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Abstract

This paper provides a sufficient condition for existence and uniqueness of equilib-

rium, which is in monotone pure strategies, in games of incomplete information.

First, we show that if each player’s incremental ex post payoff is uniformly increas-

ing in its own action and type, and its type is sufficiently uninformative of the

types of its opponents (independence), then its expected payoff satisfies a strict

single crossing property in its own action and type, for any strategy profile played

by its opponents. This ensures that a player’s best response to any strategy pro-

file is a monotone pure strategy. Secondly, we show that if, in addition, there is

sufficient heterogeneity of the conditional density of types, then the best response

correspondence is a contraction mapping. This ensures equilibrium existence and

uniqueness. In contrast to existing results, our uniqueness result does not rely on

strategic complementarities; this allows for a wider range of applications.
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1 Introduction

This paper studies existence and uniqueness of equilibrium which is in monotone pure

strategies in games of incomplete information. Several papers have established existence of

pure strategy equilibria in incomplete information games under a variety of assumptions.

For example, Milgrom and Weber (1985) show existence in games with a finite number

of actions and (conditionally) independent types. Milgrom and Roberts (1990) and Vives

(1990) work with supermodular games. The pure strategy equilibria in these games

need not be monotone. A few papers have studied existence of monotone pure strategy

equilibria: in particular, Athey (2001) and McAdams (forthcoming) (discussed further

below). Finally, a strand of the literature has established that in a particular class

of supermodular games (called global games), a unique equilibrium exists which is in

monotone pure strategies; see Carlsson and van Damme (1993) and Frankel et al. (2003).

This paper provides a sufficient condition for existence and uniqueness of equilibrium

in monotone pure strategies in a broad class of games of incomplete information. The

class of games we consider includes most supermodular and all global games, for example;

but is broader, since it does not require that players’ actions are strategic complements.

Our argument has two steps. First, we show that a player’s incremental expected payoff

satisfies a strict single crossing property in its own action and type, for any strategy

profile of its opponents, if its incremental ex post payoff is uniformly increasing in its

own action and type, and its type is sufficiently uninformative about the types of its

opponents. Since the strict single crossing property holds for any strategy profile adopted

by the opponents, each player’s best response is a monotone pure strategy. Secondly,

we show that if, in addition, there is sufficient heterogeneity of the conditional density

of types, then the best response correspondence is a contraction mapping. This ensures

that equilibrium exists and that it is unique.

The argument is easiest to see in an example with independent, private values and
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binary actions. Suppose that a player’s payoff difference between the two actions is

separable in two terms: the first is strictly increasing in the type of the player; the

second depends on the actions of other players. Since the players are assumed to be

independent, player i’s type tells it nothing about the types of its opponents. Hence

player i’s expectation of the payoff difference is strictly increasing in its type, irrespective

of its opponents’ strategies; therefore in equilibrium, players use monotone pure strategies.

To show that there exists a unique equilibrium in monotone pure strategies, we must show

that there is a unique threshold type who is indifferent between the two actions. Consider

a threshold player; and consider its estimate of the payoff effect of its opponents’ actions.

If this estimate is sufficiently insensitive to the threshold player’s type, then the threshold

player’s expected payoff difference is strictly increasing in its type. Hence there can be only

one solution to the indifference condition: if there were multiple solutions, the function

would have to be decreasing at (at least) one of the solutions. If the conditional density

of types is sufficiently flat, then threshold player’s estimate of its opponents’s action will

not vary very much with its type.

These arguments can be extended to more general payoffs and for more general distri-

butions that allow types to be dependent. For more general payoffs, we require that the

incremental ex post payoffs are increasing in own action and type. For more general type

distributions, we require that the likelihood of other players’ types is not too sensitive to

the type of an individual player. In the case when the conditional density is differentiable,

this condition requires that the Fisher information is bounded above. Finally, a condi-

tional density with a small upper bound ensures that the equilibrium correspondence is

unique.

Athey (2001) establishes existence of monotone pure strategy equilibria. She shows

that a single crossing condition—that each player’s expected payoff satisfies monotone

incremental returns in its own type given any non-decreasing strategy profile played by
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its opponents—ensures existence of equilibrium. She shows further that games in which

ex post payoffs are supermodular in all players’ actions and types, and in which types

are affiliated, satisfy the single crossing condition. We also derive a single crossing con-

dition; we show that a condition slightly stronger than supermodularity with respect

own action and type, and uninformative types, ensures this single crossing condition. If

these assumptions are supplemented by heterogeneity, then we can establish that the only

equilibrium that exists is in monotone pure strategies.

The technical details of our argument are quite different from those of Athey (and

extended by McAdams (forthcoming) to the case of multidimensional actions and types).

The key step for both Athey and McAdams is to establish convexity of the best-response

correspondence, in order to apply a fixed point theorem. In contrast, we use a contraction

mapping argument. Our approach has a number of advantages. First, it gives both

existence and uniqueness of equilibrium. Secondly, it seems to be a very flexible analytical

approach. For example, we are able to accommodate the extension to multidimensional

actions and types relatively easily; in contrast, as McAdams shows, multidimensional

actions (in particular) present a challenge when establishing convexity of the best response

correspondence. Thirdly, the contraction approach leads to parameteric restrictions that

have a clear economic interpretation. In particular, the information requirements, in

terms of independence and heterogeneity, are intuitive.

Our analysis helps to clarify the mechanism at work in a number of previous papers

that have found, in a variety of situations, that heterogeneity can ensure uniqueness of

equilibrium. For example, in a canonical two-by-two public good model in Fudenberg

and Tirole (1991, pp. 211–213), there are two pure strategy equilibria in the common

knowledge game. If the distribution of types satisfies certain conditions, there is only

one equilibrium in the incomplete information game. One such condition is that the

maximum value of the density is sufficiently small; following Grandmont (1992), this
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can be interpreted as requiring a sufficient degree of heterogeneity between the players.

Burdzy et al. (2001) demonstrate that there can be a unique equilibrium in a model

in which players face exogenous shocks, can change their action only occasionally, and

are heterogeneous in the frequency with which they can change their action. Herrendorf

et al. (2000) show how heterogeneity in the manufacturing productivity (rather than

the information) of agents in a two-sector, increasing returns-to-scale model can remove

indeterminacy and multiplicity of equilibrium. Glaeser and Scheinkman (2002) show that

if there is not too much heterogeneity among players, then there can be multiple equilibria

in social interaction games. In all of these papers, heterogeneity lays some part in ensuring

the uniqueness of equilibrium. Our analysis shows exactly what form of heterogeneity is

needed, and exactly what mechanism is at work when heterogeneity yields uniqueness.

An important alternative approach to establishing equilibrium uniqueness in incom-

plete information games concerns the class of games known as ‘global games’. Global

games are games of incomplete information whose type space is determined by the play-

ers each observing a noisy signal of an underlying state; see Carlsson and van Damme

(1993), Morris and Shin (1998), and Morris and Shin (2002). If players’ actions are

strict strategic complements, there are ‘dominance regions’ (i.e., types for which there

is a strictly dominant action), and players’ signals are sufficiently informative about the

true underlying state, then global games have a unique, dominance solvable equilibrium.

(Existence of equilibrium is assured by the results of Milgrom and Roberts (1990) on

supermodular games.)

An attractive feature of the global game approach is that a very small (informational)

perturbation of a complete information model with multiple equilibria can yield a unique

equilibrium. In contrast, our approach typically requires sufficiently large perturbations

from the complete information case. The major advantage of our approach, relative to

global games, is that we do not require strategic complementarities or dominance regions.
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This allows our results to be used in a wider range of applications.1

The rest of the paper is structured as follows. In section 2, we analyze a simple

model, based on a particular payoff function and the normal distribution, to make the

basic points of the paper. We extend the analysis in section 3 to show how the conclusions

can be generalized to other payoffs and distributions. In the initial version of the model,

we follow the set-up of Athey; in particular, we assume that the action sets are finite

and one-dimensional, and type sets bounded and one-dimensional. In section 3.2, we

show how the analysis can be extended to relax these assumptions. Section 4 concludes.

Longer proofs are in the appendix.

2 A Simple Model

Suppose that there is a continuum of players, of measure 1. There are two possible

actions. The payoff to any player from action 0 is zero. The payoff to player i from

action 1 is ti + g(n). ti is player i’s type, which is private information observed only by

player i. It is drawn from a normal distribution with mean y and variance σ2. Players’

types are correlated—the degree of correlation between the types of player i and j 6= i is

ρ ∈ [0, 1) (note that perfect correlation is ruled out). Hence when player i has a private

type of ti, its posterior of the type t−i of any other player −i is normally distributed

1Global games have been used to analyze currency attacks (see Morris and Shin (1998)) and the
pricing of debt (see Morris and Shin (forthcoming)), to name only two examples. But there are many
applications in which the assumption of strategic complementarity is inappropriate. For example, in
industrial organization, it is reasonable that positive network effects might hold in a new market when a
small number of firms have entered; but that the network effects become negative once too many firms
enter and the market becomes crowded. In the Internet, each new web site, or the addition of information
to an existing site, increases the value of the Internet to every existing user. However, as usage of the
Internet grows, so does congestion. Goldstein and Pauzner (2002) study a model of bank runs based on
Diamond and Dybvig (1983). In their model, an agent’s incentive for early withdrawal of funds from a
bank is non-monotonic in the number of agents withdrawing. The incentive is highest when the number
of agents demanding withdrawal reaches the level at which the bank goes bankrupt; after that point, the
incentive decreases. (Despite this lack of complete strategic complementarity, Goldstein and Pauzner are
able to establish uniqueness of equilibrium.)
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with mean ρti + (1 − ρ)y and variance σ2(1 − ρ2). y, σ2 and ρ are common knowledge.

Finally, n ∈ [0, 1] is the proportion of players choosing action 1. g : [0, 1] → R is an

interaction function, describing how a player’s utility is affected by the actions of other

players. We assume that it is continuous and bounded i.e., there exists a finite k such

that supn∈[0,1] |g(n)| ≤ k/2.2

Consider any strategy profile played by all players other than i. This profile induces

a distribution s(t) : R → [0, 1] that gives the proportion of players choosing action 1 for

a given value of t. The expected utility gain for player i of choosing action 1, conditional

on being type ti, is then

∆U(ti, s) ≡ ti +
1√

2πσ
√

1− ρ2

∫ +∞

−∞

g(s(t)) exp



−1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2


 dt. (1)

So player i’s expected utility has two components: the expected stand-alone utility (the

first term of the expression), and the expected interaction utility (the second term).

2.1 The Independent Case

Consider first the case of independent types: ρ = 0. Clearly in this case, the expected

interaction utility does not depend on player i’s type. It is then immediate that ∆U(ti, s)

is a strictly increasing function of ti for any s(·). This means that the best response to

any distribution s(·) induced by any strategy profile is a monotone pure strategy.

Proposition 1 In the independent case, ρ = 0, the best response BR(s) to any distribu-

2The assumptions that types are unbounded and the interaction term is bounded means that there
are dominance regions i.e., for sufficiently low (high) values of ti, it is strictly dominant to choose action
0 (1) for any player i. Our argument does not rely on this feature; see section 3.2 for further discussion.
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tion s(·) induced by any strategy profile is a monotone pure strategy, taking the form

BR(s) =















0 t < t̃,

1 t ≥ t̃

for some t̃ ∈ (
¯
t, t̄).

Hence, any equilibrium must be in monotone pure strategies. Given the threshold

point t̃ in a symmetric monotone pure strategy equilibrium, the expected utility of a

player of type t̃ is

∆U(t̃) ≡ t̃+
1√
2πσ

(

∫ t̃

−∞

g(0) exp

[

−1

2

(

t− y

σ

)2
]

dt

+

∫

∞

t̃

g(1) exp

[

−1

2

(

t− y

σ

)2
]

dt

)

. (2)

The equilibrium threshold point satisfies the equation

∆U(t̃) , 0. (3)

MS show in the case of strict strategic complements (i.e., g(·) strictly increasing) that a

necessary and sufficient condition for there to be a unique solution to equation (3) is that

σ is sufficiently large i.e., that there is enough heterogeneity. A similar argument is given

in HVW, who give a sufficient, but not necessary condition based on heterogeneity. The

next proposition shows that the assumption of strategic complementarity is not needed

for this result.

Proposition 2 For any continuous and bounded interaction function g(·), in the inde-

pendent case, there exists a σ∗ ≥ 0 such that if σ > σ∗, then there is a unique equilibrium.
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Proof. There is a unique rationalizable action for (almost) all types iff d∆U(t̃)/dt̃ > 0

for any t̃ at which ∆U(t̃) = 0. Differentiation of equation (2) gives

d∆U(t̃)

dt̃
= 1 +

(

g(0)− g(1))√
2πσ

)

exp

[

−
(

t̃− y

σ

)2
]

.

Since |g(0)− g(1)| ≤ k, a sufficient condition for d∆U(t̃)/dt̃ > 0 is

1 >
k√
2πσ

which completes the proof. ¤

2.2 Positive Correlation

Now suppose that there is a degree of correlation: ρ ∈ (0, 1). In this section, we derive

joint conditions on heterogeneity σ, correlation ρ, and the interaction function bound k

such that the best response of player i to any strategy profile played by all other players

is a monotone pure strategy. Once this fact is established, sufficient heterogeneity again

ensures uniqueness of equilibrium. Hence the basic mechanism that generates uniqueness

in the case of independence extends to positive, but limited correlation.

Proposition 3 If

√

1− ρ2

ρ2
>

k√
2πσ

, (4)

then the best response to any strategy profile is a monotone pure strategy.

Proof. See Appendix A.

In order to establish uniqueness of equilibrium in the correlated case, we now derive

a condition for there to be a unique monotone pure strategy equilibrium, assuming that
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such an equilibrium exists. This result is stated in proposition 4; as in proposition 2,

it basically requires sufficiently large heterogeneity (for any given values of ρ and k).

We then combine the results of propositions 3 and 4 to give a sufficient condition for

equilibrium uniqueness.

Proposition 4 If

√

1 + ρ

1− ρ
>

k√
2πσ

, (5)

and a monotone pure strategy equilibrium exists, then there is a unique monotone pure

strategy equilibrium.

Proof. As in the proof of proposition 2, there is a unique threshold for (almost) all types

iff d∆U(t̃)/dt̃ > 0 for any t̃ at which ∆U(t̃) = 0, where

∆U(t̃) ≡ t̃+
1√

2πσ
√

1− ρ2





∫ t̃

−∞

g(0) exp



−1

2

(

t− ρt̃− (1− ρ)y

σ
√

1− ρ2

)2


 dt

+

∫

∞

t̃

g(1) exp



−1

2

(

t− ρt̃− (1− ρ)y

σ
√

1− ρ2

)2


 dt



 .

Differentiation shows that a sufficient condition for d∆U(t̃)/dt̃ > 0 is

1 >
k√
2πσ

(

1− ρ
√

1− ρ2

)

.

This completes the proof. ¤

Proposition 5 If

1 > min

[
√

1− ρ2

ρ2
,

√

1 + ρ

1− ρ

]

>
k√
2πσ

(6)

then there is a unique equilibrium which is in monotone pure strategies.
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Proof. To have a unique equilibrium in monotone pure strategies, equations (4) and (5)

must both hold. Also observe that

√

1− ρ2

ρ2
≥
√

1 + ρ

1− ρ
for ρ ∈ [0, 1

2
]

√

1− ρ2

ρ2
≤
√

1 + ρ

1− ρ
for ρ ∈ [1

2
, 1).

So condition (5) implies (4) for ρ ∈ (0, 1
2
] while the converse holds for ρ ∈ [ 1

2
, 1). The

result follows. ¤

Proposition 5 gives a joint condition on the model parameters ρ, σ and k that is

sufficient for equilibrium uniqueness. The proposition is illustrated in figure 1, which

gives an intuitive interpretation of the result.

0
0 ρ1

σ

Unique eqm

k
√

2π

√

1−ρ

1+ρ

k
√

2π

√

ρ2

1−ρ2

Figure 1: Proposition 5
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Two facts stand out from the figure. First, the figure demonstrates the statements

made in the introduction of the paper—that there is a unique equilibrium (in monotone

pure strategies) if and only if there is sufficient heterogeneity of types. In figure 1, the

sufficient condition requires the correlation between players’ types to be sufficiently low

and/or the variance of the prior distribution sufficiently high. (For certain parameter

values, there is also a lower bound on the value of ρ.)

Secondly, our sufficient condition for uniqueness of equilibrium is stricter than that of

MS. In the figure, the MS result gives a unique equilibrium for all parameter values lying

in the area under the downward-sloping curve. We require in addition that parameter

values lie in the area beneath the upward-sloping line. But, in contrast to MS, we do

not require that players’ actions are strategic complements—proposition 5 holds for any

bounded interactions between the players. So, while our sufficient condition is indeed

stricter than MS’s when actions are strategic complements, it is less strict in the sense

that it applies to a larger class of games.

These observations highlight the mechanism at work here: the conditions ensure that

a monotone pure strategy is a best response to all other strategies; and that there is a

unique monotone pure strategy equilibrium.

3 The General Model

The simple model establishes the role that independence, and hence small correlation,

plays in ensuring equilibrium uniqueness. There is a possibility, however, that the con-

clusions depend on the simplifying assumptions of the model. In this section, we extend

the model in a few directions to show that this is not the case. In particular, we allow

for a more general payoff structure and distribution of types.
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3.1 Finite and Single-Dimensional Action Games

Consider a game of incomplete information between I players, i ∈ I ≡ {1, . . . , I}, where

each player first observes its own type, ti ∈ Ti ≡ [
¯
ti, t̄i] ⊂ R and then takes an action ai

from an action set Ai that is a closed, finite subset of the unit interval that contains 0 and

1 i.e., {0, 1} ⊆ Ai ⊂ [0, 1]. (The restriction to the unit interval is simply a normalization.)

Let a denote an action profile: a = (a1, . . . , aI); and let A ≡ ×Ai the space of action

profiles. A type profile and the space of type profiles are similarly defined as t and

T ≡ ×Ti. Finally, let a−i denote the profile of actions of all other players, and A−i the

space of all such action profiles. A similar notation is adopted for type profiles, strategy

profiles, marginals etc..

Player i’s payoff function is ui : A× T → R. We assume that

U1. Bounded Payoffs. The payoff function ui : A×T → R is bounded and measurable.

Let

∆ui(ai, a
′
i,a−i, t) ≡ ui(ai,a−i, t)− ui(a

′
i,a−i, t).

The joint distribution of players’ types is given by the probability measure η on the

(Borel) subsets of T . The marginal distribution on each Ti is denoted ηi. We make the

following assumption:

D1. Conditional Densities. The types have conditional densities with respect to the

Lebesgue measure. The conditional density of t−i given ti, is denoted f(t−i|ti) for

i ∈ I and is strictly positive.

Players use behavioural strategies. A behavioural strategy for player i is a measurable

function µi : Ai × Ti → [0, 1] where Ai is the collection of Borel subsets of Ai, with

the following properties: (i) for every B ∈ Ai, the function µi(B, ·) : Ti → [0, 1] is
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measurable; (ii) for every ti ∈ Ti, the function µi(·, ti) : Ai → [0, 1] is a probability

measure. Hence when player i observes its type ti, it selects an action in Ai according to

the measure µi(·, ti). A pure strategy in behavioural form is simply a function that returns

a probability measure that is concentrated on the graph of a classical pure strategy.3

Let µ−i denote the vector of behavioural strategies played by the opponents of player

i. Assumption 1 allows the interim expected payoff of player i (i.e., when it knows its

type ti and has chosen its action ai) to be written as:

Ui(ai, ti;µ−i) =

∫

T−i

∫

A−i

ui(a, t)
∏

j 6=i

dµj(·, tj)f(t−i|ti)dt−i.

We make a further assumption on payoff functions:

U2. Uniformly Positive Sensitivity to Own Action and Type. There is a δ ∈

(0,∞) such that for all ai ≥ a′i, ti ≥ t′i, a−i, t−i and i ∈ I,

∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i) ≥ δ(ai − a′i)(ti − t′i).

Assumption U2 essentially requires that a higher type makes a higher action more appeal-

ing to a player. It is similar to, but stronger than, an assumption that a player’s payoff

function ui(ai,a−i, t) is supermodular in (ai, ti).
4 In our case, supermodularity of ui in

(ai, ti) implies that ∆ui(ai, a
′
i,a−i, ti, t−i) ≥ ∆ui(ai, a

′
i,a−i, t

′
i, t−i); clearly, therefore, the

3An alternative approach would use distributional strategies. A distributional strategy for player i is a
probability measure µi on Ai×Ti such that the marginal distribution on Ti is ηi i.e., µi(Ai×S) = ηi(S) for
any Borel subset S of Ti; see Milgrom and Weber (1985). As Milgrom and Weber show, there is a many-
to-one mapping from behavioural strategies to distributional strategies. In fact, there is little difference
between the two approaches here, since we establish quickly (see theorem 1) that in equilibrium, only
monotone pure strategies are used. It is slightly more convenient, however, to use behavioural strategies.

4Let X be a lattice i.e., a partially ordered set that includes both the meet ∧ (the greatest lower
bound) and join ∨ (the least upper bound) of any two elements in the set. A function h : X → R
is supermodular if, for all x,y ∈ X, h(x ∨ y) + h(x ∧ y) ≥ h(x) + h(y). In the case that h is twice
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uniform boundedness assumption is stronger. Nevertheless, the assumption is satisfied

in a large number of games, including most supermodular games (see Athey (2001) for a

longer discussion of this class of games); we note in passing that global games belong to

this class.

In addition, assumption U1 and the finiteness of action sets assumed in this section

imply Lipschitz conditions, expressed in the following corollary (which is stated without

proof, as the statements are immediate).

Corollary 1 Assumption U1 and finite action sets imply that

U3. Uniformly Bounded Sensitivity to Own Action. For each a−i and t, there is

an ω ∈ (0,∞) such that for all ai ≥ a′i and i ∈ I,

∆ui(ai, a
′
i,a−i, t) ≤ ω(ai − a′i).

U4. Uniformly Bounded Sensitivity to Opponents’ Action. There is a κ ∈ (0,∞)

such that for all ai ≥ a′i, t and i ∈ I,

∆ui(ai, a
′
i,a−i, t)−∆ui(ai, a

′
i,a

′
−i, t) ≤ κ(ai − a′i)‖a−i − a′

−i‖

where ‖a−i − a′
−i‖ ≡ maxj 6=i |aj − a′j|.

In this section, conditions U3 and U4 are consequences of previous assumptions. In section

3.2 when we consider games with a continuum of actions, an additional (continuity)

assumption must be made.

differentiable, h is supermodular if and only if

∂2

∂xi∂xj

h(x) ≥ 0

for all i, j; see Topkis (1998).
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We make the following assumptions about the conditional density:

D2. There is a ι ∈ (0,∞) such that for any ti > t′i and i ∈ I,
√

I(ti, t′i) ≤ ι(ti − t′i),

where

I(ti, t
′
i) ≡ VarT−i

(

f(t−i|ti)− f(t−i|t′i)
f(t−i|ti)

)

.

D3. There is a ν ∈ [0,∞) such that fj(tj|ti) ≤ ν for all i, j ∈ I and j 6= i where

fj(tj|ti) =
∫

×
k 6=i,j

Tk

f(t−i|ti)dt−i.

The function defined in assumption D2 is the expectation of the square of a likelihood

ratio:

ET−i

[

(

f(t−i|t′i)
f(t−i|ti)

)2
]

,

and so is a measure of differential information. In the case that the conditional density

f(t−i|ti) is differentiable in ti, the function is related to the Fisher information of a

player’s type about the types of the opponents. To see this, consider the limit as t′i → ti:

lim
ti→t′i

I(ti, t
′
i)

ti − t′i
→ I(ti) ≡ VarT−i

(

∂ ln f(t−i|ti)
∂ti

)

.

I(ti) is the variance of a score function and so is the Fisher information, measuring how

sensitive the likelihood of other players’ types is to the type of player i. Hence assumption

D2 bounds the Fisher information in the model.

Assumption D3 introduces a particular type of heterogeneity, in terms of the upper

bound ν on the conditional density. This condition is similar to the one used by Grand-

mont (1992): we, like him, require the density function to be sufficiently flat.

In the next lemma (the proof of which is in the appendix), we derive a sufficient
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condition that ensures that a player’s interim expected payoff function satisfies the strict

single crossing condition. We then use this property in theorem 1 to argue that all players

use monotone pure strategies.

Lemma 1 Given assumptions U1–U3 and D1–D2, if ι < δ/ω, then player i’s (interim)

expected payoff satisfies the strict single crossing property in (ai, ti) for any µ−i i.e.,

Ui(ai, t
′
i,µ−i) ≥ Ui(a

′
i, t

′
i,µ−i) implies Ui(ai, ti,µ−i) > Ui(a

′
i, ti,µ−i) for all ai > a′i and

ti > t′i.

Proof. See Appendix B.

Theorem 1 Given assumptions U1–U3 and D1–D2, if ι < δ/ω, then the best response

of player i to any profile of opponents’ strategies is a monotone pure strategy.

Proof. The action set Ai is totally ordered (because {0, 1} ⊆ Ai ⊂ [0, 1]), implying

that Ui(ai, ti,µ−i) is quasisupermodular in ai. Moreover, Ai is independent of ti, and

Ti ∈ R is also totally ordered. Finally, Ui(ai, ti,µ−i) satisfies the strict single crossing

property when ι < δ/ω, from lemma 1. Therefore by the Monotone Selection Theorem 4′

of Milgrom and Shannon (1990),

s∗i (ti,µ−i) = arg max
ai∈Ai

Ui(ai, ti,µ−i)

is monotone non-decreasing in ti. (The strict single crossing property implies that there

is indifference only on sets of measure zero.) ¤

The sufficient condition in theorem 1 ensuring that each agent plays a monotone pure

strategy is stronger than that found in the simple model of section 2 (see proposition 2).

The Fisher information with the normal distribution is

I(ti) =
ρ2

σ2(1− ρ2)
;
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in contrast, the sufficient condition in proposition 4 for the normal distribution bounds

ρ2

2πσ2(1− ρ2)
.

The factor of 2π that does not appear in the bound in this section means that the

sufficient condition in theorem 1 is more demanding. Nevertheless, it is doing much the

same work as the condition in proposition 4. Both require that a player’s type tells it

sufficiently little about the types of other players—in the case of proposition 4, by ensuring

that heterogeneity is sufficiently large and/or correlation sufficiently small; in the case of

theorem 1, by bounding the Fisher information.

The assumptions required for theorem 1—in particular, assumptions U2 and D2—can

be contrasted to the conditions used by Athey (2001). In both papers, the first step is to

establish that an expected payoff satisfy a single crossing property in incremental returns

(SCP-IR).5 Athey imposes such an assumption from the outset, when all other players

use non-decreasing strategies; she shows that the assumption is satisfied in games where

agents’ ex post utility is supermodular in a and (ai, tj), j ∈ I and types are affiliated

(see Athey (2001, theorem 3)). In contrast, we assume that the ex post utility function

ui satisfies a condition slightly stronger than supermodularity in own action and type,

(ai, ti), and that types are not too associated. We can then show that the expected payoff

satisfies a SCP-IR for any strategy profiles of opponents.

The second step is to show that there is a unique equilibrium in monotone pure

strategies. A sufficient condition for this is given in the next theorem.

Theorem 2 Given assumptions U1–U4 and D1–D3 hold, if

ι+
κν

λω
≤ δ

ω
(7)

5A function h : R2 → R satisfies single crossing of incremental returns in (x, θ) if, for all xH > xL

and θH > θL, h(xH , θL) − h(xL, θL) ≥ (>)0 implies h(xH , θH) − h(xL, θH) ≥ (>)0. See Milgrom and
Shannon (1990).
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where λ < 1, then there is a unique equilibrium, which is in monotone pure strategies.

Proof. See Appendix C.

Note that compared to theorem 1, which requires only that ι is less than δ/ω, the

sufficient condition in theorem 2 is stricter.

What is condition (7) ensuring? It does the two things that were illustrated in the

simple model in section 2. First, it ensures that a player’s own type dominates interaction

effects in payoff terms enough to make any best response a non-decreasing pure strategy.

Roughly speaking, if condition (7) is satisfied, then each player places more weight on

its own type than on the possible actions of its opponents when choosing its best ac-

tion. Secondly, the condition ensures that there is a unique equilibrium in monotone pure

strategies. It does so by using in the general case the mechanism that was used in the

binary action case. In order for there to be multiple equilibria in non-decreasing strate-

gies, it must be that there are multiple values of a player’s type that leaves that player

indifferent between the two actions. The direct effect of a player’s type is monotonic: the

utility difference between the actions increases with type, other things equal. So, in order

for there to be multiple equilibria, the indirect effect, operating through the player’s as-

sessment of its opponents’ actions, must dominate. Condition (7) ensures that the direct,

own-type effect is sufficiently strong; or that the interaction effect is sufficiently weak;

or that the player’s type is sufficiently uninformative about the types (and hence likely

action) of others. It therefore ensures that the direct effect dominates and multiplicity is

not possible.

It is worth comparing condition (7) with condition (5) established in proposition 4.

Recall that there, a contraction mapping was found for monotone pure strategies when

δ

κ
>

1

σ
√
2π

√

1− ρ

1 + ρ
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in the private value case. (In fact, δ = 1 in the simple model; it is written here as a

general parameter for comparability.) Condition (7) requires that

δ

κ
≥ 1

σ

ρ
√

1− ρ2
+

2

λσ
√
2π
√

1− ρ2

where the expressions for the Fisher information and the maximum value of the density

of the normal have been used. Condition (7) therefore implies condition (5) if

1

σ

ρ
√

1− ρ2
+

2

λσ
√
2π
√

1− ρ2
>

1

σ
√
2π

(
√

1− ρ

1 + ρ

)

i.e., ρ(1 +
√
2π) > 1− 2/λ, which certainly holds since λ < 1. In summary: the sufficient

condition in theorem 2 is stricter than the sufficient condition in proposition 4.

Finally, we note that Athey (2001, p. 879) commented that “[t]here is not a global

“contraction mapping” theorem”. We agree with this observation: assumptions U2–

U4 and D2–D3 are restrictive, but needed if a contraction is to be established. As we

mentioned in the introduction, we make stronger assumptions than Athey and so obtain

stronger results.

3.2 Extensions

In this section, we consider how the sufficient condition for equilibrium uniqueness estab-

lished in theorem 2 stands up to various extensions of the model.

Consider first the extension to a continuum of actions for each player, so that Ai =

[0, 1], i ∈ I. The argument of Athey (2001, theorem 2) can be used in a direct way to

establish the uniqueness of equilibrium in this case. One extra assumption is required:

U5. Payoff Continuity. Each ui(a, t) is continuous in a.

Note that in this case, the Lipschitz conditions U3 and U4 are implied by assumptions
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U1 and U5. With this assumption, the conditions in theorem 2 ensure that there is a

unique equilibrium in monotone pure strategies.

We have assumed that the type sets Ti are bounded: Ti ≡ [
¯
ti, t̄i] ⊂ R. If this as-

sumption does not hold, then the metric used to establish the contraction (see the proof

of theorem 2 in the appendix) is not well-defined. In this case, we need an additional

assumption:

U6. Limit Dominance. There exist
¯
ti, t̄i ∈ Ti such that

(a) ∆ui(0, a
′
i,a−i, ti, t−i) > 0 for all a′i 6= 0, a−i ∈ A−i, t−i ∈ T−i, and ti ≤

¯
ti,

(b) ∆ui(1, a
′
i,a−i, ti, t−i) > 0 for all a′i 6= 1, a−i ∈ A−i, t−i ∈ T−i, and ti ≥ t̄i.

With this assumption, the previous arguments again apply.

Suppose now that the type and action sets are multi-dimensional (c.f., McAdams

(forthcoming)). Let the common support of types be T = [
¯
t, t̄]h ⊂ Rh for some finite

h; and the common action set A of all players be a finite sublattice of k-dimensional

Euclidean space with respect to the product order on Rk, where we normalize so that

{0, 1}k ⊆ Ai ⊂ [0, 1]k. A typical action for player i is ai ≡ (a1
i , . . . , a

k
i ); a typical action

profile is a ≡ (a1, . . . , aI).

Some of the previous assumptions have to be restated in straightforward ways:

U2’. Uniformly Positive Sensitivity to Own Type. There is a δ ∈ (0,∞) such that

for all ai ≥ a′i, ti ≥ t′i, a−i, t−i and i ∈ I,

∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i) ≥ δmax

l
(ali − a′li )max

p
(tpi − t′pi ).

U3’. Uniformly Bounded Sensitivity to Own Action. For each a−i and t, there is
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an ω ∈ (0,∞) such that for all ai ≥ a′i and i ∈ I,

∆ui(ai, a
′
i,a−i, t) ≤ ωmax

l
(ali − a′li ).

U4’. Uniformly Bounded Sensitivity to Opponents’ Action. There is a κ ∈ (0,∞)

such that for all ai, a
′
i, t and i ∈ I,

∆ui(ai, a
′
i,a−i, t)−∆ui(ai, a

′
i,a

′
−i, t) ≤ κmax

l
(ali − a′li )‖a−i − a′

−i‖

where ‖a−i − a′
−i‖ ≡ maxj 6=imaxl |alj − a′lj |.

D2’. There is a ι ∈ (0,∞) such that for any ti > t′i and i ∈ I,
√

I(ti, t′i) ≤ ιmaxp(t
p
i −t′pi ),

where

I(ti, t
′
i) ≡ VarT−i

(

f(t−i|ti)− f(t−i|t′i)
f(t−i|ti)

)

.

We make the additional assumption:

U7. Quasi-supermodularity. ui(ai,a−i, t) is quasi-supermodular in ai ∈ Ai for all

a−i ∈ A−i, t ∈ T and i ∈ I.6

Quasi-supermodularity expresses a weak kind of complementarity between the choice

variables.

We are then able to extend theorems 1 and 2 to the multi-dimensional case. In

the one-dimensional case, the appropriate notion was a monotone pure strategy. In the

multi-dimensional case, this generalizes to an isotone pure strategy: in an isotone pure

6A function h : X → R on a lattice X is quasi-supermodular if (i) h(x) ≥ h(x∧ y) implies h(x∨ y) ≥
h(y) and (ii) h(x) > h(x ∨ y) > h(y).

21



strategy, ti > t′i implies ai(ti) ≥ ai(t
′
i) i.e., the action chosen by a type that is higher in

all dimensions is no lower, in all dimensions.

Theorem 3 Given assumptions U1, U2’–U3’, U7, D1 and D2’, if ι < δ/ω, then the best

response of player i to any profile of opponents’ strategies is a isotone pure strategy.

Theorem 4 Given assumptions U1, U2’–U4’, U7, D1, D2’ and D3, if

ι+
κν

λω
≤ δ

ω
(8)

where λ < 1, then there is a unique equilibrium, which is in isotone pure strategies.

Both theorems are proved by noting that previous proofs are amended in a straightforward

way to accommodate multi-dimensional types and actions; and by noting that, with the

addition of assumption U7, all the conditions for the proof of theorem 1 are satisfied.

4 Conclusions

In this paper, we have provided a sufficient condition for there to be a unique equilibrium,

which is in monotone pure strategies, in games of incomplete information. The condition

relates payoff parameters to informational conditions (independence and heterogeneity)

in a way that ensures that the equilibrium mapping is a contraction. Using the contrac-

tion approach allows us to accommodate a number of extensions relatively easily. This

flexibility should prove useful in applications.
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Appendix

A Proof of Proposition 3

A sufficient condition for player i’s best response to any distribution s(·) induced by any

strategy profile to be a monotone pure strategy is that the expected utility ∆U(ti, s) (see

equation (1)) is a strictly increasing function of ti. This requires that

1 >
1√

2πσ
√

1− ρ2

∣

∣

∣

∣

∣

∣

∂

∂ti





∫ +∞

−∞

f(s(t)) exp



−1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2


 dt





∣

∣

∣

∣

∣

∣

=
ρ√

2πσ2(1− ρ2)

∣

∣

∣

∣

∣

∣

∫ +∞

−∞

f(s(t))

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)

exp



−1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2


 dt

∣

∣

∣

∣

∣

∣

.

Since the normal distribution is symmetric around the mean,

1√
2πσ

√

1− ρ2

∣

∣

∣

∣

∣

∣

∫ +∞

−∞

f(s(t))

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)

exp



−1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2


 dt

∣

∣

∣

∣

∣

∣

≤ κ√
2πσ

√

1− ρ2

∫ +∞

ρti+(1−ρ)y

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)

exp



−1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2


 dx.

A change of variables

z ≡ 1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2

dt ≡
(

σ2
√

1− ρ2

t− ρti − (1− ρ)y

)

dz

shows that

1√
2πσ

√

1− ρ2

∫ +∞

ρti+(1−ρ)y

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)

exp



−1

2

(

t− ρti − (1− ρ)y

σ
√

1− ρ2

)2


 dt

=
ρ√

2πσ
√

1− ρ2
.
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Hence the sufficient condition is

1 >
κρ√

2πσ
√

1− ρ2

which proves the claim.

B Proof of Lemma 1

Let

∆Ui(ai, a
′
i, ti,µ−i) ≡ Ui(ai, ti,µ−i)− Ui(a

′
i, ti,µ−i).

For the strict single crossing property to hold, it is sufficient to show that if ι < δ/ω, then

∆Ui(ai, a
′
i, ti,µ−i) > ∆Ui(ai, a

′
i, t

′
i,µ−i)

for any ai > a′i and ti > t′i.

∆Ui(ai, a
′
i, ti,µ−i)−∆Ui(ai, a

′
i, t

′
i,µ−i)

=

∫

T−i

∫

A−i

∆ui(ai, a
′
i,a−i, ti, t−i)

∏

j 6=i

dµj(·, tj)f(t−i|ti)dt−i

−
∫

T−i

∫

A−i

∆ui(ai, a
′
i,a−i, t

′
i, t−i)

∏

j 6=i

dµj(·, tj)f(t−i|t′i)dt−i

=

∫

T−i

∫

A−i

[∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i)]

∏

j 6=i

dµj(·, tj)f(t−i|ti)dt−i

−
∫

T−i

∫

A−i

∆ui(ai, a
′
i,a−i, t

′
i, t−i)

∏

j 6=i

dµj(·, tj) [f(t−i|t′i)− f(t−i|ti)] dt−i. (B.9)
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From assumption U2, we obtain for the first term that

∫

T−i

∫

A−i

[∆ui(ai, a
′
i,a−i, ti, t−i)−∆ui(ai, a

′
i,a−i, t

′
i, t−i)]

∏

j 6=i

dµj(·, tj)f(t−i|ti)dt−i

≥ δ(ai − a′i)(ti − t′i). (B.10)

Now consider the second term in equation (B.9). The integral can be separated, so

that

∫

T−i

∫

A−i

∆ui(ai, a
′
i,a−i, t

′
i, t−i)

∏

j 6=i

dµj(·, tj) [f(t−i|t′i)− f(t−i|ti)] dt−i

=

∫

T−i

[

∫

A−i

∆ui(ai, a
′
i,a−i, t

′
i, t−i)

∏

j 6=i

dµj(·, tj)
]

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

f(t−i|ti)dt−i

≤





∫

T−i

[

∫

A−i

∆ui(ai, a
′
i,a−i, t

′
i, t−i)

∏

j 6=i

dµj(·, tj)
]2

f(t−i|ti)dt−i





1/2

×
(

∫

T−i

(

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

)2

f(t−i|ti)dt−i

)1/2

(B.11)

where in the last line, we use the Cauchy-Schwartz inequality.

Using assumption U3 and the fact ai > a′i yields an upper bound on the first term of

the product in equation (B.11),





∫

T−i

[

∫

A−i

∆ui(ai, a
′
i,a−i, t

′
i, t−i)

∏

j 6=i

dµj(·, tj)
]2

f(t−i|ti)dt−i





1/2

≤ ω(ai − a′i). (B.12)

For the second term of the product in equation (B.11),

(

∫

T−i

(

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

)2

f(t−i|ti)dt−i

)1/2

=

√

VarT−i

(

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

)
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because

ET−i

[

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

]

=

∫

T−i

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

f(t−i|ti)dt−i

=

∫

T−i

(f(t−i|t′i)− f(t−i|ti))dt−i = 0

since
∫

T−i
f(t−i|ti)dt−i =

∫

T−i
f(t−i|t′i)dt−i = 1. Therefore from assumption D2,

(

∫

T−i

(

f(t−i|t′i)− f(t−i|ti)
f(t−i|ti)

)2

f(t−i|ti)dt−i

)1/2

≤ ι(ti − t′i) (B.13)

Combining equation (B.9) with equations (B.10)–(B.13) yields

∆Ui(ai, a
′
i, ti,µ−i)−∆Ui(ai, a

′
i, t

′
i,µ−i) ≥ (δ − ωι)(ai − a′i)(ti − t′i) > 0 (B.14)

which proves the lemma.

C Proof of Theorem 2

To show existence and uniqueness of equilibrium we first construct the best response

correspondence, and then show that under the assumed parameter restrictions the equi-

librium correspondence is a contraction. Then the result follows from the contraction

mapping theorem.

We start by constructing the equilibrium correspondence. Let

a+
i = min{a ∈ Ai|a > ai}

a−i = max{a ∈ Ai|a < ai},

i.e., a+
i and a−i are the two actions adjacent to ai. Since the action set is countable, both
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a+
i and a−i are well defined. For any given vector of opponents’ behavioural strategies,

µ−i, define τi(ai;µ−i) by

∆Ui(ai, a
−
i , τi(ai;µ−i),µ−i) , 0 (C.15)

i.e., τi(ai;µ−i) is the type at which player i is indifferent between actions ai and a−i .

From lemma 1, if δ/ω > ι, then the function ∆Ui is strictly increasing in ti and so

τi(ai;µ−i) is uniquely defined by equation (C.15). Furthermore, τi(ai;µ−i) > τi(a
−
i ;µ−i).

We maintain the assumption that δ/ω > ι and show that the assumption is consistent

with the sufficient condition derived in this proof.

Define

χi(ti; ai,µ−i) =















0 ti 6∈ [τi(ai;µ−i), τi(a
+
i ;µ−i)],

1 ti ∈ [τi(ai;µ−i), τi(a
+
i ;µ−i)]

for ai ∈ Ai and ti ∈ Ti. Recall that the best response of player i to any vector of

opponents’ strategies µ−i is a monotonic pure strategy. Therefore player i’s best response

µi(ai, ti;µ−i) is an indicator function, so that µi(ai, ti;µ−i) = χi(ti; ai,µ−i) for all ai ∈ Ai.

An equilibrium is then defined by

µ = (χi(ti; ai,µ−i))i∈I ≡ φ(µ)(a, t).

Let X denote the set of indicator functions: X :
∏

i∈I(Ai × Ti) → {0, 1}I . The mapping

φ(µ) maps X into itself. So φ(µ) is the equilibrium correspondence.

Now we show that φ(µ) is a contraction. First we demonstrate that space X is

complete under an appropriate metric. Consider any two vectors of behavioural strategies,
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µ and µ′. Let d(µ,µ′) denote the metric

d(µ,µ′) ≡ max
i∈I

max
ai∈Ai

∫

Ti

|µi(ai, ti)− µ′i(ai, ti)|dti. (C.16)

Notice that the assumption that the type spaces of all players are bounded means that

the distances defined by the metric exist and are finite. Moreover, the metric is a variant

of the L1 metric, and so it is easy to show that it is indeed a metric. The space (X , d)

is complete, since an indicator function is a function of bounded variation (i.e., can be

expressed as the difference between monotonic functions), and so, by Helly’s selection

theorem (see Kolmogorov and Fomin (1970, p. 372)), has a convergent (sub)sequence.

So for existence and uniqueness of equilibrium, it is sufficient to show that φ(µ) is

a contraction under the metric d i.e., that there is a λ < 1 such that d(φ(µ),φ(µ′)) ≤

λd(µ,µ′). Consider

d(φ(µ),φ(µ′)) = max
i∈I

max
a∈Ai

∫

Ti

∣

∣χi(ai, ti;µ−i)− χi(ai, ti;µ
′
−i)
∣

∣ dti

= max
i∈I

max
a∈Ai

(

|τi(ai;µ−i)− τi(a
+
i ;µ

′
−i)| − |τi(a+

i ;µ−i)− τi(ai;µ
′
−i)|
)

≤ max
i∈I

max
a∈Ai

(

|τi(ai;µ−i)− τi(ai;µ
′
−i)| − |τi(a+

i ;µ−i)− τi(a
+
i ;µ

′
−i)|
)

≤ max
i∈I

max
a∈Ai

|τi(ai;µ−i)− τi(ai;µ
′
−i)|

where in the second line, we use the fact that χi is an indicator function. A sufficient

condition for φ(µ) to be a contraction under the metric defined in equation (C.16) is

therefore that there is a λ ∈ (0, 1) such that

max
i∈I

max
a∈Ai

|τi(ai;µ−i)− τi(ai;µ
′
−i)| ≤ λd(µ,µ′) (C.17)

First note that ∆Ui(ai, a
−
i , τi(ai;µ−i),µ−i) = ∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ

′
−i) = 0. This
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implies that

|∆Ui(ai, a
−
i , τi(ai;µ−i),µ−i)−∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ−i)|

= |∆Ui(ai, a
−
i , τi(ai;µ

′
−i),µ

′
−i)−∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ−i)|.

(C.18)

Our aim is to bound the left-hand side from below with a bound proportional to |τi(ai;µ−i)−

τi(ai;µ
′
−i)|; and the right-hand side from above with a bound proportional to d(µ,µ′).

To bound the left-hand side from below, observe that lemma 1, assumption U2 and

that the fact ai > a−i together imply that

∣

∣

∣∆Ui(ai, a
−
i , τi(ai;µ−i),µ−i)−∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ−i)

∣

∣

∣

≥ (δ − ιω)(ai − a−i )
∣

∣

∣τi(ai;µ−i)− τi(ai;µ
′
−i)
∣

∣

∣.

(C.19)

To bound the right-hand side from above, observe that the definition of ∆Ui implies

∣

∣

∣∆Ui(ai, a
−
i , τi(ai;µ

′
−i),µ

′
−i)−∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ−i)

∣

∣

∣

≤
∫

T−i

∫

A−i

∣

∣

∣

∣

∣

∆ui(ai, a
−
i ,a−i, τi(ai;µ−i), t−i)

[

∏

j 6=i

dµj(·, tj)−
∏

j 6=i

dµ′j(·, tj)
]∣

∣

∣

∣

∣

f(t−i|τi(ai;µ′
−i))dt−i.

Recall that under the maintained assumption δ/ω > ι, players use pure strategies. So

for any particular tj, µj(aj, tj) is an indicator function i.e., for the behavioural strategy

µj(·, tj), there exists almost surely a unique a ∈ Aj such that µj(aj, tj) = 1 for aj = a

and µj(a, tj) = 0 for all aj ∈ Aj with aj 6= a. Therefore

∫

A−i

∣

∣

∣

∣

∣

∆ui(ai, a
−
i ,a−i, τi(ai;µ−i), t−i)

[

∏

j 6=i

dµj(·, tj)−
∏

j 6=i

dµ′j(·, tj)
] ∣

∣

∣

∣

∣

=
∣

∣

∣∆ui(ai, a
−
i ,a

µ
−i, τi(ai;µ−i), t−i)−∆ui(ai, a

−
i ,a

µ′

−i, τi(ai;µ−i), t−i)
∣

∣

∣.

(C.20)

where aµ
−i and a

µ′

−i are the action profiles prescribed by the two strategy profiles µ−i and
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µ′
−i.

Next observe that if aµ
−i = a

µ′

−i, then maxj 6=imaxaj∈Aj
|µj(aj, tj)− µ′j(aj, tj)| = 0, and

the right hand side of equation (C.20) is also zero. Alternatively, if aµ
−i 6= a

µ′

−i, then

maxj 6=imaxaj∈Aj
|µj(aj, tj)− µ′j(aj, tj)| = 1. Hence

∫

A−i

∣

∣

∣

∣

∣

∆ui(ai, a
−
i ,a−i, τi(ai;µ−i), t−i)

[

∏

j 6=i

dµj(·, tj)−
∏

j 6=i

dµ′j(·, tj)
] ∣

∣

∣

∣

∣

=
∣

∣

∣∆ui(ai, a
−
i ,a

µ
−i, τi(ai;µ−i), t−i)−∆ui(ai, a

−
i ,a

µ′

−i, τi(ai;µ−i), t−i)
∣

∣

∣

×max
j 6=i

max
aj∈Aj

|µj(aj, tj)− µ′j(aj, tj)|.

(C.21)

Using assumption U4 and the fact that ‖aµ
−i−aµ′

−i‖ ≤ 1, the right hand side of equation

(C.21) can therefore be bounded above:

∫

A−i

∣

∣

∣

∣

∣

∆ui(ai, a
−
i ,a−i, τi(ai;µ−i), t−i)

[

∏

j 6=i

dµj(·, tj)−
∏

j 6=i

dµ′j(·, tj)
] ∣

∣

∣

∣

∣

≤ κ(ai − a−i )max
j 6=i

max
aj∈Aj

|µj(aj, tj)− µ′j(aj, tj)|.

It follows from this that the right hand side of equation (C.18) is bounded above:

∣

∣

∣
∆Ui(ai,a

−
i , τi(ai;µ

′
−i),µ

′
−i)−∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ−i)

∣

∣

∣

≤
∫

T−i

κ(ai − a−i )max
j 6=i

max
aj∈Aj

|µj(aj, tj)− µ′j(aj, tj)|f(t−i|τi(ai;µ′
−i))dt−i

≤ κ(ai − a−i )max
j 6=i

max
aj∈Aj

∫

T−i

|µj(aj, tj)− µ′j(aj, tj)|f(t−i|τi(ai;µ′
−i))dt−i

= κ(ai − a−i )max
j 6=i

max
aj∈Aj

∫

Tj

|µj(aj, tj)− µ′j(aj, tj)|fj(tj|τi(ai;µ′
−i))dtj (C.22)
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Assumption D3 requires that f(tj|ti) ≤ ν; this leads to

∣

∣

∣∆Ui(ai, a
−
i ,τi(ai;µ

′
−i),µ

′
−i)−∆Ui(ai, a

−
i , τi(ai;µ

′
−i),µ−i)

∣

∣

∣

≤ κ(ai − a−i )max
j 6=i

max
aj∈Aj

∫

Tj

|µj(aj, tj)− µ′j(aj, tj)|νdtj

≤ κν(ai − a−i )max
j∈I

max
aj∈Aj

∫

Tj

|µj(aj, tj)− µ′j(aj, tj)|dtj

= κν(ai − a−i )d(µ,µ
′). (C.23)

Putting equation (C.18) with the inequalities (C.19) and (C.23) together yields

|τi(ai;µ−i)− τi(ai;µ
′
−i)| ≤

κν

δ − ιω
d(µ,µ′) (C.24)

where the assumption that δ/ω > ι is still maintained. Since the above inequality holds

for any i ∈ I and any ai ∈ Ai, we also have

max
i∈I

max
a∈Ai

|τi(ai;µ−i)− τi(ai;µ
′
−i)| ≤

κν

δ − ιω
d(µ,µ′)

which implies from (C.17) that

d(φ(µ−i),φ(µ
′
−i)) ≤

κν

δ − ιω
d(µ,µ′).

Hence φ is a contraction under the metric d(·, ·) if for λ < 1,

κν

δ − ιω
≤ λ. (C.25)

Finally, note that if the condition in equation (C.25) is satisfied, then δ > ιω and so

the initial assumption is verified.
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