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Recent hydrocarbon exploration in the Egyptian northern Western Desert 

and the Gulf of Suez have revealed relatively rich hydrocarbon accumulations, 

mainly of gas, and demonstrates promising future prospects.  In order to improve 

our understanding of these areas and to provide a biostratigraphic framework for the 

poorly-dated Lower Cretaceous successions palynological analyses were carried 

out on 134 ditch cutting samples from the Abu Tunis 1x drilled in the northern 

Western Desert, and 78 samples from the BB80-1 borehole in the Gulf of Suez area.   

Palynostratigraphic investigations focussed on the lower parts of the 

borehole successions as earlier studies have largely ignored these Cretaceous 

sediments.  A central objective was therefore to construct a biostratigraphic scheme, 

for both boreholes.  Analysis of the Abu Tunis 1x samples enabled the identification 

of eight palynozones largely defined by first occurrences of spores, gymnosperm 

and angiosperm pollen and dinoflagellate cysts.  Three new palynostratigraphically 

defined age divisions are described for the lower part of the Abu Tunis 1x 

succession, and a more refined biostratigraphy is made for the upper part of the 

sequence.  In contrast, the Gulf of Suez BB80-1 borehole samples proved 

palynologically lean and provided less information for age dating.  It was only 

possible to define two palynozones of lower age-resolution than that for Abu Tunis 

1x.  Spore and pollen grains recovered from both boreholes show characteristics of 

the Cretaceous Phytogeographic Provinces of northern Africa-northern South 

America.  Sporomorphs of the pre-Albian Dicheiropollis/Afropollis Province were 

recognised from the lower part of the Abu Tunis 1x borehole and sporomorphs 

characteristic of Albian-Cenomanian Elaterate Province identified from both.  No 



 

 

 

spore and pollen grains of the Senonian Palmae Province have been recognised 

due to the complete marine nature of the early Santonian sediments of the Abu 

Tunis 1x borehole.           

In order to understand the palaeoenvironmental conditions prevailing in the 

two boreholes during the deposition of the clastic and carbonate sediments, 

quantitative palynological data was combined with geophysical wireline data and 

cuttings lithologies.  The quantitative distribution of certain terrestrial palynomorphs 

with known botanical affinities and palaeoenvironmental significance have been 

used as proxy indicators for identifying palaeoclimatic and palaeoceanographic 

conditions in both borehole regions.   

In general, the lower part of the Abu Tunis 1x succession (consisting of shale 

and sandstones) was deposited in deltaic settings during a regressive cycle with 

sediments of the upper Alam El Buieb Formation and the Alamein Formation 

representing the late Barremian-Aptian transgression cycle, during which shallow 

marine settings prevailed.  Clastics of the Dahab and Kharita formations represent 

another regression in marine sedimentation, where fine silts and a few shale 

horizons of the latter formations were deposited in a delta channel system that 

prograded through time over prodelta sediments as a response to sea level fall.  

Mixed clastic and carbonate sediments of the upper Kharita and lower Bahariya 

represent more distal marine deposition as a response to a second minor rise in sea 

level, where a partially marine isolated, brackish lagoonal depositional system 

developed that was subjected to occasional marine incursions.  Integration of the 

same datasets demonstrate that the upper carbonate-dominated part of the Abu 

Tunis 1x succession (the upper Bahariya, Abu Roash, and Khoman B formations) 

was deposited mainly in deeper marine settings interpreted as outer shallow marine, 

during a major transgressive cycle.  The upper part of the BB80-1 borehole also 

shows this late Cretaceous marine transgression, represented by high 

concentrations of phytoplankton-rich carbonate sequences.  The lower part of this 

Gulf of Suez sequence is of latest early Cretaceous age, and appears to have been 

deposited in a continental basin, far from source vegetation, possibly in alluvial 

settings, which witnessed occasional marine incursions represented by deposition of 

a few organic-rich marine shale intercalations that are interpreted as shallow 



 

 

 

marginal marine in origin.  These environmental fluctuations are related to global 

sea level fluctuations and global tectonic processes, such as the breakup of 

Western Gondwana during the opening of the Southern Atlantic Ocean. 

Investigation of the hydrocarbon potential of the Abu Tunis 1x and BB8-1 

shows that the first borehole has source rock potential, with the second of no 

potential due to its organic-poor lithology.  The lower part of the Abu Tunis 1x 

borehole represented by the Alam El Bueib Formation sediments is regarded as a 

non commercial gas-prone source rock; this is indicated from visual kerogen study 

and vitrinite reflectance investigations of its thermal maturation.  A burial history 

reconstruction for the Abu Tunis 1x borehole sequence indicates that the lower part 

of the Alam El Bueib source rock entered the early stage of thermal maturation 

during the Oligocene and is currently at the early mature stage.  By investigating the 

organic matter quality and conducting maturity analyses such as vitrinite reflectance 

studies, the overlying clastics of the Dahab, Kharita and lower Bahariya, and the 

carbonates of the upper Bahariya, Abu Roash and Khoman formations are shown 

also to contain relatively high amounts of oil-prone organic matter, but it is immature, 

and thus they are not active source rocks in the region of the Abu Tunis 1x borehole.  

The BB80-1 borehole is made of a thick organic-poor, porous sandstone unit of the 

Malha and lower Raha formations that are intercalated by a few organic-rich shale 

horizons.  This sandstone lithology is regarded as having no hydrocarbon potential.    
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1.INTRODUCTION 

 

1.1 Background and aims 

Recently, significant new hydrocarbon discoveries have been documented in 

the northern Western Desert of Egypt, the second most important oil-producing area 

in Egypt.  Natural gases comprise the largest constituent of these hydrocarbons. 

During 2005, Egyptian gas production was about 4,870 thousand cubic feet/day 

(mcf/d) with a proven gas reserve of 62 trillion cubic feet (tcf) and a probable future 

rise up to 120 tcf (Ford, 2005), making the northern Western Desert the major gas 

province in Egyptian territory.  The Cretaceous and Jurassic sandstone reservoirs 

have proved to be the most prolific gas and oil producing horizons in the Western 

Desert, where large reserves of gas and condensates have been found (APS 

Review Oil Market Trends, 2006).  Therefore, in addition to the known basal 

Bahariya oil producing horizon (middle Cretaceous), the lower part of the lower 

Cretaceous succession (Neocomian-Barremian) has recently been considered as 

the new target for oil and gas explorations.  The Western Desert is therefore 

considered to be the future of the Egyptian gas and oil industry.  However, the 

sediments of this geological interval (i.e. lower Cretaceous) have not been subject to 

detailed biostratigraphic study or lithostratigraphic correlation.  Even the basic 

separation of the different time-rock units is poorly known, as all operating 

companies have described this part of the succession on their logs with the term “no 

information”.  The operators are now looking to carry out large-scale and detailed 

biostratigraphic and lithostratigraphic correlations.  

The Gulf of Suez region is regarded as the first major oil-producing area in 

Egypt, where the upper Cretaceous (Campanian-Maastrichtian) and the Miocene oil-

producing horizons (Vanderbeek, 1994) have been the subject of the majority of the 
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geological investigations.  However, the Nubian Sandstone reservoir in the Gulf of 

Suez Basin, ranging in age from Cambrian to early Cretaceous has been less 

studied stratigraphically (Schütz, 1994), despite the fact that the lower Cretaceous 

“Nubia A” unit represents one of the important oil-producing horizons.  Accordingly, 

integrated analyses are also needed of the lower Cretaceous subsurface succession 

in the Gulf of Suez area, which possesses a more complex geological structure than 

the northern Western Desert.  This PhD project therefore seeks to complete applied 

micropalaeontological investigations of borehole successions from these two 

regions which will provide a significant contribution to these problems. This project 

aims to: 

1. Integrate lithostratigraphic and biostratigraphic schemes for the two studied 

boreholes. 

2. Provide independent age control for the studied intervals by means of other 

micropalaeontological studies, such as the fossil nannoplankton, especially for 

the upper Cretaceous succession (mainly carbonate).  

3. Produce micropalaeontologically defined palaeoenvironmental interpretations of 

individual subsurface lithostratigraphic units. 

4. Correlate both biostratigraphic and palaeoenvironmental results with those in 

other palaeogeographically related areas, such as the African and South 

American (ASA) phytogeoprovince for spore and pollen grains, and the Tethyan 

Realm for the dinoflagellate cysts. 

5. Complete a taxonomic study for all of the recorded taxa, with emphasis on the 

regional and global stratigraphic distribution of stratigraphically significant forms.    

6. Reconstruct the burial history of the boreholes and determine the hydrocarbon 

potential of the subsurface units investigated. 
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1.2 Objectives 

In order to achieve the aims of this project the following analyses and 

investigations were carried out: 

1. Standard acid maceration palynological preparation techniques were applied to 

selected samples in order to extract palynomorphs (i.e. spores, pollen grains, 

dinoflagellate cysts, microforaminiferal test linings, etc.) for systematic, 

biostratigraphic and other investigations. 

2. Taxonomic identification and analysis of the vertical distribution of the 

palynomorphs recovered from the two boreholes was undertaken in order to 

establish a biostratigraphy for each of the two borehole successions. 

3. The chronostratigraphic units which have been proposed by the original operating 

company have been revised, and age determination for the undifferentiated parts 

of the successions using the palynological investigations has been conducted. 

4. The palaeoenvironmental and palaeoclimatic settings prevailing during the 

deposition of the studied sections have been determined, through study of the 

palynomorphs and palynofacies analyses. 

5.  Source rock analyses (i.e. TOC analysis) have been used to determine source 

rocks potential for hydrocarbon generation, in addition to the determination of the 

different kerogen types in order to evaluate the hydrocarbon potential and quality 

of source rocks.  

6.  Thermal maturity of the studied sequence has been deduced by using both 

qualitative spore colour analysis and vitrinite reflectivity, followed by 

reconstruction of the burial history using BasinModTM software. 
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1.3 Study area  

The material selected for this project was collected from two different and 

distinct geologic areas: namely the Western Desert of Egypt (the Abu Tunis 1x 

borehole) and the offshore Gulf of Suez (the BB 80-1 borehole), from which 

subsurface Cretaceous samples have been taken from the boreholes, respectively 

(Fig. 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.1 Structural map of Egypt showing the boundary between the Stable 
and Unstable Shelves, and distribution of different Mesozoic tectonic 
elements (after Kerdany & Cherif, 1990). 
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1.3.1 Geological setting and tectonic evolution 

Said (1962) divided the Egyptian continental mass into two main provinces.  

The Stable Shelf is represented by the southern Western Desert bordering the 

Nubian Shield, the Eastern Desert as far as the northern eastern margin of the 

South Galala Plateau, and southern Sinai (Fig. 1.1).  The Unstable Shelf  lies to the 

north of the Stable Shelf with a Western Subprovince (i.e. the northern Western 

Desert), an Eastern Subprovince (i.e. northern Sinai), and the northern Eastern 

Desert as a transitional zone between the Eastern and Western Subprovinces.  The 

northern Gulf of Suez, bordered at its southernmost boundary by the SE-facing 

Wadi Araba Monocline to the northeast of the South Galala Plateau (Fig. 1.3), also 

belongs to the Unstable Shelf (Patton et al., 1994; Moustafa & Khalil, 1995).  

The Egyptian northern Western Desert area is characterized by a simple 

featureless surface, despite its intricate subsurface structures.  This northern part of 

the African Platform (Fig. 1.1) is made up of a thick sedimentary sequence, gently 

sloping seaward, and encounters rocks ranging in age from Cambrian to Recent 

(Fig. 1.2).  The sequence reaches its maximum thickness in the Abu Gharadig Basin 

(8-9 km deep), while to the north it may reach only 3 to 6 km (Hantar, 1990).  

 

 

 

 

 

 

 

 

Figure  1.2 Generalized geological cross-section across the northern Western 
Desert of Egypt. 1. Pan-African basement, 2. Paleozoic, 3. Jurassic, 4. 
Cretaceous, 5. Cenozoic (after Guiraud & Bosworth, 1999). See Fig. 1.1 for 
section location (18-19). 
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In contrast, the Gulf of Suez region is one of the most structurally com

areas in the world (Fig. 1.3)

geological histories. 

sedimentary successions are variable

Gulf can be representative of stratigraphy or the structure of the whole Gulf of Suez 

domain (Said, 1962).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.3. Structural map of the Gulf of Suez region showing the m
basement faults, with 
Bosworth & McClay, 2001)
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The Gulf of Suez is an intra-cratonic basin oriented in a northwest-southeast 

direction, spanning about 300 km in length, and ranging in width from about 50 km 

at its northern part to 90 km at its southern part (Fig. 1.3).  The Gulf of Suez extends 

between latitude 27° N to 30° N and lies nearly between longitude 32° 15′ E to 34° 

15′ E (Said, 1962; Bosworth & McClay, 2001).  The Gulf of Suez is bounded by a 

zigzag fault system (Fig. 1.3) with N-S, NNE-SSW, E-W and NW-SE orientations 

(e.g. Jarrige et al., 1986; Meshref, 1990; Moustafa, 1993; Patton et al., 1994; 

McClay et al., 1998; Bosworth & McClay, 2001).  The Gulf of Suez Basin is 

structurally divided into three large asymmetric half-graben sub-basins, generally 

bordered by a NW-SE fault system: the Abu Darag Basin in the north, the Belayim 

Province in the centre, and the Amal-Zeit Province in the south (Fig. 1.3).  These 

three sub-basins are linked together by a complex strike-slip fault system (i.e. 

accommodation zones), and within each sub-basin the stratal dips show alternating 

patterns of NE dip in the central basin and SW dip in the northern and southern 

basins  (Moustafa, 1976; Bosworth, 1985; Coffield & Schamel, 1989).  

 

 

 

 

 

 

 

Figure  1.4. Section across the southern Gulf of Suez, illustrating rotated 
faulted block geometry (after Bosworth, 1994). See Fig. 1.3 for section 
location.  

 

 

 

 

1 2



ductionChapter I                                                                                                               Intro 

8 

During the Mesozoic, Egypt was part of the northern African plate, which was 

affected by three main regional tectonic events.  The first event was during the mid 

Jurassic, as the Apulian “Turkish” microplate separated from the Egyptian 

continental mass, rifting northward (Fig. 1.5).  This was related to the formation of 

the Neotethyan Ocean and the closure of the Palaeotethyan Ocean by the mid 

Jurassic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.5. Reconstruction of the late Jurassic break-up of western Gondwana 
and evolution of the Neotethys (after Stampfli & Borel, 2002).  
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At the same time, the African plate was also moving eastward with respect to 

the European plate as the Atlantic Ocean opened (Kerdany & Cherif, 1990, Bumby 

& Guiraud, 2005).  The second important tectonic event occurred during the late 

Cretaceous-early Tertiary (Fig. 1.6), when the northern African plate moved towards 

Europe, producing compressional stresses which resulted in a series of ENE-WSW 

folds (Syrian Arc System) and faults (Hantar, 1990; Guiraud & Bosworth, 1997; 

Bumby & Guiraud, 2005; Guiraud et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.6. Reconstruction of the late Cretaceous break-up of Gondwana, 
evolution of the Neotethys and closure of the Palaeotethys (after Stampfli & 
Borel, 2002). 
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1.3.2 Structural and stratigraphic history  

Mesozoic rocks outcrop in southern Egypt and in northern Sinai (Fig. 1.7) 

where an almost complete sequence from the Triassic to the Cretaceous has been 

described (Kerdany & Cherif, 1990).  However, in the northern Western Desert 

Mesozoic rocks are buried beneath younger Neogene sediments (Fig. 1.7), and are 

only known from the subsurface (Kerdany & Cherif, 1990). 

 

Figure  1.7. Geological map of Egypt showing the distribution of sedimentary 
(Mesozoic and Cenozoic) and igneous rocks (after Egyptian Geological 
Survey, 1991). 
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Mesozoic rocks are poorly exposed in the Gulf of Suez region.  However 

there are rare exposures, on the western coast: the Permo-Triassic rocks at the Abu 

Darag area, the Jurassic rocks of the North Galala Plateau, and the Cretaceous 

rocks of the Gebel Shabrawet and the South Galala Plateau. Mesozoic rocks are 

also found on the eastern coast: the Cretaceous rocks of Wadi Sudr.  Work on 

exposures on the eastern side of the Gulf of Suez (e.g. Khalil & McClay, 1998) 

together with the offshore Gulf of Suez boreholes (e.g. Moustafa & Khalil, 1995) has 

enabled a complete composite stratigraphic sequence of Mesozoic rocks to be 

established.   

The late Jurassic-early Cretaceous eastward movement of the African plate 

along sinistral strike-slip faults - as a result of the opening of the Atlantic Ocean - 

resulted in two main tectonic structures in the northern Western Desert: WNW 

folding associated with thrusting, and ENE trending strike-slip faults with left lateral 

movement (Meshref, 1990).  At the same time Neotethyan rifting and the  

development of the eastern and southern margins of the Mediterranean Sea 

resulted in faulting and uplifting with a E-W trend across the northern Gulf of Suez, 

the development of the NW-SE trending Suez Arc parallel to the present day 

western margin of the Gulf of Suez, and a reactivation of the Kharga-Aswan-Red 

Sea High (Van Houten et al., 1984; Patton et al., 1994).  The Kharga and Suez arcs 

intersected in the northern Red Sea and southern Gulf of Suez resulting in a 

basement uplift, which persisted throughout the Mesozoic and the early Tertiary 

(Van Houten et al., 1984).  

In general the early Cretaceous sedimentation in the northern Western 

Desert in general indicates a major regressive phase, demonstrated by the 

deposition of marginal marine sandstones and shales with rare carbonate streaks of 

the Alam El Bueib Formation (Neocomian-Barremian).  Subsequently this formation 

was greatly affected by the WNW folding system (Kerdany & Cherif, 1990; Said, 
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1990).  In the extreme north western part of Egypt (Fig. 1.8) a dark brown to dark 

grey shale unit (the Matruh Shale) rests conformably over the Sidi Barrani Formation 

of late Jurassic age (Hantar, 1990).  Aptian rocks were deposited during a 

transgressive episode that brought the northern Western Desert area under the 

influence of a shallow sea, where a carbonate unit (made up of light brown dolomite 

with a few thin shale interbeds), the Alamein Formation, was deposited.  The Albian 

is represented by another regressive phase in which a large part of the Western 

Desert was occupied by a shallow marine basin that received the fluvial detritus of 

rivers coming from the eroded elevated massif to the south, resulting in the 

deposition of fine to coarse-grained sandstones of the Kharita Formation.  In the 

extreme north around the Matruh Basin, carbonates form a dominant part of the 

sequence (Said, 1990).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.8. Composite lithological successions showing variations in different 
Cretaceous lithostratigraphic units, compiled from reference boreholes for the 
extreme northern Western Desert section (Mersa Matruh-1 & Siqeifa-1x wells), 
and for the central northern Western Desert section (Betty-1 & Abu Gharadig-1 
wells). (After Said, 1962). See Fig. 2.1 for well locations.  
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In the northern part of the Gulf of Suez area at Abu Darag, the late Jurassic-

early Cretaceous uplift resulted in an hiatus in the geological record (Fig. 1.9).  

During the Aptian time, sedimentation renewed and alluvial sediments of the Malha 

Formation (Aptian-Albian) were deposited over rocks ranging in age from the 

Precambrian to Jurassic (Soliman & Amer, 1972; Garfunkel & Bartov, 1977; Van 

Houten et al., 1984; Patton et al., 1994).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1.9. Detailed (Mesozoic-Cenozoic) composite stratigraphic section of 
the Gulf of Suez (after Darwish & El Araby, 1993; Bosworth & McClay, 2001). 
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Late Cenomanian time witnessed regional subsidence across the northern 

African margin related to Neotethyan rifting.  By the late Santonian a right lateral 

movement between Africa and Laurasia (e.g. Meshref, 1990) due to the opening of 

the North Atlantic resulted in NW-directed compressive forces across the north 

eastern margin of the African plate.  These compressive forces in turn resulted in a 

series of N-W folds associated with thrust faults, WNW dextral strike-slip faults 

across the northern Western Desert, and a ENE-WSW fold system across northern 

Gulf of Suez - the so called the Syrian Arc System (Meshref, 1990; Patton et al., 

1994).  During the Campanian-Maastrichtian, extension and subsidence dominated 

northern Eastern African tectonics, for example, the Abu Gharadig Basin in the 

Western Desert, while local folding and uplifting took place, for example, in the 

northern Eastern Desert on the western side of the Gulf of Suez at Wadi Araba 

(Guiraud & Bosworth, 1999; Guiraud et al., 2001).  

Upper Cretaceous sediments in the northern Western Desert and the Gulf of 

Suez region indicate a major transgressive phase.  During the late Cenomanian a 

regional subsidence related to Neotethyan rifting took place across the northern 

African margin, and a marine transgression covered the entire northern African 

plate, including the Gulf of Suez.  As a result, fluvio-marine deposits of the Bahariya 

Formation accumulated in the Western Desert (Fig. 1.8).  During the Turonian, 

marine conditions generally persisted across most of the Western Desert, where a 

thick carbonate succession in the extreme northern Western Desert (e.g. in the 

Mersa Matruh-1 & the Seqiefa-1 wells) gave way southward (e.g. in the Betty-1 & 

the Abu Gharadig-1 wells) to carbonate and shallow marine clastics of the Abu 

Roash Formation (Said, 1962, 1990).  However, the late Turonian Laramide tectonic 

event caused uplift and basin inversion of the Sidi Barrani Sub-basin, the Qattara 

Ridge and the Bahariya Arc (Said, 1990).  But by Coniacian times most of the 

northern Western Desert was again covered by another marine transgression, 
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during which another carbonate succession, known as the Khoman “B” Formation 

was deposited (Said, 1990).  During the Santonian yet another regression took 

place, where continuing carbonate deposition of the lower part of the Khoman “B” 

Formation changed southward to marine clastic sedimentation across the Western 

Desert (Fig. 1.8).  During Campanian-Maastrichtian time, most of the Western 

Desert was again covered by deep marine waters as a result of a major 

transgressive cycle, resulting in the deposition of a thick sequence of chalky 

limestone known as the Khoman “A” Formation (Said, 1990).      

The Gulf of Suez area also witnessed the Cenomanian transgressive cycle, 

where shallow marine shale, sandstone and marl of the Raha Formation (Fig. 1.9) 

was overlain by the Turonian limestones of the Wata Formation (Kerdany & Cherif, 

1990; Said, 1990; Guiraud et al., 2001; Bosworth et al., 2005).  During the 

Coniacian-Santonian period regression took place and as a result, the shales and 

sandstones of the Matulla Formation were deposited (Said, 1990; Guiraud et al., 

2001).  The major Campanian-Maastrichtian transgressive cycle also resulted in the 

deposition of thick carbonate successions (Fig. 1.9), comprised of phosphatic cherty 

limestones and organic-rich brown limestones of the Duwi Formation, and the snow-

white chalky limestone of the Sudr Formation, both lying comformably over the 

Matulla Formation (Said, 1990; Guiraud et al., 2001). 
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2.MATERIAL AND METHODS 

 

2.1 Material 

Material was collected from two boreholes in northern Egypt: the Abu Tunis 

1x and the BB 80-1.  A summary of the palynological samples used with their depth 

and palynological status are shown in Appendix 1. 

2.1.1 The Abu Tunis 1x borehole 

The material collected from the Abu Tunis 1x borehole covers most of the 

Cretaceous sequence of the northern Western Desert of Egypt, represented by 134 

ditch cutting samples.  The Abu Tunis 1x borehole was drilled in the Faghur area at 

the northern Western Desert of Egypt in 1968 by the Western Desert Operating 

Petroleum Company (WEPCO). The Abu Tunis 1x borehole is located at geographic 

coordinates Lat. 31° 16′ 08″ N, and Long. 26° 50′ 41″ E (Fig. 2.1), and attained a 

total depth of 12487 ft (3806 m), covering a geologic interval from the lower Eocene 

to the upper Jurassic.  

The Faghur area is located to the east of the Faghur-Maamura High, west of 

the Matruh Subbasin, and north of the Umbarka Subbasin (Fig. 2.1), where the 

Cretaceous succession, represented by the Alam El Bueib, Alamein, Kharita, 

Bahariya, and Abu Roash Formations, was penetrated by the Abu Tunis 1x borehole 

(Fig. 2.2).  

In the past, the Alam El Bueib Formation has been given different names, for 

example: the Matruh Group, the Aptian clastics, the Alamein shale, or the Dawabis, 

the Umbarka and the Maamura Formations and has also been given some 

operational names, for example: units A, B, C, D1, D2, E, and F1 (Hantar, 1990).  

This lithostratigraphic unit was introduced by Norton (1967) as a member of the 
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Burg El Arab Formation.  However, Ghorab et al. (1971) raised it to formational rank 

(Fig. 2.3).  The Alam El Bueib Formation is mainly composed of sandstone with 

frequent shale interbeds in its lower part and occasional limestone beds in its upper 

part (Fig. 2.2). The limestone beds become thicker and especially abundant to the 

northwest. 

 

Figure  2.1 Simple structural map of Egypt showing the location of the studied 
boreholes (Abu Tunis-1x and BB 80-1) and the location of the type locality of 
the Cretaceous formations of the northern Western Desert (after Kerdany & 
Cherif, 1990). 
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The type locality is the interval from 3927 to 4297 m of the Alam El Bueib-1 

well (Fig. 2.1).  This unit is believed to range in age from Barremian to Aptian (Fig. 

2.3), and the environment of deposition has been described as shallow marine, with 

a more continental influence toward the south (Hantar, 1990; Kerdany & Cherif, 

1990).  

The Alamein Formation was also proposed by Norton (1967) as a member of 

Burg El Arab Formation; however, Ghorab et al. (1971) also raised this unit to 

formational rank.  This formation is widely distributed, and is well-known all over 

North Africa and Arabia.  It is composed of light brown, hard microcrystalline 

dolomite with vuggy porosity (Fig. 2.2).  The type section of the Alamein Formation 

is the interval between 2489 to 2573 m of the Alamein-1 well (Fig. 2.1).  Its thickness 

ranges from 20 to 80 m over most of the area except in the north where a maximum 

thickness (97 m) is reported in the Kanayis-1 borehole (Hantar, 1990).  The Alamein 

Formation has been attributed to an Aptian age, and seems to have been deposited 

in a shallow marine, low to moderate energy environment (Kerdany & Cherif, 1990). 

 

 

 

 

 

 

 

 

 

Figure  2.2. Cretaceous stratigraphic subdivisions of the Abu Tunis 1x 
borehole, northern Western Desert, Egypt (present study). 
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The Kharita Formation was also introduced by Norton (1967) as a member of 

the Burg El Arab Formation, with Ghorab et al. (1971) raising it to a formational rank.  

It is composed of fine to coarse grained sandstones with subordinate shale and 

carbonate interbeds (Fig. 2.2).  The type section is the interval between 2501 to 

2890 m of the Kharita-1 well (Fig. 2.1).  The Kharita Formation is attributed an 

Albian age, and it is believed to be deposited in a high-energy shallow marine 

environment.  In the extreme north, the Kharita Formation seems to be deposited in 

deeper waters, while in the south the unit has continental indications (Hantar, 1990; 

Kerdany & Cherif, 1990).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.3. Generalized stratigraphic section of the northern Western Desert of 
Egypt (after Wever, 2000). 
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The Bahariya Formation was described by Akkad & Issawi (1963) and given 

a formational name by Norton (1967).  The Bahariya Formation is composed of 

three members: the Gebel Ghorabi Member at the base, made up of non-

fossiliferous cross-bedded sandstones of fluvial origin (Dominick, 1985), the Gebel 

Dist Member deposited under estuarine conditions (Dominick, 1985), made up of 

fine-grained ferruginous clastic sediments containing vertebrate (i.e. dinosaur) and 

invertebrate (e.g. bivalve) fossils, and the El Heiz Member deposited under lagoonal 

conditions (Dominick, 1985) and made up of fossiliferous dolostone (Hantar, 1990).  

The Bahariya Formation is of Cenomanian age, its type locality is in the base and 

the scarps of the Bahariya Oasis (Fig. 2.1), represented by a 170 m exposed section 

(Norton, 1967). This unit shows maximum thickness of 1143 m in the Kattaniya-1 

well and varies in other areas from 50 to 500 m (Hantar, 1990).  This rock unit has 

also been given some operational names, for example: the Razzak sand, the 

Meleiha sand or the Medeiwar Member of the Abu Subeiha Formation (Hantar, 

1990).    

The Abu Roash Formation was described by Beadnell (1902), and named by 

Norton (1967).  It is mainly composed of a limestone sequence with interbeds of 

shale and sandstone (Fig. 2.2).  This unit is subdivided into seven members 

designated from bottom to top as: G, F, E, D, C, B and A.  The lowermost “G” 

member is probably coeval with the El Heiz Member of the Bahariya Formation.  

The type locality of this unit is the classic Abu Roash area to the north of the Giza 

pyramids (Fig. 2.1).  The Abu Roash Formation ranges in age from late Cenomanian 

to Turonian and it is believed to have been deposited in an open shallow marine 

shelf, except for unit “G” of inferred lagoonal origin in the south.  This unit has 

varying thicknesses: 1814 m in the Ghourab-1 well in the Betty Basin, more than 

1000 m in the Abu Gharadig Basin, and it varies in other areas from 250 to 750 m 

(Hantar, 1990).    
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2.1.2 The BB80-1 borehole 

The material collected from the BB 80-1 borehole covers the Cretaceous of 

the offshore Gulf of Suez, represented by 78 ditch cutting samples.  The BB 80-1 

borehole was drilled on the Zafarana Platform, in the offshore Gulf of Suez by the 

Suez Oil Company (SUCO) in 1980. The BB 80-1 borehole is located at Lat. 29° 16′ 

10″ N, and Long. 32° 38′ 8″ E (Fig. 2.4),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.4. Geological map of Sinai and the western Gulf of Suez showing the 
location of the BB 80-1 and the location of the type localities of the 
Cretaceous formations of the Gulf of Suez and Sinai (after Khalil & McClay, 
1998). 
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The BB-80-1 borehole attained a total depth of 6658 ft (2029 m), covering 

the Neogene, Cretaceous, Jurassic, and Precambrian, with a major hiatus, as the 

Palaeogene, Triassic and the whole Palaeozoic is missing.  The subsurface 

Cretaceous is represented by the Malha and the Raha Formation (Fig. 2.5).  

The Malha Formation exposed at the surface, is a sandstone unit that was 

described by Abdallah et al. (1963), and is the equivalent to the offshore Nubia “A” 

sandstone unit (Moustafa & Khalil, 1995).  The Malha Formation is composed of 

coarse, medium to fine-grained sandstones and siltstones with occasional shales of 

fluviatile origin (Kerdany & Cherif, 1990; Schütz, 1994).  The Malha Formation is of a 

palynologically defined Albian to Aptian age (Schütz, 1994), and shows significant 

variations in thickness.  It ranges from 30-100 m in the offshore Gulf of Suez wells; 

880 m inshore, east of Gulf of Suez at Wadi Feiran, 500 m at Wadi Baba from 398 

m and 245 m in onshore central Sinai (Fig. 2.4) in the Abu Hamth and the Nekhl 

wells, respectively (Kerdany & Cherif, 1990; Schütz, 1994).  The type locality is the 

Wadi Malha in the south eastern cliffs of the Northern Galala Plateau, where this 

formation ranges in thickness form 70 to 130 m (Fig. 2.4).  

The Raha Formation was described by Ghorab (1961) and is composed at 

its type locality (Gebel Raha, western Sinai; Fig. 2.4) of a 70-120 m thick clastic and 

carbonate sequence (Fig. 2.5). 

 

 

 

 

 

 

 

 

Figure  2.5. Cretaceous stratigraphic subdivisions of the BB 80-1 borehole, 
offshore Gulf of Suez, Egypt (present study). See Fig. 2.2 for legend.  
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This sedimentary sequence is made up of sandstone, dolostone, massive 

fossiliferous limestone, marls and glauconitic shales, and contains ammonites, 

gastropods, echinoids, and the well-marked oyster beds (Kerdany & Cherif, 1990; 

Schütz, 1994).  The Raha Formation is of Cenomanian age, and is believed to have 

been deposited in a shallow marine environment during the major Cenomanian 

transgression (Kerdany & Cherif, 1990; Schütz, 1994).  The Raha Formation shows 

a northward increase in thickness (Schütz, 1994), ranging from 20 m in the south at 

Gebel Zeit, 170 m in central Gulf of Suez and 280 m in the northern Gulf of Suez 

(X80-1 well).  In the Darag, Nekhl, and Abu Hamth wells in central Sinai the Raha 

Formation has a thickness of 310 m, 316 m, and 326 m respectively (Kerdany & 

Cherif, 1990).  Equivalents to the Raha Formation are the Halal Formation (Said, 

1971) made up of dolomite, marls and fossiliferous limestone at its type locality in 

northern Sinai at the Gebel Halal (Fig. 2.4); the Galala Formation (Abdallah et al., 

1963) made up of marls, shales, and sandstone interbeds overlain by a carbonate 

sequence at its type locality the Galala Plateau, and the Bahariya Formation in the 

Western Desert (Kerdany & Cherif, 1990; Schütz, 1994).         
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2.2 Preparation techniques and methods of study 

Reliable qualitative and quantitative palynological investigations, and hence 

secure interpretations, require that rigid protocols are adhered to throughout sample 

collection, processing and analysis.  Funkhouser (1969) described the factors that 

can make samples unreliable, such as: laboratory contamination, assemblages 

mixing in nature, and misplacing of samples through human error.  For laboratory 

preparations employed for this study, the samples were crushed using a simple 

traditional method (agate mortar), in order to avoid any possible contamination that 

might have come from using mechanical crushing devices.  The mortar was cleaned 

thoroughly after each sample was crushed.  Laboratory contamination might also 

come from using ordinary tap water which contains modern pollen, spores, diatoms, 

etc..  However, modern palynomorphs are easily distinguishable from fossil material, 

and so, deionised water was used in the final stages of processing, especially in the 

extraction and concentration of the organic residues.  

Natural assemblage mixing (stratigraphic leakage) and misplacing of 

samples through shipping and storing represent errors outside the researcher’s 

control.  Both have the same effect of mixing material from different depths, so 

palynologists must have an appropriate knowledge of the fossil material in order to 

detect any reworking, caving, or other mixing due to human interference (Traverse, 

2007).  As the present samples were collected from a deep borehole, possible 

contamination by modern material is not to be expected.  

2.2.1 Palynological processing and methods 

The samples are mainly composed of siliciclastic rocks intercalated with a 

few carbonate horizons, and therefore standard palynological techniques (e.g. 

Phipps & Playford, 1984; Wood et al., 1996; Green, 2001), with some modifications, 

have been employed in the processing of these samples as follows: 
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1. 5 grams of each sample were weighed, crushed and then placed in labelled 

plastic beakers and placed in a fume cupboard.  

2. 15-25 ml of commercial grade 36% hydrochloric acid (HCl) was added to each 

sample in order to dissolve the carbonate minerals, left for 24 hours, and stirred 

every 1-2 hours. The time was increased for samples which had higher carbonate 

content.  

3. When no reaction could be detected and settling of the residue had taken place, 

the samples were washed by decantation several times (usually 4-6) with 

deionised water until neutralization was reached. 

4. About 15-20ml of 60% hydrofluoric acid (HF) was added to the samples and left 

for approximately about 2 days, with stirring (usually 2-3 times) in order to 

dissolve silicate minerals. 

5. An exotic spike was added to the samples after the first HF decanting, where 1 

tablet of a known quantity (12,542 grains/tablet with V ± 3.3 %) of modern 

Lycopodium spores was (made by Department of Quaternary Geology, Lund 

University, batch no. 124961) added to each sample for absolute abundance 

analysis. 

6. The samples were again washed several times (5-6) with deionised water, sieved 

at 15 micron mesh and then boiled in 15ml of 36% HCL for 1-2 minutes to 

remove neo-formed fluorides. 

7. The samples were then decanted and washed again several times (4-5) with 

deionised water until neutralized. 

8. Sieving was carried out using a nylon mesh screen (10 µm), to concentrate the 

organic residue and to retain any small acritarchs and angiosperm pollen 

specimens.  
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9. Finally, two permanent slides were prepared for light microscopic investigation, 

where three drops of the residue were mounted as strews on cover slips, left to 

dry and were then mounted on glass slides using Elvacite 2044 as a mounting 

medium. 

Palynological slides, organic residue stored in sealed vials, and rock 

samples are stored in the Geological Museum, Geology Department, Faculty of 

Science, Assiut University, Egypt.     

A. Qualitative (light microscopic) investigations 

Qualitative palynological investigations are based on the light microscopic 

description of the total composition of the organic residue using an Olympus (BX41) 

transmitted-light microscope (serial no. 8B25715).  Scanning of the microfossil 

grains was made at lower magnifications of x100 and x250, while higher 

magnifications of x400 and x1000 (oil) were only used for the rare species and for 

species of very small size, and when investigating detailed morphological features of 

some dinoflagellate cysts species:  

The taxonomic identifications of spores, pollen grains, dinoflagellate cysts, 

freshwater algae, etc.  have been made to generic and specific levels.  Two slides 

were counted for each sample, in order to document any rare palynomorphs, and to 

guarantee getting a representative record of the palynomorphs present.  

Qualitative palynofacies analysis of the organic debris, which involves the 

determination of the different organic macerals (i.e. phytoclasts and palynomorphs) 

and their state of preservation, has also been conducted.  

B. Semi-quantitative palynomorph analysis  

The percentage frequency distribution (i.e. relative abundance) of the main 

terrestrial elements (sporomorphs, spores, gymnosperm and angiosperm pollen), 
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and the marine elements (dinoflagellate cysts and microforaminiferal test linings) 

has been calculated.  This was done simply by dividing the number of the fossils 

counted in each sample by the total count (250 particles) and multiplied by 100 to 

obtain the percentage.  

The relative abundance variations of sporomorphs to phytoplankton have 

been widely used to determine the relative proximity of the source vegetation to the 

depositional site (Batten, 1979, Lister & Batten, 1988, Tyson, 1993) . Furthermore, 

the frequency distributions of sporomorphs have also been used to show the most 

dominant plant groups, and in particular those known to show environmental or 

climatic preferences, which assists in the interpretation of the palaeoenvironmental 

settings (Tyson, 1993; 1995).     

C. Quantitative palynomorph analysis 

The quantitative method used in the present work involved spiking the 

samples with one tablet of a known number of modern Lycopodium spores during 

processing.  The absolute abundance of each fossil category counted (i.e. spores, 

gymnosperm pollen, etc.) has been made with reference to the actual number of 

Lycopodium spores counted in the sample and to the original weight of the sample.  

The concentration (grains/gram) of each fossil category can be calculated by 

applying in the absolute abundance formula of Stockmarr (1971) as follows: 

 

                                        No. of specimens counted        Total Lycopodium added  

Absolute abundance =                                              x  

                           No. of Lycopodium counted              Sample weight 

 

(1) 
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Several quantitative methods have been proposed by different authors to 

find a more accurate method to reflect a representative count of palynomorphs. 

Wilson (1959) attempted to determine the representative number of palynomorphs 

that should be counted in such palynological material, by plotting the rarefaction 

curve i.e. the numbers of specimens against the number of species identified until 

the curve flattened (i.e. become asymptotic), after this point few new species would 

be counted, whatever the total number of specimens counted. Wilson (1959) found 

that the number of specimens that should be counted depends on the type of 

lithology investigated.  However, Tschudy (1969) found that the first 200-500 counts 

would be appropriate, followed by scanning of the remainder of the slide for any rare 

species not included in the count. 

Another factor that may also have a strong impact on the number of 

specimens to be counted in a given spiked sample, is the error associated with the 

counting process due to the addition of Lycopodium tablets. Stockmarr (1971) found 

a 3% error in the quoted number of Lycopodium spores in each tablet, in addition to 

the resulting errors in the number of specimens counted.  The actual number of 

Lycopodium counted should also be taken into consideration. Stockmarr (1971) 

calculated the total errors, and constructed curves which showed the relation 

between the number of specimens counted, the number of Lycopodium spores 

counted, and the expected total resulting error (Fig. 2.6).  

In this context, for the current work, the first 250 specimens have been 

chosen for the counting process, where this number provides a total maximum error 

of 7% according to the Stockmarr (1971) curve.  Further scanning of the rest of each 

slide was made to detect any rare, out of count species. 
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Figure  2.6 Stockmarr’s (1971) chart showing the estimated total error (curves) 
in % when error in the pollen counts (horizontal lines), error on the tablets, 
and error in the Lycopodium spores are taken into account.  

 

D. Quantitative palynofacies analysis 

The quantitative analysis of the bulk organic composition (palynofacies) of 

these samples has been calculated with the same absolute abundance formula (1) 

mentioned above.  All particulate components of the organic residue have been 

taken into consideration such as the phytoclasts (tracheids, black wood, cuticles, 

membranous tissues, etc.), the marine elements (dinoflagellate cysts and 

microforaminiferal test linings), and selected terrestrial palynomorph groups 

(pteridophyte spores, saccate pollen, Classopollis pollen, Ephedripites pollen and 

angiosperm pollen).  The conventional count of the first 250 particles was also 

applied to these samples.    

2.2.2 Vitrinite 

The petrographic examination of vitrinite is exclusively carried out under 

reflected light microscopy.  This type of study was initially used in coal petrology to 

evaluate the rank of the coal by measuring the vitrinite reflectivity, as the adsorption 

index of the vitrinite rises in coal with increasing rank (Stach et al., 1982).  This 
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study requires the preparation of polished surfaces of coal particles embedded in 

resin moulds.  Hillier & Marshall (1988) noted that this method was adopted from the 

preparation techniques of Stach et al., (1975), American Society for Testing and 

Materials (1978), and British Standards Institute (1982).  Other preparation 

techniques have been described by  Bostick & Alpern (1977), Baskin (1979), Davies 

& Avery (1984), and Bertrand et al., (1985) to study the petrographic properties of 

the organic matter concentrate on thin polished sections which has been recovered 

from the rock samples by the standard HCl/HF technique.  Hillier & Marshall (1988) 

described a simple preparation technique for thin polished sections to study organic 

matter concentrates, which takes less time with minimum polishing, and requires 

only a small amount of the organic concentrate, and is therefore suitable for 

samples with low concentrations of organic contents, or for small samples.  In this 

study the Hillier & Marshall (1988) preparation technique has been employed as 

follows:   

1. After the recovery of the organic matter from the rock samples by the standard 

HCl/HF preparation technique, the concentrates of seventeen non-oxidized 

organic residues known to be rich in phytoclasts with a 300 foot (91.44 m) interval 

between each sample were selected for the preparation of thin polished sections. 

2. Sixteen standard cover slips (22 x 22 mm) were coated on one side with the 

releasing agent polytetrafluoroethylene (PTFE), and left for few minutes until the 

carrier evaporated. 

3. A small quantity of the organic matter concentrate of each sample was pipetted 

onto the coated surface of the cover slips, and then left to dry in a closed fume 

cupboard to eliminate airborne contamination. 

4. A crystal pen was used to mark the edges on the unfrosted surfaces of the frosted 

microscope slides. 
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5. One drop of resin was placed in the centre of the frosted side of the slides.  Then 

the slide was held in contact over the cover slip, the resin allowed to spread.  The 

slides were then quickly placed in a horizontal position to allow the resin to 

spread uniformly beneath the residue.  The slides were left for 2-3 days to set.      

6. After the complete setting of the resin, the cover slips were prised off using a 

razor blade, the organic matter remaining embedded in the thin layer of resin on 

the slide.  

7. Finally, the resin embedded-organics were polished on an emery paper selvyt  

cloth lap for 40 seconds clockwise and 40 seconds anticlockwise.  The slides 

were successively polished with two fine grade 320 and 520 alumina powder 

each for 30 seconds at 150 rpm, with washing of the slides between each 

polishing step.  After the completion of the polishing, the slides were dried and 

buffed on a selvyt cloth lap.   

Vitrinite reflectivity measurements were carried out using a Zeiss Universal 

Microspectrophotometer (UMSP 50) in the School of Ocean and Earth Science, 

University of Southampton.  This equipment is composed of three main units: the 

Zeiss Universal Microspectrophotometer 50 itself, a microscope photometer control 

unit (MPC 64), and a desktop computer.  The vitrinite reflectance measurements 

were carried out using halogen light (Hal 100, 12V 100W), with a Zeiss epi-

condenser II P condenser, and a standard H-Pl-Pol Zeiss reflected light prism.  An 

ANTIFLEX Zeiss EPIPLAN 40/0.85 Pol oil objective was used with immersion oil of 

ne= 1.518 ± 0.0004 at 23 ºC.  The technique depends on measuring the intensity of 

light reflected from the surface of the investigated sample, which is compared to a 

standard where the reflected light intensity is measured by a photomultiplier (HTVR 

928) which converts the reflected light rays into electrical signals and processes 
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them.  The data from the photometer is then processed using a reflectance 

measuring programme, SLAP, written by S. J. Hillier (Ecolé Normal, Paris).  

Calibration of the photometer using an artificial 3G garnet (gadolinium 

gallium garnet) with a known standard reflectance (RI = 0.919) was carried out 

before taking any measurements.  Five reflectance measurements of the standard 

before and after measurements of each investigated sample were also made, in 

order to estimate the relative errors for each investigated sample.  During the 

measurement process several measurements for each unknown sample were taken 

(48-87) from different parts of the vitrinite particles.  Where particles contained 

inclusions or pyrite crystals, these were avoided.  Scratches on the surface of the 

polished vitrinite particles were also avoided during the measurement process.  

Finally, correction for error of average reflectance measurements of each sample 

was made as follows: 

corr Rv = (avg Rv * act Std)/avg Stds                          (2) 

Where;  

corr Rv = corrected average measurement of each sample 

avg Rv = average reflectance measurements of each sample 

avg Stds = average reflectance measurements of the standard 

act Std = actual reflectance known of the standard 
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2.2.3 Total organic carbon (TOC) analysis  

Samples selected to undergo total organic carbon analysis were prepared for 

elemental analysis as follows: 

 1. 2 grams of each sample was crushed into fine powder using an agate mortar, 

and split into two halves. 

 2. The first half of each sample was labelled for total carbon determination as `Cb` , 

with its corresponding borehole name and depth, and oven dried at 160 ºC for 3 

days, before being placed in desiccator before elemental analysis. 

3. The other split of each sample was labelled `Ca`, for acid treatment, where dilute 

36% HCl analar was added to samples to dissolve mineral carbon present in the 

form of calcium carbonate.  

4. Each Ca sample then washed several times with deionised water to remove any 

remaining acid traces, and the organic residue then concentrated using a 10 µm 

nylon mesh screen. 

5. The concentrate of each acid treated-sample was dried in an oven at 160 ºC for 3 

days, and then placed in a desiccator before elemental analysis.  

6. Approximately 3 mg of both the acid-treated and untreated splits of each sample 

were weighed into tin capsules.  These capsules were sealed to force out any 

trapped air, and then placed in the analyser sample chamber.     

Elemental analyses were carried out using a Carlo Erba CHNS-O, EA1108 

elemental analyser, running with Carlo Erba software EAGER 100. The technique 

depends on the oxidation of samples at about 1200 ºC under a mixture of oxygen 

and helium gases to convert C, H, and N into oxides.  These oxides then undergo 

reduction and gas chromatographic separation (GC).  Each organic element induces 

electric charges detected by a thermal conductivity detector, and produces a 
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spectrum (time sec versus mv) characteristic for each compound (CO2, H2O, and 

NO2).  The EAGER 100 software then processes these data and produces the 

calculated wt% of each element.  The elemental analyser was calibrated before 

running any analysis using the standard compound sulphanilamide (C6H8N2O2S) of 

known carbon content (41.84%).  Stability of the analyser was assessed by 

analyzing the sulphanilamide standard after the analysis of five unknowns, and to 

estimate the relative errors.  

As this elemental analyser cannot determine the organic carbon apart from 

mineral carbon within calcium carbonate, each sample (Cb and Ca) was analysed 

separately in order to calculate total organic carbon (TOC).  The equation of 

Wilkinson (1991) was used to calculate the TOC as follows:   

           

C = 100 Ca (1-0.0833 Cb)/ (100-8.33 Ca)                       (3) 

Where;  

C = total organic carbon (TOC) wt% 

Ca = C wt% in acid treated sample 

Cb = C wt% in untreated sample 
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3.PREVIOUS PALYNOLOGICAL WORK 

 

3.1 Survey of palynological work on the Cretaceous of Northern Gondwana  

This survey will focus on some of the important palynological results which 

are directly related to Egyptian material.  In a phytogeographic context, Egypt was 

located in the northern part of Gondwana during the Cretaceous, where a regional 

terrestrial floral province covered northern Africa and northern South America (e.g. 

Abdel-Kireem et al., 1996).  As Egypt also occupied a part of the main marine 

Tethyan Realm at this time, it is also necessary to examine marine palynological 

studies carried out on Tethyan successions.  The identification of taxa of 

biostratigraphic importance from these studies will allow a revision of the local 

biostratigraphy, and those taxa of palaeoenvironmental significance can then be 

utilised to interpret local palaeoenvironmental conditions.      

3.1.1 The African-South American Phytogeographic Provinces 

Regional geographic areas showing different distinct microfloral 

assemblages with the Cretaceous stages in Africa and South America have been 

assigned by several authors to different phytogeographic provinces.  The 

characteristics of these phytogeographic provinces along with the previous 

palynological work carried out on these provinces are summarised as below: 

A. The Dicheiropollis etruscus/Afropollis Province 

Originally known variously as the Northern Gondwana Province of Brenner 

(1976), Phytogeoprovince III of Srivastava (1978), or the West African-South 

American (WASA) Province of Herngreen & Chlonova (1981). This province was 

later emended by Herngreen et al. (1996) to include northern and eastern Africa and 
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renamed the Dicheiropollis etruscus/Afropollis Province (Fig. 3.1) and represents the 

pre-Albian early Cretaceous equatorial palynoprovince.  

The Dicheiropollis etruscus/Afropollis Province is characterised (from older to 

younger sporomorphs) by Dicheiropollis etruscus, Tucanopollis crisopolensis, 

Afropollis spp., Complicatisaccus cearensis and Sergipea spp.  The high abundance 

(up to 80%) of Classopollis, low to moderate abundance (20-25%) of gymnosperm 

taxa Exesipollenites, Araucariacites, and Inaperturopollenites also characterize the 

province. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.1. Palaeogeographic reconstruction at 125 Ma simplified after Hay et 
al., (1999), showing the pre-Albian Dicheiropollis/Afropollis Phytogeographic 
Province and distribution of the most important pollen and spore species 
characteristic of the province. Map based on selected palynological studies as 
follows: North Africa: Egypt (Schrank, 1992; Ibrahim & Schrank, 1996; Schrank 
& Mahmoud, 1998, 2002), Sudan (Schrank, 1992; Awad, 1994), Libya (Thusu & 
van der Eem, 1985; Thusu et al., 1988; Uwins & Batten, 1988), Algeria (Jardiné 
et al., 1974), Morocco (Gübeli et al., 1984; Bettar & Courtinat, 1987); West 
Africa: Gabon & Congo (Doyle et al., 1977); south Switzerland & north 
Italy: (Hochuli, 1981); South America: NE Brazil (Müller, 1966; Regali et al., 
1974; Arai et al., 1989; Regali & Viana, 1989). 
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The low abundance of the xerophytic gymnosperm pollen 

Ephedripites/Gnetaceaepollenites, rare occurrence (3-15%) of bisaccate pollen (e.g. 

Alisporites, Cedripites, Complicatisaccus and Vitreisporites) are also found in the 

province.  The rare occurrence of Eucommiidites (2-5%) along with the occurrence 

of smooth trilete spores (mainly Concavisporites, Gleicheniidites and Cyathidites) 

and the presence of schizaeacean (i.e. Cicatricosisporites) and Aequitriradites 

spores are also characteristic of the province (Herngreen et al., 1996). 

B. The Albian-Cenomanian Elaterates Province 

Another microfloral province was proposed for the mid Cretaceous (Albian-

Cenomanian) of Africa and South America and named the African-South American 

(ASA) Province by Herngreen (1974a), equating to the Northern Gondwanan 

Province of Brenner (1976), the Galeacornea phytogeoprovince of Srivastava (1978) 

and the Elaterosporites province of Srivastava (1981).  Herngreen et al. (1996) 

revised this phytogeoprovince concept and renamed this collection of provinces as 

the Albian-Cenomanian Elaterates Province (Fig. 3.2).  Herngreen et al., (1996) 

suggested that the eastern border of this province should be extended to include 

China and Papua-New Guinea, as new palynological records with the same 

characteristic elaterate pollen were recorded from these regions.  

The Albian-Cenomanian Elaterates Province is characterised (from older to 

younger sporomorphs) by Afropollis jardinus, Crybelosporites pannuceus (as 

Perotrilites pannuceus), Elateropollenites jardinei, Elaterosporites klaszii, 

Elaterocolpites castelainii, Cretacaeiporites polygonalis, Elateroplicites africaensis, 

Galeacornea causea, Sofrepites legouxiae and Senegalosporites petrobrasi.  The 

moderate diversification of the angiosperm pollen and polyplicate gymnosperm 

pollen (Ephedripites, Equisetosporites, Gnetaceaepollenites and Steevesipollenites) 

and the scarcity of the pteridophyte spores along with the absence of bi- and 
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trisaccate gymnosperm pollen are also characteristic of the province.  The 

angiosperm pollen Hexaporotricolpites, Triorites, Psilatricolporites, Tetradites and 

Retitricolpites also characterise the province (Herngreen et al., 1996). 

 

 

Figure  3.2. Palaeogeographic reconstruction at 100 Ma simplified after Hay et 
al., (1999), showing the Albian-Cenomanian Elaterates Phytogeographic 
Province and distribution of the most important pollen and spore species 
characteristic of the province. Map based on selected palynological work as 
follows: Arabian Gulf area (Srivastava, 1984; El-Beialy & Al-Hitmi, 1994; 
Ibrahim et al., 2000); North Africa: Egypt (Schrank, 1991; El-Beialy, 1993; 
Schrank & Ibrahim, 1995; Ibrahim, 1996), Sudan (Awad, 1994), Libya (Batten & 
Uwins, 1985; Uwins & Batten, 1988), Morocco (Bettar & Méon, 2001, 2006); 
West Africa: Ghana (Atta-Peters & Salami, 2006), Senegal & Ivory Coast 
(Jardiné & Magloire, 1965), Angola basin & Nigeria (Lawal & Moullade, 1986; 
Abubakar et al., 2006), Intertropical Africa (Salard-Cheboldaeff, 1990); south 
Switzerland & north Italy: (Hochuli, 1981); South America: NE Brazil (Regali et 
al., 1974; Herngreen, 1974a; Regali, 1989; Dino et al., 1999), Colombia 
(Herngreen & Jimenez, 1990), Peru (Brenner, 1968), Ecuador (Dino et al., 1999).  
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C. The Senonian Palmae Province     

 The Turonian microfloras of Africa and South America have been assigned - 

with some reservation, due to scarcity of data - to the Senonian Palmae Province by 

Herngreen et al. (1996).  The Senonian Palmae Province of Herngreen and 

Chlonova (1981) originally proposed by Herngreen (1980) as the Late Cretaceous 

Palmae Province corresponds to Buttinia African-South American Province of 

Graus-Cavagnetto (1978) and the Constantinisporis phytogeoprovince of Srivastava 

(1978, 1981). 

 

Figure  3.3. Palaeogeographic reconstruction at 90 Ma simplified after Hay et 
al., (1999), showing the Senonian Palmae Phytogeographic Province and 
distribution of the most important pollen and spore species characteristic of 
the province. Map based on selected palynological work as follows: North 
Africa: Egypt (Schrank & Ibrahim, 1995; Ibrahim, 1996), Nigeria (Jan du Chêne 
et al., 1978; Lawal & Moullade, 1986), Senegal & Ivory Coast (Jardiné & 
Magloire, 1965), Intertropical Africa (Salard-Cheboldaeff, 1990), South 
America: NE Brazil (Herngreen, 1974a, 1974b, 1975).  
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Herngreen and Chlonova (1981) identified two slightly different regions within 

the Palmae Province: the northern basins (northernmost part of South America, 

offshore Suriname, the Senegal Basin, Sahara and Egypt) and the southern basins 

(Rio de Janeiro Platform and Angola Basin).  The northern region is characterised 

by Foveotricolpites giganteus, Foveotricolpites gigantoreticulatus, Cretacaeiporites, 

Droseridites senonicus and Monocolpopollenites spheroidites.  The Turonian 

microflora is also characterised by Ephedripites, Hexaporotricolpites emelianovii, the 

disappearance of elaterate pollen and Classopollis, a decline in the triporate pollen 

Triorites, and the general dominance of angiosperms and rare occurrence of spores  

(Herngreen & Chlonova, 1981; Herngreen et al., 1996).  

The Senonian Palmae Province is characterised by the sharp decline of 

Hexaporotricolpites, Cretacaeiporites and polyplicate pollen, and an increase in 

monocolpate pollen (Psilamonocolpites, Retimonocolpites and Longapertites) and 

palm pollen (Spinizonocolpites echinatus, Proxapertites spp. and Mauritiidites 

franciscoi).  The appearance of triporate forms (Echitriporites trianguliformis, 

Scabratriporites spp. and Proteacidites spp.), syncolp(or)ate pollen (Cupanieidites 

spp., Syncolporites spp., Auriculiidites reticulatus, Buttinia andreevii and 

Retidiporites magdalenensis) together with an increase in spores of aquatic plants 

(Zlivisporis blanensis and Ariadnaesporites spp.) is also characteristic of the Palmae 

Province (Herngreen & Chlonova, 1981; Herngreen et al., 1996).  

3.1.2 Tethyan Realm 

The palynological study carried out by Millioud (1967) on the Valanginian 

and the Hauterivian stratotype sections in southeast France and Switzerland, and 

the subsequent study of the Berriasian to the lower Aptian stratotype sections 

carried out by Millioud (1969) represent the first studies of dinoflagellate 

assemblages from the Tethyan Realm.  These studies were continued by Davey & 
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Figure  3.4. Early Cretaceous dinoflagellate zonation for 
(Habib, 1975; 1977).
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 on the Aptian and Albian-Cenomanian stratotype sections. The 

age dated-palynological work carried out by Habib 
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Figure  3.5. Micropalaeontologically calibrated dinoflagellate zonation for the 
Berriasian-Valanginian of the European Tethys (Leereveld, 1997a). 

 

Figure  3.6. Micropalaeontologically calibrated dinoflagellate zonation for the 
Hauterivian-Barremian of the European Tethys (Leereveld, 1997b). 
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The palynological work of Torricelli 

(Fig. 3.7) and Torricelli and Amore 

represent the most recent palynological studies carried out 

control in the European Tethyan Realm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  3.7. Micropalaeontologically calibrated dinoflagellate 

Aptian-Albian of the 
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The palynological work of Torricelli (2000, 2006) on the lower Cretaceous 

and Torricelli and Amore (2003) on the upper Cretaceous of Italy (Fig. 3.8) 

represent the most recent palynological studies carried out with 

e European Tethyan Realm.  

Micropalaeontologically calibrated dinoflagellate events

the European Tethys (Torricelli, 2006). 

Previous Palynological Work

on the lower Cretaceous 

on the upper Cretaceous of Italy (Fig. 3.8) 

with independent age 

events for the  
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Figure  3.8. Micropalae
Albian-Maastrichtian
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Micropalaeontologically calibrated dinoflagellate 
Maastrichtian of the European Tethys (Torricelli & Amore, 2003)

Previous Palynological Work

ontologically calibrated dinoflagellate events for the 
(Torricelli & Amore, 2003). 
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4.SYSTEMATIC PALYNOLOGY 

 

4.1 Introduction  

This chapter deals with the taxonomic description of the fossil palynomorphs 

that are different from the original description, especially those of biostratigraphic 

and/or palaeoenvironmental importance.  All descriptions provided are abridged 

original and/or modified descriptions followed by taxonomic remarks, based on the 

material studied herein. 

The taxonomic identification of the spores and pollen grains has mainly been 

made with reference to the original descriptions and diagnoses of these species in 

their original published articles.  The TAXON electronic database of Ravn (1998, 

http://www.palydisks.palynology.org/), in addition to the Genera File of Fossil Spores 

and Pollen of Jansonius and Hills (1976 and subsequent supplements) have been 

used as additional sources for identification and resolution of taxonomic problems. 

An alphabetical list of the identified spores and pollen grains arranged by major 

palynological category (i.e. spores, gymnosperm pollen and angiosperm pollen) 

where morphologically similar forms are grouprd together is presented.  The 

rationale for not using the traditional and widely used classifications of such authors 

as Iversen & Troels-Smith (1950), Potonié, (1956), and Dettmann (1963) for spores 

and pollen grains is that they are informal arbitary, do not comply with the rules of 

the International Code of Botanical Nomenclature (ICBN; McNeill et al., 2006) and 

lack the rule of priority (Traverse, 2007). The Glossary of Pollen and Spore 

Terminology of Punt et al., (2007) for morphological spore/pollen terminology has 

been followed.  

The generic and specific identification of dinoflagellate species has also 

been based on the original descriptions and diagnoses of these species in the 
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original articles, in addition to the Eisenack Catalog of Fossil Dinoflagellates 

(Fensome et al., 1995, 1996).  The Lentin and Williams Index of Fossil 

Dinoflagellates (Fensome & Williams, 2004) along with the updated electronic 

database DINOFLAJ2, Version 1 (Fensome et al., 2008, 

http://dinoflaj.smu.ca/wiki/Main_Page) has been followed to ensure that correct 

generic assignments have been employed.  The classification of Fensome et al. 

(1993) for modern and fossil dinoflagellates has also been used.       

References dealing with the following systematic text will not be 

acknowledged in the reference list.  Alphabetical list of all recovered taxa with 

reference to their position in the quantitative charts below as follows:   

4.2 Alphabetic list of palynomorph 

Numbers in the parentheses refer to position of taxa on the quantitative 

chart, the first number is for the Abu Tunis 1x borehole, and the second number is 

for the BB-80-1 borehole, with the empty parentheses denoting absence of a taxon 

in a borehole. 

Spores 

Aequitriradites norrissii Backhouse, 1988 (40). 

Aequitriradites spinulosus (Cookson & Dettmann) Cookson & Dettmann, 1961 (29). 

Aequitriradites verrucosus (Cookson & Dettmann) Cookson & Dettmann, 1961 (47). 

Appendicisporites erdtmanii Pocock, 1964 (50). 

Appendicisporites sp. (34). 

Auritulinasporites intrastriatus Nilsson, 1958 (55). 

Auritulinasporites scanicus Nilsson, 1958 (53). 

Balmeisporites cf. holodictyus Cookson & Dettmann, 1958 (9). 
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Balmeisporites longirimosus Kondinskaya, 1966 (20). 

Biretisporites potoniaei Delcourt & Sprumont, 1955 (30). 

Balmeisporites spp. (25), (4). 

Cibotiidites cf. tuberculiformis (Cookson) Srivastava, 1977 (57). 

Cibotiumspora jurienensis (Balme) Filatoff, 1975 (37). 

Cicatricosisporites orbiculatus Singh, 1964 (4), (1). 

Cicatricosisporites sinuosus Hunt, 1985 (13). 

Cicatricosisporites spp. (7), (6). 

Concavisporites spp. (19). 

Concavissimisporites punctatus (Delcourt & Sprumont) Brenner, 1963 (10). 

Concavissimisporites variverrucatus Singh, 1964 (58). 

Concavissimisporites spp. (11). 

Crybelosporites brenneri Playford, 1971 (32). 

Crybelosporites pannuceus (Brenner) Srivastava, 1977 (2), (2). 

Crybelosporites striatus (Cookson & Dettmann) Dettmann, 1963 (46). 

Deltoidospora austrails (Couper) Pocock, 1970 (38). 

Deltoidospora concavus Bolkhovotina, 1956 (49). 

Deltoidospora crassexina (Nilsson) Lund, 1977 (23). 

Deltoidospora hallii Miner, 1935 (5). 

Deltoidospora minor (Couper) Pocock, 1970 (26). 

Deltoidospora psilostomata Rouse, 1959 (33). 

Deltoidospora toralis (Leschik) Lund, 1977 (16). 
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Deltoidospora spp. (1), (3). 

Dictyophyllidits harrisii Couper, 1958 (28). 

Dictyophyllidits sp. (36). 

Echinatisporis varispinosus (Pocock) Srivastava, 1977 (54).  

Gemmatrilites sp. (41). 

Gleicheniidites feronensis (Delcourt & Sprumont) Delcourt & Sprumont, 1959 (39). 

Gleicheniidites rasilis Bolkhovitina, 1968 (44). 

Gleicheniidites senonicus Ross, 1949 (15). 

Impardecispora apiverrucata (Couper) Venkatachala et al., 1969 (61). 

Impardecispora uralensis (Bolkhovitina) Venkatachala et al., 1969 (60). 

Ischyosporites areolatus (Singh) Fensome, 1987 (59). 

Ischyosporites sp. (51). 

Januasporites sp. (42). 

Kyrtomisporis spp. (27). 

Leptolepidites major Couper, 1958 (43). 

Leptolepidites psarosus Norris, 1969 (45). 

Matonisporites spp. (24). 

Microfoveolatosporites skottsbergii (Selling) Srivastava, 1971 (22). 

Murospora cf. kosankei Somers, 1952 (21). 

Murospora cf. mesozoica Pocock, 1961 (35). 

Murospora florida (Balme) Pocock, 1961 (17). 

Murospora sp. 1 (18). 
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Murospora  spp. (48), (7). 

Pilosisporites trichopapillosus (Thiergart) Delcourt & Sprumont, 1955 (56). 

Todisporites major Couper, 1958 (31). 

Todisporites minor Couper, 1958 (14). 

Trilobosporites hannonicus (Delcourt & Sprumont) Potonié, 1956 (52). 

Trilobosporites laevigatus El-Beialy, 1994 (6), (8). 

Triplanosporites sp. (3), (5). 

Triporoletes reticulatus (Pocock) Playford, 1971 (12). 

Verrucosisproites obscurilaesuratus Pocock, 1962 (8). 

Gymnosperm pollen 

Alisporites cf. grandis (Cookson) Dettmann, 1963 (62). 

Arucariacites australis Cookson ex Couper, 1953 (69). 

Balmeiopsis limbatus (Balme) Archangelsky, 1979 (63). 

Callialasporites trilobatus (Balme) Sukh Dev, 1961 (82). 

Callialasporites turbatus Schülz, 1967 (85). 

Classopollis brasiliensis Herngreen, 1975 (---), (14). 

Classopollis classoides Pflug, 1953 (64), (13). 

Classopollis spp. (68). 

Cycadopites carpentieri (Delcourt & Sprumont) Singh, 1964 (80). 

Cycadopites fragilis Singh, 1964 (86). 

Cycadopites cf. fragilis Singh, 1964 (87). 

Cycadopites nitudus Norris, 1969 (90). 
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Cycadopites cf. ovatus Rouse, 1959 (88). 

Cycadopites spp. (67). 

Dicheiropollis etruscus Trevisan, 1972 (89). 

Elaterocolpites castelainii Jardiné & Magloire, 1965 (70), (11). 

Elateroplicites africaensis Herngreen, 1973 (---), (12). 

Elaterosporites acuminatus (Stover) Jardiné, 1967 (73). 

Elaterosporites klaszii (Jardiné & Magloire) Jardiné, 1967 (66), (9). 

Elaterosporites protensus (Stover) Jardiné, 1967 (74). 

Elaterosporites verrucatus (Jardiné & Magloire) Jardiné, 1967 (72). 

Ephedripites irregularis Herngreen, 1973 (78). 

Ephedripites spp. (65), (10). 

Eucommidites treodsonii (Erdtman) Potonié, 1958 (79). 

Exesipollenites sp. (83). 

Galeacornea causea Stover, 1963 (76). 

Gnetaceaepollenitess  cf. clathratus Stover, 1964 (75). 

Inaperturopollenites undulatus Weyland & Greifeld, 1953 (77). 

Reyrea polymorpha Herngreen, 1974 (81). 

Sofrepites legouxiae Jardiné, 1967 (71).  

Taxacites sahariensis Reyre, 1973 (84). 

Angiosperm pollen 

Afropollis jardinus Doyle et al., 1982 (92), (15). 

Afropollis aff. jardinus Doyle et al., 1982 (122). 
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Afropollis kahramanensis Ibrahim & Schrank 1995 (98), (20). 

Afropollis operculatus Doyle et al., 1982 (126). 

Afropollis zonatus Doyle et al., 1982 (128). 

Afropollis aff. zonatus Doyle et al., 1982 (127). 

Afropollis sp. B Doyle et al., 1982 (130). 

Arecipites microfoveolatus Ibrahim, 2002a (140). 

Cretacaeiporites densimurus Schrank & Ibrahim, 1995 (94), (19). 

Cretacaeiporites mullerii Herngreen, 1973 (101). 

Cretacaeiporites polygonalis (Jardiné & Magloire) Herngreen, 1973 (108). 

Dichastopollenites ghazalatensis Ibrahim, 1996 (111).  

Foveotricolpites gigantoreticulatus (Jardiné & Magloire) Schrank, 1987a (92). 

Papillopollis vancampoae Kedves & Pittau, 1979 (96). 

Proteacidites cf. africaensis (Jardiné & Magloire) Schrank & Ibrahim, 1995 (91). 

Retiacolpites columellatus Schrank in Schrank & Mahmoud, 2002 (134). 

Retimonocolpites bueibensis Ibrahim, 2002a (135). 

Retimonocolpites ghazalii Ibrahim, 2002a (115).  

Retimonocolpites matruhensis Penny, 1986 (131).  

Retimonocolpites matruhensis-Retimonocolpites ghazalii complex (132) 

Retimonocolpites pennyi Schrank & Mahmoud, 2002 (136). 

Retimonocolpites variplicatus Schrank & Mahmoud, 1998 (97), (18). 

Retimonocolpites textus (Norris) Singh, 1983 (105). 

Retimonocolpites  sp. 1 Schrank & Mahmoud, 2002 (139). 
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Retimonocolpites sp. 1 (138). 

Retimonocolpites sp. (---), (22). 

Rousea brenneri Singh, 1983 (106). 

Rousea delicipollis Srivastava, 1977 (100). 

Rousea cf. miculipollis Srivastava, 1975 (103). 

Rousea sp. (---), (23). 

Stellatopollis barghoornii Doyle in Doyle et al., 1976 (117). 

Stellatopollis bituberensis Penny, 1986 (137). 

Stellatopollis dejaxii Ibrahim, 2002a (120).  

Stellatopollis densiornatus (Lima) Ward, 1986 (118). 

Stellatopollis doylei Ibrahim, 2002a (125). 

Stellatopollis hughesii Penny, 1986 (129).  

Stellatopollis limai Ibrahim, 2002a (121). 

Stellatopollis spp. (124), (17). 

Stephanocolpites sp. (116). 

Striatopollis cf. trochuensis (Srivastava) Ward, 1986 (119). 

Tetracolpites sp. (123). 

Tetraporopollenites sp. (95). 

Tricolpites cf. crassimurus (Groot & Penny) Singh, 1971 (112). 

Tricolpites micromunus (Groot & Penny) Singh, 1971 (110). 

Tricolpites parvus Stanley, 1965 (107). 

Tricolpites sagax Norris, 1967 (114). 
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Tricolpites vulgaris (Pierce) Srivastava, 1969 (104). 

Tricolpites spp. (93), (16). 

Tricolporopollenites sp. (99), (21). 

Triporites spp. (102), (24). 

Triporopollenites spp. (109). 

Tucanopollis annulatus Schrank in Schrank & Mahmoud, 2002 (133). 

Pollen tetrads  

Classopollis sp. (144). 

Cretacaeiporites densimurus Schrank & Ibrahim, 1995 (141). 

Droseridites baculites Ibrahim, 1996 (142). 

Droseridites senonicus Jardiné & Magloire, 1965 (143). 

Freshwater algae 

Botryococcus sp. (147), (27). 

Chomotriletes minor (Kedves) Pocock, 1970 (148). 

Ovoidites parvus (Cookson & Dettmann) Nakoman, 1966 (145), (26). 

Pediastrum sp. (149), (25). 

Fungal fruiting body (146), (28). 

Dinoflagellate cysts 

Aptea polymorpha Eisenack, 1958a (193). 

Canningia senonica Clarke & Verdier, 1967 (152). 

Cannosphaeropsis utinensis Wetzel, 1933b (169). 

Chatangiella madura Lentin & Williams, 1976 (154). 
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Chlamydophorella discreta Clarke & Verdier, 1967 (164). 

Circulodinium brevispinatum (Millioud) Fauconnier in Fauconnier & Masure, 2004 

(202). 

Circulodinium brevispinosum (Pocock) Jansonius, 1986 (205). 

Circulodinium cf. brevispinosum (Pocock) Jansonius, 1986 (213). 

Circulodinim distinctum (Deflandre & Cookson) Jansonius, 1986 (173). 

Circulodinium cf. attadalicum (Cookson & Eisenack) Helby, 1987 (210). 

Circulodinium spp. (204), (38). 

Coronifera albertii Millioud, 1969 (174), (36). 

Coronifera oceanica Cookson & Eisenak, 1958 (170), (43). 

Coronifera tubulosa Cookson & Eisenak, 1974 (177), (35). 

Coronifera spp. (186). 

Cribroperidinium edwardsii (Cookson & Eisenack) Davey, 1969 (181). 

Cribroperidenium sp. (183), (45). 

Cyclonephelium vannophorum Davey, 1969 (212). 

Cyclonephelium cf. vannophorum Davey, 1969 (211). 

Dinogymnium denticulatum (Alberti) Evitt et al., 1967 (162). 

Dinogymnium spp. (155). 

Dinopterygium tuberculatum (Eisenack & Cookson) Stover & Evitt, 1978 (---), (33).  

Downiesphaeridium sp. (165). 

Eucladinium gambangense (Cookson & Eisenack) Stover & Evitt, 1978 (166). 

Exochosphaeridium bifidum (Clarke & Verdier) Clarke et al., 1968 (153). 
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Florentinia berran Below, 1982 (171), (31). 

Florentinia clavigera (Deflandre) Davey & Verdier, 1973 (---), (40). 

Florentinia cooksoniae (Singh) Duxbury, 1980 (201). 

Florentinia laciniata Davey & Verdier, 1973 (176), (44). 

Florentinia mantellii (Davey & Williams) Davey & Verdier, 1973 (172), (34). 

Florentinia radiculata (Davey & Williams) Davey & Verdier, 1973 (---), (48). 

Florentinia spp. (167), (29). 

Isabelidinium acuminatum (Cookson & Eisenack) Stover & Evitt, 1978 (163). 

Litosphaeridium siphoniphorum (Cookson & Eisenack) Davey & Williams, 1966b 

(159). 

Muderongia aequicorna Århus in Århus et al., 1990 (216). 

Muderongia pariata Duxbury, 1983 (198). 

Muderongia tomaszowensis Alberti, 1961 (203).  

Muderongia spp. (206), (49).  

Odontochitina ancala Bint, 1986 (200). 

Odontochitina operculata (Wetzel) Deflandre & Cookson, 1955 (151), (37). 

Odontochitina costata Alberti, 1961 (156). 

Odontochitina porifera Cookson, 1956 (157). 

Odontochitina spp. (209), (46). 

Oligosphaeridium albertense (Pocock) Davey & Williams, 1969 (178). 

Oligosphaeridium asterigerum (Gocht) Davey & Williams, 1969 (196), (47). 

Oligosphaeridium complex (White) Davey & Williams, 1966 (179). 
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Oligosphaeridium diluculum Davey, 1982 (197). 

Oligosphaeridium patulum Riding & Thomas, 1988 (218). 

Oligosphaeridium poculum Jain, 1977 (180). 

Oligosphaeridium pulcherrimum (Deflandre & Cookson) Davey & Williams, 1966 

(195). 

Oligosphaeridium spp. (214). 

Palaeoperidinium cretaceum (Pocock) Lentin & Williams, 1976 (187). 

Phoberocysta neocomica (Gocht) Millioud, 1969 (217). 

Phoberocysta spp. (215). 

Pseudoceratium almohadense (Below) Lentin & Williams, 1989 (208). 

Pseudoceratium anaphrissum (Sarjeant) Bint, 1986 (184). 

Pseduoceratium expolitum Brideaux, 1971 (189). 

Pseudoceratium pelliferum Gocht, 1957 (207). 

Pseduoceratium retusum Brideaux, 1977 (190). 

Pseudoceratium securigerum (Davey & Verdier) Bint, 1986 (185). 

Pterodinium sp. (175).  

Senegalinium aenigmaticum (Boltenhagen) Lentin & Williams, 1981 (158), (39). 

Spinifereites spp. (150), (30). 

Subtilisphaera perlucida (Alberti) Jain & Millepied, 1973 (188). 

Subtilisphaera scabrata Jain & Millepied, 1973 (192). 

Subtilisphaera senegalensis Jain & Millepied, 1973 (182). 

Subtilisphaera terrula (Davey) Lentin & Williams, 1976 (194).  
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Subtilisphaera spp. (191), (32). 

Surculosphaeridium cf. longifurcatum (Firtion) Davey et al., 1966 (161). 

Tenua sp. (199). 

Trichodinium castanea Deflandre, 1935 (160), (41). 

Xiphophoridium alatum (Cookson & Eisenack) Sarjeant, 1966b (168), (42). 

Acritarchs 

Baltisphaeridium spp. (219). 

Micrhystridium stellatum Deflandre, 1945a (223), (50). 

Micrhystridium spp. (220), (52). 

Veryhachium collectum Wall, 1965 (221), (51). 

Veryhachium metum Davey, 1970 (222). 

Veryhachium reductum (Deunff) Downie & Sarjeant, 1965 (225). 

Veryhachium valiente Cramer, 1964 (224). 

Microforaminiferal test linings (226), (53). 

 

4.3 Taxonomy 

4.3.1 Spores 

 

Genus: Deltoidospora Miner, 1935 emend. Van Buggenum, 1985 

Type species: Deltoidospora hallii Miner, 1935, p. 618, pl. 24, fig. 7. 
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Deltoidospora hallii Miner, 1935 

(pl. 1, fig. 7; pl. 2, fig. 5) 

Diagnosis: Potonié (1956) provided diagnosis of the type species as follows: 33-39 

µm, sides straight or slightly concave; rays Y mark 2/3 diameter or more; 

exine smooth.    

Emendation: Danzé-Corsin & Laveine (1963) extended the description as follows: 

Trilete spores, ambitus concavely triangular to sub-circular; trilete mark 

distinct, rays at least 2/3 spore radius; exine two-layered, smooth or 

infrapunctate, with or without exinal folds (± kyrtome) along the tilete 

mark; 25-80 µm.   

Remarks (1): Miner (1935) proposed the genus Deltoidospora to accommodate 

smooth deltoid or sub-deltoid spores without assigning a type species; 

later Potonié (1956) assigned Deltoidospora hallii as the type species.  

Similarly, Naumova (1939) proposed the genus Leiotriletes to 

accommodate smooth trilete spores without assigning a type species, 

where Potonié & Kremp (1954) emended the genus to encompass 

smooth trilete spores with concave or convex sides and designated 

Leiotriletes sphaerotriangulus (Loose) Potonié & Kremp, 1954 as the 

type species.  Couper (1953) proposed the valid genus Cyathidites to 

accommodate smooth trilete spores with more or less concave ambs. 

Pocock (1970) suggested that the genera Leiotriletes and Cyathidites 

are very similar regardless of the difference in grain size, and therefore 

the genera Leiotriletes and Cyathidites are synonyms. Srivastava (1977) 

argued that the differentiation between Deltoidospora and Cyathidites 

based on striate or concave ambs (e.g. Delcourt et al., 1963; Dettmann, 

1963) or on differences in exine thickness (e.g. Singh, 1964) is 
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unjustified and the genera Deltoidospora and Cyathidites should be 

viewed as synonyms.  As Deltoidospora was proposed before the 

nomenclatural rules of the ICBN 1958, the name Deltoidospora is 

conserved as the senior synonym of Cyathidites and Leiotriletes based 

on the rule of priority (Pocock, 1970; Srivastava, 1977), which will be 

followed in the present study.  Deltoidospora hallii is distinguished from 

Deltoidospora psilostomata by its smaller size 30-40 µm. 

Remarks (2): Deltoidospora psilostomata is found here to be very similar to 

Deltoidospora australis and is just larger in size than Deltoidospora 

minor.  This suggests that all the three species may be synonyms, and 

this may be due to the difficulty in the early 1940’s to 1960’s where 

scientific communication among the palynostratigraphers and publication 

availablity were limited, which led to a wide spectrum of identification of 

similar if not the same species of Deltoidospora.  This shows the need 

for a great refinement of all similar species.  Until then and from a 

practical point of view, it is suggested to group all similar forms as 

Deltoidospora spp., as the majority of the Deltoidospora species have a 

long range and thus they are of no biostratigraphic significance. 

Dimension: Maximum diameter (8 specimens) 38 (41) 45 µm. 

 

Deltoidospora australis (Couper) Pocock, 1970 

(pl. 1, fig. 9; pl. 2, fig. 1) 

1953: Cyathidites australis Couper, p. 27, pl. 2, fig. 11. 

1970: Deltoidospora australis (Couper) Pocock, p. 28, pl. 5, fig. 38. 
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Description: Trilete spore, amb triangular with slightly concave sides.  Exine smooth 

to weakly punctuate punctate, 1.5-2 µm thick. Laesura at least 2/3 spore 

radius.   

Dimension: Maximum equatorial diameter (5 specimens) 53 (57) 62 µm. 

 

Deltoidospora crassexina (Nilsson) Lund, 1977 

(pl. 4, fig. 4) 

1958: Concavisporites crassexinus Nilsson, p. 35, pl. 1, fig. 11. 

1977: Deltoidospora crassexina (Nilsson) Lund, p. 51, pl. 1, fig. 4; pl. 12, fig. 8. 

Description: Trilete spore, amb triangular with concave sides.  Exine smooth to 

weakly scabrate, 1.5-2 µm thick.  Laesura distinct almost reaching 

equator with raised lips, trilete mark rays delineated with thick strongly 

concave 3.5-4 µm labra gaping from each other at the centre of the 

trilete mark and becoming closer to each other and nearly disappearing 

near the apices.   

Dimension: Maximum diameter (2 specimens) 35 (42.5) 50 µm. 

 

Deltoidospora concavus Bolkhovotina, 1956 

(pl. 2, fig. 3) 

Description: Trilete spore, amb triangular concave with pointed convex apices.  

Exine smooth to weakly punctuate, 1.5-2.5 µm thick. Laesura simple slit 

reaching the equator.   

Dimension: Maximum diameter  (2 specimens) 54 (74) 90 µm. 
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Deltoidospora minor (Couper) Pocock, 1970 

(pl. 3, fig. 3) 

1953: Cyathidites minor Couper, p. 28, pl. 2, fig. 13.   

1970: Deltoidospora minor (Couper) Pocock, p. 28, pl. 5, fig. 3.   

Description: Trilete spore, amb triangular with straight to slightly concave sides. 

Exine smooth to weakly punctuate, 1-2 µm thick. Laesura simple, 2/3 

spore radius.   

Remarks: Deltoidospora minor is distinguished from Deltoidospora australis by its 

smaller size (25-45 µm).  

Dimension: Maximum diameter (4 specimens) 38 (40) 42 µm. 

 

Deltoidospora psilostomata Rouse, 1959 

(pl. 2, figs. 2, 4, 12) 

Description: Trilete spore, amb triangular with straight to slightly concave sides. 

Exine smooth to weakly punctuate, 2-3 µm thick.  Laesura simple slit 

reaching the equator.   

Dimension: Maximum diameter (5 specimens) 40 (49) 58 µm. 

 

Deltoidospora toralis (Leschik) Lund, 1977 

(pl. 1, fig. 5; pl. 2, fig. 9; pl. 4, figs. 2, 3) 

1955: Laevigatosporites toralis Leschik, p. 12, pl. 1, fig. 9.  

1977: Deltoidospora toralis (Leschik) Lund, p. 49, pl. 1, figs. 2, 3. 
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Description: Trilete spore, amb triangular, sides straight to slightly concave.  Exine 

smooth, 1-1.5 µm thick.  Laesura distinct, almost reaching equator with 

raised lips, trilete mark rays delineated with concave labra very close to 

centre of the trilete mark, thicken in the interradial area (4-5 µm), 

becoming thinner (1.5-2 µm) and broader near the apices to continue 

around the whole apex.       

Dimension: Maximum diameter (6 specimens) 34 (41) 45 µm. 

 

Genus: Dictyophyllidites Couper, 1958 emend. Dettmann, 1963   

Type species: Dictyophyllidites harrisii Couper, 1958, p. 140, pl. 21, figs. 5, 6. 

Dictyophyllidites harrisii Couper, 1958 

(pl. 1, fig. 1) 

Description: Trilete spore, amb triangular with slightly concave sides. Exine smooth 

1.5-2 µm thick. Laesura distinct, reaching the equator with raised lips 

bounded by parallel labra.    

Remarks: Dictyophyllidites is distinguished from Deltoidospora by laesura enclosed 

within membranous elevated lips (Dettmann, 1963). 

Dimensions: Maximum diameter (5 specimens) 42 (44.5) 47 µm. 

 

Genus: Auritulinasporites  Burger, 1966 

Type species: Auritulinasporites scanicus Nilsson, 1958, p. 35, pl. 1, fig. 16. 
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Auritulinasporites scanicus Nilsson, 1958 

(pl. 1, fig. 4) 

Description: Trilete spore, amb triangular, sides straight to slightly convex.  Exine 

smooth, 0.5-1.5 µm thick.  Laesura distinct, at least 2/3 spore radius with 

raised lips, trilete mark rays delineated with thick strongly concave, 3.5-4 

µm labra, usually projecting at apices.       

Remarks: Auritulinasporites is distinguished from Gleicheniidites by thick labra 

enclosing trilete mark rays, and lack of exinal thickening on distal face. 

Dimension: Maximum diameter (4 specimens) 28 (38.5) 53 µm. 

 

Auritulinasporites intrastriatus Nilsson, 1958 

(pl. 2, fig. 8) 

Remarks: Auritulinasporites intrastriatus differs from Auritulinasporites scanicus in 

having thicker exine 2-3 µm and thicker labra (5-6 µm) delineating the 

trilete mark rays.       

Dimension: Maximum diameter (2 specimens) 37 (41) 45 µm. 

 

Genus: Gleicheniidites  Ross, 1949 ex Delcourt & Sprumont, 1955  

emend. Dettmann, 1963 

Type species: Gleicheniidites senonicus Ross, 1949, p. 31, pl. 1, fig. 3. 
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Gleicheniidites senonicus Ross, 1949 

(pl. 3, fig. 2; pl. 5, fig. 9) 

Description: Trilete spore, amb triangular, sides slightly concave.  Exine smooth, 2-

2.5 µm thick at corners increasing to 3.5-4 µm at sides. Laesura distinct, 

reaching equator with raised lips.  Proximal face shows exinal 

thickenings which delineate trilete mark rays and disappear at corners, 

distal face shows strong concave exinal thickening without interruption at 

corners.       

Remarks: Gleicheniidites is distinguished form Concavisporites by more variation in 

wall thickness, as the spore exine in equatorial regions is usually of 

unequal thickness (Krutzsch, 1959), and is also distinguished by having 

exinal thickenings on the distal face.          

Dimension: Maximum diameter (4 specimens) 50 (54.5) 60 µm. 

 

Gleicheniidites feronensis (Delcourt & Sprumont) Delcourt & Sprumont, 1959 

(pl. 3, figs. 1, 4) 

1957: Triremisporites feronensis Delcourt & Sprumont, p. 61, pl. 2, fig. 9; pl. 3, figs. 

15, 23-25; non pl. 3, figs. 14a, b. 

1959: Gleicheniidites feronensis (Delcourt & Sprumont) Delcourt & Sprumont, p. 34. 

Remarks: Gleicheniidites feronensis differs from Gleicheniidites senonicus in having 

a more irregularly triangular amb with strongly undulating concave sides, 

protruding corners, and distal face shows strong concave exinal 

thickenings that disappears at corners.        

Dimension: Maximum diameter (2 specimens) 38 (40) 42 µm. 
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Gleicheniidites rasilis Bolkhovitina, 1968 

(pl. 5, fig. 18) 

Rekarks: Both Gleicheniidites rasilis and Gleicheniidites feronensis have irregularly 

triangular ambs with concave and undulate sides.  But G. rasilis differs in 

having rounded corners and very thick (5 µm) exine at corners that 

increases up to 18 µm thick at interradial sides.       

Dimension: Maximum diameter (1 specimen) maximum 85 µm. 

 

Genus: Murospora Somers, 1952 

Type species: Murospora kosankeii Somers, 1952, p. 21, fig. 13a. 

Remarks: Murospora spores are frequently misidentified in the local Cretaceous 

records of Egypt as Matonisporites; the latter spores are not as large as 

Murospora.  The larger diameter of Murospora specimens in the present 

material (58-87 µm) and their patinate structure distinguishes them from 

Matonisporites (Mahmoud et al., 2007).  

 

Murospora cf. kosankei Somers, 1952 

 (pl. 5, fig. 17) 

Description: Trilete spore, amb triangular with concave sides and rounded apices. 

Nexinal body triangular, concave with 5-7 µm thick wall enveloped by a 

very thick patina.  Laesura with prominent non-elevated lips extending to 

full radius of nexinal body. 

Remarks: The form of the present material shows great similarity with Murospora 

kosankei except the specimen has a greater diameter (type species 23-
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31 µm; Pocock’s (1961a) comparative material of type species: 40 µm), 

and by the exinal thickenings (13 µm wide) which flank the laesural lips.  

Dimension: Maximum whole grain diameter (1 specimen) 70 µm, nexinal body 

diameter 63 (64) 65 µm. 

 

Murospora florida (Balme) Pocock, 1961 

 (pl. 3, fig. 19; pl. 5, figs. 12, 22) 

1957: Cingulatisporites florida Balme, p. 26, pl. 5, figs. 60, 61. 

1961: Murospora florida (Balme) Pocock, p. 123, pl. 1, figs. 6, 7. 

Remarks: Murospora florida differs from Murospora cf. kosankei and Murospora cf. 

mesozoica in having a sub-triangular to sub-rounded amb with sides that 

are straight to strongly concave sides of highly variable thicknesses, and 

rounded to protruding apices. 

Dimension: Maximum whole grain diameter (5 speimens) 52 (89) 100 µm, nexinal 

body diameter 50 (63) 73 µm. 

 

Murospora cf. mesozoica Pocock, 1961 

 (pl. 5, fig. 20) 

Description: Trilete spore, amb triangular with convex to slightly concave sides and 

rounded apices.  Nexinal body triangular convex to slightly concave with 

a 2.5-3 µm thick wall enveloped by a very thick (4-8 µm) patina.  

Laesura straight with prominent non-elevated lips, extending to full 

radius of nexinal body.  
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Remarks: The form of the present material shows great similarity with Murospora 

mesozoica except the specimens have a greater diameter (type species: 

35 µm) and some forms develop occasional exinal thickenings flanking 

the laesural lips.  

Dimension: Maximum whole grain diameter (1 specimen) 65 (77) 92 µm, nexinal 

body diameter 57 (64.5) 74 µm. 

 

Murospora sp. 1 

(pl. 3, fig. 17; pl. 5, fig. 19) 

Description: Trilete spore, amb sub-triangular to semi-circular with concave sides 

and broadly rounded apices.  Nexinal body rounded triangular with 5-10 

µm thick wall enveloped by thin patina.  Laesura extend to full radius of 

nexinal body with prominent non-elevated lips, occasionally exinal 

thickenings flanking the raised lips may develop.  

Remarks: This form differs from Murospora florida in having a more rounded amb, a 

spore wall of uniform thickness, and a thin patina.  Deltoidospora 

equiexinus (as Matonisporites equiexinus Couper) Muir, 1964 differs 

from Murospora sp.1 in having a smaller diameter (40-68 µm) and a 

thinner wall (2.5-3.5 µm). 

Dimension: Maximum diameter (7 specimens) 95 (94) 105 µm. 
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4.3.2 Gymnosperm pollen 

A. Circumpolles pollen 

Genus: Classopollis Pflug 1953 emend. Pocock & Jansonius, 1961 

Type species: Classopollis classoides Pflug, p. 91, pl. 16, figs. 29-31. 

Classopollis classoides Pflug, 1953 

(pl. 1, fig. 18) 

Description: Spherical to circular in equatorial section.  Monoporate with a circular 

distal pore.  Exine ornamented by striate band or girdle surrounding the 

equator, intexine thin, laevigate, occasionally showing a small trilete 

mark at the proximal pole, rays of trilete mark about 3 µm long. 

Remarks: The use of the generic names Circulina Malyavkina, 1949, Corollina 

Malyavkina, 1949 and Classopollis Pflug, 1953 in the literature has led to 

a great confusion amongst palynologists.  Klaus (1960) and Cornet & 

Traverse (1975) regarded Classopollis as a junior synonym of Corollina.  

Traverse (2004) proposed conservation of the name Classopollis against 

Circulina and Corollina because the original description of Classopollis 

Pflug, 1953 was provided with good illustrations.  In Skog’s (2005) 

report, the proposal to conserve Classopollis against Circulina and 

Corollina was accepted.  Accordingly, in the present study all forms will 

be treated under the generic name Classopollis.   

Dimension: Maximum diameter (5 specimens) 31 (32) 35 µm. 
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Classopollis brasiliensis Herngreen, 1975 

(pl. 10, fig. 15) 

1973: Classopollis jardinei Herngreen, p. 544, pl. 2, figs. 2, 6. 

1975: Classopollis brasiliensis Herngreen, 1975. 

Remarks: Classopollis brasiliensis differs from Classopollis classoides  in having a 

larger diameter and laking a proximal trilete mark or distal pore.  

Dimension: Maximum length (1 specimen) 45 µm, breadth 26 µm. 

 

Genus: Dicheiropollis Trevisan, 1972 

Type species: Dicheiropollis etruscus Trevisan, p. 568, pls. 1-15. 

Dicheiropollis etruscus Trevisan, 1972 

 (pl. 1, figs. 14-16) 

Description: A peculiar structure consisting of a pair of pollen grains connected 

together with two bundles of delicate strings.  Individual grains have a 

hemispherical shape; proximal face invaginated and bordered near the 

equator with a C-shaped exinal thickening and inner striations. Exine is 

1.5-2 µm thick, that thickens to 3-4 µm at the C-shaped equatorial 

thickening, with inner layer showing packed pillar-like elements ending 

freely inward, fusing together at the equatorial thickening to form striae 

running parallel to the equator.  Release of individual grains is frequent. 

No pore, rimula, or triangular mark detected.  

Remarks: Trevisan (1972) studied the wall structure of the Classopollis and 

Dicheiropollis using the transmission electron microscope and 

discovered a great similarity in the wall structure between the two 
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genera: a refractive inner layer and an outer complex layer with pillar-like 

elements and striae.  Accordingly, she suggested that Dicheiropollis was 

botanically close to plants which produced Classopollis pollen grains, 

and it possibly belonged to the conifer family Cheirolepidaceae. 

Dimension: Individual grain maximum equatorial diameter (3 specimens) 36 (38) 40 

µm. 

 

B. Polyplicate pollen and allies  

Genus: Ephedripites Bolkhovitina, 1953 ex Potonié, 1958 

Type species: Ephedripites mediolobatus Bolkhovitina, 1953 ex Potonié, 1958, p. 

60, pl. 9, fig. 15. 

Diagnosis: Outline elliptical, narrow ends not always ogival; more than five 

longitudinal ribs, in part more than ten; no zig-zag line discernible. The 

exine may show a tear between the ribs (Potonié, 1958).  

Remarks: Singh (1964, 1971) considered the genus Ephedripites invalid according 

to Article 34 (1) of the International Code of Botanical Nomenclature 

(1959) of Lanjouw et al., (1961) because Bolkhovitina (1961) stated that 

the type species Ephedripites mediolobatus should be transferred to the 

genus Schizaea.  However, Jansonius & Hills (1976, card 944) stated 

that transferring the type species E. mediolobatus to another genus does 

not invalidate the generic name Ephedripites.  Accordingly, the generic 

name Ephedripites will be used in the present study.  
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Ephedripites irregularis Herngreen, 1973 

(pl. 10, fig. 14) 

Description: Polyplicate pollen of irregular ellipsoidal shape and with smooth 5-7 µm 

thick, leaf-like ridges running parallel to the long axis.     

Remarks: Ephedripites irregularis shows great similarity to Alaticolpites limai Regali 

et al., 1974, however, Ephedripites irregularis is characterised by its 

smaller size (Alaticolpites limai: 70-72 x 48-68 µm) and irregular from the 

ellipsoidal shape and radial symmetry of Alaticolpites limai.       

Dimension: Maximum length (1 specimen) 40 µm, breadth 34 µm; ridge length 20 

(21) 24 µm, width 7 (10) 13 µm. 

 

C. Elaterate pollen 

Remarks: Dino et al., (1999) pointed out that the great similarity in exine 

ultrastructure and wall stratification between the Cretaceous ephedroid 

pollen Equisetosporites from Brazil and the elaterate pollen (Sofrepites, 

Elaterosporites and Elateroplicites) revealed in their study, and the 

similarity in morphology and ultrastructure between Cretaceous 

Ephedripites of Italy and pollen of Gnetales (Ephedra and Welwitschia) 

revealed by Trevisan (1980), suggests that the elaterate and polyplicate 

pollen are botanically related and of gnetalean origin.  

 

Genus: Elaterocolpites Jardiné & Magloire, 1965 

Type Species: Elaterocolpites castelainii Jardiné & Magloire, 1965, p. 206, pl. 4, 

figs. 6, 7. 
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Elaterocolpites castelainii Jardiné & Magloire, 1965 

(pl. 10, figs. 5-8) 

Description: Pollen grains of ellipsoidal to sub-spherical shape carrying 10 simple 

cylindrical appendices which broaden towards their free end.  Grain wall 

thin, simple and smooth to scabrate. 

Remarks: In Jardiné’s (1967) emended diagnosis he distinguished two forms of 

Elaterocolpites castelainii: Form ‘A’ that represents immature grains 

having a narrow ring structure surrounding the whole grain, and Form ‘B’ 

that represents mature grains with well-developed appendages.  Dino et 

al., (1999) through their study of Brazilian Albian-Cenomanian material 

identified another form, Form ‘C’ which is bigger in size and has two 

solid globular expansions at the end of the long axis of the grain.  In the 

present material all recorded specimens of Elaterocolpites castelainii 

belong to Form ‘B’. 

Dimensions: Maximum main body length (7 specimens) 31 (35.5) 40 µm; 

appendage length 18 (19.5) 23 µm, width 5 (5.5) 7 µm. 

 

Genus: Elateroplicites Herngreen, 1973 

Type species: Elateroplicites africaensis Herngreen, 1973, p. 550, pl. 5, figs. 5-7. 

Elateroplicites africaensis Herngreen, 1973 

(pl. 10, figs. 1-4) 

1967: Incertae sedis Form A, Jardiné, p. 255, pl. 3, figs. K-M.  

1973: Elateroplicites africaensis Herngreen, 1973, p. 550, pl. 5, figs. 5-7. 
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Description: Ellipsoidal polyplicate grains with 3-4 twisted ridges 2.5 (4) 13 µm wide 

and 1.5-2.5 µm thick separated by irregular narrow furrows.  Grains 

carry 2-4 appendages which form the continuation of the ridges. 

 Remarks: Dino et al. (1999) studied Elateroplicites africaensis with light, scanning 

and transmitted electron microscopy from the Brazilian and Ecuadorian 

material and provided the following important obervations: (1) 

Appendages always turn towards one surface of the grain, suggesting 

that the opposite surface may represents the internal (proximal) face.  

(2) The ribs surrounding the longitudinal axis converge and may be 

fused at the end of the axis in a manner similar to ribs of polyplicate 

forms (i.e. Ephedripites and Equisetosporites).  (3) Grains lack definite 

apertures, however, the two expansions (up to 12 µm) in the foot layer 

beneath the ribs on opposite sides may have served as the germinal 

apparatus. 

Dimension: Maximum main body length (4 specimens) 30 (36) 44 µm, breadth 19 

(21.5) 24 µm; appendage length 24 (24.5) 27 µm, width 2.5 (3.5) 4 µm.  

 

Genus: Elaterosporites Jardiné, 1967 

Type species: Elaterosporites verrucatus (Jardiné & Magloire) Jardiné, 1967, p. 244, 

pl. 2, figs. E-G; pl. 3, fig. G.  

Elaterosporites verrucatus (Jardiné & Magloire) Jardiné, 1967 

(pl. 9, figs. 1, 3) 

1965: Galeacornea verrucata Jardiné & Magloire, p. 204, pl. 3, figs. 28-31. 

1967: Elaterosporites verrucatus (Jardiné & Magloire) Jardiné, p. 244, pl. 2, figs. E-

G; pl. 3, fig. G.  
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Description: Grains with ellipsoidal plano-convex to sub-hemispherical body with 

three U-shaped horns implanted on the convex distal face.  Proximal 

face flat or depressed, bounded by 3-8 µm wide annular ring structure 

parallel to the equator ending with protruding ends parallel to the long 

axis.  These three U-shaped appendages with their middle part running 

parallel to the longest axis; one is placed over the distal pole, the other 

two are placed laterally.  The appendages are solid, circular in cross 

section and of uniform diameter. Exine is granulate to verrucate.  

Remarks: Jansonius (1990) in Jansonius & Hills (1990, card 4657) argued that the 

specimens of Elaterosporites verrucatus photographed by Jardiné 

(1967) in his pl. 3, fig. G shows grains in a tetrad, arranged with their flat 

surface facing out, and thus the flat surface should be distal face and the 

convex horn-bearing surface should be the proximal face.    

Dimension: Maximum main body length (2 specimens) 40 (53.5) 67 µm, breadth 30 

(32) 34 µm; appendage length 33 (36.5) 40 µm, width 3.5 (4.5) 5.5 µm. 

 

Elaterosporites acuminatus (Stover) Jardiné, 1967 

(pl. 9, figs. 2, 8) 

1963: Galeacornea acuminata Stover, p. 89, pl. 2, figs. 8-10; text-fig. 6. 

1967: Elaterosporites acuminatus (Stover) Jardiné, p. 246, pl. 3, figs. D, E. 

Description: Grians with ellipsoidal plano-convex to sub-hemispherical body with 

three U-shaped horns implanted on the convex distal face.  Proximal 

face flat or depressed, bounded by 8-12 µm wide annular ring structure 

parallel to the equator, commonly appears acuminate in lateral view.  

The three U-shaped appendages have their middle part running parallel 
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to the longest axis, one is placed over the distal pole, the other two are 

placed laterally.  The appendages are solid, circular in cross section, of 

uniform diameter, and with a sharply tapering end.  Exine is densely and 

uniformly packed with spines 4-6 µm high and 2.5-3 µm wide. 

Dimension: Maximum main body length (2 specimens) 40 (51) 62 µm, breadth 40 

(47.5) 55 µm; appendage length 32 (36) 40 µm. 

 

Elaterosporites klaszii (Jardiné & Magloire) Jardiné, 1967 

(pl. 9, figs. 5-7, 9-16) 

1965: Galeacornea klaszi Jardiné & Magloire, p. 205, pl. 4, figs. 2, 3. 

1967: Elaterosporites klaszi (Jardiné & Magloire) Jardiné, p. 246, pl. 3, figs. H-N. 

Description: Grains with ellipsoidal plano-convex to sub-hemispherical body with 

three U-shaped horns implanted on the convex distal face.  Proximal 

face flat or depressed, bounded by 4-8 µm wide annular ring structure 

parallel to the equator.  The three U-shaped appendages have their 

middle part running parallel to the longest axis, one is placed over the 

distal pole, the other two are placed laterally.  The appendages are solid, 

circular in cross section and of uniform diameter. Exine is smooth. 

Remarks: Elaterosporites klaszii differs from species of Galeacornea in lacking a 

definite aperture, in contrast to Galeacornea which has a well-defined 

one.  Jardiné (1967) distinguished Elaterosporites from Galeacornea by 

its bilateral symmetry, number and shape of appendages (in 

Galeacornea there is a solid Y-shaped appendage).  

Dimensions: Maximum main body length (7 specimens) 43 (52) 62 µm, breadth 22 

(32) 34 µm; appendages length 20 (23.5) 27 µm, width 3 (4) 5 µm. 
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Elaterosporites protensus (Stover) Jardiné, 1967 

(pl. 9, fig. 4) 

1963: Galeacornea protensa Stover, p. 88, pl. 2, figs. 11, 15; text-fig. 5. 

1967: Elaterosporites protensus (Stover) Jardiné, p. 244, pl. 3, figs. A-C. 

Remarks: Stover (1963) distinguished Elaterosporites protensus from 

Elaterosporites acuminatus by its larger size (Elaterosporites 

acuminatus: 52 x 28 µm), greater ring width, and appendages ending 

with round tips rather than with sharply tipped ends as in the latter 

species.  Dino et al., (1999) suggested that the immature unexpanded 

pollen grains photographed by Stover (1963) in pl. 2, fig. 15 are aligned 

with their sculptured horn-bearing surface towards the tetrad centre, and 

accordingly the convex surface should be the proximal face contrasting 

Stover’s (1963) suggestion that the unexpanded grains are aligned with 

their flat proximal surface towards the tetrad centre.  

Dimension: Maximum main body length (1 specimen) 69 µm, breadth 38 µm; 

appendage length and width undetermined due to grain orientation. 

 

Genus: Galeacornea Stover, 1963 

Type species: Galeacornea clavis Stover, 1963, p. 86, pl. 1, figs. 1-15; text-figs. 2, 3.  

Galeacornea causea Stover, 1963 

(pl. 10, fig. 10) 

Description: Ellipsoidal grain with a sheet-like crescent-shaped flap crossing the 

distal surface diagonally.  Body surrounded completely by a zona of 
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more or less elliptical outline with its major axis oblique to the body’s 

axis. Wall of the flap and zona is smooth.  

Remarks: In Stover’s (1963) original description of the type species, he identified a 

narrow slit-like aperture in the proximal face. In the present material the 

aperture could not be identified due to grain orientation.  

Dimension: Maximum length (1 specimen) 55 µm, breadth 31 µm. 

 

Genus: Sofrepites Jardiné, 1967  

Type species: Sofrepites legouxiae Jardiné, 1967, p. 255, pl. 3, figs. H, J; text-fig. 5.  

Sofrepites legouxiae Jardiné, 1967 

(pl. 9, figs. 17-21) 

Description: Grain with ellipsoidal to sub-spherical shape with 2-3 simple short 

appendages located at the ends of the longitudinal axis, or at the apices 

of the triangular outline.  Exine is smooth and shows frequent wall 

rupture and folding parallel to the longitudinal axis.      

Remarks: The scanning electron microscope study made by Dino et al., (1999) on   

Sofrepites legouxiae from Brazilian material revealed that the species is 

a monocolpate pollen (p. 223, pl. 13, fig. 6; pl. 14, fig. 5), in contrast to 

Jardiné’s (1967, p. 255) original description of the type species  " .., 

often shows a torn area with thinned exine but no furrow or well defined 

germination structure; .. ".  

Dimension: Maximum length (5 specimens) 38 (40) 42 µm, breadth 19 (21.5) 25 µm; 

appendage length 8 (11) 12 µm, width 5 (6.5) 7 µm. 
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4.3.3 Angiosperm pollen  

A. Monosulcate and monoporate pollen 

Genus: Retimonocolpites Pierce, 1961 

Type species: Retimonocolpites dividuus Pierce, 1961, p. 47, pl. 3, fig. 87. 

Retimonocolpites matruhensis Penny, 1986 - Retimonocolpites ghazalii 

Ibrahim, 2002a complex 

(pl. 6, figs. 4, 8) 

Remarks: The species Retimonocolpites ghazalii Ibrahim, 2002a shows great 

similarity under the light microscope to the species Retimonocolpites 

matruhensis Penny, 1986, where they share more or less the same 

features, such as, the grain outline and the aperture characteristics.  

Important diagnostic charateristics such as that of the reticulum cannot 

be determined under the light microscope because the two species have 

very minute reticula (0.7-1.4 µm wide lumina in R. ghazalii and 0.46-1.7 

µm wide lumina in R. matruhensis).  The species R. matruhensis is only 

differentiated from R. ghazalii by its smaller size; however, Schrank & 

Mahmoud (2002) extended its size range from 31.3-45.8 µm to 43-67 

µm.  As a result R. matruhensis falls within the size range 58-88 µm of 

R. ghazalii, consequently the use of the grain size under light 

microscope is not applicable to differenetiate the two species.  

Nevertheless, the scarcity of reticulate monocolpate pollen grains in the 

present material prohibited any attempt to study and differentiate these 

two taxa by using the scanning electron microscope.  Therefore, 

specimens will be treated here according to their maximum diameter 

range as follows: ≤ 43-57 µm as R. matruhensis, 58-67 µm as R. 
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matruhensis-ghazalii complex, and ≥ 68-88 µm as Retimonocolpites 

ghazalii. 

 

 

 

 

 

 

 

Table  4.1 Comparison of important taxonomic characteristics of R. 
matruhensis and R. ghazalii.   

 

Description: Monocolpate elliptical to elongate oval pollen grains with pointed ends. 

Exine reticulate, composed of minute (0.5-1.7 µm) lumina separated by 

0.3-0.7 µm thick muri. Colpus running whole grain length, narrow at the 

ends and occasionally gaping at the middle.  Grains may show 

infrequent folding. 

Dimensions: Maximium length (8 specimens) 58 (63) 67 µm, breadth 37 (42) 49 µm.    

 

Retimonocolpites ghazalii Ibrahim, 2002a 

(pl. 6, figs. 1, 2) 

Dimension: Maximium length (7 specimens) 68 (76.5) 88 µm, breadth 25 (32) 36 

µm. 

 

Angiosperm 

pollen 

Dimensions Shape Other diagnostic features 

Retimonocolpites 

ghazalii Ibrahim, 

2002 

L: 58 (65) 88 µm 

W: 32 (40) 44 µm 

Elliptical 

with 

pointed 

ends to 

elongate 

oval 

Lumina: 0.7-1.4 µm, polygonal of different size. 

Muri: 0.4-0.7 µm, with thick segments. 

Aperture: sulcus, simple slit running from pole to pole, 

narrow at ends and occasionally gaping at 

middle. 

L/W: 1.6 

Retimonocolpites 

matruhensis 

Penny, 1986 

L: 31.3 (37.2) 45.8 µm 

W: 20.0 (23.0) 25.2 µm 

[43 (51) 67 µm Schrank 

& Mahmoud, 2002] 

Elliptical, 

blunt-

ended to 

tapering 

sharply at 

poles 

Lumina: 0.46 (1.2) 1.7 µm, rounded to polygonal, with 

occasional microlumina.  

Muri: 0.3 (0.5) 0.7 µm, with transverse ridges. 

Aperture: colpus, extending whole grain length, 

closed or slightly open at poles or gaping. 

L/W: 1.5 (1.6) 1.8 
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Retimonocolpites matruhensis Penny, 1986 

(pl. 6, figs. 3, 5) 

Dimension: Maximium length (8 specimens) 43 (48) 57 µm, breadth 29 (31) 33 µm. 

 

Retimonocolpites pennyi Schrank & Mahmoud, 2002 

(pl. 6, figs. 9, 12) 

Remarks: Retimonocolpites pennyi diffres from Retimonocolpites textus in having a 

larger overall size and larger lumina (Schrank & Mahmoud, 2002).  

Dimensions: Maximum diameter (6 specimens) 33 (34) 36 µm. 

 

Retimonocolpites variplicatus Schrank & Mahmoud, 1998 

(pl. 6, fig. 7; pl. 12, figs. 13, 14) 

1998: Retimonocolpites variplicatus Schrank & Mahmoud, p. 187, figs. 7u; 8a-e, j-k, 

m. 

Description: Monocolpate elliptical to highly variable pollen grains. Exine thin, 

reticulate, composed of 1-3 µm wide lumina separated by 0.5-1 µm thick 

muri.  Infrequent minute foveae less than 0.5 µm wide may occur at 

mural intersections.  Exine thin (1 µm) thus the grains are often highly 

folded. Colpus extends over nearly the full length of the elongated 

grains, and ranges in form from closed and slit-like to wide, open, 

elliptical or irregular.  

Remarks: Schrank & Mahmoud (1998) distinguished R. variplicatus from the type 

species R. dividuus and from other Retimonocolpites species by its large 

size 62 (82) 100 µm, strongly folded exine, and highly variable outline.  
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Dimensions: Maximum length (5 specimens) 61 (68) 79 µm, breadth 54 (55) 56 µm. 

 

Retimonocolpites textus (Norris) Singh, 1983 

(pl. 12, figs. 5, 6, 9-12) 

Remarks: Retimonocolpites textus is distinguished from Retimonocolpites reticulatus 

by its larger overall size and larger lumina (Ward, 1986). 

Dimensions: Maximum diameter (6 specimens) 22 (23) 24 µm. 

 

Retimonocolpites sp. 1 Schrank & Mahmoud, 2002 

(pl. 7, fig. 4) 

Remarks: Monocolpate oval to sub-circular blunt-ended pollen grain. Exine 1 µm 

thick, consisting of a fine reticulum made of about 0.5 µm wide lumina of 

uniform size over the whole grain. Colpus extends from pole to pole with 

inward folding of exine. Schrank & Mahmoud (2002) identified a similar 

specimen of maximum diameter 42 µm under the LM/SEM from the 

upper Barremian rocks of the Dakhla Oasis of Egypt, which shares the 

same charactersitics of the present specimen under the light 

microscope.     

Dimensions: Maximum length (1 specimen) 42 µm, breadth 30 µm. 
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Retimonocolpites sp. 1 

(pl. 12, figs. 1, 2) 

Description: Monocolpate spherical to elliptical pollen grain.  Sexine columellate, 

and coarsely recticulate consisting of 4-7 µm wide polygonal lumina 

separated by about 1 µm thick muri covered by faint microspines or 

transverse ridges, which under the light microscope appear as minute 

dark points, with the lower surface of the muri bearing 3-4 µm tall pila-

like columellae.  The inner nexinal layer is spherical to elliptical, thin (1 

µm), smooth and of a maximum diameter of 32 µm. 

Remarks: This specimen interestingly shows a close match to Retimonocolpites 

excelsus Ward, 1986, however, the ornamented muri of the present 

sepcimen distinguishes it from the latter.   

Dimension: Maximum diameter (1 specimen) 41 µm. 

 

Genus: Stellatopollis Doyle in Doyle et al., 1976 

Type species: Stellatopollis barghoornii Doyle in Doyle et al., 1976, p. 462, pl. 7, 

figs. 1-8; pl. 8, figs. 1-5; pl. 9, figs. 1-4. 

Stellatopollis barghoornii Doyle in Doyle et al., 1976 

(pl. 6, figs. 15, 16) 

Description: Monosulcate elliptical pollen grains. Exine semitectate, reticulate, 

composed of 3-5 µm wide rounded lumina separated by broad muri (0.6-

1.3 µm) bearing 4-8 (usually 6) supratectal projections of sub-triangular 

to occasionally elliptical or rarely irregular shape. 
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Remarks: Stellatopollis barghoornii is distinguished from Stellatopollis densiornatus 

only by muri that are densely packed with the supratectal elements 

(Ward, 1986), and from Stellatopollis bituberensis by its larger size, and 

by having supratectal projections of only triangular shape rather than 

triangular shape occasionally separated by elliptical to rectangular 

projections as in Stellatopollis bituberensis.  

Dimension: Maximium length (7 specimens) 56 (68) 79 µm, breadth 42 (51) 56 µm. 

 

Stellatopollis bituberensis Penny, 1986 

(pl. 6, figs. 14, 19) 

Remarks: Specimens of Stellatopollis bituberensis recorded in the present material 

show a larger maximum diameter than that described by Penny (1986: 

27.1 (33.7) 43.2 µm). Schrank & Mahmoud (2002) also recorded 9 

specimens of Stellatopollis bituberensis from the Dakhla Oasis, southern 

Egypt, from rocks of late Barremian age, which have larger maximum 

diameter of 31 (48) 68 µm.  This could suggest extending the maximum 

size of Stellatopollis bituberensis to at least 64 µm.  

Dimension: Maximum length (9 specimens) 45 (54) 64 µm, breadth 38 (44) 50 µm. 

 

Stellatopollis dejaxii Ibrahim, 2002a 

(pl. 7, figs. 6, 7) 

Remarks: Ibrahim (2002a) differentiated Stellatopollis dejaxii from other species of 

Stellatopollis by its circular to sub-circular outline that densely packed 

with supratectal projections of globular, elliptical to rarely triangular 
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shape, and from R. densiornatus by its circular rather than oval outline, 

and larger projections.    

Dimension: Maximum length (4 specimens) 40 (52) 60 µm, breadth 37 (39) 42 µm.  

 

Stellatopollis doylei Ibrahim, 2002a 

(pl. 7, fig. 2) 

Remarks: Stellatopollis doylei is diffrentiated from Stellatopollis barghoornii by its 

smaller size and smaller supratectal projections (Ibrahim, 2002a). 

Dimension: Maximum length (3 specimens) 38 (39.5) 43 µm, breadth 28 (29.5) 32 

µm.  

Stellatopollis hughesii Penny, 1986 

(pl. 6, fig. 18; pl. 7, fig. 1) 

Remarks: Stellatopollis hughesii is distinguished from other Stellatopollis species by 

its sub-circular outline, and polygonal to sub-rounded lumina separated 

by narrow muri bearing few triangular projections separated by 

numerous elliptical to rectangular projections.    

Dimension: Maximum diameter (5 specimens) 30 (37) 48 µm. 

 

Stellatopollis limai Ibrahim, 2002a 

(pl. 7, fig. 3) 

Remarks: Ibrahim (2002a) distinguished Stellatopollis limai from other Stellatopollis 

species by its narrow muri, large lumina, and widely separated 

projections. 
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Dimension: Maximum diameter (2 specimens) 35 (38) 41 µm, breadth 20 (23) 26 

µm. 

 

B. Zonosulcate pollen 

Genus: Dichastopollenites May, 1975 

Type species: Dichastopollenites reticulatus May, 1975, p. 532-533, pl. 1, figs. 1-

9; pl. 2, figs. 1-6.  

Dichastopollenites ghazalatensis Ibrahim, 1996 

(pl. 6, figs. 11, 13, 17) 

Description: Zonoculcate spherical pollen grains, usually spliting into two more or 

less equal hemispheres along the aperture. Sexine columellate, 

reticulate, with 2-4 µm polygonal lumina becoming smaller and uneven 

in size towards the equatorial aperture, separated by smooth 0.6-1.3 µm 

muri thick with their lower surface bearing 1-1.4 µm long columellae.  

The nexine layer is spherical, smooth and closely attached to the sexine.  

Aperture is an equatorial ring furrow running around the circumference 

of the grain.     

Remarks: In the present material this species is frequently found split into individual 

hemispheres, and show a larger grain diameter than that recorded by 

Ibrahim (Ibrahim, 1996: 22 (28) 34 µm).    

Dimension: Maximum diameter (6 specimens) 28 (36) 48 µm. 
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C.  Zonisulculate and inaperturate reticulate pollen 

Genus: Afropollis Doyle et al., 1982 

Type species: Afropollis jardinus (Brenner) Doyle et al., 1982, p. 45, pl. 1, figs. 1-6; 

pl. 2, figs. 1-8. 

Afropollis jardinus (Brenner) Doyle et al., 1982 

(pl. 8, figs. 10-20) 

1968: Reticulatasporites jardinus Brenner, p. 381, pl. 10, figs. 5, 6. 

1982: Afropollis jardinus (Brenner) Doyle et al., p. 45, pl. 1, figs. 1-6; pl. 2, figs. 1-8. 

Description: Inaperturate spheroidal pollen grains, heteropolar and with radial 

symmetry.  Sexine non-columellate, reticulate to rugulo-reticulate 

separated over most of the grain surface from an inner dark and 

conspicuous to nearly invisible nexinal layer.  Nexinal body spherical, 

thin, smooth, and of a diameter less than half that of the whole grain.  

Reticulum composed of 2-5 µm wide polygonal to irregular lumina 

separated by 0.5 µm thick muri.  Muri usually sinuous with their upper 

surface segmented into simple or laterally coalescent transverse ridges 

giving muri with a dentate outline.  Lumina at the point of nexine 

attachment to sexine become smaller in diameter (< 1 µm) and form a 

small patch of fossulate sculpture.   

Remarks: Specimens of the present study show variation in their nexinal body 

diameter and of a bimodal: fine or coarse reticulum.     

Dimensions: Maximum diameter (12 specimens) 33 (41) 42 µm. 
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Afropollis aff.  jardinus Doyle et al., 1982 

(pl. 8, figs. 5-9) 

Remarks: These specimens differ from Afropollis jardinus in having thinner muri, 

bigger lumina (2-7 µm), and larger nexinal bodies with a diameter larger 

than half that of the whole grain. 

Dimensions: Maximum diameter (7 specimens) 37 (45.5) 53 µm. 

 

Afropollis kahramanensis Ibrahim & Schrank 1995 

(pl. 10, fig. 18) 

1986: Pollen PO-304 Lawal & Moullade, p. 76, pl. 2, figs. 26-28.  

1992: Afropollis n. sp. Ibrahim, p. 62, pl. 7, figs. 10-12; pl. 12, figs. 1-9. 

Remarks: Afropollis kahramanensis differs from the heteropolar species AFROPOL-

COLUMN, AFROPOL-LUMPS, A. aff. jardinus, and A. jardinus in lacking 

the small patch of fossulate sculpture, from AFROPOL-LUMPS, A. aff. 

jardinus, and A. jardinus in having columellate sexine, from the 

zonasulculate species A. opercualtus, A. zonatus, and A. aff. zonatus in 

lacking the circular ring-furrow aperture, and from the monosulcoid 

species A. schrankii in lacking the sulcoid aperture.  Circular forms of A. 

kahramanensis may be similar to AFROPOL-MURIGROOVE by having 

columellate sexines, but the latter differs in having frequent lacunae at 

the intersection of the large lumina. A. kahramanensis may also be 

similar to Afropollis sp. B Doyle et al., 1982 in having elliptical grain 

outline and columellate sexine, but the latter has a larger lumina 

diameter (4-5 µm) rather than smaller (1-3 µm) lumina of A. 

kahramanensis.  
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Dimension: Maximum length (3 specimens) 42 (45) 47, breadth 32 (34) 36 µm. 

 

Afropollis operculatus Doyle et al., 1982 

(pl. 7, figs. 5, 11-18) 

1977: Reticulatasporites jardinus Brenner 1968, Doyle et al., pl. 2, figs. 1-4. 

1982: Afropollis operculatus Doyle et al., p. 47, pl. 5, figs. 8, 9; pl. 7, figs. 1-9; pl. 8, 

figs. 1-4. 

Description: Zonasulculate sub-oblate pollen grains, heteropolar, of radial symmetry 

and with a circular ring-furrow (zonasulculus) 1/2 to 2/3 the diameter of 

the grain, surrounding one pole and forming an operculum.  Sexine 

columellate, coarsely reticulate, separated over most of the grain surface 

from an inner dark and conspicuous to nearly invisible nexinal layer.  

Reticulum composed of 2-6 µm wide polygonal lumina separated by 0.4-

0.8 µm thick sinuous muri with their upper surface usually transversely 

segmented or with longitudinal ridging, and with their lower smooth 

surfaces bearing 1-2 rows of short (ca. 0.2 µm) stubby sparse to 

abundant columellae.  Lumina at the polar operculate area become 

smaller in diameter (< 1 µm) and form a small patch of fossulate 

sculpture at the point of nexine attachment to the sexine and is 

surrounded by a ring-furrow structure (zonasulculus).  Nexinal body 

spherical, thin, smooth, and of a diameter intermediate between that of 

the zonasulculus and that of the whole grain.  

Remarks:  Ibrahim (2002a) studied Aptian material from the northern Western 

Desert of Egypt and identified two Afropollis operculatus subspecies: 

Afropollis operculatus subsp. operculatus characterised by its larger 
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lumina diameter at the (operculate) distal pole as well as at the proximal 

pole, and Afropollis operculatus subsp. microreticulatus characterised by 

a smaller lumina diameter at the (operculate) distal pole than lumina at 

the proximal pole.  In the present material both Afropollis operculatus 

subspecies are recorded.  

Dimension: Maximum diameter (17 specimens) 40 (48) 62 µm. 

 

Afropollis zonatus Doyle et al., 1982 

(pl. 7, figs. 20-22) 

1981: Reticulatasporites  jardinus Brenner 1968 (Type 2), Hochuli, pl. 1, figs. 7, 8. 

1982: Afropollis zonatus Doyle et al., p. 48, pl. 8, figs. 5-8; pl. 9, figs. 1-8; pl. 10, figs. 

1-8.  

Description: Zonasulculate sub-oblate pollen grains, isopolar, of radial symmetry 

and with a ring furrow (zonasulculus) oriented perpendicular to the  

rotational (polar) axis dividing the grain into two equal or nearly equal 

hemispheres.  Sexine non-columellate, coarsely reticulate to rugulo-

reticulate, separated over most of the surface of both hemispheres from 

an inner dark and conspicuous to nearly invisible nexinal layer, sexine 

reticulum become finer and attached to nexine near the aperture 

margins.  Reticulum composed of 3-7 µm wide polygonal to highly 

irregular lumina separated by 0.4-0.8 µm thick muri.  Muri usually 

sinuous with their upper surface and sides segmented into sharp 

transversely to obliquely oriented ridges, giving the muri a dentate 

outline in lateral view; lower mural surfaces smooth or irregularly 

sculptured but lacking definite columellae.  Lumina at the equatorial 
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(zonasulculate) area become smaller in diameter (1-2 µm) and grade 

into a ring-furrow structure (zonasulculus).  Nexinal body sub-oblate, 

thin, smooth, and of a diameter intermediate between that of the 

zonasulculus and that of the whole grain.  

Dimension: Maximum diameter (5 specimens) 30 (38) 44 µm. 

 

Afropollis aff. zonatus Doyle et al., 1982 

(pl. 7, fig. 19) 

Remarks: These specimens differ from Afropollis zonatus in having sparse stubby 

columellae, and two unequal hemispheres making the specimens 

heteropolar.   

Dimensions: Maximum diameter (3 specimens) 35 (41) 50 µm. 

 

Afropollis sp. B Doyle et al., 1982 

(pl. 8, figs. 1-4) 

Remarks: These specimens are characterised by having columellae, a coarse 

reticulum of 4-5 µm wide lumina, large nexinal body whose diameter is 

larger than 2/3 that of whole grain diameter, and a large grain size.  

Dimensions: Maximum diameter (5 specimens) 54 (61) 66 µm. 
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Retiacolpites columellatus Schrank in Schrank & Mahmoud, 2002 

(pl. 12, figs. 3, 4) 

Description: Inaperturate circular to ellipsoidal pollen grains. Sexine thin (about 1.5 

µm), reticulate, with 1.8-2 µm polygonal to sub-rounded lumina, 

separated by about 0.8-1 µm wide muri; inner nexinal layer closely 

attached to the sexine.  Some grains show a small round, dark area of 

about 25 % grain diameter within the reticulum.   

Rekarks: All recorded specimens show the small round dark body.  The area where 

this body projects from the reticulum shows what looks like a rupture in 

the reticulum, which could serve as an aperture, however, this cannot be 

confirmed under the light microscope.     

Dimensions: Maximum diameter (4 specimens) 37 (38.5) 42 µm. 

 

4.3.4 Pollen tetrads  

Genus: Droseridites Cookson, 1947 ex Potonié, 1960 

Type species: Droseridites spinosus (Cookson) Potonié, 1960, p. 137-139. 

Droseridites baculites Ibrahim, 1996 

(pl. 11, fig. 20) 

Description: Pollen tetrads made of sub-spherical to oval inaperurate individual 

grains with their exine covered with about 1.5-2 µm tall baculate-spinose 

sculpture.   

Dimension: Maximum tetrad diameter (1 specimen) 26 µm. 
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Droseridites senonicus Jardiné & Magloire, 1965 

(pl. 11, figs. 18, 19) 

Description: Pollen tetrads made of sub-spherical to oval inaperurate individual grain 

with their exine sculptured with about 0.5-0.7 µm tall spines.   

Remarks: The present specimens show greater tetrad diameters than that of the 

original specimens (12-19 µm) descriped by Jardiné & Magloire (1965). 

Dimension: Maximum tetrad diameter (3 specimens) 19 (21) 22 µm. 

 

4.3.5 Freshwater algae 

Genus: Chomotriletes Naumova, 1939 

Type species: Chomotriletes vedugensis Naumova, 1953, p. 53, pl. 7, fig. 21. 

Chomotriletes minor (Kedves) Pocock, 1970 

(pl. 5, fig. 5, pl. 12, fig. 18) 

1961: Schizaeoisporites minor Kedves, p. 129, pl. 6, figs. 11-16. 

1970: Chomotriletes minor (Kedves) Pocock, p. 61, pl. 11, fig. 14. 

Description: Alete, amb sub-circular, wall thin, ornamented with ridges separated by 

furrows arranged in concentric circles parallel to the equatorial margin. 

Remaks: Similar or identical forms have also been placed in the genera 

Circulisporites, Concentricystes and Pseudoschizaea, the latter two  

which are considered to be junior synonyms of Chomotriletes (Jansonius 

& Hills 1978, card 3322).  

Dimension: Maximum diameter (3 specimens) 34 (42.5) 52 µm. 
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4.3.6 Dinoflagellate cysts 

Division: Dinoflagellata (Bütschli) Fensome et al., 1993b 

Subdivision: Dinokaryota Fensome et al., 1993b 

Class: Dinophyceae Pascher, 1914 

Subclass: Peridiniphycidae Fensome et al., 1993b 

Order: Gonyaulacales Taylor, 1980 

Suborder: Ceratiineae Fensome et al., 1993b 

Family: Ceratiaceae Willey & Hickson, 1909 

Genus: Aptea Eisenack, 1958 

Type species: Aptea polymorpha Eisenack, 1958, p. 394, pl. 22, figs. 5-12; pl. 24, 

fig. 5 

Aptea polymorpha Eisenack, 1958 

(pl. 15, fig. 17) 

1958a: Aptea polymorpha Eisenack, p. 394, pl. 22, figs. 5-12; pl. 24, fig. 5. 

1986: Pseudoceratium polymorphum (Eisenack) Bint, p. 145. 

1992: Aptea polymorpha Eisenack, Quattrocchio & Sarjeant, p. 2-234. 

Remarks: Aptea polymorpha is distinguished from Pseudoceratium cysts by its 

lenticular to rounded triangular ambitus with short apical, antiapical, and 

extensively reduced postcingular horns, and by its large size. 

Dimensions: Maximum length (4 specimens) 98 (108) 120, breadth 50 (73) 80 µm. 
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Genus: Muderongia Cookson & Eisenack, 1958 

Type species: Muderongia mcwhaei Cookson & Eisenack, 1958, p. 41, pl. 6, figs. 1-

5. 

Muderongia aequicorna Århus in Århus et al., 1990 

emend. Monteil, 1991b 

(pl. 13, figs. 1, 2) 

Remarks: Århus’s (1990) assignment of species aequicorna to the genus 

Muderongia, and the latter broad emendation of Muderongia aequicorna 

made by Monteil (1991b), which encompassed features of the genus 

Muderongia (e.g. smooth, cavate) and the genus Phoberocysta (e.g. 

ornamented, proximate to proximochorate) makes this assignment 

argumental.  Becaues the few species that posesses processes (e.g. 

Phoberocysta neocomica and Phoberocysta tabulata), where considered 

by Monteil (1991b) as junior synonyms of other similar Muderongia 

species were retained under the generic name Phoberocysta (Fensome 

& Williams, 2004).  However, the nomenclature Muderongia aequicorna 

as in Fensome & Williams (2004) will be followed here for taxonomical 

stabilization.      

Dimensions: Maximum length with horns (2 specimens) 120 (121) 122 µm, length  

of central body 71 (78) 85.5 µm, breadth 54 (58) 62 µm. 
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Muderongia pariata Duxbury, 1983 emend. Monteil, 1991b 

(pl. 13, fig. 4) 

 Remarks: Muderongia pariata differs from Muderongia aequicorna in having four 

prominent, distally perforated horns: one apical, two subequal lateral, 

and one tapering and distally closed antapical.  

Dimensions: Maximum length without operculum (3 specimens) 60 (66.5) 72 µm, 

length of central body 53 (57.5) 62 µm, breadth 40 (51) 60 µm. 

 

Muderongia tomaszowensis Alberti, 1961 emend. Riding et al., 2001 

 (pl. 13, fig. 5) 

Remarks: Muderongia tomaszowensis differs from Muderongia pariata in having  

five horns: one apical, two subequal, lateral, and two antapical, with the 

right antapical horn significantly reduced to a protuberance, and also 

differs from M. pariata in lacking the fine perforations at the distal half of 

the horns.   

Dimensions: Maximum length without operculum (3 specimens) 51 (65) 78, length of 

central body 40 (53.5) 65 µm, breadth 36 (48) 55 µm. 

 

Phoberocysta neocomica (Gocht) Millioud, 1969 emend. Helby, 1987 

(pl. 13, fig. 10) 

Remarks: Monteil (1991b) considered Muderongia and Phoberocysta are synonyms 

based on their great morphological similarity, where he proposed that 

Muderongia evolved into Phoberocysta by retraction of the periphragm 

and production of processes.  Accordinglly, Monteil (1991b) considered 
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Phoberocysta neocomica the senior synonym of Muderongia 

tomaszowensis.  However, Riding et al. (2001) retained Muderongia 

tomaszowensis, which is followed here.  

Dimensions: Maximum length with horns (1 specimen) 114.5 µm, length of central 

body 62 µm, breadth 70 µm. 

 

Genus: Odontochitina Deflandre, 1937 emend. El-Mehdawi, 1998 

Type species: Odontochitina operculata (Wetzel) Deflandre & Cookson, 1955, p. 

291-292. 

Odontochitina operculata (Wetzel) Deflandre & Cookson, 1955 

(pl. 14, fig. 5) 

1933: Ceratium (Euceratium) operculatum Wetzel, p. 170, pl. 2, figs. 21, 22; text-fig. 

3. 

1955: Odontochitina operculata (Wetzel) Deflandre & Cookson, p. 291-292. 

Description: Cyst cornocavate ceratioid, with three long, straight, ponited horns: one 

apical, one antapical, and one right lateral.  Endocyst sub-spherical in 

shape and with a little developed rounded bulge at the base of the lateral 

horn and more oval outline at the base of the antapical horn.  

Archeopyle apical, Type (4A). 

Dimensions: Maximum length without operculum (2 specimens) µm, length of 

central body (3 specimens) 48 (52.5) 53 µm, breadth 38 (39.5) 45 µm, 

length of operculum (1 specimen) 83 µm. 
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Odontochitina ancala Bint, 1986 

(pl. 15, fig. 13) 

Remarks: Bint (1986) differentiated Odontochitina ancala from Odontochitina 

operculata by having an elbow and cingular notch in the right lateral 

horn. 

Dimensions: Maximum length without operculum (2 specimens) 73 (76.5) 80 µm, 

length of central body (2 specimens) 37 (41) 45 µm, breadth 47 (50) 53 

µm. 

 

Odontochitina costata Alberti, 1961 emend. Clarke & Verdier, 1967 

(pl. 17, fig. 16) 

Remarks: Odontochitina costata diffes from O. operculata and O. ancala  in having  

horns that are sculptured with striae and irregulary located perforations, 

where perforations may confined to the distal part of the horns or 

randomly distributed over the entire length of the horns.  

Dimensions: Maximum length without operculum (1 specimen) 151 µm, length of 

central body (1 specimen) 47 µm, breadth 56 µm. 

 

Odontochitina porifera Cookson, 1956 

(pl. 17, fig. 19) 

Remarks: Odontochitina porifera differs from Odontochitina costata in having the 

apical horn completely perforated by small four-sided or oval openings 

arranged in several longitudinal rows, and the antapical and the right 

lateral horns are medially perforated by small regularly arranged holes.  
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Dimensions: Maximum length without operculum (2 specimens) 107 (110) 112.5 

µm, length of central body (2 specimens) 54.5 (56) 57 µm, breadth 52 

(53.5) 55 µm. 

 

Genus: Pseudoceratium Gocht, 1957 

Type species: Pseudoceratium pelliferum Gocht, 1957, p. 166-168, pl. 18, figs. 1, 2; 

text-figs. 1-3. 

Pseudoceratium pelliferum Gocht, 1957 

(pl. 13, fig. 12) 

Remarks: Pseudoceratium pelliferum is distinguished from other Pseudoceratium by 

having three well-developed, long tapering horns. 

Dimension: Maximum length without operculum (2 specimens) 50 (60) 70 µm, 

breadth 55 (60) 65 µm, length of operculum (1 specimen) 60 µm. 

 

Pseudoceratium almohadense (Below) Lentin & Williams, 1989 

(pl. 15, fig. 16) 

1984: Aptea almohadensis Below, p. 635, pl. 1, figs. 5a-b, 6, 7. 

1989: Pseudoceratium almohadense (Below) Lentin & Williams, p. 306. 

Remarks: Pseudoceratium almohadense is distinguished from other 

Pseudoceratium species by having sub-spherical body with rounded to 

narrow bulge horns.  

Dimension: Maximum length without operculum (1 specimen) 62 µm, breadth 65 

µm.  
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Pseudoceratium anaphrissum (Sarjeant) Bint, 1986  

emend. Harding, 1990 

(pl. 14, figs. 4, 16) 

1966: Doidyx anaphrissa Sarjeant, p. 206, pl. 22, fig. 8; pl. 23, fig. 6; text-fig. 55. 

1986: Pseudoceratium anaphrissum (Sarjeant) Bint, p. 145. 

Remarks: Pseudoceratium anaphrissum is differentiated from other Pseudoceratium 

species by having oval, biconical, sub-rounded to sub-pentagonal cyst 

outline, and short blunt apical and antiapical horns.  Two antiapical 

horns when exist are expressed as well developed lobes, and two lateral 

postcingular lobes may also develop.  Cyst surface densely ornamented 

by simple short, capitate to briefly bifurcate processes without mid-

ventral and mid-dorsal processes reduction. 

Dimension: Maximium length with operculum (1 specimen) 80 µm, length without 

operculum (6 specimens) 70 (73) 75 µm, breadth 72 (78) 85 µm. 

 

  Pseudoceratium expolitum Brideaux, 1971 

Remarks: Pseudoceratium expolitum is differentiated from other Pseudoceratium 

species by a complete lack of processes and has smootth, scabrate to 

granulate surface.  

 Dimension: Maximum length with operculum (4 specimens) 74 (83) 94 µm, breadth 

50 (65) 77 µm. 
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Pseudoceratium retusum Brideaux, 1977 

(pl. 14, figs. 1-3, 9, 12, 14) 

Remarks: Pseudoceratium retusum is similar to other Pseudoceratium species in 

having a sub-spherical to asymmetrically triangular body and cyst 

surface ornamented by processes, but it differs in usually having these 

processes linked basally to form an anastomosing network in a reticulate 

pattern, with occasional mid-ventral and mid-dorsal sculpture reduction.  

 Dimension: Maximum length with operculum (7 specimens) 80 (103) 120 µm, 

length without operculum (5 specimens) 65 (75.5) 84 µm, breadth 60 

(80) 94 µm. 

 

Pseudoceratium securigerum (Davey & Verdier) Bint, 1986 

(pl. 15, figs. 1, 2) 

1974: Aptea securigera Davey & Verdier, p. 642-643, pl. 91, figs. 2, 3; text-fig. 5 

(vii).  

1986: Pseudoceratium securigerum (Davey & Verdier) Bint, p. 145. 

Remarks: Pseudoceratium securigerum is similar to P. retusum, P. anaphrissum, 

and P. expolitum in having rounded triangular body, but P. securigerum 

differs in having a strongly convex left side and slightly convex to straight 

right epicystal and hypocystal sides that meet at approximately right 

angles in the cingular region.  Cyst surface usually has strong mid-

ventral and mid-dorsal reduction of processes. 

 Dimension: Maximum length with operculum (5 specimens) 75 (92) 102 µm, length 

without operculum (7 specimens) 62 (63) 68 µm, breadth 49 (68.5) 80 

µm. 



Chapter IV                                                                                          Systematic Palynology 

101 

Order: Peridiniales Haeckel, 1894b 

Suborder: Peridiniineae (Autonym) 

Family: Peridiniaceae Ehrenberg, 1831 

Subfamily: Palaeoperidinioideae (Vozzhennikova) Bujak & Davies, 1983 

Genus: Palaeoperidinium Deflandre, 1934 ex Sarjeant, 1967b 

Type species: Palaeoperidinium pyrophorum (Ehrenberg ex Wetzel) Sarjeant, 

1967b, p. 246.   

Palaeoperidinium cretaceum (Pocock) Lentin & Williams, 1976  

emend. Harding, 1990a 

(pl. 15, figs. 4, 9) 

1962: Astrocysta cretacea Pocock, p. 80, pl. 14, figs. 219-221 ex Davey, 1970, p. 

359. 

1976: Palaeoperidinium cretaceum (Pocock) Lentin & Williams, p. 110.  

Remarks: Palaeoperidinium is distinguished from Subtilisphaera by having a 

rhomboidal to pentagonal ambitus, observable paratabulation, and   a 

usually indeterminate endocyst (Lentin & Williams, 1976). 

Dimensions: Maximum length (4 specimens) 60 (73) 83 µm, breadth 52 (61) 68 µm. 

 

Genus: Subtilisphaera Jain & Millepied, 1973 

emend. Lentin & Williams, 1976 

Type species: Subtilisphaera senegalensis Jain & Millepied, 1973, p. 27-28, pl. 3, 

figs. 31-33. 
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Subtilisphaera senegalensis Jain & Millepied, 1973 

(pl. 14, figs. 8, 15) 

1973: Subtilisphaera senegalensis Jain & Millepied, p. 27-28, pl. 3, figs. 31-33. 

Description: Bicavate peridinioid cyst with an ovoidal to sub-circular ambitus with a 

short pointed apical horn, and one eccentrically located left (or two 

unequal symmetrically located) antapical horns.  Endocyst ovoidal to 

sub-spherical, adpressed to pericyst in dorsal and ventral regions, 

surrounded by small apical and antapical pericoels. Periphragm 

laevigate, scabrate or finely granulate. 

Remarks: A few recorded Subtilisphaera senegalensis specimens show partial 

paratabulation patterns. 

Dimension: Maximum length (7 specimens) 48 (54) 63, breadth 38 (44.5) 52 µm. 

 

Subtilisphaera perlucida (Alberti) Jain & Millepied, 1973  

(pl. 14, figs. 7, 11) 

1959b: Deflandrea perlucida Alberti, p. 102, pl. 9, figs. 16, 17. 

1973: Subtilisphaera perlucida (Alberti) Jain & Millepied, p. 27. 

Description: Cavate peridinioid cyst with an ovoidal to sub-circular or pentagonal 

ambitus, with one apical and only one eccentrically located antapical 

horn.  Endocyst ovoidal to ellipsoidal, usually surrounded by complete 

pericoel, and may be adpressed to the pericyst in dorsal and ventral 

regions.  Periphragm laevigate or finely scabrate. 

Remarks: The present specimens of Subtilisphaera perlucida show intraspecific 

variations in morphology, where they range from forms with small apical 
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pericoels and broadly-rounded periphragms ending with a relatively 

short apical horns to forms with large apical and small antiapical 

pericoels, with ovoidal periphragms ending with large apical and small 

antapical horns.  Similar morphological variations within Subtilisphaera 

perlucida specimens were detected by Duxbury (1983) from the Aptian-

lower Albian of the Isle of Wight, Southern England.  

Dimension: Maximum length (10 specimens) 55 (65.5) 72, breadth 43 (47.5) 52 µm. 

 

Subtilisphaera scabrata Jain & Millepied, 1973 

(pl. 15, figs. 3, 7) 

Description: Cavate peridinioid cyst with a biconical to pentagonal ambitus and well-

developed single apical and antapical horns.  The third antapical horn 

was often absent or sometimes showed as a slight projection.   Endocyst 

ovoidal to sub-circular and surrounded by a complete pericoel, typically 

large at apical and antapical regions.  Periphragm ornamented by 

granuloscabrate sculpture. 

Dimension: Maximum length (5 specimens) 65 (71) 84, breadth 40 (50.5) 64 µm. 

 

Subtilisphaera terrula (Davey) Lentin & Williams, 1976 

emend. Harding, 1986a 

(pl. 14, figs. 6, 10) 

1974: Deflandrea terrula Davey, p. 65, pl. 8, figs. 4, 5. 

1976: Subtilisphaera terrula (Davey) Lentin & Williams, p. 119. 
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Description: Cavate peridinioid cyst with an ovoidal to sub-circular ambitus, a 

rounded apex which ends with a short broad apical horn, and an ovoidal 

antapex bearing one eccentrically located left antapical horn.  Endocyst 

ovoidal to sub-spherical, adpressed to pericyst in dorsal and ventral 

regions.  Periphragm scabrate and bearing penetabular granulae. 

Remarks: The present specimens shows a distinct and traceable paratabulation 

pattern similar to specimens studied and illustrated by Harding (1996a), 

where he provided a complete paratabulation formula.    

Dimension: Maximum length (2 specimens) 60 (61) 62, breadth 45 (47) 49 µm.  

 

Subfamily: Deflandreoideae Bujak & Davies, 1983 

Genus: Senegalinium Jain & Millepied, 1973 

Type species: Senegalinium bicavatum Jain & Millepied, 1973, p. 23, pl. 1, figs. 1-4; 

text-fig. 1b. 

Senegalinium aenigmaticum (Boltenhagen) Lentin & Williams, 1981 

(pl. 17, figs. 11, 18) 

1977: Deflandrea aenigmatica Boltenhagen, p. 86-88, pl. 14, figs. 5a-b, 6-10. 

1981: Senegalinium aenigmaticum (Boltenhagen) Lentin & Williams, p. 250. 

Description: Bicavate peridinioid cyst of ovoidal to sub-circular ambitus with three 

conical horns: one short, pointed apical, and two inequal symmetrically 

located antapical horns.  Endocyst ovoidal to sub-spherical, adpressed 

to pericyst in dorsal and ventral regions, with small apical and antapical 

pericoels.  Periphragm covered by very minute, 3-4 µm long hair-like 

spines arising from microverrucae.  Archeopyle is intercalary, and is not 

always observable.  
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Remarks: Senegalinium is distinguished from Subtilispahaera by having a well 

marked intercalary archaeopyle, where in Subtilispahaera the 

archeopyle is usually indeterminate (Jain & Millepied, 1973). 

Dimension: Maximum (8 specimens) 65 (75) 94 , breadth 36 (52) 69 µm. 
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5.PALYNOSTATIGRAPHY AND PALYNOZONATION 

 

5.1 Previous work on Egyptian Cretaceous palynology 

Most of the palynological research conducted on Egyptian Cretaceous 

successions has been based on deep borehole samples taken from exploratory 

wells.  These boreholes were drilled as a result of intensive exploration activities for 

hydrocarbons in the northern part of Egypt, especially the northern part of the 

Western Desert.  Examples of work on borehole samples are: Abdelmalik et al. 

(1981), Penny (1986, 1988a, 1992), Omran et al. (1990), Schrank & Ibrahim (1995) 

and Mahmoud & Deaf (2007).  Hence washed ditch cutting samples were and still 

are the most widely accessible and routinely used material for Egyptian Cretaceous 

palynological research.  However, core samples have sometimes been available for 

palynostratigraphers to use, for example in the papers of  Abdelmalik et al. (1981), 

El-Beialy (1994a, 1994b, 1994c) and Ibrahim (1996, 2002a).  In the southern part of 

the Western Desert, ditch cutting and core samples from shallow hydrological 

boreholes drilled during governmental reclamation projects has been the main 

source for palynological investigations.  Examples of work based on such material 

are those of Schrank (1982, 1983), Schrank & Mahmoud (1998, 2000, 2002) and 

Mahmoud (2003).  In southern Egypt, mining activities centred on the Upper 

Cretaceous phosphate deposits of the Duwi Formation have also enabled some 

palynological research to be carried out (e.g. Schrank, 1984a-b).  The reason 

productive samples are generally restricted to borehole samples results from 

present day environmental conditions. Egypt is located in the subtropical arid zone 

and all the Cretaceous and younger outcrops are have been subjected to extensive 

deep weathering, and as a result they have been found to be palynologically barren 

(e.g. Schrank, 1983).  Personal observations of samples taken from black and green 
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shale horizons from the middle Cretaceous of Gabal Dist in the Bahariya Oasis in 

the Western Desert proved the barren nature of outcrop samples save for some 

phytoclast fragments.  

The lower Cretaceous rocks of the northern basinal area of Egypt were 

mainly deposited in very shallow marine (brackish to coastal) to inner neritic open 

marine conditions (Kerdany & Cherif, 1990; Said, 1990), which were unfavourable 

for proliferation of planktonic forams and nannofossils.  Consequently, no 

independent age control is available for these successions.  The upper Cretaceous 

interval is generally composed of pre-Campanian middle to upper shelf deposits, 

and of deeper upper to middle slope deposits for the Campanian-Maastrichtian 

interval, which is mainly represented by thick carbonate successions (Kerdany & 

Cherif, 1990; Said, 1990).  The planktonic foraminifera-calibrated palynological work 

of Abdel-Kireem et al. (1996) on upper Cretaceous (Cenomanian-Maastrichtian) 

subsurface samples from the Kahraman-1 and Abu Gharadiq-1 boreholes in the 

northern Western Desert is one of the few attempts to provide 

micropalaeontologically calibrated palynological work (Fig. 5.1).  Most of the 

independently calibrated palynological work has been done by oil exploration 

companies and has not been published.    

As most of the Egyptian palynological work has been carried out on ditch 

cutting samples where no independent age control was available, 

palynostratigraphers have identified different palynomorph assemblages, which 

have then been correlated with similar assemblages from other 

palaeogeographically related areas in order to date the Egyptian Cretaceous 

successions.  As a result, several informal palynological zonal schemes (Fig. 5.2) 

and age assignments for different rock units have been proposed for the Cretaceous 

rocks of Egypt.  The informal zones proposed by Schrank & Ibrahim (1995) 
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represent the most complete palynological zonal scheme for the Egyptian upper 

lower and upper Cretaceous sedimentary sequence (Fig. 5.2).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.1 Cretaceous palynological assemblages and foraminiferal biozones 
in the north Western Desert of Egypt (Abdel-Kireem et al., 1996). 



Chapter V                                                               Palynostratigra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.2 (part) Correlation of most of the important palynozones for the 
Cretaceous of the northern Egyptian deser

 

 

 

phy and palynozonationChapter V                                                               Palynostratigra

109 

Correlation of most of the important palynozones for the 
Cretaceous of the northern Egyptian deserts. (W.D. = Western Desert). 

phy and palynozonation

Correlation of most of the important palynozones for the 
ts. (W.D. = Western Desert).  
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Figure 5.2 (continued).
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Figure 5.2 (continued). 

phy and palynozonation
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Figure 5.2 (continued).
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Figure 5.2 (continued). 

phy and palynozonation
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Figure 5.2 (continued). 
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The Cretaceous biostratigraphic work of Schrank & Mahmoud (1998) in the 

Dakhla Basin in Central Egypt contributed to the understanding of this basin, where 

successions below the well-known Duwi Phosphate Formation had received little 

geological study, usually being referred to as the Nubian Sandstone Formation.  

Later work by Schrank & Mahmoud (2000) on the Cenomanian of the Dakhla Basin 

resulted in the identification of new spore and angiosperm pollen species, and 

revealed the geological importance of this area, whereas the northern Western 

Desert was the research focus for palynostratigraphers studying early angiosperm 

pollen (e.g. Penny, 1988a, 1988b, 1989, 1991).  The palynological work of Schrank 

& Mahmoud (2002) in the Barremian of the Dakhla Basin also yielded new early 

angiosperm pollen.  All of the new species described in the latter work are 

recognised in the present study of the Cretaceous succession of the Western 

Desert, providing better correlation between the Barremian of Central Egypt and that 

of the north Western Desert.  It is thus possible to put the lower Cretaceous of 

Central Egypt into the framework of the regional Egyptian Cretaceous, previously 

best known from the Western Desert. 

Perhaps the most important development for Egyptian palynology has been 

the development of the scanning electron microscope (SEM) which has been used 

to erect several dozen new angiosperm species (Schrank, 1982, 1983; Penny, 

1986, 1988a, 1988b, 1989, 1991; Schrank & Ibrahim, 1995; Ibrahim, 1996; Ibrahim 

& Abdel-Kireem, 1997; Kedves, 1998; Schrank & Mahmoud, 1998; Kedves, 1999; 

Schrank & Mahmoud, 2000, 2002; Ibrahim, 2002a).  The use of the SEM to study 

early angiosperm pollen from Lower Cretaceous successions has revealed the 

diverse nature of these angiosperm assemblages (Penny, 1992; Ibrahim, 2002a).  

The resultant high resolution SEM-driven taxonomy has provided much information 

about the evolutionary trends of certain early angiosperm pollen taxa, for example 
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the Afropollis complex (Fig. 5.3), and hence increased their biostratigraphic 

importance.  

In the past most palynostratigraphers 

Afropollis specimens to 

investigations.  Later SEM studies carried out by Schrank & Ibrahim 

Ibrahim (1996, 2002a)

provided better SEM microphotographs of previously described 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.3 Phylogenetic relationships between different 
Doyle et al. (1982)
Penny (1989).  Modified by Schrank & Ibrahim
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complex (Fig. 5.3), and hence increased their biostratigraphic 

In the past most palynostratigraphers (e.g. Omran et al., 1990)

specimens to Afropollis spp. based on routine light microscopic 

Later SEM studies carried out by Schrank & Ibrahim 

(1996, 2002a) resulted in identification of new Afropollis

provided better SEM microphotographs of previously described Afropollis

Phylogenetic relationships between different Afropollis
(1982). Dotted line: possible evolutionary trends according to 

odified by Schrank & Ibrahim (1995) and Ibrahim 

phy and palynozonation

complex (Fig. 5.3), and hence increased their biostratigraphic 

ran et al., 1990) assigned 
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Later SEM studies carried out by Schrank & Ibrahim (1995) and  

Afropollis species and 

Afropollis species.  
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and Ibrahim (2002a). 
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The SEM (e.g. Schrank, 1983; Penny, 1986, 1988a, 1989) has also 

contributed toward a better understanding of the palaeolatitudinal migration of early 

angiosperm pollen producing plants (Doyle et al., 1977; Doyle, 1992; Penny, 1992). 

Doyle (1992) compared his lower Potomac (USA) Zone I palynological assemblage 

of possible Aptian age to late Barremian and Aptian “Southern Laurasian” 

Cerebropollenites assemblages of England and supposed late Barremian and 

Aptian assemblages of Gabon from the Dicheiropollis etruscus/Afropollis Province. 

A gap in the early Aptian assemblage of Gabon has been filled by the better 

represented Egyptian early Aptian assemblage described by Schrank (1983) from 

the Mawhoub West 2 borehole in the southern part of the Western Desert, and by 

Penny (1986, 1988a, 1988b, 1989) from the Mersa Matruh-1 borehole in the 

northern Western Desert.  The Egyptian palynoflora has permitted a better 

correlation between the Cerebropollenites and the Dicheiropollis etruscus/Afropollis 

provinces, and provided more evidence that Northern Gondwana was the main 

centre of early angiosperm radiation.          

5.2 Age assessments  

A thorough review of the literature of Egyptian palynological work has 

showed that some of the proposed age assignments have been misinterpreted 

because they refer to species ranges which have no independent age control, or to 

sedimentary sequences of doubtful ages.  For example, the work of Mahmoud & 

Moawad (2002) on subsurface upper Jurassic-lower upper Cretaceous deposits 

from the West Tiba-1 borehole in the northern Western Desert provides important 

information on the upper Jurassic.  However, in the lower Cretaceous, their 

assignment of Afropollis jardinus to the Aptian is unjustified, because Afropollis 

jardinus unequivocally marks the base of the Albian (e.g. Doyle et al., 1982) in the 

Albian-Cenomanian Elaterate Province.  It is necessary to compile biostratigraphic 

data on palynomorph index species by selecting only those with independently 
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calibrated age ranges from the published literature (Fig. 5.4).  The age assignments 

for the successions of the Abu Tunis 1x and the BB80-1 boreholes studied here are 

thus based on diagnostic palynomorph taxa as well as on correlation with better-

dated contemporaneous regional and interregional palynofloral assemblages.  

Correlation to intercontinental palynofloral assemblages was made in the context of 

the phytogeographic provinces which developed across Africa (including Egypt) and 

northern South America.  These provinces include those such as the pre-Albian 

Dicheiropollis etruscus/Afropollis Phytogeographic Province of Herngreen et al. 

(1996) for spores and pollen grains, and the Tethyan Realm for the dinoflagellate 

cysts.  

It is important to note that the micropalaeontologically calibrated 

palynological work of Thusu et al. (1988) on Libyan lower Cretaceous sediments, 

which has a partial correlation to the formal lower Cretaceous dinoflagellate zonation 

of the European Tethys (Leereveld, (1997a) should be approached with some 

caution.  Leereveld (1997a) pointed out that the lower part of Zone V of Thusu et al. 

(1988) of proposed Berriasian age contains a typical Valanginian species, 

Calpionellites darderi (Allemann & Remane, 1979), which better correlates that zone 

to the Valanginian.  The middle part of Zone V which Thusu et al. (1988) assumed to 

be of Valanginian age, is actually consistent with an Hauterivian age based on the 

presence of the dinoflagellate index species Muderongia staurota (Leereveld, 

1997a).  This revised age assessment made by (Leereveld, 1997a) for the Zone V 

of  Thusu et al. (1988) will be followed here.   

It is important to note that most of the independently calibrated dinoflagellate 

cyst events in the Albian of the European Tethys (Davey & Verdier, 1973; Habib & 

Drugg, 1983; Erba et al., 1999; Torricelli, 2006) cannot be recognised in the  
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southern Tethyan region (e.g. Libya and Egypt). This may be due to 

environmental exclusions. 

Despite the fact that North and West Africa and northern South America are 

confined to the same phytogeographic province, some differences in palynofloral 

assemblages and in the range of some taxa have been noted (Doyle et al., 1982; 

Salard-Cheboldaeff, 1990; Herngreen et al., 1996).  This may be dependent on the 

palaeolatitudinal position of each region, and possibly on proximity to the centre of 

angiosperm radiation.  In northern Morocco in the Agadir-Essaouira Basin and in the 

southwestern Tarfaya Basin, the Albian-Cenomanian palynoflora exhibits Albian-

Cenomanian Elaterate Province characteristics, but contain some forms which are 

characteristic for the Cerebropollenites Province of Herngreen et al. (1996), for 

example some temperate palynomorphs represented by bisaccate pollen grains 

(e.g. Alisporites, Podocarpidites, Vitreisporites, Cerebropollenites, (Bettar & Méon, 

2001, 2006).  Moreover, there are differences in the ranges of some of the pre-

Aptian palynomorph between Senegal and the Ivory Coast and the Congo and 

Gabon (e.g. the index gymnosperm pollen Dicheiropollis etruscus).  A close 

similarity in the pre-Aptian palynoflora and sedimentary sequence between that of 

Gabon and Congo and northeast Brazil have also been documented (Viana, 1968; 

Jardiné et al., 1974; Doyle et al., 1977; Salard-Cheboldaeff, 1990).  From a 

palaeogeographic point of view, northern Egypt was located at around 8° N (Fig. 

5.5) during the Hauterivian (Lawver et al., 2004, 

www.ig.utexas.edu/research/projects/plates/), whereas Libya, Nigeria, Senegal and 

the Ivory Coast were nearly confined to the same palaeolatitude, where they 

possessed palynofloras of more similar stratigraphic ranges than that of the 

palaeosubtropical regions mentioned above.  As it shown from the above 

discussion, the pre-Aptian stratigraphic units of the palaeotropical and 

palaeosubtropical regions could be diachronous.  
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Schrank & Ibrahim (1995) argued for an early late Cretaceous diachroneity 

of the stratigraphic units in NE Africa and West Africa, based on the foraminiferally 

controlled extension of Droseridites senonicus down into the late Turonian of Egypt.  

However, this late Turonian lower limit of D. senonicus has been also recorded in 

the foraminiferally dated late Turonian of NE Nigeria (Lawal & Moullade, 1986). 

Added to that, most of the foraminiferally dated elaterate index forms of West Africa 

have also been found in Egyptian foraminifera-controlled sediments (Schrank & 

Ibrahim, 1995) of ages similar to those of West Africa, and thus does not support the 

proposed diachroneity.  In contrast, a greater similarity in the palynofloral 

stratigraphic ranges could be proposed in the light of African plate movement during 

the Cretaceous.  This tectonic plate was moving anticlockwise towards Laurasia, as 

a result of the opening of the southern Atlantic Ocean, bringing the early Cretaceous 

palaeotropical region into a relatively subtropical position by the late Cretaceous 

(Fig. 5.6), where stratigraphic units of NE Africa and West Africa show palynofloral 

assemblages of more similar stratigraphic age ranges. 

Therefore, the micropalaeontologically dated palynological work carried out 

in Libya (Thusu & van der Eem, 1985; Thusu et al., 1988), Nigeria (Lawal & 

Moullade, 1986), and Senegal and the Ivory Coast (Jardiné & Magloire, 1965; 

Jardiné, 1967) will be employed here for dating the pre-Aptian sequences studied, 

with the West African palynofloral stratigraphic age ranges employed for the latest 

early and late Cretaceous sample interval.  

Spore and pollen grains are considered a powerful tool for biostratigraphic 

purposes, because their vertical distribution is continuous and they exhibit reliable 

lineage trends (e.g.  Afropollis complex).  Dinoflagellate cyst taxa on the other hand 

have been found to be facies controlled in the lower Cretaceous sediments, and 

while they are extremely diluted by microforaminiferal test linings in upper 
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Cretaceous carbonate sediments, these dinoflagellate taxa are the only 

biostratigraphic tools that can be used to date the carbonate succession. 

In general, the vertical distribution of dinoflagellate cysts is subject to greater 

facies control in marginal facies in comparison to that of the miospores.  For this 

reason, the spore and pollen grain ranges have been used for palynostratigraphic 

purposes, with dinoflagellate cysts giving additional supporting evidence.  The first 

appearance datum (FAD) of the index spores and pollen have been used in the 

delineation of most of the biostratigraphic units, with their last appearance datum 

(LAD) used when no (FAD) is available, and also to provide supporting evidence to 

the determinations.  The vertical quantitative (grain/gram) distribution (Fig. 5.7) of 

certain taxa with well-known ranges (e.g. Afropollis zonatus) has been used to 

provide evidence of limited caving.  This has been proven to be minor in the studied 

boreholes.  The numbers in parentheses after the names of the taxa refer to the 

position of these species in the quantitative range chart.  

 

 

 

 

 

 

 

 

 

Figure  5.5 World palaeogeographic map showing the position of north Egypt 
during the Hauterivian time (after Lawver et al., 2004).  
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Figure  5.6 World palaeogeographic map showing the position of north Egypt 
during the Turonian time (after Lawver et al., 2004).  

 

 

 

Figure  5.7 

Turonian 

 (90 Ma) 
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5.2.1 Age assignments for the Abu Tunis 1x borehole 

Late Jurassic (Sample 1) 

This sample (at 10150 ft, 3094 m) is characterized by the long ranging spore  

taxa Deltoidospora spp., Concavisporites spp., Triplanosporites sp., Dictyophyllidites 

spp., and  Crybelosporites brenneri, and the gymnosperm pollen grains 

Araucariacites australis, Balmeiopsis limbatus, Inaperturopollenites spp., 

Exesipollenites spp. (= Spheripollenites and Taxacites sahariensis) and Classopollis 

spp. (Fig. 5.7), which range from the late Jurassic to the early Cretaceous in Egypt 

and NE Libya  (Schrank, 1984a-a; Thusu & van der Eem, 1985; Thusu et al., 1988).  

The lack of an adequate number of samples below 10150 ft did not enable a more 

precise Jurassic age for this sample.  However, there is a complete absence from 

Sample 1 of Impardecispora apiverrucata, Aequitriradites spinulosus, and 

Pilosisporites trichopapilosus, which are considered as early Berriasian-Valanginian 

marker forms (Thusu et al., 1988; Schrank & Mahmoud, 1998) and Dicheiropollis 

etruscus, which is characteristic of the late Hauterivian-early Barremian (Hochuli, 

1981; Thusu et al., 1988).  The abrupt appearance of all of these forms in the 

overlying Sample 2 is therefore compatible with a Jurassic age for Sample 1.  From 

a lithostratigraphic point of view, the position of this sample below an unconformity 

conforms with the major unconformity which separates the Jurassic from the 

overlying Cretaceous succession in most of the northern Western Desert rocks 

(Morgan, 1990).  The upper Jurassic (Kimmeridgian)-lower Cretaceous (Berriasian-

Barremian) rocks were exposed and subjected to erosion in most of the north 

western basinal areas, except in the extreme north, where continuous sedimentation 

took place in the Matruh and Sidi Barrani  basins (Kerdany & Cherif, 1990).  A late 

Jurassic age is also in accordance with the age of the Masajid Formation, where the 
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drilling company (WEPCO, 1968) originally designated this part of the borehole as 

representing the Masajid, and also allocated a Jurassic age.  

 

Palynozone 1: late Hauterivian-early Barremian (Samples 2-9) 

Samples: This zone includes samples from 2 to 9, which are recovered from a 

depth of 10100 to 9750 ft (3078-2972 m). 

Definition: Total range of Dicheiropollis etruscus (89). 

Associated taxa: Deltoidospora spp. (1), Cicatricosisporites spp. (7), 

Concavissimisporites punctatus (10), Concavisporites spp. (19), Dictyophyllidites 

harrisii (28), Cibotiumspora jurienensis (37), Deltoidospora austrails (38), 

Trilobosporites hannonicus (52), Impardecispora uralensis (60), Balmeiopsis 

limbatus (63), Classopollis classoides (64), Araucariacites australis (69), 

Inaperturopollenites undulatus (77), Taxacites sahariensis (84), Circulodinium 

distinctum (173), Cribroperidenium sp. (183), Muderongia tomaszowensis (203), 

Muderongia spp. (206), Phoberocysta spp. (215).    

Discussion concerning age assessment: These samples are similar to Sample 1 

in their microfloral content, where smooth-walled pteridophytic spores and 

gymnosperm pollen grains dominate the microfossil assemblage, and there are very 

rare occurrences of some dinoflagellate cysts.  However, these samples witness the 

first appearance of the gymnosperm index pollen Dicheiropollis etruscus, along with 

the marker spores: Impardecispora apiverrucata, Aequitriradites spinulosus, and 

Pilosisporites trichopapillosus (Fig. 5.7).  Thusu & van der Eem (1985) and Thusu et 

al. (1988) recorded Impardecispora apiverrucata from calpionellid-dated Valanginian 

rocks in NE Libya, where they correlated its range to that of the palynologically 

dated Saharan Subzone 5c of NE Algeria and Southern Tunisia (Reyre, 1973) of 

Neocomian age.  Aequitriradites spinulosus ranges from the calpionellid-dated 
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Valanginian rocks of Libya to the foraminifera-dated Early Cenomanian rocks of 

Egypt (Thusu & van der Eem, 1985; Thusu et al., 1988; Schrank & Ibrahim, 1995). 

Schrank & Mahmoud (1998) regarded Impardecispora apiverrucata and 

Aequitriradites spinulosus as marker Berriasian-Valanginian species in Egypt, based 

on well dated European, Libyan and other sequences.  The spore Pilosisporites 

trichopapilosus, which was recorded from well-dated Valanginian-Hauterivian 

sequences of NE Libya (Thusu & van der Eem, 1985; Thusu et al., 1988), occurs in 

most of these samples.  

In the palaeotropical region, Dicheiropollis etruscus was recorded in NE 

Libya from foraminifera and dinoflagellate dated rocks of late Hauterivian-early 

Barremian age (Thusu & van der Eem, 1985; Thusu et al., 1988) and similarly from 

the palynologically dated late Hauterivian-early Barremian rocks of Senegal and the 

Ivory Coast (Salard-Cheboldaeff, 1990).  In the palaeosubtropical region (± 15-20° N 

and S), the latest occurrence of D. etruscus has been recorded in Morocco from 

dinoflagellate-dated marine sediments of early Barremian age (Hochuli, 1981) and 

its earliest occurrence from the base of turbidite sediments of early Berriasian  age 

(Gübeli et al., 1984).  In Sudan, Gabon and other palaeosubtropical African 

countries, D. etruscus has been recorded from palynologically dated continental and 

shallow marine sediments of Neocomian-Barremian age (Jardiné et al., 1974; Doyle 

et al., 1977; Penny, 1986; Kaska, 1989; Salard-Cheboldaeff, 1990; Awad, 1994). 

Similarly, in North South America, D. etruscus has been recorded in NE Brazil from 

palynologically dated fluvio-lacustrine rocks of Berriasian-early Barremian age 

(Regali et al., 1974; Regali & Viana, 1989).     

The phytoplankton assemblage of the Palynozone 1 is represented by rare 

occurrences of some facies controlled ceratoid dinoflagellate species of pre-

Hauterivian-Barremian and post-Barremian age ranges:  Phoberocysta neocomica 

of late Berriasian-Barremian stratigraphic range in the Tethyan Realm (Habib & 
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Drugg, 1983; Thusu et al., 1988; Erba et al., 1999; Torricelli, 2000, 2001), 

Muderongia pariata, which has an early Hauterivian-early Albian range in Italy 

(Torricelli, 2000, 2001), and Pseudoceratium pelliferum, which has a Tethyan late 

Berriasian-Barremian range (Habib & Drugg, 1983; Thusu et al., 1988; 

Hoedemaeker & Leereveld, 1995; Wilpshaar, 1995; Leereveld, 1997a; Torricelli, 

2000).  Muderongia aequicorna is present in the lower part of the interval, and is 

known from the late Hauterivian in the Southern Alps of Italy (Torricelli, 2000), where 

it was accurately dated by a variety of means (Erba et al., 1999).  This latter species 

represents the only marine evidence for a late Hauterivian age proposed for the 

lower part of the Palynozone 1. 

From the presence of marker species with their first appearance in the 

Valanginian and Berriasian alone, an initial suggestion of a Berriasian lower age 

limit for these samples might be made.  However, the associated presence of the 

characteristic endemic Northern Gondwana Dicheiropollis etruscus, which has a 

foraminifera-dated late Hauterivian-early Barremian age range in the 

palaeosubtropical African region, provides strong evidence that Samples 2-9 are of 

an age younger than the Berriasian-early Hauterivian.  The uppermost occurrence of 

D. etruscus in Sample 9, just below the first appearance of the Stellatopollis spp., 

coincides with the same event documented in the Dicheiropollis/Afropollis 

Phytogeoprovince (Doyle et al., 1977; Gübeli et al., 1984; Thusu et al., 1988; Regali 

& Viana, 1989; Fig. 5.4), and supports an age not younger than the early Barremian.  

As a result, a late Hauterivian-early Barremian age is adopted for this interval (Fig. 

5.8).  
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Figure  5.8 The Abu Tunis 1x borehole with lithological column, sample 
positions, original age dating, key biostratigraphic events and ages deduced 
in the current work. 
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Correlation:  

- Zone PC-18 (Dicheiropollis etruscus) of early Barremian age of Regali et al (1974), 

Sergipe/Alagoas Basin, northeast Brazil. 

- Zones CII-CIV (Neocomian-Barremian) of Doyle et al., (1977), in the pre-salt 

deposits of northeast Gabon. 

- Zone C (late Hauterivian-early Barremian) of Gübeli et al. (1984), northern 

Morocco. 

- Upper part of Zone V and the lower part of Zone VI (late Hauterivian-early 

Barremian) of Thusu et al. (1988), northeast Libya.  

- Assemblage of Section 1 of “Neocomian” and early Barremian age of Penny 

(1991), in the Mersa Matruh-1 well, northern Western Desert, Egypt. 

- Zone PS2 (late Neocomian-early Barremian) of Ibrahim & El-Beialy (1995), in the 

Malha-1 well, northern Sinai, Egypt. 

- Zone II (late Hauterivian-early Barremian) of Ibrahim & Schrank (1996), in the 

Kahraman-1 well, northern Western Desert, Egypt.  

 

Palynozone 2: late Barremian (Samples 10-19)  

Samples: This zone is represented by samples 10 to 19 and covers a depth from 

9700 to 9250 ft (2957-2819 m). 

Definition: From the FAD of Retimonocolpites matruhensis (131), Retimonocolpites 

matruhensis-ghazalii complex (132), Tucanopollis annulatus (133), 

Retimonocolpites pennyi (136), Pseudoceratium retusum (199) and below the FAD 

of Stellatopollis bituberensis (137) to just below the FAD of Afropollis zonatus (128), 

Florentinia mantellii  (172) and Pseudoceratium securigerum (185). 
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Associated taxa: Balmeisporites longirimosus (20), Microfoveolatosporites 

skottsbergii (21), Murospora cf. mesozoica (31), Leptolepidites major (43), 

Gleicheniidites rasilis (44), Leptolepidites psarosus (45), Crybelosporites striatus 

(46), Aequitriradites verrucosus (47), Echinatisporis varispinosus (54), Ephedripites 

spp. (65), Reyrea polymorpha (81), Retimonocolpites variplicatus (97), Afropollis sp. 

B Doyle et al., 1982 (130), Cribroperidinium edwardsii (190), Subtilisphaera scabrata 

(192), Circulodinium cf. attadalicum (210), Cyclonephelium cf. vannophorum (211), 

Cyclonephelium vannophorum (212). 

Discussion concerning age assessment: Whilst this interval shows a similarity in 

its microfloral content with the underlying samples, it is also characterised by the 

incoming of true (columellate) angiosperm pollen grains: for example, 

Retimonocolpites spp. and Stellatopollis spp..  The oldest records of these pollen 

are widely accepted to mark the late Barremian (Penny, 1991; Doyle, 1992; Penny, 

1992; Schrank, 1992; Schrank & Mahmoud, 1998; Doyle, 1999) in the 

Dicheiropollis/Afropollis Phytogeoprovince.  In the foraminifera and dinoflagellate-

dated Libyan late Barremian, Stellatopollis spp. and Tucanopollis crisopolensis were 

recorded from the base, and Retimonocolpites spp. were recorded from the latest 

part of the late Barremian (Thusu & van der Eem, 1985; Thusu et al., 1988).  In the 

well marine-dated sediments of Morocco, Retimonocolpites spp. and Stellatopollis 

spp. have been recorded from the late Barremian (Gübeli et al., 1984).  Hughes et 

al. (1979) recorded Stellatopollis hughesii and Retimonocolpites sp. from the 

independently dated late Barremian rocks of southern England.  Hughes (1994) also 

recorded Stellatopollis (as biorecords CfA  Superret-croton and Superret-triang), 

Retimonocolpites spp. (as CfA Retisulc-dentat) with supramural spines similar to 

Retimonocolpites pennyi, and Tucanopollis crisopolensis (as CfA Barremian-ring) 

from Barremian (‘Phase 3’) and Barremian-Aptian (‘Phase 4’) rocks of southern 

England.  The heteropolar, zonasulculate pollen grain Afropollis operculatus is 
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widely accepted as an Aptian marker species in the pre-Albian Dicheiropollis 

etruscus/Afropollis Phytogeographic Province.  Afropollis operculatus has been 

recorded (as Reticulatasporites jardinus Type 1) from a planktonic foraminifera- and 

calcareous nannoplankton-dated early Aptian section at DSDP, Site 418B in the 

Western North Atlantic (Hochuli & Kelts, 1980), from the well dated early Aptian of 

Gabon and Senegal (Doyle et al., 1982; Doyle, 1992), and from the supposed early 

Aptian of Egypt (e.g. Schrank, 1983; Schrank & Ibrahim, 1995).  However, a pre-

Aptian range of this species was recorded in Morocco by Gübeli et al. (1984) from 

well-dated marine rocks of late Barremian age, and in the supposed late Barremian 

of Gabon, Egypt and NE Brazil (Regali & Viana, 1989; Schrank & Mahmoud, 1998; 

Doyle, 1999; Schrank & Mahmoud, 2002).  

The zone itself is characterised by a number of angiosperm pollen grains.  In 

Egypt, the ages of the angiosperm grains mentioned below are cited as probably 

late Barremian, but it should be born in mind that the dating of the Egyptian 

successions has mainly been accomplished by correlation with similar angiosperm 

assemblages from the better-dated English Barremian sequences (e.g. Hughes et 

al., 1979) and the palynologically dated pre-salt sequence (Zones CV-CVIII) of 

Gabon of probable Barremian-Aptian age (Doyle et al., 1977). 

Retimonocolpites matruhensis was erected by Penny (1986) from the 

believed late Barremian of the Mersa Matruh-1 well, from the northern Western 

Desert, a species later recorded by Schrank & Mahmoud (2000) from the Six Hills 

Formation, Central Egypt, also of probable late Barremian age.  Retimonocolpites 

pennyi, erected by Schrank & Mahmoud (2002) from the Six Hills Formation, had 

previously been described by Penny (1991) under the Hughesian biorecord Reticol-

speckle from the late Barremian of the Mersa Matruh-1 well, and (as 

Clavatipollenites rotundus) by Dejax (1987) from the supposed late Barremian of the 

Congo.  The base of this interval is also characterised by the presence of other 
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potential marker pollen grains first described from the supposed late Barremian of 

Egypt, such as Stellatopollis bituberensis Penny (1986) from the Mersa Matruh-1 

well, and Tucanopollis annulatus and Retiacolpites sp.1 Schrank & Mahmoud (2002) 

from the Six Hills Formation.  The pollen grain Retimonocolpites bueibensis, which 

was described by Ibrahim (Ibrahim, 2002a) from the ?upper Barremian rocks of the 

Ghazalat-1 well, northern Western Desert, Egypt also occurs in the interval.  

Stellatopollis barghoornii was described by Doyle in Doyle et al. (1975) from the 

supposed Barremian-Albian? rocks of the Potomac Group, North America and from 

the probable Barremian of the Congo by Doyle et al. (1977). In Egypt this species 

has been found to range from the probable late Barremian to the Aptian (Ibrahim & 

Schrank, 1996; Ibrahim et al., 2002).  This species occurs in most of the samples 

from this interval.  Stellatopollis hughesii Penny (1986) from the late Barremian of 

the Mersa Matruh-1 well, had previously been reported from rocks of a similar age 

from southern England by Hughes et al. (1979), and was later discovered by Ibrahim 

(2002a) from the supposed late Barremian of the Ghazalat-1 well.  S. hughesii has a 

distribution in the upper part of this sample interval in the Abu Tunis core.  Also 

distributed in the upper part of this sample interval are Stellatopollis dejaxii and 

Retimonocolpites ghazalii, described by Ibrahim (2002a) from the supposed late 

Barremian to mid Aptian of the Ghazalat-1 well, and Afropollis aff. zonatus.  The 

latter taxon, was recognised in Gabon from the pre-salt early Aptian rocks (Doyle et 

al., 1982; Doyle, 1992) below the ammonite-dated carbonate sequence (Reyment & 

Tait, 1972) of late Aptian-Albian age, and from the palynologically dated early Aptian 

(Schrank, 1983; Schrank & Ibrahim, 1995) and the late Barremian-early Aptian 

(Penny, 1986) of Egypt.  The two possible late Barremian pollen grains Retiacolpites 

columellatus and Retimonocolpites sp.1 of Schrank & Mahmoud (2002) are confined 

to the last sample of this sample interval.  



phy and palynozonationChapter V                                                               Palynostratigra 

131 

However, there are rare occurrences of Arecipites microfoveolatus in the 

middle part of this sample interval, a taxon which was described by Ibrahim (2002a) 

from believed Aptian age sediments from the Ghazalat-1 well.  In addition, there are 

scarce occurrences of Dichastopollenites ghazalatensis of Aptian-Cenomanian age 

(Ibrahim, 1996, 2002a) in the upper part of the interval, but until an independent 

extension of the range of these two taxa into the late Barremian is confirmed, their 

distribution in the present interval will be considered as due to possible caving.  

In terms of dinoflagellate cysts, the lower boundary of this sample interval is 

also marked by the FAD of the late Barremian Tethyan species Pseudoceratium 

retusum (Srivastava, 1984; Wilpshaar, 1995; Leereveld, 1997b).  The phytoplankton 

assemblages also record first appearances of some Hauterivian-Barremian 

dinoflagellate species, including Subtilisphaera senegalensis and Circulodinium 

brevispinosum, which have Tethyan late Hauterivian-Albian ranges (Thusu et al., 

1988; Leereveld, 1997b; Torricelli, 2000, 2001).  In the middle part of the interval, 

two Tethyan latest Hauterivian/early Barremian-Albian dinoflagellate species 

appear: Subtilisphaera terrula (Habib & Drugg, 1983; Torricelli, 2001) and 

Subtilisphaera perlucida (Habib & Drugg, 1983; Thusu et al., 1988; Leereveld, 

1997b; Torricelli, 2000, 2001).  Subtilisphaera scabrata, which was used by 

Leereveld (1997b) to delineate the lower boundary of his Tethyan Zone (Ssc) of 

Early Barremian age, also occurs in the middle part of the interval.  

The upper part of the interval is characterised by the appearance of 

Pseudoceratium anaphrissum, regarded as a late Barremian-Aptian marker species 

in the Tethyan Realm (Thusu et al., 1988; Foucher et al., 1994; Hoedemaeker & 

Leereveld, 1995; Fig. 5.4).  The inception of Odontochitina operculata was used in 

the Tethyan Realm to determine the base of the late Barremian (Wilpshaar, 1995; 

Leereveld, 1997b; Torricelli, 2000, 2001), and appears in the uppermost part of this 
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sample interval, as does Odontochitina ancala, which was recorded from the late 

Barremian of Italy (Torricelli, 2000) and ranges into the early Albian.   

Also present is Florentinia cooksoniae, which was originally described by 

Singh (1971) from the Albian lower Shaftsbury Formation, Canada, and is also 

known from the supposed Albian-Cenomanian rocks of Egypt and NE Libya (Uwins 

& Batten, 1988; Omran et al., 1990).  The downward extension of the range of F. 

cooksoniae into Palynozone 2 could be a true stratigraphic extension, as this 

species was recovered by Duxbury (1980) from the Barremian Speeton Clay of East 

Yorkshire, England.  

The appearance in this sample interval of dinoflagellate cyst taxa 

characteristic of the latest Hauterivian/early Barremian-Aptian, together with several 

late Barremian-early Aptian angiosperm pollen grains might suggest a late 

Barremian-early Aptian age.  However, in the overlying sample (20) the presence of 

the Aptian angiosperm pollen marker Afropollis zonatus and the characteristic early 

Aptian dinoflagellates Pseudoceratium securigerum and Palaeoperidinium 

cretaceum indicates that this interval should be dated as late Barremian. 

 

Correlation: 

- Zones CVI-CVII (late Barremian) of Doyle et al. (1977), in the pre-salt deposits of 

northeast Gabon. 

- Zone D (late Barremian) of Gübeli et al. (1984), northern Morocco. 

- Zone VI (late Barremian) of Thusu et al. (1988), northeast Libya.  

- Stellatopollis bituberensis Zone (late Barremian) of Regali & Viana (1989), 

northeast Brazil. 
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- Assemblage of Section 2 (late Barremian) of Penny (1991), in the Mersa Matruh-1 

well, northern Western Desert, Egypt. 

- Zone PS1 (late Barremian) of Ibrahim & El-Beialy (1995), in the Malha-1 well, 

northern Sinai, Egypt. 

- The lower part of Zone IV (late Barremian-early Aptian) of Ibrahim & Schrank 

(1996), in the Kahraman-1 well, northern Western Desert, Egypt.  

- The upper part of the Stellatopollis spp.-Schrankipollis spp. Assemblage Zone 

(Barremian) of Ibrahim et al. (1997), from the Abu Hammad-1, Q-71-1X and the 

Kabrit-1 wells, northern Eastern Desert, Egypt.  

- Assemblage “A1” (core #15) of late Barremian age of Ibrahim (2002a), in the 

Ghazalat-1 well, northern Western Desert, Egypt.   

 

Palynozone 3: Aptian (Samples 20-57) 

Samples: This zone includes samples from 20 to 57, which were taken from depths 

between 9200 to 7350 ft (2804-2240 m). 

Definition: From the FAD of Afropollis zonatus (128), Pseudoceratium securigerum 

(185) and Florentinia mantelii (172) and just below the FAD of Palaeoperidinium 

cretaceum (187) to just below the FAD of Afropollis jardinus (92). 

Associated taxa: Crybelosporites pannuceus (2), Cicatricosisporites orbiculatus 

(4), Balmeisporites cf. holodictyus (9), Triporoletes reticulatus (12), 

Cicatricosisporites sinuosus (13), Murospora florida (17), Microfoveolatosporites 

skottsbergii (22), Matonisporites spp. (24), Kyrtomisporis spp. (27), Aequitriradites 

norrissii (40), Gemmatrilites sp.  (41), Januasporites sp. (42), Tricolpites sp. (93), 

Tricolpites vulgaris (104), Downiesphaeridium spp. (165), Florentinia spp. (167), 
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Coronifera albertii (174), Coronifera tubulosa (177), Oligosphaeridium complex 

(179), Oligosphaeridium poculum (180), Pseudoceratium almohadense (208). 

Discussion concerning age assessment: The samples of this interval are 

different in their floral content to the underlying intervals, as phytoplankton increases 

in abundance and diversity, from a maximum of 155 (~ 33) cysts/gram, comprising 

some 16 species in the underlying interval, to a maximum 1171 (~ 100) cysts/gram, 

and with a diversity of some 25 species in this sample interval.  However, 

pteridophyte spores, gymnosperms, and those angiosperm pollen found in the 

underlying Barremian interval still dominate the microfloral assemblage.  The base 

of this interval is characterized by the incoming of the zonasulculate isopolar pollen 

Afropollis zonatus, which is regarded as an early Aptian marker species in the 

Dicheiropollis etruscus/Afropollis Phytogeographic Province (Fig. 5.4).  A. zonatus 

was first described from the palynologically dated sediments of early Aptian age of 

Gabon (Doyle et al., 1982; Doyle, 1992).  This species was later recorded (as 

Reticulatasporites jardinus Type 2) from foraminifera-dated rocks of early Aptian age 

in southern Switzerland (Hochuli, 1981) and from dinoflagellate-dated sediments of 

early Aptian age in northern Morocco (Gübeli et al., 1984).   

Whereas the presence of Afropollis spp., Tricolpites spp. and Brenneripollis 

spp. is widely accepted to mark the onset of the early Aptian in West Africa and 

Egypt (Doyle et al., 1977; Schrank, 1983; Penny, 1986; Schrank, 1991; Doyle, 1992; 

Schrank & Ibrahim, 1995), the absence of Brenneripollis in this sample interval 

might be taken to suggest a late Barremian age for the interval.  However, Doyle 

(1992) pointed out the dangers of using the absence of Brenneripollis to infer a late 

Barremian age.  This is more likely to be due to palaoecological conditions or 

unfavourable lithologies, especially given that the upper part of this sample interval 

mainly consists of coarse clastic sediments.  Afropollis aff. jardinus, which was 

reported from palynologically-dated rocks of late Aptian-early Albian age in West 
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Africa and Egypt (Doyle et al., 1982; Penny, 1989; Schrank & Ibrahim, 1995; 

Ibrahim, 1996) also occurs in this interval.      

However, overall this interval contains relatively few Aptian marker 

angiosperm pollen grains, and it is the dinoflagellate species which are of greater 

biostratigraphic importance.   The base of this interval is also delineated by the FAD 

of Pseudoceratium securigerum, diagnostic for the early Aptian in the Tethyan 

Realm (Fig. 5.4), as it has been recorded from the base of the ammonite-dated 

Aptian type section in SE France (Davey & Verdier, 1974), from the foraminifera-

dated Aptian of Algeria (Foucher et al., 1994), and from the dinoflagellate-dated 

marine sediments of southern Italy (Torricelli, 2001).  In southern England, P. 

securigerum was also recovered by Duxbury (1983) and Lister & Batten (1988) from 

partly ammonite-calibrated Boreal marine sediments of early Aptian age.  In NW 

Egypt and NE Libya this same species was recovered from rocks of believed early 

Aptian age (Uwins & Batten, 1988; Omran et al., 1990; El-Beialy, 1994b; Schrank & 

Ibrahim, 1995).  

Another early Aptian marker form with its FAD just above the base of this 

sample interval is Palaeoperidinium cretaceum, which has been recovered from 

ammonite, planktonic foraminifera, and calcareous nannoplankton calibrated rocks 

of early Aptian age in the Tethyan Realm of SE France and Italy (Davey & Verdier, 

1974; Torricelli, 2000, 2001, 2006), from dinoflagellate-dated rocks of the DSDP Site 

543A in the Western Central Atlantic (Habib & Drugg, 1983), and from the supposed 

early Aptian of Egypt and NE Libya (Batten & Uwins, 1985; Schrank & Ibrahim, 

1995).   The later appearance of Aptea polymorpha in Sample 24 above the lower 

part of this sample interval is consistent with its FAD in the late early Aptian in the 

Tethyan Realm (Fig. 5.4) and elsewhere (Davey & Verdier, 1974; Lister & Batten, 

1988; Foucher et al., 1994; Torricelli, 2000, 2001).  
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Other characteristic Aptian dinoflagellate species which appear in this 

interval are: Florentinia laciniata (recorded from ammonite-dated rocks of Aptian-

early Cenomanian age in SE France: (Davey & Verdier, 1973); and from well-dated 

Aptian rocks of Italy: (Torricelli, 2001), and Florentinia mantelii (also of Aptian 

aspect, being recorded from the ammonite-dated Late Aptian of SE France: (Davey 

& Verdier, 1974); and the dinoflagellate-dated Late Aptian of Italy: Torricelli, 2000, 

2001). 

Based on the presence of the Aptian dinoflagellate and angiosperm marker 

forms mentioned above, and with the FAD of the diagnostic early Albian angiosperm 

Afropollis jardinus in the overlying Sample 58, an Aptian age is suggested for this 

interval.       

 

Correlation: 

- Zones CVII-CIX (Aptian) of Doyle et al. (1977), in the pre-salt deposits of northeast 

Gabon. 

- Zone II (Aptian) of Saad (1978), in the Umbarka 1X well, northern Western Desert, 

Egypt.  

- Assemblage II (early-late mid Aptian) of Uwins & Batten (1988), northeast Libya.  

- Exesipollenites tumulus Zone (Aptian) of Regali & Viana (1989), northeast Brazil. 

- Zone E and lower part of Zone F (Aptian) of Gübeli et al. (1984), northern Morocco. 

- Zone II (Aptian) of Sultan (1986), in the Shibin El Kom well, Nile Delta, Egypt. 

- Zone IV (Aptian) of El-Beialy et al. (1990), in the Sindy-1 well, Nile Delta, Egypt. 

- Afropollis operculatus-Brenneripollis-Tricolpites spp. Assemblage Zone (Aptian) of 

Schrank & Ibrahim (1995), in the Kahraman-1 well, northern Western Desert, 

Egypt.  
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- Zone III (Aptian) of Mahmoud et al. (1999), in the Ramis-1X and Shaltut-1X wells, 

northern Western Desert and the Misri-1 well, northern Sinai, Egypt. 

- PSI Zone (Aptian) of Mahmoud & Moawad (2002), in the Sanhur-1X borehole, 

northern Western Desert, Egypt.   

- assemblages “A2” and “A3” (cores #14 and #15) of early-mid Aptian age of Ibrahim 

(2002a), in the Ghazalat-1 well, northern Western Desert, Egypt equate to the 

lower part of this zone. 

- Zone PSIII (Aptian) of Mahmoud & Deaf (2007), in the Siqeifa 1-X borehole, 

northern Western Desert, Egypt.  

 

Palynozone 4: early-mid Albian (Samples 58-85) 

Samples: This zone includes samples from 58 to 85 which span a depth from 7300 

to 5950 ft (2225-1814 m). 

Definition: From the FAD of Afropollis jardinus (92) to just below the FAD of 

Sofrepites legouxiae (71) and Elaterosporites verrucatus (72). 

Associated taxa: Verrucosisproites obscurilaesuratus (8), Ephedripites irregularis 

(78), Tricolporopollenites sp. (99), Rousea delicipollis (100), Triporites sp. (102), 

Retimonocolpites textus (105), Stellatopollis densiornatus (118), Afropollis aff. 

jardinus (122), Tetracolpites sp. (123), Senegalinium aenigmaticum (158), 

Trichodinium castanea (160), Coronifera oceanica (170), Oligosphaeridium 

albertense (178), Oligosphaeridium complex (179), Oligosphaeridium poculum 

(180), Pseudoceratium anaphrissum (184), Pseudoceratium securigerum (185). 

Discussion concerning age assessment: The microflora of this interval is 

characterised by the first appearance of tricolporate (e.g. Tricolporopollenites) and 

triporate (e.g. Triporites) angiosperm pollen, while tricolpate pollen (e.g. Tricolpites) 

present in the underlying interval continue to appear.  Pteridophyte spores and 
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gymnosperm pollen grains continue to dominate the microfloral assemblage, and 

less angiosperm pollen taxa which appeared in the late Barremian is found in the 

interval.  The phytoplankton assemblage shows a slight increase in abundance in 

the underlying interval (from a maximium 1170 and average 105 cysts/gram) to a 

maximium 1750 and average 130 cysts/gram here, but with decreasing diversity 

(from 25 species in the underlying interval to 12 species).   

The lower boundary of the early Albian is defined by the FAD of Afropollis 

jardinus just above the LAD of the two marker Aptian forms Afropollis operculatus 

and Afropollis zonatus.  The extinction of the latter two species was used by Doyle 

et al. (1982) and Schrank & Ibrahim (1995) to document the Aptian/Albian boundary 

in West Africa and Egypt.  A. jardinus is widely accepted as entering the 

stratigraphic record in the early Albian in the Albian-Cenomanian Elaterate 

Phytogeographic Province (Fig. 5.4).  In West Africa, it has been recorded from 

foraminifera-dated rocks of early Albian age: in Senegal (as S. CI. 156 Incertae 

sedis) by Jardiné & Magloire (1965), and in Gabon-Congo-Senegal by Doyle et al. 

(1982).  In north South America this same taxon, has been recorded from 

foraminifera-dated early Albian age; in Brazil (Herngreen, 1973; Regali et al., 1974; 

Herngreen, 1975; Regali & Viana, 1989), Peru (Brenner, 1968), and in Colombia 

from sediments dated by ammonite as being of late Albian-early Cenomanian age 

(Herngreen & Jimenez, 1990), and finally from Western North Atlantic DSDP Site 

418A,  A. jardinus was also recorded (as Reticulatasporites jardinus Type 3) from 

foraminifera-dated rocks of late Albian-early Cenomanian age (Hochuli & Kelts, 

1980).  

The lower boundary of the mid Albian interval can be distinguished in these 

samples by the FAD of Elaterosporites klaszii, which is widely accepted to document 

the base of the mid Albian in the Albian-Cenomanian Elaterate Phytogeographic 

Province (Fig. 5.4).  This taxon has been recorded in West Africa: in Senegal and 
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the Ivory Coast from foraminifera-dated rocks of mid Albian-mid Cenomanian age 

(Jardiné & Magloire, 1965; Jardiné, 1967).  Foraminiferally dated sediments from 

Brazil and Columbia have also indicated this taxon to be of mid Albian-mid 

Cenomanian age (Müller, 1966; Herngreen, 1973; Herngreen & Jimenez, 1990), and 

it has also been recorded in the Albian-Cenomanian of Peru (Brenner, 1968).  

Finally, in northern Italy, E. klaszii has also been documented as a late Albian form 

in foraminifera-dated upper Albian rocks by Hochuli (1981).  

Although the index gymnosperm pollen Galeacornea causea was recorded 

from foraminifera-dated early Cenomanian age in Senegal (e.g. Jardiné, 1967), its 

range extends into the late Albian from palynologically dated studies in Gabon and 

NE Nigeria (Doukaga, 1980; Lawal & Moullade, 1986).  G. causea was also 

recovered from rocks of mid Albian-mid Cenomanian age in Brazil and Colombia  

with foraminifera and ammonite age controls (Müller, 1966; Herngreen, 1973; 

1974b; Herngreen & Jimenez, 1990).  Thus samples 84 and 85 are more likely to be 

of mid Albian age.  

Gnetaceaepollenitess cf. clathratus occurs in the topmost samples of this 

depth interval, and was identified in Senegal by Stover (1963) from sediments of 

supposed Cenomanian-Turonian age, later being recorded from the proposed late 

Albian-mid Cenomanian of NE Nigeria (Lawal & Moullade, 1986).     

The problematic occurrence of the gymnospermous tetrad Droseridites 

senonicus in samples 77 and 82 may be due to possible caving, as it has only been 

recorded from rocks of post-mid Albian age: for example in foraminiferally controlled 

Coniacian-Santonian sequences in NE Nigeria and the Angola Basin (Morgan, 

1978; Lawal & Moullade, 1986), and in Egypt from foraminifera-dated rocks of late 

Turonian-early Santonian age (Schrank & Ibrahim, 1995).  
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Based on the data above an early to mid Albian age is suggested from this 

sample interval.  

 

Correlation: 

- Sequence XI (early-mid Albian) of Jardiné & Magloire (1965), Senegal Basin.  

- Zone I (early-mid Albian) of Herngreen (1973), in the 1-QS-1-MA well, Maranhao 

Basin, Brazil.  

- Zone I (early-mid Albian) of Sultan & Aly (1986), in the WD-9-15-1 well, northern 

Western Desert, Egypt. 

- Lower part of the Zone V (Albian) of El-Beialy et al. (1990), in the Sindy-1 well, Nile 

Delta, Egypt. 

- Zones II and III (early-mid Albian) of Schrank & Ibrahim (1995), in the Kahraman-1 

well, northern Western Desert, Egypt.  

- Lower part of Zone IV (Albian) of Mahmoud et al. (1999), in the Ramis-1X and 

Shaltut-1X wells, northern Western Desert, and in the Misri-1 well, Northern Sinai, 

Egypt.  

- Lower part of the Zone PSII (Albian) of Mahmoud & Moawad (2002), in the 

Sanhur-1X well, northern Western Desert, Egypt. 

 

Palynozone 5: late Albian-early Cenomanian (samples 86-96) 

Samples: This zone includes samples from 86 to 96, which cover a depth from 

5900 to 5050 ft (1798-1539 m). 

Definition: Total range of Sofrepites legouxiae (71). 
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Associated taxa: Classopollis classoides (64), Ephedripites spp. (65), 

Araucariacites australis (69), Afropollis jardinus (92), Tetraporopollenites  sp. (95), 

Rousea delicipollis (100), Tricolpites vulgaris (104), Retimonocolpites textus (105), 

Rousea brenneri (106), Tricolpites parvus (107), Triporopollenites spp. (109), 

Tricolpites micromunus (110), Dichastopollenites ghazalatensis (111), Tricolpites cf. 

crassimurus (112), Tricolpites sagax (114), Retimonocolpites ghazalii (115), 

Stephanocolpites sp. (116), Stellatopollis barghoornii (117), Stellatopollis 

densiornatus (118), Striatopollis cf. trochuensis (119) Trichodinium castanea (160), 

Xiphophoridium alatum (168), Cribroperidinium edwardsii (181).  

Discussion concerning age assessment: The microfloral assemblage of this 

interval is characterised by elaterate pollen grains, and a noticeable increase in 

abundance of both tricolpate angiosperm pollen and the genus Afropollis, from a 

maximum 1500 (average ~ 400) grains/gram in the underlying interval to a 

maximum of 5375 (average ~ 3400) grains/gram.  This increase is accompanied by 

a decrease in spore diversity, which are mainly represented by Deltoidospora and 

Cicatricosisporites spp..  The abundance of phytoplankton continues to decrease 

(244 maximum/average 100 cysts/gram) throughout the interval but with the same 

low diversity (~14 species) as in the underlying interval.   

Sofrepites legouxiae is an index taxon in this interval which was found to 

range from the upper Albian to lower Cenomanian in foraminiferally dated rocks of 

Senegal by Jardiné & Magloire (1965), Jardiné (1967), and in Brazil by Herngreen 

(1973) and Herngreen & Jimenez (1990).  Another taxon present in this study 

interval is Elaterosporites verrucatus, recorded in Senegal and the Ivory Coast from 

rocks dated foraminiferally to be of mid Albian-early Cenomanian age (Jardiné & 

Magloire, 1965; Jardiné, 1967: Figure 5.4).  However, in foraminifera- and 

ammonite- dated rocks from Brazil, this same taxon was recorded from the latest 

mid to earliest late Albian (Herngreen, 1973; Regali et al., 1974; Herngreen & 
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Jimenez, 1990) and a single occurrence has been reported from the middle part of 

the ammonite-dated upper Albian rocks of Columbia (Herngreen & Jimenez, 1990).  

Cretacaeiporites densimurus appears in the lower part of this sample interval, and 

was first described by Schrank & Ibrahim (1995) from foraminifera-dated rocks of 

early-mid Cenomanian age, and was later recorded by Ibrahim (2002b) from the late 

Albian-early Cenomanian of Egypt.  Single specimens of other species of this genus 

have been found in the upper part of this sample interval: C. polygonalis, which has 

a late Albian-late Cenomanian range in Senegal (Jardiné & Magloire, 1965), and C. 

mulleri, which ranges from the late Albian up to the Santonian in Senegal and NE 

Nigeria (Jardiné & Magloire, 1965; Lawal & Moullade, 1986), and is recorded as of 

late Albian-mid Cenomanian age in Brazil (Herngreen, 1973).  

Appearing throughout the upper part of this interval, the range of 

Elaterocolpites castelainii was used to document the base of the late Albian and top 

of the mid Cenomanian Elaterate Phytogeographic Province in Senegal (Fig. 5.4;  

(Jardiné & Magloire, 1965; Jardiné, 1967) and Brazil (Herngreen, 1973; Herngreen 

& Jimenez, 1990).  This taxon was also recorded by Hochuli (1981) from the 

foraminifera-dated late Albian of southern Switzerland.  Other elaterate pollen grains 

present in these samples that are characteristic of the late Albian-early Cenomanian 

are Elaterosporites acuminatus and E. protensus (Fig. 5.4).  E. acuminatus, was 

reported from the late Albian-early Cenomanian of Senegal (Jardiné, 1967), and 

occurs in the lower part of this interval.  E. protensus is found in the same samples 

and was recorded from foraminifera-dated rocks of mid Albian to latest 

Albian/earliest Cenomanian age in Senegal and the Ivory Coast (Jardiné & Magloire, 

1965; Jardiné, 1967) and Brazil (Herngreen, 1973; Herngreen & Jimenez, 1990).  

Afropollis kharamanensis was recorded by Schrank & Ibrahim (1995) and 

Ibrahim (2002b) from the foraminifera-dated early-mid Cenomanian of Egypt.   

However, the former authors mentioned that the taxon described as Pollen PO-304 
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by Lawal & Moullade (1986) from the supposed late Albian-mid Cenomanian of NE 

Nigeria was identical to their new species.  Therefore, the presence of Afropollis 

kharamanensis in this interval does not contradict the proposed late Albian-

Cenomanian age.  Foveotricolpites gigantoreticulatus was recorded from 

foraminifera-dated rocks of Turonian-Santonian age in Senegal and NE Nigeria 

(Jardiné & Magloire, 1965; Lawal & Moullade, 1986).  However, Schrank & Ibrahim 

(1995) and Schrank & Mahmoud (1998) documented an older occurrence of this 

species in the palynologically dated Albian-Cenomanian of Egypt.  Thus, the 

presence of F. gigantoreticulatus in the middle part of this interval may not conflict 

with the proposed late Albian-early Cenomanian age of the interval.  The rare 

presence of Triporites spp. in this interval is in accordance with the late Albian-early 

Cenomanian, as rare Triporites spp. were recorded from the early Cenomanian of 

Senegal (Jardiné & Magloire, 1965).  

The questionable occurrence of Droseridites baculites in this interval, which 

was described by Ibrahim (1996) from the well-constrained lower Turonian of Egypt, 

may be attributed to possible caving. 

As for the dinocysts, Florentinia berran appears in the lower part of the 

interval, a taxon that was recorded from the Albian-early Cenomanian of the 

southern Tethyan Realm in Morocco and NE Libya (Below, 1982b, 1984; Uwins & 

Batten, 1988).  F. laciniata and F. mantellii first appear in this interval and are known 

from ammonite-dated Aptian-early Cenomanian sequences in the Tethyan Realm: 

they continue upward into the overlying intervals. 

Based on the presence of the few late Albian-early Cenomanian elaterate 

and few marker angiosperm forms mentioned above, a late Albian-early 

Cenomanian age is postulated for the interval.    
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Correlation:  

- Sequences X-VIII (late Albian-early Cenomanian) of Jardiné & Magloire (1965), 

Senegal Basin.  

- Zone II (late Albian-early Cenomanian) of Herngreen (1973), in the 1-QS-1-MA 

well, Maranhao Basin, Brazil.  

- Subzone Ia (late Albian-early Cenomanian) of Lawal & Moullade (1986), upper 

Benue Basin, northeast Nigeria. 

- Zone I (late Albian-early Cenomanian) of Sultan & Aly (1986), in the WD-9-15-1 

well, northern Western Desert, Egypt. 

- Zone III (late Albian-early Cenomanian) of Aboul Ela & Mahrous (1992), in the East 

Tiba-1 well, northern Western Desert, Egypt. 

- Zone 5 (late Albian-early Cenomanian) of Schrank (1992), Egypt and north Sudan.  

- Intervals 3 and 4 (late Albian-early Cenomanian), in the Manndra 1 well and 

intervals c and d (late Albian-early Cenomanian), in the Oued Melah 1 well of 

Foucher et al., (1994), Algeria.  

- Zone IV (late Albian-early Cenomanian?) of Schrank & Ibrahim (1995), in the 

Kahraman-1 well, northern Western Desert, Egypt.  

- Assemblage “A” (late Albian-early Cenomanian) of Ibrahim (2002b), in the Abu 

Gharadig-5 well, northern Western Desert, Egypt. 
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Palynozone 6: early-? mid Cenomanian (samples 97-103) 

Samples: This zone is represented by samples from 97 to 103 and spans a depth 

from 4950 to 4650 ft (1509-1417 m). 

Definition: From the LAD of Sofrepites legouxiae (71) to the FAD of Proteacidites 

cf. africaensis (91).  

Associated taxa: Deltoidospora spp. (1), Crybelosporites pannuceus (2), 

Cicatricosisporites orbiculatus (4), Balmeiopsis limbatus (63), Classopollis 

classoides (64), Ephedripites spp. (65), Elaterosporites klaszii (66), Araucariacites 

australis (69), Elaterocolpites castelainii (70), Afropollis jardinus (92), Rousea 

delicipollis (100), Cretacaeiporites mullerii (101), Triporites spp. (102), Florentinia 

mantellii (172), Florentinia laciniata (176). 

Discussion concerning age assesment: The microfloral assemblage of this 

interval lacks any diagnostic sporomorphs.  Miospores are represented by 

pteridophyte and schizaeacean spores, xerophytic gymnosperm, and two elaterate 

pollen species, and three angiosperm pollen species.  The index angiosperm pollen 

Proteacidites cf. africaensis, which is widely accepted to document the base of the 

mid Cenomanian in the Albian-Cenomanian Elaterate Province (e.g. Jardiné & 

Magloire, 1965; Lawal & Moullade, 1986) first appears in the overlying interval (in 

Sample 104), and thus delineates the lower boundary of the mid Cenomanian.   

Consequently, the present interval could be of a possible early Cenomanian age.  

The phytoplankton assemblage shows a slight increase in abundance over 

the interval below (maximum 370/average 120 cysts/gram) but with a consistent 

diversity (~10 species), and they provide some important implications for dating the 

interval.  Florentinia berran, which was found from sediments as young as the early-

mid Cenomanian in Egypt (Schrank & Ibrahim, 1995; Ibrahim, 2002b), becomes 

extinct in the lower part of the overlying interval, thus favouring an early-mid 

Cenomanian age for this sample interval.   



phy and palynozonationChapter V                                                               Palynostratigra 

146 

Correlation: 

- Zone V (early-mid Cenomanian) of Schrank & Ibrahim (1995), in the Kahraman-1 

and Abu Gharadiq-18 wells, northern Western Desert, Egypt. 

- Zone 3 (early-mid Cenomanian) of Ibrahim (1996), in the Ghazalat-1 well, northern 

Western Desert, Egypt. 

- Assemblage “B” (early-mid Cenomanian) of Ibrahim (2002b), in the Abu Gharadiq-

5 well, northern Western Desert, Egypt. 

 

Palynozone 7: mid-late Cenomanian (samples 104-119) 

Samples: This zone includes samples from 104 to 119 and covers a depth from 

4600 to 3850 ft (1402-1173 m). 

Definition: Total range of Proteacidites cf. africaensis (91). 

Associated taxa: Deltoidospora spp. (1), Crybelosporites pannuceus (2), 

Alisporites cf. grandis (62), Balmeiopsis limbatus (63), Ephedripites spp. (65), 

Elaterosporites klaszii (66), Retimonocolpites variplicatus (97), Tricolporopollenites 

sp. (99), Senegalinium aenigmaticum (160), Trichodinium castanea (165), 

Surculosphaeridium cf. longifurcatum (166), Xiphophoridium alatum (177), 

Florentinia spp. (176), Florentinia mantellii (181). 

Discussion concerning age assessment: The palynofloral assemblage of this 

interval shows similar characteristics to the underlying interval, but with a continuing 

decrease in the abundance of spores (maximum 48/average 24 grains/gram) and 

diversity (only two species), the complete disappearance of gymnosperm pollen 

grains at the end of the interval, and the occurrence of only three angiosperm pollen 

grains.  The phytoplankton increase in their abundance (maximum 3160/average 

140 cysts/gram), but have a very low diversity (~8 species).  
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The inception of Proteacidites cf. africaensis at the base of this interval is 

taken here to mark the lower boundary of the mid Cenomanian interval, as it was 

recorded in West Africa, in Senegal and Nigeria (e.g. Jardiné & Magloire, 1965; 

Jardiné, 1967; Lawal & Moullade, 1986) and Brazil (Herngreen, 1973), from 

foraminifera-dated rocks of mid-late Cenomanian age.   

The occurrence of Afropollis jardinus in these samples requires explanation 

as the extinction of this species is diachronous across palaeotropical African 

regions, occurring either in the early or mid Cenomanian, something attributed by 

Doyle et al. (1982) to palaeoclimatic influences.  In the Gabon reference section for 

Afropollis species, Doyle et al. (1982) found that the abundance of A. jardinus 

declined in the foraminifera-dated late Albian-early Cenomanian Subzones C-XIIb 

and C-XIIc, and disappeared before the appearance of Proteacidites africaensis (as 

Triorites africaensis) in foraminifera-dated mid-late Cenomanian age sediments 

(Jardiné & Magloire, 1965; Jardiné, 1967).  However, in the other reference section 

for Afropollis, in Senegal, Doyle et al. (1982) noted that A. jardinus became rare in 

the late Albian-Early Cenomanian - later than in the Gabon section - and 

disappeared in the mid Cenomanian, contemporary with the appearance of 

Proteacidites africaensis.   Jardiné & Magloire (1965) recorded an upward extension 

of A. jardinus (as Incertae sedis S. CI. 156) into the mid Cenomanian in their 

foraminifera-dated Sequence VIIa and VIIb, prior to the first appearance of 

Proteacidites africaensis.  Doyle et al. (1982) interpreted this persistence of A. 

jardinus through the mid Cenomanian as due to more favourable (wetter) conditions, 

suggesting Afropollis thrived in coastal areas and flourished during marine 

transgression cycles.  The same scenario could also apply to Egypt, which lay at a 

similar palaeolatitude and where A. jardinus may have persisted into the mid 

Cenomanian due to marine sedimentation and wet climatic conditions similar to 

those of Senegal (Abdel-Kireem et al., 1996; Ibrahim, 2002b).   
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In the foraminifera-dated Zone V (early-mid Cenomanian) of Schrank & 

Ibrahim (1995) and in the foraminifera-dated Assemblage Zone “B” of early-mid 

Cenomanian age of Ibrahim (2002b), A. jardinus has its LAD at the topmost interval.  

Therefore, the LAD of A. jardinus in Sample 110 is used to delineate the upper 

boundary of the mid Cenomanian.  

Afropollis kharamanensis, which was recorded in the foraminifera-dated 

lower-middle Cenomanian rocks of Egypt (Schrank & Ibrahim, 1995; Ibrahim, 

2002b), has its LAD at the same level as the LAD of A. jardinus.  Elaterosporites 

klaszii has its last appearance in the lower part of this interval, and is known to 

terminate in the mid Cenomanian in the Elaterate Province of Oman (Jardiné & 

Magloire, 1965; Müller, 1966; Jardiné, 1967; Herngreen, 1973; Herngreen & 

Jimenez, 1990; Fig. 5.4). The presence of Cretacaeiporites densimurus is also 

consistent as it has its uppermost occurrence at the top of the mid Cenomanian in 

Egypt (Schrank & Ibrahim, 1995; Ibrahim, 2002b).   

The late Cenomanian age of the upper part of this zone is inferred from the 

upward continuation of Proteacidites cf. africaensis and from the very rare 

occurrence (and later complete disappearance) of the gymnosperm pollen 

Classopollis spp..  In Senegal, Jardiné & Magloire (1965) recorded high abundances 

of Classopollis spp. (up to 80 %) from the Barremian to the mid Cenomanian, which 

then declined rapidly and became extinct by the end of the late Cenomanian.  

Similarly, Schrank & Ibrahim (1995) and Ibrahim (2002b) recorded rare latest 

occurrences of Classopollis in the middle Cenomanian rocks of Egypt.  

Florentinia berran of early-mid Cenomanian range in Egypt (Schrank & 

Ibrahim, 1995) is last recorded in the lower part of this interval, and thus supports a 

mid Cenomanian age for the lower part of the zone.  
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A mid-late Cenomanian age is assigned for this interval based on the 

presence of the index palynomorph taxa mentioned above.  

 

Correlation: 

- Sequence VII (mid-late Cenomanian) of Jardiné & Magloire (1965), Senegal Basin. 

- Zone III (late Cenomanian) of Herngreen (1973), in the 1-QS-1-MA well, Maranhao 

Basin, Brazil.  

- Zone II (mid-late Cenomanian) of Lawal & Moullade (1986), upper Benue Basin, 

northeast Nigeria. 

- Zone VI (mid?-late Cenomanian) of Schrank & Ibrahim (1995), in the Kahraman-1 

and Abu Gharadiq-18 wells, northern Western Desert, Egypt.   

- Zone 4 (mid?-late Cenomanian) of Ibrahim (1996), in the Ghazalat-1 well, northern 

Western Desert, Egypt.   

 

Palynozone 8: early ?Santonian (samples 130-131) 

Samples: This zone includes samples from 130 to 131 and covers a depth from 

3250 to 3200 ft (991-975 m) .  (The two overlying samples, 132 and 133, are barren.  

Sample 134 is separated from 132 and 133 by an unconformity surface and exhibits 

very poor dinoflagellate recovery.  Therefore, samples 132 to 134 are unsuitable for 

the definition of palynozones and were excluded from the present discussion).  

Definition: Total range of Canningia senonica (152). 

Associated taxa: Alisporites cf. grandis (62), Spiniferites spp. (150), 

Exochosphaeridium bifidum (153), Dinogymnium spp. (155), Senegalinium 

aenigmaticum (158), Trichodinium castanea (160), Surculosphaeridium cf. 

longifurcatum (161), Downiesphaeridium sp. (165).   
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Discussion concerning age assessment: Palynological assemblages from this 

zone are lacking in terrestrial palynomorphs except for the gymnosperm Alisporites 

cf. grandis, and are completely composed of phytoplankton: these forms are the 

only tools to date the sequence.  Canningia senonica appears in both sample 130 

and 131, a species characteristic of the Santonian-Maastrichtian.  C. senonica has 

been recorded from the ammonite-dated late Santonian of the Isle of Wight, 

southern England (Clarke & Verdier, 1967), from the foraminifera-dated early 

Santonian-late Maastrichtian of Egypt (Schrank & Ibrahim, 1995), and from the 

nannoplankton-dated late Campanian of Italy (Torricelli & Amore, 2003).  

This interval contains a few long-ranging species of pre-Coniacian to 

Maastrichtian range, such as Dinogymnium denticulatum, recorded from the 

ammonite-dated Late Santonian of the Isle of Wight (Clarke & Verdier, 1967), from 

the foraminifera-dated Coniacian-Maastrichtian of Egypt (Schrank & Ibrahim, 1995), 

and from the foraminifera-dated Coniacian-Santonian of Algeria (Foucher et al., 

1994).  Chlamydophorella discreta appears first in this interval, a species which has 

its last appearance in the late Santonian of the Isle of Wight (Clarke & Verdier, 

1967), and ranges in Egypt from the early Cenomanian to the Turonian (Schrank & 

Ibrahim, 1995).  Isabelidinium acuminatum was recorded (as Deflandrea acuminata) 

from the ammonite-dated late Santonian of the Isle of Wight (Clarke & Verdier, 

1967), and from the foraminifera-dated Coniacian-Santonian of Algeria (Foucher et 

al., 1994).  Eucladinium gambangense, which was identified by Cookson & Eisenack 

(Cookson & Eisenack, 1970a) from the Senonian rocks of Australia, occurs at the 

base of this interval.     

 There are no index angiosperm pollen taxa that one might expect for the 

Turonian, such as Foveotricolpites giganteus or F. gigantoreticulatus which are 

characteristic of early Turonian-Santonian ranges in West Africa (Jardiné & 

Magloire, 1965; Lawal & Moullade, 1986; Schrank & Ibrahim, 1995).  Nor is 
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Droseridites senonicus present, which is diagnostic of the late Turonian-early 

Santonian (e.g. Lawal & Moullade, 1986; Salard-Cheboldaeff, 1990; Schrank & 

Ibrahim, 1995; Ibrahim, 1996).  

Thus, based on the presence of the early Santonian index form Canningia 

senonica and the complete absence of index Turonian sporomorphs mentioned 

above, an early Santonian age is proposed for this interval. 

 

Correlation:  

- Zone 8 (early Santonian) of Schrank & Ibrahim (1995), in the Kahraman-1 well, 

northern Western Desert, Egypt.   
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5.2.2 The BB80-1 borehole  

Palynozone 1: mid Albian (sample 1) 

This biozone is only represented by sample 1 at a depth of 5400 ft (1646 m), 

whereas samples from 2 to 7 (depth 5390-5260 ft, 1643-1603 m) are barren of 

palynomorphs.  The palynological assemblage of sample 1 is characterised by the 

presence of the index angiosperm pollen Afropollis jardinus which has an early 

Albian-mid Cenomanian range (Jardiné & Magloire, 1965; Doyle et al., 1982), and 

the gymnosperm pollen Elaterosporites klaszii, which is diagnostic for the mid 

Albian-mid Cenomanian (e.g. Jardiné & Magloire, 1965; Jardiné, 1967; Figure 5.9).  

Miospores are also represented by Cicatricosisporites orbiculatus, Crybelosporites 

pannuceus, Murospora spp., Trilobosporites laevigatus and the long ranging spores 

Deltoidospora spp. and Triplanosporites sp..  Although Crybelosporites pannuceus 

has an Albian-Cenomanian range in north South America (Brenner, 1968; 

Herngreen, 1973; Regali et al., 1974; Herngreen & Jimenez, 1990), and is regarded 

by Schrank & Ibrahim (1995) and Ibrahim (1996) to mark the early Albian-

Cenomanian in Egypt. It has also been recorded from foraminifera-dated Aptian 

rocks of Algeria (Foucher et al., 1994), from well dinoflagellate-dated Aptian rocks of 

Morocco (Gübeli et al., 1984), from palynologically dated Aptian rocks of West 

Ghana (Atta-Peters & Salami, 2006) and from the Barremian-Aptian of other 

intertropical West African countries (Salard-Cheboldaeff, 1990).  Gymnosperms are 

only represented by Ephedripites spp. and Elaterosporites klaszii.  Phytoplankton 

shows a very low diversity (4 species) and abundance (average ~4 grains/gram).      

A mid Albian age is suggested for this sample (Fig. 5.10) based on the 

presence of Elaterosporites klaszii and the complete absence of other late Albian-

Cenomanian elaterate pollen, such as Elaterocolpites castelainii and Elateroplicites 

africaensis, which appear in the overlying Interval (Fig. 5.9).  The assemblage of this 
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sample is similar to that of the Zone III (mid Albian) of Schrank & Ibrahim (1995) in 

the Kahraman-1 well, and to that of Zone 2 (mid Albian) of Ibrahim (1996) in the 

Ghazalat-1 well, northern Western Desert, Egypt.  

 

Palynozone 2: late Albian-early Cenomanian (samples 8-24) 

Samples: This zone is represented by samples from 8 to 24 and spans a depth 

from 5220 to 4840 ft (1591-1475 m), with samples 14, 19, and 20 being 

palynologically barren. 

Definition: From the FAD of Elaterocolpites castelainii (11), Elateroplicites 

africaensis (12) and Afropollis kharamanensis (20) to the end of the succession.  

Associated taxa: Cicatricosisporites orbiculatus (1), Crybelosporites pannuceus 

(2), Deltoidospora spp. (3), Ephedripites spp. (10), Classopollis classoides (13), 

Classopollis brasiliensis (14), Tricolpites sp. (16), Stellatopollis spp. (17), 

Retimonocolpites variplicatus (18), Cretacaeiporites densimurus (19), 

Tricolporopollenites sp. (21), Rousea sp. (23), Florentinia berran (31), 

Dinopterygium tuberculatum (33), Florentinia mantellii (34), Senegalinium 

aenigmaticum (39), Florentinia clavigera (40), Xiphophoridium alatum (42), 

Florentinia laciniata (44), Florentinia radiculata (48). 

Discussion concerning age assessment: The microfloral assemblage of this 

interval is characterised by an increase in the abundance of spores by comparison 

with the underlying samples, the appearance of monocolpate, tricolpate, tricolporate, 

and polyporate pollen grains, and an increase in the abundance and diversity of 

phytoplankton species.  This interval witnesses the presence of two elaterate forms 

characteristic of the late Albian-mid Cenomanian (Elaterocolpites castelainii and 

Elateroplicites africaensis) and the marker species Afropollis kharamanensis (Fig. 

5.9). Elateroplicites africaensis was recorded from foraminiferally dated rocks of 
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Figure  5.9 

early Cenomanian age (as Incertae sedis form A) in Senegal by Jardiné (1967), in 

southern Switzerland by Hochuli (1981) from the foraminifera-dated late Albian, and 

in Brazil by Herngreen (1973) from foraminifera-dated upper Albian-middle 

Cenomanian rocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5.10 The BB80-1 borehole with lithological column, sample positions, 
initial dating by drilling company, key biostratigraphic events and newly 
inferred ages.  
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Afropollis kharamanensis was described from the foraminifera-dated early-

mid Cenomanian of Egypt (Schrank & Ibrahim, 1995; Ibrahim, 2002b), in Nigeria by 

Lawal & Moullade (1986) in the palynologically dated Subzone Ia (late Albian-early 

Cenomanian) and Subzone Ib (mid Cenomanian).  Classopollis brasiliensis also 

appears in this zone, which  was also recorded in Egypt in the same foraminifera-

dated Zone V of Schrank & Ibrahim (1995) and in Assemblage “B” of Ibrahim 

(2002b), both of early-mid Cenomanian age. In NE Nigeria, C. brasiliensis was 

recorded by Lawal & Moullade (1986) in their Subzone Ib of mid Cenomanian age, 

but from the foraminiferally dated late Albian to late Cenomanian in Brazil by 

(Herngreen, 1973).  Cretacaeiporites densimurus appears in the upper part of this 

sample interval, and was described by Schrank & Ibrahim (1995) from foraminifera-

dated rocks of early-mid Cenomanian age, although it may range down in to the late 

Albian of Egypt (Ibrahim, 2002b).  A single occurrence of Triporites sp. is 

documented in the lower part of this interval, and a parallel may be drawn with the 

recorded rare occurrence of Triporites spp. in the early Cenomanian of Senegal 

(Jardiné & Magloire, 1965). 

Phytoplankton taxa in this interval do not provide an accurate correlation with 

micropalaeontologically calibrated Albian-Cenomanian dinoflagellate events in the 

European Tethyan Realm; they are considered to be palaoeoenvironmentally 

controlled and of no biostratigraphic significance to this study.  

A late Albian-mid Cenomanian age may be proposed for this interval based 

on the stratigraphic range of the two late Albian-mid Cenomanian elaterate pollen 

taxa, and the other index pollen forms mentioned above that disappear in the mid 

Cenomanian.  However, the sharp rise in the abundance of Afropollis spp. in the 

upper part of the interval strongly supports an age not younger than the early 

Cenomanian, as this genus was reported by Doyle et al. (1982) to have a second 



phy and palynozonationChapter V                                                               Palynostratigra 

156 

abundance maximum in the late Albian-early Cenomanian of Senegal and the Ivory 

Coast.   

 

Correlation:  

- Sequences X-VIII (late Albian-early Cenomanian) of Jardiné & Magloire (1965), 

Senegal Basin.  

- Zone II (late Albian-early Cenomanian) of Herngreen (1973), in the 1-QS-1-MA 

well, Maranhao Basin, Brazil.  

- Subzone Ia (late Albian-early Cenomanian) of Lawal & Moullade (1986), upper 

Benue Basin, northeast Nigeria. 

- Zone I (late Albian-early Cenomanian) of Sultan & Aly (1986), in the  WD-9-15-1 

well, northern Western Desert, Egypt. 

- Zone III (late Albian-early Cenomanian) of Aboul Ela & Mahrous (1992), in the East 

Tiba-1 well, northern Western Desert, Egypt. 

- Zone 5 (late Albian-early Cenomanian) of Schrank (1992), Egypt and north Sudan.  

- Intervals 3 and 4 (late Albian-early Cenomanian), in the Manndra 1 well and 

intervals c and d (late Albian-early Cenomanian), in the Oued Melah 1 well of 

Foucher et al. (1994), Algeria.  

- Zone IV (late Albian-early Cenomanian?) of Schrank & Ibrahim (1995), in the 

Kahraman-1 well, northern Western Desert, Egypt.  

- Assemblage “A” (late Albian-early Cenomanian) of Ibrahim (2002b), in the Abu 

Gharadig-5 well, northern Western Desert, Egypt. 
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5.3  Cretaceous African-Northern South American Phytogeographic Provinces 

in the context of this present study 

Although no differences have been reported in palynofloral compositions or 

the biostratigraphic ranges of some spores and pollen grains in West African 

(Congo-Gabon) and northern South American (Brazilian) palynofloras, correlation of 

early Cretaceous sequences (Fig. 5.10) from North and West Africa (e.g. Egypt, 

Libya, Senegal, and Congo-Gabon) with those of northern South America (e.g. 

Brazil) do show differences (Jardiné, 1974; Doyle et al., 1982, Salarda-Cheboldaeff, 

1990).  This section will mainly focus on a comparison focussed on the West African 

(Senegal, the Ivory Coast and Nigeria) and North African (NW Egypt, NE Libya and 

northern Morocco) regions due to the close palynofloral and palaeogeographic 

relationships between these two areas.   

The Berriasian-Barremian time interval interval in West Africa lacks any 

independent age control and is composed almost entirely of terrestrial to very 

shallow marine sediments in the late Barremian (Doyle, 1982), where even marine 

palynological dating cannot be applied.  However, interregional correlation of North 

African and West African material (Fig. 5.10) shows that the well-dated Valanginian-

Barremian interval of North Africa (Thusu, 1988, Libya; Gübeli, 1984, Morocco) 

could provide information which is capable of filling this palynostratigraphic 

Berriasian-Barremian gap in West Africa, and even serve as a reference section for 

this interval in both North and West Africa. 
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5.3.1 The pre-Albian Dicheiropollis/Afropollis Phytogeographic Province 

A. Discrepancies in the reported range of Dicheiropollis etruscus 

Trevisan (1971) believed that Dicheiropollis etruscus had a cheirolepidiacean 

coniferous affinity, and, as with Classopollis, may have been both thermophilous 

and adapted to arid conditions.  High abundances of Classopollis are associated 

with evaporites, salts, and redbed deposits, and also with cheirolepidiacean 

xeromorphic wood and leaf megafossils, which further support hot dry conditions for 

this genus (e.g. Doyle, 1999; Watson, 1988).  Classopollis was most abundant 

during Barremian-Aptian time in the hot, dry subtropical latitudes (15-30° N and S of 

the palaeoequator), while it is found in lower abundances in the hot, but slightly 

wetter tropical region (Doyle, 1999).  Doyle et al. (1982), Schrank (1990), and 

Brenner (1996) all suggested relatively wetter palaeoclimates for the African tropics 

(e.g. Egypt and Sudan), based on the presence of high abundances of fern spores 

(indicating humidity), and lower frequencies of Classopollis and the cooler-

temperature coniferous genus Araucariacites than seen in the subtropics.   

In the subtropical region, several authors (e.g. Doyle at al., 1977) have 

reported an earlier (Berriasian) appearance of Dicheiropollis etruscus in the 

palynologically dated continental clastic and salt deposits of West Africa (Gabon), in 

comparison to its delayed late Hauterivian appearance in the tropical NE African 

region (e.g. Thusu & Van der Eem, 1985; Uwins & Batten, 1988, Libya; Fig. 5.10). 

This situation could be interpreted in the light of one the two following explanations: 

1.  That the NE and West African sequences are diachronous: but this 

suggestion cannot be proven until independent age controls are provided for this 

species in West Africa or northern South America.   

2.  The taxon’s distribution is palaeoecologically controlled in each area.  

Prior to the breakup of Western Gondwana, Egypt, Libya, Senegal and the Ivory 
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Coast lay approximately at the palaeoequator, in comparison to Morocco and 

Gabon, which lay around subtropical latitudes 10-15° N and S respectively.  D. 

etruscus thus first appeared in hot, dry subtropical African regions, but as Western 

Gondwana broke up and the African plate moved north east, Egypt, Libya, and 

Sudan were brought into a palaeosubtropical position where more arid conditions 

allowed D. etruscus to migrate into these areas.   

An older inception of D. etruscus has also been recorded by Gübeli et al. 

(1984) from the Berriasian of northern Morocco.  However, caving may have 

contaminated the samples and could explain this downward range extension of D. 

etruscus, especially as Dicheiropollis etruscus is confirmed to have a late 

Hauterivian-early Barremian range in North East Africa in foraminifera- and 

dinoflagellate-dated sediments (Libya: Uwins & Batten, 1988).  This latter range is 

therefore accepted here as applicable to Egypt and thus used to allocate a late 

Hauterivian-early Barremian age for Palynozone 1 of the Abu Tunis 1x borehole.   

B. Acme events of Aptian Afropollis and local palaeoclimate effect 

During the Aptian, Senegal, the Ivory Coast and Egypt were located at more 

or less the same palaeolatitude and possess similar angiosperm-dominated 

assemblages.  In addition, the development of marine lower Cretaceous (uppermost 

Barremian-Aptian) sediments in Senegal and Egypt also serves to correlate this 

Cretaceous time interval across these three geographic areas.   

Doyle et al. (1982) recorded a first acme of Afropollis in the foraminifera-

dated (Castelain, 1965) Aptian of Senegal, where the persistent occurrence of A. 

operculatus and A. zonatus were reported to range from the early to late Aptian 

(Doyle et al., 1982).  This bears a striking similarity to the first acme of Afropollis in 

the supposed Aptian of Egypt (Schrank & Ibrahim, 1995), and the occurrence of A. 

operculatus and A. aff. jardinus in the supposed late Aptian (just below the FAD of 
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A. jardinus) in the present study (Fig. 5.7).  This further supports the view that the 

Aptian sequences of Senegal and Egypt are indeed synchronous.  Doyle et al. 

(1982) attributed the upward persistence of A. operculatus and A. zonatus into the 

late Aptian to palaeoclimatic conditions.  It has already been pointed out that the 

latter authors suggested that Afropollis-producing plants were better adapted to 

wetter, probably coastal humid environments.  Doyle et al. (1982) attributed the 

upward decline in Afropollis from the pre-salt early Aptian Zone C-VII of Gabon into 

the late Aptian salt sequence Zones C-VIII-C-IX to increased aridity. 

The wet costal conditions proposed for the Afropollis parent plants were later 

supported by Schrank (2001), where he reported exceptional relative abundances of 

Afropollis (35-78% of total palynomorphs) and elaterate pollen (11-15%) from 

Albian-Cenomanian continental sediments of northern Sudan, which also contained 

low salinity dinoflagellate cysts.  Schrank (2001) compared these extraordinary 

abundances of Afropollis and elaterates with a similar event recorded by El-

Shamma (1991) from marine Albian-Cenomanian sediments of northern Egypt, and 

suggested that parent plants of both Afropollis and elaterate pollen may have 

flourished in humid coastal habitats.  Schrank (2001) believed that temporary humid 

conditions would have been brought to the intracontinental basins of Sudan by a 

short-lived transgression.  

These observations permit the use of high abundances of Afropollis as a 

proxy indicator for warm, humid coastal conditions.   

 

5.3.2  Albian-Cenomanian Elaterate Phytogeographic Province 

The appearance and proliferation of elaterate gymnosperm pollen is the 

most important and well-documented event in the Albian-Cenomanian Elaterate 

Phytogeographic Province (e.g. Herngreen et al., 1996).  The foraminifera-dated 
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Albian-Cenomanian gymnosperm and angiosperm events of West Africa (Doyle et 

al., 1982; Jardiné & Magloire, 1965; Lawal & Moulade, 1986), are represented by 

the early Albian appearance of Afropollis jardinus and the later appearance of the 

genus Elaterosporites along with other elaterate taxa in the mid Albian. This is 

followed by the appearance of Elaterocolpites and Elateroplicites in the late Albian, 

and the extinction of all these forms at the end of the mid Cenomanian.  These 

events have been recorded all across North Africa: in Egypt (Aboul Ela & Mahrous, 

1992; Schrank & IIbrahim, 1995; Sultan, 1986), in Libya (Thusu & Van der Eem, 

1985), and in Morocco (Gübeli et al., 1984).  This makes the Albian-Cenomanian 

interval easily and widely recognisable within the province.  There are a few reports 

of small differences in the biostratigraphic ranges and palaeogeographic 

distributions of some of the spores and pollen grains present in this province 

between North and West Africa (Herngreen et al., 1996; Salard-Cheboldaeff, 1990), 

but generally the interregional correlation of biostratigraphic ranges and/or 

successive events of selected index gymnosperm (e.g. Droseridites senonicus and 

elaterates) and angiosperm (e.g. Afropollis and Cretacaeiporites) pollen between the 

foraminifera-dated Cenomanian-Coniacian sedimentary sequence of North and 

West Africa (Senegal and Ivory Coast: Jardiné & Magloire, 1965; Egypt: Schrank & 

Ibrahim, 1995) show a close match (Fig. 5.10), and support a synchronicity of these 

Cretaceous sequences.   

In this study almost all described species of the elaterate group are 

recorded, which has enabled excellent correlation of studied section to 

contemporaneous sections in the Albian-Cenomanian Elaterate Phytogeographic 

Province (Fig. 5.10).  In palynozones 4-7 of Abu Tunis 1x, and palynozones 1 and 2 

of BB80-1, important Albian-Cenomanian biostratigraphic marker taxa have enabled 

very good regional (e.g. Egypt), interregional (e.g. Senegal and NE Nigeria), and 
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intercontinental (e.g. Brazil & Colombia) correlation, and provided good age 

constraints.   

  

5.3.3 The Senonian Palmae Province   

Regional palynological correlation of the post-Cenomanian sequences of 

North Africa is sparse (Fig. 5.10). In Egypt, this lack of post-Cenomanian 

palynostratigraphic work could be attributed to missing biostratigraphic and /or 

barren rock units, which is may be due to regional late Cretaceous tectonics (e.g. 

Meshref, 1990).  Only the work of Schrank & Ibrahim (1995) on the Egyptian 

Cretaceous sheds some light on this time interval.  In contrast, in West Africa this 

time interval is fairly well represented by the foraminifera-dated studies of Jardiné & 

Magloire (1965), Lawal & Moulade (1986), and Boltenhagen (1980).  

In the present study an hiatus in the Abu Tunis 1x is documented by a 

disconformity where Turonian deposits are absent: this may be related to the 

Turonian uplift that affected most of the Western Desert basins of Egypt (Kerdany & 

Cherif, 1990).  By the advent of the early Santonian a transgressional cycle is 

interpreted here to have covered the Faghur Sub-basin, based on marine 

palynomorphs recorded in the Abu Tunis 1x borehole sediments.  Another 

disconformable surface separates the early Santonian from the overlying sediments, 

where a significant time gap (representing the late Santonian, Campanian and 

Maastrichtian) is recorded.  This post-Santonian disconformity may be related to the 

late Santonian-Palaeocene folding and thrusting, which affected the whole of the 

northern basinal areas of Egypt (e.g. Said, 1990).   
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PLATE 1 

 

Late Jurassic-Early Cretaceous spores and pollen grains 

1. Dictyophyllidits harrisii Couper, 1958, slide AT-1A, 10150 ft, 12/127.7, (28). 

2. Dictyophyllidits  sp., slide AT-3A, 10050 ft, 11.9/120.5, (36). 

3. Concavisporites sp., slide AT-6A, 9900 ft, 10.4/132.3, (19).  

4. Auritulinasporites scanicus Nilsson, 1958, silde AT-7A, 9850 ft, 12/112, (53). 

5. Deltoidospora toralis (Leschik) Lund, 1977, slide AT-1A, 10150 ft, 15.4/133.6, 
(16). 

6. Deltoidospora sp., slide AT-4A, 10000 ft, 8.1/125.2, (1). 

7. Deltoidospora hallii Miner, 1935, slide AT-5A, 9950 ft, 10.8/126.2, (5). 

8. Triplanosporites sp., slide AT-3A, 10050 ft, 17/141.3, (3). 

9. Deltoidospora australis (Couper) Pocock, 1970, slide AT-12A, 9600 ft, 20.7/132.8, 
(38). 

10. Exesipollenites sp., slide AT-3B, 10050 ft, 12.1/131.8, (83). 

11. Balmeiopsis limbatus (Balme) Archangelsky, 1979, slide AT-1A, 10150 ft, 
14.5/117.7, (63). 

12. Arucariacites australis Cookson ex Couper, 1953, slide AT-1A, 10150 ft, 
6.3/116.7, (69). 

13. Inaperturopollenites undulatus Weyland & Greifeld, 1953, slide AT-4A, 10000 ft, 
13.7/121.9, (77). 

18. Classopollis classoides Pflug, 1953, slide AT-6A, 9900 ft, 9.2/130.1, (13). 

19. Classopollis sp. slide AT-10A, 9700 ft, 13.7/143.6, (68).  

22. Taxacites sahariensis Reyre, 1973, slide AT-10A, 9700 ft, 11.4/123.4, (84). 

23. Crybelosporites brenneri Playford, 1971, slide AT-3B, 10050 ft, 10.8/131.7, (32). 

 

Berriasian-Valanginian spore and pollen grains 

17, 21. Pilosisporites trichopapillosus (Thiergrat) Delcourt & Sprumont, 1955, slide 
AT-4A, 10000 ft, 14.3/146, slide AT-5A, 9950 ft, 14.1/134.9, (56). 

20. Impardecispora apiverrucata (Couper) Venkatachala et al., 1969, slide AT-2A, 
10100 ft, 13.9/114.6, (61). 

 

Late Hauterivian-Early Barremian spore and pollen grains 

14, 15, 16. Dicheiropollis etruscus Trevisan, 1972, slide AT-2B, 10100 ft, 16.9/119.7, 
slide AT-3A, 10050 ft, 14.2/142.8, slide AT-3A, 10.1/130.5, (89). 
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PLATE 2 

 

Early Cretaceous spore and pollen grains 

1. Deltoidospora australis (Couper) Pocock, 1970, slide AT-3A, 10050 ft, 12.9/135, 
(38). 

2, 4, 12. Deltoidospora psilostomata Rouse, 1959, slide AT-8A, 9800 ft, 10.2/109.2, 
slide AT-3A, 10050 ft, 9.4/125.9, slide AT-8A, 9800 ft, 15/120.3, (33). 

3. Deltoidospora concavus Bolkhovotina, 1956, slide AT-3A, 10050 ft, 18.5/121.6, 
(49). 

5. Deltoidospora hallii Miner, 1935, slide AT-3A, 10050 ft, 11.6/135.6, (5). 

6. Cibotiumspora jurienensis (Balme) Filatoff, 1975, slide AT-5A, 9950 ft, 11.2/143.1, 
(37). 

7. Biretisporites potoniaei Delcourt & Sprumont, 1955, slide AT-6A, 9900 ft, 
8.9/129.6, (30). 

8. Auritulinasporites intrastriatus Nilsson, 1958, slide AT-7A, 9850 ft, 8.8/125.1, (55). 

9.  Deltoidospora toralis (Leschik) Lund, 1977, slide AT-8A, 9800 ft, 16.4/134.1, (16). 

10. Classopollis sp. (21), slide AT-10A, 9700 ft, 10.1/122, (68). 

11. Cibotiidites cf. tuberculiformis (Cookson) Srivastava, 1977, slide AT-5A, 9950 ft, 
9.9/130.8, (57). 

13. Ischyosporites areolatus (Singh) Fensome, 1987, slide AT-4A, 10000 ft, 
6.5/140.1, (59). 

14. Cicatricosisporites sp., slide AT-4A, 10000 ft, 16.4/116, (7). 

15. Echinatisporis varispinosus (Pocock) Srivastava, 1977, slide AT-10A, 9700 ft, 
12.5/113.9, (54). 

16. Cycadopites fragilis Singh, 1964, slide AT-17A, 9350 ft, 16.8/127.3, (86). 

17. Cycadopites sp., slide AT-18A, 9300 ft, 12.8/139.3, (67). 

18. Cycadopites sp., slide AT-17A, 9350 ft, 11.6/145.7, (67). 

19, 20. Trilobosporites hannonicus (Delcourt & Sprumont) Potonié, 1956, slide AT-
4B, 10000 ft, 15.4/124.7, slide AT-7A, 9850 ft, 15.2/111.4, (52).  

21. Impardecispora uralensis (Bolkhovitina) Venkatachala et al., 1969, slide AT-3A, 
10050 ft, 10/129.7, (60).  

22. Concavissimisporites variverrucatus Singh, 1964, slide AT-7B, 9850 ft, 
12.5/136.6, (58).  

23. Concavissimisporites punctatus (Delcourt & Sprumont) Brenner, 1963, slide AT-
5A, 9950 ft, 7.2/117.5, (10). 

24. Concavissimisporites sp., slide AT-5A, 9950 ft, 8.4/122.1, (11). 
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PLATE 3 

 

Early Cretaceous spore and pollen grains 

1. Gleicheniidites feronensis (Delcourt & Sprumont) Delcourt & Sprumont, 1959, 
slide AT-3A, 10050 ft, 15.7/117.7, (39). 

2. Gleicheniidites senonicus Ross, 1949, slide AT-2B, 10100 ft, 2.7/124, (15). 

3. Auritulinasporites intrastriatus Nilsson, 1958, slide AT-7A, 9850 ft, 8.8/125.1, (55). 

4. Deltoidospora austrails (Couper) Pocock, 1970, slide AT-12A, 9600 ft, 20.7/132.8, 
(38). 

5, 7. Callialasporites trilobatus (Balme) Sukh Dev, 1961, slide AT-2A, 10100 ft, 
13.1/137.1, slide AT-12A, 9600 ft, 14.7/117.8, (82). 

6. Callialasporites turbatus Schulz, 1967, slide AT-4A, 10000 ft, 10.8/134.4, (85). 

8. Cicatricosisporites sp., slide AT-14A, 9500 ft, 20.7/128.6, (7).   

9. Cicatricosisporites sinuosus Hunt, 1985, slide AT-16A, 9400 ft, 6.7/122.8, (13). 

10. Classopollis sp., slide AT-7A, 9850 ft, 6/117.3, (68). 

11. Concavissimisporites punctatus (Delcourt & Sprumont) Brenner, 1963, slide AT-
11A, 20.9/126.9, (10). 

12. Deltoidospora sp., slide AT-16A, 9600 ft, 10.4/115.2, (1). 

13. Cicatricosisporites sp., slide AT-11A, 9650 ft, 17.6/113, (7). 

14. Appendicisporites erdtmanii Pocock, 1964, slide AT-16A, 9400 ft, 11.3/148.8, 
(50). 

17. Murospora sp.1, slide AT-16A, 9400 ft, 11.7/145.5, (18).  

18. Kyrtomisporis sp., slide AT-16A, 9400 ft, 5.4/144.9, (27). 

19. Murospora florida (Balme) Pocock, 1961, slide AT-16A, 9400 ft, 12.7/135.3, (17). 

 

Fresh water algae 

15, 16. Ovoidites parvus (Cookson & Dettmann) Nakoman, 1966, slide AT-16A, 
9400 ft, 18/137.1, slide AT-16A, 13.2/122.2, (145). 
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PLATE 4 

 

Early Cretaceous spore and pollen grains 

1. Aequitriradites norrissii Backhouse, 1988, slide AT-21A, 9150 ft, 11/135.9, (40). 

2, 3. Deltoidospora toralis (Leschik) Lund, 1977, slide AT-18A, 9300 ft, 7.4/130.1, 
slide AT-17A, 9350 ft, 6.6/114.8, (16). 

4. Deltoidospora crassexina (Nilsson) Lund, 1977, slide AT-21A, 9150 ft, 12.1/1287, 
(23). 

5.  Aequitriradites verrucosus (Cookson & Dettmann) Cookson & Dettmann, 
1961, slide AT-18A, 9300 ft, 10.4/136.1, (47). 

6, 7. Biretisporites potoniaei Delcourt & Sprumont, 1955, slide AT-19A, 9250 ft, 
5.5/116, slide AT-23A, 9050 ft, 7.7/140.9, (30). 

8. Deltoidospora sp., slide AT-17A, 9350 ft, 14/143.2, (1). 

9. Kyrtomisporis sp., slide AT-20A, 9200 ft, 13.3/140.1, (27). 

10. Microfoveolatosporites skottsbergii (Selling) Srivastava, 1971, slide AT-19A, 
9250 ft, 15.5/141, (22). 

11. Ephedripites sp., slide AT-10A, 9700 ft, 18.8/117.8, (65). 

12. Ephedripites sp., slide BB-24A, 4840 ft, 17/131.9, (10). 

13. Ephedripites sp., slide BB-24A, 4840 ft, 14.3/141.5, (10). 

14. Ephedripites sp., slide AT-10A, 9700 ft, 9.2/133.9, (65).  

15. Ephedripites sp., slide BB-23B, 4860 ft, 8/127, (10). 

16. Ephedripites sp., slide BB-24A, 4840 ft, 15.1/139.6, (10). 

17. Ephedripites sp., slide AT-11A, 9650 ft, 19/129.9, (65). 

18. Ephedripites sp., slide BB-23B, 4860 ft, 7/127.3, (10). 

19. Ephedripites sp., slide BB-24B, 4840 ft, 13.4/123, (10).  

20. Ephedripites sp., slide AT-28A, 8800 ft, 4.3/124.1, (65). 

21. Ephedripites sp., slide BB-22A, 4880 ft, 5.4/129.6, (10). 

22. Ephedripites sp., slide AT-25A, 8950 ft, 5.3/125.6, (65). 

23. Ephedripites sp., slide AT-28A, 8800 ft, 22.2/124.9, (65). 

24. Ephedripites sp., slide AT-19B, 9250 ft, 9.6/145.2, (65).  

25. Ephedripites sp., slide AT-21A, 9150 ft, 9.8/132, (65). 

26. Ephedripites sp., slide AT-10A, 9700 ft, 4/130.6, (65). 

27. Ephedripites sp., slide AT-23B, 9050 ft, 6.4/136.8, (65). 

28. Ephedripites sp., slide AT-26B, 8900 ft, 5.5/111.7, (65). 

29. Ephedripites sp., slide AT-23A, 9050 ft, 19.1/126, (65). 

30. Ephedripites sp., slide AT-21A, 9150 ft, 9.8/134.8, (65). 

31. Ephedripites sp., slide BB-24A, 4840 ft, 16/118.9, (10). 
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PLATE 5 

 

Early Cretaceous spore and pollen grains 

1. Balmeisporites longirimosus Kondinskaya, 1966, slide AT-24A, 9000 ft, 
19.4/138.4, (20). 

2. Crybelosporites brenneri Playford, 1971, slide AT-18A, 9300 ft, 13.1/124.2, (32). 

3. Matonisporites sp., slide AT-18A, 9300 ft, 17.9/116.3, (24). 

4. Leptolepidites psarosus Norris, 1969, slide AT-19A, 9250 ft, 11.7/116.6, (45). 

6. Crybelosporites striatus (Cookson & Dettmann) Dettmann, 1963, slide AT-18A, 
9300 ft, 3.9/128.2, (46). 

7. Gemmatrilites sp., slide AT-20B, 9200 ft, 10.6/132.6, (41). 

8. Triporoletes reticulatus (Pocock) Playford, 1971, slide AT-42A, 8100 ft, 
13.2/132.9, (12). 

9. Gleicheniidites senonicus Ross, 1949, slide AT-32A, 8600 ft, 6.5/142.7, (15). 

10. Murospora sp., slide AT-18, 9300 ft, 19.1/117.6, (48). 

11. Verrucosisproites obscurilaesuratus Pocock, 1962, slide AT-63A, 7050 ft, 
13.8/131.6, (8). 

12, 22. Murospora florida, slide AT-18, 9300 ft, 13.1/140.2, slide AT-49B, 7750 ft, 
16/123.3, (17). 

13. Cicatricosisporites sp., slide AT-18, 9300 ft, 6/139, (7). 

14. Cicatricosisporites sp., slide AT-24A, 9000 ft, 7/127.8, (7).  

15. Cicatricosisporites sp., slide AT-28A, 8800 ft, 4.7/128.2, (7).  

16. Cicatricosisporites sp., slide AT-30A, 8700 ft, 7.6/148.4, (7).  

17. Murospora cf. kosankei Somers, 1952, slide AT-52, 7600 ft, 7.1/116.4, (21). 

18. Gleicheniidites rasilis Bolkhovitina, 1968, slide AT-19B, 9250 ft, 14.3/112, (44). 

19. Matonisporites sp., slide AT-49B, 7750 ft, 15.4/124.5, (24). 

20. Murospora sp.1, slide AT-23A, 9050 ft, 16.8/121.9, (18).  

21. Kyrtomisporis sp., slide AT-24A, 9000 ft, 16.6/130.7, (27). 

 

Fresh water algae 

5. Chomotriletes minor (Kedves) Pocock, 1970, slide AT-18A, 9300 ft, 21/134.3, 
(148). 
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PLATE 6 

 

Late Barremian angiosperm pollen grains 

1, 2. Retimonocolpites ghazalii Ibrahim, 2002, slide AT-16A, 9400 ft, 6.6/140.6, slide 
AT-24A, 9000 ft, 16.2/128, (115). 

3, 4. Retimonocolpites matruhensis-Retimonocolpites ghazalii complex, slide AT-
23B, 9050 ft, 20.3/127.9, slide AT-10A, 9700 ft, 11.5/121.6, (132).  

5, 8. Retimonocolpites matruhensis Penny, 1986, slide AT-16A, 9400 ft, 11/125.8, 
slide AT-24A, 9000 ft, 10/118, (131). 

6, 10. Retimonocolpites bueibensis Ibrahim, 2002, slide AT-6A, 9350 ft, 16.5/137.7, 
slide AT-18A, 9300 ft, 5.6/147.7, (135). 

7. Retimonocolpites variplicatus Schrank & Mahmoud, 1998, slide AT-14A, 9500 ft, 
10.8/122.1, (97). 

9, 12. Retimonocolpites pennyi Schrank & Mahmoud, 2002, slide AT-19A, 9250 ft, 
4.3/137.5, slide AT-16A, 9400 ft, 11.7/122.5, (136). 

11, 13, 17. Dichastopollenites ghazalatensis Ibrahim, 1996, slide AT-21B, 9150 ft, 
21.2/115.5, slide AT-18B, 9300 ft, 7.7/136.5, slide AT-20B, 9200 ft, 14.3/118, (111).  

14, 19. Stellatopollis bituberensis Penny, 1986, slide AT-19B, 9250 ft, 20.5/137, 
(137). 

15, 16. Stellatopollis barghoornii Doyle in Doyle et al., 1976, slide AT-52B, 7600 ft, 
9.3/130.2, slide AT-25B, 8950 ft, 3.3/129.5, (117). 

18. Stellatopollis hughesii Penny, 1986, slide AT-33B, 8550 ft, 4.4/136.8, (129). 
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PLATE 7 

 

Late Barremian angiosperm pollen grains 

1, 3. Stellatopollis hughesii Penny, 1986, slide AT-16A, 9400 ft, 10.6/135, slide AT-
16B, 11.6/137.7, (129). 

2. Stellatopollis barghoornii Doyle in Doyle et al., 1976, slide AT-34A, 8500 ft, 
10.8/118.1, (117).  

4. Retimonocolpites sp.1 Schrank & Mahmoud, 2002, slide AT-14A, 9500 ft, 9/130, 
(139). 

5, 11-18. Afropollis operculatus Doyle et al., 1982, 5, slide AT-37A, 8350 ft, 
3.1/112.7; 11, slide AT-26B, 8900 ft, 13.3/133.1; 12, slide AT-29B, 8750 ft, 
9.2/128.3; 13, slide AT-38A, 8300 ft, 7.2/136; 14, slide AT-36A, 8400 ft,  9.6/137.3; 
15, slide AT-41A, 8150 ft, 15.8/122; 16, slide AT-49B,7750 ft, 11.8/130.5; 17, slide 
AT-40A, 10.1/147.8; 18, slide AT-31A, 8650 ft, 10.4/136.6, (126). 

6, 7. Stellatopollis dejaxii Ibrahim, 2002, slide AT-24A, 9000 ft, 19.1/113.9, slide AT-
19A, 9250 ft, 18.3/113.1, (120). 

8, 9. Tucanopollis annulatus Schrank in Schrank & Mahmoud, 2002, slide AT-23A, 
9050 ft, 16.9/114.9, slide AT-17A, 9350 ft, 16.1/130.7, (133). 

10. Retiacolpites columellatus Schrank in Schrank & Mahmoud, 2002, slide AT-21A, 
9150 ft, 10.2/122.7, (134). 

19. Afropollis aff. zonatus Doyle et al., 1982, slide AT-20B, 9200 ft, 9.3/138.7, (127).  

 

Early Aptian angiosperm pollen grains 

20-22. Afropollis zonatus Doyle et al., 1982, slide AT-20B, 9200 ft, 15.8/134.6, slide 
AT-33A, 8550 ft, 2.5/143.5, slide AT-23A, 9050 ft, 1.9/134.9, (128). 
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PLATE 8 

 

Late Aptian angiosperm pollen grains 

1-4. Afropollis sp. B Doyle et al., 1982, 1, slide AT-16B, 9400 ft, 11.7/122.9 ; 2, slide 
AT-17A, 9350 ft, 15.9/120.7 ; 3, slide AT-24B, 9000 ft, 14.6/131.2 ; 4, slide AT-29A, 
8750 ft, 7.9/145, (130). 

5-9. Afropollis aff. jardinus Doyle et al., 1982, 5, slide AT-39A, 8250 ft, 3.8/128.9; 6,  
slide AT-38A, 8300 ft, 12/124; 7, slide AT-38A, 13/144; 8, slide AT-33A, 8550 ft, 
3.5/130.8; 9, slide AT-16B, 9400 ft, 7.5/143.4, (122). 

 

Albian angiosperm pollen grains 

10-20. Afropollis jardinus Doyle et al., 1982, 10, slide BB-8A, 5220 ft, 17/122.8; 11, 
slide AT-89A, 5750 ft, 9.1/113.4; 12, slide AT-89B, 9.8/122.4; 13, slide BB-8B, 5220 
ft, 16.4/131.9; 14, slide AT-93, 5500 ft, 12.5/119; 15, slide BB-11B, 5180 ft, 
6.4/138.2; 16, slide AT-110A, 4300 ft, 14.6/145.2; 17, slide BB-22A, 4880 ft, 
13.2/117.5; 18, slide BB-22A, 12.3/115.5; 19, slide AT-110A, 4300 ft, 14.6/145.2; 20, 
slide BB-8A, 5220 ft, 5.6/126.4, (92, 15). 
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PLATE 9 

 

Mid Albian elaterate gymnosperm pollen grains 

1, 3. Elaterosporites verrucatus (Jardiné & Magloire) Jardiné, 1967, slide AT-88A, 
5800 ft, 13.7/130.5, slide AT-93A, 5500 ft, 16.5/123.1, (72).  

2, 8. Elaterosporites acuminatus (Stover) Jardiné, 1967, slide AT-93A, 5500 ft, 
18.3/144.5, slide AT-91A, 5600 ft, 17.8/132.2, (73). 

4. Elaterosporites protensus (Stover) Jardiné, 1967, slide AT-90A, 5650 ft, 
6.2/116.2, (74).  

5-7, 9-16. Elaterosporites klaszii (Jardiné & Magloire) Jardiné, 1967, 5, slide AT-
97A, 4950 ft, 18.3/113.8; 6, slide BB-22A, 4880 ft, 5.7/126; 7, slide BB-9A, 5210 ft, 
14.2/130.1; 9, slide BB-8B, 5220 ft, 8.3/120.3; 10, slide BB-8B, 8.3/120.3; 11, slide 
BB-22A, 4880 ft, 4.8/130.8; 12, slide BB-8A, 5220 ft, 9/134.2; 13, slide BB-21B, 
4890 ft, 3.7/137; 14, slide BB-9A, 5210 ft, 11.5/143.1; 15, slide BB-9B, 17.5/119.7; 
16, slide BB-9B, 17.5/119.7,  (66, 9). 

 

Late Albian elaterate gymnosperm pollen grains 

17-21. Sofrepites legouxiae Jardiné, 1967, 17, slide AT-86B, 5900 ft, 9.8/130.2; 18, 
slide AT-93A, 5500 ft, 14.3/132.3; 19, slide AT-93A, 16.7/126.9; 20, slide AT-93A, 
7.5/123.3; 21, slide AT-95A, 5100 ft, 17.5/117.1, (71).    
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PLATE 10 

 

Late Albian elaterate gymnosperm pollen grains 

1-4. Elateroplicites africaensis Herngreen, 1973, slide BB-24A, 4840 ft, 9.6/121.2, 
slide BB-22A, 4880 ft, 13.7/116, slide BB-8A, 5220 ft, 9.6/112.5, slide BB-22A, 4880 
ft, 8.1/119.2 (12).  

5-8. Elaterocolpites castelainii Jardiné & Magloire, 1965, slide BB-22A, 4880 ft, 
11.2/118.4, slide BB-9A, 5210 ft, 13.9/139.9, slide BB-10A, 5200 ft, 14.5/133.5, (11). 

 

Late Albian-Mid Cenomanian pollen grains 

9. Gnetaceaepollenitess  cf. clathratus Stover, 1964, slide AT-83A, 6050 ft, 
16.3/143.3, (75). 

10. Galeacornea causea Stover, 1963, slide AT-84A, 6000 ft, 15.8/145.6, (76).  

11, 12. Foveotricolpites gigantoreticulatus (Jardiné & Magloire) Schrank, 1987a-b, 
slide AT-92A, 5550 ft, 5.6/130.8, slide AT-92A, 13.5/113.5 (92).  

13. Cretacaeiporites densimurus Schrank & Ibrahim, 1995, slide BB-16B, 4980 ft, 
11.4/131.5, (19). 

14. Ephedripites irregularis Herngreen, 1973, slide AT-77B, 6350 ft, 22.7/119.8, 
(78).  

15. Classopollis brasiliensis Herngreen, 1975, slide BB-22A, 4880 ft, 11.6/123.4, 
(14). 

16. Cretacaeiporites polygonalis (Jardiné & Magloire) Herngreen, 1973, AT-94A, 
5150 ft, 15.5/131.7, (108).  

17. Cretacaeiporites mullerii Herngreen, 1973, slide AT-103A, 4650 ft, 5.9/125.3, 
(101). 

18. Afropollis kahramanensis Ibrahim & Schrank 1995, slide AT-88A, 5800, 
12/137.3, (98). 

 



phy and palynozonationChapter V                                                               Palynostratigra 

183 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLATE 10

1

2

3
4

5

6 7 8

9

10
11 12

13 14 17 1815

16



phy and palynozonationChapter V                                                               Palynostratigra 

184 

PLATE 11 

 

Albian-Cenomanian spore and pollen grains 

1. Tetracolpites sp., slide AT-77B, 6350 ft, 19.1/128.1, (123). 

2. Tricolpites sagax Norris, 1967, slide AT-92A, 5550 ft, 18.6/128.9, (114). 

3. Striatopollis cf. trochuensis (Srivastava) Ward, 1986, slide AT-86A, 5900 ft, 
9.8/141.9, (119). 

4. Stephanocolpites sp., slide AT-91A, 5600 ft, 10/122.8, (116).  

5. Rousea sp., slide BB-24A, 4840 ft, 4.5/138, (23). 

6. Tricolpites cf. crassimurus (Groot & Penny) Singh, 1971, slide AT-85A, 5950 ft, 
16.4/120.6, (112). 

7. Rousea delicipollis Srivastava, 1977, slide AT-71A, 6650 ft, 22/134, (100). 

8. Tricolpites micromunus (Groot & Penny) Singh, 1971, slide AT-75A, 6450 ft, 
9.7/142.6, (110).  

9. Tricolpites parvus Stanley, 1965, slide AT-94A, 5150 ft, 13.9/135.8, (107).  

10. Rousea cf. miculipollis Srivastava, 1975, slide-AT-97A, 4950 ft, 11.4/138, (103). 

11. Proteacidites cf. africaensis (Jardiné & Magloire) Schrank & Ibrahim, 1995, slide 
AT-85A, 5950ft, 12.3/141.5, (91). 

12. Tricolporopollenites sp., slide AT-93B, 5500 ft, 3.8/114.5, (99).  

13. Papillopollis vancampoae Kedves & Pittau, 1979, slide AT-104A, 4600 ft, 
4.1/110.7, (96). 

14, 15. Tetraporopollenites  sp., slide AT-86A, 5900 ft, 19/115.9, slide AT-94, 5150 
ft, 9.1/128.2, (95).  

16. Triporopollenites  sp., slide AT-94A, 5150 ft, 8/144.3, (109). 

17. Crybelosporites pannuceus (Brenner) Srivastava, 1977, slide AT-91A, 
14.9/143.5, (2). 

18, 19. Droseridites senonicus Jardiné & Magloire, 1965, slide AT-89A, 5750 ft, 
15.3/122.2, slide AT-77B, 6350 ft, 10.8/126.9, (143). 

20. Droseridites baculites Ibrahim, 1996, slide AT-92A, 5550 ft, 9.8/140, (142). 

21. Rousea brenneri Singh, 1983, slide AT-93A, 5500 ft, 14.3/146, (106). 

22. Cretacaeiporites densimurus Schrank & Ibrahim, 1995, slide AT-95B, 5100 ft, 
20/122.3, (94). 
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PLATE 12 

 

Cretaceous spore and pollen grains 

1, 2. Retimonocolpites sp. 1, slide AT-19B, 9250 ft, 6.9/131.2, (138). 

3, 4. Retiacolpites columellatus Schrank in Schrank & Mahmoud, 2002, slide AT-
19B, 9250 ft, 12.4/126, slide AT-21A, 9150 ft, 10.2/122.7, (134). 

5, 6, 9-12. Retimonocolpites textus (Norris) Singh, 1983, 5 and 6, slide AT-94A, 
5150 ft, 12.4/127.9; 9 and 10, slide AT-89A, 5750 ft, 16/139.3; 11, slide AT-94A, 
5150 ft, 18.5/131.2; 12, slide AT-94A, 18.5/131.2, (105). 

7. Dichastopollenites ghazalatensis Ibrahim, 1996, slide AT-88B, 5800 ft, 3.5/137.2, 
(111).  

8. Tricolpites vulgaris (Pierce) Srivastava, 1969, slide AT-34A, 8500 ft, 10.3/120.5, 
(104). 

13, 14. Retimonocolpites variplicatus Schrank & Mahmoud, 1998, slide BB-24B, 
4840 ft, 13/133.9, slide AT-90A, 5650 ft, 10/129.7, (18, 97).  

15. Rousea sp., slide BB-8B, 5220 ft, 5.1/121.1, (23). 

 

Microforaminiferal test linigs 

16. Biserial microforaminiferal test lining, slide BB-12A, 5170 ft, 12.6/123.9, (226). 

19, 20. Planispiral microforaminiferal test linings, slide BB-13A, 5160 ft, 9.3/140.7, 
slide BB-8A, 5220 ft, 6.3/1337, (226). 

 

Fresh water algae 

17. Fungal fruiting body, slide AT-109B, 4350 ft, 12.5/134.2, (146). 

18. Chomotriletes minor (Kedves) Pocock, 1970, slide AT-42A, 8100 ft, 7.1/145, 
(148). 

21. Botryococcus sp., slide AT-99B, 4850 ft, 8.8/141.9, (147). 
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PLATE 13 

 

Early Cretaceous dinoflagellate cysts 

1, 2. Muderongia aequicorna Århus in Århus et al., 1990, slide AT-4A, 10000 ft, 
17.2/124, slide AT-4A, 13.2/131.9, (216). 

3. Circulodinium brevispinosum (Pocock) Jansonius, 1986, slide AT-12A, 9600 ft, 
20/140.2, (205). 

4. Muderongia pariata Duxbury, 1983, slide AT-4A, 10000 ft, 13.6/115.3, (198). 

5. Muderongia tomaszowensis Alberti, 1961, slide AT-6A, 9900 ft, 7.8/124.7, (203). 

8, 12. Pseudoceratium pelliferum Gocht, 1957, slide AT-7A, 9850 ft, 20.5/128.3, 
slide AT-12A, 9600 ft, 20.6/135, (207).   

9. Circulodinim distinctum (Deflandre & Cookson) Jansonius, 1986, slide AT-5A, 
9950 ft, 9.1/127.2, (173). 

10. Phoberocysta neocomica (Ghocht) Millioud, 1969, slide AT-4A, 10000 ft, 
7.8/128.1, (217).  

 

Acritarchs 

6. Veryhachium reductum (Deunff) Downie & Sarjeant, 1965, slide AT-2A, 10100 ft, 
15.6/124.6, (225). 

7. Veryhachium valiente Cramer, 1964, slide AT-2A, 10100 ft, 9.9/128, (224). 

11. Baltisphaeridium spp., slide AT-2A, 10100 ft, 8.8/130.4, (219). 
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PLATE 14 

 

Late Barremian dinoflagellate cysts 

1-3, 9, 12, 14. Pseudoceratium retusum Brideaux, 1977, 1 ,slide AT-16A, 9400 ft, 
13.7/123.3; 2, slide AT-24A, 9000 ft, 16.5/138.9; 3, slide AT-22A, 9100 ft, 
19.7/139.2; 9, slide AT-21A, 9150 ft, 8.5/137.6; 12, slide AT-25A, 8950 ft, 
14.9/147.8; 14, slide AT-22A, 9100 ft, 11.5/141.2, (190). 

4, 16. Pseudoceratium anaphrissum (Sarjeant) Bint, 1986, slide AT-22A, 9100 ft, 
6.3/136.1, slide AT-27A, 8850 ft, 6.3/136.1, (184).  

5. Odontochitina operculata (Wetzel) Deflandre & Cookson, 1955, AT-19B, 9250 ft, 
6.5/130.2, (151). 

13. Odontochitina ancala Bint, 1986, slide AT-29A, 8750 ft, 3.4/129, (200). 

 

Early Cretaceous dinoflagellate cysts 

6, 10. Subtilisphaera terrula (Davey) Lentin & Williams, 1976, slide AT-31A, 8650 ft, 
5.1/137, slide AT-6A, 9900 ft, 19.2/135.8, (194).  

7, 11. Subtilisphaera perlucida (Alberti) Jain & Millepied, 1973, slide AT-28A, 8800 
ft, 7.9/129, slide AT-22A, 9100 ft, 11.9/131.8, (188). 

8, 15. Subtilisphaera senegalensis Jain & Millepied, 1973, slide AT-28A, 8800 ft, 
16.1/120.6, slide AT-22B, 9100 ft, 4.4/135.6, (182). 
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PLATE 15 

 

Early Aptian dinoflagellate cysts 

1, 2. Pseudoceratium securigerum (Davey & Verdier) Bint, 1986, slide AT-20A, 9200 
ft, 6.8/139.4, slide AT-20B, 10.2/133.6, (185). 

4, 9. Palaeoperidinium cretaceum (Pocock) Lentin & Williams, 1976, slide AT-36A, 
8400 ft, 9/112.4, slide AT-21A, 9150 ft, 113.1/140.7, (187). 

5, 6, 14. Florentinia mantellii (Davey & Williams) Davey & Verdier, 1973, slide AT-
22A, 9100 ft, 10.2/150.1, slide AT-32A, 8600 ft, 4.4/136, slide AT-19A, 9250 ft, 
8.4/122.9, (172). 

13. Florentinia laciniata Davey & Verdier, 1973, slide AT-23A, 9050 ft, 13/136.6, 
(176). 

17. Aptea polymorpha Eisenack, 1958a, slide AT-24A, 9000 ft, 12.8/129.6, (193). 

 

Early Cretaceous dinoflagellate cysts 

3, 7. Subtilisphaera scabrata Jain & Millepied, 1973, slide AT-20A, 9200 ft, 
14.4/144.2 , slide AT-29A, 8750 ft, 6.2/145.7, (192). 

8, 11. Spinifereites sp., slide AT-24A, 9000 ft, 10.4/127.2, slide AT-23A, 9050 ft, 
8.1/142.2, (150). 

10. Cribroperidinium edwardsii (Cookson & Eisenack) Davey, 1969, slide AT-27, 
8850 ft, 17.5/141.2, (181). 

12. Florentinia cooksoniae (Singh) Duxbury, 1980, slide AT-21A, 9150 ft, 
15.4/129.9, (201). 

15. Cyclonephelium vannophorum Davey, 1969, slide AT-12A, 9600 ft, 15.4/128.1, 
(212). 

16. Pseudoceratium almohadense (Below) Lentin & Williams, 1989, slide AT-23A, 
9050 ft, 3.5/142.1, (208). 
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PLATE 16 

 

Cretaceous dinoflagellate cysts 

1. Florentinia berran Below, 1982, slide AT-45A, 7950 ft, 12.2/118.7, (171). 

2, 8. Oligosphaeridium albertense (Pocock) Davey & Williams, 1969, slide AT-25A, 
8950 ft, 6/134.6, slide AT-29A, 8750 ft, 10.1/146.7, (178). 

3. Oligosphaeridium poculum Jain, 1977, slide AT-23B, 9050 ft, 13.1/122.6, (180). 

4, 7. Coronifera albertii Millioud, 1969, slide AT-24A, 9000 ft, 7.6/134.9, slide AT-
97A, 4950 ft, 5.2/118.4, (174). 

5. Downiesphaeridium sp., slide AT-34A, 8500 ft, 6.5/114, (165).  

11, 13. Oligosphaeridium complex (White) Davey & Williams, 1966, slide AT-25A, 
8950 ft, 15.2/142.6, slide AT-22A, 9100 ft, 10.5/138.7, (179).  

12. Oligosphaeridium diluculum Davey, 1982, slide AT-29B, 8750 ft, 9.7/123.9, 
(197). 

 

Acritarchs 

6. Micrhystridium stellatum Deflandre, 1945a, slide AT-37A, 8350 ft, 11.9/140.1, 
(223).   

9. Veryhachium metum Davey, 1970, slide AT-42A, 8100 ft, 6.7/130.8, (222). 

10. Veryhachium collectum Wall, 1965, slide AT-33A, 8550 ft, 3.2/139.1, (221). 
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PLATE 17 

 

Santonian dinoflagellate cyst 

1. Canningia senonica Clarke & Verdier, 1967, slide AT-131B, 3200 ft, 15/122.3, 
(152). 

 

Post-Turonian dinoflagellate cysts 

2, 6, 15. Dinogymnium denticulatum (Alberti) Evitt et al., 1967, slide AT-130A, 3250 
ft, 11.8/136.5, slide AT-130A, 10.7/141.5, slide AT-130B, 12.5/129.4, (162).  

3, 7. Eucladinium gambangense (Cookson & Eisenack) Stover & Evitt, 1978, slide 
AT-130A, 3250 ft, 15.8/128.1, slide AT-130B, 11.7/142, (166). 

4, 13. Isabelidinium acuminatum (Cookson & Eisenack) Stover & Evitt, 1978, slide AT-
131A, 3200 ft, 6.6/1274, slide AT-131B, 14.2/143.8 (163). 

9. Dinogymnium sp., slide AT-130B, 3250 ft, 8.4/144.3, (155).  

10. Dinogymnium sp., slide AT-131B, 3200 ft, 5.7/126, (155). 

12. Chatangiella madura Lentin & Williams, 1976, slide AT-134A, 2950 ft, 6.4/126.2, 
(154). 

14. Exochosphaeridium bifidum (Clarke & Verdier) Clarke et al., 1968, slide AT-
133A, 3100 ft, 22.4/111.2, (153). 

17. Cannosphaeropsis utinensis Wetzel, 1933b, slide AT-117A, 3950 ft, 7.6/132.5, 
(169).  

19. Odontochitina porifera Cookson, 1956, slide AT-133A, 3100 ft, 15.3/138.2, 
(157). 

 

Cretaceous dinoflagellate cysts 

5. Trichodinium castanea Deflandre, 1935, slide AT-116A, 4000 ft, 14.8/112.9, 
(160). 

8. Xiphophoridium alatum (Cookson & Eisenack) Sarjeant, 1966b, slide AT-103B, 
4650 ft, 20.4/142.7, (168).   

11, 18. Senegalinium aenigmaticum (Boltenhagen) Lentin & Williams, 1981, slide 
AT-110A, 4300 ft, 18.3/113.4, slide AT-109A, 4350 ft, 8.2/130.6, (158). 

16. Odontochitina costata Alberti, 1961, slide AT-134A, 2950 ft, 5.5/138.2, (156). 
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6.PALYNOFACIES ANALYSIS AND PALAEOENVIRONMENTAL 

INTERPRETATIONS 

 

6.1 Introduction 

The word palynofacies as defined by Combaz (1964) refers to the total 

complement of acid-resistant particulate organic matter recovered from sediments 

by palynological processing techniques.  

Sedimentary organic matter is defined as biogenic material that is preserved 

in sedimentary rocks.  This organic matter is composed of both (solvent-)insoluble 

materials known as kerogen, and soluble bitumen and oil (Miles, 1994).  Both the 

composition and distribution of organic matter are controlled by ecological conditions 

and sedimentological processes in the depositional environment, while microbial, 

physical and biogeochemical processes in sediments affect its abundance (Tyson, 

1995).   

Combaz (1964) and Caratini et al. (1983) referred to palynofacies analysis 

as the process that involves identification of organic matter constituents, calculating 

their relative and absolute abundances, and determining their size and degree of 

preservation.  Early palynofacies studies were directed towards palaeobotanical and 

palaeoenvironmental studies.  In this sense, a variety of definitions of palynofacies 

were proposed, for example that of Powell et al. (1990), where a palynofacies was 

described as a distinctive assemblage of HCl- and HF insoluble particulate organic 

matter (palynoclasts) whose composition reflects a particular sedimentary 

environment.  However, developments in the field of palynology led to the use of 

palynofacies analysis in visual appraisals of source rocks, and thus added another 

dimension to the concept of palynofacies analysis.  Thus, Tyson (1995, p. 4) 
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introduced the more acceptable and widely used definition of palynofacies as “a 

body of sediment containing a distinctive assemblage of palynological organic 

matter thought to reflect a specific set of environmental conditions or to be 

associated with a characteristic range of hydrocarbon-generating potential”.  

Consequently, Tyson (1995, p. 4) redefined palynofacies analysis as “the 

palynological study of depositional environments and hydrocarbon source rock 

potential based upon the total assemblage of particulate organic matter”.   

Compositional changes in palynofacies are useful in palaeoenvironmental 

interpretations of sedimentary rocks as such changes are the product of the 

interaction of several parameters (e.g. terrestrial versus marine palynomorph influx, 

source and rate of sediment influx, water salinity, depth and oxygen concentrations, 

etc.) within a given depositional environment (Tyson, 1993).   

The nature of ditch cutting samples means that there is always some degree 

of equivocation in the identification of borehole lithologies because of possible 

caving during the drilling process, or due to mixing with other lithologies during 

sample splitting, shipment and final storage, and thus they are not considered here 

as a prime tool of choice for palaeoenvironmental interpretations.  However, by 

examining downhole logs from the studied boreholes and sorting cuttings to isolate 

specific lithologies from ditch cutting samples from specific depth intervals prior to 

palynological processing, it is possible to maximise the quality of information that 

ditch cutting samples can provide.  The palaeoenvironmental interpretations 

presented here will mainly depend on quantitative palynofacies characteristics, 

where the effects of caving and/or lithological mixing can be further assessed by 

investigating the vertical distribution of the palynofacies constituents.   

The palaeoenvironmental interpretations presented for each palynofacies 

type are based on quantitative analyses of selected palynomorph components, 
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which are known to have a palaeoenvironmental significance.  These include 

terrestrially derived palynomorphs such as miospores (which comprise pteridophyte 

spores, saccate, circumpolles, gnetalean and elaterate gymnosperm pollen and 

angiosperm pollen), and aquatic phytoplankton (e.g. dinoflagellate cysts).  In 

addition, there may be terrestrially derived phytoclasts, which can be represented by 

black wood (inertinite/charcoal), brown wood (e.g. tracheids), plant cuticle and 

membranous tissues.  Other minor constituents may include microforaminiferal test 

linings (MTLs) and freshwater algae.  Certain sporomorphs are indicators of specific 

ecological parameters and thus allow not only a robust identification of 

palaeoclimatic conditions but also permit reconstruction of the vegetation growing on 

the source areas.   

Many palynologists have proposed various classifications of palynofacies 

constituents (e.g. Staplin, 1969; Correia, 1971; Burgess, 1974; Bujak et al., 1977; 

Combaz, 1980; Claret et al., 1981; Pocock, 1982; Pocock et al., 1988) in which the 

maceral terminologies employed in reflected light microscopy of coal and 

palynological terminologies used in transmitted light studies have been mixed.  

However, the scheme applied here follows the scheme of Tyson (1993, 1995), 

which provides a detailed palynological classification of thermally immature to 

marginally mature palynofacies constituents based on a pure palynological 

terminology for palaeoenvironmental studies using transmitted light microscopy.  In 

Tyson’s (1995) classification of palynofacies components, palynological organic 

matter constituents can belong to one of two major categories: structureless or 

structured palynological organic matter (Fig. 6.1).   

Structureless organic matter is defined as organic matter that lacks a definite 

internal structure when observed using light microscopy, lacks a distinct and 

recognizable outline, and which does not infer its biological affinity (Tyson, 1995).  
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Structureless organic matter thus includes such materials as amorphous organic 

matter (AOM), resin, and humic gel.   

AOM is an heterogeneous, yellow to grey coloured material that is made of 

amorphous materials with pseudoamorphous inclusions (Fig. 6.1), and is mainly 

produced by biodegradation of algal phytoplankton blooms, derived from 

zooplankton faecal pellets, or derived from biodegradation of cyanobacteria and 

thiobacteria (Tyson, 1995).  AOM is considered to be the major contributing 

component to structureless organic matter in ancient marine and lacustrine 

sediments (Tyson, 1995).  The concentration of AOM has been used to indicate 

oxygenation (reducing or oxidizing) conditions of bottom water in ancient 

sedimentary depositional environments.  The high relative or absolute abundances 

of AOM – usually associated with sediments beneath upwelling water masses – was 

taken to indicate bottom water of low (dysoxic) oxygen concentrations (Davey & 

Rogers, 1975; Tissot & Pelet, 1981; Summerhayes, 1983).  AOM has been found to 

decrease in shallow shelf sediments and increase in a basinward direction, in 

darker-coloured, organic-rich facies with dysoxic-anoxic conditions (e.g. Dow & 

Pearson, 1975; Bujak et al., 1977).   

Resin is a highly resistant, structureless material of yellow, red or orange 

colour that is known in ancient sediments as amber, and is mainly produced by 

coniferous gymnosperms and to a small degree by dicotyledonous angiosperm trees 

(e.g. Tyson, 1995).  Amber has commonly been found to be deposited in ancient 

sediments of deltas (proximal delta front and distributary channels) and river mouths 

(Larsson, 1978; Trofimov, 1979; Parry et al., 1981).  However, due to the lower 

specific gravity of amber (Langenheim, 1965), it can float in seawater of normal 

salinity and thus has been found in estuarine and other coastal areas (Langenheim, 

1965; Larsson, 1978) 
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Figure  6.1 Different palynological structured and unstructured organic matter 
constituents recovered in the present study, scale bar represents 20 micron.    
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Palynofacies constituents of figure 6.1 

 

Terrestrial palynomorphs  

1- A pteridophyte spore grain of Deltoidospora australis (Couper) Pocock, 1970, 
slide AT-12A, 9600 ft. 

2- A schizaeacean spore grain of Cicatricosisporites sp., slide AT-30A, 8700 ft.  

3- A thick-walled, ornamented spore grain of Impardecispora uralensis, 
(Bolkhovitina) Venkatachala et al., 1969, slide AT-3A, 10050 ft.  

4- A sphaeroidal gymnospermous pollen grain of Balmeiopsis limbatus (Balme) 
Archangelsky, 1979, slide AT-1A, 10150 ft.      

5, 6- Xerophytic gymnospermous pollen grains of Ephedripites spp., slide AT-28A, 
8800 ft; slide AT-19B, 9250 ft.  

7- A thermophilous gymnospermous pollen grain of Classopollis classoides Pflug, 
1953, slide AT-6A, 9900 ft. 

8, 9, 14- Ephedroid gymnospermous elaterate pollen grains of Elateroplicites 
africaensis Herngreen, 1973, slide BB-8A, 5220 ft (8), Sofrepites legouxiae Jardiné, 
1967, slide AT-95A, 5100 ft (9), Elaterosporites klaszii (Jardiné & Magloire) Jardiné, 
1967, slide BB-22A, 4880 ft (14).  

10, 11, 16- Freshwater algae, Ovoidites parvus, (Cookson & Dettmann) Nakoman, 
1966, slide AT-16A, 9400 ft (10), Chomotriletes minor (Kedves) Pocock, 1970, slide 
AT-18A, 9300 ft (11), Botryococcus sp., slide AT-99B, 4850 ft (16). 

12, 13- Planispiral, BB-13A, 5160 ft (12) and Biserial, slide BB-12A, 5170 ft (13) 
microforaminiferal test linings. 

15- An angiospermous pollen grain of Afropollis jardinus Doyle et al., 1982, slide AT-
89A, 5750 ft,    

 

Structured and unstructured terrestrial plant debris 

17- A structured phytoclast of probably gymnospermous plant, composed of one 
gymnosperm tracheid showing bordered pits arranged in one serial offset, slide AT-
19B, 9250 ft.   

18- An opaque lath-shaped phytoclast (black wood) with sharp angular outline, slide 
AT-7B, 9850 ft.  

19- An amorphous organic matter particle (AOM), slide BB-107A, 4450 ft.   

20- A cuticular phytoclast showing regular rectangular cell outlines of probably 
gymnospermous origin, slide AT-18A, 9300 ft.   

21- A structured phytoclast showing fibrous parallel structure, slide 19B, 9250 ft. 

22- A membranous tissue, slide AT-20A, 9200 ft. 



onmental InterpretationsChapter VI                                     Palynofacies and Palaeoenvir 

204 

24- A resin particle, slide AT-18A, 9300 ft. 

25- A structured thick cuticular sheet of probably gymnospermous origin, slide AT-
3A, 10050 ft. 

 

Marine palynomorphs 

23- A shallow marine (brackish) cavate peridinioid cyst of Subtilisphaera terrula 
(Davey) Lentin & Williams, 1976, slide AT-28A, 8800 ft. 

26- A shallow marine (brackish) ceratoid proximate cyst of Cyclonephelium 
vannophorum Davey, 1969, slide AT-12A, 9600 ft. 

27- A shallow marine (brackish) ceratoid proximate cyst of Pseudoceratium 
securigerum (Davey & Verdier) Bint, 1986, slide AT-20B. 

28- An open marine gonyaulacoid chorate cyst of Florentinia mantellii (Davey & 
Williams) Davey & Verdier, 1973, slide AT-22A, 9100 ft. 

29- An open marine gonyaulacoid chorate cyst of Oligosphaeridium complex (White) 
Davey & Williams, 1966, slide AT-25A, 8950 ft. 
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Humic gels are produced by biodegradation of the root and bark tissues of 

land plants, where these tissues were originally released from the plant roots and 

bark by destructive oxidation.  Humic gels are considered as insignificant 

contributors to AOM in ancient marine sediments (Tyson, 1995).   

Structured organic matter as defined by Tyson (1995) is made of discrete 

and recognizable individuals or colonial entities (i.e. palynomorphs) and plant or 

animal fragments (i.e. phytoclasts, zooclasts) that demonstrate their biological 

affinities.  Palynomorphs can usually be assigned botanical or zoological affinities, 

whereas phytoclast particles with coherent, angular to irregular outlines that may 

show some internal structures can be attributed at least to a type of larger plant (i.e. 

phytoclasts) or animal (i.e. zooclasts) debris.   

Phytoclasts are produced by land plants, and are represented by both 

opaque particles of generally equidimensional or elongate (lath-like) shapes (e.g. 

oxidised or carbonised wood tissues), and by partly translucent (at least at particle 

edges) particles of generally thin, tubular (e.g. fungal hyphae), elongate (e.g. wood 

tracheids), or sheet-like (e.g. cuticles) shapes with definitive biostructures.  

Translucent particles of irregular (e.g. degraded phytoclasts), massive angular (e.g. 

gelified phytoclasts), square (e.g. wood tissues), elongate (e.g. seaweed/seagrass 

or wood tracheid bands), or sheet-like (e.g. non-cellular, probably cuticles) shapes, 

with or without definitive biostructures, are also members of the phytoclast group.   

Wood tracheids are one of the most common members of the biostructured 

translucent phytoclasts.  Their high relative and absolute abundances in ancient 

marine sediments are known to indicate strong terrestrial influx, with deposition in 

nearshore proximal settings (e.g. fluvio-deltaic systems) that were close to the 

parent land plants (Müller, 1959; Pocklington & Leonard, 1979).  Hydrodynamic 

equivalence of woody phytoclasts controls their distribution in sediments, as 
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woodyphytoclasts are made of relatively large and dense particles, their high 

concentrations have commonly been found to correlate to coarse silts and very fine 

sands (Habib, 1983; Firth, 1993; Tyson, 1993).   

Black (opaque) wood concentrations in ancient sediments have also been 

found to be of great palaeoenvironmental significance, and they have been found to 

reflect deposition polarity (onshore-offshore location), distance of sediment 

transport, and oxygenation level of host sediments.  High percentages of black wood 

fragments have been documented from ancient high energy, proximal, coarse-

grained sediments of fluvial and delta-top systems (Fisher, 1980; Nagy et al., 1984; 

Smyth et al., 1992; Williams, 1992).  This was taken to indicate deposition of 

originally translucent woody particles in oxidising environments, where in situ post-

depositional oxidation was prevailing due to strong fluctuating water levels (e.g. 

Tyson, 1993, 1995).  Hydrodynamic equivalence of black wood has been found to 

be controlled by particle size rather than its shape (Tyson, 1995), where large, lath-

shaped particles have been found to increase in proximal, relatively high energy silt 

and sand lithologies (e.g. Van der Zwan, 1990; Baird, 1992).  A general offshore 

decrease in the particle size of black wood has been recorded, for example by  

Habib (1982), Barnard & Cooper (1981), Caratini et al. (1983), and Gorin & Monteil 

(1990).  Tyson (1995) attributed this phenomenon of offshore particle size decrease 

to fragmentation of large black wood particles during long-distance transport, which 

is also associated with a general offshore decline in black wood concentrations.   

Cuticles are mainly derived from leaves of higher plants, where they 

constitute the outermost part of the epidermal layer of these plants (e.g. Tyson, 

1995).  High percentages of cuticles have commonly been documented from low 

energy, onshore fluvio-deltaic and lacustrine palaeoenvironments (e.g. Batten, 1973; 

Parry et al., 1981; Nagy et al., 1984; Smyth et al., 1992).   
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Membranous tissues are another type of structured plant debris that are 

derived from the collenchyma and parenchyma of the non-epidermal, non-lignified 

tissues.  These tissues are of delicate structure and made of readily degradable 

cellulosic material (e.g. Tyson, 1995), and when oxic conditions prevail they tend to 

degrade three times faster than more durable lignified woods (e.g. Stout et al., 

1981).  Their high concentrations have been found commonly in non-marine and 

proximal deltaic facies and become rare in an offshore direction (e.g. Tyson, 1995).  

Therefore, their common proportions are taken to indicate high rates of 

sedimentation, where strong terrestrial organic matter influx is high enough to dilute 

sediments and remove these fragile membranous tissues form oxic sediments water 

interface.   

Palynomorphs are represented by terrestrial palynomorphs (spores, pollen 

grains - collectively known as sporomorphs- , and fungal spores), marine 

phytoplankton (dinoflagellate cysts, acritarchs, and prasinophyte and 

chlorococcalean algae), and zooplankton (inner linings of microforaminifera, 

chitinozoa, and scolecodonts).   

Spores are reproductive structures produced asexually or sexually by 

cryptogams (plants and fungi which do not reproduce by seed: Jackson, 1928).  The 

hydrodynamic equivalence of spores has been found to be controlled by spore 

sizes, where high proportions of ornamented, thick-walled, more dense spores have 

been found to concentrate in proximal high energy nearshore settings and decrease 

away from the source land in comparison to smooth, thin-walled, less dense spores 

(e.g. Reyre, 1973; Lund & Pedersen, 1985; Mutterlose & Harding, 1987; Tyson, 

1989; Dybkjaer, 1991).  Relatively higher abundances of spores compared to 

saccate pollen grains in ancient environments have been considered as a good tool 

to indicate proximity to fluvio-deltaic systems.  This is because spores are known to 
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be produced in lower abundances and tend show lower transport efficiency in 

comparison with saccate pollen grains (e.g. Reyre, 1973; Habib, 1979; Mutterlose & 

Harding, 1987; Prauss, 1989; Tyson, 1989).  Pteridophyte spores are known to 

thrive in warm humid low lands (e.g. riversides and costal areas: Pelzer et al., 1992; 

Abbink et al., 2004) and therefore high abundances of pteridophyte spores (e.g. 

Deltoidospora, Concavissimisporites, and Impardecispora) have been suggested as 

a proxy for humid conditions (e.g. Abbink et al., 2004; Bornemann et al., 2005).   

Pollen is another reproductive porpagule produced by vascular, non-

flowering gymnospermous plants during their life cycles (Traverse, 2007).  This type 

of pollen can take many forms: the sphaeroidal grains (e.g. Araucariacites), which 

are considered as some of the most buoyant members of the sporomorph group.  

The relative abundances of the circumpolles Classopollis has been documented to 

increase in a basinward direction (e.g. Hughes & Moody-Stuart, 1967; Habib, 1979), 

and thus suggested as an indicator of relative proximity to fluvio-deltaic systems 

(Tyson, 1984; 1993; 1995).  The gymnospermous pollen Classopollis is known to 

been produced by thermophilous and drought-resistant Cheirolepidiacean conifers 

and thus provides a valuable proxy indicator for palaeoclimatic conditions.  The 

gymnospermous gnetalean pollen Ephedripites is another xerophytic genus.  A 

great similarity between the pollen produced by the modern xerophytic gnetalean 

plants Ephedra and Welwitschia and the fossil Ephedripites pollen has been 

recognised (Trevisan, 1980).  The xeromorphic nature of contemporary gnetalean 

plants has been also supported by Crane’s (1988, 1996) findings of the related 

macrofossils Drewira and Eoanthus.   

Angiosperm pollen grains are also reproductive plant structures that are 

sexually produced by vascular, enclosed seed-generating, flowering plants during 

their life cycles (Armstrong & Brasier, 2005).  Lower abundances of the angiosperm 
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pollen Afropollis of possible Winteraceaen affinity have been recorded from warm 

and dry intracontinental basins (e.g. Doyle et al., 1982).  However, higher 

abundances of Afropollis have been interpreted by Doyle et al. (1982) and Schrank 

(2001) to indicate humid coastal conditions, habitats in which the Afropollis-

producing plants flourished and to which they were better adapted.  

In ancient environments sporomorph absolute abundances have been found 

to decrease exponentially in an offshore trend (e.g. Paproth & Streel, 1970; Reyre, 

1973; Habib, 1982, 1983; Habib & Drugg, 1983).  Size of miospores has been found 

to have an effect on their distribution in marine sediments, where high percentages 

of miospores of > 50 µm have been found to correlate with fine sands, whereas 

those with sizes < 30 µm correlate with medium silts (e.g. Hughes & Moody-Stuart, 

1967; Batten, 1974).  Tyson (1995) suggested that there is some correlation 

between high abundances of miospores commonly found in fluvio-deltaic systems 

with the sand and silt lithologies typically found in such systems.   

Dinoflagellate cysts are usually organic-walled, fossilised bodies that are 

made of relatively resistant ‘dinosporin’ that are produced by unicellular algae during 

the non-motile resting (sexual) stage of their life cycle, and are documented in the 

geologic record from the late Triassic to the present day (Evitt, 1985).  Most of the 

data on the absolute abundances of dinoflagellates comes from studies of recent 

sediments, where high dinoflagellate cyst concentrations have been found to show 

offshore increases to the continental slope, where with increased water depth they 

begin to decline (e.g. Balch et al., 1983; De Vernal & Giroux, 1991).  The work of 

Davey (1970) on Cenomanian sediments of England, northern France, and North 

America also documented the same shelfal trend of an offshore increase in 

concentration of dinoflagellate cysts offshore.  The ratio of dinocysts:sporomorphs 

(also known as the marine influx index, or the marine:continental ratio) has been 
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used to indicate transgressive-regressive trends in ancient sediments (Habib, 1979; 

Mutterlose & Harding, 1987; Lister & Batten, 1988; Prauss, 1989).  The diversity (in 

terms of numbers of species) of dinoflagellate cysts is also of environmental 

significance, where dinoflagellate assemblages of high diversity and low dominance 

have been found to increase in more offshore shelfal settings of normal marine 

salinity (e.g. Goodman, 1979; Mutterlose & Harding, 1987; Lister & Batten, 1988; 

Habib et al., 1992).  Low diversity, high dominance assemblages of dinocysts have 

conversely been taken to indicate restricted, brackish water conditions, as the 

dinocyst species diversity is much less in water of below normal salinity (Batten, 

1983; Leckie & Singh, 1991).  High dinoflagellate cyst diversity has been found to 

correlate with high stands of global sea level (Bujak & Williams, 1979; Goodman, 

1987).  Certain morphotypes of dinoflagellate cysts have been shown to have 

palaeoenvironmental importance.  High abundances of cavate peridinioid (e.g. 

Subtilisphaera) and proximate ceratoid (e.g. Pseudoceratium, Aptea, and 

Muderongia) taxa are known to characterise marginal marine (brackish to coastal) 

conditions (Davey, 1970; Piasecki, 1984; Harding, 1986b; Lister & Batten, 1988), 

while high abundances of chorate gonyaulacoid (e.g. Oligosphaeridium and 

Florentinia) cysts indicate open marine (middle shelf) environments (Dale, 1983; 

Lister & Batten, 1988).   

Acritarchs are hollow, organic-walled, eukaryotic unicells of unknown 

biological affinities, which range from the mid-Precambrian to pre-Quaternary 

(Armstrong & Brasier, 2005).  High relative abundances of acritarchs have been 

found to correlate with shallow marginal marine settings of mainly brackish water 

environments in the Mesozoic (Davey, 1970; Downie et al., 1971; Burger, 1980; 

Schrank, 1984a-a; Prauss, 1989).    
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Prasinophyte algae are a group of non-cellulosic, green, flagellate algae, 

which have a geological range from the Ordovician to Recent (Armstrong & Brasier, 

2005).  The presence of fossilised structures (phycomata) of prasinophyte algae has 

been found to be associated with shelfal and oceanic settings with organic-rich 

sediments deposited in dysoxic-anoxic conditions (Tyson, 1984, 1989).   

Chlorococcalean algae are freshwater green algae that live in colonial 

structures, and are represented by the two most common genera Botryococcus 

(Devonian to Recent) and Pediastrum (early Cretaceous to Recent).  The presence 

of Botryococcus and/or Pediastrum in the sedimentary record is associated with the 

formation of high quality oil source rocks (Cane, 1976; Hutton, 1988).  Fresh to 

brackish water conditions can be inferred from the presence of Botryococcus, as it 

has been recorded from ancient lacustrine, fluvial, lagoonal, and deltaic/nearshore 

marine sediments (Piasecki, 1986; Riding et al., 1991; Williams, 1992; Batten, 

1998).  Pediastrum has also been found with high abundances in low salinity lakes 

and also transported by fluvial systems into nearshore shelfal situations (Singh et 

al., 1981; Hutton, 1988).  Ovoidites and Chomotriletes are other freshwater algae, 

when present in sediments are taken to indicate stressed environments of below 

normal salinity (Lister & Batten, 1988; Batten, 1999). 

Microforaminiferal test linings are the inner chitinous linings produced by 

single-celled, benthic foraminifera to enclose their cytoplasmic soft tissue (De Vernal 

et al., 1992; Tyson, 1995).  The relative abundances of microforaminiferal test 

linings can be used to indicate depositional settings under normal marine conditions 

(Schrank, 1984a-a; Lister & Batten, 1988; Stancliffe, 1989).  
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6.2 Methodology 

6.2.1 Quantitative palynological analyses   

The palaeoenvironmental interpretations in the following section have been 

based on an analysis of the absolute abundance data of different particulate organic 

matter (POM) constituents from the Abu Tunis 1x and BB80-1 boreholes in 

preference to relative abundance data.  Relative abundance data is, by definition, 

hampered by data closure problems: when one variable increases the other 

variables decrease, making naturally independent variables artificially dependent on 

each other, and providing negative correlations between variables in a community 

analysis.   

The absolute abundances (grains/g) of palynomorphs and phytoclasts have 

been categorized in terms of very rare (1-10 x102), rare (11-30 x102), present (31-60 

x102), common (61-100 x102), frequent (101-150 x102), abundant (151-200 x102), 

very abundant (200-250 x102), and extremely abundant (>250 x102).  Different 

counted palynofacies constituents are shown in Appendix 2.  A second, independent 

count of the absolute abundances of the dinoflagellate cysts from the Abu Tunis 1x 

borehole was made in addition to palynofacies analysis, in order to counter the 

dilution effect of the extremely abundant terrestrial POM (i.e. sporomorphs and plant 

debris) in those samples, and to allow determination of the species diversity of the 

dinoflagellate cyst assemblages.  In order to determine how many specimens of 

dinoflagellate cysts needed to be counted to provide a representative indication of 

species diversity, counts were made firstly of 50 and then of 100 specimens from a 

single sample.  The count of 50 individuals was found to be both representative and 

practical, firstly as such numbers of individuals could be obtained from 

dinoflagellate-poor as well as from dinoflagellate-rich samples, and secondly was 

enough to register all species present in these relatively low diversity samples.  
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Samples that yielded <10 individual dinocyst specimens after scanning two 

microscope slides per sample were deemed effectively barren and thus not included 

in further interpretations.   

The counts of the three main cyst morphotypes (proximate, cavate, chorate) 

of the dinoflagellate cyst assemblages were also recorded, and the dinoflagellate 

cyst species diversity was measured using the Simpson’s diversity index (1-λ') as 

follows:   

1-λ' = 1- {∑i  Ni (Ni -1)/N (N -1)}    (4) 

Where; 

1-λ' = Simpson’s diversity index 

Ni = number of individuals of species i in a sample  

N = total number of individuals of all species in a sample  

 

Simpson’s diversity index (Simpson, 1949) has been used here because it 

takes into consideration both species richness and evenness, but moreover it is 

independent of the total count of the number of individuals, and thus it can be 

compared between samples from which different numbers of individuals have been 

counted.  This is not the case with other measures of diversity, such as Shannon’s 

diversity index, Margalef’s index, and Brillouin’s index (Clarke & Warwick, 2001).   

The dinoflagellate cyst assemblages in the borehole BB80-1 were uniformly 

of very low concentrations, save for one sample, and were thus not suitable for 

independent dinoflagellate cyst counts.  Absolute abundances of dinocysts from this 

borehole have thus been used from the main palynofacies (POM) count instead.   
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6.2.2 Cluster analysis 

Absolute abundances of selected POM constituents (as described above) 

were used in an agglomerative cluster analysis to group samples having 

palynofacies of similar composition and abundance.  The Bray-Curtis similarity 

coefficient (Bray & Curtis, 1957) was chosen over other forms of correlation (e.g. 

Pearson’s product momentum r, Spearman’s rank rs) to assess similarity between 

the samples, because unlike other correlation coefficients, it takes into consideration 

changes in the abundances of the sample components (Etter, 1999).  This is an 

important criterion in palaeoenvironemental interpretations.  The Bray-Curtis 

similarity coefficient also has an advantage over other similarity coefficients as it 

yields zero similarity when two samples have completely different POM constituents, 

something which most similarity coefficients cannot do (Clark & Warwick, 2001).   

It should be borne in mind that the clustering of the studied samples provides 

here an approximation of the original similarity between the different samples, and 

this is may be related to several factors.  One of which is the stratigraphical position 

of the samples. This slightly biases the cluster analysis, as samples from very far 

stratigraphical positions would be clustered in different sets based on the 

occurrence of species of short stratigraphic range.  The taphonomic processes 

could have also played a role in changing the original biological composition of the 

samples through the decay of some of the organic matter (Bennington & Bambach, 

1996).  Finally, sedimentary samples are the consequence of the time-average of 

accumulations during thousands of years. So, changes in the environmental 

conditions during that time would be also expected to alter the organic matter 

composition of sediments (Kidwell & Bosence, 1991). 
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A mild square root (√) transformation of the original absolute abundance data 

was made before clustering with PRIMER v6 software of Clarke & Gorley (2006) in 

order to down-weight very abundant POM constituents and allow the less common 

POM groups to contribute more meaningfully to the similarity analysis.  The clusters 

of each resultant palynofacies type was identified at about 72-75 % similarity levels 

(Fig. 6.2) according to Tyson’s (1995) definition of palynofacies which is only based 

on the proportional distribution of the POM with no consideration to the sequence’s 

lithologies.  At higher levels of similarity (between 78-83 %), palynofacies sub-types 

were also identified within two of the palynofacies types.  These sub-palynofacies 

were found to largely be controlled by lithological type.  

 

6.2.3 Palynological ternary plots 

A. Ternary palynomorph plot and depositional environments 

Federova (1977) and Duringer & Doubinger (1985) have used plots of 

spores, pollen, and microplankton in a ternary diagram to indicate general 

depositional environments and associated regressive-transgressive trends.  In 

recent work (e.g. Ibrahim, 2002b; Quattrocchio et al., 2006) carried out on 

Cretaceous sediments, the interpreted depositional environments and trends in 

marine deposition have been demonstrated by using the ternary palynomorph plot.  

Consequently, this ternary is considered here as a useful tool in help recognising 

and indicating the possible depositional environments and changes in trends of 

marine sedimentation (Fig. 6.3).       
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B. Ternary kerogen plots and oxygenation conditions 

Tyson (1985, 1995) developed a ternary kerogen plot comprising the kerogen 

constituents AOM, phytoclasts and palynomorphs.  Tyson (1995, p. 442) based his 

ternary plot on Late Jurassic sediments and other Mesozoic-Cenozoic rocks, and 

found that palynological kerogen of similar composition and palaeoenvironmental 

settings (from different geologic times) tends to occupy the same area in the ternary 

plot (Fig. 6.4).  The resultant palynofacies plots indicating “relative proximity to 

terrestrial organic matter sources, kerogen transport paths, and the redox status of 

the depositional environments that control AOM preservation” (Tab. 6.1).  This plot 

can also be used to determine oxic-anoxic conditions (Al-Ameri et al., 1999; Mustafa 

& Tyson, 2002; Al-Ameri et al., 2009), confirmed by comparing results with other 

physical parameters which assess the degree of preservation of AOM and hence, 

determine the oxygenation conditions of the depositional environment (e.g. Mustafa 

& Tyson, 2002; Al-Ameri et al., 2009).   
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Figure  6.3 Ternary plot of spores, pollen and microplankton of Federava 
(1977) and Duringer & Doubinger (1985). 
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Figure  6.4 Ternary kerogen diagram of Tyson, 1995.      

Spores:

Bisaccate

II Marginal 
dysoxic-
anoxic 
basin

AOM diluted by high phytoclast input, but AOM preservation 
moderates to good. Amount of marine TOC dependent on basin 
redox state. Generally low AOM preservation.

High Very low III (gas prone)

III Heterolithic 
oxic shelf 
("proximal 
shelf")

Absolute phytoclast abundance dependent on actual proximity to 
fluvio-deltaic sources. Oxidation and reworking common. 

High Common to 
abundant dinocysts 
dominant

III or IV (gas 
prone)

IV Shelf to 
basin 
transition

Passage from shelf to basin in time (i.e. increased 
subsidence/water depth) or space (e.g. basin slope). Absolute 
phytoclast abundance depends on proximity to source and 
degree of redeposition. Amount of marine TOC depends on basin 
redox state. Iva dysoxic-suboxic, IVb suboxic-anoxic. 

Moderate to 
high

Very low-low III or II (mainly gas 
prone)

V Mud- 
dominated 
oxic (distal) 
shelf 

Low to moderate AOM (usually degraded). Palynomorphs 
abundant. Light coloured biotrubated, calcareous mudstone are 
typical.   

Usually low Common to 
abundant  dinocysts 
dominant

III > IV (gas prone)

VI Proximal 
suboxic-
anoxic 
shelf.

High AOM preservation due to reducing basin conditions. 
Absolute phytoclast content may be moderate to high due to 
turbiditic input and/or general proximity to source.  

Variable low 
to moderate 

Low to common 
dinocysts dominant

II (oil prone)

VII Distal 
dysoxic-
anoxic 
"shelf".

Moderate to good AOM preservation, low to moderate 
palynomorphs. Dark-coloured slightly biotrubated mudstones are 
typical.  

Low Moderate to 
common dinocysts 
dominant

II (oil prone)

VIII Distal 
dysoxic-
anoxic 
shelf.

AOM-dominante assemblage, excellent AOM preservation. Low 
to moderate palynomorphs (partly due to masking). Typical of 
organic-rich shales deposited under stratified shelf sea conditions

Low Low to moderate 
dinocysts dominant, 
% prasinophytes 
increasing

II >> I (oil prone)

IX Distal 
suboxic-
anoxic 
basin.

AOM-dominant assemblages. Low abundances of palynomorphs 
partly due to masking. Frequently alginate-rich. Deep basin or 
stratified shelf sea deposits, especially sediments starved basins. 

Low Generally low, 
prasinophyte often 
dominant 

II ≥ I (highly oil 
prone)

III (gas prone)

Palynofacies

field and 

environment

Comments Microplankton Kerogen type

I Highly 
proximal 
dysoxic-
anoxic 
basin

High phytoclast supply dilutes all other components Usually high Very low 

Table  6.1 Key to marine palynofacies fields defined in the ternary kerogen 
diagram of Tyson, 1995.      
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6.2.4 Wireline geophysical data 

A. Resistivity data profile  

The resistivity profile is a tool that can be used to help in identifying 

lithologies and in recording changes in sedimentary facies.  Resistivity of sediments 

is a function of sediment porosity, when sediments porosity increases the sediments 

resistivity decrease logarithmically, and thus resistivity data registers changes in 

quartz proportions in a sand-shale mixture, as sandy sediments are more porous 

than shaly-sands and siltstones (Rider, 1986).  Resistivity values change with 

changes in the porosity of lithologies: for example, porous sandstone containing 

salty formation water is of low resistivity, as salty water functions as an electrolyte 

which is a good conducting medium for electricity.  Formations with porous 

lithologies and which contain hydrocarbons show high resistivity values.  Despite the 

fact that shales are of very low porosity, they tend to show moderate resistivity.  This 

is because some shales can conduct electricity via pore water, and also by shale-

forming clay minerals, where these clay minerals generate ions on their surfaces, 

which are surrounded by formation water containing free ions.   

B. Self-potential (SP) log  

The self-potential is another tool that measures electric properties of 

sediments.  Self-potential measures the differences of natural potential between an 

electrode in the borehole and a reference electrode at the surface, where no artificial 

current is applied (Rider, 1986).  Self-potential can be used in several geological 

investigations, such as calculating formation-water resistivity, but is also used to 

indicate facies permeability, shale volumes, and changes in rock types (Rider, 

1986).  The self-potential does not deal with absolute value, as its profile moves 

between a predefined zero line. This zero line (also called shale base line) is defined 
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using a thick shale interval at which self-potential does not move.  Maximum self-

potential reading correlates with a permeable water-bearing formation with no shale, 

and thus detects changes in the sedimentary facies as it moves with changes in 

sand:shale volumes (Rider, 1986).  Despite the fact that, there are some limitations 

that could hamper SP log interpretations (e.g. the measured bed is not thick enough 

to register or the presence of hydrocarbons), the SP log is regarded as a useful aid 

for determining rock types (Rider, 1986).  

C. Gamma ray data  

Gamma ray data in contrast registers the shale (clay) content of formations, 

where it measures the radioactivity of elements such as uranium, thorium, and 

potassium that are usually contained within minerals and organic matter, where 

porous clean sandstone and siltstone lithologies lack these radioactive elements.  

Therefore, higher gamma ray values mean higher shale volumes (Rider, 1986).  

Gamma ray logs are also good tools for detecting changes in sediment grain size 

and thus changes in lithological facies.  Rider (1986) explained this as due to the 

fact that coarse-grained sands tend to have very low shale volumes, medium-

grained sands tend to have some shale volume, whereas fine-grained sands tend to 

be more shale-rich.   

As shown above, gamma ray data is considered a valuable tool in identifying 

lithological and thus sedimentary facies changes, and this technique will be used 

here for the BB80-1 borehole.  Resistivity data is a good tool for identifying 

hydrocarbon shows in sediments, and in identifying borehole lithologies when 

hydrocarbons are absent.  Resistivity and spontaneous potential were the only 

geophysical data available for studying the Abu Tunis 1x borehole, and as the Abu 

Tunis 1x is a dry borehole, it can be assumed that the resistivity data can be safely 

used to interpret the lithology of the borehole successions.   
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A framework for the following palaeoenvironmental interpretations has been 

made by integrating quantitative palynological data with the sedimentological 

characters identified herein from the geophysical data, and the original lithological 

descriptions provided by the operating company (based on geophysical logs and 

cuttings).  
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6.3 The Abu Tunis 1x borehole palaeoenvironments  

6.3.1 Palynofacies PF-1A 

Assemblage PF-1A (samples 1-14, spanning 10150-9500 ft) show strong 

terrestrial influence (Fig. 6.5), which is reflected here in frequent phytoclast (~ 

15,000 particles/g) and present sporomorph (~ 5,000 grains/g) concentration, while 

marine palynomorphs are represented by rare dinoflagellate cyst (~ 1,250 cysts/g) 

and MTLs that are found only in Sample 1 in very low concentrations (~ 600 

grains/g; Fig. 6.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.5 PF-1A dominated by terrestrially derived organic matter 
(sporomorphs and phytoclasts), sample 11b (9650 ft) at x250 magnification, the 
Abu Tunis 1x borehole, northern Western Desert, Egypt. 
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Acritarchs are another marine phytoplankton that are found in Sample 2 in a 

very rare (25 grains/g) concentration.   

The phytoclasts are dominated by extremely abundant tracheids (~ 39,200 

particles/g) and abundant black wood (~ 18,000 particles/g) proportions. Cuticle 

fragments score here (~ 2,300 particles/g), with membranous tissues (~ 500 

particles/g) of subordinate concentrations.  The miospore assemblages are 

dominated by frequent pteridophyte spores (~ 11,300 grains/g), whilst low 

concentrations (~ 1,150 grains/g) of the xerophytic gymnosperm pollen Classopollis 

represent the second major component of the sporomorphs.  Gymnosperm pollen 

are also represented here by very low concentrations (~ 200 grains/g) of 

araucariacean pollen (Araucariacites and Balmeiopsis) and Exesipollenites.  Other 

terrestrial palynomorph components that are recorded in PF-1A but with very minor 

occurrences (avg < 50 grains/g) are the freshwater algae Ovoidites and 

Chomotriletes.  Dinoflagellate cysts are of rare (~ 1,250 cysts/g) abundances but 

with high diversity (~ 0.78) and are represented by nearly equal proportions of 

cavate (~ 550 cysts/g) and proximate (~ 600 cysts/g) forms, and with very low (~ 80 

cysts/g) chorate cyst concentrations (Fig. 6.8).  Cavate cysts are mainly represented 

by Subtilisphaera and the low salinity genus Muderongia, while proximate cysts are 

mainly composed of Cribroperidinium and Circulodinium, with Oligosphaeridium 

genus mainly representing the chorate cysts community. 

 

Lithology and changes in sedimentary facies of PF-1A 

The changes in the self-potential profile are regarded here as a useful tool, 

which indicates changes in sand:shale volumes in samples of PF-1A.  The resistivity 

data profile recorded against samples of the lower part of the Abu Tunis 1x borehole 
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and is equated here to PF-1A are masked by other controlling factors as discussed 

below and thus cannot be used here to interpret lithologies of PF-1A. 

As it has been mentioned before, resistivity data can be useful in interpreting 

clastic lithologies given the fact that there are no hydrocarbon accumulations within 

the investigated sediments.  The clastic sediments that are porous contain fresh 

formation waters, or made of tight sands could also result in bias in the lithology 

interpretations.  Therefore, such an interpretation for PF-1A sedimentary sequence 

will be based here on self-potential data and the original description in the borehole 

log provided by the drilling company, in addition to the visual interpretation made on 

ditch cutting samples.  

Self-potential readings indicate changes in the sedimentary facies of PF-1A, 

which are reflected in the development of several small scale sedimentary cycles 

that exhibiting coarsening upward sequences (Fig. 6.7).  By integrating the available 

data (i.e. self-potential, original log description, and cuttings interpretations), the 

sedimentary sequence of PF-1A can be described as made of light grey to green 

shales with some black carbonaceous material and pyrite.  These shale beds are 

intercalated with thin streaks of poorly sorted sandstones and a very few dolomite 

layers.  
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Figure  6.7 Lithological column, spontaneous potential, resistivity data (after 
WEPCO, 1968) and the interpreted sedimentary cycles of the Abu Tunis 1x 
borehole, northern Western Desert, Egypt. 
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Suggested depositional environment of PF-1A: deltaic (delta-top to delta-front)  

The dinoflagellate cysts found within the sediments of PF-1A show low 

abundances and dominance but with high diversity.  This could in part suggest 

deposition of sedimentary facies of PF-1A in waters of normal marine conditions, as 

high diversities of dinoflagellate cysts species were taken to indicate offshore marine 

settings of normal marine salinity (e.g. Goodman, 1979, Mutterlose & Harding, 1987; 

Lister & Batten, 1988; Habib et al., 1992).  However, the dominance of cavate 

peridinioid and proximate ceratoid cysts, which are collectively characteristic of 

restricted (brackish-costal) marine conditions (e.g. Davey, 1970; Piasecki, 1984; 

Harding, 1986; Lister & Batten, 1988) over the chorate gonyaulacoid cysts 

characteristic of middle shelf open marine conditions (e.g. Lister & Batten, 1988), 

indicates stressed marine environments of below normal salinity.  The presence of 

the genus Muderongia in sediments of PF-1A, which is well known to tolerate low 

salinity conditions (e.g. Piasecki, 1984; Harding, 1986; Lister & Batten, 1988) also 

supports these stressed marine conditions.  These restricted conditions would in 

turn lead to the suggestion that the sedimentary facies of PF-1A was deposited in 

near shore, possibly transitional environments that were close enough to fluvio-

deltaic systems, where mixing of continental fresh water with saline water of normal 

marine settings is a common process.  The presence of acritarchs in Sample 2 in 

very rare (25 grains/g) concentrations, which are commonly taken to indicate 

brackish water conditions (Davey, 1970; Wall et al., 1977; Schrank, 1984a-a; Tyson, 

1995) also supports these stressed marine conditions.    

The distribution of terrestrial palynomorphs could also add some inference 

on the possible palaeoenvironmental settings of PF-1A.  The dominance of 

pteridophyte spores over sphaeroidal gymnosperm pollen grains (Araucariacites, 

Balmeiopsis, and Exesipollenites) in the sporomorph assemblage of PF-1A 
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suggests that deposition of PF-1A sediments took place in settings that were close 

to fluvio-deltaic sources.  This deduction is based here on the reproduction rates of 

the spores producing-plants, where these parent plants have been found to be less 

productive than the gymnosperm pollen-producing plants, in addition to the fact that, 

pteridophyte spores are known to be of relatively limited transport efficiency (e.g. 

Hughes & Moody-Stuart, 1967; Tschudy, 1969; Habib, 1982; Mutterlose & Harding, 

1987, Prauss, 1989; Tyson, 1989). 

 The freshwater algae Ovoidites and Chomotriletes that present here in very 

low concentrations (avg < 50 grains/g), and have been taken to indicate stressed 

environments of below normal salinity (Lister & Batten, 1988; Batten, 1999) also 

supports proximal settings close to fluvio-deltaic systems. 

These proximal nearshore settings would be consistent with such 

interpretations based on analysis of hydrodynamic equivalence of the highly 

dominant terrestrial plant debris that are concentrated here in the PF-1A sediments.  

High abundances of wood tracheids in sediments are one of the most important 

palynofacies parameters that are taken to indicate strong terrestrial influx into 

nearshore fluvio-deltaic systems, where these system are naturally close to or 

actually represent a source of land plants (e.g. Muller, 1959; Pocklington & Leonard, 

1979). This interpretation was based on the hydrodynamic equivalences of these 

woody phytoclasts, where their distribution in sediments was found to be controlled 

by their particle size.  As wood tracheids are generally made of relatively large and 

dense fragments, they tend to concentrate in their size-equivalent coarse silts and 

very fine sands that are commonly found in proximal environments (e.g. Habib, 

1983; Firth, 1993; Tyson, 1993), and thus are taken to correlate with fluvio-deltaic 

facies, which typically contain high volumes of sand and silt lithologies.   
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As sediments of PF-1A are indeed made exclusively of fine sands (based on 

self-potential profile) and shale lithologies and are rich in wood tracheids, therefore, 

PF-1A is suggested to be generally deposited in fluvio-deltaic environments.    

The high concentrations of black wood recorded herein are another 

important palynofacies indicator, which provide a better identification of the possible 

depositional environment that originated PF-1A.  High percentages of black wood 

fragments have been recorded from coarse-grained proximal facies of fluvial and 

delta-top systems, where these facies have been interpreted to be deposited in high 

energy settings (e.g. Fisher, 1980; Nagy et al., 1984; Smyth et al., 1992; Williams, 

1992).  This interpretation was based on studying the hydrodynamic equivalence of 

black woods, which have been also found to be controlled by their particle sizes 

(Tyson, 1995), where large, lath-shaped particles have been found to increase in 

proximal, relatively high energy silt and sand lithologies (Van der Zwan, 1990; Baird, 

1992).  This phenomenon is typically found here, where black wood fragments are 

found to concentrate in the coarse sand lithologies of PF-1A, which clearly correlate 

to the strong peaks of self-potential profile recorded herein (Fig. 6.7).  Therefore, 

PF-1A is suggested to be originated in fluvial or delta-top environments.  Given the 

fact that sediments of PF-1A contain marine palynomorphs leads to exclusion of the 

(continental) fluvial environment and attests that PF-1A was deposited in at least the 

sub-aerial delta-top sub-environment.  However, a delta-top setting is known to 

suffer from strong fluctuations in the water table (e.g. Boggs, 1987) and thus cannot 

account alone for occurrence and preservation of the considerable numbers of the 

dominant peridinioid cysts recorded here in PF-1A, where these peridinioid cysts are 

well known to be intolerant to destructive oxidation processes (e.g. Schrank, 1984a-

b).  This would imply that PF-1A must had a bimodal depositional history during 

which coarse deposits (sands) of the partly submerged delta-top and fine deposits 
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(fine sands, silts, and shale) of the continuously submerged delta-front settings, 

must have accumulated and made up the sedimentary facies of PF-1A.  Another 

possible line of evidence for the alternating sub-aqueous delta-top and delta-front 

sub-environments origin of PF-1A, is shown here by the very low concentrations of 

the fragile, oxic-sensitive membranous tissues.  The generally low concentrations of 

membranous tissues imply that PF-1A was mainly located in the sub-aqueous delta-

top, where large amounts of these tissues could not survive strong oxidation 

conditions.  Thus the coarse sand intervals of PF-1A are found here to be very poor 

in membranous tissue concentrations, with only low concentrations of tissues having 

been temporary removed from the oxic-dominated sub-aqueous delta-top by original 

deposition or possibly by re-deposition in the almost submerged fine facies of the 

delta-front sub-environment.  

The presence of some black carbonaceous material and pyrite in the shale 

horizons of PF-1A implies preservation of organic matter in at least periodically low 

oxygen concentrations in pore-water, where reactive iron was converted into pyrite 

(Tyson, 1995).  These occasional reducing conditions are also supported by plotting 

the PF-1A constituents in the kerogen diagram, where the plot suggests suboxic-

anoxic conditions for PF-1A facies (Fig. 6.9).   

From the discussions based on the palynological and sedimentological 

characteristics mentioned above, it is suggested that deposition of the samples 

yielding assemblages clustered as PF-1A took place in a deltaic environment (Fig. 

6.12), specifically in sub-aqueous delta-front to delta-top sub-environments, with the 

delta-front sub-environment experienced some periodic anoxic pore-water 

conditions.  
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A general decrease in the absolute abundances of pteridophyte spores, 

brown and black wood in samples of PF-1A (Fig. 6.6) suggests a relative rise in sea 

level (e.g. Tyson, 1993; Batten, 1999).  This could be specially supported by the 

distribution trend of the sporomorphs concentrations in PF-1A, where in ancient 

depositional environments sporomorphs absolute abundances have been found to 

decrease exponentially in an offshore trend (e.g. Paproth & Streel, 1970; Reyre, 

1973; Habib, 1982, 1983; Habib & Drugg, 1987).   

 

 

 

Figure  6.9 The Abu Tunis 1x palynofacies plot in the ternary kerogen plot of 

Tyson, 1995.      

PF-1

PF-2

PF-3
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6.3.2 Palynofacies PF-1B 

Those samples clustered in PF-1B (samples 15-42; 9450-8100 ft) 

demonstrate a strong decrease in concentrations of terrestrially derived organic 

matter (Fig. 6.10) with both sporomorphs and phytoclasts are of average (~ 6,550 

grains/g) and (~ 790 particles/g) respectively, but an increase in dinoflagellate cyst 

concentration (~ 2,420 cysts/g), and with MTLs are still of very low concentration 

(194 grains/g).  

The structured plant debris is still dominated by tracheids (~ 17,000 

particles/g), and black wood (~ 4,800 particles/g) are still the second common 

component, while reductions in the concentration of cuticles (~ 2,500 particles/g) 

and increases in membranous tissues (~ 1,800 particles/g) appear for the first time 

in this palynofacies.  

 

  

 

 

 

 

 

 

  

 

 

Figure  6.10 PF-1B with a reduced abundance of terrestrially derived organic 
matter and increased dinoflagellate cyst concentrations, sample 32a (8600 ft) 
at x250 magnification, the Abu Tunis 1x borehole, northern Western Desert, 
Egypt. 
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Sporomorphs are found here in low concentration (~ 790 grains/g), with 

miospores represented by rare pteridophyte grains (~ 2,355 grains/g; including rare 

schizaeacean taxa), rare Classopollis (~ 1,300 grains/g), and very rare saccate 

(mainly Araucariacites and Balmeiopsis) and monoporoid (Exesipollenites) 

gymnosperm pollen grains (~ 400 grains/g).  The dinoflagellate cysts are of slightly 

higher abundances than those of the PF-IA, but are still rare (~ 2,420 cysts/g) and of 

high diversity (~ 0.77).  The dinoflagellate cysts assemblage is dominated by 

proximate cysts (~ 1,200 cysts/g), with subordinate cavate (~ 700 cysts/g) and 

chorate (~ 300 cysts/g) concentrations.  The proximate cysts are represented by 

Pseudoceratium and Circulodinium, while the cavate cysts are mainly represented 

by Subtilisphaera, with the few specimens of Oligosphaeridium and Florentinia 

representing the chorate cysts.  

 

Lithology and changes in sedimentary facies of PF-1B 

 Geophysical data once again are not useful here for interpreting the lithology 

of PF-1B, as sedimentary sequence of this palynofacies is almost evenly made of 

carbonate lithology.  This is because electric geophysical logs (i.e. self-potential and 

resistivity) deal in the first place with the electric properties of clastic sediments.  

Therefore, by depending upon the original description provided in the borehole log 

and the visual interpretation of the ditch cutting samples, the rock section equated to 

the PF-1B can be described as follows:  

The succession is represented by an alternation of clastic units (similar to that of PF-

1A) and light yellow to brown dolostone.  The lower clastic unit is overlain by 200 

feet (61 m) of dolostone, which in turn is overlain by a second upper clastic unit 

which contains shale beds with traces of carbonaceous material, but which appears 

to demonstrate no sedimentary cyclicity.  These shale beds are intercalated with thin 
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dolostone beds, and are in their turn overlain by a second sequence (also 200 

feet/61m thick) of pale brown dolostone.  The upper dolomite unit is identified as the 

Alamein (Dolomite) Formation, which has a wide regional extent over the northern 

part of Egypt (Said, 1990; Kerdany & Cherif, 1990).   

The lithology of the Alamein dolomite raised much controversy about its 

origin, where for example a petrographic study made by Metwalli & Abd El-Hady 

(1975) proposed that the dolomite of the Alamein Formation is of primary origin, 

which developed by chemical precipitation from hypersaline shallow marine 

environment under low energy conditions.  In contrast, other studies such as that of 

Abou-Khadrah and Khaled (1978) suggested that the Alamein Formation consists of 

secondary dolomites that originated from accumulation of lime mud and fine-grained 

calcium carbonate in a low energy, relatively deep neritic environment.  Given the 

fact that dolomite lithology raised the same controversy about its origin amongst the 

petrographer community worldwide, which shows that origin of dolomite lithology is 

still poorly understood (e.g. Boggs, 1987).  Therefore, such an interpretation of its 

palaeoenvironmental indication in the current palynofacies analysis will be 

unjustified.  However, the palynological and geological “palynogeological” characters 

of its disseminated organic matter could provide useful information about its possible 

depositional environment.        

 

Suggested depositional environment: inner shallow marine 

The dinoflagellate cysts assemblage of this palynofacies shows substantial 

increases in their abundance in comparison to that of PF-1A (Fig. 6.6), but with a 

similar species diversity.  This increase in the dinoflagellate cysts abundance would 

indicates the development of normal and deeper marine conditions than that 

recorded to prevail in the underlying PF-1A.  Such an interpretation is deduced here 
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from the trend of the dinoflagellate cyst abundance with depth, where high 

concentrations of dinoflagellate cysts have been found to exhibit offshore increases 

with increased water depth (e.g. Balch et al., 1983; De Vernal & Giroux, 1991).  

Added to that, the species diversity of dinoflagellate cysts encountered in PF-1B is 

high, like that of PF-1A, but shows here less variability than that recognised in PF-

1A (Fig. 6.8).  This means that the marine conditions under which the sediments of 

PF-1B were deposited were probably more stable, which in turn implies a 

proliferation of normal marine conditions in comparison to the stressed conditions 

recorded in the underlying PF-1A.  Several authors (Wall et al., 1977; Tyler et al., 

1982) noticed that dinoflagellate cysts in modern (Quaternary) sediments show 

increases in diversity in offshore environments, while they decrease and show more 

variability in their diversity in onshore environments, with the greatest variability in 

diversity attained in unstable proximal settings such as estuarine.  Another line of 

evidence that could also support these normal marine conditions is the high species 

diversity of dinoflagellate cysts and low dominance that is also accompanied with 

increases in the open marine dinoflagellate species (e.g. Oligosphaeridium and 

Florentinia) recorded herein.  The assemblages of dinoflagellate cysts that show 

high diversity and low dominance have been found to increase in basinward shelfal 

settings of normal marine salinity (e.g. Goodman, 1979, Mutterlose & Harding, 1987; 

Lister & Batten, 1988; Habib et al., 1992).  The increases in specimens of 

Oligosphaeridium and Florentinia in PF-1B that are well know to be representative 

for the open marine (middle shelf) conditions (Wall et al., 1977; May, 1980; Dale, 

1983; Lister & Batten, 1988; Smelror & Leereveld, 1989) may represent periodically 

slightly more offshore/deeper water conditions or the influence of onshore currents 

re-depositing more offshore taxa.  Furthermore, the increase in the dinoflagellate 

cyst abundances along with sharp declines in the overall concentrations of the 

terrestrially derived organic matter also suggests a relative rise in sea level (Tyson, 
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1993, 1995; Batten, 1999), which would also be consistent with these deeper marine 

conditions, and may correspond to the late Barremian-Aptian transgressive cycle 

(Fig. 6.11).  

The distribution of the different phytoclast components of PF-1B can only 

add a general inference about the depositional setting under discussion.  The rare 

concentrations of cuticles and membranous tissues along with the strong decrease 

in brown and black wood concentrations imply deposition of the PF-1B sediments in 

a more offshore setting than that of PF-1A, as high proportions of the brown and 

black wood are known to concentrate in proximal onshore settings that are close to 

fluvio-deltaic environments.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.11 Global and Egyptian Cretaceous eustatic sea level cycles (after 
Vail, et al., 1977). 
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The latter interpretation was based on the hydrodynamic equivalence of 

these brown and black wood fragments as it has been inferred in the previous 

discussion of underlying PF-1A, where their proportions have been found to 

correlate with proximal, coarse-grained, high energy environments.  Rare 

concentrations of black wood do not contradict this more offshore condition, as black 

wood is known to commonly blown by winds from fluvial and delta-top sediments 

and is also transported from the delta-front and re-deposited into more offshore 

sediments by waves and tide action (Tyson, 1993, 1995).   

The strong decline in the sporomorphs concentrations recorded here in PF-

1B would also lead to a such deduction that would tie in with the general suggestion 

of a more offshore marine setting, as sporomorphs absolute abundances recorded 

from sediments of ancient environments have been found to decrease exponentially 

in an offshore trend (e.g. Paproth & Streel, 1970; Reyre, 1973; Habib, 1982, 1983; 

Habib & Drugg, 1987).   

Such an interpretation deducted from the distribution pattern of sphaeroidal 

sporomorphs would also be compatible with the suggestion of more offshore 

settings as made above.  The slight increase in concentrations of Classopollis and 

other sphaeroidal pollen grains such as Araucariacites and Balmeiopsis over those 

found in PF-1A infer more offshore marine settings, as the hydrodynamic 

equivalence (buoyancy) of these sphaeroidal pollen grains allows them to increase 

in an offshore trend (Hughes & Moody-Stuart, 1967; Habib, 1979, Tyson, 1995).    

Membranous tissues have been found to be common in terrestrial and 

proximal deltaic sediments and decline in an offshore direction.  However, they can 

show some concentrations in depocentre settings of dysoxic-anoxic conditions 

provided that fungal activity is absent or at least very low, and thus considerable 

amounts of these delicate tissues were taken to indicate at least occasional 
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reducing conditions (e.g. Tyson, 1995).  As these tissues are exclusively 

concentrated here in the shale horizons of the PF-1B, it would be suggested then 

that rare proportions of these fragile, oxic-intolerant tissues were deposited in low 

energy distal nearshore marine settings during occasional low stands in water 

tables.   

Combining all the information mentioned above one can suggest that 

sediments of PF-1B were deposited in normal open marine conditions.  However, 

the considerably high concentrations of the cavate and proximate cysts that 

collectively outnumber the chorate cysts in the dinoflagellate cyst community of PF-

1B would rather indicate proximal offshore, most likely inner shallow marine 

conditions (Fig. 6.12).  Furthermore, occasional reducing (anoxic) conditions are 

suggested to prevail during the deposition of the studied sediments of PF-1B.  This 

is also shown from plotting palynological constituents of PF-1B in the kerogen 

diagram, which also indicates proximal shelf settings of suboxic-anoxic conditions 

(Fig. 6.9).      

 

 

 

 

 

 

 

 

Figure  6.12 Ternary plot of spores, pollen and microplankton, illustrating the 
recognized palynofacies types; PF-1A and PF-1B of the Abu Tunis 1x borehole 
and their probable depositional environment (Federova, 1977; and Duringer & 
Doubinger, 1985). 
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6.3.3 Palynofacies PF-2A 

The organic remains contained within samples 43-85 (8050-5950 ft) cluster 

as PF-2A, characterised by a very strong terrestrial influence (Fig. 6.13), reflected in 

the extremely abundant phytoclasts (~ 88,000 particles/g) and concentrations of 

sporomorphs which although still low, increase (~ 4,700 grains/g) over those in PF-

1B below.  Dinoflagellate concentrations decrease by comparison to the underlying 

PF-1B (~ 1,650 cysts/g) and there are only low MTLs concentrations (~ 1150 

grains/g) detected in the palynofacies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.13 PF-2A showing terrestrial palynomorphs and phytoclasts 
dominance, sample 46a (7900 ft) at x250 magnification, the Abu Tunis 1x 
borehole, northern Western Desert, Egypt. 
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Extremely high abundances of tracheids (~ 185,150 particles/g) and 

common cuticle (~ 8,700 particles/g) dominate the phytoclast assemblages (Fig. 

6.6).  Membranous tissues are common (~ 6,000 particles/g) and black wood is 

present (~ 5,000 particles/g).  Here the strong increase in the sporomorph 

abundances over PF-1B assemblages is exemplified by frequent pteridophyte spore 

concentrations (~ 13,200 grains/g).  Concentrations of Classopollis (~ 1,900 

grains/g) and other sphaeroidal and saccate gymnosperm pollen show a noticeable 

increase (~ 2,050 grains/g) in PF-2A.  A very few freshwater algae, including 

representatives of Ovoidites, Botryococcus, and Chomotriletes occur along with rare 

acritarchs.  Dinoflagellate cysts show a decrease in abundance (~ 1,650 cysts/g) 

and diversity (~ 0.67), and are again dominated by cavate (~ 850 cysts/g) and 

proximate (~ 500 cysts/g) forms, with chorates showing the lowest concentrations (~ 

300 cysts/g).  The cavate cysts are once more mainly represented by the genera 

Subtilisphaera and Senegalinium with subordinate Palaeoperidinium spp..  The 

proximate cyst assemblage is composed of Pseudoceratium and Cribroperidinium 

species, while Oligosphaeridium and Florentinia are the only genera in the chorate 

cyst community.   

 

Lithology and changes in sedimentary facies of PF-2A 

Downhole log responses for the sample depths yielding PF-2A indicate the 

development of several coarsening upward sequences, which is reflected in 

increases in the self-potential profile as it crosses the sand:shale line (SSL) and also 

from the decreases in resistivity readings (Fig. 6.7).  

As is shown here the generally low resistively data readings imply high sand 

volumes intercalated with a few resistivity peaking shale horizons.  The sand 

lithologies was also indicated in the original lithological description provided by the 
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drilling operating company, and found here to be consistent with the visual lithology 

interpretation based on the ditch cuttings samples.  Therefore, by combining the 

original lithology descriptions with such interpretations made herein, this part of the 

sequence can be interpreted as comprising a very thick sandstone unit, which is 

composed of fine to medium grained sandstone beds with a silicic to carbonate 

matrix, which contains pyrite and traces of anhydrite.  These beds are intercalated 

with thin light grey to green fissile shale horizons, which contain traces of 

carbonaceous material.  

 

Suggested depositional environment: deltaic (delta channel) 

By comparison with the underlying succession, in PF-2A the general 

decrease in dinoflagellate cyst abundance and a dominance of restricted marine 

species (e.g. Subtilisphaera and Pseudoceratium) suggests that sediments of PF-

2A, whilst still demonstrating a marine signal, were deposited during a regressive 

phase (e.g. Tyson, 1993, 1995), and furthermore in more salinity-stressed brackish 

conditions than that of the two previous palynofacies.  This latter interpretation is 

based on the reduced dinoflagellate cyst species diversity in PF-2A, which is known 

to be much lower in waters of less than normal salinity (e.g. Batten, 1983; Leckie & 

Singh, 1991).    

Such an interpretation would tie in with the very high abundances of 

terrestrially derived organic matter, and the decline in dinoflagellate cyst abundance 

and diversity, both characteristics of marginal marine (brackish-coastal) conditions.  

The work of Degens & Mopper (1976) also suggests that very strong influxes of 

terrestrially derived phytoclasts can be indicative of sedimentation in estuarine and 

very nearshore areas during either regressive event.  The highest concentrations of 

miospores have been reported from medium to coarse silts and fine-grained 



onmental InterpretationsChapter VI                                     Palynofacies and Palaeoenvir 

243 

sandstones (Hughes & Moody-Stuart, 1967; Batten, 1974), and Tyson (1995) 

indicates high concentrations are associated with fluvio-deltaic systems.  The 

samples from which this palynofacies has been isolated are indeed comprised of a 

coarser clastic facies than the samples from lower part of the succession, and they 

would thus have been deposited under relatively higher energy conditions than PF-

1A or PF-1B.  These coarse clastic lithologies are again supported by the extremely 

high abundances of tracheids recorded here.  As high concentrations of tracheids 

have been found (e.g. Habib, 1983; Firth, 1993, Tyson, 1993) to concentrate in fine 

sands and coarse silts facies, where these high concentrations of tracheids were 

taken by (e.g. Muller, 1959; Pocklington & Leonard, 1979) to indicate deposition in 

proximal transitional environments that were close to parent land plant, and 

specifically the fluvio-deltaic systems.  Common concentrations of cuticles in PF-2A 

could be another line of evidence for the deltaic sub-environments proposed above, 

as high percentages have been commonly found in delta top, distributary channels, 

and prodelta settings (e.g. Batten, 1973; Parry et al., 1981; Nagy et al., 1984).       

Furthermore, the presence of freshwater algae and acritarchs also suggest 

deposition in very near shore deltaic environments, where marine palynomorphs are 

often extremely diluted by terrestrially derived POM, especially under regressive 

regimes (e.g. Habib, 1982; Summerhayes, 1987; Tyson, 1995).   

Occasional short-lived or local anoxic conditions are reflected in the 

presence of some pyrite and carbonaceous material.  These reducing conditions are 

interpreted as suboxic to anoxic conditions by plotting PF-2A into the kerogen 

ternary diagram (Fig. 6.9).  Membranous tissues have been found typically common 

in the non-marine and proximal deltaic facies and become rare in a basinward 

direction (e.g. Tyson, 1995), and as these tissues can not tolerate oxidation 

conditions and degrade three times faster than lignified wood (e.g. Stout et al., 
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1981).  Therefore, their common proportions are taken here - something that Tyson 

(1995) has suggested - to indicate high rate of sedimentation, where the fragile 

membranous tissues have been removed from the destructive oxic sediments water 

interface by rapid sediments accumulation, which thus keep membranous tissues 

away from oxic sediment water interface.  This is also consistent with the high 

regime proposed here for PF-2A, which must have been associated with fine sands 

and silt deposition.  The present concentrations of black wood do not contradict this 

reducing condition, as mentioned above, where black wood is commonly blown by 

winds from fluvial and delta-top sediments and is also transported from the delta 

front and re-deposited into prodelta sediments by waves and tide action (Tyson, 

1993, 1995).  These deltaic depositions under regressive periods are also indicated 

by plotting PF-2A constituents in the ternary palynomorph diagram (Fig. 6.12).  

Combining all of these characteristics, and given the predominance of sand 

in this part of the succession, the sediments of PF-2A were probably deposited in a 

deltaic channel system which may have incised into or prograded out over the 

underlying prodelta sequence as a response to sea level fall.   

 

6.3.4 Palynofacies PF-2B 

The palynofacies constituents of samples 86-100 (5900-4800 ft) show a 

strong decrease in the terrestrially derived organic matter (phytoclasts and 

sporomorphs) in comparison to the underlying PF-2B (Fig. 6.14), although 

phytoclasts still dominate the POM assemblages with concentrations averaging 

33,000 grains/g.  Sporomorphs concentrations are now diminishing (~ 4,300 

grains/g), but dinoflagellate cyst concentrations increase considerably in PF-2B (~ 

2,420 cysts/g), while MTLs are still of low concentration (800 grains/g) they show 

lower concentration than that in PF-2A.  
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The phytoclasts are still dominated by the extremely abundant (~ 82,600 

particles/g) tracheid and common (~ 9,550 particles/g) cuticle particles.  Present (~ 

5,600 particles/g) membranous tissues and a single frequent (10,450 particles/g) 

occurrence of black wood at the base of the palynofacies are also detected.  The 

persistent decreases in the miospore concentrations that started to show in PF-2A 

end here in PF-2B with a significant decrease. However, pteridophyte spores are 

still the dominant (~ 8,600 grains/g) palynomorph constituent, with subordinate (~ 

1,050 grains/g) schizaeacean spores, (~ 800 grains/g) saccate and (~ 700 grains/g) 

Classopollis pollen grain concentrations recorded in PF-2B.  The dinoflagellate cysts 

exhibit here slight increases in abundance (~ 2,420 cysts/g) and dominance, but 

with decreases in dinoflagellate cysts diversity (~ 0.55).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.14 PF-2B showing another increase in dinoflagellate cyst 
abundances accompanied by a slight decline in terrestrial palynomorphs and 
phytoclasts in comparison to PF-2A, sample 96a (5050 ft) at x250 

magnification, the Abu Tunis 1x borehole, northern Western Desert, Egypt. 
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The dinoflagellate cysts community is dominated by (1,350 cysts/g) the 

cavate cyst Senegalinium, while proximate (e.g. Trichodinium) and chorate (e.g. 

Oligosphaeridium, Coronifera, and Florentinia) cysts are of very minor occurrences 

(400 cysts/g) and (300 cysts/g) respectively. 

 

Lithology and changes in sedimentary facies of PF-2B 

Interpretations from the self-potential or resistivity data are not informative 

here for the lower part of this palynofacies sequence.  However, the original 

description provided on the borehole log and visual interpretations based on cutting 

samples indicate a lower carbonate sequence, which is made of alternating shale 

and limestone beds, overlain by a pale brown dolostone unit.  For the upper part of 

PF-2B sequence, the conventional integrated data (i.e. geophysical data, original log 

description, and cutting samples interpretation) are more informative.  The upper 

part of the PF-2B that overlies the carbonate sequence is interpreted as a clastic 

unit, which is made of thick sandstone beds with dolomitic cement, alternating with 

thin light grey silty-shale streaks.   

 

Suggested depositional environment: lagoonal 

Here the dinoflagellate cysts show a different story from that of PF-2A, where 

slight increases in the dinoflagellate cyst abundance indicate the deposition of PF-

2B in more offshore settings than that of PF-2A, which could also correlate with a 

relative sea level rise (Fig. 6.15).  This trend of increases in the dinoflagellate cysts 

abundance with depth has been documented on dinoflagellate cyst work (Davey, 

1970) carried out on Cretaceous sequences of England, northern France, and North 

America.  Here again, the slight increase in the dinoflagellate cyst abundance along 
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with overall sharp declines in the concentration of the terrestrially derived organic 

matter (Fig. 6.6) suggests a relative rise in sea level (Tyson, 1993, 1995; Batten, 

1999).  This relative sea rise, which is detected here in the Abu Tunis 1x sediments 

and therefore in the Faghur Basin, could be related to the late Albian-early 

Cenomanian global sea level rise as indicated from both the global and Egyptian 

seal level curves (Vail et al., 1977).  On the other hand, the dominance of the cavate 

dinoflagellate cyst Senegalinium over other dinoflagellate cyst morphotypes, which 

is also accompanied with a general decrease in the dinoflagellate cysts species 

diversity in comparison to that in the underlying PF-2A suggests more restricted 

marine conditions of below normal salinity (e.g. Batten, 1983; Lister & Batten, 1988; 

Leckie & Singh, 1991).  

The upward increase in silt and shale volumes indicated by the self-potential 

profile for the upper part of PF-2B also suggests a more offshore setting of lower 

energy conditions than that detected in PF-2A.  An interpretation, which is perhaps 

supported by the hydrodynamic properties of fine silts and shale.  The fine silts and 

shale lithologies are known to be deposited from suspension load in low energy 

conditions in different offshore environments such as, lagoons, estuarine, and the 

deep-sea. However, other terrestrial and transitional settings such as, lakes and 

distal delta facies also contain these fine lithologies (e.g. Boggs, 1987).  The fact 

that terrestrial organic matter are of diminishing concentration in FP-2B suggests 

exclusion of environments that are known to be very rich in terrestrially derived 

organic matter, such as lakes and delta.  Deep-sea environments are also excluded 

here based on the high dominance and low diversity of dinoflagellate cysts 

recorded, which are characteristic of restricted marine conditions rather than normal 

open marine settings.  This leads to the suggestion that PF-2B is more likely to be 

deposited in lagoonal or estuarine environments.  Lister & Batten (1988) interpreted 
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the silts and laminated mudstones of the Weald Clay of South England as of 

lagoonal origin.  Lister & Batten (1988) based their interpretation on low frequencies 

of terrestrial palynomorphs, dinoflagellate cysts that show low diversity and 

dominated by low salinity species, and small amounts of sphaeroidal (bisaccate) 

pollen grains, in addition to the presence of minor amounts of fresh water 

chlorococcalean algae.  In fact, the same scenario applies here, where fine silts with 

occasional shale horizons of PF-2B contain dinoflagellate of high dominance and 

low diversity, associated with low abundances of terrestrial organic matter, and with 

minor occurrences of the fresh water algae Ovoidites and Botryococcus.  The low 

occurrences of Classopollis and sphaeroidal saccate pollen grains are also recorded 

in PF-2B.  Another piece of information that would support the argument for lagoonal 

settings is that chorate dinoflagellate cysts of PF-2B show the same average 

concentrations to those in the underlying PF-2A, where they would be expected to 

increase here in PF-2B with increasing depth of depositional environment.  This in 

turn indicates that the depositional system of PF-2B was at least partly isolated for 

some time from normal marine conditions, which would brought more concentrations 

of dinoflagellate cysts that are representative of deeper marine conditions if it was 

permanently connected to open marine waters (Lister & Batten, 1988).  

From the data and discussion noted above, a lagoonal setting, which was 

occasionally influenced by some marine incursions is suggested for PF-2B.  The 

suboxic-anoxic conditions that persisted in the underlying PF-2A are also interpreted 

to prevail during or after the deposition of PF-2B, and this is based on both the 

continuous occurrences of the oxic intolerant membranous tissues and the kerogen 

plot (Fig. 6.9). 
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6.3.5 Palynofacies PF-3 

Samples 100-121 (4750-3750 ft) witnessed a strong marine influence, where 

PF-3 is almost entirely composed of marine palynomorphs with minor (~ 132 

cuticles, 113 tracheids, 75 membranous tissues, and 28 pteridophyte spores 

grains/g) terrestrially derived organic matter concentrations (Fig. 6.6, 6.16).  Marine 

palynomorphs are represented by low (~ 1,700 cysts/g) dinoflagellate cyst and very 

rare MTLs (865 grains/g) concentrations.  

The diversity of the dinoflagellate cyst species in this palynofacies is even 

lower (~ 0.33) than that recorded in the all previous palynofacies types recorded in 

the Abu Tunis 1x borehole.  The cavate cysts continue to dominate the 

Figure  6.15 Ternary plot of spores, pollen and microplankton, illustrating the 
recognized palynofacies types; PF-2A, PF2-B, and PF-3 of the Abu Tunis 1x 
borehole and their probable depositional environments (Federova, 1977; 
Duringer & Doubinger, 1985). 
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dinoflagellate assemblage (~ 1,360 cysts/g) and are represented by the genus 

Senegalinium, with subordinate concentrations of the chorate (~ 78 cysts/g) cysts 

Spiniferites and Florentinia, and the proximate (~ 78 cysts/g) cyst Trichodinium.  

 

 

 

 

 

 

 

 

 

 

 

 

Lithology and changes in sedimentary facies of PF-3 

The self-potential profile is found here to be useful in indicating changes in 

sand:shale volumes, and the same applies for resistivity data.  The sedimentary 

facies of the PF-3 as interpreted from the cutting ditch samples and as also 

indicated in the original borehole log description, is composed of a lower carbonate 

unit made of white to pale grey, microcrystalline limestone with a very few silt and 

shale intercalations.  This limestone unit is overlain by a light brown dolomitic 

Figure  6.16 PF-3 showing dominance of the dinoflagellate cysts and an almost 
complete lack of terrestrial POM constituents, sample 110a (4300 ft) at x250 

magnification, the Abu Tunis 1x borehole, northern Western Desert, Egypt. 
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limestone, overlain by another limestone unit, which is toped with a dolostone unit 

followed by chalk and another dolostone unit.      

 

Suggested depositional environment: outer shallow marine 

The presence of dinoflagellate cysts of low abundances and species 

diversity accompanied with very minor terrestrially derived organic matter suggests 

that the deposition of PF-3 took place in settings that were very far from the 

shoreline, at least in shallow shelf environments.  This is can be explained in the 

context of offshore trend of the dinoflagellate cysts abundance and diversity.  The 

work of Davey (1970), Habib (1983), and Tyson (1984) on fossil dinoflagellate cysts, 

which is found to be consistent with that of Balch et al. (1983) and De Vernal & 

Giroux (1991) on modern dinoflagellates indicated that dinoflagellate cysts tend to 

increase in an oceanward direction until they reach the continental slope, after which 

dinoflagellate start to show a reduction in species abundances and diversity.  As the 

dinoflagellate cysts assemblage of PF-3 is dominated here by shallow marine 

peridinioid cavate cysts rather than the open marine (middle shelf) chorate 

gonyaulacoid cysts, this then leads to the suggestion that PF-3 is deposited in 

relatively outer shallow rather than open marine environments.  

The very minor occurrences of terrestrially derived organic matter recorded 

here in PF-3 also indicate that sediments of PF-3 were removed far enough from the 

active fluvio-deltaic systems.  Where, very weak terrestrial influxes must have 

reached the open marine settings only during periods of excessive rainfall and 

strong terrestrial input. This was also have been accompanied with active turbidity 

currents that would transport and re-deposit phytoclasts in the shelfal environments 

during temporary low sea stands (e.g. Habib, 1982; Summerhayes, 1987).  
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The carbonate lithologies of PF-3 could be further supporting evidence for 

this general shallow marine environment.  Limestones are known to be deposited in 

outer shelf environments where little terrigenous clastic inputs are provided from 

surrounding lands.  However, the limestone lithologies can be also deposited in 

such transitional marine settings that normally receive appreciable amounts of 

terrigenous clastic discharge such as that of lagoons and tidal flat environments 

(Boggs, 1987).  However, these transitional settings cannot be a candidate 

environment for PF-3, as these environments are known to be rich terrestrial organic 

matter, some thing that the sediments of PF-3 clearly lack.  In the meantime, outer 

shelf environments are not possible settings for PF-3, as dinoflagellate cysts here 

are dominated by the cavate cysts that are generally characteristic for shallow 

marine environments.  Therefore, outer shallow marine settings would be consistent 

with settings that are far enough from effective terrestrial influx but also not so deep 

as dinoflagellate assemblage lack considerable amounts of open marine 

representative dinoflagellate cysts.     

This shallow marine conditions could be also supported by the presence of a 

very few calcareous nannoplankton forms, which are recorded from the whole 

carbonate sequence.  This outer shallow marine setting (Fig. 6.15) could be related 

to the local and global late Cenomanian rise in sea level (Fig. 6.11).  

Basinal reducing (suboxic-anoxic) conditions are suggested to prevail during 

or after the deposition of PF-3 based on the kerogen plot information (Fig. 6.9).  
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6.4 The BB80-1 borehole palaeoenvironments 

6.4.1 Palynofacies PF-1 

The palynological organic matter constituents disseminated in the sediments 

of PF-1 are dominated by terrestrially derived organic matter (Fig. 6.17) and 

represented by extremely abundant (~ 27,300 particles/g) phytoclasts that are 

exclusively comprised here of wood tracheids, but with rare (~ 1,900 particles/g) 

concentrations of sporomorphs mainly composed of pteridophyte spores. However, 

present (~ 3,350 cysts/g) concentrations of the marine phytoplankton dinoflagellate 

cysts are also recorded in the palynofacies (Fig. 6.18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.17 PF-1 showing the strong terrestrial influx and influence of of the 
marine incursion, sample 11a (5180 ft) at x250 magnification, the Abu BB80-1 

borehole, Gulf of Suez area, Egypt. 
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The dinoflagellate cysts are dominated by the restricted shallow marine 

genus Subtilisphaera and with a low concentration of the genus Senegalinium.  

The chorate cysts are the second morphotype that dominate the 

dinoflagellate cysts assemblage and are mainly represented by the genus 

Florentinia with subordinate concentrations of Coronifera. The genera 

Cribroperidinium, Trichodinium, and Circulodinium are the only proximate cysts 

representatives in PF-1.      

 

Lithology and changes in sedimentary facies of PF-1 

Based on the responses of gamma ray and resistivity readings the studied 

part of the BB80-1 is described as a thick clastic interval comprising a sandstone 

unit, which is underlain by a shale bed and overlain by intercalations of a very few 

silt and shale horizons, with the whole clastic interval overlain by a two carbonate 

units (Fig. 6.19). These carbonate units are in turn intercalated with another 

sandstone unit. 

  It must be noted that carbonate sequences described herein have been 

only recognised from the original log description provided by the drilling company 

and from visual interpretation of the ditch cuttings samples.  

 

Suggested depositional environment: continental to shallow marginal marine 

The presence of dinoflagellate cysts in the shale horizons of PF-1 in low 

abundance and diversity but also with a high dominance suggests a very shallow 

marine origin with possible restricted (low salinity) water conditions for this part of 

PF-1.  As is mentioned before, dinoflagellate cysts populations having low 

abundances and diversity but with a high species dominance have been taken to 
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indicate restricted shallow marine conditions, because species diversity of 

dinoflagellate cysts is much less in waters of below normal salinity (Batten 1983; 

Leckie & Singh 1991). 
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Figure  6.19 Gamma ray and resistivity data of the BB80-1 borehole showing 
changes in sedimentary facies.  
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These restricted shallow marine conditions are also supported by the 

dominance of the cavate peridinioid dinoflagellate cysts Subtilisphaera, which is 

known to characterise marginal marine (brackish to coastal) conditions (e.g. Davey, 

1970; Piasecki, 1984; Harding, 1986; Lister & Batten, 1988).  The very rare 

occurrences of some chorate dinoflagellate cysts in PF-1, which are know to thrive 

in open marine (middle shelf) conditions (e.g. Dale, 1983; Lister & Batten, 1988) do 

not contradict these restricted shallow marine conditions.  This could be explained 

by occasional marine incursions that possibly reached the site of deposition of PF-1 

at some time, or by transportation of these chorate cysts by marine currents and re-

deposition in more nearshore settings.   

The high concentrations of phytoclasts found here in shale sediments of PF-

1 would also correlate with very nearshore marine environments that were close to 

fluvio-deltaic sources as it has been indicated in previous palynofacies types of the 

Abu Tunis 1x borehole (e.g. PF-1A and PF-2A).  Adding to that, complete absence 

of oxidised wood (i.e. black wood) in PF-1, where black wood is commonly derived 

from the oxidation of the brown wood (e.g. Tyson, 1995), implies that brown wood 

have been removed from oxic conditions, and this in turn could infer development of 

periodically reducing conditions during deposition of shale lithology of PF-1 

sediments.  

Such an interpretation based on very rare concentrations of the pteridophyte 

spores recorded here, would tie in with the suggested shallow marginal marine 

conditions for the shale horizons.  As spores are known to be produced in lower 

abundances than their associated gymnosperm-producing plants and tend to show 

poor transport efficiency, and thus their low concentrations are taken here to 

indicate relatively distal nearshore settings (e.g. Reyre, 1973; Habib, 1979; Tyson, 

1989; Mutterlose & Harding, 1987; Prauss, 1989).             
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The very rare occurrence of the freshwater algae Pediastrum, Ovoidites, and 

Botryococcus would also indicates proximal nearshore settings of brackish 

conditions.  As Botryococcus has been recorded from ancient lacustrine, fluvial, 

lagoonal, and deltaic to nearshore marine sediments (Reyre, 1973; Habib, 1979; 

Mutterlose & Harding, 1987; Batten & Lister, 1988; Prauss, 1989; Tyson, 1989).  

Pediastrum has also been found to show high abundances in low salinity lakes and 

also transported by fluvial systems into nearshore settings (e.g. Singh et al., 1981b; 

Hutton, 1988).  Ovoidites is another algal genus when found in sediments is also 

taken to indicate stressed environment of below normal salinity (Batten, 1999).     

The barren nature of the sandstone beds of PF-1 implies deposition in a 

continental possibly, alluvial environment. The latter suggestion was based not only 

on the lack of terrestrial organic matter (sporomorphs and phytoclasts) that would be 

introduced in the depositional site of PF-1 if it was close to vegetation cover, but 

also on the lack of marine palynomorphs, which implies isolation of the depositional 

site of PF-1 from any possible marine connections during the deposition of these 

sand beds.  The deposition of the carbonate units at the top of the sequence 

suggests a possible deepening of depositional environment towards the end of 

deposition of the studied upper part of PF-1, which is may be related to the late 

Cenomanian global rise in sea level (Vail et al, 1977; Fig. 6.11).   

Based on the data and discussion advanced above, one can suggest that 

sediments of PF-1 were mainly deposited in a continental, possibly alluvial 

environment, which has been occasionally invaded by marine incursions that 

resulted in deposition of marine shale under shallow marginal marine conditions, 

during which shale these horizons also experienced occasional reducing conditions.   
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6.5 Palaeovegetational cover and palaeoclimate  

6.5.1 Introduction  

Certain types of fossil spore and pollen grains of known botanical affinities 

and are known to thrive in and/or adapt to specific palaeoenvironments are used as 

a useful tool in palaeoenvironmental studies.  These types of spore and pollen 

grains were not only used to indicate their depositional environments (i.e. 

palynofacies and palaeoenvironments analyses) in which they have been preserved, 

but are also used as proxy indictors of such palaeoclimate conditions that were 

prevailing during the life cycles of their producing-plants.  From this context and for 

the purpose of providing an insight on the palaeoclimate prevailed during deposition 

of sediments of the studied boreholes; the Abu Tunis 1x and BB80-1, a summary 

table of some of the important spore and pollen grains of known botanical affinities 

and show some ecological preferences has been compiled (Tab. 6.2).  The search 

of botanical affinities and possible ecological preferences of the taxa selected herein 

has been based on a survey on most of the literature that deals with Mesozoic, 

specifically Cretaceous and Jurassic spores and pollen grains, including Balme’s 

(1995) in situ spores and pollen Catalogue, one of the important references.  
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Table  6.2 Botanical affinities and suggested ecological preferences of some 
selected sporomorphs and freshwater algae.  

 

Taxa Botanical affinity Palaeoclimate 

indication

Palaeoenvironment 

preference  

Araucariacites Araucariaceae (Cookson, 
1947)

Local humid 
conditions

Relatively dry conifer 
vegetation

Afropollis Winteraceae (Doyle et al., 
1990)

Local costal humidity Humid costal habitats

Aequitriradites Liverworts Local humid 
conditions

Near fluvio-lacustrine 
environments

Balmeiopsis Araucariaceae (Cookson, 
1947)

Local humid 
conditions

Relatively dry conifer 
vegetation

Cicatricosisporites Schizcaeaceae (Thomson 
& Pflug, 1953)

Local humid 
conditions

Pteridophyte vegetation on 
wet biotopes

Classopollis Cheirolepidiaceae Warm dry Costal marshes

Crybelosporites Marsiliaceae (Dettmann, 
1963); Hydropteridacean 
spores (Cookson & 
Dettmann, 1958)

Local humidity Fresh waster environment 
(lakes-ponds); Swampy 
environment of brackish 
character

Elaterate Ephedroid Crane (1988) Local costal humidity Humid costal conditions

Ephedripites Ephedraceae Hot xeric climate

Inaperturopollenites Taxodiaceae, 
Cupressaceae and other 
conifers (Thomson & Pflug, 
1953)

Hot dry conditions

Deltoidospora Local wet conditions Moist habitats near rivers 
and freshwater lakes and 
lacustrine 

Matoniaceae/Cyatheaceae/
Diksoniaceae (Van Erve & 

Mohr, 1988)
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6.5.2 Palaeoclimate implications   

Amongst palynomorph types that show some ecological importance and 

provide some inference about possible local palaeoclimate conditions are the 

pteridophyte spores.  Pteridophyte spores are known to thrive in warm humid low 

lands, such as riversides and costal areas (e.g. Pelzer et al., 1992; Abbink et al., 

2004) and therefore their high abundances (e.g. Deltoidospora, 

Concavissimisporites, and Impardecispora) have been suggested as a proxy for 

humid conditions (e.g. Abbink et al., 2004; Bornemann et al., 2005).  These spores 

have been recorded here from sediments of the Abu Tunis 1x borehole and in very 

low concentrations from the BB80-1 borehole. They showed consistent occurrences 

through the studied Cretaceous sequence of the Abu Tunis 1x borehole, and very 

high abundances in intervals that corresponded to major regressive periods in 

marine sedimentation and lower abundances during intervals of marine 

transgression. This implies that these strong oscillations in their abundances are 

related to changes in the sedimentation trends (i.e. transgression-regression) rather 

than ecological parameters on land, especially that these spores show a taxonomic 

stability through the whole studied section.  Therefore the consistent occurrence of 

these pteridophyte spores it is possible to suggests that local warm humid 

conditions were prevailing at least in the vicinity of sites of deposition of both 

boreholes during the studied Cretaceous interval.   

Humid conditions but with coastal settings near the sites of both boreholes 

are also suggested to prevail during Aptian-mid Cenomanian time.  This 

interpretation is based on the relatively high abundances of Afropollis a pollen grain 

of Winteraceaen affinity.  Lower abundances of Afropollis have been recorded from 

warm and dry intracontinental basins (e.g. Doyle et al., 1982). However, higher 

abundances of Afropollis have been suggested by Doyle et al. (1982) and Schrank 
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(2001) to indicate humid coastal conditions, habitats in which, the authors (op. cit.) 

suggested the Afropollis-producing plants flourished and to which they were better 

adapted.  

Regional warm and relatively dry conditions could be postulated for the 

studied interval of Cretaceous time.  An interpretation that is perhaps supported by 

the presence of the coniferous pollen grain Classopollis.  This gymnospermous 

pollen is known to have been produced by thermophilous, drought-resistant 

Cheirolepidiacean conifers and thus provides a valuable proxy indicator for 

palaeoclimatic conditions (e.g. Doyle et al., 1999).  As high abundances of 

Classopollis have been found to be associated with evaporites, salts, and red bed 

deposits, and also with xeromorphic wood and leaf megafossils of Cheirolepidiacean 

affinity, which indicates hot dry conditions for this genus (e.g. Watson, 1988; Doyle, 

1999).  Adding to that, the world wide latitudinal distribution of Classopollis shows 

that this species was most abundant during Barremian-Aptian times in the hot dry 

palaeosubtropical latitudes (15-30° N and S of the palaeoequator), while it showed 

lower abundances in the hot, but slightly wetter palaeotropical region (Doyle, 1999).  

Doyle et al. (1982), Schrank (1990), and Brenner (1996) all suggested relatively 

wetter palaeoclimates for the African palaeotropics (e.g. Egypt and Sudan), based 

on the presence of high abundances of fern spores (indicating humidity), and lower 

frequencies of Classopollis and the cooler-temperature coniferous genus 

Araucariacites than seen in the palaeosubtropics.  The gymnospermous gnetalean 

pollen Ephedripites is another xerophytic genus. Its relatively low abundance in the 

studied boreholes could also suggest less hot and more humid conditions, as its 

high abundances are taken to indicate hot and dry conditions (e.g. Doyle et al., 

1982; Doyle et al., 1999).  The later suggestion was based on a systematic 

taxonomy work of Trevisan (1980) on the fossil Ephedripites and on pollen produced 
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by the modern xerophytic gnetalean plants Ephedra and Welwitschia, where this 

work showed a great similarity between pollen produced by these modern 

xerophytic plants and Ephedripites.  Furthermore, a macropalaeotological study on 

gnetalean macrofossils Drewira and Eoanthus revealed close relation between 

plants produced these macrofossils and modern gnetalean plants of well-known 

xeromorphic nature (Crane, 1988).  

The hot and relatively dry palaeoclimate that is suggested to prevail during 

the Cretaceous over the Egyptian land area would also be compatible with such a 

deduction driven from the palaeolatitudinal position.  During the Cretaceous, Egypt 

was continuously located at the palaeotropical zone for example, in the mid Aptian 

time, north Egypt was located at nearly latitude 10° N with the palaeoequator 

roughly cutting through central Egypt (Fig. 6.20).  Thus, during this time Egypt and 

other palaeotropical countries were witnessing hot but relatively wetter conditions 

than that prevailed in the completely dry palaeosubtropical regions, as latitudinal 

regions close to the equator are known to receive the highest rainfall in comparison 

to that close to subtropics (Doyle et al., 1999).   As the African plate moved 

northward towards Laurasia and by the end of the Turonian time, Egypt was 

positioned more northward (Fig. 6.21) with the palaeoequator nearly bordering its 

southern limit (Lawver et al., 2004 

http://www.ig.utexas.edu/research/projects/plates/#recons), where a continuous hot 

but dryer palaeoclimate was developed.       

Consequently, from the data and discussion advanced above, it can be 

assumed that sites of deposition of both Abu Tunis 1x and BB80-1 have witnessed a 

regional hot and relatively dry palaeoclimate that latter developed into more dryer 

conditions as a response to the continental break up of Western Gondwana and 

resultant northeast drift of the African continent.  However, both boreholes could 
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near fluvio-deltaic systems.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6.20 World palaeotectonic map showing the palaeogeographic position 
of Egypt during the Early Cretaceous (Aptian) time (after 

Figure  6.21 World palaeotectonic map showing the palaeogeographic position 
of Egypt during the Late Cretaceous (Turonian) time (after 
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also experienced local humid conditions that were prevailing on costal settings and 

deltaic systems.    

World palaeotectonic map showing the palaeogeographic position 
of Egypt during the Early Cretaceous (Aptian) time (after Lawver

World palaeotectonic map showing the palaeogeographic position 
of Egypt during the Late Cretaceous (Turonian) time (after Lawver

onmental Interpretations

also experienced local humid conditions that were prevailing on costal settings and 

World palaeotectonic map showing the palaeogeographic position 
Lawver et al., 2004).  

World palaeotectonic map showing the palaeogeographic position 
Lawver et al., 2004).  
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7.PALYNOFACIES ANALYSIS, THERMAL MATURATION, BURIAL HISTORY 

RECONSTRUCTION AND SOURCE ROCK EVALUATION 

 

7.1 Introduction 

Hydrocarbons are generated in sediments rich in organic matter known as 

source rocks, by the thermal alteration of organic matter with increasing depth of 

burial that increases temperature with time (Allen & Allen, 1990; Hunt, 1996).   

Organic matter is biogenic material found in sediments and sedimentary 

rocks.  Organic matter is derived from plant matter such as, lignin, cellulose, 

carbonised wood, spores, resin, lipids, and from animal matter such as, protein, 

chitin and lipids (Hunt, 1996).   

Source rocks are hydrocarbon charge systems that are capable of, or have 

generated, released hydrocarbons (Tissot & Welte, 1984; Hunt, 1996). Lakes, 

deltas, and marine basins are the main depositional settings of source rocks (Allen 

& Allen, 1990).   

The process of hydrocarbon generation was described by Hunt (1996).  It 

involves three stages of organic matter alteration: diagenesis, catagenesis, and 

metagenesis (Fig. 7.1).  In the diagenesis stage some of the organic matter is 

subjected to microbial attack and decomposition.  Other organic matter components 

undergo chemical reactions at low temperatures (≤ 50° C), when hydrocarbon-like 

material is formed by the loss of nitrogen, oxygen, and sulphur.  With more sediment 

accumulation, the source rock become more compacted, attains a deeper burial 

depth, and is subjected to increases in temperature as the earth’s geothermal 

gradient increases by some 2-5°C100-1 meters.  At this stage organic matter enters 

the catagenesis stage (50-200°C) and undergoes thermal and catalytic cracking 
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forming petroleum-range hydrocarbons.  This stage is the main phase of oil 

generation and is referred to as the oil window (Tissot & Welte, 1984).  By 

increasing the depth of burial and temperature, organic matte

metamorphism stage (>200° C), where thermal cracking of organic matter produces 

small amounts of methane and converts the organic matter into anthracite (coal) and 

‘graphite’.   

 

 

 

 

 

 

 

 

 

 

 

Figure  7.1 Origin of hydrocarbons and maturation processes of organic matter 
(after Hunt, 1996). 

 

In a source rock evaluation for hydrocarbon potential the key analyses that 

have to be carried out are

prone or gas-prone material) 

mature) of the organic matter in sediments 
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range hydrocarbons.  This stage is the main phase of oil 

generation and is referred to as the oil window (Tissot & Welte, 1984).  By 

increasing the depth of burial and temperature, organic matte

metamorphism stage (>200° C), where thermal cracking of organic matter produces 

small amounts of methane and converts the organic matter into anthracite (coal) and 

Origin of hydrocarbons and maturation processes of organic matter 

In a source rock evaluation for hydrocarbon potential the key analyses that 

out are, the amount (i.e. total organic carbon content)

prone material) and the level of thermal maturation

organic matter in sediments (Tissot & Welte, 1984)
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range hydrocarbons.  This stage is the main phase of oil 

generation and is referred to as the oil window (Tissot & Welte, 1984).  By 

increasing the depth of burial and temperature, organic matter enters the 

metamorphism stage (>200° C), where thermal cracking of organic matter produces 

small amounts of methane and converts the organic matter into anthracite (coal) and 

Origin of hydrocarbons and maturation processes of organic matter 

In a source rock evaluation for hydrocarbon potential the key analyses that 

c carbon content), type (oil-

and the level of thermal maturation (immature or 

(Tissot & Welte, 1984).  
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7.2 The Abu Tunis 1x borehole 

The formations of the Abu Tunis 1x borehole are composed of organic-rich 

clastic and carbonate units, which could have potential as source rock. Therefore, 

the following steps of analyses have been conducted to detect and evaluate any 

potential source rocks.    

 

7.2.1 Total organic carbon (TOC) 

The total organic carbon content of sediment is determined by combustion of 

the organic carbon to CO2 after the removal of the mineral carbonate by acid 

treatment.  Determination of minimum values of TOC for a potential source rock is of 

significance.  Tissot & Welte (1984) pointed out that the minimum values of TOC for 

a potential source rock are very important, not only because hydrocarbons in source 

rocks are generated from this insoluble organic matter, but also because a critical 

level of hydrocarbons has to be reached before expulsion (i.e. primary migration) 

from a source rock is possible.  Brooks (1981) pointed out that there is no specific 

minimum amount of TOC required for a bed to act as an effective source rock and 

hence values must be evaluated and interpreted for different basins.  However, an 

empirical value of about 0.5 wt % TOC is generally accepted as the lower limit 

required for shales before significant generation and expulsion of liquid and gas 

hydrocarbons take place (Ronov, 1958; Tissot & Welte, 1984; Walpes, 1985; Peters, 

1986; Bordenave, 1993), with a lower limit for carbonates as a source rock of about 

0.3 wt % TOC (Gehman, 1962; Brooks, 1981; Tissot & Welte, 1984).     

Samples of the Masajid, Alam El Buieb, and Alamein formations are 

relatively rich in organic matter, and thus the deepest 29 samples were selected for 

total organic carbon determination (Fig. 7.3).  These samples show an average total 

organic carbon (TOC) content value of 1.38 wt %, which is above the critical limit for 
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both shale and carbonate source rocks.  Peters (1986) rated the generative potential 

of source rocks depending on their total organic carbon (TOC) content, where a 

source rock containing < 0.5 wt % TOC is poor, 0.5-1 wt % fair, 1-2 wt % good, and 

> 2 wt % very good.  The total organic carbon (TOC) measured on the clastic 

samples 1-14, depth 10150 to 9500 ft of the Alam El Buieb Formation show 

minimum and maximum TOC values of 1.2 and 1.8 wt % respectively (Tab. 7.1), 

and an average TOC value of 1.43 wt %, which is well above the critical lower limit 

(0.5 wt %) for shale source rocks to generate hydrocarbons.  Hence this shale 

sequence is regarded as of a good potential to generate hydrocarbons.  The upper 

part of the Alam El Bueib Formation and the lower Alamein Formation are 

represented by samples from 15 to 29 (depths 9450-8750 ft) and are mainly 

composed of a significant dolostone unit intercalated with very few shale horizons.  

These samples show minimum and maximum TOC values of 0.93 and 1.6 wt % 

respectively, and an average TOC value of 1.32 wt %, which is also above the 

critical limit 0.3 wt % TOC for carbonate source rocks to generate hydrocarbons. 
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Table  7.1 Total organic content for the Masajid and Alam El Bueib formations, 
the Abu Tunis 1x borehole, Cb = untreated samples, Ca = acid treated samples.      

Sample Formation Depth (ft) Cb Ca TOC Calcite

29 Alamein Fm 8,750 1.7 1.31 1.26 3.6

28 " 8,800 2 1.5 1.43 4.8

27 " 8,850 3.04 1.45 1.23 15

26 " 8,900 5.85 1.7 1.02 40.2

25 " 8,950 4.1 1.27 0.93 26.3

24 " 9,000 1.9 1.19 1.11 6.5

23 Alamein Fm 9,050 3.41 1.46 1.19 18.4

22 " 9,100 2.11 1.33 1.23 7.3

21 " 9,150 2.23 1.61 1.51 5.9

20 " 9,200 2.35 1.37 1.24 9.2

19 Alam El Bueib Fm 9,250 2.18 1.57 1.48 5.8

18 " 9,300 2.75 1.73 1.56 9.9

17 " 9,350 2.79 1.81 1.63 9.6

16 " 9,400 2.67 1.58 1.41 10.4

15 " 9,450 2.18 1.66 1.58 5

14 " 9,500 2.08 1.53 1.45 5.2

13 Alam El Bueib Fm 9,550 2.33 1.88 1.79 4.5

12 " 9,600 1.99 1.23 1.14 7.1

11 " 9,650 2.09 1.51 1.43 5.5

10 " 9,700 1.89 1.48 1.43 3.8

9 " 9,750 1.86 1.37 1.31 4.6

8 Alam El Bueib Fm 9,800 2.73 1.95 1.8 7.7

7 " 9,850 1.93 1.67 1.63 2.5

6 " 9,900 2.09 1.93 1.62 1.6

5 " 9,950 1.59 1.43 1.41 1.4

4 " 10,000 1.99 1.27 1.18 6.7

3 " 10,050 1.9 1.24 1.16 6

2 Alam El Bueib Fm 10,100 1.47 1.23 1.2 2.2

1 Masajid Fm 10,150 2.09 1.35 1.26 6.9
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7.2.2 Palynofacies analysis and kerogen types  

As shown in chapter 6 palynofacies analysis can be used in a 

palaeoenvironmental context, where the magnitude of terrestrial influx, depositional 

environment, and transgressive-regressive trends and characterization of 

depositional environment in terms of water salinity, oxic-anoxic conditions can be 

assessed.  Alternatively, the palynofacies analysis can be also used in maturation 

and source rock studies (Batten, 1981; Tyson, 1993; Tyson, 1995).  

The word kerogen is derived form Greek: Kerós = wax- or oil-forming and the 

root -gen = that which produces.  According to Steuart (1912) the word kerogen was 

first proposed by Crum-Brown to describe the organic matter present in the Lothian 

(Scotland) oil shales, which when heated produced a waxy-distillate (Brooks, 1981).  

Kerogen is defined as the disseminated organic matter of sedimentary rocks 

insoluble in nonoxidizing acids, bases, and organic solvents (Brooks, 1981; Hunt, 

1996).  Kerogen has two sources: marine and terrestrial. Several different 

classifications of kerogen have been made by coal petrographers, petroleum 

geochemists, and palynologists.   

Coal petrographers have essentially classified the kerogen based on their 

physical properties when seen in incident light with oil immersion objectives into 

three major categories; liptinite (exinite), vitrinite, inertinite (e.g. Stach et al., 1982).  

The word liptinite refers to a maceral group derived from organic materials that have 

high lipid (and fluoresce in UV light) content such as spores and pollen, 

phytoplanktonic algae, resin, cuticles, and bitumen.  Vitrinite refers to a maceral 

group derived from the lignified tissues of higher plants such as trunks, branches, 

stems, leaves, and root of trees and plants.  Inertinite is another maceral group that 

refers to organic material contain high carbon content and show no hydrocarbon 
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potential, these materials are derived from fossil charcoal and from fungal remains 

(Stach et al., 1982; Miles, 1994; Hunt, 1996).   

Petroleum geochemists have proposed several kerogen classifications 

depending on chemical properties of the organic mater, for example, 

depending on the elemental

1984) in terms of atomic 

on a Van Krevelen type 

types: Type I, which is commonly of lacustrine

Botryococcus) and microbial lipids, Type II, which refers to organic matter of marine 

origin (MOM) such as, 

accumulated in a reducing environment, Type III, which refers to terrestrially derived 

organic matter (TOM)

Barnard et al. (1981)

organic matter, such as wood and opaque coaly particles. 

 

 

 

 

 

 

 

 

 

  

Figure  7.2 Van Krevelen 
source rock based on hydrogen and oxygen indices (after Hunt, 1996).   
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e materials are derived from fossil charcoal and from fungal remains 

(Stach et al., 1982; Miles, 1994; Hunt, 1996).    

etroleum geochemists have proposed several kerogen classifications 

depending on chemical properties of the organic mater, for example, 

elemental analysis of the organic matter (Tissot & Welte, 1978, 

in terms of atomic hydrogen index (HI) vs Oxygen index (O

type diagram (Van Krevelen, 1961), which defines

types: Type I, which is commonly of lacustrine/marine origin and rich in algae (e.g. 

) and microbial lipids, Type II, which refers to organic matter of marine 

(MOM) such as, algae, zooplankton, and other micro organisms

ccumulated in a reducing environment, Type III, which refers to terrestrially derived 

(TOM), and Type IV of Harwood (1977) equivalent to Type III

(1981), which refers to generally inert oxidized terrestrially derived 

nic matter, such as wood and opaque coaly particles.  

Van Krevelen type diagram showing four types of kerogen of 
source rock based on hydrogen and oxygen indices (after Hunt, 1996).   
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e materials are derived from fossil charcoal and from fungal remains 

etroleum geochemists have proposed several kerogen classifications 

depending on chemical properties of the organic mater, for example, classification 

(Tissot & Welte, 1978, 

OI) plots  (Fig. 7.2) 

defines four kerogen 

origin and rich in algae (e.g. 

) and microbial lipids, Type II, which refers to organic matter of marine 

algae, zooplankton, and other micro organisms, which have 

ccumulated in a reducing environment, Type III, which refers to terrestrially derived 

equivalent to Type III-B of 

oxidized terrestrially derived 

showing four types of kerogen of 
source rock based on hydrogen and oxygen indices (after Hunt, 1996).    
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The palynologists as mentioned before have also proposed various kerogen 

classifications (e.g. Staplin, 1969; Correia, 1971; Burgess, 1974; Bujak et al., 1977; 

Combaz, 1980, Claret et al., 1981; Pocock, 1982; Pocock et al.,  1988) based on 

mixed maceral terminologies of reflected light and palynological terminologies of 

transmitted light.  Tyson (1993, 1995) has proposed a simple kerogen classification 

on a pure palynological basis for rapid assessment of hydrocarbon potential under 

transmitted light microscopy, where particulate organic matter constituents 

(palynomorphs, phytoclasts, and amorphous organic matter) can be placed into one 

of the four of the following kerogen types of (Tissot & Welte, 1984; Harwood, 1977): 

Type I (highly oil-prone material), Type II (oil-prone material), Type III (gas-prone 

material), and Type IV (inert material). Tyson’s (1995) definition of each categorized 

kerogen constituent is as follow:  

A. Palynomorphs: includes all pollen and spores, dinoflagellate cysts, acritarchs, 

other algal fragments, and microforaminiferal test linings (MTLs).     

B. Phytoclasts: includes structured terrestrial plant debris such as wood tracheid, 

cuticle, and cortex tissue. 

C. Opaques (black debris): includes oxidized or carbonized black coloured woody 

tissues including charcoal. 

D. Amorphous organic matter: includes structureless organic matter such as 

bacterially derived AOM, resins, and more rarely humic gel of terrestrially 

biodegraded plant debris.  

Based on Tyson’s (1995) definition of the palynofacies as “a body of 

sediment containing a distinctive assemblage of palynological organic matter l, 

with a characteristic range of hydrocarbon-generating potential”.  Depending upon 

the nature of palynofacies composition, in terms of its different proportions of the 
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hydrocarbon-forming particulate organic matter constituents, each distinctive 

palynofacies can be correlated with the geochemically identified kerogen types as 

follow (Tyson, 1995):      

1. Kerogen type I (highly oil-prone material): it includes alginitic material derived 

from chlorococcalean algae, prasinophyte algae, cyanobacteria, and some 

thiobacteria. Resins and cuticles are the only significant terrestrially-derived 

component belonging to this group. 

2. Kerogen type II (oil-prone material): It includes amorphous organic matter, but 

sporopollenin palynomorphs, cuticle, and non-cellular membranous debris are also 

included.  

3. Kerogen type III (gas-prone material): Orange or brown, translucent, phytoclast or 

structureless materials. Woody fragments are typical.   

4. Kerogen type IV (inert material): Opaque to semi-opaque, black, or very dark 

brown particles, representing oxidized or carbonized phytoclasts (including 

charcoal). Fungal and tectin/chitinous materials are included.   

In the present study, Tyson’s (1995) method for visual palynofacies analysis 

and kerogen types determination is used, as this method is enjoying the merit of 

being simple, where microscopy is the only tool to be used with normal palynological 

slides with no additional preparation.  In addition to that, it is a method that enables 

the study of the qualitative character of the kerogen constituents.     

Absolute abundance (grains/g) of particulate organic matter particles 

(palynomorphs, phytoclasts, and amorphous organic matter) were determined using 

an Olympus (BX41) transmitted light microscope at x100x and x250 magnifications.  

The palynofacies and corresponding kerogen types were scored depending on 

changes in the average absolute abundance of particulate organic matter (POM) 
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constituents with no regard to formation lithologies.  Each counted palynodebris 

constituent was classified in terms of very rare (1-10 x102), rare (11-30 x102), 

present (31-60 x102), common (61-100 x102), frequent (101-150 x102), abundant 

(151-200 x102), very abundant (200-250 x102), and extremely abundant (>250 x102).  

Absolute abundance of each counted palynofacies constituents are shown in 

Appendix 3.    

The AOM-phytoclast-palynomorphs (APP) ternary kerogen plot along with its 

associated key to marine palynofacies of Tyson (1993, 1995) was then used to 

determine the oxygenation conditions that prevailed during or after the deposition of 

each identified palynofacies in its depositional environment, which in turn gives an 

insight about the kerogen quality. 

 

A. Palynofacies PF-1 (10150-8100 ft, 3094-2469 m) 

This palynofacies covers the lower part of the Abu Tunis 1x borehole section 

and represents the Masajid Formation (sample 1), and  the Alam El Buieb and the 

Alamein formations (samples 2-42).  This palynofacies is characterized by extremely 

abundant AOM (34,400 particles/g) and phytoclast (18,200 particles/g), present 

palynomorphs (4,400 grains/g), and rare opaque phytoclast (2,900 particles/g) 

concentrations (Fig. 7.3).   

 

Kerogen of palynofacies PF-1  

The extreme abundances of the brown phytoclasts and the frequent 

occurrence of sporomorphs could suggest a kerogen type III (gas-prone) for this 

interval.  However, these terrestrial organic mater are accompanied with extreme 

abundances of AOM, therefore, this terrestrial:marine mixture would rather suggest 



Chapter VII                                                                                    Thermal Maturity Analysis  

275 

a kerogen type III to II (mainly gas-prone).  The plot of the PF-1 in the kerogen plot 

(Fig. 7.4) of Tyson (1995) suggests that organic matter of the PF-1 was deposited in 

nearshore shelf to basin transition settings under dysoxic-suboxic conditions (Tab. 

7.2), where the AOM were diluted by terrestrially derived organic matter, which were 

unsuitable for the preservation of a high abundance of AOM.  The overall nature of 

the AOM-terrestrial organic matter mixture of PF-1 infers a kerogen type III to II, 

which is mainly gas-prone. 
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Figure  7.4 The Abu Tunis 1x palynofacies plot in the ternary kerogen plot of 
Tyson, 1995.      

Palynofacies 
field 

Environment Kerogen type 

I Highly proximal shelf or basin. III (gas prone) 

II Marginal dysoxic-anoxic basin. III (gas prone) 

III Heterolithic oxic shelf ("proximal shelf"). III or IV (gas prone) 

IV Shelf to basin transition. III or II (mainly gas prone) 

V Mud- dominated oxic shelf ("distal shelf"). III > IV (gas prone) 

VI Proximal suboxic-anoxic shelf. II (oil prone) 

VII Distal dysoxic-anoxic "shelf". II (oil prone) 

VIII Distal dysoxic-anoxic shelf. II >> I (oil prone) 

IX Distal suboxic-anoxic basin. II ≥ I (highly oil prone) 

   

Table  7.2 Key to marine palynofacies fields indicated in the ternary kerogen plot 
(simplified from Tyson, 1995).   

PF-1

PF-2

PF-3
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B.  Palynofacies PF-2 (8050- 4800 ft, 2454-1463 m) 

PF-2 is distinguished from the previous PF-1 by a very great increase in the 

AOM concentration, which is reflected in highly extreme abundances of AOM 

(185,500 particles/g).  However, extreme abundances of phytoclasts (64,600 

particles/g) also reflect a strong terrestrial influence, including concentrations of 

palynomorphs (5,200 grains/g) and opaque phytoclasts (5,000 particles/g).  

 

Kerogen of palynofacies PF-2  

The dominance of the AOM over terrestrially derived organic matter 

suggests a kerogen type II (oil-prone) for this interval.  Plot of the PF-2 samples in 

the kerogen ternary diagram of Tyson (1995) shows that samples of the PF-2 were 

deposited in proximal shelf to distal basin settings under suboxic-anoxic conditions.  

This suggests that more oxygen depletion conditions were developed during or after 

the deposition of this palynofacies, which in turn, created more a reducing 

environment that was suitable for preservation of large amounts of AOM.  These 

high AOM concentrations together with conditions favourable for AOM preservation 

support a kerogen type II, which is likely to produce oil.   

 

C.  Palynofacies PF-3 (4750-2950 ft, 1448-899 m) 

PF-3 is clearly distinguished from the previous PF-1 and PF-2, where highly 

extreme abundances (120,900 particles/g) of AOM dominate the palynofacies 

composition, with minor terrestrial influence reflected in the concentration (4,200 

grains/g) of palynomorphs. Phytoclasts and opaque plant debris are completely 

absent.  
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Kerogen of palynofacies PF-3  

 This palynofacies is almost composed of AOM, and thus an unequivocal 

kerogen type II (oil-prone) is assigned for the PF-3.  Samples of the PF-3 plotted on 

the kerogen diagram of Tyson (1995), suggest that PF-3 was deposited in a distal 

basin setting under suboxic-anoxic conditions.  Here sediments of the PF-3 were 

highly depleted in oxygen concentrations and lack any pronounced terrestrial 

influence.  As a result, the PF-3 is regarded as a highly oil prone kerogen type.     

        

7.2.3 Thermal maturation of organic matter 

Thermal alteration of organic matter is generally defined as changes in the 

physical and chemical properties of the organic matter of a source rock during 

diagenesis, catagenesis, and metagenesis (Tissot & Welte, 1984).  

There are several techniques, which have been used to measure organic 

maturation.  The coal petrographers have used the vitrinite reflectance of polished 

surfaces to determine levels of maturation (e.g. Stach et al., 1982).  

Simple geochemical methods to determine levels of maturation, include 

elemental analysis of organic matter in terms of the atomic H/C vs O/C plot (Van 

Krevelen, 1961 diagram; Tissot et al., 1979; Tissot & Welte, 1984), changes in the 

carbon composition in terms of C-H-O ternary diagram (Stephens, 1979) and by 

Rock Eval pyrolysis (Espitalié et al., 1977; Peters, 1986).  

Palynologists use spores colour changes to determine levels of maturation of 

organic matter.  For example, the thermal alteration index (TAI) of Staplin (1969), 

spore colour index (SCI) of Fisher et al. (1980), and thermal alteration index (TAI) of 

Pearson (1984).  Here it was recognised that the exine colour of spores and pollen 

changes from light yellow to yellow orange, then brown and black, where yellow 
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represents immature organic matter, orange and brown represent mature organic 

matter, and black represents metamorphosed organic matter (Hunt, 1996).  There 

are certain disadvantages to the visual kerogen study, i.e. the results may be biased 

due to caving in cuttings samples, mud contaminants, or reworking.  This is in 

addition to the subjectivity of investigator when choosing specific colours.  However, 

this method has many advantages, as it is an inexpensive method and provides 

rapid determination of maturity and assessment of hydrocarbon quality (Staplin, 

1969; Correia, 1971; Raynaud & Robert, 1976; Tissot & Welte, 1984; Firth, 1993). 

 

A. Visual spore colour and determination of thermal maturation 

Here Pearson’s (1984) colour chart (Fig. 7.5a) was used  for visual colour 

determination with corresponding thermal alteration index (TAI) values following 

calibration with the colour scale (Fig. 7.5b) and reference slides of Fisher et al., 

(1980).  Batten’s colour scale (1980) was used to determine the maturation 

significance of spore colours (Tab. 7.3), where smooth thin-walled spores (e.g. 

Deltoidospora, Triplanosporites, Dictyophyllidits, Cyathidites) was chosen for colour 

determination, as they are most sensitive and reliable indicators of maturity (Batten, 

1981).  The slight and gradual change in colours observed from smooth spore 

exines through the studied borehole section has been found to increase with depth, 

and is equivalent to changes in TAI values from 2- to 3-. 

Samples 1-19 (depth 10150-9250 ft) of the Alam El Buieb Formation are of 

marginally mature to mature organic matter, where the spores exhibit colours 

ranging between light brownish yellow to medium brown (Fig. 7.5). These colours 

correspond to TAI values of 3- to 3.  Consequently, this sequence is likely to have 

produced hydrocarbons in fair amounts (Batten, 1981).  
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The lower part of the Alamein Formation (samples 20-30, depth 9200-8700 

ft) is of a marginally mature organic matter, where the spores exhibit light brownish 

yellow colours, corresponding to TAI value of 3-.  Accordingly, this sequence is likely 

to produce hydrocarbons, but not in a commercial amounts (Batten, 1981). 

The upper part of the Alamein, the Kharita, Bahariya, Abu Roash, and 

Khoman B formations (samples 31-100, depth 8650-4800 ft) contain organic matter 

that must have undergone some chemical alterations, but is still immature.  This is 

shown by spores from this interval, which exhibit yellow colours, which correspond 

to TAI values of 2.  Therefore, this sequence is most unlikely to act as an active 

source rock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.5 (A) Pearson’s (1984) colour chart for organic thermal maturity 
determination correlated with thermal alteration index (TAI) and vitrinite 
reflectance; (B) Correlation of spore colour index (SCI) of Fisher et al., (1980) 
with thermal alteration index (TAI) of Staplin (1969) for organic thermal 
maturity determination.    
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B. Vitrinite reflectivity, burial history, geothermal characterisation, and thermal 

maturation of the Abu Tunis 1x borehole source rocks 

Vitrinite is the maceral group derived from the lignified tissues of higher 

plants such as trunks, branches, stems, leaves, and root of trees and plants.  

Vitrinite is derived from the humic acid fraction of humic substances, predominately 

lignin and cellulose.  The environment of preservation is usually weakly acidic and 

reducing.  It has light orange to dark brown colours in transmitted white light, and 

grey to yellow colours in reflected light, and it does not fluoresce in UV light.  In 

reflected light the vitrinite can be classified in to three types: unstructured vitrinite or 

“collinite”, structured vitrinite or “telinite”, and detrital vitrinite or “detrovitrinite” (Miles, 

1994).  

 

 

 

 

 

 

 

 

 

  

Table  7.3 Batten’s palynomorph colour scale and corresponding maturation 
stages. 

 

 

Observed spores colours Maturation stages 
 

1. Colourless, pale yellow, 

yellowish orange 

 

Chemical change negligible; organic matter 

immature, having no source potential for 

hydrocarbon. 

2. Yellow. Some chemical change, but organic matter still 

immature 

3. Light brownish yellow, yellowish 

orange 

Some chemical change, marginally mature but 

not likely to have potential as a commercial 

source. 

4. Light medium brown. Mature, active volatilization, oil generation. 

5. Dark brown. Mature, production of wet gas and condensate, 

transition to dry gas phase. 

6. Very dark brown-black. Overmature; source potential for dry gas 

7. Black (opaque). Traces of dry gas only. 
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Vitrinite reflectance is a maturation indicator, where the reflectance of 

polished vitrinite particles increases with increasing time 

Increases in reflectance are caused by progressive aromatization of the kerogen 

with accompanying loss of hydrogen (Miles, 1994). 

reactions have been found to increase exponentially with temperat

(Fig. 7.6), reflectanc

increases exponentially with a linear increase in temperature (Hunt, 1996).

The correlation of vitrinite reflectance with other maturation indicators and

with oil and gas accumulations has

maturation and oil and gas generation stages; where 

reflectance Ro value of 

oil, Ro <0.5-0.7 % defines the 

but generally mark the beginning of commercial oil generation, 0.5

% defines the top of the 

oil generation, where the source rock is mat

accumulations. 

 

 

 

 

 

 

 

Figure  7.6 Exponential increase in vitrinite reflectance with linear increase in 
temperature (after Barker & Pawlewicz, 1994)
Goldstein (1990) with additional data from Aizawa 
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Vitrinite reflectance is a maturation indicator, where the reflectance of 

polished vitrinite particles increases with increasing time and/or 

Increases in reflectance are caused by progressive aromatization of the kerogen 

with accompanying loss of hydrogen (Miles, 1994).  These irreversible chemical 

reactions have been found to increase exponentially with temperat

nce which measures these chemical changes also generally 

increases exponentially with a linear increase in temperature (Hunt, 1996).

The correlation of vitrinite reflectance with other maturation indicators and

with oil and gas accumulations has resulted in an empirical definition of levels of 

maturation and oil and gas generation stages; where mean random (oil) vitrinite 

value of 0.45 % is the lowest values associated with 

0.7 % defines the “diagenesis” stage in which source rock is immature, 

but generally mark the beginning of commercial oil generation, 0.5

top of the catagenesis stage “oil window”, which is the main zone of 

oil generation, where the source rock is mature and produc

Exponential increase in vitrinite reflectance with linear increase in 
(after Barker & Pawlewicz, 1994). Figure based on Barker & 

with additional data from Aizawa (1989). 
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Vitrinite reflectance is a maturation indicator, where the reflectance of 

and/or temperature.  

Increases in reflectance are caused by progressive aromatization of the kerogen 

These irreversible chemical 

reactions have been found to increase exponentially with temperature and hence 

e which measures these chemical changes also generally 

increases exponentially with a linear increase in temperature (Hunt, 1996). 

The correlation of vitrinite reflectance with other maturation indicators and 

resulted in an empirical definition of levels of 

mean random (oil) vitrinite 

0.45 % is the lowest values associated with the generation of 

stage in which source rock is immature, 

but generally mark the beginning of commercial oil generation, 0.5-0.7 %. Ro ca. 1.3 

sis stage “oil window”, which is the main zone of 

ure and produces commercial oil 

Exponential increase in vitrinite reflectance with linear increase in 
. Figure based on Barker & 



Chapter VII                                                                                    Thermal Maturity Analysis 

283 

Vitrinite Ro values of 1.3-2 % defines the late catagenesis stages in which 

source rock is marginally over mature and wet gas (methane) and condensate 

generating Ro > 2 % defines the metagenesis stages in which source rock is 

overmature and methane gas remains as the only hydrocarbon (Tissot & Welte, 

1984; Hunt, 1996).  Vitrinite reflectance values only indicate levels of maturation of 

the source rock and cannot predict where oil or gas may be reservoired, because of 

the migration of the hydrocarbons.  

In order to study the burial history and its relation to the geothermal regime, 

and hence the thermal maturation of the organic matter, modelling using 

BasinModTM software was been carried out for the Abu Tunis 1x borehole. Vitrinite 

reflectivity measurements of samples that covered the whole phytoclast-rich clastic 

sequence of the Abu Tunis 1x borehole are shown in figure (7.8).  These results 

showed that mean vitrinite reflectivity values decrease to stationary values in 

samples (AT34-AT114), which are rich in AOM (Tab. 7.4).  This phenomenon was 

detected for example, by Marshall (1988) in the Devonian lacustrine source rock in 

north Scotland.  This phenomenon is known as vitrinite suppression or retardation, 

and it was attributed by several geochemists and petrographers (e.g. Price & 

Barker, 1985; Hutton & Cook, 1990) to the dominance of the AOM in kerogen, 

where mature organic matter are adsorbed on the vitrinite particles and reduces its 

reflectance (Fig. 7.7).  

Therefore, measured vitrinite reflectance made on samples that are 

phytoclast-rich have been chosen for the following thermal analyses.  The measured 

vitrinite reflectance was compared to kinetically calculated vitrinite reflectance using 

the LLNL Easy % Rv developed by the Lawrence Livermore National Laboratories 

are included in the BasinModTM (1993) burial model.  
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Figure  7.7 Suppressed vitrinite, m
from aliquots of humic coals and organic
Wyoming plus Tertiary coals of Utah and the U. S. Gulf Coast; (L) lignite;
Phosphoria Shale of Wyoming; (W) Woodford Shale of Oklahoma; (A) Alum 
Shale of Scandinavia; (M) Mowry Shale of Wyoming. The samples were heated 
isothermally in water at temperatures from 300 to 360 
Lewan, 1993). 

Chapter VII                                                                                    Thermal Maturity Analysis

284 

Suppressed vitrinite, mean random reflectance of vitrinite isolated 
from aliquots of humic coals and organic-rich shales: (C) Cretaceous coals of 
Wyoming plus Tertiary coals of Utah and the U. S. Gulf Coast; (L) lignite;
Phosphoria Shale of Wyoming; (W) Woodford Shale of Oklahoma; (A) Alum 
Shale of Scandinavia; (M) Mowry Shale of Wyoming. The samples were heated 
isothermally in water at temperatures from 300 to 360 °C, for 72 hours 
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ean random reflectance of vitrinite isolated 
rich shales: (C) Cretaceous coals of 

Wyoming plus Tertiary coals of Utah and the U. S. Gulf Coast; (L) lignite; (P) 
Phosphoria Shale of Wyoming; (W) Woodford Shale of Oklahoma; (A) Alum 
Shale of Scandinavia; (M) Mowry Shale of Wyoming. The samples were heated 

C, for 72 hours (after 
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Kinetically calculated vitrinite reflectance (Rv %) using a Lawrence Livermore 

National Laboratories (LLNL) program called VITRIMAT is based on the assumption 

that Rv % is related to the chemical composition of kerogen.  The VITRIMAT 

program calculates the vitrinite composition from a chemical kinetic model, in which 

separate reactions for the elimination of H2O, CO2, CH4, and higher hydrocarbon 

(HC) from the coal structure are calculated. The program then calculates the vitrinite 

reflectance from correlations of Rv % with carbon content and with H/C and O/C 

ratios (Sweeney & Burnham, 1990).  Profile of measured vitrinite reflectance is 

shown in figure (7.6). 

The best acceptable match between the measured vitrinite reflectance and 

the kinetically calculated ones (Fig. 7.9) was achieved using a geothermal gradient 

of 23 ºC/km.  Sedimentary basins can be classified according to the variation in 

geothermal gradient, where gradients of 18-20 ºC/km are cold, 25-27 ºC/km are 

normal, and 40-100 or up to 200 ºC/km are hot (Robert, 1988). 

 

 

 

 

 

 

 

 

 

 

Sample no. Formation Depth (ft) Ro % n sd

AT114 Abu Roash 4500 0.17 66 0.03

AT101 Bahariya 5150 0.24 52 0.05

AT88 Kharita/Bahariya 5800 0.26 48 0.04

AT82 Kharita 6100 0.34 60 0.04

AT78 Kharita 6300 0.35 55 0.04

AT71 Kharita 6650 0.36 46 0.03

AT65 Kharita 6950 0.36 57 0.03

AT59 Kharita 7250 0.37 49 0.04

AT52 Dahab 7600 0.37 61 0.05

AT46 Dahab 7900 0.38 69 0.04

AT40 Alamein 8200 0.39 44 0.07

AT34 Alamein 8500 0.39 59 0.08

AT23 Alamein 9050 0.56 65 0.07

AT15 Alam El Buieb 9450 0.55 48 0.11

AT9 Alam El Buieb 9750 0.56 48 0.11

AT3 Alam El Buieb 10050 0.58 66 0.06

Table  7.4 Vitrinite reflectivity data for the Abu Tunis (AT) 1x borehole 
formations. 
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Figure  7.8 Vitrinite reflectivity profile for the different formations of the Abu 
Tunis 1x borehole.   
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The modelled geothermal gradient of 23 ºC/km used in the Abu Tunis 1x 

borehole, indicates that the geothermal characterisation of the underlying Jurassic 

sequence indicates a basin of normal geothermal gradient.  The extrapolation of the 

modelled vitrinite reflectivity gradient (Fig. 7.9) to about 13,680 ft, which is the 

maximum burial depth for the lower Jurassic Wadi Natrun Formation, shows that this 

part of the Jurassic sequence could have reached a higher vitrinite value of > 0.7 % 

Rv.  This in turn indicates that the lower part of the Wadi Natrun Formation will have 

just entered the middle stage of thermal maturation (Tissot & Welte, 1984; Hunt, 

1996).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.9 Measured vitrinite reflectivity and kinetically calculated 
(BasinModTM) vitrinite for the different formations of the Abu Tunis 1x 
borehole.  



Chapter VII                                                                                    Thermal Maturity Analysis 

288 

The burial history modelling using the BasinModTM software requires the 

entry of the thickness and the beginning age of each formation lithology.  It also 

requires the addition of the type of the studied lithology, for which the software uses 

a pre-defined rock properties such as, the initial porosity, the compaction data, the 

density, the grain size, the thermal conductivity, and the heat capacity.           

A burial history profile indicates that the Wadi Natrun Formation reached the 

oil window generation during the early Miocene (Fig. 7.10); whereas the lower part 

of the Alam El Buieb Formation entered the early mature stage of oil generation 

during late Oligocene and is currently still at the early mature stage.       

 

7.2.4 Evaluation of source rock  

The clastic rocks of the Alam El Buieb Formation and the overlying 

carbonate sequence of the Alamein Formation have average TOC values of 1.34 wt 

%, which is above the lower critical limit for a sedimentary rock to act as a source 

rock.  The Alam El Buieb and Alamein formations exhibit a kerogen type III to II, 

which is likely to produce gas.  

The visual maturity indices (i.e. TAI and SCI) along with the vitrinite maturity 

index (avg 0.55 %) indicate that the Alam El Buieb Formation is a source rock of 

very low potential as its organic matter is in the early stage of thermal maturity (Fig. 

7.11).  Thus it is not able to generate and expel hydrocarbons in appreciable 

amounts.  Therefore, the Alam El Buieb Formation is considered as a non-

commercial marginally mature to mature mainly gas-prone source rock. 
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The thick sandstones sediments of the Kharita and the lower Bahariya 

formations exhibit type II kerogens, which is likely to produce oil.  Visual maturity 

indices and the extrapolated modelled vitrinite (avg 0.4 %), show that this clastic 

body is of immature organic matter.  However, their immature organic matter shows 

this siltstone sequence as an inactive, immature rock of no potential to generate and 

expel hydrocarbon. The upper Bahariya, the Abu Roash, and the lower Khoman (B) 

formations, exhibits highly oil-prone kerogen type II.  Visual thermal maturity index 

and extrapolated modelled vitrinite (avg 0.25 %) indicate that this carbonate 

sequence is immature, and therefore, is regarded as immature and with no potential 

to act as a source rock in the Abu Tunis borehole.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.10 Kinetically modelled (BasinModTM) position of the hydrocarbon 
generative interval and maturity windows. 
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In summary, the sediments the Abu Tunis 1x borehole contains a non-

commercial marginally mature to mature gas-prone source rock represented by the 

lower and middle Alam El Buieb Formation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.11 Measured vitrinite reflectivity as a maturity indicator for the Alam 
El Bueib source rock, and the maturity windows.  
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7.3 The BB80-1 borehole 

The Malha and Raha formations of the BB80-1 borehole are mainly 

composed of thick barren sandstone units with a very few shale horizons overlain by 

two carbonate units that are relatively rich in terrestrial but poor in marine organic 

matter (Fig. 7.12).  This sandstone lithology of the possible alluvial origin with its 

generally poor indigenous organic matter nature could be a potential hydrocarbon 

reservoir.  

A reservoir is defined as a sedimentary body that is porous enough to act as 

a container for hydrocarbon accumulations within a trap, with its pores are 

sufficiently interconnected to allow the fluid hydrocarbons to flow and migrate 

through the hosting rocks.  Clastic (sandstones) and carbonate rocks are typical 

types of hydrocarbon reservoirs (Allen & Allen, 1990).   

 Determination of hydrocarbon reservoir involves the integration of 

sedimentary facies interpretations from subsurface samples, depositional modelling, 

and wireline geophysical well data (Rider, 1986; Allen & Allen, 1990).  

 

7.3.1 Depositional environment of the BB80-1 borehole 

As mentioned before in chapter 6, the clastic sediments of the BB80-1 

borehole are interpreted as being deposited in an alluvial environment with an 

occasional very shallow marine influence represented by marine shale horizons and 

carbonate rocks at the top of the sandstone body.  This interpretation was generally 

based on the barren nature of the sandstone unit, proportions of terrestrial and 

marine palynomorphs and particulate organic matter in shale and carbonate 

samples, and the sedimentary facies interpretations derived from the wireline 

geophysical (gamma ray and resistivity) data.   
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Figure  7.12 Absolute abundance (grains/g) of the palynological kerogen 
constituents of the BB80-1 borehole. 
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7.3.2 Sedimentary facies from gamma ray and resistivity data 

The wireline data profile of the BB80-1 borehole (Fig. 7.13) indicates a shale 

unit at the base of the borehole section, based on high gamma ray values.  Low 

resistivity and gamma values are indicative of a thick sandstone unit of the Malha 

and Raha formations, which is also supported by testing the cutting samples 

lithologies of this sequence.  The identifications of the carbonate lithology from the 

ditch cutting samples and the resistivity profile are in agreement, as carbonate rocks 

of vuggy porosity are known to have moderate resistivity (Rider, 1986).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.13 Gamma ray and resistivity data of the BB80-1 borehole showing 
changes in sedimentary facies and hydrocarbon shows.  
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7.3.3 Evaluation of the Malha and Raha formations sandstone  

Porous sandstones rich in fluid hydrocarbons (in contrast to clean 

sandstones with saline formation waters), show a high resistivity as hydrocarbons 

are electrical insulators (e.g. Rider, 1986).  This phenomenon was the principle to 

use resistivity data in detecting oil shows in reservoirs and source rocks.  Very high 

resistivities of the shale unit at the base of the BB80-1 borehole section and in other 

shale horizons throughout the section, indicates the presence of some hydrocarbons 

(Fig. 7.13).  This is supported by the thermal maturation investigation (TAI and SCI), 

where spores exhibit light medium brown colours, which correspond to TAI values of 

3- to 3.  This indicates that the organic matter of the shale beds could have 

generated some hydrocarbons (Batten, 1981).   

A sandstone lithology that is poor in indigenous organic matter.  The porous 

nature of this sandstone unit and indications of some hydrocarbon shows suggests 

that this sandstone lithology might have acted at some time as a hydrocarbon 

reservoir, however, due to lack in such supporting information for example, seismic 

data or basin analysis data; therefore no such interpretation can be made.   
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8.SUMMARY AND CONCLUSION 

 

Ditch cutting samples have been palynologically processed from two 

Egyptian subsurface stratigraphic Cretaceous sections the Abu Tunis 1x borehole in 

the northern Western Desert and the BB80-1 borehole in the Gulf of Suez.  The 

results show that the sediments of the Abu Tunis 1x borehole are rich in fine 

disseminated organic matter whilst the samples from the BB80-1 are lean in their 

organic matter content but of sufficient quality for simple palynological investigation.  

Therefore, a palynological investigation has been carried on both borehole samples.  

Integrated quantitative and qualitative data determined from the different organic 

matter constituents of the samples of both boreholes not only provides important 

information on the regional and intercontinental biostratigraphic framework of 

sediments and their possible depositional environments, but also provides an insight 

into palaeoclimate conditions prevailed during sedimentation.  Furthermore, 

palynological, simple petrographic and chemical analyses of the organic matter, in 

addition to a burial history modelling of the Abu Tunis 1x sequence have contributed 

an understanding of the geothermal history of part of the Faghur Basin.  

� The vertical distribution of recovered palynomorphs exhibited taxa of 

biostratigraphic importance and enabled the recognition of several Cretaceous 

biostratigraphic units that have not been recognised and/or studied in detail by the 

original operating drilling companies.  In addition, the units originally designated by 

the same companies as “no information” have been revised, with eight 

palynologically identified biozones in the Abu Tunis 1x borehole but only two 

biozones in the generally organic-poor BB80-1 borehole.  All palynozones have 

been largely identified by first appearance datum (FAD) of index taxa as follows:   
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A. The Abu Tunis 1x borehole 

� Palynozone 1 of late Hauterivian-early Barremian age identified by total 

range of the African endemic gymnosperm pollen Dicheiropollis etruscus. 

� Palynozone 2 of late Barremian age identified from the first appearance 

datum of angiosperm pollen grains Retimonocolpites matruhensis, 

Retimonocolpites matruhensis-ghazaii complex, Retimonocolpites pennyi, 

Tucanopollis, and marine phytoplankton genus Pseudoceratium retusum to 

just below the first appearance datum of the angiosperm pollen Afropollis 

zonatus, and marine phytoplankton Florentinia mantellii and Pseudoceratium 

securigerum.      

� Palynozone 3 of Aptian age identified from the first appearance datum of 

Afropollis zonatus, Florentinia mantellii, and Pseudoceratium securigerum 

and just below the first appearance datum of marine phytoplankton 

Palaeoperidinium cretaceum to just below the first appearance datum of 

Afropollis jardinus.  

� Palynozone 4 of early-mid Albian age identified from the first appearance 

datum of Afropollis jardinus to just below the first appearance datum of 

elaterate ephedroid pollen grains Sofrepites legouxiae and Elaterosporites 

verrucatus.   

� Palynozone 5 of late Albian-early Cenomanian age identified by the total 

range of Sofrepites legouxiae.  

� Palynozone 6 of early-? mid Cenomanian age, identified from the last 

appearance datum of Sofrepites legouxiae to just below the first appearance 

datum of the triporate angiosperm pollen Proteacidites cf. africaensis.  

�   Palynozone 7 of mid-late Cenomanian age identified by the total range of 

Proteacidites cf. africaensis.   
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� Palynozone 8 of early ? Santonian age identified by the total range of marine 

phytoplankton Canningia senonica.   

B. The BB80-1 borehole 

� Palynozone 1 of mid Albian age identified by the first appearance datum of 

Afropollis jardinus and Elaterosporites klaszii.   

� Palynozone 2 of late Albian-early Cenomanian age identified from the first 

appearance datum of Elaterocolpites castelainii, Elaterosporites africaensis 

and Afropollis kharamanensis to the top of sequence.   

 

� Correlation of the studied Egyptian Cretaceous sequences of the Abu Tunis 

1x borehole with their contemporaneous regional and intercontinental equavalents, 

revealed a similarity in the biostratigraphic range (late Hauterivian) of the African-

North South American endemic pollen index grain Dicheiropollis etruscus in Egypt 

with that of other countries which were confined to the same palaeotropics during 

the early Cretaceous such as Libya, Senegal and the Ivory Coast, with an earlier 

(Berriasian) questionable biostratigraphic appearance of Dicheiropollis etruscus 

recorded from West and NW African palaeosubtropical countries (e.g. Gabon and 

Morocco).  This earlier appearance is suggested here to be less likely due to a 

diachroneity between the sedimentary sequences of both NE and West Africa and 

because as yet there is no (bio)- or litho-stratigraphic evidence for this.  By 

comparing Dicheiropollis etruscus with the thermophilous drought resistant 

gymnosperm Classopollis (of close botanical affinity to D. etruscus) and of well know 

ecological and palaeoclimatic preference, it is suggested here that this discrepancy 

in the biostratigraphic appearances of D. etruscus could be due to palaeolatitudinal 

position (i.e. dry palaeosubtropical of West African countries versus relatively wetter 
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palaeotropical countries of NE Africa), where a dry palaeoclimate is suggested here 

to be the trigger of this earlier appearance.   

Another phenomenon that is recognised is a similarity in acme events of the 

Winteraceaen angiosperm pollen Afropollis in the geologic record of both Egypt and 

Senegal.  The upward persistent occurrence of Afropollis zonatus and Afropollis 

operculatus into the late Aptian of Senegal in contrast to an early Aptian only last 

appearance of the same species in Gabon has been attributed by Doyle et al. 

(1982) to a more favourable wetter palaeoclimate in Senegal that caused the 

upward continuation of the latter species.  A similar event was recorded in Egypt by 

Schrank & Ibrahim, (1995) and is recorded here in Playnozone 3 of the Abu Tunis 

1x borehole.  It is suggest here that biostratigraphic units of Egypt and Senegal were 

actually synchronous, as both countries were confined to the same palaeolatitude 

(i.e. same palaeoclimate) and was both bordered by vast marine bodies namely; the 

Tethyan and Southern Atlantic Oceans for Egypt and Senegal respectively, where 

oceans are well know as the main driver for global (palaeo)- climate.  

A synchronicity between the North and West African late Cretaceous 

biostratigraphic units is suggested here, in contrast to an argument made by 

Schrank & Ibrahim (1995), who proposed a diachroneity between latter areas based 

on a foraminiferally dated Egyptian downward range (late Turonian) of the 

gymnosperm index pollen Droseridites senonicus in contrast to an assumed – by 

Schrank & Ibrahim (op. cit.) - restriction of this species to the early Santonian of 

West Africa.  However, it has been explained here that this downward extension has 

been recorded before in West Africa, and thus there is no evidence for this 

diachroneity, especially since other foraminifera-dated gymnosperm and 

angiosperm index forms have been recorded from similar stratigraphic horizons in 

both North and West Africa.  The synchronicity proposed here was based on the 

continuous north-northeast African plate movement towards Laurasia as a response 
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to the breakup of Western Gondwana, where North and West African countries have 

been brought to a similar palaeosubtropical position and thus under similar 

palaeoclimate, whereby these regions should have similar palaeovegetation covers.   

Palynoflora recovered from both the Abu Tunis 1x and BB80-1 exhibit 

characters of Cretaceous Phytogeographic Provinces of North African-North South 

America, which can be summarized as follows:         

A. Egyptian pre-Albian palynofloral characters from the present study   

The palynoflora recorded from the late Hauterivian-Aptian of the Abu Tunis 

1x borehole shows a great similarity to that of the pre-Albian Dicheiropollis/Afropollis 

Phytogeographic Province of equatorial Africa.  This palynoflora is characterised by 

high abundances and great diversity of smooth trilete spores (e.g. Deltoidospora 

and Concavisporites), the appearance of Dicheiropollis, low Barremian abundances 

and later Aptian diversification of Ephedripites, and an absence of bi- and tri-saccate 

pollen grains.  The low abundances of Exesipollenites and Araucariacites, slightly 

more common occurrences of Tucanopollis, and finally the appearance and 

diversification of Afropollis, are also diagnostic features for this phytogeographic 

province.   

      

B. Egyptian Albian-Cenomanian palynofloral characters from the present 

study 

The palynoflora of the Abu Tunis 1x and the BB80-1 boreholes exhibits a 

remarkable similarity to that of the Albian-Cenomanian Elaterate Phytogeographic 

Province, which is represented here by the appearance of Afropollis jardinus, 

present occurrences of Crybelosporites, the appearance and diversification of 

gymnospermous elaterate pollen grains (e.g. Elaterosporites, Elaterocolpites, 

Elateroplicites, Galeacornea, and Sofrepites), presence of Cretacaeiporites, and 
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diversification of angiosperm pollen grains (e.g. Tricolpites, Tricolporites, and 

Triporites).  A diminishing abundance and diversity of smooth trilete spores, 

absence of bi- and tri-saccate pollen grains, and the disappearance of Classopollis 

in the mid-late Cenomanian, also characterises the palynoflora recorded from the 

Abu Tunis 1x and the BB80-1 boreholes.   

 

C. Egyptian Senonian palynofloral characters from the present study 

The early Santonian palynoflora of the Abu Tunis 1x borehole is exclusively 

represented by marine phytoplankton and completely lacks any terrestrial 

palynomorphs that would be representative for the Senonian Palmae Province.     

 

� Quantitative palynological data in terms of palynofacies analyses integrated 

with data derived from wireline logs along with lithological interpretations made from 

ditch cutting samples enabled interpretations of possible depositional environments 

from the Abu Tunis 1x and BB80-1 boreholes.  The quantitative distribution of 

certain spores and pollen grains of known botanical affinity and ecological 

preferences were used as proxy indicators for the prevailing palaeoclimate during 

deposition of the investigated sedimentary sequences of both boreholes the Abu 

Tunis 1x and BB80-1.  The quantitative vertical distributions in terms of grains or 

particles per gram of different terrestrial organic matter as represented by 

sporomorphs and associated plant debris and marine phytoplankton (largely 

represented by dinoflagellate cysts) plus the very minor microforaminifera test lining 

concentrations have been clustered at a high level using similarity analysis to 

produce recognizable groups of samples.  These clusters to a great extent conform 

to the lithological units with vertical changes in overall organic matter concentrations 

reflecting changes in the depositional environments in term of transgression-
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regression trends.  These clusters of samples are referred here to as different 

palynofacies types, which in Abu Tunis 1x are represented by three palynofacies 

types with two sub-facies recognised.  In the organic matter-poor samples of the 

BB80-1 borehole there is one palynofacies type with no such statistical analysis.  

The palynofacies types identified are as follows:  

 

A. The Abu Tunis 1x borehole 

Palynofacies PF-1A represents a lower clastic (shale and sandstones) unit of 

the Alam El Buieb Formation at the base of the sedimentary sequence of the Abu 

Tunis 1x.  It is interpreted as being deposited during a regressive marine cycle, in a 

deltaic, possibly sub-aqueous delta-front to delta-top sub-environment, with the 

delta-front sub-environment experienced some periodic anoxic pore-water 

conditions. 

Palynofacies PF-1B represents mixed shale and dolostone intercalations of 

the upper Alam El Bueib Formation and a significant mainly dolostone unit of the 

Alamein Formation.  The included clastic and carbonate units are collectively 

believed to be deposited in inner shallow marine conditions during a relatively high 

water stand, which corresponded to the global late Barremian-Aptian transgression 

cycle, when reducing (anoxic) conditions prevailed during the deposition of the PF-

1B sediments.  

Palynofacies  PF-2A represents another clastic unit that is mainly made of 

fine silts with some shale intercalations of the Dahab and Kharita formations.  These 

sediments are suggested as being deposited during another regression period that 

was dominated by strong terrestrial fluvio-deltaic influence, possibly represented 

here by deltaic channel sedimentation that prograded for some time over prodelta 
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sediments as a response to sea level fall.  Occasional short-lived local anoxic 

conditions are believed to have prevailed during this time.            

Palynofacies PF-2B represents another clastic (fine silts and few shale 

horizons) unit of the Kharita Formation and the lower Bahariya Formation with a 

dolostone unit at the base of the Kharita Formation, where more distal but still 

nearshore conditions occurred.  Here a partially marine isolated-brackish lagoonal 

setting of suboxic-anoxic conditions developed as a response to another second 

incoming but minor rise in sea level exemplified by general slight increases in 

marine phytoplankton in comparison to the preceding delta channel environment.  

This lagoonal setting is believed to have witnessed some occasional marine 

incursions, possibly during occasional connections to open marine waters or due to 

marine storms, which was reflected in more open marine phytoplankton 

concentration.  

 Palynofacies PF-3 represents a carbonate (limestone and dolostone) unit 

with some minor shale horizons of the lower Bahariya Formation and Abu Roash 

Formation.  This sequence is interpreted as being deposited during the continued 

marine transgression that started to show in the preceding lagoonal environment of 

PF-2B, whereas outer shallow marine settings with basinal suboxic-anoxic 

conditions are suggested as being responsible for this distal carbonate 

sedimentation.   

 

B. The BB80-1 borehole 

Palynofacies PF-1 represents clastic sediments of the Malha and Raha 

formations, with very minor shale intercalations and a carbonate unit at the top of 

PF-1 rock sequence.  The Malha clastics were mainly deposited in a nearly marine-

isolated, far from source vegetation, continental basin.  The environment was 
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possibly alluvial, and was invaded occasionally by marine incursions that resulted in 

deposition of marine shale under shallow marginal marine conditions.  During the 

latter conditions the shale horizons experienced some occasional reducing (suboxic-

anoxic) conditions, with a deepening in the marine conditions responsible for 

deposition of the carbonate unit of the Raha Formation.   

 

� Investigation of the hydrocarbon potential of the Abu Tunis 1x and BB80-1 

boreholes shows that sediments of the first borehole could have some potential.  

However, the BB80-1 has shown no potential as a hydrocarbon generator on 

account of both its organic poor-clastic part and the very few oil-shale horizons 

present in the sequence.  For the Abu Tunis 1x borehole, the hydrocarbon 

investigation included a palynofacies analysis for kerogen type identification 

accompanied by spore colour determination of the thermal maturation.  Elemental 

analysis of borehole samples for total organic carbon content was used for 

evaluating potential generative source rocks, with vitrinite reflectivity measurements 

used to determine thermal maturation and the geothermal history of the Faghur 

Basin through the Abu Tunis 1x borehole, and to identify the oil window of such 

potential source rock.  Burial history modelling was also applied to the whole 

sedimentary sequence of the Abu Tunis 1x borehole to understand the geothermal 

history, locate generative rock sequences, and determine the timing of possible 

hydrocarbon generation within the Faghur Basin.  The whole investigation can be 

summarised as follows:  
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A. The Abu Tunis 1x borehole 

For the Abu Tunis 1x borehole sequence, three palynofacies types have 

been identified for kerogen determination, with the lower part of the borehole 

sequence equated as palynofacies PF-1 which corresponds to the uppermost part of 

the Masajid Formation, the Alam El Buieb and Alamein formations.  Here terrestrially 

dominated organic matter with less AOM revealed a kerogen type III to II, which is 

mainly gas prone.  Palynofacies PF-2 represents a major clastic unit of the Dahab, 

Kharita and the lower Bahariya formations that consist of fine silts and a few organic 

rich-shale horizons that are relatively dominated by AOM but still with a substantial 

terrestrial organic matter, which gives an overall kerogen type II, which is oil prone.  

Carbonate rocks of the upper Bahariya and Abu Roash formations, exhibit a highly 

oil prone kerogen type II, as the organic matter of PF-3 is entirely composed of 

AOM.  The overall evaluation of the Abu Tunis 1x borehole sediments can be 

summarised as follows:  

The clastic rocks of the Alam El Buieb Formation and the overlying 

carbonate sequence of the Alamein Formation have average TOC above the lower 

critical limit for a sedimentary rock to act as a source rock.  The Alam El Buieb and 

Alamein formations exhibit a kerogen type III to II, which is likely to produce gas.  

The visual maturity indices (i.e. TAI and SCI) along with the vitrinite maturity index 

indicate that the Alam El Buieb Formation is a source rock of very low potential as 

its organic matter is still in the early stage of thermal maturity.  Thus it is not able to 

generate and expel hydrocarbons in appreciable amounts.  Therefore, the Alam El 

Buieb Formation is considered as a non-commercial marginally mature to mature 

mainly gas-prone source rock. 

The thick siltstone sediments of the Dahab, Kharita and the lower Bahariya 

formations exhibit type II kerogens, which are likely to produce oil.  Visual maturity 

indices and the vitrinite reflectance, show that this clastic body contains immature 
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organic matter.  This is despite the fact that these clastic sediments contain high 

proportions of AOM.   

The upper Bahariya, the Abu Roash, and the lower Khoman (B) formations, 

exhibits highly oil-prone kerogen type II.  Visual thermal maturity index and vitrinite 

index indicate that this carbonate sequence is immature, and therefore, is regarded 

as immature and with no potential to act as a source rock in the Abu Tunis 1x 

borehole.  

 

B. The BB80-1 borehole 

In terms of visual thermal maturation (i.e. TAI and SCI), only palynological 

investigations on some oil-shale horizons have been applied to the hydrocarbon 

potential of the BB80-1 borehole.  These have been integrated with geophysical 

data and sedimentological characters deduced from the porous nature of its 

sandstone lithology, which is poor in organic matter.  This sandstone lithology could 

be regarded as a hydrocarbon reservoir, however, there is no supporting information 

to support such a conclusion.  
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Table  8.1 Summary of age assessment, palaeoenvironmental and 
palaeoclimatic interpretations, and hydrocarbon evaluation of the Abu Tunis 
1x borehole, northern Western Desert, Egypt. 
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Table  8.2 Summary of age assessment, palaeoenvironmental and 
palaeoclimatic interpretations, and hydrocarbon evaluation of the BB80-1 
borehole, Gulf of Suez, Egypt. 
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9.APPENDIX 1 

List of palynological samples from the Abu Tunis 1x borehole and total 
recovery of palynomorphs in terms of grains/gram of sediments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

number

Depth feet 

(meter)

Palynological status and total 

recovery of palynomorphs 

(grains/gram)

Sample 

number2

Depth feet 

(meter)2

Palynological status and total 

recovery of palynomorphs 

(grains/gram)2

Sample 

number3

Depth feet 

(meter)3

Palynological status and total 

recovery of palynomorphs 

(grains/gram)3

1 10,150 (3,094) productive (9038) 46 7,900 (2,408) productive (19003) 91 5,650 (1,722) productive (10432)

2 10,100 (3,078) productive (5131) 47 7,850 (2,393) productive (11613) 92 5,600 (1,707) productive (11148)

3 10,050 (3,063) productive (6940) 48 7,800 (2,377) productive (12296) 93 5,550 (1,692) productive (14574)

4 10,000 (3,048) productive (5175) 49 7,750 (2,362) productive (19003) 94 5,500 (1,676) productive (9914)

5 9,950 (3,033) productive (10604) 50 7,700 (2,347) productive (9088) 95 5,450 (1,661) productive (5142)

6 9,900 (3,018) productive (27772) 51 7,650 (2,332) productive (9088) 96 5,400 (1,646) productive (6334)

7 9,850 (3,002) productive (10284) 52 7,600 (2,316) productive (11334) 97 5,350 (1,631) productive (13117)

8 9,800 (2,987) productive (9022) 53 7,550 (2,301) productive (11002) 98 5,300 (1,615) barren

9 9,750 (2,972) productive (9909) 54 7,500 (2,286) productive (16079) 99 5,250 (1,600) productive  (5268)

10 9,700 (2,957) productive (6190) 55 7,450 (2,271) productive (4861) 100 5,200 (1,585) barren

11 9,650 (2,941) productive (5227) 56 7,400 (2,256) productive (10452) 101 5,150 (1,570) barren

12 9,600 (2,926) productive (7805) 57 7,350 (2,240) productive (7397) 102 5,100(1,554) productive (951)

13 9,550 (2,911) productive (5759) 58 7,300 (2,225) productive (16079) 103 5,050 (1,539) productive (2131)

14 9,500 (2,896) productive (8038) 59 7,250 (2,210) productive (8361) 104 5,000 (1,524) productive (520)

15 9,450 (2,880) productive (5274) 60 7,200 (2,195) productive (10665) 105 4,950 (1,509) productive (104)

16 9,400 (2,865) productive (2448) 61 7,150 (2,179) productive (18177) 106 4,900 (1,494) productive (913)

17 9,350 (2,850) productive (2828) 62 7,100 (2,164) productive (17419) 107 4,850 (1,478) productive (1596)

18 9,300 (2,835) productive (4843) 63 7,050 (2,149) productive (31672) 108 4,800 (1,463) productive (2488)

19 9,250 (2,819) productive (3816) 64 7,000 (2,134) productive (19003) 109 4,750 (1,448) productive (2714)

20 9,200 (2,804) productive (2469) 65 6,950 (2,1180 productive (52258) 110 4,700 (1,433) productive (5973)

21 9,150 (2,789) productive (3470) 66 6,900 (2,103) productive (17350) 111 4,650 (1,417) productive (4430)

22 9,100 (2,774) productive (3738) 67 6,850 (2,088) barren 112 4,600 (1,402) productive (4645)

23 9,050 (2,758) productive (4185) 68 6,800 (2,073) productive (9502) 113 4,550 (1,387) barren

24 9,000 (2,743) productive (2070) 69 6,750 (2,057) productive (29862) 114 4,500 (1,372) productive (1136)

25 8,950 (2,728) productive (3234) 70 6,700 (2,042) productive (20099) 115 4,450 (1,356) productive (1728)

26 8,900 (2,713) productive (3077) 71 6,650 (2,027) productive (12394) 116 4,400 (1,341) productive (1215)

27 8,850 (2,697) productive (3440) 72 6,600 (2,012) productive (13936) 117 4,350 (1,326) productive (843)

28 8,800 (2,682) productive (3670) 73 6,550 (1,996) productive (4645) 118 4,300 (1,311) productive (674)

29 8,750 (2,667) productive (8418) 74 6,500 (1,981) productive (8361) 119 4,250 (1,295) productive (893)

30 8,700 (2,652) productive (5028) 75 6,450 (1,966) productive (6148) 120 4,200 (1,280) barren

31 8,650 (2,637) productive (4646) 76 6,400 (1,951) productive (9954) 121 4,150 (1,265) barren

32 8,600 (2,621) productive (3944) 77 6,350 (1,935) productive (4751) 122 4,100 (1,250) barren

33 8,550 (2,606) productive (8395) 78 6,300 (1,920) productive (5807) 123 4,050 (1,234) barren

34 8,500 (2,591) productive (5359) 79 6,250 (1,905) barren 124 4,000 (1,219) barren

35 8,450 (2,576) productive (2582) 80 6,200 (1,890) barren 125 3,950 (1,204) barren

36 8,400 (2,560) productive (3609) 81 6,150 (1,875) barren 126 3,900 (1,189) barren

37 8,350 (2,545) productive (2070) 82 6,100 (1,859) productive (5627) 127 3,850 (1,173) barren

38 8,300 (2,530) productive (7406) 83 6,050 (1,844) productive (3266) 128 3,800 (1,158) barren

39 8,250 (2,515) productive (8261) 84 6,000 (1,829) productive (3266) 129 3,750 (1,143) barren

40 8,200 (2,499) productive (6716) 85 5,950 (1,814) productive (2944) 130 3,700 (1,128) productive  (1720)

41 8,150 (2,484) productive (7685) 86 5,900 (1,798) productive (5226) 131 3,650 (1,113) productive (1060)

42 8,100 (2,469) productive (7716) 87 5,850 (1,783) productive (7159) 132 3,600 (1,097) barren

43 8,050 (2,454) productive (5680) 88 5,800 (1,768) productive (6334) 133 3,550 (1,082) barren

44 8,000 (2,438) productive (4803) 89 5,750 (1,753) productive (8710) 134 3,500 (1,067) Barren

45 7,950 (2,423) productive (10326) 90 5,700 (1,737) productive (7742)
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List of palynological samples from the BB80-1 borehole and total recovery of 
palynomorphs in terms of grains/gram of sediments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

number
Depth feet  (meter)

Palynological status and total recovery 

of palynomorphs (grains/gram)

Sample 

number2
Depth feet (meter)

Palynological status and total 

recovery of palynomorphs 

(grains/gram)3

1 5,400-10 (1,646-49) productive (504) 40 4,530-40 (1,381-84) barren

2 5,390-00 (1,643-46) barren 41 4,500-10 (1,372-75) barren

3 5,380-90 (1,640-43) barren 42 4,490-00 (1,369-72) barren

4 5,370-80 (1,637-40) barren 43 4,470-80 (1,362-66) barren

5 5,360-70 (1,634-37) barren 44 4,450-60 (1,356-59) barren

6 5,350-60 (1,631-34) barren 45 4,410-20 (1,344-47) barren

7 5,260-70 (1,603-06) barren 46 4,400-10 (1,341-44) barren

8 5,220-30 (1,591-94) productive (508) 47 4,360-70 (1,329-32) barren

9 5,210-20 (1,588-91) productive (391) 48 4,350-60 (1,326-29) barren

10 5,200-10 (1,585-88) productive (1375) 49 4,310-20 (1,314-17) barren

11 5,180-90 (1,579-82) productive (2551) 50 4,300-10 (1,311-14) barren

12 5,170-80 (1,576-79) productive (909) 51 4,290-00 (1,308-11) barren

13 5,160-70 (1,573-76) productive (1340) 52 4,280-90 (1,305-08) barren

14 5,020-30 (1,530-33) barren 53 4,260-70 (1,298-01) barren

15 5,000-10 (1,524-27) productive (1340) 54 4,250-60 (1,295-98) barren

16 4,980-90 (1,518-21) productive (2903) 55 4,230-40 (1,289-92) barren

17 4,970-80 (1,515-18) barren 56 4,220-30 (1,286-89) barren

18 4,960-70 (1,512-15) productive (1340) 57 4,190-00 (1,277-80) barren

19 4,950-60 (1,509-12) barren 58 4,160-70 (1,268-71) barren

20 4,940-50 (1,506-09) barren 59 4,150-60 (1,265-68) barren

21 4,890-00 (1,490-94) productive (13936) 60 4,140-50 (1,262-65) barren

22 4,880-90 (1,487-90) productive (5139) 61 4,130-40 (1,259-62) barren

23 4,860-70 (1,481-84) productive (2224) 62 4,120-30 (1,256-59) barren

24 4,840-50 (1,475-78) productive (13936) 63 4,100-10 (1,250-53) barren

25 4,830-40 (1,472-75) barren 64 4,090-00 (1,247-50) barren

26 4,790-00 (1,460-63) barren 65 4,070-80 (1,241-44) barren

27 4,780-90 (1,457-60) barren 66 4,040-50 (1,231-34) barren

28 4,760-70 (1,451-54) barren 67 4,030-40 (1,228-31) barren

29 4,750-60 (1,448-51) barren 68 4,010-20 (1,222-25) barren

30 4,740-50 (1,445-48) barren 69 4,000-10 (1,219-22) barren

31 4,730-40 (1,442-45) barren 70 3,980-90 (1,213-16) barren

32 4,670-80 (1,423-26) barren 71 3,970-80 (1,210-13) barren

33 4,660-70 (1,420-23) barren 72 3,950-60 (1,204-07) barren

34 4,640-50 (1,414-17) barren 73 3,940-50 (1,201-04) barren

35 4,630-40 (1,411-14) barren 74 3,920-30 (1,195-98) barren

36 4,600-10 (1,402-05) barren 75 3,900-10 (1,189-92) barren

37 4,570-80 (1,393-96) barren 76 3,890-00 (1,186-89) barren

38 4,550-60 (1,387-90) barren 77 3,880-90 (1,183-86) barren

39 4,540-50 (1,384-87) barren 78 3,850-60 (1,173-77) barren
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APPENDIX 2 

List of absolute abundance (grains/gram of sediments) of different palynofacies 
constituents of the Abu Tunis 1x borehole used in the palynofacies analysis and 
palaeoenvironmental interpretations.  
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APPENDIX 3 

List of absolute abundance (grains/gram of sediments) of different palynofacies 
constituents of the Abu Tunis 1x borehole used in the palynofacies analysis and 
kerogen determination.  
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(continued). 
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