

3D nanoripples, self-assembled form birefringence and ultrafast laser calligraphy in transparent materials

Peter G. Kazansky, Weijia Yang and Martynas Beresna

Optoelectronics Research Centre, University of Southampton, SO17 1BJ, United Kingdom
pgk@orc.soton.ac.uk

Yasuhiko Shimotsuma, Masaaki Sakakura, Kiyotaka Miura and Kazuyuki Hirao

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan 615-8510

Jiarong Qiu

Department of Materials Science, Zhejiang University, Hangzhou 310027, China, and State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

Yuri P. Svirko

Department of Physics and Mathematics, University of Joensuu, FI-80101, Finland

Abstract - Modification of transparent materials with ultrafast lasers has attracted considerable interest due to a wide range of applications including laser surgery, integrated optics, optical data storage, 3D micro- and nano-structuring [1]. Three different types of material modifications can be induced with ultrafast laser irradiation in the bulk of a transparent material, silica glass in particular: an isotropic refractive index change (type 1); a form birefringence associated with self-assembled nanogratings (3D nanoripples) and negative refractive index change (type 2) [2,3]; and a void (type 3). In fused silica the transition from type 1 to type 2 and finally to type 3 modification is observed with an increase of fluence. Recently, a remarkable phenomenon in ultrafast laser processing of transparent materials has been reported manifesting itself as a change in material modification by reversing the writing direction [4]. The phenomenon has been interpreted in terms of anisotropic plasma heating by a tilted front of the ultrashort laser pulse. Moreover a change in structural modification has been demonstrated in glass by controlling the direction of pulse front tilt, achieving a calligraphic style of laser writing which is similar in appearance to that inked with the bygone quill pen [5]. It has also been a common belief that in a homogeneous medium the photosensitivity and corresponding light-induced material modifications do not change on the reversal of light propagation direction. Moreover a new phenomenon of ultrafast light blade, representing itself the first evidence of anisotropic sensitivity of isotropic medium to femtosecond laser radiation has been recently discovered [6]. We anticipate that the observed phenomena will open new opportunities in laser material processing, laser surgery, optical manipulation and data storage.

References

1. R. R. Gattas and E. Mazur, "Femtosecond laser micromachining in transparent materials," *Nature Photonics* **2**, 219-225 (2008).
2. Y. Shimotsuma, P. G. Kazansky, J. Qiu and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," *Phys. Rev. Lett.* **91**, 247705 (2003).
3. V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner and P. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," *Phys. Rev. Lett.* **96**, 057404-1 (2006).
4. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura and K. Hirao, "Quill" writing with ultrashort light pulses in transparent materials," *Appl. Phys. Lett.* **90**, 151120 (2007).
5. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura and K. Hirao, "Ultrashort-pulse laser calligraphy," *Appl. Phys. Lett.* **93**, 171109 (2008).
6. P. G. Kazansky, Y. Shimotsuma, J. Qiu, W. Yang, M. Sakakura, M. Beresna, Yu. Svirko, S. Akturk, K. Miura and K. Hirao, "Ultrafast light blade: Anisotropic sensitivity of isotropic medium to femtosecond laser radiation", submitted to PRL (2009).