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Abstract 

The effect of Mach number on the plane muong layer has been investigated 

by means of linear stability theory and two- and three-dimensional direct numerical 

simulations of the compressible Navier-Stokes equations. The objective was to iden­

tify the effects of compressibility on a building-block fluid flow, with applications 

to supersonic mixing and combustion. 

Results from linear stability theory show that the amplification rate is reduced 

as Mach number is increased. Above a convective Mach number of 0.6 it is found 

that three-dimensional waves are more amplified than two-dimensional waves and 

a simple relation is found to give the orientation of the most amplified waves. It is 

also shown that the linear stability theory can be used to predict the mixing layer 

growth rate as a function of velocity ratio, density ratio and Mach number. 

Two-dimensional simulations show a strong reduction in growth rate of the two­

dimensional motion as Mach number is increased, with more elongated structures 

forming at high Mach numbers. Shock waves are observed in two-dimensional sim­

ulations above a convective Mach number of 0.7. The supersonic modes of insta­

bility, which are the only two-dimensional unstable modes at high Mach numbers, 

are shown to be radiating and vortical, but have very low growth rates. 

Three-dimensional simulations with random initial conditions confirm the linear 

stability result that oblique waves become the most amplified waves at high Mach 

numbers, with no evidence for any other modes of instability. Simulations beginning 

with a two-dimensional wave and a pair of equal and opposite oblique waves show 

a change in the evolved large-scale structure as Mach number is increased. Above 

a convective Mach number of 0.6 the oblique modes have most of the energy in the 

developed structure, and above a convective Mach number of 1 the two-dimensional 

instability wave has little effect on flow structure. Similar organized structure was 

found in a simulation with random initial conditions. No shock waves were found 

in the three-dimensional simulations, even at convective Mach numbers above 1. 
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CHAPTER 1 

Introduction 

1.1 Motivation 

Free shear layers are of fundamental importance in the study of turbulence. They 

are found in many situations in nature (e.g. atmospheric flows, volcanic eruptions, 

stellar jets) and in industrial applications (e.g. gas turbine combustor, airfoil wake, 

rocket exhaust). Detailed understanding of the physics of free shear layers is essen­

tial for the development of new turbulence and mixing models. Improved models 

of mixing in free shear layers will lead to a better capability for the prediction of 

chemical reactions and control of pollutant emissions, for example from oil and gas 

burners in power generation plant. 

Progress in space research is dependent on developing more efficient propulsion 

systems, and vehicles capable of carrying a higher payload into orbit. Future fully 

re-usable space vehicles have been proposed, which would be capable of taking off 

from conventional runways and attaining earth orbit. Such vehicles would use air 

breathing engines, and in the range of flight Mach numbers from 5 to 20 it appears 

(Swithenbank et al. [1989]) that the best efficiency is obtained in a supersonic 

combustion ram jet (scramjet). In such an engine the heat addition takes place 

at supersonic speeds and the air velocity throughout the engine is approximately 

equal to the flight velocity. The limiting process in these engines is the time taken 

to mix the fuel and oxidizer, which must occur within the combustion chamber for 

the heat release to be of value in generating thrust. Mixing occurs in supersonic 

free shear layers within the combustor. A general understanding of the physics of 

compressible mixing may suggest methods of reducing the mixing time and making 

scramjets more efficient. 

The plane mixing layer is a simple prototype of a free shear layer, consisting of two 

streams of fluid with unequal velocities, and in the compressible case often unequal 

densities. The low speed version has been extensively studied in the laboratory, 

and compressible experiments are now being performed. The flow is amenable to 

solution by direct numerical simulation, and has been selected as the basic flow for 

this study. 
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1.2 Survey of Previous Work 

Much previous research has been directed towards the incompressible mixing 

layer, but the effect of compressibility has received relatively little attention. For 

completeness, the literature for both high and low speed mixing layers is reviewed 

here. 

1.2.1 Experiments 

Early mixing layer research mapped out the time-averaged character of the flow 

(Liepmann and Laufer [1947]), and identified the strong dependence of the down­

stream development of the flow on upstream effects (Bradshaw [1966]). A ma­

jor change in thinking about the mixing layer occurred when Brown and Roshko 

[1974] observed that large-scale nearly two-dimensional structures, which had pre­

viously been associated with a transition phenomena, persisted in the flow at high 

Reynolds numbers, when the mixing layer was statistically self-similar. The large 

scale structure has been found by many succeeding researchers, including Dimotakis 

and Brown [1976] at even higher Reynolds numbers. Oster and Wygnansky [1982] 

found that two-dimensional disturbances applied at the splitter plate were able to 

control the appearance of the large-scale structures downstream in the mixing layer. 

They identified regions where growth was enhanced or retarded by the effects of the 

forcing. 

Three-dimensional structure was observed in the original work of Brown and 

Roshko [1974], showing up as streamwise streaks in the braid region between suc­

cessive rollers. This secondary structure was investigated in detail by Bernal and 

Roshko [1986]' who showed that it consisted of counter-rotating streamwise vor­

tices in the braids, the ends of which became wrapped around the neighboring 

large rollers. The counter-rotating vortices move fluid between them up or down 

which shows up as a mushroom shaped structure in the scalar field, shown clearly 

in Bernal's pictures. The streamwise vortices were initially fixed in space, devel­

oping from small rig-dependent disturbances in the upstream flow field. Later in 

the mixing layer development they appear to move around in space, since long 

time-exposure pictures did not show their presence. 

Identification of dominant structures in the incompressible mixing layer has led 

to the development of new models capable of predicting the behavior of the flow. 
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Dimotakis [1986] proposed a model for entrainment, based on the geometry of the 

primary two-dimensional motion, which successfully predicts the experimentally­

observed phenomenon of asymmetric entrainment of fluid, with more fluid from 

the high-speed side than the low-speed side being entrained into the mixing layer. 

An important new model for mixing and chemical reactions has been developed by 

Broadwell and Breidenthal [1982], and for reactions with finite-rate chemistry by 

Broadwell and Mungal [1988]. The model uses observations from experiment to 

identify various fluid states in the mixing layer: (i) unmixed fluid, (ii) fluid in the 

structures, mixed at the entrainment ratio, and (iii) fluid in strained laminar diffu­

sion layers between the two free streams (e.g. in the braid region). Mixing in each 

region has its own characteristic behavior as a function of Reynolds and Schmidt 

numbers. The Broadwell-Breidenthal-Mungal model correctly predicts many trends 

in experiments with chemical reactions (Mungal and Dimotakis [1984]' Breidenthal 

[1981], Koochesfahani and Dimotakis [1986], Mungal and Frieler [1988]), and has 

been used to predict the effects of forcing on mixing (Sandham et al. [1988]). 

The effect of compressibility on the plane mixing layer was first investigated 

in the 1960's, for the mixing layer between one high-speed stream, and another 

stream at rest. The data, compiled by Birch & Eggers [1973], showed a reduction 

in the growth rate of the mixing layer as the Mach number was increased. Brown & 

Roshko [1974] found that the density ratio alone could not account for the reduction 

in growth rate, implying that a true compressibility effect was being observed. 

Renewed interest in compressible mixing in the 1980's led to experiments by 

Bogdanoff [1983], and by Papamoschou & Roshko [1986, 1988], in which high­

speed mixing layers with various velocity and density ratios were investigated. Both 

sets of researchers proposed a parameter, called the convective Mach number by 

Papamoschou & Roshko, which seemed to collapse all the available growth rate 

data onto one curve, showing reduced growth rate as the convective Mach number 

was increased. The reasoning behind the convective Mach number concept can be 

found in Papamoschou and Roshko [1988]. It is based on the existance of organized 

large-scale structure in the compressible mixing layer. If one looks at the flow in a 

reference frame convecting with the large structures, then the Mach number of the 

free-streams is an intrinsic Mach number for the flow. Respectively for each stream, 

we have: 
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where U; is the convective velocity of the structures, Ui and Ui are the free-stream 

velocities, and ci and ci the sound speeds. The superscript * denotes a dimensional 

quantity. In the incompressible mixing layer in a reference frame moving at U; 
there is a stable stagnation point in the braid region. If the existence of a similar 

point is assumed for the compressible layer, and that this point is reached by an 

isentropic process from the free-streams, then an expression for U; can be derived 

(Papamoschou and Roshko [1988]). For gases with 'Yl = 'Y2 it is found that Mel = 
Me2 and: 

U* * + u.* * U* = -"1~c-,,2_-c'2,-c-,,,1 
e c* + c* 1 2 

(1.2) 

We can also eliminate U; from equation (1.1), and define the Mach number Me as: 

(1.3) 

More recently, Papamoschou [1989] has attempted to measure the convective ve­

locities of the large scale structures directly from experimental Schlieren images. 

He finds disagreement between experiment and theory, and has proposed an alter­

native two-dimensional large-scale structure, in which shock waves are allowed on 

one side of the mixing layer, breaking the assumption of isentropic flow in the above 

derivation. 

Recent experiments by Samimy et al. [1989] show a reduction in turbulence levels 

as Mach number is increased. Ongoing flow-visualization work at Stanford (Clemens 

et al. [1989]) shows little evidence for organized two-dimensional motion at a con­

vective Mach number of 0.6. 

1.2.2 Linear Stability Theory 

Numerical solutions of the linearized equations first began to appear in the early 

1960's. Applications to the incompressible mixing layer were presented by Michalke 

[1965a,b,c], and to the compressible mixing layer by Lessen et al. [1965,1966], and 

by Gropengiesser [1970]. Earlier analytical work had revealed the instability of a 
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velocity profile with an inflection point (Rayleigh [1880]) and the preference for 

amplification of two-dimensional waves in incompressible flows (Squire [1933]). 

The valuable contributions of Gropengiesser [1970] were largely overlooked at 

the time. He found the second mode of instability, previously observed by Lessen 

et al. [1966], which keeps the mixing layer unstable in two dimensions at high 

Mach number. This instability was subsequently rediscovered by Blumen, Drazin 

et al. [1970, 1975, 1977]. Gropengiesser used spatial stability theory and used 

a solution of the compressible laminar boundary-layer equations as the base flow, 

instead of a simple hyperbolic tangent profile. He noted the high amplification rate 

of three-dimensional waves at high Mach number, as found for the compressible 

wall boundary-layer by Mack (see e.g. Mack [1984]). 

When there are walls present in the flow, or in wakes with an embedded sub­

sonic region relative to the free-stream, there can be additional modes of instability 

present. These 'acoustic' modes were found by Mack [1989] in wall boundary layers 

and in near wakes. Additional modes were found for the confined mixing layer by 

Greenough et al. [1989], referred to by them as 'wall modes', which may be the 

same kind of instability. 

The important effects of the mean velocity profile were investigated by Monkewitz 

and Huerre [1982]. They found that only the amplification rate computed by spatial 

theory for the Blasius mixing layer velocity profile showed growth rate proportional 

to A = (Ui - U2)/(Ui + U2), as found in experiments. Morkovin [1988] makes the 

point that only the results from spatial stability analysis based on a mean profile 

satisfying the boundary-layer equations can be compared with experiments. Earlier 

attempts to transform results from the temporal theory gave poor agreement with 

the measurements. 

Huerre and Monkewitz [1985] introduced the notion of convective and absolute 

instabilities for free shear layers, which affects the choice of temporal versus spatial 

theory. If the flow is convectively unstable the linear theory for spatially growing 

disturbances is applicable, whereas the temporal theory should be used for abso­

lutely unstable flows. They found that the transition from absolute to convective 

instability for the mixing layer, unfortunately based on a hyperbolic tangent veloc­

ity profile, occurred at A = 1.315, i.e. for flows with a significant backflow on one 

side. 
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Recent work by Ragab and WU [1988J shows that, as with incompressible free 

shear layers, the compressible mixing layer has a basically inviscid, inflectional 

instability and the effect of viscosity is only to damp the disturbances. They also 

found that non-parallel effects are negligible in compressible mixing layers. 

1.2.3 Secondary Stability Theory 

Secondary stability theory was developed to allow a further step into transition, 

beyond the primary instability, to be studied. The theory assumes that the primary 

instability has developed, modifying the basic flow field. A new eigenvalue stability 

problem is set up, in which the base flow and eigenfunction are dependent upon both 

the streamwise and the normal location. This approach has proven very successful 

for wall boundary-layer and channel flows, predicting the appearance of both K 

(Klebanoff) and H (Herbert) type breakdown towards turbulence (Herbert [1983], 

Herbert and Bodonyi [1989]), which have been observed in experiment and in direct 

numerical simulation (Singer et al. [1987]). 

The major work in this field for the mixing layer was performed by Pierrehumbert 

and Widnall [1982J. They assumed a base flow consisting of the hyperbolic tangent 

mixing layer mean flow, with superposed Stuart [1967J vortices, which are steady 

solutions to the incompressible N avier-Stokes equations. Two classes of instability 

modes were found: fundamental and subharmonic. The fundamental modes have 

the same wavelength in the streamwise direction as the vortex spacing, and the sub­

harmonic modes have twice the wavelength. Two fundamental modes were found, 

corresponding to vortex core deformations - a core 'bulging' mode (spanwise sym­

metric), and a core 'translative' mode (spanwise antisymmetric). The translative 

mode was the more unstable, and the wavelength of the most (rapidly) amplified 

instability was roughly equal to the spanwise spacing of streamwise vortices found 

in the experiments of Bernal and Roshko [1986J. The most amplified subharmonic 

wave was the two-dimensional subharmonic, corresponding to the 2D pairing pro­

cess most commonly observed in experiments. Pierrehumbert and Widnall did find 

another, three-dimensional, subharmonic mode. This produced a helical pairing, 

and may possibly have been observed in the flow visualizations of Chandrsuda et 

al. [1978J. 

The only work in secondary stability for the compressible mixing layer was car­

ried out by Ragab and WU [1989J. They used a base mixing layer profile, and 
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superimposed the neutral mode of the two-dimensional instability. They studied 

the subharmonic instability, and found that, above a convective Mach number of 

0.4, the helical pairing mode was more amplified than the 2D pairing mode. This 

is a further indication that the dominant instability modes at high Mach number 

are three-dimensional modes. 

1.2.4 Numerical Simulations 

Techniques for time-accurate numerical simulation of free shear layers can be 

divided into three categories (i) vortex dynamics calculations, (ii) large-eddy simu­

lations and (iii) direct numerical simulations. The first (e.g. Ashurst and Meiberg 

[1988]) assumes inviscid, incompressible flow. The Biot-Savart rule for vortex induc­

tion assumes an instantaneous transfer of information in the flowfield, which does 

not happen in compressible flow, where the speed of sound is finite. The method 

of large-eddy simulation (LES) requires a model for the smallest scales of turbu­

lence. The method of direct numerical simulation (DNS) can produce spatially and 

temporally accurate solutions of the full Navier-Stokes equations with no modeling, 

when care is taken to choose the flow parameters (e.g. Reynolds number, Schmidt 

number) in order to fully resolve all the scales of motion. Usually the requirement 

for spatial resolution of a wide range of scales necessitates the use of spectral or 

very high order finite-difference numerical methods. 

Two types of mixing layer problem can be tackled numerically. The spatially­

developing mixing layer computations (figure 1.1) use the same reference frame as 

the experiments, with inflow at one end of the computational box and outflow at the 

other end. These inflow/outflow boundaries require special treatment - given the 

convective nature of the instability, the computed mixing layer will be dominated 

by the upstream forcing, as specified by the inflow boundary condition. The outflow 

boundary must allow all structures to smoothly leave the computational domain, 

without reflection of waves back into the simulation. The alternative computations 

are for the time-developing mixing layer (figure 1.2). Here the computational do­

main is fixed in a reference frame moving with the structures, and the flow then 

develops in time, rather than in space. Periodic boundary conditions are enforced 

in the streamwise direction and the flow develops from a specified initial condition. 

Time-developing simulations permit a more efficient use of computational resources, 
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and the periodic boundary conditions in the streamwise and spanwise direction are 

tailor-made for highly accurate Fourier methods. 

The earliest mixing layer computations were performed with LES for the time­

developing mixing layer (Mansour et al. [1978]' Cain et al. [1981]). The first di­

rect numerical simulations were presented by Riley and Metcalfe [1980] for a time­

developing layer developing from random initial conditions, using methods devel­

oped by Orszag and Pao [1974]. Recent work (Metcalfe et al. [1987], Rogers and 

Moser [1989]) has shown that the experimentally observed phenomena of primary 

roll-up and secondary streamwise vortices leading to mushroom shaped structures 

in the braids can be fully realized in numerical simulations. 

The spatially-developing mixing layer was simulated by Lowery and Reynolds 

[1986]. Lowery used inflow boundary conditions consisting of the mean flow, with 

eigenfunctions of the fundamental and two subharmonic frequencies (from linear 

stability analysis) superimposed. This resulted in the generation of a forced mix­

ing layer and he was able to show that the asymmetry of entrainment, observed 

in experiments, could be captured in a spatially-developing computation. Lowery 

also performed three-dimensional computations in which streamwise vortices were 

present in the inflow field. These developed the characteristic mushroom structure 

in the braid region. Follow-up work by Sandham and Reynolds [1989], using Low­

ery's 2D code, showed that the large asymmetry of entrainment, observed in the 

initial development of the mixing layer (Koochesfahani and Dimotakis [1986]) could 

be traced to the effect of the wake of the splitter plate, upstream of the development 

of the mixing layer. It was also shown that a random-walk, applied to the phase of 

thEdorcing eigenfunctions, could be used at the inflow to simulate a more natural 

mixing layer, with linear growth rates and more nearly self-similar statistics. 

The approach of Corcos et al. (Corcos and Sherman [1984], Corcos and Lin [1984] 

and Lin and Corcos [1984]), has been to directly simulate simple deterministic model 

flows of the mixing layer, and extract physical information from these. Part I of 

their study deals with the two-dimensional roll-up, Part II with the development 

of the secondary instability, and Part III with the effect of the staining field from 

the primary roll-up on the development of streamwise vorticity. They found that 

the plane strain field, produced in the braid region by the roll-up of the primary 

instability, acted to 'collapse' the streamwise vorticity associated with the secondary 
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instability of the flow, into circular streamwise vortices, which then generated the 

mushroom structures in the scalar field in the braid. 

Direct numerical simulations of the compressible mixing layer have only recently 

appeared. Both the two-dimensional simulations in the current work, and those 

of Lele [1988, 1989] show the reduction in growth rate of the mixing layer as the 

convective Mach number is increased, and the appearance of weak embedded shock 

waves in the flow for convective Mach numbers above 0.7. Lele also shows that 

simulations started from low level random perturbations evolve first into the usual 

primary roll-up, with wavelength getting longer as the Mach number is increased, 

as predicted by the linear stability analysis. Other work is limited, but Soestrisno 

et al. [1988] presented two-dimensional simulations of the time-developing mixing 

layer, and Eberhardt et al. [1988] have presented simulations of the 'wall mode' 

of instability for the confined mixing layer. The simulations show that this mode 

tends to kink the mixing interface, but does not lead to a roll-up, and probably 

would not contribute to enhanced mixing at high Mach number. 

1.3 Objectives and Overview 

The objective of this work is to secure a fundamental understanding of the effect 

of compressibility on the development of the plane mixing layer. Several important 

questions emerge from the previous work in this area. (1) Why does the mixing 

layer grow more slowly at higher Mach numbers? (2) Is the convective Mach number 

a good parameter to describe the complete behavior of the flow? (3) What is the 

structure of the largest scales in the mixing layer at high Mach number, and what 

implications, if any, does this have for mixing at supersonic speeds? 

The approach of this work is numerical. First, in Chapter 2, the linear stability 

problem is formulated and solved for a wide variety of mixing layers. Spatial stabil­

ity analysis is used to compare with experiments and temporal stability to obtain 

eigenfunctions for use in the direct numerical simulations in later chapters. Inter­

esting features emerge in their own right from the stability computations. First, 

it is shown that the amplification rate of the most unstable mode from the linear 

stability analysis can be used to correctly predict the growth rate of the developed 
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mixing layer. This suggests that linear processes may be very important, even in 

the developed mixing layer. 

Secondly, it is found that three-dimensional waves are far more amplified at high 

Mach numbers than two-dimensional waves, implying that the developed structure 

at high Mach number is highly three-dimensional. 

Results from linear theory are used to provide eigenfunctions for initial conditions 

for the numerical simulations. Linear theory is also used to indicate the key Mach 

numbers at which the instability characteristics of the flow change, where changes in 

physics may be observed, and to suggest Reynolds numbers to use in the simulations, 

low enough to resolve the flow, but high enough to capture the inviscid nature of 

the instabilities. 

The numerical methods, used for the direct numerical simulations, are presented 

in Chapter 3. The three-dimensional code is spectral (Fourier) in the periodic 

directions, and high-order compact finite difference in the normal direction. 

In Chapter 4 two-dimensional simulations are presented, which illustrate the re­

duction in growth rate as the Mach number is increased. Consideration of the 

compressible vorticity equation shows how dilatational and baroclinic effects can 

explain the stabilization of the two-dimensional instability, as compressibility be­

comes marked. At higher Mach numbers the two-dimensional simulations show the 

appearance of weak shock waves, embedded around the vortices. 

The key three-dimensional effects are presented in Chapter 5. At low Mach 

number the modes found by Pierrehumbert and Widnall [1982J are simulated, by 

carefully choosing the phasing of a pair of oblique instability waves relative to the 

fundamental 2D wave. The effect of increasing Mach number on the structure of the 

mixing layer is investigated by running three simulations at Mach numbers where 

(i) the 2D mode is dominant, (ii) both 2D and 3D waves are approximately equally 

amplified, and (iii) high Mach number where the 3D waves are dominant. The latter 

two simulations identify new structures in the mixing layer, which are highly three­

dimensional. A model structure for high Mach number flow (Me> 1) is developed, 

based on the non-linear development of two equal and opposite oblique waves. 
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The main contributions of this work are: 

• mixing layer growth rate can be predicted by linear stability analysis. The 

mixing layer growth rate is found to be directly proportional to the linear am­

plification rate of the most amplified spatial instability wave, using a solution 

to the boundary-layer equations for the base velocity and temperature profiles. 

• the most amplified instability wave becomes an oblique wave above a convec­

tive Mach number of 0.6. At higher Mach numbers the most amplified wave 

becomes more oblique, and the relation Me cos 0 = 0.6 was found to predict 

the orientation of the most amplified waves at high convective Mach numbers. 

• the non-linear growth rate of the two-dimensional instability wave, which dom­

inates the incompressible mixing layer, is reduced as Mach number is increased. 

• if the flow is forced to be two-dimensional then shock waves develop for con­

vective Mach numbers above 0.7. 

• three-dimensional instability waves at high Mach number grow strongly in the 

non-linear region of roll-up, as well as in the linear regime. The developed 

structure is found to change as Mach number is increased, with less spanwise 

coherence and strong streamwise vorticity at higher convective Mach numbers. 

• the structure that develops at high Mach number from a pair of equal and 

opposite oblique instability waves consists of a pair of hairpin-like vortical 

structures which are split in a peak-valley manner in the streamwise direction. 
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CHAPTER 2 

Linear Stability Theory 

In this chapter the linearized theory describing the growth of small disturbances 

in the compressible mixing layer is considered. The linearized equations are solved 

to find the most amplified wave for given profiles of velocity and density. It will 

be shown how linear stability theory can be used to predict the growth rates of 

mixing layers, giving good agreement with experiments for the effects of velocity 

ratio, density ratio and Mach number. Three-dimensional waves are found to be 

important in the compressible mixing layer at high Mach number. The structure of 

the eigensolutions gives important information about the structure and growth of 

the vortices which develop out of the linear instability. 

In the following sections the inviscid equations are used and parallel flow is as­

sumed. Spatial theory is used when comparisons with experiments are desired. 

Temporal theory is used when eigenfunctions are desired as inputs to direct numer­

ical simulations of the time-developing mixing layer. 

2.1 Numerical Solution Schemes 

The compressible boundary-layer equations are solved using a shooting technique 

to obtain the mean flow. The linear disturbance equations are then solved using 

a shooting procedure. The methods are basically from Gropengiesser [1970], but 

have been extended to allow computation of both temporal and spatial instability 

characteristics of a variety of planar free shear layers. 

2.1.1 Solution for the Mean Flow 

The boundary-layer equations for steady two-dimensional flow of a compressible 

perfect gas with zero streamwise pressure gradient are (White [1974]): 

o(p'U') o(p'v') 
ox' + oy' = 0 

(2.1) 

(2.2) 
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(2.3) 

The streamwise direction is x* and the normal direction y*. Velocity components 

in these directions are u* and v* respectively. The density is denoted by p*, the 

viscosity by p.* and the enthalpy per unit mass by h*. The superscript * represents 

a dimensional quantity and the Prandtl number is defined by Pr = c;p.* I k*, where 

k* is the conductivity. 

The perfect gas law is 

p* = p*R*T* (2.4) 

where R* is the gas constant and p* is the pressure. Constant specific heats are 

assumed, and we write dh* = c;dT*, where c; is the specific heat at constant 

pressure. 

Non-dimensionalization of the above equations is obtained by dividing the di­

mensional quantity by the corresponding dimensional quantity on the high-speed 

(y > 0) side of the mixing layer (subscript 1). The new dimensionless variable has 

no superscript. For example: 

u* 
u=­

U* 1 

p* 
p=-

pi 
T* 

T=­
T* 1 

p* 
p=-pi (2.5) 

The reference length-scale is for the time being an arbitrary constant /*, and the 

reference time-scale is /* lUi. Non-dimensional parameters are the Reynolds number 

ReI = pi Ui /* I p.i, the Mach number of the high-speed side of the mixing layer 

Ml = Ui lei, where the sound speed is denoted by c*, and the ratio of specific 

heats "f = c;1 c~. 
The boundary-layer equations in dimensionless form become: 

8(pu) 8(pv) 
--+--=0 

8x 8y 
(2.6) 

(2.7) 
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oT oT 1 0 oT Mrb -1) (OU)2 
pu- + pv- = /1-- + /1- -

ox oy RelPr oy oy Rei oy 
(2.8) 

and 

pT = 1 (2.9) 

since pressure has been assumed uniform. 

The first step is to derive a relation between temperature and velocity. The pro­

cedure, described in White [1974], is to search for a solution T = T(u). Substituting 

into the energy equation (2.8), and using for example 

oT dTou 
oy du oy 

(2.10) 

we have 

(2.11) 

If the Prandtl number is assumed unity then the left hand side must be zero by the 

momentum equation (2.7), and we have the equation 

(2.12) 

This can be integrated twice, subject to the boundary conditions that T = 1 when 

u = 1 and T = T2 when u = U2, giving: 

(2.13) 

This is the general T - u relation, referred to as a Crocco-Busemann relation after 

the original developers. 

The next step is to find a solution to the continuity and momentum equations. 

A stream function 1/1, which automatically satisfies continuity, is defined by: 

01/1 
pu=-

oy 
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01/1 
pv=-­

ox 
(2.14) 



The momentum equation now becomes: 

a1/; au a1/; au 1 a au 
-- - -- = --J1,-
ay ax ax ay Rei ay ay 

(2.15) 

We now introduce Howarth's transform (also known as the Illingworth-Stewartson 

transform, see Schlichting [1979]): 

dy 
-=T 
dYH 

Using this, together with equation (2.9), we can rewrite (2.15) as: 

a1/; a21/; a1/; a21/; 1 a J1, a21/; 
aYH axaYH - ax ay'A = Rei aYH Tay'A 

(2.16) 

(2.17) 

This can be reduced to an ordinary differential equation by making the transfor­

mation: 

(2.18) 

If we also assume that viscosity varies linearly with temperature we obtain 

2FIII + FF" = 0 (2.19) 

where the prime here denotes differentiation with respect to 11. Boundary conditions 

are that F(O) = 0, the dividing streamline, and the free stream velocities F'(oo) = 1 

and F'( -00) = U2. Equation (2.19) can then be solved by shooting. 

The shooting procedure is simplified by using the invariance of the equation to 

the transform G(e = all) = F(lI)/a, reducing the shooting parameters from 2 to 1. 

The method is as follows. 

(a) Guess F'(O) and FI/(O) and shoot to +00. 
(b) Evaluate the constant a and transform the equation so that G satisfies the 

upper boundary condition exactly. 
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(c) Shoot to -00 and compare G'( -00) with U2. 

(d) Choose new F"(O) and iterate. 

A fourth order Runge-Kutta scheme was used for the integrations and secant 

iteration was used to vary F"(O) until G'( -00) converged to U2. Once the mean 

velocity profile G'(YH) is known the temperature can be found using (2.13). The 

shooting cannot proceed to infinity, so a cutoff at YH = 20 was used, after checking 

that this had negligible effect on the results. The last step in the procedure is 

to reverse Howarth's transform and convert back to the physical y coordinate by 

integrating: 

y(O) = 0 (2.20) 

and normalizing the y coordinate by the vorticity thickness, defined by 

(2.21) 

Papamoschou [1986] noted that the results presented by Gropengiesser [1970] 

showed a larger than expected sensitivity to density ratio. Both the current calcu­

lations, and those of Ragab & Wu [1988] show that the work of Gropengiesser was 

not in error. The reason for the discrepancy lies in the normalization of the mean 

profiles. Gropengiesser normalized the thickness by the momentum thickness in the 

Y H domain. Thus his plots for different density ratios are normalized differently, 

according to the effect of density on the transform YH --+ y. To properly assess 

the effect of density ratio on amplification rate one has to normalize by a consis­

tent thickness parameter. The vorticity thickness was chosen since Monkewitz and 

Huerre [1982] found that vorticity thickness rather that momentum thickness gave 

direct proportionality between spatial amplification rate and mixing layer growth 

rate. 

Rather than fit the profiles to a generalized hyperbolic tangent, as done by 

Gropengiesser [1970], it was decided to use the computed profiles directly. A cubic 

spline was fitted through the integration points and this was used as the base profile 

for stability calculations. 
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2.1.2 Linearized Disturbance Equations and Shooting Method 

The inflectional instability of the mixing layer provides an inviscid instability 

mechanism, and the only effect of viscosity is to damp the growing disturbances 

(Betchov and Szewczyk [1963]). It was therefore decided to solve the simpler inviscid 

stability problem. The starting equations are the Euler equations, obtained by 

dropping the viscous and heat conduction terms from the Navier-Stokes equations. 

In dimensional form these equations for continuity, momentum and energy are as 

follows (White [1974]): 

(2.22) 

* ~ * 'l. P (
au' au~ a ' 

P at' + Ui ax') = - ax~ 
J ' 

(2.23) 

ah' ah' ap' ap' '( ') , p at' + ui ax~ = at' + ui ax~ (2.24) , , 

Using the continuity equation, the perfect gas equation (2.4), and the definitions of 

h' and "I from the previous subsection, the energy equation can be rewritten as: 

aT' aT' au~ 
p' (at' + ui ax' ) = ~ ax~ 

, c.:- ' 
(2.25) 

Non-dimensionalization is obtained by the same method as in the previous sec­

tion, equation (2.5). The non-dimensional equations for continuity, momentum and 

energy are: 

(2.26) 

(
au' au.) 1 ap 

p at' + Ui ax'. = - 'VM2 ax' 
J I 1 ' 

(2.27) 

(
aT aT) aUi p -+ui- = -p("t-l)-
at ax' ax' , , (2.28) 

18 



and the non-dimensional perfect gas equation is 

p=pT (2.29) 

We introduce the following decomposition: 

-+1 I IT TTl -+1 1+1 u=u u,v=v,w=w, = + ,p=p p,p= p (2.30) 

where an overbar denotes a mean quantity and a prime a small disturbance. It is 

assumed that the stability analysis may be conducted neglecting the slow streamwise 

variation of the mean flow, i.e. u = u(y), T = T(y) etc. The mean velocity, density 

and temperature profiles need to be specified. The mean pressure is constant and 

non-dimensionally unity. 

Under the parallel-mean-flow assumption, the linearized disturbance equations 

have coefficients which are independent of x, z and t. Hence the solutions are expo­

nentials in these independent variables and disturbances have the form of travelling 

waves 

(ul Vi wi TI pi pi) = (V. i) w l' p' p')ei(ax+.Bz- wt) 
"'" "'" (2.31) 

where v., i), w, 1', ii, fJ are complex eigenfunctions depending only on the y coordinate. 

In equation (2.31) W is the frequency and a and fJ are wavenumbers in the streamwise 

(x) and spanwise (z) directions respectively. The angle fJ of a disturbance is given 

by 

tanfJ = fJlaT (2.32) 

where aT is the real part of a. The wavenumber fJ has to be real, since we require 

disturbances not to amplify for z --> ±oo. The form of a and w depends on the 

particular problem. For the temporal stability problem disturbances grow in time 

and not in space, so a has to be real and w complex. In the spatial problem w 

is real and a complex so that disturbances grow in space, but not in time. The 

amplification rate of a disturbance is given by Wi in the temporal case and -ai in 

the spatial case. 

The pressure perturbation can be easily found from the density and temperature 

using the linearized form of the perfect gas law (2.29): 

(2.33) 
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After substituting equations (2.30) and (2.31) into the governing equations (2.26)­

(2.29) and linearizing, we obtain the following linearized equations for continuity, 

three components of momentum, energy and the perfect gas law: 

jJi(au - w) + vDp + p[i(au + pw) + Dv] = 0 (2.34) 

-[.( - )A + AD-] -iafj pt au-w u v u =--2 
"1M! 

(2.35) 

(2.36) 

(2.37) 

p[i(au - w)T + vDT] = -b -1)[i(au + Pw) + Dv] (2.38) 

and 

(2.39) 

where D represents the operator dj dy. 

These equations can be reduced to a set of two equations as follows. First we 

multiply equation (2.34) by T and then add it to (2.38), using the fact that differ­

entiating (2.29) with respect to y gives T Dp + pDT = o. This gives 

i(au - w)fj = -"I[i(au + pw) + DV] 

Now u and Iii can be eliminated using equations (2.35) and (2.37), giving 

where 

·A 2 

( )D A AD tpa 9 au-w v-av u=--
"1M; 
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Equations (2.36) and (2.41) form a set of two equations for f) and p. These can 

be further reduced by following the method of Gropengiesser [1970j, who defined a 

new variable x: 

The equation to be integrated for X then becomes: 

X(Xg + Du) 
(u-w/a) 

(2.42) 

(2.43) 

The boundary conditions are obtained by considering the asymptotic behavior of 

disturbances in the freestreams. In the freestream Du is zero and equations (2.36) 

and (2.41) can be written as 

D2p =/ia2gp 

D2f) = /ia2gf) 

The general solutions to these equations, vanishing for y ---> ±oo are 

f) = a2e'HY 

(2.44a) 

(2.44b) 

(2.45a) 

(2.45b) 

where al and a2 are constants and q is /ia2g. Note that p and f) decay with the 

same complex exponential in the freestream. Therefore, the new variable X, formed 

as a ratio of these solutions, must go to a constant as y ---> ±oo. Setting dX/ dy = 0 

and Du = 0 in equation (2.43) leaves 

( ) 
a(u-w/a) 

X y = ±oo = -'----,:;;:;----'-
../?f 

(2.46) 

The numerical solution procedure is iterative. First, a guess is made of the 

eigenvalue. For spatial analysis w is specified and a guessed, whereas for temporal 

analysis a is specified and w guessed. Knowing the eigenvalue, we can evaluate X in 

the freestreams using equation (2.46). Then we integrate equation (2.43) from each 
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of the freest reams to the centerline of the mbdng layer at y = O. At the centerline the 

value of X computed by integrating from the upper freestream, X+(O), is compared 

with the value computed by integrating from the lower freestream, x-tO). Then a 

new eigenvalue is chosen, and iterated upon until the eigenvalue has converged to a 

specified tolerance. The shooting method was implemented using subroutines from 

Press et al. [1986]. The integrations were carried out using a variable step fifth 

order Runge-Kutta scheme, and the iteration was achieved by a Newton-Raphson 

method. An error control of 10-6 was used for the integrations, and the iteration 

continued until the eigenvalue converged to 10-7. Single precision arithmetic was 

sufficient for most computations. However, double precision was required for some 

of the weakly amplified supersonic modes of instability (section 2.2.4). 

Generally the integrations were performed with y as the independent variable, 

starting the integrations 10 vorticity thicknesses away from the centerline. Instead 

of solving the problem on the domain [-00,00] it is possible (Gropengiesser [1970]) 

to reduce the domain of integration to [U2,1] by transforming the independent 

variable in equation (2.43) from y to u. This method was also implemented and 

was found to be slightly quicker than the method integrating in y, and gave exactly 

the same results. However, there were problems with this method for wake flows and 

for mixing layer profiles where the base flow was not an analytic function. Results 

from compressible wake calculations using the above methods can be found in Chen 

et al. [1989]. The procedure for the wake calculations was similar. However, for the 

symmetric wake mode iJ at the centerline is zero, so X defined by equation (2.42) 

goes to infinity. This was remedied by working with a new variable 1/X. 

Once the eigenvalues have been found the eigenfunctions are calculated by in­

tegrating equations (2.36) and (2.41) out from the centerline into the freestream. 

Initial conditions are calculated from the solution for X(O), choosing the phase of 

the eigenfunctions so that iJ(O) = 1 + iO. From (2.42) this means that p(O) is given 

by: 

Pr(O) = "(Mfxi(O) 

MO) = -,,(Mfxr(O) 

(2.47a) 

(2.47b) 

After computation the eigenfunctions are renormalized without phase change so 

that the magnitude of u is 1. In all cases this renders the other components of the 

eigenfunction less than 1. 
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2.1.3 Validation 

The first method of validation was to compare results obtained with the shooting 

method described in the previous section with results from a code for direct solution 

of the linearized equations, developed in collaboration with J. H. Chen and described 

in Appendix A. This is an ideal situation for checking numerical methods. When two 

completely different methods give the same results one is confident that the solution 

is correct. The superior performance of the shooting method for weakly amplified 

disturbances led to its being used for all the stability calculations presented here. 

In addition, results were checked against published data including the graphs of 

Gropengiesser [1970], and at low Mach number against results for incompressible 

flow by Michalke [1965a,b], Monkewitz and Huerre [1982] and Lowery and Reynolds 

[1986]. Comparisons are presented below in tables 2.1 and 2.2. 

Table 2.1 Comparison of temporal results at Ml = 0.01 with Michalke [1965] 

2.2 Results 

ar Wi Michalke Wi current 

0.2 0.06975 0.06974 
0.4 0.09410 0.09409 
0.6 0.08650 0.08649 
0.8 0.05388 0.05386 

Table 2.2 Comparison of spatial results at Ml = 0.02 

with Lowery and Reynolds [1986] 

Wr a Lowery a current 

2/3 0.88869, -0.12850i 0.88891, -0.12850i 
1/3 0.43110, -0.09913i 0.43110, -0.09913i 
1/6 0.20908, -0.05860i 0.20908, -0.05860i 

Results are presented for a variety of mixing layers. In non-dimensional terms 

(equation (2.5)) these flows are characterized by U2, the velocity ratio and P2, the 

density ratio. Since pressure is assumed uniform we can also write P2 = 1/T2. 
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2.2.1 Low Mach Number Results 

It was shown by Monkewitz and Huerre [1982] that, when spatial theory and the 

Blasius mixing layer profile are used, the maximum amplification rate 1a,;lmax is 

proportional to ,\ = (Ui - un/(Ui + Ui). Also, the best fit through the experi­

mental data for the incompressible mixing layer with uniform density, compiled by 

Brown and Roshko [1974], is a straight line dli/dx proportional to ,\. Thus, for the 

incompressible mixing layer with constant density it appears that 1a,;lmax from the 

linear theory is proportional to dli/dx from experiments (Morkovin [1988]). 

In this section we test the postulate that the relation I a,; Imax ~ dli / dx applies to 

all mixing layers, with any velocity ratio, density ratio and Mach number, with the 

following provisos: 

(a) use spatial stability theory since this is a convectively unstable flow (Huerre 

and Monkewitz [1985]) 

(b) use a solution of the laminar boundary-layer equations as the base flow 

(c) normalize the profiles by the vorticity thickness. 

The effect of the mean velocity profile can be important. A comparison between 

hyperbolic tangent velocity profiles and the boundary-layer solution is shown for 

two different velocity ratios in figure 2.1. In each case the densities of the free­

streams are equal (P2 = 1). The profiles are all normalized with their vorticity 

thickness and shifted so that u = (1 + U2)/2 at Y = O. The most amplified spatial 

instability wave was computed from these profiles. The percentage difference in 

amplification rate of the case with a hyperbolic tangent profile relative to the case 

with a boundary-layer profile is shown on table 2.3. 

Table 2.3 Percentage difference in lailmax between tanh and 

laminar velocity profiles at Ml = 0.1 and P2 = 1 

U2 % difference 

0.00 +16.0 
0.25 +4.0 
0.50 +0.5 
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The largest effect was at U2 = 0 where the wave with the highest amplification 

rate was 16% more rapidly amplified on the hyperbolic tangent mean flow than on 

the boundary-layer mean flow. At higher values of U2 the effect was much smaller. 

To investigate the effect of profile shape some calculations were made with a pro­

file constructed from a hyperbolic tangent on the low speed side and the boundary­

layer solution on the high speed side. Such profiles are smooth to the eye but 

derivatives are discontinuous at the centerline. No numerical problems were en­

countrered but results have to be treated with caution. It was found that a 'fuller' 

velocity profile on the high speed side was stabilizing, and from the reverse cal­

culation that a longer tail on the low speed side was also stabilizing. The latter 

effect was larger by a factor of about 3. This kind of argument may explain why 

tripping the high speed boundary-layer, making it turbulent and hence having a 

much 'fuller' mean velocity profile reduces the growth rate of the developed mixing 

layer by approximately 30% (Browand and Latigo [1979J, Mungal et al. [1985]). 

The differences in the velocity profile are generally small when the two free­

streams have equal densities, but can become very large when there is a large 

density ratio. The effect of density ratio on the mean velocity and density profiles 

at U2 = 0.5 and P2 = 1/7,1,7 is shown in figure 2.2. The profiles for P2 = 1/7 

and P2 = 7 are very different from a hyperbolic tangent. Clearly in this situation a 

hyperbolic tangent would be a poor choice for the mean velocity profile. The most 

unstable case corresponds to P2 = 7, which is the least 'full' profile on the high 

speed side and the shortest tail on the low speed side, in agreement with the above 

arguments. 

The effect of density and velocity ratios on the amplification rate of the most 

amplified spatial instability wave (Iailmax) is shown in figure 2.3a for the boundary­

layer mean velocity profile and on figure 2.3b for the hyperbolic tangent mean 

velocity profile The growth rate is plotted against >. for three different density 

ratios, as done by Bogdanoff [1984J and Dimotakis [1986J. Experimental points from 

Brown and Roshko [1974J are also plotted, both the original vorticity thicknesses as 

well as density thicknesses. The density thicknesses were evaluated by Bogdanoff 

[1984J by joining the 20% and 80% points on the density profile and measuring the 

distance between the points where this line intercepts the free-stream density. The 

agreement between the linear amplification rate and the experimental growth rate 

is remarkable, especially when mixing layer thicknesses based on the experimental 
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mean density profile are used. For these and other experiments the ratio 6' /1a;lmax, 
where 6' = d6/dx, is shown on table 2.4 below. 

Table 2.4 Relationship between 6' from experiments and lailmax 
from linear theory 

Experiment U2 P2 ~;/Iailmax ~~/Iailmax 
Brown & Roshko [1974J 1/../7 7 0.591 0.491 
Brown & Roshko 119741 1/../7 1/7 0.623 0.537 
Brown & Roshko 1974 1/7 7 0.604 0.344 
Fiedler [1974J 0.0 1.09 0.594 -

Bogdanoff [1984J 0.0 0.2 0.557 -
Dimotakis & Brown [1976] 0.19 1.0 - 0.432 

From these results, we conclude the following relations between linear amplifica­

tion and experimental growth rate (±20%): 

(2.48a) 

(2.48b) 

Comparison between figures 2.3a and 2.3b shows that the linear results based 

on a hyperbolic tangent mean velocity profile do not show the correct trends. At 

).. = 0.3, for example, the effect of increasing density ratio with the hyperbolic 

tangent mean velocity profile is that first the amplification rate rises and then it 

falls. This can be compared with the results for the boundary-layer mean flow, 

which show a continuous rise in amplification rate with increasing density ratio. 

The variation in lailmax over two orders of magnitude change in temperature 

ratio T2 (recall T2 = 1/ P2) is shown in figure 2.4 for velocity ratios U2 = 0 and 

0.5. The case U2 = 0 was computed by Maslowe and Kelly [1971J for a hyperbolic 

tangent mean velocity and a specified, non Crocco-Busemann, mean temperature 

profile. They found a peak amplification rate, at a density ratio of P2 = 33, that 

was 64% higher than the amplification rate for equal densities. The current results 

for that velocity ratio show a much stronger effect of density ratio on amplification 

rate, in better agreement with the experiments of Davey and Roshko [1972J. At a 
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density ratio P2 = 5, the amplification rate is three times that of the equal-density 

case. When U2 = 0 the amplification rate appears to become very large when the 

low speed stream has a large density compared to the high speed stream. However, 

it should be noted that for the case U2 = 0 the v component of velocity on the low 

speed side of the layer will be large relative to the u component and the boundary­

layer assumption is no longer strictly valid. 

We have seen that there is a good agreement between the linear theory and the 

existing experimental data for the effect of density and velocity ratio on the mixing 

layer growth rate at low Mach numbers. It therefore appears reasonable to use 

the linear theory over the full range of possible conditions (not just at experimental 

points) to compare with some of the models that have been proposed for the growth 

rate of the mixing layer as a function of density and velocity ratios. In particular, 

two models are compared. The first is a form originally proposed by Brown [1974], 

and used by Papamoschou [1986] to compute the growth rates of incompressible 

mixing layers with the same velocity and density ratio as his compressible mixing 

layer experiments: 

(2.49) 

The second model is a modified form of the above, and was proposed from geomet­

rical arguments by Dimotakis [1986] 

(2.50) 

These models will be referred to as model 1 and model 2. For comparison purposes 

the constant of proportionality is set so that both models coincide with the linear 

growth rate prediction (equation (2.48)) for the equal-density case. The comparison 

between the models and the linear theory is shown in figure 2.4 for velocity ratios 

o and 0.5. Agreement is generally not good. We can also check the models by 

comparing the growth rate plotted against the right hand sides of equations (2.49) 

and (2.50) above. A straight line would indicate agreement between the model for 

growth rate and the linear theory prediction. Figures 2.5a and 2.5b show this plot 

for each model. Model 2 is closer to a straight line. 
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Both model 1 and model 2, and the linear theory prediction of equation (2.48) 

agree well with the available, but limited, experimental data. However the different 

predictions of these three models for other velocity and density ratios suggests that 

this is not a cut-and-dried issue. In particular, the method of normalization used 

by Papamoschou and Roshko [1988] (dividing the compressible mixing layer growth 

by the (model 1) prediction of growth rate of an incompressible mixing layer with 

the same velocity and density ratio) has the built-in assumption that model 1 is 

correct. 

2.2.2 Oblique Waves at High Mach Number 

The basic effect of compressibility is first considered for the temporal stability of 

the time-developing mixing layer with equal free-stream densities and temperatures, 

and with a simple velocity profile: 

u = tanh(2y) (2.51) 

Equation (1.3) for the convective Mach number can be non-dimensionalized as fol-

lows: 

(2.52) 

In the time-developing reference frame U2 = -1 and for P2 = 1 we have Ml = Me, 

so the convective Mach number is the same as the Mach number of each of the 

free-streams. 

Figure 2.6a shows the effect of increasing Mach number on the amplification rate 

of two-dimensional waves. The observed trend is the same as found by Gropengiesser 

[1970] for the spatial theory, including the appearance of a second (supersonic) mode 

of instability. This mode is characterized by a different phase speed Cr = wr/ar , 

as evident from the plot of Wr shown in figure 2.6b. The effect of increasing Mach 

number is to reduce the amplification rate and ultimately stabilize the subsonic two­

dimensional mode. Only the emergence of the second mode keeps the mixing layer 

unstable to two-dimensional disturbances at high Mach numbers. The subsonic 

(first) mode is stationary in the time-developing mixing layer reference frame, while 

the second mode travels to the left or right (see section 2.2.4). 
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The amplification rates of oblique waves at angles of 0°, 30°, and 60° are shown 

in figures 2.7 through 2.9 for Mach numbers 0.01, 0.8, and 1.2 respectively. At 

Ml = 0.01 the most amplified wave is the two-dimensional wave (8 = 0°), as 

expected from Squires theorem, which applies only to incompressible flow (Squire 

[1933]). At Ml = 0.8 it is found that waves of 0°, 30° and 60° are all about equally 

amplified, and by Ml = 1.2 the wave at 60° is substantially more amplified than 

the less oblique waves. 

The increasing obliquity of the most amplified waves is better illustrated in fig­

ures 2.10 and 2.11. In these figures the amplification rate is plotted against 8 for 

various Mach numbers, where for each Mach number the wavelength is fixed at 

the most amplified wavelength (including oblique waves). Figure 2.10 is the plot 

for the time-developing mixing layer from above, whereas figure 2.11 is for a spa­

tially developing mixing layer with T2 = 1.0 and U2 = 0.5, and with a compressible 

laminar boundary-layer solution as the base flow. The plots are very similar for 

the two cases, indicating that for mixing layers with equal densities the hyperbolic 

tangent velocity profile can be reliably used to compute the fundamental effects 

of compressibility. In each case the curves split into two regimes. For Me < 0.6 

the two-dimensional wave is always the most amplified wave. Above Me = 0.6 a 

three-dimensional wave of increasing obliquity is most amplified. The second mode 

is amplified at high Mach number, but never more than the oblique first mode. The 

cusp in the plots corresponds to the transition as one mode becomes more amplified 

than the other. 

The angle of the most amplified disturbance was determined empirically to satisfy 

Me cos 8 ~ 0.6 (2.53) 

This means that the Mach number perpendicular to the wave crest is approximately 

0.6. This might be considered similar to the case of swept-back airfoils, where the 

key Mach number is Moo cos 8. In the mixing layer, waves at 8 = 90° are not 

amplified and two-dimensional waves (8 = 0°) have growth rates that are strongly 

reduced by compressibility effects (see section 2.2.4 and Chapter 4). The most 

amplified wave has to be somewhere in between. 

Table 2.5 shows values of Me cos 8 for spatially-developing mixing layers con­

structed in three different ways: 
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(a) Equal temperatures and fixed velocity ratio: T2 = 1 and U2 = 0.5 

(b) Equal stagnation enthalpies (dimensionally we have H* = c;T* + U*2/2, non­

dimensionally H = T /(('1-1)Mf) +u2 /2) and zero velocity on the low-speed 

side: H2 = 1 and U2 = O. This case corresponds to the earliest experiments 

on the compressible mixing layer. 

(c) Fixed Mach numbers Ml = 2.0 and M2 = 1.0. In this case the convective 

Mach number is varied by changing the ratio of stagnation enthalpies and the 

velocity ratio. 

In each case a boundary-layer mean flow was used, for comparison with experi­

ments. The value of Me cos f) is consistently between 0.58 and 0.59 for case (a) but 

shows some deviation at high Mach number for the cases (b) and (c). 

Table 2.5 Variation of Me cos f) for oblique waves 

T2 = 1, U2 = 0.5 H2 = I,U2 = 0 Ml =2,M2 = 1 

Me Me cos f) Me Me cos f) Me Me cosf) 

0.6 0.587 0.854 0.571 0.610 0.599 
0.8 0.585 1.122 0.623 0.773 0.601 
1.0 0.588 1.311 0.734 0.888 0.628 
1.2 0.582 0.973 0.651 
1.4 0.581 1.045 0.699 
1.6 0.586 1.107 0.769 

2.2.3 Convective Mach Number 

The variation of the amplification rate of the most unstable mode with Mach 

number is shown in figure 2.12a for the temporal stability of the time-developing 

mixing layer. The curve of the most amplified two-dimensional wave is found by 

varying the wavenumber aT until a maximum is found, keeping f) fixed at 0°. The 

curve for oblique waves is found by varying both wavenumber and angle until a 

maximum is obtained. Above Ml = 0.6 the three-dimensional waves are the most 

rapidly amplified and the curve of the most amplified oblique disturbance is a much 

better fit to the existing experimental data (Papamoschou and Roshko [1988], see 

also figu/e 2.14) than the two-dimensional curve. Figure 2.12b shows the extension 

of the curve for oblique waves to very high Mach numbers. It can be observed that, 
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at least for the case of equal densities, the growth rate continues to decrease as 

11ach number is increased. 

To check the convective 11ach number concept, and to provide data for compar­

ison with experiment, curves of the maximum spatial amplification rate, [ai [max, 
against convective 11ach number were compiled. In each case the compressible 

boundary-layer equations were solved for the mean flow, and the most amplified 

disturbances (as a function of both frequency and angle) were deterrnined. These 

were normalized with the amplification rate of the most amplified disturbance at 

Ml = 0.1, with the same velocity and density ratio. Figure 2.13 shows the graphs 

of peak amplification rate against 11ach number, using the three different methods 

of varying the convective 11ach number described in the previous section. A good 

collapse of the data with Me is obtained for Me < 0.8, but there is some divergence 

at high convective 11ach numbers. 

It appears from recent work by Papamoschou [1989] that the fundamental idea 

behind the convective Mach number concept, of a large-scale structure convect­

ing in the flow and 'seeing' the relative 11ach number of the free-streams, may be 

flawed, since actual measured convective velocities do not agree with the theory. 

An alternative viewpoint is that Me, as defined by equation (1.3), (i.e. the velocity 

difference divided by twice the average sound speed) is just a dimensionless param­

eter that can include only the first-order effects of compressibility. With this latter 

viewpoint we do not expect perfect collapse of growth rates at high 11ach numbers. 

It was mentioned in section 2.2.1 that a source of error in the normalization used 

by Papamoschou and Roshko [1988] is the model for incompressible growth rate, 

equation (2.49). An alternative method it to normalize experimental data by the 

growth rate of the most amplified spatial instability wave, [ai[max, at low 11ach 

number. This is shown on figure 2.14 for the available pitot thickness data from Pa­

pamoschou [1986], together with a typical curve for the linear theory with T2 = 1.0. 

The linear theory curve has been anchored to be 0.6 at Ml = 0, using equation 

(2.48a) and assuming that density thickness and pitot thickness are equal. Unfor­

tunately the large spread in the experimental data prevents a definitive conclusion 

on the performance of this method of normalization. 

31 



2.2.4 Supersonic Instability Modes 

We have seen that the two-dimensional instability mode that is most amplified 

at low Mach number becomes stable at high Mach number. Previous researchers 

(Lessen et al. [1965,1966], Gropengiesser [1970]) have found other modes of instabil­

ityat high Mach number which keep the mixing layer unstable in two-dimensions at 

any Mach number. These modes have been described as 'radiating vorticity modes' 

by Mack [1989], and are distinct from the 'Mack modes' found in supersonic wall 

boundary layers, confined shear layers, and compressible wakes, which require the 

presence of a region of trapped subsonic flow relative to the free-stream. The ra­

diating vorticity modes are supersonic with respect to one of the free-streams and 

radiate energy into that stream. Two such modes exist in the mixing layer, one 

mode supersonic relative to the low-speed stream, and the other mode supersonic 

relative to the high-speed stream. 

Jackson and Grosch [1988] investigated the supersonic modes for the mixing 

layer described by a hyperbolic tangent profile in Howarth-transformed space (see 

equation (2.16)). In the present work a similar case to Jackson and Grosch is 

studied, but using a solution to the boundary-layer equations as the base flow. The 

flow chosen has Uz = 0 and Tz = 1 and spatial stability theory is used. Figure 2.15 

shows the variation in growth rate of the most amplified two-dimensional modes 

with Mach number, in the interesting region around a free-stream Mach number 

Ml = 2 (i.e. around Me = 1 since for Tz = 1 and Uz = 0 the convective Mach 

number is always one half the Mach number of the high speed stream). Figure 2.16 

shows the phase speeds of these modes, which led Jackson and Grosch to classify 

them as a fast supersonic mode, supersonic relative to the low speed stream, and 

a slow supersonic mode, supersonic relative to the high speed stream. The various 

modes are plotted as a function of frequency in figures 2.17 and 2.18 at Ml = 2.2. 

Figure 2.17 shows the growth rate and figure 2.18 the phase speed. From these 

plots we see that the most amplified mode is the fast mode. The second peak at 

the left of the curve for the fast mode is the remnant of the subsonic mode, which 

was the dominant mode at low Mach number. As Mach number is increased this 

mode becomes less and less amplified, and the peak moves to longer and longer 

wavelengths. From vortex sheet instability theory (Blumen et al. [1975]) we expect 

this mode to finally become stable at Ml = 2VZ. 
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The radiative nature of these instability waves becomes apparent when the eigen­

functions for pressure are plotted. The same case as above is chosen, with Ml = 2.2. 

Figure 2.19a shows the pressure eigenfunction for the fast supersonic mode, radiat­

ing into the low speed side, and figure 2.19b shows the slow supersonic mode, which 

radiates into the high-speed side. Figure 2.19c shows the subsonic non-radiating 

mode. The eigenfunctions shown in figure 2.19 have the form of damped waves, 

since we are considering amplified waves, and the disturbances away from the cen­

terline were created at an earlier time and then propagated into the free-stream. 

Jackson and Grosch [1988] only showed eigenfunctions for the neutral instability 

modes, which do not decay in the free-stream. 

Which mode is most amplified depends upon the temperature ratio. At a tem­

perature ratio of 2 the fast mode is the dominant mode, while at a temperature 

ratio of 0.5 the slow mode is dominant. Unlike the subsonic mode, increasing the 

angle of the supersonic mode disturbance does not increase its amplification rate, 

and for highly oblique disturbances these modes are stable. 

The supersonic modes are very interesting from a physical perspective. However, 

it should be remembered that the most amplified waves in the flow are the oblique 

modes of the subsonic instability, and since these are amplified more rapidly by 

a factor of 3 or 4 we expect the resulting flow to be dominated by the oblique 

waves. The supersonic modes will come into play only if there is very strong two­

dimensional forcing of the mixing layer. 

2.2.5 Eigensolution Structure 

Eigenfunctions from the linear theory are used in following chapters as inputs 

to direct numerical simulations. However they are interesting in their own right, 

providing important clues to the structure and physics of the large scale motions 

which develop from the linear instability. In this section eigenfunctions from two­

dimensional stability calculations for the time-developing mixing layer are presented 

to illustrate the effects on compressibility on the linear eigenfunctions. 

Figures 2.20 and 2.21 show the eigenfunctions u, fj, p, l' as functions of the y 
coordinate for Ml = 0.01 and Ml = 0.6 respectively. The main effect is the rise 

in importance of the density and temperature eigenfunctions. These keep the same 
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basic shape at Ml = 0.6 but are increased by four orders of magnitude relative to 

the case Ml = 0.01. 

Additional information can be found by generating contour plots of the eigen­

functions. For example the real part of the u velocity 

u = Ii + A Real[ile,aX] (2.54) 

can be found over one wavelength in the x direction, and similarly derivatives of 

the flow variable can be easily found. Results are shown on figures 2.22a-g for 

various flow quantities at Ml = 0.6. Note that the y axis has been stretched to 

better illustrate the structure. The amplitude of the disturbance A is chosen to be 

0.5 for the spanwise vorticity wz , as well as for wz / p and p, to better illustrate the 

structure, which would otherwise be dominated by the mean flow. The remaining 

plots use a disturbance amplitude of 0.01. 

Even at Ml = 0.6 the plots of Wz and Wz / p are little different from the vorticity 

structure for the incompressible case, found by Michalke [1965a]. The two 'elemen­

tary vortices' in the eigensolution will subsequently rotate around each other in the 

non-linear region of growth and merge to form the fundamental vortex in the mixing 

layer. What is interesting is that the density and pressure disturbance fields (figures 

2.22c,d) show striking similarities with the fields to be presented in Chapter 4 from 

the non-linear roll-ups in the mixing layer. Low density and pressure perturbations 

are found in the vortex core and high density and pressure are found in the region 

between vortices where the braid will eventually form. 

Some insight into mechanisms can be obtained by examining terms in the com­

pressible vorticity equations for the linear eigensolutions. The equations for Wz and 

for Wz / p are as follows. 

au av 
W z =---ay ax (2.55) 

Dwz = -Wz (au + av) + 2. (ap ap _ ap ap) 
Dt ax ay p2 axay ayax (2.55) 

D(wz/p) = 2.(apap _ apap) 
Dt p3 axay ayax (2.56) 

34 



The terms on the right hand side are plotted on figures 2.22/ and 2.22g. Both the 

baroclinic and dilatational terms are negative (dashed contours) in precisely those 

regions where the elementary vortices develop, and act to reduce the vorticity in the 

region where vortex roll-up is trying to occur, Thus both these terms act to reduce 

the growth rate of the two-dimensional instability as Mach number is increased. 

Recent work by Lele and Shariff (private communication [1989]) suggests that the 

advection term is more important than either of these terms and is the main reason 

for the stabilizing effect of Mach number. 

The appearance of the same physical processes in the linear eigensolutions as 

are observed in the later non-linear development, as found by direct numerical 

simulation, may help to explain the surprising finding that the linear amplification 

rate is directly proportional to mixing layer growth rate. 

2.3 Linear Instability Model for the Mixing Layer 

Results from sections 2.2.1 and 2.2.5 suggest that linear processes may be im­

portant, even in the fully developed mixing layer. It is therefore worthwhile to 

consider a simple linear instability model of the mixing layer flow. Some of the ar­

guments were presented by Monkewitz and Huerre [1982J to explain their successful 

prediction of shear layer growth rate, and are extended here. 

2.3.1 Model 

Consider first the incompressible uniform density nuxmg layer. Experiments 

show that the flow is dominated by the primary two-dimensional instability, and 

the developed structures show strong coherence in the spanwise direction. The spa­

tial development of the flow can be described by the successive growth of linear 

instability modes, with longer and longer wavelengths. The phases in the develop­

ment are as follows: 

(1) Growth of the fundamental, most unstable, linear instability mode of the initial 

profile. This mode, frequency wF' grows until the layer has grown by a factor 

of two in width, and then saturates out, neither growing nor diminishing. 

(2) Growth of the first subharmonic wave, frequency wF/2. This mode grows 

and eventually results in pairing of two of the fundamental mode structures. 
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After the pairing the layer has again grown by a factor of two and this mode 

saturates. 

(3) Growth of the next subharmonic wave, frequency wj;./4, again resulting in 

pairing, doubling of width, and saturation. 

The essential behavior of the model is shown on figure 2.23. The exponential 

growth in a measure of energy, say E, of each mode is shown schematically. First 

the fundamental mode (F) grows and saturates, and we associate the developed 

structure with the neutral instability mode (see figure 2.24). The (non-dimensional) 

frequency of the neutral mode w N is approximately twice the frequency of the most 

amplified mode, w, where w is non-dimensionalized by w = w'o'IUi- Since it is 

the same wave which has grown and saturated, the dimensional frequency, w' is the 

same for the two cases, and the layer must have grown by a factor of 2. Now that 

the layer has doubled in width the frequency of the new 'most amplified wave' is 

wj;./2, the first subharmonic wave (S1). This grows exponentially, following linear 

theory, until it saturates, resulting in pairing of two of the neutral modes of the 

original instability. The resulting structure can again be associated with a neutral 

mode, since by the pairing the layer has grown by a factor of 2. The same process 

of successive subharmonic growth, pairing, and saturation at the neutral mode, 

continues ad infinitum in the streamwise direction, and is not Reynolds number 

dependent. 

The essential assumption of the linear instability model is that the time taken 

during the exponential growth of an unstable wave is long compared to the time 

taken for the ultimate non-linear process of pairing and saturation. 

texponential growth> > tnon-linear (2.58) 

However, in reality both linear and non-linear processes may be governed by similar 

physical processes, and it may be that the time taken in the two stages are linked. 

So, even if equation (2.58) is not satisfied exactly, the linear model may still give 

good predictions. 

Before discussing model predictions, we note that in reality the growth of sub­

harmonic waves in the mixing layer is dependent upon the phase of the growing 

wave relative to the large-scale structure. The model considers only linear waves, 

for which phasing is not important. In the real case there will be a random phasing 
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of growing waves, which has the effect of moving the pairing locations around in 

space, resulting in the time average of linear growth rather than as a series of steps. 

(see also Sandham and Reynolds [1989]). Modes with certain phases will be more 

amplified by the presence of large-scale structure, and modes with other phases will 

have their growth rates diminished by the large-scale structure. The model relies 

on these effects cancelling out in the long time average. 

2.3.2 Prediction of Growth Rate 

The first implication of the model is on growth rate. Spatial instability waves 

grow exponentially like e-a,,,,. The x distance for the n'th most amplified wave to 

grow by a factor of eN is N/lailmax. In this time the mixing layer has doubled in 

width, so !1li = lin+! - lin = lin or !1( li / lin) = 1, so the growth rate is given by: 

(2.59) 

In the long time average this gives 

dli 
dx ~ I <:Xi Imax (2.60) 

thus providing a theoretical basis for the relation found in section 2.2.1. (equation 

(2.48)). 

It should be noted that this derivation is dependent on the factor N being a 

constant. This means that the ratio of the amplitude of a wave at saturation to the 

amplitude when the wave was the most amplified wave from the previous saturated 

state is assumed constant for all x locations. 

2.3.3 Prediction of Convective Velocities 

A second corollary of the model is that the large-scale structures found in the 

mixing layer are linked to the neutral instability modes. The model picture, figure 

2.23, is that what are observed in the mixing layer at any time are not the growing 

instability waves, but the neutral mode from saturation of the previous instability. 

The neutral modes are steady solutions of the parallel flow equations and, since they 
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are neither growing nor decaying, would persist for a long time once generated in 

the flow. For the hyperbolic tangent velocity profile the neutral instability modes 

are a subset of the family of mixing layer vortices found by Stuart [1967]. The 

Stuart vortices were compared to experimental mixing layer structures by Browand 

and Weidman [1982]. The comparison was qualitatively good, though some differ­

ences were found. Thus it may be that the neutral instability modes are a way to 

understand features of the organized structures in free shear flows. In particular, 

it is postulated here that the convective velocity of the large-scale structures in the 

flow is close to the phase speed of the neutral mode. 

It was found that the phase speeds of the neutral modes were dependent on 

profile shapes. When a hyperbolic tangent was used for the mean velocity profile it 

was found that results matched the convective velocity formula (1.2) almost exactly. 

However, when the solution of the boundary-layer equations was used for the mean 

velocity profile it was found that the phase speed of the neutral mode C N was 

different to the Uc formula (1.2). In fact it was always biassed towards the speed of 

the free-stream with the highest density, as shown on table 2.6 for the Brown and 

Roshko [1974] velocity and density ratios (recall T2 = 1/P2), at Ml = 0.1. 

Table 2.6 Phase speeds of neutral modes (low Mach number) 

Ml U2 T2 cN Uc 

0.1 0.378 1.0 0.712 0.689 
0.1 0.378 0.143 0.444 0.549 
0.1 0.378 7.0 0.943 0.829 
0.1 0.143 1.0 0.628 0.572 
0.1 0.143 0.143 0.243 0.378 
0.1 0.143 7.0 0.924 0.765 

It is not surprising that the C N results for a hyperbolic tangent mean profile 

match the Uc formula (1.2). The hyperbolic tangent velocity profile has an anti­

symmetry about the centerline. The same antisymmetry is in the structure model 

from which the convective velocity formula (1.2) is derived. This effect may explain 

some results of Lele [1989], who performed direct two-dimensional simulations of 

spatially-developing compressible mixing layers beginning with a hyperbolic tangent 

mean velocity profile, and found good agreement with the Uc formula. It may be 

that this observation was not a confirmation of the Uc formula, but rather that an 
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antisymmetry was built into the whole simulation by the choice of inflow velocity 

profile. 

Convective speeds for the compressible mixing layer have been measured ex­

perimentally by Papamoschou [1989]. Table 2.7 shows a comparison between the 

measured convective velocity, the prediction of the Ue formula (1.2) (matching eN 

results from a hyperbolic tangent profile), and the phase speed of the neutral mode 

eN using the boundary-layer mean flow. All except the last of the experimental 

results show phase speed skewed towards the velocity of the more dense stream, as 

in the eN yielded by stability theory with the boundary-layer mean flow. A plot of 

Mel versus Me2 is shown on figure 2.25. This kind of plot was used by Papamoschou 

to demonstrate how different the actual measured convective velocities were from 

the Ue prediction. The figure shows the straight line Mel = Me2 (which is the 

Ue prediction), Papamoschou's data points, and the phase speeds of the neutral 

modes, eN. The linear model seems on the whole to do a better job of predicting 

the experimental data than the Ue formula (1.2). 

Table 2.7 Phase speeds of neutral modes compared with Papamoschou [1989] 

Ml U2 T2 eN Ue expt 

3.2 0.94 4.167 0.991 0.980 0.978 
3.1 0.75 1.852 0.925 0.894 0.906 
2.8 0.75 0.556 0.832 0.857 0.829 
1.7 0.50 0.109 - 0.624 0.512 
3.2 0.13 4.348 0.903 0.718 0.878 
2.7 0.13 1.493 0.771 0.608 0.844 
2.6 0.42 0.182 0.478 0.593 0.435 
3.1 0.30 0.400 0.439 0.571 0.355 
3.2 0.08 1.205 0.757 0.561 0.959 
3.0 0.06 0.535 0.382 0.457 0.853 

These results led Papamoschou [1989] to propose an alternative large-scale struc­

ture with shock waves, to account for the biassing of the convective velocity towards 

one or other of the free-streams. The contention here is that this biassing is due to 

the experimental mean profiles not having any built-in antisymmetry. When this 

effect is put into the stability analysis (by using the boundary-layer mean flow) the 

biassing is captured in the linear theory, without resort to such non-linear effects 

as shock waves. 
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Other experimental measurements of convective velocities are limited. Brown 

and Roshko [1974] measured one case, with U2 = 1/0 and P2 = 7, and found 

a structure velocity of Uc = 0.53, compared to the linear estimate of 0.444 and 

the Uc formula estimate of 0.55 (table 2.6). For this case it was found that the 

mean profiles of velocity and density plotted by Brown and Roshko did not match 

well with the solution to the boundary-layer equations. We note that the solution 

for mean profiles from the boundary-layer equations is the same as solving the 

self-similar mixing layer problem for the mean flow, assuming an eddy-viscosity 

turbulence model. The linear theory is thus limited by the accuracy of the mean 

flow upon which it is performed. 

2.3.4 Prediction of Pairing Locations 

Another use for the model is in generalizing the findings of Bradshaw [1966] that 

approximately 1000 initial momentum thicknesses are required in the streamwise 

direction before self-similarity occurs, and of Ho and Huerre [1984] who modeled 

the downstream location of pairings in terms of the initial instability. 

Using equation 2.48b above and the linear model of the growth process (figure 

2.23), we can write 

2n+1 -1 
x to nth pairing = I I 

0.45 a; max 
(2.61) 

where x is normalized as x' /S;o (Sw is 4 momentum thicknesses for the tanh profile). 

The n = 0 event is the roll-up of the first structure. 

As an example, consider the mixing layer simulated numerically by Lowery and 

Reynolds [1986]. This was an incompressible simulation, with equal free-stream 

densities and a velocity ratio U2 = 0.5. From table 2.2 we have that lailmax is 

0.12850. Using equation (2.61) we find that the first roll-up is predicted to occur 

at x = 17.3, with the first pairing at x = 51.9 and the second pairing at x = 121.1, 

all in good agreement with the simulations. The Bradshaw [1966] criterion for self­

similarity would occur for this case around the third pairing event x = 260.0, or 

1040 in intial boundary-layer momentum thickness units. In view of the work of 

Ho et al. [1988], who found phase decorrelation in mixing layers to be associated 

with the pairing events, it may be that self-similarity is only achieved after enough 
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pairings have happened, and the flow has forgotten the initial conditions. Three or 

four levels of pairing would seem to be necessary to satisfy Bradshaw's criterion. 

For incompressible mixing layers it is found that the ratio Wneutrall Wmost amplified 

is always near 2. However for compressible mixing layers, using the boundary 

layer velocity profile, this was not found to be always true. In this case multiple 

interactions (e.g. triplings) may be more common, and equation (2.61) can be 

rewritten as: 

t 
th I t' (wneutrall Wmost amplified) n+ 

1 
- 1 

X 0 n agg omera IOn = I I 
0.45 ui max 

(2.62) 

It is hoped that this discussion of a linear instabilfty model for the mixing layer 

prompts more experimental measurements of growth rate, mean profiles, and the 

details of the large scale structure in the flow, including convective velocities, average 

pairing locations, number of structures involved in agglomerations etc. In this way 

the limitations of the model can be explored and improvements made. 

2.4 Chapter Summary 

In this chapter it has been shown that the linear theory can be a very useful tool 

for investigating the compressible mixing layer. In particular: 

(1) The maximum amplification rate found from spatial theory, using the solution 

of the compressible boundary-layer equations as the mean flow, appears to 

be directly proportional to the growth rate of the developed mixing layer 

(equation (2.48)). This was demonstrated for the effect of density and velocity 

ratios on mixing layer growth rate at low Mach number. 

(2) Oblique waves are dominant in the mixing layer above a convective Mach 

number of 0.6. The obliquity of the most amplified wave selected by the linear 

theory is such that the convective Mach number perpendicular to the wave 

crest is approximately 0.6 (equation (2.53)). 

(3) The experimental observation of Papamoschou [1989], that actual convective 

velocities did not agree with the Uc theory (equation (1.2)), was confirmed 

in the linear regime by calculating the phase speeds of the neutral modes of 

instability. 
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CHAPTER 3 

Numerical Formulation for Direct Simulations 

In a direct simulation the time-dependent N avier-Stokes equations are solved in 

full, with no turbulence model. This chapter describes the numerical methods used 

to simulate the compressible time-developing mixing'layer, which is assumed to be 

periodic in the streamwise and spanwise directions (x and z). The code was written 

in the VECTORAL language (Wray [1988]), and implemented on a Cray X-MP 4/8 

at NASA-Ames. 

3.1 Governing Equations 

The conservation laws for mass, momentum and energy can be written in the 

following form (Anderson, Tannehill and Pletcher [1984]), using the conservative 

variables (p',p'ui,ET), cartesian tensor notation, and the superscript * for a di­

mensional quantity: 

ap' a(p*ui)_ 
at' + ax~ - 0 , (3.1) 

(3.2) 

aE* a[(E* + p*)u*] aq* a(U~T~') -----1: + T '= ___ , + J 'J 
at* ax* ax* ax~ 

(3.3) 
, " 

where p* is the density, ui are the velocity components, p* is the pressure, Ti~' is the 

shear stress tensor and qi is the heat flux vector. ET is the total energy, defined 

by: 

u!u! 
ET = p*(e* + -'-') 

2 
where e* is the internal energy per unit mass. The perfect gas law is 

p* = p*R*T* 
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where R' is the gas constant and T' the temperature. We assume a Newtonian 

fluid and Fourier heat conduction, so the constitutive equations for Ti~· and qi are: 

(
au> au~ 2 au' ) , , , 3 k 

Tii = J.l ax' + ax' - "3 ax
k
' °ii 

3 , 
(3.6) 

q~ = _k,aT' 
, ax~ , 

(3.7) 

where J.l' is the viscosity and k' is the thermal conductivity. 

Non-dimensionalization of these equations is obtained by: 

u' p' p' T' 
Ui = U', P=- p= 'U,2 T= T' 

I pi PI I I 
(3.8a) 

J.l' e' t'U' x' I x'=-' J.l =- e=-- t=--;;.--J.li U,2 , 0' 
I wo wo 

(3.8b) 

where the subscript 1 represents the upper (y > 0) free-stream value. The reference 

length scale is 0;0' the vorticity thickness of the initial velocity profile: 

, Ui-Ui 
Ow = IdU' /dY'lmax 

The non-dimensional equations for continuity, momentum and energy are: 

aET 
-at 

ap 
at 

a (pu·u . + po· .) ar.· . 
'3 '3 +---.!l 
ax· ax· 3 3 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 



with constitutive relations 

Jl- (aUi aUj 2 aUk ) 
'Tij = Re ax' + ax' -"3 aXkliij 

J , 
(3.13) 

(3.14) 

The Reynolds number of the flow is defined by Re = pi ui li;o I Jl-i, and the Prandtl 

number by Pr = e;Jl-* I k*. The Prandtl number is assumed constant with value 1. 

The viscosity is assumed to follow a power law, so non-dimensionally 

Jl- = TO.67 (3.15) 

The constant 0.67 is the value for nitrogen (White [1974]). 

Constant specific heats are assumed, and if we set e* = 0 at T* = 0, we can write 

e* = e~T*. The non-dimensional form of the perfect gas law can then be written as 

either: 

p = ph -1)e (3.16) 

or 

(3.17) 

where e is the sound speed (normalized as e* lUi) and we have used the result for 

the sound speed of a perfect gas with constant specific heats: 

(3.18) 

In all the simulations a passive scalar field is computed. The dimensional equation 

for the scalar f (see e.g. Kays and Crawford [1980]) is 

a(p*J) + a(p*fuiJ =~(p*D*af) 
at* ax' ax* s ax* , , , (3.19) 

where D; is the diffusion coefficient for the scalar. One can think of p* f as the 

concentration per unit volume of a trace species. We define a Schmidt number by 

Be = Jl-* I p* D; and using the non-dimensionalization method of equation (3.8) we 

have: 

(3.20) 
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3.2 Time Advance 

The time advance method is fully explicit. The variables (p, pu, pv, pw, ET) are 

advanced using a three-step compact-storage third order Runge-Kutta scheme of 

the family derived by Wray [1986]. Two storage locations are employed for each 

time-dependent variable and at each substep these locations, say Q1 and Q2, are 

updated simultaneously (using a feature of VECTORAL) as follows: 

(3.21) 

The constants (aI, a2) are chosen to be (2/3,1/4) for substep 1, (5/12,3/20) for 

substep 2 and (3/5,3/5) for substep 3. At the beginning of each full time step 

Q1 and Q2 are equal. The data in Q1 is used to compute the right hand side of 

equations (3.10) through (3.12). The computed right hand side is stored in Q1 

(overwriting the old Q1). Equation (3.21) is then used to update Q1 and Q2. 

An estimate of the time step limitation can be made by considering a model 

convection-diffusion equation (Blaisdell [1988], private communication): 

a¢ a¢ a¢ a¢ a2</J - + u- + v- + w- = a-,-----'--­at ax ay az aXiaxi (3.22) 

Assuming periodic boundary condition in all directions we can Fourier transform 

and rearrange this equation to give: 

This equation can be compared with a simple ordinary differential equation: 

for which the time step limitation for stability is 

b.t = (CFL)max 
Iblmax 
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(3.23) 

(3.24) 

(3.25) 



where CFL is the Courant-Friedrichs-Lewy number. The maximum CFL number 

for stability is fixed by the time-advance method. For linear equations the limit is 

y'3 for the third order Runge-Kutta method described above. 

The magnitude of a complex number a+ib is less than lal+lbl, so we can substitute 

absolute values for the terms on the right hand side of equation (3.23). We choose 

the worst case for the terms in brackets in (3.23)' i.e. kx = N x/2, u = c + lui, etc. 

The value for a in (3.22) is obtained from (3.14) as p-/b - 1)M; RePr, which is a 

more stringent limitation than the momentum equation for Ml < 1.6 (for Pr = 1 

and I = 1.4). Letting ~x = Lx/Nz and similarly for ~y and ~z we get: 

where 

CFL 
~t = =---=::­

Dc + DI' 

D _ 7r
2

p-/p (_1_ + _1_ + _1_) 
I' - b - 1)M; RePr ~x2 ~y2 ~z2 

The worst-case cell is used to fix the time step. 

(3.26a) 

(3.26b) 

(3.26c) 

Simulations with various time steps were made for a time-developing mixing layer 

problem at Ml = 0.4 and Re = 400, initialized with the fundamental mode from 

linear stability analysis. The simulations were run up to the non-linear saturation of 

the instability. It was found that there was no numerical instability or degradation 

of accuracy until the CFL number was raised above 4, indicating that the above 

criteria is very conservative. In all the simulations a CFL number of 2 was used. 

3.3 Evaluation of Derivatives 

3.3.1 Periodic Directions 

In the periodic directions x and z the Fourier method is used to calculate deriva­

tives. The quantity to be differentiated is transformed using the Fast Fourier Trans­

form, multiplied by ik, and inverse transformed. No attempt was made to dealias 
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the non-linear products, since no complete method is known for the compressible 

equations which have many terms involving divisions. 

When an even-length Fourier transform is used there is one wavenumber kx = 

N x /2 which has no complex part. This wavenumber is commonly referred to as 

the 'oddball' wavenumber. The Fourier component at the oddball wavenumber 

is always zeroed out when taking derivatives. In an implicit scheme this Fourier 

component is forced to remain zero. However in an explicit scheme, such as that 

used here, roundoff error will accumulate at this wavenumber as one goes back 

and forth between Fourier space and physical space. In the present code this is 

compounded by conversions back and forth between 64 bit arithmetic representation 

and 32 bit storage representation (Blaisdell [1988], private communication). It is 

thus necessary to explicitly zero out the oddball component of the flow during any 

computation. Blaisdell's procedure for doing this (for one direction) is to define a 

filtered flowfield <p{, subtracting the oddball as follows: 

(3.27) 

From the definition of a transform pair, we have 

(3.28) 

(3.29) 

Substituting for <P N
x

/2 into equation 3.27 gives 

·N 
f (-1)1 I:x 

., <p. = <p . - -- (-1)J <p., 
J J N J 

x j'=1 

(3.30) 
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This method of removing the oddball in real space vectorizes efficiently and was 

found to be substantially cheaper than the alternative method of Fourier trans­

forming, zeroing the oddball, and inverse transforming. The method was applied 

at each substep of the integration. 

In the three-dimensional code the oddball needs to be removed in each spectral 

direction, x and z. Following the same procedure as above, the filter function is 

derived as: 

( )k Nz ( )J' N, f -1 L k' -1 L ., </>. = </>' k - (-1) </> 'k' - -- (_1)1 </> " k J,k J, N J, N J , 
z k'=1 x j'=1 

(3.31) 

( )J'( )k N x N. 
-1 -1 """" " k' + N N L." L." (-1)1 (-1) </>j',k' 

x Z j'=1 k'=1 

3.3.2 Normal Direction 

In the normal direction (y) there are several alternative differentiation methods 

which can be used. Firstly, one can subtract the mean flow from the quantity 

to be differentiated, and use regular Fourier differentiation. This would only be 

appropriate for a periodic array of mixing layers, which is not the case we wish 

to consider here. Secondly, one can use a mapping (e.g. Cain et al. [1984]), to 

transform an infinite physical domain onto a finite computational one. This method 

was implemented, but was found to produce point-to-point oscillations in the free­

stream. This effect is probably due to a lack of resolution of sound waves in the 

free-stream, where the grid spacing becomes very large. The method finally adopted 

was to use high-order finite difference methods on a grid of finite extent in the 

normal direction, and then to apply characteristic boundary conditions to simulate 

an infinite flow domain. 

A family of high order modified Pade schemes has been derived by Lele [1989]. 

These schemes can be written in the following form for the first derivative: 

</>', + a</>', + </>'. = b </>j+1 - </>j-1 + c </>j+2 - </>j-2 
J-t1 J J-1 2.6.y 4.6.y 

(3.32a) 
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Solution for </>~. is obtained by solving the tridiagonal system of equations. A family 

of fourth order schemes are obtained if we choose: 

b = 2+4a 
3 

4-a 
c=--

3 
(3.32b) 

For a = 4, the conventional Pade scheme is recovered, whilst with a = 3 we have a 

sixth order scheme, used in all the current work. A similar scheme can be derived 

for the second derivative: 

</>'! + a</>li + </>" = b </>j+1 - 2</>j + </>j-1 + c </>j+2 - 2</>j + </>j-2 
J+1 J J-1 t:,.y2 4t:,.y2 

4a-4 
b = ---::--

3 
c= 

10-a 

3 

(3.33a) 

(3.33b) 

This time a = 10 gives the usual Pade scheme, and a = 5.5 is a sixth order scheme, 

used in this work. 

The viscous terms in the governing equations require evaluation of successive 

derivatives, for example the term 

a ( aU) ay J.L ay (3.34) 

When a spectral method is used there is no loss of accuracy if these are computed 

by two applications of a first derivative. However, with finite difference methods we 

find that two applications of a first derivative gives a much worse representation of 

the high wavenumbers than a single second derivative computation. This is because 

the modified wavenumber (Lele [1989]) goes to zero for the first derivative at high 

wavenumbers. The remedy for this is to expand all terms in the y direction like 

(3.34) into two terms (non-conservative formulation): 

(3.35) 

A mapped grid is used in the normal direction to resolve the shear layer more 

efficiently. The mapping function is a sinh function, which concentrates points 

around y = 0 (Anderson, Tannehill and Pletcher [1984]): 

y = Ly sinh(by 1/) (3.36) 
2 sinh by 
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where Ly is the box length in the normal direction. The mapped coordinate is 1], 
and by is the stretching parameter in the y direction, chosen to be 1.7 in the current 

work. If we define the metrics 

h' = dy = Ly by cosh(by1]) 
d1] 2 sinh by 

(3.37) 

(3.38) 

then the first and second derivatives of a function </> are evaluated as: 

8</> 1 8</> (3.39) 
8y h'81] 

82 </> 1 8 2) hIt 8</> 
(3.40) ------

8y2 h,28TJ2 h,28y 

3.4 Free-Stream Boundary Condition 

In these simulations we are considering the problem of an unbounded compress­

ible mixing layer. The infinite extent could be obtained by using a mapping function, 

but this would lead to poor resolution of the flow far away from the mixing layer. 

In particular, sound waves would propagate into regions of the computation where 

they would be poorly resolved, and might be reflected back and contaminate the 

main flow. Thus, we require boundary conditions which simulate an infinite domain, 

even though the computational domain is finite. Such schemes were investigated by 

Thompson [1987], and his method is followed here. The basic idea is to consider the 

characteristic form of the Euler equations at the boundary. Outgoing characteris­

tics use information within the computational domain, and can be computed with 

no problem. Incoming characteristics are handled by setting the time derivative of 

their amplitude equal to zero, thus ensuring that no waves enter the domain during 

the simulation, giving the boundary conditions a non-reflecting character. 
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We begin by writing the Euler equations in terms of the conservative variables 

Q = (p,pu,pv,pw,ET,Pj)T 

aQ aG at + ay = (r.h.s) (3.41) 

G = (p'ji,puv,pv2 + p,pvw, (ET + p)v,pvf)T (3.42) 

We are concerned here only with the Euler derivatives in the y direction. Derivatives 

in x and z, including viscous terms, are evaluated at the boundary using informa­

tion from the previous substep, and are included in the right hand side (r.h.s). The 

flux Jacobian of G is more easily derived if we work with the non-conservative 

flow variables U = (p,u,v,w,d,JjT, where d = pp-"f. Setting 

(i.e. B(row i,col j) = aG(i)/aQ(j)) and R = aQ/au, we have 

and 

au au -1 at + B ay = R (r.h.s) 

aG =RBau 
ay ay 

(3.43) 

(3.44) 

Now B can be diagonalized, B = T-1AT, where the elements of the diagonal matrix 

A are (v - c,v,v,v,v + c,v). Pressure is more easily found computationally than 

the quantity d, so we use a new non-conservative vector V = (p, u, v, w,p, f)T and 

define S = au/avo Equation (3.44) can now be written 

aG = RT-1 (ATSav) 
ay ay 

(3.45) 

This is the relation that is used to calculate aG lay in equation (3.41) at the bound­

ary. 

The quantity in brackets in equation (3.45) is a vector. The sign of each of the 

eigenvalues in A is used to determine the course of action for each element in the 

vector. If the characteristic velocity is directed out of the computational domain 
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(positive at the top boundary or negative at the bottom boundary), then the quan­

tity is calculated as is. On the other hand, if the characteristic is directed inwards 

then the vector element is zeroed out. This gives the non-reflecting character of 

the boundary condition. The final step is to premultiply the vector by the matrices 

T-1 and R. The various vectors and matrices required in the computation are: 

(v - c)[~ - pcg~l 
v 8" ay 

ATS
av 

= 
v[~ - c2~1 

ay v 8w 
8y 

(3.46) 

(v + c)[~ + pcg~l 
vli 8y 

1 0 1 0 1 0 2c2 - c2 2c2 

0 1 0 0 0 0 

T-1 = 
__ 1_ 0 0 0 1 0 
~ ... O 

2pc 
0 1 0 0 

(3.47) 

0 0 1 0 0 0 p7 
0 0 0 0 0 1 

1 0 0 0 0 0 
u p 0 0 0 0 
v 0 p 0 0 0 

R= w 0 0 p 0 0 (3.48) 
a pu pv pw (/:'1) 0 

f 0 0 0 0 p 

where 
c2 u2 +v2 +w2 

a=--+ 
-y-l 2 

The boundary condition for the two-dimensional code is a simple extract from 

the above, removing the fourth row and column from each vector and matrix. 
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3.5 Initial Conditions 

To start the calculation we need to specify the values of all computational vari­

ables. The specifications are described in subsequent chapters. 

3.6 Validation 

The objective is to subject the code to as many checks as possible. We rely on 

three methods: (a) validation in the incompressible limit using Taylor-Green flow, 

(b) checking the Euler terms in the compressible equations by comparison of linear 

growth rates with inviscid linear stability theory, and (c) checks of resolution by 

monitoring energy spectra during simulations, to ensure that enough modes are 

being used to fully resolve the flow. The only terms that cannot be verified using 

these methods are the viscous terms involving 8Uk/8xk (equation (3.13)). Here we 

must rely on thorough sight-checking of the code. 

The Taylor-Green flow (Taylor [1923]) consists of a decaying array of vortices in 

the x - z plane, specified non-dimensionally by: 

U = -VA cos(21rkx) sin(21rkz)e-S .. 2k2tjRe 

w = VAsin(21rkx) cos(21rkz)e-s .. 2k2tjRe 

P = Pref - ~[COS(41rkx) + cos(41rkz)]e-S .. 2k2tjRe 

(3.49) 

(3.50) 

(3.51) 

We choose k = 1, Re = 1, a box size Lx = Lz = 1, and uniform conditions in y with 

Ly = 2. The reference pressure is Pref = l/(JMr). The reference Mach number 

Ml was set to 0.2 and the constant A was taken as 0.0016, so that we begin with a 

peak local Mach number of approximately 0.01, i.e. near the incompressible limit. 

The Taylor-Green problem needs only a few Fourier modes. The test case was run 

for the three-dimensional code with N x x Ny x N z = 8 X 11 X 8 corresponding to 

4 complex Fourier modes in each of the x and z directions. The solution for u at 

x = 0.5 and z = 0.25 is shown on figure 3.1 as a function of time. The error at 

time t = 1/(81r2), when the solution should have decayed by a factor e, is less than 

0.03%. This remaining error is attributed to the slight difference in Mach number. 
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The growth of linear disturbances in the three-dimensional code was checked 

against the inviscid linear stability theory. The code was initialized with the eigen­

functions, and run at high Reynolds number through the linear regime. The linear 

growth rate was extracted from the Fourier coefficients from the relation 

d -
w(k",) = dt In{Real[q,(k",)]} (3.52) 

For the fundamental mode we have k", = 1. Plots of In(Real[¢(1)]) are shown on 

figure 3.2 for the functions q, = (u,v,w,p,T,p). The simulation was for a 45° 

oblique wave growing in a mixing layer at Ml = 0.8, Re = 106. All functions 

show the correct linear growth. In addition, the eigenfunctions at the end of the 

simulation were renormalized and compared with the initial eigenfunctions. An 

example is shown on figure 3.3 for temperature. All the eigenfunctions were found 

to collapse on top of each other. The worst error in the growth rate compared to the 

inviscid theory was approximately 2%, attributed to the finite Reynolds number, 

and changes in the mean flow (setting up a small v velocity profile) during the 

simulation. The latter effect could be removed by running for just one time step, 

when the mean flow had no time to change; in that case the error dropped to 0.01 %. 

The effect of the positioning of the boundaries in the y direction was investigated 

by running three simulations at Ml = 0.4, Re = 400. The length of the domain 

in the streamwise direction was L", = 8.0554 and the length in the y direction was 

varied, with Ly set to 6, 10 or 20. Ly = 10 means that the domain extends to 

y = ±5 initial vorticity thicknesses on either side. The number of grid points in y 

was chosen to be 61, 81 and 99 respectively. The growth of the vorticity thickness 

is plotted on figure 3.4 for each case, and the developed structure at the same time 

in the simulation is shown on figure 3.5 for Ly = 10 and figure 3.6 for Ly = 6. The 

physics of such simulations are discussed in more detail in the following chapter. 

Here we note that with Ly ~ 10 we get a converged solution for the growth history of 

the flow. However, even the case with Ly = 6 captures most of the interesting roll­

up of large-scale structure. The detailed feature which arises when the boundaries 

are too close is the development of low-level vorticity at the boundary, shown in 

figure 3.6b. All calculations reported herein were run with Ly ~ 10. 
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One of the most important checks on the code is that of resolution. In general if 

the same result is obtained with two grids, one with twice as many points in each 

direction as the other, then we have some confidence in the result. With a spectral 

method there is an inbuilt check on resolution, namely the fall-off in the energy 

spectrum at high wavenumbers. A large drop-off in energy at high wavenumbers 

means that the flow is fully resolved, and adding modes would not improve the 

solution. Any lack of resolution will show up as an upturning in the spectrum at 

high kx . During the simulations the energy spectrum is monitored. 

defined by: 

The energy is 

(3.53) 

where t indicates a complex conjugate. A typical well-resolved spectrum for the 

Ly = 10 case above is plotted on figure 3.7, showing 9 orders of magnitude roll-off 

in energy. Monitoring of the spectrum is also used to improve the efficiency of the 

code. When linear modes are used for initial conditions the code needs few modes 

to resolve the flow. As the harmonics develop, and the flow becomes non-linear, 

we need more and more modes to resolve the flow, until the flow is fully-developed 

and the small diffusion scales get no smaller. The simulations were usually started 

with few modes, e.g. 16 x 99 x 16 and then as the spectrum filled out the spectral 

directions x and z were extended, ending up, for example, at 96 X 99 X 96. In the y 

direction we need the full number of points right from the start in order to resolve 

the mean flow. Factors of 2 were typically saved in run-time using this method. 

As a last point on verification it is noted that the two-dimensional simulations 

from the current work have been compared with results from an earlier code (Sand­

ham and Vee [1989]), which used TVD and MacCormack methods, and with the 

simulations of Lele [1989]. All such comparisons show qualitatively similar behavior. 
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CHAPTER 4 

Two-Dimensional Simulations 

In this chapter results are presented from direct simulations of the compressible 

Navier-Stokes equations in two dimensions. The simulations show the effect of com­

pressibility on the development of the primary two-dimensional instability, which 

has been observed to be the dominant mode in incompressible experiments. 

4.1 Initial Conditions and Parameters 

The simulations have been performed for the temporal development of the two­

dimensional time-developing mixing layer. Mean profiles of velocity and tempera­

ture need to be specified at the initial time. The mean velocity in the streamwise 

direction is given by an error-function: 

u = erf(yy'if) (4.1) 

The mean temperature is obtained from the mean velocity profile via the Crocco­

Busemann relation (equation (2.13)), which assumes parallel flow and unity Prandtl 

number. Pressure is assumed uniform, and then density is obtained simply as the 

inverse of temperature, since both density and temperature are normalized by the 

value on the upper side of the mixing layer (equation (3.8)). 

Perturbations are added to the mean profiles in the form of eigenfunctions of 

unstable modes from the inviscid linear stability analysis (Chapter 2). For example: 

u = u + A Real{ u(y)i"'''} (4.2) 

and similarly for the v velocity, density and temperature. The amplitude A of 

the disturbances was usually specified to be 0.05. The length of the box in the 

streamwise direction (L,,) was chosen to match the most unstable wavelength of 

inviscid linear stability theory i.e. L" = 21r Ilwilmax. 
Non-dimensional parameters for the flow also have to be specified. For most of 

the simulations in this chapter an initial Reynolds number Re = 400 was chosen 

based on the following considerations. The Reynolds number has to be chosen 
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small enough so that the flow can be fully resolved, yet high enough to capture 

the inviscid nature of the instability. The effect of Reynolds number on the linear 

growth rate of the most amplified inviscid eigenfunction was investigated by running 

the viscous code, initialized with an inviscid eigenfunction, for one time step. The 

linear growth rate can be found directly from the change in the Fourier coefficient 

for the relevant mode using equation (3.52). Results are shown in figure 4.1. The 

asymptotic growth rate at high Reynolds numbers matches the inviscid theory to 

within 0.1 percent. The drop in amplification as viscosity is increased can be clearly 

observed. It should be noted that only the growth rate of the inviscid eigenfunction 

is plotted. There will be a viscous eigenfunction, with a longer wavelength, that is 

more amplified. Thus the curves at low Reynolds numbers for the most amplified 

viscous wave will not drop so rapidly as these. However, these plots do give a good 

idea of the range of Reynolds numbers where we expect to capture the basic inviscid 

processes, as might be found in high Reynolds number experiments. In choosing 

Reynolds numbers for the simulations, we would like at least to be in the region 

where the inviscid eigenfunction is linearly amplified, and not damped. It can be 

seen from the plot that as the Mach number is increased we have to move to higher 

and higher Reynolds numbers to get near the asymptotic high-Re region. 

The effect of Reynolds number on the non-linear development of a single struc­

ture at Ml = 004 was computed. The growth of vorticity thickness is plotted on 

figure 4.2, and the scalar and vorticity fields for the Re = 100 and Re = 800 cases 

are shown on figures 4.3 and 404. At even lower Reynolds numbers, with the same 

low amplitude forcing, the layer is laminar and grows with thickness proportional 

to the square root of time. As the Reynolds number is increased, it can be seen that 

the width of the strained diffusion layer in the stagnation region (x = 3L3;/4, Y = 0) 

is reduced. Broadwell and Breidenthal [1982] predict that the width of this layer 

varies in inverse proportion to the square root of the Reynolds number. This is the 

small scale that makes flows at higher Reynolds number more difficult to resolve 

numerically. 

The PrandtI number and Schmidt number for the flow were chosen to be unity 

(see section 3.1). The ratio of specific heats was set to "I = lA, and the mixture 

fraction, f, was initialized with a hyperbolic tangent profile: 

1 
f = 2(1 + tanh(2Y)) (4.3) 
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4.2 Mach Number Effects 

In the time developing mixing layer U2 can be chosen as U2 = -1!P2, so that 

the Mach number of each free-stream is the same as the convective Mach number 

(equation (2.52)). Thus, in the simulations we can use free-stream Mach number 

and convective Mach number interchangeably. Figure 4.5 shows the effect of Mach 

number on the growth of the most amplified disturbance. The most amplified 

wavelength was Lx = 21r! a = (7.48,8.06,9.52,13.37) for each of the cases Ml = 

(0.2,0.4,0.6,0.8). The figure shows the growth in the vorticity thickness of the 

layer, defined by equation (2.21). For each case a 64 X 81 grid was used, with 

Re = 400, Ly = 10.0 and disturbance amplitude 0.05. Each wave grows until it 

fills the computational box and saturates. If the computation is allowed to proceed 

further in time, the behavior shown on figure 4.6, for Ml = 0.4, is obtained. The 

layer thickness exhibits a damped oscillation in time. Lele [1989J showed that this 

behavior is associated with a 'nutation' (shape change) of the developed vortex, 

which also produces sound waves that radiate away from the mixing layer. The 

final structure is shown in figure 4.7. The vorticity field is reminiscent of the Stuart 

vortices (Stuart [1967]), and the neutrally stable mode of linear analysis (Michalke 

[1965a]). The scalar is diffuse, since no new fluid is wrapped around the structure 

in the nutation phase, only rotation of old fluid. 

Another measure of thickness was tested, based on the mass-weighted mean ve­

locity profile: 

(4.4) 

Figure 4.8 shows this measure compared with the conventional vorticity thickness, 

defined by equation 4.4. Two Mach numbers are considered. At Ml = 0.2 there 

is no difference between the two measures, while at Ml = 0.8 the mass-weighted 

vorticity thickness has a higher value than the usual vorticity thickness. It is not 

clear what the significance of this difference is. In all the following simulations the 

usual vorticity thickness is used. 

The growth in energy E(kx = 1) of the disturbances, computed by equation 

(3.53), is plotted on figure 4.9. There is initially an exponential growth of the 
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disturbance energy, a straight line on this semilog plot. This is followed by slower 

growth with eventual saturation and decay in mode energy. 

The effect of Mach number on the developed structure is shown in a series of 

contour plots of mixture fraction, pressure, vorticity and vorticity divided by den­

sity. These are plotted for Mach numbers Ml = 0.2, 0.4, 0.6 and 0.8 on figures 

4.10 through 4.13. All such contour plots show equally spaced contours between 

the maximum and minimum values shown. Dashed contour lines are used wherever 

a function is negative. Plots of mixture fraction are for f - 0.5 and show how fluid 

from each of the free streams is wrapped into the large-scale structure. The pressure 

fields show reduced pressure in the vortex cores (at x = L",/4, y = 0), and increased 

pressure (near the isentropic stagnation pressure) at the saddle point (x = 3L",/4, 

Y = 0). At Ml = 0.2 the pressure is reduced by 5.9% in the core, relative to the 

free-stream, and raised by 2.5% at the saddle point. At Ml = 0.8 the reduction in 

the core is 37.5%, and the rise at the saddle point is 48.7%. 

A comparison is made in table 4.1 of the rise in fluid properties at the saddle 

point, compared to the rise assuming an isentropic stagnation process (Liepmann 

and Roshko [1957]) from the free-stream to the stagnation point: 

(4.5a) 

Po = (1 + 'Y - 1 MfP/b-l) 
PI 2 

( 4.5b) 

Po = (1 + 'Y - 1 Mf)l/b-l) 
PI 2 

(4.5c) 

where the subscript 0 represents stagnation conditions. The comparison gets better 

later in the simulation, as the remaining vorticity is moved away from the saddle 

point by the local strain field. It can be seen that, at least for the cases of equal 

density considered here, the assumption of an isentropic process to predict fluid 

conditions at the saddle point is quite good. 
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Table 4.1 Comparison of computed rise in fluid properties at the saddle 

point with rise assuming an isentropic process. 

Ml time 6.P/6.Pis 6.p/6.Pis 6.T/6.Tis 

0.2 15.0 0.875 0.791 1.085 
0.4 17.6 0.872 0.803 1.049 
0.6 24.0 0.882 0.833 1.016 
0.8 37.2 0.936 0.844 1.170 

The plots of vorticity and vorticity divided by density show a clear change in 

structure as the Mach number is raised. The vortices become very elongated in the 

streamwise direction at high Mach numbers. The effect is much more noticeable in 

the plots of vorticity W z , but is still evident in the plots of wz / p. To understand this 

change in structure we turn to the compressible vorticity equations (2.29)-(2.31). 

Terms from these equations are plotted on figure 4.14 for Ml = 0.6. The equation 

for W z has both a dilatational term and a baroclinic term on the right hand side. 

It was found that for mixing layers with equal free-stream densities the dilatation 

term was larger by a factor of 3 or 4. This term is plotted on figure 4.14c, and 

shows a quadrupole structure. 

A physical explanation of the shape change will now be suggested. A fluid element 

approaching the structure from the upper left hand side experiences an expanding 

flow (aui/ax; > 0), and a reduction in vorticity, until it is alongside the vortex. 

Then the element is subject to a compression (aui/ax; < 0), with an associated 

increase in vorticity as it approaches the trailing edge of the vortex, and the stag­

nation region behind. A similar process affects fluid elements approaching from the 

lower right hand side. The overall effect is to reduce vorticity above and below 

the vortex, and to increase vorticity in front and behind the vortex, leading to a 

structure elongated in the streamwise direction. 

The same basic structure is found for the baroclinic term, figure 4.14d, on the 

right hand side of the equation for wz / p. Hence this term leads to elongation of 

the W z / p structure in x. For this equation the term on the right hand side, though 

large enough to cause the elongation effect, is small enough to make wz/ p nearly a 

conserved quantity. Fluid particles follow more closely the W z / p contours than the 

W z contours. This is demonstrated by observing that the contours of the mixture 
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fraction, figure 4.12a, which tracks fluid elements during the simulation, show that 

fluid has been transported around paths resembling the wz / p contours. 

The change in structure can be related to growth rate by considering the efficiency 

of the various structures at entraining new fluid. Consider the limiting cases of 

a circular vortex, and a fully elongated vortex. The fully elongated vortex (i. e. 

parallel flow) does not wrap any new fluid around the structure, and it cannot then 

be engulfed and mixed, and there is only growth by viscous diffusion. The circular 

vortex wraps fluid from the free-streams around itself, and grows strongly. If we 

assume a monotonic trend between these two limiting cases then we see that the 

effect of an elongated vortex structure is to reduce the growth rate of the mixing 

layer. 

4.3 Effect of Mach Number on Pairing 

At low Mach numbers the non-linear mechanism by which the mixing layer 

changes its lateral scale is observed in experiments to be the vortex pairing pro­

cess (Winant and Browand [1974]). Two simulations were run, at Ml = 0.2 and 

Ml = 0.6, with an initial Reynolds number of 200, to investigate the effect of Mach 

number on pairing. The fundamental (F) and first subharmonic (81) wavelengths 

were included in the initial conditions, with a relative amplitude of 2:1 

where ¢J is the phase difference between the two modes. Figure 4.15 shows the 

various options for phase. The case ¢J = 'Jr /2 was chosen, since this is the optimum to 

enhance pairing. The opposite case is when ¢J = 3'Jr /2, which corresponds to a slow 

tearing process, where one vortex is trapped in the strain field of the subharmonic 

and is pulled apart. All other phases result in pairing or tearing in various degrees. 

The time histories of the vorticity thickness are shown on figure 4.16 and the 

growth in energy on figure 4.17, for Mach numbers 0.2 and 0.6. The energy plot 

shows how the fundamental mode grows first and saturates, and then the subhar­

monic wave takes over. The vorticity thickness is very sensitive to the structure 

of the flow. Other measures, such as integrated momentum thickness, or visual 
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thickness, do not show all the detail of the vorticity thickness. Events in the vor­

ticity thickness time history can be related to specific events in the flow. This is 

illustrated in the following sequence for the Ml = 0.2 simulation. 

(1) The fundamental mode grows and saturates. Figure 4.18 shows the mixture 

fraction, pressure and vorticity at time t = 9 during roll-up of the fundamental 

instability. 

(2) After saturation of the fundamental mode, the subharmonic mode grows and 

two of the primary structures begin to rotate around each other. When the 

structures have rotated such that when viewed in the x direction they are two 

separate vortices, there is an event in the vorticity thickness time history. At 

Ml = 0.2 this occurs at t = 20, and is illustrated in figure 4.19. 

(3) Rotation continues and the peak in vorticity thickness is reached when the 

structures lie one above the other. The structure shortly following this, time 

t = 24 is shown on figure 4.20. Now the structure on top is beginning to move 

downwards, and the two vortices are rotating around each other. 

(4) The next event in the vorticity thickness occurs when the vortices once again 

lie above each other, having rotated by 1800
• This occurs at time t = 27, and 

is shown on figure 4.21. 

(5) The last point shown here is at time t = 32, figure 4.22, where the vortices have 

rotated all the way around. If the simulation is carried further, the core of the 

structure continues to rotate and the vorticity thickness continues a damped 

oscillatory behavior, similar to that found for a single structure (figure 4.5). In 

practice the next subharmonic would now grow and the process would repeat, 

beginning with step 2 above. 

The same sequence was observed at Ml = 0.6, though the pairing process was 

slowed both linearly and non-linearly. Figures 4.23 through 4.26 show the structure 

of the flow at times 16, 29, 37 and 47, corresponding approximately to items 1 to 

4 in the above pairing process. If we associate the process between items 1 and 

2 as the linear growth of the subharmonic, and the remaining processes as non­

linear, then it can be seen from figure 4.16 that both linear and non-linear aspects 

of pairing are slowed by compressibility. Some delay is expected due to the increase 

in wavelength of the most amplified disturbances as Mach number is increased. A 

simulation was therefore performed at Ml = 0.2 with the same wavelengths as the 
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Ml = 0.6 case. Figure 4.27 shows the growth rate comparison with wavelength 

effects removed, showing that both linear and non-linear growth is indeed slowed 

by compressibility. 

The slowing of the growth of the initial stage of pairing is accounted for by the 

effect of Mach number in reducing the linear amplification rate of the subharmonic 

disturbance. There are several possible reasons for the reduction in growth rate 

in the non-linear region: (i) the shape of the pairing vortices has changed, and 

the more elongated structures may be less inclined to pair, (ii) the delay in the 

Biot-Savart type of vortex induction process, due to the finite sound speed, may 

make the pairing process less efficient, and (iii) continued compressibility effects due 

to dilatational and baroclinic torques may be slowing the rotation of the vortices 

around each other. It is not clear from the current study which of these effects is 

dominant, or whether they are all important. 

The pairing involves a displacement of the vortices into the free-stream, which 

distorts the streamlines outside the vortical region, and creates regions of locally 

high velocity. During the pairing at Ml = 0.6 it was found that for a short period of 

time, around the peak in the vorticity thickness curve, there was a region of super­

sonic flow above and below the structures, although this did not persist long enough 

to generate shock waves. At any higher Mach number shock waves would certainly 

form during the two-dimensional pairing. It is interesting to note the evidence that 

the flow would prefer not to have shock waves. Lele (private communication [1988]) 

has shown that tearings may be more common at higher Mach numbers, and Ragab 

and Wu [1989] have shown that a helical pairing may be preferred even as low as 

Ml = 0.4. This, and the tendency toward three-dimensional structures at high 

Mach numbers (see Chapter 5), seems to indicate that the flow will try to avoid 

generating shock waves if at all possible. However, there is no general theory to 

predict why this is so. 

4.4 Two-Dimensional Structure 

In this section the two-dimensional structure, under the influence of compress­

ibility, is explored. The evolution of the vorticity and scalar fields at this Mach 

number have already been described in section 4.2. Here we consider the behavior 

of other fluid properties, such as stagnation enthalpy, entropy, and strain rate. 
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Contours of temperature at Ml = 0.6 are shown on figure 4.28a. They show 

high temperature at the stagnation point in the braid, and lower temperature in 

the vortex core. The stagnation enthalpy for a perfect gas with constant specific 

heats is given by: 

*2 *2 

H * *T* U + v =c +----
p 2 (4.7a) 

and non-dimensionally: 

( 4.7b) 

A contour plot of H is shown on figure 4.28b. The stagnation enthalpy is lowest in 

the vortex core, and remains approximately constant in the rest of the flow. This 

effect can be understood by considering an inviscid, non-conducting form of the 

energy equation (Liepmann and Roshko [1957]). 

DH lap 
-

Dt pat 
(4.8) 

In the cores of the structures during roll-up the pressure is reducing with time, so a 

fluid particle being wrapped around the developing structure experiences decreasing 

pressure, and by equation (4.8) the stagnation enthalpy drops. In situations where 

the two free streams have different stagnation enthalpies the reduced H in the core 

is overshadowed by the mean H profile. 

The entropy of the flow (non-dimensionalized as s = s*Ti jUi' since e is normal­

ized by Ui2
), relative to the free-stream 1, is defined by 

InT lnp 
s= ---

')'(-y - l)M? ')'M? 
(4.9) 

A contour plot is shown on figure 4.28c. The entropy structure is similar to the 

vorticity, with high entropy found in the center of the vortex. The assumption of 

an isentropic process from the free streams to the saddle point can be seen to be 

valid for free-streams with equal entropy. 
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Strain rate in the flow is of interest from two perspectives. Firstly, because it 

strongly affects the development of streamwise vorticity in the flow, and strain rate 

near the saddle point can lead to the 'collapse' of streamwise vorticity into stream­

wise vortices (Lin and Corcos [1984]). This produces mushroom structures in the 

scalar field, observed experimentally by Bernal and Roshko [1986]. Secondly, strain 

rate is of interest when applications to combustion are considered. If the strain rate 

is too high in any region of the flow then any flame that forms may be quenched, 

and reactions generating heat release may be prevented. Unlike incompressible flow, 

the strain rate tensor is not trace-free and there are alternative ways to document 

the strain rate magnitude. The usual definition of strain rate tensor is 

1 
S·· = -(u· . +u··) 

~J 2 'It,) J,'it (4.10) 

An anisotropic strain rate tensor can also be defined (Reynolds [1988]): 

Skk8· . Sa. = So. _ 'J 
'J 'J 3 

(4.11) 

The magnitudes of the strain rates for each case are defined by: 

ISI- ~ - V u'Ju'J (4.12) 

(4.13) 

For the simulations presented here it was found that the high strain rate regions 

in the flow were not associated with regions of high dilatation, so the values for 

peak strain rate magnitude were not affected by choice of equation (4.12) or (4.13). 

At different times in the simulation for Ml = 0.6 contour plots of the strain rate 

field are shown on figures 4.29 and 4.30, and slices through the flow at various x 

locations are shown on figure 4.31. It can be seen that the usual picture of strain 

rate, high in the braid regions and low in the cores, is observed at time t = 18.2 

during the early stage of roll-up. However at later times, e. g. at t = 24.0, figure 

4.31b, the strain rate peak in the braid is not dominant, and regions of high strain 

rate are also found within the vortex core. 

For combustion application, it would be useful to be able to model the magnitude 

of the peak strain rate in the flow. The time history of the peak strain rate is shown 
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on figure 4.32. When normalized by the initial vorticity thickness and free-stream 

velocity, the strain rate is seen to decrease during the simulation. When the strain 

rate is renormalized by the local vorticity thickness and velocity difference, shown 

on curve 2 of figure 4.32, we find that the strain rate increases slightly during roll­

up, and then declines. In the latter case the non-dimensional peak strain rate is 

always of order unity, so that peak strain rate in the mixing layer can be modeled 

by the ratio of the free-stream velocity difference to the local vorticity thickness. 

4.5 Effect of Density Ratio 

Most compressible mixing layer experiments are performed for free-streams with 

unequal densities. Additional baroclinic torques can appear in the flow, especially 

in the braid region where the two free-streams are brought close together and steep 

density gradients are formed. To investigate these effects, two simulations are com­

pared; one has free-streams of equal density, and the other has a density ratio 

P2 = 0.5 (T2 = 2). 

The simulations are run at Me = 0.6, with a Reynolds number of 400. To check 

the convective velocity formula, we arrange U2 so that the predicted convective 

velocity is zero. For the density ratio of 0.5, this means setting U2 = -vi The 

velocity profile is then obtained from the error function as: 

(4.14) 

The temperature profile is obtained from the velocity profile in the usual way (equa­

tion (2.13)). 

The growth in vorticity thickness for each simulation is shown on figure 4.33, 

and the growth in integrated energy E(1) (the fundamental mode), on figure 4.34. 

The plots of E(1) show that the simulations start from a different origin. This 

is simply a reflection of differences in the shape of the eigenfunctions, since the 

normalization is done by amplitude of the u eigenfunction, and not by integrated 

energy. The developed structure is shown on figure 4.35, and can be compared with 

the simulation for uniform density shown on figure 4.12. It can be seen that there is 

generation of vorticity with the opposite sign to that of the dominant roll-up, which 
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can be explained by considerations of the baroclinic torque acting in the saddle­

point region of the mixing layer. A sketch of the saddle region is shown on figure 

4.36. In region 1 the gradients of pressure and density are nearly perpendicular 

to each other and application of a right hand rule shows that clockwise vorticity 

(positive in the current definition) is produced. This is then convected away from 

the saddle point by the local strain rate field, and becomes wrapped around the 

structure to the left. In region 2 the pressure and density gradients act to produce 

vorticity with the opposite sign to the main roll-up (anti-clockwise)' which becomes 

wrapped around the structure to the right. The counter-clockwise vorticity does not 

produce vortices of the opposite sign, it merely modifies the path of fluid particles 

rotating around the main structure, and results in a more asymmetric scalar field. 

A simulation was run with a density ratio of 0.2 to investigate the Uc formula 

(1.2), compared with the predictions of the linear instability theory. For this case 

(T2 = 5, U2 = -VS) the convective velocity formula predicts zero convective veloc­

ity, whilst from the linear theory the phase speed of the growing wave is 0.05 and 

the phase speed of the neutral mode is 0.16, which are both very definitely non-zero. 

The developed structure is shown in figures 4.37. The scalar field is highly asym­

metric due to the baroclinic terms. Figure 4.38 shows the initial and final pressure 

contours. Initially the pressure minima is at x = L",/4 and the pressure maxima is 

at x = 3L",/4. At the later time the pressure minima has moved to x = L",/2 and 

the pressure maxima is at x = L",/6. The structure has moved to the right. The 

approximate convective velocity, based on the movement of the stagnation point 

(a peak in pressure) is 0.15. It is 0.12 based on the movement of the minima of 

pressure in the vortex core. The reason for the difference is that the structure is 

evolving and the convective velocity changes depending on which feature of the flow 

we look at. These rough estimates agree better with the phase speed of the neutral 

mode than with the Uc formula (1.2), which would predict no convection. 

4.6 Embedded Shock Waves 

In two-dimensional simulations above a convective Mach number of 0.7 it was 

found that shock waves developed in the flow. Pressure contours for a simulation 

at Ml = 0.8 at a Reynolds number of 400 are shown on figure 4.39a, and show 

the location of the shock waves. Local Mach contours are shown on figure 4.39b. 
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Flow around the top of the vortex is accelerated to supersonic speeds, and then has 

to stagnate at the saddle point in the braid. It does this by compression through 

a weak (Mmax ~ 1.2) near-normal shock wave. The process is similar to the flow 

around a transonic airfoil. The same process occurs for the lower stream moving 

from right to left below the vortex. Profiles of pressure, density and temperature 

through the shock wave are shown on figure 4.40. They show that for this flow 

condition the shock wave is adequately captured by the numerical method, using a 

grid with 192 points in the streamwise direction. 

The computational problem is that at lower Reynolds numbers (e.g. 200) the 

roll-up of the vortex is not strong enough to generate a shock wave (i.e. we are in a 

viscous regime), while at higher Reynolds numbers the shock is stronger, and thin­

ner, so that a prohibitively large number of modes are required to resolve it properly. 

During an earlier phase of this project, TVD (Total Variation Diminishing) numeri­

cal methods were tested for mixing layer flows. These numerical methods are of the 

shock-capturing genre (Yee [1989]), and were found to do a good job of capturing 

the shock waves, no matter how strong, without encountering numerical difficulties. 

However, this shock capturing capability is obtained by introducing extra dissipa­

tion in regions of the flow where oscillations develop. This extra dissipation also 

tends to damp out the growth of the large-scale structure in the flow. It was found 

that with the TVD schemes a large number of grid points were required in order to 

capture the instability correctly (Sandham and Yee [1989]). Neither spectral meth­

ods (relying on shock resolution), nor TVD methods (shock capturing) were found 

to be efficient for flows involving both shock waves and growth of instabilities. 

A model two-dimensional large-scale structure with shock waves has been pro­

posed by Papamoschou [1989J, and separately by Dimotakis [1989J, to explain some 

of Papamoschou's experimental results concerning convective velocities. (An al­

ternative explanation of the results using linear stability theory was presented in 

section 2.4.) The shock waves proposed by Papamoschou are strong and are in­

clined to the streamwise direction, so that there is a large entropy rise through 

the shock wave. This breaks the symmetry in the convective velocity formula, and 

was offered as an explanation of the experimental finding that convective speeds 

are biassed towards one free-stream speed or the other (Papamoschou [1989]). The 

model structure made no prediction of the angle or strength of the shock waves. 

However, the shocks observed in the current work were always weak, nearly normal 
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to the streamwise direction, and were found on both sides of the vortices. Thus, 

they are not reminiscent of the model shock structure proposed by Papamoschou 

and by Dimotakis. 

4.7 Simulation of Supersonic Mode Instability 

The 'radiating vorticity' modes of instability, supersonic with respect to one of 

the free-streams, are the most amplified modes in two dimensions above a convective 

Mach number of approximately 1 (see section 2.2.4). Although we expect three­

dimensional modes to be dominant at these Mach numbers, it is interesting to 

simulate the non-linear development of these modes, which might be excited in 

experiments by strong two-dimensional forcing of the mixing layer. 

The time-developing mixing layer with equal densities at a Mach number of 1.05 

was chosen for simulation. The Reynolds number was fixed at 800, which is just 

high enough so that the inviscid eigenfunction is amplified. The high Reynolds 

number necessary for simulation of this weak instability means that shock waves 

cannot resolved, since these will be very thin. The computations have to be stopped 

as soon as shock waves form. 

The mode that is supersonic with respect to the lower stream was simulated. The 

other mode, supersonic relative to the upper stream, will have the same behavior. 

From the linear stability theory the amplification rate of this mode is 29% of the 

amplification rate of the most amplified three-dimensional wave (angle 56°). 

The growth in vorticity thickness and energy E(1) for this supersonic mode are 

shown in figures 4.41 and 4.42 respectively. Contours of relevant features are shown 

on figure 4.43 at time t = 82. We see that roll-up does occur, so that this is indeed 

a 'vortical' instability mode, which can act to mix fluid from the two streams. 

However, the roll-up is very weak and takes a long time to develop. The structure, 

shown for example in the contours of density on figure 4.43b, seems to reside on the 

upper side of the mixing layer, and the contours of mixture fraction show that the 

cores of the structures are mostly fluid from the upper stream, i.e. the stream that is 

subsonic relative to the structure. The pressure contours, figure 4.43c, show clearly 

the radiating nature of the instability. On the upper side we have the usual picture 

of pressure: high at the stagnation point and low in the vortical structure. However 
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on the lower side, where the free-stream is supersonic relative to the structure, 

we find an arrangement of expansion and compression waves. The compression 

waves develop into shock waves during the simulation. At a later time t = 92.5 

the structure, shown on figure 4.44, has developed shock waves which can no longer 

be resolved on the computational grid; oscillations can be observed in the pressure 

contours in the lower left comer of the plot. 

The presence of walls in experiments would cause the waves to reflect back into 

the shear layer. Such a mechanism lies at the heart of the wall-modes and Mack 

modes proposed by other authors (Greenough et al.[1989], Mack [1989]), though is 

is not clear that those modes are vortical modes that could act to mix fluid. In any 

case, as long as the walls aren't too close, the three-dimensional instability is more 

amplified, and this is the subject of the next chapter. 

4.8 Chapter Summary 

The main effect of compressibility in two-dimensional simulations is to damp 

the growth of the instability, both linearly and non-linearly. As Mach number 

is increased the developed vortical structure becomes elongated in the streamwise 

direction and less efficient at wrapping new fluid into the mixing layer. The pairing 

process is also slowed by compressibility. For convective Mach numbers above 0.7 

we find weak shock waves developing in the flow. 

Above a convective Mach number of 1 the only unstable two-dimensional modes 

in the mixing layer are the weakly amplified supersonic modes. Simulation of these 

modes showed that the structures developing from these instabilities are weakly 

vortical, and are able to mix fluid. The structures are supersonic relative the one 

of the free-streams, and on that side a pattern of shocks and expansion fans forms. 
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CHAPTER 5 

Three-Dimensional Simulations 

In this chapter simulations are presented of the three-dimensional instabilities, 

which are expected to dominate the mixing layer at high Mach number. The large­

scale structures which develop from the non-linear growth of these instabilities are 

analyzed. 

5.1 Initial Conditions and Parameters 

The time-developing mixing layer is again chosen for simulation. The initial 

mean flow is the same as for the two-dimensional simulations of Chapter 4, with 

the mean velocity given by equation (4.1) and the mean temperature by equation 

(2.13). 

Three Mach numbers were selected for detailed study. A free-stream Mach 

number Ml = 0.4 was chosen as a low Mach number where we expect to find 

near-incompressible behavior. An intermediate Mach number was chosen to be 

Ml = 0.8. At this Mach number an oblique wave is slightly more amplified than 

the two-dimensional wave, and a broad range of waves in between are about equally 

amplified. Mach number Ml = 1.05 was selected as the high Mach number case for 

study. 

The instability characteristics of the flow change around a convective Mach num­

ber of 1. Just below Me = 1 the two-dimensional wave, though no longer the most 

amplified wave, is still only a factor of about 2 less amplified than the most ampli­

fied wave, and may still be expected to have an effect on the development of the 

flow. Above Me = 1 the two-dimensional wave is much more weakly amplified than 

the oblique waves, and the flow is expected to be dominated by a narrow band of 

oblique waves. This change is illustrated on figure 5.1, where the linear amplifica­

tion rate is plotted as a function of angle at Mach numbers Ml = 0.95 and 1.05 for 

the time-developing mixing layer with equal free-stream densities. The simulation 

at Ml = 1.05 is expected to be typical of higher Mach number mixing layers, since 
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the only further change in the stability characteristics of the flow is the increasing 

obliquity of the most amplified disturbances. 

The Reynolds numbers for the simulations were chosen by considering the effect 

of viscosity on the growth rate of an eigenfunction from inviscid linear stability 

analysis. Figure 5.2 shows the effect of Reynolds number on the amplification rate 

for three different oblique waves: a 45° wave at Ml = 0.4, a 45° wave at Ml = 0.8, 

and a 60° wave at Ml = 1.05. The latter two are expected to be the most amplified 

waves at their respective Mach numbers. Ideally, we would like to be at the high 

Reynolds number end of these curves in order to capture the inviscid nature of 

the instabilities. The Reynolds number was selected to be 400, 600 or 800 for the 

Mach numbers 0.4, 0.8 and 1.05 respectively. The problem with simulating high 

Mach number flows is the higher Reynolds numbers that are required to capture 

the instability. The higher the Reynolds number the more modes are required later 

in the simulation in order to resolve the flow. For this reason the highest Mach 

number simulated was 1.05. 

The three-dimensional simulations presented in this chapter were all run for 

a Prandtl number of 1 and a Schmidt number of 1. Initial perturbations were 

usually specified as eigenfunctions from the linear stability analysis. However, some 

simulations (sections 5.4 and 5.6) were performed with random initial conditions, to 

check that the most amplified waves were indeed those predicted by linear stability 

analysis. The simulations were usually started on a 16 x 99 x 16 grid, with boundary 

conditions applied at y = ±5 initial vorticity thicknesses away from the mixing layer 

centerline. As the high wavenumbers gained energy the number of points used in x 

and z was extended, ending at typically 96 x 99 X 96. 

5.2 Simulations at Low Mach Number 

At Ml = 0.4 we expect to get nearly incompressible behavior. This case there­

fore partially serves as a check on the code, comparing against previous incompress­

ible mixing layer simulations and against incompressible secondary stability theory. 

However, some compressibility effects may be evident even at this low Mach num­

ber since Ragab and Wu [1989] found some changes from incompressible secondary 

stability behavior at Ml = 0.4. 
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The major work in secondary stability analysis for the incompressible mixing 

layer is that of Pierrehumbert and Widnall [1982]. They used Stuart [1967] vortices 

as the base flow and solved the resulting Floquet problem for both fundamental and 

subharmonic instabilities. The fundamental instabilities were of the core 'bulging' 

or core 'translative' kinds, while the subharmonic instabilities were either regular 

pairing or a 'helical pairing'. Simulations of all these instabilities can be made by 

choosing an initial disturbance field of a two-dimensional wave, and two equal and 

opposite oblique waves. 

The fundamental mode instabilities have the same streamwise wavelength as the 

initial roll-up. The initial disturbance field is specified by: 

u' = AIReal{u(a,O)i(ax+</»} + A2Real{u(a,,8)ei (ax+.Bz) + uta, _,8)i(ax-.Bz)} 

(5.1) 
where u( a,,8) is an eigenfunction of the linear instability wave with streamwise 

wavelength Lx = 21f / a and spanwise wavelength Lz = 21f /,8. Similar disturbances 

are added for p', v', w' and T'. The phase of the oblique waves relative to each 

other is not important, since this does not change the basic pattern of the addition 

of two oblique waves, only translating it in space. However the phase, ,p, of the 

two-dimensional wave relative to the pair of oblique waves is important. 

With the phase ,p = ° we get the 'bulging' mode of Pierrehumbert and Widnall 

[1982]. The structure of the initial field for this case can be shown by a cut through 

the x-z plane at y = 0, figure 5.3. Pressure contours are shown on figure 5.3a 

and contours of w"', wyand Wz on figures 5.3b-d respectively. The pressure minima, 

which shows where the core of the vortical structure will form, is at x = L",/4, and is 

fairly uniform across the span. The contours of Wx and Wy show a pattern of counter­

rotating vortices, resulting from the addition of the two equal and opposite oblique 

waves. For these plots the sign of vorticity has been chosen so that clockwise motion 

is shown with solid contours and counter clockwise motion with dashed contours. 

It can be seen that the effect of these vortices is to distort the core of the two­

dimensional instability and give it a varying cross-sectional area in the spanwise 

direction. 

With the phase ,p changed to 1f /2 we get the 'translative' mode of Pierrehumbert 

and Widnall [1982]. The initial condition is shown on figure 5.4. Now the primary 

roller is at x = 0, which coincides with a peak in both streamwise and vertical 
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components of vorticity. The effect is to make the pressure minima oscillate in the 

spanwise direction, alternately forcing it forwards or backwards. 

Direct simulations were made for both the bulging and translative modes at 

MI = 0.4. The Reynolds number was set to 400 and the disturbance amplitudes 

were Al = 0.05 and A2 = 0.025 (equation (5.1)). The angle for the most amplified 

disturbance from Pierrehumbert and Widnall was 56.30
, but the variation with 

angle was weak. It was found that at this angle and Reynolds number the initial 

instability wave was damped. A smaller angle is needed in order to get a disturbance 

that grows on the mean flow and 45° was selected. Plots of the vorticity thickness 

growth for the two simulations are shown on figure 5.5, and the time history of the 

energy E (equation (3.53)) is shown on figure 5.6 for the bulging mode and on figure 

5.7 for the translative mode. Modes are defined by (k"" kz) where kx and kz are 

integer wavenumbers in the x and z directions. Mode (1,0) is the two-dimensional 

wave, and (1,1) and (1, -1) are the two oblique waves. For these simulations the 

oblique waves are equal and opposite, and grow in exactly the same way. There 

is a line of symmetry in the simulations at z = Lz/2, the preservation of which 

serves as another check on the code. Comparison of figures 5.6 and 5.7 shows that 

the (1,0) mode is unaffected by its phasing relative to the oblique waves. However 

the growth of the three-dimensional waves is much stronger for the phase rP = 11"/2 

than for rP = 0, which agrees with Pierrehumbert and Widnall's finding that the 

translative mode of instability is more amplified than the bulging mode. 

The best method that was found for identification of rotational regions in the 

flow was to search for a local minima in pressure. Perspective views of a surface of 

constant pressure, enclosing a region of low pressure, are shown on figures 5.8 and 

5.9 for the bulging and translative modes respectively. The bulging mode appears to 

be only weakly unstable, and the developed structure is very two-dimensional. The 

translative mode results in a vortex core that oscillates in the spanwise direction. 

The fate of the streamwise and vertical vorticity initially in the saddle point 

region of high strain between two large spanwise rollers is of much interest, since 

Lin and Corcos [1984] showed that straining of vorticity in this region can lead to the 

formation of streamwise vortices. These vortices produce mushroom-like structures 

in a scalar field, as observed in experiments by Bernal and Roshko [1986]. For the 

initial condition of the bulging mode (figure 5.3) the saddle point lies between two 

of the regions of streamwise vorticity. Development of the primary roller creates 
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a straining in this region, which pulls the streamwise and vertical vorticity away 

from the saddle point. A perspective view of the developed streamwise vorticity 

is shown on figure 5.10, corresponding to the pressure field of figure 5.8. There is 

no streamwise vorticity in the saddle region, and the streamwise vorticity from the 

initial condition has been pulled away from the saddle point towards the vortex 

core. 

In the initial condition for the translative mode (figure 5.4) there is streamwise 

and vertical vorticity centered on the saddle point (located by the pressure peak at 

x = Lx/2). Now the straining field acts to pull this vorticity into long thin regions of 

vorticity (the braids). If the initial vorticity is strong enough Lin and Corcos [1984] 

predict a 'collapse' of the streamwise and vertical vorticity into vortices aligned with 

the principal axis of strain. This effect has been confirmed in the incompressible 

numerical simulations of Rogers and Moser [1989]. Figure 5.11 shows the streamwise 

vorticity for the structure that develops from the translative instability at Ml = 

0.4. The vorticity has indeed become elongated in the saddle region, but for this 

initial condition there has been no collapse into the near-circular vortices of Lin and 

Corcos. A higher amplitude of initial disturbances would be required in order to 

get these structures. 

The subharmonic instabilities of Pierrehumbert and Widnall [1982] are those 

with wavelength twice that of the primary roll-up. The two-dimensional subhar­

monic instability is the two-dimensional pairing process, described in section 4.3 

of this work. The other subharmonic instability was labeled a 'helical pairing' by 

Pierrehumbert and Widnall, and has not been simulated numerically before. This 

mode can be obtained by the following combination of instability waves: 

u' = AIReal{u(2a,0)i(2ax+f )} + A2Real{u(a,,8)i(ax+,Bz) + uta, _,8)ei (ax-,Bz)} 

(5.2) 

The computational box length is Lx = 27r / a and the box width is Lz = 27r /,8. The 

initial field with phase <p = 7r /2 is shown on figure 5.12. The spanwise vortices are 

located by the pressure minima at x = 0, L x/2. The 'helical' instability occurs when 

the streamwise and vertical vorticity from the oblique waves is superimposed on the 

centers of these structures. At z = Lz/2 the left structure is lifted and moved to 

the right, while the right structure is pushed down and moved to the left. At z = ° 
the situation is reversed. 
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A 'helical' pairing simulation was run with an initial Reynolds number of 200, a 

box size of Lx = Lz = 15.7 (i.e. the 45° oblique subharmonic wave was excited), and 

boundaries at y = ±10. The growth in vorticity thickness is shown on figure 5.13 

and the growth in mode energies on figure 5.14. Mode (2,0) is the two-dimensional 

fundamental wave, and modes (1,1) and (1, -1) are the oblique subharmonic waves. 

The structure after roll-up of the primary instability is shown as a perspective view 

of pressure on figure 5.15. The two vortices have been perturbed by the action of 

the oblique waves. At a later time the structure is shown on figure 5.16. The per­

turbation shape has developed into strong oscillation of the vortices in the spanwise 

direction. However, contrary to Pierrehumbert and Widnall's interpretation, we 

find no evidence for rotation of the two vortices around each other, in other words 

no merging by pairing. Instead the flow has evolved into a subharmonic structure, 

with wavelength twice that of the original roll-up. The final structure resembles the 

hairpin structures found in wall boundary layer transition, though here there is an 

antisymmetry between the upper and lower parts of the vortex tubes, and there are 

4 heads and 4 legs per periodic structure. Near the head of the hairpins there is an 

induced motion due to the legs, which will tend to pull the structure into a more 

upright orientation, and will oppose any tendency to rotate around neighboring 

structures. This prevents the 'helical' instability becoming a 'helical pairing'. The 

presence of any two-dimensional wave would eventually lead to pairing, but if the 

time to reach this pairing is long compared to the time taken for the next stage of 

instability to develop we may see structures similar to those on figure 5.16. 

Cuts through the mixture fraction and pressure fields at the plane y = 0 are 

shown on figure 5.17. The final structure found here is very similar to that which 

will be presented for high Mach number flows in section 5.5. The difference is that 

here the oblique waves grow on a base flow of developed spanwise rollers, whereas 

in section 5.5 the oblique waves grow on the unperturbed mean flow. 

Evidence for the existence of these structures in experiments is slim, but a 'he­

lical' structure was claimed to have been observed by Chandrsuda et al. [1978], 

which may have been due to an underlying structure like the one in figure 5.16. 

For incompressible flows this instability is less amplified than the classical two­

dimensional pairing, so it may only be found in experiments with high levels of 

background noise, where local disturbances might excite its development. However, 

the secondary stability analysis of Ragab and Wu [1989] shows that this mode can 
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become important when compressibility is included, and may be important down 

to MI = 0.4. 

5.3 Effect of Mach Number 

Most of the three-dimensional effects observed in experiments were captured in 

the simulations of the translative mode of instability in the previous section. It 

was therefore decided to use this combination of instability waves to investigate the 

effect of Mach number. Three simulations were made, at Mach numbers MI = 0.4, 

0.8 and 1.05, with Reynolds numbers 400, 600, 800 and box lengths corresponding 

to the most amplified wavelengths of Lx = 7.85, 13.37, 18.48 and Lz = 7.85, 13.37, 

12.465 respectively. The angles of the oblique instability waves were 45° for the 

MI = 0.4 and 0.8 cases, and 60° for the case MI = 1.05. The wave combination was 

the fundamental two-dimensional wave and two equal and opposite oblique waves 

with the same wavelength. The amplitudes were chosen to be Al = A2 = 0.025 

(equation (5.1)), with ¢ = 1r /2. 

The effect of Mach number on the growth of the Illlxmg layer is shown on 

figure 5.18. The growth in the energy for the amplified waves is shown on fig­

ures 5.19 through 5.21. At MI = 0.4 it can be seen that the (1,0) wave is the 

most amplified initially and is always more energetic than the oblique waves. At 

MI = 0.8 the oblique waves (1,1) and (1, -1) are slightly more amplified than 

the two-dimensional wave and, although they start with slightly less energy, they 

soon overtake the (1,0) wave. Again the linear behavior persists in the non-linear 

regime and the oblique waves have a higher energy content in the developed struc­

ture than the two-dimensional waves, although at this intermediate Mach num­

ber both two-dimensional and oblique waves are important. At the highest Mach 

number, MI = 1.05, the oblique waves have a much larger growth rate than the 

two-dimensional waves and by the end of the simulation the energy content of the 

(1, 1) and (1, -1) modes is one and a half orders of magnitude higher than the (1,0) 

mode. 

In each of the simulations the linear theory correctly predicts the initial growth 

rate of the instability waves. The most amplified wave is also the most important 

wave in the developed structure. The dominance of oblique waves at high Mach 
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numbers, predicted by the linear stability theory, extends to the non-linear regime 

in the simulations studied here. 

To illustrate the resolution of these simulations the energy content of all the 

modes is shown in carpet plots of E(kx,kz ) at the y = 0 plane (the mixing layer 

centerline) on figures 5.22 through 5.24 for Mach numbers 0.4, 0.8 and 1.05. The 

drop off in energy from the most energetic wave to the highest wavenumbers was 

kept to about 8 orders of magnitude by increasing the resolution during the simu­

lations. When the highest wavenumbers became important the simulations had to 

be stopped. The plots are shown for the last time step in the simulation, when the 

resolution was considered to be adequate. 

The high frequency part of these spectra should not be mistaken for small eddies 

in the flow. These high wavenumbers arise from the Fourier representation of the 

large structures in the flow; a steep gradient at some point in the structure requires 

many Fourier modes to resolve it. For example, a purely two-dimensional flow would 

have energy only along the kx = 0 line. At low Mach number the carpet plot (figure 

5.22) shows oblique ridges, due to oblique steep gradients that need to be resolved. 

The plots at higher Mach numbers (figures 5.23 and 5.24) show the development 

of ridges in the kz direction, along the kx = 0 line. These indicate the presence of 

steep spanwise gradients in the flow. 

Low pressure regions are associated with strong rotation. Perspective views of a 

pressure surface, that encloses a minima of pressure, are shown on figure 5.25 for 

Ml = 0.4 and on figures 5.27 and 5.28 for Mach numbers 0.8 and 1.05, and show the 

change in large-scale structure in the flow as Mach number is increased. At Ml = 0.4 

we have the translative mode discussed in the previous section, with the vortex tube 

oscillating in the spanwise direction. Again we have pre-collapse streamwise and 

vertical vorticity in the saddle region between adjacent rollers, shown by the surface 

of streamwise vorticity on figure 5.26. 

At Ml = 0.8 (figure 5.27) we find a weakening of the spanwise structure, and 

the development of oblique vortices in the saddle point region where at lower Mach 

numbers the streamwise braid vortices would form. By Ml = 1.05 (figure 5.28) we 

find that the two-dimensional mode has all but vanished, and we are left with a 

pattern of four regions of rotating fluid. There is one pair of equal and opposite 

oblique vortices in the region where the spanwise vortex was located at lower Mach 
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number (x = 0), and another pair of counter-rotating vortices, with opposite sense 

to the first two, in the region of the low Mach number saddle point (x = Lx/2). 

The essential change in structure is shown on figures 5.29 through 5.31, where two 

vortex lines (lines tangent to the local vorticity vector) per structure are plotted. At 

low Mach number one of these lines is the spanwise structure, while the other weaves 

back and forth and appears as the streamwise vortices in the saddle point region. 

At higher Mach number both vortex lines have a zig-zag structure, or a 'double 

hairpin with peak-valley splitting' structure, using boundary-layer terminology. The 

pressure minima in figures 5.27 and 5.28 show the positions along the vortex lines 

where there is strong rotation taking place. At other regions, for example near the 

heads of the hairpins, there is very little rotation of fluid taking place. The presence 

of a vortex line in this region should not be mistaken for the presence of a vortex. 

The sense of rotation of the vortices is always clockwise if a cut through the x - y 

plane is considered, which can be clearly seen in the mixture fraction field. Cuts 

throug~ the pressure and mixture fraction fields at the plane y = 0 are shown on 

figure 5.32 for Ml = 0.4 and on figures 5.33 and 5.34 for Ml = 0.8 and Ml = 1.05 

respectively. Fluid from below the mixing layer being moved upward appears as 

a local minima in the mixture fraction, and vice versa for fluid from above being 

moved down. To enhance the effect contour plots are made with 0.5 subtracted 

from the mixture fraction, which lies between 0 and 1. Negative values are shown 

with dashed contours, labeling fluid from below the mixing layer which has been 

moved upwards. Positive values are shown with solid contours and show fluid from 

above that has been moved downwards. 

The effect of Mach number on the bulging mode is now considered. At low Mach 

numbers this mode was not important, while at high Mach numbers the structure 

is expected to develop from oblique instability waves alone, with no effect from the 

relative phase of any two-dimensional mode. At the intermediate Mach number 

Ml = 0.8 a simulation was run with phase if> = 0 (equation (5.1)). The growth in 

vorticity thickness and mode energies for this simulation are shown on figures 5.35 

and 5.36, and the developed structure on figure 5.37. As with the other simulation 

at this Mach number the oblique waves are the most amplified instability waves 

through both the linear and non-linear stages of roll-up. The final structure, though 

different in detail, is just as three-dimensional as that which developed with phase 

if> = 11"/4. It also contains oblique inclined vortical regions. It is concluded that at 
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intermediate Mach numbers the phase of the two-dimensional wave relative to the 

oblique waves has an effect on the final structure. However the trend towards more 

three-dimensionality at higher Mach numbers is not affected. 

5.4 Simulations with Random Initial Conditions 

The purpose of these simulations is to check that the linear stability theory 

is correctly predicting the most amplified waves in the flow, and to check for the 

presence of modes other than those found in the linear analysis. The box length was 

chosen to be 40 initial vorticity thicknesses in both the x and z directions, which is 

long enough to allow approximately 5 of the most amplified waves to grow at Mach 

number Ml = 0.4, or 3 waves at Ml = 0.8, or about 2 waves at the highest Mach 

number Ml = 1.05. The initial condition was specified by adding a small random 

number to each of the computational variables Q = (p,pu,pv,pw,e) at each mesh 

point. For example 

p(x,y,z) =p(x,y,z) + Are-Y 2 
(5.3) 

where r is a random number uniformly distributed between -0.5 and 0.5, and the 

amplitude A was set to 0.0001. The exponential term is used to ensure that the 

disturbances decay to zero in the free-stream. The random numbers were initially 

applied to a 16 x 33 x 16 grid, which was then extended to 32 x 33 X 32 so that 

random numbers in the highest frequency modes could not alias back and affect the 

growth rates of low wavenumber modes. 

The simulations were run for the same conditions as in the previous section 

i.e. at Ml = 0.4 (Re = 400), Ml = 0.8 (Re = 600) and Ml = 1.05 (Re = 800). 

The simulations were run through the linear regime of small disturbance growth. 

During this time the mean flow changes by viscous diffusion. This is illustrated 

by the variation in vorticity thickness during these simulations, shown on figure 

5.38. The mean flow sets the length scale for the growth of small disturbances, 

so the variation in the mean flow means that different wavelength disturbances are 

more rapidly amplified at different times during the simulations. Specifically, longer 

wavelengths will become more rapidly amplified as the simulations proceed, which 

needs to be kept in mind when analyzing the results. 
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The growth in energy E(kx , kz) for selected modes is shown on figures 5.39 though 

5.41 for the Mach numbers Ml = 0.4, 0.8 and 1.05 respectively. At Ml = 0.4 the 

growth of the two-dimensional modes is plotted. Initially the (5,0) mode is the most 

amplified of those shown, in agreement with linear stability theory. However, by 

the end of the simulation, when the layer has grown by viscous diffusion, the (3,0) 

mode is the most amplified. Modes with wavelengths longer than the initially most 

amplified wavelength have growth rates that increase with time, whereas modes with 

shorter wavelengths have growth rates that diminish with time. At Ml = 0.8 the 

(3,4) mode is more amplified than the (3,0), (3,2) for (3,6) modes. At Ml = 1.05 

the (2,4) mode is the most amplified wave, growing more strongly than the (2,0), 

(2,2) or (2,6) modes. Both these results are in general agreement with the linear 

stability result that the most amplified waves satisfy Me cos () = 0.6. 

The final flowfield at Ml = 0.4 is shown on figure 5.42 by plotting a single contour 

of zero vertical velocity in the x - z plane at y = o. This contour divides fluid 

moving upwards from fluid moving downwards and gives an idea of the dominant 

structures in the flow. Clearly there is a preference for structures oriented in the 

spanwise direction, though there is no strong coherence. 

The lack of the strong coherence exhibited here at Ml = 0.4, compared to incom­

pressible experiments, may have many causes. In the simulations all waves (0,0) 

through (7,7) and (7, -7) were seeded, so there are many waves with approximately 

the correct orientation to grow nearly as strongly as the most amplified wave. The 

actual amplitude at the end of the simulations depends upon how well the particular 

instability mode was initialized. Other possible causes are compressibility effects, 

non-linear effects, or the variation in the mean flow during the simulation. It may 

also be due to effects peculiar to the experiments. For example, the flow is espe­

cially receptive to disturbances at the splitter plate edge, which is two-dimensional. 

Also, the experiments which show strong spanwise coherence are 'clean' experiments 

with laminar boundary-layers coming off the splitter plate. These boundary-layers 

will contain instability waves which, though not of high amplitude, may have been 

growing for a long enough time to have sorted out the two-dimensional Tollmien­

Schlichting waves. These would then be a forcing on the mixing layer, tending to 

make it more two-dimensional. 

The changing nature of the most unstable waves due to compressibility is clearly 

illustrated in the sequence of figures 5.42 through 5.44. These show the v = 0 
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contour in a cut through the x - z plane at y = 0 for Mach numbers 0.4, 0.8 and 

1.05 respectively. At Ml = 0.8 there is no longer any tendency towards a spanwise 

coherence, and waves at about 45° are most common. The situation is clearer at 

Ml = 1.05 where the linear theory predicts a fairly narrow band of waves around 

60° to be most amplified. The contours of v = 0 on figure 5.44 show strong evidence 

for waves at this angle. There are regions where the + and - oblique waves are 

amplified separately, and regions where both are amplified at the same region in 

space. 

The simulations with random initial conditions confirmed the linear stability 

finding that oblique waves become the most amplified waves as the Mach number 

of the mixing layer is increased. No evidence was found for the existence of modes 

other than those already considered in the linear stability analysis. 

5.5 Structure at High Mach Number 

Using results from the previous sections we can make some predictions about 

the kind of large-scale structures which may grow from the inflectional instability 

in the mixing layer at high Mach number, especially above Me = 1 where the 

oblique waves are much more strongly amplified than the two-dimensional waves. 

From figure 5.44, which showed the structure growing from low amplitude random 

noise, we see that there are regions in the flow where one of the oblique waves 

seems to dominate over the other, and regions where both oblique waves seem to 

be about equally important. Therefore two simulations were run, one with a single 

oblique wave and the other with a pair of equal and opposite oblique waves. The 

Mach number for these simulations was chosen to be 0.8, so that a lower Reynolds 

number of 400 could be used, to simulate further into the non-linear development. 

The two-dimensional wave was not included in the initial field, so these structures 

are expected to be more typical of flows at higher Mach numbers, except that those 

structures are expected to become more oblique. A wave angle of 45° was selected, 

since this is the most amplified wave at Ml = 0.8. The growth in vorticity thickness 

is shown on figure 5.45. 

The developed structure arising from a single oblique wave is, not surprisingly, 

an oblique vortex. The structure developing from two equal and opposite oblique 
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waves is more complex. Pressure surfaces are shown on figures 5.46 and 5.47 for the 

two cases. In the structure developing from the pair of oblique waves there are four 

main regions of rotating fluid. At x = 0 there are two counter rotating vortices, 

inclined in y relative to the x axis, and oblique in z relative to the x axis. There are 

two more vortices at x = Lx/2 similar to the first two, but with the opposite sense 

of Wx rotation. The region where two of the vortices come close may be considered 

similar to the hairpin structures found in transitional boundary-layer flows. The 

induced motion of the head of the hairpin due to the legs is alternately up or down, 

explaining the inclined nature of the vortices. In fact, the vortices become more 

inclined as the simulation proceeds. The actual rotation at the heads of the hairpins 

is weak, and there is no suggestion of rotation of the head of one hairpin around 

the tail of the hairpin beneath it. The structure can be thought of as two vortex 

lines, passing through the peaks in vorticity. One line passes through the vortices 

at x = 0 , Z = Lz/4, 3Lz /4 and the other passes through the vortices at x = Lx/2, 

z = Lz/4, 3Lz /4. Perspective and top views of the vortex lines are shown on figure 

5.48. These vortex lines are staggered in the streamwise direction, similar to the 

peak valley splitting of boundary-layer transition. However, the boundary layer 

case is a subharmonic secondary instability, whereas the case described here is a 

fundamental primary instability. 

The mixture fraction field for the structure resulting from two equal and opposite 

oblique waves is especially rich in detail. The mixture fraction, f, was initially 

specified by a hyperbolic tangent profile (4.3), and tags fluid from the free-streams 

with a value between 0 (lower stream) and 1 (upper stream). Contours are plotted 

of f - 0.5, with negative contours dashed, so that solid contours mark fluid that 

originated on the upper side, and dashed contours mark fluid that originated on 

the lower side. A cut through the x - z plane at y = 0 is shown on figure 5.49. The 

four main vortices show clearly. The regions of strong mixture fraction gradient 

at x = Lx/4, 3Lx/4, z = Lz/4, 3Lz/4 are complex three-dimensional saddle points, 

where fluid is being brought to rest, and high pressure ensues. Cuts of mixture 

fraction through the y - z plane at x = Lx/4 and x = Lx/2 are shown on figure 

5.50. Mushroom structures are found at x = 0, Lx/2 due to the counter-rotating 

vortices. Examples of cuts in the x - y plane are shown on figure 5.51 for z = Lz/4 

and z = Lz/2. This illustrates that care is needed when interpreting experimental 

cuts in the x - y plane or span averaged photographs such as Schlieren. The cuts 
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at z = Lz/4, 3Lz /4 are at first glance reminiscent of the two-dimensional low Mach 

number structure, even though the complete structure is highly three-dimensional. 

We note that there are two of the hairpin structures per period, which may explain 

the reduction in structure spacing to thickness ratio observed by Papamoschou 

[1986] above a convective Mach number of 0.8. 

5.6 Sensitivity to Initial Conditions 

In this section we present simulations in which random noise was added to the ini­

tial condition. The objective of these simulations was to see whether the structures 

presented in the previous sections are strongly affected by background noise, and in 

particular whether non-linear interactions act to disrupt the organized structure. 

A simulation at Ml = 0.8 showed that the growth of the linear eigenfunctions was 

not significantly affected by the presence of random noise. This simulation was run 

with the same Reynolds number, box size and configuration of instability waves as 

in section 5.3 (Re = 600, Lx = Lz = 13.37, forcing with a two-dimensional wave and 

a pair of equal and opposite oblique waves). The amplitude of each wave was 0.025. 

Random noise was added to this initial condition in the same way as in section 5.4, 

with amplitude A = 0.025 (equation (5.3)). All modes from (0,0) through (7,7) and 

(7,-7) were seeded. The growth in mode energies of the unstable waves are shown 

on figure 5.52, and are nearly indistinguishable from the growth rates shown on 

figure 5.20, where there was no random noise. The final structure was very similar 

to that of the simulation described in section 5.4 and is not presented again here. 

A more stringent test was run in which the initial eigenfunctions were not put 

into the simulations, and the flow had to sort out the most amplified waves from 

an initial field consisting only of random noise. The same Mach number, Reynolds 

number and box size were used as in section 5.3 and in the preceding paragraph. The 

random noise was added with amplitude A = 0.025, seeding modes (0,0) through 

(7,7) and (7,-7) in the usual way. A carpet plot of the initial mode energies is shown 

on figure 5.53a, and a cut through the pressure field at the y = 0 plane is shown on 

figure 5.53b. The simulation was run forward in time and a carpet plot and pressure 

field at time t = 29.6 are shown on figures 5.54a and 5.54b respectively. From the 

carpet plot it can be seen that the energy that was initially put into modes with 

86 



high kx hll.'l decayed very rapidly. The peaks that have appeared in the carpet plot 

are the unstable waves. From linear stability theory waves (1,0), (1,1), (1,-1), (1,2) 

and (1,-2) are all unstable. Other parts of the carpet plot are ll.'lsociated either with 

the Fourier representation of the non-linear structure that is developing from the 

linear instabilities, or with the decaying initial random number field. 

The amplitude of each wave is dependent not only on the growth rate, but also 

on the initial random field. From the carpet plot (figure 5.54a) it appears that 

the (1,1) mode Wll.'l most strongly seeded, followed by the (1,-2) and (1,-1) modes. 

As time advances in the simulation we see more of the effect of amplification rate, 

and less of the effect of the initial conditions. The pressure field shown on figure 

5.54b shows that one of the oblique waves is stronger than the others for this initial 

random field. 

The simulation with purely random initial conditions Wll.'l run long enough for the 

instability waves to grow to near-saturation conditions. Organized structure Wll.'l 

found. At time t = 52.0 the carpet plot of mode energies, and the pressure field at 

y = ° are shown on figures 5.55a and 5.55b respectively. The energy spectra hll.'l now 

filled out. This is attributed to the Fourier modes needed to resolve the large-scale 

structure in the flowfield. An oblique view of a surface of constant pressure is shown 

on figure 5.56. This can be compared with figure 5.27 (structure developing from 

a two-dimensional wave and a pair of oblique waves with relative phll.'le ¢> = 7f /2), 

figure 5.37 (same but with ¢> = 0), and figure 5.47 (structure developing from a pair 

of oblique waves alone). The developed structure is similar to the Cll.'le of figure 

5.4 7, where the structure Wll.'l allowed to develop from a pair of equal and opposite 

oblique instability waves. 

Figure 5.57 shows how the linearly unstable waves grow from out of the random 

initial condition. There is an adjustment period, extending up to about t = 10, 

during which the unstable waves emerge from the background noise. Depending on 

the initial field different waves may emerge first. It is apparent that the (1,1) mode 

Wll.'l most strongly seeded in this case. This wave grows at the same rate ll.'l the 

(1,-1) wave but appears to start from an earlier time (approximately 5 time units). 

The two-dimensional wave Wll.'l not strongly seeded in this simulation, and does not 

playa significant role in the evolution of this flow. 

A plot of the growth in vorticity thickness (equation (2.20)) is shown on figure 

5.58a, and a plot of the growth in vorticity thickness bll.'led on a mass-weighted 
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velocity profile is shown on figure 5.58b. As was noted in section 4.3 the vorticity 

thickness is very sensitive to features of the large-scale structure. Figure 5.58a 

shows a dip in the vorticity thickness for times between 40 and 50, while figure \ 

5.58b shows a strong increase at these times. These effects are probably specific to 

this simulation, and may be associated with the 'collapse' of vorticity into vortices, 

which occurs at about these times. 

The conclusions of these simulations are (1) that the linear instability processes 

are not very sensitive to the presence of background noise, and (2) that an organized 

structure develops from simulations started with random initial conditions. This 

organized structure is similar to that which was presented in earlier sections, where 

the structures developed from combinations of the instability waves with the highest 

linear amplification rates. 

The apparent 'cleanliness' of these simulations is not due to the choice of initial 

conditions, but to the dominance of the primary (inviscid inflectional) instability 

in this prototypical free shear layer. Even with random initial conditions the un­

stable modes eventually dominate the flow. For reasons of computational expense 

the simulations have not been run to later times, when secondary instabilities will 

presumably develop, or through to the 'mixing transition' which (by analogy with 

the incompressible flow) is when small eddies develop in the mixing layer. However, 

even beyond these stages the strong instability mechanism will certainly persist, and 

it is felt that the large-scale organized structure in the compressible mixing layer 

will result from the saturation of the various combinations of instability waves, as 

simulated in this thesis. 

5.7 Chapter Summary 

The three-dimensional simulations presented in this chapter confirm the earlier 

linear stability finding that oblique waves are more amplified than two-dimensional 

waves at high Mach numbers. Simulations with random initial conditions showed 

that the structures developing from linear instabilities become more oblique as Mach 

number is increased. No evidence was found for any modes of instability other than 

those already found in the linear stability analysis. 

At convective Mach number Me = 0.8 it was found that the oblique wave was 

more amplified than the two-dimensional wave during the entire simulation, and 
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oblique modes contained more energy than two-dimensional modes. With the con­

vective Mach number above 1 (Me = 1.05) it was found that the two-dimensional 

instability played only a small role in the development of large-scale structure. 

The expected structures at high Mach number were examined in more detail in 

two more simulations - one of a single oblique wave and the other of a pair of equal 

and opposite oblique waves. The oblique wave developed into an oblique vortex, 

while the pair of waves developed into a complex structure consisting of four regions 

of strong rotation, placed along two vortex lines with hairpin shapes in the spanwise 

direction, and with peak-valley splitting in the streamwise direction. 

Simulations with random initial conditions were run to check the sensitivity of 

the organized structure to initial conditions. A very similar structure was found to 

develop. The growth rate of the linear instabilities was found to be insensitive to 

the presence of finite amplitude random noise. 

No shock waves were found in any of the three-dimensional simulations, even 

with the free-stream Mach number above 1. Whilst this does not prove that there 

will never be shock waves in mixing layers at high Mach number, it does appear 

that the flow can adjust in a three-dimensional manner so that shock waves are not 

required at high Mach numbers. 

The expected structure of the compressible mixing layer can be summarized as 

follows. Below Me = 0.4 we expect the usual two-dimensional rollers that have 

been found in incompressible experiments and simulations. Above Me = 1 we 

expect to find the double hairpin structure, which develops from pairs of oblique 

waves. In between the situation is more complex, since a broad range of instability 

waves are strongly amplified. Between Me = 0.4 and Me = 0.6 we expect that the 

roller structure will disappear. Above Me = 0.6 we expect to see more and more 

evidence of structures with strong streamwise vorticity, such as might develop from 

combinations of two-dimensional and oblique instability waves. 

89 



90 



CHAPTER 6 

Conclusions and Recommendations 

This work has been concerned with a numerical study of the compressible mix­

ing layer. The methods used were linear stability analysis and direct numerical 

simulation of the compressible Navier-Stokes equations. The stability equations 

were solved by a shooting method. The full equations were solved by an explicit 

code, with derivatives evaluated spectrally or with high order finite differences. 

The conclusions are divided into the three main areas of study: linear stability, 

two-dimensional simulations and three-dimensional simulations. 

Linear Stability Theory: 

• Linear stability theory can be used to predict mixing layer growth rates. The 

relation 6' ~ Ia; Imax gives the correct trends in growth rate due to velocity 

ratio, density ratio and Mach number. The amplification rate of the most am­

plified wave has to be computed using spatial stability theory, with a solution 

to the boundary-layer equations as the base state. 

• The experimental finding of Papamoschou [1989J that convective velocities do 

not match the prediction of the Ue formula (1.2) was reproduced in the linear 

theory, using the phase speed of the neutral modes as a prediction of convective 

velocities of large-scale structures. 

• Oblique waves were found to be more amplified above a convective Mach 

number of 0.6. A simple relation, Me cos (J = 0.6 was proposed to give an 

approximate orientation of the most amplified waves in the flow. 

• Several different methods of achieving high convective Mach numbers were 

compared. There was no overall collapse of growth rates at high Mach num­

bers, indicating that the convective Mach number Me = (U; - U;J/(ci + ci) 
may be only a first order measure of compressibility effects. 
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Two-Dimensional Simulations: 

• The growth rate of the two-dimensional mixing layer was observed to drop 

rapidly as the Mach number was increased, nonlinearly as well as linearly. 

• The reduction in growth rate was associated with a change in shape of the 

developed vortices. These became more elongated in the streamwise direction 

as Mach number was increased. 

• Shock waves were observed in two-dimensional simulations above a convective 

Mach number of 0.7. 

• Peak strain rate in the simulations was found to be always the same order as 

the global strain rate, indicating that the global strain rate can be used to 

predict the magnitude of local strain rate in the mixing layer. 

• Simulations with a density ratio of 0.2 were performed for a case where the 

Uc formula (1.2) would predict zero convection speed. It was found that the 

structures did indeed move, in agreement with the phase speed of the neutrally 

stable mode. 

• The supersonic modes of instability, which are the only unstable modes in two­

dimensions at high Mach number, were simulated. The modes were confirmed 

to be radiating, with a pattern of shock and expansion waves forming on the 

side of the mixing layer relative to which the instability was supersonic. These 

modes were found to be vortical, and did lead to roll-up. However, the growth 

rate was very small. 

Three-Dimensional Simulations: 

• At low Mach numbers it was found that the phase of a two-dimensional wave 

relative to a pair of equal and opposite oblique waves could be chosen to give 

the 'bulging' or 'translative' secondary stability modes of Pierrehumbert and 

Widnall [1982]. Simulations of these cases confirmed their finding that there 

was significant instability only for the translative mode. 

• Raising the Mach number, with the phasing chosen to give the translative 

mode, was found to lead to a change in structure. The linear stability result 

that oblique waves are more amplified than two-dimensional waves was found 
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to carryover into the nonlinear regime. Above a convective Mach number of 

0.6 the oblique modes of the developed structure were found to contain more 

energy than the two-dimensional mode. 

• Above a convective Mach number of 1 there was found to be very little influ­

ence of the two-dimensional wave on the developed structure. 

• No shock waves were found in the three-dimensional simulations, even above 

a convective Mach number of 1. 

• Simulations with random initial conditions confirmed the linear stability find­

ing of oblique waves being more amplified at high Mach numbers. The linear 

theory was found to predict well the angle of the most unstable modes as 

Mach number was increased. No evidence was found for any modes of insta­

bility other than those already found in the linear stability analysis. 

• The addition of random noise did not significantly change the growth rate of 

linear instability waves. 

• Typical structures which may be found in the mixing layer at high Mach 

numbers were computed, based on the nonlinear evolution of oblique instability 

waves. A single oblique wave led to an oblique vortex. A pair of equal and 

opposite oblique waves led to a structure with four regions of strong rotation, 

arranged along two kinked spanwise vortex tubes, staggered in the streamwise 

direction. The structure resembles a peak-valley splitting arrangement of the 

hairpin structures found in boundary-layer transition. 

• A simulation starting with random initial conditions developed a large-scale 

structure very similar to that computed from the non-linear development of 

combinations of instability waves. 

• The mixing layer below a convective Mach number Me = 0.4 is expected to 

have a 'roller' structure similar to the incompressible flow. Between Me = 0.4 

and Me = 1.0 we expect to find a complex structure, due to many instability 

waves being equally amplified, but with a tendency to stronger streamwise 

and oblique vortices as the Mach number is raised. Above Me = 1 we expect 

to find a cleaner structure of pairs of hairpins, which develop from pairs of 

oblique instability waves. 
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Open Questions for Future Research 

Numerical simulation of compressible turbulent flows is a relatively new area of 

research and many questions remain to be answered. Future work could be directed 

towards some of the following questions, which arose from this work. 

Linear Instability Model: 

• What are the limitations of the model discussed in section 2.3? 

The immediate need is for more experimental measurements of growth rates 

and convective velocities as a function of density ratio and Mach number. Sta­

bility analysis of actual self-similar experimental velocity and density profiles 

may help to isolate some of the limitations of the simple model. 

Subharmonic Growth Mechanism: 

• What is the high Mach number analog of the vortex pairing process? 

There is presumed to be some mechanism by which the largest structures in 

flow merge so that the mixing layer cross-stream length scale can grow and the 

mixing layer can be self-similar. At high Mach numbers this probably involves 

oblique subharmonic waves. It is not clear what kind of 'oblique pairing' of 

vortices, or 'merging of hairpin structures', will take place. Simulation of this 

process will be expensive, since twice the resolution in each direction will be 

required, compared to the current work. 

Mixing Transition: 

• How do small eddies form in a free-shear layer? 

The mechanism is not understood even in incompressible flow, but the experi­

mental observation is of a large increase in formation of products of a chemical 

reaction at some point in the mixing layer development (Breidenthal [1981]). 

The resolution required for the Reynolds numbers at which mixing transition 

occurs is probably near current supercomputer capability. 

Statistics: 

• How do we make engineering computations of compressible turbulent flows? 

Traditional models require a knowledge of the time-averaged character of the 

flow. Statistical information from compressible turbulence simulations could 

be used to point to the relevant terms in the equations which need to be 
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modelled differently at higher Mach numbers. However it is felt that no 

simulation has yet produced a statistically self-similar mbdng layer, even in 

two-dimensional incompressible flow. A large enough sample of the largest 

structures (e.g. 60-100) would have to be accumulated to get reliable statistics 

(Sandham and Reynolds [1989]). A logical sequence for progress on statistics 

seems to be: two-dimensional incompressible, three-dimensional incompress­

ible, and finally three-dimensional compressible. Compressible simulations 

typically require twice the storage and three times the CPU time of incom­

pressible simulations. 

Mixing: 

• Does the scalar pdf change at the higher Mach numbers? 

The change in large-scale structure suggests that the scalar probability density 

function (pdf) will be different at higher Mach numbers. A change in the pdf 

also means that fast chemical reactions will behave differently to the low Mach 

number flow. Scalar pdf's can be accumulated from the simulations presented 

here. However, they are of limited value since we are not simulating through 

the mixing transition, and have no small-scales doing the mixing. Also we 

do not have a self-similar mixing layer, so the pdf varies with time in the 
) 

simulations. 

Chemical Reactions: 

• How to make supersonic combustion more efficient? 

We need to understand how heat release affects the compressible mixing layer 

flow. One possible avenue for research is to follow the procedure of this thesis. 

First of all, the stability problem could be solved for the compressible mixing 

layer, with an artificial temperature profile to reflect the effects of heat release. 

Then direct numerical simulations could be performed with two species, in­

cluding reaction rate terms. The effect of changes in the instability of the flow 

could be studied, as well as the effect of finite-rate chemistry. 
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APPENDIX A 

A Direct Method for Linear Stability Analysis 

In Chapter 2 the linearized equations were reduced to a single equation which 

was then solved by shooting. In this appendix an alternative procedure is de­

scribed, which makes use of a spectral representation of the mean and perturbed 

flow to formulate the linear stability problem as a matrix eigenvalue problem. This 

method was developed in collaboration with J. H. Chen; results for compressible 

wake instability can be found in Chen et al. [1989]. 

We begin with the linearized equations which were derived in section 2.1.2. As 

before the notation D is used for the d/ dy operator. The linearized continuity 

equation is: 

pi(au - w) + vDp + p[i(au + ,Bw) + Dil] = 0 (A.l) 

After substituting for the linearized perfect gas law, equation (2.39), the linearized 

momentum equations in the x, y and z directions become: 

_[.( _ ) A AD-] -ia(pT + pT) 
p~ au-w u+v u = 2 

"/Ml 
(A.2) 

(A.3) 

_.( _ ) A -i,B(pT + pT) 
p~ au - w w = 2 

"/Ml 
(A.4) 

and the linearized energy equation is: 

p[i(au - w)T + vDT] = -b - l)[i(au + ,Bw) + Dil] (A.5) 

The first step is to rearrange these equations into the form of a matrix multiplied 

by a vector, with the desired eigenvalue isolated. For temporal stability calculations 

we wish to isolate w, so we write the above equations as: 

(A.6) 
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where x is a column vector of the eigenfunctions x = (fJ, iL, ii, tV, T) T and the matrix 

At is given by 

au ap -i(Dp+pD) (fp 0 
olf au -iDu 0 a 

(hM; '1M; 
-i(DT+1'D) 

0 0 
-i(Dp+pD) 

A t = nM'f. au p-yM; (A.7) 
(31' 0 0 au -.L 

p-yM'f. -yM'f. 

0 
('1-1)a -i(DT + h-p1)D) ('1-1).8 au p p 

For spatial stability we isolate a, and write: 

(A.8) 

where the matrix As is given by: 

w 0 i(Dp+pD) -f3p 0 
0 w iDu 0 0 

i(D1'+1'D) 0 0 
i(Dj'i+pD) 

nM'f. w 
nM; As = -i(31' 0 0 w .:=.P.... 

p-yM; -yM'f. 

(A.9) 

0 0 i(DT + h-1)D) 
p 

-('1-1).8 w p 

and the matrix Bs is given by: 

u p 0 0 0 
l' u 0 0 _1_ 

p-yM; -yM'f. 
Bs = 0 0 11, 0 0 (A. 10) 

0 0 0 u 0 
0 h=l) 

p 0 0 u 

The next step is to derive a matrix form of the operator D. The mapped Fourier 

method of Cain et al. [1984] was selected since it allows solution over an infinite 

physical domain. We start with the definition of a Fourier transform pair: 

N-1 

¢>k = ~ L c/J(T/i)e- ik2
'-'1i 

i=O 
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N/2-1 

4>{11j) = L ¢keik21rT/j 

k=-N/2 

(A.12) 

where N is the number of points, I1j are the grid points, q, is the function and J is 

the transformed function. Cain et al. [1984) defined a cotangent mapping: 

y = -accotan(21r11) (A.13) 

where ac is a constant that determines the amount of stretching in the mapping. 

Under this mapping the mixing layer physical domain -00 < y < 00 maps onto 

0<11 < 1/2. The computational domain 0 < 11 < 1 is periodic, allowing the use of 

Fourier methods. 

Derivatives are calculated as: 

dq, 1 dq, 

dy h' dl1 
(A.14) 

where h' = dy/dl1 is the metric. For Cain's mapping this is given by: 

(A.15) 

Substituting this into (A.14), using (A.12) and combining terms, gives an expression 

for the derivative at grid point j: 

drfol _ 1 N~l ['k;' i(k-2);. i(k+2);.] ik21rT/' 
- • - - ~ Z 'f'k - 'f'k-2 - 'f'k+2 e ' 
dy J 2ac . 2 2 

k=-N/2+1 

(A.16) 

where all terms with wavenumbers outside the summation limits are discarded. 

The next step is to substitute in for J from equation (A.H), and compare with 

a matrix formulation: 
drfol - = dl 'rfo(11 .) dy I J J 

(A.17) 
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The dlj are terms of a matrix, given by: 

N/2-1 ·(k) ·(k) d 1 L [·k ~ - 2 i4 .. "1· ~ + 2 -i4""I.J i2 .. k("I'-"I·J I· - -- ~ - e J - e J e J 
J 2acN 2 2 

k=-N/2+1 

This expression can be simplified using trigonometry and geometric series. 

For 1 = j we obtain: 

and for 1 =f j: 

_ 1- cos(41r1/j) ( )I-J· (1r(I- j)) sin(41r1/j) sin[1r(I- j)N}y:l] 
dl . - -1 cot - . 

J 4ac N acN sin[ "(~J)] 

(A.18) 

(A.19a) 

(A.19b) 

As a last step we use the symmetry of the Cain mapping to reduce the size of 

the matrix from N x N to N* x N*, where N* = N/2 + 1. A new matrix elj is 

defined as follows. 

For j = 1 and j = N*: 

(A.20a) 

and for j = 2 to N* - 1: 

elj = dlj + dl(N+2-jJ (A.20b) 

This matrix is used to represent derivative terms in matrices At (equation (A.7)) 

and As (equation (A.9)). The result is a 5N* x 5N* matrix (5 x 5 matrices at 

each grid point). The eigenvalues and eigenvectors of this matrix were found using 

standard (IMSL) subroutines. 

The performance of the method was checked by running the test case of table 2.2. 

Curves of amplification rate against wavenumber are shown on figure A.l for several 

values of N*, and compared with the result from the shooting method of Chapter 2. 

It can be seen that convergence of the direct method is good for the most amplified 

wave, but very poor near the neutral mode and at very low w. In general, it was 

found that weakly amplified waves were difficult to resolve with the direct method. 

At high Mach numbers it was difficult to capture the weakly amplified instability 

modes, even using N* as high as 60. 
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Figure 1.2 Time-developing mixing layer. 
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Figure 2.22 Contour plots from linear eigenfunctions at Ml = 0.6 (a) Wz, (b) 

wz / p, (c) density, (d) pressure, (e) dilatation, (f) dilatation term, (g) 

baroclinic term. 
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Figure 2.23 Schematic of the successive growth of linear waves in the spatially­

developing mixing layer. 
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Figure 2.24 Amplification rate versus frequency, defining the most amplified wave, 

and the neutral wave. 
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Figure 2.25 Plot of Mel versus Me2 showing a comparison between the theoretical 

Ue from equation (1.2), the linear stability prediction (the phase speed 

of the neutral mode), and the experimental data from Papamoschou 

[1989]. 
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Figure 3.1 Decay of u velocity at x = 0.5 z = 0.25, for Taylor-Green problem. 
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Figure 3.2 Check on linear growth rates for the inviscid eigenfunctions in the 
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Figure 3.3 Temperature eigenfunction from direct simulation, compared to ini­
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Figure 3.4 Growth of vorticity thickness with time, showing the effect of changing 

the position of the free-stream boundary condition. 
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Figure 3.5 Developed structure for Ly = 10 (a) mixture fraction (b) vorticity. 
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Figure 3.6 Developed structure for Ly = 6 (a) mixture fraction (b) vorticity. 
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Figure 3.7 Energy spectrum for the case Ly = 10, Ml = 0.4. 
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Figure 4.2 Effect of Reynolds number on the growth history of vorticity thickness 

at Ml = 0.4. 
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Figure 4.3 Developed structure at Ml = 0.4, Re = 100 (a) mixture fraction (b) 

vorticity. 
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Figure 4.4 Developed structure at Ml = 0.4, Re = SOO (a) mixture fraction (b) 

vorticity. 
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Figure 4.5 Effect of Mach number Ml on the growth of the fundamental, most 

amplified disturbance. 
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Figure 4.6 Long-time behavior of vorticity thickness at Ml = 004. 
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Figure 4.7 Structure at long time (a) mixture fraction, (b) vorticity. 
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Figure 4.8 Comparison of vorticity thickness measures, based on mean velocity 
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Figure 4.9 Effect of Mach number on the growth in mode energy E of the most 
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Figure 4.10 Developed structure at Ml = 0.2 (a) mixture fraction, (b) pressure, 

(c) wz , (d) wz/p. 
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Figure 4.11 Developed structure at Ml = 0.4 (a) mixture fraction, (b) pressure, 

(c) W z , (d) wz/p. 
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Figure 4.12 Developed structure at Ml = 0.6 (a) mixture fraction, (b) pressure, 

(c) wz , (d) wz/p. 
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Figure 4.13 Developed structure at Ml = 0.8 (a) mixture fraction, (b) pressure, 

(c) W z , (d) wz/p. 
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Figure 4.14 Developed structure at Ml = 0.6 (a) density, (b) dilatation, (e) di­

latational term in vorticity equation, ( d) baroclinic term. 
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Figure 4.15 Choice of phase between subharmonic and fundamental modes. 
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Figure 4.16 Growth in vorticity thickness, comparing Ml = 0.2 with Ml = 0.6. 
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Figure 4.17 Growth in mode energy E, comparing Ml = 0.2 with Ml = 0.6. 
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Figure 4.18 Step 1 in pairing process at Ml = 0.2 (a) mixture fraction, (b) pres­

sure, (e) wz , (d) wz/p. 
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Figure 4.19 Step 2 in pairing process at Ml = 0.2 (a) mixture fraction, (b) pres­

sure, (c) W z , (d) wz/p. 
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Figure 4.20 Step 3 in pairing process at Ml = 0.2 (a) mixture fraction, (b) pres­

sure, (c) wz , (d) wz/p. 
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Figure 4.21 Step 4 in pairing process at Ml = 0.2 (a) mixture fraction, (b) pres­

sure, (c) W z , (d) wz/p. 
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Figure 4.22 Step 5 in pairing process at Ml = 0.2 (a) mixture fraction, (b) pres­

sure, (c) wz , (d) wz/p. 
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Figure 4.23 Step 1 in pairing process at Ml = 0.6 (a) mixture fraction, (b) pres­

sure, (c) wz , (d) wz/p. 
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Figure 4.24 Step 2 in pairing process at Ml = 0.6 (a) mixture fraction, (b) pres­

sure, (c) wz , (d) wz/p. 
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Figure 4.25 Step 3 in pairing process at Ml = 0.6 (a) mixture fraction, (b) pres­

sure, (c) wz , (d) wz/p. 
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Figure 4.26 Step 4 in pairing process at Ml = 0.6 (a) mixture fraction, (b) pres­

sure, (c) W z , (d) wz/p. 
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Figure 4.27 Comparison of vorticity thickness growth at two Mach numbers where 

the initial wavelengths are the same. 
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Figure 4.28 Developed structure at Ml - 0.6 (a) temperature, (b) stagnation 

enthalpy, (c) entropy. 
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Figure 4.29 Plot of strain rate and mixture fraction at Ml = 0.6, t - 18.2 (a) 

mixture fraction, (b) strain rate S. 
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Figure 4.30 Plot of strain rate and mixture fraction at Ml = 0.6, t = 24.0 (a) 

mixture fraction, (b) strain rate S. 
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Figure 4.32 Time history of the peak strain rate. Non-dimensionalized as S -

S*o~jUi (norm l),or as S=S*o*jUi (norm 2). 
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Figure 4.34 Growth in mode energy E, for temperature ratios 1 and 2. 
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Figure 4.35 Developed structure at Ml = 0.6, T2 = 2 (a) mixture fraction, (b) 
pressure, (e) wz , (d) wz/p. 
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Figure 4.36 Generation of baroclinic torques in the saddle region. 
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Figure 4.37 Developed structure at Ml = 0.6, T2 = 5 (a) mixture fraction, (b) 

pressure, (c) wz , (d) wz/p. 
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Figure 4.38 Convection of structure at Tz = 5 shown by pressure contours (a) 

t = 0.0, (b) t = 26.4. 
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Figure 4.39 Embedded shock waves (a) pressure contours, (b) Mach contours M = 

vu2 + v2 jc. 
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Figure 4.40 Profiles through the shock wave (a) density, (b) pressure. 
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Figure 4.41 Growth of vorticity thickness for supersonic instability mode. 
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Figure 4.42 Growth of mode energy for supersonic instability mode. 
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Figure 4.43 Non-linear structure developing from supersonic mode instability: (a) 

mixture fraction, (b) vorticity, (c) density, (d) pressure. 
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Figure 4.44 Pressure contours showing development of shock waves from super­

sonic mode instability. 
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Figure 5.5 Vorticity thickness growth for the bulging and translative modes at 

Ml = 0.4. 
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Figure 5.6 Growth in energy for the bulging instability at Ml = 0.4. (1,0) is the 
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Figure 5.7 Growth in energy for the translative instability at Ml = 0.4. (1,0) is 

the two-dimensional wave. (1,1) and (1, -1) are the oblique waves. 
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Figure 5.8 Surface of constant pressure showing the rotational region in the struc­

ture developing from the bulging instability at Ml = 0.4. 

Figure 5.9 Surface of constant pressure showing the rotational region in the struc­

ture developing from the translative instability at Ml = 0.4. 

182 



Figure 5.10 Perspective view of streamwise vorticity in the structure that devel­

oped from the bulging mode of instability at Ml = 0.4 

Figure 5.11 Perspective view of streamwise vorticity in the structure that devel­

oped from the translative mode of instability at Ml = 0.4 
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Figure 5.12 Initial condition for the 'helical' subharmonic mode of instability at 

Ml = 0.4 (a) pressure - minimum at x = 0, Lx/2, maximum at L,:/4, 

3L,:/4 (b) w" (c) Wy (d) Wz. 
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Figure 5.13 Vorticity thickness growth for the helical sub harmonic mode at Ml = 

0.4. 
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Figure 5.14 Growth in energy for the bulging instability at Ml = 0.4. (2,0) is the 

two-dimensional wave. (1,1) and (1, -1) are the oblique waves. 
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Figure 5.15 Perspective view of the pressure minima at time t = 12.63 for the 

helical subharmonic mode of instability, showing vortex cores at sat­

uration on the fundamental instability. 
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Figure 5.16 Perspective view of the pressure minima at time t = 27.90 for the he­

lical subharmonic mode of instability, showing the final sub harmonic 

structure. 
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Figure 5.17 Cuts at y = 0 through the final structure developed from the helical 

subharmonic mode (a) mixture fraction (b) pressure. 
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Figure 5.18 Effect of Mach number on the vorticity thickness growth, forcing with 

a two-dimensional wave and two equal and opposite oblique waves. 
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Figure 5.19 Growth in mode energies at Ml = 0.4 (1,0) is the two-dimensional 

mode. (1,1) and (1, -1) are the oblique waves. 
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Figure 5.20 Growth in mode energies at Ml = 0.8 (1,0) is the two-dimensional 

mode. (1,1) and (1, -1) are the oblique waves. 
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Figure 5.21 Growth in mode energies at Ml = 1.05 (1,0) is the two-dimensional 

mode. (1,1) and (1,-1) are the oblique waves. 
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Figure 5.22 Carpet plot of the modal energy contents at the end of the three­

dimensional simulation at Ml = 0.4 

Figure 5.23 Carpet plot of the modal energy contents at the end of the three­

dimensional simulation at Ml = 0.8 
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Figure 5.24 Carpet plot of the modal energy contents at the end of the three­

dimensional simulation at Ml = 1.05 
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Figure 5.25 Surface of constant pressure showing the rotational region in the struc­

ture developing at Ml = 0.4. 

Figure 5.26 Perspective view of streamwise vorticity in the structure that devel­

oped at Ml = 0.4 
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Figure 5.27 Surface of constant pressure showing the rotational region in the struc­

ture developing at Ml = 0.8. 

I :; 
Figure 5.28 Surface of constant pressure showing the rotational region in the struc­

ture developing at Ml = 1.05. 
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Figure 5.29 Vortex lines through the peaks of vorticity for the developed structure 

at Ml = 0.4 (a) perspective view (b) top view. 
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Figure 5.30 Vortex lines through the peaks of vorticity for the developed structure 

at Ml = 0.8 (a) perspective view (b) top view. 
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Figure 5.31 Vortex lines through the peaks of vorticity for the developed structure 

at Ml = 1.05 (a) perspective view (b) top view. 
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Figure 5.32 Cuts at y = 0 through the final structure developed at Ml - 0.4 (a) 

mixture fraction (b) pressure. 
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Figure 5.33 Cuts at y = 0 through the final structure developed at Ml = 0.8 (a) 

mixture fraction (b) pressure. 
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Figure 5.34 Cuts at y = 0 through the final structure developed at Ml = 1.05 (a) 

mixture fraction (b) pressure. 
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Figure 5.35 Vorticity thickness growth for simulation of the bulging mode at Ml = 

0.8. 

i$2~ ____________________________________________ , 

N 

'0 
~ 

.., 
'0 w~ 

0.0 

LEGEND 
(\0) 

5.0 10.0 '6.0 20.0 

t 
25.0 30.0 35.0 ~.O 

Figure 5.36 Growth in energy for the bulging instability mode at iIJ1 = 0.8. 

201 



Figure 5.37 Surface of constant pressure showing the rotational region in the struc­

ture developing from the bulging mode at Ml = 0.8. 
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Figure 5.38 Growth in vorticity thickness for the simulations beginning with ran­

dom numbers. 
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Figure 5.39 Growth in energy for selected modes from the simulation beginning 

with random numbers at Ml = 0.4 
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Figure 5.40 Growth in energy for selected modes from the simulation beginning 

with random numbers at Ml = 0.8 
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Figure 5.41 Growth in energy for selected modes from the simulation beginning 

with random numbers at Ml = 1.05 
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Figure 5.42 Flowfield at the end of the linear stage of instability growth at Ml = 

0.4, shown by the v = 0 contour. 
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Figure 5.43 Flowfield at the end of the linear stage of instability growth at Ml = 

0.8, shown by the v = 0 contour. 
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Figure 5.44 Flowfield at the end of the linear stage of instability growth at Ml = 

1.05, shown by the v = 0 contour. 
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Figure 5.45 Vorticity thickness growth for a single versus a pair of oblique waves. 
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Figure 5.46 Surface of constant pressure, showing structure developed from a sin­

gle oblique wave. 

Figure 5.47 Surface of constant pressure, showing structure developed from a pair 

of equal and opposite oblique waves. 

208 



(a) 

(b) 

l 
j 

1 
I 
~ 

I 

1 
j 

Figure 5.48 Vortex lines through structure developing from a pair of equal and 

opposite oblique waves. 
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Figure 5.49 Mixture fraction cut through the x - z plane at y = o. 
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Figure 5.50 Cuts through the y - z plane at (a) x = Lx/4 and (b) x = L x/2. 
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Figure 5.51 Cuts through the x - y plane at (a) z = Lz/4 and (b) z = Lz /2. 
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Figure 5.52 Growth in mode energies of the unstable waves in the presence of 

background noise. 
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Figure 5.53 Simulation with random initial conditions at time t = 0 (a) carpet 

plot of mode energies, (b) pressure cut at y = O. 
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Figure 5.54 Simulation with random initial conditions at time t = 29.6 (a) carpet 

plot of mode energies, (b) pressure cut at y = o. 
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Figure 5.55 Simulation with random initial conditions at time t = 52.0 (a) carpet 

plot of mode energies, (b) pressure cut at y = o. 
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Figure 5.56 Surface of constant pressure for the simulation beginning with purely 

random initial conditions. 
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Figure 5.57 Growth in mode energies of the unstable waves in the simulation be­

ginning with purely random initial conditions. 
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Figure 5.58 Growth in vorticity thickness for the simulation beginning with purely 

random initial conditions (a) regular vorticity thickness, (b) vorticity 

thickness based on mass-weighted velocity profile. 
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Figure A.I Illustration of the convergence of the direct method. The number of 

points used (N*) is given in the legend. The correct solution, as found 

by the shooting method, is also shown. 
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