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Abstract

This paper provides a sufficient condition for existence and uniqueness of equilib-
rium, which is in monotone pure strategies, in games of incomplete information.
First, we show that if each player’s incremental ex post payoff is uniformly increas-
ing in its own action and type, and its type is sufficiently uninformative of the
types of its opponents (independence), then its expected payoff satisfies a strict
single crossing property in its own action and type, for any strategy profile played
by its opponents. This ensures that a player’s best response to any strategy pro-
file is a monotone pure strategy. Secondly, we show that if, in addition, there is
sufficient heterogeneity of the conditional density of types, then the best response
correspondence is a contraction mapping. This ensures equilibrium existence and
uniqueness. In contrast to existing results, our uniqueness result does not rely on
strategic complementarities; this allows for a wider range of applications.
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1 Introduction

This paper studies existence and uniqueness of equilibrium which is in monotone pure
strategies in games of incomplete information. Several papers have established existence of
pure strategy equilibria in incomplete information games under a variety of assumptions.
For example, Milgrom and Weber (1985) show existence in games with a finite number
of actions and (conditionally) independent types. Milgrom and Roberts (1990) and Vives
(1990) work with supermodular games. The pure strategy equilibria in these games
need not be monotone. A few papers have studied existence of monotone pure strategy
equilibria: in particular, Athey (2001) and McAdams (forthcoming) (discussed further
below). Finally, a strand of the literature has established that in a particular class
of supermodular games (called global games), a unique equilibrium exists which is in
monotone pure strategies; see Carlsson and van Damme (1993) and Frankel et al. (2003).

This paper provides a sufficient condition for existence and uniqueness of equilibrium
in monotone pure strategies in a broad class of games of incomplete information. The
class of games we consider includes most supermodular and all global games, for example;
but is broader, since it does not require that players’ actions are strategic complements.
Our argument has two steps. First, we show that a player’s incremental expected payoff
satisfies a strict single crossing property in its own action and type, for any strategy
profile of its opponents, if its incremental ex post payoff is uniformly increasing in its
own action and type, and its type is sufficiently uninformative about the types of its
opponents. Since the strict single crossing property holds for any strategy profile adopted
by the opponents, each player’s best response is a monotone pure strategy. Secondly,
we show that if, in addition, there is sufficient heterogeneity of the conditional density
of types, then the best response correspondence is a contraction mapping. This ensures
that equilibrium exists and that it is unique.

The argument is easiest to see in an example with independent, private values and



binary actions. Suppose that a player’s payoff difference between the two actions is
separable in two terms: the first is strictly increasing in the type of the player; the
second depends on the actions of other players. Since the players are assumed to be
independent, player i’s type tells it nothing about the types of its opponents. Hence
player i’s expectation of the payoff difference is strictly increasing in its type, irrespective
of its opponents’ strategies; therefore in equilibrium, players use monotone pure strategies.
To show that there exists a unique equilibrium in monotone pure strategies, we must show
that there is a unique threshold type who is indifferent between the two actions. Consider
a threshold player; and consider its estimate of the payoff effect of its opponents’ actions.
If this estimate is sufficiently insensitive to the threshold player’s type, then the threshold
player’s expected payoff difference is strictly increasing in its type. Hence there can be only
one solution to the indifference condition: if there were multiple solutions, the function
would have to be decreasing at (at least) one of the solutions. If the conditional density
of types is sufficiently flat, then threshold player’s estimate of its opponents’s action will
not vary very much with its type.

These arguments can be extended to more general payoffs and for more general distri-
butions that allow types to be dependent. For more general payoffs, we require that the
incremental ex post payoffs are increasing in own action and type. For more general type
distributions, we require that the likelihood of other players’ types is not too sensitive to
the type of an individual player. In the case when the conditional density is differentiable,
this condition requires that the Fisher information is bounded above. Finally, a condi-
tional density with a small upper bound ensures that the equilibrium correspondence is
unique.

Athey (2001) establishes existence of monotone pure strategy equilibria. She shows
that a single crossing condition—that each player’s expected payoff satisfies monotone

incremental returns in its own type given any non-decreasing strategy profile played by



its opponents—ensures existence of equilibrium. She shows further that games in which
ex post payoffs are supermodular in all players’ actions and types, and in which types
are affiliated, satisfy the single crossing condition. We also derive a single crossing con-
dition; we show that a condition slightly stronger than supermodularity with respect
own action and type, and uninformative types, ensures this single crossing condition. If
these assumptions are supplemented by heterogeneity, then we can establish that the only
equilibrium that exists is in monotone pure strategies.

The technical details of our argument are quite different from those of Athey (and
extended by McAdams (forthcoming) to the case of multidimensional actions and types).
The key step for both Athey and McAdams is to establish convexity of the best-response
correspondence, in order to apply a fixed point theorem. In contrast, we use a contraction
mapping argument. Our approach has a number of advantages. First, it gives both
existence and uniqueness of equilibrium. Secondly, it seems to be a very flexible analytical
approach. For example, we are able to accommodate the extension to multidimensional
actions and types relatively easily; in contrast, as McAdams shows, multidimensional
actions (in particular) present a challenge when establishing convexity of the best response
correspondence. Thirdly, the contraction approach leads to parameteric restrictions that
have a clear economic interpretation. In particular, the information requirements, in
terms of independence and heterogeneity, are intuitive.

Our analysis helps to clarify the mechanism at work in a number of previous papers
that have found, in a variety of situations, that heterogeneity can ensure uniqueness of
equilibrium. For example, in a canonical two-by-two public good model in Fudenberg
and Tirole (1991, pp. 211-213), there are two pure strategy equilibria in the common
knowledge game. If the distribution of types satisfies certain conditions, there is only
one equilibrium in the incomplete information game. One such condition is that the

maximum value of the density is sufficiently small; following Grandmont (1992), this



can be interpreted as requiring a sufficient degree of heterogeneity between the players.
Burdzy et al. (2001) demonstrate that there can be a unique equilibrium in a model
in which players face exogenous shocks, can change their action only occasionally, and
are heterogeneous in the frequency with which they can change their action. Herrendorf
et al. (2000) show how heterogeneity in the manufacturing productivity (rather than
the information) of agents in a two-sector, increasing returns-to-scale model can remove
indeterminacy and multiplicity of equilibrium. Glaeser and Scheinkman (2002) show that
if there is not too much heterogeneity among players, then there can be multiple equilibria
in social interaction games. In all of these papers, heterogeneity lays some part in ensuring
the uniqueness of equilibrium. Our analysis shows exactly what form of heterogeneity is
needed, and exactly what mechanism is at work when heterogeneity yields uniqueness.

An important alternative approach to establishing equilibrium uniqueness in incom-
plete information games concerns the class of games known as ‘global games’. Global
games are games of incomplete information whose type space is determined by the play-
ers each observing a noisy signal of an underlying state; see Carlsson and van Damme
(1993), Morris and Shin (1998), and Morris and Shin (2002). If players’ actions are
strict strategic complements, there are ‘dominance regions’ (i.e., types for which there
is a strictly dominant action), and players’ signals are sufficiently informative about the
true underlying state, then global games have a unique, dominance solvable equilibrium.
(Existence of equilibrium is assured by the results of Milgrom and Roberts (1990) on
supermodular games.)

An attractive feature of the global game approach is that a very small (informational)
perturbation of a complete information model with multiple equilibria can yield a unique
equilibrium. In contrast, our approach typically requires sufficiently large perturbations
from the complete information case. The major advantage of our approach, relative to

global games, is that we do not require strategic complementarities or dominance regions.



This allows our results to be used in a wider range of applications.!

The rest of the paper is structured as follows. In section 2, we analyze a simple
model, based on a particular payoff function and the normal distribution, to make the
basic points of the paper. We extend the analysis in section 3 to show how the conclusions
can be generalized to other payoffs and distributions. In the initial version of the model,
we follow the set-up of Athey; in particular, we assume that the action sets are finite
and one-dimensional, and type sets bounded and one-dimensional. In section 3.2, we
show how the analysis can be extended to relax these assumptions. Section 4 concludes.

Longer proofs are in the appendix.

2 A Simple Model

Suppose that there is a continuum of players, of measure 1. There are two possible
actions. The payoff to any player from action 0 is zero. The payoff to player ¢ from
action 1 is t; + g(n). t; is player i’s type, which is private information observed only by
player i. It is drawn from a normal distribution with mean y and variance o2. Players’
types are correlated—the degree of correlation between the types of player ¢ and j # 7 is
p € [0,1) (note that perfect correlation is ruled out). Hence when player ¢ has a private

type of t;, its posterior of the type t_; of any other player —i is normally distributed

!Global games have been used to analyze currency attacks (see Morris and Shin (1998)) and the
pricing of debt (see Morris and Shin (forthcoming)), to name only two examples. But there are many
applications in which the assumption of strategic complementarity is inappropriate. For example, in
industrial organization, it is reasonable that positive network effects might hold in a new market when a
small number of firms have entered; but that the network effects become negative once too many firms
enter and the market becomes crowded. In the Internet, each new web site, or the addition of information
to an existing site, increases the value of the Internet to every existing user. However, as usage of the
Internet grows, so does congestion. Goldstein and Pauzner (2002) study a model of bank runs based on
Diamond and Dybvig (1983). In their model, an agent’s incentive for early withdrawal of funds from a
bank is non-monotonic in the number of agents withdrawing. The incentive is highest when the number
of agents demanding withdrawal reaches the level at which the bank goes bankrupt; after that point, the
incentive decreases. (Despite this lack of complete strategic complementarity, Goldstein and Pauzner are
able to establish uniqueness of equilibrium.)



2 and p are common knowledge.

with mean pt; + (1 — p)y and variance o?(1 — p?). y,0
Finally, n € [0,1] is the proportion of players choosing action 1. ¢ : [0,1] — R is an
interaction function, describing how a player’s utility is affected by the actions of other
players. We assume that it is continuous and bounded i.e., there exists a finite k& such
that sup,,cpq lg(n)| < k/2.2

Consider any strategy profile played by all players other than i. This profile induces
a distribution s(¢) : R — [0, 1] that gives the proportion of players choosing action 1 for

a given value of . The expected utility gain for player ¢ of choosing action 1, conditional

on being type t;, is then

AU(tz, S) =

exp | L (t—pti—u—p)y) —

1 +00
i T[ﬂ/m 9(s(1)) IS

So player i’s expected utility has two components: the expected stand-alone utility (the

first term of the expression), and the expected interaction utility (the second term).

2.1 The Independent Case

Consider first the case of independent types: p = 0. Clearly in this case, the expected
interaction utility does not depend on player ¢’s type. It is then immediate that AU (¢;, s)
is a strictly increasing function of ¢; for any s(-). This means that the best response to

any distribution s(-) induced by any strategy profile is a monotone pure strategy.

Proposition 1 In the independent case, p = 0, the best response BR(s) to any distribu-

2The assumptions that types are unbounded and the interaction term is bounded means that there
are dominance regions i.e., for sufficiently low (high) values of ¢;, it is strictly dominant to choose action
0 (1) for any player i. Our argument does not rely on this feature; see section 3.2 for further discussion.



tion s(-) induced by any strategy profile is a monotone pure strategy, taking the form

for some t € (t,1).

Hence, any equilibrium must be in monotone pure strategies. Given the threshold
point ¢ in a symmetric monotone pure strategy equilibrium, the expected utility of a

player of type ¢ is

AU =i+ ;W </_;g(0) exp [—% (t%yﬂ dt

The equilibrium threshold point satisfies the equation

AU(t) £ 0. (3)

MS show in the case of strict strategic complements (i.e., g(+) strictly increasing) that a
necessary and sufficient condition for there to be a unique solution to equation (3) is that
o is sufficiently large i.e., that there is enough heterogeneity. A similar argument is given
in HVW, who give a sufficient, but not necessary condition based on heterogeneity. The
next proposition shows that the assumption of strategic complementarity is not needed

for this result.

Proposition 2 For any continuous and bounded interaction function g(-), in the inde-

pendent case, there exists a o* > 0 such that if o > o*, then there is a unique equilibrium.



Proof. There is a unique rationalizable action for (almost) all types iff dAU(t)/dt > 0

for any ¢ at which AU(f) = 0. Differentiation of equation (2) gives

(]

Since |g(0) — g(1)| < k, a sufficient condition for dAU(%)/dt > 0 is

U@ (405D o,

dt 2ro

k
\2mo

1>

which completes the proof. U

2.2 Positive Correlation

Now suppose that there is a degree of correlation: p € (0,1). In this section, we derive
joint conditions on heterogeneity o, correlation p, and the interaction function bound &
such that the best response of player ¢ to any strategy profile played by all other players
is a monotone pure strategy. Once this fact is established, sufficient heterogeneity again
ensures uniqueness of equilibrium. Hence the basic mechanism that generates uniqueness

in the case of independence extends to positive, but limited correlation.

Proposition 3 If

1— p? k
S

p? \V2mo ’

then the best response to any strateqy profile is a monotone pure strategy.

Proof. See Appendix A.
In order to establish uniqueness of equilibrium in the correlated case, we now derive

a condition for there to be a unique monotone pure strategy equilibrium, assuming that



such an equilibrium exists. This result is stated in proposition 4; as in proposition 2,
it basically requires sufficiently large heterogeneity (for any given values of p and k).
We then combine the results of propositions 3 and 4 to give a sufficient condition for

equilibrium uniqueness.

Proposition 4 If

1+p k

> , 5)
1-p o2no (5)

and a monotone pure strateqy equilibrium exists, then there is a unique monotone pure

strateqy equilibrium.
Proof. As in the proof of proposition 2, there is a unique threshold for (almost) all types

iff dAU(t)/dt > 0 for any ¢ at which AU(f) = 0, where

1

t+
V2wo\/1 — p?

AU (?)
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Differentiation shows that a sufficient condition for dAU(#)/dt > 0 is

1>k L7
V2ro V1 —=p? .

This completes the proof. 0

: [1—p%2 [1+4p k
1 > min , > 6
[ p? 1—0p 2o (6)

then there 1s a unique equilibrium which s in monotone pure strategies.

Proposition 5 If
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Proof. To have a unique equilibrium in monotone pure strategies, equations (4) and (5)

must both hold. Also observe that

_ 2 1+
1/ ’/l—p for p € [0, 5]
— 2 1+
1-—

So condition (5) implies (4) for p € (0, 3] while the converse holds for p € [3,1). The

S

)

for p € [3,1).

b

result follows. O

Proposition 5 gives a joint condition on the model parameters p,o and k that is
sufficient for equilibrium uniqueness. The proposition is illustrated in figure 1, which

gives an intuitive interpretation of the result.

ﬁ‘w
3
T
)
[
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—
|
)

o
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+
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Figure 1: Proposition 5
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Two facts stand out from the figure. First, the figure demonstrates the statements
made in the introduction of the paper—that there is a unique equilibrium (in monotone
pure strategies) if and only if there is sufficient heterogeneity of types. In figure 1, the
sufficient condition requires the correlation between players’ types to be sufficiently low
and/or the variance of the prior distribution sufficiently high. (For certain parameter
values, there is also a lower bound on the value of p.)

Secondly, our sufficient condition for uniqueness of equilibrium is stricter than that of
MS. In the figure, the MS result gives a unique equilibrium for all parameter values lying
in the area under the downward-sloping curve. We require in addition that parameter
values lie in the area beneath the upward-sloping line. But, in contrast to MS, we do
not require that players’ actions are strategic complements—proposition 5 holds for any
bounded interactions between the players. So, while our sufficient condition is indeed
stricter than MS’s when actions are strategic complements, it is less strict in the sense
that it applies to a larger class of games.

These observations highlight the mechanism at work here: the conditions ensure that
a monotone pure strategy is a best response to all other strategies; and that there is a

unique monotone pure strategy equilibrium.

3 The General Model

The simple model establishes the role that independence, and hence small correlation,
plays in ensuring equilibrium uniqueness. There is a possibility, however, that the con-
clusions depend on the simplifying assumptions of the model. In this section, we extend
the model in a few directions to show that this is not the case. In particular, we allow

for a more general payoff structure and distribution of types.

11



3.1 Finite and Single-Dimensional Action Games

Consider a game of incomplete information between I players, i € I = {1,...,1}, where
each player first observes its own type, t; € T; = [t;,¢;] C R and then takes an action a;
from an action set A; that is a closed, finite subset of the unit interval that contains 0 and
lie., {0,1} C A; C [0,1]. (The restriction to the unit interval is simply a normalization.)
Let a denote an action profile: @ = (ay,...,az); and let A = xA; the space of action
profiles. A type profile and the space of type profiles are similarly defined as t and
T = xT;. Finally, let a_; denote the profile of actions of all other players, and A_; the
space of all such action profiles. A similar notation is adopted for type profiles, strategy
profiles, marginals etc..

Player i’s payoff function is u; : A x T'— R. We assume that

U1l. Bounded Payoffs. The payoff function u; : AXT — R is bounded and measurable.

Let

Aui(ai, (l;, a_i,t) = ui(ai, a_i,t) — ui(a;, a_i,t).

The joint distribution of players’ types is given by the probability measure 7 on the
(Borel) subsets of T. The marginal distribution on each T; is denoted 7;. We make the

following assumption:

D1. Conditional Densities. The types have conditional densities with respect to the
Lebesgue measure. The conditional density of ¢t_; given ¢;, is denoted f(t_;|t;) for

1 € I and is strictly positive.

Players use behavioural strategies. A behavioural strategy for player i is a measurable
function p; @ A; x T; — [0, 1] where A; is the collection of Borel subsets of A;, with

the following properties: (i) for every B € A;, the function p;(B,-) : T; — [0,1] is

12



measurable; (ii) for every ¢; € T;, the function wu,(-,t;) : A; — [0,1] is a probability
measure. Hence when player 7 observes its type t;, it selects an action in A; according to
the measure p;(+,t;). A pure strategy in behavioural form is simply a function that returns
a probability measure that is concentrated on the graph of a classical pure strategy.?
Let p_; denote the vector of behavioural strategies played by the opponents of player
i. Assumption 1 allows the interim expected payoff of player i (i.e., when it knows its

type t; and has chosen its action a;) to be written as:

Ui(ai, ti; p_; / / u;(a,t) Hd,uj ft_i|t;)dt_;.

JF#i

We make a further assumption on payoff functions:

U2. Uniformly Positive Sensitivity to Own Action and Type. There is a § €

(0, 00) such that for all a; > aj, t; > t;, a_;,t_; and i € I,

Aui(a;, ap, a_i ti t_;) — Aug(ag, aj, a_g, i, t—;) > 6(a; — a;)(t; — t)).

Assumption U2 essentially requires that a higher type makes a higher action more appeal-
ing to a player. It is similar to, but stronger than, an assumption that a player’s payoff
function u;(a;, a_;, t) is supermodular in (a;,#;).* In our case, supermodularity of u; in

(ai, t;) implies that Aw;(a;, al, a_;,t;, t_;) > Aug(a;, al,a_;, t,t_;); clearly, therefore, the

3 An alternative approach would use distributional strategies. A distributional strategy for player i is a
probability measure p; on A; xT; such that the marginal distribution on 7} is 7; i.e., p;(A; x.S) = n;(S) for
any Borel subset S of T;; see Milgrom and Weber (1985). As Milgrom and Weber show, there is a many-
to-one mapping from behavioural strategies to distributional strategies. In fact, there is little difference
between the two approaches here, since we establish quickly (see theorem 1) that in equilibrium, only
monotone pure strategies are used. It is slightly more convenient, however, to use behavioural strategies.

4Let X be a lattice i.e., a partially ordered set that includes both the meet A (the greatest lower
bound) and join V (the least upper bound) of any two elements in the set. A function h : X — R
is supermodular if, for all ,y € X, h(x Vy) + h(x Ay) > h(x) + h(y). In the case that h is twice

13



uniform boundedness assumption is stronger. Nevertheless, the assumption is satisfied
in a large number of games, including most supermodular games (see Athey (2001) for a
longer discussion of this class of games); we note in passing that global games belong to
this class.

In addition, assumption Ul and the finiteness of action sets assumed in this section
imply Lipschitz conditions, expressed in the following corollary (which is stated without

proof, as the statements are immediate).
Corollary 1 Assumption Ul and finite action sets imply that
U3. Uniformly Bounded Sensitivity to Own Action. For each a_; and t, there is

an w € (0,00) such that for all a; > a; and i € I,

Aui(a;, ai,a_;,t) < w(a; — a)).

U4. Uniformly Bounded Sensitivity to Opponents’ Action. There is a k € (0, 00)

such that for all a; > a},t and i € I,

Aui(a;, ), a i, t) — Aui(ag, a),a’ ;, t) < k(a; — a)|la_; —a’ ||

where ||la_; — a’ ;|| = max;y; la; — afl.

In this section, conditions U3 and U4 are consequences of previous assumptions. In section
3.2 when we consider games with a continuum of actions, an additional (continuity)

assumption must be made.

differentiable, h is supermodular if and only if

82
8561‘692’]'

h(z) >0
for all 4, j; see Topkis (1998).
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We make the following assumptions about the conditional density:

D2. There is a ¢ € (0,00) such that for any t; > ¢; and ¢ € I, \/I(t;,t}) < u(t; — 1)),

where

I(t:,1) = Vary. (f(t—i’ti) - f(t—i’t;l)) .

ft=ilt:)
D3. There is a v € [0, 00) such that f;(¢;]t;) <wv for all i, j € I and j # i where

fi(tlt) = / (et

k#i,j

The function defined in assumption D2 is the expectation of the square of a likelihood

o |(e)]

and so is a measure of differential information. In the case that the conditional density

ratio:

f(t_;|t;) is differentiable in ¢;, the function is related to the Fisher information of a

player’s type about the types of the opponents. To see this, consider the limit as ¢, — ¢;:

] / . .
i 2 70 = Vary., (2RI,

!/
ti—>t; tl - tl

Z(t;) is the variance of a score function and so is the Fisher information, measuring how
sensitive the likelihood of other players’ types is to the type of player i. Hence assumption
D2 bounds the Fisher information in the model.

Assumption D3 introduces a particular type of heterogeneity, in terms of the upper
bound v on the conditional density. This condition is similar to the one used by Grand-
mont (1992): we, like him, require the density function to be sufficiently flat.

In the next lemma (the proof of which is in the appendix), we derive a sufficient

15



condition that ensures that a player’s interim expected payoff function satisfies the strict
single crossing condition. We then use this property in theorem 1 to argue that all players

use monotone pure strategies.

Lemma 1 Given assumptions Ul-U8 and D1-D2, if « < 0/w, then player i’s (interim)
expected payoff satisfies the strict single crossing property in (a;t;) for any p_; i.e.,
Ui(ai, ti, u_;) > Ui(aj, t;, p_;) implies Ui(a;, ti, p_;) > Uiaj, ti, p_;) for all a; > aj and

t; > t..
Proof. See Appendix B.

Theorem 1 Given assumptions U1-U3 and D1-D2, if 1 < §/w, then the best response

of player i to any profile of opponents’ strategies is a monotone pure strategy.

Proof. The action set A; is totally ordered (because {0,1} C A; C [0,1]), implying
that U;(a;,t;, p_;) is quasisupermodular in a;. Moreover, A; is independent of t;, and
T; € R is also totally ordered. Finally, U;(a;,t;, pu_;) satisfies the strict single crossing
property when ¢ < §/w, from lemma 1. Therefore by the Monotone Selection Theorem 4’

of Milgrom and Shannon (1990),

si (ti, p_;) = arg max Uy(a;, ti, p_;)

aq;GAZ

is monotone non-decreasing in ¢;. (The strict single crossing property implies that there

is indifference only on sets of measure zero.) O

The sufficient condition in theorem 1 ensuring that each agent plays a monotone pure
strategy is stronger than that found in the simple model of section 2 (see proposition 2).

The Fisher information with the normal distribution is



in contrast, the sufficient condition in proposition 4 for the normal distribution bounds

2

The factor of 27 that does not appear in the bound in this section means that the
sufficient condition in theorem 1 is more demanding. Nevertheless, it is doing much the
same work as the condition in proposition 4. Both require that a player’s type tells it
sufficiently little about the types of other players—in the case of proposition 4, by ensuring
that heterogeneity is sufficiently large and/or correlation sufficiently small; in the case of
theorem 1, by bounding the Fisher information.

The assumptions required for theorem 1—in particular, assumptions U2 and D2—can
be contrasted to the conditions used by Athey (2001). In both papers, the first step is to
establish that an expected payoff satisfy a single crossing property in incremental returns
(SCP-IR).> Athey imposes such an assumption from the outset, when all other players
use non-decreasing strategies; she shows that the assumption is satisfied in games where
agents’ ex post utility is supermodular in @ and (a;,t;), j € I and types are affiliated
(see Athey (2001, theorem 3)). In contrast, we assume that the ez post utility function
u; satisfies a condition slightly stronger than supermodularity in own action and type,
(ai, t;), and that types are not too associated. We can then show that the expected payoff
satisfies a SCP-IR for any strategy profiles of opponents.

The second step is to show that there is a unique equilibrium in monotone pure

strategies. A sufficient condition for this is given in the next theorem.

Theorem 2 Given assumptions Ul-Uj and D1-D3 hold, if

L+ — < — (7)

°A function h : R? — R satisfies single crossing of incremental returns in (z,6) if, for all xg >
and Oy > 01, h(zg,0r) — h(xr,0r) > (>)0 implies h(zg,0p) — h(xr,0m) > (>)0. See Milgrom and
Shannon (1990).
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where X < 1, then there is a unique equilibrium, which is in monotone pure strategies.

Proof. See Appendix C.

Note that compared to theorem 1, which requires only that ¢ is less than §/w, the
sufficient condition in theorem 2 is stricter.

What is condition (7) ensuring? It does the two things that were illustrated in the
simple model in section 2. First, it ensures that a player’s own type dominates interaction
effects in payoff terms enough to make any best response a non-decreasing pure strategy.
Roughly speaking, if condition (7) is satisfied, then each player places more weight on
its own type than on the possible actions of its opponents when choosing its best ac-
tion. Secondly, the condition ensures that there is a unique equilibrium in monotone pure
strategies. It does so by using in the general case the mechanism that was used in the
binary action case. In order for there to be multiple equilibria in non-decreasing strate-
gies, it must be that there are multiple values of a player’s type that leaves that player
indifferent between the two actions. The direct effect of a player’s type is monotonic: the
utility difference between the actions increases with type, other things equal. So, in order
for there to be multiple equilibria, the indirect effect, operating through the player’s as-
sessment of its opponents’ actions, must dominate. Condition (7) ensures that the direct,
own-type effect is sufficiently strong; or that the interaction effect is sufficiently weak;
or that the player’s type is sufficiently uninformative about the types (and hence likely
action) of others. It therefore ensures that the direct effect dominates and multiplicity is
not possible.

It is worth comparing condition (7) with condition (5) established in proposition 4.

Recall that there, a contraction mapping was found for monotone pure strategies when

o 1 1—p

>
Kk oV2r\V 1+p
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in the private value case. (In fact, § = 1 in the simple model; it is written here as a

general parameter for comparability.) Condition (7) requires that

x| >
Vv

1
o

p 2
+
V1=p2  Aov2my/1— p?
where the expressions for the Fisher information and the maximum value of the density

of the normal have been used. Condition (7) therefore implies condition (5) if

1 p N 2 - 1 ( 1—p)
o\/1—p2 Xov2my/1—p2 oV2rm L+p

i.e., p(14+/2m) > 1—2/), which certainly holds since A < 1. In summary: the sufficient
condition in theorem 2 is stricter than the sufficient condition in proposition 4.

Finally, we note that Athey (2001, p. 879) commented that “[t|here is not a global
“contraction mapping” theorem”. We agree with this observation: assumptions U2-
U4 and D2-D3 are restrictive, but needed if a contraction is to be established. As we
mentioned in the introduction, we make stronger assumptions than Athey and so obtain

stronger results.

3.2 Extensions

In this section, we consider how the sufficient condition for equilibrium uniqueness estab-
lished in theorem 2 stands up to various extensions of the model.

Consider first the extension to a continuum of actions for each player, so that A; =
[0,1], ¢ € I. The argument of Athey (2001, theorem 2) can be used in a direct way to

establish the uniqueness of equilibrium in this case. One extra assumption is required:
U5. Payoff Continuity. Each u;(a,t) is continuous in a.
Note that in this case, the Lipschitz conditions U3 and U4 are implied by assumptions
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Ul and U5. With this assumption, the conditions in theorem 2 ensure that there is a
unique equilibrium in monotone pure strategies.

We have assumed that the type sets T; are bounded: T; = [t;,¢;] € R. If this as-
sumption does not hold, then the metric used to establish the contraction (see the proof
of theorem 2 in the appendix) is not well-defined. In this case, we need an additional

assumption:

U6. Limit Dominance. There exist ¢;,¢; € T; such that

(a) Aul(() al a_i,ti,t_i) > 0 for all CL; 7é 0, a_; c A—i’ t_i c T—i’ and tz S lfi;

Pt B

(b) Auz(l a a_i,ti,t_i) > () for all CL; 7é ]_, a_; c A—i’ t_i c T—i’ and t; Z Ez

Pt B

With this assumption, the previous arguments again apply.

Suppose now that the type and action sets are multi-dimensional (c.f., McAdams
(forthcoming)). Let the common support of types be T' = [t,]" C R" for some finite
h; and the common action set A of all players be a finite sublattice of k-dimensional
Euclidean space with respect to the product order on R*, where we normalize so that
{0,1}* C A; C [0,1]%. A typical action for player i is a; = (al,...,aF); a typical action
profile is a = (a4, ..., ay).

Some of the previous assumptions have to be restated in straightforward ways:

U2’. Uniformly Positive Sensitivity to Own Type. There is a § € (0, 00) such that

forall a; > a}, t; > t,, a_;,t_; and i € I,
Aui(a;, al,a_;, t, t ;) — Aug(a;, al,a_ tht_;) > 5mla,x(aﬁ — a;l) mgx(tf —tF).

U3’. Uniformly Bounded Sensitivity to Own Action. For each a_; and ¢, there is
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an w € (0,00) such that for all a; > a; and ¢ € I,

Augi(a;, al,a_i,t) < wmlax(al al).

i Y

U4’. Uniformly Bounded Sensitivity to Opponents’ Action. Thereisa x € (0, 00)
such that for all a;,a},t and i € I,

l

Aui(a;, a, a_i, t) — Aug(a;, a;,a ;1) < /imlax(ai — a;l)||a_,~ —a’ |

where |la_; — a’|| = max;; max; |a} — af|.

D2’. Thereis a ¢ € (0,00) such that for any ¢; > t, and i € I, \/I(t;,t}) < tmax,(t! —tF),

where

I(t:,¢) = Varp. | (f(t—i’ti) - f(t—i’t;)) .

f(E-ilti)

We make the additional assumption:

U7. Quasi-supermodularity. u;(a;, a_;,t) is quasi-supermodular in a; € A; for all

a_, €A, tcTandic b

Quasi-supermodularity expresses a weak kind of complementarity between the choice
variables.

We are then able to extend theorems 1 and 2 to the multi-dimensional case. In
the one-dimensional case, the appropriate notion was a monotone pure strategy. In the

multi-dimensional case, this generalizes to an isotone pure strategy: in an isotone pure

6A function h : X — R on a lattice X is quasi-supermodular if (i) h(x) > h(x Ay) implies h(z V y) >
h(y) and (ii) h(z) > h(z Vy) > h(y).
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strategy, t; > t, implies a;(t;) > a;(t}) i.e., the action chosen by a type that is higher in

all dimensions is no lower, in all dimensions.

Theorem 3 Given assumptions Ul, U2-U3’, U7, D1 and D2’, if 1 < §/w, then the best

response of player i to any profile of opponents’ strategies is a isotone pure strategy.

Theorem 4 Given assumptions Ul, U2’-Uj4’°, U7, D1, D2’ and D3, if

KV )
— < = 8
H—)\w_w (8)

where A < 1, then there is a unique equilibrium, which is in isotone pure strategies.

Both theorems are proved by noting that previous proofs are amended in a straightforward
way to accommodate multi-dimensional types and actions; and by noting that, with the

addition of assumption U7, all the conditions for the proof of theorem 1 are satisfied.

4 Conclusions

In this paper, we have provided a sufficient condition for there to be a unique equilibrium,
which is in monotone pure strategies, in games of incomplete information. The condition
relates payoff parameters to informational conditions (independence and heterogeneity)
in a way that ensures that the equilibrium mapping is a contraction. Using the contrac-
tion approach allows us to accommodate a number of extensions relatively easily. This

flexibility should prove useful in applications.
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Appendix

A Proof of Proposition 3

A sufficient condition for player ¢’s best response to any distribution s(-) induced by any
strategy profile to be a monotone pure strategy is that the expected utility AU (¢;, s) (see

equation (1)) is a strictly increasing function of ¢;. This requires that

2
1 0 +oo 1(t—pti—(1=py
1> — s(t))exp |—= dt
V2roy/1—p? |0t \ J_ fs(t)) exp 2 ( oy/1— p?
2
+oo
p t—pti— (1 —ply L (t—pt;—(1—py
= s(t exp [—= dt| .
V2mo?(1 — p?) |- fslt) < o\/1—p? P12 oy/1—p?
Since the normal distribution is symmetric around the mean,
1 oo t—pt;—(1—p) L (t—pt;—(1—p) ’
—pli — L= p)Y —pli =L =p)y
s(t exp | —= dt
V2ro\/1—p? | )= f ())< o\/1— p? ) P12 ( o\/1— p?

< K /*“’ t—pti—(1—=ply exp | L t—pti—(1—-ply
- V2mo\/1 = p? Jotit1-p)y oy 1—=p? 2 oy/1—p?

dz.

A change of variables

2
251 t=pti— (1= p)y dt = il dz
2 ay/1— p? t—pt; — (1= p)y

shows that

1 /+°° topti— (A -py) | L[t —py) |,
V21or/1 = p* Jotir(1-py o/1— p? 2 oy/1— p?
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Hence the sufficient condition is

Kp

g V2ro\/1 — p?

which proves the claim.

B Proof of Lemma 1

Let
AUi(aia CL;, tia /’l’—z) = Ui(aia tiv ,u'—z> - Ui(a;7 ti7 M—z)

For the strict single crossing property to hold, it is sufficient to show that if : < §/w, then
AUi(aia a;7 tia /-‘l’—z) > AUi(aia a;7 t;a ll’—z)
for any a; > a) and t; > t..

AUZ(CLZ,(I,,L,t“H )_AU(azaa;7t;all’ )

/ / Aui(ag, al,a_i, ti t_;) Hduj ft_i|t;)dt_;

J#i
/ / Au;(a;, al,a_;, tht_;) I_Id,uJ fE_|thdt_;
J#i
:/ / [Aui(a;,al,a it t ;) — Aui(a;, al, a_;, tht Hdu] ti|t;)dt_;
' ' J#i
/ / Aui(ai, afyai tht ) | [ s (o) [F(E=ilt)) — F(E=lt)]dE;. (B.9)

JFi
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From assumption U2, we obtain for the first term that

[ sutadianinit) - Suad bt ) T i) s

j#i
> 6(a; — ap)(t — ;). (B.10)

Now consider the second term in equation (B.9). The integral can be separated, so

that

S—

[ Autenatiatiot ) [T dustots) (i) = Flede]de

JFi
_ /T

/A | Au;(az, d),a_i, t),t_;) Hd'uj(" tj)] f(-ilt;) — f(t_i|ti)f(t_i|ti)dt_i
<\

P f(t-ilt)

1/2

Ay

2
Aui(a;, af, ai b, t5) | [ duy (-, tj)] fE—ilt:)dt—;
ji

) 1/2
f@ilt) = f(#-ilti) 1t VdE
- (/T_l ( f(t_ilt:) ) f(tzytl)dtz> Ay

where in the last line, we use the Cauchy-Schwartz inequality.

Using assumption U3 and the fact a; > a} yields an upper bound on the first term of

the product in equation (B.11),

J.

For the second term of the product in equation (B.11),

) 1/2
JEilt)) — f(tilts) _ - (|t — f(tilt:)
(/ (e m"””“) - \/ vare, (M)

1/2

2
/ Aui(ai, aj, a_, t;, t ;) Hduj('7tj)] f(E-ilt)dt; <w(a; —a;). (B.12)
A-i j#i
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because

tilt) — f(t-ilt:)
t_|t;)

_ / (
A (O
= [ttt = fe-duae- = o

since [ f(t-ilt;)dt_; = [ f(t-i|t;)dt_; = 1. Therefore from assumption D2,

2 1/2
it — flt_ilty) o o
</ ( fE=ilt) > / (t—zm)dt—z) <ot — ;) (B.13)

Combining equation (B.9) with equations (B.10)—(B.13) yields

FEilt)) — f(tilt:)
Br ilt:) 1

@ f(t, f(t—lftz)dtﬂ

AUi(ag, ay, ti, p_;) — AU ag, ay, thop_;) > (6 — we)(a; — al)(t; —t.) >0 (B.14)

)

which proves the lemma.

C Proof of Theorem 2

To show existence and uniqueness of equilibrium we first construct the best response
correspondence, and then show that under the assumed parameter restrictions the equi-
librium correspondence is a contraction. Then the result follows from the contraction
mapping theorem.

We start by constructing the equilibrium correspondence. Let

a; = min{a € Aj|la > a;}

a; = max{a € A;la < a;},

2

i.e., aj and a; are the two actions adjacent to a;. Since the action set is countable, both
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a; and a; are well defined. For any given vector of opponents’ behavioural strategies,

w_;, define 7;(a;; p_;) by

AU’i(aiaa;aTi(ai;l’l’—i>7lJ’—i) é 0 <C15)

i.e., 7(a;; ;) is the type at which player i is indifferent between actions a; and a; .
From lemma 1, if §/w > ¢, then the function AU; is strictly increasing in ¢; and so
7i(a;; p_;) is uniquely defined by equation (C.15). Furthermore, 7;(a; p_;) > mi(a; ; p_;).
We maintain the assumption that 6 /w > ¢ and show that the assumption is consistent

with the sufficient condition derived in this proof.
Define
0 ti & [mi(ais py), mila s oy,
Xi(tis ai, p_;) =

1t € [m(ai; pey), milaf s pey)]
for a; € A; and t; € T;. Recall that the best response of player i to any vector of
opponents’ strategies p_; is a monotonic pure strategy. Therefore player i’s best response
wi(aq, ti; p_;) is an indicator function, so that p;(a;, t;; p_;) = xi(ti; a;, p_;) for all a; € A;.

An equilibrium is then defined by

p= (Xi(ti;ai, p_y))ier = d(p)(a, t).

Let X denote the set of indicator functions: X : [, ;(4; x T;) — {0,1}!. The mapping
¢(p) maps X into itself. So ¢(p) is the equilibrium correspondence.
Now we show that ¢(p) is a contraction. First we demonstrate that space X is

complete under an appropriate metric. Consider any two vectors of behavioural strategies,
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p and p'. Let d(p, p') denote the metric

d(p, 1) _maxmax/ |pi(ai, t;) — pi(aq, t;)|dt;. (C.16)

i€l a; €A

Notice that the assumption that the type spaces of all players are bounded means that
the distances defined by the metric exist and are finite. Moreover, the metric is a variant
of the L' metric, and so it is easy to show that it is indeed a metric. The space (X, d)
is complete, since an indicator function is a function of bounded variation (i.e., can be
expressed as the difference between monotonic functions), and so, by Helly’s selection
theorem (see Kolmogorov and Fomin (1970, p. 372)), has a convergent (sub)sequence.

So for existence and uniqueness of equilibrium, it is sufficient to show that ¢(u) is
a contraction under the metric d i.e., that there is a A < 1 such that d(¢(p), d(p')) <
Ad(p, p'). Consider

(), () = magcma [ Pralansti ) = et )|

i€l a€A;

= maxmax (|7i(ai; p;) — 7i(as )| — [milas py) — milas; pw’5)])

i€l a€A;

< (a1t N —=Ilr(aT-u )—=+(aT 1 .
< maxmax (|7i(ai; p;) = 7ilas; plo)| = [7ilars poy) = a5 ply)l)

<r£1éalx211€z}l>f|71(az,u i) — Tilai 1)

where in the second line, we use the fact that y; is an indicator function. A sufficient
condition for ¢(p) to be a contraction under the metric defined in equation (C.16) is

therefore that there is a A € (0, 1) such that
max max |7;(a;; pr_;) — 7i(ai; ply)| < Ad(p, i) (C.17)
el acA;

First note that AU;(a;, a; , mi(ai; p_y), ;) = AUs(as, a; ,1i(a; 1), ;) = 0. This
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implies that

’AUi(aia ai_> Ti<ai;u’—i)> ,Ll,_l) - AUi(ai> ai_> Ti<ai; ,LI,I_Z), u—z)‘
(C.18)

= |AU;i(ai, a5, milai; p'y), w) — AU;(as, a5 mi(as; p ), o)

Our aim is to bound the left-hand side from below with a bound proportional to |7;(a; p_;)—
7i(a;; ' ;)|; and the right-hand side from above with a bound proportional to d(u, p').

To bound the left-hand side from below, observe that lemma 1, assumption U2 and

that the fact a; > a; together imply that

AUi(aiaai_aTi(ai;.ufi>au’fi>_AUi(ai’a’i_’Ti(ai;l"’,—i%ufi)

(C.19)

> (0 = w)las — ;) |rilass ) = Tilas )|

To bound the right-hand side from above, observe that the definition of AU; implies

’AUi(aia ai_; Ti(ai; IJ’/—Z)7 ll’,—z) - AUi(aia ai_u Ti(ai; “’,—1)7 IJ’—Z)

“J. 1.

Recall that under the maintained assumption 6/w > ¢, players use pure strategies. So

i i

for any particular ¢;, p;(a;,t;) is an indicator function i.e., for the behavioural strategy
i+, t;), there exists almost surely a unique a € A; such that p;(a;,t;) =1 for a; = a
and p;(a,t;) =0 for all a; € A; with a; # a. Therefore

/.

Aui(ai,a; , a g, milas ), to) | [ [ dus(-ot5) — Hdu;<-,tj)] '

J#i J#i

(C.20)

= ‘Aui(aiv CL;, Cl,lii, Ti<ai; /J’—i)v t*’L) - Aui(aia CL;, a’liiv Ti(ai; l'l’—i)v t*’L)
where a”; and a” ,Z- are the action profiles prescribed by the two strategy profiles p_, and
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/

K-
Next observe that if a”; = @, then max;; maxq,ea, [pj(a;,t;) — pi(a;, ;)] = 0, and

the right hand side of equation (C.QO) is also zero. Alternatively, if a", # a" ,l-, then

max;; Maxg,ea; |py(aj,t;) — p)(a;,t;)| = 1. Hence

/

—1

Aui(aivai_va’—iaTi(ai;l’l’fi)vt—i) Hd#](vtj) - Hduz(’t])] ‘

i i

(C.21)

= ’Aui<ai7 ai_7 a’liia Ti(ai; l'l’fi)> t*l) - Aui(ai> ai_a aﬁ,z’? Ti<ai; ,U;,i), tfl)

t; t
X max max |i(az, ty) — mj(az, ;)]
Using assumption U4 and the fact that ||a”,—a" /i | <1, the right hand side of equation
(C.21) can therefore be bounded above:

/

Aui(aiaa a_;,T; am/'l' [Hdﬂj _Hd,u;(at])] ‘

J#i J#i

| /\

—a; )mgfarfleaji |wjag, ;) — /’L](CLJJtJ”

It follows from this that the right hand side of equation (C.18) is bounded above:

AU asa7 milas i), 1) = AU, a7 milas il )b )

< [l o ymax mase s 1) = 05,85 bl e )t
1 ay

< (e — a7 ) mgx mas / (a5, 1) — by 1) F (il )
i aj

= ra; — a;) max mea}/ |1i(ag, t5) = 5 (az, )1 f5(t|milas; pl3))dt; — (C.22)
{2 (l]
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Assumption D3 requires that f(¢;|t;) < v; this leads to

AUi(ai,a[,Ti(ai;u/_i) ) AU az:az :7-2(@17/1’ ) H_ )

/
< k(a; —a; rggfgea}/ |wi(ag, t;) — s (ay, t5)|vdt;
!/
< wv(a; —a; rgglxglea}/ |15 (a5 1) = pag, 1)|dt;
= kv(a; — a; )d(p, p'). (C.23)

Putting equation (C.18) with the inequalities (C.19) and (C.23) together yields

KV
(a ) —T(a-u )< ! .24
|Ti(ai; ;) — Tilai; ply)| < 5 Lwd(“’“) (C.24)

where the assumption that §/w > ¢ is still maintained. Since the above inequality holds

for any ¢ € I and any a; € A;, we also have

RV

. T < /
nllealxggxh(az,u D) —Tilap )| < 6_Lwd(u,/,c)
which implies from (C.17) that
d(p(p_; ) ".

Hence ¢ is a contraction under the metric d(-,-) if for A < 1,

<\ (C.25)

Finally, note that if the condition in equation (C.25) is satisfied, then § > ww and so

the initial assumption is verified.
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