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Abstract 
 
This dissertation introduces the habitat use and spatial-temporal distribution of Cuvier’s 

beaked whale (Ziphius cavirostris, Cuvier, 1823) in the Bay of Biscay, from surveys carried out 

by the Biscay Dolphin Research Programme between 1995 and 2007. I have analysed the 

spatio-temporal distribution of Cuvier’s beaked whale, using dedicated and opportunistic 

sightings and the interactions with fixed physical variables (depth, slope and aspect), non-

fixed environmental variables (sea surface temperature) in the Bay of Biscay, northeast 

Atlantic. This study used a differing combination of environmental variables and 

modelling: GAM (General Additive Model), and ENFA (Ecological Niche Factor 

Analysis), and PCA (Principal Component Analysis). Geographical Information Systems 

(GIS) and Remote Sensing were used to achieve this. The habitat preferences of Cuvier’s 

beaked whale showed strong correlations with water depths >1000m and <4000m and 

steep slopes, associated with the Capbreton canyon, in the southeast Bay of Biscay and the 

continental shelf slopes in northern Biscay. Areas of high suitability for Cuvier’s beaked 

whale were predicted for the Bay of Biscay and predictions showed high habitat suitability 

areas over continental shelf slopes and submarine canyons. The variety of modelling 

techniques used to identify the habitat preferences and to predict areas of high suitability 

for Cuvier’s beaked whale in the Bay of Biscay all proved advantageous. On a global scale, 

techniques such as these could be applied to help research worldwide for future 

implementations of protected areas to conserve and maintain this species. The abundance 

and distribution of Cuvier’s beaked whales varied between years and seasons, with an 

increase in sightings over time and a seasonal distribution shifting north during spring and 

summer. Stranding records were also analyzed and compared with the sightings data, which 

identified regional patterns in seasonal distribution between France, the UK and Ireland. In 

addition to Cuvier’s beaked whale, this study investigated other deep-diving cetaceans 

(Northern bottlenose whale, Hyperoodon ampullatus, Sowerby’s beaked whale, Mesoplodon 

bidens, Sperm whale, Physalus macrocephalus, Pilot whale, Globicephala melas) and non-deep 

diving cetaceans (Fin whale, Balaenoptera physalus, and Common dolphin, Delphinus delphis) 

observed in the Bay of Biscay and the English Channel. The Bay of Biscay is the most 

northerly range of the Cuvier’s beaked whale in the eastern north Atlantic and with year 

round observations, it could be suggested the population may be resident. This raises the 

question, could Cuvier’s beaked whale act as a predictor of increasing water 

temperatures because of climate change by shifting their distribution further north.  
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Chapter 1: Introduction 
 

2

1. Introduction 
 
1.1 Cetaceans and habitat use 

A major goal of ecology is to understand how characteristics of the environment affect the 

distribution of organisms (MacArthur, 1972). Habitat selection has a strong impact on 

these distribution patterns by influencing the use of habitat in both time and space. Habitat 

studies allow us to understand species integration in an ecosystem and to define critical 

habitat, such as feeding and breeding. If we examine the geographic distribution of a widely 

ranging species, we find that the distributional range consists of both occupied and 

unoccupied areas. Those areas actually occupied that meet the requirements for a species’ 

survival and reproduction are its habitat. The correlation of environmental features with 

sightings data can improve our understanding of cetacean ecology and be indicative of, if 

any, oceanographic variables that may be affecting cetacean distribution (Kenney and 

Winn, 1987). 

 

Studies of habitat selection have often focused on terrestrial ecosystems where habitat 

patches change over comparatively long temporal scales (Redfern et al., 2006). In marine 

ecosystems, habitats of mobile species such as cetaceans can change over short time spans 

and fine spatial scales (Bjørke, 2001). This complexity poses unique challenges when trying 

to model species-habitat relationships. Studying habitat selection by marine mammals 

therefore generates additional challenges but can also improve our understanding of the 

general rules governing species distributions. Studying cetacean habitat selection can be 

extremely challenging as they spend most of their lives under water, and collecting data on 

free-ranging animals at sea presents numerous logistic and financial challenges (Ingram et 

al., 2007). In addition, the study of marine ecosystems requires methods for investigating 

patchiness of cetacean prey and variability of their habitat (Croll et al., 1998). Because of 

these constraints, early studies of habitat use by whales usually chose easily accessible 

oceanographic variables and broad spatial scales, while de-emphasizing temporal variability 

(Bjørke, 2001). In recent years, new developments in remote-sensing (e.g. satellite data) and 

analytical tools (e.g. geographic information systems, spatial statistics, computer-intensive 

methods) have led to a rapid increase in the explanatory power of habitat selection models 

(Redfern et al., 2006). Studies that quantify habitat use and selection can be used to assess 

the biological requirements of species (Redfern et al., 2006), to predict effects of habitat and 

climate changes (Thomas et al., 2004), to justify protection of key areas (Hooker et al., 
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1999c; Cañadas et al., 2002) and to improve conservation planning, as models may be an 

important tool for mitigating anthropogenic impacts on these species (Redfern et al., 2006).  

 

Over the last decade, oceanography and sea floor topography (physiography) have been 

increasingly used as an approach to understanding cetacean distribution (Baumgartner, 

1997; Davis et al., 1998; Baumgartner et al., 2001; Hooker and Baird, 2001b; Waring et al., 

2001; Cañadas et al., 2002; Yen et al., 2004; MacLeod and Zuur, 2005). In particular depth 

and slope are the key variables. Prior to these studies, Kenny and Winn (1987) compared 

the distribution of cetaceans near submarine canyons to distributions in adjacent 

shelf/slope areas. It seems that as well as depth and slope, submarine canyons play an 

important influence on cetacean distribution throughout the world’s oceans, even if 

modalities and intensities depend on hydrological, topographical, and biological contexts.  

 

The general distribution of cetaceans appears to mirror that of their prey, with their main 

distribution occurring in areas of increased productivity, including seasonal or 

unpredictable food chains. The seasonal, monthly, and daily migrations (horizontal and 

vertical) of prey species are important factors to be considered when establishing the time 

of year and the time of day cetaceans are sighted. It may be that different areas such as the 

continental slope and associated canyons, may reach their highest species richness during 

different times of the month and during different times of the day and, therefore 

influencing the time and place when cetaceans are observed. As predicted by their feeding 

ecology, cetaceans tend to have non-uniform distributions at a wide range of spatial scales 

(Jaquet and Whitehead, 1996). These clumped distribution patterns were first linked to 

preferential use of certain water depths (e.g. Gowans and Whitehead, 1995, Baumgartner, 

1997; Davis et al., 2002) and heterogeneous seabed topography (e.g. Evans, 1971, 1974; 

Hui, 1985; Selzer and Payne, 1988; Gowans and Whitehead, 1995, Baumgartner, 1997, 

Davis et al., 2002; Ingram et al., 2007).  

 

The distributions of cetaceans are not directly influenced by the seafloor topography, but 

are more influenced by hydrological or biological phenomena. For example, bottom relief 

modifies currents, leading to concentration of organisms. Hydrological features, including 

eddies and topographically-induced upwellings generate fronts and bring nutrients, which 

in turn increase primary productivity, and the aggregation of zooplankton from enhanced 

secondary production. Internal waves, which are produced by complex and steep 
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topography, can also lead to the concentration of prey species. Many papers report 

evidence that cetaceans occupy the continental slope, especially its upper part and 

submarine canyons that cut into the slope. Steep slopes and submarine canyons play an 

important role in influencing the water patterns in and around the surrounding area 

because of their size and the area they occupy (Hickey, 1995). Submarine canyons can 

strongly modify flow, shelf-slope exchanges of water and material (Hickey, 1995; Perenne et 

al., 2001) and this coupling can aid the transport of particulate organic matter that 

influences productivity. Submarine canyons can also act as funnels for water upwelling 

from deeper oceanic levels to shallower shelf regions, providing nutrient inputs to the 

marine ecosystem (Flaherty, 1999) and enhancing productivity. 

 

Physical processes in submarine canyons have received much attention (Shepard et al., 

1974; Freeland and Denman, 1982; Noble and Butman, 1989; Breaker and Broenkow, 

1994; Allen, 1996; Alvarez and Tintore, 1996), but studies on the ecological processes of 

canyons are still limited. The morphological features and the geological importance of 

submarine canyons are well defined. Submarine canyons play an important part in the 

transport of sediment (Shepard et al., 1974; Gardner et al., 1989) water and biological 

production into the deep ocean (Vetter and Dayton, 1998) from the continental shelf. They 

have a large impact on coastal processes (Hickey, 1995), such as the ultimate fate of 

sediment in suspension or resuspension over the continental shelf (Hickey, 1986; 1995). It 

is, therefore, important to incorporate the processes on the continental shelf/slope to gain 

a better understanding of the processes seen within canyons.  

 

1.2 Beaked whales 

Beaked whales (Order Odontoceti: Family Ziphiidae) are the second largest group of 

cetaceans after the Family Delphinidae (Rice, 1998). The Ziphiidae comprise six genera and 

21 different species; 14 within the Genus Mesoplodon, 2 in the Genus Hyperoodon, 2 in the 

Genus Berardius and 3 monospecific genera; Ziphius, Tasmacetus and Indopacetus. Most of 

what we know has come from the analysis of stranded remains and there are only four 

beaked whales that are reasonably well known from studies at sea. In some cases, several 

have yet to be formally described and some species have never been seen alive. The fossil 

record for beaked whales dates back to the middle of the Miocene age (Mead, 1975; 

Hooker 2001a), approximately 10 to 15 million years ago (Hooker, 2001a). This makes 

them one of the oldest families of whales currently found in our oceans. 
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Beaked whales are deep-water, oceanic animals (Hooker and Baird, 2001b), are often 

associated with regions characterized by submarine canyons or steep escarpments. They are 

deep divers and often dive down to depths exceeding 1000m (Tyack et al., 2006; Houston, 

1991). As beaked whales are deep-divers they spend little time at the surface (Reeves et al., 

2002) and because of this they are difficult to observe (Barlow and Gisiner, 2006; Barlow et 

al., 2006). The beaked whales appear to have a habitat preference for complex topographic 

features, such as steep continental slopes and submarine canyons (Whitehead et al., 1997; 

Hooker and Baird, 1999a, 2002; Frantzis et al., 2003; MacLeod and Zuur, 2005).  

 
Submarine canyons are just one of the underwater topographic features that beaked whales 

are associated with and submarine canyons are characteristic of many shelf breaks in the 

world’s oceans (Alvarez and Tintore, 1996). The physical and biological oceanography 

within canyons (Bosley et al., 2004), together with depth, have undoubtedly a significant 

influence on both the benthic and pelagic ecosystems. It is very likely that these factors 

influence the distribution and aggregation of species that are preyed upon by beaked 

whales.  

 

Studies on beaked whales have been carried out in a number of locations including the 

Northwest Atlantic (Hooker and Baird, 1999a), Bahamas (MacLeod and Zuur, 2005), the 

Ligurian Basin (D’Amico et al., 2003; Moulins et al, 2007), Hawaii (Baird et al., 2004; 2006) 

and Greece (Frantzis, et al., 2002). These studies have demonstrated beaked whales inhabit 

primarily deeper and off-shelf waters, notably areas associated with specific bathymetric 

and/or oceanographic features (Mead, 1989; Whitehead et al., 1997; Davis et al., 1998; 

Hooker and Baird, 1999a; Waring et al., 2001). Frequently observed species include Cuvier’s 

beaked whale, Ziphius cavirostris; the most widespread and cosmopolitan (Heyning, 1989), 

Sowerby’s beaked whale, Mesoplodon bidens, observed in cold temperate waters of the North 

Atlantic (Mead, 1989; Hooker and Baird, 1999b), the northern bottlenose, Hyperoodon 

ampullatus, the largest member of the family that is frequently observed in The Gully, Nova 

Scotia (Hooker and Baird, 1999a; Hooker et al., 2002), the Blainville’s beaked whale, 

Mesoplodon densirostris, from studies off Great Abaco Island, Bahamas (MacLeod et al., 2004a; 

Macleod and Zuur, 2005) and Baird’s beaked whale in the northern Pacific (Ohizumi and 

Kishiro, 2003). A study carried out by MacLeod et al. (2006c) indicates that Cuvier’s beaked 

whale and the Northern Bottlenose whale and are the better known members, as more 

strandings and sightings of these two species are recorded than any other beaked whale.  
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1.3 Cuvier’s beaked whale   

The Cuvier’s beaked whale, Ziphius cavirostris, (Figure 1.1) was described by George Cuvier 

in 1823, as a fossil using a partial skull collected in 1803 near Fos-sur-Mer, on the 

Mediterranean coast of France (Heyning, 1989). Published details of the skull in his 

monumental ‘Recherches sur les Ossements fossils’ (1823) describe it as an extinct whale, 

for which he created the Genus Ziphius from the Greek ‘Xiphos’, a sword, and a species 

cavirostris for the latin ‘cavus’, hollow and rostrum a beak (Heyning, 1989). In 1872, Sir 

William Turner described a whale from the Shetland Islands and realised he was dealing 

with a live Cuvier’s fossil, and also realised that many new beaked whales described all over 

the world’s beaches were Ziphius cavirostris (Heyning, 1989). The Cuvier’s beaked whale has 

a cosmopolitan distribution (Figure 1.2) and is thought to be the most widespread of the 

beaked whales, found in tropical and temperate waters, although not found in polar waters 

(Heyning, 1989) below the 10°C isotherm (Houston, 1991). From a recent study by 

MacLeod et al. (2006c), they have shown from a number of sources that the distribution is 

more extensive than previously suggested, with sightings in sub-polar and even polar 

waters. However, these sightings are not within its normal range. Distribution was 

primarily known from strandings, but now they are also known from sightings. Both the 

sightings and strandings are indicative of their cosmopolitan distribution (MacLeod et al., 

2006c).  

 

In recent years, sightings of Cuvier’s beaked whale have been reported more frequently in 

areas with steep and complex underwater topography. These areas include: Japan (Ohizumi 

and Kishiro, 2003), Greece (Frantzis et al., 2002; 2003; Frantzis, 2004;), Ligurain Sea 

(Moulins et al., 2007) Northeast Pacific (Ferguson et al. 2006) and Australia  (Flaherty, 

1999), and they are also encountered around oceanic islands, including Hawaii (NMFS, 

2003; McSweeney et al., 2007) and Great Abaco, Bahamas (MacLeod et al., 2004a). The 

global population size is still unknown and to assess their geographical distribution it is 

important to understand their habitat preferences. What is known from research worldwide 

to date, however, is that Cuvier's beaked whales are seen in groups ranging between 1-15 

individuals and with an average group size of 2.3 (MacLeod and D’Amico, 2006a; Moulins 

et al, 2007) and 3.8 (Falcone et al, 2009). Because their population status is largely unknown, 

migrations are unknown for this species. Their deep-diving behaviour, inconspicuous 

blows, and tendency to avoid vessels may help explain the rarity of sightings. A 

breakthrough in the behaviour of Cuvier’s beaked whale was determined in the Ligurian 
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Sea by Tyack et al. (2006). The diving behaviour was assessed using the DTAG (Suction 

cup attached), and Cuvier’s beaked whales were found to dive between 1005m (min) and 

1265m (max) depth with the duration of dives lasting between 34 to 57 minutes (Aguilar 

De Soto et al., 2006; Tyack et al., 2006) and 1888m for 85 minutes  (Tyack et al, 2006).   

 

 

Figure 1.1: Cuvier’s Beaked Whale, Ziphius cavirostris.  
Photo taken in the Bay of Biscay.  
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Figure 1.2: Global distribution of Cuvier’s Beaked Whale (from MacLeod et al., 2006c) 
 
 
The strandings of individuals has made it possible to carry out stomach content analysis 

and necropsy.  Prey species found in the stomachs of individual species consist mostly of 

mesopelagic or deepwater benthic organisms such as squid (Heyning, 1989), which is 

indicative of their deep diving behaviour. Results from necropsies carried out on the 

beaked whales stranded in the Canary Islands, also show physiological effects that are 

consistent with decompression-like sickness: the formation of bubbles within organs. In 

particular, gas bubble lesions and haemorrhages were found in fourteen necropsied beaked 

whales, including Cuvier’s beaked whale (Jepson et al., 2003; Fernandez et al, 2005). This 

bubble formation or excessive nitrogen supersaturation in tissues, known as the bends or 

decompression sickness (Mackay et al., 1982), may be in response to behavioural changes to 

normal dive profiles, such as accelerated ascent rate (Tyack et al., 2006). It is reported that 

some of the mass strandings events (two or more) of Cuvier’s beaked whale might be 

linked to active sonar and seismic activities that use high power sonar (Simmonds and 

Lopez-Jurado, 1991; Frantzis, 1998; D’Amico et al., 2003; Jepson et al., 2003; Frantzis, 2004; 

Freitas, 2004; Martin et al., 2004; Fernandez et al., 2005). For example, twelve whales were 

found stranded at many locations of the Kyparissiakos Gulf, Greece in 1996 (Frantzis, 

1998, 2004), twenty-four whales stranded in the Canary Islands on three occasions 

(Simmonds and Lopez-Juraco, 1991), fourteen stranded again in the Canary Islands in 

2002, close to the site of international naval exercise (Martin et al., 2004), approximately 

fifteen whales and a dolphin stranded on March 15, 2000, in the northern Bahamas 

(Report, Joint Interim Bahamas Report, 2001).   
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Although the Cuvier’s beaked whale was hunted in the past, so few were caught that the 

population was not disturbed, but the greatest threat is thought to be entanglement in 

fishing gear, ship strikes and possibly trauma from acoustic sources, resulting in strandings 

related to human-activated sonar (Evans and Miller, 2004). As already mentioned, beaked 

whales remain the least known of all cetaceans and it is only through the efforts of research 

over recent years that knowledge of their distribution and habitat usage is being unveiled, 

although there is still mush that is unknown. While widespread in their distribution, 

Cuvier’s beaked whales appear to inhabit areas of complex underwater topography. 

Because of their deep diving habits, it is difficult to study them, but finding populations 

that present themselves year round can only benefit future research to help towards their 

conservation. The direct link of deaths to naval activity has yet to be fully confirmed, but 

because there has been links of physiological effects to sonar activity, they may need 

protection. If this study, along with past and future research, can confirm a resident 

population of Cuvier’s beaked whale in the Bay of Biscay, this may act as a benefit towards 

future conservation legislation such as marine reserves.  

 

From surveys carried out using fixed route platforms (Williams et al., 2002a), such as the 

P&O ferry “Pride of Bilbao”, it appears that Cuvier’s beaked whale does not have a 

random distribution throughout the Bay of Biscay (study area – see next section), but is 

associated particularly with the CapBreton Canyon (Williams et al., 2002a). Observations 

made by the Biscay Dolphin Research Programme (BDRP) have also indicated that 

northern bottlenose whales are likewise associated with submarine canyons there. It is 

thought they are spatially and temporally segregated from Cuvier’s beaked whale, and it has 

been suggested they may have different preferences for habitat, prey and/or interact 

competitively (Williams et al., 2002a).  

 

1.4 Study Area: Bay of Biscay, North East Atlantic 

The region of study for this project is the Bay of Biscay (Figure 1.3). The Bay of Biscay is 

situated geographically between 43 °N to 50 °N and -1 °W to -10 °W in the Northeast 

Atlantic and is characterised as a temperate open oceanic bay bounded by the Spanish coast 

to the south, oriented E-W and the French coast to the east, oriented S-N (Koutsikopoulos 

and Le Cann, 1996). The Bay of Biscay is sometimes described in two parts: the Northern 

Bay and the Southern Bay. Both areas have variable sea depths, ranging from the shallow 

continental shelf (less than 100 metres) to the abyssal plain (greater than 4000 metres), with 
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many underwater features such as submarine canyons, seamounts and a steep continental 

slope. The Armorican shelf in the north of the bay is up to 180km wide, whilst in the south 

the continental shelf is narrow, only 30 to 40km width (Koutsikopoulos and Le Cann, 

1996).  
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Figure 1.3: Bathymetry map of the study area, northeast Atlantic.  

(Top map taken from www.noc.soton.ac.uk)  
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The CapBreton Canyon, in the southeast corner of the Bay of Biscay, is a major 

morphological feature that cuts into the continental slope in an E-W direction and the 

1000m contour is only 3 km from the coast. The CapBreton canyon has been studied for 

over a century (Cirac et al., 2001). It is the deepest submarine canyon in the world, the 

longest off Europe, and its head is located only 250m from the coastline (Cirac et al., 2001). 

The canyon was formed by the Adour River (SW France), but has been disconnected from 

the river since 1310 AD (Cremer et al., 2003). The canyon runs westward and parallel to the 

north coast of Spain for 160 km due to structural control, then turns northward, widens 

and abruptly disappears in the continental rise by 3500m water depth (Gaudin et al., 2003). 

 

The Bay of Biscay is located between the eastern part of the sub-polar gyre and the 

subtropical gyre (Planque et al., 2003) and may be affected by both gyres depending on 

latitude and the general circulation. The general circulation is a weak (~5-10 cm sec-1) 

(Pingree and Le Cann, 1990) anticyclonic circulation for the oceanic part of the Bay of 

Biscay (Koutsikopoulos and Le Cann, 1996). In the southern Bay of Biscay, east-flowing 

shelf and slope currents are common in autumn and winter due to southerly and westerly 

winds (Valencia et al., 2004). The different circulation and current patterns for the 

continental shelf and the main Bay are shown in Figure 1.4 On the continental shelf, the 

circulation is governed by the combined effects of tides, river inputs and, wind so that shelf 

waters are colder in winter and warmer and less saline in summer (Valencia et al., 2003).  

 

During winter and summer in the Bay of Biscay, the weather is more or less stable and 

predictable whereas spring and autumn are variable (Valencia et al., 2004). The transition 

between the seasons shows changes in currents and wind conditions, with particular wind 

regimes leading to the onset of coastal upwelling (Planque et al., 2003). Between spring and 

summer, north-easterly winds of medium to low intensity are prevalent, causing frequent 

coastal upwelling events (Koutsikopoulos and Le Cann, 1996). Between autumn and 

winter, southerly and westerly winds are dominant, causing frequent downwelling events 

(Borja et al., 1996). Upwelling is observed along the French and Spanish coasts and the 

strength of the upwelling corresponds to the winds and water masses (Gill and Sanchez, 

2003b). 
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Figure 1.4a: Circulation and current movements in the Bay of Biscay (as described and 
shown by Koutsikopoulos and Le Cann, 1996). 

 

 

Surface water
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Figure 1.4b: Water masses of the Bay of Biscay. As described by Ospar (2000). 
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In a study by Gil and Sanchez (2003b), three different hydrographic patterns were found. 

The first pattern, observed in 1993, 1998, 1999 and 2000, was associated with the 

distribution of water masses. The second pattern observed in 1994 and 1997 appeared to 

be linked to a conspicuous front that separated the cold coastal upwelled water from 

offshore warmer water. The third pattern observed in 1995 and 1996 was the result of the 

width of the coastal band that did not appear to be continuous along the shelf area and it 

was thought that it might reflect wind reversals 

 

The water masses observed in the Bay of Biscay can be seen in figure 1.5. This figure is put 

together from information provided by OSPAR (2000), which is compiled using a number 

of sources that described the water masses in this region including, Rios et al., 1992; Pollard 

et al., 1996. Later studies also described similar water masses in the Bay of Biscay (Garcia-

Soto et al., 2002; Gil, 2003; Gonzalez-Pola et al., 2005).  

 

The extension of the warm water Iberian poleward current is also observed in the Bay and 

is now considered a common feature of winter (Navidad) circulation (Garcia-Soto et al., 

2002) that coincides with the spawning season of pelagic and demersal species due to the 

higher concentration of nutrients than the surrounding area (Gil, 2003a).  

 

An important feature of the Bay of Biscay is that it is one of the world’s strongest 

generation sites for internal tides (Gerkema et al., 2004). Internal tides and surface tides are 

amplified by the interaction of bottom topography (New, 1988) and a consequence of 

these tides is the high phytoplankton abundance and cool water at the surface above the 

continental shelf break (New, 1988). 

 

The prevailing winds and sea currents make the waters along the continental slope 

productive and attractive to marine life, including cetaceans and seabirds. The Biscay 

Channel region is an important area year round for cetaceans, and supports over 30 species 

out of the 86 species recorded worldwide. The association between seabirds and cetaceans 

is often made (Evans, 1982; Croll et al., 1998; Yen et al., 2004). Evans (1928) also comments 

on this association whereby it dates back to the whaling activities in the 1800’s.  
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1.5 Outline of thesis 

Based on the literature review, I suggest two hypotheses. First, complex underwater 

topography has been identified as an important parameter and therefore I expect a clear 

habitat selection signal (i.e. Cuvier’s beaked whale should select environmental 

characteristics that differ from those of the widely available habitat). Second, because 

marine habitats are very dynamic, I expect time-varying variables, such as water 

temperature to be extremely important for habitat selection and seasonal movements 

because the Bay of Biscay is the most northern limit of the regular range of Cuvier’s beaked 

whale. Therefore, my overall working hypothesis is that two exclusive processes influence 

the fine-scale distribution of Cuvier’s beaked whale: habitat selection and water 

temperature.  

 
Understanding patterns in the distribution and abundance of species is a fundamental 

element in ecology. Cetaceans respond to spatial and temporal environmental variability 

across a range of scales. Therefore, environmental patterns will provide insight into 

cetacean distribution and abundance, two characteristics of their ecology that must be 

understood in order to conserve and manage their populations. This thesis contains several 

elements that constitute original scholarship and contribute to the advancement of 

knowledge in its field. The main aim of this thesis is to improve our understanding of the 

environmental factors that influence the distribution of Cuvier’s beaked whale in the Bay of 

Biscay, northeast Atlantic. I was able to quantify habitat selection and predict the 

distribution of the Cuvier’s beaked whale while considering not only the spatial variability 

but also the temporal dynamics of the available habitat. Beaked whale data are limited, and 

studying the ecology of Cuvier’s beaked whale requires that the most be made of the 

available data. The goals for my research are twofold:  

1.) Provide predictions of habitat use in relation to certain physical and biological 

components of their environment. 

2) Examine spatial and temporal patterns in Cuvier’s beaked whale distribution in 

the Bay of Biscay.  

To do this the goal is to answer as many questions as possible by using different 

techniques, incorporating sightings and strandings data, in new ways to pin point factors 

affecting the distribution of Cuvier’s beaked whale. The results will also highlight the 

importance for the need of regional studies in the Bay of Biscay. The value of looking at 

seasonal movements will indeed further our knowledge of what factors may be driving 

such movements, which in turn will help to interpret how possible climate change effects 
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may affect Cuvier’s beaked whale in this region in the future. Another important influence 

that is looked at is how their distribution is effected over small and large spatial scales, as 

different environmental variables may be important on a fine scale but not on a large scale, 

and vica versa.   

 

This is a manuscript-based thesis, containing 6 chapters. Chapters 2, 3, 4, and 5 have been 

written in manuscript format to facilitate publication in peer-reviewed journals. Therefore, 

some repetition occurs between chapters, especially in the literature reviews, methods and 

data sets. Chapters 2 and 3 both focus on habitat use, but differ in the philosophical 

approach. They aim to compare used vs. available habitats, to test whether habitats are 

used in proportion to their availability or if preference leads to disproportionate use of 

certain habitats. In chapter two, I present data on habitat preferences and spatial scales 

using General Additive Modelling to assess the dedicated survey (presence-absence) data to 

model Cuvier’s beaked whale habitat preferences and distribution from ferry based surveys. 

Chapter 3 uses Ecological Niche Factor Analysis modelling to show the predictive 

distribution of Cuvier’s beaked whale within the Bay of Biscay using opportunistic 

(presence-only) sightings data, which identify areas of core/marginal/unsuitable habitats. 

Such information is crucial to assess the biological requirements of these species and to 

identify areas of critical importance. Chapter 4 seeks to compare the distribution and 

habitat preferences of Cuvier’s beaked whale to oceanic deep-diving cetaceans using 

Principal Components Analysis. Chapter 5 looks at the spatial and temporal distribution 

within the Bay, using sightings and strandings data and this is particularly important as the 

distribution has changed over the last few years. The final chapter (Chapter six) brings all 

the chapters together for the final discussion to define the niche occupied by the Cuvier’s 

beaked whale. Here the discussion will lead onto how the results from this study can be 

used globally and to help their conservation status. 



Chapter 2 
 
 
 
 
 
 

Habitat Utilisation by the 

Cuvier’s beaked whale, in 

the Southern Bay of Biscay 
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2.1 Introduction   
 

Investigations into the relationships between cetaceans and the environment can increase 

knowledge of cetacean distribution by predicting areas where cetaceans are more likely to 

occur. The availability of such information would have many potential benefits for 

example; a greater knowledge of cetacean occurrence in an area would assist in the 

designation of special areas of conservation for particular species and such information 

would also be useful in the development of environmental impact assessments.  

 

The distributions and movements of marine mammals are clearly influenced by their 

oceanic environment. Although such relationships are inherently dynamic, distributions 

have been related to a range of environmental determinants (Hastie et al., 2005), including 

sea surface temperature (Jaquet, 1996; Baumgartner et al., 2001; Piatkowski et al., 2001; 

Benson et al., 2002; Littaye, et al., 2004; Johnston et al., 2005; Tynan et al., 2005), salinity 

(Selzer and Payne, 1988; Forney, 2000; Tynan et al., 2005), and water depth (Gowans and 

Whitehead, 1995; Baumgartner, 1997, Davis et al., 1998; Carretta et al., 2001; Benson  et al., 

2002; Tynan et al., 2005; Ballance et al., 2006; Wall et al., 2006; Praca and Gannier, 2007). 

However, the importance of these determinants appears to vary among regions and 

species, a feature that highlights the need to focus studies on the role of oceanography in 

cetacean habitat selection on a regional basis. Distribution of cetaceans is thought to be 

primarily influenced by aggregation of suitable prey species (Payne, 1986; Baumgartner, 

1997; Davis et al., 1998; Torres et al, 2008). The distribution of prey species is often linked 

to a number of oceanographic features, for example, depth and slope play an important 

role in directly limiting the distribution of benthic or demersal prey species (Mauchline, 

1991). For other cetacean prey species, such as pelagic fish and cephalopods, 

oceanographic variables could influence their distribution more indirectly, for example, 

topographically induced upwelling of nutrients, or convergence of surface waters may 

locally increase primary production and aggregation of zooplankton (Fernandez and Bode, 

1991; Tenore et al., 1995), leading to the aggregation of suitable prey species for cetaceans. 

Therefore, it is likely that the distribution of cetaceans is also related to such variables. 

 

Cuvier’s beaked whale, Ziphius cavirostris, belongs to the family Ziphiidae. In the past, basic 

assumptions of the distribution of Cuvier’s beaked whale were made primarily upon 

stranded specimens and occasional sightings. Cuvier’s beaked whale is probably the most   

widespread and abundant of all the beaked whale species, ranging throughout temperate 
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and tropical waters, but rarely in polar seas. Since methods of effectively sampling deep-

living squid are difficult, it is difficult to relate Cuvier’s beaked whale distribution to the 

distribution of its principal prey species. Stranded specimens however, have provided an 

insight into the diet of beaked whales from stomach content analysis, and they reveal they 

predominantly eat squid, pelagic fish, and crustaceans. In response of to the inability to 

relate the distribution of prey species, studies throughout the past decade have 

concentrated on finding relationships in distribution to ecogeographical variables (EGVs) 

and sea surface temperature. Earlier research found that the Cuvier’s beaked whale was not 

randomly distributed within their full range, but was coupled with complex underwater 

topography, steep slopes and deep waters of the abyssal plains (Williams et al., 2002a; 

MacLeod et al., 2004a; Baird et al., 2006; Moulins et al., 2007). Modelling of the habitat 

preference of beaked whales has increased over the past decade to help predict distribution 

of Cuvier’s beaked whales in response to ecogeographical variables (Ferguson, 2005; 

MacLeod and Zuur, 2005). 

 

Based on sightings the Bay of Biscay is the most northerly regular range of the Cuvier’s 

beaked whale in the NE Atlantic (with the exception of few sightings off Ireland and 

Scotland) in the northeast Atlantic, however they have been recorded off Sweden and 

Iceland (Evans et al. 2008). With the year-round observations within the Bay of Biscay, it 

could be suggested the population may be resident, therefore, the Bay of Biscay should be 

considered as important habitat of the Cuvier's beaked whale. The Bay of Biscay has 

become well known for the diversity and abundance of cetaceans, since the Biscay Dolphin 

Research Programme started regular ship board surveys on a passenger ferry in 1995. The 

Bay of Biscay offers a great diversity of habitats, including the continental shelf and slope, 

submarine canyons and deep water habitats. The southern Bay of Biscay is dominated by 

complex submarine canyons. The area is also characterised by the presence of many fronts, 

localised upwellings and internal wave activity. This variety of habitats supports many of 

the cetacean species that are found in the wider northeast Atlantic (Reid et al., 2003).  

 

Beaked whale research in various locations worldwide has concentrated on studying their 

habitat relative to their distribution to increase the knowledge of understanding of critical 

habitats. Because of their preferred deep-water habitat (Mead, 1989; Carwardine, 1995; 

Reeves et al., 2002), and their ability to make very long dives, spending little time at the 

surface (Reeves et al., 2002) they are infrequently encountered (Mead, 1989; Houston, 1991; 

 



Chapter 2: Habitat utilisation of Cuvier’s beaked whale in the southern Bay of Biscay 19
 

Barlow et al, 2006). For these reasons little is known for most species. Only three or four 

out of the 20 species are reasonably well-known from studies at sea and most of what is 

currently known has come from stranded animals (Dalebout et al, 2002; MacLeod et al., 

2004b; MacLeod and Zuur, 2005). Sightings of beaked whales show they form fairly 

discrete populations in different parts of the world (Evans, 1987). As listed by the IUCN 

(International Union for the Conservation of Nature) the global status and geographical 

distribution of beaked whales is poorly known (Hooker, 2001a; Reeves et al, 2003). For the 

reasons stated above, it is imperative to use the data available to model beaked whale 

habitats.  

 

An example of research efforts worldwide supporting this include the Gulf of Mexico, 

where beaked whales were found over the deepest bottom depths (Davis et al., 1998). In 

the waters east of Great Abaco in the Bahamas, MacLeod et al (2004a) found that Cuvier’s 

beaked whale and Blainville’s beaked whale were most often sighted over areas of the 

seabed that had greater slopes than the rest of the study area. Other studies show beaked 

whales are commonly seen in waters over the continental shelf slope (ranging 200-2000m) 

(Waring et al., 2001; Hooker  et al., 2002) and submarine canyons (Cañadas  et al., 2002; 

Williams  et al., 2002a; D’Amico  et al., 2003; MacLeod and Zuur, 2005).  

 

The pioneering work of Hooker et al. (2002) carried out on the northern bottlenose whales 

above a submarine canyon, the Gully, off Nova Scotia, show beaked whales have specific 

habitat requirements, in particular showing an association with water depth (500-1500m) 

and relatively steep topography. This study has led to the Gully becoming a Marine 

Protected Area, yet boundaries and management remain under review (Hooker et al., 2002). 

Several authors have speculated that the distribution of beaked whales (or cetaceans in 

general) is likely to be primarily determined by prey availability (Davis et al., 1998; Cañadas 

et al., 2002; Hooker et al., 1999c; Yen et al., 2004) and Torres et al. (2008) showed predictive 

modelling of prey distribution had a high predictive performance on dolphin habitat 

selection.  

 

The most commonly used method has been logistic regression or general linear models 

(GLMs) with a logistic link function of habitat variables. Quantitatively modelling of the 

habitat preference of beaked whales has shown they were associated with the outer shelf 

edge (Waring et al., 2001; Hamazaki, 2002). Cañadas et al. (2002) and Moulins et al. (2007) 
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used GLMs to examine beaked whale distribution in the Mediterranean Sea and found that 

functions of depth were better predictors than those of seafloor slope. Another method 

used is the ecological niche factor analysis (ENFA), whereby beaked whales were mostly 

seen occupying deeper waters in areas with higher slopes than average, and preferred 

southward and westward facing slopes (MacLeod, 2005a). MacLeod and Zuur (2005) used 

both generalised additive models (GAMs) and classification and regression trees (CART) to 

examine beaked whale habitat associations in the Bahamas and found that depth, seabed 

slope and seabed aspect were all important factors. Few previous attempts to model beaked 

whale distribution have been based on data collected over broad geographic areas and few 

included substantial areas of deep water habitat with low seafloor slope (abyssal plains) 

(Ferguson et al., 2006). Over the last decade, research on Cuvier’s beaked whale 

distributions have used GLMs to relate distribution to depth and slope (Canadas et al., 

2002) and more recently GAMs have been used to predict encounter rates and group sizes 

in the Eastern Tropical Pacific (ETP) (Ferguson et al., 2006). When looking at why a 

chosen method is adopted (i.e. GAMs or GLMs), the advantages and disadvantages need 

to be assessed of both methods. One way to view which method to chose is to look at how 

sensitive the data set that is being used. Limitations of using GAMs, is that they are 

sensitive to data input, however, using GLMs, which are more robust in terms of data used, 

make more assumptions about relationships. It is the latter that is being avoided in this 

chapter and by using a GAM; this can be overcome, as GAMs assume no prior 

relationships. 

 

The aim of this chapter is to model Cuvier’s beaked whale habitat preferences and 

distributions from ship line-transect surveys conducted in the Southern Bay of Biscay. The 

survey covers areas of shallow waters from the continental shelf to deep waters associated 

with submarine canyons and abyssal plain habitats. Habitat utilisation for Cuvier’s beaked 

whales is investigated by modelling the variation of presence/absence using generalized 

additive models (GAMs) and by investigating the effects of scale on habitat models. GAMs 

were chosen to make sure prior assumptions about relationships were correct and because 

they make no prior assumptions about the form of the relationships. Different spatial 

scales were investigated because the different oceanic features may be of importance at 

different scales. For example, the slope may be important on small scales, as the change in 

steepness can be different at different levels down the slope, but on a large scale the overall 

slope would be assessed and those small changes would not be seen. In previous studies on 
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beaked whales, only one spatial scale has been investigated: 500m (MacLeod et al., 2004a,; 

MacLeod and Zuur, 2005; and 9km (Ferguson et al., 2006) and after investigating 3 spatial 

scales (1km2, 25km2, 100km2) Macleod (2005) used 1km2 grid cells based on the smallest 

cell size provided the best model. The aim of this study was to investigate the habitat use of 

the Cuvier’s beaked whale rather than its distribution (chapters 3, 4 and 5), therefore the 

data from all months and years were combined, and any spatio-temporal variations were 

not investigated.  
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2. 2 Methods 
 
2.21Study area 

The region of study for this project is the southern Bay of Biscay (Figure 1). The Bay of 

Biscay is situated between 43 °N to 50 °N and -1 °W to -10 °W, in the Northeast Atlantic 

and is characterised as a temperate open oceanic bay bounded by the Spanish coast to the 

south, oriented E-W and the French coast to the east, oriented S-N (Koutsikopoulos and 

Le Cann, 1996). The Bay of Biscay is often described in two parts: the northern bay and the 

southern bay. Both areas have sea depths, ranging from the shallow continental shelf (less 

than 100 metres) to the abyssal plain (greater than 4000 metres), with many underwater 

features such as submarine canyons, seamounts and a steep continental slope. The 

Armorican shelf in the north of the bay is up to 180km wide, whilst in the south the 

continental shelf is narrow, only 30 to 40km width (Koutsikopoulos and Le Cann, 1996).  

 

The CapBreton Canyon, in the southeast corner of the Bay of Biscay, is a major 

morphological feature that cuts into the continental slope in an E-W direction and the 

1000m contour is only 3 km from the coast. The CapBreton is one of the deepest 

submarine canyons in the world (Gaudin et al., 2003) and the longest off Europe, with its 

head is located only 250m from the coastline (Cirac et al., 2001). The canyon was formed by 

the Adour River (SW France), but has been disconnected from the river since 1310 AD 

(Cremer et al., 2003). The canyon runs westward and parallel to the north coast of Spain for 

160 km due to structural control, then turns northward, widens and abruptly disappears in 

the continental rise by 3500m water depth (Gaudin et al., 2003). 

 

2.22 Field methods 

This study is based on data gathered by the Biscay Dolphin Research Programme (BDRP), 

on board the fixed route platform, Portsmouth-Bilbao ferry ‘Pride of Bilbao’. More than 

80,000 km have been surveyed during 135 trips, from 1995 to 2006 for the whole survey 

route and 25,773 km for the southern Bay of Biscay. The height of the platform is 32m 

and, the speed of the ferry is on average 17knots. Effort-related data are based on twice-

monthly survey and observers use the 180° arc in front of the vessel for any cetacean 

encounters. The dataset contains a record for each sighting and includes species name, total 

number of species observed, time, position (latitude/longitude) of the encounter, sea state, 

swell height, visibility, cloud cover (octaves), precipitation, angle, and distance of each 

sighting from the platform. In order to obtain a good representation of distribution, only 
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data recorded in favourable sea conditions (Beaufort sea state ≤ 3) were taken into account 

for the data analysis. Beaked whales may go unnoticed because they have long dive times 

(Aguilar De Soto et al., 2006; Baird et al., 2006; Tyack et al., 2006) and surface without a 

visible blow or splash (Barlow et al., 2006) and in sea states greater than three the 

probability of seeing them is reduced, as encounters rates decrease more than 10-fold as sea 

state increase from 1 to 5 (Barlow et al., 2006). Standard methods were used to record 

effort, with recordings every 15 to 30 min and/or when there was a change in the weather 

during an encounter. Other variables recorded included sea state, course, speed, visibility, 

wind speed and direction, cloud cover and swell height. 

 

The southern Bay of Biscay (outlined by the red box, figure 2.1) was selected as the study 

area instead of the whole Bay because there were no sightings of Cuvier’s beaked whale 

north of 46°N during dedicated effort surveys. Using the entire area may cause some 

discrepancies in the analysis because the northern Bay and the English Channel are shallow 

and even, relative to the deep and complex underwater topography of the southern Bay. 

The Cuvier’s beaked whale is a deep-water species and including the data for shallow water, 

such as that in the English Channel may obscure the importance of the deep-water habitat. 
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Figure 2.1: Total survey effort completed for the whole ferry route between 1995 and 2006 
(red solid lines) and for the study area (solid red lines within the red box) in the Bay of 

Biscay, northeast Atlantic. 
 
 
 
 
2.23 Analytical methods 
 

2.231Geographic information system (GIS) 

In order to explore the effects of spatial scale of habitat preference modelling, a program 

called MapInfo was used to create base maps with cells sizes of 5km, 10km, 15km, 20km 

and 25km. These maps were the imported into ArcView 3.2 and superimposed on the 

study area. Because of the size of the study area under investigation, a grid size smaller than 

5km could not be created and grid cells larger than 25km were not used as they encompass 

a greater area and averaging over a greater area would take out precision of the variation in 

depth, slope and aspect. Different size grid cells were used in this study to see whether 

Cuvier’s beaked whale preferred different EGVs of different scales. See Appendix 1 for 

extra maps in sea states 0, 1 and 2 for all grid cell sizes.  
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A GIS of the study area was constructed using ESRI ArcView 3.2 software. A primary 

coverage was developed that contained the study area as defined by latitude and longitude, 

coastline of England, France and Spain and bathymetric contour lines. Data were selected 

based on data sets of relevant oceanographic features that were acceptable and transferable 

into a GIS format: Depth, Slope (gradient), Aspect (facing direction of slope), and Sea 

Surface Temperature (SST), collectively known as EGVs. Grid squares for all 5 grid cell 

sizes were assigned values for each EGV. The depth values for the central point of the cells 

were obtained by overlaying the grid onto the GEBCO bathymetry data set. Central 

depths, including the mean, minimum, maximum, standard deviation (SD), and range were 

calculated for 10 by 10 grid squares consisting of 500m by 500m grid cells within the 5km 

grid size; 1000m by 1000m grid cells for 10km; 1500m by 1500m grid cells for 15km; 

2000m by 2000m grid cells for 20km; and 2500m by 2500m grid cells for 25km. The slope 

and aspect were then taken from the depth values in ArcView using the spatial analyst tool. 

Aspect was initially measured in degrees and then converted from a circular variable 

(degrees) into two linear components: Sine (Easting) and Cosine (Northing) of the original 

aspect. The aspect needed to be converted from degrees to circular variables, for example, 

a cell with an aspect of 359o would give a very different value to a cell with an aspect of 1o 

even though they are both facing a very similar direction, therefore aspect is separated into 

an easting and northing. Sine and cosine range from -1 to 1, positive is equal to east and 

north, while negative is equal to west and south.  

 

As described above, depth, slope and aspect were calculated for each grid cell using GIS 

tools, while SST data were obtained from the ocean colour web site for satellite imagery 

(http://oceancolur.gsfc.nasa.gov/ftpsite) and spatially joined to the grid cells. Chl-a 

variable was not included in the modelling, as over half the sightings were not linked to chl-

a value because the data for chlorophyll were only available from the middle of 2002 and as 

a result caused an error when the models were tested, probably as a result of the reduction 

in the number of presence cells with SSChl-a. Once all the EGVs were linked to the grid 

cells, the effort related survey data was joined to the grid to assign each trip a value for 

depth, slope, aspect, and SST. Each effort related sighting was then manually joined to the 

correct survey trip, using the date and time. The final spreadsheet contains each trip, 

sightings, and EGVs, which was then exported out of GIS and imported into Microsoft 

Excel. Within Microsoft Excel the data were sorted by sightings and each sighting was 

given a value of 1 (presence) and the rest of the survey data without sightings were given a 

 

http://oceancolur.gsfc.nasa.gov/ftpsite
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value of 0 (Absence). This was done to show which grid cells contained sightings 

(presence) and grid cells that were surveyed but no animals seen (absence).  

 

2.232 Selecting absence cells 

A number of absence cells within the study area were removed from the data set, because 

the model would not work with a high volume of absence cells compared to the small 

number of presence cells. Selecting a smaller number of absence cells increases the 

presence-absence ratio, to 25%-75%, respectively, from 1%-99% and 2%-98% (Table 2.1).  

 

The number of absence cells selected to use for each grid size, were chosen by multiplying 

the presence cells (52) by three, which equals 156 absence cells. To choose 156 absence 

cells from all absence cells, the total number of absence cells were divided by 156 and the 

number generated (n) (see Table 2.1) from this was used to select 156 absence cells for 

each model. To select the 156 absence cells the spreadsheet of absence cells were sorted by 

year and date and every ‘n’ cell from the top-down was picked from the absence cells. The 

data were sorted by year to give an overall mix of all years so there would be no bias in the 

results by picking absence cells from just one or two years.  

 

 

 

 

Total number of cells % of cells Grid cell 

Size presence absence presence absence 

Number generated 

(n) 

5km 52 8257 1 99 53 

10km 52 5001 1 99 32 

15km 52 3927 1 99 25 

20km 52 3361 2 98 22 

25km 52 3067 2 98 20 

Table 2.1: Total number and percentage of presence-absence cells for the whole study area 
and the number generated for selecting the smaller number of absence cells. 
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2.233 Habitat modelling 

Habitat use was analysed by applying a generalised additive model (GAM) (Hastie and 

Tibshirani, 1990), using the graphic user interface for ‘R’ 2.6 for Windows within the 

program ‘Brodgar’. The model was used to examine whether a significant relationship 

exists between the distribution of Cuvier’s beaked whales and EGVs. The model will be 

used to understand where Cuvier’s beaked whale should be found. The explanatory 

variables used in the model are physiographic variables (mean, range, SD of depth, slope 

and SST) and presence/absence of sightings (response variable). Because the data were 

presence-absence, a GAM with a binomial distribution and logistic link function was used. 

The models did not contain terms for latitude, longitude, month, and year, as they are 

better in predicting distribution rather than habitat utilisation. 

 

The Brodgar forward-backward stepwise model builds a model by eliminating different 

variables and investigates how much they improve the fit. The first stepwise selection 

process started with running all environmental variables (H1) and the resulting Akaike’s 

Information Criterion (AIC) was used to determine the best model at each step. The 

stepwise selection began with dropping one of the fixed variables: depth, slope, aspect, and 

SST. Each time a variable was removed, the model was re-run to see how the AIC is 

affected from the first step. If the AIC was lower than the first step, the variable was 

dropped from selection, implying the model is better without it; the lower the AIC, the 

better the model. If the AIC was higher then the variable was put back into the model and 

the next variable was removed. This process continued until all variables had been 

sufficiently tested for the final model predicted by the AIC. The above stepwise selection 

of variables finds the model that provides the best fit to the given data as expressed by 

AIC. 

 

Forward/backward stepwise selection of variables, with smoothers, K = 4. K (Knots) 

represents the amount of movement in the smoothing; a low K (i.e. K=1) would give a 

near straight line, whereas a higher value of K could see the line travel through each data 

point, which may not give a clear indication of the relationship. Cross validation was used 

to choose the most appropriate degrees of freedom (df) in the scope of predictor variables 

used. 
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In preparation for building the models, the beaked whale sighting data and oceanographic 

data were summarized into five different grid sizes, as mentioned above, of on-effort 

trackline. GAMs were used to relate beaked whale sightings to the summarized fixed 

geographic variables and temporally dynamic in situ oceanographic data described above. A 

GAM may be represented as: 

 

Σ== +pjj j g f X1μ α              (Hastie and Tibshirani, 1990) 

 

As in generalized linear models (GLMs), the function g(μ) is known as the link function, 

and it relates the mean of the response variable given the predictor variables, 

μ=E(Y|X1,…,Xp), to the additive predictor α+Σjfj(Xj). GAMs are nonparametric 

extensions of GLMs: the components fj(Xj) in the additive predictor may include 

nonparametric smooth functions of the predictor variables, allowing GAMs to be 

considerably more flexible than GLMs, which are restricted by the constraints of the linear 

predictor, α+ΣjβjXj.. Separate GAMs were built to describe and predict the response 

variable: presence to the explanatory variables described above, for the five grid cell sizes.  

 

An alternative way of analysing the relationship of Cuvier’s beaked whale to the EGVs 

available is by way of univariate tree models. Classification trees were used to explore the 

relationship between the single response variable (presence) and the multiple explanatory 

variables (EGVs described above). Trees indicate the relative importance of different 

explanatory variables. In each case, the statement used to split the grid squares was given 

above the branching point. The first split (left = yes, and right = no) identifies the variable 

with the most influence on Cuvier’s beaked whale distribution, and the values at the end of 

the tree contain the proportion of absence cells (left) and presence cells (right), that lie 

within those conditions. The trees have been pruned to display only the first four branches 

for clarity. 
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2.3 Results 
 
2.31 Sightings, survey effort and EGVs 

Between 1995 and 2006, 129,176km of systematic effort surveys were conducted for the 

whole ferry route and 25,773km in the study area. In total 66 groups of Cuvier’s beaked 

whale were encountered during the dedicated surveys, throughout the eleven years. Of 

these 66, only 53 sightings of the Cuvier's beaked whale were included in the five models, 

as some sightings were observed during sea states greater than 3.  

 

 
 

Table 2.2: The number of different grid cells surveyed, from 1995 to 2006: a) the total 
number of cells surveyed in the southern bay b) the total number of cells surveyed for the 

whole  
a) 

 Grid size 5 10 15 20 25 
Cells surveyed 443 165 92 60 42 
Cells utilised 34 24 19 15 12 
% of cells utilised 8 15 21 25 29 

 
 
 
 

b)              
 
 
 
 
 

Grid size 5 10 15 20 25 
Cells surveyed 8309 5053 3979 3413 3119 
Cells utilised 52 52 52 52 52 
% of cells utilised  1 1 1 2 2 

 

 

Figures 2.2 to 2.6 show the sightings of Cuvier’s beaked whale overlaid onto grid cell sizes of 

5, 10, 15, 20 and 25km, respectively. The amount of effort per grid cell is shown and the 

bathymetry of the area, by showing that they prefer deep-water habitats. The amount of 

survey effort is relative to the standard route of the ferry after leaving Bilbao, with darker 

grid cells indicating greater survey effort. The lighter grid cells indicate a lower amount of 

survey effort, which is due to occasional deviation of the ferry from its normal route. The 

encounters of Cuvier’s beaked whale are greater over areas with more survey effort, 

therefore the more time spent observing increases the chances of seeing them.  
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Figure 2.2: Distribution of Cuvier’s beaked whale layered above a grid showing survey 

effort (km) per 5km grid cell. Water depth is shown in metres. 
 
 

 
Figure 2.3: Distribution of Cuvier’s beaked whale layered above a grid showing survey 

effort (km) per 10km grid cell. Water depth is shown in metres. 
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Figure 2.4: Distribution of Cuvier’s beaked whale layered above a grid showing survey 

effort (km) per 15km grid cell. Water depth is shown in metres. 
 
 

 
Figure 2.5: Distribution of Cuvier’s beaked whale layered above a grid showing survey 

effort (km) per 20km grid cell. Water depth is shown in metres. 
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Figure 2.6: Distribution of Cuvier’s beaked whale layered above a grid showing survey 

effort (km) per 25km grid cell. Water depth is shown in metres. 
 
 

The EGVs investigated in this study were depth, slope (gradient), aspect easting, aspect 

northing, and sea surface temperature. The mean water depths of grid cells utilised, as an 

average of all five grid cell sizes, in the southern Bay of Biscay was approximately 2958.91m 

(range: 158.93-4237.52m; sd: 705.82m). 48% of the encounters were in water depths 

ranging from 2000 to 3000m, 44% of the sightings were over water depths ranging 3000-

4000 meters, whilst only 8% of the whales were encountered in water depths ranging from 

1000 to 2000 metres. The gradient varied from 0.270° to 11.72° (mean: 3.62°; SD: 2.59°). 

The majority of cells where Cuvier’s beaked whales were recorded had either a south-east 

or north-east facing slope, which is likely to be a function of the area surveyed. A summary 

of statistics for the grid cells surveyed in the southern Bay, for each grid cell size in the 

study area is shown in Table 2.3.  
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Table 2.3: Summary statistics of environmental variables for the grid cells surveyed in the 
Southern Bay of Biscay 

5km grid         
  Min Max Mean SD 
Depth (m) 488.71 4200.00 2984.59 738.89 
Slope (°) 0 21.43 3.98 3.35 
Aspect Sin -1 1 0.44 0.51 
Aspect Cos -1 1 -0.16 0.53 
SST (°C) 11.95 23.56 16.89 3.78 
SSChl-a (mg m-3) 0.16 0.83 0.33 0.21 
10km grid          
  Min Max Mean SD 
Depth (m) 304.05 4192.29 3008.51 694.41 
Slope (°) 0 21.80 3.76 2.93 
Aspect Sin -1 1 0.52 0.39 
Aspect Cos -1 1 -0.18 0.44 
SST (°C) 12.00 23.21 16.93 3.74 
SSChl-a (mg m-3) 0.16 0.79 0.32 0.19 
15km grid         
  Min Max Mean SD 
Depth (m) 158.93 4237.52 2986.03 724.05 
Slope (°) 0 17.18 3.35 2.48 
Aspect Sin -1 1 0.53 0.33 
Aspect Cos -1 1 -0.18 0.33 
SST (°C) 12.02 23.61 16.93 3.75 
SSChl-a (mg m-3) 0.16 0.83 0.32 0.20 
20km grid         
  Min Max Mean SD 
Depth (m) 210.42 4230.94 2877.27 701.32 
Slope (°) 0 15.73 3.51 2.25 
Aspect Sin -1 1 0.60 0.24 
Aspect Cos -1 1 -0.22 0.37 
SST (°C) 12.01 23.60 16.94 3.78 
SSChl-a (mg m-3) 0.16 0.85 0.34 0.21 
25km grid         
  Min Max Mean SD 
Depth (m) 272.59 4200.00 2938.17 670.41 
Slope (°) 0 13.29 3.50 1.94 
Aspect Sin -1 1 0.60 0.26 
Aspect Cos -1 1 -0.23 0.33 
SST (°C) 11.99 23.31 16.93 3.74 
SSChl-a (mg m-3) 0.16 0.80 0.32 0.20 
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2.32 Habitat preferences of Cuvier’s beaked whale in the southern Bay of Biscay 

 

Pairplots were created for the five different grid cell sizes to test the relationships between 

the average, range, and standard deviation, where possible for depth, slope, aspect sin and 

aspect cos. This relationship is represented by the dataset using the smaller number of 

absence cells for the 5km grid cell size (Figure 2.7). In Figure 2.7, the graphs above the 

diagonal are scatterplots, and the numbers below the diagonal represent (absolute) 

correlations between the variables. Font size is proportional to the value of the correlation. 

The pairplot created for the average depth versus the range of depths per grid cell indicates 

a weak relationship and therefore both the average and range of depths were used as EGVs 

in the model. This was also the same for the average/range of aspect sin and cos. For 

slope, however, the average, log and range of slope all showed a strong linear relationship, 

which suggests that all three would compute very similar results. The strong linearity 

among factors allows some factors to be dropped from the analysis and only one of these 

variables should be used for this reason and in this study; the average slope has been used 

in the models. The pairplots showed similar relationships between the average, range, and 

log of the EGVs.  
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Figure 2.7: Pairplots presented are based upon the 5km grid cell size only (random 
number). 

 
 
Table 2.4 shows the results of the AIC values for the five final models used. Together, 

these EGVs produced the lowest AIC value when the forward-backward stepwise selection 

was performed. In each model, some of the variables were not significant; however, 

because they improved the model by lowering the AIC value, they were kept in the model. 

The overall best model was the 20km model (AIC: 176.83), because the variables explained 

31% of the variation of the distribution of Cuvier’s beaked whale and subsequently this 

model is better in explaining the variation in the distribution of Cuvier’s beaked whale in 

relation to the EGVs. The next best model was the 25km, which explained 20.5% of the 

variation of the whale distribution and the 5, 10, and 15km models explained less than 20% 
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of the variation in the southern Bay of Biscay. Because more than 60% of the variation is 

not explained, adding more explanatory variables might improve the models and increase 

the deviance. The explanatory variance for Cuvier’s beaked whale distribution is explained 

by the deviance (labelled by the software) and shows how much variation in Cuvier’s 

beaked whale can be explained by the final EGVs used in each model. This is the 

equivalent of the R2 in linear regression (Ferguson, 2005). For all five models, there was no 

over-dispersion. Appendix 2 lists the numerical outputs of the forward/backwards 

selection using the AIC for each of the five models.  

 

 

Grid cell 
size 

5km 10km 15km 20km 25km 

 
AIC 

 
209.95 203.01 205.32 176.83 201.09 

 
Deviance 

 
16.2% 18.7% 17.9% 31% 20.5% 

Table 2.4: The results of the forwards/backwards stepwise selection using the Akaike 
Information Criteria (AIC) and the variation (deviance) in Cuvier’s beaked whale 

distribution, as a function of the EGVs investigated.  
 
 
 
The EGVs shown to be important for Cuvier’s beaked whale distribution at 5, 10, 15, 20 

and 25km grid cell sizes are shown in Table 2.5, denoted by a star symbol. The variables 

that had a significant (p-value <0.05) effect on the distribution of Cuvier’s beaked whale are 

highlighted in black and the ones that were not significant but kept in the model, because 

they improved the model by lowering the AIC value, are highlighted blue. Those left blank 

indicate the EGVs that were removed from the model, because they did not improve it. In 

some cases the average, a, and/or the range, r, were important. Only the average slope and 

SST per grid cell were used in the models. The average water depth over which Cuvier’s 

beaked whale were encountered plays an important role in their distribution on all spatial 

scales tested in this study. In this study, slope was important on smaller spatial scales of 5, 

10 and 15km, whereas at 20km and 25km it was not important. The direction of the slope 

(aspect) is significantly important for the Cuvier’s beaked whale on all spatial scales tested, 

with exceptions at 10km and 15km, where aspect northing and aspect easting is not 

important, respectively. SST was only significant at 20km, but improved the model at 5 and 

10km suggesting that SST is not affect by spatial scales. To assess SST in relation to 
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Cuviers’ beaked whale distribution properly, different factors need to be investigated such 

as seasonal temperatures. This is not examined here, but see chapter 5. 

 

 
 5km 10km 15km 20km 25km 

aDepth * * * * * 
aSlope ♦ * *   

aSine    * ♦ 
rSine *  *  * 
aCos * ♦  *  

rCos  *   * 
SST ♦  ♦ *  

Table 2.5: Summary of the EGVs selected for each of the five models.  
(* = EGVs which were significant and ♦ = EGVs not significant, but kept in the model) 

 
 

At 5km, three (depth, range of aspect easting and average of aspect northing) out of the 

five variables included in the model have a significant influence on the distribution of 

Cuvier’s beaked whale. Average slope (P = 0.1585) and SST (P = 0.2019) were not 

significant but kept in the model, as they improved the model by lowering the AIC value. 

At 10km, three out of four variables proved significant for this model; average depth, 

average slope and the range of aspect (northing). The average aspect (northing) was not 

significant (P = 0.0711), but it was kept in the model because it improved the model by 

lowering the AIC value.  At 15km, three variables that proved significant for this model are 

average depth, average slope and the range of aspect (easting). SST was not significant (P = 

0.0851), although it did reduce the AIC, therefore improving the model. At 20km, four 

variables were found to improve the model: average depth, average easting, average 

northing, and sea surface temperature. They were all found to have a significant effect on 

the distribution of Cuvier’s beaked whale (P = <0.005). At 25km, three out of the four 

variables used in the final model proved significant (P = <0.005); average depth, range of 

easting and range of northing. Average northing did not have a significant effect (P = 

0.6510) on the distribution of Cuvier’s beaked whale, but it did improve the model when 

the model was run without it; and therefore was kept in the final model.  

 

The average depth per grid cell was significant in all five models. The Cuvier’s beaked 

whale distribution has a non-linear relationship with depth (Figure 2.8). Estimated from the 

GAM smoother, the optimum value for depth is between 2000m and 300m, for all grid cell 

sizes. Cuvier’s beaked whale distribution has a negative relationship with the average slope, 
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and the GAM smoother indicates a preference for flatter bottoms. This was only evident 

for grid cell sizes 5, 10 and 15km (Figure 2.8).  

 

The aspect did show to be a significant feature in the distribution of Cuvier’s beaked whale 

for all models as estimated from the GAM smoother, but the aspect also showed to be 

variable across the scales. The range of aspect easting was significant at 5, 15 and 25km 

scales, whereas the average aspect easting was only significant at 20km. At a 5km grid cell 

size, westward facing slopes are favoured (aspect r_sin, Figure 2.9). A preference for east 

facing slopes is evident for 15km, 20km, and 25km scales (aspect sin, Figure 2.9). At 25km, 

the 95% confidence bands indicate the aspect could be either east or west when using the 

average aspect per grid cell, however, this was not significant. The GAM smoother for the 

range and average of aspect northing were varied across the scales, as the range showed 

they have a preference for north facing slopes at 10km and 25km, whereas, the average 

showed they have no particular preference for north or south facing slopes at 5km, 10km 

and 20km. At the 10km scale, this was not significant for aspect cos.  

 

Sea surface temperature improved three out the five models; 5, 15 and 20km, but was only 

significant at the 20km scale. Despite not being significant at 5 and 15km, SST was put 

back into the models because it improved the model by lowering the AIC value. The 

optimum temperatures estimated by the GAM smoother range 14 to 20°C (Figure 2.8).   

 

In Figures 2.8 and 2.9, the solid line indicates the smoothing curve, using K=4, while the 

dotted line represents the 95% point wise confidence bands. The degrees of freedom, df, 

for non-linear fits are in the parentheses on the y-axis. The y-axis represents the partial fit 

of each covariate on the scale of the link-function. The x-axis represents the values of each 

EGV, and the marks above the x-axis indicate the distribution of observations in all 

segments (with and without Cuvier’s beaked whale). 

 

The classification trees indicate that the first split among the grid cells in relation to 

Cuvier’s beaked distribution is based on the gradient of the slope at 5 and 10km, and aspect 

at 15, 20 and 25km (Figures 2.10a-e). The variables used in the trees were taken from the 

final models, as shown in Table 2.6. 
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Figure 2.8: Estimated smoothing curves and nominal variable for GAM of the habitat 
preferences of Cuvier’s beaked whale in relation to depth (first column) and slope (middle 

column) and SST (last columns) 

5km: 

10km: 

15km: 

20km: 

25km: 
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Figure 2.9: Estimated smoothing curves and nominal variable for GAM of the habitat 
preferences of Cuvier’s beaked whale in relation to Aspect easting (first two columns) and 

Aspect northing (last two columns). The letters w, e, s and n above the graphs represent 
west, east, south and north respectively. 
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Figures 2.10: Classification trees occurrence of Cuvier’s beaked whale in relation to water 
temperature, depth, seabed slope and seabed aspect. a)  5km grid cell size b) 10km grid cell 

size c) 15km grid cell size d) 20km grid cell size e) 25km grid cell size. 
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2.4 Discussion 
 
The Cuvier’s beaked whale models presented here are the first to explore habitat utilisation 

in the Bay of Biscay. Although it is clear that beaked whale species are associated with 

continental slopes or topographic features such as submarine canyons (Hooker et al., 

1999a,b; MacLeod and Zuur, 2005; Moulins et al, 2007; Faclone et al, 2009) it is important 

to increase this understanding in more detail. The analysis presented in this study is 

important because it supports research that has already been conducted on Cuvier’s beaked 

whale in other parts of the world’s oceans.   

 

The sightings of Cuvier’s beaked whale were not randomly distributed throughout the 

southern Bay of Biscay, in the northeast Atlantic. The effort-based surveys show Cuvier’s 

beaked whale has not been encountered north of 46°N, and the only BDRP recorded 

encounters north of 46°N are based on the opportunistic data (see chapters 3, 4 and 5). 

The distribution of effort within the study could see a bias of effort coverage, due to the 

time of day the ferry sails over certain topographic features. However, because of the 

different features the ferry sails over (continental shelf & slope, abyssal plain and 

submarine canyons) and the long dataset that this chapter uses I am confident that 

sightings are reflecting their distribution well in comparison to the effort coverage. Other 

work does however show records of Cuvier’s beaked whale north of Biscay (Rosen et al. 

2000). Effort-related data from the region north of 46°N were not included in this study 

because sightings were not seen in water depths less than 1000m and to include data less 

than 1000m proved insignificant and the analysis did not go any further. Because Cuvier’s 

beaked whale were only sighted in deep waters, it was best to minimize the study area to 

the southern Bay to obtain clearer comparisons between the habitat use of the Cuvier’s 

beaked whale and the EGVs tested. Factors such as month, year, and latitude were not 

used in this chapter because this is a habitat study, the spatial and temporal distribution of 

Cuvier’s beaked whale being discussed in Chapter 5.  

 

The majority of sightings, 90%, of Cuvier’s beaked whale were concentrated over a 

significant submarine feature known as the CapBreton Canyon in the southern Bay of 

Biscay, whilst 10% were sighted over the continental slopes in the northern part of the Bay. 

The water depth of grid cells surveyed in the southern Bay ranged from 158.93 metres to 

4237.52 metres and Cuvier’s beaked whale were observed in waters >1000 metres and <4000 

metres. Nearly 100% of the sightings were encountered over water depths of 2000 to 3000 
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metres (48%) and 3000 to 4000 (44%) metres. Despite the slope ranging from 0 to 30.22° 

within grid cells utilised, the Cuvier’s beaked whale was found over seafloors with a mean 

slope of 3.26°. The results from the GAM found the distribution of Cuvier’s beaked whale 

to be significantly correlated with water depth and slope. Depth significantly affects Cuvier’s 

beaked whale distribution on all scales with preferences for deep water, 2000-4000m depth; 

however, there is a decline in sightings if the water depth is greater than 4000m. Slope was 

only significant on scales of 5, 10 and 15km, and showed a preference for flat bottoms. The 

outputs from the GAM analysis show Cuvier’s beaked whales to have a non-linear 

relationship with depth and a negative near-linear relationship with slope. Is this preference 

for flatter bottoms indicative of their suction feeding behaviour as suggested by Heyning and 

Mead (1996)? 

 

The GAM outputs showed that the Cuvier’s beaked whales have a preference for westward 

facing slopes on a small scale (5km), northward facing slopes on small and large scales 

(10km and 25km) and eastward facing slopes on larger scales 15km, 20km and 25km. 

Because of the variation across the scales, it is suggested that one of two things could be 

occurring. The first is that more data is needed to show a more accurate picture of the 

preferences they have for a particular direction the slope faces or second is that do not 

have a particular preference for the direction the slopes. If the latter is true this suggests 

that the depth and steepness of slope plays a major role in their distribution, as shown by 

the results.  

 

The sea surface temperature of grid cells utilised ranged from 11.95 to 23.61°C, with a 

mean of 16.92°C. The results from the GAM indicated a non-linear relationship between 

the Cuvier’s beaked whale and sea surface temperature, with a preference for surface waters 

between 14 and 20°C. Sea surface temperature was only significant for three out the five 

models, so maybe at the scales where it was not significant, other factors outweighed the 

significance of sea surface temperature on the distribution of Cuvier’s beaked whale. 

Because of the small number of sightings linked to a SSChl-a value it could not be used in 

the models and it is therefore difficult to elucidate any relationships. It is noteworthy that 

Ferguson et al. (2006) found no associations between beaked whales and surface 

chlorophyll concentration in the Eastern Tropical Pacific, which is a biological variable 

commonly used as a proxy for cetacean prey.  
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By exploring the models using classification trees, it is interesting to find that despite water 

depth being significant at all spatial scales, as investigated by the GAM in this study, the 

slope determines the first split of the tree at 5 and 10km, whereas aspect determines the 

first split of the tree at 15, 20, and 25km.  

 

2.41 Comparisons with previous habitat modelling studies  

At present, only a few published sources are comparable with this study: an early study 

carried out in the Alboran Sea (Canadas et al., 2002), two studies were carried out off Great 

Abaco, northern Bahamas (MacLeod et al., 2004a; MacLeod and Zuur, 2005), a study 

carried out in the Eastern Tropical Pacific (ETP) (Ferguson et al., 2006), a study in the 

north-western Mediterranean (Moulins et al., 2007) and a more recent study off California 

(Falcon et al., 2009). The study by MacLeod and Zuur (2005) used a different species of 

beaked whale, Blainville’s beaked whale. The water depths over which Cuvier’s beaked 

whale were encountered in this study compare well with the sightings of Cuvier’s beaked 

whale in water depths of approximately 3400 metres in the Eastern Tropical Pacific 

(Ferguson et al., 2006), greater than 1000m off Great Abaco, Bahamas (MacLeod et al., 

2004a), greater than 1000m in the Mediterranean (Moulins et al., 2007) and greater than 

600m in the Alboran Sea (Canadas et al., 2002). It is important to note that Canadas et al. 

(2002) observed beaked whales and Moulins et al. (2007) observed Cuvier’s beaked whale in 

water depths shallower than 1000m; 600m and 756m, respectively. I would suggest that the 

reason for the sightings in shallower waters is that the continental slope in this area starts at 

a shallower depth than in the Bay of Biscay. Moulins et al. (2007) main findings were related 

to slope rather than aspect and depth, so therefore it would not be uncommon to see them 

in shallower waters in this area. The GAM results presented in this study show the aspect 

of the slope to have some importance on the distribution of Cuvier’s beaked whale, and, 

similarly, Moulins et al. (2007) found that Cuvier’s beaked whale distribution was 

significantly related to aspect of the seabed in the north-western Mediterranean. The study 

carried out off Great Abaco, Bahamas showed Blainville’s beaked whale distribution was 

also significantly related to the aspect of seabed (MacLeod and Zuur, 2005). The earlier 

study in the Bahamas and in the Eastern Tropical Pacific agree with the general 

descriptions of beaked whale habitats. However, the predictions of Cuvier’s beaked whale 

distribution in the ETP, as suggested by Ferguson et al. (2006), have expanded the 

definition of what is considered a suitable beaked whale habitat by showing they inhabit 

much deeper waters than other studies. On the other hand, when the later study is looked 
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at in more detail, the ETP is generally deeper than other places studied so in actual fact it 

does expand on their distribution. Ferguson et al. (2006) used a wider study area unlike 

most beaked whale studies that are conducted in areas limited to the continental slope and 

shelf waters (Ferguson et al., 2006). In this study, the coverage ranges from shallow waters 

to deep waters associated with the abyssal plain. Cuvier’s beaked whale do inhabit waters 

over the abyssal plain, but it is thought they are encountered in those areas for transitional 

purposes from the southern canyons to the northern continental slope because sightings 

were few. 

 

Unlike the findings made by Canadas et al. (2002), where beaked whales preferred steep 

slopes and MacLeod et al. (2004a) where Cuvier’s beaked whales were most often sighted 

over seafloors with greater slopes than the remainder of the study area in the Bahamas, the 

results here dispute that, as Cuvier’s beaked whales show a preference for gentle slopes. 

The preference for gentle slopes is in agreement with Ferguson et al. (2006) and Moulins et 

al. (2007) whose work show that Cuvier’s beaked whale seemed to prefer areas with gentle 

slopes in the Eastern Tropical Pacific and the Northwestern Mediterranean, respectively.  

 

Some useful information on depth preferences for Cuvier’s beaked whale has also come 

from acoustic recording tag (DTAGs) studies. Tyack et al. (2006) showed they hunt by 

echolocation in deep water between 222m and 1888m (maximum dive depth) in the 

Ligurian Sea and Aguilar Soto et al. (2006) showed foraging dives were made to a 

maximum of 1265m, also in the Ligurian Sea.  

 
What is apparent from these studies and from the present study is that the continental 

slope is an important variable in their distribution and despite depth also playing a major 

role; it seems that Cuvier’s beaked whale is likely to occur over the continental slope, 

regardless of the water depth.  

 

2.42 Spatial scales 

Ferguson et al. (2006) discuss beaked whale habitat use in relation to small and large-scale 

features where ecological mechanisms affecting beaked whale distribution may be scale-

specific, and there may be a specific order in which such mechanisms operating on 

different scales influence beaked whale distribution. The slope of the seafloor is one 

variable that may be especially sensitive to the spatial scale of the analysis, for example the 

steep wall of a submarine canyon is a feature that would appear in an analysis conducted on 
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scales of a few hundred metres to a few kilometres (Ferguson et al., 2006), whereas it would 

almost disappear in a larger scale analysis (Ferguson et al., 2006). Small-scale features are 

likely to be important to the success of localized beaked whale foraging; nevertheless, the 

animals may combine information from larger spatial scales, such as seasonal current 

movements.  

 

As mentioned in the previous section, the results from this study have been comparable 

with the findings from studies in other parts of the world’s oceans. However, other studies 

have not compared different spatial scales (grid cell sizes) in their work, using a single grid 

size. Because no comparisons have been made,  it was decided to examine this in the 

present study and as mentioned above, some EGVs are prominent features in determining 

the distribution of Cuvier’s beaked whale at most scales (water depth and slope), whilst 

aspect of seabed and sea surface temperature are not significant at all scales. Deciding on 

using just one scale could therefore significantly change the outcome of the results. So how 

did the other studies justify using just one grid size? Despite discussing different spatial 

scales, Ferguson et al. (2006) used a grid size based on the finest resolution of the 

environmental data, which was at 9km segments for the study in the eastern tropical 

Pacific. Similarly, MacLeod et al. (2004a) and MacLeod and Zuur (2005c) also used a single 

grid cell size for their analysis, 500m by 500m and justified using just one grid size by way 

of fine scale habitat analysis. In addition, MacLeod (2005) undertook a preliminary 

comparison of different grid cell sizes (1km2, 25km2, 100km2) to identify the best model of 

beaked whale distribution and also found that the fine scale model  (1km2) proved the best 

model. Despite the lack of different spatial scales used in those studies, as mentioned 

already, findings are comparable, but it would be of interest to see the outcome in the 

distribution of those species studied over large scales.  

 

2.43 Habitat preferences and hydrography 

The sightings of Cuvier’s beaked whale are primarily encountered in southern Bay of Biscay 

and over the submarine canyon, the CapBreton Canyon. It may be that interactions 

between local deep-water currents and this topographic feature increases local primary 

productivity and a local increased availability of prey for the Cuvier’s beaked whale. The 

CapBreton Canyon extends far out into the southern Bay of Biscay, from the southeastern 

corner of France, with other canyons formed around it. This extensive system of canyons, 

combined with the structure of currents and water masses in and around the southern Bay 

 



Chapter 2: Habitat utilisation of Cuvier’s beaked whale in the southern Bay of Biscay 49
 

of Biscay, undoubtedly work together to provide favourable conditions for the Cuvier’s 

beaked whale. Submarine canyons play an important role in influencing the water patterns 

in and around the surrounding area because of their size and the area they occupy (Hickey, 

1995). A combination of EGVs appears to lead to the presence of several cetacean species 

in the same location in the Gulf of Mexico (Baumgartner et al., 2001). In the southern Bay 

of Biscay, east-flowing shelf/slope currents are prevalent (OSPAR, 2000) and a common 

feature in autumn and winter due to southerly and westerly winds (Valencia et al., 2004). 

The extension of the warm water Iberian poleward (IP) current is now considered a 

common feature of winter circulation (Garcia-Soto et al., 2002) that coincide with the 

spawning season of pelagic and demersal species due to the higher concentration of 

nutrients than the surrounding area (Gill, 2003a). The east flowing current (the Iberian 

poleward current) parallel to the Spanish coast is likely to help in accumulating prey species 

such as squid through the canyon system and at the bottom of the slope, providing a 

favourable habitat for deep diving cetaceans such as Cuvier’s beaked whale. Upwelling is 

seasonal along the French and Spanish coasts and the strength of the upwelling 

corresponds to the winds and water masses (Gill and Sanchez, 2003b). Upwelling 

replenishes surface waters by drawing up nutrient-rich water from deep layers stimulating 

greater productivity of phytoplankton and consequently higher trophic levels in the 

shallower shelf regions (Flaherty, 1999).  

 

Data on precise distributions of squid in Biscay was not accessible for use in this thesis and 

so no direct comparisons could be made between where the whales were observed and the 

location of preferred prey. However, habitat use and seabed topography may be related to 

the local distribution of their preferred prey. The concentrating effect of currents on prey 

will be affected by gradient (MacLeod, 2005a). Nesis (1993) suggests that cephalopods; the 

prominent diet of beaked whales (Evans, 1987; Wang et al., 1995; Lick & Piatkowski, 1998; 

Santos et al., 2001a,b; MacLeod et al., 2003; Ohizumi and Kishiro, 2003) may become 

associated with steeply sloping oceanic areas where they are passively carried onto slope 

areas by oceanic currents. As a result, such species can become concentrated in the near 

bottom layer and so form an important resource of predators (Nesis, 1993). In steep areas, 

animals may disperse down slope to flatter areas rather than accumulating on the slope 

(Nesis, 1993), which would favour the methods of catching prey at depth for Cuvier’s 

beaked whale (Houston, 1991; Heyning and Mead, 1996; Tyack et al, 2006).  

 

 



Chapter 2: Habitat utilisation of Cuvier’s beaked whale in the southern Bay of Biscay 

 

50
 

2.44 Summary  

To conclude, the distribution of Cuvier’s beaked whale is closely related to seabed 

topography. Despite the small sample size, the analysis compares well with other studies 

that have also shown a relationship between Cuvier’s beaked whale and ecogeographical 

variables and, perhaps regardless of the spatial scale, particular EGVs will always be 

important in determining the distribution of Cuvier’s beaked whale.  

 

Understanding Cuvier’s beaked whale, and all ziphiid whale, habitats on a global scale may 

be enhanced by conducting more surveys in areas with similar potential habitats found in 

this study. Thoughtfully selecting the types of environmental data collected and the scale at 

which they are collected, will help further investigations of the effects of scale on habitat 

models. The importance of determining the scale at which environmental predictors define 

the habitat use of beaked whales is becoming greater and to cover areas that are not biased 

to key areas have arisen from research efforts into beaked whale distribution. This study 

has looked at the latter. This study has examined environmental variables at different scales 

and found: 1) depth and aspect are important at all scales, 2) slope is important on smaller 

scales and 3) SST is important at small to mid scales. The opportunistic data set (presence-

only) for the Cuvier’s beaked whale will undoubtedly show relationships better from the 

increased sample sizes. Chapter 3 examines presence-only data, by combining all the 

sightings of Cuvier’s beaked whale from both dedicated and non-dedicated surveys, to give 

a larger sample to work with. Using a larger sample size may validate the results found in 

this study, or it will challenge the results.   
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3.1 Introduction 
 
 
3.11 General introduction to the Ecological Niche Factor Analysis (ENFA) 

The ecological niche is the position or function of an organism/population in a community 

of plants and animals within an ecological community and a particular area within a habitat 

occupied by an organism. The niche concept, as defined by Hutchinson (1957), considers 

the ecological niche of a species as a hypervolume in the multidimensional space as defined 

by environmental variables, within which the populations of a species can persist. If the 

niche that a species occupies is related to specific combination of environmental variables 

that can be identified, this information can be used to provide a picture of where that 

species is likely to occur and where it is likely to be absent.  Understanding the distribution 

of organisms in relation to their environment is becoming increasingly important in terms 

of assessing and modelling species distribution (MacLeod et al., 2008), and identifying and 

protecting essential habitat in terms of assessing and mitigating human impacts upon 

marine organisms, such as anthropogenic noise (Barlow and Gisiner, 2006).  

 
Ecological Niche Factor Analysis has been developed by Hirzel et al. (2002a) to analyse the 

position of the niche in the ecological space. This technique uses the environmental 

variables of the location where the animals have been recorded as present to identify the 

niche occupied by the species. ENFA combines multivariate statistics with the Hutchinson 

niche concept of an n-dimensional hypervolume defined by the range of ecogeographical 

variables (EGVs) that a species requires to survive. It assumes that the data represent an 

unbiased sample of the available habitat. This can easily be applied to areas not covered 

during data collection, for predictive distribution and to areas where the likelihood of 

occurrence for a species is unknown (Hirzel et al., 2002a). ENFA could provide an 

objective way of predicting where marine animals are likely to occur within a given area 

based upon their ecological niche, and would allow the most to be made of the currently 

available data to improve the understanding of distribution in relation to EGVs.  

 

ENFA only needs two sets of data 1) presence-only data, which makes ENFA an analysis 

particularly robust to the quality of data and 2) EGVs to describe the environment. The 

principle aim is to compare the presence data set (species distribution) and the whole area 

(global distribution) to a range of EGVs. This process summarizes all predictors into a 

number of uncorrelated axes, similar to the Principal Components Analysis (PCA) (Reutter 
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et al., 2003), except that the axes have an ecological meaning, marginality and specialisation 

factors. The position of the niche in the n-dimensional space can be described using two 

measures. First was the M-specialisation (hereafter termed marginality) and second the S-

specialisation (hereafter termed specialisation). Marginality (those variables for which the 

species niche mostly differs from the available conditions in the global area, Reutter et al. 

(2003)) is represented in the first axis. Positive values (+ve) indicate the species prefers 

EGV conditions that are higher than the average conditions (Hirzel et al., 2002a). Negative 

values (-ve) indicated the species prefers EGV conditions that are lower than the average 

condition (Hirzel et al., 2002a). Specialisation (how restricted the species niche as compared 

with the available habitat, Reutter et al. (2003)) is represented in subsequent axes. The 

factorial axes coefficients are used to compute the overall marginality (M, varying generally 

between 0 and 1), specialisation (S, indicating the degree of specialisation when greater to 

1) and tolerance (T, inverse of specialisation). Larger values of marginality indicate that the 

species has habitat requirements that differ from the average condition available (Hirzel et 

al., 2002a). A high specialisation value indicates the more restricted the range of the focal 

species with regard to a given EGV. A high tolerance value indicates that within a given 

study area, the species occupies a relatively wide niche (Hirzel et al., 2002a; Reutter et al., 

2003; Engler et al., 2004). Each EGV will vary in the amount of information it explains per 

factor, as shown by the marginality and specialisation coefficients (Hirzel et al., 2002a).  

 

3.12 Advantages and limitations of the ENFA 

The advantage of ENFA over logistic regression techniques such as GAM/GLM is that it 

requires only presence data rather than presence-absence data (Hirzel et al., 2002a, Reutter 

et al., 2003). Firstly, they avoid potential bias associated with absence data (uncertainty with 

potentially inaccurate true/false absences, present but undetectable). Secondly, these 

presence-only techniques provide scientists with an opportunity to take advantage of data 

sources that cannot be analysed with GLM/GAM (Mandleberg, 2004). Thirdly, being 

fundamentally a descriptive analysis, it does not rely on any underlying hypothesis for the 

data. Lastly, the ENFA relies on the concept of ecological niche and is therefore especially 

suited to a presence-only design (Hirzel et al., 2002a).  

 

Application of these techniques for studying habitat preference of cetaceans has great 

potential benefits allowing a wider range of ‘opportunistic’ data to be included in statistical 

analysis, thus maximising the use of available data resources. These techniques are 
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increasingly being used to study the distribution and potential habitat of many different 

organisms for example cetaceans (e.g., Compton, 2004; Mandleberg, 2004), birds (e.g., 

Hirzel et al., 2004; Ortega-Huerta and Peterson, 2004), mammals (e.g., Dettki et al., 2003), 

in some plants (e.g., Robertson et al., 2001; Zaniewski et al., 2002), rare or endangered 

species (e.g., Reutter et al., 2003) and a virtual species (Hirzel et al., 2001). More recently, 

MacLeod et al. (2008) found that not only could presence only techniques be successfully 

applied to modelling the distribution of cetaceans, but also that they could also provide 

information on presence/absence models of the species involved. 

 

Despite the numerous advantages of using ENFA, the ENFA has limitations aswell. 

Firstly, the data set used is not effort related. Secondly, there is a lack of accurate absence 

data. Thirdly, ENFA is a purely descriptive method and cannot extract causality relations. 

A fourth limitation is that having only presence only leads to a much narrower variety of 

modelling techniques. Despite the drawbacks to modeling with presence-only data, these 

modeling methods are becoming more widely used because of the abundance of 

presence-only data, as has been described earlier.  

 

3.13 Aim 

This study aimed to analyse data collected opportunistically by trained observers during 

passages across the Bay of Biscay to assess whether it could be used to accurately model 

the distribution and habitat preferences of cetaceans using ENFA. This is particularly 

important because while dedicated surveys are undertaken along this route once a month, 

for less commonly encountered species, such dedicated surveys record too few sightings to 

allow habitat analysis to be conducted.  However, as opportunistic data are collected more 

frequently, this data set contains a greater number of sightings of such species.  Therefore, 

if the opportunistic data could be used to model the habitat preferences of cetaceans within 

the Bay of Biscay, this would greatly enhance our abilities to understand the factors which 

affect the distribution of less frequently encountered species.  To investigate this issue, 

Cuvier’s beaked whale was used as a case study.  During the monthly dedicated surveys, 53 

sightings of Cuvier’s beaked whales were recorded between 1995 and 2006 (see chapter 2). 

In contrast, 402 sightings were available in the opportunistic data set since 2001. Therefore, 

the opportunistic dataset contains almost ten times as much data collected in half the 

number of years and provide a potentially valuable dataset for expanding our knowledge of 

this poorly known species. 
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3.2 Methods 

 

3.21 Study area and Cetacean sightings 

The study area (Figure 3.1) covers part of the English Channel and the Bay of Biscay, along 

the route of the P&O ferry ‘Pride of Bilbao’, which operates between Portsmouth, UK and 

Bilbao, Spain. The Cuvier’s beaked whale, Ziphius cavirostris, and common dolphin, Delphinus 

delphis, opportunistic sightings data set used for this study was collated from the dedicated 

and non-dedicated surveys carried out by the Biscay Dolphin Research Programme 

(BDRP). The opportunistic sightings for common dolphin were used in this study to show 

that despite extensive survey coverage, certain cetaceans are not found in all areas of the 

survey route. Because opportunistic sightings are not effort related (amount of time spent 

observing), using a widespread species such as the common dolphin in comparison to 

Cuvier’s beaked whale, which has a limited distribution, will provide some sort of effort in 

observation for opportunistic sightings. In total 455 sightings of Cuvier’s beaked whales 

(402 non-dedicated and 53 dedicated) were encountered, and 4262 common dolphins; 2917 

non-dedicated and 1345 dedicated.  

 

1. Non-dedicated sightings data (opportunistic data) 

The wildlife officer (BDRP) on board the ferry collected the opportunistic sightings data 

from 2001 to 2006. On every sailing to Bilbao from Portsmouth, a wildlife officer is on 

board. However, the wildlife officer is not observing at all times, due to other duties, 

although being on board every trip from 2001, it was in the interest of the charity to start 

collecting data to monitor the distribution of cetaceans on trips when the survey teams 

were not present. In doing so, it provides a larger data set to work with when analysing the 

data, which in turn can help towards the conservation of cetaceans.    

 

2. Dedicated sightings data 

The dedicated sightings data were collected by a team of two or three researchers, on twice 

monthly survey trips from Portsmouth to Bilbao from 1995 to 2006. The first trip is 

carried out by a Spanish team (AMBAR) and the second an English team. On each trip, the 

survey starts from first light and finishes at dusk.  
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Figure 3.1: Bathymetry map of the study area, Bay of Biscay northeast Atlantic. 
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3.22 Analytical methods and Ecogeographical Variables (EGVs) 

A geographic information system (GIS) consisting of 8,000 10km by 10km grid cells was 

created using ESRI Map Info software to cover the study area. The grid was imported into 

ArcView 3.2 and each grid cell was assigned a value for water depth, seabed slope, range of 

seabed slope and aspect of seabed. Water depth was interpolated from the GEBCO dataset 

at a 10 by 10km resolution, and slope and aspect were derived using functions within 

ArcView 3.2 software. Using the map calculation function in ArcView 3.2, aspect of seabed 

was converted from a circular variable (degrees) into two linear components (radians); Sine 

(easting) and Cosine (northing) of the original aspect. The opportunistic sightings data were 

joined to the 10km grid to provide a presence grid to compare against the EGVs during the 

modelling process. 

 

ENFA and habitat suitability (HS) maps were computed using Biomapper 3 software 

(Hirzel et al., 2002b) for the Cuvier’s beaked whale and only the latter was computed for 

the common dolphin. BioMapper is a GIS and statistical tool-kit, developed for carrying 

out ENFA and producing HS maps from the comparison of a species distribution with a 

number of given EGVs (Hirzel et al., 2002b). A grid for each EGV was imported into 

Biomapper along with a grid identifying which cells were classified as ‘presence’ within the 

model constructing dataset. The EGV grids were standardised using a Box-Cox 

transformation. After verification that there were no discrepancies between the maps, the 

ENFA was carried out. Detailed descriptions of the ENFA and its mathematical 

computations are given in Hirzel et al., 2002a, 2006). 

 

Once the marginality, specialisation, and tolerance factors were computed, MacArthur’s 

broken stick model was used as a guide to select the number of factors that explain the 

greatest amount of information and to construct the final habitat suitability (HS) map. HS 

maps are computed by fitting a statistical or numerical model on environmental data and 

species distribution data (Hirzel et al., 2004). Each cell of the resultant map is given an HS 

value ranging from 0-100, with 100 being those cells that have the highest suitability. Purely 

for display purposes, the maps were imported in ArcView 3.2 and reclassified into three 

categories: unsuitable, marginal and core habitat (0-33, 34-67 and 68-100, respectively) to 

show where is good habitat and where is not.   
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3.23 Assessing the predictability of the ENFA based on opportunistic data 

The dedicated survey data were used to assess the predictive ability of the ENFA model 

based on the opportunistic data set. Only survey data collected in sea states of Beaufort 3 

or less were used, in order to minimise the possibility of false absences within the dataset 

(MacLeod and Zuur, 2005).  From these data, the 10km by 10km grid cells surveyed were 

identified.  Of these cells, those where Cuvier’s beaked whale was recorded during the 

dedicated surveys were classified as presence cells, while those where Cuvier’s beaked 

whale was not recorded were classified as absence cells.  The predicted HSI for each of 

these cells was then extracted from the ENFA model.  A receiver operating characteristics 

(ROC) plot was then used with effort data to assess the predictive ability of the ENFA 

model (Zweig and Campbell, 1993, Fielding and Bell, 1997). The ROC plot was obtained 

by plotting all sensitivity values (true positive fraction) on the y-axis against their equivalent 

(1-specificity) values (false positive fraction) for all available thresholds on the x-axis. 

Sensitivity values indicate the proportion of cells where the model correctly predicted 

presence in relation to all presence cells in the date set. Specificity values indicate the 

proportion of cells where the model correctly predicated absence in relation to all absence 

cells in the data set. The area under curve (AUC) value produced when the ROC plot was 

made provides a measure of predictive ability (MacLeod et al., 2008) and the AUC value lies 

between 0 and 1 (Fielding and Bell, 1997). A random model would be expected to have an 

AUC of 0.5, while a model that was in perfect agreement with the dataset would have an 

AUC of 1 (MacLeod et al., 2008). The higher the AUC, the greater the predictive ability of 

the model under consideration and the further it differs from a random model (MacLeod et 

al., 2008). ROC analysis was conducted using the Analyse-It ‘Add-In’ to Microsoft Excel 

produce by Analyse-It, LTD.  
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3.3 Results 

 

3.31 Habitat suitability of Cuvier’s beaked whale  

Within the opportunistic dataset, there were 402 sightings of Cuvier’s beaked whales in 72 

separate grid cells. Based on these data, the ENFA analysis found that the habitat used by 

Cuvier’s beaked whale differed from the general environment within the study area. The 

marginality value (M) was 1.677, also indicating that the required habitat of Cuvier’s beaked 

whales differs from the average habitat available within the study area. The specialisation 

value (S) was 2.854 indicating that Cuvier’s beaked whales are specialised in terms of the 

habitat they prefer, relative to the available habitats. A relatively low tolerance (1/S) value 

of T = 0.350 is indicative of their specialised habitats, highlighting the lack of sightings over 

unsuitable habitats.  

 

Out of seven factors calculated, four were retained to create the habitat suitability maps 

based on the broken stick analysis.  These accounted for 54% of the total sum of eigen 

values (100% of the marginality and 54% of the specialisation). The marginality alone 

accounted for 34% of this total specialization, a quite important factor meaning that 

Cuvier’s beaked whale display a restricted range on those conditions for which they mostly 

differ from background Biscay conditions. Marginality coefficients (Table 3.1) showed that 

Cuvier’s beaked whales are essentially linked to EGVs. For the first factor, the most 

important variable was Slope (coefficients of 0.504), followed by range in Slope (0.500). 

For the second factor, the most important variable was depth (-0.771) followed by range in 

slope (0.533). Therefore, factors related to the slope of the seabed and water depth were 

the most important factors in determining the distribution of Cuvier’s beaked whale in the 

study area. In Table 1, the most important variables can be seen highlighted in bold and the 

second most important variables are highlighted in italics. 
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Table 3.1: Variance explained by the first four factors used to calculate the ENFA 
prediction, and coefficient values for EGVs 

  1 2 3 4 
Aspect northing -0.290 -0.029 0.021 -0.097 
Aspect easting 0.195 0.132 0.064 0.393 

Range aspect northing  0.397 0.193 -0.560 -0.607 
Depth 0.333 -0.771 -0.024 -0.021 

Range aspect easting  0.325 0.025 0.066 0.583 
Slope 0.504 -0.255 -0.341 -0.293 

Range slope 0.500 0.533 0.749 0.202 
Eigen Value 33.620 12.965 4.360 3.164 

Accumulated explained 
variation in specialisation 

0.590 0.817 0.894 0.949 

 
 
 
 
The habitat suitability map predicts areas of unsuitable, marginal and core habitats for the 

Cuvier’s beaked whale (Figure 3.2). The highest likelihood of occurrence is within deep 

waters associated with the continental shelf slope, in both northern and southern Biscay 

and the lowest likelihood of occurrence in shallower waters of the continental shelf and in 

deeper waters of the abyssal plain. The opportunistic sightings for Cuvier’s beaked whale 

have been overlaid onto the predictive map in Figure 3.3 to show they are observed over 

waters that represent the core habitats for Cuvier’s beaked whale. This is part due to the 

fact that all sightings used in the predictive modelling, as seen on the map, came from these 

core areas to begin with, however, no sightings were observed over shallow waters of the 

continental shelf, which limits the bias towards the study area concentrating over deep 

waters and the continental slope.  
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Figure 3.2: HS map for Cuvier’s beaked whales in the Bay of Biscay showing unsuitable 
(yellow), marginal (orange) and core (red) habitats. The 200m and 4000m contour is shown 

in order to illustrate proximity of high suitability areas over the continental slope. 

 

Figure 3.3: HS map for Cuvier’s beaked whales in the Bay of Biscay showing unsuitable 
(yellow), marginal (orange) and core (red) habitats and opportunistic sightings (blue circles). 
The 200m and 4000m contour is shown in order to illustrate proximity of high suitability 

areas over the continental slope. 
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3.32 Would opportunistic data from other species produce a similar predicted spatial distribution? 

  
Opportunistic sightings of the common dolphin were used to construct a habitat suitability 

model to test whether or not the predicted distribution differs from that of the Cuvier’s 

beaked whale. A habitat suitability map for the common dolphin was built (Figure 3.4) to 

show the predictive occurrence in the Bay of Biscay, in order to highlight the widespread 

distribution of common dolphin relative to the Cuvier’s beaked whale. It can be seen that 

for a different species you get a different predicted distribution from the one that has been 

found for the Cuvier’s beaked whale and is not a coincidence resulting from a spatial bias 

in the data collection. The prediction for Cuvier’s beaked whale is not an accident of the 

spatial coverage of the opportunistic data. Using opportunistic sightings for a widespread 

and abundant species, such as the common dolphin, highlights extensive survey coverage 

within the study area yet the Cuvier’s beaked whale was not encountered.  

 

 

 
Figure 3.4: Habitat suitability map for the common dolphin (blue circles) in the Bay of 

Biscay showing unsuitable (yellow), marginal (orange) and core (red) habitats and 
opportunistic sightings (blue squares). The 200m and 4000m contour is shown in order to 

illustrate proximity of high suitability areas over the continental slope. 
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3.33 Assessing the predictive ability of the ENFA opportunistic data with independent dedicated survey 

data. 

In order to assess the predictive power of the ENFA, the area under curve (AUC) was 

computed using dedicated survey data of the Cuvier’s beaked whale, using a ROC plot. The 

ROC plot (Figure 3.5) revealed that the predictions of the model differed significantly 

(AUC: 0.82; P < 0.0001; Table 3.2) from random (AUC = 0.5), which indicates it has good 

predictive abilities. On the other hand, an AUC equal to or less than 0.5 would suggest the 

predictions were no better than random and sightings would therefore randomly 

distributed within the study area and therefore would not be able to validate the ENFA 

model results. Because the dedicated survey data have shown a greater predictive ability 

than random, it can be used to validate the ENFA model, which used opportunistic 

sightings. This indicates that opportunistic data can be used to predict Cuvier’s beaked 

whale occurrence in relation to EGVs.  

 

Table 3.2: Area under curve (AUC) for ROC plot of the presence/absence model. 

Test AUC 95% CI SE Z p CBW = 1 

HIS 0.82 0.76 to 0.87 0.027 11.50 <0.0001  have higher values
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Figure 3.5: ROC plot used to assess the predictability of the modelling approach. Black line 
– ROC plot for ENFA; Light grey line – Random model with AUC of 0.5. 
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3.4 Discussion  

 

3.41 Main findings  

ENFA produced meaningful habitat predictions and good models of Cuvier’s beaked 

whale distribution, using opportunistically collected data. Therefore, this study suggests 

that presence-only (opportunistic sightings) models can predict where the Cuvier’s beaked 

whale is most likely to be found in relation to EGVs in the wider Bay of Biscay, and that 

opportunistic data can be used to understand habitat preferences of rarely seen species 

when dedicated survey data are limited. The habitat suitability maps marginal and core 

habitats in the Bay of Biscay to areas with deep water, steep slopes, and submarine 

canyons, associated with the northern and southern continental slopes. The HS maps 

produced for the Cuvier’s beaked whale are in general agreement with findings from 

previous studies (Waring et al., 2001; Ferguson et al., 2006; Kiszka et al., 2007; Moulins et al., 

2007). The independent dedicated survey data used to assess the predictive ability of this 

model suggests that it has a high predictive ability. A high value for the AUC indicated a 

greater predictive ability of the model and the further it differs from a random model 

(Fielding and Bell, 1997). Taking into account that an AUC value >0.90 is qualified as 

outstanding (Hosmer and Lemeshow (2000), indicates the validation results from this study 

(AUC 0.82) are excellent. 

 

The marginality, specialisation and tolerance values computed from the ENFA are 

representative of the habitats utilized by the Cuvier’s beaked whale. Marginality indicates 

that the required habitat differs from the average habitat and this is notable on the HS map, 

with greater proportion of unsuitable habitats than core habitats. Specialisation and 

tolerance go hand in hand, and they imply the Cuvier’s beaked whale is specialised in its 

habitat use and therefore would rarely be seen over waters that are unsuitable; this is 

represented by the distribution of the sightings overlaid onto the HS map. The M, S and T 

values are of limited use with regard to a single species and expanding the current ENFA 

to other beaked whales observed in the study area would allow a comparison of species 

within the same ecological guild, see chapter 4. This would help identify multi-species core 

habitat ‘hotspots’ (Compton, 2004), which may be of high conservation priority and which 

often occur in the region of prominent habitat features such as submarine canyons. 

 



Chapter 3: Can opportunistic data be used to understand the distribution of Cuvier’s beaked whale            65 
 

 
By comparison to the results obtained by general additive modelling (GAM) in chapter 2, 

which provided more precision in terms of the preferred water depth, steepness of slope, 

and the direction in which the slope faces compared with ENFA, ENFA appears useful 

when absence data are limited or absent, or when a species is rare. From the HS map it is 

clear they prefer steep slopes and deep water, as shown by marginal and core areas, 

associated with the northern and southern continental slopes and submarine canyons. The 

findings in this study are consistent with the findings from the GAM modelling, chapter 2, 

and it appears that a combination of different techniques may be preferential for predicting 

species occurrence since the limitations of any one modelling technique can be 

compensated by the strengths of another model. 

 

3.42 Comparison with previous studies 

Few studies have used presence-only techniques to examine distribution and habitat 

preferences of cetaceans, in comparison to the widely used presence-absence techniques 

(see, for example, Mandleberg, 2004). One study used a PCA-based technique to model the 

distribution of four cetaceans in relation to EGVs in the coastal waters of western Scotland 

(Schweder, 2003). Another compared the ability of three presence only models, including 

ENFA, to a presence-absence approach to model the distribution of the harbour porpoise, 

in western Scotland (Mandleberg, 2004), and a third, the most relevant to this study, was 

modelling beaked whale distribution with ENFA (MacLeod, 2005a). This present study has 

not directly compared techniques but the presence-only modelling was validated using 

presence-absence data and they are comparable with the findings in the previous chapter 

(chapter 2). Mandleberg (2004) found no statistical differences between the presence-only 

and presence-absence techniques, implying that presence only can be used just as 

adequately as presence-absence. This was in contrast to previous studies Hirzel et al. (2001) 

used a modelling approach based on a virtual species with predetermined habitat 

preferences and found GLM predictions to be more accurate than those obtained with 

ENFA. Brotons et al. (2004) supported these results and found GLM predictions of the 

distribution of a forest bird species to be more accurate than those obtained using ENFA. 

MacLeod et al. (2008) suggests that the findings from the latter study were a result of 

models for 30 different species rather than direct comparisons of models for individual 

species. In contrast to the GLM, ENFA produced meaningful habitat predictions for three 

teuthophagus odontocete species in the northwestern Mediterranean Sea: Risso’s dolphin, 

long-finned pilot whale and sperm whale (Praca and Gannier, 2007).  
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It was shown by Praca and Gannier (2007) that to assess the effect of global climate change 

on their distribution and abundance, extensive data sets, or absence data are not needed 

and ENFA is a useful tool for such objectives.  MacLeod et al. (2008) also proposed ENFA 

as a useful tool, as they found presence-only approaches, such as ENFA, can potentially 

produce models of the distribution of marine species, and, they perform better than 

random models. Presence-only models do not have a significant poorer performance than 

presence-absence modelling for the same area, and presence-absence and presence-only 

models can give similar results, with all predicting the highest likelihood of occurrence in 

similar areas.  

 

Other previous attempts to model Cuvier’s beaked whale distribution have been based 

upon presence/absence models.  Using GLM, Waring et al (2001) and Hamazaki (2002) 

found that Cuvier’s beaked whales were associated with deep waters of the outer 

continental shelf edge along the northeastern coast of US, and using GAM, Ferguson et al 

(2006) found Cuvier’s beaked whale distribution in the ETP to be mainly over deep waters. 

Established methods (e.g. logistic regression, discrimination analysis, GLM) for modelling 

presence and absence have provided some intuitive answers for habitat preferences, but 

absences can have three causes: the species is present but not detected, the habitat is 

suitable but the species is not encountered or no longer present, and/or the habitat is not 

suitable.  

 

Despite the lack of absence data, which has already been accounted for, another aspect to 

consider when using presence-only data are the potential inaccuracies with a greater 

proportion of the presence cells from the dataset falling within the unsuitable habitat 

category. This, however, cannot be said for the Cuvier’s beaked whales, as the ENFA did 

not fail to recognise any core habitats. Despite the one-off sighting in the area in northern 

Bay of Biscay classified as unsuitable, it can be seen from the HS map that all the sightings 

occur over the marginal/core habitats.  Presence–only methods do not take into account 

the areas from which the species might be absent, but this was accounted for in this study 

by looking at the common dolphin distribution. It has a much wider predicative 

distribution and, more importantly, the sightings overlaid onto the HS map also highlight 

extensive survey coverage yet no observations of Cuvier’s beaked whale. A habitat 

suitability map was computed for the common dolphin to see whether a different 

distribution was observed. The results indicated that for a different species, you get a 
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different predicted distribution from the one that has been found for the Cuvier’s beaked 

whale and it is not a coincidence resulting from a spatial bias in the data collection. 

 

3.43 Advantages of using opportunistic data  

ENFA is designed specifically for use with datasets that include adequate absence data, 

such as opportunistic sightings data and even museum records (Hirzel et al., 2001, 2002a; 

Reutter et al., 2003). Compton (2004) found ENFA to be good at predicting the 

distribution of the northern bottlenose whale, Hyperoodon ampullatus, in the NE Atlantic and 

demonstrated through validation that the model was statistically robust. 

 

The first advantage of using opportunistic data is that a wider range of data can be 

incorporated into habitat models. Secondly, using such data is good for logistic reasons, as 

data can be pooled together from a number of resources and using techniques such as 

ENFA allow a wider range of data to be included, therefore maximising the resources 

available. Thirdly, research can be carried out at relatively low expense on vessels such as 

passenger ferries or container ships. The latter was used for the collection of opportunistic 

and dedicated sightings data used in this thesis. Collecting data from such vessels can be a 

cost-effective way of obtaining sightings data from areas where coverage from dedicated 

surveys has not been possible, due to the cost of hiring out vessels for such research and 

that the constant use of other vessels is not always available for effort based surveys. For 

ecological reasons, the advantage of using opportunistic data will advance the knowledge of 

the distribution of cetaceans more rapidly, that may otherwise take longer to achieve when 

trying to build up database from dedicated surveys. In the case of the opportunistic data 

used in this chapter, it is a much larger data set than the effort data, which in turn can 

identify much more in the way of predicted habitats. In particular, for the more elusive 

deep diving species, presence-only methods may then make the best use of available 

presence data (Brotons et al., 2004), as this present study has achieved for Cuvier’s beaked 

whale. Using opportunistic data can also advance the ability of further research to 

investigate habitat preferences of beaked whales and other species that are difficult to 

observe, by targeting other areas based on what has been identified in this study.   

 

3.44 Summary 

The analysis presented here identified key areas of habitat suitability within the Bay of 

Biscay. The results were consistent with previous findings that this species is linked 
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primarily to the continental slopes and submarine canyons. This study shows that one can 

use opportunistic data to build models of species distribution to make use of a greater 

number of sightings for less commonly recorded species. To get around the limitations of 

using opportunistic data, a smaller amount of dedicated survey data can be used to validate 

the model and check that it is not the result of biases within the opportunistic data. Such 

surveys can be conducted using platforms of opportunity, providing a cheap and easy way 

to validate models build from opportunistically collected data.  This is particularly useful 

for beaked whale species because it allows the most to be made of available data while 

retaining a strict approach to assessing how well the models perform. 

Using this approach could enable the predictions of Cuvier’s beaked whale distribution 

globally.  
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4.1 Introduction 

 

An adequate identification of key habitats and core areas where biologically and socially 

important behaviours concentrate is an important task in understanding a species’ ecology. 

Interspecific comparisons among species and habitats have been extensively undertaken on 

terrestrial ecosystems, whilst relatively little has been done for the marine ecosystem and in 

particular for deep diving cetaceans. Deep diving cetaceans include the beaked whales 

species, sperm whales, Physalus macrocephalus, and the long-finned pilot whale, Globicephala 

melas. Studies looking at the use of habitat for such species were completed in the Gulf of 

Mexico (Davis et al., 1998), Bahamas, east of Abaco (MacLeod and Zuur, 2005c), 

Mediterranean (Canadas et al., 2002; Moulins et al, 2007) and Eastern Tropical Pacific 

(Ferguson et al., 2006; Falcone et al, 2009), as well as over the submarine canyon ‘the Gully’, 

off eastern Canada (Hooker et al., 2002).  These authors have suggested that the habitat of 

several cetacean species, including the deep diving whales, could be defined based on 

physiography, i.e. depth and slope (from Kiszka et al., 2007). In addition to these studies 

and long before, Heyning (1889) highlighted the importance of topographic features were 

important in defining habitats for deep diving cetaceans.  

The Bay of Biscay and English Channel habitats include the continental shelf (only for the 

latter), continental slope, abyssal plain, submarine canyons, and seamounts, and the range 

of different habitats leads to the accumulation of many prey species for cetaceans 

(plankton, fish and squid), making it an ideal habitat for cetaceans and other wildlife. 

However, the habitat use and distribution of marine mammals in this region have not been 

extensively studied and described compared to some other regions of the world’s oceans 

(i.e. the Gulf of Mexico, Davis et al., 1998). The early studies that investigated cetaceans in 

this region described the frequently encountered cetaceans based on the distribution and 

abundance of the common dolphin, Delphinus delphis (Brereton et al., 1999; Rosen et al, 

2000), harbour porpoise, Phocoena phocoena and minke whale, Balaenoptera acutorostrata, 

(Rosen et al, 2000), bottlenose dolphin, Tursiops truncatus, (Layhaye and Mauger, 2000; 

Rosen et al, 2000), pygmy killer whale, Feresa attenuate (Williams et al., 2002b), pilot whale 

(Kiszka et a.,. 2004), and the first confirmed sighting of the True’s beaked whale, Mesoplodon 

mirus (Weir et al., 2004). Dietary segregation between neritic and oceanic populations of 

common dolphin has also been studied (Layahe et al., 2005). Before these studies, however, 

Evans (1980) compiled a mammal review of many different cetacean species from a 
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number of sources, identifying waters around the whole British Isles as important areas for 

these marine mammals. 

 

More recently, a quantitative study by Kiszka et al., (2007), has improved the understanding 

of habitat use among several cetaceans, including deep diving species, in the area by using 

sightings recorded on two independent ferry-based surveys operating between the UK and 

Spain, covering the English Channel and the Bay of Biscay. They found the deep diving 

species (Cuvier’s beaked whale, Ziphius cavirostris, pilot whale and sperm whale) to occur in 

deep oceanic waters of the central and southern Bay of Biscay and overall it was shown 

that bathymetry played a significant role in the distribution and habitat partitioning of all 

toothed cetaceans examined (Kiszka et al., 2007). Buckland et al., (1993) estimated pilot 

whale abundance for a survey block in the oceanic Bay of Biscay and adjacent waters 

during a North Atlantic sighting survey in summer 1989. MacLeod et al. (2009) looked at 

the occurrence of striped dolphin in the Bay of Biscay, whereby it was generally recorded in 

deep waters.  

The study by Kiszka et al (2007), which explored the distribution and habitat use of toothed 

cetaceans was based on an effort-related survey, as was an earlier study by Williams et al., 

(1999). Other studies in the Bay of Biscay using opportunistic sightings have only 

investigated distribution and abundance and not habitat use. Using opportunistic data 

provides a larger data set for analysis; especially where sightings are low, for example for 

beaked whales. This can increase the possibility of finding patterns in distribution that may 

reflect true distribution of whales and dolphins that are not seen in small data sets. There 

are, however, many limitations with using presence-only data. For example, unlike sightings 

from effort-based surveys, the absence of sightings in areas of opportunistic surveys cannot 

be accepted as true absences. To overcome this problem, opportunistic sightings for 

species that have a broader range in distribution within the study area could be used to 

identify observations being made in areas where beaked whales may be encountered and 

therefore justifying absences of cetaceans from the area.  

To compare habitat preferences between species, methods such as Principal Component 

Analysis (PCA) can be used. PCA has been used in many terrestrial studies and to a lesser 

extent for marine studies, especially comparing between cetacean species. Using a data set 

of opportunistic sightings enables the use of PCA because it does not need effort related 

data. PCA can be used to partition the variance in cetacean habitat use among axes and 
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these axes capture the patterns of species habitat use, using the predictor variables, i.e. 

ecogeographical variables (EGVs). Techniques such as PCA reduce the dimension of 

multivariate data to a level that is easier to interpret (Redfern et al., 2006). The first PCA 

axis represents the greatest variation within the data set, with each subsequent axis 

representing a smaller amount of variation until 100% of the variation is explained. In 

order to assess how different sets of data compare in terms of variation in their combined 

values for all variables, the scores for each principal component for one set of data can be 

compared to the other. If there is substantial difference in the principal component scores 

between the data sets on one or more of the principal component axes, this will indicate 

that they do not consist of data with similar combinations of the variable examined. The 

PCA can be use to investigate distribution of species in the same area by looking at the 

niche centre and niche width, which helps to identify species niche overlap.  

 

A detailed study by Kiszka et al. (2007) has already highlighted the distribution of cetaceans 

in Biscay, although their work and most previous studies (mentioned above) concentrated 

surveys in specific areas, and/or certain times of the year i.e. summer. The Biscay Dolphin 

Research Programme (BDRP) overcame this limitation of surveys in specific regions by 

carrying out research on the distribution of cetaceans in the temperate waters of the 

English Channel and the Bay of Biscay on board the P&O ferry ‘Pride of Bilbao’, which 

started in 1995. The ferry covers the waters between Portsmouth in the UK and Bilbao, 

northern Spain, so the information gathered represents a substantially large area than 

previous work. The surveys were initially effort based but then in 2003 the wildlife officer 

for BDRP started monitoring cetaceans and recorded those sightings as casual (or 

opportunistic) on every trip. Recording sightings on every trip has led to a large data set of 

opportunistic sightings. There are only two limitations of collecting data on this ferry route; 

one is that it covers a narrow area along a fixed route and two part of the region is covered 

at night. However, sightings identified along a fixed route can be extrapolated out from the 

fixed route to see if patterns in distribution over similar topographic features in Bay of 

Biscay and English Channel differ. This is not looked at in this chapter.  

 

This chapter is the first study that compares the habitat use between deep diving cetaceans 

in the Bay of Biscay using multivariate statistics on a large data set. In this study, 

opportunistic sightings data are used to compare the relative habitat preferences of Cuvier’s 

beaked whale to other deep-diving and non-deep-diving cetaceans recorded on the same 
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surveys in the Bay of Biscay, based on the assumption that the same habitat has been 

sampled in each case. It is hypothesized that deep diving whales will show a similar habitat 

use relative to the topographic features. The main objectives for this chapter are first to 

explore how habitat use compares among deep diving cetaceans in the Bay of Biscay by 

relating their distribution to three ecogeographical variables: depth, slope and aspect; and 

secondly, is there a way to relate opportunistic sightings to effort related sightings in the 

region?  The good coverage of sightings data being used for this study should show the 

range in habitat preference very well for each species under investigation.  
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4.2 Methods 

 

4.21 Study area and survey methods 

The study area covers the English Channel and the Bay of Biscay (Figure 4.1 – map of the 

Bay of Biscay), along the route of the P&O ferry ‘Pride of Bilbao’, which operates between 

Portsmouth, UK and Bilbao, northern Spain every three days. The Biscay Dolphin 

Research Programme (BDRP) is the onboard charity collecting data on marine mammals 

and seabirds. On every sailing from Portsmouth to Bilbao, a wildlife officer is on board. 

However the wildlife officer is not observing at all times due to other duties on board. 

Because a wildlife officer was on board every trip year round from 2003, it was in the 

interest of the charity to start collecting data to monitor the distribution of cetaceans either 

side of the survey teams that survey twice a month. The wildlife officer (BDRP) on board 

the ferry collected the casual (referred to as opportunistic) sightings data from 2003 to 

2007. In doing so, it provided a larger data set to work with when analysing cetacean 

distribution. For this study, opportunistic sightings recorded by the wildlife officer for the 

BDRP were explored to look at the habitat use of Cuvier’s beaked whale, Ziphius cavirostris 

compared to the northern bottlenose whale, Hyperoodon ampullatus, Sowerby’s beaked whale, 

Mesoplodon bidens, unidentified beaked whales (or BWsp), sperm whale, Physalus macrocephalus, 

long-finned pilot whale, Globicephala melas, common dolphin, Delphinus delphis, fin whale, 

Balaenoptera physalus, and striped dolphin, Stenella coeruleoalba. Opportunistic sightings were 

recorded in all sea states, and all sea states were included in the analysis. 

 

4.22 Ecogeographical variables (EGVs) 

The EGVs used in this analysis were depth, slope, aspect easting and aspect northing. A 10 

by 10km grid was created in MapInfo and exported into ArcView 3.2. The grid was 

overlaid onto the study area and each grid cell was assigned a cell ID. Depth, slope and 

aspect were calculated in ArcView GIS 3.2 as coverages of the whole area, and linked to 

cells within the 10km by 10km grid using the spatial join function. The depth values for the 

central point of the cells were obtained by overlaying the grid onto the GEBCO 

bathymetry data set. The slope and aspect were then taken from the depth values in 

ArcView using the spatial analyst tool. Aspect was initially measured in degrees and then 

converted from a circular variable (degrees) into two linear components: Sine (Easting) and 

Cosine (Northing) of the original aspect. The aspect needed to be converted from degrees 

to circular variables, for example, a cell with an aspect of 359o would give a very different 
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value to a cell with an aspect of 1o even though they are both facing a very similar direction, 

therefore aspect is separated into an easting and northing. Sine and cosine range from -1 to 

1, positive is equal to east and north, while negative is equal to west and south.  

 

After each grid cell was assigned an EGV value, an average for each EGV per grid cell was 

calculated using the map calculator function.  The sightings were then joined to the 10km 

grid, which then produces a cell ID number next to each sighting. The grid with the EGVs 

attached was then joined to the sightings data by the cell ID, to link sightings with EGVs. 

The identification numbers will be referred in the analysis. The database was sorted by 

species with a column for the average depth, slope aspect easting and aspect northing. This 

was then imported into Minitab for statistical analysis-see next section.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

English Channel 

Bay of Biscay

 
Figure 4.1: Study area, Bay of Biscay, northeast Atlantic. Ships track  

Portsmouth (UK) to Bilbao (Spain), highlighted in red and water depth is  
shown in metres. (Left map taken from www.noc.soton.ac.uk)  
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4.23 Analytical methods  

 

4.231 Principal Components Analysis (PCA) 

Standard PCA analyses were conducted using Minitab statistical software (Minitab Ltd) on 

the cetacean sightings and EGV data using all possible combinations of four variables; 

depth, slope, aspect easting and aspect northing. The value for each variable for each 

sighting of all 8 species was standardised by subtracting the mean value of that variable 

form the actual value for each sighting and then dividing by the standard deviation (see 

Robertson et al., 2001). This ensures that variables measured on different scales are treated 

as equal during the PCA process. A PCA was then conducted on these standardised values 

and a principal component (PC) score was calculated for each axis for each EGV using the 

appropriate eigen vectors from the PCA. The principal components are independent 

measures of the variation in the data. The resulting values for each principal component (1, 

2, 3 and 4; representing each variable) for each species were added together until the 

accumulated variation explained by the PC was >80%. The first rule of thumb is the 80% 

rule; use the principal components that explain 80% (cumulative) of the total variation 

(Zuur et al., 2008). The PCA compares the distribution for all species described above using 

depth, slope, and aspect (easting and northing) for localities where the species have been 

recorded as present. To investigate species niche centre and niche width, principal 

component 1, 2, 3 and 4 values for each species were standardised (weighted) by 

multiplying each principal component value by their eigen score. The eigen score was given 

as the result once the PCA had been run on the data. The average and standard deviation 

of PC1, 2, 3, and 4 for each species and sightings were used to visualise the species 

distribution relative to EGVs using ordination plots. The distribution of the principal 

component scores along an axis will represent the variation in habitat combinations defined 

by it. After the PC values were standardised, they were added together to give one PC value 

for each sighting of each species. This final PC value was used in further statistical analyses.  

 

4.232 Niche centre 

A Kruskal-Wallis (H statistic) test was used because variance significantly differed between 

species. The test statistic for the Kruskal-Wallis is H. The Kruskal-Wallis test is a 

nonparametric test used to compare three or more samples. It is used to test the null 

hypothesis that all populations have identical distribution functions against the alternative 

hypothesis that at least two of the samples differ only with respect to location (median). To 
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identify which pairs of species were significantly different, a Mann-Whitney (W statistic) 

test was carried out on all possible pairs of species (significance is defined as p-value <0.05). 

 

4.233 Niche width 

The equality of variance statistic (F-test or Levene’s test) was used to look at the niche 

width of each species. Pairwise comparisons were made on all possible pairs of the eight 

different species. This test determines any significant differences between pairs of species 

that differ in their niche width. If the value is significant, the conclusion is that, on average, 

the deviations from the mean in one group exceed those of the other being tested. If the 

variance is large, it implies a wider niche width. Both the niche centre and niche width were 

illustrated using a histogram of PC values per species and along with the standard error. 

 

The following diagram shows how species niche centre and niche width can differ.  

 

 
A B C 

Proportion  
of  
records 
 

Proportion of records  

Figure 4.2: Ecological niche diagram to represent species boundaries. (A) Different centre, 
same width, (B) Same centre, different width and (C) Different niche centre, different 

width. 
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4.3 Results  
 
 
4.31 Distribution of cetaceans in the Bay of Biscay and the English Channel  

Between 2003 and 2007 opportunistic sightings were collected on every trip the ferry made 

between Portsmouth, UK and Bilbao, Northern Spain. A total of 7012 encounters (201672, 

individuals) were recorded, see Table 4.1 for individual species total numbers. The maps 

produced (Figures 4.2 to 4.6) highlight the distributions of each species as the sum of the 

total number of sightings over 5 years for each species. The first map (Figure 4.3) 

represents all sightings recorded in the English Channel and the Bay of Biscay. Cuvier’s 

beaked whale shows a preference for deep waters >1000m (Figure 4.4). The northern 

bottlenose whale displays a similar distribution to Cuvier’s beaked whale in the Bay of 

Biscay. Beaked whales predominantly inhabit the deep waters of the Bay of Biscay. Figure 

4.5 illustrates the observations for the sperm whale and the pilot whale. The sperm whale 

appears to have a preference for deep water and steep and complex topography, similar to 

that of the beaked whales. The pilot whale also shows a preference towards deep water and 

the continental slope. However, it is also seen in waters further north over the continental 

shelf and the English Channel. This may be reflected by the prey species consumed by the 

pilot whale. The common dolphin exhibits a wide distribution, ranging in both shallow and 

deep waters (Figure 4.6). With the exception of a few sightings in the English Channel, the 

fin whale is predominantly seen in the Bay of Biscay in waters ranging from 500 to 5000m 

deep, similarly with the exception of one sighting at the western end of the channel the 

striped dolphin is observed just in the Bay of Biscay (Figure 4.6).  

 

Table 4.1: The total number of encounters and individuals per species. 
Species Encounters Individuals 
Cuvier's beaked whale 402 957 
Northern bottlenose whale 39 89 
Sowerby's beaked whale 15 28 
Beaked whale sp. 212 336 
Long-finned pilot whale 503 4412 
Sperm whale 235 435 
Fin whale 1392 2929 
Common dolphin 2917 136371 
Striped dolphin 1297 56115 
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Figure 4.3: Distribution of all cetaceans (red circles.) sightings: Cuvier’s beaked whale, 

northern bottlenose whale, Sowerby’s beaked whale, beaked whale spp, sperm whale, pilot 

whale, common dolphin and fin whale. 
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C D

Figure 4.4:  Distribution of all beaked whale species: Cuviers’ beaked whale (A),  
northern bottlenose whale (B), Sowerby’s beaked whale (C) and beaked whale sp  

(D), highlighted by red circles. 
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Figure 4.5: Distribution of pilot whale (A) and sperm whale 

(B), highlighted by red circles. 
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BA 
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Figure 4.6: Distribution of the common dolphin (A),   
fin whale (B) and striped dolphin (C), highlighted by red circles 
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4.32 Analytical findings 

4.321 PCA 
 
The habitat use for all species was examined using PCA to look at relative habitat use. The 

first principal component (PC1) represents the major source of variation in the data (Table 

4.2). The most important variable is highlighted in bold, italics highlight the second most 

important, and the third is underlined. The PC(s) that accumulate the most variation, which 

account for at least 80% of the variation, are the ones to focus on in terms of the 

important EGVs. Another way of representing the data is by looking at the number of 

adequate dimensions that explain distribution. The first of these is associated with the most 

important variable based on absolute values, the second is associated with the next highest 

value and so on.  

 

The resulting eigenvalue (Table 4.2) shows the variance on the new factors that were 

successively extracted. The variances extracted by the factors are called the eigenvalues. 

This name derives from the computational issues involved. In the sixth row, these values 

are expressed as a percentage of the total variance and the seventh row contains the 

cumulative variance extracted. It can be seen that principal component 1 accounts for 35% 

of the variance, principal component 2 accounts for 66 %, and so on. As expected, the sum 

of the eigenvalues is equal to the number of EGVs.  

 

The results show that three principal components are needed to explain over 80% of the 

variation in habitat use and they are a substantial part of the original variation. The data can 

also be represented adequately in just two dimensions. The first 2 principal components 

extracted had eigenvalues greater than 1.0 and accounted for over half the total variation 

present in the data set. Principal component 1, which explained 34% of the variance, 

indicated that sightings are compared firstly by aspect northing, water depth, and then 

slope. The former is negative and therefore south facing slopes are used to explain habitat 

use. Principal component 2, which accounted for 31.1% of the variance, highlights two 

primary variables, aspect easting, and slope that contributed to driving the differences 

between species niche.  A negative relationship with aspect easting, suggesting west facing 

slopes are important for habitat use.  
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EGVs PC1 PC2 PC3 PC4 

Depth 0.6032 -0.2270 0.7145 -0.2721 
Slope 0.4878 0.5814 0.0208 0.6508 

Aspect easting 0.0587 -0.7643 -0.0486 0.6403 
Aspect Northing -0.6283 0.1620 0.6976 0.3039 

eigenvalue 1.3109 1.2759 0.8078 0.6053 
proportion 0.3280 0.3190 0.2020 0.1510 

Accumulated variation explained 0.3280 0.6470 0.8490 1.0000 

Table 4.2: PCA Eigen vectors and components scores for all species together 
 

 

The PCA results give an indication of niche differences among the species. Figure 4.7 

illustrates that the common dolphin and Sowerby’s beaked whale are separated from the 

other species on the PC1 axis, with the latter separated on the PC2 axis as well, and the 

Pilot whale is separated from the other species on the PC2 axis. Most importantly, it reveals 

these three species are dissimilar in their habitat use compared to Cuvier’s beaked whale, 

beaked whale sp, northern bottlenose whale, sperm whale, fin whale and striped dolphin. 

The primary EGVS that contributed in driving the separation between species are aspect 

northing, depth, and slope on the PC1 axis and aspect easting and slope on the PC2 axis. 

The common dolphin lies further down PC1 axis, which indicates that is separated from 

the other species by a preference for gentle slopes, shallower water, and south facing 

slopes. Sowerby’s beaked whale lies further up the PC1 axis, which indicates it is separated 

from the other species by a preference for steeper slopes, deeper water, and north facing 

slopes. The pilot whale is similar to the others on the PC1 axis, but is separated on the PC2 

axis, whereby the separation along this axis is reflected by its preference for more east 

facing slopes and steep slopes.  

 

Cuvier’s beaked whale, beaked whale sp, northern bottlenose whale, sperm whale, and fin 

whale cluster together on the PC graph (Figure 4.7) higher up on the PC1 axis compared to 

the PC2 axis. This implies that a combination of three most important variables for PC1: 

slope, aspect northing and depth are the most important. Firstly, a positive relationship 

with slope indicates this group prefers steeper slopes, secondly a positive relationship with 

depth indicates this group prefers deep water, and thirdly a negative relationship with 

aspect northing indicates this group prefers south facing slopes. This relationship can be 

compared well with the distribution maps produced (Figures 4.3 to 4.6), where each species 

from this group are predominant in waters of the continental slope, submarine canyons 

and deep waters of the abyssal plain in the Bay of Biscay.  
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Figure 4.7: PCA scores graph (PC1-x-axis v PC2-y-axis) for all cetacean sightings. The abbreviations indicate species names: common dolphin-cd, 
striped dolphin – sd, pilot whale-pw, sperm whale-spw, fin whale-fw, Cuvier’s beaked whale-cbw, northern bottlenose whale-nbw, sowerby’s beaked 

whale-sbw, unidentified beaked whale-bwsp). 
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4.322 Niche centre 

A Kruskal-Wallis test was carried out on the PC values for each species, because the 

variance significantly differed between species pairs (H = 1084.52; df = 437; p-value = 

<0.05), (H = 1190.86; df = 437; P-value >0.05, adjusted for ties). The evidence here suggests 

rejection of the null hypothesis (Ho): the whales occupy the same habitat. Rejecting the Ho 

means there is sufficient evidence to conclude that at least two species show a significant 

difference in the centre of their niche. So which whales occupy different habitats? To find 

out which species differed in their niche centre, a Mann-Whitney test was run on each pair 

of species. The results show nineteen out of the thirty-six different pairs of species 

significantly differed in their niche centre (P = <0.05, highlighted in bold) (Table 4.3). The 

p-values highlighted in red would not be viewed as significant when the Bonferroni 

correction P=< 0.0014 is applied and only sixteen pairs are significantly different.  

 

 

4.323 Niche width 

To understand how the niche width differed among the 8 species, a ‘Pairwise Equality of 

Variance’ test was run on each pair of species (F-test statistic and the p-value, Table 4.4). 

The F-test shows that eleven pairs of species were significantly differed in their niche 

width. The p-values highlighted in red would not be viewed as significant when the 

Bonferroni correction P=< 0.0014 is applied and only nine pairs significantly differ when 

this was added. It has been inferred from these results that two groups are noticeable: 

group one includes Cuvier’s beaked whale, northern bottlenose whale, beaked whale sp, 

pilot whale, sperm whale, fin whale and, striped dolphin; where by they all significantly 

differed in their niche width from common dolphin. The second group highlights the pilot 

whale being significantly different in its niche width from Cuvier’s beaked whale, beaked 

whale sp, common dolphin, fin whale and striped dolphin. This implies the deviations from 

the mean for the common dolphin exceeded that of the mean for the other six species it 

was compared against and likewise for the pilot whale versus four other species. This is 

comparable to the maps, where the common dolphin and pilot whale are regularly 

observed in the English Channel and the other species are not. This is indicative of their 

wider niche in this area. The test did not show any differences between the Sowerby’s 

beaked whale and the other species and it also showed the northern bottlenose whale to be 

significantly different from one other species, the common dolphin (before the Bonferroni 

correction was applied). This may be because there was no difference in the niche width or 
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because the sample size of the two species compared to the rest was too small to obtain 

any conclusive results. The latter is more realistic as their habitat preferences are similar to 

Cuvier’s beaked whale and beaked whale sp, so they too should have been significantly 

different from the common dolphin.  

 

A large variance for the pilot whale and common dolphin versus fin whale, indicates they 

have a wider niche than the fin whale. Cuvier’s beaked whale, beaked whale sp, pilot whale 

and sperm whale versus fin whale do not appear to have a variance larger than any other 

value in the table, but they are significantly different from the common dolphin. Because 

they were significantly different from the fin whale, a large variance was expected, as was 

the case with the pilot whale and common dolphin versus the fin whale. Nevertheless, the 

significant difference is evident enough to demonstrate that they have a different niche 

width.  

 

Figure 4.8 is a histogram plot of the niche centre and niche width of each species, with the 

columns indicating the niche centre, and standard deviation bars indicate the niche width. 

This graph helps to identify which species have a wider or narrower niche but same centre, 

a different niche centre but the same niche width, or if they show similar niche centres and 

widths. The pairs of species that have similar niche centres are Cuvier’s beaked whale and 

northern bottlenose whale, Sowerby’s beaked whale and pilot whale and beaked whale sp, 

sperm whale, fin whale and striped dolphin. The error bars on the graph show there is 

overlap in the niche (width) of each species, indicating they occupy the same habitats. 

Overlap in the niche is most likely due to sufficient prey availability for each species, to 

sustain all the species investigated. In terms of niche widths the species have placed into 

three groups; the first group being Cuvier’s beaked whale, northern bottlenose whale, 

Sowerby’s beaked whale, beaked whale sp have similar niche widths, the second, pilot 

whale, sperm whale, fin whale and striped also have similar niche widths and the third is 

the common dolphin, as it has a wider niche width than the rest. The latter two groups of 

species have a wider niche width compared to the former group of species.   
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   W - statistic test    

  CBW NBW SBW BWsp PW SpW CD FW SD 
 CBW  67197.50 61913.50 94343.50 125588.50 97205.00 785839.50 293811.50 25842835.00
 NBW 0.9365   928.00 4590.00 7816.50 4888.00 79061.00 27238.50 23173.50 
 SBW 0.0070 0.0054   2275.50 4445.00 2411.00 36069.50 14493.50 12707.50 

p-value BWsp 0.1279 0.4373 0.0214   65702.00 46920.50 476226.50 176570.00 153977.50 
 PW 0.0000 0.0033 0.3338 0.0001   194999.50 1249186.00 555053.00 500469.00 
 SpW 0.0473 0.3009 0.0518 0.6775 0.0007   534377.00 200505.00 175811.00 
 CD 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000   5386814.00 5218710.00 
 FW 0.3343 0.7878 0.0120 0.3053 0.0000 0.1665 0.0000   1791751 
 SD 0.0006 0.2222 0.0500 0.3011 0.0000 0.4891 0.0000 0.0001   

Table 4.3: Comparison of the niche centres of all species using a Mann-Whitney test 
(significance is defined as p-value <0.05) 

 
                                             F- test statistic     
  CBW NBW SBW BWsp PW SpW CD FW SD 
 CBW   1.03 1.02 1.00 0.72 0.85 0.52 0.96 0.95 
 NBW 0.940   0.99 0.96 0.70 0.83 0.51 0.93 0.92 
 SBW 0.956 0.929   0.97 0.70 0.83 0.51 0.94 0.92 

p-value BWsp 0.962 0.923 0.968   0.72 0.86 0.53 0.96 0.95 
 PW 0.001 0.168 0.454 0.007   1.19 0.73 1.33 1.32 
 SpW 0.185 0.488 0.736 0.258 0.134   0.61 1.12 1.11 
 CD 0.000 0.010 0.142 0.000 0.000 0.000   1.84 1.81 
 FW 0.644 0.807 0.964 0.749 0.000 0.229 0.000   0.99 
 SD 0.544 0.766 0.938 0.661 0.000 0.286 0.000 0.814   

Table 4.4: Comparison of the niche width of all species using an equality of variance test 
(significance is defined as p-value <0.05). 
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Figure 4.8: Comparison of the niche centre (columns) and niche width (error bars) of each 

species, as an average of the principal component score (y-axis) for each species. 
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4.4 Discussion  

 

This chapter has explored the habitat preferences of six deep diving species and two non-

deep diving species, and the possible determinants of their distribution in the English 

Channel and the Bay of Biscay. The two non-deep diving species were chosen as they 

inhabit the deep waters of Biscay and it was of interest to see where how their niche 

compared to the deep diving species. The results obtained here highlight two important 

relationships between occurrence and the environment. First, there is clear evidence that 

some of the animals are not evenly distributed throughout the environment of the English 

Channel and the Bay of Biscay; and second, there were similarities and dissimilarities in the 

niche they occupy.  

 

4.41 Comparison of habitat preferences 

The waters of the English Channel and the Bay of Biscay have a relatively high diversity of 

marine mammals, with approximately 30 species being recorded by the Biscay Dolphin 

Research Programme. This is one of the first studies to compare the habitat preference of 

deep diving whales in the Bay of Biscay using a long tem data set. The wide coverage from 

2003 to 2007 all year round means that full habitat ranges observed are absolute based on 

the ferry route. `The findings of this study highlight the English Channel and the Bay of 

Biscay as important habitats for cetaceans and these habitats include the continental shelf, 

continental slope, submarine canyons, and deep waters of the abyssal plain. All eight 

species were encountered in the Bay of Biscay and five of them were also encountered in 

the English Channel (Figures 4.3 to 4.6). The four cetacean species encountered in the 

English Channel were northern bottlenose whale, pilot whale, fin whale, and common 

dolphin. In addition, unidentified beaked whales were observed in the English Channel. 

The common dolphin was observed in large numbers as was the pilot whale to a lesser 

extent and the other three were only observed on a few occasions in the English Channel, 

indicating the infrequent use of this habitat. Because of this, they can be placed into two 

major species groupings: (1) specialists, consisting of Cuvier’s beaked whale, northern 

bottlenose whale, Sowerby’s beaked whale, beaked whale sp, sperm whale, fin whale and 

striped dolphin that prefer offshore waters; (2) the generalists are the common dolphin and 

pilot whale that prefer both offshore and inshore waters. This suggests that the division 

between shelf and deep-waters is one of the most important factors in defining where 

species occur in this region and will have a strong influence on the composition of local 
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marine mammal assemblages in this region. Such divisions between shelf and deep-water 

species are relatively common in marine mammal assemblages and have been noted in this 

region before (Evans et al, 2003; Reid et al., 2003; Kiszka et al., 2007).  

 

Using opportunistic data meant there were sufficient sightings to investigate the habitat 

preference of seven species (described above) using PCA. The PCA analysis adequately 

identified patterns in the habitat preference of those seven species investigated and 

highlighted their similarities and differences. Using the first two PCs, which accounted for 

over half of the variation in distribution, slope, depth and aspect were all found to be the 

important variables responsible for driving the differences between the habitat preferences 

of those species. The ordination plot identified the common dolphin, pilot whale and 

Sowerby’s beaked whale as separated from the other species investigated; common dolphin 

and Sowerby’s beaked whale by principal component 1 axis and pilot whale by principal 

component 2 axis. The former two were separated at either end of PC 1 axis; the common 

dolphin was at the negative end indicating its preference for gentle slopes, shallow water 

and south facing slopes. In contrast, Sowerby’s beaked whale, which was at the positive 

end, indicating a preference for steeper slopes and deeper water and north facing slopes. 

The important variable for principal component 2, by which pilot whales were separated 

from the other species, was a preference for steep slopes and east facing slopes.  

 

The habitat preferences the of Cuvier’s beaked whale, northern bottlenose whale, 

Sowerby’s beaked whale, unidentified beaked whales, sperm whale, long-finned pilot whale, 

common dolphin, and fin whale in the study area was found to be associated with all three 

EGVs (depth, slope, aspect). The common dolphin occupy the same area as the deep 

diving cetaceans investigated, but the common dolphin has a broader range in distribution, 

implying they do not rely solely on those waters occupied by the deep diving species.  The 

relationships found for the continental slope, deep waters and aspect suggests the 

importance of such physiographic variables combined in cetacean habitat choice within the 

Bay of Biscay. It is likely that near areas of steep sea floor gradients, dynamic features such 

as upwelling currents and vertical mixing contribute to the redistribution of nutrients in the 

water column. Upwelling in particular, promotes a replacement of the lower water layer 

with the upper one bringing nutrients in the euphotic zone contributing to the primary 

production enhancement and providing a greater food supply for top predators (Hastie et 

al., 2004). Areas with steep slopes were expected to concentrate the cetaceans, since areas 
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of high sea floor relief often result in greater nutrient mixing due to topographically 

induced upwelling (Freeland and Denman, 1982, Allen et al., 2001). Moreover, passively 

moving organisms can be transported and aggregated, creating “easier conditions” for 

feeding predators (Allen et al., 2001). The direction in which the slope faces has shown to 

be important in assessing niche differences of the specie studied. It is likely that the 

preference for a particular direction goes hand in hand with the movements of the general 

circulation and currents throughout the year, and the onset of the particular water 

movements, which no doubt help in aggregating prey in certain areas.  

 

Over the last decade, oceanography and sea floor topography has been used as an approach 

to understanding cetacean distribution (Evans, 1990; Baumgartner, 1997; Davis et al., 1998; 

Baumgartner et al., 2001; Hooker and Baird, 2001b; Waring et al., 2001; Cañadas et al., 2002; 

Yen et al., 2004; MacLeod and Zuur, 2005c). Prior to these studies, Kenney and Winn 

(1987) compared the distribution of cetaceans near submarine canyons to distributions in 

adjacent shelf/slope areas. It seems that submarine canyons and shelf slopes have an 

important influence on cetacean distribution throughout the world’s oceans, even if 

modalities and intensities depend on hydrological, topographical, and biological contexts. 

Both the southern and northern continental slopes are incised with submarine canyons 

providing an array of habitats for cetaceans. 

 

4.42 Habitat partitioning and Niche overlap 

The eight species when compared were shown to be occupying the same areas, and in 

particular, regions of overlap existed in the Bay of Biscay for all seven species. Overlap did 

occur in the English Channel, but to a lesser extent than in the Bay of Biscay. Only two 

species, the common dolphin and pilot whale, were observed in the English Channel in 

sufficient numbers to identify the English Channel as a habitat they use, unlike the fin 

whale, and beaked whale species that have been observed on very few occasions.  

 

To explore the habitat preference of these species further, the niche centre and niche width 

of each species were investigated. Species were categorized by their niche widths: 

generalists (a broad niche width) and specialists (a narrow niche width). Having a wide 

niche means a species needs may be met in a variety of ways whereas having a narrow 

niche means species needs must be met in a very particular way. It appears that cetacean 

species can be divided into four groups according to their niche centres: (1) Cuvier’s 
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beaked whale, northern bottlenose whale; (2) unidentified beaked whales, sperm whale, fin 

whale and striped dolphin; (3) Sowerby’s beaked whale and pilot whale; (4) common 

dolphin alone. They can also be divided into three groups according to the niche widths: 

(1) Cuvier’s beaked whale, northern bottlenose whale, Sowerby’s beaked whale, 

unidentified beaked whales; (2) sperm whale, pilot whale, fin whale and striped dolphin; (3) 

common dolphin. The common dolphin had a different niche centre and wider niche 

width, which is highlighted by its broad distribution (Figure 4.6) than the rest of the species 

investigated. Of the species analysed in this study, the beaked whales, sperm whale, fin 

whale and striped dolphin, are the most ecologically similar. Interestingly, in relation to 

Cuvier’s beaked whale, all species except the northern bottlenose whale have larger niche 

centres. In addition, the northern bottlenose whale, Sowerby’s beaked whale, and beaked 

whale sp have a narrower niche width than the other species studied. This indicates that the 

beaked whales are specialists and they appeared to be narrowly restricted to deep water 

(>1000m) habitats in the Bay of Biscay.  

 

It was then hypothesized that probable habitat and resource partitioning might be 

occurring. The beaked whales, sperm whale, and pilot whales are known to feed on similar 

prey which in the study area are likely represented by species of squid, and clearly fin 

whales and common dolphin are also known to feed in the same areas as them. Thus, the 

necessity to exploit the same trophic resource in the same area might have led to an extent 

of segregation in terms of interactions with environmental variables. In addition, habitat 

partitioning may be occurring and understanding the inter-annual and annual variation 

would highlight this. It is assumed that at some point, they do occupy the same area at the 

same time but the extent of this is not known and not investigated in this study. It is widely 

accepted that the distribution of cetaceans mirrors their feeding habitats (Evans, 1990; 

Bjørge 2002; Reid et al., 2003; Hastie et al., 2004). Members of the family Ziphiidae and 

Sperm whale are usually regarded as the main odontocete cephalopod eaters (Clarke, 

1996b). Cuvier’s beaked whale can prey upon juvenile Gonatus sp, which is found closer to 

the surface (Santos et al., 2001a); the northern bottlenose whale and sperm whale both feed 

on adult Gonatus sp that are found deeper in the water column (Santos et al., 2001b). The 

diet of Sowerby’s beaked whale may differ, as MacLeod et al. (2003) have suggested it may 

rely principally on fish rather than cephalopods as the main component of its diet. Pilot 

whale feed on both fish (Waring et al., 1990) and cephalopods (Waring et al., 1990; Gannon 

et al., 1997). In contrast, a member of the mysticetes; the fin whale, predominantly feeds on 
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plankton and some fish, but may take squid accidentally (Clarke, 1996b), and the common 

dolphin feed on both fish and cephalopods (Lahaye et al., 2005). Similarly, the striped 

dolphin feed on a combination of oceanic and neritic species including fish and 

cephalopods, with fish accounting for most of their diet (Spitz et al., 2006).  

 

 It was supposed that the deep diving whales and common dolphin and striped dolphin 

may have occupied different areas in terms of vertical gradient, feeding on prey 

aggregations also found at different depths. It was also assumed that beaked whales and 

sperm whales might occupy different areas in terms of vertical gradient, feeding on prey 

aggregations found at different depths, because of the similarity in ecological niche of these 

two species (Hooker, 2001). Thus, the necessity to exploit the same trophic resource in the 

same area might have led to an extent of segregation in terms of interactions with 

environmental variables and vertical gradient. While little is known about cephalopod 

distributions in the Bay of Biscay, it is known that cephalopods from the northeast Atlantic 

occupy different water depths (Collins et al., 2001).  

 

The observed pattern in distribution of the eight species is clearly a result of association 

with the distribution of their prey, since depth and changes in depth have been shown to 

concentrate prey. The preferential use of continental slopes has been shown in studies of 

other cetacean populations (Evans, 1990; Baumgartner, 1997; Wilson et al., 1997; Davis et 

al., 1998; Ingram and Rogan, 2002; Ballance et al., 2006, Moulins et al., 2007). Areas with 

steep slopes were expected to concentrate the feeding activities of all cetaceans 

investigated, since areas of high sea floor relief often result in greater nutrient mixing due 

to topographically induced upwelling (Fernandez and Bode, 1991; Tenore et al., 1995), 

which for cetacean species’ prey, such as pelagic fish or cephalopods, physiography could 

play an indirect role through such mechanisms.  

 

On a temporal and more dynamic scale, temperature ranges chosen by Cuvier’s beaked 

whale and northern bottlenose whales with respect to the other species might represent 

additional partitioning. In this case, the exploitation of resources would be performed 

differently based on a greater presence of Cuvier’s beaked whale and northern bottlenose 

whales with concurrent increases or decreases in sea surface temperatures in certain 

seasons. The effect of temperature on changes in distribution is investigated in Chapter 5. 

The differing distribution across spatial scales suggest potential habitat partitioning, a 
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behavioural strategy to avoid direct competition, also found in other studies (Friedlander et 

al., 2006). The common area, however, showed that the species were able to cohabit. This 

may happen where feeding opportunities were greater, i.e. over the steep slopes of the 

northern and southern continental shelf slopes. 

 

In the present study, a clear trend towards steeper slopes found in the northern and 

southern parts of the Bay of Biscay were observed for a number of the deep diving species, 

whereas common dolphins occurred in both deep water and shallow waters, as well as step 

slopes. The Bay of Biscay is characterised by the presence of many fronts and localized 

upwellings attributable to the convergence of various water masses and the steepness of the 

topography in some areas (Koutsikopoulos and Le Cann, 1996; Gil and Sanchez, 2003b). 

The variety of habitats supports many of the toothed cetacean species that are found in the 

wider northeast Atlantic (Reid, et al., 2003). An important feature of the Bay of Biscay is 

that it is one of the world’s strongest generation sites for internal tides (Gerkema et al., 

2004). Internal tides and surface tides are amplified by the interaction of bottom 

topography (New, 1988) and a consequence of these tides is the high phytoplankton 

abundance and cool water at the surface over of the continental shelf break (New, 1988). 

The extension of the warm water Iberian poleward current is also observed in Biscay, and 

is now considered a common feature of winter circulation (Garcia-Soto et al., 2002) that 

coincides with the spawning season of pelagic and demersal species due to the higher 

concentration of nutrients compared with the surrounding area (Gil, 2003a). 

 

To further the understanding of niche overlap and habitat partitioning, looking at the 

spatio-temporal distribution of these species will highlight the movements of these species 

to identify the months in which they are abundant and in which area. For example, the 

large fin and sperm whales are migratory and are not always in the area, Cuvier’s beaked 

whale and northern bottlenose whale may occur with differing water temperatures (see 

chapter 5) and common dolphins are known year round within the area. Therefore, it is 

likely that foraging position in the water column helps with this niche overlap. 

 

4.43 Using opportunistic sightings data 

Unlike sightings that have been recorded on dedicated surveys, where it can be shown that 

an animal is absent from the area, the same thing cannot be said for presence only data. 

One way of possibly relating presence only data to effort could be to use the sightings of 
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other cetaceans observed in same study area, based on the assumption that the survey 

covered the same area. In this analysis, the sightings of the common dolphin, were chosen 

to represent areas that have been extensively surveyed, and using these sightings it has 

found that despite efforts in surveying, the Cuvier’s beaked whale was absent from areas 

over the northern continental shelf in the Bay of Biscay and the English Channel between 

2003 and 2007.  This compares well with other studies where Cuvier’s beaked whale are 

predominantly found in deeper waters associated with complex underwater topography in 

other areas: Ligurian Sea, Mediterranean (D’Amico et al., 2003) Greek Seas (Frantzis et al., 

2003); Hawaii (McSweeney et al., 2007); north-western Mediterranean (Moulins et al., 2007). 

In this study, investigating opportunistic sightings for the deep diving whales has greatly 

increased the chances of detecting patterns in habitat preference that otherwise might have 

been missed with the effort related survey data.. The effort-based beaked whale sightings 

dataset is small by comparison to the larger data set of opportunistic sightings, which are 

recorded on a more regular basis.  

 

4.44 Conclusion  

In summary, a clear pattern in habitat preference for the deep diving species and the 

common dolphin is evident from the opportunistic sightings. This dataset is no doubt a 

valuable source of information for increasing the understanding of habitat use in beaked 

whales, sperm whales, pilot whales, common dolphin, fin whale and striped dolphin in the 

English Channel and the Bay of Biscay. With respect to the marine mammal species 

examined in this study, there was evidence to suggest that habitat partitioning was 

occurring between them, as significant differences in the niche centres and widths were 

found. It may be that it occurs on a temporal scale, at different water temperatures and 

foraging position in the water column, or that partitioning occurs along niche variables not 

associated with habitat (i.e. prey size or mode of prey capture) (MacLeod et al., 2007), 

which were not included in this study. If all possible aspects are not explored, it may be 

wrongly concluded that niche partitioning is not occurring between species and that other 

mechanisms are responsible for the structure and composition of marine mammal 

communities in this area. To increase this understanding further, it is necessary to 

understand the factors other than the EGVs explored in this chapter that allow deep diving 

species to occupy the same niche.  
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5.1 Introduction 
 
 
5.11 Spatial and temporal distribution of cetaceans: what causes these movements? 

Monitoring spatial and temporal patterns in cetacean distribution and abundance involves a 

variety of approaches depending upon the target species and the resources available. 

Information on geographical and temporal distribution guides us in determining whether 

there are predictable areas and times of concentration that can be used to focus 

conservation measures in relation to human activity (e.g. noise) and climate change. To 

conserve species, the need to understand not just habitat, but usage within the habitat over 

time is essential. In the marine environment, both fixed spatial features such as topography, 

and variable oceanographic features such as sea surface temperature, may determine 

species’ spatial distributions. Topographic features and oceanographic variables such as 

water masses, currents, upwelling, topography, and hydrological structures such as SST, 

Salinity, Chl concentration (Brown and Winn, 1989, Woodley and Gaskin, 1996, 

Baumgartner, 1997; Hooker et al., 1999a,b) influence the distribution and availability of 

prey items. The most obvious step to investigate the distribution of a predator and factors 

affecting its distribution is to study the distribution of its principal prey. In particular for 

the beaked whales that prey on squid, effective sampling methods of deep-living squid is 

still in the early stages of development (Collins et al., 2001) and their ecological importance 

has only become apparent in the last three decades (Clarke, 1996a).   

 

Movements of whales and dolphins can be quite different. Baleen whales (mysticetes) tend 

to move long distances by migrating between feeding and breeding grounds whereas 

odontocetes (toothed whales and dolphins) do not have discrete breeding grounds and 

have more of a variable trajectory. Once the temporal variations are ascertained for each 

species, inter-specific interactions can more easily be determined, for example investigating 

seasonal changes can assess the differences in frequency of occurrence of each species in 

each location. Information on movements of individuals is also required to understand 

population structure and define stock boundaries. Unbiased information on where animals 

spend their time can also be used to identify important foraging habitats and to assess the 

likelihood of repeated exposure to potential anthropogenic impacts, if human activities are 

spatially heterogeneous.  
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Cuvier’s beaked whale, Ziphius cavirostris, has been the subject of intense research over the 

last few years, due to its tendency to mass strand in the vicinity of naval mid-frequency 

sonar activities. Cuvier’s beaked whale has a cosmopolitan range from temperate to tropical 

waters, with only a few sightings in polar waters (MacLeod et al., 2006c). Despite having a 

wide range in distribution, Cuvier’s beaked whale is generally associated with submarine 

canyons (MacLeod and Mitchell, 2006b), continental slopes (Frantzis et al., 2003; Moulins et 

al., 2007) and around oceanic islands (Baird et al., 2004; 2006). Understanding Cuvier’s 

beaked whale distribution and the factors controlling its distribution is still in its early 

stages. That very little is known about Cuvier’s beaked whale is not to do with the lack of 

interest, but rather a consequence of the difficulties in studying this species. Originally, 

most was known from strandings, but now there are a few regions worldwide where 

Cuvier’s beaked whale are seen regularly, including the Bay of Biscay. The Bay of Biscay is 

the northernmost region in the North East Atlantic where Cuvier’s beaked whales are seen 

year round. From surveys carried out using fixed route platforms (Williams et al., 2002a), 

such as the P&O ferry “Pride of Bilbao”, it appears that Cuvier’s beaked whale does not 

have a random distribution throughout the Bay of Biscay, but is associated with the 

CapBreton Canyon (Williams et al., 2002a). In addition, observations made by the Biscay 

Dolphin Research Programme (BDRP) have indicated that northern bottlenose whales are 

also associated with shelf slopes and submarine canyons. It is thought they are spatially and 

temporally segregated from Cuvier’s beaked whale, and it is suggested they may have 

different preferences for habitat, prey and/or interact competitively (Williams et al., 2002a).  

 

Mass strandings have been recorded more frequently for Cuvier’s beaked whale than for 

any other beaked whale (Heyning, 1989). Causes of most strandings are unknown, but 

likely include old age, illness, disease, pollution, exposure to certain strong noises, and 

perhaps geomagnetic disturbance. Cetaceans, because they communicate and navigate 

almost entirely using sound, are sensitive to acoustic pollution. Threatening sources of 

acoustic pollution in marine environments include shipping noise and military sonar. Mass 

strandings of Cuvier’s beaked whale are rare (although individual strandings are quite 

common), with only seven documented cases of more than four individuals stranding 

between 1963 and 1995 in the Mediterranean Sea (Frantzis, 1998). In addition, it is listed 

that 31 mass strandings (more than two) of Cuvier’s beaked whale have been recorded 

worldwide between 1914 and 2002 (Taylor et al., 2004) and  Brownell et al. (2004) 

reported 11 mass strandings of Cuvier's beaked whale and Baird's beaked whale in 
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Japan from the late 1950s until 2004. It is suggested that several mass strandings of 

Cuvier’s beaked whale may be associated with sources of strong noise such as naval 

activities that use high power sonar (Simmonds and Lopez-Jurado, 1991; Frantzis, 1998; 

D’Amico et al., 2003; Jepson et al., 2003; Frantzis, 2004; Freitas, 2004; Martin et al., 2004; 

Fernandez et al., 2005). In particular the bays where the stranding events were recorded in 

Japan are near to the command base for operations of the US Navy's Pacific 7th Fleet 

(Brownell et al., 2004). The bubble formation or excessive nitrogen supersaturation in 

tissues known as the bends or decompression sickness (Mackay et al., 1982), found from 

necropsies on stranded specimens, is thought to be in response to behavioural changes to 

normal profiles, such as accelerated ascent rate (Tyack et al., 2006), which may be due to 

naval sonar activities. Necropsy findings have also shown that beaked whale auditory 

anatomy may be susceptible to damage resulting from acoustic pollution (Ketten, 2005). 

Strandings have occurred along the northwest coasts of Spain (Santos et al., 2001a) and the 

French Atlantic coast and strandings occur around the United Kingdom and Ireland 

(Evans, 1980; Berrow and Rogan, 1997; Evans et al, 2003; MacLeod et al., 2004b). MacLeod 

et al. (2004b) investigated geographic and temporal variations in detail, using one of the 

longest continuous time series of stranding records of beaked whales, between 1800 and 

2002. In UK and Irish waters, strandings of Cuvier’s beaked whales were highest in July 

and January, with numbers varying from zero on the North Sea coasts to 21 on mid-

Atlantic coasts (MacLeod et al., 2004b). The waters around the United Kingdom and 

Ireland are not areas where Cuvier’s beaked whale is sighted frequently and strandings in 

these areas may represent passively transported individuals (MacLeod et al., 2004b) or 

individuals that have made navigational errors. Cuvier’s beaked whales have also been 

known to occur in the deeper waters west of Ireland (Pollock et al., 2000; Ó Cadhla et al., 

2001) and there have been sightings as far north as northern Scotland (Evans et al, 2003, 

2008). There are no confirmed sightings of Cuvier’s beaked whales further north than this 

in the northeastern Atlantic, although there is a stranding record from Iceland (Evans et al., 

2008).  

5.12 Oceanographic processes in the Bay of Biscay 

The Bay of Biscay is often described in two parts: the northern Bay and the southern Bay. 

Both areas have variable sea depths, ranging from the shallow continental shelf (less than 

100 metres) to the abyssal plain (greater than 4000 metres), with many underwater features 

such as submarine canyons, seamounts and a steep continental slope. The Bay of Biscay is 
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characterised by a number of physical processes: water masses, currents that are generally 

weak (Pingree and Le Cann, 1990), varying strengths of upwelling with season (Casas et al., 

1997) and it is a generation site of internal tides/waves (Gerkema et al., 2004). The currents 

are an important variable linked to the mesoscale dynamics. Within the Bay of Biscay 

hydrological features are influenced by the oceanic processes in the north Atlantic and the 

coastal processes associated with the French and Spanish coasts (Planque et al., 2003). The 

extension of the warm water Iberian poleward current is also observed in the Bay and is 

now considered a common feature of winter (Navidad) circulation (Garcia-Soto et al., 2002) 

that coincides with the spawning season of pelagic and demersal species due to the higher 

concentration of nutrients than the surrounding area (Gil, 2003a). A summary of water 

masses, circulation (Figure 5.1) and climatology of the Bay of Biscay is given by 

Koutsikopoulos & Le Cann (1996) and Ospar (2000).  

 

It is suggested that the hydrographic features observed in the Bay of Biscay may influence 

the movement of Cuvier’s beaked whale directly by changes in water temperatures, or 

indirectly by prey distribution within the Bay of Biscay. In addition, these features may 

have some influence on why Cuvier’s beaked whales are seen further north than expected. 

The slope current that makes its way eastward along the Spanish continental slope, 

ENACW (Pollard et al., 1996), flows northwest along the continental slope to waters north 

of the Bay of Biscay, including Ireland, UK and Scotland (Pingree, 1993). The northward 

flow of the shelf currents could actively transport individuals from the Bay of Biscay to 

waters around the United Kingdom and Ireland (Figure 5.1).  
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Figure 5.1: Circulation and current movements in the Bay of Biscay (Koutsikopoulos and 
Le Cann, 1996).  

 

 

5.13 Aim 

In the present study, the main aim is to identify the spatial and temporal distribution of 

Cuvier’s beaked whale in the Bay of Biscay and to compare sighting records from the Bay 

with strandings records from the UK, Ireland and the Atlantic French coast. It will 

investigate many aspects that will help to understand the effects of climate change, such as 

how increasing water temperatures may affect the distribution of Cuvier’s beaked whale. 

With regards to monitoring changes in distribution, MacLeod et al. (2005b) assessed how 

climate change is affecting the cetacean communities of northwest Scotland, with particular 

reference to distributional range changes as a result of changing water temperatures. With 

over ten years worth of sightings data from regular surveys across the Bay of Biscay and 

stranding events dating back to 1904, this enables the evaluation of sightings and strandings 

based on several different criteria, such as seasonal patterns in distribution. Williams et al. 

(1999) previously documented significant seasonal variation in the presence and absences 

of both Cuvier’s beaked whale and the northern bottlenose whale, however this study is the 
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first analysis of the seasonal distribution of Cuvier’s beaked whale in northwest Europe 

over a long period. In addition, the Northern bottlenose whale and Sowerby’s beaked 

whale were investigated to show how their distribution changes over time in comparison to 

Cuvier’s beaked whale.  
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5.2 Methods 
 
 
5.21 Study area  

The main study area covers the English Channel and the Bay of Biscay, along the route of 

the P&O ferry ‘Pride of Bilbao’, which operates between Portsmouth, UK and Bilbao, 

Spain (Figure 5.2). The Bay of Biscay and the English Channel are situated between 43°N 

to 50 °N and -1 °W to -10 °W, in the Northeast Atlantic. The Bay of Biscay is 

characterised as a temperate open oceanic bay bounded by the Spanish coast to the south, 

oriented E-W and the French coast to the east, oriented S-N (Koutsikopoulos and Le 

Cann, 1996). The Armorican shelf in the north of the bay is up to 180km wide, whilst in 

the south the continental shelf is only 30 to 40km wide (Koutsikopoulos and Le Cann, 

1996). The CapBreton Canyon, in the southeast corner of the Bay of Biscay, is a major 

morphological feature that cuts into the continental slope in an E-W direction and the 

1000m contour is only 3 km from the coast. The CapBreton is one of the deepest 

submarine canyons in the world (Gaudin et al., 2003) and the longest off Europe, with its 

head located only 250m from the coastline (Cirac et al., 2001). The canyon was formed by 

the Adour River (SW France), but has been disconnected from the river since 1310 AD 

(Cremer et al., 2003). The canyon runs westward and parallel to the north coast of Spain for 

160 km due to structural control, then turns northward, widens and abruptly disappears in 

the continental rise by 3500m water depth (Gaudin et al., 2003). 

 

5.22 Cuvier’s beaked whale data 

5.221 Sightings data 

Dedicated and non-dedicated sightings data for Cuvier’s beaked whale used for this study 

were collected from surveys carried out by the Biscay Dolphin Research Programme 

(BDRP). In addition, opportunistic data were provided by the Company of Whales (COW), 

which operates on the ferry from May to September. The non-dedicated sightings will be 

referred to as opportunistic sightings throughout this chapter. In total, 53 dedicated 

sightings and 402 opportunistic sightings were analysed. Only effort sightings collected in 

sea states three or less were used in this study. Each sighting contained information on the 

date (year, month and season, location, sea state and total number of sightings. In this 

study the seasons are defined as Spring: April to, June; Summer: July, to September; 

Autumn: October to December; Winter: January to March. It is important to note the 

variation of survey effort between seasons over each sector (i.e. English Channel, northern 
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and southern Bay of Biscay) covered by the ferry route. For example, during the winter 

months the ferry does not reach part of the northern slope in daylight that it reaches in the 

summer months.  

 

b

UK 

a 

Bay of Bisca

 

Figure 5.2: Study area (a) Bay of Biscay, northeast Atlantic. Ships track 
Portsmouth (UK) to Bilbao (Spain), highlighted in red and water depth is 

shown in meters. Regions of stranding events, map (b). Northeast Atlantic,  
map (c), taken from www.noc.soton.ac.uk).  

 

 

1. Non-dedicated sightings data (opportunistic data) 

The wildlife officer on board the ferry collected the opportunistic sightings data from 2003 

to 2007. On every sailing to Bilbao from Portsmouth, a wildlife officer is on board. 

However, the wildlife officer is not observing at all times, due to other duties on board. 

Due to a wildlife officer, being on board every trip from 2003, it was in the interest of the 

charity to start collecting data to monitor the distribution of cetaceans either side of the 

survey teams. In doing so, it provides a larger data set to work for analysis, which in turn 

can help towards the conservation of cetaceans. Opportunistic sightings during for 2000, 

2001, and 2002 were also made available from the Company of Whales (COW). 

y 

English Channel 

English Channel

c

 Scotland 

Ireland

Bay of Biscay

http://www.noc.soton.ac.uk/
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2. Dedicated sightings data 

The dedicated sightings data were collected by a team of two or three researchers, on 

twice-monthly survey trips from Portsmouth to Bilbao from 1995 to 2007. The first trip is 

carried out by a Spanish team (AMBAR) and the second an English team. On each trip, the 

survey starts from first light and finishes at dusk.   

 

5.222 Strandings data 

Data on Cuvier’s beaked whale strandings were compiled from three different sources: the 

Natural History Museum in London for UK strandings; the Irish Whale and Dolphin 

Group (IWDG) for strandings around the Republic of Ireland (ROI); and Centre de 

Recherche sur le Mamifères Marins for strandings along the French Atlantic coasts. In 

total, 174 strandings were used between 1904 and 2007. Strandings data for the UK and 

ROI from 1800-2002 were previously analysed by MacLeod et al. (2004b) to assess 

geographic and seasonal variations in beaked whale occurrence around the UK and ROI, 

and a full description and sources of data can be found in this study.   

 

In addition to Cuvier’s beaked whale data, records for northern bottlenose whale and 

Sowerby’s beaked whale strandings were also used in this study from the UK and ROI. 

These two species were selected for three reasons: 1. The Bay of Biscay is close to the 

southern limit of the northern bottlenose whale in the northeast Atlantic (MacLeod et al., 

2004b); 2. The Sowerby’s beaked whale range in distribution is observed further north and 

south of the Bay of Biscay; 3. Both species from the strandings record have been recorded 

alive in this area (Williams et al. 1999; 2002a).  

 
 
5.23 Analytical methods 
 

5.231 Geographic information system (GIS) 

A GIS of the study area was constructed using ESRI ArcView 3.2 software. A primary 

coverage was developed that contained the study area as defined by latitude and longitude, 

coastline of England, France and Spain and bathymetric contour lines (The General 

Bathymetric Chart of the Oceans, Gebco). A 10km by 10km base map created in MapInfo, 

was imported into ArcView and overlaid on to the study area. The depth values for the 

central point of each 10km by 10km cell were obtained using the spatial analyst function 

and included the mean, minimum, maximum, standard deviation (SD), and range. SST data 

were obtained from the ocean colour web site for satellite imagery 
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(http://oceancolur.gsfc.nasa.gov/ftpsite) and spatially joined to the grid cells. The effort-

related survey data, opportunistic sightings and strandings records were then imported into 

ArcView. Using the location of each sighting and stranding, maps were constructed to 

show the spatio-temporal distribution of Cuvier’s beaked whale. For further analysis the 

next step was to join the effort related survey data to the grid to work out the effort (km) 

per trip and to assign each trip a value for depth. The spreadsheet containing the effort-

related survey data was then exported to Microsoft Excel and then manually joined to each 

effort sighting to the correct survey trip, using the date and time. This was done to 

calculate the encounter rates (see below). The opportunistic sightings were then joined to 

the grid and assigned a value for depth, slope, and aspect. Each opportunistic sighting and 

each effort related trip was also assigned a SST value for its specific month, year and 

location. The spreadsheets containing the final information on species location and 

environmental variables were exported out of ArcView and imported into Microsoft Excel 

for further analysis.  

 

5.232 Spatio-temporal distribution and encounter rates 

To investigate the spatial and temporal distribution, both the dedicated and opportunistic 

sightings and strandings data were investigated per month, season, year, and region within 

the Bay of Biscay. The region of strandings extends to Ireland and the UK. Trends in the 

strandings data were compared to sightings data from the Bay of Biscay collected during 

monthly surveys along a relatively fixed transect conducted by the Biscay Dolphin Research 

Programme (BDRP) between 1995 and 2007 to assess how the changes in the strandings 

data may reflect changes in occurrence at sea. To look at variation in strandings over time, 

a five year running average was calculated for each year between 1904 and 2007 for all 

three beaked whale species, to account for variations in stranding reporting efforts between 

years and these values were standardised by the running average for all beaked whale 

strandings.  

 

Encounter rates for the dedicated sightings were calculated per month per 100km in 

Microsoft Excel. Encounter rate was defined as 

  
n 
___ 
 
L 
 

 

X 1 00000

http://oceancolur.gsfc.nasa.gov/ftpsite
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where n  is the number of encounters, L is the total distance travelled (i.e. survey effort) in 

metres (m), multiplied by 100000 to convert it into the number of encounters per 100 

Kilometre (Km). Further, in order to provide regional differences of encounter rates, three 

sub-regions were defined: 

1. Submarine canyons (CapBreton) and deep oceanic waters of the Bay of Biscay 

(43°N – 45°N)  

2. Shelf slope and deep oceanic waters of the northern Bay of Biscay (45°N – 47°N) 

3. Continental shelf waters of the western approaches and English Channel (47°N to 

50°N) 

For the opportunistic data sightings, the sub-regions were defined as: 

1. Submarine canyons (CapBreton) and deep oceanic waters of the Bay of Biscay 

(43°N–44.5°N). 

2. Deep oceanic waters of the Bay of Biscay (44.5°N–45.5°N). 

3. Shelf slope and deep oceanic waters of the northern Bay of Biscay (45.5°N–47°N). 

These three regions were chosen to highlight the different regions that Cuvier’s beaked 

whale may range over during different seasons, and overall different regions were selected 

to look at changes in distribution, due to the different use of habitat made by cetaceans 

(Canadas et al., 2002).  

 

5.233 Statistics 

In the program Minitab, Chi-squared tests (χ2) were used to test the null hypothesis that 

sightings and strandings did not differ significantly from an even spread between each 

month, season, year. The sightings data were also examined for regional differences within 

the Bay of Biscay and the strandings data for geographic variations between France, UK 

and Ireland. 
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5.3 Results 
 

The results presented in this chapter show variation in effort-related sightings, 

opportunistic sightings, strandings data and how satellite data for sea surface temperature 

can highlight the spatial and temporal distribution of Cuvier’s beaked whale in the Bay of 

Biscay and British Isles. In total, 455 (1088 individuals) Cuvier’s beaked whale sightings 

were included in the analyses (Figure 5.3a): 53 sightings (131 individuals) were included 

from the effort sightings, in good sea conditions (sea stare ≤3) between 1995 and 2007, and 

402 (957 individuals) sightings were included from the opportunistic sightings between 

2000 and 2007. In total, 174 single stranding records of Cuvier’s beaked whales were also 

included in this analysis between 1904 and 2007, from three countries in the northeast 

Atlantic. The locations of all Cuvier’s beaked whale strandings are shown in Figure 5.3b, 

with 54 strandings around the UK, 52 from Ireland, and 68 from the French Atlantic 

coasts. Strandings from the French coasts start later (1971) than records from the UK 

(from 1916) and Ireland (from 1904).   

 
 

N

A 

N

B

Figure 5.3: Distribution of Cuvier’s beaked whale: a) total sightings in the Bay of Biscay, b) 
total strandings Cuvier’s beaked whale around the UK, Ireland and French Atlantic coast. 
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5.31 Evidence of species variation  
5.311 Effort sightings 

 
The spatial distribution of Cuvier’s beaked whale appears to concentrate in the southern 

Bay of Biscay. In particular, the pattern of distribution of this species is associated with the 

steep and complex underwater topography of the CapBreton Canyon. Only a few sightings 

have been observed over the deep waters of the abyssal plain and the northern continental 

slopes. The encounter rate in the southern Bay of Biscay was 0.20 per 100km, 0.02 per 

100km in the northern Bay of Biscay and 0.00 per 100km in the English Channel (Table 2). 

These encounter rates were associated particularly with the steep continental slope in the 

northern Bay and the CapBreton canyon in the southern Bay, in water depths greater than 

1000m and less than 4000m. Cuvier’s beaked whales seemed to prefer deep oceanic waters 

(median = 2982; Q1 = 2415.27; Q3 = 3696.86, min = 788; max = 4087). Depth was 

classified into 0-1000m, 1000-2000m, 2000-3000m, 3000-4000m and 4000+m and the 

percentage of sightings was 4%, 2%, 53%, 38%, and 4%, respectively. The majority of 

sightings were within 2000 to 4000m water depth. Group size of the species was variable, 

with 2.42 in the southern Bay and 1.84 in the northern Bay.  

 

 southern bay northern bay English Channel 
Relative Abundance 0.48 0.03 0 

Sightings rate 0.20 0.02 0 
Ave Group Size 2.42 1.8 0 

Table 5.1: Proportion of Cuvier’s beaked whale in three-sub regions in the study area.   

 

Sightings of Cuvier’s beaked whale reflect a seasonal distribution within the southern Bay 

of Biscay (Figure 5.4), with a widespread number of sightings observed during spring 

(n=21 encounters/56 individuals), and summer (n=17/31), encounters and individuals 

respectively. Numbers start to decline during autumn (n=6/19) and winter (n=10/27), 

encounters and individuals respectively. The intra-annual pattern of sightings differed 

significantly from an even spread across all seasons (χ2 = 8.96, d.f. = 3, p < 0.05), but not 

across all months (χ2 = 6.43, d.f. = 9, p = 0.696). In addition, the seasonal variation in 

numbers is highlighted by the sightings rate, relative abundance, and group size per month 

(Figure 5.5). Despite previous work that indicated Cuvier’s beaked whale to be associated 

with the CapBreton Canyon (Williams et al., 1999), during spring and summer a few 

sightings are observed over the northern continental slopes of the Bay of Biscay.  

 



Chapter 5: Spatial-temporal variation in the occurrence of Cuvier’s beaked whale in the Bay of Biscay 

 
110

 

 
Figure 5.4: Seasonal distribution of Cuvier’s beaked whale (red circles) in the Bay of Biscay.  

Spring  Summer

Autumn Winter
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Figure 5.5: Monthly (x-axis) sightings rate (y-axis): (a) and relative abundance (b), 
encounters per 100km and group size (c) distribution for Cuvier’s beaked whale.  
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5.312 Opportunistic sightings 
 
The spatial distribution of sightings is reflected in the three regions: southern Biscay 

(region 1); deep waters of the abyssal plain (region 2); northern Biscay (region 3). The 

sightings of Cuvier’s beaked whale are greater in region one (n=738/301), to a lesser extent 

in region 2 (n=136/57), and even lower in region 3 (n=81/37), individuals/encounters 

respectively. The average group size of Cuvier’s beaked whale is similar for regions one and 

two, 2.40 and 2.39 respectively, whereas region three has a slightly smaller average group 

size of 2.19.  

 

Similar to the effort related sightings, the opportunistic sightings also reveal a seasonal 

variation in numbers of Cuvier’s beaked whale. Sightings were highest in spring 

(n=125/305) and summer (n=217/517), and lowest in autumn (n=99/43) and winter 

(n=36/17), individuals and encounters respectively (Figure 5.6). The pattern of sightings 

differed significantly from an even spread across all seasons (χ2 = 243.29, d.f. = 3, p < 

0.000). This coincides with the higher encounter rate at the beginning of spring observed 

with the dedicated sightings.  

 

An interesting pattern emerged from the opportunistic sightings, revealing a seasonal 

northward movement from the south. This northward movement of Cuvier’s beaked whale 

occurs over the deep waters of the abyssal plain and the northern continental slopes. Like 

the dedicated sightings, most sightings occur in the southern region over the CapBreton 

Canyon However, sightings have started to increase and become spread out during spring 

through summer progressing towards the northern continental slope (>1000m) (Figure 

5.6). During autumn and winter, the sightings reflect a different pattern that show a 

decrease in numbers over the northern continental slopes, with a more concentrated 

distribution over the CapBreton Canyon area (Figure 5.6). The non-dedicated sightings 

demonstrate this seasonal trend much more clearly than the dedicated data sightings, due to 

the larger data set. The numbers of sightings per month clearly shows when sightings start 

to increase in the Bay of Biscay (Figure 5.7), which in turn highlights the seasonal 

distribution of Cuvier’s beaked whale. The intra-annual pattern of sightings differed 

significantly from an even spread across all months (χ2 = 26086, d.f. = 11 p ≤ 0.001). 

Group size ranged from one to ten (mean = 2.38, s.d. = 1.55) but also showed a seasonal 

trend (Figure 5.8). During the spring months, the average group size is 3, whilst in the 

autumn and winter, smaller groups of 1-2 individuals are seen, with an exception in 
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October when the group size is 3. Larger group sizes seen during spring and autumn 

suggest a seasonal change in group size.  

 

The depth average corresponding to species positions was 2942.3m ± (range 120.9-

4179.6m). Depth was classified into 0-1000m, 1000-2000m, 2000-3000m, 3000-4000m and 

4000+m and the percentage of sightings was 0%, 6%, 55%, 35%, and 4%, respectively. 

These values are similar to the depth average and ranges observed with the effort sightings.  
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Figure 5.6: Seasonal distribution of Cuvier’s beaked whale in the Bay of Biscay (red circles) 
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Figure 5.7: Monthly (x-axis) distribution of Cuvier’s beaked whale. Total number  

(y-axis) of individuals (blue) and total number of encounters (red). 
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Figure 5.8: Group size (y-axis) distribution per month (x-axis). 

 
 

5.313 Strandings data 
 
The analysis of strandings events, as a total of all strandings from the UK, Ireland and 

France, show Cuvier’s beaked whale strandings were highest in winter (Jan-Mar, n=85), 

and lower in spring (Apr-Jun, n=34), autumn (Oct-Dec, n=33), and summer (Jul-Sep, 

n=18) (Figure 5.9). The pattern of strandings differed significantly from an even spread 

across all seasons (χ2 = 60.45, d.f. = 3 p < 0.001) and all months (χ2 = 86.94, d.f. = 11 p < 

0.001). The majority of strandings occurred in the winter months. During the spring 

months and the first month in summer, the data show a consistency in the numbers of 
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strandings and towards the end of summer and the start of autumn, stranding numbers 

start to decline and are relatively low by comparison to other months (Figure 5.9). In the 

last two months of autumn, stranding numbers start to increase, followed by a steep rise in 

strandings during winter, in particular during January and March (Figure 5.9).   
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Figure 5.9: Monthly (x-axis) variation of total number (y-axis) of stranding events from the 

UK, Ireland, and France.  
 
 

The seasonal distribution of strandings for the individual countries can be seen in Figure 

5.10. The majority of strandings occur in winter on the French coasts, possibly coinciding 

with sightings observed in the southern Bay during winter but not in northern Biscay. 

During spring, the numbers of strandings are similar for the UK, Ireland, and France, and 

during summer, the numbers of strandings are predominantly around the UK, maybe 

coinciding with the northern movements of sightings of Cuvier’s beaked whale during 

spring and summer. During autumn sightings are higher on the French coasts, compared 

with the UK and ROI, which concurs with sightings concentrating in southern Biscay 

during autumn.  
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Figure 5.10: Seasonal distribution of strandings around UK, Ireland, and France  

(n is equal to the number of strandings in each region). 
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3.32 Interannual changes 
 

5.321 Effort sightings 
 
Between 1995 and 2007, 146 surveys were completed through the English Channel and 

Bay of Biscay, totalling 140,072 km of survey effort (Figure 5.11a, survey coverage). There 

was variation in survey effort between seasons and years (Table 5.2), which was due to the 

amount of daylight hours available and weather conditions. In addition, the amount of 

survey effort varied between sub-regions; 62% of effort was in the English Channel, 20% 

was in the northern Bay, and 18% of effort was in the southern Bay (Figure 5.11a). Effort 

sightings are shown in Figure 11b. The variation in dedicated sightings between 1997 and 

2007 ranges from a minimum of 5 individuals to a maximum of 16 individuals (Figure 12). 

During 1995 and 1996, there were no sightings in good sea states (≤3). 1999 and 2000 were 

years with very low numbers of Cuvier’s beaked whale in comparison to the other years. 

During 1997, 1998, 2001, 2004 and 2006, sightings of Cuvier’s beaked whale were 

considerably higher in comparison to 2000, 2002, 2003, 2005, and 2006, although overall 

numbers of Cuvier’s beaked whale were not significantly different between years (χ2 = 

13.01, d.f. = 10 p < 0.223). 

 

 

Table 5.2: Observation effort (km) conducted in the English Channel and  
Bay of Biscay, 1995 – 2007. 

Year Jan Feb Mar Apr May  Jun Jul Aug Sep Oct Nov Dec 

1995        818.56 780.26 813.65 454.21 226.96

1996  786.03  2038.18 1114.37 1249.37 1153.20 1077.46  1464.21 1107.43 698.28

1997 590.35 888.51 974.35 1074.88 1175.58 1309.08 1224.21 1031.05 954.51 871.80 684.08 749.59

1998  868.99 973.51 734.87 1556.17 1222.13 1149.41 1095.62 967.39 846.04 720.78 758.55

1999   955.95 1067.30 1231.30 1266.05 1321.00 1079.76 971.87 1714.88 726.41 760.97

2000  920.78 1023.30  1214.95 1272.06 2130.94 1100.74 954.41 814.67 693.18 718.81

2001  1613.25  979.12 1188.38 2424.18 2346.63 1074.50 902.80 815.87 817.15 591.48

2002  871.54 868.85 1125.58 2183.14 2262.73 1825.04  980.04 637.64 753.17  

2003 739.44 850.12 931.33 1031.93 983.39 1158.48 1158.79 1053.75 1091.38 881.44 653.09 686.07

2004  862.57 888.27 1115.77 1160.32 1106.17 1131.81 1078.95 951.27 840.50 688.38 723.10

2005  855.45 924.28 1937.71 2201.87 2330.64 2385.92 1090.53 936.09 793.40 742.64 690.26

2006  657.41 887.83 983.57 743.49 1277.74 1198.23 1121.23 962.94 827.08 741.35 642.19

2007  799.45 1046.14 1103.52 1215.08 1279.21 1204.17 1085.75 967.49 791.42 714.02 763.55
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Figure 5.11: Maps showing the survey effort divided in cell units of 10km2 (A) and Cuvier’s 

beaked whale distribution, highlighted by red circles (B). 

A B

 

0
2

4
6

8
10

12
14

16
18

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

 
Figure 5.12: Variation in the total number (y-axis) of encounters (dark grey) and 

 individuals (light grey) between 1995 and 2007 (x-axis) 
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5.322 Opportunistic sightings 

 
The number of encounters and individuals of Cuvier’s beaked whales has steadily increased 

from 2000 to 2007 (Figures 5.13 and 5.14). The steady increase in numbers from 2000 is 

most likely due to the increased ability of observers to identify Cuvier’s beaked whale, as 

opportunistic data recording started in 2000. Cuvier’s beaked whale sightings were highest 

in 2003 (n=60/130); 2004 (n=78/159); 2005 (n=69/181); 2006 (n=69/168); 2007 

(n=71/185) and lowest in 2000 (n=3/4); 2001 (n=21/56); 2002 (n=31/74); 

encounters/individuals respectively. Sightings started to increase from 2001 through to 

2004, after which encounters with Cuvier’s beaked whale during 2005, 2006, and 2007 were 

showing a decline. The number of individuals, however, increased during these years, 

indicating that group sizes were larger. The pattern of sightings between years differed 

significantly from an even spread across all years (χ2 = 108.15, d.f. = 7 p < 0.001). 

 

The sightings appeared to be concentrated in the southern Bay of Biscay during all years, 

except during 2000 when low numbers were observed everywhere. The seasonal northward 

shift in sightings of Cuvier’s beaked whale, however, has been found in the previous 

section and this northward movement of Cuvier’s beaked whale was observed over the 

northern continental slope in 2002, 2003, 2004, and 2007. During 2005 and 2006, there 

were only a few encounters with the Cuvier’s beaked whale over the northern slopes 

(Figures 5.14). 

 
The changes in the proportion of the northern bottlenose whale sightings from 2000 to 

2007 were plotted against Cuvier’s beaked whale sightings to identify any changes. It is 

important to note that sighting changes may have been a result of observer effort 

throughout this time. Only the opportunistic data were used, because the low number of 

the northern bottlenose whale dedicated sightings meant that no pattern could be visualised 

on a graph. It can be seen in Figure 5.15 that Cuvier’s beaked whale declines from 2000 to 

2003, mirrored by slight increases in the northern bottlenose whale and from 2003 to 2004 

Cuvier’s beaked whale increase and northern bottlenose whale decreases. From 2004 to 

2005, both species show a slight increase: from 2005 to 2006 Cuvier’s beaked whale show a 

slight decrease and northern bottlenose whale is still increasing: and from 2006 to 2007, 

Cuvier’s beaked whale increase and northern bottlenose whale decreases.  
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Figure 5.13: Spatio-temporal variation in distribution of Cuvier’s beaked whale between 

2000 and 2003. Red circles represent sightings and n is equal to the total number of 
encounters.    
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Figure 5.14: Spatio-temporal variation in distribution of Cuvier’s beaked whale between 
2004 and 2007. Red circles represent sightings and n is equal to the total number of 

encounters.   
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Figure 5.15: Annual variation (x-axis) in the total number (y-axis) of individuals of Cuvier’s 

beaked whale (solid black line), the northern bottlenose whale (dashed black line) and 
Sowerby’s beaked whale (red solid line) 

 
 

5.323 Strandings data 
 
The analysis of strandings form 1904 to 2007 found 174 strandings recorded from the UK, 

ROI and France. During these years an increase in strandings events is notable across the 

whole time scale (Figure 5.16). Interestingly peaks in stranding events seem to occur in one 

region at a time, with small peaks in stranding events that overlap between each region. In 

the late 1970s to the early 1980s, strandings events are much greater than the rest of the 

years for the French Atlantic coasts. This notable rise in stranding events during this time 

could be the result of increased attention during the 1970s form published yearly reports by 

Raymond Duguy for the French coasts from 1972 at the Marine Mammal Research Center 

(Centre de Recherche sur les Mammifères Marins, CRMM). 

 

Over time, the changes in the proportion of Cuvier’s beaked whale strandings events were 

compared to northern bottlenose whale and Sowerby’s beaked whale strandings. The 

findings show that from 1910 to 2005 when Cuvier’s beaked whale strandings increase, the 

northern bottlenose whale strandings decrease and vica versa (Figure 5.17 and 5.18). Over 

the period from 1995 to 2005, there have been times when this was not seen: from 1996 to 

1998 and 2002 to 2003, both species appear to increase at the same time (Figure 5.17 and 

5.18). From 2004 to 2006, the northern bottlenose whale findings follows the same 
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fluctuation as Sowerby’s beaked whale. Sowerby’s beaked whale strandings do not show 

any particular patterns when compared to the other two species (Figure 5.17 and 5.18).  
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Figure 5.16: Total number (y-axis) of strandings events over time (x-axis) of Cuvier’s 
beaked whale recorded around the coasts of the UK (black), Ireland (red), and French 

Atlantic coasts (green).  
 

 

The changes observed between Cuvier’s beaked whale and the northern bottlenose whale is 

thought to be a result of the preference for different water temperature preferences. It is of 

common knowledge that the northern bottlenose whales are dominant in cooler waters and 

Cuvier’s beaked whales are dominant in warmer waters with a change in dominance at or 

close to the latitude of the UK and ROI (MacLeod et al., 2004b; MacLeod, 2005a). In 

contrast, Sowerby’s beaked whale appears to be able to co-exist with both these species and 

they have a southern range limit that extends further south than the northern bottlenose 

whale (MacLeod, 2005a). Figure 5.18 represents the strandings in the same period as the 

sightings data. Figure 5.19 shows the relative strandings rates of both Cuvier’s beaked 

whale versus the northern bottlenose whales. The correlation coefficient was -0.79, 

suggesting variables change in the opposite direction, as one increases the other decreases 

and vica versa.  
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Figure 5.17: Five-year running average for Cuvier’s beaked whale (blue), northern 
bottlenose whale (pink) and Sowerby’s beaked whale (green) between 1904 and 2007, as a 

proportion of all three beaked whales (y-axis). 
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Figure: 5.18: Five-year running average for Cuvier’s beaked whale (blue), the northern 
bottlenose whale (pink) and Sowerby’s beaked whale (green) strandings between 1995 and 

2007, as a proportion of all three beaked whales (y-axis). 
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Figure 5.19: Relative strandings rate of Cuvier’s beaked whale (y-axis) 
versus the northern bottlenose whale (x-axis) between 1900-2007. 
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5.4 Discussion 

 
The year round sightings of Cuvier’s beaked whale, taken over ten years, have provided a 

unique opportunity to examine the variation in their spatial and temporal distribution 

within the Bay of Biscay. Sightings data were investigated for the Bay of Biscay between 

1995 and 2007, and strandings records were investigated from UK, ROI and French 

Atlantic coasts 1904 and 2007. Here I discuss the patterns found and then examine how 

they could be related to changes in water temperature in the Bay of Biscay and around ROI 

and the UK. The Bay of Biscay is the most northern regular limit of this species in the 

northeast Atlantic because of its confinement to water temperatures >10°C (Houston, 

1991). Theory predicts that this species might expand its distribution by moving north if 

water temperature increases because of climate change. The year round sightings that are 

consistent over ten years suggest the population of Cuvier’s beaked whale is resident in the 

Bay of Biscay.  

 

5.41 Spatial and temporal pattern in distribution: sightings and strandings 

 

5.411 Sightings 

The results of this study revealed that on a broad scale, sightings of Cuvier’s beaked whale 

indicated a clear preference for deep water that is associated with waters equal to or deeper 

than 1000m on both the northern and southern continental shelf slopes of the Bay of 

Biscay. An association is also observed with the CapBreton canyon in the southeast corner 

of the Bay of Biscay. This was reported by Williams et al. (2002a) who suggested a habitat 

preference for the CapBreton Canyon area, in which the distributions of Cuvier’s beaked 

whale are not random but were instead located over the deep continental slope around the 

CapBreton Canyon. D’Amico et al. (2003) and Moulins et al. (2997) in the Ligurian Sea, NW 

Mediterranean, also found an association between Cuvier’s beaked whale and submarine 

canyons, whilst MacLeod and Mitchell (2006b) identified from a number of sources that 

the Genoa Canyon is a key area for Cuvier’s beaked whale. The preference for deep water 

is in accord with descriptions of this species in other areas having a preference for deep 

water and continental slopes, for example eastern tropical Pacific (Ferguson et al., 2006); 

California (Falcone et al, 2009); northeastern US (Kenney and Winn, 1987; Waring et al., 

2001); Bahamas (MacLeod et al., 2004a); north-western Mediterranean (Moulins et al., 
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2007); Hawaii (Baird at al., 2004; 2006); Greece (Frantzis et al., 2003); and Japan (Nishiwaki 

and Oguro, 1972). 

 

The results from this study have revealed three patterns relating to the distribution of 

Cuvier’s beaked whale. This first and foremost pattern is found in the seasonal distribution 

of Cuvier’s beaked whale, which shows a northward movement from the southern 

continental slopes and submarine canyons in autumn and winter to the northern 

continental slope during spring and summer. The second pattern is an increase in the 

numbers of Cuvier’s beaked whale over time. The third pattern is found in both Cuvier’s 

beaked whale and the northern bottlenose whale. In the Bay of Biscay, where these two 

species are known to overlap in their occurrence, sightings over the last ten years have 

shown that as one increase the other decreases and vica versa. The stranding findings have 

also shown this.  

 

While two main locations were southern and northern Biscay, associated with canyons and 

the continental slopes, a third location over the deep waters of the abyssal plain was 

observed for this species (water depth 3000-4000m), whereas despite extensive coverage 

over the shelf and the English Channel, Cuvier’s beaked whale were absent. It is suggested 

that sightings over the deep waters of the abyssal plain are reflecting this area as a 

transitional zone for Cuvier’s beaked whale and not an area they would inhabit on a regular 

basis. In comparison with this study, Ferguson et al. (2006) also found Cuvier’s beaked 

whales over much deeper waters than in any other studies, however the Eastern Tropical 

Pacific is generally deeper anyway. Further exploration of the opportunistic sightings data 

showed the movement into the waters over the northern continental slopes as a seasonal 

event that occurs during spring and summer, whereas in autumn and winter the 

distribution is mainly in the south over the CapBreton Canyon. Few sightings were 

recorded in autumn, and no sightings were recorded north of 45°N in winter. It is 

suggested from the results that it is not a change in habitat for this animal, but more a 

change in distribution. They appear to migrate from one region with steep slopes and 

underwater canyons to another region with similar underwater topography - steep slopes 

with incising submarine canyons. Despite the effort based sightings not showing the 

northward seasonal movement as clearly as could be seen with the opportunistic sightings, 

numbers in spring and summer were significantly greater than in autumn and winter, 
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suggesting an overall seasonal shifts within the Bay of Biscay. The group size was also 

indicative of their seasonality, with group sizes becoming smaller during the winter months. 

Earlier studies that looked at seasonal changes in Cuvier’s beaked whale was by Mitchell 

(1968) who studied stranded animals and Williams et al. (1999) who looked at sightings. 

Both their work found seasonal patterns in the strandings and sightings, but no obvious 

pattern of seasonal movements.  

 

Over time, opportunistic sightings data have shown an increase in the numbers of Cuvier’s 

beaked whales. The opportunistic sightings reflect quite large increases in numbers of 

Cuvier’s beaked whales from 2000 to 2007. Numbers were observed to be low in 2000, 

2001 and 2002 in contrast to number of encounters and individuals observed from 2003 to 

2007, when numbers doubled. One explanation for this is the increase in observer effort, as 

prior to 2002, there was no wildlife officer on the ferry, and the COW made sightings 

during spring and summer only of 2000, 2001 and 2002. Another explanation could be the 

increase in accuracy of the wildlife officers to identify Cuvier’s beaked whale over time. By 

contrast, numbers of effort-based sightings were not observed to increase as much as with 

opportunistic sightings. This may be due to the effort related surveys only being conducted 

twice a month, and taking into account the weather which may not always be favourable 

(sea state ≤3), can reduce the chances of encountering beaked whales. It is proposed that 

the increase in Cuvier’s beaked whales in the Bay of Biscay may have been occurring long 

before the research started. This is supported by the increase in strandings in the last 50 

years around France, UK and ROI.  

 

Both the dedicated and opportunistic sightings showed that Cuvier’s beaked whales were 

frequently encountered in the southeastern corner of the Bay of Biscay, over the 

CapBreton canyon from 1997 and 2007. Opportunistic sightings, however, have shown 

that Cuvier’s beaked whale is more widespread in their distribution than revealed by the 

effort-based sightings. The seasonal movement of Cuvier’s beaked whale from southern 

Biscay to the northern continental shelf was first observed in 2002 with the opportunistic 

sightings. Their distribution was thought to be predominantly in southern Biscay, since 

only a few sightings had been observed over this area in 2000 and 2001 from opportunistic 

data, and between 1997 and 2007 from dedicated sightings data. Since 2002, encounters 

with Cuvier’s beaked whale over the northern continental slopes in the Bay of Biscay are 

now a regular event. 
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5.412 Strandings  

The results of the strandings analysis, based on single stranded animals, found region wide 

seasonal stranding events between the UK, ROI, and France. Stranding events were 

recorded more frequently in the winter months (Jan-Mar) for all three countries. The 

seasonal pattern of strandings records, as shown in section 5.11 ‘species variation’, has 

shown the number of strandings to be greater around the UK and ROI than France during 

summer, whereas throughout autumn and winter, strandings are greater around France 

than the UK and ROI. It can also be seen that in winter the number of strandings greatly 

increase for all regions. In addition to the seasonal patterns, over time, notable peaks in 

strandings were evident in all regions and analysis shows when strandings were recorded 

from region they were not recorded in the other regions. However, overlap in strandings 

did occur between the regions at the same time, but not in great numbers.  

 

Between 1995 and 2003, the proportion of Cuvier’s beaked whale strandings were overall 

higher than the northern bottlenose whale; implying numbers of Cuvier’s beaked whale are 

increasing over time. From 1995, strandings showed an initial decline followed by a rise 

from 1996 to 1997, after which remain stable until 2003. The steep rise in strandings was 

mirrored by a decline in the northern bottlenose whale strandings, after which saw a rise 

then a fall then a steady rise. Between 2003 and 2005, patterns appeared to change, with 

strandings of Cuvier’s beaked whale decreasing and northern bottlenose whale increasing. 

After 2005, a rise in strandings of both Cuvier’s beaked whale and northern bottlenose 

whale can be seen. Stranding patterns do reflect the changes in proportions of these two 

species recorded by BDRP in the Bay of Biscay across similar time periods. As strandings 

of one species go down, sightings go up and vica versa, for example the proportions of 

sightings show an increase in Cuvier’s beaked whale and a decrease of northern bottlenose 

whale observed during 2003 to 2005.  

 

Looking at the data on a bigger picture, one theory that is postulated is the overall higher 

numbers of Cuvier’s beaked whale sightings and strandings compared to the northern 

bottlenose whale could be indicative of an expansion of Cuvier’s beaked whale range and 

the contraction of the northern bottlenose whale range in this region. This does however 

require continued observations. 
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The findings of this study show there are consistencies between the patterns observed with 

the three data sets used; dedicated and opportunistic sightings, and strandings records. 

There are consistencies in seasonal patterns between the opportunistic and dedicated 

sightings and the strandings data, although the number of sightings from dedicated surveys 

is relatively low. There are consistencies with the increase of Cuvier’s beaked whale sighting 

and decrease of strandings and vica versa. There are consistencies in the depths at which 

dedicated and opportunistic sightings were recorded. 

 

5.42 Causes of distribution: physical and biological aspects 

 

Movements of marine mammals represent a response to changes in the marine 

environment, either the biological requirements of a species, such as prey availability and 

water temperature, or physical factors such as underwater topography and movements of 

currents. Together, these factors may trigger the start of seasonal movements, although not 

all individuals will necessarily respond in the same way. Determining the distribution of 

Cuvier’s beaked whale as well as the patterns found in this study has led to possible 

explanations that are linked with water temperature and subsequent prey distribution.  

 

In the Bay of Biscay, water temperatures have been found to show an overall warming in 

the 1990s (Koutsikopoulos et al., 1998), and it has been recognised globally that the 1980s 

were the warmest of the previous 100 years (Jones et al., 1988). Koutsikopoulos et al. (1998) 

confirm the existence of a long term increasing trend in SST, although this has not been 

uniform for the entire area. The southeast Bay of Biscay shows a stronger warming trend 

(Pingree, 1993; Gonzalez-Pola et al., 2005), with a mean increase of 1.4°C from 1972 to 

1993. Gonzalez-Pola et al. (2005) report evidence of intense warming and salinity 

modification of intermediate water masses in the southeastern corner of the Bay of Biscay 

for the period 1992-2003. All water masses below the mixed layer and down to 1000m 

depth have warmed up during the last decade at rates of two to six times greater than 

accepted for the North Atlantic during the last half-century (Gonzalez-Pola et al., 2005). 

Warm winters have been observed because of southerly and westerly winds (Valencia et al., 

2003). It has been found that variations in the flow of Eastern North Atlantic Central 

Water (ENACW) eastward in the south have increased the warming (Gonzalez-Pola et al., 

2005). Warm waters are indicative of the intrusion of the ENACW into SE Biscay, that are 

associated with warm and dry weather conditions (Valencia et al., 2003). In addition, the 
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Iberian Poleward Current (IPC) off northern Spain is a warm water extension into the 

southeast Biscay. The IPC starts around Christmas (NAVIDAD), and the development 

and winter warming were observed exceptionally in January 1990, 1996 and 1998 (Garcia-

Soto et al., 2002). A pronounced production of Slope Water Oceanic Eddies (swoddies) are 

associated with this, which have higher Chl-a concentration spreading warm and 

productive slope water into the ocean (Garcia-Soto et al., 2002). This is probably related to 

abrupt slope topography. The eastern boundary poleward warming was found to extend 

from Portugal to Norway in exceptional NAVIDAD years, forming a narrow warm eastern 

margin for ENACW. There is a clear seasonal warming effect in the Bay, which is more 

evident in southern Biscay. Lavin et al. (1998) have shown that temperature in the Bay of 

Biscay follows the expected seasonal warming and cooling pattern, which determines a 

seasonal process of stratification and mixing of the water column. The seasonal change in 

water temperature at three regions and the warming of the southeastern corner of the Bay 

of Biscay is shown in Appendix 3. 

 

5.421 Sightings 

 

The patterns found in this study appear to be consistent with changes in water temperature. 

One possibly explanation for this movement of Cuvier’s beaked whale to the northern 

continental slopes could be linked to warmer waters during spring and summer over those 

northern slopes. Findings of remotely sensed sea surface temperature data (Appendix 3) 

indicate a possible explanation as to why this species is not observed over the northern 

slopes during winter. The data showed that during the winter months, average SST ranged 

from 11.32°C to 12.78°C from 1995 to 2006 over the northern slopes. However, unlike 

waters in the south that rarely go below 10°C in winter, the water temperatures in the north 

were found to drop below 10°C (see Appendix 3 for this analysis). This species is appears 

to be largely confined by the 10°C isotherm (Houston, 1991), and with water temperatures 

dropping below this, it makes the area unfavourable during winter. Winter warming has 

undoubtedly had an effect on the greater number of Cuvier’s beaked whales now observed 

in the Bay of Biscay, and it is hypothesized that a NAVIDAD event coupled with the 

ENACW keeps this area warm enough for this species to maintain its position in the 

southern Bay during the winter months.  
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The seasonal movement of Cuvier’s beaked whale over the northern continental slope was 

observed during spring and summer from 2002 to 2007, exceptions being 2005 and 2006 

when a decline in encounters over the northern slopes was observed. Prior to 2002, during 

2000 and 2001 only two sightings were recorded over the northern slopes. It has to be 

noted that survey coverage at this time was poorer. The low numbers might have also been 

due to a decrease in temperature in spring from 2001 to 2002, and subsequently 2003 to 

2004 (see Appendix 3 for this analysis). Once temperatures started to rise in the summers 

of 2005 and 2006, Cuvier’s beaked whale numbers start to increase in the north in 2007. 

From the time taken when significant increases or decreases in water temperatures were 

observed (see Appendix 3 for this analysis) to the time when Cuvier’s beaked whale 

numbers and distribution vary, it appears there might be time lag of approximately two 

years. This is only an assumption and further analysis is needed. While it seems clear that 

temperature could affect Cuvier’s beaked whale, it is not understood why the distribution 

should be related to surface water temperature because of their deep diving behaviour. It is 

suggested that the changes are indirectly related to SST by their prey moving with changes 

in water temperature and, in turn, Cuvier’s beaked whale moving in response to those prey 

movements. Another theory is they could use warm surface layers to warm up after deep 

diving in colder waters. 

 

The close association with the CapBreton canyon and the northern shelf slopes may be due 

to local productivity resulting from upwelling caused by easterly winds in the south and 

southerly winds in the north, as well as steep topography. Vetter and Dayton (1998) 

showed that canyons appear to be important as sites of enhanced secondary productivity, 

providing diverse habitats, and as conduits of coastal detritus to the deep-sea (Shepard et 

al., 1974; Gardner, 1989). The funnelling of water within canyons can produce complex 

oceanographic phenomena such as internal waves or upwelling, and it is very likely they 

may act as conduits for vertical migrating species such as squid, and trap animals swept 

away during their migrations, allowing an enhanced and near-permanent food supply 

within the canyon. The continental slope is known to attract cephalopod species for 

spawning on the bottom, as well as specialized cephalopods adapted to the vertical mixing 

and canyon topography of this narrow zone (Clarke, 1996b). Water depth and seabed 

topography can cause mixing within the water column and influence the primary 

productivity of an area (St John and Pond, 1992). Consequently, these physiographic 

features also drive the distribution of higher trophic levels, including those of intermediate 
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predators, and top predators such as cetaceans (Davis et al., 1998; Cañadas et al., 2002; 

MacLeod et al., 2004a).  

 

Coastal upwelling in the southern Bay of Biscay is in response to easterly winds that shows 

a clear seasonal variability, with peak development centred during the spring and summer 

in southern Biscay (Gil and Sanchez, 2003b). Upwelling increases mesoscale activities such 

as cyclonic and anticyclonic rings, and meanders of fronts, which enhance nutrients and 

plankton (Gil and Sanchez, 2003b). How such upwelling would increase the productivity or 

availability of the deep water prey of beaked whales is unknown. It is likely that the 

downward flux of primary productivity has an effect on them and subsequently on beaked 

whales, as it has been speculated by several authors that their distribution (and of cetaceans 

in general) is likely to be primarily determined by prey availability and distribution (Davis et 

al., 1998; Cañadas et al., 2002; Hooker et al., 2002; Torres et al., 2009).  

 

Stomach contents analysis of Cuvier’s beaked whales included mesopelagic and deep water 

squid and benthic fish, occurring beyond the 1000m isobath (Heyning, 1989; Blanco and 

Raga, 2000; Collins et al., 2001; Santos et al., 2001a; Ohizumi and Kishiro, 2003). Stomach 

contents analysis of Cuvier’s beaked whales in Japan (Wang et al., 1995), the western 

Mediterranean coast (Blanco and Raga, 2000) and in the north-west of Spain (Santos et al., 

2001a) found prey items consisting exclusively of cephalopod remains. In addition, the 

conditions that influence cephalopod distribution would need to be investigated further to 

understand Cuvier’s beaked whale distribution better. 

 

In contrast, a lack of upwelling may affect survival of prey recruits via decreased primary 

production, and its subsequent effect on zooplankton and higher predators such as beaked 

whales (and cetaceans in general). This could be in part an explanation for the decline of 

numbers in some years and during the winter months. The latter is most certainly an effect 

of reduced SST as well.   

 

5.422 Strandings 

It has not been possible to make temperature related assumptions from strandings data 

recorded before 1996, due to sea surface temperature not being available at the time of 

analysis. However, variations in the number of Cuvier’s beaked whale in different regions, 

UK, ROI, and France, in different months and seasons may reflect patterns in response to 
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SST. MacLeod et al. (2004b) previously examined strandings from 1800 to 2002 throughout 

UK and Republic of Ireland, and suggested that they reflect region-wide trends. The use of 

strandings data from the French Atlantic coasts enabled further investigations into a north-

south seasonal movement, coinciding with sightings data.  

 

Even though this species will move within its full range, it is likely that the warming of 

water temperatures during spring and summer in Biscay and around the UK and Ireland 

have probably led to Cuvier’s beaked whale moving north of Biscay. The northward 

movement could be due to the narrow band of ENACW that flows north from the Bay of 

Biscay to Scotland (Pingree, 1993). It could be that the lower number of stranding records 

in spring, summer and autumn compared to winter reflect the possibility that more are 

alive at sea rather than stranded in these seasons. It is suggested that once water 

temperatures start to drop in autumn, Cuvier’s beaked whale move south back into the Bay 

of Biscay. However, strandings still occur in winter around the UK and Ireland. It is 

possible they are trapped in these cold waters, and therefore cannot survive and are washed 

ashore. The increase in strandings around the UK and Ireland during winter is most likely 

to be determined by the fact they are not cool water species and therefore the cool water 

has adverse effects by causing them to strand more frequently during these months. High 

numbers of strandings on the French coasts during winter reflect the fact that this species 

occurs more regularly in Biscay during these months than the UK and ROI. The drop in 

temperatures in the northern Bay to below 10°C in winter appears to coincide with a 

decrease of sightings over the northern slopes in the Bay of Biscay in winter and this drop 

in temperature could be a contributing factor in these strandings. It is of general knowledge 

that the weather in Biscay can be very rough and unpredictable in winter, which could be 

another contributing factor to strandings, as rough weather could divert the species onto 

the continental shelf causing confusion of where they are, as the shelf area is not a habitat 

they normally frequent. In general, higher number of sightings in the Bay of Biscay 

compared to the UK and Ireland in winter is a strong indicator as to why stranding 

numbers are greater on the French Atlantic coasts in winter. It is therefore believed that a 

rise in strandings particularly around the UK and Ireland is linked to more northerly 

movement of Cuvier’s beaked whale because of increases in water temperatures. If water 

temperatures rise over the coming years, the range in distribution might expand further 

north on a more regular basis.  

 



Chapter 5: Spatial-temporal variation in the occurrence of Cuvier’s beaked whale in the Bay of Biscay 

 
136

5.43 Cuvier’s beaked whale versus Northern Bottlenose Whale 

 

One aspect of this study examines Cuvier’s beaked whale relative to the northern 

bottlenose whale. Both the sightings and strandings reflect similar patterns and the fact that 

numbers of Cuvier’s beaked whale are generally alot higher than the northern bottlenose 

whale. While the waters of the Bay of Biscay represent the northern-most limit for the 

usual occurrence of Cuvier’s beaked whale in this region, these waters are the southern-

most limit for the usual occurrence of northern bottlenose whales. However, both species 

are observed further north and south of their usual limit; Cuvier’s beaked whale has been 

seen off Scotland (Evans et al., 2008) and the northern bottlenose whale in the Azores 

(Macleod et al., 2006). The water temperatures observed in the Bay of Biscay (where these 

two species are known to overlap in their occurrence) and the relative strandings rates of 

Cuvier’s beaked whale versus northern bottlenose whales suggest that changes in water 

temperature may be responsible for the changes in relative occurrence of the species in this 

antagonistic pairing. One theory that is postulated is that a northward shift in the ranges of 

these two species could occur in response to increasing water temperatures and a 

southward shift when water temperatures cool. An example of range shifts has previously 

been suggested for white-beaked and common dolphin, also around the UK and Ireland 

(Evans et al, 2003; MacLeod et al., 2005b), with the white-beaked dolphin distribution 

expecting to contract whilst common dolphins expand northwards in response to 

increasing sea temperatures (MacLeod et al., 2005b). 

 

The changes in occurrence of these species may reflect changes in other aspects of these 

ecosystems and changes seen on this study may also be result of competition in the past, 

and niche differentiation, rather than current competitive interactions. In particular, it may 

be that such changes in their occurrence reflect changes in the occurrence of preferred prey 

species. For example, northern bottlenose whales are primarily thought to prey on the cool 

water squid, Gonatus fabrici, while Cuvier’s beaked whales often prey on other squid, 

including many warmer water species (Santos et al., 2001a,b). Therefore, a change in the 

occurrence of these two species could reflect a change from an ecosystem dominated by 

cool water species such as Gonatus fabrici to one dominated by warmer water species 

(MacLeod and Smith, in Prep). It is important to remember that such indicators of climate 

change and increasing water temperatures may only be viable in areas such as the northeast 

Atlantic where one or more species are currently at the usual limits of their current range.  
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In addition, the strandings records indicate that Sowerby’s beaked whale can co-exist with 

both Cuvier’s beaked whale and the northern bottlenose whale. Unlike patterns identified 

with Cuvier’s beaked whale and the northern bottlenose whale, Sowerby’s beaked whale 

shows no such pattern. This is most likely to be linked to their diet, as they may rely 

principally on fish rather than cephalopods as the main component of their diet (MacLeod 

et al., 2003) and therefore pose no threat as competition for prey in these waters. MacLeod 

et al., (2003), have also investigated the differences in prey sizes and the study showed that 

Mesoplodon species do consume smaller prey than Ziphius and Hyperoodon species. In 

addition, this species also has a more temperate based distribution compared to that of 

Cuvier’s beaked whale and the northern bottlenose whale and the usual limit for the species 

is not the Bay of Biscay. However, effects of latitude are not explored in this study.  

Unfortunately, due to insufficient dedicated sightings, no comparisons can be made.  

 

5.44 Implication for Conservation 

 

As there appears to be a relationship between changes in the occurrence of Cuvier’s beaked 

whale, and the northern bottlenose whale and changes in the local climate, both species 

have the potential to act as indicators of the effects of climate change on oceanic 

ecosystems. In particular, Cuvier’s beaked whale is a widespread species that occurs in most 

warm temperate to tropical waters of the world (Heyning, 1989; MacLeod et al., 2006c). 

Therefore, this species could be widely used as an indicator of changes in waters at the 

poleward ends of its current range as geographic range would be expected to remain within 

the preferred climatic conditions (Thomas et al., 2004). This study suggests perhaps that 

Cuvier’s beaked whale may become more regular in offshore canyons further north of the 

Bay of Biscay. This expansion could lead to a greater number of strandings in these waters 

around Ireland, the UK and French Atlantic coasts because the Bay of Biscay and the west 

coasts of Scotland are sites of current submarine training exercises (Parsons et al., 2000). 

Several Cuvier’s beaked whale strandings worldwide have been linked to the use of naval 

sonar (e.g. Simmonds and Lopez-Jurado, 1991; Frantzis, 1998; Balcomb and Claridge, 2001; 

Jepson et al., 2003; Evans and Miller, 2004; Cox et al., 2006), as has been suggested by 

necropsy results that have shown gas bubble lesions in their liver (Jepson et al., 2003; 

Fernandez et al., 2005) and haemorrhaging in the inner ears and some cranial spaces 

(Ketten, 2005). These could be the result of a physiological response from a behavioural 

response to normal dive profiles on exposure to sonar (Jepson et al. 2003). If the strandings 
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were a result of sonar activity, then there is a high probability that stranding events might 

be recorded more frequently around the UK and Ireland in the future as water 

temperatures rise and if range moves north of the Bay of Biscay on a more regular basis.  

 

In 2004, the Gully, a large submarine canyon off the coast of Nova Scotia, eastern Canada, 

was officially designated a Marine Protected Areas (MPA) in Canada (Charles and Wilson, 

2009). In particular, this area is known for its resident population of the northern 

bottlenose whale (Hooker et al., 2002). From ten years worth of data, it can be said without 

doubt that Cuvier’s beaked whale are resident in the Bay of Biscay year round over the 

Capbreton Canyon and the northern continental slopes. If findings of stranding events in 

the future can be directly linked to active sonar, then maybe controls to mitigate and 

monitor when and where testing is carried out in the Bay of Biscay could be put into place.  

 

5.45 Limitations and future work 

 

Interpreting the distribution of living animals from strandings records is problematic with 

regards to oceanic animals because of the distance they may have been carried, and to infer 

distributions of stranding events they must be consistent with findings from other avenues 

of investigation (MacLeod et al., 2004b). This problem has been overcome in this study by 

using two sets of sightings data (effort-related and opportunistic) of Cuvier’s beaked whale 

at its most northern limit in the northeast Atlantic and comparing those with stranding 

records for the same period. Looking at the patterns and trends found, it is clear to see that 

with the use of only one of these data sets, these patterns would not have been observed. 

Cuvier’s beaked whale occurrence over the same submarine canyon (CapBreton Canyon) 

and continental slopes of the southern Bay of Biscay for ten consecutive years, as identified 

by the dedicated sightings, is significant. However, incorporating the opportunistic 

sightings has identified this species showing a seasonal northward movement from the 

southern part of the Bay over the canyon to the northern continental slopes of the Bay. 

Investigating strandings events has also highlighted the importance of this region and 

regions north of Biscay. Cuvier’s beaked whale have previously been identified in waters 

around the UK and Ireland (Evans 1980, 1990, Evans et al., 2003; Reid et al., 2003; 

MacLeod et al., 2004b; Evans et al., 2008). It is therefore advantageous to use different data 

sets, because without them it would be difficult to assess their distribution on a region-wide 

scale. 
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From what has been found in this study, future research should be focused on a number of 

areas to assess movements of Cuvier’s beaked whale for effects of climate change and 

increasing water temperatures and sonar activity:  

 

1. Surveying of the northern shelf slopes in winter. This study has indicated that the 

northern shelf slopes are rarely inhabited during winter by Cuvier’s beaked whale. 

However, the lack of daylight hours during the winter means that the ferry does not reach 

the northern slopes in favourable viewing conditions and it may be that these animals are 

present but go unnoticed in the dark. Future research in these months would increase our 

understanding of their distribution relative to water temperatures and possible climate 

change effects.  

 

2. Few sightings have been observed off the west coasts of Ireland by the Irish Whale and 

Dolphin Group (IWDG), and surveying submarine canyons off the west coast of Ireland 

would again provide more answers for the possible future northward movements of 

Cuvier’s beaked whale in response to increased water temperatures through possible 

climate change effects. All records of their sightings and strandings are validated and 

available on:  www.iwdg.ie. 

 

 

5.46 Conclusion 

 

The main findings from this study have shown the Bay of Biscay to be a very important 

year round habitat for Cuvier’s beaked whale, and for all other cetaceans recorded by the 

Biscay Dolphin Research programme. This work has also shown how important it is to 

incorporate opportunistic sightings into analysis, especially when it comes to finding out 

more about inconspicuous and uncommon cetaceans, such as the beaked whales.   

 

Whilst Cuvier’s beaked whale distribution can be compared to other studies in terms of 

preferences for deep wtaer, shallow slopes, and submarine canyons, no comparison can be 

made with seasonal distribution. After assessing the studies already conducted on Cuvier’s 

beaked whale, I believe that there is sufficient seasonal data to look at seasonal distribution 

and hopefully this present study can influence this further. Through this work, I have made 

an important step forward in adding to the knowledge already known of the range and 

http://www.iwdg.ie/
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patterns in the movements of Cuvier's Beaked Whale in the Bay of Biscay and around the 

UK and Ireland. The opportunistic sightings have helped to broaden the knowledge of 

their distribution range and habitat use in the region in comparison to what was found with 

dedicated sightings. Without the use of opportunistic sightings, the seasonal movement 

observed may have gone unnoticed. Events may be part of a long-term trend, suggesting 

increasing temperatures with climate change could expand their distribution.  

 

As listed by the IUCN (International Union for the Conservation of Nature), the global 

status and geographical distribution of beaked whales is poorly known (Reeves et al, 2003). 

Therefore, findings from this study will benefit future research into effective conservation 

strategies, identifying global seasonal movements, population stability relative to associated 

global climate change impacts.  

 

Cetaceans are good indicators of climate change as they are at the top of the food chain, so 

any changes in primary productivity will affect their predator and in time the movements of 

the whales themselves. As a result, can Cuvier’s beaked whale act as a predictor of 

increasing water temperatures because of global climate change by shifting their 

distribution to the northern slopes of Biscay, and possibly further north towards deeper 

offshore canyon regions if water temperatures rise?  
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6. Summary and Conclusions 

 

6.1 Overview of chapters  

The present study aimed to examine the ecology of Cuvier’s beaked whale in the Bay of 

Biscay. The main focus was placed on habitat use, spatio-temporal distribution, and the 

interactions with environmental parameters (e.g. sea surface temperature, water depth, 

slope, and aspect). Chapter 2 explored the habitat use of Cuvier’s beaked whale in relation 

to water depth, slope, and aspect, using General Additive Modelling (GAM). Chapter 3 

analysed the opportunistic data against environmental parameters to predict Cuvier’s 

beaked whale distribution across the Bay of Biscay, using Ecological Niche Factor Analysis 

(ENFA). This chapter integrated effort data results to verify the model output. Chapter 4 

explored the inter-specific distribution of deep-diving whales in the Bay of Biscay, using 

Cuvier’s beaked whale as the main focus for comparisons. A Principal Components 

Analysis (PCA) was conducted to show the habitat use of deep diving and non-deep diving 

cetaceans, to show how similar or dissimilar they were from each other. Chapter 5 

examined the spatio-temporal distribution of Cuvier’s beaked whale. The main findings 

from this showed a seasonal movement that has not been observed and reported for 

Cuvier’s beaked whale sightings in the northeast Atlantic. The following paragraphs will 

provide a summary of the key findings and how they can be used on a more global 

perspective, then limitations and future research, followed by a final conclusion.  

 

6.2 Key findings  

6.21 Habitat use and modelling 

A number of ecological niche factors have been investigated to identify the habitat 

preferences of Cuvier’s beaked whale within the Bay of Biscay. The niche factors included 

eco-geographic variables (sea surface temperature (Chapters 2 and 5) and habitat factors 

(water depth, seabed gradient, and aspect). To determine preferences and ranges of these 

niche factors for Cuvier’s beaked whale (Chapters 2, 3, 4 and 5) in the Bay of Biscay, three 

different models were applied. Using a range of approaches allowed different aspects of 

Cuvier’s beaked whale ecology to be investigated from a number of different angles. This 

counteracts possible biases and limitations of any one method and provided additional 

support for conclusions reached. In addition, the niches of other deep-diving and non-deep 

diving species (Chapter 4) were compared to the niche of the Cuvier’s beaked whale. 
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It must be noted that GAM (Habitat preferences), ENFA (prediction), and PCA (Niche) 

models do not report the same type or scale of output and predictions and therefore 

cannot be directly compared with each other. Three techniques were used to look at three 

different issues. ENFA modelling weights all input variables, so that less important 

variables are given a lower weighting and contribute less to the final model. PCA modelling 

involves the user in the selection of different combinations of variables. The choice of 

input variables can therefore dramatically influence the predictions (Mandleberg, 2004). To 

reduce bias in the models produced by ENFA and PCA, the choice of eco-geographical 

variables is very important. Only the variables that are representative of the niche occupied 

by the species should be included (Mandleberg, 2004). ENFA has also been identified as 

over-predicting the distribution of a focal species relative to other models such as GLMs 

(Brotons et al., 2004). However, Hirzel et al. (2001) demonstrated that ENFA can be 

robust in terms of sample size and with respect to data quality. 

 

In this study, it has been shown that opportunistic sightings (presence-only) can be used 

just as well as dedicated sightings to model distributions, understand habitat preferences 

and to produced habitat suitability maps of predicted distribution. All three chapters (2, 3, 

and 4) identified a strong link between the distribution of Cuvier's beaked whales and its 

environment. In particular, they all highlighted the importance for water depths ranging 

>1000m to <4000m, shallow slopes, and the aspect of slope (see chapters 2, 3 and 4). 

Chapter 2 identified the limits of preferred depth ranges, the steepness of slopes and the 

particular direction in which the slope faces. South, southeast, east, and north facing slopes 

appeared to be favoured by Cuvier’s beaked whale. West facing slopes were not favoured 

on any spatial scale. Chapter 3 provided meaningful habitat predictions of Cuvier’s beaked 

whale distribution using opportunistically collected data. This suggests that presence-only 

models can be used to predict where Cuvier’s beaked whale is most likely to occur in 

relation to ecogeographical variables. From the ENFA modelling, the predicted 

marginalisation, specialisation and tolerance values identified that the species is most likely 

to occur in deep waters associated with the continental shelf slope, in both northern and 

southern Biscay. Findings indicate this species has a high marginality value and as applied 

to the English Channel and the Bay of Biscay, it requires habitats that differed from the 

average habitat. This species was also found to have a high specialisation value, which 

indicates they have a more restricted range with respect to the eco-geographical variables. 

A relatively low tolerance value was observed for this species that is indicative of their 
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specialised habitats, highlighting the lack of sightings over unsuitable habitats. In chapter 4, 

a number of different deep diving and non-deep diving cetaceans were included to explore 

their habitat use in relation to Cuvier’s beaked whale. The PCA adequately identified slope 

as the first factor to separate the species, followed by water depth. It was found that these 

species could be placed into two major species groupings in the Bay of Biscay: (1) the 

specialists, consisting of Cuvier’s beaked whale, northern bottlenose whale, Sowerby’s 

beaked whale, beaked whale sp, sperm whale, and fin whale that prefer offshore waters; (2) 

and the generalists are the common dolphin and pilot whale that prefer both offshore and 

inshore waters. Slope, depth, and east facing slopes were found to be the most important 

variables responsible for determining the habitat preferences of the seven species. In 

addition, these species were further grouped according to their individual niche centres and 

widths. In relation to Cuvier’s beaked whale, all species except the northern bottlenose 

whale have larger niche centres. The beaked whales have narrow niche widths in 

comparison to pilot whale, sperm whale, fin whale and common dolphin. 

 

Many factors need to be taken into account when trying to understand and determine the 

distribution of a species. It is hypothesized that probable habitat and resource partitioning 

might be occurring. The beaked whales, sperm whale, and pilot whales are known to feed 

on the same prey which in the study area are likely represented by species of squid, and 

clearly fin whales and common dolphin are also known to feed in the same areas as them. 

Thus, the necessity to exploit the same trophic resource in the same area might have led to 

some segregation in terms of interactions with environmental variables. It is widely known 

in the literature that prey distribution is the main factor determining cetacean distribution 

(Canadas et al. 2002; Hastie et al., 2004; MacLeod et al. 2004c; Friedlaender et al. 2006; 

Torres et al., 2009), in addition to movements between breeding and calving areas. An 

understanding of the inter-annual and seasonal variation in their distribution would also 

explain more about their distribution relative to each other. It is assumed that at some 

point, they do occupy the same area at the same time but the extent of this is not known 

and not investigated in this study. On a temporal and more dynamic scale, temperature 

ranges chosen by species might represent additional partitioning. In this case, the 

exploitation of resources would be performed differently based on a greater presence of 

one species over another with concurrent increasing or decreasing of sea surface 

temperatures in certain seasons. 
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Predictive modelling, in which remotely sourced EGVs are used to predict areas of high 

species diversity, may provide a valuable method for identifying hotspots and focusing 

future research at a time when short-term findings will have long-term implications for the 

distribution of Cuvier’s beaked whale. If the niche that a species occupies is related to a 

specific combination of environmental variables that can be identified, then this 

information, as seen in this study (Chapter 3), can be used to provide a picture of where 

that species is likely to occur and where it is likely to be absent. As a result, understanding 

the distribution of organisms in relation to their environment is becoming increasingly 

important in terms of assessing and modelling species distribution, identifying and 

protecting essential habitat, and in terms of assessing and mitigating human impacts upon 

marine organisms. While the use of such spatial modelling is growing rapidly, it is 

important to remember that in order to model accurately a species distribution from its 

environmental preferences, the data used to build the model need to be representative of 

the full range of all available habitat combinations (i.e. adequately sample the entire 

environmental n-dimensional hyperspace available to a species). If there are large 

differences between the available habitat combinations and those surveyed, then any model 

produced may not be a true representation of the actual species distribution.  

 
In addition to the habitat preferences identified for Cuvier’s beaked whale distribution, the 

effects of EGVs on this species were explored over different spatial scales (chapter 2). It was 

found that EGVs were not important of all scales, except for depth. Using classification 

trees, slope determined the first split of the tree of small spatial scales (5 and 10km), whereas 

aspect determined the first split of the tree of larger scales (15, 20, and 25km). Therefore, 

this means that at different spatial scales, different combinations of EGVs can be used to 

understand the localised distribution of Cuvier’s beaked whale. In previous studies, it has 

been suggested that the slope of a steep wall of a submarine canyon is a feature that may be 

important at small scales of a few hundred metres to a few kilometres, but it would almost 

disappear in large-scale analyses (Ferguson et al., 2006). What has been understood from this 

study is that, ideally, whale habitat studies should thus use a hierarchical scale framework that 

takes into account the relative influence of fine, meso-, and broad scale processes. Since 

studies over broad scales cannot be extrapolated to finer scales, it is best to start off with fine 

scale studies that can be extrapolated into broad scale ones. 
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In summary, firstly all three chapters adequately identified the habitat preferences and 

requirements for Cuvier’s beaked whale. Secondly, it has been shown that when dedicated 

sightings are limited, opportunistic data can be used to understand habitat preferences of 

Cuvier’s beaked whale. In this study, dedicated sightings data were low in comparison to 

the opportunistic sightings; however, the dedicated survey data suggested that the ENFA 

model has a high predictive ability. Using such methods can expand on our knowledge of 

elusive deep-diving species on a global scale. It is important that when opportunistic 

sightings are used, the model is validated with independent dedicated survey data. 

 

6.22 Seasonal patterns 

Seasonal patterns in Cuvier's beaked whale distribution have been previously suggested 

from sightings in the Bay of Biscay by Williams et al., (1999), and strandings by 

MacLeod et al. (2004b) around the UK and Ireland, and by Mitchell (1968) from the 

northeast Pacific. However, this study builds upon the former one with a much larger 

data set. An increase of Cuvier’s beaked whale in the Bay of Biscay was observed 

during spring and summer compared with lower numbers found in autumn and winter. 

In addition, there is an indication of a seasonal northward movement from the 

submarine canyons of the southern Bay, to the deep waters of the abyssal plain and the 

shelf slopes of northern Bay. It is assumed that they show this movement when 

temperatures warm up and they are following the pattern in seasonal temperature 

warming/cooling. 

 

The stranding records indicated and concurred with previous studies that this species 

expands its range north of Biscay by moving north into waters around Ireland and the UK; 

a movement that probably happens during spring and summer when sea temperatures are 

warmer. One suggestion for the increase in strandings during the autumn and winter 

months around the Atlantic coasts of the UK and Ireland is that they become trapped in 

the cold waters in winter. Together with cooler water temperatures and the fact that their 

preferred prey may have also moved out of the area, and therefore with little or no food 

resources, they lack energy to travel back down to warmer waters and strand. Strandings 

are also greater in winter along the French Atlantic coasts. It is known that water 

temperatures have increased in the Bay of Biscay over the last two decades 

(Koutsikopoulos et al., 1998), making it a more favourable habitat all year round for 

Cuvier’s beaked whale. This provides a possible explanation for the greater number of 
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strandings during winter on the French Atlantic coasts. On the other hand, many cetacean 

species show winter peaks in strandings, and one cannot exclude the possibility that 

harsher climatic conditions during winter with increased storm frequencies may be 

responsible for a greater number of animals being washed up on beaches. 

 

In addition to their seasonal distribution, both the sightings and strandings identified that 

whereas Cuvier’s beaked whale records have increased in numbers, northern bottlenose 

whale records have declined, indicating an extension of Cuvier’s beaked whale range and 

contraction of the range of northern bottlenose whale. Pre 1995, the strandings have also 

shown periods of increase in northern bottlenose whale strandings, followed by a decrease 

in Cuvier’s beaked whale strandings, which could be the result of competition for 

resources, or a different response to climatic conditions through prey availability and cooler 

water temperatures. This could mean that the ecosystem has changed from a cool water 

ecosystem to a warmer water ecosystem, since Cuvier’s beaked whale feed on warmer water 

species of squid and northern bottlenose whale feed on cooler water species of squid. 

Changes in distribution could also represent actual evidence for competition, instead of 

changes due to in water temperature and prey movements. 

 

Overall, an increase in sightings over the last ten years and an increase in strandings over 

the last 50 years is reported here and is most likely linked to the increase in water 

temperatures. While it seems clear that temperature could affect Cuvier’s beaked whale, it is 

not understood why the distribution would be related to surface water temperature given 

their deep diving behaviour. One idea is that they use surface intervals between long dives 

to undertake essential activities (resting, mating, digestion etc.) (MacLeod, 2005a)  and 

because this species is adapted to warm waters, they may get too cold when they are deep 

diving and use the surface waters to warm up. Another idea relates to the link to the 

temperature requirements of their prey, which in turn is reflected in their movements. 

 

6.3 Global perspective 

Previously, our knowledge of beaked whales (family Ziphiidae) was limited mainly because 

of our knowledge of where they occur and because they are deep divers with a tendency to 

live in deep-sea canyons far from the coast. However, the Spanish coast of the Bay of 

Biscay is one of the few areas in the world where beaked whales, particularly Cuvier’s 

beaked whale, can be seen within easy reach of a port, as identified by the Biscay Dolphin 
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Research Program. The Bay of Biscay is the most northerly distribution range of this 

species, with only a few sightings around Ireland and the UK as far as Scotland and one 

record off Iceland (Evans et al., 2003; 2008), and strandings in Sweden (Evans et al., 2008). 

This species is rarely found in waters below 10°C and if water temperatures rise in the 

future because of climate change, the range of this species could shift north to the 

continental slopes and submarine canyons west of Ireland, if not further. Cetaceans are top 

of the food chain and changes in their distributional patterns are indicative of changes 

happening to the marine ecosystem.   

 

On a global perspective, it is necessary to place the results of this study within a 

management and conservation context. Studies on beaked whales dating back more than 

ten years, were mainly based on strandings. Over the last ten years however, studies have 

dramatically increased because of focused efforts over areas where they are most likely to 

be found, such as continental slopes, submarine canyons and around oceanic islands. In 

recent years, beaked whales have been the focus of research interest following a series of 

mass stranding events associated with the use of military sonar, affecting particularly 

Cuvier’s beaked whale but also Gervais’ beaked whale, northern bottlenose whale and 

Blainville’s beaked whale (Evans and Miller, 2004; Cox et al, 2006). If Cuvier’s beaked 

whale expands its distribution north of the Bay of Biscay on a more regular basis, then it 

may come to harm from the effects of sonar testing in waters around Scotland. In addition, 

naval activity in the Bay of Biscay and further south (Spanish and Portuguese waters), could 

have potentially harmful impacts on this species and its population in the Bay, so that 

stranding events may occur more frequently in the future. In addition, two potentially 

interesting, and relatively non-intuitive, implications of this research are suggested in terms 

of possible anthropogenic impacts on beaked whales in general and, specifically, on 

individual species within the study area. These are the possible impacts of 

anthropogenically-induced global climate change and the exploitation of deep-water marine 

ecosystems by fisheries. 

 

Beaked whales are the least known of all cetaceans, and increasing our knowledge can help 

the conservation of these species. Population abundance estimates are unknown in the Bay 

of Biscay, but since Cuvier’s beaked whales have been observed year round over the last 12 

years, it is suggested they are resident. Research so far (Evans and Miller, 2004; Cox et al., 

2006) plus many others have already concluded that strandings events (single or mass) can 
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result of active sonar activities, so if in the future further active sonar activities appear to be 

responsible for strandings of these marine mammals, then could areas inhabited by beaked 

whales year round become protected? One area already established as a marine protected 

area where no sonar activity is allowed is the Gully, a submarine canyon off Nova Scotia, 

Canada for the northern bottlenose whale (Hooker et al., 1999c; Charles and Wilson, 2009).  

 

The findings of this study indicates that Cuvier's beaked whales are not evenly distributed 

throughout the Bay of Biscay, but are instead concentrated in areas of suitable habitat such 

as the Cap Breton Canyon and the continental shelf slopes. As a result, the potential for 

effects of anthropogenic activities, such as noise pollution, will vary depending on where 

those activities occur.  If possible, the key habitats for Cuvier's beaked whales identified in 

this study should be avoided or at least specific mitigation measures taken if they cannot be 

conducted elsewhere. In the future, it may be that once population estimates for Cuvier’s 

beaked whale are known in the Bay of Biscay, this area could also become a marine 

protected area. 

 

Further research is required to identify what aspects of oceanic ecosystems are linked to 

changes in the occurrence within them of apex predators, such as beaked whales. 

Therefore, while this study suggests that the occurrence of some beaked whale species 

around the UK and Ireland might be linked to changes in water temperature, those species 

have the potential to act as indicators of the effects of climate change on the oceanic 

ecosystems of which they are an important component. Further research is required to 

determine if these changes do indeed reflect changes in such ecosystems and in what 

manner they are linked. As indicated from the evidence that SST could be affecting 

Cuvier’s beaked whale distribution in the Bay of Biscay, this species might act as an 

indicator of global climate change and sea surface temperature could be used as an 

explanatory variable. 

 

6.4 Limitations and future work 

During this study a number of limitations were encountered. The biggest limitation has 

been the low sample size of dedicated sightings for Cuvier’s beaked whale. Initially it was 

thought that by using a sample size of only 53 sightings, the results would have to be 

interpreted with great caution. To overcome this problem, opportunistic sightings data 

were used, with a sample size of 402 sightings. In addition, dedicated sightings were used to 
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verify the presence-only model, ENFA. Both the data sets gave a similar representation of 

the habitat use and distribution of Cuvier’s beaked whale in the Bay of Biscay. For the 

future, this suggests that opportunistic data (presence-only) can be used just as much as 

dedicated sightings (presence-absence), especially where dedicated sightings are limited. 

Evans and Hammond (2004) reviewed a number of methods for surveying and monitoring 

cetaceans in Europe, and recommended that it was both impractical and unwise to adopt a 

single methodological approach over all others. They suggested that different approaches 

can frequently complement one another in providing a more complete picture of the status 

and distribution of a particular cetacean species (Evans and Hammond, 2004), as has been 

shown by this study. 

 

In terms of future work, the following points seem worthwhile as part of further 

investigations:  

- Winter surveys over the northern slopes could be carried out to determine if the 

animals are truly absent, because the ferry does not reach the northern shelf in 

daylight hours in winter months, therefore affecting observations of Cuvier’s 

beaked whale in this region. Therefore, it cannot be truly said that they are absent.  

- Dedicated surveys over the western, southern, and northern shelf slopes, that were 

not covered in this study, could be carried out to determine Cuvier’s beaked whale 

distribution relative to the predicted distribution within the Bay of Biscay, as 

identified in chapter 3 of this study.  

- Expand research off the ferry line at right angles to the ferry track. The width to 

expand on off the line could be determined by a buffer zone of the distances (m) at 

which Cuvier’s beaked whales are observed from the vessel. Also running lines east 

to west through Biscay will help to expand the knowledge of the movements. 

- Conduct surveys over the continental shelf and submarine canyons of the 

Porcupine Bight, west of Ireland and Rockall Trough area, northwest of Ireland, to 

help identify possibly northward extensions of the range of Cuvier’s beaked whale 

- Comparing sightings of this study with sightings taken from another route further 

west, such as the Brittany ferries from Plymouth-Santander, and with sightings 

from another survey team onboard the Pride of Bilbao - ‘ORCA’, to see if the 

results fit with the sightings already recorded.  

- Linking the distribution of all beaked whale species found in the Bay of Biscay and 

in waters around the UK and Ireland to temporally variable parameters such as sea 
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surface temperature and chlorophyll-a from remote sensing. Both these data sets 

can be used as proxies for understanding climate change and the effects on the 

marine mammals and the marine environment in general.  
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Appendix 1 
 

Below are a series of maps showing the survey effort (km) for each grid cell size (5km, 
10km, 15km, 20km, 25km) for sea states 0, 1 and 2.  
 
Grid cell size 5km: 

 
 

5km grid cell size 
Sea state =< 0 

5km grid cell size 
Sea state =< 1 
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Grid cell size 10km: 
 

 
 

5km grid cell size 
Sea state =< 2 

10km grid cell size 
Sea state =< 0 
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10km grid cell size 
Sea state =< 1 

10km grid cell size 
Sea state =< 2 
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Grid cell size 15km: 
 

 
 

 
 

15km grid cell size 
Sea state =< 0 

15km grid cell size 
Sea state =< 1 
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Grid cell size 20km: 
 

 
 

15km grid cell size 
Sea state =< 2 

20km grid cell size 
Sea state =< 0
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20km grid cell size 
Sea state =< 1 

20km grid cell size 
Sea state =< 2
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Grid cell size 25km: 
 

 
 

 
 

25km grid cell size 
Sea state =< 0

25km grid cell size 
Sea state =< 1 
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25km grid cell size 
Sea state =< 2

 



Appendix 2 
AIC forwards-backwards (Raw data) 

 
5km AIC outputs  
 
1. All variables 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_depth, k = 4) + s(R_Depth, k = 4) + s(Ave_Slope,  
    k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos,  
    k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3844     0.2173   -6.37 1.89e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_depth) 2.310        3 11.735 0.00835 ** 
s(R_Depth)   1.745        3  5.807 0.12138    
s(Ave_Slope) 1.000        1  1.037 0.30849    
s(Ave_Sin)   2.100        3  3.880 0.27468    
s(R_Sin)     2.924        3  8.050 0.04499 *  
s(Ave_Cos)   2.553        3 12.373 0.00621 ** 
s(R_Cos)     1.000        1  0.727 0.39384    
s(SST)       1.679        3  4.082 0.25279    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.164   Deviance explained = 20.6% 
UBRE score = 0.081775  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  180.49  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  180.69  
df          (n-df.residual)               =  15.31  
 
Overdispersion (Deviance/df.residual )    =  1  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 213.11  
  
 
2. Minus A_Depth 



Appendix 2                                                                                                                       177 

Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Depth, k = 4) + s(Ave_Slope, k = 4) + s(Ave_Sin,  
    k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2738     0.1968  -6.472 9.65e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value   
s(R_Depth)   1.000        1  2.348  0.1254   
s(Ave_Slope) 2.827        3 11.005  0.0117 * 
s(Ave_Sin)   1.543        3  2.711  0.4384   
s(R_Sin)     2.892        3 10.734  0.0133 * 
s(Ave_Cos)   2.683        3  9.336  0.0251 * 
s(R_Cos)     1.000        1  1.373  0.2413   
s(SST)       1.715        3  4.208  0.2399   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.111   Deviance explained = 17.4% 
UBRE score = 0.10241  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  187.86  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  182.34  
df          (n-df.residual)               =  13.66  
 
Overdispersion (Deviance/df.residual )    =  1.03  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 217.17  
  
  
3. Minus R_Depth 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Slope, k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) +  
    s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_depth,  
    k = 4) 
 
Parametric coefficients: 
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            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2997     0.2004  -6.484 8.91e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_Slope) 1.000        1  3.346 0.06735 .  
s(Ave_Sin)   1.000        1  0.152 0.69680    
s(R_Sin)     2.749        3  6.367 0.09507 .  
s(Ave_Cos)   1.398        3  9.957 0.01894 *  
s(R_Cos)     1.000        1  0.312 0.57641    
s(SST)       1.723        3  4.465 0.21540    
s(Ave_depth) 2.259        3 13.557 0.00357 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.123   Deviance explained = 16.7% 
UBRE score = 0.08429  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  189.35  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  184.87  
df          (n-df.residual)               =  11.13  
 
Overdispersion (Deviance/df.residual )    =  1.02  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 213.61  
 
 
4. Minus A_Slope 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) +  
    s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.234      0.190  -6.494 8.38e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value   
s(Ave_Sin)   1.000        1  0.071  0.7899   
s(R_Sin)     2.586        3  5.540  0.1363   
s(Ave_Cos)   1.000        1  5.913  0.0150 * 
s(R_Cos)     1.000        1  0.222  0.6373   
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s(SST)       1.836        3  5.183  0.1589   
s(Ave_depth) 2.088        3 10.177  0.0171 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.0983   Deviance explained = 14.5% 
UBRE score = 0.093503  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  194.4  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  186.49  
df          (n-df.residual)               =  9.51  
 
Overdispersion (Deviance/df.residual )    =  1.04  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 215.42  
 
 
5. Minus A_Sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) + s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3005     0.2009  -6.475  9.5e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(R_Sin)     2.755        3  6.270 0.09918 .  
s(Ave_Cos)   1.481        3 10.018 0.01841 *  
s(R_Cos)     1.000        1  0.475 0.49087    
s(SST)       1.735        3  4.606 0.20303    
s(Ave_depth) 2.267        3 13.435 0.00379 ** 
s(Ave_Slope) 1.000        1  3.304 0.06911 .  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.125   Deviance explained = 16.7% 
UBRE score = 0.075105  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  189.32  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  185.76  
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df          (n-df.residual)               =  10.24  
 
Overdispersion (Deviance/df.residual )    =  1.02  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 211.8  
 
 
6. Minus R_Sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) +  
    s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2586     0.1975  -6.371 1.88e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_Cos)   1.924        3  8.668 0.03405 *  
s(R_Cos)     1.000        1  6.026 0.01410 *  
s(SST)       1.864        3  5.435 0.14257    
s(Ave_depth) 2.340        3 15.850 0.00122 ** 
s(Ave_Slope) 1.000        1  2.838 0.09205 .  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.114   Deviance explained = 14.8% 
UBRE score = 0.076347  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  193.78  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  187.87  
df          (n-df.residual)               =  8.13  
 
Overdispersion (Deviance/df.residual )    =  1.03  
AIC according to formula: -2log(Likelihood) + 2*df   = 212.04  
 
 
7. Minus A_COS 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_depth, k = 4) +  
    s(Ave_Slope, k = 4) + s(R_Sin, k = 4) 
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Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.1779     0.1829  -6.441 1.19e-10 *** 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(R_Cos)     1.000        1  0.499 0.48008    
s(SST)       1.879        3  5.614 0.13195    
s(Ave_depth) 2.192        3 13.815 0.00317 ** 
s(Ave_Slope) 1.000        1  1.317 0.25104    
s(R_Sin)     1.624        3  3.705 0.29513    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.0883   Deviance explained = 11.8% 
UBRE score = 0.1065  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  200.59  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  188.31  
df          (n-df.residual)               =  7.69  
 
Overdispersion (Deviance/df.residual )    =  1.07  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 217.98  
 
 
8. Minus R_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(SST, k = 4) + s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) +  
    s(R_Sin, k = 4) + s(Ave_Cos, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.286      0.197  -6.526 6.74e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(SST)       1.747        3  4.618 0.20198    
s(Ave_depth) 2.223        3 14.148 0.00271 ** 
s(Ave_Slope) 1.000        2  3.684 0.15851    
s(R_Sin)     2.745        3 10.452 0.01509 *  
s(Ave_Cos)   1.000        1  7.368 0.00664 ** 
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--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.126   Deviance explained = 16.2% 
UBRE score = 0.065744  Scale est. = 1         n = 197 
 
Dispersion parameter                      =  1  
Deviance                                  =  190.52  
n           (null degrees of freedom)     =  196  
df.residual (residual degrees of freedom) =  187.28  
df          (n-df.residual)               =  8.72  
 
Overdispersion (Deviance/df.residual )    =  1.02  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 209.95  
 
 
9. Minus SST 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) + s(R_Sin,  
    k = 4) + s(Ave_Cos, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.4410     0.2136  -6.746 1.52e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_depth) 2.266        3 16.217 0.00102 ** 
s(Ave_Slope) 1.000        2  3.853 0.14569    
s(R_Sin)     2.791        3 11.046 0.01148 *  
s(Ave_Cos)   1.000        1  8.297 0.00397 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =   0.13   Deviance explained = 16.6% 
UBRE score = 0.015849  Scale est. = 1         n = 208 
 
Dispersion parameter                      =  1  
Deviance                                  =  195.18  
n           (null degrees of freedom)     =  207  
df.residual (residual degrees of freedom) =  199.94  
df          (n-df.residual)               =  7.06  
 
Overdispersion (Deviance/df.residual )    =  0.98  
AIC according to formula: -2log(Likelihood) + 2*df   = 211.3  
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10km AIC outputs  
 
1. All variables 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_depth, k = 4) + s(R_Depth, k = 4) + s(Ave_Slope,  
    k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos,  
    k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3345     0.2028   -6.58 4.71e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_depth) 2.296        3 27.194 5.36e-06 *** 
s(R_Depth)   1.000        1  0.068    0.794     
s(Ave_Slope) 1.000        1  0.082    0.775     
s(Ave_Sin)   1.000        1  0.640    0.424     
s(R_Sin)     1.000        1  0.010    0.922     
s(Ave_Cos)   1.000        1  2.377    0.123     
s(R_Cos)     1.000        1  0.775    0.379     
s(SST)       1.691        3  3.424    0.331     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.168   Deviance explained = 19.4% 
UBRE score = 0.030505  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  185.16  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  190.01  
df          (n-df.residual)               =  9.99  
 
Overdispersion (Deviance/df.residual )    =  0.97 
 
 
2. Minus A_Depth 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Depth, k = 4) + s(Ave_Slope, k = 4) + s(Ave_Sin,  
    k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
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    s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2361     0.1877  -6.584 4.57e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(R_Depth)   1.000        1  2.318 0.12790    
s(Ave_Slope) 2.835        3 15.147 0.00170 ** 
s(Ave_Sin)   1.000        1  0.274 0.60077    
s(R_Sin)     1.000        1  2.151 0.14244    
s(Ave_Cos)   1.000        1  2.489 0.11467    
s(R_Cos)     1.000        1  2.713 0.09954 .  
s(SST)       1.930        3  6.295 0.09810 .  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.106   Deviance explained = 13.1% 
UBRE score = 0.10107  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  199.78  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  190.23  
df          (n-df.residual)               =  9.77  
 
Overdispersion (Deviance/df.residual )    =  1.05  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 221.31 
 
 
3. Minus R_Depth 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Slope, k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) +  
    s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_depth,  
    k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3343     0.2026  -6.585 4.54e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
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               edf Est.rank Chi.sq  p-value     
s(Ave_Slope) 1.000        1  7.467  0.00628 **  
s(Ave_Sin)   1.000        1  0.801  0.37077     
s(R_Sin)     1.000        1  0.020  0.88770     
s(Ave_Cos)   1.000        1  2.472  0.11591     
s(R_Cos)     1.000        1  1.202  0.27292     
s(SST)       1.698        3  3.493  0.32169     
s(Ave_depth) 2.332        3 27.594 4.42e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.172   Deviance explained = 19.4% 
UBRE score = 0.02125  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  185.21  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  190.97  
df          (n-df.residual)               =  9.03  
 
Overdispersion (Deviance/df.residual )    =  0.97  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 205.27 
 
 
4. Minus A_Slope 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) +  
    s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3032     0.1976  -6.596 4.23e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Sin)   1.000        1  1.005 0.316165     
s(R_Sin)     1.197        3  2.529 0.469986     
s(Ave_Cos)   1.000        1  3.418 0.064486 .   
s(R_Cos)     1.000        1  1.578 0.208996     
s(SST)       1.763        3  4.031 0.258109     
s(Ave_depth) 2.234        3 19.523 0.000213 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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R-sq.(adj) =  0.125   Deviance explained = 15.7% 
UBRE score = 0.055637  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  193.79  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  191.81  
df          (n-df.residual)               =  8.19  
 
Overdispersion (Deviance/df.residual )    =  1.01  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 212.18 
 
 
5. Minus A_Sin 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) + s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.336      0.203  -6.582 4.66e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Sin)     1.000        1  0.781   0.3769     
s(Ave_Cos)   1.000        1  2.578   0.1083     
s(R_Cos)     1.005        3  2.268   0.5186     
s(SST)       1.691        3  3.435   0.3294     
s(Ave_depth) 2.323        3 26.967 5.98e-06 *** 
s(Ave_Slope) 1.000        1  7.772   0.0053 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.168   Deviance explained =   19% 
UBRE score = 0.015752  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  186.13  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  191.98  
df          (n-df.residual)               =  8.02  
 
Overdispersion (Deviance/df.residual )    =  0.97  
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AIC according to formula: -2log(Likelihood) + 2*df   = 204.17  
 
 
6. Minus R_Sin 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) +  
    s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3212     0.2011  -6.569 5.08e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Cos)   1.000        1  2.795   0.0945 .   
s(R_Cos)     1.059        3  6.230   0.1010     
s(SST)       1.726        3  3.677   0.2986     
s(Ave_depth) 2.299        3 27.057 5.73e-06 *** 
s(Ave_Slope) 1.000        2  7.901   0.0192 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.166   Deviance explained = 18.6% 
UBRE score = 0.011203  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  187.08  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  192.92  
df          (n-df.residual)               =  7.08  
 
Overdispersion (Deviance/df.residual )    =  0.97  
  
AIC according to formula: -2log(Likelihood) + 2*df   = 203.25  
 
 
7. Minus A_COS 
Family: binomial 
Link function: logit 
Formula: 
Y1 ~ 1 + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_depth, k = 4) +  
    s(Ave_Slope, k = 4) 
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Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2663     0.1908  -6.636 3.22e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Cos)     1.678        3  6.660  0.08355 .   
s(SST)       1.845        3  4.596  0.20385     
s(Ave_depth) 2.272        3 28.971 2.27e-06 *** 
s(Ave_Slope) 1.000        1  7.431  0.00641 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.175   Deviance explained = 18.2% 
UBRE score = 0.012637  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  187.95  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  193.21  
df          (n-df.residual)               =  6.79  
 
Overdispersion (Deviance/df.residual )    =  0.97  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 203.54 
 
 
8. Minus R_Cos 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(SST, k = 4) + s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) +  
    s(Ave_Cos, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.2504     0.1892   -6.61 3.85e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(SST)       1.714        3  3.558   0.3134     
s(Ave_depth) 2.273        3 24.267 2.20e-05 *** 
s(Ave_Slope) 1.367        3  6.460   0.0912 .   
s(Ave_Cos)   1.000        1  1.901   0.1679     
--- 
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Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.157   Deviance explained =   17% 
UBRE score = 0.022157  Scale est. = 1         n = 201 
 
Dispersion parameter                      =  1  
Deviance                                  =  190.75  
n           (null degrees of freedom)     =  200  
df.residual (residual degrees of freedom) =  193.65  
df          (n-df.residual)               =  6.35  
 
Overdispersion (Deviance/df.residual )    =  0.99  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 205.45  
 
 
9. Minus SST 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_depth, k = 4) + s(Ave_Slope, k = 4) + s(Ave_Cos,  
    k = 4) + s(R_Cos, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.4077     0.2101  -6.701 2.07e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_depth) 2.376        3 29.669 1.62e-06 *** 
s(Ave_Slope) 1.000        2  7.962   0.0187 *   
s(Ave_Cos)   1.000        1  3.257   0.0711 .   
s(R_Cos)     1.000        1  4.153   0.0416 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.168   Deviance explained = 18.7% 
UBRE score = -0.02397  Scale est. = 1         n = 208 
 
Dispersion parameter                      =  1  
Deviance                                  =  190.26  
n           (null degrees of freedom)     =  207  
df.residual (residual degrees of freedom) =  201.62  
df          (n-df.residual)               =  5.38  
 
Overdispersion (Deviance/df.residual )    =  0.94  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 203.01 
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15km AIC outputs  
 
1. All variables  
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Depth, k = 4) + s(R_Depth, k = 4) + s(Ave_Slope,  
    k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos,  
    k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.6585     0.2928  -5.664 1.48e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Depth) 2.566        3 23.110 3.83e-05 *** 
s(R_Depth)   1.000        1  3.501   0.0613 .   
s(Ave_Slope) 1.000        1  1.011   0.3146     
s(Ave_Sin)   1.000        1  1.410   0.2351     
s(R_Sin)     1.000        1  4.923   0.0265 *   
s(Ave_Cos)   1.000        1  6.018   0.0142 *   
s(R_Cos)     1.000        1  2.806   0.0939 .   
s(SST)       1.719        3  6.671   0.0831 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.175   Deviance explained = 22.2% 
UBRE score = -0.008305  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  180.73  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  193.71  
df          (n-df.residual)               =  10.29  
 
Overdispersion (Deviance/df.residual )    =  0.93  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 203.3 
 
 
2. Minus A_Depth 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Depth, k = 4) + s(Ave_Slope, k = 4) + s(Ave_Sin,  
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    k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8759     0.3696  -5.076 3.86e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(R_Depth)   2.255        3 13.268 0.00409 ** 
s(Ave_Slope) 2.998        3 13.465 0.00373 ** 
s(Ave_Sin)   2.804        3  8.571 0.03558 *  
s(R_Sin)     1.000        1  2.984 0.08407 .  
s(Ave_Cos)   2.848        3 11.274 0.01033 *  
s(R_Cos)     1.000        1  5.079 0.02421 *  
s(SST)       1.556        3  4.442 0.21755    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.175   Deviance explained = 24.1% 
UBRE score = 0.010675  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  176.27  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  189.54  
df          (n-df.residual)               =  14.46  
 
Overdispersion (Deviance/df.residual )    =  0.93  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 207.19 
 
 
3. Minus R_Depth 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Slope, k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) +  
    s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth,  
    k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.4299     0.2135  -6.698 2.11e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
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               edf Est.rank Chi.sq  p-value     
s(Ave_Slope) 1.000        1 13.774 0.000206 *** 
s(Ave_Sin)   1.000        1  0.014 0.904269     
s(R_Sin)     1.000        1  3.669 0.055430 .   
s(Ave_Cos)   1.429        3  7.320 0.062370 .   
s(R_Cos)     1.000        1  0.858 0.354202     
s(SST)       1.716        3  6.810 0.078208 .   
s(Ave_Depth) 2.534        3 21.708  7.5e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =   0.17   Deviance explained = 20.4% 
UBRE score = 0.0056608  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  184.8  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  194.32  
df          (n-df.residual)               =  9.68  
 
Overdispersion (Deviance/df.residual )    =  0.95  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 206.16 
 
 
4. Minus A_Slope 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) +  
    s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3878     0.2106  -6.588 4.44e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Sin)   1.237        3  2.941 0.400860     
s(R_Sin)     1.000        1  1.709 0.191102     
s(Ave_Cos)   2.874        3 17.807 0.000482 *** 
s(R_Cos)     1.000        1  0.882 0.347589     
s(SST)       1.915        3  8.477 0.037117 *   
s(Ave_Depth) 1.000        1  3.662 0.055667 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.118   Deviance explained = 16.2% 
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UBRE score = 0.046855  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  194.55  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  194.97  
df          (n-df.residual)               =  9.03  
 
Overdispersion (Deviance/df.residual )    =  1  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 214.61  
 
 
5. Minus A_Sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) + s(Ave_Depth, k = 4) + s(Ave_Slope, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.4276     0.2125  -6.717 1.85e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Sin)     1.000        1  6.201 0.012770 *   
s(Ave_Cos)   1.408        3  7.133 0.067768 .   
s(R_Cos)     1.000        1  0.819 0.365497     
s(SST)       1.717        3  6.797 0.078663 .   
s(Ave_Depth) 2.539        3 21.955 6.67e-05 *** 
s(Ave_Slope) 1.000        1 13.904 0.000192 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.175   Deviance explained = 20.4% 
UBRE score = -0.0039693  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  184.86  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  195.34  
df          (n-df.residual)               =  8.66  
 
Overdispersion (Deviance/df.residual )    =  0.95  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 204.19  
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6. Minus R_sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) +  
    s(Ave_Depth, k = 4) + s(Ave_Slope, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3286     0.1965  -6.762 1.36e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Cos)   1.000        1  3.954 0.046767 *   
s(R_Cos)     1.000        2  3.856 0.145475     
s(SST)       1.824        3  7.259 0.064088 .   
s(Ave_Depth) 2.215        3 20.640 0.000125 *** 
s(Ave_Slope) 1.000        1  9.565 0.001983 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.153   Deviance explained = 17.4% 
UBRE score = 0.013949  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  191.78  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  196.96  
df          (n-df.residual)               =  7.04  
 
Overdispersion (Deviance/df.residual )    =  0.97  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 207.86 
 
 
7. Minus A_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth, k = 4) +  
    s(Ave_Slope, k = 4) + s(R_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3119     0.1925  -6.815 9.44e-12 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Cos)     1.000        1  0.137 0.711007     
s(SST)       1.747        3  6.682 0.082766 .   
s(Ave_Depth) 2.296        3 24.250 2.21e-05 *** 
s(Ave_Slope) 1.000        1 14.256 0.000160 *** 
s(R_Sin)     1.395        3  6.841 0.077133 .   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.165   Deviance explained =   18% 
UBRE score = 0.010578  Scale est. = 1         n = 205 
 
Dispersion parameter                      =  1  
Deviance                                  =  190.29  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  196.56  
df          (n-df.residual)               =  7.44  
 
Overdispersion (Deviance/df.residual )    =  0.97  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 207.17  
  
  
8. Minus R_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(SST, k = 4) + s(Ave_Depth, k = 4) + s(Ave_Slope, k = 4) +  
    s(R_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3110     0.1922   -6.82 9.08e-12 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(SST)       1.749        3  6.619   0.0851 .   
s(Ave_Depth) 2.342        3 29.763 1.55e-06 *** 
s(Ave_Slope) 1.000        1 15.152 9.92e-05 *** 
s(R_Sin)     1.245        3  9.468   0.0237 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.169   Deviance explained = 17.9% 
UBRE score = 0.0015427  Scale est. = 1         n = 205 
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Dispersion parameter                      =  1  
Deviance                                  =  190.64  
n           (null degrees of freedom)     =  204  
df.residual (residual degrees of freedom) =  197.66  
df          (n-df.residual)               =  6.34  
 
Overdispersion (Deviance/df.residual )    =  0.96  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 205.32 
 
 
9. Minus SST 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Depth, k = 4) + s(Ave_Slope, k = 4) + s(R_Sin,  
    k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.3404     0.1968   -6.81 9.75e-12 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Depth) 2.439        3 30.272 1.21e-06 *** 
s(Ave_Slope) 1.000        1 15.562 7.99e-05 *** 
s(R_Sin)     1.544        3  9.799   0.0204 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.153   Deviance explained = 16.4% 
UBRE score = -0.0023634  Scale est. = 1         n = 208 
 
Dispersion parameter                      =  1  
Deviance                                  =  195.54  
n           (null degrees of freedom)     =  207  
df.residual (residual degrees of freedom) =  202.02  
df          (n-df.residual)               =  4.98  
 
Overdispersion (Deviance/df.residual )    =  0.97  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 207.51 
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20km AIC outputs 
 
1. All variables  
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Depth, k = 4) + s(R_Depth, k = 4) + s(Ave_Slope,  
    k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos,  
    k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.2498     0.4451  -5.055  4.3e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_Depth) 2.178        3 10.834 0.01266 *  
s(R_Depth)   2.639        3  5.855 0.11890    
s(Ave_Slope) 1.000        1  0.319 0.57198    
s(Ave_Sin)   1.000        1  6.046 0.01394 *  
s(R_Sin)     1.000        1  9.616 0.00193 ** 
s(Ave_Cos)   1.000        1  9.203 0.00242 ** 
s(R_Cos)     1.000        1  0.475 0.49077    
s(SST)       2.075        3 10.517 0.01464 *  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.326   Deviance explained = 35.3% 
UBRE score = -0.1368  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  149.44  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  190.11  
df          (n-df.residual)               =  11.89  
 
Overdispersion (Deviance/df.residual )    =  0.79  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 175.23 
 
 
2. Minus A_Depth 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Depth, k = 4) + s(Ave_Slope, k = 4) + s(Ave_Sin,  
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    k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8077     0.3015  -5.996 2.03e-09 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Depth)   1.000        1  0.298 0.585408     
s(Ave_Slope) 1.000        1  1.034 0.309154     
s(Ave_Sin)   1.000        1 25.456 4.53e-07 *** 
s(R_Sin)     1.000        1 11.418 0.000727 *** 
s(Ave_Cos)   1.000        1 14.199 0.000164 *** 
s(R_Cos)     1.000        1  1.993 0.158063     
s(SST)       2.219        3 15.446 0.001472 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.283   Deviance explained = 29.6% 
UBRE score = -0.10855  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  162.53  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  193.78  
df          (n-df.residual)               =  8.22  
 
Overdispersion (Deviance/df.residual )    =  0.84  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 180.96  
  
 
3. Minus R_Depth 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Slope, k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) +  
    s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth,  
    k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -2.068      0.394  -5.248 1.54e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
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               edf Est.rank Chi.sq p-value    
s(Ave_Slope) 2.591        3  4.519 0.21056    
s(Ave_Sin)   1.620        3  9.321 0.02531 *  
s(R_Sin)     1.000        1  6.233 0.01254 *  
s(Ave_Cos)   1.000        1  9.356 0.00222 ** 
s(R_Cos)     1.000        1  1.078 0.29908    
s(SST)       2.059        3 10.275 0.01637 *  
s(Ave_Depth) 2.218        3 10.915 0.01219 *  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =   0.32   Deviance explained = 34.5% 
UBRE score = -0.13199  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  151.23  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  190.51  
df          (n-df.residual)               =  11.49  
 
Overdispersion (Deviance/df.residual )    =  0.79  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 176.21 
 
 
4.  Minus A_Slope 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) +  
    s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.7945     0.2862  -6.271 3.58e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Sin)   1.000        1 32.099 1.47e-08 *** 
s(R_Sin)     1.000        1 16.164 5.81e-05 *** 
s(Ave_Cos)   1.000        1 11.259 0.000792 *** 
s(R_Cos)     1.000        1  2.819 0.093174 .   
s(SST)       2.191        3 14.023 0.002874 **  
s(Ave_Depth) 1.000        1  6.037 0.014010 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.308   Deviance explained = 31.2% 
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UBRE score = -0.13618  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  158.97  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  194.81  
df          (n-df.residual)               =  7.19  
 
Overdispersion (Deviance/df.residual )    =  0.82  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 175.35 
 
 
5. Minus A_Sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) + s(Ave_Depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.5231     0.4408  -5.724 1.04e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Sin)     1.000        1  1.368 0.242201     
s(Ave_Cos)   1.000        1 10.937 0.000943 *** 
s(R_Cos)     1.691        3  3.756 0.289043     
s(SST)       2.099        3  9.931 0.019161 *   
s(Ave_Depth) 2.987        3 26.137 8.93e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.269   Deviance explained =   28% 
UBRE score = -0.084677  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  166.26  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  193.22  
df          (n-df.residual)               =  8.78  
 
Overdispersion (Deviance/df.residual )    =  0.86  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 185.81 
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6. Minus R_Sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) +  
    s(Ave_Depth, k = 4) + s(Ave_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8026     0.2841  -6.346 2.21e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Cos)   1.000        1 14.203 0.000164 *** 
s(R_Cos)     1.000        1  4.292 0.038290 *   
s(SST)       2.148        3 11.313 0.010150 *   
s(Ave_Depth) 1.776        3 13.841 0.003130 **  
s(Ave_Sin)   2.100        3 19.529 0.000213 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.309   Deviance explained = 31.6% 
UBRE score = -0.13266  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  158.02  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  193.98  
df          (n-df.residual)               =  8.02  
 
Overdispersion (Deviance/df.residual )    =  0.81  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 176.07  
  
 
7. Minus A_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth, k = 4) +  
    s(Ave_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.5425     0.2355  -6.551 5.73e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Cos)     2.690        3  7.066 0.069836 .   
s(SST)       2.176        3 12.992 0.004655 **  
s(Ave_Depth) 1.000        1 14.205 0.000164 *** 
s(Ave_Sin)   2.019        3 17.247 0.000629 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.236   Deviance explained = 24.8% 
UBRE score = -0.057016  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
Deviance                                  =  173.66  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  194.11  
df          (n-df.residual)               =  7.89  
 
Overdispersion (Deviance/df.residual )    =  0.89  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 191.43  
 
 
8. Minus R_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(SST, k = 4) + s(Ave_Depth, k = 4) + s(Ave_Sin, k = 4) +  
    s(Ave_Cos, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.6583     0.2494   -6.65 2.94e-11 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(SST)       2.130        3  10.39 0.015527 *   
s(Ave_Depth) 2.397        3  18.62 0.000327 *** 
s(Ave_Sin)   2.170        3  12.09 0.007098 **  
s(Ave_Cos)   1.000        1  14.68 0.000127 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =    0.3   Deviance explained =   31% 
UBRE score = -0.12894  Scale est. = 1         n = 203 
 
Dispersion parameter                      =  1  
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Deviance                                  =  159.43  
n           (null degrees of freedom)     =  202  
df.residual (residual degrees of freedom) =  194.3  
df          (n-df.residual)               =  7.7  
 
Overdispersion (Deviance/df.residual )    =  0.82  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 176.83  
 
 
9. Minus SST 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Depth, k = 4) + s(Ave_Sin, k = 4) + s(Ave_Cos,  
    k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8162     0.2861  -6.349 2.17e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Depth) 2.638        3  18.29 0.000383 *** 
s(Ave_Sin)   2.077        3  10.69 0.013508 *   
s(Ave_Cos)   1.000        1  17.80 2.46e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.264   Deviance explained = 27.6% 
UBRE score = -0.12141  Scale est. = 1         n = 208 
 
Dispersion parameter                      =  1  
Deviance                                  =  169.32  
n           (null degrees of freedom)     =  207  
df.residual (residual degrees of freedom) =  201.29  
df          (n-df.residual)               =  5.71  
 
Overdispersion (Deviance/df.residual )    =  0.84  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 182.75 
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25km AIC outputs 
 
1. All variables  
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Depth, k = 4) + s(R_Depth, k = 4) + s(Ave_Slope,  
    k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos,  
    k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.7450     0.3121  -5.591 2.26e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_Depth) 2.388        3 11.812 0.00806 ** 
s(R_Depth)   1.000        1  0.201 0.65424    
s(Ave_Slope) 1.000        1  0.512 0.47440    
s(Ave_Sin)   1.000        1  0.081 0.77605    
s(R_Sin)     1.000        1  7.090 0.00775 ** 
s(Ave_Cos)   1.000        1  1.039 0.30811    
s(R_Cos)     1.000        1  3.583 0.05836 .  
s(SST)       1.954        3  5.381 0.14595    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.208   Deviance explained = 23.2% 
UBRE score = -0.016321  Scale est. = 1         n = 204 
 
Dispersion parameter                      =  1  
Deviance                                  =  177.99  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  192.66  
df          (n-df.residual)               =  10.34  
 
Overdispersion (Deviance/df.residual )    =  0.92  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 200.67  
 
 
2. Minus A_Depth 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Depth, k = 4) + s(Ave_Slope, k = 4) + s(Ave_Sin,  
    k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
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    s(SST, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -1.586      0.289  -5.489 4.03e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(R_Depth)   2.064        3  5.846 0.11933    
s(Ave_Slope) 1.000        1  0.001 0.97150    
s(Ave_Sin)   1.000        1  7.242 0.00712 ** 
s(R_Sin)     2.418        3  8.658 0.03420 *  
s(Ave_Cos)   1.000        1  6.267 0.01230 *  
s(R_Cos)     1.000        1  1.548 0.21336    
s(SST)       1.893        3  5.575 0.13421    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.184   Deviance explained = 20.4% 
UBRE score = 0.015379  Scale est. = 1         n = 204 
 
Dispersion parameter                      =  1  
Deviance                                  =  184.39  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  192.62  
df          (n-df.residual)               =  10.38  
 
Overdispersion (Deviance/df.residual )    =  0.96  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 207.14  
 
 
3. Minus R_Depth 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Slope, k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) +  
    s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth,  
    k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.7418     0.3171  -5.494 3.94e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
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s(Ave_Slope) 1.000        1  0.756 0.38459    
s(Ave_Sin)   1.000        1  0.091 0.76315    
s(R_Sin)     1.000        1  6.717 0.00955 ** 
s(Ave_Cos)   1.000        1  2.055 0.15172    
s(R_Cos)     1.000        1  3.343 0.06749 .  
s(SST)       2.003        3  5.796 0.12196    
s(Ave_Depth) 2.391        3 11.456 0.00950 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.212   Deviance explained = 23.1% 
UBRE score = -0.025167  Scale est. = 1         n = 204 
 
Dispersion parameter                      =  1  
Deviance                                  =  178.08  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  193.61  
df          (n-df.residual)               =  9.39  
 
Overdispersion (Deviance/df.residual )    =  0.92  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 198.87 
 
 
4. Minus A_Slope 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) +  
    s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.7821     0.3209  -5.554  2.8e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_Sin)   1.000        1  0.852 0.35593    
s(R_Sin)     1.000        1  7.062 0.00787 ** 
s(Ave_Cos)   1.000        1  4.438 0.03515 *  
s(R_Cos)     1.000        1  3.482 0.06205 .  
s(SST)       1.997        3  6.151 0.10450    
s(Ave_Depth) 2.374        3 12.409 0.00610 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.212   Deviance explained = 22.7% 
UBRE score = -0.030602  Scale est. = 1         n = 204 
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Dispersion parameter                      =  1  
Deviance                                  =  179.02  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  194.63  
df          (n-df.residual)               =  8.37  
 
Overdispersion (Deviance/df.residual )    =  0.92  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 197.76  
 
 
5. Minus A_sin 
 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Sin, k = 4) + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) +  
    s(SST, k = 4) + s(Ave_Depth, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.8037     0.3239  -5.568 2.58e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(R_Sin)     1.000        1 12.972 0.000316 *** 
s(Ave_Cos)   1.000        1  4.062 0.043849 *   
s(R_Cos)     1.000        1  3.210 0.073180 .   
s(SST)       1.989        3  6.035 0.109900     
s(Ave_Depth) 2.317        3 21.374  8.8e-05 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.214   Deviance explained = 22.6% 
UBRE score = -0.040315  Scale est. = 1         n = 204 
 
Dispersion parameter                      =  1  
Deviance                                  =  179.16  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  195.69  
df          (n-df.residual)               =  7.31  
 
Overdispersion (Deviance/df.residual )    =  0.92  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 195.78  
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6. Minus R_sin 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Cos, k = 4) + s(R_Cos, k = 4) + s(SST, k = 4) +  
    s(Ave_Depth, k = 4) + s(Ave_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.4543     0.2252  -6.458 1.06e-10 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq  p-value     
s(Ave_Cos)   1.000        1  5.069 0.024356 *   
s(R_Cos)     1.000        1  1.129 0.287973     
s(SST)       1.954        3  5.936 0.114764     
s(Ave_Depth) 2.281        3  9.066 0.028423 *   
s(Ave_Sin)   1.000        1 11.101 0.000863 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.178   Deviance explained = 19.1% 
UBRE score = -0.00025076  Scale est. = 1         n = 204 
 
Dispersion parameter                      =  1  
Deviance                                  =  187.48  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  195.76  
df          (n-df.residual)               =  7.24  
 
Overdispersion (Deviance/df.residual )    =  0.96  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 203.95  
 
 
7. Minus A_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(R_Cos, k = 4) + s(SST, k = 4) + s(Ave_Depth, k = 4) +  
    s(Ave_Sin, k = 4) + s(R_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.0393     0.3946  -5.168 2.36e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(R_Cos)     1.000        1  6.149 0.01315 *  
s(SST)       2.036        3  7.305 0.06278 .  
s(Ave_Depth) 2.378        3 14.381 0.00243 ** 
s(Ave_Sin)   1.000        1  0.046 0.83102    
s(R_Sin)     2.050        3 10.197 0.01696 *  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.206   Deviance explained = 22.3% 
UBRE score = -0.025524  Scale est. = 1         n = 204 
 
Dispersion parameter                      =  1  
Deviance                                  =  179.87  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  194.54  
df          (n-df.residual)               =  8.46  
 
Overdispersion (Deviance/df.residual )    =  0.92  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 198.79 
 
 
8. Minus R_Cos 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(SST, k = 4) + s(Ave_Depth, k = 4) + s(Ave_Sin, k = 4) +  
    s(R_Sin, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -1.4952     0.2727  -5.484 4.16e-08 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value     
s(SST)       2.034        3  7.316 0.06249 .   
s(Ave_Depth) 2.313        3 16.332 0.00097 *** 
s(Ave_Sin)   1.609        3  2.289 0.51455     
s(R_Sin)     1.000        1  1.993 0.15807     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =   0.16   Deviance explained = 17.2% 
UBRE score = 0.017638  Scale est. = 1         n = 204 
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Dispersion parameter                      =  1  
Deviance                                  =  191.69  
n           (null degrees of freedom)     =  203  
df.residual (residual degrees of freedom) =  196.04  
df          (n-df.residual)               =  6.96  
 
Overdispersion (Deviance/df.residual )    =  0.98  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 207.6 
 
 
9. Minus SST 
Family: binomial  
Link function: logit  
 
Formula: 
Y1 ~ 1 + s(Ave_Depth, k = 4) + s(Ave_Sin, k = 4) + s(R_Sin, k = 4) +  
    s(R_Cos, k = 4) 
 
Parametric coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.6378     0.5838  -4.519 6.22e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Approximate significance of smooth terms: 
               edf Est.rank Chi.sq p-value    
s(Ave_Depth) 2.560        3 15.068 0.00176 ** 
s(Ave_Sin)   1.000        2  0.858 0.65107    
s(R_Sin)     1.943        3  9.650 0.02179 *  
s(R_Cos)     1.000        1  6.729 0.00949 ** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
R-sq.(adj) =  0.179   Deviance explained = 20.5% 
UBRE score = -0.033218  Scale est. = 1         n = 208 
 
Dispersion parameter                      =  1  
Deviance                                  =  186.08  
n           (null degrees of freedom)     =  207  
df.residual (residual degrees of freedom) =  200.5  
df          (n-df.residual)               =  6.5  
 
Overdispersion (Deviance/df.residual )    =  0.93  
 
AIC according to formula: -2log(Likelihood) + 2*df   = 201.09 
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Sea surface temperature variation in the Bay of Biscay 

 
 

Over the ten years (1995 – 2007), effort sightings of Cuvier’s beaked whale were 

predominantly recorded in the southern Bay of Biscay coupled to a large underwater 

feature known as the CapBreton canyon. However, as found in the previous section of this 

study opportunistic sightings show a seasonal movement from the southern bay to the 

northern continental slopes. This following section will focus on SST variability in the Bay 

of Biscay in order to understand these seasonal movements. 

 

The average sea surface temperature was explored at three regions in the Bay of Biscay: 1-

southern Biscay (43 to 44.5°N, -2 to -6°W); 2-mid-Biscay (44.5 to 45.5°N, 1- to -2°W); 3-

northern Biscay (45.5 to 47°N, -2 to -6°W), between 1995 and 2006. Figure 5.16 shows the 

fluctuations of the average sea surface temperature between 1995 and 2006. Small 

fluctuations were observed between 1995 and 2001, followed by a drop in temperature 

during 2002, then a rise in 2003, after which temperature decreases in 2004 and then rises 

steadily during 2005 and 2006. The pattern of temperature variation was similar for each 

region, despite region 1 and 2 showing higher temperatures than region 3 (Figure 5.16). 
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Figure 1: Average SST (y-axis) per year (x-axis) for each region: south (solid line), middle 
(long dashed line), and north (small dashed line). 
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As expected sea surface temperatures show the normal seasonal cooling and warming 

patterns with cooler temperatures in winter and warmer temperatures in summer and 

during the transitional seasons, spring and autumn, temperatures warm up and cool down, 

respectively (Figure 1 and 2). These changes in SST are consistent with the work carried 

out by Valencia et al. (2004) that shows winters and summers in the Bay of Biscay are more 

or less stable and predictable, whereas spring and autumn are variable. In winter, apart 

from small fluctuations in the early years temperatures remain stable between 1995 and 

2006. During spring and summer, SST becomes more variable over the years in 

comparison to winter months. In spring, notable peaks occur in 2001 and 2003 for all three 

regions. In the northern region, SST starts to increase from 1996 to 1998, and after which 

SST declines until 2001, where it mirrors temperature changes in the south and mid 

regions. In summer, temperatures are higher than in spring. A decrease in temperature is 

observed between 1995 and 1998,  followed by an increase in 1999, after which 

temperatures drop from 1999 (by approximately 2°C) until 2002 then temperatures rise 

again by approximately 2°C in 2003. After 2003 temperatures drop in 2004 and then start 

to increase in 2005 and 2006. During Autumn, overall SST has started to decline. SST 

drops from 1995 to 1996 and then a high peak in temperature is observed in 1997 after 

which a steep drop in temperature is observed. Small fluctuations in temperature are 

observed between 1998 until 2001, after which temperatures appear constant until 2005 

then they increase.  

 

The minimum winter temperatures (Figure 3, blue line) show that the temperatures over 

the northern slopes of the Bay of Biscay, as indicated by the blue line, fluctuate around 

10°C. A drop in the minimum sea surface temperature can also be seen from 2004 in the 

south (black line) and 2005 in the middle (green) and northern (red) areas of the bay.   

 
The colour maps (Figure 4) show an example of the seasonal variation in the sea surface 

temperature for Bay of Biscay. A regular pattern observed from the satellite images for 

1995 to 2003, is an increase in temperature during the spring and summer months. 

Throughout each year, a general trend in warming of the southeastern corner of Biscay 

occurs from May to September, after which temperatures start to drop until May the 

following year. In 1997, 1998, 2001 and 2004, however the temperature increase in 

southeastern part of Biscay occurs from June to October. In this case, warmer water in 

May is apparent in the northeastern part of the Bay of Biscay.  
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Figure 2: Spatial and temporal variability of sea surface temperature (y-axis) over time (x-

axis). Southern Biscay 43-44.5°N (green line); mid Biscay 44.5-45.5°N (blue line); Northern 
Biscay 45.5-47°N (red line). 
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Figure 3: Minimum winter temperatures (y-axis) over time (x-axis) for four regions in the 

Bay of Biscay. Southern Biscay 43-44.5°N (black line); mid Biscay 44.5-45.5°N (green line); 
Northern Biscay 45.5-47°N (red line) and 47N to 48N (blue line). 
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 Figure 4: Average sea surface temperature for 2003 in February (a), May (b), August (c), 
November (d), showing the seasonal warming and cooling. 

 
 


