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HYPERMAPS: CONSTRUCTIONS AND OPERATIONS

by Daniel Pinto

It is conjectured that given positive integers l, m, n with l−1 + m−1 + n−1 < 1

and an integer g ≥ 0, the triangle group ∆ = ∆(l,m, n) = 〈X, Y, Z|X l = Y m =

Zn = XY Z = 1〉 contains infinitely many subgroups of finite index and of genus

g. This conjecture can be rewritten in another form: given positive integers l,

m, n with l−1 + m−1 + n−1 < 1 and an integer g ≥ 0, there are infinitely many

nonisomorphic compact orientable hypermaps of type (l, m, n) and genus g.

We prove that the conjecture is true, when two of the parameters l, m, n are

equal, by showing how to construct those hypermaps, and we extend the result

to nonorientable hypermaps.

A classification of all operations of finite order in oriented hypermaps is

given, and a detailed study of one of these operations (the duality operation)

is developed. Adapting the notion of chirality group, the duality group of

H can be defined as the the minimal subgroup D(H) E Mon(H) such that

H/D(H) is a self-dual hypermap. We prove that for any positive integer d,

we can find a hypermap of that duality index (the order of D(H)), even when

some restrictions apply, and also that, for any positive integer k, we can find a

non self-dual hypermap such that |Mon(H)|/d = k. We call this k the duality

coindex of the hypermap. Links between duality index, type and genus of a

orientably regular hypermap are explored.

Finally, we generalize the duality operation for nonorientable regular hyper-

maps and we verify if the results about duality index, obtained for orientably

regular hypermaps, are still valid.
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Chapter 1

Introduction

There are always many ways of approaching a subject, no matter if one is

talking about Algebra, Topology, Graph Theory or any other topic of math-

ematics. However, this is especially true for research in Theory of Maps and

Hypermaps, since this is a field that was developed, from the beginning, in the

border of several different areas. Some problems require more Algebra, others

more Topology. The background of the researcher and his mathematical intu-

ition is sometimes also important to decide which path to take. In Chapter 3

of this thesis, a more topological approach is followed (based on some methods

developed in [31]) to solve a problem in Group Theory, while in Chapter 5, we

take the algebraic definition of a hypermap to prove some theorems concerning

duality (which is, in a way, a very topological concept). This is possible to be

done because, in the last decades, several authors have devoted their time to

establish important links between the topological definition of a (hyper)map

and its algebraic form. Chapter 2 tries to briefly explain what are the basic

ideas behind those two definitions and how they nicely entwine. The aim of the

initial chapter is also to make the reader familiar with some graphical repre-

sentations of a hypermap, namely the Walsh representation [53] and the James

representation [27]. Because a (hyper)map is more than a (hyper)graph - it is a

(hyper)graph embedded on a surface - one can find, by the end of Chapter 2, a

brief but important section about the genus of a (hyper)map, a crucial notion

to understand the majority of the results in the main chapters.

In Chapter 3, we present a conjecture, due to J. Wolfart and Gareth Jones:

1



given positive integers l, m, n with l−1 + m−1 + n−1 < 1 and an integer g ≥ 0,

the triangle group : ∆ = ∆(l, m, n) = 〈X, Y, Z|X l = Y m = Zn = XY Z = 1〉
contains infinitely many subgroups of finite index and of genus g. However, we

will not try to prove directly this conjecture. We will work with its translation

to a more topological version, instead: given positive integers l, m, n with l−1 +

m−1 + n−1 < 1 and an integer g ≥ 0, there are infinitely many nonisomorphic

compact orientable hypermaps of type (l,m, n) and genus g. Most of the

sections of this chapter were written to prove that result for a special family

of hypermaps (such that two of the parameters of its type are equal). The

proof is divided in several cases, each one involving a different technique, and

is constructive, because it also provides a way to explicitly build each one of

the hypermaps (and not only proving their existence). The main result of this

chapter is a result about orientable hypermaps. However, at the end of the

chapter, the constructions are adapted to build infinitely many nonorientable

hypermaps for each genus and type. Finally, we discuss some alternatives to

prove the conjecture for the general case.

The second part of this thesis starts in Chapter 4, where one can understand

how the idea of operations on maps arose [61] and how it was later generalized

to hypermaps [26], using a more algebraic approach. In Section 4.5, we classify

all operations of order 2 in hypermaps and, by the end of the chapter, we give

a definition of duality group (a concept very important for the remaining pages

of the thesis) and we explain the difference between the two types of duality

(the one that just interchanges hypervertices and hyperfaces, and the one that

also inverts the orientation).

One can look at the duality group as a way to measure how far a hypermap

is from being self-dual, adapting a notion first developed to study chirality [7].

If the duality group has only one element, then the hypermap is self-dual. On

the other hand, if its duality group is equal to its monodromy group, we call

it totally dual. Although it might be interesting to know which is the duality

group of a particular hypermap, we are mainly interested in the order of that

group. In Chapter 5, one can find several results about the duality index (the

order of the duality group) in self-dual, non self-dual, totally dual and non

totally dual hypermaps. Some of the proofs are also constructive, meaning that
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we give explicit presentations of the monodromy group of each hypermap and,

consequently, a full description of each one of them. In Section 5.1.1 we classify

the self-dual and totally dual hypermaps of small order and in Section 5.3 we

explain how the choice of the type of duality can affect the duality index of a

specific hypermap. The last sections have two main goals: 1) to study for what

triples (l,m, n) we can find self-dual and totally dual hypermaps of that type,

2) to relate genus and duality index on hypermaps.

Because, throughout Chapter 5, we are always confined to oriented hyper-

maps, the last chapter introduces the concept of duality group on nonorientable

regular hypermaps, highlighting the differences and exploring the similarities

with the case for oriented hypermaps.

We have also included an appendix to show how we can obtain non regular

hypermaps of type (3, 3, 7) using subgroups of PSL2(13). The method also

works for other groups PSL2(q), but we have not proved that, since we were

only interested in giving an example of an algebraic way to construct hyper-

maps, something that might be crucial to prove the conjecture, presented in

Chapter 3, for any hyperbolic triple.
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Chapter 2

Maps and Hypermaps

2.1 Overview

If we want to trace the roots of the Theory of Maps, we probably have to go back

to the ancient Greece and to the study of platonic solids, where some of the main

topics of the subject were beginning to take shape. And if we wish to find some

examples of our fascination with symmetry, we would not have any trouble to

discover them in old mathematical works, many centuries ago. Even if we need a

powerful tool to analyse the nature of those symmetries, we can go back almost

200 years, to Galois and the foundations of Group Theory. However, the Theory

of Maps, as a field of its own, is very recent and was not entirely emancipated

from other areas until Gareth Jones and David Singerman published, in 1978,

their paper Theory of Maps on Orientable Surfaces [35]. Although that work

may have given the subject its proper language, formalization and notation,

several authors contributed before to the field. Relevant contributions may be

found in the works of Brahana [4], Sherk [52], Garbe [24], Cori [18], Coxeter

and Moser [19], Wilson [60], Walsh [53], among others. Besides the growth of

the mathematical theory, a few applications have been developed over the last

years, specially in molecular chemistry.

The aim of this chapter is to present some basic definitions and results

about maps and hypermaps and their connections to Riemann surfaces and

the triangle group. There are also some other interesting topics of research

(for instance: Belyi functions or links to Galois theory [32]) that will not be

mentioned here, despite their relevance to the global view of the theory, since
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they are not very important to what will follow, in the next chapters.

2.2 Maps, basic concepts

The word map is used in many different contexts, with different meanings,

even if we restrict ourselves to mathematics. But, here, a map M is a finite,

connected graph G imbedded (without crossings) in a surface S, where the

faces of M (the connected components of S \ G) are homeomorphic to an open

disc. A map is said to be orientable or nonorientable according to whether the

underlying surface is orientable or nonorientable. Over these pages, unless a

change in these restrictions is explicitly mentioned, a surface will be connected,

compact, orientable and without border (we will later extend this definition of

map to more general surfaces, namely nonorientable surfaces).

Figure 2.1: Cube map on the sphere.

The orientable surface S is then homeomorphic to a surface consisting of a

sphere with handles attached. The number of these handles (or, roughly, the

number of holes) is called the genus g of the surface and it is defined to be also

the genus of the map.

Maps and groups are closely related, as it will be shown in this chapter.

The monodromy group, the automorphism group and the map subgroup are the

three main concepts that will allow us to establish the connection between the

topological and the algebraic approaches. To do this, we will start by exploring

the possibility to represent a map on a surface by permutations, the basic idea

that brings combinatorial group theory and topology together.
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2.3 Orientable maps and permutation groups

Let D = {w = (v, e) : v and e are adjacent}, where v is a vertex and e is an

edge. We call each element w ∈ D a dart and it can be graphically represented

by an arrow:

w

Figure 2.2: Dart.

To each edge e in M we can associate two different darts α and β, unless we

are dealing with a free edge (which we will not considerer at this stage). Then,

it is possible to define a permutation y that transposes these two darts.

e

b ay=

b= ya

y =1
2

Figure 2.3: Permuting two darts of the same edge.

If the surface S is orientable and we fix an orientation, this induces cyclic

permutations of the darts associated with each vertex1. These cyclic permuta-

tions are disjoint and together form a permutation of D that we will represent

by x. The permutation z = yx−1 also acts on the set of the darts, each cycle

corresponding to a rotation around a face.

ax
2

ax
a

v

Figure 2.4: Permutation around a vertex.

1Hence, for each graph imbedded on an orientable surface (for each orientable map) we

can have two oriented maps, depending on the orientation we choose.
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az
2

az

a

f

Figure 2.5: Permutation around a face.

It is easy to verify that x, y and z satisfy the following relations:

xl = y2 = zn = xyz = 1 (2.1)

where l is the least common multiple of the valencies of the vertices of M and

n the least common multiple of the numbers of sides of the faces. Using the

Coxeter-Moser notation, we say that a map like this has type {n, l} (or type

(l, n) if we follow Therefall’s notation). An important group, the monodromy

group, is defined as the group generated by these permutations x, y and z.

Mon(M) = 〈x, y, z〉

Since xyz = 1, we can choose only two of these to generate the group and

because G is connected, Mon(M) ≤ SD acts transitively on the darts. It is

then possible (see [35] for details) to describe an orientable map M of any

type as an algebraic map, looking at the transitive permutation representation

Π : Γ+ → Mon((M)), t0 7→ x, t1 7→ y, t2 7→ z, of the cartographic group:

Γ+ = 〈t0, t1, t2|t2
1 = t0t1t2 = 1〉 ∼= C∞ ∗ C2

Moreover, the opposite is also true, since every map arises from some algebraic

map [35].

2.4 Map subgroups

If instead of dealing with general orientable maps, we are just interested in

maps of certain types, it might be useful to substitute the group Γ+ for the

triangle group ∆(l, 2, n):

∆(l, 2, n) = 〈X, Y, Z|X l = Y 2 = Zn = XY Z = 1〉.
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This group is generated by rotations X, Y , Z, through angles 2π/l, π and 2π/n

around a triangle T with angles π/l, π/2 and π/n. ∆(l, 2, n) is the orientation-

preserving subgroup of index 2 in ∆[l, 2, n], the extended triangle group:

∆[l, 2, n] = 〈R0, R1, R2|R2
i = (R1R2)l = (R2R0)2 = (R0R1)n = 1〉

generated by reflections R0, R1 and R2 in the sides of a triangle T with an-

gles π/l, π/2, π/n in a simply connected Riemann surface. If a map M has

type (a, b) dividing (l, n), there is an obvious epimorphism Θ : ∆(l, 2, n) −→
Mon(M) given by X 7→ x, Y 7→ y and Z 7→ z. Hence, ∆ has a transitive action

on D. The stabilizer M of a dart in this action of ∆ is called a map subgroup

for M.

M = {g ∈ ∆|αg = α} = θ−1(Mon(M)α)

(where Mon(M)α) is the stabilizer of α in the monodromy group).

M is determined up to conjugacy in ∆(l, 2, n) by M. Therefore, if M1,

M2 ≤ ∆(l, 2, n) they give rise to isomorphic maps if and only if M1 and M2

are conjugate in ∆(l, 2, n). Moreover, D is naturally identified with ∆/M via

the bijection dg 7→ Mg, with d ∈ D, so that the action of ∆(l, 2, m) by right

multiplication on the cosets Mg is isomorphic to its action on D. ∆(l, 2, n) also

acts as a discontinuous group of conformal isometries of a simply connected Rie-

mann surface2 U , leaving invariant a triangular tessellation of U . This Riemann

surface is:

• the hyperbolic plane (H) if 1
l + 1

n < 1
2

• the complex plane (C) if 1
l + 1

n = 1
2

• the Riemann sphere (C ∪ {∞}) if 1
l + 1

n > 1
2

It can be proved [57] that M and U/M have the same genus and that U/M

carries a map M̃ isomorphic to M. This establishes an important link between

orientable maps and Riemann Surfaces.

2A Riemann surface is a 2-connected 2-manifold endowed with a complex analytic structure

(an atlas) that allows local coordinatisation.
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If we allow maps whose graphs have free edges3, loops and multiple edges

we can also obtain a one-to-one correspondence between maps of type (l, n) and

conjugacy classes of subgroups of finite index in ∆(l, 2, n).

2.5 The automorphism group

In a sense, the monodromy group Mon(M) = 〈x, y, z〉 is nothing but an in-

struction guide that has all the information to build the corresponding map. If

we take the edges, vertices and faces to be the cycles of x, y and z, respectively,

with incidence given by non-empty intersection, we can, from a concise informa-

tion about the monodromy group (its presentation, for instance), reconstruct

the whole map. It follows that the monodromy group is important to construct

the map but not necessarily to study its symmetries. To do that, we need to

work with its automorphism group.

In order to give a more general approach and deal with hypermaps that are

not oriented, we will use flags instead of darts. First, we need to pick a point in

the interior of each face and then, in each face, join that point with every vertex

and the midpoint of every edge, on the boundary of the face. This process is

called the barycentric subdivision of the map.

Definition 2.5.1. Flags are the cells (topological triangles) of the barycentric

subdivsion of the map.

As a consequence of this definition, each dart is made up of two flags. An

automorphism of a map is a permutation of the flags induced by an homeo-

morphism of the surface on itself that send edges to edges, vertices to vertices

and faces to faces, keeping the adjacency relations. These permutations form

a group called the automorphism group Aut(M). Some of those automor-

phisms preserve orientation and form another group (a subgroup of Aut(M)

and index at most 2), that is usually represented by Aut+(M). The group

Aut+(M) is a natural generalization of the rotation group of a polyhedron

and each of its elements is determined by the effect on any one dart. Al-

gebraically, this orientation-preserving automorphism group is the centralizer

3A free-edge has only one end incident to a vertex. Sometimes, they are called semi-edges

or half-edges.
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CSD(Mon(M)) of Mon(M) in SD and acts faithfully and freely on D. If

N∆(l,2,n)(M) is the normalizer of the map subgroup M of M in ∆(l, 2, n), then

Aut+(M) ∼= N∆(l,2,n)(M)/M . The action of the group Aut+(M) on the set of

darts D can be understood as the action of N∆(l,2,n)/M by left multiplication

on the set ∆(l, 2, n)/M of M -cosets.

A map is orientably regular if the orientation-preserving automorphism

group is transitive on D. In that case (but not in every map) M £ ∆(l, 2, n)

and the monodromy group and the orientation-preserving automorphism group

are both isomorphic to ∆(l, 2, n)/M .

2.6 General algebraic theory of maps

The theory of orientable maps can be extended to nonorientable maps, pos-

sibly with boundary, by establishing a correspondence between maps and the

permutation representation of

Γ = 〈r0, r1, r2|r2
0 = r2

1 = r2
2 = (r2r0)2 = 1〉

or between maps of type dividing (l, n), and the group:

Γ(l, n) = 〈r0, r1, r2|r2
0 = r2

1 = r2
2 = (r1r2)l = (r2r0)2 = (r0r1)n = 1〉

The subgroup Γ+ = 〈r1r2, r2r0, r0r1〉, is a subgroup of Γ formed by the

words of even length and it is called the even subgroup. The automorphism

group of a map M is isomorphic to NΓ(M)/M , where M is the map subgroup.

A map is regular if M £ Γ and orientably regular if M £ Γ+. If a map is

orientably regular but not regular, we say that it is chiral.

2.7 Orientable hypermaps

One of the generators of the triangle group ∆(l, 2, n) is an involution (element

of order 2). This restriction can be removed in order to build a more general

theory. If we take the triangle group (generated by rotations around the vertices

of a triangle)

∆(l, m, n) = 〈X, Y, Z|X l = Y m = Zn = XY Z = 1〉
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and its subgroups, we can work with a more complicated structure: the hyper-

map (in this case: the orientable hypermaps of type (a, b, c) dividing (l,m, n)).

From a topological point of view, this change means that, instead of imbed-

ding a graph on a surface, we are now looking at imbeddings of hypergraphs

on surfaces, which is the same that allowing an edge (now called hyperedge) to

have valency more than 2 (or, in other words, to be adjacent to more than two

hypervertices).

Some of the results for maps can easily be generalized to hypermaps. For

instance, this triangle group ∆(l,m, n) is the orientation-preserving automor-

phism group of the universal hypermap4 H̃ of type τ = (l, m, n) (where l, m

and n are the least common multiples of the valencies of the hypervertices,

hyperedges and hyperfaces). A hypermap of type (l, m, n) is uniform if all

hypervertices, all hyperedges and all hyperfaces have valencies l, m and n, re-

spectively

Any hypermap of type (l, m, n) is isomorphic to the quotient of H̃ by some

subgroup H ≤ ∆(l, m, n), which is unique up to conjugacy. Conversely, any

conjugacy class of subgroups H determines a hypermap H/H of type τ ′ =

(l′,m′, n′) where l′, m′ and n′ divide l, m and n, respectively, and are the orders

of the permutations of the cosets of H induced by X, Y and Z. Two hypermaps

are isomorphic if and only if the corresponding subgroups are conjugate in

∆(l,m, n).

Definition 2.7.1. If H is normal in ∆(l, m, n) then we say that H is orientably

regular.

The triangle group ∆(l, m, n) acts on the Riemann sphere, the complex

plane or the hyperbolic plane as l−1 + m−1 + n−1 > 1, = 1 or < 1.

2.8 James Representation of Hypermaps

One possible way to represent a hypermap (orientable or nonorientable) is using

the James representation [27] and take a trivalent graph where the faces are the

hypervertices (labelled with 0), the hyperedges (labelled with 1) and the hyper-

faces (labelled with 2). The vertices of that graph represent the (hyper)flags.

4a hypermap on the Riemann surface which ∆ acts on as a group of isometries.
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Figure 2.6: James representation of a hypermap.

We can define three permutations of the set of flags, coloring each edge of

the graph by the complement of the colors of the faces which it border and

transposing each pair of flags that form the ends of an edge of the same color.

If we call those permutations r0, r1 and r2 then r2
0 = r2

1 = r2
2 = 1 and, if we

take a connected graph, they generate a transitive group of permutations of

F (the set of flags). A hypermap is a transitive permutation representation

π : ∆ → SF of the group:

∆ = 〈r0, r1, r2|r2
0 = r2

1 = r2
2 = 1〉 ∼= C2 ∗ C2 ∗ C2.

This permutation representation is isomorphic to the action of G = 〈r0, r1, r2〉
(by right multiplication) on the cosets Hg of a subgroup H ≤ G (where H is

the hypermap subgroup and G the monodromy group). Algebraically, we can

then represent a hypermap as a 4-tuple: H = (F ; r0, r1, r2). The orbits 〈r1, r2〉,
〈r2, r0〉 and 〈r1, r0〉 can be associated, respectively, with the hypervertices, the

hyperedges and the hyperfaces (Figure 2.7).

If the surface is orientable and without boundary, then the flags of H are

two-colorable. The orientation of each hypervertex defined by starting at a

particular flag and proceeding along an edge of the graph colored 1 and will be

positive for the flags of one color and negative for those of the other (Figure

2.8).

Representing each dart by the flag of positive color we can define an action

R = π(r0r2) and L = π(r1r2) on the darts of the oriented hypermap. Under
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Figure 2.7: Three different orbits.
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Figure 2.8: 2-colourable flags.
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this action the cycles of R and L are the darts bounding the hyperedges and

the hypervertices, respectively.

An oriented hypermap corresponds then to a transitive permutation of the

free group

∆+ = 〈r0r2, r1r2|−〉

and can be described as a triple: H = (D, R, L), where D is a set of darts and

R, L are two permutations generating a permutation group Mon(H) = 〈R, L〉,
called the monodromy group of H, acting transitively on D.

Contracting each edge that is incident to a hypervertex (a face labelled

with 0) and a hyperedge (a face labelled with 1) on the trivalent graph of the

James representation, we will obtain a graph with vertices of degree 4 that

are precisely the (hyper)darts of the oriented hypermap. Hence, if R permutes

the darts around the hypervertices and L permutes the darts around the hy-

peredges, we can call R′ and L′ the ones that permute the darts, respectively

around the hypervertices and around the hyperedges but using the opposite

orientation. Hence, from a orientable hypermap, we can have two different

oriented hypermaps:

H+ = (D+, R, L)

H− = (D−, R′, L′)

An automorphism that preserves the orientation φ of H+ = (D+, R, L) is a

permutation of D that commutes with R and L:

φR = Rφ and φL = Lφ.

An automorphism that reverses the orientation φ is a permutation of D such

that:

φR = R−1φ and φL = L−1φ.

The group of automorphisms that preserves the orientation Aut+(H) has

order less or equal to the number of darts of the hypermap. If |Aut+(H)| = D

then the hypermap is orientably regular and Aut+(H) has index 2 in Aut(H).
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Definition 2.8.1. If a hypermap is orientably regular (o.r.) but does not allow

a automorphism that reverses the orientation, it is called chiral (otherwise it is

called reflexible).

In the nonorientable case there are no real reflections since every symmetry

is a product of rotations. As a consequence of that, 〈R; L〉 has index 1 in

Aut(H).

2.9 Walsh representation

Another way to represent an orientable hypermap is to use the Walsh represen-

tation [53], that is, modelling the orientable hypermap by an embedding of a

bipartite graph on a surface (a bipartite map). The vertices in one partite set

represent the hypervertices and the others represent the hyperedges. The faces

of the bipartite map represent the hyperfaces and the edges are nothing but

the (hyper)darts (see Figure 2.9 for an example). The Walsh representation is

a very simple and useful tool to work with hypermaps and will be extremely

helpful here, specially in Chapter 3.

hypervertex
hyperedge

hyperface

Figure 2.9: Walsh bipartite map.

A face of valency 2n in the Walsh bipartite map, represents a hyperface of

valency n in the hypermap.

15



2.10 Hypermap coverings

For i = 1, 2, let Hi be the hypermap subgroup for a hypermap Hi. We say that

H1 covers H2 if there is a branched covering of the underlying surface of H2

which maps hypervertices and hyperedges of H1 onto those of H2. Branching

is only permitted over the hypervertices, midpoints of hyperedges and centres

of hyperfaces. This definition has a very useful algebraic translation since H1

covers H2 if and only if H1 ≤ H2.

2.11 Genus of a hypermap

As we have pointed before, the genus of a map M is the genus of the underlying

surface. In terms of its Euler characteristic we have:

χ(M) = |V | − |E|+ |F | =

{
2-2g, if M is orientable;

2-g, if M is nonorientable.

For orientably regular maps of type (l, n), by counting the number of flags

(number of automorphisms), we will have |Aut(M)| = 2|E| if the map is chiral,

or |Aut(M)| = 4|E| if M is reflexible. Because in any case l|V | = 2|E| = n|F |,
we have another way of expressing the genus g(M) of a map M, this time in

terms of the number of its automorphisms:

g(M) =





|Aut(M)|(1/8− 1/4n− 1/4l) + 1, if M is o.r. and reflexible;

|Aut(M)|(1/4− 1/2n− 1/2l) + 1, if M is o.r. but chiral;

|Aut(M)|(1/4− 1/2n− 1/2l) + 2, if M is nonorientable.

The small positive value for the bracketed expression is attained when

(l, n) = (7, 3). It follows that regular maps of this type (or type (3, 7)) are

the ones with largest automorphism groups. These groups (non-trivial quo-

tients of the triangle group ∆(2, 3, 7)) are known as Hurwitz groups, since their

order, 84(g − 1), in the first two cases, correspond to the upper bound for the

number of conformal automorphisms of a compact Riemann surface with genus

g greater than one, known as the Hurwitz bound [25]). For nonorientable maps,

that bound is equal to 168(g − 1).

Similar Euler formulas can be established for hypermaps.
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Let H = (F ; r0, r1, r2) be a hypermap on a closed surface S of genus g

having |v| hypervertices, |e| hyperedges and |f | hyperfaces. If we take the James

representation of the hypermap, we get a 3-valent graph with 3|F | vertices,

3|F |/2 edges and |v|+ |e|+ |f | faces. Then:

|v|+ |e|+ |f | − |F |/2 = 2− 2g, if H is orientable;

|v|+ |e|+ |f | − |F |/2 = 2− g, if H is nonorientable.

Therefore:

g(M) =

{
|F |/4− |v|/2− |e|/2− |f |/2 + 1, if H is orientable

|F |/2− |v| − |e| − |f |+ 2, if H is nonorientable.
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Chapter 3

Infinitely many hypermaps of

a given genus and type

3.1 Two conjectures

As we have pointed in the previous chapter, there is a strong link between

subgroups of a triangle group and nonoriented hypermaps. In a nutshell, that

connection might be stated like this: up to conjugacy, it is possible to associate

one of those subgroups to each hypermap and the reverse is also true; if we pick

a subgroup of a triangle group, there is only one hypermap (up to isomorphism)

that will have it as a hypermap subgroup. The importance of this link is widely

shown in several papers about hypermaps, and, here, we will also make use

of this connection to translate a conjecture - that was originally written in

the language of group theory - to a more topological context. The conjecture,

that arose in discussions between Gareth Jones and Jürgen Wolfart, had the

following first version:

Conjecture 3.1.1 (A). Given positive integers l, m, n with

l−1 + m−1 + n−1 < 1

and an integer g ≥ 0, the triangle group :

∆ = ∆(l, m, n) = 〈X, Y, Z|X l = Y m = Zn = XY Z = 1〉

contains infinitely many subgroups of finite index and of genus1 g.
1The genus of a subgroup H of a triangle group is the genus of the quotient-surface S/H,
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This conjecture is a very strong and general statement and in order to be

able to apply some topological methods in the proof, we need to rewrite it in

another form:

Conjecture 3.1.2 (B). Given positive integers l, m, n with

l−1 + m−1 + n−1 < 1

and an integer g ≥ 0, there are infinitely many nonisomorphic compact ori-

entable hypermaps of type (l, m, n) and genus g.

Before studying the relationship between these two conjectures, it is maybe

useful to explain the reason why the condition l−1 + m−1 + n−1 < 1 was intro-

duced. This inequality is important to avoid trivial cases, where there are none

or only a finite number of hypermaps:

i) If l−1 + m−1 + n−1 > 1 then ∆(l,m, n) acts on the Riemann sphere and

is finite. Hence, there are only finitely many hypermaps of a given type

(l, m, n), all of them having genus 0.

ii) If l−1 + m−1 + n−1 = 1 then ∆(l, m, n) acts on the Euclidean plane and

there are infinitely many subgroups and hypermaps of genus 0 or 1, but

none of genus g > 1.

Therefore, we only need to investigate what happens with the hyperbolic triples

where l−1 + m−1 + n−1 < 1 and ∆(l,m, n) acts on the hyperbolic plane.

Both conjectures are independent of the ordering of l, m and n and several

times, throughout the next sections, that detail will be relevant to reduce the

number of cases to be studied. We should also mention that the conjectures

are false if we only work with uniform hypermaps (equivalently, torsion-free

subgroups of ∆), those for which the hypervertices, hyperedges and hyperfaces

all have valencies l, m, n, respectively (and this includes the important family

of regular hypermaps corresponding to normal subgroups of ∆). In that case of

uniform hypermaps, the size of the hypermap (the index of the corresponding

where S is the hyperbolic plane, the Riemann sphere or the complex plane (depending on l, m

and n), on which H acts by isometries. It is also the genus of the hypermap H corresponding

to H.
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subgroup) is proportional to the Euler characteristic. Hence, for a fixed genus

g, there can only be finitely many uniform hypermaps of a given type. So, if

we want to prove the conjecture, we will have to use nonuniform hypermaps,

where the valencies of the hypervertices, hyperedges and hyperfaces have least

common multiples l, m and n, respectively, but not all are necessarily equal to

l, m and n.

3.2 Relationship between Conjectures A and B

If Conjecture B, presented in the previous section, is true for a given triple

τ = (l, m, n) and a given genus g, then there are infinitely many nonisomorphic

hypermaps of that type and genus, corresponding to mutually nonconjugate

subgroups H of finite index in ∆(l,m, n) and genus g. This means that to

prove Conjecture A is enough to prove Conjecture B.

The converse is not true because Conjecture A is a slightly weaker statement

than Conjecture B. If Conjecture A is true for type τ and genus g then the tri-

angle group has infinitely many subgroups H of that genus. Each H has finite

index in ∆, which means that each one of those has only finitely many conju-

gates. Hence, among all these subgroups H there are infinitely many which are

mutually nonconjugate, corresponding to infinitely many nonisomorphic hyper-

maps H of genus g. Each one of these hypermaps has type τ ′ = (l′,m′, n′) for

some divisors l′, m′ and n′ of l, m and n, namely the orders of the permutations

induced by X, Y and Z on the cosets of H. For a given triple τ there are only

finitely many such triples τ ′, so for at least one of them (but not necessarily

for τ itself) there must be infinitely many nonisomorphic hypermaps of type

τ ′ and genus g.

3.3 Theorem and general method

Instead of trying to prove Conjecture B, in full generality, we will be more

modest in our goal and focus our attention on hypermaps of type (l, m, n),

where two of the parameters are equal. Since permuting l, m and n (renaming

the hypervertices, hyperedges and hyperfaces) does not change the genus of the

hypermap, we may also assume that we are dealing with hypermaps of type
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τ = (m,m, n) [41]. Because we are only considering hyperbolic triples, we will

have 2m−1 + n−1 < 1, i.e. (m− 2)(n− 1) > 2.

Theorem 3.3.1. Conjectures A and B are true provided at least two of the

three parameters l, m and n in τ are equal.

To prove this theorem, we will construct the Walsh map of each hypermap

by joining together an appropriate number of small blocks. This method is

based on the one used in [31] and will play a central role in the next sections.

As we have seen before, a Walsh map W = W (H) is a bipartite map on the

same surface asH, each hypervertex or hyperedge ofH represented as a black or

white vertex, with each incidence between them represented as an edge between

corresponding vertices. This gives each black or white vertex the same valency

as the hypervertex or hyperedge it represents. However, each face of the Walsh

map (bordered by alternating black or white vertices) represents a hyperface of

half of its valency, the number of adjacent hyperedges. For instance, a face of

valency 8 in the Walsh map represents a hyperface of valency 4 in the hypermap.

Since two of the parameters are equal and we can permute them, we will

deal with hypermaps of type τ = (m,m, n) corresponding to Walsh maps of

type {2n,m} on the same surface. Then, proving the conjecture for hypermaps

of type (m,m, n) is equivalent to proving it for bipartite maps of type {2n,m}
since W (H) ∼= W (H′) if and only if H ∼= H′.

In order to construct a bipartite map W of type µ = {2n, m} corresponding

to a hypermap of type (m,m, n), we will use some basic pieces, which are nothing

more than three different bipartite maps on three surfaces with boundary: a

2-trisc T (a torus minus two discs, with X (T ) = −2), a closed annulus A (with

X (A) = 0) and a disc D.

Figure 3.1: 2-Trisc.

Bipartite maps of type µ = {2n,m} on each of these surfaces will be denoted

by, respectively, Tµ, Aµ and Dµ or, sometimes, Ti, Ai and Di (with i = n or m)
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Figure 3.2: Annulus.

if we want to emphasise the valency of the faces or vertices involved in the map

(assuming the other parameter is fixed and known). We may also use just T ,

A or D while referring to a map on one of those surfaces if it is clear, from the

context, that we are not only dealing with the surface but also with a bipartite

graph, of a certain type, imbedded in it.

When a bipartite map exists on A, D or T , we require that each boundary

component of the surface must be a cycle in the map. For instance, in Figure

3.9, the boundary component of the disc is a cycle of order 4.

3.4 Multiplication of an edge

Some of the methods will be applied, with small modifications, several times.

One of the operations that will often be used is the multiplication of an edge

e of the map, by an integer k, and that consists of replacing e with k edges

between the same pair of vertices, enclosing k − 1 new faces of valency 2. If e

is a boundary edge then one of these new edges will also be a boundary edge

(but not the other ones).

The valencies of the vertices of the boundary components are relevant to

describe the pieces and to confirm that a map of a specific type is obtained

when they are glued together. We say that a boundary component (denoted

by ∂iA, ∂iT or ∂D for i = 0, 1) has type k(t) if it has t vertices of valency k. If

the vertices have not all the same valency, we will explicitly give those different

valencies to the reader.

3

or
multiplication by 3

Figure 3.3: Multiplication of an edge by 3.

Important note: We leave, in the drawing of the graph, the edge that is
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multiplied. It follows that that edge should not be counted twice. For instance,

the number 3, in Figure 3.3, means exactly the number of edges between those

two vertices.

3.5 Allowed joining

All the boundary components of T , A and D will be cycles in the map. If C1

and C2 are two cycles of the same length from two different components, an

allowed joining between the two maps is a homeomorphism C1 → C2 which

sends vertices to vertices of the same colour so that C1 and C2 become a single

cycle in the resulting bipartite map and adjacency is preserved.

Example 3.5.1. We can, for instance, build infinitely many hypermaps of

genus 2 by conveniently joining, end to end, two 2-triscs, two discs and an

arbitrary number of annuli, all carrying suitable hypermaps.

Figure 3.4: Infinitely many hypermaps of genus 2.

3.6 Genus greater than 1

In some cases, we can simplify this general method by constructing a torus

minus one disc (1-trisc) and a 2-sheeted unbranched covering of this, in order

to obtain a 2-trisc (see Figure 3.5). By joining the boundary components in a

suitable way, we can construct bipartite maps on surfaces of genus g = 2. Then,

if we need maps of genus greater than 2, we use (g − 1)-sheeted unbranched

coverings of those maps of genus 2 (see Figure 3.6).

To solve the remaining cases, for (g = 0, 1) and complete the proof, we have

to construct a disc which can be joined to itself (genus 0) or to a 1-trisc (genus

1).
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2:1

Figure 3.5: 2-sheeted unbranched covering

2 /g-1B

g-1 handles

g-1:1

Figure 3.6: (g − 1)-sheeted unbranched covering.
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3.7 The proof

We will divide the proof into several cases for different families of hypermaps.

There will be three different main cases:

i) when n is even and the parameters are not too small (if they are not ≤ 3);

ii) when n is odd and the parameters are not too small (if they are not ≤ 4);

iii) the other possibilities, when at least one of the parameters is small.

All possibilities will be covered but we will solve the problem by dealing, in

the following order, with families of hypermaps of type:

• (m,m, n) with m ≥ 4, even n ≥ 4;

• (m,m, 2) with m ≥ 6;

• (5, 5, 2);

• (3, 3, 4);

• (3, 3, n) with even n ≥ 6;

• (m,m, n + 1) with m ≥ 5, odd n + 1 ≥ 5;

• (m,m, 3) with m ≥ 5;

• (4, 4, 3);

• (4, 4, n) with, odd n ≥ 5;

• (3, 3, n) with odd n ≥ 5.

3.8 Hypermaps of type (m,m, n) with n even

3.8.1 Hypermaps of type (m,m, n) with m ≥ 4, even n ≥ 4

To introduce the method, we will start by presenting the construction of an

infinite number of hypermaps of type (4, 4, n), for n ≥ 4, since the others are

obtained from these by multiplying the suitable edges. We will not give a very
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precise description at the beginning but a more formal and rigorous explanation

of the method will be presented later. This will allow the reader to understand

the main ideas before dealing with a more abstract approach and to become

familiar with some of the techniques that will appear several times in the proof

of the theorem.

Example 3.8.1. One possibility to build hypermaps of type (4, 4, n) is by using

the 2-trisc map, the annulus map and the disc map represented in Figures 3.7,

3.8 and 3.9, respectively.

To build the 2-trisc we identify the opposite sides of the rectangle [0, 4] ×
[0, 2n − 6] and remove the two shaded squares. There are no edges between

vertices (0, 0) and (0, n − 3). Therefore, the faces are 2-gons, 4-gons, and 2n-

gons (denoted by 2n in Figure 3.7). Interior vertices have all valency 4 and

boundary vertices valency 3.

To build the annulus map, in Figure 3.8, we identify the left and right sides

of the rectangle [0, 4]× [0, 2n− 6] but not the top and bottom, and we do not

remove any square faces. All interior vertices have valency 4, all boundary

vertices have valency 3.

Finally, the disc map is formed by a cycle of four vertices in the boundary

and two more edges, adjacent to opposite pairs of vertices as represented in

Figure 3.9.

All boundary components of these pieces have type 3(4). Therefore, after

identifying any boundary components we will get hypervertices (and hyper-

edges) of valency 4, as we can see in Figure 3.10.

The hypervertices and hyperedges, that are not on the boundary compo-

nents, have all valency 4 and the hyperfaces have valency 1, 2 or n (even). So,

the final hypermap will have type (4, 4, n).

To build hypermaps of type (m,m, n), for m,n ≥ 4 and n even, we use

similar tessellations, introducing multiple edges (edges incident to the same

pair of vertices). For instance, to build a hypermap of type (5, 5, n) for n ≥ 4,

we can use the same torus minus two discs, introducing multiple edges on the

steps of the ladders by a suitable multiplication (see Figure 3.11).
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2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n

2n

0 1 2 3 4

not an
edge in the map

Figure 3.7: 2-trisc to construct hypermaps of type (4, 4, n).
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2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n

2n

0 1 2 3 4

Figure 3.8: annulus to construct hypermaps of type (4, 4, n).

Figure 3.9: disc to construct hypermaps of type (4, 4, n).

3 3 4

Figure 3.10: Identification of two boundary vertices of valency 3.
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2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n

2n

0 1 2 3 4

not an
edge in the map

Figure 3.11: 2-trisc to construct hypermaps of type (5, 5, n).
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Similar modifications can be made for the annulus in order to have hyper-

vertices of valency 3 in one of the boundary components, of valency 4 in the

other boundary component, and of valency 5 anywhere else.

4 3 5

Figure 3.12: identification of two boundary vertices, one of valency 4 and an-

other of valency 3.

We will give now a more formal and general description of a method to

solve this particular case: the construction of hypermaps of type (m, m, n) with

m ≥ 4 and even n ≥ 4. For each even n, let Rn be a bipartite map on the

rectangle [0, 4]× [0, 2n− 6] ⊂ R2.

This bipartite map (see Figure 3.13) has vertices at the points:

(0, j), (1, j), for i ∈ {n− 3, ..., 2n− 6} ∪ {0}

(2, j), (3, j), for j ∈ {0, ..., n− 3} ∪ {2n− 6}

(4, j), for j ∈ {n− 3, 2n− 6} ∪ {0}

The vertices (i, j) are black or white if i+j is even or odd, respectively. Because

we want some of them to be adjacent, we introduce some horizontal and vertical

edges in the rectangle.

Horizontal:

(i, j)× (i, j + 1) for i ∈ {0, n− 3, 2n− 6} and j ∈ {0, ..., 3}

(i, 0)× (i, 1) for i ∈ {n− 2, ..., 2n− 7}

(i, 2)× (i, 3) for i ∈ {1, ..., n− 4}

Vertical:

(i, j)× (i + 1, j) for i ∈ {n− 3, ..., 2n− 7} and j ∈ {0, 1, 4}
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2n-6

2n-8

2n-7
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1

2n

2n

0 1 2 3 4

Figure 3.13: Bipartite map on the rectangle [0, 4]× [0, 2n− 6].
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(i, j)× (i + 1, j) for i ∈ {0, ..., n− 4} and j ∈ {2, 3}

These edges enclose 2n− 4 faces.

2n− 6 square faces:

0 < x < 1, j < y < j + 1 for j ∈ {n− 3, ..., 2n− 7}

2 < x < 3, j < y < j + 1 for j ∈ {0, ..., n− 4}

Two 2n-gons:

0 < x < 2 or 3 < x < 4, and 0 < y < n− 3

1 < x < 4 and n− 3 < y < 2n− 6

To obtain a bipartite map on the torus, we identify the opposite sides in

the usual way: (4, y) = (0, y) for 0 ≤ y ≤ 2n − 6 and (x, 2n − 6) = (x, 0) for

0 ≤ x ≤ 4. All the vertices have valency 3 at this stage. To build a 2-trisc T
we need to remove two discs. We can do this by removing two non adjacent

square faces (see Figure 3.14). For instance:

0 < x < 1, n− 3 < y < n− 2

2 < x < 3, n− 4 < y < n− 3

The trivalent map on the 2-trisc, Tn, has now 2n − 8 square faces and two

2n-gonal faces. The two boundary components of Tn have both type 3(4) (they

have 4 vertices of valency 3). We will use this bipartite map as a basis to build

blocks of type µ = {2n,m}. These are obtained by multiplying by m− 2 each

horizontal edge of the form:

(i, 0)× (i, 1) for i ∈ {n− 1, ..., 2n− 6}

(i, 2)× (i, 3) for i ∈ {0, ..., n− 5}

Then we choose integers m0,m1 ≥ 3 such that m0+m1 = m+2 and, for each

i = 0, 1, we multiply each of the horizontal edges in the boundary components

∂iTµ by mi− 2. This is a general procedure that always works but we could fix

(for instance) m0 = 3 and then take m1 = m− 1, multiplying only the edges of

one of the boundary components of ∂iTµ.
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Figure 3.14: 2-trisc.

m
0

(4)
m

1

(4)

Figure 3.15: 2-trisc with boundary components of type m
(4)
0 and m

(4)
1 .
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Each vertex is incident with exactly one of these multiplied edges. Therefore,

every internal vertex has valency m and the vertices on the boundary component

∂iTµ (i=0,1) have valency mi, so that this component has type m
(4)
i .

Hence, this modified map on the 2-trisc (with some edges multiplied) has

two faces of valency 2n and 2n − 8 faces of valency 4, just as the first basic

bipartite map we have built on this surface, but also:

2(m− 3)(n− 4) + 2(m0 − 3) + 2(m1 − 3) = 2(n− 3)(m− 3)

new faces of valency 2. This does not affect the type of the hypermap since

they correspond to hyperfaces of valency 1 in the hypermap.

The bipartite map on the annulus is constructed using the same tessellation

Rn, identifying, as before, the left and right sides but not the top and bottom

sides. We obtain, by this process, a map Aµ with two faces of valency 2n and

2n − 6 faces of valency 4. The two boundary components ∂iAµ (i = 0, 1) are

cycles of length 4, like those in ∂iTµ. If we multiply suitable edges, as before,

we can create a bipartite map on A with all internal vertices of valency m, one

boundary component of type m
(4)
0 and the other one of type m

(4)
1 . This new

map has two faces of valency 2n, 2n − 6 faces of valency 4, and the others of

valency 2.

To build the disc for each integer k ≥ 2, we construct a tessellation Dk of

a closed disc D, with boundary type k(4). We achieve that by starting with a

square, regarded as a bipartite map on D with one face and with four vertices

and four edges on ∂D. Then, we multiply a pair of opposite edges by k − 2,

introducing 2(k − 3) extra faces of valency 2, so that all four vertices have

valency k.

m-2k-2

k-2

Figure 3.16: Disc Dk

The gluing process is now easy to describe. For a given genus g, we choose

an arbitrarily large h ∈ N0 and if g ≥ 1 we take g − 1 copies of T and h
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copies of A in some arbitrary cyclic order. By making allowed joinings between

consecutive pieces, we will get a bipartite map Wg,h of genus g and with all

vertices of valency m. This map Wg,h has 2(g− 1 + h) faces of valency 2n, two

on each copy of T or A and the remaining faces have valency 2 or 4. Hence,

Wg,h is the Walsh map of a compact orientable hypermap Hg,h of genus g and

type µ = (m,m, n). Because h is as large as we want, we can build in this

way an infinite number of nonisomorphic hypermaps of genus g and type µ, as

required. If g = 0 we do not need to use a 2-trisc, we only need A and two

discs Dm0 and Dm1 (remember m0 + m1 = m + 2), capping a tube of h ≥ 1

copies of A in linear order, by allowing joining at its ends. The resulting map

will have 2h faces of valency 2n and all other faces of valency 2 or 4. Since all

the vertices have valency m, the map is a Walsh bipartite map of a hypermap

of type µ = (m,m, n) on the sphere.

3.8.2 Hypermaps of type (m,m, 2) with m ≥ 6

The method used in the previous case does not work for n = 2 but we just need

to introduce a slight modification to make it right, provided m ≥ 6. This is

achieved by using, first, eight 1×1 square faces to form a tessellation R2 of the

rectangle [0, 4] × [0, 2] ⊂ R2 with vertices at the points (i, j) colored black or

white as i + j is even or odd. By identifying opposite sides of R2 we obtain a

bipartite map of type {4, 4} on a torus. To build a bipartite map T2 on a 2-trisc

we remove, before identification, two nonadjacent faces: 0 < x < 1, 0 < y < 1

and 2 < x < 3, 0 < y < 1.

Figure 3.17: Tessellation of R2 = [0, 4]× [0, 2] with 2 faces removed.

This bipartite map has six square faces and each of the eight vertices lies on

a boundary component ∂iT2 (i = 0, 1) of type 4(4). Then we choose integers

mi ≥ 4 (i = 0, 1) so that m0 + m1 = m − 2 and multiply each of the two

horizontal edges on ∂iT2 by mi − 3 so that ∂iT2 has type m
(4)
i .
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The annulus A2 can be constructed using the same rectangle R2 but only

identifying the vertical sides (not the horizontal ones). On each boundary

component ∂iA2 (i = 0, 1) of A2 we multiply each of two nonadjacent edges

by mi− 2 so that this component has type m
(4)
i . Because we now have internal

vertices, we also need to multiply each of two nonadjacent internal edges by

m − 3. This will transform all the internal vertices into vertices of valency m,

as required. With these pieces (together with the discs previously described)

we can construct infinitely many hypermaps of type (m,m, 2), provided m ≥ 6.

3.8.3 Hypermaps of type (5, 5, 2)

The method described in the previous subsection does not work for m = 5

because we have mi ≥ 4 and, consequently, m = m0 + m1 − 2 ≥ 6. To get a

hypermap that will work in this particular case, we need to build different blocks

whose boundary components have types 3(4) and 4(4), so that after joining them

we will get vertices of valency 3 + 4− 2 = 5.

Figure 3.18: 2-trisc map to build hypermaps of type (5, 5, 2).

To build T we use the same bipartite torus map T2 described for the previous

case but with four extra vertices, a square S, with vertices at (1
3 , 1

3), (2
3 , 1

3), (2
3 , 2

3)

and (1
3 , 2

3), each joined by a straight edge to the vertex (0, 0), (1, 0), (1, 1) or

(0, 1) respectively (see Figure 3.18). This tessellation has five new faces and

the new vertices have valency 3. If we remove the face within S, we create a

boundary component of type 3(4). Removing the face given by 2 < x < 3 and

0 < y < 1, we create another boundary component, this one of type 4(4) (see

Figure 3.19).

We also need to build an annulus satisfying the same conditions, that is,

with one boundary component of type 3(4) and another one with type 4(4). This

can be done in the following way: we take the map of the cube on the sphere,
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3
(4)

4
(4)

Figure 3.19: 2-trisc map with boundary components of type 3(4) and 4(4).

removing a pair of opposite faces and we multiply a pair of opposite edges of one

of those faces by 2. The resulting bipartite map has four faces of valency 4 and

two of valency 2. We just need now two other blocks D3 and D4, as described

earlier, and proceed as before but this time joining boundary components of

type 3(4) to boundary components of type 4(4).

3.8.4 Hypermaps of type (3, 3, 4)

The previous methods used square tessellations of a rectangleR2 and can not be

applied to build hypermaps of type (3, 3, 4). The reason is obvious: if we want

to obtain, after joining two blocks, a hypermap with hypervertices of valency

m = m0 +m1−2 we will need here m = 3. So, m0 +m1 = 5, giving m0 = 2 and

m1 = 3 or vice versa, which is impossible using the strategy we have already

introduced. Another method is needed to solve the problem, which means we

have to build the blocks following a different idea, an alternative approach.

To build the map T we take the regular map {3, 4 + 4} of type {3, 8} and

genus 2 (described in [19, Chapter 8] and represented in Figure 3.20, with op-

posite sides of the octagon identified) and then cut it along a simple closed

curve that follows two edges. The map {3, 4 + 4}, a double cover of the oc-

tahedron branched over six vertices, can be constructed by taking a regular

octagon, placing vertices at the center, the eight corners and the midpoints of

the eight sides; each of these last eight vertices is then joined by straight edges

to the central vertex, to the two corner vertices incident with its side, and to

the vertices at the midpoints to the two adjacent sides. so that the octagon

is tessellated by 16 triangles. If we make orientable identifications of the four

pairs of opposite sides of the octagon we obtain the regular map {3, 4+4}. If we

identify just three pairs of opposite sides instead (or, equivalently, we cut the

map {3, 4 + 4} open along the simple closed path corresponding to the fourth

pair, as in Figure 3.21), we obtain a triangular map on a 2-trisc.
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Figure 3.20: Map {3, 4 + 4} of type {3, 8} and genus 2.

Figure 3.21: The map {3, 4 + 4} after being cut open along a simple closed

path.

The boundary components in this block both have type 5(2) and all the four

interior vertices have valency 8.

To construct the annulus we take A = {z ∈ C|1 ≤ |z| ≤ 2}, with vertices

at ±1, ±2 and ±3i/2, and with edges along the boundary components, along

A∩R, and joining±3i/2 each to ±1 and ±2. We have then eight triangular faces

and the two internal vertices have valency 4. The disc is formed by dividing

the closed unit disc D into four triangular faces, with vertices at ±1 and ±i/2

and edges along the boundary, along D ∩R and joining each of ±i/2 to ±1, so

that the internal vertices have valency 2. In both of these maps, each boundary

component has type 5(2).

Figure 3.22: Annulus.
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Figure 3.23: Disc.

All the vertices in the boundary components have valency 5, which means

that after joining together the pieces these vertices will give rise to vertices of

degree 8 = 5 + 5 − 2. Moreover, all the vertices that are not in the boundary

have valency 2, 4 or 8 and all the faces have valency 3. Therefore, the resulting

maps will have type {3, 8}. These maps are also 2-face-colorable, since all the

pieces are 2-face-colourable and each of their boundary components has two

edges incident with faces of opposite colors.

Figure 3.24: 2-face colourable map.

Then, if we take the duals of these 2-face-colourable maps of type {3, 8} we

get maps which are bipartite and of type {8, 3}. Hence, these can be understood

as the Walsh bipartite maps for hypermaps of type (3, 3, 4). The gluing process

of the required pieces, in order to get an infinite number of these with any

genus, is exactly as before.

3.8.5 Hypermaps of type (3, 3, n) for even n ≥ 6

To solve this case we use the same 2-trisc as in Section 3.8.1 but this time

removing two rectangles given by 0 < x < 1, n− 3 < y < n and by 2 < x < 3,

n − 6 < y < n − 3 (see Figure 3.25). Consequently, not all the vertices in the
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boundary components have the same valency, so we need to explicitly write

the type of those boundary components. They are cycles of length 8 and type

(2, 2, 3, 3, 2, 2, 3, 3) in cyclic order. Both of them are of this type but if we fix an

orientation, travelling around each component in the same direction, the first

colour of these vertices is black in one of the boundary components and white

in the other one. Hence, after the second consecutive vertex of order 2 we will

have a black vertex of order 3 in one boundary and a white vertex of order 3

in the other one. Those two boundary components of the same type will be

called, respectively: black component and white component.

Figure 3.25: 2-trisc map with boundary components of type (2, 2, 3, 3, 2, 2, 3, 3).

To build the map on the annulus we use two copies of the rectangle R2 of

the first case, one for 0 ≤ x ≤ 4 and another for 4 ≤ x ≤ 8, identifying the

two sides of this bigger rectangle. It has boundary components for y = 0 and
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y = 2n − 6, both of type (2, 2, 3, 3, 2, 2, 3, 3), like the map in the 2-trisc, one

black and another one white (see Figure 3.26).

2n

2n

2n

2n

Figure 3.26: 2-trisc map with boundary components of type (2, 2, 3, 3, 2, 2, 3, 3).

Finally, the disc is just an octagon with two edges from two consecutive ver-

tices to their opposite. This gives the disc a white (Dw) or, if we interchange

colours, black (Db) boundary component of the same type (2, 2, 3, 3, 2, 2, 3, 3)

(see Figure 3.27). Because all the internal vertices are trivalent, and all faces

are of order dividing 2n we will obtain hypermaps of the correct type by con-

veniently gluing the pieces:

• a black boundary is joined to a white boundary;

• a vertex of valency 2 is identified with another of valency 3.
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Figure 3.27: A disc map with a boundary component of type (2, 2, 3, 3, 2, 2, 3, 3).

3.9 Hypermaps of type (m,m, n + 1) with n + 1 odd:

the general method

If m,n + 1 ≥ 5 we can use the construction presented for n even and introduce

some slight but important changes. In the previous cases we could use faces

of valency 4 in our pieces because these would correspond to hyperfaces of

valency 2, which do not interfere with the type of a hypermap if we require

the parameter n (the l.c.m of the valency of the faces) to be even. However,

these faces of valency 4 can not appear if we want n + 1 to be odd. Therefore,

other tools must be developed to solve this problem. The general method is the

following: to build a hypermap of type (m,m, n + 1), n + 1 odd, we take the

pieces that we have built for hypermaps of type (m,m, n) and add new vertices

and edges in order to increase by 2 the valency of the old faces of valency 2n

and transform all the square faces into faces of valency 2n + 2.

The first part is easier because we just need a new edge and a new vertex.

Figure 3.28: A face of valency 8 transformed into a face of valency 10.

For the second, a more delicate procedure, we need to introduce a few stalks
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of length n− 1: paths of length (n− 1) with consecutive vertices v0, v1, ..., vn−1

alternately black and white and with alternate edges vivi+1 (i odd) multiplied

by m− 1 so that v0 and vn−1 have valency 1 while the others have valency m.

...

m-1m-1 m-1m-1 m-1m-1

v0 v1 v2 v3 v4 vn-3 vn-2 vn-1

Figure 3.29: A stalk

By attaching a stalk S to a vertex v within a face F we mean identifying v0

or vn−1 with v, as v is black or white, and embedding the rest of the stalk in F

without crossings. This raises the valency of the face F by 2(n − 1) and that

of v by 1. It also introduces (m− 2)(n− 2)/2 new faces of valency 2, together

with n− 2 vertices of valency m and one of valency 1. Because these new faces

have valency 2 they correspond to hyperfaces of valency 1, so they do not affect

the type of the final hypermap. On the other hand, the vertex where the stalk

is attached increases its valency by 1, which means that we need to correct this

change by modifying the factors by which certain edges are multiplied. We will

describe this operation later with more details.

Example 3.9.1. To build hypermaps of type (m,m, 5) we need to start with

the pieces that form a hypermap of type (m,m, 4).

m-1

valency 10

Figure 3.30: Example of a face of valency 4 transformed into a face of valency

10.
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3.9.1 Hypermaps of type (m,m, n+ 1) with n+ 1 odd with m ≥ 5

and n + 1 ≥ 5

Let Tn be the trivalent bipartite map constructed in section 3.8.1 by identifying

opposite sides of the rectangle Rn. If we remove, as before, the two square

faces given by 0 < x < 1, n − 3 < y < n − 2 and by 2 < x < 3, n − 4 <

y < n − 3, the underlying surface is a 2-trisc. In the face of valency 2n given

by 1 < x < 4, n − 3 < y < 2n − 6 we insert a white vertex joined by an

edge to the black vertex at (1, n − 3), and in the other face of valency 2n we

insert a black vertex joined by an edge to the white vertex at (2, n − 3), so

that both of these faces now have valency 2(n + 1). At each white vertex of

the form (i, j) = (0, n− 1), (0, n + 1), ..., (0, 2n− 7) or (2, 1), (2, 3), ..., (2, n− 5)

we attach a stalk of length n − 1, with all interior vertices of order m, within

the incident square face i < x < i + 1, j < y < j + 1; at each black vertex of

the form (i, j) = (1, n− 1), (1, n + 1), ..., (1, 2n− 7) or (3, 1, ), (3, 3), ..., (3, n− 5)

we also attach a stalk of length n − 1, with all interior vertices of order m,

within the incident square face i − 1 < x < i, j − 1 < y < j. The result of

this is that each of the 2n− 8 originally square faces now contains a stalk, and

hence has valency 2(n + 1). Since m ≥ 5, we can choose integers m0 ≥ 4 and

m1 ≥ 3 so that m0 + m1 = m + 2 and then multiply the horizontal boundary

edges 0 < x < 1, y = n − 3 and 0 < x < 1, y = n − 2 by m0 − 3 and m0 − 2,

respectively, and the other two horizontal boundary edges 2 < x < 3, y = n− 4

and 2 < x < 3, y = n−3 by m1−2, so that the boundary components have types

(m0− 1,m0,m0,m0) and (m1 + 1,m1,m1,m1), with both first vertices of these

sequences being white vertices. Finally, we multiply each remaining horizontal

internal edge of the form i < x < i + 1, y = j for i = 0 or i = 2 by m − 2 or

m−3 as i+j is even or odd, that is, as the vertex (i, j) is black or white, so that

all internal vertices have valency m. This map on the 2-trisc is represented in

Figure 3.31 (before multiplication of edges), with stars representing the stalks

of length n− 1.

To construct a map A on the annulus, before identifying the vertical sides

of Rn, we insert a black vertex in the face of valency 2n given by 1 < x <

4, n − 3 < y < 2n − 6, joined by an edge to the white vertex at (3, 2n − 6),

and in the other face of valency 2n we insert a white vertex, this time joined
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n-2

n-3

n-4

0

1

2n+2

2n+2

0 1 2 3 4
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Figure 3.31: 2-trisc map for the odd case (before multiplication of edges).
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by an edge to the black vertex at (0, 0). At each white vertex of the form

(i, j) = (0, n−3), (0, n+1), ..., (0, 2n−7) or (2, 1, ), (2, 3), ..., (2, n−5) we attach

a stalk of length n− 1, with all interior vertices of order m, within the incident

square face i < x < i + 1, j < y < j + 1; at each black vertex of the form

(i, j) = (1, n− 1), (1, n + 1), ..., (1, 2n− 7) or (3, 1, ), (3, 3), ..., (3, n− 3) we also

attach a stalk of length n − 2, with all interior vertices of order m, within the

incident square face i − 1 < x < i, j − 1 < y < j. It follows that each of the

2n − 6 square faces now has valency 2(n + 1). This annulus is represented in

Figure 3.32 (before multiplication of edges), with stars representing the stalks

of length n− 1.

*

*

*

*

*

2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n+2

2n+2

0 1 2 3 4

*

*

*

*

*

Figure 3.32: Annulus map for the odd case (before multiplication of edges).

We then multiply the boundary edges 0 < x < 1, y = 0 and 2 < x < 3, y = 0

by m0 − 2, and the boundary edges 0 < x < 1, y = 2n − 6 and 2 < x < 3, y =
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2n−6 by m1−2 and m1−1, respectively, so that the two boundary components

y = 0 and y = 2n−6 have types (m0−1,m0,m0, m0) and (m1 +1,m1,m1,m1),

with both first vertices of these sequences being white vertices. Finally we

multiply each horizontal internal edge i < x < i + 1, y = j for i = 0 or i = 2

by m − 2 or m − 3 as i + j is even or odd and we add an extra edge between

vertices (1, n− 3) and (2, n− 3), so that all internal vertices have valency m.

Finally, we will need two discs. To build the disc Da we construct a tes-

sellation Da of a closed disc D, with boundary type (m1 + 1, m1,m1,m1). We

achieve this by starting with a square, regarded as a bipartite map on D with

one face and with four vertices and four edges on δD. We multiply each pair

of opposite edges by m1 − 3, introducing 2(m1 − 4) extra faces of valency 2, so

that all four vertices have valency m1. Then we introduce, within the face of

valency 4, a stalk of length n− 1 starting at a white vertex. We will get a disc

with 2(m1 − 4) internal faces of valency 2, one face of valency 2n + 2 and with

a boundary component of type (m1 + 1, m1,m1,m1), with the first vertex of

this sequence being white (see Figure 3.33). For the other disc, Db, we use the

same tessellation but with a stalk at a black vertex, and instead of multiplying

both opposite edges by m0−3 we multiply just one of them by m0−3 (the one

that is not adjacent to the black vertex with a stalk) and the other by m0 − 4.

Then, we will get a disc with 2(m0− 4) internal faces of valency 2 and one face

of valency 2n + 2, with a boundary component of type (m0 − 1,m0,m0,m0),

with the first vertex of this sequence being also white (see Figure 3.34).

* m-2m -31

m -31

m +11
m1

m1m1

Figure 3.33: Disc a.

Using the bipartite map A, together with B, Da and Db, the proof proceeds

as in earlier cases though we have to be careful, this time, to always attach the
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m -30

m -10
m0

m0m0

*

Figure 3.34: Disc b.

boundary white vertices of valency m0 − 1 to the boundary white vertices of

valency m1 + 1.

3.9.2 Hypermaps of type (m,m, 3) with m ≥ 5

To build A we take the rectangle [0, 1]× [0, 6] ⊂ R2, tesselated by six squares.

The vertices, as in previous examples, are the integer points (i, j), coloured

black or white as i + j is even or odd, joined by edges along the sides and from

(0, j) to (1, j) for j = 1, ..., 5. Before identifying the vertical sides y = 0 and

y = 6, we multiply three of the vertical edges: x = 1, 1 ≤ y ≤ 2, 3 ≤ y ≤ 4 and

5 ≤ y ≤ 6 by m − 4. This means that in one of the sides we are multiplying

alternate edges leaving the other ones unaltered. To increase the valency of the

faces and make them of valency 6 (corresponding to hyperfaces of valency 3)

we also need to add a stalk of length 1 (in fact, just an edge and a vertex) at

each of the six vertices with x = 1, the ones on the right side of the rectangle,

in the 4-gonal face below and to the left of the vertices. Thus, we get six faces

of valency 6 and the rest of valency 2, as it can be verified with the help of

Figure 3.35. All the six internal vertices are of valency 1 and, because of that,

they do not interfere with the type of our final hypermap.

On the other hand, the boundary components x = 0 and x = 1 have types

3(6) and (m− 1)(6), respectively.

To construct T we take another rectangle, this time the rectangle [0, 2] ×
[0, 8] ⊂ R2, with opposite sides identified. The vertices are again at the integer

points (i, j), coloured black or white as i + j is even or odd. There are vertical

edges between (i, j) and (i, j + 1) for i = 0, 1, 2 and j = 0, ..., 7 with those
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m-4

m-4m-4

m-4

Figure 3.35: Annulus map for hypermaps of type (m, m, 3) with m ≥ 5.

3 (6) (m-1)(6)

Figure 3.36: Boundary components of the annulus.

between (i, 1) and (i, 2), for i = 0, 1, multiplied by m− 3. The horizontal edges

are the ones between (i, j) and (i + 1, j) for i = 0 and j even, and for i = 1

and j odd. Some of these, the ones between (1, j) and (2, j) for j = 3 and 7,

are multiplied by m− 2 and the edge between (0, 0) and (1, 0) is multiplied by

m − 3. We then remove two 6-gonal faces, the ones given by 0 < x < 1 for

0 < y < 2 and 4 < y < 6. This will leave us with boundary components of

types (m− 1)(6) and 36 respectively (see Figure 3.37).

Six of the faces of T are 6-gons and the rest are 2-gons. All the four internal

vertices are of valency m, which is important to obtain the required final type.

Finally, for the disc we need to place six vertices around the boundary of D,

alternately black and white. Three alternate boundary segments are multiplied

by m − 2 and by this process all the six vertices have valency m − 1 and the

disc has type (m − 1)(6). All the faces of this piece have valency 2 except one

of them that has valency 6 (see Figure 3.39).

We also need another disc of type 3(6). That can be achieved by multiply-

ing alternate boundary segments by 2 instead of m − 2. To obtain the final

hypermaps we just need to join the boundary components of type (m − 1)(6)
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m-2

m-2

m-3 m-3

m-3

Figure 3.37: 2-trisc map for hypermaps of type (m,m, 3) with m ≥ 5.

(m-1)(6)
3 (6)

Figure 3.38: Type of the boundary components of the 2-trisc.

m-2m-2m-2 m-2m-2m-2

m-2m-2m-2

Figure 3.39: Disc map for hypermaps of type (m,m, 3) with m ≥ 5.
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with those of type 3(6), proceeding as in earlier cases.

3.9.3 Hypermaps of type (4, 4, 3)

This case must be dealt separately because the previous annulus does not work

for such a low value for m. If m = 4, m − 4 would be 0 and that will lead us

to a nonconnected graph. However, we can use the same T and D as in the

previous section and proceed as before, in earlier proofs. The new annulus is

the following: we take a rectangle [0, 2]× [0, 6] ⊂ R2, with vertices at the integer

points (i, j), colored black or white as i + j is even or odd. The edges are along

the sides, and also from (i, j) to (i + 1, j), for i = 0, 1 and j = 0, ..., 6, so that

the rectangle is tessellated by six faces, all of valency 6 (see Figure 3.40).

Figure 3.40: Annulus map for hypermaps of type (4, 4, 3).

The side y = 0 is identified with the side y = 6 and the two boundary

components are both of type 3(6).

3
(6)

3
(6)

Figure 3.41: Boundary components of the 2-trisc.

3.9.4 Hypermaps of type (4, 4,m), odd m ≥ 5

If, by a Machi operation [41], we transpose hyperedges and hyperfaces, we will

deal with hypermaps of type (4,m, 4) instead, which will be enough to solve

51



this case.

To construct the 2-trisc we take the rectangle [0, 3]×[0, 2] ⊂ R2, with vertices

at the integer points (i, j) coloured black or white as i + j is even or odd. The

edges are around the sides and also from (1, 1) to (0, 1), (1, 0), (2, 1) and (1, 2),

and from (2, 1) to (2, 2). We then remove the square 1 < x < 2, 1 < y < 2.

Figure 3.42: 1-trisc map.

The identifications of the sides of the rectangle are slightly different from

previous cases: the side y = 0 is identified with the side y = 2 by putting

(x, 0) = (x, 2) and the side x = 0 is identified with the side x = 3 by putting

(0, y) = (3, y + 1) where we take y + 1 mod (2). Within the square 0 < x < 1,

1 < y < 2 we draw m− 5 paths of length 2 between the black vertices at (0, 2)

and (1, 1), each containing a white vertex of valency 2, creating (m− 5)/2 + 2

new faces of valency 4. Then, in one of the new faces that shares edges with the

old one, we draw two paths of length 1, each joining the black vertex at (0, 2) to

another white vertex (see example on Figure 3.43). This last step creates a new

face of valency 8, representing a hyperface of valency 4). By this process we

obtain a torus minus a disc, with boundary having black vertices of order 4 and

2, and white vertices of valencies m−1 and 3. This torus minus one disc (1-trisc)

has two 8-gonal faces and the other faces are 4-gons. Its unbranched double

covering gives us the 2-trisc, as is shown in Figure 3.5. This is equivalent to

placing a second copy of the rectangle in Figure 3.42 at [0, 3]× [2, 4] (see Figure

3.49).

To construct the annulus we consider the rectangle [0, 1]× [0, 4] ⊂ R2 with

vertices at integer points (i, j) coloured white or black as i + j is even or odd.

There are edges around the sides and also from (0, 3) to (1, 3). The edges from

(0, 2) to (0, 3) and from (1, 0) to (1, 1) are multiplied by 2. Within the square

0 < x < 1, 3 < y < 4 we draw m − 5 paths of length 2 between the black

vertices at (0, 4) and (1, 3), each containing a white vertex of valency 2. From
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4

8

4

Figure 3.43: A face of valency 8 transformed into two faces of valency 4 and

one of valency 8.

each white vertex (0, 4) (1, 3), and inside the same face, we draw two paths of

length 1 (Figure 3.47 shows an example of such an annulus for the case (4, 4, 5)).

Finally we identify the side y = 0 with the side y = 4 to form an annulus.

Both boundary components have the same type (m−1, 4, 3, 2) as the ones in the

2-trisc but with mutually inverse cyclic orders, so we need to use these annuli

in mirror-image pairs to make the identification work properly.

To construct the discD we place four vertices around the boundary ofD, two

black alternating with two white, joined by four edges around the boundary.

We then join one black vertex to the two white vertices by edges across the

interior, creating one 4-gonal face and two 2-gons. Within one of these 2-gons,

we place k = (m− 5)/2 + 1 black vertices, each joined by a pair of edges to the

white in nested fashion, creating one 2-gon and k 4-gons (see Figure 3.44 for an

example).

This will make the boundary of the disc have the same type as the boundary

components of the 2-trisc and the annulus. In the gluing process, we need to

join vertices of order m− 1, 4, 3 and 2 with vertices of order 3, 2, m− 1 and 4,

respectively, to get black vertices of order m and white vertices of order 4.

Example 3.9.2. To build infinitely many hypermaps of type (4, 4, 5) (which is

equivalent, by a Machi operation, to (4, 5, 4)) we need the 1-trisc represented

in Figure 3.45 and an annulus, as in Figure 3.47.
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Figure 3.44: Example of a disc with boundary of type (2, 4, 7, 2).

valency 8

valency 8

Figure 3.45: 1-trisc map for hypermaps of type (4, 4, 5).
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This 1-trisc map has the following properties:

a) the l.c.m. of the valencies of the interior hyperfaces is 4;

b) the l.c.m. of the valencies of the interior hypervertices is 4;

c) the l.c.m. of the valencies of the interior hyperedges is 5.

3

24

4

Figure 3.46: 1-trisc.

4

4

2

2

44

2

3

4

4

4

4 3

23

24

4

Figure 3.47: Annulus.

Because the cyclic order of the four vertices is reversed on the boundary

components we may also need to use the mirror image of this annulus when we

glue the pieces together (see Figure 3.48).
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annulus

mirror image of
the annulus

Figure 3.48: Infinitely many hypermaps of genus 2.

If we can construct a torus minus one disc, we can also get a torus minus

two discs as a 2-sheeted unbranched covering. Hence, using coverings we can

build infinitely many hypermaps of this type and with any genus.

2:1

Figure 3.49: 2-sheeted unbranched covering of the 1-trisc.

3.9.5 Hypermaps of type (3, 3,m), for odd m ≥ 5

In order to build the required hypermaps of type (3, 3, m), for odd m ≥ 5,

we will use 2-face colourable maps of type {3, 2m} and then take the duals of

these, a method previously used in Section 3.8.4 for the case (3, 3, 4). Let R

be the rectangle [0, 6]× [0, 2] ⊂ R2 with vertices at (i, j) (with i ∈ {1, 3, 5} and

j ∈ {0, 2}) and (i, 1) with i ∈ {0, 2, 4, 6}). There are horizontal edges between

all consecutive vertices with the same horizontal coordinates and also:

(i, 1)× (i− 1, j) if i ∈ {2, 4, 6} and j ∈ {0, 2}

(i, 1)× (i + 1, j) if i ∈ {0, 2, 4} and j ∈ {0, 2}
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1 2 3 4 5 60

1

2

0

Figure 3.50: 2-Trisc, for m = 5 (with no wedges).

We then identify opposite sides of the rectangle to get a torus. This will

give rise to 11 triangular faces but we remove two of them (one correspond-

ing to the triangle of vertices (0, 1), (1, 2), (5, 2) and the other to the triangle

(2, 1), (3, 2), (4, 1). The face (2, 1), (3, 0), (4, 1) is coloured red and the remaining

ones are coloured red or white in such a way that no adjacent faces have the

same colour (this operation is possible because this map is 2-face colourable, as

it is clear from Figure 3.50). Hence, there are three vertices in each boundary

component of the 2-trisc adjacent to three red faces, in one case, and three

white faces on the other2. All the vertices have valency 6. To build the right

map on the 2-trisc, we need to add a suitable amount of wedges to some faces

(see Figure 3.51 for an example), before identification.

A wedge (v0, w, v1), attached to vertices v0, v1 on a triangular face f =

(v0, v1, v2), is constructed by adding a vertex w inside the face f and then

joining w to v0 and v1, within f , and adding another edge, also within f ,

between v0 and v1 in such a way that (v0, v1, v2) is still a triangular face. Each

time we introduce a wedge to a face, we are also adding two more triangular

faces to the map. And if the original map is 2-face colourable, so it will be after

introducing as many wedges as we want.

2The colours of the faces adjacent to the boundary components are important because we

want the final map to be also 2-face colourable and this is only possible if we have no adjacent

faces of the same colour after gluing the pieces.
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Figure 3.51: 2 wedges attached to the same vertices and on the same face.

In this case, to build our 2-trisc map, we need to add (2m− 10)/4 wedges,

three times: first, between vertices (2, 1), (3, 2) inside face ((2, 1), (3, 2), (1, 2)),

then between vertices (3, 2), (4, 1) inside the face ((3, 2), (4, 1), (5, 2)), and finally

between vertices ((2, 1), (4, 1) inside the face ((2, 1), (4, 1), (3, 0). We will then

obtain two boundary components, one of type 6(3) and another one of type

(2m− 4)(3) (see Figure 3.52, an example of a 2-Trisc for m = 7).

1 2 3 4 5 60

1

2

0

Figure 3.52: 2-Trisc for m = 7.

To build the annulus we use the same rectangle [0, 6]× [0, 2] ⊂ R2 with the

vertices in the same places as before. However we do not remove any triangular

face and we attach (2m− 8)/2 wedges to each one of the following two pairs of

58



vertices:

(1, 2), (3, 2) inside face ((1, 2), (3, 2), (2, 1)),

(6, 1), (5, 2) inside face ((6, 1), (5, 2), (1, 2));

(2m− 6)/2 wedges to the following pair of vertices:

(2, 1), (4, 1) inside face ((2, 1), (4, 1), (3, 2));

and one wedge to each of the two following pairs:

(3, 0), (5, 0) inside face ((3, 0), (5, 0), (4, 1)),

(0, 1), (1, 0) inside face ((0, 1), (1, 0), (2, 1));

If we identify the vertical sides of the rectangle we get a map on an annulus

and, by the way we constructed it, that map is 2-face colourable (we use the

opposite colour scheme we have used in the 2-trisc and we use the white colour

to each wedge inside a red triangular face, and the red colour to each wedge

inside a white triangular face). It follows that one of the boundary components

has type 6(3) and is adjacent to three red faces, and the other one has type

(2m−4)(3) and is adjacent to three white faces (see Figure 3.53 for an example).

All the interior vertices have valency 2m.

1 2 3 4 5 60

1

2

0

Figure 3.53: Annulus for m = 5.

To construct the disc, we take D = {z ∈ C : |z| ≤ 2}, with vertices at ±2,

±1 + i, 0 and 2i, with edges along the boundary components and joining the

vertex at −2 to 0 and −1+ i, the vertex at 2 to 0 and 1+ i, and the vertex at 2i
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to 1 + i and −1 + i. We have then, at this stage, three triangular faces and one

face of valency 6. Inside this hexagonal face we add three more edges, between

−2 and 2, between −2 and 2i, and between 2 and 2i. Hence, this new Disc, D1,

has 7 triangular faces, is 2-face-colourable and has type 6(3) (see Figure 3.54).

Depending on the way we coloured the faces, we might have three white faces

adjacent to the boundary component or three red faces instead. If we introduce

(2m − 6)/4 wedges attached to each one of the three possible different pairs

of boundary vertices (and in each one of the three boundary faces) we will get

again a 2-face-colourable disc, D2, but this time of type (2m− 4)(3).

Figure 3.54: Disc D1 with red boundary.

To build infinitely many hypermaps of type (3, 3,m) we need to glue, a

suitable number of times, the red boundary component 6(3) of an annulus (or a

2-trisc, or a disc) with the white boundary (2m − 4)(3) of another annulus (or

a 2-trisc, or a disc).

This completes the proof of Theorem 3.3.1. ¤

3.10 Self-Duality

In Chapter 5, we will introduce the notion of duality and we will be interested,

among other topics, in self-dual regular hypermaps. Until this point, however,

we have used only hypermaps that are not regular and our constructions gave

rise to hypermaps that are not (at leat the majority) self-dual (we say that a

hypermap is self-dual if it is isomorphic to its dual, after interchanging hyper-

vertices and hyperedges). Nevertheless, in a few cases, it is possible to adjust

the construction of the pieces in order to assure that all the final hypermaps,
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after proper gluing, are self-dual. This can be achieved by using pieces that

have a symmetry axis (disregarding the colour of the vertices) that crosses

the boundary components and so that the corresponding reflection transposes

black and white vertices. This means that all the pieces correspond to self-

dual hypermaps and that the hypermap that results from the gluing process is

still self-dual because it has also a reflection that transposes black and white

vertices.

Example 3.10.1. We will now give an example of this method by constructing,

for any genus g ≥ 1, an infinite number of hypermaps of self-dual type (4, 4, 3).

First, we construct a map in the annulus with boundary components of type

3(6), six faces of valency 6 and two interior vertices of valency 2, with Walsh

map as in Figure 3.55.

symmetry axis

Figure 3.55: Annulus.

Then we construct a 2-trisc map with six faces of valency 6, four interior

vertices of order 4 and two boundary components of type 3(6), with Walsh map

as in Figure 3.56.

Finally we construct a disc with one face of valency 6, three faces of valency

2 and a boundary component also of type 3(6) (see Figure 3.57).
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Figure 3.57: Disc.
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Hence, in this particular case, we can have a slightly stronger result: given

any positive integer g > 0, there are infinitely many nonisomorphic compact

orientable self-dual hypermaps of type (4, 4, 3) and genus g. ¤

3.11 Nonorientable Surfaces

In all those cases where a boundary component of the 2-trisc or the annulus has

a symmetry which reverses the cyclic order of valencies and colors of its ver-

tices, we can generalize these constructions to nonorientable surfaces. For each

orientable hypermap of type τ and genus g ≥ 1, one can reverse the orientation

of a boundary component in one of the allowed joins, giving a nonorientable

hypermap of type τ and of the same Euler characteristic 2−2g, that is of nonori-

entable genus p = 2g. This means that we can use this method for p even but

it does not work if the joins are in linear order as in Fig. 3.4, since reversing a

boundary component still gives an orientable surface. We need to take (g − 1)

2-triscs, an arbitrary number of annuli and no discs, joined in cyclic order, to

construct an orientable surface of genus g ≥ 1 (see Figure 3.58); then reversing

one of the joins gives an nonorientable surface of the same Euler characteristic

2− 2g ≤ 0.

Figure 3.58: Pieces joined in cyclic order.

However, if we want to do it also for p odd, we need to construct a suitable

crosscap, for instance an annulus with antipodal points of one boundary iden-

tified. The gluing process is identical to the one used in the orientable case but

we need to replace one of the discs (see, for instance, Fig. 3.4) with a crosscap.
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Figure 3.59: How to construct a crosscap from an annulus.

For each nonorientable case, we will use the same annulus that was con-

structed for the respective orientable case and, after small changes (if required),

we will identify antipodal points of one of the boundary components, making

sure we are also identifying opposite pairs of vertices in such a way that the type

of the map is preserved after this procedure. In some cases, the introduction

of new vertices in the boundary components is needed and, as a consequence,

that implies also some modification in the 2-trisc and the disc.

3.11.1 Annnuli with boundary components of type

m
(4)
0 and m

(4)
1

This corresponds to the following cases:

• (m,m, n) with m ≥ 4, even ;

• (m,m, 2) with m ≥ 6;

• (5, 5, 2).

We can assume, without loss of generality, that m0 ≤ m1. Hence, we only

need to multiply, by k = m1 −m0 + 1, one of the edges between two adjacent

vertices of the boundary component of type m
(4)
0 . These two vertices will then

have valency m1 and after identification of opposites pairs we will get two

vertices of type m = m1 + m0 − 2. The other boundary component of the

annulus remains as before and, without any changes, can be glued to any of the

other pieces.

Important note: this method also works for annuli with more than 4

vertices, if the number of black (and white) vertices is even. Instead of multi-
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k

Figure 3.60: Adjustment of one the boundary components of the annulus and

identification of opposite vertices.

plying by k = m1 −m0 + 1 just one of the edges between consecutive vertices,

we multiply by k a suitable number of edges between consecutive disjoint pairs

of vertices in order to change the valency of half of the boundary vertices (leav-

ing the other half unchanged). Hence, any annulus with vertices of the same

valency in one boundary component can be easily adapted to become a crosscap

by identifying opposite points on that boundary. We will call this procedure

the standard method.

3.11.2 Annnuli with boundary components of type

(m0 − 1,m0,m0,m0) and (m1 + 1,m1,m1,m1)

This corresponds to the case:

• (m,m, n + 1) with m ≥ 5, odd n + 1 ≥ 5;

The previous method does not work here because not all the vertices on the

boundary components have the same valency. So, we need to change the annulus

used in the orientable case by taking a slightly different approach.

To construct a new map A on the annulus, we use a tessellation of R =

[0, 4]× [0, 1] with vertices of the form (i, j) with i ∈ {0, 1, 2.3, 4}, j ∈ {0, 1}. As

before, if i + j is odd, the vertex is white, otherwise it is black. The horizontal

edges are of the form (i, j)× (i + 1, j) i ∈ {0, 1, 2, 3} and j ∈ {0, 1}, and there

are no vertical edges. At this point, we have a single face of valency 8. We then

attach a stalk of length n− 3 (with all interior vertices of valency m) to vertex

(1, 0) and within the octagonal face 0 < x < 4, 0 < y < 1 (that by this process

becomes a face of valency 2n + 2).
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Before identifying the vertical sides of the rectangle, we multiply the horizon-

tal edges (0, 1)×(1, 1), by (m0−1), and (2, 1)×(3, 1), (1, 0)×(2, 0), (3, 0)×(4, 0)

by m1 − 1 (see Figure 3.61). This tessellation will give rise to an annulus with

boundary components of types (m1 + 1,m1, m1,m1) and (m1,m0,m0,m1). By

identifying the opposite sides (and vertices) of this last boundary component,

we can build the required crosscap.

*
m -10 m -21m -11

m  -11 m  -11

not an edge

Figure 3.61: Annulus map for the odd nonorientable case.

3.11.3 Annnuli with boundary components of type

3(6) and (m− 1)(6)

This corresponds to the cases:

• (m,m, 3) with m ≥ 5;

• (4, 4, 3).

Case (m, m, 3) with m ≥ 5:

Because, in the orientable case (see Section 3.9.2) we have six vertices in each

boundary component of the pieces we cannot use the same method as before

since we can only identify vertices of the same colour and here we have an odd

number of black vertices (3 black vertices) and an odd number of white vertices

(3 white vertices). However, the construction used in the orientable case can

be adapted in order to have eight vertices in the boundary components.

To build A we take the rectangle [0, 1] × [0, 8] ⊂ R2, tesselated by eight

squares. The vertices, as in previous examples, are the integer points (i, j),

coloured black or white as i + j is even or odd, joined by edges along the sides

and from (0, j) to (1, j) for j = 1, ..., 8. We then identify the vertical sides
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y = 0 and y = 8 and we multiply four of the vertical edges: x = 1, 1 ≤ y ≤ 2,

3 ≤ y ≤ 4, 5 ≤ y ≤ 6 and 7 ≤ y ≤ 8 by m − 4. This means that in one of the

sides we are multiplying alternate edges leaving the other ones unaltered. To

increase the valency of the faces and make them of valency 6 (corresponding

to hyperfaces of valency 3) we also need to add a stalk of length 1 (in fact,

just an edge and a vertex) at each of the six vertices with x = 1, those on

the right side of the rectangle, in the 4-gonal face below and to the left to the

vertex. Thus we get eight faces of valency 6 and the rest of valency 2, as can

be easily checked with the help of Figure 3.62. All the six internal vertices are

of valency 1 and because of that they do not interfere with the type of our final

hypermap. Hence, all we had to do with the annulus for the orientable case was

to introduce two more squares and respective stalks at the bottom (or at the

top) and then apply the standard method to one of the boundary components.

Because we have changed the number of vertices at both boundary components

of the annulus, we need to build a new 2-trisc for the nonorientable case.

m-4

m-4m-4

m-4

m-4

Figure 3.62: Annulus for the nonorientable case.

To construct that T , we take another rectangle [0, 2] × [0, 8] ⊂ R2, with

opposite sides identified. The vertices are again at the integer points (i, j),

coloured black or white as i + j is even or odd but, this time, we add four more
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vertices: two black vertices at (1/3, 2) and (1/3, 4). There are vertical edges

between (i, j) and (i, j + 1) for i = 0, 1, 2 and j = 0, ..., 7 with those between

(i, 1) and (i, 2), for i ∈ {0, 1}, multiplied by m − 3. The horizontal edges are

the ones between (i, j) and (i + 1, j) for i = 0 and j = 0, 3, 6, 8, and for i = 1

and j odd. We also have edges between (0, 2) and (1/3, i), (1/3, i) and (2/3, i),

(2/3, i) and (1, i), for i ∈ {2, 4}. Some of these, the ones between (1, 7) and

(2, 7), and the ones between (1/3, 2) and (2/3, 2), are multiplied by m− 2, and

(1/3, 4)× (2/3, 4) is multiplied by 2. At the same time, we have edges between

(0, 0) and (1, 0), (0, 1) and (0, 2), (1, 1) and (1, 2), (1, 3) and (1, 4), multiplied

by m− 3. We then remove two 6-gonal faces, the ones given by 1 < x < 2 for

0 < y < 2 and 4 < y < 6, keeping seven faces of valency 6 (see Figure 3.63).

Finally, for the disc, we need to place eight vertices around the boundary of

D, alternately black and white. Two alternate boundary segments are multi-

plied by m−2. Then, clockwise, we leave two segments unchanged and multiply

by m− 2 another two alternate segments. At this point, only two vertices still

do not have any multiple edges attached. We then add a new edge between

them and we multiply it by m− 3 (see Figure 3.64). All the faces of this piece

have valency 2 except two of them that have valency 6. There are no interior

vertices and the ones in the boundary have all valency m− 1.

Remark : These pieces also work in the orientable case but because they are

slightly heavier (with more vertices and faces) than the ones presented before,

we decided to leave the other constructions unchanged.
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m-2

m-3

m-3 m-3

m-3

m-2

3 (8) m-1(8)

Figure 3.63: 2-trisc for the nonorientable case.
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m-2

m-2

m-2

m-2

m-3

Figure 3.64: Disc for the nonorientable case.

Case (4, 4, 3):

We use the same 2-trisc and disc as in the previous case (Figure 3.63), here

with m = 4, but with a different annulus since the other one does not work for

low m = 4 (this new annulus, represented in Figure 3.65, is the same as in the

orientable case but with two more steps than the original ladder): we take a

rectangle [0, 2]× [0, 8] ⊂ R2, with vertices at the integer points (i, j), coloured

black or white as i + j is even or odd. The edges are along the sides, and also

from (i, j) to (i + 1, j), for i = 0, 1 and j = 0, ..., 8, so that the rectangle is

tessellated by six faces, all of valency 6.

3.11.4 Annnuli with both boundary components of type

t(2) for some positive integer t

This corresponds to the following case:

• (3, 3, 4) with both boundary components of type 5(2) (the orientable case

is described in section 3.8.4).

No adaptations are needed. We can identify opposite sides (and opposite

vertices) of one of the boundary components of the annulus without making

any changes, since we end with a vertex of order 5 + 5− 2 = 8 = 2× 4.
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Figure 3.65: Annulus for the nonorientable case.

3.11.5 Annnuli with both boundary components of type

(2, 2, 3, 3, 2, 2, 3, 3)

This corresponds to the following case:

• (3, 3, n) for even n ≥ 6;

Although we have already built an annulus with an even number of vertices

on a boundary component, it is not possible to adapt it for the nonorientable

case (and construct a crosscap) using the standard method because we cannot

identify opposite vertices of the same colour and, at the same time, join all

vertices of order 2 with vertices of order 3. The reason is that we have to have

four vertices in each half of the boundary circle (to identify opposite sides of

the boundary) and because the valency sequence must be respected, vertices

of valency 2 would be identified with vertices of valency 2, while vertices of

valency 3 would be identified with others of valency 3. This problem can be

solved by introducing four more vertices in each boundary component of the

annulus. Hence, instead of two copies of the rectangle described in Section 3.8.1,

we will take three copies of it, one for 0 ≤ x ≤ 4, another for 4 ≤ x ≤ 8 and

finally one for 8 ≤ x ≤ 12 (see Figure 3.66). This new annulus has boundary
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components for y = 0 and y = 2n− 6 with type (2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3). It

follows that we can identify opposite sides of one of the boundary components,

if the vertices are regularly distributed along the border, to get six vertices of

valency 3 in a crosscap. We need now to build a new 2-trisc.

For each even n, let Rn be a bipartite map on the rectangle [0, 4]× [0, 2n−
6] ⊂ R2. This bipartite map (see Figure 3.67) has vertices at the points:

(0, j), (1, j) for i ∈ {n− 4, ..., 2n− 6}, at (2, j), (3, j) for j ∈ {0, ..., n− 1}. The

vertices (i, j) are black or white if i+ j is even or odd, respectively. Because we

want some of them to be adjacent, we introduce some horizontal and vertical

edges in the rectangle.

Horizontal:

(i, j)× (i + 1, j) for j ∈ {0, 2n− 6} and i ∈ {0, ..., 3}

(0, j)× (1, j) for j ∈ {n + 1, ..., 2n− 7} ∪ {n− 4}

(i, 2)× (i, 3) for i ∈ {0, ..., n− 6} ∪ {n− 1}

(1, j)× (2, j) for j ∈ {n− 3, n− 2}

(3, j)× (4, j) for j ∈ {n− 3, n− 2}

Vertical:

(i, j)× (i, j + 1) for j ∈ {n− 4, ..., 2n− 7} and i ∈ {0, 1}

(i, j)× (i, j + 1) for j ∈ {0, ..., n− 1} and i ∈ {2, 3}

These edges enclose 2n− 7 faces: 2n− 11 square faces, two faces of valency 2n

and two faces of valency 12.

To obtain a bipartite map on the torus, we identify opposite sides in the

usual way: (4, y) = (0, y) for 0 ≤ y ≤ 2n − 6 and (x, 2n − 6) = (x, 0) for

0 ≤ x ≤ 4. All the vertices have valency 3, at this stage. To build a 2-trisc

T we need to remove two discs. We can do this by removing two of those

(non-adjacent) faces, in this case, the two faces of valency 12. The map on

the 2-trisc, Tn, has now 2n − 7 square faces and two 2n-gonal faces. The two

boundary components of Tn both have type (2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3).
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Figure 3.66: Annulus map and the identification of opposite vertices in one of

its boundary components.
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n-2

n-3

n-4

n-1

0

2n-6

Figure 3.67: 2-trisc with boundary components of type

(2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3).
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Finally, to construct the disc Dn, for each even n ≥ 6, we construct a tessel-

lation Dn of a closed disc D, with boundary type (2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3).

We achieve this by starting with a dodecahedron, regarded as a bipartite map

on D with one face and with 12 vertices and 12 edges on ∂D. Then, we give

numbers to those 12 vertices, starting with 1 in a black vertex and following

a clockwise direction. Edges are added between vertices 1 and 4, and between

vertices 5 and 12. This creates two faces of order 2 and one face of order 8. In-

side of this face of order 8 we place a new white vertex adjacent to black vertex

number 9 and we built a stalk of length n − 5 and with all interior vertices of

order 3. Hence, that face become of order 8 + 2 + 2(n− 5) = 2n (see figure 3.68

for n = 8).

2

2

2

2 3

2

23

3 3

3

3

Figure 3.68: Disc map with boundary component of type

(2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3) for n = 8.

3.11.6 Annuli with both boundary components of type 6(3)

This corresponds to the following case:

• (3, 3,m) for odd m ≥ 5, with both boundary components of type 6(3).

To solve this case, we will follow again the idea of building 2-face-colourable

maps of type {3, 2m}. In order to build the new 2-trisc, annulus, disc and cross-

cap, we will start with the same rectangle and tessellation (before introducing

wedges), that we have previously described in section 3.9.5, for the orientable

case.
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2-Trisc:

To build the new 2-trisc, we need to add the following wedges: (2m −
10)/4 wedges between vertices (2, 1), (3, 2) inside face ((2, 1), (3, 2), (1, 2)), then

between vertices (3, 2), (4, 1) inside the face ((3, 2), (4, 1), (5, 2)), (2m − 14)/4

wedges3 between vertices ((2, 1), (4, 1) inside the face ((2, 1), (4, 1), (3, 0), and

one wedge between vertices (4, 1), (5, 1) inside the face (4, 1), (6, 1), (5, 0). If

we remove the same two faces as in the orientable case, we will get then two

boundary components, one of type (6, 6, 8) and another one of type (2m −
4, 2m− 4, 2m− 8) (see Figure 3.69, an example of a 2-trisc for m = 7).

1 2 3 4 5 60

1

2

0

Figure 3.69: 2-Trisc for m = 7.

Annulus:

To build the annulus we use the same rectangle [0, 6]× [0, 2] ⊂ R2 with the

vertices in the same places as before. However we do not remove any triangular

face and we attach (2m− 8)/4 wedges to the pair of vertices:

(1, 2), (3, 2) inside face ((1, 2), (3, 2), (2, 1));

(2m− 10)/2 wedges to the pair of vertices:

(6, 1), (5, 2) inside face ((6, 1), (5, 2), (1, 2));

(2m− 6)/2 wedges to the pair of vertices:

(2, 1), (4, 1) inside face ((2, 1), (4, 1), (3, 2));

3We have to admit that m 6= 5 and deal with the case m = 5 later.
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one wedge to the pair of vertices:

(3, 0), (5, 0) inside face ((3, 0), (5, 0), (4, 1)),

and two wedges to the pair of vertices:

(0, 1), (1, 0) inside face ((0, 1), (1, 0), (2, 1)).

If we identify the vertical sides of the rectangle we get a map on an annulus

and, by the way we constructed it, that map is 2-face colourable (we use the

opposite colour scheme we have used in the 2-trisc and we use the white colour

to each wedge inside a red triangular face, and the red colour to each wedge

inside a white triangular face). It follows that one of the boundary components

has type 6(3) and is adjacent to three red faces, and the other one has type

(2m− 4)(3) and is adjacent to three white faces

1 2 3 4 5 60

1

2

0

Figure 3.70: Annulus for m = 7.

Crosscap on a trisc:

To build the crosscap on a trisc, we need to add the following wedges:

(2m−10)/4 wedges between vertices (2, 1), (3, 2) inside face ((2, 1), (3, 2), (1, 2)),

then between vertices (3, 2), (4, 1) inside the face ((3, 2), (4, 1), (5, 2)), (2m−6)/4

wedges between vertices ((2, 1), (4, 1) inside the face ((2, 1), (4, 1), (3, 0), and one

wedge between vertices (4, 1), (5, 1) inside the face (4, 1), (6, 1), (5, 0). Then, we

remove the same two faces as in the 2-trisc but introducing three new vertices in

the middle of the three boundary edges from the removed face (2, 1), (3, 2), (4, 1).

By this process, we get a boundary with six vertices (three old ones and three
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new). If we also add an edge between each pair of old vertices, we will get a

piece with two boundary components: one of type (6, 6, 8) and another one of

type (2m, 2, 2m, 2, 2m) (see Figure 3.71, an example of a 2-Trisc for m = 7).

Identifying opposite points (and vertices) of this last boundary component, we

get a nonorientable surface of genus 2.

1 2 3 4 5 60

1

2

0

Figure 3.71: Crosscap for m = 7.

Disc:

For the Disc, we use the same basic disc that we have described for the

orientable case (see Figure 3.54). If we introduce (2m − 2)/4 wedges attached

to each one of the three possible different pairs of boundary vertices (and in each

one of the three boundary faces) we will get again a 2-face-colourable disc, but

this time of type (2m−6)(3). Then, we add another wedge between two vertices

of the boundary component to get the final disc of type (2m−6, 2m−4, 2m−4),

as required.

If m = 5, we cannot use the 2-trisc we have previously described. Hence,

we need to build new pieces for this type (3, 3, 5)4.

2-Trisc:

To build the new 2-trisc, from the tessellation used in the orientable case

(removing the same faces and with the same identifications), we need to add

4Again, the low types seem to be the hardest ones to solve or, at least, they need to be

dealt separately.
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one wedge between vertices (1, 0), (2, 1) inside face ((1, 0), (2, 1), (3, 0)), another

between vertices (3, 0), (4, 1) inside the face ((3, 0), (4, 1), (5, 0)), and finally an

wedge between vertices ((5, 0), (6, 1) inside the face ((5, 0), (6, 1), (1, 0). We will

get then two boundary components of type (8, 8, 8) (see Figure 3.72).

1 2 3 4 5 60

1

2

0

Figure 3.72: 2-Trisc to build nonorientable hypermaps of type (3, 3, 5).

Annulus:

To build the annulus we use the same rectangle [0, 6]× [0, 2] ⊂ R2 with the

vertices in the same places as before. However we do not remove any triangular

face and we attach one wedges to each one of these pair of vertices:

(0, 1), (2, 1) inside face ((0, 1), (2, 1), (1, 2)),

(2, 1), (4, 1) inside face ((2, 1), (4, 1), (3, 2));

(4, 1), (6, 1) inside face ((4, 1), (6, 1), (5, 2)).

If we identify the vertical sides of the rectangle we get a map on an annulus

and, by the way we constructed it, that map is 2-face colourable (we use the

opposite colour scheme we have used in the 2-Trisc and we use the white colour

to each wedge inside a red triangular face, and the red colour to each wedge

inside a white triangular face. It follows that both boundary components have

type 4(3) and is adjacent to three red faces and the interior vertices have valency

10).

79



1 2 3 4 5 60

1

2

0

Figure 3.73: Annulus to build nonorientable hypermaps of type (3, 3, 5).

Crosscap on a trisc:

To build the crosscap, we need to add the following wedges: 2 wedges be-

tween vertices (2, 1), (3, 2) inside face ((2, 1), (3, 2), (1, 2)), then between ver-

tices (3, 2), (4, 1) inside the face ((3, 2), (4, 1), (5, 2)), (2m − 6)/4 wedges be-

tween vertices ((2, 1), (4, 1) inside the face ((2, 1), (4, 1), (3, 0), and one wedge

between vertices (4, 1), (5, 1) inside the face (4, 1), (6, 1), (5, 0). We will get

then two boundary components, one of type (6, 6, 8) and another one of type

(2m− 4, 2m− 4, 2m− 8) (see Figure 3.74, an example of a 2-trisc for m = 7).

1 2 3 4 5 60

1

2

0

Figure 3.74: Crosscap to build nonorientable hypermaps of type (3, 3, 5).

Disc:

For the disc, we use the same basic disc that we have described for the

orientable case (see Figure 3.54). If we introduce (2m − 2)/4 wedges attached
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to each one of the three possible different pairs of boundary vertices (and in each

one of the three boundary faces) we will get again a 2-face-colourable disc, but

this type of type (2m−6)(3). Then, we add another wedge between two vertices

of the boundary component to get the final disc of type (2m−6, 2m−4, 2m−4),

as required.

For this last case, we have built our nonorientable piece from the 2-trisc,

not from the annulus. This is not a problem for the general construction, if

we glue the pieces correctly. However, that does not allow us to construct

nonorientable hypermaps of genus 1. Hence, we need to build new pieces to

complete the construction for this case.

Annulus:

We take the same rectangle and tessellation we have previously build for the

annulus in the orientable case but we do not identify the vertical sides. First we

make a copy of it (inverting the colours of the faces) and then we glue the points

(6, y) of the first rectangle to the points (6, 2− y) of the copy. By this method,

we get a rectangle [0, 12]× [0, 2] with vertices in with vertices at (i, j) (with i ∈
{1, 3, 5, 7, 9, 11} and j ∈ {0, 2}) and (i, 1) with i ∈ {0, 2, 4, 6, 8, 10, 12}). There

are edges between all consecutive vertices with the same horizontal coordinates

and also:

(i, 1)× (i− 1, j) if i ∈ {2, 4, 6, 8, 10, 12} and j ∈ {0, 2}

(i, 1)× (i + 1, j) if i ∈ {0, 2, 4, 6, 8, 10} and j ∈ {0, 2}

.

In this new map we can find (2m− 8)/2 wedges attached to each one of the

following two pairs of vertices:

(1, 2), (3, 2) inside face ((1, 2), (3, 2), (2, 1)),

(6, 1), (5, 2) inside face ((6, 1), (5, 2), (1, 2));

(7, 0), (9, 0) inside face ((7, 0), (9, 0), (8, 1));

(11, 0), (12, 1) inside face ((11, 0), (12, 1), (10, 1));
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(2m− 6)/2 wedges to the following pair of vertices:

(2, 1), (4, 1) inside face ((2, 1), (4, 1), (3, 2));

(8, 1), (10, 1) inside face ((8, 1), (10, 1), (9, 0));

and one wedge to each of the two following pairs:

(3, 0), (5, 0) inside face ((3, 0), (5, 0), (4, 1)),

(0, 1), (1, 0) inside face ((0, 1), (1, 0), (2, 1));

(6, 1), (7, 2) inside face ((6, 1), (7, 2), (8, 1));

(9, 2), (11, 2) inside face ((9, 2), (11, 2), (10, 1));

If we now identify the points (0, y to the points (12, y), of this bigger rectan-

gle, we get an annulus with boundary components of type (6, 6, 6, 2n− 4, 2n−
4, 2n− 4), one red and another white (see Figure 3.75, an example for m = 5).

1 2 3 4 5 60

1

2

0

7 8 9 10 11 12

Figure 3.75: Annulus to construct nonorientable hypermaps of genus 1 for

m = 5.

Crosscap: If we the identify opposite vertices in one of the boundary com-

ponents of the annulus (those vertices will become vertices of valency 2m =

(2m− 4) + 6− 2), we get a crosscap.

Disc: To construct the disc, we take D = {z ∈ C : |z| ≤ √
2}, with vertices

at ±1, ±1 ± i, ±√2i, with edges along the boundary components and joining
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the vertex at −1 + i to
√

2i, 1 + i, −1− i, and −√2i; the vertex at 1 + i to
√

2i,

−√2i and 1− i, and the vertex at −√2i to −1− i and 1− i. Then, we add six

more vertices in the middle of edges (−1 + i,−1 − i), (−1 + i,
√

2i), (
√

2i, 1 +

i), (−√2i, 1 − i), (−√2i,−1 − i), (−1 − i,−1 + i) and six more edges between

the same pair of vertices, in such a way that the map on the disc would have

only triangular faces (see Figure 3.76). To achieve a suitable valency for the

vertices on the boundary, we need to add (2m−10)/4 wedges between each pair

of these vertices: −1 + i,
√

2i and 1 + i. At end of this step we will only have

triangular faces, 6 interior vertices of order 2 and a boundary component of type

(2m−4, 2m−4, 2m−4, 6, 6, 6), which can be glued to the boundary component

of the annulus with the same type (identifying the vertices of valency 6 with

vertices of valency 2m− 4.

Figure 3.76: Disc to construct nonorientable hypermaps of genus 1 (before

introducing wedges).

3.11.7 Annnuli with boundary components of type

(4,m− 1, 2, 3)

This corresponds to the case:

• (4, 4, n) with odd n ≥ 5.

No adaptations are needed. We can identify opposite sides (identifying

opposite vertices of the same colour) of one of the boundary components of the
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annulus without making any changes, since we get two vertices, each of order

4.

3.11.8 Theorem

This way, adapting the methods used for orientable surfaces, we have proven

the following result for nonorientable surfaces:

Theorem 3.11.1. Given positive integers m, n with

2m−1 + n−1 < 1

and an integer g ≥ 0, there are infinitely many nonisomorphic compact nonori-

entable hypermaps of type (m,m, n) and genus g.

3.12 Noncompact Surfaces

Theorem 3.3.1 does not make sense for noncompact surfaces because it is not

clear how one might define the genus of a noncompact surface. However, we

may want to build an infinite number of nonisomorphic noncompact hypermaps

of a given type and such that any compact hypermap that can be imbedded in

the surface has maximal genus g. The adaptation of the methods previously

explained must be carefully done because if we use an infinite number of pieces

in our constructions, we might build an infinite number of isomorphic maps. To

solve this problem, in some situations, we can use two different kinds of annuli

and somehow control the number of faces of a certain valency.

Example 3.12.1. In the case (m,m, n) for m ≥ 4 and n even and ≥ 4, we can

use a different annulus (see Figure 3.77)

This has faces of order 4 and 2. For a fixed genus (a fixed number of 2-

triscs) we can now use an infinite number of copies of this annulus and only a

finite number of copies of the old annulus that has faces of valency 2n. Hence

by increasing the number of old annuli we also increase the number of faces of

valency 2n, constructing (for the same maximal genus of an embedded compact

surface) an infinite number of nonisomorphic hypermaps. ¤

If we completely ignore the details related to the genus of a surface, Theorem

3.3.1 has an obvious extension that can be stated as follows: for each hyperbolic
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Figure 3.77: New annulus.

triple, there exist infinitely many nonisomorphic noncompact orientably regular

hypermaps of that type. This is easily proved by taking different finite numbers

of 2-triscs and infinitely many annuli, joined in line.

3.13 The Conjecture

We have not completely proved Conjecture 3.1.2 (B) because we have only

dealt with the cases where at least two of the parameter are equal. To tackle

the general problem other techniques must be developed, maybe using some

algebraic tools instead of just the topological approach that was enough to solve

the cases we have already presented. However it is not hard to give examples of

infinitely many nonisomorphic hypermaps of a given genus and of type (l, m, n),

in some specific cases where l, m and n (the parameters of the type) are all

different. We will quickly show an example of a technique that can produce

some of those hypermaps.

Example 3.13.1. One possible way to construct hypermaps of type (l,m, n)

(when all the parameters are different) is, in some cases, to use the pieces we

have built, when two of the parameters are equal, and to modify them. For

instance, if we want to build infinitely many hypermaps of type (7, 6, 8) we

can start with hypermaps of type (6, 6, 7) and make the required adaptations,

increasing the valency of the white vertices together with the valency of the

faces (in this case, both have their valency increased by 1). The most difficult

problem is to increase the valency of the white vertices of each stalk and have

also the right valency for the adjacent faces. There are basically two cases to
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consider: a) the stalk starts with a white vertex; b) the stalk starts with a black

vertex. In Figures 3.78 and 3.79 we show, without going into details, what to do

in each case, using the red colour to highlight the changes. The modifications

are slightly different in each case but they both lead to the creation of two new

faces of valency 16, inside the original face of valency 16. The 2-trisc and the

annulus, for the (6, 6, 7) case, can then be adapted to the new type by using

those modified stalks together with two more black vertices inside each one of

the faces of valency 2n + 2 = 14. The new 2-trisc and annulus are shown,

respectively, in Figure 3.80 and Figure 3.81. The bold red edges represent an

altered stalk (the red is also the color used for the new vertices). Hence, all

the faces have valency 14 + 2 = 16 and the boundary components have types

(m0,m0,m0,m0) and (m1 + 1,m1,m1 + 1,m1), with both first vertices of these

sequences being white vertices (and, of course, m0 + m1 − 2 = 6)5. The discs

must also be adapted: we introduce in each one a new black vertex inside the

face of valency 2n + 2 (which becomes by this process a face of valency 2n + 4)

adjacent to the proper white vertex such that the boundary components are also

of types (m1 + 1, m1,m1,m1) and (m0,m0, m0,m0). Then, when we carefully

glue any pair of boundary components of these types we will get four vertices

of valency m0 + m1 + 1 = m + 1.

5We have chosen the general notation m0 + m1 − 2 = 6 instead of, for instance, the more

specific m0 = 4 and m1 = 4, that would be sufficient for this example, to stress that this

technique might also be useful in other cases
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Figure 3.78: case a).
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Figure 3.79: case b).
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Figure 3.80: 2-Trisc.
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Figure 3.81: Annulus.
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Figure 3.82: Disc 1.
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Figure 3.83: Disc 2.
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Chapter 4

Duality and other operations

on maps and hypermaps

4.1 Introduction

When Steven Wilson published, in 1979, the paper Operators over Regular

Maps [61], his goal was to study operations that could transform a regular

map into another regular map. That would allow, among other things, the

construction of new regular maps from old ones. His approach was topological

and introduced the following operators (that will be described below): Duality,

Petrie, Opposite and Direct Derivatives that generate a group isomorphic to S3.

Jones and Thornton [36], by giving these operations a more algebraic structure,

were able to relate them with the outer automorphisms of a certain group. A

few years later, Lynn James extended that work to hypermaps [26].

4.2 The operations on Maps

4.2.1 The Duality operator

The general notion of duality is, as Wilson mentioned in [61], an old one that

could already be found in the Greek works on polyhedra. If M is a map on a

surface, the duality operator D will interchange vertices and face-centers of M ,

creating a new map D(M) on the same surface, whose vertices are adjacent if
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and only if the faces from which the new vertices are formed were adjacent in

M.

The duality operator interchanges vertices and face-centers but preserves

what are known as Petrie paths, a name that comes from the mathematician

J.F. Petrie, the first one to use the concept:

Definition 4.2.1. A Petrie path is a cyclic sequence of edges, each consecutive

sharing a vertex so that, at each vertex, a face is enclosed on the right and on

the left alternately.

A Petrie path is, roughly speaking, no more than a zig-zag path in the map:

Figure 4.1: One of the Petrie paths of the cube.

4.2.2 The Petrie operator

If we start with a map M, each face of P (M) will be a cycle of edges which

forms a Petrie Path in M. This means that: a) P (M) might be a map on a

different surface than M.1b) the edges of a face in M are the Petrie paths in

P (M).

It is also easy to see that I = P 2 = D2 = (PD)3 and that P and D generate

a group isomorphic to S3 [61].

4.2.3 The Opposite Operator

This operator is defined using the previous two:

opp(M) = PDP (M) = DPD(M)

1In the category of oriented hypermaps, the Petrie operator does not exist since a map on

an oriented surface might be sent to a map on a non orientable surface.
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and it is obviously an involution because (PDP )2 = (DPD)2 = I. This alge-

braic definition has also an interesting topological interpretation. If we label

each edge of M with an arrow running along it on both sides and we cut the

map along those edges and then glue it back together again so that all the

numbers match but none of the arrows do, we will get opp(M)

1

2 3

4 5

1

3 2

4 5

Figure 4.2: Opposite Operator.

This operation sends faces to faces but with all the joining reversed. It also

transposes vertices and Petrie paths.

4.2.4 Direct Derivatives

We define the direct derivatives of a map M to be the maps derivable from it

under D or P and their products.

Therefore, no map has more than six different derivatives (preserving certain

important features such as the automorphism group and the number of flags).

4.3 An algebraic approach to Operations on Maps

As we have seen before, maps have a topological definition but also an algebraic

one. It is somehow a natural path to study these map operations using some of

the tools available in Group Theory. That was what G.A. Jones and J.S. Thorn-

ton have done in their paper Operations on Maps and Outer Automorphisms

[36], published in 1982.

Instead of working with a topological map they have used the transitive

permutation representation2 π : Γ → SF of Γ = 〈r0, r1, r2|r2
0 = r2

1 = r2
2 =

(r2r0)2 = 1〉 to reconstruct the map, defining an operation in the following

way:
2where F is the set of flags.
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Definition 4.3.1. An operation on maps is any transformation of maps in-

duced by a composition-preserving permutation of Γ, that is, by a group auto-

morphism of Γ.

With this approach it was possible to confirm that there are exactly six

operations on maps but also that these are induced by the outer automorphisms

of Γ, forming a group isomorphic to S3:

Out(Γ) = Aut(Γ)/Inn(Γ) ∼= S3

4.4 Operations on Hypermaps and Outer Automor-

phisms

If we now take the group ∆ = 〈r0, r1, r2|r2
0 = r2

1 = r2
2 = 1〉 instead of Γ, we can

use the transitive permutation representation3 π : ∆ → SF of ∆ to reconstruct

any hypermap. In 1988, Lynne D. James [26] used this notion to describe the

group of all operations on hypermaps, giving an important generalization of the

previous result for maps, obtained by G.A. Jones and J.S. Thornton [36].

Again, these operations can be understood as elements of a group of outer

automorphisms (of ∆, in this case). Since

Out(∆) = Aut(∆)/Inn(∆) ∼= PGL(2,Z) [26]

we have now an infinite number of operations on hypermaps and not just half a

dozen of them like before. Therefore, if instead of working in the restricted class

of maps, we extend our study to hypermaps, we will have many more different

ways to transform hypermaps preserving, for instance, the automorphism group

and the number of (hyper)flags. Moreover, knowing that the group of operations

on hypermaps is isomorphic to PGL(2,Z), we may not only assume that its

number is infinite but also have complete information about its structure and

properties (because PGL(2,Z) is finitely generated, one can restrict attention

to finitely many operations).

Similar results [26] were obtained for the group of all operations on oriented

hypermaps (induced by outer automorphisms of ∆+):

Out(∆+) = Aut(∆+)/Inn(∆+) ∼= GL(2,Z)

3Where F is the set of (hyper)flags.
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(∆+ being the free group generated by x1 = r1r2 and x2 = r2r0).

4.5 Classification of all operations of order 2 (and

other finite orders) on hypermaps

Having in mind the results quoted in the previous section, we might ask: what

different operations of finite order can we have?

The main purpose of the next two chapters is to study the duality operation

on hypermaps that interchanges hypervertices and hyperfaces. This operation,

like chirality, has order 2. As will be shown in the following sections, having

order 2, instead of higher order, is something that helps the study of several

of its properties, namely the way we can deal with some special groups that

measure the effects of those operations on a specific hypermap. But are there

more operations of order 2 on oriented regular hypermaps besides duality and

chirality? To answer this question we need to know the elements of order 2

in GL(2,Z) up to conjugacy. That classification can be found in a paper by

Stephen Meskin [43]. The relevance of that work for our study is even greater

because Meskin not only lists the elements of order 2 but also all the elements

(up to conjugacy) of finite order and one can see the elements of GL(2,Z) as

operations on hypermaps [see previous section].

Let

p =

[
0 1

1 0

]
, t =

[
0 1

−1 0

]
, y =

[
0 1

−1 1

]

Up to conjugacy, we have the following non-identity elements of finite order

in GL(2,Z) [43]:

• three elements of order 2: p, pt, t2

• one element of order 3: y2

• one element of order 4: t

• one element of order 6: y
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Let ∆+ = 〈x1, x2|−〉, with x1 = r1r2 and x2 = r0r2 be the monodromy

group of the universal oriented hypermap. Lynne D. James [26] defined the

following homomorphism4:

Aut(∆+) → GL(2,Z)

φ 7→ M

where M = (φij)−1, i, j ∈ {1, 2}.
To obtain the four entries of the matrix M , we do φij = xφρεi

j , where

ρ : ∆+ → Z × Z is the abelianising homomorphism defined by xρεi
j = δij with

εi : Z × Z → Z the epimorphism that takes the i-th coordinate. We should

emphasize that maps here are composed from left to right, so that φρεi means

do φ first, then ρ and finally εi.

Then, if we consider, for instance, the following automorphism (that inter-

changes the generators):

φ : ∆+ → ∆+

x1 7→ x2

x2 7→ x1

we will have:

φ11 = xφρε1
1 = xρε1

2 = 0

φ12 = xφρε1
2 = xρε1

1 = 1

φ21 = xφρε2
1 = xρε2

2 = 1

φ22 = xφρε2
2 = xρε2

1 = 0

It follows that (φij) = (φij)−1 =

[
0 1

1 0

]
.

Therefore, the element p of order 2 corresponds to the operation that inter-

changes the hypervertices and hyperfaces (we will call this operation duality).

Because the extension Aut(∆+) of Inn(∆+) is not split, there is no single sub-

group of Aut(∆+) which provides representatives of the required conjugacy

4this homomorphism has kernel Inn(∆+) and induces an isomorphism Out(∆+) →
GL(2,Z), as mentioned in the previous section.
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classes of outer automorphisms. In this case, instead of p, we could have taken

another matrix p =

[
0 −1

−1 0

]
= pt of order 2 in the same conjugacy class as

p, so that the operation associated with that matrix would send x1 to x−1
2 and

x2 to x−1
1 . We will call this operation chiral duality and, in section 5.3, study its

connections with the other duality that interchanges the two generators without

inverting them.

It is not hard to verify that the matrix pt =

[
−1 0

0 1

]
corresponds to

the automorphism that sends x1 to x−1
1 and fixes x2 (partial chirality) and

that t2 =

[
−1 0

0 −1

]
is associated with the automorphism that reverses both

generators (chirality).

If we now consider the element y2 of order 3, we have:

y2 =

[
−1 1

−1 0

]

And then:

(y2)−1 =

[
0 −1

1 −1

]

To this matrix we can associate the automorphism that sends x1 to x−1
2 and

x2 to x1x
−1
2 (triality). Since

t =

[
0 1

−1 0

]
,

we have

t−1 =

[
0 −1

1 0

]
;

and this matrix is then associated with the automorphism of order 4 that sends

x1 to x−1
2 and x2 to x1 (quadrality).

There is only one remaining operation of finite order on oriented hypermaps,

corresponding to

y =

[
0 1

−1 1

]
.
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Because the free group of rank 2 has no automorphisms of order 6 [43] it is

not possible to find an automorphism of that same order 6. However, we can

find an automorphism γ of ∆+ of infinite order such that γ6 ∈ Inn∆+. Let

x3 = r0r1. Then, we take:

γ : x3 7→ x−1
1 , x1 7→ x−1

2 = x3x1

sending hyperfaces to hypervertices and hypervertices to hyperedges, reversing

the orientation in both cases. It follows that γ6 = ι−2
x2

, where ιx2 is the inner

automorphism induced by x2.

If instead of working with oriented regular hypermaps, we want to study

periodic operations on all hypermaps we must use the fact that Out(∆) ∼=
PGL(2,Z) acting as a group of operations on all hypermaps, regardless of their

orientation if it exists. These operations are induced by automorphism of ∆

which are extensions of the automorphisms of ∆+ that have been mentioned

before (see [33], for details).

4.6 The Duality Group

The aim of this section is to study what we will call the duality group of a hy-

permap. Some work has been done on chirality groups [7] and there is no reason

not to extend that notion to duality or other hypermap operations. These op-

erations, as we have mentioned before, come from outer automorphisms of ∆

and by choosing the right group ∆∗, containing ∆, we can look at duality as

a result of sending a hypermap subgroup to its conjugate in ∆∗. To build this

group we should add an element d, of order 2, transposing r0 and r2 and fixing

r1. Hence, we can define ∆∗ in the following way:

∆∗ = ∆o C2 = 〈r0, r1, r2, d : r2
i = d2 = 1, rd

0 = r2, r
d
1 = r1〉

This also means that ∆ is a normal subgroup of index 2 of ∆∗.

Therefore, each conjugacy class of subgroups H ≤ ∆ is either a ∆∗-conjugacy

class (if the hypermap H is self-dual) or paired with another ∆-conjugacy class,

containing Hd (if the hypermap H is not self-dual, which is the same as saying

that H � Hd). This last observation is a general one and it is true for every
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kind of hypermap. However, we will only deal with regular hypermaps and

these have normal subgroups as hypermap subgroups, which means that H is

conjugate only to itself in ∆.

So, if a hypermap is self-dual, the group H is invariant under that specific

outer automorphism of ∆ (conjugation in ∆∗).

Theorem 4.6.1. Let N be a normal subgroup of ∆ and let G = ∆/N . Then

the following are equivalent:

i) Nd = N

ii) N is normal in ∆∗ ¤

Because

∆∗ = 〈r0, r1, r2, d : r2
i = d2 = 1, rd

0 = r2, r
d
1 = r1〉 =

= 〈r0, r1, d : r2
0 = rd

1 = d2 = 1, rd
1 = r1〉 = 〈r1, d〉 ∗ 〈r0〉 ∼= V4 ∗ C2

∼= Γ

we can build a functor from hypermaps (H ≤ ∆) to maps (H ≤ ∆∗ ∼= Γ)

and depending on the chosen isomorphism between ∆∗ and Γ this is the Walsh

functor [53], representing a hypermap as a bipartite map or one of its duals.

Some of the key notions for chirality groups [7] can be adapted for dual-

ity. First we will do it to regular hypermaps in general and then to regular

oriented hypermaps. Although our research work on duality is mainly devoted

to orientable hypermaps, some results for nonorientable hypermaps will also be

presented, later in Chapter 6.

If H is a regular hypermap with hypermap subgroup H then H is normal in

∆. The largest normal subgroup of ∆∗ contained in H is the group H∆ = H∩Hd

and the smallest normal subgroup of ∆∗ containing H is the group H∆ = HHd.

These correspond, respectively, to the smallest self-dual hypermap that covers

H, and the largest self-dual hypermap that is covered by H.

We can now adapt, from [7], the following proposition:

Proposition 4.6.1. The groups H∆/H, H/H∆, H∆/Hd and Hd/H∆ are all

isomorphic to each other.
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Figure 4.3: H∆ and H∆.

Proof : By the third isomorphism theorem we have

H∆/H = HHd/H ∼= Hd//H ∩Hd) = Hd/H∆

and also H∆/H ∼= H/H∆. The other isomorphisms are induced by conjugation

by the generator d. Hence H∆/H ∼= H∆/Hd and H/H∆
∼= Hd/H∆. ¤

This group will be called the duality group D(H) of H and its order the

duality index d of H. The index is somehow a way to measure how far the

hypermap is from being self-dual. If the duality index is 1 then the hypermap

is self-dual and the bigger that index, the more distant the hypermap is from

being self-dual.

Proposition 4.6.2. The duality group D(H) of a regular hypermap H is iso-

morphic to a normal subgroup of the monodromy group Mon(H).

Proof :

H∆ E ∆ ⇒ H∆/H E ∆/H

Hence

D(H) E Mon(H) ¤

Then, another possible way to understand the duality group is to look at

it as the minimal subgroup D(H) E Mon(H) such that H/D(H) is a self-dual

hypermap.

If D(H) = Mon(H) or, equivalently, H∆ = ∆ we say that the hypermap is

totally dual.
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First, we will focus our study on orientably regular hypermaps. We have

extended ∆ to ∆∗ by adjoining d such that

d2 = 1, rd
0 = r2, rd

2 = r0, rd
1 = r1.

Then,

xd = r2r1 = y−1, yd = r1r0 = x−1

We will denote this kind of duality on orientably regular hypermaps by β −
duality (chiral-duality).

On the other hand, conjugation by r1d induces

x 7→ y, y 7→ x,

interchanging generators. This will be called α−duality (orientation-preserving

duality). The relationship between the two (α and β) will be dealt with later.

From now on, to simplify the writing, whenever we refer to duality we mean

α− duality, the one that preserves orientation.

From an orientable hypermap we can obtain one or two different oriented

hypermaps if the hypermap is regular or chiral, respectively. Hence let H =

(G, r0, r1, r2) and H+ = (G+, x, y), one of the oriented hypermaps associated

with H. The duality group D(H+) is the minimal normal subgroup of G+ such

that H+/D(H+) is a self-dual hypermap. It follows that D(H+) £ G+ and we

say that H is totally dual if D(H+) = G+. (Hence, a hypermap is totally dual

if its duality group is equal to its monodromy group).

Classifying all finite simple groups was a task to which several mathemati-

cians, from the 50’s until the beginning of the 80’s, have devoted their time.

Because the proof is long and complex, a program to simplify it and filling

its gaps was developed in the next decades, mainly by Gorenstein, Lyons and

Solomon (GLS). Among many other important results, that classification has

allowed us to conclude that all finite simple groups require at most two gener-

ators5[3]. Therefore, every finite simple group can be taken as a monodromy

group of a self-dual or a totally dual o.r. hypermap. If the generators of the

5In fact, two random elements of a finite simple group G generate G with probability

approaching 1 as |G| goes to infinity [37].
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Figure 4.4: Hypermap on the torus (in black) and its dual (in red).

group have distinct orders than the hypermap must be totally dual, otherwise

further investigation is needed. With few exceptions, every finite simple group

is (2, 3)-generated (generated by a pair of elements with one member of order

2 and another of order 3). Hence, by choosing the right generators of a finite

simple group, we can always - if we avoid those exceptions - build a totally dual

hypermap with that group as monodromy group.

However, not all the direct products of finite simple groups can be generated

by two elements. For instance, Wiegold [55] proved that A19
5 can be generated

by two elements but A20
5 needs always more then two (meaning that A20

5 cannot

be a monodromy group of some orientably regular hypermap).

Lemma 4.6.1. If an oriented hypermap H+ = (G+, x, y) has type (l, m, n),

with l and n coprime, then it is totally dual.

Proof: If D(H+) is the duality group of H+, then it is also the smallest

normal subgroup of G+ such that the assignment x 7→ y, y 7→ x induces an

automorphism of G+/D(H+). We obtain this by adding extra relations in

the presentation of G+, substituting x for y and y for x. Then ,we will have

xl = xn = 1 and yn = yl = 1, meaning that x = 1 and y = 1. That is, the group

G+/D(H+) collapses to identity. Hence, D(H+) = G+ and the hypermap H+

is totally dual. ¤

Example 4.6.1. The torus map of type {4, 4}1,2 in Figure 4.4 is a self-dual

oriented regular map (and also a chiral map).

Example 4.6.2. An example of a proper self-dual oriented hypermap (which

is not a map) is (Z3, 1, 1) of type (3, 3, 3) (a hypermap on the sphere, in this

case).
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Example 4.6.3. The cube map on the sphere is a totally-dual hypermap since

it has type (3, 2, 4) and gcd(3, 4) = 1.

Definition 4.6.1. A hypermap has intermediate duality index if it is not self-

dual or totally dual.

A few examples of hypermaps with intermediate duality index will be given in

section 5.1.1.
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Chapter 5

Duality on Oriented Regular

Hypermaps

In this section, every hypermap will be oriented and regular unless it is men-

tioned the contrary. Therefore, we will deal with hypermap subgroups normal

in ∆+.

5.0.1 Duality index

Theorem 5.0.2. For every k ∈ N, there is a self-dual hypermap with order k.

Proof : Let G be the cyclic group of order k generated by g. If we take

G = 〈g〉 and H = (G, g, g), the hypermap with monodromy group G, then

there is an automorphism of H that interchanges the two generators (they are

both equal to g, in this case). Hence, the hypermap is self-dual. ¤

Remark: We can get the same result using hypermaps H = (G, x, y), with

G being the finite abelian group Cab × Ca
∼= 〈x, y|xab = yab = (xy−1)a =

x−1y−1xy = 1〉 with a and b positive integers such that a2b = k. When b = 1,

Ca × Ca = 〈x, y|xa = ya = (xy−1)a = x−1y−1xy = 1〉 is the monodromy group

of a self-dual hypermap of order a2 and every pair of generators will give rise

to the same hypermap.

This last theorem also means that for every k ∈ N there is a hypermap

H = (G, a, b) such that |G|
d = k, with d being the duality index of H. We just

have to take G as the cyclic group of order k and the respective hypermap
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as in the previous proof. Because (G, g, g) is self-dual, d = 1 and we have
|G|
d = |G| = k.

We will call |G|d the duality coindex of a hypermap of monodromy group G.

Can we do the same using only hypermaps that are not self-dual, for which

d 6= 1? The proof we provide bellow will give the reader not only an affirmative

answer but also the presentation of the monodromy groups of those hypermaps.

Theorem 5.0.3. If k ∈ N, there is a non self-dual hypermap H = (G, a, b) with

duality coindex k.

Proof :

Given k ≥ 3, we can choose, by Dirichlet’s Theorem, a prime q ≡ 1 mod (k).

Let G = 〈g, h|hq = 1, gk = 1, hg = hu〉 ∼= Cq o Ck, where u ∈ Zq has

multiplicative order k, Cq = 〈h〉 and Ck = 〈g〉.
Then, if h = ab and g = a, we have:

G = 〈a, b|(ab)2 = ak = 1, (ab)a = (ab)u〉

The duality group of this hypermap is the smallest normal subgroup N of

G such that the assignment a 7→ b, b 7→ a induces an automorphism of G/N .

We obtain this quotient by adding extra relations, substituting a for b and b for

a in the original ones.1 In this case, we just have to add these relations: bk = 1

and (ba)b = (ba)u.

Hence:

G/N = 〈(ab)2 = ak = bk = 1, (ab)a = (ab)u, (ba)b = (ba)u〉

But (ab)a = ba, so ba = (ab)u, ab = (ba)u. It follows that ab = (ab)u2
or,

equivalently, (ab)u2−1 = 1.

Because k ≥ 3, we have u 6= ±1 mod q ⇒ u2− 1 6= 0 mod q ⇒ (u2− 1, q) =

1. So,

(ab)q = (ab)u2−1 = 1 ⇒ ab = 1 ⇒ b = a−1.

1This method will be used several times in the next sections and the group N in similar

contexts will always mean the smallest normal subgroup N of the monodromy group G such

that the interchange of generators induces an automorphism of G/N .

105



Thus G/N = 〈a|ak = 1〉 ∼= Ck. Therefore |G/N | = k and, since G is not

cyclic, the hypermap H = (G, a, b) is not self-dual.

If k = 2 we take G = 〈x, y|x6 = 1, x4 = y〉 (see Section 5.1). This works

here because |G| = 6 and d = 3.

For k = 1, all we have to do is to choose any totally dual hypermap. ¤

Now, another question can be asked: for each d ∈ N, is it possible to find at

least one hypermap with that duality index? And can we make some restrictions

in the available hypermaps we are allowed to choose?

Theorem 5.0.4. For every d ∈ N, there is a hypermap with duality index equal

to d.

Proof : Let G be the cyclic group of order d generated by g. If we take

G = 〈g〉 and H = (G, g, 1), the hypermap with monodromy group G, then its

duality group must be equal to G, which means that the hypermap is totally

dual and its duality index is |G| = d. ¤

Remark: Obviously, H = (G, 1, g) also works here. Hence, for any duality

index, we can always find, not just one, but two totally dual hypermaps with

that index (which is not surprising since these two hypermaps are duals of each

other).

It follows that we can get any duality index using hypermaps that are totally

dual. Can we achieve the same result only with hypermaps that are not totally

dual? Before we answer that question, we need to introduce some results and

definitions about direct products of hypermaps.

5.0.2 Direct Products and Duality groups

If H and K are orientably regular hypermaps with hypermaps subgroups H,

K ≤ ∆+ then:

Definition 5.0.2. The least common cover H ∨ K and the greatest common

quotient H∧K are the orientably regular hypermaps with hypermap subgroups

H ∩K and 〈H, K〉 = HK respectively.

106



If H = (D1, R1, L1) and K = (D2, R2, L2) let D = D1×D2 and the permuta-

tions R and L be the ones that act on D induced by the actions ρ 7→ Ri, λ 7→ Li

of ∆+ on D1 and D2. If this action is transitive on D, we call H×K = (D, R, L),

the oriented direct product of H and K with hypermap subgroup H ∩K.

Lemma 5.0.2. If H and K are orientably regular hypermaps, then the following

conditions are equivalent [7]:

i) ∆+ acts transitively on D;

ii) H ∧K is the orientable hypermap, with one dart;

iii) HK = ∆+.

If these conditions are satisfied we say that H and K are orientably orthogo-

nal and we use the notation H ⊥ K. Then, H×K is well defined and isomorphic

to H ∨K with monodromy group Mon(H×K) = Mon(H)×Mon(K).

Having in mind that H is totally dual if and only if HHd = ∆+ we have,

as an important example, the following result:

Lemma 5.0.3. H is totally dual ⇔ H ⊥ Hd. ¤

Once again we can adapt one of the theorems for chirality groups [7], writing

it in this new context of duality:

Theorem 5.0.5. Let H and K be orientable regular hypermaps, with hypermap

subgroups H and K, such that K is totally dual and covers H. Then the product

L = K×Hd is an orientably regular hypermap with duality group D(L) ∼= H/K.

Proof: We are assuming that K is totally dual, so KKd = ∆+. But K ≤ H

which means that KHd ≥ KKd = ∆+. Hence KHd = ∆+. By the previous

lemma, K ⊥ Hd. Therefore, L = K × Hd exists and is a orientably regular

hypermap with hypermap subgroup L = K ∩ Hd. We know by Proposition

4.6.1 that

D(L) ∼= Ld/L∆+ .

But

L∆+ = K ∩ Ld.

Hence

D(L) ∼= Ld/(K ∩ Ld).
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By the third isomorphism theorem, Ld/(K∩Ld) ∼= KLd/K. Because KLd = H

we have

D(L) ∼= H/K.

¤

Obviously, the monodromy group (∆+/H) of a totally dual o.r. hypermap

is equal to its own duality group (since HHd = ∆+).

It follows that for every n ≥ 1 there is an orientably regular hypermap

with duality group Cn (the monodromy group of the totally dual hypermap

H = (Cn, g, 1) with Cn = 〈g〉). The same can be said, for instance, for PSL(2, q)

(q ≥ 4), An (n ≥ 5) and the generalized quaternion group (for n odd).

We can construct several other examples by choosing groups G1 and G2 such

that G1 ⊥ G2 and both being monodromy groups of totally dual hypermaps.

All the hypermaps obtained in the previous examples are totally dual. How-

ever, Theorem 5.0.5 can also be useful to achieve some results about hypermaps

that do not have that property and answer the question that we have raised at

the end of the previous section.

Theorem 5.0.6. For every n ∈ N there is a non totally dual hypermap with

duality index n.

Proof : Let K be a normal subgroup of ∆+ such that ∆+/K = C2n. Then

K = (C2n, g, 1), with C2n = 〈g〉, is orientably regular and totally dual. If we

take H such that K ≤ H and |H : K| = n then |∆+ : H| = 2, which means

that H E ∆+ and H is orientably regular.

Hence, the hypermap L = K ×Hd is orientably regular and

|Mon(L)| = |Mon(K)| · |Mon(Hd)| = 2n× 2 = 4n

Then, by Theorem 5.0.5

D(L) = H/K

and |H : K| = n

L is not totally dual because |MonL| = 4n > n. ¤
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A group is called strongly self dual if for all its generating pairs there is

an automorphism of G interchanging them. A good example of one of these

groups is the quaternion group Q = 〈x4 = y2, x8 = 1, y−1xy = x−1〉. In the

next section, we will use a generalization of this quaternion group to find infinite

families of non totally dual hypermaps.

5.0.3 Generalized Quaternion Groups

Definition 5.0.3. If w = eiπn ∈ C, the matrices:

x =

(
w 0

0 w

)
, y =

(
0 1

−1 0

)

generate a subgroup Q2n of order 4n in GL(2,C) with presentation [28]:

〈x, y|xn = y2, x2n = 1, y−1xy = x−1〉

which is called the generalized quaternion group.

As we have proved in Theorem 5.0.6, we can have a non totally dual hyper-

map of any duality index. However, that proof does not give us the presentation

of the monodromy groups of any of those hypermaps. Explicit examples can be

obtained using the generalized quaternion groups.

Theorem 5.0.7. If d is odd there is a hypermap that is not totally dual and

with duality index equal to d.

Proof : Let n = 2 + 4k, k = 0, 1, 2, ... . If we take G to be the generalized

quaternion group of order 4n then |G| = 8 + 16k and has presentation:

G = 〈x, y|x2+4k = y2, x4+8k = 1, y−1xy = x−1〉.

If we take N to be the smallest normal subgroup of G such that the assign-

ment that interchanges the two generators induces an automorphism then G/N

(which is obtain from G adding new relations) is the quaternion group and has

order 8. But

|N | =
|G|
|G/N |

Hence

|N | =
8 + 16k

8
= 2k + 1 , k = 0, 1, ...

109



From this we can conclude that for d odd there is a hypermap with mon-

odromy group G that is not totally dual (since |G/N | = 8 6= 1) and with duality

index equal to d = 2k + 1. ¤

Corollary 5.0.1. Every cyclic group of odd order can be a duality group of a

non totally dual hypermap.

Proof : In the previous proof, N = 〈x4〉 ∼= C1+2k. ¤

In the proof of the Theorem 5.0.7, G/N is the quaternion group and any

hypermap which has that group as monodromy group is self-dual. But all gener-

ating pairs are equivalent under automorphisms of the quaternion group. Then,

there is only one (self-dual) hypermap, up to isomorphism, with monodromy

group being the quaternion group.

Theorem 5.0.8. If d ≡ 0 (mod 4) it is possible to find a hypermap that is not

totally dual and with duality index equal to d.

Proof : Let n = 4k, k = 1, 2, ... If we take G to be the generalized quaternion

group of order 4n then |G| = 16k and has presentation:

G = 〈x, y|x4k = y2, x8k = 1, y−1xy = x−1〉

If we take N to be the smallest normal subgroup of G such that the assignment

that interchanges the two generators induces an automorphism then

G/N = 〈x, y|x4k = y2, x8k = 1, y−1xy = x−1, y4k = x2, y8k = 1, x−1yx = y−1〉

Using the third and sixth relations, we have

(y−1xy)yx = x−1(xy−1) = y−1.

Therefore, applying the first relation y2 = x4k, we have:

y−1xx4kx = y−1 ⇒ x4k+2 = 1.

Then, using the second relation: x4k+2 = x8k ⇒ x4k−2 = 1. Hence,

x4k+2 = x4k−2 = 1 ⇒ x4 = 1.

From the first relation x4k = y2 we can now conclude that y2 = 1 and, from

the fourth one, that x2 = 1. Therefore, the presentation of the group G reduces
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to 〈x, y|x2 = y2 = (xy)2 = 1〉, which defines a Klein 4-group. We have proved,

this way, that G/N has order 4.

But

|N | =
|G|
|G/N | .

Hence

|N | =
16k

4
= 4k , k = 1, 2, ...

This means that, for d ≡ 0 (mod 4), there is a hypermap with monodromy

group G that is not totally dual (since |G/N | = 4 6= 1) and with duality index

equal to d = 4k. ¤

Corollary 5.0.2. Every cyclic group of order multiple of 4 can be a duality

group of a non totally dual hypermap.

Proof : In the previous proof, N = 〈x2〉 ∼= C4k. ¤

Theorem 5.0.9. Let n be odd. Then, the generalized quaternion group

G = 〈x, y|xn = y2, x2n = 1, y−1xy = x−1〉

of order 4n is the monodromy group of a totally dual hypermap.

Proof : If we take N to be the smallest normal subgroup of G such that

the assignment that interchanges the two generators induces an automorphism

then

G/N = 〈x, y|xn = y2, x2n = 1, y−1xy = x−1, yn = x2, y2n = 1, x−1yx = y−1〉.

Hence, we have x−1yx = y−1 (last relation) but also x−1 = y−1xy (third rela-

tion). Therefore:

y−1xyyx = y−1 ⇒ y−1xy2x = y−1.

Using the first relation in this last equality we have:

y−1xxnx = y−1 ⇒ xn+2 = 1.

Let k be the order of x. Then, since k|(n+2) and n is odd, k must also be odd.

But from the second relation we also know that x2n = 1 and, consequently,

k|2n. Therefore, k|n. If odd k divides n and n + 2, then k = 1 (and we have

x = 1). Because yn = y2 and y2 = xn, we have yn = y2 = 1. Since n is odd,

y = 1. Hence, |G/N | = 1, which means that the hypermap is totally dual. ¤
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Corollary 5.0.3. There are infinitely many totally dual hypermaps with gen-

eralized quaternion group as monodromy group. ¤

Every hypermap having the generalized quaternion group (with the presen-

tation given in our definition) as monodromy group has chirality index equal to

1. This can easily be checked because if we want to obtain a reflexible hypermap

as a quotient of the original one, we just have to add the following relations to

the ones that we already have for the generalized quaternion group: x−n = y−2,

x−2n = 1 and yx−1y−1 = x. However, these relations do not change the pre-

sentation of the group. Hence, all the theorems above (where the generalized

quaternion group appears in the proof) are, in fact, about reflexible hypermaps.

5.0.4 The symmetric and the alternating groups

In this section we will study some properties concerning duality and hypermaps

with symmetric or alternating group as monodromy group.

Lemma 5.0.4. For every n ∈ N:

a) there is a non-self-dual hypermap with monodromy group Sn.

b) there is a non-self-dual hypermap with monodromy group An.

Proof: a) If n > 2, we take x = (12 ... n) and y = (12). These permu-

tations generate the group Sn [2] but, because they have different orders, there

is no automorphism that interchanges those two generators. It follows that the

hypermap H = (Sn, x, y) is not self-dual.

If n = 2 we use the proof of Theorem 5.0.4 with S2
∼= C2.

b) For n > 3, we just need to apply that same idea but using the permuta-

tions x = (12...n) and y = (123), if n is odd and greater than 3, or x = (23..n)

and y = (123) if n is even. Then x and y generate An.

To prove this, we should notice, first, that any permutation of the alternating

group An can be written as a product of 3-cycles. In [47, p. 98] it is proved, by

induction, that An can be generated by just some of those 3-cycles:

{(123), ..., (12i), ...(12n)}

.
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If n is odd greater that 3, let x = (12...n) and y = (123). Then, for t such

that 3 ≤ t < n:

y−1x(12t)x−1y = (123)−1(12...n)(12t)(12....n)−1(123) = (12t + 1)

If n is even, let x = (23...n) and y = (123). Then, for t such that 3 ≤ t < n:

yx(12t)−1x−1y−1 = (123)(23...n)(12t)−1(12...n)−1(123)−1 =

= (12t + 1)

Hence, x and y generate An. Because they do not have the same order, the

hypermap is not self-dual.

If n = 3 we use the proof of Theorem 5.0.4 with An = A3
∼= C3. ¤

Example 5.0.4. If G = 〈x = (12345), y = (123)〉 = A5, what is the duality

index of the hypermap (G, x, y)? Because A5 is simple and the hypermap is not

self-dual, the duality group (which is normal in A5) must be A5 itself. Hence,

the duality index of the hypermap is |A5| = 5!/2

More generally, if we take (An, (12...n), (123)), if n is odd, or (An, (23...n), (123)),

if n is even, we get totally dual hypermaps with monodromy group An. Hence:

Theorem 5.0.10. If n ≥ 5 there is a totally dual hypermap with monodromy

group An.

Remark: If we take any simple group generated by two elements of different

order, we can get a similar result. For instance, PSL(2, q) for q > 3.

How can we find the duality group of a hypermap with monodromy group

G? A naive algorithm would be:

• find all normal subgroups Nα of G.

• starting with the Nα of lower order, check if the hypermap with mon-

odromy group G/Nα is self-dual

• Stop when finding one of these hypermaps
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If G = Sn the only possible duality groups are 1, An and Sn. Therefore,

a hypermap with monodromy group Sn is self-dual, totally dual or has n!/2

as duality index. For n 6= 6, all automorphisms of Sn are inner and act by

conjugation. It is then easy to check if there is an automorphism that transposes

the two generators, knowing if the hypermap is self-dual or not. If the answer

is affirmative then D(H) = 1. Otherwise, D(H) = An or Sn and we need to see

if the hypermap with monodromy group Sn/An, of order 2, is self-dual or not.

Theorem 5.0.11. Every hypermap H = (Sn, x, y):

i) is totally-dual if x or y is an even permutation;

ii) is self-dual or has duality index n!/2 if x and y are both odd permutations

and n 6= 4.

iii) is self dual or has duality index 4 if x and y are both odd permutations

and n = 4.

Proof : i) The only non-identity quotients Sn/N of Sn are Sn/An
∼= C2

and S4/V4
∼= S3, when n = 4. In each case, because one of xN and yN is in

the unique subgroup of index 2 of Sn/N and the other is not, there can be no

automorphism of Sn/N transposing xN and yN . So, the only self-dual quotient

is the trivial one and the hypermap is totally dual.

ii) Sn is not cyclic and, by definition 〈x, y〉 = Sn. Hence, x 6= y. Suppose

H is not self-dual. Because H/An = (Sn/An, xAn, yAn) and |Sn/An| = 2, the

two generators xAn and yAn must be the same. It follows that the hypermap

H/An is self-dual and |D(H)| = n!/2.

iii) Let x and y be two odd permutations generating S4 and N the Klein

group V4 (a normal subgroup in S4). That pair of generators may be formed by

a transposition and a 4-cycle or by two 4-cycles. Say x is a transposition and y

is a 4-cycle. Then, they map to distinct permutations in S4/N ∼= S3. Because

the third element in S3 conjugates each to the other, the quotient hypermap is

self-dual (whereas the hypermap itself is not), with duality group V4. If x and

y are both 4-cycles the hypermap is self-dual. ¤
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5.1 Counting Self-Dual and Totally Dual Regular

Oriented Hypermaps

If H is a totally dual orientably regular hypermap with hypermap subgroup H,

then HHd = ∆+. Hence, H ⊥ Hd and L = H×Hd exists and is an orientably

regular hypermap with hypermap subgroup L = H ∩Hd. This means that L
is self-dual. Moreover,

|Mon(L)| = |∆+/(H ∩Hd)| = |∆+/H||H/H ∩Hd| = |D(H)|2 = |Mon(H)|2

Therefore, from any totally dual hypermap H we can build, this way, a self-dual

hypermap (with monodromy group of order equal to |D(H)|2).

If we take γ to be a mapping from the set of totally dual hypermaps to

the set of self-dual hypermaps, sending H to H × Hd, then γ is well defined.

However, it might not be injective (see Figure 5.1).

H H
d

H H = H1 1 H
d

H H

+

d

1 1 22

11 2 2

d

Figure 5.1: γ might not be injective.

Nevertheless, if we restrict γ to the set of hypermaps whose monodromy

group is a non abelian simple group, different totally dual hypermaps will be

sent to different self-dual hypermaps.

Example 5.1.1. If Hn = (An, (123), (12...n)), for n ≥ 5, then the hypermap

is totally dual and, because An is simple and non abelian, different Hn will be

sent to different self-dual hypermaps by γ.

Theorem 5.1.1. If G has k generating pairs, is not cyclic and is the mon-

odromy group of an orientably regular hypermap H, then there are no more

than k/2 self-dual hypermaps with G as monodromy group.
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Proof : If the hypermap H = (G, a, b) is self-dual, there must be an auto-

morphism φ of G such that φ(a) = b and φ(b) = a. This is the same that

assuming that (a, b) and (b, a) belong to the same Aut(G)-class of generating

pairs. The number of these orbits correspond to the number of orientably reg-

ular hypermaps. Because G is not cyclic, b 6= a. Hence, the result follows.

¤

This allows us to build an upper bond for the number of self-dual hypermaps,

with a particular (non-cyclic) monodromy group G, by calculating the number

of generating pairs.

If G = Cp with p prime then there are p2 − 1 generating pairs of G and

Aut(Cp) = Cp−1. Therefore, there are p2−1
p−1 = p + 1 Aut(Cp)-classes of gener-

ating pairs and each one of these corresponds to a different orientably regular

hypermap. Representatives of the Aut(Cp)-classes are:

gi = (1, i) for i = 0, 1, ..., p− 1 and

gp = (0, 1)

It follows that there are 2 self-dual hypermaps, corresponding to the pairs (1, 1)

and (1, p−1), and p−1 totally dual hypermaps corresponding to the other pairs.

5.1.1 Hypermaps with monodromy group of small order

Order O.r. hypermaps Totally Dual Self Dual Intermediate index

2 3 2 1 0

3 4 2 2 0

4 7 4 3 0

5 6 4 2 0

6 15 6 3 6

7 8 6 2 0

Table 5.1: Oriented regular hypermaps with monodromy groups of small order

In this section, we classify all hypermaps of small order, in terms of their

duality. The results are summarized in Table 5.1. All the groups of prime order
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p are isomorphic to Cp and it is then easy to fill the rows of that table (see

previous section for details). For other groups, we have to be more careful and

study each one of them separately.

We should also notice that the number of totally dual hypermaps with a

specific monodromy group is always even because if H is totally dual, so is its

dual Hd. It follows that the third column of Table 5.1 can only contain even

numbers.

Order 4: C4 and V = C2 × C2

I C4

Number of generating pairs: 12

1. (0, 1) 7. (0, 3)

2. (1, 0) 8. (3, 0)

3. (1, 1) 9. (3, 3)

4. (1, 2) 10. (3, 2)

5. (2, 1) 11. (2, 3)

6. (1, 3) 12 (3, 1)

For each one of this pairs we can associate a o.r. hypermap with monodromy

group C4. But

H1 = (C4, 0, 1) ∼= H7 = (C4, 0, 3)

and also

H2
∼= H8

H3
∼= H9

H4
∼= H10

H5
∼= H11

H6
∼= H12

Since AutC4
∼= C2, these are the only isomorphisms between H1,..., H12.

Hence, there are six non-isomorphic o.r. hypermaps with monodromy group

C4.
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H1 and H2 are totally dual.

H3 and H6 are self-dual.

What about H4 and H5? They are clearly not self-dual but are they totally

dual or have they intermediate duality index?

The only non trivial normal subgroup of C4 is the group 〈2〉. Therefore,

if those hypermaps are not totally dual they must have 〈2〉 as duality group.

However,

H4/〈2〉 = (C4/〈2〉, 1 + 〈2〉, 2 + 〈2〉) = (C4/〈2〉, 1 + 〈2〉, 〈2〉)

is not self-dual. Hence, H4 is totally dual.

The same argument apply to H5 since

H5/〈2〉 = (C5/〈2〉, 2 + 〈2〉, 1 + 〈2〉) = (C5/〈2〉, 〈2〉, 1 + 〈2〉)

Therefore, H5 is also totally dual. We can then conclude that there are four

totally dual o.r. hypermaps and two self-dual o.r. hypermaps with monodromy

group C4.

I V4 = C2 × C2

The Klein four-group has six different generating pairs and, since the group

of automorphisms of V is S3 (of order 6), there is only one (self-dual) hypermap

with monodromy group V4.

Order 6: C6 and S3

I C6

C6 = {0, 1, 2, 3, 4, 5} = 〈1〉 = 〈5〉

C6 has two proper subgroups: 〈2〉 = 〈4〉 and 〈3〉, both normal since C6 is

abelian.

Number of generating pairs: 24
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1. (1, 0) 13. (5, 0)

2. (1, 1) 14. (5, 5)

3. (1, 2) 15. (5, 4)

4. (1, 3) 16. (5, 3)

5. (1, 4) 17. (5, 2)

6. (1, 5) 18. (5, 1)

7. (0, 1) 19. (0, 5)

8. (2, 1) 20. (4, 5)

9. (3, 1) 21. (3, 5)

10. (4, 1) 22. (2, 5)

11. (2, 3) 23. (4, 3)

12. (3, 2) 24. (3, 4)

Number of automorphisms of C6: 2

Hence, there are 12 different o.r. regular hypermaps with monodromy group

C6 (with Hi
∼= H12+i for i ∈ {1, .., 12}). The only two self-dual hypermaps are

H2 and H6. On the other hand, H1 is clearly totally dual.

When C6 is generated by the pair (1, 2) it has presentation:

C6 = 〈x, y|x6 = 1, x2 = y〉.

Hence, considering N as the duality group,

|C6/N | = |〈x, y|x6 = 1, x2 = y, y6 = 1, y2 = x〉| = 3.

Therefore, H3 has duality index 2.

If we take C6 generated by the pair (1, 4), we can write:

C6 = 〈x, y|x6 = 1, x4 = y〉.

Hence, considering N as the duality group,

|C6/N | = |〈x, y|x6 = 1, x4 = y, y6 = 1, y4 = x〉| = 3.

Then, H5 has also duality index 2.

We can then conclude, without any further investigation, that the dual

hypermaps of these (H8 and H10) have the same duality index (equal to 2).
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On the other hand, when C6 is generated by the pair (1, 3) it has presenta-

tion:

C6 = 〈x, y|x6 = 1, x3 = y〉.

Therefore, considering N as the duality group,

|C6/N | = |〈x, y|x6 = 1, x3 = y, y6 = 1, y3 = x〉| = 2.

It follows that H4 and its dual, H9, have both duality index 3.

H11 = (C6, 2, 3)

H11 is clearly not self-dual. Hence, if it is not totally dual, the only pos-

sibilities for duality group are 〈2〉 or 〈3〉. However, in the first case, we would

have:

(C6/〈2〉, 2 + 〈2〉, 3 + 〈2〉) = (C6/〈2〉, 〈2〉, 3 + 〈2〉)

which is not a self-dual hypermap because the orders of the generators are

different. The same argument can be used in the second case:

(C6/〈2〉, 2 + 〈3〉, 3 + 〈3〉) = (C6/〈2〉, 2 + 〈3〉, 〈3〉).

Therefore, H11 and its dual H12 are totally dual.

We have then:

• two self-dual hypermaps (H2 and H6)

• three totally-dual hypermaps (H1, H11 and H12)

• four hypermaps with duality index 2 (H3, H8, H5 and H10)

• two hypermaps with duality index 3 (H4 and H9)

with monodromy group C6

I S3

S3 = {(1), (12), (13), (23), (123), (132)} has six elements and is not cyclic

(and nonabelian). It has four proper subgroups, three of order 2 (〈(12)〉, 〈(13)〉,
〈(23)〉) and one of order 3 (the one generated by (123)). Only this last subgroup
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is normal in S3, which means that 〈(123)〉 is the only possible choice for duality

group of a hypermap neither self-dual or totally dual.

The automorphism group of S3 is isomorphic to S3.

Number of generating pairs: 18

1. ((12), (23)) 10. ((23), (123))

2. ((13), (12)) 11. ((13), (123))

3. ((12), (13)) 12. ((13), (132))

4. (((23), (12)) 13. ((123), (12))

5. ((13), (23)) 14. ((132), (12))

6. ((12), (13)) 15. ((132), (23))

7. ((12), (123)) 16. ((123), (23))

8. ((12), (132)) 17. ((123), (13))

9. ((23), (132)) 18. ((133), (13))

But

H1
∼= H2

∼= H3
∼= H4

∼= H5
∼= H6

H7
∼= H8

∼= H9
∼= H10

∼= H11
∼= H12

H13
∼= H14

∼= H15
∼= H16

∼= H17
∼= H18

Again, Aut(S3) ∼= S3, of order 6, so these are the only isomorphisms. Hence,

there are three non-isomorphic o.r. hypermaps with monodromy group S3.

A presentation for S3, using the first pair of generators, is:

〈x, y|x2 = y2 = 1, xyx = yxy〉

meaning that H1 is self-dual. Because H7 is not self-dual (the generators have

different orders) it must be totally dual (Theorem 5.0.11). The same applies

to the remaining distinct hypermap. Therefore, there are one self-dual and two

totally dual o.r. hypermaps with monodromy group S3.

Looking at Table 5.1, we can now conclude that the smallest order of a

monodromy group for which we can find an orientably regular hypermap with
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intermediate index is 6. For order 8 we can also find hypermaps with interme-

diate index. We just have to take D8 as a monodromy group and choose the

right generators in order to have a hypermap of duality index 2, as we will show

in the proof of Theorem 5.2.1.

5.2 Duality and maps

In this section we will focus our attention on maps, which is the same as saying

that each time we have M = (G, x, y), we will also have (xy)2 = 1.

Some observations about maps and duality:

1) If G is a finite abelian group: o(xy) divides l.c.m.(o(x), o(y)) and, as a

consequence, at least one of the generators must be even. Therefore, there is no

self-dual map of type {k, k} for odd k ∈ N if the monodromy group is a finite

abelian group.

2) In [5], it is proved that every nontrivial element in PSL(2, q), q 6= 9,

q > 3, is a member of a generating pair with one of the members having order

2. Hence, every PSL(2, q) group is a monodromy group of an orientably regular

map. Because, PSL(2, q) is simple for q > 3, these hypermaps are self-dual or

totally dual.

In the previous section we have proved that for any duality index there is a

non totally dual hypermap of that index. In fact, that result can be stronger if

we substitute the word hypermap for map, restricting our possible choices2.

Theorem 5.2.1. For every d ∈ N there is a (non totally dual) map with duality

index equal to d.

Proof : Let

D2m = 〈x, y|xm = y2 = (xy)2 = 1〉
2Although this is, in a sense, a stronger result, the theorems we have proved using extended

quaternion groups give us proper hypermaps, since (xy)2 6= 1, which is also an important

restriction.

122



be the dihedral group of order 2m. If we takeM = (D4d, x, y), then, considering

N as before, we will have: D4d/N ∼= D4. Therefore,

|N | =
4d

4
= d. ¤

5.3 Chiral Duality

The automorphism δ : ri 7→ r2−i of ∆, corresponding to duality of hypermaps,

restricts to an automorphism of ∆+ that interchanges and invert the two gener-

ators ρ = r1r2 and λ = r2r0. This corresponds to the mirror image of the dual.

As a consequence of that, oriented hypermaps have two duality operations to

consider, one of them reversing the orientation. We have then two types of

duality induced by the following automorphisms of ∆+:

α : x 7→ y; y 7→ x,

β : x 7→ y−1; y 7→ x−1.

Since the automorphisms of ∆+ which induce them are conjugate in Aut(∆+),

both dualities have the same general properties. Nevertheless, their effect on a

specific hypermap might be distinct.

To make this observation clear to the reader, we will give some example of

hypermaps such that:

a) |Dα(H)| 6= |Dβ(H)|

b) Dα(H) ∼= Dβ(H)

Examples

a) We can take H = (G, x, y) with

G = 〈x, y|x4 = y4 = 1, xy = y2x2〉.

|G| = 20 (using GAP [23])

G/Nα = 〈x, y|x4 = y4 = 1, xy = y2x2, yx = x2y2〉.
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Using the two last relations, we have:

xyyx = y2x2x2y ⇔ xy2x = 1 ⇔ y2 = x2.

Therefore,

G/N = 〈x|x4 = 1〉
|G/Nα| = 4.

However:

G/Nβ = 〈x, y|x4 = y4 = 1, xy = y2x2 y−1x−1 = x−2y−2〉 = G.

Hence |G/Nβ| = 20. It follows that G is β-self-dual but not α-self-dual.

b) If H = (G, x, y) = (A5, (12345), (123)) then Dα(H) ∼= A5 because the

hypermap is α-totally dual. But Hβ = (G, y−1, x−1) = (A5, (132), (15432)).

Hence, we still have two permutations of different order. This means that the

hypermap cannot be β-self-dual and, because A5 is simple, we can conclude

that it must be β-totally dual. Hence Dβ(H) ∼= Dα(H) ∼= A5.

Another example, this time without using totally dual hypermaps, is the

only proper chiral hypermap of genus 7 with monodromy group with presenta-

tion (see Conder’s list [14]):

x3, xy−1x−1y−2

This hypermap has |Dα| = |Dβ| = 3 which means that Dα
∼= Dβ

∼= Z3.

Definition 5.3.1. Two distinct hypermaps H1 and H2 are αβ-symmetric if

the order of their automorphism groups and their genus are the same and

|Dα(H1)| = |Dβ(H2)| and |Dα(H2)| = |Dβ(H1)|
One example of a pair (H1,H2) of αβ-symmetric hypermaps is the one

formed by two proper chiral hypermaps of genus 19 whose automorphism groups

have the following presentations (see Conder’s list [14]):

x4, y4, xy−2x2y−1x−1y−1 and

x4, y4, y−1xy−1x2y2x−1

Both automorphism groups have order 144. Moreover, it is easy to check (using

GAP [23] or making some calculations), that |Dα(H1)| = |Dβ(H2)| = 18 and

|Dα(H2)| = |Dβ(H1)| = 2.
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5.4 Orientably Regular Hypermaps - type and dual-

ity

The aim of this section is to know for what triples (l, m, n) we can find self-dual

and totally dual hypermaps of that type. The relationship between type and

self-dual orientably regular hypermaps is easier to study than the one concerning

totally dual hypermaps. Therefore, we will deal with the self-dual case before.

If we want to find a self-dual hypermap of type (l, m, n), we obviously need

to have l = n, but we can say more:

Theorem 5.4.1. For every k, t there is a self-dual orientably regular hypermap

of type (k, t, k)

Proof : We just need to take the monodromy group

G = ∆+(k, t, k) = 〈x, y|xk = yk = (xy)t = 1〉.

Then

G/N = 〈x, y|xk = yk = (xy)t = (yx)t = 1〉.

But (yx)t = y(xy)t−1x = yy−1x−1x = 1 (using the third relation). Therefore,

we do not need the fourth relation (yx)t to present the group. Hence G ∼= G/N ,

meaning that the hypermap H = (G, x, y) is self-dual. ¤

H

+

(k,m,k)

+

(n,m,l)
+

(l,m,n)

H
d

qqwe +

/Gzxzxdd
=-

Figure 5.2: Hypermap of type (l,m, n).

If H is the hypermap subgroup of an oriented hypermap of type (l,m, n)

then its dual has type (n,m, l) and we may look at both H and Hd as subgroups

of ∆+(k,m, k), with k = lcm(l, n), which is the universal oriented hypermap of

type (k, m, k) (and this is also, by the previous theorem, the monodromy group
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of a self-dual o.r. hypermap). It follows that every orientably regular hyper-

map subgroup is a subgroup of a monodromy group of a non trivial self-dual

hypermap. In fact, it is a subgroup of an infinite number of monodromy groups

of non trivial self-dual hypermaps if, instead of the least common multiple of l

and m, we consider any common multiple.

As we have previously pointed, in a self-dual orientably regular hypermap,

vertices and faces need, of course, to have the same valency but that might

not be enough to assure that an orientably regular hypermap is self-dual. A

hypermap of type (k, t, k) can be very far away from being self-dual. It can

even be totally dual. For instance, the hypermap H = (Cp, 1, 2), with p prime,

is totally dual (see section 5.1) and of type (p, p, p).

Can we have a totally dual orientably regular hypermap of each

type (l, m, n)?

The answer is no. There are no totally dual hypermaps of type (3, 2, 3),

since this has to be the tetrahedron, which is self-dual. However, if we restrict

ourselves to hyperbolic triples, we can enumerate orientably regular hypermaps

of a given type (l, m, n) with automorphism groups isomorphic to PSL(2, q) or

PGL(2, q) (this enumeration can be found in a joint work of Marston Conder,

Primoz Potocnik, Josef Siran [17], based on the a paper by Sah [51]). Because

these groups are simple or almost simple we can use them to try to find totally

dual hypermaps or self-dual hypermaps. If l 6= n then the hypermap cannot be

self-dual. If l = n, we have to check if there is an automorphism of PSL(2, q)

or PGL(2, q) that interchange the two generators.

We should also notice that for some triples (l, m, n) is very easy to find

totally dual hypermaps of that type:

If g.c.d.(l, n) = 1 then

Gl,m,n = 〈a, b|al = bn = (ab)m = 1〉

is obviously of type (l, m, n). Let N be the smallest normal subgroup of Gl,m,n

such that Gl,m,n/N is reflexible. Then

Gl,m,n/N = 〈a, b|al = an = bn = bl = (ab)m = (ba)m = 1〉.
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Because l and n are co-prime the group Gl,m,n/N collapse to the identity. There-

fore H = (Gl,m,n, a, b) is a totally dual hypermap of type (l, m, n). This demon-

strates that, if g.c.d.(l, n) = 1, for every triple (l,m, n) there is a totally dual

hypermap of that type.

5.4.1 Duality-type in hypermaps with symmetric group or al-

ternating group as monodromy groups

Definition 5.4.1. We say that an orientably regular hypermap has duality-type

{l, n} if l is the l.c.m. of the valency of the vertices and n is the l.c.m. of the

valency of the faces (which is the same as saying that l and n are the orders of

the generators interchanged by the duality operation).

If we restrict ourselves to the family of hypermaps whose monodromy group

is the alternating or the symmetric group, can we have a totally dual hypermap

of any duality-type {l, n}? In fact, we can not only prove that the answer is

affirmative but also explicitly show how to construct those hypermaps. The

reason why, here, we look for duality-type instead of type is because, in the

first case, we just need to control the order of the two generators x and y, while

in the second one we also need to pay attention to the order of xy, which is a

harder problem to solve.

To complete that task we need a few concepts and theorems about genera-

tors of symmetric and alternating groups.

Let (G, Ω) be a permutation group. An equivalence relation ∼ is called G-

invariant if whenever α, β ∈ Ω satisfy α ∼ β then g(α) ∼ g(β) for all α, β ∈ Ω.

Two obvious G-invariant equivalence relations are: (i) α ∼ β if and only if α = β

and (ii) α ∼ β for all α, β ∈ Ω. We call (G, Ω) imprimitive if it admits some

equivalence relation other than (i) or (ii). Otherwise, we call (G, Ω) primitive.

There are several examples of primitive groups.3 For instance, any alternat-

ing group An is primitive, and so is PGL(2, q), in its standard action, for any

prime power q.

However, it is known - as underlined by Peter Cameron in the Encyclopedia

of Design Theory [11]- that primitive groups are “rare (for almost all n, the

3Colva M. Roney-Dougal [49] has classified all the primitive permutation groups of degree

less than 2500.
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only primitive groups of degree n are the symmetric and alternating groups,

see [12]); and small (of order at most nc·logn with known exceptions), see [44]

for the best possible result here”. The fact that most of the primitive groups

are alternating groups (which are simple) and symmetric groups (which have

only one non trivial normal subgroup) makes primitivity a powerful concept to

build totally dual hypermaps. Although the probability of a primitive group

being an alternating or a symmetric group is very high, we need to be sure that

we are not dealing with a different kind of group. The next definitions and

theorems help us to avoid that situation.

Definition 5.4.2. Let G be a permutation group on Ω and k a natural number

with 1 ≤ k ≤ n = |Ω|. G is called k-fold transitive if for every two ordered

k-tuples α1, ...αk and β1, ..., βk of points of Ω (with αi 6= αj , βi 6= βj , for i 6= j)

there exists g ∈ G which takes αt into βt (for t = 1, ..., k).

Definition 5.4.3. The minimal degree of a permutation group is the minimum

number of points moved by any non-identity element of the group.

Theorem 5.4.2 (Miller [46]). The minimal degree of a primitive group which

is neither alternating nor symmetric must exceed 4 whenever its degree exceeds

8.

Theorem 5.4.3 (Marggraf [56], chapter II). A primitive group of degree n,

which contains a cycle of degree m with 1 < m < n is n−m + 1-fold transitive.

And, as a consequence of the classification of simple groups [10]:

Theorem 5.4.4. If a permutation group G is at least 6− transitive then G is

the alternating group or the symmetric group.

With these tools we can then prove the following theorem:

Theorem 5.4.5. For each pair n, l ∈ N, with n, l ≥ 2, we can find a totally dual

orientably regular hypermap of duality-type {l, n}, with alternating or symmetric

group as monodromy group .
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Proof :

a) If l, n are both odd and l 6= n (we may assume, without loss of generality,

that l > n) let x = (1, 2, ..., l) and y = (1, 2, ..., n) permutations of Sl.

The only equivalence relations preserved by x are the congruences mod k1

(for some k1|l). If that equivalence relations are also preserved by y then

they have also to be the congruences mod k2 (for some k2|n), if the ele-

ments are less or equal than n (the other elements are fixed by y, so they

can be in any equivalence class). Hence, the only equivalence relations

preserved by x and y are the congruences mod k (for some k|l and k|n),

if the elements are less or equal than n. Then,

l ≡ n(mod k) ⇒ l ∼ n.

If z is the commutator y−1x−1yx = (n, n− 1, l) we have:

z(l) ∼ z(n) ⇔ n ∼ n− 1

Therefore, because (n− 1, n) = 1, the only equivalence relation preserved

by G =< x, y > is a trivial one.

Hence, G is primitive. But z ∈ G and the minimal degree of a primitive

group which is neither alternating or symmetric must exceed 4 whenever

its degree exceeds 8 [46]. Therefore, if l > 8, G must be the alternating

group and H = (G = Al, x, y) is a totally dual hypermap of duality type

{l, n}. [For l < 8 we can easily find two cycles of that given orders that

generate Al.]

b) If l is even and n is odd (or if l is odd and n is even) and l 6= n a

similar proof can be written using the cycles x = (1, 2, ..., l) and y =

(1, 2, ..., n). In this case, however, G =< x, y >= Sl. Because not both

of the generators are odd permutations, H = (G, x, y) is totally dual (see

Theorem 5.0.11).

c) If l and n are both even and l 6= n we take

x = (1, 2, ..., l)

y = (1, 2)(l, l + 1, l + 2, ..., l + n− 1)
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permutations of Sl+n−1 and G =< x, y >. First, we need to show that G

is primitive. Let (l + 1) ∈ B1, an equivalence class (or a group block).

i) If l ∈ B1 (or any k ∈ {1, 2, ..., l} also belongs to B1) then, because

B1x = B1 (l+1 is fixed by x), all elements of the set {1, 2, .., l} must

belong to B1.

Then, B1y = B1 (y fixes 3, for instance). Therefore (l + 2), (l +

3), ..., (l + n − 1) also belong to B1. It follows that all elements

of Ω = {1, 2, ..., l + n − 1} belong to the same block and that the

equivalence relation must be trivial.

ii) If l does not belong to B1 we assume that l ∈ B2 6= B1.

Suppose (l + 2) ∈ B2. Then:

x(l + 2) = l + 2

x(l) = 1.

Hence: 1 ∈ B2 and, consequently, 2 ∈ B2. But then:

y(1) = 2

y(l) = l + 1.

Therefore (l + 1) ∈ B2, which is a contradiction. Hence (l + 2) does

not belong to B2 and the same can be said to (l+3), (l+4), ..., l+n−1.

On the other hand, if some t ∈ {3, ..., l − 1} belongs to B2 we have

y(t) = t

y(l) = l + 1.

Then, (l + 2) ∈ B2 (contradiction).

Finally, if r ∈ {1, 2} belongs to B2:

y2(r) = r

y2(l) = l + 2.

Hence, (l + 2) ∈ B2 (absurd).
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Therefore B2 = {l}. This means that all the blocks must have only

one element too because if, for instance, a, b ∈ B and w is the per-

mutation that sends a to l, w(a) and w(b) must belong to the same

block. Hence, in this case, w(a) = l = w(b). That is not possible

because a 6= b.

It follows that G =< x, y > is a primitive group of degree l + n− 1.

Because l + n− 1− l + 1 = n the group G is n− transitive [56] and

for n > 5, G must be the alternating or symmetric group. If n = 4

we have:

x = (1, 2, ..., l)

y = (1, 2)(l, l + 1, l + 2, l + 3).

Then, the degree of y2 = (l, l + 2)(l + 1, l + 3) is four and the group

must be the alternating or the symmetric group [46]. Since x is an

odd permutation, G = Sl+n−1. Then H = (Sl+n−1, x, y) is a to-

tally dual hypermap because y is an even permutation (see Theorem

5.0.11).

d) If n = l (and even) we can use the same generators as in c):

x = (1, 2, ..., l)

y = (1, 2)(l, l + 1, l + 2, ..., l + n− 1) = (1, 2)(l, l + 1, ..., 2l − 1).

ord(x) = l

ord(y) = [2, l] = l

Hence G =< x, y >= Sl+n−1 = S2l−1. Because x is an even permutation

and y is odd, H = (S2l−1, x, y) must be a totally dual hypermap (see

Theorem 5.0.11).

e) Suppose now n = l are odd.

Let the generators of the group be these two even permutations in Sl+1:

x = (1, 2, ..., l)
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y = (2, 3, ..., l + 1).

The group generated by these two elements is primitive, since it is a 2-

transitive group [50], and x−1y−1xy = (1, l−1)(2, 3) has degree 4. Hence,

by [46], 〈x, y〉 = Al if l + 1 ≥ 8, i.e. l ≥ 7. Cases for low l are easy to

solve.

¤

In the 60’s, Graham Highman conjectured that any Fuchsian group has

among its homomorphic images all but finitely many of the alternating groups.

He also proved that An is a factor group of (2, 3, 7) = 〈a, b|a2, b3, (ab)7〉 for all

large n. Because 2, 3 and 7 are prime numbers and 2 6= 7 we can conclude,

from that result, that there is an infinite number of totally dual hypermpas of

type (2, 3, 7). That result, obtained by Higman, was later extended by others

(see, for instance [16]) that proved that the same can be said for other families

of triangle groups. The complete proof of the conjecture, however, was only

published in 2007 by Brent Everitt [22]. In his paper, it is shown that we only

need to consider the triangle groups (p, q, r), 3 ≤ p < q < r to prove the main

result (which is done making use of coset diagrams for those triangle groups).

Hence, it is possible to say that if l, m, n are prime and l 6= n we can always

find infinite totally dual hypermaps of type (l, m, n), with alternating groups

as monodromy groups.

If p, q, r are not all prime the alternating groups An, being factor groups

of the triangle group (p, q, r), might correspond to hypermaps of type (p′, q′, r′)

with p′|p, q′|q and r′|r and not always type (p, q, r).

However, we can easily find some families of totally dual hypermaps with

all elements having alternating groups as monodromy group:

Example 5.4.1. Totally dual hypermap of order t!
2 and

a) of type (3, t, t), if t is odd and > 3;

b) of type (3, t− 2, t− 1) if t is even and > 4.

For case a) we take: At = 〈x, y|x = (123), y = (12...t)〉. Then xy = (134...t2)

and ord(xy) = t. For case b): At = 〈x, y|x = (123), y = (2...t)〉. Then

xy = (12)(34...t) and ord(xy) = t− 2.
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5.5 Genera, hypermaps and duality

If G is the monodromy group of an o.r. hypermap, then we can easily calculate

its genus g using the formula:

−X = 2g − 2 = |G| − V − E − F

where V , E and F are the number of hypervertices, hyperedges and hyperfaces,

respectively and X is the Euler characteristic . But in an o.r. hypermap of type

(l, m, n) we have |G| = mE = lV = nF ; therefore, the previous formula can be

written in the following way:

−X = 2g − 2 = |G|(1− 1
l
− 1

m
− 1

n
).

Hence:

g = |G|(1
2
− 1

2l
− 1

2m
− 1

2n
) + 1

For maps, it can be slightly simplified:

g = |G|(1
4
− 1

2l
− 1

2n
) + 1

Example 5.5.1. One of the most simple self-dual (hyper)maps of genus 2 is

the one we can get by identifying the opposite sides of the octagon This map

has one vertex of valency 8, one face of valency 8, four edges and its orientation-

preserving automorphism group is C8, the rotations around the vertex (Figure

5.3).

Figure 5.3: Self-dual hypermap of genus 2 (opposite sides of the octagon iden-

tified).

In fact, for each integer g there is a self dual o.r. (hyper)map with genus g.

It is well known that we can find a map of genus g of type {4g, 4g} for every
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g > 0. Following a well known example (see, for instance, Group Actions on

Graphs, Maps and Surfaces, a summary of a short course of lectures given by

Marston Conder at the Group St Andrews conference in 2001, [14]), let G be

the dihedral group of order 8g with generators u, v of order 2 and 4g.

G =< u, v|u2 = v4g = (uv)2 = 1 >

If r0 = u, r1 = uv and r2 = uv2g we have: r0r1 = v and r1r2 = v2g−1 of order 4g

and r2r0 = v2g of order 2. The map M = (G, r0, r1, r2) is a g-sheeted covering

of the torus map branched over its single vertex and its single face-center and

is orientable since 〈r0r1, r1r2〉 = 〈v〉 has index 2 in G = D8g. The hypermap is

chiral and its genus is equal to:

|D8g|(1
8
− 1

16g
− 1

16g
) + 1 = 8g(

1
8
− 2

16g
) + 1 = g.

M is then a map of type {4g, 4g} and of genus g. The same can be said for the

associated oriented hypermap:

M = (G, ror1, r1r2) = (〈v〉, v, v2g−1).

This o.r. map is self dual since (4g, 2g − 1) = 1 and has also genus g.

The preceding example is simply the case g = 2 of this construction (Figure

5.3). If we identify the opposite edges of a 4g-gon, as it is done for genus 2, we

can get a self-dual hypermap on a surface of genus g .

If g = 0 (the sphere) the only o.r. hypermaps are the Platonic solids and the

two infinite families of types (2, 2, n), (n, 1, n) and their duals (see, for instance,

[8]). Some of these are self-dual and others totally dual or with intermediate

duality index.

Example 5.5.2. The tetrahedron (with A4 as monodromy group) is a self-dual

map on the sphere (see Figure 5.4).

On the other hand, the cube and the octahedron (its dual) are examples of

platonic solids that give rise to totally dual (hyper)maps of types (3, 2, 4) and

(4, 2, 3), respectively. The same can be said about the icosahedron and dodec-

ahedron, of types (3, 2, 5) and (5, 2, 3), respectively. These are just examples
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Figure 5.4: Tetrahedron on the sphere.

associated to the platonic solids but, on the sphere, it is possible to find an

infinite number of totally dual hypermaps:

H = (Zn = 〈t〉, t, 0)

These having a single hypervertex of valency n, n hyperfaces of valency 1 and

one hyperedge of valency n. An infinite number of self-dual hypermaps on

the sphere can also be obtained by using only dihedral groups as monodromy

groups:

H = (D2m, x, y) with

D2m = 〈x, y|x2, y2, (xy)m = 1〉

...

Figure 5.5: Totally dual hypermap on the sphere (Walsh representation)

The same can be said for hypermaps of intermediate index (again, we have

an infinite number of these) but a stronger statement can be made:

Theorem 5.5.1. In the sphere we can find a non totally dual (hyper)map of

each duality index d.
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Proof : Let H = (D4d, x, y). with

D4d = 〈x, y|x2d = y2 = (xy)2 = 1〉.

Then D4d/N ∼= V4 with |N | = 4d
4 = d and the genus of H is

4d(− 1
4d

+
1
4
− 1

4
) + 1 = 0. ¤

Figure 5.6: (D8, x, y) of type (4, 2, 2) collapsing to (V4, x, y), a self-dual hyper-

map of type (2, 2, 2).

A hypermap H = (G, x, y) of type (l, m, n) that has genus 1 (hypermap on

the torus) must satisfy:

g = |G|(1
2
− 1

2l
− 1

2m
− 1

2n
) + 1 = 1.

Which is the same as saying that:

1
2
− 1

2l
− 1

2m
− 1

2n
= 0.

Therefore, on the torus, there are only three (infinite) families of o.r. hypermaps

(and their duals), whose types are (2, 3, 6), (2, 4, 4) and (3, 3, 3).

We have already shown one example of a self-dual hypermap on the torus:

(Z4, 1, 1) of type (4, 2, 4). Another example would be the hypermap (A3, (123), (123))

of type (3, 3, 3). If

G = ∆(3, 3, 3) = 〈x, y|x3 = y3 = (xy)3 = 1〉

then the finite quotients of this group, by torsion-free normal subgroups, will

give hypermaps of type (3, 3, 3) and of genus 1. In fact, an infinite number of

self-dual hypermaps can be constructed on the torus (see Figure 5.7).
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...

n

n

Figure 5.7: Self-dual maps of type {4, 4} on the torus, with n2 faces.

Totally dual hypermaps can also be found on the torus. For instance,

(Z4, 2, 1) is a totally dual hypermap of type (2, 4, 4)4.Or we might take the

group Gn = 〈α, β〉 ≤ S5+3n, for n ∈ N with

α = (1, 2)

β = (3, 4, 5)(6, 7, 8)...(3 + 3n, 4 + 3n, 5 + 3n)

Then ord(α) = 2, ord(β) = 3 and ord(αβ) = 6. It follows that the hypermap

H = (Gn, α, β) is totally dual of type (2, 6, 3). We can easily obtain other

totally dual hypermaps on the torus by taking finite quotients, by torsion-free

normal subgroups, of the universal hypermap of type (2, 6, 3).

However, not all hypermaps on the torus are self-dual or totally dual. Exam-

ples of hypermaps with intermediate duality index can also be found: (Z6, 1, 3)

of type (6, 2, 3) has duality index 3 (see section 5.1.1).

For genus 2, one example of a totally dual hypermap is the hypermap of

type (3, 3, 4), described in [6], with SL2(3) as monodromy group (and that is

obviously totally dual since 3 and 4 are coprime). Another one is the map of

type {3, 8} listed by Conder in [14].

For every g ∈ N we can get an infinite number of totally dual hypermaps

of genus greater than g by using, for instance, Hurwitz maps (hypermaps of

type (3, 2, 7)). As we have already mentioned, Higman proved that almost all

4all the o.r. hypermaps with monodromy group Z4 are self-dual or totally dual (see section

5.1)
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alternating groups are quotients of the triangle group ∆(2, 3, 7). Because the

genus is given by
1
84
|An|+ 1 =

n!
168

+ 1,

we can make it as big as we want. Some other examples of totally dual Hurwitz

maps can be obtained using Luchini’s result in [39] but in this case with SLn(q)

as monodromy group. Since explicit generators are given in [39], we can not

only obtain a sequence of hypermaps of growing genus but also the description

of those hypermaps.

We have already proved that we can always find a self-dual hypermap for

every genus. To finish this section we will prove that we can also find, for each

integer g > 1, a non self-dual hypermap of that genus g. In fact, we can do this

only using hypermaps of a certain type:

Theorem 5.5.2. For each integer g > 1 there is a non self-dual (and non

chiral) hypermap of genus g with vertices, edges and faces of the same order.

Proof : We take t = 2g + 1 and the hypermap H = (Zt, 1, t − 2) (of type

(t, t, t) since all elements 1, t − 2 and t − 1 are coprime to the odd integer t).

Then the genus of the hypermap is equal to:

t(
1
2
− 3

2t
) + 1 =

t− 3
2

+ 1 =
t− 1

2
= g

If there was an automorphism interchanging the two generators 1 and t− 2

then (t − 2)2 ≡ 1 (mod t), which means that t2 − 4t + 4 ≡ 1 (mod t).

Hence if t 6= 3 there is no automorphism that interchanges the generators.

The mirror image of H is H = (Zt, t− 1, 2) ∼= H. Therefore, H is not chiral.

¤
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Chapter 6

Duality on Non Orientable

Regular Hypermaps

6.1 Duality Index

If instead of orientably regular hypermaps we look at regular hypermaps (re-

gardless their orientability), we must work with monodromy groups generated

by 3 elements of order 2. If H = (G, r0, r1, r2) we define the duality opera-

tion to be the one that interchanges r0 and r2. The duality group D(H) of

a regular hypermap H is the smallest normal subgroup of Mon(H) such that

H/D(H) is self-dual. As a consequence of this, a totally dual hypermap would

be a hypermap H such that D(H) = Mon(H).

If H is orientable, then its hypermap subgroup is not only a subgroup of ∆

but also a subgroup of ∆+ and the hypermap will never be totally dual by our

definition (it will have at most index |Mon(H)|/2). It follows that all totally

dual regular hypermaps that we will present in this chapter are necessarily

imbeddings of hypergraphs on non orientable surfaces.

Example 6.1.1. G = Z2 × Z2 × Z2 is the monodromy group of the self-dual

regular hypermap H = (G, (1, 0, 0), (0, 1, 0), (0, 0, 1)). In fact, Z2×Z2×Z2 is the

largest abelian group that works as a monodromy group of a regular hypermap.

Every finite non-abelian simple group apart from PSU(3, 3) can be gener-

ated by three involutions [42]. As a consequence of this, we can say that every
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finite non-abelian simple group (apart from PSU(3, 3)) is the monodromy group

of some self-dual or totally dual hypermap.

But not only finite non-abelian simple groups can be taken as monodromy

groups of a regular hypermaps. For instance, every symmetric group Sn, for

n ≥ 4 (or n ≥ 2 if we allow ri = rj for i 6= j), can also be generated by three

involutions. Moreover, it is possible to choose those three involutions r0, r1 and

r2 in a way that two of them commute1. If we choose:

r0 = (1, 2)(n, 3)(n− 1, 4)...

r1 = (1)(n, 2)(n− 1, 3)...

r2 = (1, 2)

then r1r0 = (1, 2, ..., n), so Sn ≥ 〈r0, r1, r2〉 ≥ 〈r1ro, r2〉 = Sn and r0r2 = r2r0.

The same can be said for certain classical groups of sufficiently high rank,

such as SLn(q) for n ≥ 14, all groups SUn(q) for n ≥ 40, the groups Sp2n(q),

Ω+
2n(q) and Ω2n+1(q) for n ≥ 20 and q odd, and the groups SLn(Z) for n ≥ 14.

The constructive proof of these results can be found in [59], including explicit

generators for each case (two of them commuting).

Theorem 6.1.1. For every even t there is a self-dual regular hypermap with

monodromy group of order t.

Proof : We just need to take the hypermap H = (Dt, x, y, x) with

Dt = 〈x, y|x2 = y2 = (xy)t/2 = 1〉

the dihedral group of order t, if t > 4 (the cyclic group of order 2, if t = 2, or

the Klein 4-group, if t = 4) . ¤

Corollary 6.1.1. For every even k there is a regular hypermap H = (G, x, y, z)

such that G
d = k, with d being the duality index of the hypermap.

Proof : We just need to choose a convenient self-dual hypermap (with duality

index 1) with monodromy group of order k. ¤
1which means that, with such triple of generators, the hypermap H = (Sn, ro, r1, r2) is, in

fact, a map.
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Obviously, Theorem 6.1.1 is not true for k prime because the only possible

monodromy groups of that order are the cyclic groups which are not generated

by three involutions. In fact, any group generated by three involutions cannot

have odd order. Hence the result of last theorem is false for t odd. If we now

take the Coxeter group (for n ≥ 2):

W2,n,2 = 〈x, y, z : x2 = y2 = z2 = (xy)2 = (yz)n = (zx)2 = 1〉

(the direct product of the dihedral group of order 2n with Z2) then |W2,n,2| =

4n. Considering N as before:

W2,n,2/N = 〈x, y, z : x2 = y2 = z2 = (xy)2 = (yz)n =

= (zx)2 = (zy)2 = (yx)2 = (xz)2 = 1〉

Then, if n is even, W2,n,2/N = {1, x, y, z, xy, zy, zx, xyz} and |W2,n,2/N | = 8

(W2,n,2/N ∼= Z3
2).

If n is odd, W2,n,2/N = {1, x, y, xy} and |W2,n,2/N | = 4.

This means that H = (W2,n,2, x, y, z) is not totally dual. Moreover, for

every d it is possible to have a regular hypermap non totally dual and with d

as duality index. We just need to take the group W2,2d,2 of order 8d because

|W2,2d,2/N | = 8

and, consequently, |N | = d. This works as a proof of the following theorem:

Theorem 6.1.2. For every d ∈ N there is a (non totally dual) regular hypermap

with duality index equal to d.

When dealing with orientably regular hypermaps it was easy to find to-

tally dual hypermaps of any duality index (using cyclic groups as monodromy

groups) but it is a little more difficult to get the same result for non totally

dual hypermaps. For regular hypermaps, the non totally dual case is not very

difficult to deal with (see the previous theorem). The same can be said for the

totally dual regular hypermaps: it is not possible to find totally dual regular

hypermaps of odd index (in a totally dual hypermap, the monodromy group

coincides with the duality group). However the question can be asked for even
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numbers: is it possible to find totally dual hypermaps of any even duality in-

dex? The answer is: no. If we want to find totally dual regular hypermaps

of index 6 we must look at monodromy groups of order 6. But the only finite

groups of order 6 are: Z6 = Z3 × Z2 and S3. The first of these groups cannot

be generated by three involutions and S3 gives always rise to self-dual regular

hypermaps or regular maps with intermediate index2 [23].

When we are looking for totally dual hypermaps, we often choose hypermaps

with simple monodromy groups because these must be either self-dual or totally

dual (removing the possibility to deal with hypermaps of intermediate duality

index). But if we only use finite simple groups we will never be able to build a

totally dual hypermap for each even index d because then |Mon(H)| = d and

there is not a finite simple group of each even order. In fact, there are huge

gaps if we list the orders of finite simple groups. However, we can at least give

some examples of totally dual regular hypermaps since any nonabelian finite

simple group can be generated by two elements of different orders and can be

used as the monodromy group of a totally dual regular hypermap.

Remark: In the proof of the previous theorem, we have shown several

examples of Coxeter groups that can work as monodromy groups of hypermaps

with intermediate duality index and just one example (W2,2,2) of a self-dual

hypermap. However, we can also provide other examples of self-dual hypermaps

with a Coxeter group as monodromy group. For instance, if we take W3,3,2 =

〈x, y, z : x2 = y2 = z2 = (xy)3 = (yz)3 = (zx)2 = 1〉, a Coxeter group on

3 generators and of order 24, then H = (W3,3,2, x, y, z) is self-dual (as can be

confirmed, using GAP [23]).

We have already seen that it is not possible to find totally dual regular

hypermaps for every even duality index. Nevertheless, we can build families

of that kind of hypermaps for some special even numbers, namely when those

indexes are equal to n! or n!/2.

2For instance, let S3 = 〈x, y, z〉. If x = y = (12) and z = (23), then, in S3/N , we have

x = y = z, so S3/N ∼= C2. Therefore, that hypermap with monodromy group S3 = 〈x, y, z〉
will have intermediate duality index.
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Theorem 6.1.3. For every n ∈ N and ≥ 4 there is a totally dual regular

(hyper)map H with duality index |D(H)| = n!.

Proof : Suppose H = (Sn, r0, r1, r2), with n ≥ 4.

If n = 2k + 1 we can use the same generators as in [13]:

r0 = (12)

ri = (34)(56)...(2k − 1 k)

rj = (23)(45)...(2k 2k + 1)

here with j = 2, i = 1 when k is even and j = 1, i = 2 when k is odd.

Then, because r0 and r2 are permutations with different sign, the hypermap

H is not self dual. The same can be said about:

H/An = (Sn/An, r0An, r1An, r2An) = (Sn/An, r0An, r1An, An).

Hence, the hypermap H is totally dual and |D(H)| = |Sn| = n!.

If n is even (n = 2k) the method is similar.

Because two of the permutations commute, H is, in fact, a map.¤

Theorem 6.1.4. For every n ∈ N and ≥ 9 there is a totally dual regular

hypermap H with duality index |D(H)| = n!
2 .

Proof : Let n ≥ 9. To build the required totally dual regular hypermap

of that index n, we will use a result published by Nuzhin in 1992 [48]. In

that theorem, it is demonstrated, by explicitly showing the generators, that

the Alternating groups An (for n ≥ 9) can be generated by three involutions.

Nuzhin also proves that two of them commute but we do not need that in our

construction (although this adds an extra information about the hypermaps).

All we need to do is to take:

H = (An, r0, r1, r2)

with

r0 :

(14)(23)(n− 2 n− 1), if n = 4k + 3 ≥ 11
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(12)(34) otherwise.

r1 :

(12)(34)...(n− 4 n− 3)(n− 2 n− 1) if n = 4k + 1 ≥ 9

(34)(56)...(n− 3 n− 2)(n− 1 n) if n = 4k + 2 ≥ 10

(12)(34)...(n− 6 n− 5)(n− 4 n− 3) if n = 4k + 3 ≥ 11

(12)(34)...(n− 3 n− 2)(n− 1 n) if n = 4k ≥ 12

r2 :

(23)(45)...(n− 3 n− 2)(n− 1 n) if n = 4k + 1 ≥ 9

(23)(45)...(n− 4 n− 3)(n− 2 n− 1) if n = 4k + 2 ≥ 10

(45)(67)...(n− 3 n− 2)(n− 1 n) if n = 4k + 3 ≥ 11

(23)(45)...(n− 2 n− 1)(1 n) if n = 4k ≥ 12

Because r0 and r2 have always different cyclic structures, there is no auto-

morphism interchanging them. The hypermapH is then totally dual and|D(H)| =
n!
2 .

Since two of the permutations commute, H is, in fact, a map. ¤

In the same paper, Nuzhin also presents three involutions that generate A5

(with two of them commuting):

(12)(34), (14)(23), (23)(45).

However, these generators will give rise to a self-dual hypermap since the gen-

erators have all the same cyclic structure. Using GAP [23] to compute all the

generating triples of involutions we realize that all of them are triples of elements

with two disjoint transpositions. Therefore, all possible regular hypermaps with

monodromy group A5 are self-dual [23].

Note: A6, A7 and A8 are not generated by three involutions [using GAP

[23] or Nuzhin’s paper again [48]].

As a final observation, we would like to add that the well known fact that

there are infinitely many nonorientable regular maps of type {3, 7} (hypermaps

of type (3, 2, 7)), allow us to conclude that we can build infinitely many totally

dual maps, on nonorientable surfaces, just using Hurwitz maps.
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Appendix A

The group PSL2(q) and its

subgroups

A.1 Properties of the group PSL2(q)

The group SL2(q) is the group of the 2 × 2 matrices with determinant equal

to +1 and entries in the finite field GF (q), with q = pn for some n ∈ N and p

prime. The projective special linear group PSL2(q) is the group obtained from

the group SL2(q) on factoring by the scalar matrices. PSL2(q) = SL2(q)/{±I}
has order equal to q(q2−1)

d , where d = (2, q − 1), and is simple for q > 3. An

element A ∈ PSL2(q) is hyperbolic, parabolic or elliptic if the number of fixed

points of A in the projective line Ω = P 1(q) is 2, 1 or 0, respectively.

Then, the order t of A:

• divides q−1
d if A is hyperbolic,

• is p if A is parabolic,

• divides q+1
d if A is elliptic

and, conversely, PSL2(q) contains elements of each such order t.
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A.2 Hypermaps and the subgroups of PSL2(q)

To know for which q = pn, PSL2(q) (or L2(q) in another notation) is the

epimorphic image of a triangle group, can help us to build hypermaps (making

use of the relationship between subgroups of the triangle group and compact

orientable hypermaps without boundary). Instead of PSL2(q), other finite

groups could be chosen but the projective special linear groups are rich enough

to provide a large amount of different hypermaps and there are also available

good results about their subgroups [21] and their generating triples [40], which

can be extremely helpful.

The aim of Macbeath’s paper [40] is to classify the pairs (A,B) ∈ G =

PSL2(q) and be able to decide what kind of subgroups they generate. Because

each pair (A,B) determines a unique C such that ABC = 1, the problem is

equivalent to that of classifying triples (A, B,C) such that ABC = 1.

That classification is very useful to our study of hypermaps because if these

elements A, B and C generate the whole group PSL2(q) then there is an epi-

morphism

γ : ∆(l, m, n) −→ PSL2(q)

(where l, m and n are the orders of the elements A, B and C) that sends a 7→ A,

b 7→ B and c 7→ C.

It is proved by Dickson [21] that every subgroup of PSL2(q) is either ex-

ceptional, affine or projective (however, these families are not disjoint).

• The projective subgroups of PSL2(pn) are isomorphic to PSL2(pt), where

t|n, or isomorphic to PGL2(p2t) where 2t|n.

• The affine subgroups are the ones that fix a point in Ω = P 1(q) (hence

their order divides q(q−1)
d ) together with the cyclic groups of order dividing

q+1
2 , generated by an elliptic element.

• Finally, the exceptional subgroups are the finite triangle groups: dihedral

groups or isomorphic to A4, S4 or A5.

Let G0 = SL2(q). In Macbeath’s notation [40], a G0-triple, is a triple (A,B,C)

where A, B, C ∈ G0 and ABC = 1. This gives rise to
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• a k-triple (α, β, γ) of elements of the finite field, where α = trA, β = trB

and γ = trC

• a N -triple (l, m, n) ∈ N3, where l, m, n are the orders of the corresponding

elements in PSL2(q).1

A k-triple (α, β, γ) is called singular or nonsingular according as the quadratic

form

Qαβγ(ξ, η, ζ) = ξ2 + η2 + ζ2 + αηζ + βζη + γξη

is singular or nonsingular. A G0-triple is called singular or nonsingular ac-

cording as the associated k-triple (trace A, trace B, trace C) is singular or

nonsingular.

We say that a G0-triple is exceptional if the associated N -triple is one of

the following:

(2, 2, n); (2, 3, 3); (3, 3, 3); (3, 4, 4); (2, 3, 4);

(2, 5, 5); (5, 5, 5); (3, 3, 5); (3, 5, 5); (2, 3, 5)

Macbeath [40] proves:

Theorem A.2.1. A k-triple (α, β, γ) is singular if and only if there is a com-

mutative G0-triple associated with the k-triple (α, β, γ).

Theorem A.2.2. A triple that is neither singular nor exceptional generates a

projective subgroup of PSL2(q).

Therefore, to show that a triple generates the whole PSL2(q) group, the

following method can be used:

1) show that the G0-triple (α, β, γ) is not exceptional;

2) show that none of the G0-triples (α, β, γ) is commutative and hence cannot

generate an affine subgroup;

3) prove that the projective subgroup generated by the triple must be the

whole group PSL2(q).

1If A ∈ G0 then det(A) = 1. If α = trA the order of the corresponding element in PSL2(q)

is uniquely determined except if α = ±2 when the order can be 1 or p.
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A.3 Examples of epimorphisms

Those results, proved by Macbeath, are very useful to demonstrate, adapting a

method developed in [30], the following theorem:

Theorem A.3.1. There is an epimorphism ∆(3, 3, 7) −→ PSL2(13).

Proof : Let α = ±1 and β be the traces of the elements of G0 whose images

in G have orders 3 and 7 = 13+1
2 , respectively. Therefore, there is a G0-triple

(A,B, C) with associated k-triple (α, α, β) and, hence, a N -triple (3, 3, 7). Since

7 > 5, the corresponding subgroup H generated by the three elements in G

cannot be exceptional. Moreover, since 7 > 3 there is no commutative G0-triple

with N -triple (3, 3, 7), so H cannot be affine. No proper projective subgroup of

PSL2(13) has an element of order 7 = 13+1
2 , so H = PSL2(13) and PSL2(13)

is an image of ∆(3, 3, 7). ¤

This proves that there are regular hypermaps of those types (3, 3, 7) for

which PSL2(13) is the automorphism group. Moreover, the subgroups of

PSL2(13) will give rise to non regular hypermaps of the same type. Similar

results can be obtained for other groups ∆(l, m, n), using the same technique.
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[44] Attila Maróti, On the orders of primitive groups, J. Algebra 258 (2002),

631640.

[45] G. A. Miller, On the groups generated by two operators, Bull. Amer. Math.

Soc., 7 (1901), 424-426.

[46] G. A. Miller, Possible Orders of two generators of the alternating and of

the symmetric group, Transactions of the American Mathematical Society,

Vol.30, N1 (Jan.1928), pp. 24-32.

[47] T. T. Moh Algebra, World Scientific Publishing Company, 1992

[48] Ya. N. Nuzhin, Generating Triples of Involutions of Alternating Groups,

Mathematical Notes, April 1992, Vol.51, Number 4, pp. 389-392.

[49] Colva M. Roney-Dougal, The primitive groups of degree less than 2500,

Journal of Algebra, Volume 292, Issue 1, 2005, pp. 154-183.

[50] J. Rotman, Introduction to the Theory of Groups, Springer, 4th edition

(1999).

[51] C. M. Sah, Groups related to compact Riemann surfaces, Acta Math. 123

(1969), 13-42.

152



[52] F.A. Sherk The regular maps on a surface of genus three, Canadian J.

Math. 11 (1959), 452-480.

[53] T. R. S. Walsh, Hypermaps versus Bipartite Maps, Journal of Combinato-

rial Theory (B) 18, 155-163 (1975).

[54] Arthur T. White, Graphs of Groups on Surfaces, North-Holland, First

edition 2001.

[55] James Wiegold, Growth sequences of finite groups, J. Austral. Math. Soc.

1’ (1974), 133-141.

[56] H. Wielandt, Finite Permutation Groups, Academic Press, San Diego,

1964.

[57] D. Singerman, Automorphisms of maps, permutation groups and Riemann

surfaces, Bull. London Math. Soc., 8 (1976), 65-68.

[58] D. Singerman, Universal tesselations, Revista Matemática de la Universi-
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