A

)∥

∥

∥

∥

∥

(2.8)

=

(

1 a
)

(XTX)−1

(

1

A

)

√

v(1, a)v(1, A)
.
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Figure 2.6: The region R∗

3

Note that cosφ is also the correlation coefficient between b̂0 + b̂1a and b̂0 + b̂1A. The

confidence level of the two-sided three-segment band is given by the probability of T in

R3.

Let R∗
3 be the region that is resulted from rotating R3 around the origin to the position

so that U(1, A)T is in the direction of the t1-axis, as shown in Figure 2.6. Due to the

rotational invariance of the probability distribution of T , the probability of T in R3 is

equal to the probability of T in R∗
3, which is further equal to twice the probability of T

in the top-right half of R∗
3, which can be expressed as

{T : θT ∈ [−(π − η3), ξ3] , RT cos θT ≤ c3,2,1} ∪ {T : θT ∈ [ξ3, η3] , RT cos (θT − φ) ≤ c3,2,2}

where angles ξ3 and η3 can be derived using trigonometric calculations to be:

ξ3 = sin−1





c3,2,2 − c3,2,1 cosφ
√

c23,2,2 + c23,2,1 − 2c3,2,2c3,2,1 cosφ





and

η3 = cos−1





−c3,2,1 sinφ
√

c23,2,2 + c23,2,1 + 2c3,2,2c3,2,1 cosφ



 .
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Figure 2.7: Two-sided hyperbolic band

Hence, the probability of T in R3 is equal to

P{T ∈ R3}

= 2P {T : θT ∈ [−(π − η3), ξ3] , RT cos θT ≤ c3,2,1}

+ 2P {T : θT ∈ [ξ3, η3] , RT cos (θT − φ) ≤ c3,2,2}

= 2

∫ ξ3

−(π−η3)

1

2π
P{RT cos θ ≤ c3,2,1} dθ

+ 2

∫ η3

ξ3

1

2π
P{RT cos (θ − φ) ≤ c3,2,2} dθ

=
1

π

∫ ξ3

−(π−η3)
FRT

(c3,2,1

cos θ

)

dθ +
1

π

∫ η3−φ

ξ3−φ
FRT

(c3,2,2

cos θ

)

dθ (2.9)

where the function FRT
(x) is defined by expression (2.3). Thus, the confidence level of a

two-sided three-segment band is given by expression (2.9).

2.3.3 Two-sided hyperbolic bands

A two-sided hyperbolic band has

Hh,2(x) = ch,2

√

v(1, x), x ∈ (a,A) (2.10)

where the critical constant ch,2 is chosen so that the confidence level of the band is equal

to 1−α. The form of the two-sided hyperbolic band is illustrated in Figure 2.7. The band

satisfies

P{b0 + b1x ∈ b̂0 + b̂1x± ch,2σ̂
√

v(1, x) ∀x ∈ (a,A)} = 1 − α
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Figure 2.8: The region Rh

= P







sup
x∈(a,A)

|
(

1 x
)

(b̂ − b)/σ̂|
√

v(1, x)
< ch,2







= P







sup
x∈(a,A)

∣

∣

∣

∣

∣

∣

{

U

(

1

x

)}T

T

∣

∣

∣

∣

∣

∣

/

∥

∥

∥

∥

∥

U

(

1

x

)∥

∥

∥

∥

∥

< ch,2







= P{T ∈ Rh}

where Rh = ∩x∈(a,A)Rh(x) with

Rh(x) =







T :

∣

∣

∣

∣

∣

∣

{

U

(

1

x

)}T

T

∣

∣

∣

∣

∣

∣

/

∥

∥

∥

∥

∥

U

(

1

x

)∥

∥

∥

∥

∥

< ch,2







.

The region Rh(x) is given by a strip bounded by the 2 lines that are ch,2 distance away

from the origin and perpendicular to the vector U(1, x)T . Therefore, Rh is the region

given by a spindle region whose angle at the vertices is φ, as depicted in Figure 2.8, where

φ is also the angle between U(1, a)T and U(1, A)T and is calculated as in Section 2.3.2 for

the two-sided three-segment band. The confidence level of the two-sided hyperbolic band

is given by the probability of T in Rh. Let R∗
h be the region that is resulted from rotating

Rh around the origin to the position so that the angle φ between U(1, a)T and U(1, A)T is

divided into two equal halves by the t2-axis, as shown in Figure 2.9. Due to the rotational

invariance of the probability distribution of T , the probability of T in Rh is equal to the

probability of T in R∗
h. The region R∗

h is divided by the axes into four equal quarters. The

top-right quarter of R∗
h, for instance, can be partitioned into two parts, the fan given by

{

T : θT ∈
[

π − φ

2
,
π

2

]

, ‖T ‖ ≤ ch,2

}

and the right-angle triangle given by
{

T : θT ∈
[

0,
π − φ

2

]

, 0 ≤
(

cos

(

π − φ

2

)

, sin

(

π − φ

2

))

T ≤ ch,2

}

.
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Figure 2.9: The region R∗

h

Therefore, the probability of T in Rh is equal to four times the sum of the probabilities

of T in the two regions mentioned above and given by

P{T ∈ Rh}

= 4P

{

θT ∈
[

0,
π − φ

2

]

, 0 ≤
(

cos

(

π − φ

2

)

, sin

(

π − φ

2

))

T ≤ ch,2

}

+ 4P

{

θT ∈
[

π − φ

2
,
π

2

]

, ‖T ‖ ≤ ch,2

}

= 4

[

∫ π−φ

2

0

1

2π
P

{

0 ≤ RT ≤ ch,2

cos (π−φ
2 − θ)

}

dθ +
(φ

2 )

2π
P{RT ≤ ch,2} dθ

]

= 4

[

∫ π−φ
2

0

1

2π

{

FRT

(

ch,2

sin(θ + φ
2 )

)

− FRT
(0)

}

dθ +
(φ

2 )

2π
FRT

(ch,2)

]

where the function FRT
(x) is defined by expression (2.3), so that the confidence level of a

two-sided hyperbolic band is given by

1 − φ

π

(

1 +
c2h,2

ν

)− ν
2

− 2

π

∫ π−φ
2

0

[

1 +
c2h,2

ν sin2(θ + φ
2 )

]− ν
2

dθ. (2.11)

There are more than one way to derive the confidence level of each of the types of confidence

bands discussed in this chapter. Derivation of confidence level for one-sided confidence

bands can be achieved using similar methods. Moreover, the expressions (2.6), (2.9) and

(2.11) for the confidence levels of two-sided confidence bands for simple linear regression

in this chapter involve computation no harder than one-dimensional integration. Next, we

discuss the optimality criteria for the two-segment, three-segment and hyperbolic bands.

2.4 Optimality criteria for simultaneous confidence bands

An optimality criterion is a single expression that summarizes how good the entity being

assessed is. The entity under a criterion is said to be optimal when it is maximized or
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minimized depending on the requirements of the user. Literature on optimality criteria

for experimental design is widely available and Atkinson, Donev and Tobias (2007) have

provided a useful account of some of the most important ones. However, for simultaneous

confidence bands, there exist fewer optimality criteria and two of them are outlined in this

section. Then, the design leading to the best confidence bands under one of these criteria

is derived analytically or numerically, for the two-sided two-segment, three-segment and

hyperbolic bands.

2.4.1 Average width criterion

The idea of average width of a band as criterion was introduced by Gafarian (1964). It was

then formalized by Naiman (1984), who defines simultaneous confidence bands for linear

regression functions as µ-optimal among a family of confidence bands, if they minimize

the average width of the bands with respect to the probability measure µ over the range

of interest, among all the confidence bands in the family with equal coverage probability.

For a two-sided simultaneous confidence band for an unknown regression function f(x)

over the region of interest with coverage probability 1−α, the points x1, . . . , xn where the

band will be used are random vectors which are identically and independently distributed

according to the probability measure µ. Therefore, the accuracy of the resulting confidence

band is proportional to
∑n

i=1
H(x)

n , which converges almost surely to
∫

xH(x)µdx by the

strong law of large numbers, provided the integral is finite. Thus, a µ-optimal simultaneous

confidence band is the one with optimal average width accuracy. Intuitively, an optimal

simultaneous confidence band under the average width criterion bounds the regression

function over the range of interest as tightly as possible. This optimality criterion is used

in Chapter 5 to compare between two types of confidence bands for a particular dataset.

Most work on confidence bands use the average width as optimality criterion. However,

Liu and Hayter (2007) pointed out two flaws in the criterion. When comparing between

confidence bands, they found that whichever band with the smaller critical constant will

be deemed as the better band under the average width criterion. Moreover, the range of

interest is a crucial factor when comparing bands under the criterion. For three-segment

bands for instance, a three-segment band can be deemed better than another three-segment

band depending on the ranges of interest that are used, although the pairs of simultaneous

confidence intervals underlying the two three-segment bands are fixed.

2.4.2 Minimum area confidence set criterion

The Minimum Area Confidence Set (MACS) criterion for simultaneous confidence bands

was introduced by Liu and Hayter (2007), who have defined a simultaneous confidence

band for simple linear regression as optimal if the corresponding set for the linear parame-

ters of regression model has the smallest area, among all confidence sets corresponding to

simultaneous confidence bands with equal coverage probability 1 − α. For multiple linear

regression, they use the analogous Minimum Volume Confidence Set (MVCS) criterion.

Each 1−α level confidence band correspond to a 1−α level confidence set for b (see e.g.,
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Khorasani and Milliken, 1979 and Piegorsch, 1987). Intuitively, in simple linear regression

for instance, each point (b0, b1) within a 1 − α level confidence set correspond to a line

b0 + b1x lying completely within the 1− α level confidence band. The smaller the area of

the confidence set the fewer the candidates for the true and unknown regression line there

are in the corresponding confidence band, and thus, the better the band is.

The MACS criterion is related to D-optimality in experimental design in the sense that

D-optimal designs minimize the area of the F distribution confidence ellipsoid for b (see

Atkinson, Donev and Tobias, 2007). This relation is outlined in Section 2.4.3. Confidence

sets C2, C3 and Ch for the two-sided two-segment, three-segment and hyperbolic bands

respectively can be generated from the respective confidence regions R2, R3 and Rh via

the same linear transformation U−1(b̂−b)/σ̂. Subsequently, comparisons among the three

types of confidence bands reduce to comparisons among the areas of R2, R3 and Rh. Using

MACS criterion for simple linear regression, Liu and Hayter (2007) have shown that if the

whole range of covariate is of interest, then the hyperbolic band is the recommended band

among the three types of confidence bands. Furthermore, if the range of interest is finite,

then a restricted hyperbolic band might be recommended, although the three-segment

band can be preferable in certain cases.

2.4.3 Relation of MACS to D-optimality

D-optimality is the most intensively studied of all design criteria. It is based on the deter-

minant of the information matrix for the design, |XTX|, which is equal to the reciprocal

of the determinant of the variance-covariance matrix for the least squares estimates of the

linear parameters of the model, 1
|XT X|−1 . Designs which maximize |XTX| are called D-

optimum designs. They minimize the content of the confidence region for the parameters

b of the model. This is shown below for the model (2.1).

Since, b̂ ∼ N(b, σ2(XTX)−1), we have 1
σ (XTX)

1
2 (b̂ − b) ∼ N(0, I2) so that

{

1

σ
(XTX)

1
2 (b̂ − b)

}T { 1

σ
(XTX)

1
2 (b̂ − b)

}

∼ χ2
2

1

σ2
(b̂ − b)T (XTX)(b̂ − b) ∼ χ2

2

(b̂ − b)T (XTX)(b̂ − b)

2σ2
∼ χ2

2

2

(b̂ − b)T (XTX)(b̂ − b)

2σ̂2
∼

(

χ2
2
2

)

(

χ2
ν

ν

) = F2,ν .

So, P
{

(b̂ − b)T (XTX)(b̂ − b) ≤ 2σ̂2Fα
2,ν

}

= 1 − α and the region

Rb =
{

b : (b̂ − b)T (XTX)(b̂ − b) ≤ 2σ̂2F2,ν

}
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is therefore a confidence region for b and it takes the form of an ellipse (ellipsoid for

multiple linear regression). The area of Rb is given by

Area(Rb) =

∫∫

Rb

1 db

=

∫∫

(b̂−b)T (XT X)(b̂−b) ≤ 2σ̂2F2,ν

1 db

=

∫∫

ωT ω ≤ 2σ̂2F2,ν

|(XTX)−
1
2 | dω

(

where ω = (XTX)
1
2 (b̂ − b)

)

=
1

√

|XTX|

∫∫

ωT ω ≤ 2σ̂2F2,ν

1 dω

=
2πσ̂2F2,ν
√

|XTX|

since ωT ω = 2σ2F2,ν defines a circle with radius
√

2σ2F2,ν . Therefore, maximizing
√

|XTX| will minimize the area of the confidence region for b. Optimality under MACS

criterion is also achieved by finding the smallest area of confidence set for b.

2.4.4 Optimal design for simultaneous confidence bands under MACS

criterion

Liu and Hayter (2007) carried out comparisons among confidence bands in simple linear

regression when the design and the range were given. With a chosen 1 − α confidence

level, they concluded that the best band over the whole line is Scheffé’s band. When

the range of interest is finite, they found that whether the hyperbolic band or the three-

segment band is better depends on the value of φ. When φ is large, the hyperbolic band

is better, whereas when φ is small, the three-segment band is preferable. Moreover, they

also showed that the best two-segment and three-segment bands are given by c2,2,1 = c2,2,2

and c3,2,1 = c3,2,2 respectively, that is when they have equal critical constants.

Besides using MACS criterion to compare confidence bands, the criterion can also be

used to find the experimental design that leads to the minimum area of the corresponding

confidence sets. This was shown by Atkinson, Donev and Tobias (2007) in their example

for Scheffé’s band which is based on a regression model that holds for the whole real line.

However, in most problems, a regression model holds only over a finite interval of the

covariate and thus, a confidence band over a finite interval is of interest. The optimization

problem for a simultaneous confidence band over a finite range of interest is therefore to

find the design that minimizes the area of the corresponding confidence set.

Two-sided two-segment bands

The confidence set corresponding to the two-sided two-segment band, C2, is given by

C2 =

{

b : U−1 (b̂ − b)

σ̂
∈ R2

}

which satisfies

P{b ∈ C2} = P{T ∈ R2} = 1 − α
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and can also be expressed as a linear transformation of R2:

C2 = {b : b ∈ b̂ + σ̂UR2}.

From Section 2.3.1, R2 was found to be given by a rectangular region. The area of that

region can be readily calculated to be 4c2,2,1c2,2,2. Hence, the area of C2 is given by

Area(C2) =

∫∫

C2

1 db

=

∫∫

b ∈ b̂ + U(σ̂R2)
1 db

=

∫∫

ω ∈ σ̂R2

|U | dω
(

where ω = U−1(b̂ − b)
)

=

∫∫

ρ ∈ R2

σ̂2|U | dρ
(

where ρ =
1

σ̂
ω

)

= σ̂2|U |
∫∫

ρ ∈ R2

1 dρ

(

where

∫∫

ρ ∈ R2

1 dρ is the area of R2

)

= 4σ̂2c2,2,2c2,2,1|U |.

Furthermore, Liu and Hayter (2007) have shown that among all two-sided two-segment

bands of the form (2.4) satisfying the confidence level requirement (2.2), the best one

under MACS criterion is given uniquely by c2,2,1 = c2,2,2 and R2 is a square. In that case,

Area(C2) = 4σ̂2c22,2|U | (2.12)

where c2,2 = c2,2,1 = c2,2,2.

The critical constant c2,2 does not depend on the designX, as shown by expression (2.5)

for the confidence level of a two-sided two-segment band. Consequently, Area(C2) mono-

tonically increases as |U | increases, i.e. Area(C2) monotonically decreases as
√

|XTX|
increases. The best two-sided two-segment band, under MACS criterion, is given by the

smallest area of corresponding confidence set and is therefore obtained by maximizing
√

|XTX|. It can be concluded that, under MACS criterion, a D-optimal design leads to

the best two-sided two-segment band.

Two-sided three-segment bands

The confidence set corresponding to the two-sided three-segment band, C3, is given by

C3 =

{

b : U−1 (b̂ − b)

σ̂
∈ R3

}

which satisfies

P{b ∈ C3} = P{T ∈ R3} = 1 − α.

From Section 2.3.2, R3 was found to be given by a region given by a parallelogram.

The area of R3 can be easily calculated to be 4c3,2,2c3,2,1/ sinφ. Using a similar linear

transformation as above, the area of C3 is given by

Area(C3) =
4σ̂2c3,2,2c3,2,1|U |

sinφ
.
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In this case, the angle φ depends on the range of interest (a,A) and the design X. Fur-

thermore, the critical constants depend on the angle φ and thus on the design X as well

through expression (2.9). Analytical minimization of Area(C3) is more complicated than

that of Area(C2) and thus, numerical methods are used instead. Liu and Hayter (2007)

have shown that among all two-sided three-segment bands of the form (2.7), satisfying the

confidence level requirement (2.2), the best one under MACS criterion is given uniquely

by c3,2,1 = c3,2,2 and R3 is a rhombus. In this case,

Area(C3) =
4σ̂2c23,2|U |

sinφ
(2.13)

where c3,2 = c3,2,1 = c3,2,2. In Section 2.5.4, some numerical exploration is carried out

to show that Area(C3) monotonically decreases as
√

|XTX| increases, so that it can be

deduced that, under MACS criterion, a D-optimal design leads to the best two-sided

three-segment band.

Two-sided hyperbolic bands

The confidence set corresponding to the two-sided hyperbolic band, Ch, is given by

Ch =

{

b : U−1 (b̂ − b)

σ̂
∈ Rh

}

which satisfies

P{b ∈ Ch} = P{T ∈ Rh} = 1 − α.

From section 2.3.3, Rh was found to be given by a spindle region. The area of the region

within the spindle can be calculated to be c2h,2

[

φ+ 2cot (φ
2 )
]

. Consequently,

Area(Ch) = σ̂2c2h,2|U |
[

φ+ 2cot (
φ

2
)

]

. (2.14)

In this case as well, the angle φ depends on the range of interest (a,A) and the design

X. Then, the critical constants depend on the angle φ and thus on the design X through

expression (2.11). Minimization of Area(Ch) is explored using numerical methods in

Section 2.5.4 to show that Area(Ch) monotonically decreases as
√

|XTX| increases so

that it can be deduced that, under MACS criterion, a D-optimal design also leads to the

best two-sided hyperbolic band.

2.5 Numerical examples and exploration

Atkinson, Donev and Tobias (2007) used the Desorption of Carbon Monoxide dataset as

their first example of simple linear regression analysis. In the experiment, graphitized

carbon was impregnated with potassium carbonate and then heated in a stream of 15%

carbon dioxide in nitrogen. The yield was the total amount of carbon monoxide des-

orbed and it was measured against the initial potassium/carbon ratio. The results of 22

observations are shown in Table 2.1.
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Table 2.1: The Desorption of Carbon Monoxide, Atkinson, Donev and Tobias (2007)

Observation Initial K/C atomic ratio (%) CO absorbed (mole/mole C) (%)

1 0.05 0.05

2 0.05 0.1

3 0.25 0.25

4 0.25 0.35

5 0.5 0.75

6 0.5 0.85

7 0.5 0.95

8 1.25 1.42

9 1.25 1.75

10 1.25 1.82

11 1.25 1.95

12 1.25 2.45

13 2.1 3.05

14 2.1 3.19

15 2.1 3.25

16 2.1 3.43

17 2.1 3.5

18 2.1 3.93

19 2.5 3.75

20 2.5 3.93

21 2.5 3.99

22 2.5 4.07
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Figure 2.10: A 0.95 level two-sided two-segment band for desorption CO dataset

The mean of the amount of carbon monoxide desorbed, x̄, is equal to 1.4068 mole/mole

C %. Modelling the dataset in the form of equation (2.2), b̂ = (b̂0, b̂1)
T = (−0.0380, 1.6031)

and σ̂ = 0.0612

(XTX)−1 =

(

0.1646 −0.0847

−0.0847 0.0602

)

and U =

(

0.3779 −0.1476

−0.1476 0.1960

)

.

The confidence level is fixed at 1 − α = 0.95 and the range of interest is set as (a,A) =

(0, 2.5), so that v(1, a) = 0.1646, v(1, A) = 0.1174, v(1, x̄) = 0.0455, v(0, 1) = 0.0602

and φ = 1.9167 rad. Hence, the simultaneous two-sided two-segment, three-segment and

hyperbolic band and their corresponding confidence sets can be constructed for the dataset.

2.5.1 Two-sided two-segment band for the desorption of carbon monox-

ide dataset

From expression (2.6) and confidence level of 1 − α = 0.95, c2,2 can be evaluated for the

dataset to be 2.4109. Hence, expression (2.4) is used to construct the 0.95 level two-

sided two-segment band for the desorption of carbon monoxide dataset, as depicted in

Figure 2.10, together with the least squares regression line and the 22 observations. The

corresponding region R2 and the confidence set C2 for b are illustrated in Figure 2.11 and

Figure 2.12 respectively. Hence, from equation (2.12), the area of the confidence set, C2,

corresponding to the two-sided two-segment band for the desorption of carbon monoxide

dataset is calculated to be 0.0744 units2.

2.5.2 Two-sided three-segment band for the desorption of carbon monox-

ide dataset

From expression (2.9) and confidence level of 1 − α = 0.95, c3,2 can be evaluated for the

dataset to be 2.3970. Hence, expression (2.7) is used to construct the 0.95 level two-
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Figure 2.11: The region R2 for desorption CO dataset

Figure 2.12: The confidence set C2 for desorption CO dataset
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Figure 2.13: A 0.95 level two-sided three-segment band for desorption CO dataset

sided three-segment band for the desorption of carbon monoxide dataset, as shown in

Figure 2.13. The corresponding region R3 and the confidence set C3 for b are illustrated

in Figure 2.14 and Figure 2.15 respectively. Hence, from equation (2.13), the area of

the confidence set C3 for the desorption of carbon monoxide dataset is calculated to be

0.0782 units2. Since this value is larger than that of the two-sided two-segment band,

the two-sided two-segment band seems preferable to the two-sided three-segment band

for the dataset under the MACS criterion. However, note that the two-segment band is

intrinsically defined on the whole range x ∈ (−∞,∞) and cannot be directly compared to

the three-segment and hyperbolic bands which are defined on x ∈ (a,A) = (0, 2.5).

2.5.3 Two-sided hyperbolic band for the desorption of carbon monoxide

dataset

From expression (2.11) and confidence level of 1 − α = 0.95, ch,2 can be evaluated for the

dataset to be 2.5875. Hence, expression (2.10) is used to construct the 0.95 level two-sided

hyperbolic band for the desorption of carbon monoxide dataset, as shown in Figure 2.16.

The corresponding region Rh and the confidence set Ch for b are illustrated in Figure 2.17

and Figure 2.18 respectively. Hence, from equation (2.14), the area of the confidence set,

Ch, corresponding to the two-sided hyperbolic band for the desorption of carbon monoxide

dataset is calculated to be 0.0712 units2. Therefore, under MACS criterion, the 0.95 level

two-sided hyperbolic band is the best band for the desorption of carbon monoxide dataset

among the three types of 0.95 level simultaneous two-sided confidence bands.

2.5.4 Numerical exploration

In section 2.4.4, an analytical derivation that D-optimal designs lead to the best two-

sided three-segment and hyperbolic bands under MACS criterion was not available so far.
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Figure 2.14: The region R3 for desorption CO dataset

Figure 2.15: The confidence set C3 for desorption CO dataset
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Figure 2.16: A 0.95 level two-sided hyperbolic band for desorption CO dataset

Figure 2.17: The region Rh for desorption CO dataset
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Figure 2.18: The confidence set Ch for desorption CO dataset

Subsequently, numerical methods have been used for the Desorption of Carbon Monoxide

dataset, with a range of interest of (a,A) = (0, 2.5) and a confidence level of 1−α = 0.95.

First of all, a translation in the model (2.1) is necessary to simplify the calculation of U

and φ independently. The new model is given as

yj = β0 + β1(xj − x̄) + ej

where β0 = b0 + b1x̄ and β1 = b1. The range of interest after translation is (a− x̄, A− x̄).

Hence,

(XTX)−1 =





1
n 0

0 1
∑n

i=1(xi−x̄)2



 =

(

1
n 0

0 1
sxx

)

so that

U = (XTX)−
1
2 =





1√
n

0

0 1√
sxx





and

|U | =
1

√

|XTX|
=

1√
nsxx

.

Hence, U

(

1

a− x̄

)

=
(

1√
n
, (a−x̄)√

sxx

)T
and U

(

1

A− x̄

)

=
(

1√
n
, (A−x̄)√

sxx

)T
.

Moreover,

φ = cos−1









(

1
n + (a−x̄)(A−x̄)

sxx

)

√

(

1
n + (a−x̄)2

sxx

)(

1
n + (A−x̄)2

sxx

)









. (2.15)

For Desorption of Carbon Monoxide dataset, the value of x̄ is fixed. Thus, the input

for numerical computation is sxx =
∑n

i=1(xi − x̄)2. From sxx, the values of φ can be

calculated using expression (2.15). The critical constants for the two-sided three-segment

band and hyperbolic band can be calculated using expressions (2.9) and (2.11) respectively.
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Figure 2.19: Plot of confidence set area against 1/|U | =
√

|XTX | for best 3-segment band

Hence, the areas of the corresponding confidence sets for the two-sided three-segment and

hyperbolic bands can be calculated from expressions (2.13) and (2.14) respectively. Plots

of these areas against 1/|U | =
√

|XTX| are shown in Figure 2.19 and Figure 2.20 for the

two-sided three-segment band and hyperbolic band respectively. As
√

|XTX| increases,

the areas of the corresponding confidence sets are monotonically decreasing in both cases.

This supports the deduction made in Section 2.4.4 that a D-optimal design leads to the

the best simultaneous two-sided confidence band under MACS criterion for the desorption

of carbon monoxide dataset.

In the case where the value of x̄ is not fixed, a numerical search for the area of confidence

set when both x̄ and 1/|U | =
√

|XTX| vary can be carried out. For instance, a surface of

the values of the area of the confidence set corresponding to the best three-segment band

when x̄ varies within (a,A) = (0, 2.5) and the value of 1/|U | =
√

|XTX| varies within

(0, 15) is depicted in Figure 2.21. It can be observed that the area of confidence set is

monotonically decreasing along the direction of the 1/|U |-axis for a given value of x̄.

A similar numerical search is carried out for the hyperbolic band, leading to the plot

in Figure 2.22 where the area of confidence set is also monotonically decreasing along

the direction of the 1/|U |-axis for a given value of x̄. However, this numerical result can

be misleading as x̄ and 1/|U | cannot be assumed to be restricted within intervals. Thus,

although it can be proved analytically that D-optimal designs lead to the best two-segment

bands under the MACS criterion, further research is required to show analytically that

D-optimal designs lead to the best three-segment and hyperbolic bands under the MACS

criterion.

In the next chapter, two new families of simultaneous confidence bands are constructed

and compared in simple linear regression, within which optimal confidence bands are

identified numerically.
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Figure 2.20: Plot of confidence set area against 1/|U | =
√

|XTX | for hyperbolic band

Figure 2.21: Plot of confidence set area against x̄ and 1/|U | =
√

|XTX | for best 3-segment band
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Figure 2.22: Plot of confidence set area against x̄ and 1/|U | =
√

|XTX | for hyperbolic band
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Chapter 3

Searching for the best

simultaneous confidence band in a

particular family of confidence

bands in simple linear regression

In this chapter, two families of 1−α level confidence bands, which include the hyperbolic

band and the best three-segment band as special cases, are defined for b0 + b1x. In each

family, we search the optimal confidence band under the MACS criterion. The definition

of each family is based on a family of confidence sets for b which is in turn defined in

terms of a family of sets for T via the transformation T = U−1(b̂ − b)/σ̂.

3.1 Family of inner-hyperbolic bands

This family of confidence bands is defined in terms of a family of sets Rγ1 for T . A set Rγ1

for T is defined for each given angle γ1 ∈ [0, φ/2], as depicted in Figure 3.1, in the following

way. For the given γ1, the directions U(1, a1)
T and U(1, A1)

T marked in Figure 3.1 can

be determined uniquely so that a < a1 < A1 < A and the angle between U(1, a)T and

U(1, a1)
T and the angle between U(1, A1)

T and U(1, A)T are equal to γ1. Specifically,

a < a1 < A1 < A are solved uniquely from

cos γ1 =

{

U

(

1

a

)}T {

U

(

1

a1

)}

∥

∥

∥

∥

∥

U

(

1

a

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U

(

1

a1

)∥

∥

∥

∥

∥

=

{

U

(

1

A

)}T {

U

(

1

A1

)}

∥

∥

∥

∥

∥

U

(

1

A

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

U

(

1

A1

)∥

∥

∥

∥

∥

. (3.1)

The set Rγ1 is bounded by a segment of a circle of radius cγ1/ cos γ1 centered at the

origin between U(1, a1)
T and U(1, A1)

T and between −U(1, a1)
T and −U(1, A1)

T . The

remaining boundary of Rγ1 is formed by the four line segments which are perpendicular

to U(1, a)T and U(1, A)T and cγ1 distance in both directions from the origin. By the way

of construction, Rγ1 is uniquely determined by cγ1 for a given γ1. We choose cγ1 such that
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Figure 3.1: The region Rγ1

P{T ∈ Rγ1} = 1−α. Note that, for γ1 = 0, Rγ1 is simply Rh depicted in Figure 2.17 and,

for γ1 = φ/2, Rγ1 is simply R3 depicted in Figure 2.14.

The confidence set for b that corresponds to Rγ1 is given by

Cγ1 =

{

b : U−1 (b̂ − b)

σ̂
∈ Rγ1

}

.

The confidence band for b0 + b1x that correspond to this confidence set Cγ1 can be shown

to be given by b̂0 + b̂1x± σ̂Hγ1(x) with

Hγ1(x) =















































1
(a1−a)

[

(x− a)
cγ1

cos γ1

√

v(1, a1) + (a1 − x)cγ1

√

v(1, a)
]

for ∀x ∈ (a, a1]

cγ1
cos γ1

√

v(1, x) for ∀x ∈ (a1, A1)

1
(A−A1)

[

(x−A1)cγ1

√

v(1, A) + (A− x)
cγ1

cos γ1

√

v(1, A1)
]

for ∀x ∈ [A1, A).

It is clear that when γ1 changes within [0, φ/2] we have a family of 1 − α level confidence

bands. We call this the family of inner-hyperbolic bands. It is easy to check that, for

γ1 = 0, this band is just the hyperbolic band and, for γ1 = φ/2, this band is just the best

three-segment band.

3.1.1 Confidence level of the inner-hyperbolic band

The critical constant cγ1 of the inner-hyperbolic band is determined from P{T ∈ Rγ1} =

1 − α. Let R∗
γ1

be the region that is resulted from rotating Rγ1 around the origin to the

position so that the angle φ is divided into two equal halves by the t2-axis, as depicted

in Figure 3.2. Due to the rotational invariance of the probability distribution of T , the

probability of T in Rγ1 is equal to the probability of T in R∗
γ1

. The region R∗
γ1

is partitioned
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Figure 3.2: The region R∗

γ1

into four triangles of size equal to Rγ1,M and two fans of size equal to Rγ1,N , as illustrated

in Figure 3.2. The probability of T in Rγ1 is therefore equal to the sum of twice the

probability of T in Rγ1,N and four times the probability of T in Rγ1,M .

Furthermore, the region Rγ1,M can be expressed as

Rγ1,M =

{

T : θ ∈
[

0,
π − φ

2
+ γ1

]

, 0 ≤
(

cos

(

π − φ

2

)

, sin

(

π − φ

2

))

T ≤ cγ1

}

and so

P{T ∈ Rγ1,M}

= P

{

θ ∈
[

0,
π − φ

2
+ γ1

]

, 0 ≤
(

cos

(

π − φ

2

)

, sin

(

π − φ

2

))

T ≤ cγ1

}

=

∫
π−φ

2
+γ1

0

1

2π
P

{

R ≤ cγ1

cos (π−φ
2 − θ)

}

dθ

=

∫ π−φ

2
+γ1

0

1

2π
FR

(

cγ1

sin(θ + φ
2 )

)

dθ

=
1

2π

[

π − φ

2
+ γ1

]

− 1

2π

∫
π−φ

2
+γ1

0

[

1 +
c2γ1

ν sin2(θ + φ
2 )

]− ν
2

dθ.

The region Rγ1,N can be expressed as

Rγ1,N =

{

T : θ ∈
[

π − φ

2
+ γ1,

π + φ

2
− γ1

]

, ‖T ‖ ≤ cγ1

cos γ1

}
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and so

P{T ∈ Rγ1,N}

= P

{

θ ∈
[

π − φ

2
+ γ1,

π + φ

2
− γ1

]

, ‖T ‖ ≤ cγ1

cos γ1

}

=
φ− 2γ1

2π
P{R ≤ cγ1

cos γ1
}

=
φ− 2γ1

2π
FR(

cγ1

cos γ1
)

=
φ− 2γ1

2π



1 −
(

1 +
c2γ1

ν cos γ1

)− ν
2



 .

Therefore, we have

P{T ∈ Rγ1} = 4P{T ∈ Rγ1,M} + 2P{T ∈ Rγ1,N}

=
φ− 2γ1

π



1 −
(

1 +
c2γ1

ν cos γ1

)− ν
2



 +
2

π

[

π − φ

2
+ γ1

]

− 2

π

∫
π−φ

2
+γ1

0

(

1 +
c2γ1

ν sin2(θ + φ
2 )

)− ν
2

dθ. (3.2)

Expression (3.2) gives the confidence level of a two-sided inner-hyperbolic band for a given

cγ1 , which can be used to calculate the critical constant cγ1 for a given α. When γ1 = 0, it

matches the confidence level of the two-sided hyperbolic band given by expression (2.11),

whereas when γ1 = φ/2, it matches the confidence level of the best two-sided three-segment

band given by expression (2.9) when c3,2,1 = c3,2,2 (see Liu and Hayter, 2007).

3.1.2 Area of confidence set corresponding to the inner-hyperbolic band

From the relationship between Cγ1 and Rγ1 , similar derivation as in Section 2.4.4 can be

used to show that Area(Cγ1) = σ̂2|U |Area(Rγ1). Hence, from Figure 3.1, it is also clear

that the region Rγ1 can be partitioned into

• two fans formed by the lines U(1, a1)
T , U(1, A1)

T and the boundary of the region

Rγ1 .

• four small right-angled triangles such as the one formed by U(1, a)T , U(1, a1)
T and

the boundary of the region Rγ1 .

• four big right-angled triangles such as the one formed by U(1, a)T , the boundary of

the region Rγ1 and the line joining the vertices of the region Rγ1 .

Therefore, the area of the region Rγ1 can be calculated as the sum of twice the area of one

of the fans, four times the area of one of the small right-angled triangles and four times

the area of one of the big right-angled triangles.

The area of one of the fans is 1
2

c2γ1
cos2 γ1

(φ− 2γ1).

The area of one of the small right-angled triangles is 1
2c

2
γ1

tan γ1.
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Figure 3.3: Plot of cγ1
against γ1

The area of one of the big right-angled triangles is 1
2c

2
γ1

cot(φ
2 ).

Therefore, the area of the confidence region Rγ1 is given by

Area(Rγ1) = 2
c2γ1

cos2 γ1
(φ− 2γ1) + 2c2γ1

tan γ1 + 2c2γ1
cot(

φ

2
).

When γ1 = 0, Area(Rγ1) = c2γ1

[

φ+ 2cot (φ
2 )
]

, which is just the area of the region Rh for

the hyperbolic band and when γ1 = φ
2 , Area(Rγ1) = 4c2γ1

/ sinφ, which is just the area of

the region R3 for the best three-segment band (see Liu and Hayter, 2007). Hence,

Area(Cγ1) = σ̂2|U |
[

2
c2γ1

cos2 γ1
(φ− 2γ1) + 2c2γ1

tan γ1 + 2c2γ1
cot(

φ

2
)

]

. (3.3)

3.1.3 Searching for the best inner-hyperbolic band

For given φ, ν and α, we can numerically search for the best band in the family of 1 − α

level inner-hyperbolic bands by finding the angle γ1 ∈ [0, φ/2] that minimizes Area(Cγ1)

under the constraint P{T ∈ Rγ1} = 1 − α. The dataset on the desorption of carbon

monoxide from Atkinson, Donev and Tobias (2007) given in Table 3.1 is used to illustrate

the numerical search. As in Section 2.5, the regression line b0 + b1x is to be bounded

over the range of interest x ∈ (a,A) = (0, 2.5) by using a 1 − α = 0.95 level simultaneous

confidence band. The value of φ can be calculated using equation (2.8) to be 1.9167

rad. For each value of γ1 ∈ [0, φ/2], the corresponding critical constant cγ1 of the inner-

hyperbolic band is computed using expression (3.2). A plot of cγ1 against γ1 is provided

in Figure 3.3. Then, the corresponding area of confidence set is calculated from expression

(3.3). The area of the confidence set against γ1 is plotted in Figure 3.4 from which the

γ1 ∈ [0, φ/2] that gives the MACS, i.e. the best inner-hyperbolic band, can be identified.

Specifically, the area of the confidence set corresponding to the best inner-hyperbolic band

is 0.07094 units2, whereas those corresponding to the hyperbolic and best three-segment
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Figure 3.4: Plot of Area(Cγ1
) against γ1
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bands are 0.07120 and 0.07820 units2 respectively. Furthermore, the optimal γ1 ∈ [0, φ/2]

is given by 0.3076 rad and the critical value cγ1 = 2.5259. Using equation (3.1) and this

optimal value of γ1, the range (a1, A1) is found to be (0.6601, 1.9906). The best inner-

hyperbolic band is shown in Figure 3.5 together with the least squares regression line, the

22 observations and the “inner-range” (a1, A1) as vertical dashed lines.

3.1.4 Comparisons

The best inner-hyperbolic band can be compared with the best three-segment band and

with the hyperbolic band by looking at

eφ,3 =
Area(C∗

I )

Area(C3)
and eφ,h =

Area(C∗
I )

Area(Ch)

where C∗
I denotes the confidence set of the best inner-hyperbolic band. As a function of

φ ∈ (0, π), eφ,3 is equal to one for φ ∈ (0, φ∗) where φ∗ is a value depending on ν and α.

Then, eφ,3 strictly decreases to zero for φ ∈ (φ∗, π). Table 3.1 provides the value of φ∗ for

some combinations of ν and α, while Figure 3.6 presents a typical picture of eφ,3.

From this, it can be concluded that the best inner-hyperbolic band is actually given

by the best three-segment band for φ ∈ (0, φ∗), but a more efficient band than the best

three-segment band can be found for φ ∈ (φ∗, π). The best three-segment band is very

in-efficient under the MACS criterion relative to the best inner-hyperbolic band when φ

is close to π since eφ,3 → 0 as φ→ π.

The function eφ,h first strictly decreases from one and then strictly increases and ap-

proaches one over φ ∈ (0, π). The minimum value of eφ,h is only marginally smaller than

one. A typical picture of eφ,h is given in Figure 3.7. From this, it can be concluded that

the best inner-hyperbolic band is always more efficient than the hyperbolic band under
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Figure 3.5: The best 0.95 level inner-hyperbolic band for the desorption CO dataset

Table 3.1: Values of φ∗ in rad for combinations of α = 0.01, 0.05, 0.10 and ν = 10, 30, ∞

α = 0.10 α = 0.05 α = 0.01

ν = 10 0.5240 0.9692 1.0128

ν = 30 0.6261 1.0515 0.99997

ν = ∞ 1.0904 1.0483 0.96635
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Figure 3.6: Plot of eφ,3 against φ

Figure 3.7: Plot of eφ,h against φ
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Figure 3.8: The region Rγ2

the MACS criterion, but the gain in efficiency of the best inner-hyperbolic band over the

hyperbolic band is never large.

3.2 Family of outer-hyperbolic bands

This family of confidence bands is defined in terms of a family of sets Rγ2 for T . For each

given angle γ2 ∈ [0, φ/2], a set Rγ2 for T is defined in the following way and depicted

in Figure 3.8. For the given γ2, the directions U(1, a1)
T and U(1, A1)

T in Figure 3.8

are determined uniquely so that a < a1 < A1 < A and the angles between U(1, a)T

and U(1, a1)
T and between U(1, A1)

T and U(1, A)T are equal to γ2. The set Rγ2 is

bounded by a segment of a circle of radius cγ2 centered at the origin between U(1, a)T

and U(1, a1)
T , between −U(1, a)T and −U(1, a1)

T , between U(1, A1)
T and U(1, A)T and

between −U(1, A1)
T and −U(1, A)T . The remaining boundary of Rγ2 is formed by the

eight line segments that are perpendicular to directions U(1, a)T , U(1, a1)
T , U(1, A1)

T

and U(1, A)T and cγ2 distance in both directions from the origin. It is clear from this

construction that Rγ2 is uniquely determined by cγ2 for a given angle γ2. We choose cγ2

such that P{T ∈ Rγ2} = 1 − α. Note that, for γ2 = φ/2, Rγ2 is simply Rh depicted in

Figure 2.17 and, for γ2 = 0, Rγ2 is simply R3 depicted in Figure 2.14.

The confidence set for b that corresponds to Rγ2 is given by

Cγ2 =

{

b : U−1 (b̂ − b)

σ̂
∈ Rγ2

}

.
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Figure 3.9: The region R∗

γ2

The confidence band for b0 + b1x that correspond to this confidence set Cγ2 can be shown

to be given by b̂0 + b̂1x± σ̂Hγ2(x) with

Hγ2(x) =















































cγ2

√

v(1, x) for ∀x ∈ (a, a1]

1
(A1−a1)

[

(x− a1)cγ2

√

v(1, A1) + (A1 − x)cγ2

√

v(1, a1)
]

for ∀x ∈ (a1, A1)

cγ2

√

v(1, x) for ∀x ∈ [A1, A).

The confidence level of the band is 1−α since P{T ∈ Rγ2} = 1−α. It is clear that when

γ2 changes within [0, φ/2] we have a family of 1−α level confidence bands which is called

the family of outer-hyperbolic bands. It is easy to check that, for γ2 = 0, the band is just

the best three-segment band and, for γ2 = φ/2, the band is just the hyperbolic band.

3.2.1 Confidence level of the outer-hyperbolic band

To calculate cγ2 from P{T ∈ Rγ2} = 1 − α, we derive an expression for P{T ∈ Rγ2}. Let

R∗
γ2

be the region that is resulted from rotating Rγ2 around the origin to the position so

that the angle φ is divided into two equal halves by the t2-axis, as depicted in Figure 3.9.

Due to the rotational invariance of the probability distribution of T , the probability of

T in Rγ2 is equal to the probability of T in R∗
γ2

. The region R∗
γ2

is partitioned into four

triangles of equal size to Rγ2,M , four fans of size equal to Rγ2,N and four triangles of size

equal to Rγ2,O, which are illustrated in Figure 3.9. The probability of T in Rγ2 is therefore
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equal to the sum of four times the probability of T in Rγ2,O, four times the probability of

T in Rγ2,M and four times the probability of T in Rγ2,N .

Furthermore, the region Rγ2,M can be expressed as

Rγ2,M =

{

T : θ ∈
[

0,
π − φ

2

]

, 0 ≤
(

cos

(

π − φ

2

)

, sin

(

π − φ

2

))

T ≤ cγ2

}

and so

P{T ∈ Rγ2,M}

= P

{

θ ∈
[

0,
π − φ

2

]

, 0 ≤
(

cos

(

π − φ

2

)

, sin

(

π − φ

2

))

T ≤ cγ2

}

=

∫ π−φ
2

0

1

2π
P

{

R ≤ cγ2

cos (π−φ
2 − θ)

}

dθ

=

∫
π−φ

2

0

1

2π
FR

(

cγ2

sin(θ + φ
2 )

)

dθ

=
1

2π

[

π − φ

2

]

− 1

2π

∫
π−φ

2

0

[

1 +
c2γ2

ν sin2(θ + φ
2 )

]− ν
2

dθ.

The region Rγ2,N can be expressed as

Rγ2,N =

{

T : θ ∈
[

π − φ

2
,
π − φ

2
+ γ2

]

, ‖T ‖ ≤ cγ2

}

and so

P{T ∈ Rγ2,N}

= P

{

θ ∈
[

π − φ

2
,
π − φ

2
+ γ2

]

, ‖T ‖ ≤ cγ2

}

=
γ2

2π
P{R ≤ cγ2}

=
γ2

2π
FR(cγ2)

=
γ2

2π



1 −
(

1 +
c2γ2

ν

)− ν
2



 .

The region Rγ2,O can be expressed as

Rγ2,O =

{

T : θ ∈
[

π − φ

2
+ γ2,

π

2

]

, 0 ≤
(

sin

(

φ− 2γ2

2

)

, cos

(

φ− 2γ2

2

))

T ≤ cγ2

}

and so

P{T ∈ Rγ2,O}

= P

{

θ ∈
[

π − φ

2
+ γ2,

π

2

]

, 0 ≤
(

sin

(

φ− 2γ2

2

)

, cos

(

φ− 2γ2

2

))

T ≤ cγ2

}

=

∫ π
2

π−φ

2
+γ2

1

2π
P







R ≤ cγ2

cos
[

θ −
(

π−φ
2 + γ2

)]







dθ

=

∫ π
2

π−φ

2
+γ2

1

2π
FR





cγ2

cos
[

θ −
(

π−φ
2 + γ2

)]



 dθ

=
φ− 2γ2

4π
− 1

2π

∫ π
2

π−φ

2
+γ2



1 +
c2γ2

ν cos2(
[

θ −
(

π−φ
2 + γ2

)]

)





− ν
2

dθ.

45



Therefore, we have

P{T ∈ Rγ2}

= 4P{T ∈ Rγ2,M} + 4P{T ∈ Rγ2,N} + 4P{T ∈ Rγ2,O}

=
2

π

[

π − φ

2

]

− 2

π

∫
π−φ

2

0

[

1 +
c2γ2

ν sin2(θ + φ
2 )

]− ν
2

dθ

+
2γ2

π



1 −
(

1 +
c2γ2

ν

)− ν
2



 +
φ− 2γ2

π

− 2

π

∫ π
2

π−φ

2
+γ2



1 +
c2γ2

ν cos2(
[

θ −
(

π−φ
2 + γ2

)]

)





− ν
2

dθ. (3.4)

Expression (3.4) gives the confidence level of a two-sided outer-hyperbolic band for a given

cγ2 , which can be used to calculate the critical constant cγ2 for a given α . When γ2 = φ/2,

it matches the confidence level of the two-sided hyperbolic band given by expression (2.11),

whereas when γ2 = 0, it matches the confidence level of the best two-sided three-segment

band given by expression (2.9) when c3,2,1 = c3,2,2 (see Liu and Hayter, 2007).

3.2.2 Area of confidence set corresponding to the outer-hyperbolic band

From the relationship between Cγ2 and Rγ2 , similar derivation as in Section 2.4.4 can be

used to show that Area(Cγ2) = σ̂2|U |Area(Rγ2). Hence, from Figure 3.8, it is also clear

that the region Rγ2 can be partitioned into

• four fans such as the one formed by the lines U(1, A1)
T , U(1, A)T and the boundary

of the region Rγ2 .

• four small right-angled triangles such as the one formed by U(1, a1)
T , the boundary

of the region Rγ2 and the bisector of the angle φ.

• four big right-angled triangles such as the one formed by U(1, a)T , the boundary of

the region Rγ2 and the line joining the two vertices that do not lie on the bisector

of the angle φ.

Therefore, the area of the region Rγ2 can be calculated as the sum of four times the area

of one of the sectors, four times the area of one of the small right-angled triangles and

four times the area of one of the big right-angled triangles.

The area of one fan is 1
2c

2
γ2
γ2.

The area of one small right-angled triangle is 1
2c

2
γ2

tan (φ
2 − γ2).

The area of one big right-angled triangle is 1
2c

2
γ2

cot(φ
2 ).

Therefore, the area of the confidence region Rγ2 is given by

Area(Rγ2) = 2c2γ2
γ2 + 2c2γ2

tan (
φ

2
− γ2) + 2c2γ2

cot(
φ

2
).

When γ2 = 0, Area(Rγ2) = 4c2γ2
/ sin φ, which is the area of the region R3 for the best

three-segment band. When γ2 = φ/2, Area(Rγ2) = c2γ2

[

φ+ 2cot (φ
2 )
]

, which is the area
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Figure 3.10: Plot of cγ2
against γ2

of the region Rh for the hyperbolic band. Hence,

Area(Cγ2) = σ̂2|U |
[

2c2γ2
γ2 + 2c2γ2

tan (
φ

2
− γ2) + 2c2γ2

cot(
φ

2
)

]

. (3.5)

3.2.3 Searching for the best outer-hyperbolic band

As in Section 3.1.3, the dataset on the desorption of carbon monoxide from Atkinson,

Donev and Tobias (2007) given in Table 3.1 is used to illustrate the numerical search. The

regression line b0+b1x is bounded over the range of interest x ∈ (a,A) = (0, 2.5) by using a

1−α = 0.95 level simultaneous confidence band and the value of φ can be calculated using

equation (2.8) to be 1.9167 rad. For each value of γ2 ∈ [0, φ/2], the corresponding critical

constant cγ2 of the outer-hyperbolic band is computed using expression (3.4). The plot of

cγ2 against γ2 is plotted in Figure 3.10. Then, the corresponding area of confidence set is

calculated from expression (3.5) and depicted in Figure 3.11 from which the γ2 ∈ [0, φ/2]

that gives the MACS, i.e. the best outer-hyperbolic band, can be identified. Specifically,

the area of the confidence set corresponding to the best outer-hyperbolic band is 0.07117

units2, the optimal γ2 ∈ [0, φ/2] is given by 0.6200 rad and the critical value cγ2 =

2.5765. Using equation (3.1) and this optimal value of γ2, the range (a1, A1) is found to

be (1.0421, 1.6559). The best outer-hyperbolic band is shown in Figure 3.12.

3.2.4 Comparisons

For given φ, ν and α, we can search numerically the best band in the family of 1−α level

outer-hyperbolic bands by finding the angle γ2 ∈ [0, φ/2] that minimizes Area(Cγ2) under

the constraint P{T ∈ Rγ2} = 1 − α. We can also compare this best outer-hyperbolic

band with the best three-segment band, with the hyperbolic band and with the best
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Figure 3.11: Plot of Area(Cγ2
) against γ2
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Figure 3.12: The best 0.95 level outer-hyperbolic band for the desorption CO dataset
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Figure 3.13: Plot of Eφ,3 against φ

inner-hyperbolic band by looking at

Eφ,3 =
Area(C∗

O)

Area(C3)
, Eφ,h =

Area(C∗
O)

Area(Ch)
and EI,O =

Area(C∗
I )

Area(C∗
O)

where C∗
O denotes the confidence set of the best outer-hyperbolic band. For Eφ,3 and Eφ,h,

similar observations as in Section 3.1.4 are made from the numerical investigation. As a

function of φ ∈ (0, π), Eφ,3 is equal to one for φ ∈ (0, φ⋆) where φ⋆ is a value depending on

ν and α. Then, Eφ,3 strictly decreases to zero for φ ∈ (φ⋆, π) as depicted in Figure 3.13.

Table 3.2 provides the value of φ⋆ for some combinations of ν and α. From this, it can be

concluded that the best outer-hyperbolic band is actually given by the best three-segment

band for φ ∈ (0, φ⋆), but a more efficient band than the best three-segment band can be

found for φ ∈ (φ⋆, π).

The function Eφ,h first strictly decreases from one and then strictly increases and

approaches one over φ ∈ (0, π). The minimum value of Eφ,h is again only marginally

smaller than one as shown in Figure 3.14. From this, it can be concluded that the best

outer-hyperbolic band is always more efficient than the hyperbolic band under the MACS

criterion, but the gain in efficiency of the best outer-hyperbolic band over the hyperbolic

band is small.

Finally, the function EI,O is always no larger than one for φ ∈ (0, π) and is only very

slightly less than one for φ near 1.5 as depicted in Figure 3.15. This implies that the best

inner-hyperbolic band is at least as good as the best outer-hyperbolic band but is better

by only a very small amount.
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Table 3.2: Values of φ⋆ in rad for combinations of α = 0.01, 0.05, 0.10 and ν = 10, 30, ∞

α = 0.10 α = 0.05 α = 0.01

ν = 10 1.3383 1.3207 1.2893

ν = 30 1.3405 1.31821 1.2733

ν = ∞ 1.3418 1.3173 1.2632

Figure 3.14: Plot of Eφ,h against φ
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Figure 3.15: Plot of EI,O against φ

3.3 Concluding remarks on the inner-hyperbolic and outer-

hyperbolic bands

Two new families of simultaneous confidence bands have been introduced and it is shown

how the best confidence band in each family can be identified numerically. It is ob-

served that the best inner-hyperbolic band is always no less efficient than the best outer-

hyperbolic band and so the best inner-hyperbolic band is recommended.

The best inner-hyperbolic band is in fact given by the best three-segment band when

0 < φ ≤ φ∗ for some φ∗ ∈ (0, π) depending on ν and α. But for φ∗ < φ < π, the best

inner-hyperbolic band can be much more efficient than the best three-segment band.

The best inner-hyperbolic band is always more efficient than the hyperbolic band, but

only by a small amount. If one wants to avoid the burden of numerical search to find the

best inner-hyperbolic band, then the hyperbolic band can be recommended with only a

small loss of efficiency.

This concludes the work done on the construction and comparison of confidence bands

in simple linear regression. In the next chapters, we turn our attention to the construction

and comparison of confidence bands in multiple linear regression.
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Chapter 4

Exact simultaneous confidence

bands in multiple linear regression

with predictor variables

constrained in an ellipsoidal region

4.1 The ellipsoidal covariate region

Chapter 2 reviewed the construction of simultaneous confidence bands for simple linear

regression, when k = 1. When k > 1, there are at least two predictor variables in the

model (1.1) and the region of interest χ may assume various forms. The first part of

this chapter reviews the construction of simultaneous confidence bands for the regression

function

xT b = b0 + b1x1 + b2x2 + . . . + bkxk

on an ellipsoidal region of interest χE. The linear regression model (1.2) is used, with the

same assumptions and distributional results as in Chapter 1. Denote X(1) as the n × k

matrix produced from the design matrix X by deleting the first column of 1’s from X.

Let x.l =
∑n

i=1 xil be the mean of the observed values of the lth predictor variable, where

1 ≤ l ≤ k and let x̄(1) = (x.1, . . . x.k)
T . Then, let S be a k × k matrix given by

S =
1

n

(

X(1) − 1x̄T
(1)

)T (

X(1) − 1x̄T
(1)

)

=
1

n

(

XT
(1)X(1) − nx̄(1)x̄

T
(1)

)

where 1 is an n-vector of 1’s. Note that S is the sample variance-covariance matrix of the

k predictor variables. Hence, the region χE is defined by

χE =
{

x(1) :
(

x(1) − x̄(1)

)T
S−1

(

x(1) − x̄(1)

)

≤ r2
}

(4.1)
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where x(1) = (x1, . . . , xk)
T and r > 0 is a constant that determines the size of χE . The

region is centered at x̄(1) and its volume is given by
∫

χE

1 dx(1)

=

∫

(x(1)−x̄(1))
T

S−1(x(1)−x̄(1))≤r2

1 dx(1)

=

∫

ωT
mωm≤r2

|S 1
2 | dωm

(

where ωm = S
1
2

(

x(1) − x̄(1)

)

)

= |S 1
2 |
∫

ωT
mωm≤r2

1 dωm

where
∫

ωT
mωm≤r2 1 dωm is a (k− 1)-sphere with radius r. Therefore, χE is a (k− 1)-sphere

transformed linearly by S
1
2 to result into an ellipsoid.

Given that

(XTX)−1 =

(

1
n + x̄S−1x̄′ −x̄S−1

−S−1x̄′ S−1

)

and that

xT (XTX)−1x =
1

n

[

1 +
(

x(1) − x̄(1)

)T
S−1

(

x(1) − x̄(1)

)

]

,

χE can also be expressed as

χE =

{

x(1) : xT (XTX)−1x ≤ 1 + r2

n

}

. (4.2)

Since

V ar(xT b) =
σ2

n

[

1 +
(

x(1) − x̄(1)

)T
S−1

(

x(1) − x̄(1)

)

]

,

V ar(xT b) = σ2

n (1 + r2) for all the points x(1) on the surface of the ellipsoidal region χE .

Hence, all the points x(1) on the surface of χE can be regarded as of equal “distance” in

terms of V ar(xT b) from the center x̄(1). Therefore, the value of r2 can be considered as

the “range” for the region of interest χE.

Construction of confidence bands over regions like χE has been considered by Halperin

and Guirian (1968), Bohrer (1973), Casella and Strawderman (1980) and Seppanen and

Uusipaikka (1992) among others. Recently, Liu and Lin (2008) provided detailed con-

struction of exact hyperbolic confidence bands over χE, while Liu et al. (2009) contained

details on the construction of exact constant width bands over χE. In this chapter, the

construction of two-sided hyperbolic and constant-width bands over χE are reviewed and

a family of confidence bands, called the inner-hyperbolic bands, which include the hyper-

bolic and constant-width bands as special cases is introduced. The optimal confidence

band within the family under the Minimum Volume Confidence Set (MVCS) criterion of

Liu and Hayter (2007) and Liu et al. (2009) is found numerically and compared with the

hyperbolic and constant width bands.

4.2 Preliminaries

As in Liu and Lin (2008), let z =
√
n(1, x̄(1))

T and let the (k + 1) × k matrix Z satisfy

(z, Z)T (XTX)−1(z, Z) = Ik+1. Then, it follows that T = (z, Z)−1(XTX)(b̂ − b)/σ̂ is a
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standard t random vector of k + 1 dimensions with ν = n − k − 1 degrees of freedom,

denoted as T ∼ tk+1,ν . Moreover, let w = (z, Z)T (XTX)−1x = (w1,w(1))
T , where

w(1) = (w2, w3, . . . , wk+1)
T , so that w1 = zT (XTX)−1x = 1√

n
, w(1) = ZT (XTX)−1x and

wT w = x(XTX)−1x = ‖w‖2. Then, from equation (4.2), all the possible values of w(1),

determined from w = (z, Z)T (XTX)−1x when x(1) varies over the region χE , form the

set

WE =

{

w : w1 =
1√
n
, ‖w‖2 ≤ 1 + r2

n

}

.

The hyperbolic band over χE has the form

xT b ∈ xT b̂ ± chσ̂
√

xT (XTX)−1x ∀x(1) = (x1, . . . , xk)
T ∈ χE,

and its confidence level can be expressed as

1 − α = P

{

sup
x(1)∈χE

|xT (b̂ − b)|
σ̂
√

xT (XTX)−1x
≤ ch

}

= P







sup
x(1)∈χE

∣

∣

∣
{(z, Z)T (XTX)−1x}T {(z, Z)−1(XTX)(b̂ − b)/σ̂}

∣

∣

∣

√

{(z, Z)T (XTX)−1x}T {(z, Z)T (XTX)−1x}
≤ ch







= P

{

sup
x(1)∈χE

∣

∣{(z, Z)T (XTX)−1x}T T
∣

∣

‖(z, Z)T (XTX)−1x‖ ≤ ch

}

= P{T ∈ Vh}

where

Vh =

{

T : sup
w∈WE

∣

∣wT T
∣

∣ / ‖w‖ ≤ ch

}

.

The region Vh is depicted in Figure 4.1, where the angle φ is given by

φ = cos−1

(

1√
1 + r2

)

∈ (0,
π

2
). (4.3)

The constant width band over χE has the form

xT b ∈ xT b̂ ± ccσ̂
√

(1 + r2)/n ∀x(1) = (x1, . . . , xk)T ∈ χE,

and its confidence level can be expressed as

1 − α = P

{

sup
x(1)∈χE

|xT (b̂ − b)|/σ̂ ≤ cc
√

(1 + r2)/n

}

= P

{

sup
x(1)∈χE

∣

∣

∣
{(z, Z)T (XTX)−1x}T {(z, Z)−1(XTX)(b̂ − b)/σ̂}

∣

∣

∣
≤ cc

√

(1 + r2)/n

}

= P

{

sup
x(1)∈χE

∣

∣{(z, Z)T (XTX)−1x}T T
∣

∣ ≤ cc
√

(1 + r2)/n

}

= P{T ∈ Vc}

where

Vc =

{

T : sup
w∈WE

∣

∣wT T
∣

∣ ≤ cc
√

(1 + r2)/n

}

.
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Figure 4.1: Cross-section of Vh in the direction of t1

Figure 4.2: Cross-section of Vc in the direction of t1
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The region Vc is depicted in Figure 4.2.

Polar (hyperspherical) coordinates are used for the construction of the confidence bands

in this paper, as in Liu and Lin (2008) and Liu et al. (2009), as well as the calculation

of the volumes of the confidence sets. The polar coordinates (RT , θT1, . . . , θTk)
T of the

(k + 1)-dimensional vector T = (t1, . . . , tk+1)
T are defined by

t1 = RT cos θT1

t2 = RT sin θT1 cos θT2

t3 = RT sin θT1 sin θT2 cos θT3

...
...

tk = RT sin θT1 sin θT2 . . . sin θTk−1 cos θTk

tk+1 = RT sin θT1 sin θT2 . . . sin θTk−1 sin θTk

where

0 ≤ θT1 ≤ π

0 ≤ θT2 ≤ π
...

...

0 ≤ θTk−1 ≤ π

0 ≤ θTk ≤ 2π

RT ≥ 0.

When T ∼ tk+1,ν, the Jacobian of the transformation is

|J | = Rk
T sink−1 θT1 sink−2 θT2 . . . sin θTk−1. (4.4)

Its polar coordinates are independent random variables. In particular, the marginal density

of θT1 is given by

f(θ) = g sink−1 θ 0 ≤ θ ≤ π

where g is the normalizing constant given by g = 1
∫ π

0
sink−1 θ dθ

and the marginal distribution

of RT is given by

RT ∼
√

(k + 1)F(k+1),ν

where F(k+1),ν denotes an F random variable that has (k + 1) and ν degrees of freedom.

Let v(R) denote the volume of a set R ⊂ ℜ(k+1) and let Bk+1(p) denote the ball of

radius p in ℜ(k+1). Using the Jacobian of the transformation from cartesian to polar

coordinates in (4.4), the volume of the ball, v (Bk+1(p)), can be expressed as

v (Bk+1(p)) =

∫ p

R=0

∫ π

θ1=0

∫ π

θ2=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
|J |dRdθ1dθ2 . . . dθk =

π
k+1
2 pk+1

Γ
[

k+1
2 + 1

] .

The expression for the volume of a ball of radius p is used in the following sections of this

chapter to derive expressions for volumes of confidence sets corresponding to simultaneous

confidence bands.
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4.3 Two-sided hyperbolic band over χE

4.3.1 Confidence level

The confidence level of the band is given by P{T ∈ Vh} and the region Vh can be parti-

tioned into the regions Vh,1, Vh,2, Vh,3 and Vh,4 as depicted in Figure 4.1, where

Vh,1 = {T : 0 < θT1 ≤ φ, RT ≤ ch} ,

Vh,2 =
{

T : φ < θT1 ≤ π

2
, RT cos(θT1 − φ) ≤ ch

}

,

Vh,3 =
{

T :
π

2
< θT1 ≤ π − φ, RT cos(π − θT1 − φ) ≤ ch

}

,

Vh,4 = {T : π − φ < θT1 < π, RT ≤ ch} .

Due to the rotational invariance of the probability distribution of T , the probability

of T in Vh,1 is given by

P{T ∈ Vh,1} = P{T ∈ Vh,4}

=

∫ φ

0
g sink−1 θ dθ . P{RT ≤ ch}

=

∫ φ

0
g sink−1 θ dθ . P{(k + 1)F(k+1),ν ≤ c2h}

=

∫ φ

0
g sink−1 θ dθ . F(k+1),ν

(

c2h
k + 1

)

.

Similarly,

P{T ∈ Vh,2} = P{T ∈ Vh,3}

=

∫ π
2

φ
g sink−1 θ . P{RT cos(θ − φ) ≤ ch} dθ

=

∫ π
2
−φ

0
g sink−1(θ + φ) . P{RT ≤ ch

cos θ
} dθ

=

∫ π
2
−φ

0
g sink−1(θ + φ) . F(k+1),ν

(

c2h
(k + 1) cos2 θ

)

dθ.

The confidence level of the two-sided hyperbolic band over χE is therefore given by

1 − α =

∫ φ

0
2g sink−1 θ dθ . F(k+1),ν

(

c2h
k + 1

)

+

∫ π
2
−φ

0
2g sink−1(θ + φ) . F(k+1),ν

(

c2h
(k + 1) cos2 θ

)

dθ. (4.5)
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4.3.2 Volume of confidence set

Using the partitioning Vh = Vh,1 + Vh,2 + Vh,3 + Vh,4, we have v(Vh) = v(Vh,1) + v(Vh,2) +

v(Vh,3) + v(Vh,4), with

v(Vh,1) = v(Vh,4)

=

∫ ch

R=0

∫ φ

θ1=0

∫ π

θ2=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
|J |dRdθ1dθ2dθk

=

{

v (Bk+1(ch)) /

∫ π

0
sink−1 θ1 dθ1

}

.

∫ φ

0
sink−1 θ1 dθ1

= g

∫ φ

0
sink−1 θ1 dθ1 . v (Bk+1(ch))

and

v(Vh,2) = v(Vh,3)

=

∫∫

RT cos(θ1 − φ) ≤ ch

φ < θ1 ≤ π
2

∫ π

θ2=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
|J |dRdθ1dθ2dθk

=

{

v (Bk+1(ch)) /

∫ ch

R=0

∫ π

θ1=0
Rk sink−1 θ1 dRdθ1

}

×
∫∫

RT cos(θ1 − φ) ≤ ch

φ < θ1 ≤ π
2

Rk sink−1 θ1 dRdθ1

= g

∫ π
2

θ1=θ

sink−1 θ1
cosk+1(θ1 − φ)

dθ1 . v (Bk+1(ch)) .

Therefore, the volume of the confidence region Vh is given by

v(Vh) = 2g
π

k+1
2 ck+1

h

Γ
[

k+1
2 + 1

]

[

∫ φ

0
sink−1 θ1 dθ1 +

∫ π
2

θ1=θ

sink−1 θ1
cosk+1(θ1 − φ)

dθ1

]

.

The confidence set corresponding to the two-sided hyperbolic band over χE, Ch, has

the form

Ch =
{

b : (z, Z)−1(XTX)(b̂ − b)/σ̂ ∈ Vh

}

which satisfies

P{b ∈ Ch} = P{T ∈ Vh} = 1 − α

and can be expressed as a linear transformation of Vh:

Ch =
{

b : b ∈ b̂ + σ̂(XTX)−1(z, Z)Vh

}

.

Since

v(Ch) = |σ̂(XTX)−1(z, Z)|v(Vh) = σ̂k+1|(XTX)−
1
2 |v(Vh),

the volume of Ch is given by

2σ̂k+1|(XTX)−
1
2 |g π

k+1
2 ck+1

h

Γ
[

k+1
2 + 1

]

[

∫ φ

0
sink−1 θ1 dθ1 +

∫ π
2

θ1=θ

sink−1 θ1
cosk+1(θ1 − φ)

dθ1

]

. (4.6)
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4.4 Two-sided constant width band over χE

4.4.1 Confidence level

The confidence level of the band is given by P{T ∈ Vc}, where

Vc =

{

T : sup
w∈WE

∣

∣wT T
∣

∣ ≤ cc
√

(1 + r2)/n

}

.

Note that

sup
w∈WE

∣

∣wT T
∣

∣

= sup
w∈WE

∣

∣

∣

∣

t1√
n

wT
(1)T (1)

∣

∣

∣

∣

=
|t1|√
n

+

√

r2

n
‖T (1)‖

where T = (t1,T (1))
T = (t1, t2, . . . , tk+1)

T . Then,

Vc =

{

T :
|t1|√
n

+

√

r2

n
‖T (1)‖ ≤ cc

√

(1 + r2)/n

}

.

In polar coordinates,

Vc =

{

T :
|RT cos θT1|√

n
+

√

r2

n
|RT cos θT1| ≤ cc

√

(1 + r2)/n

}

= Vc,1 + Vc,2

as depicted in Figure 4.2. The regions Vc,1 and Vc,2 can be expressed as

Vc,1 =
{

T : 0 < θT1 ≤ π

2
, RT cos(θT1 − φ) ≤ cc

}

,

Vc,2 =
{

T :
π

2
< θT1 < π, RT cos(π − θT1 − φ) ≤ cc

}

.

Since P{T ∈ Vc,1} = P{T ∈ Vc,2},

P{T ∈ Vc}

= 2P{T ∈ Vc,1}

= 2

∫ π
2

0
g sink−1 θ . P{RT cos(θ − φ) ≤ cc} dθ

= 2

∫ π
2

0
g sink−1 θ . F(k+1),ν

(

c2c
(k + 1) cos2(θ − φ)

)

dθ.

The confidence level of the two-sided constant-width band over χE is therefore given by

1 − α = 2

∫ π
2

0
g sink−1 θ . F(k+1),ν

(

c2c
(k + 1) cos2(θ − φ)

)

dθ. (4.7)
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4.4.2 Volume of confidence set

Using the partitioning Vc = Vc,1 + Vc,2, we have v(Vc) = v(Vc,1) + v(Vc,2), with

v(Vc,1) = v(Vc,2)

=

∫∫

RT cos(θ1 − φ) ≤ cc

0 < θ1 ≤ π
2

∫ π

θ2=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
|J |dRdθ1dθ2dθk

=

{

v (Bk+1(cc)) /

∫ cc

R=0

∫ π

θ1=0
Rk sink−1 θ1 dRdθ1

}

×
∫∫

RT cos(θ1 − φ) ≤ cc

0 < θ1 ≤ π
2

Rk sink−1 θ1 dRdθ1

= g

∫ π
2

0

sink−1 θ1
cosk+1(θ1 − φ)

dθ1 . v (Bk+1(cc)) .

Therefore, the volume of the confidence region Vc is given by

v(Vc) = 2g
π

k+1
2 ck+1

c

Γ
[

k+1
2 + 1

]

∫ π
2

0

sink−1 θ1
cosk+1(θ1 − φ)

dθ1 . v (Bk+1(cc)) .

The confidence set corresponding to the two-sided constant-width band over χE , Cc, has

the form

Cc =
{

b : (z, Z)−1(XTX)(b̂ − b)/σ̂ ∈ Vc

}

which satisfies

P{b ∈ Cc} = P{T ∈ Vc} = 1 − α

and can be expressed as a linear transformation of Vc:

Cc =
{

b : b ∈ b̂ + σ̂(XTX)−1(z, Z)Vc

}

.

Since

v(Cc) = |σ̂(XTX)−1(z, Z)|v(Vc) = σ̂k+1|(XTX)−
1
2 |v(Vc),

the expression for the volume of Cc is given by

2σ̂k+1|(XTX)−
1
2 |g π

k+1
2 ck+1

c

Γ
[

k+1
2 + 1

]

∫ π
2

0

sink−1 θ1
cosk+1(θ1 − φ)

dθ1. (4.8)

4.5 Numerical example

The two-sided hyperbolic and constant-width bands constructed in this chapter can be

used for linear regression models where k = 1, 2 or more than 2. When k = 1 or k =

2, graphical representation of the bands is possible. However, when k > 2, the only

illustrations possible are cross-sections along certain planes. A portion of the Snee (1977)

acetylene dataset, shown in Table 4.1, is used to illustrate the case when k = 2. The first

two predictor variables are used, namely the reactor temperature x1 and the ratio of H2

to n-Heptane x2 and the response variable is the conversion of n-Heptane to Acetylene y.
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Table 4.1: Snee (1977) Acetylene dataset

Conversion of n-Heptane Reactor temperature ratio of H2 to Contact time

to Acetylene y x1 n-Heptane x2 x3

(%) (◦C) (mole ratio) (seconds)

49.0 1300 7.5 0.0120

50.2 1300 9.0 0.0120

50.5 1300 11.0 0.0115

48.5 1300 13.5 0.0130

47.5 1300 17.0 0.0135

44.5 1300 23.0 0.0120

28.0 1200 5.3 0.0400

31.5 1200 7.5 0.0380

34.5 1200 11.0 0.0320

35.0 1200 13.5 0.0260

38.0 1200 17.0 0.0340

38.5 1200 23.0 0.0410

15.0 1100 5.3 0.0840

17.0 1100 7.5 0.0980

20.5 1100 11.0 0.0920

29.5 1100 17.0 0.0860

There are sixteen observations in the dataset, n = 16, and the fitted regression model is

given by

y = −130.69 + 0.134x1 + 0.351x2, with σ̂ = 3.624 and R2 = 0.92

where R2 is a popular exploratory measure of how well the model fits the observed data

and can be interpreted as the proportion of the total variation in the response values that

is explained by the systematic component xT b of the model. The ellipsoidal region χE is

centered around the mean x̄(1) = (1212.5, 12.4)T and its size increases as r is increased.

We assume that we wish to bound the regression function xT b using a 1 − α = 0.90 level

simultaneous confidence band over the ellipsoidal region χE with r = 1.9, so that the

region of interest χE is given by

χE =
{

x(1) : xT (XTX)−1x ≤ 0.288125
}

as depicted in Figure 4.3 by the ellipse in the (x1, x2)-plane with φ = 1.0863. Using

expression (4.5), the critical constant ch is found to be 2.7229. Hence, using expression

(4.6), the volume of the confidence set corresponding to the hyperbolic band over χE is

calculated to be 0.6419 units3. The two-sided hyperbolic band over χE is illustrated in

Figure 4.3. The hyperbolic shape of the band cannot be easily distinguished from the shape

of a constant width band. Therefore, cross-sections of the band along the x1-direction at

x2 = x·2 and along the x2-direction at x1 = x·1 are used to show the shape of the band.
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Figure 4.3: Two-sided hyperbolic band over χE , Snee (1977) acetylene dataset

Figure 4.4 and Figure 4.5 show these respective cross-sections, where the hyperbolic form

is clearer.

Similarly, using expression (4.7), the critical constant cc is found to be 2.5981. Hence,

using expression (4.8), the volume of the confidence set corresponding to the constant-

width band over χE is found to be 0.7182 units3. The band, when illustrated, appears

fairly similar to the band shown in Figure 4.3, but the cross-sections of the the band along

the x1-direction at x2 = x·2 and along the x2-direction at x1 = x·1, depicted in Figure 4.6

and Figure 4.7, clearly show the distinction from the hyperbolic shape.

Therefore, it can be deduced that for this example, the hyperbolic band is better than

the constant width band under the MVCS criterion. In the next section, we introduce the

family of inner-hyperbolic bands, first discussed in Chapter 3, in multiple linear regression

over the region χE .

4.6 Family of inner-hyperbolic bands over χE

This family of confidence bands is defined in terms of regions V for T ∼ tk+1,ν , which are

in turn used to construct confidence sets for b. Each region Vγ is defined in terms of an

angle γ ∈ [0, φ] in the following way. The region Vγ is given by

Vγ = Vγ,1 + Vγ,2 + Vγ,3 + Vγ,4
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Figure 4.4: Cross-section of the hyperbolic band along the x1-direction at x2 = x·2

Figure 4.5: Cross-section of the hyperbolic band along the x2-direction at x1 = x·1
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Figure 4.6: Cross-section of the constant width band along the x1-direction at x2 = x·2

Figure 4.7: Cross-section of the constant width band along the x2-direction at x1 = x·1
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Figure 4.8: Cross-section of Vγ in the direction of t1

where

Vγ,1 = {T : 0 < θT1 ≤ γ, RT cos(φ− γ) ≤ cγ} ,

Vγ,2 =
{

T : γ < θT1 ≤ π

2
, RT cos(θT1 − φ) ≤ cγ

}

,

Vγ,3 =
{

T :
π

2
< θT1 ≤ π − γ, RT cos(π − θT1 − φ) ≤ cγ

}

,

Vγ,4 = {T : π − γ < θT1 < π, RT cos(φ− γ) ≤ cγ} .

The region Vγ is depicted in Figure 4.8. The value of the critical constant cγ is chosen

so that P{T ∈ Vγ} = 1 − α and hence cγ depends on γ, α, k and ν and denoted by

cγ = cγ(γ, α, k, ν). It is clear that when γ = φ, the region Vγ is simply the Vh depicted in

Figure 4.1 corresponding to the hyperbolic band and when γ = 0, the region Vγ is simply

the Vc depicted in Figure 4.2 corresponding to the constant width band. The confidence

set for b corresponding to Vγ is given by

Cγ =
{

b : (z, Z)−1(XTX)(b̂ − b)/σ̂ ∈ Vγ

}

,

which has an exact confidence level 1 − α.

Now we give the confidence band that corresponds to the confidence set Cγ . For given

γ ∈ [0, φ], a value rγ (0 ≤ rγ ≤ r) can be solved uniquely from the relation

γ = cos−1





1
√

1 + r2γ



 . (4.9)
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By comparing this with the equation in (4.3), it is clear that rγ ≤ r. Now, denote χγ,E as

a covariate region given by

χγ,E =
{

x(1) :
(

x(1) − x̄(1)

)T
S−1

(

x(1) − x̄(1)

)

≤ r2γ

}

(4.10)

=

{

x(1) : xT (XTX)−1x ≤
1 + r2γ
n

}

.

The region χγ,E is of similar shape as but smaller in size than the region χE. Thus, χγ,E

can be regarded as the “inner-region” of the region of interest χE . Define χoE as the

region within χE and outside of χγ,E , given by

χoE =

{

x(1) :
1 + r2γ
n

≤ xT (XTX)−1x ≤ 1 + r2

n

}

. (4.11)

Now, the confidence band that corresponds to the confidence set Cγ can be shown to be

given by

xT b ∈ xT b̂ ± σ̂Hγ(x) ∀x(1) = (x1, . . . , xk)
T ∈ χE,

where

Hγ(x) =



































cγ

cos(φ−γ)

√

xT (XTX)−1x for ∀x(1) ∈ χγ,E

1
(r−rγ)

(

r −
√

nxT (XTX)−1x − 1
)

cγ

cos(φ−γ)

√

1+r2
γ

n

+ 1
(r−rγ)

(

√

nxT (XTX)−1x − 1 − rγ

)

cγ

√

1+r2

n for ∀x(1) ∈ χoE

.

So for each γ ∈ [0, φ], we are able to define an exact 1− α level confidence band over χE .

When γ varies over the interval [0, φ], we have a family of exact confidence bands over

χE. In particular, γ = 0 corresponds to the constant width band and γ = φ corresponds

to the hyperbolic band.

4.6.1 Confidence level

Now we discuss the computation of the critical constant cγ = cγ(γ, α, k, ν). From the

construction above, cγ is determined from P{T ∈ Vγ} = 1− α. Hence we need to express

P{T ∈ Vγ} = P{T ∈ Vγ,1} + P{T ∈ Vγ,2} + P{T ∈ Vγ,3} + P{T ∈ Vγ,4} as a function of

cγ . From the definitions of Vγ,1, Vγ,2, Vγ,3 and Vγ,4, it is clear that

P{T ∈ Vγ,1} = P{T ∈ Vγ,4}

=

∫ γ

0
g sink−1 θ . P{RT cos(φ− γ) ≤ cγ} dθ

=

∫ γ

0
g sink−1 θ . F(k+1),ν

(

c2γ
(k + 1) cos2(φ− γ)

)

dθ,

and

P{T ∈ Vγ,2} = P{T ∈ Vγ,3}

=

∫ π
2

γ
g sink−1 θ . P{RT cos(θ − φ) ≤ cγ} dθ

=

∫ π
2

γ
g sink−1 θ . F(k+1),ν

(

c2γ
(k + 1) cos2(θ − φ)

)

dθ.
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Therefore, P{T ∈ Vγ} is given by

∫ γ

0
2g sink−1 θ . F(k+1),ν

(

c2γ
(k + 1) cos2(φ− γ)

)

dθ

+

∫ π
2

γ
2g sink−1 θ . F(k+1),ν

(

c2γ
(k + 1) cos2(θ − φ)

)

dθ. (4.12)

Expression (4.12) gives the confidence level of the inner-hyperbolic band for a given cγ

which can be used to calculate the critical constant cγ for a given α. It is noteworthy

that when γ = φ, it matches the expression for the confidence level of the hyperbolic band

given in (4.5), whereas when γ = 0, it matches the expression for the confidence level of

the constant width band given in (4.7).

4.6.2 Volume of confidence set

To compute the volume of the confidence set Cγ corresponding to the inner-hyperbolic

band, we use the partitioning v(Vγ) = v(Vγ,1) + v(Vγ,2) + v(Vγ,3) + v(Vγ,4).

Hence, the volume of the regions Vγ,1 and Vγ,4 are given by

v(Vγ,1) = v(Vγ,4)

=

∫∫

RT cos(φ− γ) ≤ cγ

0 < θ1 ≤ γ

∫ π

θ2=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
|J |dRdθ1dθ2 . . . dθk

=

{

v (Bk+1(cγ)) /

∫ cγ

R=0

∫ π

θ1=0
Rk sink−1 θ1 dRdθ1

}

×
∫∫

RT cos(φ− γ) ≤ cγ

0 < θ1 ≤ γ

Rk sink−1 θ1 dRdθ1

= g

∫ γ

θ1=0

sink−1 θ1
cosk+1(φ− γ)

dθ1 . v (Bk+1(cγ)) .

Similarly, the volume of the regions Vγ,2 and Vγ,3 are given by

v(Vγ,2) = v(Vγ,3)

=

∫∫

RT cos(θ1 − φ) ≤ cγ

γ < θ1 ≤ π
2

∫ π

θ2=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
|J |dRdθ1dθ2 . . . dθk

= g

∫ π
2

θ1=γ

sink−1 θ1
cosk+1(θ1 − φ)

dθ1 . v (Bk+1(cγ)) .

Therefore, the volume of Vγ is given by

v(Vγ) = 2g

[

∫ γ

θ1=0

sink−1 θ1
cosk+1(φ− γ)

dθ1 +

∫ π
2

θ1=γ

sink−1 θ1
cosk+1(θ1 − φ)

dθ1

]

V (Bk+1(cγ)) .

Note that

Cγ =
{

b : (z, Z)−1(XTX)(b̂ − b)/σ̂ ∈ Vγ

}

=
{

b : b ∈ b̂ + σ̂(XTX)−1(z, Z)Vγ

}
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and so

v(Cγ) = |σ̂(XTX)−1(z, Z)|v(Vγ) = σ̂k+1|(XTX)−
1
2 |v(Vγ).

Hence, the volume of Cγ is given by

2σ̂k+1|(XTX)−
1
2 |g

π
k+1
2 ck+1

γ

Γ
[

k+1
2 + 1

]

[

∫ γ

0

sink−1 θ1
cosk+1(φ− γ)

dθ1 +

∫ π
2

γ

sink−1 θ1
cosk+1(θ1 − φ)

dθ1

]

.

(4.13)

When γ = φ, expression (4.13) gives the volume of confidence set for the two-sided hyper-

bolic band in (4.6) and when γ = 0, it gives the volume of confidence set for the two-sided

constant-width band in (4.8).

4.7 Searching for the best inner-hyperbolic band over χE

For given φ (or r), k, ν and α, we can numerically search over the family of exact 1−α level

inner-hyperbolic bands for the optimal inner-hyperbolic band that minimizes v(Cγ) in a

similar way as in Section 3.1.3. For each γ ∈ [0, φ], we determine the critical constant cγ

of the inner-hyperbolic band using (4.12) and then calculate the volume of its confidence

set by using (4.13). We search over γ ∈ [0, φ] to find the γ∗ ∈ [0, φ] that gives the smallest

volume of confidence set. This method is illustrated below using the Snee acetylene dataset

given in Table 4.1. The first two predictor variables, namely the reactor temperature x1

and the ratio of H2 to n-Heptane x2, are used to illustrate the case when k = 2. As

in Section 4.5, we assume that we wish to bound the regression function xT b using a

1−α = 0.90 level simultaneous confidence band over the ellipsoidal region χE with r = 1.9,

so that the region of interest χE is given by

χE =
{

x(1) : xT (XTX)−1x ≤ 0.288125
}

as depicted in Figure 4.10 by the bigger ellipse in the (x1, x2)-plane with φ = 1.0863. For

each value of γ ∈ [0, φ], the corresponding critical constant cγ of the inner-hyperbolic band

is computed using expression (4.12). Then, the corresponding volume of confidence set is

calculated from expression (4.13). The volume of the confidence set against γ is plotted in

Figure 4.9 from which the γ ∈ [0, φ] that gives the MVCS, i.e. the best inner-hyperbolic

band, can be identified. Specifically, the volume of the confidence set corresponding to the

best inner-hyperbolic band is 0.6403 units3, whereas those corresponding to the hyperbolic

and constant width bands are 0.6419 and 0.7182 units3 respectively. Furthermore, the

optimal γ∗ ∈ [0, φ] is given by 0.8332 rad with the corresponding r∗ = 1.1005 from (4.9)

and the critical value cγ = 2.6874. The best inner-hyperbolic band is shown in Figure 4.10.

The band has a hyperbolic shape within the region χγ,E depicted in Figure 4.10 by the

smaller ellipse in the (x1, x2)-plane, whereas the band spans linearly in the region χoE that

is inside χE but outside χγ,E . Unfortunately, these features cannot be easily distinguished

in Figure 4.10. Therefore, cross-sectional plots, Figure 4.11 and Figure 4.12, are used

to show the cross-section of the band along the x1-direction at x2 = x·2 and along the
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Figure 4.9: Volume of confidence set Cγ against γ

Figure 4.10: The best 0.95 level inner-hyperbolic band over χE , Snee acetylene dataset
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Figure 4.11: Cross-section of the best inner-hyperbolic band along the x1-direction at x2 = x·2

Figure 4.12: Cross-section of the best inner-hyperbolic band along the x2-direction at x1 = x·1
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Figure 4.13: Volume of confidence set Cγ against γ when k = 3

x2-direction at x1 = x·1 respectively, together with the respective cross-sections of the

“inner-range” formed by χγ,E . Note that if S−1 is the block matrix given by

S−1 =

(

S11 S12

S21 S22

)

then the inner-range along the x1-direction at x2 = x·2 is calculated to be (x·1±
√

r2γ/S11) =

(1128.7681, 1296.2319). Similarly, the inner-range along the x2-direction at x1 = x·1 is cal-

culated to be (x·2 ±
√

r2γ/S22) = (6.5634, 18.3242).

The third predictor variable of the Snee (1977) acetylene dataset, the contact time x3,

is included to the model to illustrate the numerical search when k = 3. The method used

to bound the regression function xT b using a 1 − α = 0.90 level simultaneous confidence

band over the ellipsoidal region χE with r = 1.9 is the same as for k = 2. In this case,

the volume of confidence set varies with γ as shown in Figure 4.13. The volume of the

confidence set corresponding to the best inner-hyperbolic band is 262.6202 units4, whereas

those corresponding to the hyperbolic and constant width bands are 263.6401 and 281.4209

units4 respectively. The optimal γ∗ ∈ [0, φ] is given by 0.8245 rad with the corresponding

r∗ = 1.10050 from (4.9) and the critical value cγ = 3.0500. The best inner-hyperbolic band

cannot be pictured for k = 3, but cross-sections of the band along predictor variables can

be plotted. For instance, a cross-section of the band along the x1-direction at x2 = x·2 and

x3 = x·3 is depicted in Figure 4.14, from which it can be observed that the band bounds

the regression function xT b in [33.1325, 39.0800] when x1 = x·1, x2 = x·2 and x3 = x·3.
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Figure 4.14: Cross-section of the best inner-hyperbolic band along the x1-direction at x2 = x·2

and x3 = x·3

4.8 Concluding remarks on the inner-hyperbolic band over

χE

A new family of simultaneous confidence bands over an ellipsoidal covariate region has been

introduced and it is shown how the best confidence band in the family can be identified

numerically. It is noteworthy that the expressions for the confidence level and volume of

confidence set provided in this chapter are valid for any number k of predictor variables.

Given the confidence level and a design matrix X, the methods described in this chapter

can be used to calculate the critical constant for the best inner-hyperbolic band and the

corresponding volume of confidence set. For k = 1 and k = 2, detailed images of the band

can be plotted whereas for k > 2, cross-sectional views of the band along the means of

certain predictor variables can be generated.

The best inner-hyperbolic band can be considerably more efficient than the constant

width band, as shown in the example in Section 4.7. However, the gain in efficiency in

using the best inner-hyperbolic band over the hyperbolic band may be small (at least for

the examples in Section 4.7). Therefore, the hyperbolic band may be recommended if one

wants to avoid the numerical search to find the best inner-hyperbolic band.

In the next chapter, we consider the construction and comparison of exact confidence

bands in multiple linear regression over a rectangular covariate region.
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Chapter 5

Exact simultaneous confidence

bands in multiple linear regression

with predictor variables

constrained in a rectangular region

5.1 The rectangular region

In common practice, each predictor variable in a multiple linear regression model is usually

bounded and the covariate region over which a simultaneous confidence band is required is

rectangular. Several authors (see e.g., Casella and Strawderman, 1980 and Naiman, 1987)

have agreed that the rectangular region given by

χR =
{

x(1) : ai ≤ xi ≤ bi, i = 1, . . . , k
}

, (5.1)

where −∞ ≤ ai < bi ≤ ∞ are given constants, is one of the most useful covariate region.

Construction of conservative two-sided hyperbolic confidence bands over χR when k is

small has been considered by Knafl, Sacks and Ylvisaker (1985), Naiman (1987, 1990) and

Sun and Loader (1994) among others. More recently, a simulation-based method has been

used to compute critical constants for hyperbolic bands (Liu et al., 2005a) and constant

width bands (Liu et al., 2005b) for any given k ≥ 1 over χR. They expressed a critical

constant as the 1 − α population percentile of a distribution and used the 1 − α sample

percentile of an i.i.d. sample from this distribution as an approximation to the critical

constant. Apart from simulation methods, there has been no published methods for the

construction of exact simultaneous confidence bands over χR.

In this chapter, exact 1 − α level simultaneous hyperbolic and constant width bands

over χR are constructed by expressing the confidence level of the bands as k-dimensional

integrals. The hyperbolic and constant width bands are then compared using the average

width (see e.g., Naiman, 1984) and minimum volume confidence set (see e.g., Liu and

Hayter, 2007 and Liu et al., 2009) optimality criteria. As in previous chapters, the key is
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a transformation from cartesian to polar coordinates but a further numerical quadrature

is required to implement the method.

5.2 Preliminaries

Recall from previous chapters that U is the unique square root matrix of (XTX)−1 so

that (XTX)−1 = U2. It immediately follows that N = U−1(b̂ − b)/σ ∼ Nk+1(0, I) and

T = N/( σ̂
σ ) = U−1(b̂−b)/σ̂ is a standard multivariate t random vector of k+1 dimensions

with ν = n− k − 1 degrees of freedom (see e.g., Tong, 1990).

The transformation from cartesian to polar (hyperspherical) coordinates is similar to

the transformation in Section 4.2 where the polar coordinates of the (k + 1)-dimensional

vector T = (t1, . . . , tk+1)
T , (RT , θT1, . . . , θTk)

T , are defined by

t1 = RT cos θT1

t2 = RT sin θT1 cos θT2

t3 = RT sin θT1 sin θT2 cos θT3

...
...

tk = RT sin θT1 sin θT2 . . . sin θTk−1 cos θTk

tk+1 = RT sin θT1 sin θT2 . . . sin θTk−1 sin θTk

where

0 ≤ θT1 ≤ π

0 ≤ θT2 ≤ π
...

...

0 ≤ θTk−1 ≤ π

0 ≤ θTk ≤ 2π

RT ≥ 0.

The joint density function of (RT , θt1, . . . , θtk)
T can be found using the Jacobian of

the transformation

|J | = Rk
T sink−1 θT1 sink−2 θT2 . . . sin θTk−1.

However, in this case, the marginal density of θTj (1 ≤ j ≤ k − 1) is given by

fj(θ) = gj sink−1 θ , 0 ≤ θ ≤ π (5.2)

where gj = 1/(
∫ π
0 sink−j θ dθ) is the normalizing constant, the marginal density of θTk is

uniform on the interval [0, 2π], and the marginal distribution of RT is given by

RT ∼
√

(k + 1)F(k+1),ν

where F(k+1),ν denotes an F random variable that has (k + 1) and ν degrees of freedom.
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5.3 Two-sided hyperbolic band over χR

5.3.1 Confidence level

The hyperbolic simultaneous confidence band over the region χR has the form

xT b ∈ xT b̂ ± chσ̂
√

xT (XTX)−1x ∀x(1) = (x1, . . . , xk)
T ∈ χR (5.3)

where the critical constant ch is chosen so that the confidence level of the band is 1 − α.

The confidence level of the band can be expressed as

P

{

sup
xi∈[ai,bi],i=1,...,k

|xT (b̂ − b)|
σ̂
√

xT (XTX)−1x
< ch

}

= P

{

sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
√

(Ux)T (Ux)
< ch

}

= P

{

sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖Ux‖ < ch

}

= P







‖T ‖ < ch

(

sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖Ux‖‖T ‖

)−1






= P {RT < ch/Qh} (5.4)

since RT = ‖T ‖, where

Qh = Qh(θT1, . . . , θTk) = sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖Ux‖‖T ‖ .

The function Qh = Qh(θT1, . . . , θTk) depends on (θT1, . . . , θTk)
T only and can be quickly

and accurately computed for a given (θT1, . . . , θTk)
T by using a simple quadratic pro-

gramming method given in Liu et al. (2005a) (see Appendix A). The expression (5.4) can

further be expressed as

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
P {RT < ch/Qh|θT1 = θ1, . . . , θTk = θk}

×f {θT1 = θ1, . . . , θTk = θk} dθ1 . . . dθk

=

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0

1

2π
f1(θ1) . . . fk−1(θk−1)P {RT < ch/Qh} dθ1 . . . dθk

=

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0

1

2π
f1(θ1) . . . fk−1(θk−1)

× Fk+1,ν

(

c2h/(k + 1)Q2
h

)

dθ1 . . . dθk. (5.5)

Expression (5.5) gives the confidence level of the hyperbolic band and it involves only a

k-dimensional numerical quadrature since both Qh and Fk+1,ν(·) can be computed quickly

and accurately. For an indication of typical values and time taken under different types of

numerical quadrature methods, see Appendix B. In particular, for k = 2, the confidence

level of the band is given by

∫ π

θ1=0

∫ 2π

θ2=0

1

4π
sin θ1F3,ν

(

c2h
3(Qh(θ1, θ2))2

)

dθ1dθ2.
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For k = 3, the confidence level is given by

∫ π

θ1=0

∫ π

θ2=0

∫ 2π

θ3=0

1

2π2
sin2 θ1 sin θ2F4,ν

(

c2h
4(Qh(θ1, θ2, θ3))2

)

dθ1dθ2dθ3.

The confidence level of the band for k = 2 and k = 3 can be readily and accurately

calculated using numerical quadrature (e.g. the in-built functions dblquad and triplequad

in Matlab). For k > 3, until evaluation of higher dimensional quadrature is made possible

by computer software, the simulation method used in Liu et al. (2005a) is recommended.

5.3.2 Average width

The width of the hyperbolic band in (5.3) is equal to 2chσ̂
√

xT (XTX)−1x at x(1) ∈ χR.

Hence, the average width of the band is given by

AWh =

∫ b1

x1=a1

. . .

∫ bk

xk=ak

2chσ̂
√

xT (XTX)−1x
∏k

j=1(bj − aj)
dx1 . . . dxk. (5.6)

Expression (5.6) can be easily calculated for k ≤ 3 by numerical quadrature, using for

example the in-built functions dblquad and triplequad in Matlab. For k > 3, a simulation

method can be used. Note that (5.6) can also be expressed as

2chσ̂

∫

x(1)∈χR

√

xT (XTX)−1x dx(1) /

∫

x(1)∈χR

1 dx(1)

= 2chσ̂E(
√

xT (XTX)−1x)

where E(
√

xT (XTX)−1x) is the expectation of
√

xT (XTX)−1x taken with respect to

x(1) = (x1, . . . , xk)
T . Each xi ∼ U [ai, bi], i = 1, . . . , k and x1, . . . , xk are independent.

Therefore, E(
√

xT (XTX)−1x) can be approximated by simulation as follows.

• Step 1: independent xs
1, . . . x

s
k are simulated each with U [ai, bi] for i = 1, . . . , k.

• Step 2: the value of Es =
√

(1, xs
1, . . . x

s
k)(X

TX)−1(1, xs
1, . . . x

s
k)

T can be computed.

• Step 3: Steps 1 and 2 can be repeated K times to get Es
1, . . . , E

s
K and Ē =

1
K

∑K
j=1E

s
j can be calculated to approximate E(

√

xT (XTX)−1x).

The accuracy of this approximation to the average width AWh can be gauged by the

standard error given by

s.e(AWh) = 2chσ̂

√

√

√

√

K
∑

j=1

(Ej − Ē)2 / (K − 1)K.

5.3.3 Volume of confidence set

Let

Vh =

{

T : sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖Ux‖ < ch

}

.
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Then, the confidence set for b corresponding to the hyperbolic band in (5.3) is given by

Ch =

{

b : sup
xi∈[ai,bi],i=1,...,k

|xT (b̂ − b)|
σ̂
√

xT (XTX)−1x
< ch

}

=

{

b : U−1 (b̂ − b)

σ̂
∈ Vh

}

. (5.7)

It is clear from Section 5.3.1 that

P{b ∈ Ch} = P{T ∈ Vh} = 1 − α.

From expression (5.7), Ch can also be expressed as

Ch = {b : b ∈ b̂ + σ̂UVh}.

Therefore, the volume of Ch is given by

v(Ch) = |σ̂U |v(Vh) = σ̂k+1|(XTX)−
1
2 |v(Vh) (5.8)

where v(Vh) denotes the volume of Vh which is given by

v(Vh) =

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0

∫ ch/Qh

R=0
|J |dRdθ1dθ2 . . . dθk

=

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0

ck+1
h

(k + 1)Qk+1
h

sink−1 θ1 sink−2 θ2 . . . sin θk−1dRdθ1dθ2 . . . dθk,

which can be computed for k ≤ 3 using numerical quadrature. For k > 3, a simulation

method can be used as in Section 5.3.2. Note that v(Vh) can also be expressed as

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0







ck+1
h

(k + 1)Qk+1
h

k
∏

j=1

δj







× sink−1 θ1
δ1

sink−2 θ2
δ2

. . .
sin θk−1

δk−1

1

δk
dRdθ1dθ2 . . . dθk

where sink−1 θ1
δ1

, sink−2 θ2
δ2

, . . .,
sin θk−1

δk−1
and 1

δk
are each a density function. Hence,

v(Vh) = E





ck+1
h

(k + 1)Qk+1
h

k
∏

j=1

δj





=
ck+1
h

k + 1

k
∏

j=1

δjE(1/Qk+1
h )

where E(1/Qk+1
h ) is the expectation with respect to (θT1, . . . , θTk)

T and
∏k

j=1 δj is given

by
∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0
sink−1 θ1 sink−2 θ2 . . . sin θk−1dRdθ1dθ2 . . . dθk.

The expectation E(1/Qk+1
h ) can be approximated by simulation as follows.

• Step 1: a vector N ∼ Nk+1(0, I) is simulated and a vector T = N/( σ̂
σ ) is simulated.
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• Step 2: the polar coordinates (θT1, . . . , θTk)
T of T are obtained and the value of

Es = (1/Qh(θT1, . . . , θTk)
k+1) can be computed.

• Step 3: Steps 1 and 2 can be repeated K times to get Es
1, . . . , E

s
K and Ē =

1
K

∑K
j=1E

s
j can be calculated to approximate E(1/Qk+1

h ).

The accuracy of this approximation to the volume of confidence set v(Ch) can be

gauged by the standard error given by

s.e(v(Ch)) = σ̂k+1|(XTX)−
1
2 | c

k+1
h

k + 1

k
∏

j=1

δj

√

√

√

√

K
∑

j=1

(Ej − Ē)2 / (K − 1)K.

5.4 Two-sided constant width band over χR

5.4.1 Confidence level

The constant width simultaneous confidence band over the region χR has the form

xT b ∈ xT b̂ ± ccσ̂ ∀x(1) = (x1, . . . , xk)T ∈ χR (5.9)

where the critical constant cc is chosen so that the confidence level of the band is 1 − α.

The confidence level of the band can be expressed as

P

{

sup
xi∈[ai,bi],i=1,...,k

|xT (b̂ − b)|
σ̂

< cc

}

= P

{

sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T | < cc

}

= P







‖T ‖ < cc

(

sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖T ‖

)−1






= P {RT < cc/Qc} (5.10)

where

Qc = Qc(θT1, . . . , θTk) = sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖T ‖ .

It is clear that Qc depends on T only through (θT1, . . . , θTk)
T . Note that (Ux)T T /‖T ‖ is

a linear function of x(1) = (x1, . . . , xk)
T and therefore attains its maximum or minimum

over x(1) ∈ χR at one of the vertices of χR. In particular, χR has 2k vertices given by

L =
{

(l1, . . . , lk)
T : each lj is either aj or bj , 1 ≤ j ≤ k

}

.

The function Qc can therefore be expressed as

Qc = sup
x(1)∈L

|(Ux)T T |
‖T ‖

which can be easily computed since L has only 2k points. By using similar derivation as

in Section 5.3.1, the confidence level expression in (5.10) can further be written as

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0

1

2π
f1(θ1) . . . fk−1(θk−1)F(k+1),ν

(

c2c/(k + 1)Q2
c

)

dθ1 . . . dθk. (5.11)
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Expression (5.11) gives the confidence level of the constant width band and involves only

a k-dimensional quadrature. For k = 2, the confidence level of the band is given by

∫ π

θ1=0

∫ 2π

θ2=0

1

4π
sin θ1F3,ν

(

c2h
3(Qc(θ1, θ2))2

)

dθ1dθ2.

For k = 3, the confidence level is given by

∫ π

θ1=0

∫ π

θ2=0

∫ 2π

θ3=0

1

2π2
sin2 θ1 sin θ2F4,ν

(

c2h
4(Qc(θ1, θ2, θ3))2

)

dθ1dθ2dθ3.

The confidence level of the band for k = 2 and k = 3 can be readily and accurately

calculated using numerical quadrature such as the in-built functions dblquad and triplequad

in Matlab. For k > 3, the simulation method used in Liu et al. (2005b) is recommended.

5.4.2 Average width

The width of the constant width band in (5.9) is given by 2ccσ̂ and so the average width

of the band is simply given by

AWc = 2ccσ̂. (5.12)

5.4.3 Volume of confidence set

Let

Vc =

{

T : sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T | < cc

}

.

Then the confidence set for b corresponding to the constant width band in (5.9) is given

by

Cc =

{

b : sup
xi∈[ai,bi],i=1,...,k

|xT (b̂ − b)|
σ̂

< cc

}

=

{

b : U−1 (b̂ − b)

σ̂
∈ Vc

}

. (5.13)

It is clear from Section 5.4.1 that

P{b ∈ Cc} = P{T ∈ Vc} = 1 − α.

From expression (5.13), Cc can also be expressed as

Cc = {b : b ∈ b̂ + σ̂UVc}.

Therefore the volume of Cc is given by

v(Cc) = |σ̂U |v(Vc) = σ̂k+1|(XTX)−
1
2 |v(Vc) (5.14)

where

v(Vc) =

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0

ck+1
c

(k + 1)Qk+1
c

sink−1 θ1 sink−2 θ2 . . . sin θk−1dRdθ1dθ2 . . . dθk.
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For k = 3, v(Vc) can be quickly and accurately computed using numerical quadrature. For

k > 3, a similar simulation method as in Section 5.3.3 can be used. Note that v(Vc) can

also be expressed as

∫ π

θ1=0
. . .

∫ π

θk−1=0

∫ 2π

θk=0







ck+1
h

(k + 1)Qk+1
c

k
∏

j=1

δj







× sink−1 θ1
δ1

sink−2 θ2
δ2

. . .
sin θk−1

δk−1

1

δk
dRdθ1dθ2 . . . dθk

where sink−1 θ1
δ1

, sink−2 θ2
δ2

, . . .,
sin θk−1

δk−1
and 1

δk
are each a density function. Hence,

v(Vc) = E(
ck+1
c

(k + 1)Qk+1
c

k
∏

j=1

δj)

=
ck+1
c

k + 1

k
∏

j=1

δjE(1/Qk+1
c )

where E(1/Qk+1
c ) is the expectation with respect to (θT1, . . . , θTk)

T . The expectation

E(1/Qk+1
c ) can be approximated by simulation as follows.

• Step 1: a vector N ∼ Nk+1(0, I) is simulated and a vector T = N/( σ̂
σ ) is simulated.

• Step 2: the polar coordinates (θT1, . . . , θTk)
T of T are obtained and the value of

Es = (1/Qc(θT1, . . . , θTk)
k+1) can be computed.

• Step 3: Steps 1 and 2 can be repeated K times to get Es
1, . . . , E

s
K and Ē =

1
K

∑K
j=1E

s
j can be calculated to approximate E(1/Qk+1

c ).

The accuracy of this approximation to the volume of confidence set v(Cc) can be

gauged by the standard error given by

s.e(v(Cc)) = σ̂k+1|(XTX)−
1
2 | c

k+1
c

k + 1

k
∏

j=1

δj

√

√

√

√

K
∑

j=1

(Ej − Ē)2 / (K − 1)K.

5.5 Numerical examples

A portion of the Snee (1977) acetylene dataset in Table 4.1 is used to illustrate the results

derived above when k = 2. The first two predictor variables, the reactor temperature

x1 and the ratio of H2 to n-Heptane x2 are considered in this example and the third

predictor variable, the contact time x3, is excluded. For the resulting design matrix X,

the observed range [a1, b1] × [a2, b2] = [1100, 1300] × [5.3, 23] and a confidence level of

1 − α = 0.95, the critical constant for the hyperbolic band is calculated using expression

(5.5) to be ch = 3.1153 and the 0.95 confidence level hyperbolic band over [a1, b1] ×
[a2, b2] = [1100, 1300] × [5.3, 23] is depicted in Figure 5.1. In addition, the regions Vh is

also depicted in Figure 5.2. The average width for the hyperbolic band is found to be

AWh = 8.9338 from expression (5.6) and the volume of confidence set corresponding to

the hyperbolic band is found to be v(Ch) = 0.2507 units3 from expression (5.8). The
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Figure 5.1: The 0.95 level hyperbolic band, Snee (1977) acetylene dataset, k=2
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Figure 5.2: The region Vh
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Figure 5.3: The 0.95 level constant width band, Snee (1977) acetylene dataset, k=2
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simulation method has also been used to provide a means of comparison to the method

of numerical quadrature. With 1 × 105 simulations, the average width for the hyperbolic

band is found to be AWh = 8.9356 with a standard error s.e(AWh) = 6.6366 × 10−3

and the volume of confidence set corresponding to the hyperbolic band is found to be

v(Ch) = 0.2508 units3 with a standard error s.e(v(Ch)) = 1.3334 × 10−4.

Similarly, the critical constant for the constant width band is calculated using expres-

sion (5.11) to be cc = 1.6984 and the 0.95 confidence level constant width band over the

same covariate region is depicted in Figure 5.3. The region Vc is also depicted in Fig-

ure 5.4. The average width for the constant width band is found to be AWc = 12.3099

from expression (5.12) and the volume of confidence set corresponding to the constant

width band is found to be v(Cc) = 0.3513 units3 from expression (5.14). With 1 × 105

simulations, the volume of confidence set corresponding to the constant width band is

found to be v(Cc) = 0.3527 units3 with a standard error s.e(v(Cc)) = 7.1608× 10−4 using

the simulation method. Therefore, the hyperbolic band is better than the constant width

band over the the observed range [a1, b1]× [a2, b2] = [1100, 1300]× [5.3, 23] under both the

average width criterion and the minimum volume confidence set criterion for this example.

Note that the volumes of confidence sets in (5.8) and (5.14) are both of the same form and

therefore the comparison between v(Vh) and v(Vc) can be used to compare between v(Ch)

and v(Cc). For the reader’s interest, a superposition of the regions Vh and Vc is depicted

in Figure 5.5, where it is clear that the region Vh is smaller than Vc.

The third predictor variable of the Snee (1977) acetylene dataset, the contact time x3,

is included to illustrate the results when k = 3. For the resulting design matrix X, the

observed range [a1, b1] × [a2, b2] × [a3, b3] = [1100, 1300] × [5.3, 23] × [0.0115, 0.098] and a

confidence level of 1 − α = 0.95, the critical constants for the hyperbolic and constant

width bands are found to be ch = 3.5286 and cc = 6.1614 respectively. Their respective
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Figure 5.4: The region Vc
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Figure 5.5: A superposition of regions Vh and Vc
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average widths are calculated to be AWh = 25.116 and AWc = 46.421. Finally, their

respective volumes of confidence sets are found to be v(Ch) = 187.203 units4 and v(Cc) =

5055.053 units4. When the simulation method is used, with 1 × 105 simulations, the

average width for the hyperbolic band is found to be AWh = 25.0614 with a standard error

s.e(AWh) = 0.0419 and the volumes of confidence sets corresponding to the hyperbolic

and constant width bands are found to be v(Ch) = 187.121 units4 with a standard error

s.e(v(Ch)) = 0.1240 and v(Cc) = 4963.546 units4 with a standard error s.e(v(Cc)) =

38.2770 respectively. Therefore, it is clear that the hyperbolic band is more efficient than

the constant width band for this example under both the average width and minimum

volume confidence set optimality criteria.

5.6 Concluding remarks on exact confidence bands over χR

For linear regression with k(> 1) over a rectangular covariate region, only conservative or

approximate methods are available in the statistical literature. A general formula for the

construction of exact hyperbolic and constant width bands for k covariates restricted in

intervals is provided in this chapter. The key is a transformation from cartesian to polar

coordinates as in the previous chapters. To implement the method, a numerical quadrature

is also necessary. For k = 2 and k = 3, the confidence levels, the required critical constants,

average widths and volumes of confidence sets can be quickly and exactly computed using

numerical quadrature such as the built-in functions dblquad and triplequad in Matlab. For

the computation of confidence levels when k > 3, simulations methods are provided by

Liu et al. (2005a) and Liu et al. (2005b). For the computation of average widths and

volumes of confidence sets when k > 3, similar simulation methods have been proposed

here.

The computations for the hyperbolic band are typically more time-consuming than

for the constant width band due to the quadratic programming method pointed out in

Section 5.3.1. However, for a rectangular covariate region χR, the hyperbolic band can be

considerably more efficient than the constant width band under both the average width and

minimum volume confidence set optimality criteria (at least for the examples in Section

5.5) and is therefore the recommended band.
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Chapter 6

Conclusions and Future work

Simultaneous confidence bands in linear regression analysis are useful tools that can be

applied to many aspects of real life. This thesis is a concise account of the construction

of exact two-sided confidence bands in linear regression. The key method used involves

a transformation from cartesian to polar coordinates and expressing the confidence level

of a band as a k-dimensional integration. In simple linear regression, it has been shown

analytically that a D-optimal design leads to the the best two-segment band under the

MACS criterion. Attempts by numerical search to show that D-optimal designs also lead

to the best three-segment and hyperbolic bands have been made. Two new families of

confidence bands, called the inner-hyperbolic bands and the outer-hyperbolic bands, have

been introduced and it has been shown that the best confidence band in each family can

be more efficient than the best three-segment and hyperbolic bands. It is also shown

numerically that the best inner-hyperbolic band is always as good as or better than the

best outer-hyperbolic band. Thus, the inner-hyperbolic family of confidence bands has also

been constructed in multiple linear regression over an ellipsoidal covariate region where

comparisons to the hyperbolic and constant width bands have led to similar results as in

simple linear regression. In the case where the predictor variables are constrained in a

rectangular covariate region, a method to construct and compare between exact two-sided

hyperbolic and constant width bands has been proposed for the first time.

Moreover, this thesis also points out some problems that might be of interest for future

research. Although only exact two-sided confidence bands have been considered, exact

one-sided bands can also be constructed using similar methods. However, the confidence

sets for one-sided bands require a different interpretation as they have infinite volumes

and recently, Liu et al. (2009) have provided a method to overcome this issue. Hence, the

analytical deduction that D-optimal designs lead to the best three-segment and hyperbolic

bands under under the MACS criterion is yet to be considered. Although the numerical

exploration in Section 2.5 gives some insight into how the area of confidence set varies

with the mean of the predictor variable x̄ and
√

|XTX|, it is not a complete answer. The

relationship between x̄ and
√

|XTX| is more complicated and thus the region over which

Figure 2.21 and Figure 2.22 are plotted is not appropriate. In addition, due to its desirable

properties, the outer-hyperbolic family of confidence bands can also be constructed in
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multiple linear regression over an ellipsoidal covariate region, although the best band in

the family is not as efficient as the best inner-hyperbolic band under the MACS criterion.

When the covariate region is rectangular, although expressions for the construction of

exact confidence bands have been provided, their computation is possible for up to three

predictor variables so far. For k > 3, simulation methods are recommended until further

improvement in software or future research make exact construction of confidence bands

over a rectangular covariate region possible. Matlab scripts and functions have been used

for all the numerical computation and illustrative plots throughout the thesis and are

available upon request for the reader to explore the methods and results of the thesis.

Making the computer codes available in other statistical software could also be useful

future work.

The most important contribution of this thesis is the method to construct and compare

exact two-sided confidence bands over a rectangular covariate region. Before this, only

methods to construct conservative confidence bands or simulation methods were available

in linear regression.

The hyperbolic band is a safe recommendation with only a small loss of efficiency and

being generally easy to construct. However, a small increase in efficiency can have a big

importance in real life situations and thus another important contribution of the thesis is

the introduction of the family of inner-hyperbolic bands for simple linear regression and

multiple linear regression over ellipsoidal regions and the method to construct the best

band within the family.
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Appendix A

Computation of

Qh = Qh(θT 1, . . . , θT k)

We need to compute the function

Qh = sup
xi∈[ai,bi],i=1,...,k

|(Ux)T T |
‖Ux‖‖T ‖

= sup
v∈L(U,χR)

|vT T |
‖v‖‖T ‖

where L(U,χR) forms a cone spanned by the vectors given by Ux = u0 + l1u1 + . . .+ lkuk,

where each lj is either aj or bj, 1 ≤ j ≤ k. Let ψ(t, U, χR) denote the projection of

t ∈ ℜk+1 to the cone L(U,χR). Then, it follows from Naiman (1987, Theorem 2.1) that

Qh = max {‖ψ(T /‖T ‖, U, χR)‖, ‖ψ(−T /‖T ‖, U, χR)‖} .

Note that ψ(t, U, χR) solves the problem

minv∈L(U,χR)‖v − t‖2

= minv∈L(U,χR)(v
T v − 2tT v + tT t)

= minv∈L(U,χR)(v
T v − 2tT v).

Thus, the function ψ(t, U, χR) is the vector v ∈ ℜk+1 that minimizes the function vT v −
2tT v, which is equivalent to minimizing the function

1

2
vT v − tT v,

subject to v ∈ L(U,χR). From the definition of L(U,χR), v ∈ L(U,χR) implies that

v = λUx or equivalently

U−1v = λx = (λ, λx1, . . . , λxk)
T for x(1) ∈ χR and λ ≥ 0.

Let the vector qj ∈ ℜk+1 have the jth element equal to 1 with all the remaining elements

equal to 0. Then, qT
1 U

−1v = λ ≥ 0 and aj ≤ qT
j+1U

−1v/qT
1 U

−1v ≤ bj for j = 1, . . . , k or

equivalently

−qT
1 U

−1v ≤ 0

(qT
j+1 − bjq

T
1 )U−1v ≤ 0 for j = 1, . . . , k

(ajq
T
1 − qT

j+1)U
−1v ≤ 0 for j = 1, . . . , k.

89



These constraints can be expressed as Av ≤ 0 where the (2k + 1) × (k + 1) matrix A is

given by
























(qT
2 − b1q

T
1 )U−1

(a1q
T
1 − qT

2 )U−1

...

(qT
k+1 − bkq

T
1 )U−1

(akq
T
1 − qT

k+1)U
−1

−q1U
−1

























.

The problem of minimizing the function 1
2vT v − tT v under the constraints Av ≤ 0 is a

standard quadratic programming problem that can be solved numerically (e.g. by Matlab

using the in-built function quadprog(H,f,A,b)). Therefore, given θT1, . . . , θTk, the unit

vector T /‖T ‖ can be calculated and the value of ψ(T /‖T ‖, U, χR) can be computed using,

for example, quadprog(H,f,A,b) in Matlab to obtain Qh.
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Appendix B

Matlab computation values and

times for confidence bands over χR

The computation of critical constants, average widths and volume of confidence sets for

a given dataset (or design matrix X) and confidence level 1 − α in the thesis have been

performed on Matlab. The scripts and functions produced for the contents of this thesis

are all available upon request.

The computations involved in Chapter 5 are typically time consuming. Computations

for the previous chapters are very quick and accurate, taking usually less than a minute.

However, the implementation of the quadratic programming problem in the numerical

quadratures in Chapter 5 is more computer intensive. Tables B.1 - B.6 show the compu-

tation values and time taken for various methods of numerical quadrature and tolerance

levels for k = 2 and k = 3 on a dual core PC, 3.0GHz, 3.0GHz, 1.99 GB RAM. Two

levels of tolerances are used, tol = 10−6 and tol = 10−3. The parameter tol refers to

the absolute error tolerance used in Matlab for numerical quadratures and the default

value is tol = 10−6. Larger values of tol result in fewer function evaluations and faster

computation, but less accurate results. Two methods of numerical quadratures are used,

quad and quadl. The function quad refers to a recursive adaptive Simpson quadrature

used in Matlab. It is most efficient for low accuracies with non-smooth integrands. The

function quadl refers to a recursive adaptive Lobatto quadrature used in Matlab. It is

more efficient than quad for high accuracies with smooth integrands.

The time taken for the computation of confidence levels given the values of critical

constants and α are typically one tenth of the time taken for computation of critical

constants given confidence levels and α. Furthermore, simulation methods are typically

more computer intensive than the k-dimensional quadrature methods used in Chapter 5.

Specifically, for k = 2, 100000 simulations took a total time taken of 470 seconds to attain

a value of v(Ch) = 0.2508. 100000 simulations took a total time taken of 13 seconds to

attain a value of v(Cc) = 0.3527. For k = 3, 100000 simulations took a total time taken

of 600 seconds to attain a value of v(Ch) = 187.121. 100000 simulations took a total time

taken of 15 seconds to attain a value of v(Cc) = 4963.546.
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Table B.1: Computation values and times, Snee dataset, k = 2, α = 0.05, tol = 10−6,

quad

Computation value Time taken (s)

ch 3.1153 80

cc 1.6984 12

v(Ch) 0.2507 122

v(Cc) 0.3513 7

AWh 8.9338 0.5

AWc 12.3099 instant

Table B.2: Computation values and times, Snee dataset, k = 2, α = 0.05, tol = 10−3,

quad

Computation value Time taken (s)

ch 3.1166 8

cc 1.6941 0.8

v(Ch) 0.2510 8

v(Cc) 0.3487 0.5

AWh 8.9374 instant

AWc 12.2786 instant

Table B.3: Computation values and times, Snee dataset, k = 2, α = 0.05, tol = 10−3,

quadl

Computation value Time taken (s)

ch 3.1154 51

cc 1.6980 3

v(Ch) 0.2507 55

v(Cc) 0.3510 3

AWh 8.9340 instant

AWc 12.3067 instant
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Table B.4: Computation values and times, Snee dataset, k = 3, α = 0.05, tol = 10−6,

quad

Computation value Time taken (s)

ch 3.5286 2600

cc 6.1614 1950

v(Ch) 187.203 23510

v(Cc) 5055.053 22710

AWh 25.116 90

AWc 46.421 instant

Table B.5: Computation values and times, Snee dataset, k = 3, α = 0.05, tol = 10−3,

quad

Computation value Time taken (s)

ch 3.5375 125

cc 6.1602 45

v(Ch) 187.207 350

v(Cc) 5055.064 350

AWh 25.116 1.5

AWc 46.421 instant

Table B.6: Computation values and times, Snee dataset, k = 3, α = 0.05, tol = 10−3,

quadl

Computation value Time taken (s)

ch 3.5295 1600

cc 6.1573 219

v(Ch) 187.203 7744

v(Cc) 5055.046 3950

AWh 25.116 2

AWc 46.421 instant
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