The University of Southampton
University of Southampton Institutional Repository

Regulation of the redox homeostasis during polyglutamine misfolding in Huntington’s Disease

Regulation of the redox homeostasis during polyglutamine misfolding in Huntington’s Disease
Regulation of the redox homeostasis during polyglutamine misfolding in Huntington’s Disease
Huntington’s Disease (HD) is one of many neurodegenerative diseases that are associated with protein misfolding, aggregation and oxidative stress. While several changes in the redox homeostasis have been shown to occur in HD animal models and HD brains, the formal relationships between intracellular protein misfolding that occurs in HD, redox dysregulation and cellular toxicity are unknown. Therefore, several cellular models of intracellular polyglutamine (polyQ) protein misfolding were established for mechanistic studies.

Various in vitro transient and stable cell expression systems expressing an N-terminal fragment of huntingtin (htt) (httExon 1, httEx1) with/or without a polyQ expansion and fused to fluorescent proteins were characterized. Mutant httEx1 (mhttEx1) constructs expressed in both neuronal and non-neuronal cell lines produced early polyQ aggregates and intracellular inclusion bodies (IBs) followed by cell toxicity that increased over time in time-course experiments. Using oxidation-sensitive probes, reactive oxygen species (ROS) were measured in polyQ-expressing cells using single, live-cell imaging analysis by confocal microscopy or population assays in order to explore the relationship between polyQ aggregation, ROS production and cellular toxicity. This study highlighted an early increase in ROS due to the expression of aggregation-prone mhttEx1 in both transient and stable cellular systems that coincided with polyQ aggregation, but preceded cell death. Suppression of ROS and toxicity was achieved by two antioxidant compounds (L-NAC and Trolox). Moreover, the use of MitoQ (Coenzyme Q10 covalently attached to triphenylphosphonium cation (TPP+)) at nanomolar concentrations abrogated the increased ROS due to mhttEx1 suggesting a mitochondrial origin of ROS.

Given that molecular chaperones regulate the folding/misfolding of proteins and are involved in the regulation of the cellular redox homeostasis, the role of the redoxactivatable chaperone DJ-1 in HD was investigated. Protein expression analysis in HD cell models, a rodent model of HD and human HD brain samples showed an up-regulation of DJ-1 protein expression compared to control samples. Oxidation of DJ-1 was also elevated
in the human HD cortex. To test for a functional role of DJ-1 elevation and oxidation in HD, DJ-1 was overexpressed with wild-type or mhttEx1 in cell lines and mouse primary astrocytes. Overexpression of DJ-1 accelerated mhttEx1 aggregation and toxicity both of which could be suppressed by exposure of cells to mild oxidants suggesting that DJ-1, when redox-activated to a chaperone, modulates polyQ aggregation and toxicity. This hypothesis was tested by overexpression of mhttEx1 with a DJ-1 mutant lacking a critical redox activatable cysteine (Cys106). The C106S-DJ-1 mutant lost its ability to reduce polyQ aggregation and toxicity under oxidising conditions upon co-expression with mhttEx1 suggesting that DJ-1 indeed functions as a modulator of polyQ misfolding and toxicity.

Together this work suggests that ROS may be produced during polyQ aggregation and is involved in cellular toxicity. This study also shows that DJ-1 regulates both, polyQ aggregation and toxicity in cell models and given the increased DJ-1 expression in vitro and in vivo (human HD), this protein could be a potential target for HD therapy.
Sajjad, Muhammad Umar
00eebd21-723d-459c-af1d-6e05c23dc8aa
Sajjad, Muhammad Umar
00eebd21-723d-459c-af1d-6e05c23dc8aa
Wyttenbach, Andreas
05019897-52b1-4bb6-b259-5d51abae7540

Sajjad, Muhammad Umar (2010) Regulation of the redox homeostasis during polyglutamine misfolding in Huntington’s Disease. University of Southampton, School of Biological Sciences, Doctoral Thesis, 278pp.

Record type: Thesis (Doctoral)

Abstract

Huntington’s Disease (HD) is one of many neurodegenerative diseases that are associated with protein misfolding, aggregation and oxidative stress. While several changes in the redox homeostasis have been shown to occur in HD animal models and HD brains, the formal relationships between intracellular protein misfolding that occurs in HD, redox dysregulation and cellular toxicity are unknown. Therefore, several cellular models of intracellular polyglutamine (polyQ) protein misfolding were established for mechanistic studies.

Various in vitro transient and stable cell expression systems expressing an N-terminal fragment of huntingtin (htt) (httExon 1, httEx1) with/or without a polyQ expansion and fused to fluorescent proteins were characterized. Mutant httEx1 (mhttEx1) constructs expressed in both neuronal and non-neuronal cell lines produced early polyQ aggregates and intracellular inclusion bodies (IBs) followed by cell toxicity that increased over time in time-course experiments. Using oxidation-sensitive probes, reactive oxygen species (ROS) were measured in polyQ-expressing cells using single, live-cell imaging analysis by confocal microscopy or population assays in order to explore the relationship between polyQ aggregation, ROS production and cellular toxicity. This study highlighted an early increase in ROS due to the expression of aggregation-prone mhttEx1 in both transient and stable cellular systems that coincided with polyQ aggregation, but preceded cell death. Suppression of ROS and toxicity was achieved by two antioxidant compounds (L-NAC and Trolox). Moreover, the use of MitoQ (Coenzyme Q10 covalently attached to triphenylphosphonium cation (TPP+)) at nanomolar concentrations abrogated the increased ROS due to mhttEx1 suggesting a mitochondrial origin of ROS.

Given that molecular chaperones regulate the folding/misfolding of proteins and are involved in the regulation of the cellular redox homeostasis, the role of the redoxactivatable chaperone DJ-1 in HD was investigated. Protein expression analysis in HD cell models, a rodent model of HD and human HD brain samples showed an up-regulation of DJ-1 protein expression compared to control samples. Oxidation of DJ-1 was also elevated
in the human HD cortex. To test for a functional role of DJ-1 elevation and oxidation in HD, DJ-1 was overexpressed with wild-type or mhttEx1 in cell lines and mouse primary astrocytes. Overexpression of DJ-1 accelerated mhttEx1 aggregation and toxicity both of which could be suppressed by exposure of cells to mild oxidants suggesting that DJ-1, when redox-activated to a chaperone, modulates polyQ aggregation and toxicity. This hypothesis was tested by overexpression of mhttEx1 with a DJ-1 mutant lacking a critical redox activatable cysteine (Cys106). The C106S-DJ-1 mutant lost its ability to reduce polyQ aggregation and toxicity under oxidising conditions upon co-expression with mhttEx1 suggesting that DJ-1 indeed functions as a modulator of polyQ misfolding and toxicity.

Together this work suggests that ROS may be produced during polyQ aggregation and is involved in cellular toxicity. This study also shows that DJ-1 regulates both, polyQ aggregation and toxicity in cell models and given the increased DJ-1 expression in vitro and in vivo (human HD), this protein could be a potential target for HD therapy.

Text
Umar's_Thesis.pdf - Other
Download (12MB)

More information

Published date: September 2010
Organisations: University of Southampton

Identifiers

Local EPrints ID: 168315
URI: http://eprints.soton.ac.uk/id/eprint/168315
PURE UUID: 70d446ae-00e2-4585-a0bf-eb3f38fdd79c

Catalogue record

Date deposited: 03 Dec 2010 16:43
Last modified: 14 Mar 2024 02:17

Export record

Contributors

Author: Muhammad Umar Sajjad
Thesis advisor: Andreas Wyttenbach

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×