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by Gemma Stephenson

Complex deterministic models are an important tool for studying a wide range of systems.

Often though, such models are computationally too expensive to perform the many runs

required. In this case one option is to build a Gaussian process emulator which acts as a

surrogate, enabling fast prediction of the model output at specified input configurations.

Derivative information may be available, either through the running of an appropriate

adjoint model or as a result of some analysis previously performed. An emulator would

likely benefit from the inclusion of this derivative information. Whether further efficiency

is achieved, however, depends on the relation between the computational cost of obtaining

the derivatives and the value of the derivative information in the emulator. In our examples

we see that derivatives are more valuable in models which have shorter correlation lengths

and emulators without derivatives generally tend to require twice as many model runs as

the emulators with derivatives to produce a similar predictive performance. We conclude

that an optimal solution is likely to be a hybrid design consisting of adjoint runs in some

parts of the input space and standard model runs in others.

The knowledge of the derivatives of complex models can add greatly to their utility, for

example in the application of sensitivity analysis or data assimilation. One way of generating

such derivatives, as suggested above, is by coding an adjoint model. Despite automatic

differentiation software, this remains a complex task and the adjoint model when written is

computationally more demanding.

We suggest an alternative method for generating partial derivatives of complex model output,

with respect to model inputs. We propose the use of a Gaussian process emulator which, as

long as the model is suitable for emulation, can be used to estimate derivatives even without

any derivative information known a priori. We present encouraging results which show how

an emulator of derivatives could reduce the demand for writing and running adjoint models.

This is done with the use of both toy models and the climate model C-GOLDSTEIN.
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Mathematical Nomenclature

˜ The tilde symbol placed over a letter denotes derivative information
and function output combined.

η(.) A complex model/simulator.
η̃(.) An adjoint model.
n Number of locations in a design.
ñ Total number of derivatives and responses in a design.
n′ Number of points in a design for validation.
x Point, i.e location, in the input space of the simulator.
(x, d) Location in the input space of the simulator and whether a derivative

of the response of the simulator is to be evaluated here (depending on
the value of d).

x
(k)
i Input k at point i; an input is denoted by a superscript on x and a

subscript on x refers to a point in the input space.
D Design, comprising an ordered set of points, i.e locations, in an input

space.

D̃ Design, explaining at which locations in the input space the response
is required and at which derivatives are required.

y Simulator output: η(x) = y.
Y Simulator multi outputs.
ỹ Adjoint output: η̃(x, d) = ỹ, the derivative of η(x) with respect to

input d (d ∈ {1, . . . , p}). When d = 0 we have η̃(x, 0) = η(x).

Ỹ Adjoint multi-outputs.
p Number of inputs.
q Number of basis functions.
r Number of outputs.
h(·) Vector of basis functions.
c(·, ·) Correlation function.
t(·) Correlation between training data and a point/derivative we are pre-

dicting.
A Matrix of correlations between points.

Ã Matrix of correlations between points, between derivatives and points,
and between derivatives themselves.

Θ Diagonal matrix of smoothness parameters θ{i} which are hyperpa-
rameters of a correlation function.

xi



β Hyperparameters of a mean function.
B Hyperparameters of a mean function in the multi-output setting.
σ2 Hyperparameter which scales a covariance function.
Σ Covariances between outputs in the multi-output setting.
FD Finite differences
AD Automatic differentiation
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Chapter 1

Introduction

1.1 Complex Models

Complex models are used as representations of real-world phenomena. The mod-

els simulate real-world systems and are thus used in many different areas. Climate

models, for example, involve solving many ODEs (ordinary differential equations)

and PDEs (partial differential equations) and can take an appreciable amount of

computing time to run. Complex models are also used to simulate processes in

oil reservoirs to investigate, for example, the geological structure of the reservoir

and the distribution of hydrocarbons in the reservoir. Models similar to those

just described are required because conducting physical experiments is expensive

and not always practical, or even possible in some cases. There are multiple ap-

plications of these models; for example to predict how the real world system may

behave in the future or to find which input parameters maximise a particular

output. These types of analyses, as well as the models themselves, are important

for further applications such as policy-making.

Complex models are written as computer codes and referred to as simulators.

We refer to a model, or code, run as evaluating the simulator at a single input

value. Performing an ensemble of model runs, at a number of different input

values, is given the term computer experiment. We express the simulator by the

function y = η(x), where x are the model inputs. Depending on the model, the

output could be either a scalar or a vector. We consider both cases in this thesis:

in Chapters 3, 4 and 5 we concentrate on just univariate output and in Chapter

6 we investigate multi-output emulators. The simulators are deterministic, for
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CHAPTER 1. INTRODUCTION

each time they are run with the same inputs they produce the same output.

1.2 Uncertainty in complex models

Model users need to know how much they can trust simulator outputs and there-

fore it is necessary to quantify the uncertainty in a model. The true values of

model inputs may be unknown if they are properties of the real system which

need to be observed. To observe such properties is expensive, not always practi-

cal and when the values of the inputs can be obtained, it is likely that some form

of measurement error will have occurred. We need to quantify the uncertainty

in the inputs as this will relate to how uncertain we are that the simulator out-

put matches reality. We denote the true value of the inputs by X and the true

output is then Y = η(X). The purpose of uncertainty analysis is to quantify the

uncertainty in model outputs caused by uncertainty in the inputs.

Another source of uncertainty is in the model itself. Even if the true values

of the inputs are known, running the model at these points will not produce an

output which matches exactly the observation of the real-world system. We refer

to the difference between the true system value and the simulator output at the

best input as the model discrepancy. Learning about model discrepancy enables

calibration, which is the process of modifying inputs and reducing uncertainty in

inputs by using physical observations, zi, of the real system. Such values will be

observed with a measurement error and Kennedy and O’Hagan (2001) propose

the following model to link model output to reality:

zi = true process + ei = ρ η(xi,ω) + δ(xi). (1.1)

Here, ei are the observation errors, taken to be independent and normally dis-

tributed, ρ denotes an unknown regression parameter and η(xi,ω) is the computer

code output. The inputs to the simulator are split into calibration inputs, ω, and

variable inputs, x. The calibration inputs are unknown but fixed and observa-

tional data are required to estimate them. The variable inputs are assumed to

be known for the observations used for calibration, for example x might be a

physical location. Once the calibration inputs have been estimated, the variable

inputs might be varied to predict the model output at other input points. Fi-

nally, δ(xi), is the model discrepancy function and this is independent of the
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code output. Hence through this function, uncertainty about how well η(.) mod-

els the true process can be described. Higdon et al. (2008) extend this approach

to a multivariate setting using a fully Bayesian analysis. In their example, 36

model runs result in 18720 output values and this would not otherwise have been

tractable. Further development of the Kennedy and O’Hagan (2001) approach to

calibration is included in the 6 step framework to validating a computer model by

Bayarri et al. (2007); while Hang et al. (2009) also perform calibration though in

an approach which takes into account, and estimates simultaneously, parameters

without an exact physical representation in the real system.

As we discuss further in Chapter 2, it may be of interest to learn how sensitive

the model output is to its various inputs. The process of evaluating how the

output of a model is modified by changes in the inputs is referred to as sensitivity

analysis.

Complex models tend to take an appreciable amount of computing time to

run and in this sense they are expensive to execute. This is partly due to the high

number of dimensions a simulation of a real-world system can require. Performing

analyses such as sensitivity and uncertainty analysis can require many runs of the

simulator and this quickly becomes impractical with a computationally expensive

model.

A practical solution to efficiently obtain the required output, is to build a

statistical approximation of the simulator. Through this statistical approximation

we can build a complete probability distribution for η(·); where the mean of

this distribution provides an approximate value to the simulator output and the

standard deviation of the distribution describes how close it expects this mean

value to be to the true simulator output. If we can approximate the simulator

well enough, any runs required for analyses such as sensitivity analysis can be

obtained by this method. We call this statistical approximation of the simulator,

an emulator. Emulators are described in detail in Chapter 3.

1.3 Models

In this section we describe two complex models of real-world systems that are

analysed throughout this thesis. The purpose of this thesis, however, is to in-

vestigate the use of derivative information in the emulation of complex models

and which models we choose to demonstrate with, is in some sense arbitrary. As

3
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such, only limited detail of the science behind the models and the inner-working

of the models is presented here. The reader is referred to appropriate references

for both models should further detail be of interest.

1.3.1 C-GOLDSTEIN climate model

The C-GOLDSTEIN software encodes a computationally fast Earth System Model

(ESM) developed by N. R. Edwards and R. Marsh (Marsh et al., 2002). It com-

prises three coupled model components:

• The Global Ocean-Linear Drag Salt and Temperature Equation Integrator

(GOLDSTEIN) ocean model based on the version of GOLDSTEIN pre-

sented by Edwards and Shepherd (2002).

• An Energy Moisture Balance Model (EMBM), which is an atmospheric

model relating all components of the atmospheric system to just 3 variables

(surface air temperature, sea surface temperature and specific humidity).

The resulting model is then simple and efficient; and when coupled to an

ocean model, a good simulation of climate can be achieved (Fanning and

Weaver, 1996). The EMBM used in C-GOLDSTEIN is based on the UVic

Earth System Climate Model developed by Weaver et al. (2001).

• A simple sea ice model also based on Weaver et al. (2001).

Details of the model computational components, variable parameters, input

and output data are given in Marsh et al. (2002) along with a brief description of

installation and execution procedure. Table 1.1 presents the input parameters of

the model. The behaviour of the ocean, atmosphere and cryosphere in the model

are altered by the parameters in the first, second and third sections of Table 1.1

respectively. The two parameters in Table 1.1: the e-folding timescale of Carbon

removal and the sensitivity of the Greenland ice sheet melt to warming, are only

required if the model is to simulate a future climate.

The C-GOLDSTEIN model consists of differential equations derived from the

laws of physics and chemistry. The physics is simplified though and the version we

use is implemented on a 36×36 grid. Longitudinal resolution is 10◦ and latitudinal

resolution is approximately 3◦ at the equator, increasing to nearly 20◦ at the poles.

This is a relatively low resolution; for example HadCM3, the Hadley Centre
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Input Default Value

Wind stress scale 2.00

Ocean horizontal diffusivity (m2s−1) 2000.

Ocean vertical diffusivity (m2s−1) 1e-4.

Ocean drag coefficient (days) 2.5

Initial humidity over ocean 0.

Atlantic-to-Pacific freshwater flux adjust-

ment values (Sv)

-0.03, 0.17, 0.18, 0

Scaling factor for Atlantic to Pacific moisture

flux

1

Atmospheric heat diffusivity (m2s−1) 5.0e6

Atmospheric moisture diffusivity (m2s−1) 1.0e6

Width of atmospheric heat diffusivity profile

(rad)

1.0

Slope of atmospheric heat diffusivity profile 0.1

Zonal heat advection factor 0.

Meridional heat advection factor 0.

Zonal moisture advection factor 0.4

Meridional moisture advection factor 0.4

Scales co2 concentration relative to 350ppm 1.0

Specifies a compound annual % rate of in-

crease

0.0

Climate sensitivity (Wm−2) 5.77

Solar Constant (Wm−2) 1368

Threshold Relative Humidity above which

precipitation occurs

0.85

e-folding timescale of Carbon removal (years) 150.

Sea ice diffusivity (m2s−1) 2000.

Sensitivity of Greenland Ice Sheet melt to

warming (Sv ◦C−1)

0.01

Table 1.1: Input parameters for C-GOLDSTEIN

5



CHAPTER 1. INTRODUCTION

Coupled Model (version 3), has a resolution of 2.5◦(latitude) × 3.75◦(longitude)

which results in a grid of 96 × 73 cells. In our version of C-GOLDSTEIN there

are 100 timesteps per year and 8 ocean levels with a maximum depth of 5km.

The model is generally run for a spinup phase of 4000 years at the end of which,

the model is expected to have reached equilibrium. There are many outputs of

the model; we illustrate one of the outputs, surface air temperature, at the year

2000 under default parameter settings in Figure 1.1.

Figure 1.1: Surface air temperature output from the C-GOLDSTEIN model, run

to AD2000 at default parameter settings.

The reduced physics and coarse grid in the C-GOLDSTEIN model help to

make it computationally fast: using a single core of a Sun Linux workstation a

spinup run of 4000 model years requires approximately 1 hour. In comparison,

HadCM3 requires approximately one day to simulate 10 model years using 16

cores on HECToR (Cray XT4), the national supercomputer in the UK. On a single

workstation core integration speed would be around 1 model year per day. It

should be noted that a typical HadCM3 spinup run is only of order a few hundred

simulation years, which is sufficient to eliminate the strong surface drifts but a

long way short of reaching equilibrium in the deep ocean (Gordon et al., 2000). We
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compare the runtime of these two models only to explain what ‘computationally

fast’ in this situation means. C-GOLDSTEIN and HadCM3 should not be directly

compared without taking further differences between the models, for example the

resolution, into consideration.

For further detail of the steps required to build, configure, execute and utilise

the C-GOLDSTEIN model, see Appendix B.

1.3.2 The radiation transport model

This model calculates the measured radiation signature of a gamma-ray-emitting

and neutron-multiplying cylinder. The setup of the model is illustrated in Figure

1.2. The inner cylinder is the gamma-ray source and it is shielded by the outer

Figure 1.2: An illustration of the material configuration used in the radiation

transport model and the five inputs varied in this work.

material. There are five input variable parameters, shown in Figure 1.2, and

given in Table 1.2 along with the range of values we assigned to them. These

ranges cover reasonable configurations, as determined by the modeling domain

expert. The model generates a radiation signature which consists of five out-

puts: the unscattered fluxes of four gamma-ray lines and the effective neutron

multiplication factor. The gamma-ray lines are gamma-rays of different energy
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levels, 4 being chosen as appropriate by the model expert. The effective neutron

multiplication factor is the average number of neutrons from one nuclear fission

that cause another fission. In the real system that we are modelling these outputs

are measured at a point external to the cylinders, with the purpose of identifying

the inner material based on its measured radiation signature. For our analysis,

therefore, we will ultimately be interested in inverting the model, that is, finding

what configurations are consistent with a measured signature.

Input Name Description Range Units

Input 1 r1 Inner radius 0.2 - 19.8 cm

Input 2 ρ1 Inner density 2 - 20 g/cm3

Input 3 ρ2 Outer density 2 - 20 g/cm3

Input 4 z1 Distance to base of

material

0.2 - 9.8 (with the condition

that z2 > z1)

cm

Input 5 z2 Distance to top of

material

0.4 - 9.8 cm

- - Outer radius Fixed at 20 cm

Table 1.2: Inputs of the radiation transport model

The radiation transport model comprises of two parts: the PARTISN model

and a ray tracing code. PARTISN is a computer program package which nu-

merically solves the neutral-particle Boltzman transport equation. See Alcouffe

(2001) for detail regarding PARTISN. The radiation transport model uses PAR-

TISN for the neutron multiplication calculations, which are done in 30 energy

groups. Two PARTISN calculations are done for each geometry, a forward and

an adjoint, and then the results are combined in integrals over the phase space

(space, angle, and energy) to give the derivatives. For the gamma-ray calcula-

tions, a ray-tracing code is employed Favorite and Bledsoe (2008); Favorite et al.

(2009). The forward and adjoint phase-space integrals are computed directly, in

a single calculation.

The radiation transport model has a mathematical adjoint and we use this

property to compute the adjoint-based Jacobian matrix of the response signature

with respect to five variable parameters in the test configuration. Automatic

differentiation, as described in Chapter 2, is not used in the coding of the adjoint
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model; the relevant equations are linear and their adjoints written analytically.

The adjoint to the radiation transport model requires approximately twice the

amount of computing time of the model alone; thus we can obtain function output

and partial derivatives of all five outputs with respect to the five inputs at about

twice the cost of obtaining just the function output. We discuss adjoint models

further in Chapter 2.

A Latin hypercube sample (LHS), created by Jim Gattiker, determined at

which input points the model was evaluated. The 100 point LHS was generated

across 5 input dimensions and the points scaled linearly from [0,1] to appropriate

values using the ranges supplied in Table 1.2. We require that Input 5 > Input 4

and so it was ensured that the values for Inputs 4 and 5 lie in the upper triangle

of a 2-dimensional scatterplot between these 2 inputs. All the 2-dimensional

scatterplots for this design are shown in Figure 1.3. This is the only data we have

available and was provided by Jeff Favorite.
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Figure 1.3: Two-dimensional scatterplots of the inputs.
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1.4 Layout of thesis

In this chapter the need for managing uncertainty in complex models has been

discussed and two models of real world systems which we use throughout this the-

sis, have been presented. In Chapter 2 we discuss derivatives of complex models,

including motivation for why derivatives of these models are useful and various

methods for obtaining them. The computational cost of generating derivatives is

an important factor here and is therefore also discussed.

Gaussian process emulators are described in Chapter 3, along with a simple

one-dimensional example to illustrate how an emulator can be used as a surrogate

to a complex model. We then extend the standard Gaussian process emulator

methodology in Chapter 4. This chapter looks at including derivative information

in a Gaussian process emulator, in an attempt to more efficiently emulate the

function output of a complex model.

In Chapter 5, the ideas of Chapters 2, 3 and 4 are all brought together and we

show how we can build a Gaussian process emulator, with or without derivative

information, to emulate the derivatives of a complex model. Chapter 6 is con-

cerned with multi-output emulators and we investigate whether the performance

of such an emulator is superior to independent emulators, built for each output

of a model either with or without derivative information.

We conclude with Chapter 7; the ideas and results of this thesis are sum-

marised in this chapter and, where relevant, scope for further work discussed.

We also include 2 appendices. The first, Appendix A, presents the MUCM

toolkit pages that the author has written as a result of the work produced in

this thesis. The second, Appendix B, is a practical guide to running the C-

GOLDSTEIN model, which itself is described in Section 1.3.1. It should be

noted, however, that the guide in Appendix B, which is written by the author, is

not an official manual and not intended to be a complete user guide.
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Chapter 2

Derivatives of complex models

2.1 Introduction

Complex models are an important tool for studying a wide range of systems.

These models, which are written as computer codes and referred to as simulators,

tend to take an appreciable amount of computing time to run and in this sense

they are expensive to execute. Various analyses that model users may wish to

perform rely on knowledge of derivatives of the simulator output with respect to

the model inputs. Sensitivity analysis, for example, is the process of evaluating

how the output of a model is modified by changes in the inputs. Saltelli et al.

(2000) provide a number of different objectives of sensitivity analysis, for example

investigating interactions between inputs. Sensitivity analysis may also reveal

the output of the model is only strongly affected by some of the inputs and thus

calibration of some input parameters will yield only marginal benefits. Obtaining

observations required for calibration is likely to be expensive and so sensitivity

analysis may provide a means to reducing this expense. Sensitivity analysis can

be either local or global. Local sensitivity analysis is the process of calculating

partial derivatives with respect to one input variable to investigate how the output

is affected by small changes in that input. Global sensitivity analysis studies the

effect on the output as a result of larger changes in the inputs; all inputs may

be varied simultaneously in global sensitivity analysis and the whole range of

interest of each inputs is generally studied.

Other tasks which make use of derivative information include data assimila-

tion, which combines observations of the state of a system and a computer model
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of the system, and optimisation problems. If we wish to find which sets of input

values results in either a maximum or a minimum output, then knowledge of the

gradient of the function may result in a more efficient search. The information

derivatives provide may also prove valuable in model development.

There are various methods to calculating derivatives. Analytical differenti-

ation provides exact derivatives and would be the preferred choice. Sometimes

this isn’t practical though or the closed form expression of the simulator may

be unknown. An alternative method is therefore required and in this chapter

we discuss two of the main approaches of producing derivatives when analytical

differentiation is not possible: finite differences, in Section 2.2, and adjoint mod-

els, in Section 2.3. We include a practical example demonstrating how a simple

adjoint of a toy model could be built and in Section 2.3.4 we compare the two

methods of generating derivatives of the climate model, C-GOLDSTEIN.

2.2 Finite differences

A derivative is defined by:

∂ η(x)

∂x
= lim

ε→0

η(x+ ε)− η(x)

ε
, (2.1)

and, if analytical differentiation in not an option, a common approach to calcu-

lating derivatives is the finite differences, FD, method. This approach estimates

a derivative by fixing ε from equation (2.1) at a small value so we have:

∂ η(x)

∂x
≈ η(x+ ε)− η(x)

ε
, (2.2)

for small ε. If a model has p multiple inputs then partial derivatives can be

obtained by perturbing each input by the amount ε in turn. We therefore require

p+ 1 model runs to obtain the partial derivatives w.r.t all inputs at one point in

the input space. Clearly only approximate derivatives are calculated in practice

here, as truncation and cancellation errors arise for very small ε. The truncation

error is evident from the Taylor series:

η(x+ ε) = η(x) + ε
∂η(x)

∂x
+
ε2

2!

∂2η(x)

∂x2
+
ε3

3!

∂3η(x)

∂x3
+ . . . . (2.3)

A simple rearrangement of (2.3) gives:

∂η(x)

∂x
=
η(x+ ε)− η(x)

ε
− ε

2!

∂2η(x)

∂x2
− ε2

3!

∂3η(x)

∂x3
− . . . , (2.4)
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and we can therefore see that a truncation error of size

ε

2!

∂2η(x)

∂x2
+
ε2

3!

∂3η(x)

∂x3
+ . . . , (2.5)

occurs if we undertake the FD approach in this way. The centre divided differences

approach, given as:
∂ η(x)

∂x
≈ η(x+ ε)− η(x− ε)

2 ε
, (2.6)

is an improvement in accuracy, as noting that the Taylor series for η(x− ε) is:

η(x− ε) = η(x)− ε∂η(x)

∂x
+
ε2

2!

∂2η(x)

∂x2
− ε3

3!

∂3η(x)

∂x3
+ . . . ,

this then gives:

∂η(x)

∂x
=
η(x+ ε)− η(x− ε)

2 ε
− ε2

3!

∂3η(x)

∂x3
− ε4

5!

∂5η(x)

∂x5
− . . . , (2.7)

and we now have a truncation error of size

ε2

3!

∂3η(x)

∂x3
+
ε4

5!

∂5η(x)

∂x5
+ . . . ,

which will be smaller than (2.5). Now, however 2 p + 1 runs of the simulator

are required to learn the function output and all the partial derivatives at one

location in the input space.

A partial derivative generated by either (2.2) or (2.6) is sensitive to the value of

ε; therefore multiple model runs with varying ε are often required to determine an

appropriate value for ε. If we have a stationary model such that the smoothness of

the model is consistent over the design space, then this overhead is only expected

to occur once per model input dimension. However, as we see in Chapter 5, for

the C-GOLDSTEIN model a constant value for ε across the design space for one

input dimensions yields wildly inaccurate derivatives. Searching for appropriate

values of ε of course adds to the overall computational expense of generating

derivatives by a finite differences method.

There are methods that can be undertaken to improve on the accuracy of

derivatives calculated using the FD approach. Press et al. (1992) Chapter 5, for

example, recommend that ε is chosen such that x and x + ε differ by a number

which is exactly representable in binary. An ‘exact’ number for ε, as interpreted

by the computer the complex model is running on, reduces the round off error in

the FD approach. The NAG fortran library routine, D04AAF, can be employed
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to provide FD generated derivatives assuming the simulator is written in the

fortran language. To generate derivatives at the point x, the routine requires 21

evaluations of the simulator: η(x) and η(x ± (2i − 1)ε), where i = 1, 2, . . . , 10.

An FD table is then built up consisting of approximately 200 entries using an

extension of the Neville algorithm, which is described by Lyness and Moler (1969).

Derivatives up to the order 14 are then returned but the routine warns that

derivatives with increasing order become less reliable. While more sophisticated

formulae are employed in this NAG routine than simply adopting (2.2) or (2.6)

to generate FD derivatives, with many complex models performing 21 simulator

runs to generate the derivative w.r.t to one input at one point in the input space

is likely to be computationally too expensive. We therefore do not provide further

detail here of the Neville algorithm and FD table generated by the routine, but

refer the reader to Numerical Algorithms Group (2006).

In summary, FD methods do not give rise to exact values of derivatives and

the number of simulator runs required to employ these methods means the ap-

proach is computationally very expensive. Assuming ε has been assigned an

appropriate value though, reasonably accurate derivatives can be generated and

therefore comparison with other methods of generating derivatives is meaningful

and informative.

2.3 Adjoints

An alternative approach to FD is to build the adjoint of the simulator to generate

the derivatives. An adjoint model, written either by hand or with the application

of a compiler that automatically differentiates the code (automatic differenti-

ation), produces partial derivatives in addition to the standard output of the

model. Adjoint models were first written for the purpose of sensitivity analysis

in reactor physics problems, (Hall and Caucui, 1982), and have become popular

in more fields, in particular climate science, as the availability of automatic dif-

ferentiation software has increased. Marotzke et al. (1999) present a summary of

some of the early adjoints of general circulation models.

An adjoint model, which encompasses the required adjoint equations to gener-

ate the derivatives, is computationally more expensive to run than the standard

model. Efficiency is achieved in comparison to the FD method to calculating

derivatives though because where computing partial derivatives by FD requires
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at least two runs of the simulator for each input parameter, the corresponding

derivatives can all be generated by one single run of an appropriate adjoint model.

Roh et al. (1999) show that in their example, automatic differentiation requires

half the computational time that the method of divided differences needs to pro-

duce the relevant derivatives. Adjoint models therefore are generally preferred

to the finite differences method for generating derivatives as they are much more

efficient and produce more accurate derivatives as cancellation and truncation er-

rors are reduced. In this section we describe the adjoint method and demonstrate

how automatic differentiation works with a simple one dimensional toy model.

2.3.1 Adjoint method

An outline of the adjoint method is given here following the format of Hascoët

et al. (2005). We have a model, η(·), which takes inputs, x, and returns outputs,

y. There are p total inputs to the model and r total outputs. If we require the

partial derivatives of all the outputs of the model with respect to all the inputs,

then the Jacobian matrix is required:

Jacobian =


∂y1
∂x1

. . . ∂y1
∂xp

...
. . .

...
∂yr
∂x1

. . . ∂yr
∂xp

 . (2.8)

The model, η(·), is complex and therefore likely to be composed of multiple

subroutines. The subroutines themselves are then generally made up of smaller

routines and eventually we are left with elementary functions on individual lines

of code, which, assuming they are differentiable, can be differentiated by applying

the chain rule. We denote these elementary functions by f1, . . . , fK where f1 is

the first function executed when we run η(·) and fK is the last. We can therefore

express the model η(·) in the following way:

η(x) = fK ◦ fK−1 ◦ . . . ◦ f1(x), (2.9)

and so we have K total elementary functions which make up the model. Function

f1 will act on, and therefore likely effect, the input variables, x and so we denote zk

to be the state vector: the vector of all variables values after the first k functions

have been executed. In this way, we set x = z0, the x vector remains fixed and

we have zk = fk(zk−1). We use this notation for the description of the method
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only, in practise zk is not stored but overwritten by zk+1; this is important in

particular for the reverse mode which we discuss later in this section.

To differentiate the whole model with respect to x and obtain η′(x), the chain

rule can then be applied to (2.9) as follows:

η′(x) = f ′K(zK−1) . f
′
K−1(zK−2) . . . . . f

′
1(z0 = x). (2.10)

Each f ′k(zk−1) is an intermediate Jacobian matrix of partial derivatives. The

resulting, final, Jacobian matrix, η′(x), is clearly very large as it contains all the

derivatives of all the outputs, with respect to all the inputs. Often however, a

model user may only be interested in the derivatives of a subset of outputs with

respect to the most active variables; in this case the model can be differentiated

so that only specific elements of the Jacobian matrix are returned and this results

in a more efficient differentiated model.

If we require the derivatives of all r outputs with respect to one of the inputs,

i, i.e. the ith column of the full Jacobian matrix (2.8), we can apply the tangent

mode:

∂y

∂x(i)
= η′(x = z0)

∂x

∂x(i)
,

= f ′K(zK−1) . f
′
K−1(zK−2) . . . . . f

′
1(z0)

∂x

∂x(i)
(2.11)

Clearly multiplying matrices by vectors is computationally cheaper than multi-

plying matrices by matrices and so equation (2.11) must be computed from right

to left. This is straightforward as the state of the model after the first func-

tion, f1, is required before the state of the model after the second function, f2,

etc. This is known as the tangent linear model and can be applied alongside the

running of the standard calculations in η(·). Due to this, the tangent mode is

also known as the forward mode. If we require the derivatives of all r outputs

with respect to multiple inputs, the tangent mode can be applied in multiple

directions and hence is called the tangent multidirectional mode. This can be

done in one source transformation of the original code. The computational cost

of the tangent mode is therefore proportional to the number of inputs we require

derivatives with respect to.

An alternative method to the tangent linear model is the adjoint method.

An adjoint model is defined as the transpose of the Jacobian matrix, (Marotzke

et al., 1999). If we require the derivatives of one output, j, with respect to all
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p inputs, i.e the jth row of the full Jacobian matrix (2.8), then we can use the

adjoint method and transpose of η′(x):

∂y(j)

∂x
= (η′(x = z0))

T ∂y

∂y(j)
,

= (f ′1(z0))
T (f ′2(z1))

T . . . (f ′K(zK−1))
T ∂y

∂y(j)
. (2.12)

As with the tangent mode, computing (2.12) from right to left is much more

efficient than left to right but now the state of the model after the second function,

f2 is required before the state of the model after the first function, f1. Hence

this method is called the reverse mode. We have used the notation zk = fk(zk−1)

but, as discussed earlier in this section, in the model itself, executing fk will

cause zk to overwrite zk−1. Now to calculate the derivatives, as in (2.12), the

first step is to calculate (f ′K(zK−1))
T and to do this we require the state vector

after K − 1 functions have been executed: zK−1. To generate this we therefore

need to execute zk−1 = fK−1 ◦ . . . ◦ f1(z0). We would expect that the function

output, y will be required in addition to the derivatives so there is no additional

computational expense executing these functions here. The next step in the

calculation of (2.12) requires zK−2 and although this has already been calculated,

it has since been overwritten by zK−1. Therefore either the standard f functions

must be computed again, up to fK−2, or when zK−2 was first calculated it could be

stored such that it can be recalled when required. This can then be repeated for

each zk in k ∈ {1, . . . , K}. If the latter option is chosen then the computational

time is less but memory and storage requirements are greater and can in some

cases cause problems. Regardless though of whether the forward or reverse mode

is adopted, the computing resource required to run such a model is greater than

its corresponding simulator which is the standard version of the model.

Both modes can be applied through the use of automatic differentiation assum-

ing that the model, described by a computer program, is written in a high-level

programming language such as Fortran. For a comprehensive account of auto-

matic differentiation see Griewank (2003). Both the tangent and reverse mode

calculate partial derivatives with respect to model inputs and so throughout the

remainder of this document, an adjoint model will simply refer to a differentiated

model. When such an adjoint model is run, the partial derivatives with respect

to the model inputs in addition to the standard model output are produced.
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2.3.2 Calculating adjoints

As discussed in Section 2.3.1, an adjoint model provides an efficient means of

evaluating derivatives. The time taken, however, to develop the adjoint for a

model is far from trivial. Of writing adjoints by hand, Marotzke et al. (1999)

warn that coding an adjoint is an arduous task and is prone to errors. Due to this,

before Automatic Differentiation software, adjoint models were a rare commodity!

There are now, however, various automatic differentiation tools which aid in

the construction of adjoints. One such tool is TAPENADE, which is a web-

based software developed by Hascoët and Pascual (2004). A subroutine which

requires differentiating is loaded into TAPENADE. The user must then specify the

dependent variables, i.e. those which require differentiating and the independent

variables, those which require differentiating with respect to. Finally the user

chooses a mode of differentiation: tangent mode, tangent multidirectional mode

or reverse mode. For more detail see Hascoët et al. (2005). In the next Section,

2.3.3, we use a simple example to outline how TAPENADE operates and build

an adjoint of a toy model.

2.3.3 Building the adjoint of a toy model

We demonstrate the adjoint method and the use of the Automatic Differentiation

software, TAPENADE, with the following model:

η(x) = x+ cos(x) + 2 sin(x),

which is Toy Model 2 in Chapter 4.

To build an adjoint with TAPENADE, the model must be coded in either

the FORTRAN language (F77 or F95) or C. We choose to write Toy Model 2 in

Fortran and produce the following source code:

Program ToyModel2

Implicit none

real*8 x, eta

open(1,file=’Inputs’)

read(1,*) x

18



CHAPTER 2. DERIVATIVES OF COMPLEX MODELS

call sub1(x,eta)

print*, ’x = ’,x , ’eta = ’,eta

end

subroutine sub1(x,eta)

Implicit none

real*8 x, eta

eta = x + cos(x) + 2*sin(x)

end

The source code is entered into TAPENADE and the following options taken:

• Name of top routine: ToyModel2

• Dependent output variables: eta

• Independent input variables: x

• Differentiate in: Tangent Mode.

We then obtain the following TAPENADE output for Toy Model 2:

C Generated by TAPENADE (INRIA, Tropics team)

C Tapenade 2.2.4 (r2308) - 03/04/2008 10:04

C

C Differentiation of sub1 in forward (tangent) mode:

C variations of output variables: eta

C with respect to input variables: x

C

SUBROUTINE SUB1_D(x, xd, eta, etad)

IMPLICIT NONE

C

REAL*8 x, eta

REAL*8 xd, etad

INTRINSIC COS

INTRINSIC SIN

C
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etad = xd - xd*SIN(x) + 2*xd*COS(x)

eta = x + COS(x) + 2*SIN(x)

END

We can then combine the TAPENADE output with the original source code to

produce an adjoint of the Toy Model:

C Generated by TAPENADE (INRIA, Tropics team)

C Tapenade 2.2.4 (r2308) - 03/04/2008 10:04

C

C Differentiation of sub1 in forward (tangent) mode:

C variations of output variables: eta

C with respect to input variables: x

C

Program ToyModel2

Implicit none

real*8 x, eta, xd, etad

open(1,file=’Inputs’)

read(1,*) x, xd

call SUB1_D(x, xd, eta, etad)

print*, ’x = ’,x, ’eta = ’,eta, "etad = ", etad

end

SUBROUTINE SUB1_D(x, xd, eta, etad)

IMPLICIT NONE

C

REAL*8 x, eta

REAL*8 xd, etad

INTRINSIC COS

INTRINSIC SIN

C

etad = xd - xd*SIN(x) + 2*xd*COS(x)

eta = x + COS(x) + 2*SIN(x)
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END

The compilation of this adjoint source code and then running the subsequent

executable generates the required function output and derivatives of Toy Model

2.

2.3.4 The C-GOLDSTEIN adjoint

In addition to the intermediate complexity climate model, C-GOLDSTEIN, in-

troduced in Chapter 1, there also exists the adjoint of the model, written by N. R.

Edwards and D. Zachary. The adjoint model of C-GOLDSTEIN employs Auto-

matic Differentiation, specifically, the multi-directional forward mode of TAPE-

NADE, to produce derivative information for 12 of the input parameters, in

addition to the standard model output. These 12 parameters are listed in Table

2.1. Zachary (2004) gives more detail about TAPENADE and its application to

C-GOLDSTEIN.

Input

1 Wind stress scale

2 Ocean horizontal diffusivity

3 Ocean vertical diffusivity

4 Ocean drag coefficient

5 Atmospheric heat diffusivity

6 Atmospheric moisture diffusivity

7 Zonal heat advection factor

8 Zonal moisture advection factor

9 Sea ice diffusivity

10 Atlantic-to-Pacific freshwater flux adjustment

11 Width of atmospheric heat diffusivity profile

12 Slope of atmospheric heat diffusivity profile

Table 2.1: Input parameters with derivatives

Further work on the C-GOLDSTEIN adjoint was required to produce a work-

able, appropriate model suitable to the needs of this thesis. This included differ-

entiation of a further subroutine, to produce the derivatives of global mean air
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temperature. Ideally we would then validate the adjoint, especially in light of

the further work performed on the model, by comparing the partial derivatives

of the global mean air temperature with respect to the 12 input parameters as

calculated by the C-GOLDSTEIN adjoint, to exact analytical derivatives. It is

not possible to obtain analytical derivatives of the C-GOLDSTEIN model though

and so instead we compare the adjoint with derivatives produced by a finite differ-

ences (FD) method. We recognise, as discussed in Section 2.2, that FD methods

do not produce exact derivatives; if there is general agreement between the two

methods though, we can be confident that we have a reliable adjoint model. We

employ the centre divided difference equation (2.6) for the FD method with an

epsilon value of 1 × 10−7. The models are run for a long ‘spinup’ phase 500,000

timesteps (5000 years) at default parameter settings and the derivatives examined

every 100 years. Figures 2.1 and 2.2 show how the partial derivatives compare

in the 2 methods. The adjoint derivatives with respect to 11 of the parameters

appear to be in general agreement with the FD method. There are peaks in some

parts of the plots which are due to the nature of the variation of the parameters

before the model run reaches equilibrium. For some of the inputs, at these peaks,

the adjoint slightly under estimates the derivative compared to the FD value, for

example in Figure 2.1a. However, there is agreement at the peak for some of the

inputs, for example in Figure 2.1f.

We see in Figure 2.1d that there is much conflict between adjoint produced

derivatives with respect to the ocean drag coefficient, and the corresponding FD

derivatives. The y-axis scale in Figure 2.1d of the value of the partial derivative is

clearly inappropriate for the FD estimates. We therefore investigate the conflict

in the derivative estimates w.r.t this parameter by using separate scales. The

derivatives generated by the adjoint, illustrated in Figure 2.3a, appear to be a

reflection in the x axis of the derivatives generated by finite differences, shown in

Figure 2.3b. In Figure 2.3c we see that if we plot the adjoint generated derivatives

multiplied by −1, a similar pattern is observed to the FD estimates but with

a vastly different scale. There is no common factor between the estimates at

each year though to explain any difference in magnitude. We attempt to verify

the FD results by performing an additional 6 C-GOLDSTEIN runs with ε =

{1× 10−10, 1× 10−5, 1× 10−2} and calculating the estimates of the derivatives

which result from each of these values of ε. The results are shown in Figure 2.3d.

We see a peak at year = 400 when we have ε = 1× 10−5, which is in conflict with
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(a) Wind stress scale
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(b) Ocean horizontal diffusivity
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(c) Ocean vertical diffusivity

0 1000 2000 3000 4000 5000

0e
+0
0

1e
+0
5

2e
+0
5

3e
+0
5

Year

P
ar

tia
l d

er
iv

at
iv

e

FD
AD

(d) Ocean drag coefficient
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(e) Atmospheric heat diffusivity

0 1000 2000 3000 4000 5000

-1
e-
07

-6
e-
08

-2
e-
08

2e
-0
8

Year

P
ar

tia
l d

er
iv

at
iv

e

FD
AD

(f) Atmospheric moisture diffusiv-

ity

Figure 2.1: Partial derivatives of global mean air temperature with respect to

parameters 1 - 6. 23
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(a) Zonal heat advection factor
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(b) Zonal moisture advection factor
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(c) Sea ice diffusivity
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(d) Freshwater flux adjustment
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(e) Width of atmos heat diffusivity

profile
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Figure 2.2: Partial derivatives of global mean air temperature with respect to

parameters 7 - 12. 24
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all other values of ε. In addition to this the derivatives when ε = 1× 10−2 have a

slightly different pattern for the first half of the run, though are then consistently

a little higher for the second half. Small differences in FD estimates with different

ε values are to be expected and we see in Figure 2.3d, overall quite consistent

results. If we assume, therefore, that the FD estimates are at least the right

sign and approximate magnitude, then from Figure 2.3c it would appear that the

likely problem is an errant minus sign in the adjoint code. Discussion with the

original adjoint authors has identified two subroutines in the model, which are

believed to be the most likely source of any possible error in the derivatives w.r.t

the ocean drag coefficient. Despite further investigation, however, the conflict

between adjoint and FD methods for this parameter remains unresolved.

Any analysis of the C-GOLDSTEIN model or adjoint is generally performed

after the model has run to equilibrium and we can see in all panels, apart from

ocean drag coefficient, of Figures 2.1 and 2.2 that there is good agreement in

derivative estimates once the model has run for approximately 4000 years and

reached equilibrium. This is explored further in Table 2.2 which gives a compari-

son of the derivative estimates at the end of the model run. All values apart from

the ocean drag coefficient are close to 1 and therefore an acceptable performance

is generally achieved by the adjoint for the default parameter settings. We recog-

nise that while this provides confidence in the adjoint at the default parameter

settings for 11 of the inputs, we haven’t examined the performance of the adjoint

elsewhere in the input space. A full scale investigation across the whole range of

the inputs parameters was not practical however. If unusual adjoint behaviour is

observed during subsequent analysis this can be investigated further at that time.

For the purpose of this thesis, we therefore consider the C-GOLDSTEIN adjoint

to be a model which produces the derivatives of global mean air temperature with

respect to 11 of the input parameters.

The additional computational cost of executing the C-GOLDSTEIN adjoint

opposed to the the standard C-GOLDSTEIN model is far from negligible. Em-

ploying facilities (Sun Linux workstation) available at the National Oceanogra-

phy Centre, Southampton, NOCS, a C-GOLDSTEIN standard model spinup run

of 4000 years requires approximately 1 hour. A corresponding C-GOLDSTEIN

adjoint run requires approximately 18 hours. The authors of the original C-

GOLDSTEIN adjoint do report though that there is scope available for improving

the efficiency of the adjoint model, (Neil Edwards, pers. comm.).
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Figure 2.3: Partial derivatives of global mean air temperature with respect to the

ocean drag coefficient input parameter.
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C-GOLDSTEIN Parameter AD/FD

Wind stress scale 1.010685

Ocean horizontal diffusivity 0.996329

Ocean vertical diffusivity 1.003598

Ocean drag coefficient -162625

Atmospheric heat diffusivity 1.000126

Atmospheric moisture diffusivity 0.999667

Zonal heat advection factor 0.999990

Zonal moisture advection factor 1.010088

Sea ice diffusivity 0.994504

Atlantic-to-Pacific freshwater flux adjustment 0.999277

Width of atmos. heat diffusivity profile 1.000322

Slope of atmos. heat diffusivity profile 1.000007

Table 2.2: Relative comparison of adjoint produced derivatives with those from

an FD method at year 5000.

2.4 Conclusions

Derivative information is potentially useful to many model users and as noted in

Section 2.3, adjoints are generally preferred over the finite differences method to

generating derivatives. Despite AD software, though, coding an adjoint model

remains a complex task and the model when written, computationally expensive

to execute. There may be situations when model users are unwilling, or perhaps

unable, to allocate the initial time and resources required to code the adjoint of

a complex model. Even if the adjoint model already exists, the additional com-

putational expense required to run this model rather than the standard version

is completely non-negligible. In Chapter 5 we suggest an alternative method for

generating partial derivatives of complex model output, with respect to model

inputs.
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Chapter 3

Emulators

3.1 Introduction

Often, it is useful for a model user to perform analyses such as sensitivity and

uncertainty analysis. As discussed in Section 1.2 of Chapter 1, the purpose of

uncertainty analysis is to quantify the uncertainty in model outputs caused by

uncertainty in inputs. This is done by treating the true inputs, X, as a random

variable. Then, given a probability distribution, say G, for this random vector,

uncertainty analysis is the study of the resulting probability distribution of the

random output Y = η(X). This output distribution is called the uncertainty

distribution.

A traditional approach to uncertainty analysis is to use Monte Carlo methods.

This involves sampling values of X from G and running the simulator, η(·),
at these points. To estimate the mean of Y we would take the mean of this

sample of outputs. To achieve acceptable accuracy, a standard sample size for

this approach could be in excess of tens of thousands. The sample size is, of

course, problem dependent but with a computationally expensive model it soon

becomes impractical to generate the number of runs that would be required to

perform this method of uncertainty analysis. Monte Carlo methods are discussed

in detail by Mackay (2002). In particular the Metropolis-Hastings method, which

we adopt in a small study in Chapter 6, is reviewed.

To provide efficiency in comparison to Monte Carlo methods with the simu-

lator, an emulator can be built which acts as a statistical approximator to the

simulator. An emulator encapsulates our beliefs about the simulator through
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a complete probability distribution. This is updated after a small number of

simulator runs and the resulting probability distribution at an unknown input,

provides an approximation to the true simulator output at that point. We usu-

ally take the mean of the distribution as a point estimate with uncertainty about

that mean described by the standard deviation, though we do have a complete

probability distribution available. To perform uncertainty analysis, we could take

a sample of X from G, as with the Monte Carlo method, but evaluate the emu-

lator mean at the required points rather than running the simulator. Far fewer

runs of the simulator would be required to build an emulator, than we would

need to obtain a sample of sufficient size to estimate the mean of Y by Monte

Carlo methods without an emulator. It is this approach we take in Chapter 6

when we undertake a small calibration study on the radiation transport model,

the model itself described in Chapter 1. With the emulator approach, however,

under certain conditions it is not even necessary to take a sample to estimate the

mean of the uncertainty distribution as Haylock and O’Hagan (1996) derive the

distribution of the mean of Y .

Uncertainty analysis is just one application that model users may wish to

perform. Once an emulator has been built and validated though, it can be used

as a surrogate to the simulator in any further analysis.

Statistical emulators were developed in the 1980’s from the work in Design and

Analysis of Computer Experiments (DACE). For example, Sacks et al. (1989) use

a non-Bayesian framework for approximating an unknown deterministic computer

model and a Bayesian approach to predicting a computer model at untested inputs

is given in Currin et al. (1991). Gaussian processes have become a popular choice

for building emulators and a detailed discussion of Gaussian process emulation is

given in Santner et al. (2003). Gaussian processes are also common in the field

of machine learning, see Rasmussen and Williams (2006) for more detail.

In this chapter we present a review of Gaussian process emulators; for fur-

ther detail and discussion see, for example, Kennedy and O’Hagan (2001) and

O’Hagan (2006). In Section 3.2 we define a Gaussian process and describe the

methodology required to build a Gaussian process emulator. This is then illus-

trated with a simple one dimensional example in Section 3.2.4. The important

topic of validation is discussed in Section 3.3 and we conclude this chapter with

a brief overview of some variants of standard emulators.
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3.2 Gaussian process emulators

To build an emulator we first consider the model, η(·), as an unknown function,

as until the model is run the output values are unknown. We require that η(·),
be a smooth function so that if we know the output of the model at xi, we have

some idea what the output of the model might be at xj for xi close to xj. We

choose a Gaussian process to represent the model due to its flexibility, so that it

can adapt to the shape of η(·), and convenience. In the Bayesian framework we

begin by specifying our prior beliefs about the computer model and then run the

simulator at the inputs (x1, . . . ,xn) to obtain

yT = {y1 = η(x1), . . . , yn = η(xn)}, (3.1)

which we refer to as the training data. Using y we can derive the distribution of

η(·) conditional only on the training data. The mean of this distribution acts as a

fast approximation to η(·) but as we have the full distribution around the mean,

we can also report how close we expect the emulator output to be to the simulator

output. In the remainder of this section we look at the process of building an

emulator in more detail.

3.2.1 The Gaussian process model

We choose to describe the uncertainty about the simulator output by a Gaussian

process. Formally, a Gaussian process is an infinite collection of variables, where

every finite subset of the variables has a multivariate normal distribution. We

therefore make the assumption, a priori, that uncertainty about simulator out-

puts can be represented by joint normal distributions. If this is unlikely to be

reasonable, a solution could be to transform the output. We apply log transfor-

mations to simulator outputs in Chapter 6 and are successful in the subsequent

emulation of the transformed outputs.

A Gaussian process is defined by its mean and covariance functions so these

must now be described. We specify the prior mean as:

E[η(x)|β] = h(x)Tβ, (3.2)

where h(x)T is a 1 × q vector of known functions of x and β is a q × 1 vector

comprising of unknown coefficients. We choose the form of h(.) based on our prior
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beliefs about η(·). For example, if we believe η(x) to be approximately linear in

x, then choosing h(x)T = (1 x) would be appropriate.

Next we define σ2c(xi,xj) to be the covariance between η(xi) and η(xj), where

σ2 is an unknown scale parameter and c(., .) is a known correlation function. We

require that η(·), be a continuous function of its inputs and consequently when

two points, xi and xj are close there should be a high correlation between the

corresponding η(xi) and η(xj). As the distance between xi and xj increases,

the correlation should decrease. A common form of covariance function is the

Gaussian form:

c(xi,xj) = exp
{
−(xi − xj)

TΘ (xi − xj)
}
, (3.3)

where Θ is a diagonal matrix of positive roughness parameters,

Θ =


θ{1} 0 . . . 0

0 θ{2} ...
...

. . .

0 . . . θ{p}

 ,

and p is the number of input dimensions. The parameters, θ{k} for k ∈ {1, . . . , p},
describe how ‘rough’ the model is in each input dimension. This is because the

correlation between η(xi) and η(xj) depends on the distance between xi and xj

and this distance is rescaled as a result of Θ. The matrix, Θ, need not be diagonal,

however such a form is convenient and in practise off-diagonal elements would be

difficult to estimate.

3.2.2 Design

The next step is to create a design, D, which consists of an ordered set of points

in the input space, {x1,x2, . . . ,xn}, at which the simulator is to be run to create

the training data. The design of computer experiments is a large and active field.

Here we introduce only a small subset of some of the design options available to

computer modellers. The objective is to gain as much information as possible

from the training data, as the more we learn about η(·) the better the emulator

can approximate it; a space-filling design is therefore a popular choice.

Designs can be generated based on various criteria. For example, a maximin

design is one which selects points such that the minimum distance between any
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two design points is maximised. McKay et al. (1979) compare three methods for

choosing designs for Monte Carlo studies, where a deterministic computer code is

modelling a real system. The three methods are simple random sampling, strati-

fied sampling and Latin hypercube sampling, which we now describe. Suppose we

have p input dimensions, with x = (x(1), . . . , x(p)), and we need n design points

at which to run the model, so we require

x1 = (x
(1)
1 , . . . , x

(p)
1 ),

x2 = (x
(1)
2 , . . . , x

(p)
2 ),

...

xn = (x(1)n , . . . , x(p)n ).

A Latin hypercube sample ensures that the points are spread evenly over the

range of each input dimension. This is achieved by first dividing the domain

of x(j), (j ∈ {1 . . . p}), into n intervals of equal marginal probability. Then

one value is sampled from each interval resulting in n values in each dimension.

To obtain xi, we sample from one of the n values without replacement in each

dimension. The process is repeated until we have x = (x1, . . . ,xn). McKay et al.

(1979) assess the three methods by comparing estimators of the mean, variance

and distribution function of the output. They conclude that Latin hypercube

sampling is preferred.

Morris and Mitchell (1995) suggest combining a Latin hypercube with the

maximin criteria to produce a maximin Latin hypercube sample. The resulting

design therefore is a Latin hypercube where the minimum distance between any

two points is maximised. In practise though, it is computationally very expensive

to produce such a design for large n and p. A compromise is often sought where,

rather than searching for the optimal design, a number of Latin hypercube sam-

ples are generated and the one with the maximum minimum distance between

points is selected. We mirror this popular choice of design and frequently generate

maximin Latin hypercube samples throughout this thesis.

There are other design options in addition to the Latin hypercube. For exam-

ple, some non-random sequences, such as the Sobol’ sequence, are found to have

space-filling qualities. A design of size n can be generated by taking the first n

points in the sequence; if subsequent runs are required the sequence can simply

be extended and the additional points will continue to fill the input space. This
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is an advantage over Latin hypercube designs as if additional points to an initial

Latin hypercube sample are necessary, the entire design would have to be re-

computed to generate a bigger Latin hypercube. Alternatively, having created an

initial design, areas where the uncertainty is greatest could be identified and then

further points placed in such regions. This is an example of sequential design.

See Santner et al. (2003) for further discussion of Sobol’ sequences and design of

computer experiments in general.

3.2.3 Building an emulator

From Sections 3.2.1 and 3.2.2 above, we have training data, y, and since we have

represented η(·) by a Gaussian process, the density of y conditional on β and σ2

is:

y|β, σ2, θ ∼ N(Hβ, σ2A), (3.4)

where H = [h(x1), . . . ,h(xn)]T and A is the n × n matrix of correlations of the

training data: A = c(D,D). Standard normal theory, detailed by Oakley (1999),

shows that:

η(·)|β, σ2,y ∼ N(m∗(.), σ2c∗(. , .)), (3.5)

where

m∗(x) = h(x)Tβ + t(x)TA−1(y −Hβ),

c∗(xi,xj) = c(xi,xj)− t(xi)
TA−1t(xj),

t(x)T = c(x, D)

= {c(x,x1), . . . , c(x,xn)},

yT = η(D) = {η(x1), . . . , η(xn)}.

We now want to obtain the distribution of η(·)|y unconditional on β and σ2.

If we have genuine prior information about β and σ2, then this can be utilised

when specifying the prior distributions for them. In many situations though,

there is enough information in the training data about these parameters and it

suffices to specify a weak prior for both β and σ2:

p(β, σ2) ∝ σ−2. (3.6)
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Applying Bayes Theorem with (3.6) and (3.4) results in a joint Normal Inverse

Gamma posterior distribution for (β, σ2):

f(β, σ2|y, θ) ∝ σ2
n+2
2 exp

{
− 1

2σ2
(β − β̂)THTA−1H(β − β̂) + (n− q − 2)σ̂2

}
,

(3.7)

where

β̂ =
(
HTA−1H

)−1
HTA−1y, (3.8)

σ̂2 = (n− q − 2)−1yT
{
A−1 − A−1H

(
HTA−1H

)−1
HTA−1

}
y. (3.9)

From this we see that:

β|σ2,y ∼ N
(
β̂, σ2(HTA−1H)−1

)
, (3.10)

and integrating (3.7) with respect to β gives us:

σ2|y, θ ∼ InvGam

(
n− q

2
,
(n− q − 2)σ̂2

2

)
. (3.11)

Now if we take the product of (3.5) and (3.10) and then integrate out β, it

results in:

η(·)|σ2,y ∼ GP (m∗∗(.), σ2c∗∗(. , .)), (3.12)

where

m∗∗(x) = h(x)T β̂ + t(x)TA−1(y −Hβ̂), (3.13)

c∗∗(xi,xj) = c(xi,xj) − t(xi)
TA−1t(xj) +(

h(xi)
T − t(xi)

TA−1H
) (
HTA−1H

)−1 (
h(xj)

T − t(xj)
TA−1H

)T
.

(3.14)

Finally we must integrate out σ2 after combining (3.11) and (3.12) and we are

left, conditional on θ, with a t process with n−q degrees of freedom. The posterior

mean is m∗∗(x) and can be used as a fast approximation of η(x). The posterior

covariance between η(xi) and η(xj) is σ̂2c∗∗(xi,xj). The posterior mean is com-

prised of two parts. The first part corresponds to the prior mean (3.2), where β̂

is the expected value of β, based on the training data. At the points (x1, . . . ,xn),

the values of η(xi), i ∈ {1, . . . , n} are known as they were evaluated directly to

produce the training data. The second part of the emulator, t(x)TA−1(y −Hβ̂)

has the effect of ensuring that m∗∗(xi) = η(xi), for i ∈ {1, . . . , n}.
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The values of θ are unknown and if we combine (3.4) with a prior for θ, p(θ),

and (3.6) we obtain the posterior density of β, σ2 and θ:

f(β, σ2, θ|y) = p(θ)
|A| 12

(σ2)
1
2
(n+2)(2π)

p
2

exp

[
−(y −Hβ)T

A−1

2σ2
(y −Hβ)

]
. (3.15)

If we then integrate out β and σ2 the result is:

f(θ|y) ∝ p(θ)× (σ̂2)−(n−q)/2|A|−1/2|HTA−1H|−1/2 . (3.16)

We cannot analytically integrate out Θ, the matrix which is comprised of the

smoothness parameters, from the posterior distribution. The simplest option is

to fix θ, having estimated its value, and then use this estimate as if it were the true

value. One method of estimating Θ, and one we regularly use throughout this

thesis, is to ascertain which values of Θ maximise the likelihood. It is common to

first apply a log transformation on the smoothness parameters and then optimise

the resulting function. Aside from the simulator runs, this is computationally the

most expensive part of building an emulator. Andrianakis and Challenor (2009)

derive the derivatives of the log likelihood function such that a gradient-based

optimisation algorithm can be employed, which is expected to be more efficient.

They also propose a function which limits the search space such that very large

or very small values of θ cannot be sampled. This is because the likelihood can

be very flat and then the ‘maximum’ is found at an inappropriately large value

of θ. Fixing the smoothing parameters at point estimates ignores the uncertainty

in θ but Kennedy and O’Hagan (2001) find this approach to be adequate. If we

do not have large number of simulator runs to build an emulator though, we may

wish to account for the uncertainty in θ and Andrianakis and Challenor (2009)

show how this can be done using Monte Carlo integration.

3.2.4 Example

Here we demonstrate the methodology through a 1-dimensional example. The

true function is

η(x) = x+ cos(x) + sin(x),

and we choose a linear form for the prior mean, so h(x)T = (1 x) and q = 2.

The covariance function is c(xi, xj) = exp{−θ (xi − xj)2} and we decide to run
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the simulator at the following, n = 5, design points:

x1 = −4.10, x2 = −1.80, x3 = 0.80, x4 = 1.90, x5 = 4.20.

This yields the subsequent training data,

yT = (−3.857, −3.001, 2.214, 2.523, 2.838),

which is shown in Figure 3.1.
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Figure 3.1: Training data for a 1-d example of a standard Gaussian process

emulator.

We then follow the method described in Section 3.2.3 and derive the distribu-

tion of η(x) conditional only on y. Maximum likelihood estimation is employed

to estimate the roughness parameter, θ. To test the emulator we evaluate the

posterior mean and standard deviation at a number of new input points and as

here the simulator is computationally cheap, we can also run the simulator at

these points to evaluate the predictive performance of the emulator. The results

are shown in Figure 3.2. The posterior mean is the red, dashed line and the

red, dotted lines show the value of two standard deviations above and below the

mean. For comparison the solid black line shows the true simulator output at

these points.
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Figure 3.2: Emulator built with function output only.

In this example the posterior mean is close to the true value of the simulator;

the predictions become worse and uncertainty much greater though, once it is

forced to extrapolate. At the 5 design points the uncertainty pinches in to zero

as expected, as the true value of the simulator at these points is known. The

uncertainty becomes more appreciable the further away from a design point we

predict at, how quickly the uncertainty grows between design points depends

on the roughness parameter, θ. If we increase the number of design points we

would expect the predictions to become closer to the simulator output and the

uncertainty to decrease.

3.3 Validation

Having built an emulator, as in Section 3.2, it is important to validate it. Figure

3.2 in Section 3.2.4 shows the performance of an emulator, but in general such

plots would not be possible as if it were computationally feasible to execute the

simulator at every input point as in Figure 3.2.4, then there would be no need to

build an emulator! More likely, we will only be able to afford, computationally,

a small validation dataset and wish to use it to formally validate the emulator.
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Bastos and O’Hagan (2009) introduce a number of diagnostics for validating

a Gaussian process emulator. These include examining standardised prediction

errors given by:
(y′i −m∗∗(x′i))√

(c∗∗(x′i,x
′
i)))

,

for i ∈ 1 . . . n′, where y′i are the realisations of the simulator at the validation

design points, x′i, and n′ is the number of validation points. Assuming the training

data is large enough, the standardised prediction errors can be considered to be

standard, normally distributed and therefore if more than about 5% of the errors

lie outside [−2, 2], this would imply conflict between the simulator and emulator.

The location and sign of the errors could give an indication as to why there is

conflict; for example if there are large errors, all of the same sign and in the same

part of the input space this could mean that either the value of β, or the form of

the mean function is inappropriate.

One problem with the standardised prediction errors as a diagnostic is that

the errors are correlated. Independent standardised errors can be generated by:

G−1(y′ −m∗∗(x′)),

where G is a matrix such that c∗∗(x′,x′) = GGT . Bastos and O’Hagan (2009)

recommend permuting the validation data set in order of variance, and then ap-

plying a pivoted Cholesky decomposition to obtain G. The result is independent

pivoted Cholesky errors where each error is associated with a unique validation

point, but in a different order to that of the validation dataset. Groups of un-

usually large or small errors in various parts of the sequence then imply possible

problems with parameter estimates in the emulator.

Another diagnostic suggested by Bastos and O’Hagan (2009) is the Maha-

lanobis distance, given by:

(y′ −m∗∗(x′))T (c∗∗(x′,x′))−1(y′ −m∗∗(x′)). (3.17)

This diagnostic gives a measure of overall fit and should be compared to its

reference distribution, which is the F distribution with n′ and (n− q) degrees of

freedom. This is because (3.17) is a quotient of 2 chi-square random variables;

a proof of the result is given in Bastos and O’Hagan (2009). The mean and

variance are n′ and 2n′(n′+n−q−2)
n−q−4 respectively. Unusually large or small values of
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the observed Mahalanobis distance in comparison with the theoretical distribution

indicate a problem with the emulator.

If no validation data are available and there isn’t enough training data to

hold back a subset of runs for validation, then the diagnostics as described above

cannot be employed. In this situation one option is the leave one out (LOO)

cross validation diagnostic, proposed by Craven and Wahba (1979): we omit one

observation from the training data, yi = η(xi) and the corresponding inputs, xi.

We can then build an emulator with the remaining n − 1 observations which

yields the posterior distribution of η(·) given the n − 1 observations. Using the

posterior mean, m∗∗(·), we can then predict the response at the point which was

left out and compare the prediction of the emulator, m∗∗(xi), along with the

associated measure of uncertainty, c∗∗(xi,xi), with the true response, yi. This is

then repeated for i ∈ 1 . . . n. In such a way therefore, LOO is a diagnostic which

uses only the training data to assess the predictive performance of the emulator.

In practise, the value of the smoothness parameters, θ, are usually estimated with

all n observations and these estimates are then plugged in to each emulator built

with n− 1 observations in the LOO diagnostic.

In Chapters 4, 5 and 6 we make use of all the diagnostic measures described

above to validate various emulators.

3.4 Emulator variants

The methodology described in Section 3.2 gives the Gaussian process approach

to building an emulator but there are alternatives. A Bayes-Linear emulator for

example, does not provide a full probability distribution for the outputs of a

complex model; instead, just means and variances are given. This can make com-

putations tractable even with very large datasets. As briefly discussed in Section

4.6 of Chapter 4, Killeya and Goldstein (2007) use a Bayes-Linear approach in

their emulation of a compartmental model of plankton cycles. A comprehensive

account of Bayes-Linear theory is given by Goldstein and Woof (2007).

There are numerous variants to the methods already discussed in this chapter

which allow for emulation in more complex situations. For example, emulating

time series output of a dynamic model, combining multiple emulators and building

an emulator where we have multiple simulators of the same real world process.

39



CHAPTER 3. EMULATORS

For further detail on these and other emulator variants see the MUCM toolkit at

http://mucm.aston.ac.uk/MUCM/MUCMToolkit.
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Chapter 4

Emulating function output

4.1 Introduction

It has been recognised for some time that derivative information has the potential

to improve on emulation of complex models and in some cases to reduce com-

putational expense. The benefit of observing derivatives in modelling nonlinear,

dynamic systems is discussed in Leith et al. (2002), Solak et al. (2003) and Az-

man and Kocijan (2005). Morris et al. (1993) extend the work of Currin et al.

(1991) by considering how derivatives can be used in Gaussian process emulation

and the benefit of observing derivatives in compartmental models is discussed in

Killeya (2004).

In this chapter we adopt a similar approach to Morris et al. (1993) and in-

vestigate the use of derivative information in Gaussian process emulators, with

an objective of predicting the function output of a complex model. We expand

on work done previously by comparing the benefit of learning derivatives with

the computational cost of obtaining them; in such a way we can then directly

compare emulators with and without derivatives. The purpose of this work is to

provide an answer to the question: is it more efficient to build an emulator with

derivative information? Clearly an accurate response to such a question would

be model-dependent. We tackle the issue, therefore, by looking at a number of

toy models with varying levels of smoothness (Section 4.4), and by a detailed

investigation into a real complex model of which the adjoint model exists and

can be run to produce derivatives (Section 4.5). We begin this chapter though

by detailing the methodology required to include derivative information when
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building a Gaussian process emulator.

4.2 Gaussian process emulators with derivatives

In this section we detail the methodology to build an emulator with derivative

information in addition to the function output. We adopt the same approach as

in Chapter 3, which therefore gives rise to some repetition between the following

Sections and Chapter 3. This is included for completeness.

4.2.1 The Gaussian process model

O’Hagan (1992) shows how Gaussian processes can be used to model derivatives

of a simulator, η(·), assuming η(·) is differentiable everywhere. The derivatives

of a Gaussian process remain a Gaussian process and this allows us to adopt a

similar approach to that of the standard setup as discussed in detail in Chapter

3.

As in the conventional case, we first consider the model or simulator, η(·), as

an unknown function, as until the model is run the output values are unknown.

We then need to choose mean and covariance functions. As in Chapter 3 we define

the mean function to be E[η(x)|β] = h(x)Tβ where h(x)T is a 1 × q vector of

known, regressor functions of x and β is a q × 1 vector comprising of unknown

coefficients. As we are including derivative information in the training data, we

should ensure h(·) is differentiable across the range of x we are interested in;

at a minimum, h(·) must be differentiable at every design point that we have

derivative information at. This will then lead to the derivative of the mean

function: E
[

∂
∂x(d)

η(x)
∣∣β] = ∂

∂x(d)
h(x)Tβ, where x(d) refers to input d at point x.

We bring these functions together in h̃(x, d), which is defined as:

h̃(x, d)Tβ =

{
h(x)Tβ for d = 0
∂

∂x(d)
h(x)Tβ for d 6= 0 .

We have the location in the input space represented by x and the value of d

determines whether or not we are including a derivative at that point.

Similarly to h(·), the covariance function should be differentiable for the rel-

evant range and at a minimum, at every design point that we have derivative

information at. We define σ2c(xi,xj) to be the covariance between η(xi) and
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η(xj) where σ2 is an unknown scale hyperparameter and c(·, ·) is the correla-

tion function. The correlation c

(
xi,

∂xj

∂x
(k)
j

)
, which is the correlation between a

point, xi and a derivative w.r.t input k at xj, (denoted by x
(k)
j ), is ∂

∂x
(k)
j

c(xi,xj).

The correlation between a derivative w.r.t input k at xi, (denoted by x
(k)
i ) and

a derivative w.r.t input l at xj, (denoted by x
(l)
j ), is ∂2

∂x
(k)
i ∂x

(l)
j

c(xi,xj) and so the

correlation function should actually be twice differentiable. Proof of the corre-

lations involving derivatives is given in Papoulis (1991), Chapter 10. We bring

these functions together in c̃{(xi, di), (xj, dj)} which is defined as:

c̃{(xi, di), (xj, dj)} =


c(xi,xj) for di = dj = 0
∂

∂x
(di)
i

c(xi,xj) for di 6= 0 and dj = 0

∂2

∂x
(di)
i ∂x

(dj)

j

c(xi,xj) for di, dj 6= 0 .

As a result of the smoothness of η(·), when two points, xi and xj are close there

should be a high correlation between the corresponding η(xi) and η(xj), and as

the distance between xi and xj increases, the correlation should decrease. The

smoothness property of the model therefore implies that the output will be similar

for inputs close together.

4.2.2 Choice of correlation function

To calculate the correlation between two derivatives we differentiate the correla-

tion function twice, thus we should take the differentiability of the function into

consideration when selecting a correlation function. The most common approach,

and the one we use regularly throughout this thesis, is to define the correlation

function to have the Gaussian form: c(xi,xj) = exp{−(xi − xj)
TΘ(xi − xj)},

where Θ is a diagonal matrix of positive smoothness parameters, θ{k} with

k ∈ {1, . . . , p} and p is the number of inputs. Note that alternative notation

also popular in the literature is to replace the ‘smoothness’ parameter, θ{k},
with a correlation length, l{k}, such that l{k} = 1√

θ{k}
. Throughout this thesis

though we adopt the ‘smoothness’ parameter, θ{k}, notation. The correlation

then between a point, xi, and a derivative w.r.t input k at point j, x
(k)
j , is:

∂

∂x
(k)
j

c(xi,xj) = 2 θ{k}
(
x
(k)
i − x

(k)
j

)
exp{−(xi − xj)

TΘ(xi − xj)},
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the correlation between two derivatives w.r.t input k but at points i and j is:

∂2

∂x
(k)
i ∂x

(k)
j

c(xi,xj) =

(
2 θ{k} − 4 θ2{k}

(
x
(k)
i − x

(k)
j

)2)
exp{−(xi−xj)

TΘ(xi−xj)},

and finally the correlation between two derivatives w.r.t inputs k and l, where

k 6= l, at points i and j is:

∂2

∂x
(k)
i ∂x

(l)
j

c(xi,xj) = 4 θ{k} θ{l}
(
x
(k)
j − x

(k)
i

)(
x
(l)
i − x

(l)
j

)
exp{−(xi−xj)

TΘ(xi−xj)}.

How the correlations vary as the distance between points changes is shown for

the Gaussian covariance function in Figure 4.1. Killeya (2004) look further at the

covariances involving derivatives and these are shown, for the Gaussian covariance

function with varying levels of smoothness controlled by the parameter θ, in

Figure 4.1 as well.

The Gaussian correlation function, described above, belongs to a class of

correlation functions known as the exponential power form, used by Sacks et al.

(1989), and given by:

c(xi,xj) =

p∏
k=1

exp
(
−θ{k}

∣∣∣x(k)i − x(k)j ∣∣∣ρ) ,
where 0 < ρ ≤ 2 and ρ can also vary with k if required. We are not able to

make use of this flexibility though and must set ρ = 2 for all k, which results

in the Gaussian form. This is because if we set ρ = 1 we are left with the

exponential covariance function which is not differentiable, and neither are the

resulting functions when ρ < 1. Finally, for 1 < ρ < 2, the resulting function is

only once differentiable.

The Matérn class of correlation functions are an alternative to the exponential

power functions. Stein (1999) recommends the use of this form of correlation

function due to its flexibility, yet still with a manageable number of parameters.

The form of a Matérn correlation function is:

c(xi,xj) =
21−ν

Γ(ν)

(√
2ν(xi − xj)TΘ(xi − xj)

)ν
Kν

(√
2ν(xi − xj)TΘ(xi − xj)

)
,

(4.1)

where Kν is a modified Bessel function. The parameter ν must be positive and is

often half-integer, resulting in a much simpler form of (4.1). The value assigned

to ν controls the differentiability of the function and if we let ν → ∞ the result
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Figure 4.1: Gaussian covariance function shown as the distance between points

varies.
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is the Gaussian form, while setting ν = 1
2

gives rise to the exponential correlation

function. Rasmussen and Williams (2006) suggest that ν = 3
2

and ν = 5
2

are most

interesting in the subject of machine learning but again for the purpose of this

thesis we must ensure twice differentiability. The Matérn correlation function

with ν = 3
2

is only once differentiable but if we set ν = 5
2

the resulting correlation

function is twice differentiable and therefore is a valid alternative to the Gaussian

form in this work. See Rasmussen and Williams (2006) for further discussion of

correlation functions.

The correlation functions discussed in this section are summarised in Table

4.1, where we adopt the notation Q = (xi − xj)
TΘ(xi − xj).

Correlation function Formula Differentiable?

Gaussian (Exponential

power form with ρ = 2)

exp(−Q) Infinitely

Exponential (Exponential

power form with ρ = 1)

∏p
k=1 exp

(
−θ{k}

∣∣∣x(k)i − x(k)j ∣∣∣) No

Matérn with ν = 3
2

(
1 +
√

3Q
)

exp
(
−
√

3Q
)

Once

Matérn with ν = 5
2

(
1 +
√

5Q + 5Q
3

)
exp

(
−
√

5Q
)

Twice

Table 4.1: A summary of some correlations functions.

4.2.3 Design

We now need to create a design which consists of a set of points in the in-

put space at which the simulator or adjoint is to be run to create the training

sample. A design for the standard case results in an ordered set of n points:

D = {x1,x2, . . . ,xn} where each x is a location in the input space. Here though,

we need a design which in addition to specifying the location of the inputs, also

determines at which points we require function output and at which points we re-

quire first derivatives. We arrange this information in the design D̃ = {(xk, dk)},
where k = {1, . . . , ñ} and dk ∈ {0, 1, . . . , p}. We have xk which refers to the
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location in the design and dk determines whether at point xk we require function

output or a first derivative w.r.t one of the inputs. Each xk is not distinct as we

may have a derivative and the function output at point xk, or we may require a

derivative w.r.t several inputs at point xk. The simulator, η(·), or the adjoint or

derivative, of the simulator, η̃(·), (depending on the value of each d), is then run

at each of the input configurations. This results in our training data: ỹ = η̃(D̃),

a vector of length ñ.

Morris et al. (1993) look at optimal design when derivatives are observed in

addition to the model response at all the locations xi. Through an example

they compare 4 designs, each of size n = 10. The example model has 8 input

dimensions so ñ = 90. The designs are as follows:

1. Latin hypercube design. For more detail on Latin hypercube samples see

Chapter 3.

2. Maximin design. Maximin designs tend to favour the corners of the design

space and for this reason an initial design, Dinitial, is created where each

input dimension is assigned the value 0 or 1 with equal probability. The

measure φinitial is then calculated for this design where,

φ =
1

d(D)

[
n−1∑
i=1

n∑
i+1

(
d(D)

dij(D

)1000
]1/1000

.

We have dij which is the distance between sites i and j in the design, D, and

d(D) is the minimum distance between any two sites in D. All distances

are Euclidean. This measure is chosen instead of simply calculating d(D)

because in addition to maximising the minimum distance, this design aims

to minimise the number of pairs of input sites which are separated by the

minimum distance. An input site, xi, is then randomly selected from Dinitial

and each input dimension of xi changed from 0 to 1 (or vice versa, depending

on its initial value) with probability 0.3, to produce xcand. The measure φ

is recalculated and if φcand < φinitial then the candidate input is accepted.

The algorithm continues for a specified number of iterations.

3. Maximin Latin hypercube design. This design is produced by generating a

random Latin hypercube as an initial design and φinitial, as defined in design

(2.), calculated. A candidate new design, Dcand is generated by exchanging
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2 entries of a randomly chosen column and φcand is then calculated. As

in design (2.), the candidate design is accepted if φcand < φinitial and the

algorithm continues in this way.

Note that this method differs to how we generate maximin Latin hypercube

designs later in this chapter and also in Chapters 5 and 6. The method we

adopt is to generate a number of random Latin hypercube samples and then

select the design which has the maximum minimum distance.

4. Modified maximin design. This design is generated by take the resulting

maximin design of (2.), which has five 0s and five 1s in each column.

The 0’s within each of column are then randomly replaced with the val-

ues 0, 1
9
, 2
9
, 3
9
, 4
9
. Similarly the 1’s are replaced with 5

9
, 6
9
, 7
9
, 8
9
, 1.

Morris et al. (1993) compare the designs described above via the prediction

error of an emulator resulting from each design and find that the two ‘compromise’

designs, numbers (3.) and (4.), appear to be superior.

The choice of the sample size, n, for the standard case is discussed in Loeppky

et al. (2009) and as a rule of thumb, n = 10p, where p is the number of inputs is

recommended. There is not, however, such a guide for what ñ might be. If we

choose to obtain function output and the first derivatives w.r.t to all inputs at

every location in the design, then we would expect that fewer than 10p locations

would be required; how many fewer though, is difficult to estimate. This is

discussed further in Section 4.7 but without any formal results.

4.2.4 Building the emulator

From Sections 4.2.1 and 4.2.3 above, we have training data, ỹ, and since we have

represented η(·) by a Gaussian process then the density of ỹ conditional on β

and σ2 is:

ỹ|β, σ2, θ ∼ N(H̃β, σ2Ã), (4.2)

where H̃ = [h̃(x1, d1), . . . , h̃(xñ, dñ)]T and Ã is the ñ × ñ matrix of corre-

lations between points, between points and derivatives and between derivatives

themselves, in the training data: Ã = c̃(D̃, D̃). Our interest in this chapter is

emulating model response, so we wish to update the distribution of η(.) condi-

tional on the observations in the training data which consist of model response
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and derivatives. We begin this process by partitioning in the following way:(
η(·)
ỹ

)
,

with mean =

(
h(x)Tβ

H̃β

)
, and covariance =

(
σ2c(x,x) t̃(x)T

t̃(x) σ2Ã

)
, where t̃(x)

consists of the correlations between the point we are emulating the model response

at, and the training data:

t̃(x)T = Corr [η(x), η̃(x1, d1)] , . . . ,Corr [η(x), η̃(xñ, dñ)]

= [c̃{(x, 0), (x1, d1)}, . . . , c̃{(x, 0), (xñ, dñ)] ,

= c̃{(x, 0), D̃}. (4.3)

We have t̃(x, d)T = t̃(x)T , as d = 0 because we want to emulate function output

here. We still require the tilde, (˜), symbol, so we have t̃(x)T rather than t(x)T

because we must include the correlations between the derivatives in the training

data and the point where we are predicting the function output. We can now use

standard techniques of conditioning multivariate normal distributions to give:

η(·)|β, σ2, ỹ ∼ N(m∗(.), σ2c∗(. , .)), (4.4)

where

m∗(x) = h(x)Tβ + t̃(x)T Ã−1(ỹ − H̃β),

c∗(xi,xj) = c(xi,xj)− t̃(xi)
T Ã−1t̃(xj),

ỹT = η̃(D̃) = {η̃(x1, d1), . . . , η̃(xñ, dñ)}.

We now want to obtain the distribution of η(·)| ỹ unconditional on β and σ2.

If we have genuine prior information about β and σ2, then this can be utilised

when specifying the prior distributions for them. In many situations though,

there is enough information in the training data about these parameters and it

suffices to specify a weak prior for both β and σ2:

p(β, σ2) ∝ σ−2. (4.5)

Applying Bayes Theorem with (4.5) and (4.2) results in a joint Normal Inverse

Gamma posterior distribution for (β, σ2):

f(β, σ2|ỹ,Θ) ∝ σ2
ñ+2
2 exp

{
− 1

2σ2
(β − β̂)T H̃T Ã−1H̃(β − β̂) + (ñ− q − 2)σ̂2

}
,

(4.6)
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where

β̂ =
(
H̃TÃ−1H̃

)−1
H̃TÃ−1ỹ, (4.7)

σ̂2 = (ñ− q − 2)−1ỹT

{
Ã−1 − Ã−1H̃

(
H̃TÃ−1H̃

)−1
H̃TÃ−1

}
ỹ. (4.8)

From this we see that:

β|σ2, ỹ,Θ ∼ N
(
β̂, σ2(H̃T Ã−1H̃)−1

)
, (4.9)

and integrating (4.5) with respect to β gives us:

σ2| ỹ,Θ ∼ InvGam

(
ñ− q

2
,
(ñ− q − 2)σ̂2

2

)
. (4.10)

Now if we take the product of (4.4) and (4.9) and then integrate out β, it

results in:

η(·)|σ2, ỹ,Θ ∼ GP (m∗∗(.), σ2c∗∗(. , .)), (4.11)

where

m∗∗(x) = h(x)T β̂ + t̃(x)T Ã−1(ỹ − H̃β̂), (4.12)

c∗∗(xi,xj) = c(xi,xj) − t̃(xi)
TÃ−1t̃(xj) +(

h(xi)
T − t̃(xi)

TÃ−1H̃
)(

H̃TÃ−1H̃
)−1 (

h(xj)
T − t̃(xj)TÃ−1H̃

)T
.

(4.13)

Finally we must integrate out σ2 after combining (4.10) and (4.11) and we

are left, conditional on Θ, with a t process with ñ − q degrees of freedom. The

posterior mean function is m∗∗(·) and posterior covariance function is c∗∗(·, ·).
The values of Θ are unknown and if we combine (4.2) with a prior for Θ, p(Θ),

and (4.5) we obtain the posterior density of β, σ2 and Θ:

f(β, σ2,Θ|ỹ) = p(Θ)
|Ã| 12

(σ2)
1
2
(ñ+2)(2π)

p
2

exp

[
−(ỹ − H̃β)T

Ã−1

2σ2
(ỹ − H̃β)

]
. (4.14)

If we then integrate out β and σ2 the result is:

f(Θ|ỹ) ∝ p(Θ)× (σ̂2)−(ñ−q)/2|Ã|−1/2|H̃TÃ−1H̃|−1/2 . (4.15)

It is not possible to handle Θ analytically and so the simplest option is to fix

Θ, having estimated its value, and then use this estimate as if it were the true
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value. This ignores the uncertainty in Θ but Kennedy and O’Hagan (2001) find

this approach to be adequate. We discuss methods for dealing with Θ further in

Chapter 3.

Since the derivatives of a Gaussian process remain a Gaussian process we can

validate an emulator built with derivative information using the same approaches

to that of a standard emulator. Gaussian process validation is discussed more

fully in Chapter 3.

4.2.5 Example

In Chapter 3 the methodology for a standard Gaussian process emulator is illus-

trated with a 1-dimensional example. This is covered in detail in Section 3.2.4.

Here, we repeat that example but include derivative information in the training

data and follow the methods described in Section 4.2.4. The true function is

η(x) = x+ cos(x) + sin(x),

and we choose a linear form for the prior mean, so

h̃(x, d)T =

{
(1 x) for d = 0
(1) for d 6= 0 ,

and q = 2. The covariance function is c(xi, xj) = exp{−θ (xi − xj)2}. In Section

3.2.4 we choose the design:

D = {−4.1,−1.8, 0.8, 1.9, 4.2} ,

and so n = 5. This yields the training data:

yT = (−3.857, −3.001, 2.214, 2.523, 2.838).

Here, we choose the same location of design points and decide to evaluate the

partial derivative of η(x) w.r.t x at all 5 points, which gives us the ñ = 10 design:

D̃ = {(x1, d1), (x2, d2), . . . , (x10, d10)}

= {(−4.1, 0), (−1.8, 0), (0.8, 0), (1.9, 0), (4.2, 0),

(−4.1, 1), (−1.8, 1), (0.8, 1), (1.9, 1), (4.2, 1)}.

We then evaluate the simulator and the partial derivatives of the simulator at the

design points to give:

ỹT = (−3.857, −3.001, 2.214, 2.523, 2.838,−0.393, 1.747, 0.979,−0.270, 1.381).
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As in the example without derivative information, we adopt the Gaussian

covariance function which in one dimension is:

c̃{(xi, di), (xj, dj)} =


exp{−θ (xi − xj)2} Case 1
2 θ (xj − xi)exp{−θ (xi − xj)2} Case 2
(2 θ − 4 θ2 (xi − xj)2) exp{−θ (xi − xj)2} Case 3

where Case 1 is for i, j ∈ {1, . . . , 5} and therefore is the correlation between

points, Case 2 is for i ∈ {6, . . . , 10}, j ∈ {1, . . . , 5} which refers to the correlation

between points and derivatives, and Case 3 is for i, j ∈ {6, . . . , 10} which is the

correlation between derivatives. Each Case provides sub-matrices of correlations

and we arrange them as follows:

Ã =


↑ ←− n −→ ←− n −→
n Case 1 Case 2
↓
↑
n −(Case 2) Case 3
↓

 . (4.16)

The ñ× ñ matrix, Ã, is symmetric and within Ã we have symmetric sub-matrices,

Case 1 and Case 3. Case 1 is a 5× 5 matrix and is the same as in the example in

Section 3.2.4. Since we are including the derivative at each of the 5 design points,

Case 2 and 3 sub-matrices are also of size 5× 5.

Following the method described in Section 4.2.4, we now derive the distribu-

tion of η(x) conditional only on ỹ. Maximum likelihood estimation is employed

to estimate the smoothness parameter, θ. To test the emulator we run it at a

number of new input points and as here the simulator is computationally cheap,

we can also run the simulator at these points to evaluate the predictive perfor-

mance of the emulator. Figure 4.2 shows the performance of this emulator. The

posterior mean is the blue, dashed line and the blue, dotted lines show the value

of two standard deviations above and below the mean. In order to assess the

emulator, the true simulator output at these points is shown by the solid black

line. We can see from Figure 4.2 that in this example, the posterior mean is very

close to the true value of the simulator and the uncertainty is very small.

For comparison, we repeat Figure 3.2 from the same example but without

derivatives (see Section 3.2.4 for a full discussion of this example). The posterior

mean of the emulator without derivatives is the red, dashed line and the red,

dotted lines show the value of two standard deviations above and below the

52



CHAPTER 4. EMULATING FUNCTION OUTPUT

-6 -4 -2 0 2 4 6

-4
-2

0
2

4
6

Input

O
ut
pu
t

Figure 4.2: Emulator with 5 design points and derivative information

mean. It is clear if we compare Figure 3.2 with Figure 4.2 that when we include

the 5 derivatives in the training data in addition to the 5 response values, the

performance of the resulting emulator improves.

The performance of the emulator with derivatives (Figure 4.2), while very

good, is such that it is difficult to identify precisely how and where the deriva-

tive information is having an effect. Due to this we now repeat the example

but remove two of the locations from the design and the subsequent derivatives:

(x2, d2), (x4, d4), (x7, d7) and (x9, d9). Figure 4.3 illustrates the performance of

this emulator. The blue dashed line, representing the posterior mean, is close to

the true simulator output which is given by the black, solid line. The uncertainty,

as in the previous figures, is shown by the blue, dotted lines. The uncertainty

reduces to zero at design points, as expected, but whereas in Figure 3.2 the un-

certainty becomes appreciable once we start predicting away from a design point,

here the uncertainty remains very small for predictions close to the design points.

It is the derivative information in the model which allows for this reduced un-

certainty. This allows for quite accurate extrapolation in areas quite close to the

last training data point. The true value of the simulator at x = 5, for example,
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Figure 3.2 repeated. Emulator built with function output only.

is 4.325 and the posterior mean of the emulator without derivatives at x = 5 is

3.596 with standard deviation 1.370. The corresponding values from the emulator

with derivatives are 4.162 with standard deviation 0.308. If we are particularly

interested in the the input region around x = 5 therefore then the emulator with

derivatives would clearly be preferred. If we could afford more simulator runs

though, adding an extra design point in this region would vastly improve both

emulators. In high dimensional input space, however, and with computationally

very expensive models this isn’t always practical.

We can observe from comparing Figures 4.3 and 3.2 that these emulators

are producing a similar predictive performance. Which emulator has the lowest

uncertainty though, is harder to estimate without formally integrating over the

region. In Sections 4.4 and 4.5 we look further into this and attempt to quantify

what benefit there may be in employing derivatives in the emulation of complex,

computer models.
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Figure 4.3: Emulator with 3 design points and derivative information.

4.3 Computational cost of obtaining and apply-

ing derivative information

It is necessary to consider the computational cost of using derivative informa-

tion in computer experiments as it must be determined at which point the costs

outweigh the benefits. For example, if generating the derivatives of the model

increases the computational cost substantially, this extra computing time may be

better spent evaluating the model at more input points instead.

In Chapter 2 various techniques for computing derivatives are reviewed, but

any cost factor given is model specific. Though it is generally agreed an adjoint

provides the most efficient method of obtaining derivatives, there is not a general

rule for the additional computational cost required to run an adjoint model. One

reason for this is that the computational cost depends greatly on how efficiently

the adjoint is written.

In the situation where the derivatives are already available, perhaps as a re-

sults of some sensitivity analysis, it is a matter of considering just the additional

computational cost of including this information when building the emulator.
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The main source of additional cost comes from the inversion of the covariance

matrix, Ã, as this matrix is now larger in dimension. Ã must include the co-

variances between all partial derivatives and also the covariances between the

partial derivatives and the function output. The size of Ã depends on how many

derivatives we include, but if a partial derivative w.r.t each input is included at

every location in the design, this results in a matrix of size n(p + 1) × n(p + 1),

where p is the number of input dimensions. More generally, we denote d to be

the total number of derivatives in a design. Comparing Ã to the prior covariance

matrix when no derivative information is included, A, we see that Ã has therefore

increased in dimension by a factor of d. Estimating the smoothing parameters

from the training data requires A to be inverted at each step. Therefore, approx-

imately, the cost of including derivative information is increased by a factor of d3

(Morris et al., 1993). However the computational cost of building the emulator,

once training data has been obtained, is relatively small when compared to the

computational cost of running the simulator or adjoint to generate the training

data.

4.4 Emulating toy models with derivative infor-

mation

4.4.1 The models

To investigate the value of derivative information in Gaussian process emulation,

5 toy models are chosen with varying levels of smoothness.

1. The first toy model is 1-dimensional and very smooth. The simulator is

η1(x) = x3 + 200, and we are interested in emulating η1(.) over the input

region [−5, 5].

2. Toy model 2 is 1-dimensional and quite smooth. Here, η2(x) = x+ cos(x) +

2 sin(x) and we would like to emulate η2(.) over the input region [−6, 6].

3. The simulator for the third model is η3(x) = x
3

+sin(x). This model, also in

just 1-dimension, is less smooth and [−6, 6] is the input space we will cover

when looking at this model.
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4. Toy model 4 is 1-dimensional and very rough. The simulator is given by

the equation 5 sin(x2) + 1 and we are interested in emulating this function

over the input region [1, 10].

5. The final simulator is a model of the flow of water through a borehole in

m3/yr,

flow rate =
2πTu(Hu −Hl)

ln( r
rw

)
[
1 + 2LTu

ln( r
rw

)r2wKw
+ Tu

Tl

] . (4.17)

This is the model chosen by Morris et al. (1993) to demonstrate their

methodology for including derivative information in the analysis of com-

puter models. There are eight inputs and these are shown in Table 4.2

along with a range of values that each input takes. However, we keep 5 of

the inputs fixed and vary 3, namely rw, Kw and L. The 5 fixed inputs are

set at the lower bound of their range.

Input Name in Description Range Units

model

Input 1 rw radius of borehole 0.05 – 0.15 m

Input 2 r radius of influence 100 – 50,000 m

Input 3 Tu transmissivity of upper aquifer 63,070 – 115,600 m2/yr

Input 4 Hu potentiometric head of upper

aquifer

990 – 1,110 m

Input 5 Tl transmissivity of lower aquifer 63.1 – 116 m2/yr

Input 6 Hl potentiometric head of lower

aquifer

700 – 820 m

Input 7 L length of borehole 1,120 – 1,680 m

Input 8 Kw hydraulic conductivity of bore-

hole

1,500 – 15,000 m/yr

Table 4.2: Inputs for borehole model

All of the 1-dimensional toy models over their respective input regions are

shown in Figure 4.4 and are emulated employing the methodology of Chapter 3.

Where derivatives are included, the additional information is implemented as in
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the methodology of Section 4.2. We choose as a linear form for the prior mean

in all emulation here and generate a maximin latin hypercube to choose where to

evaluate the simulator runs.

4.4.2 Method of comparison

The emulators will be compared by examining their predictive performances. As

the simulators here are not complex models, it is possible to run them at all

points the emulator is predicting the output at. An average prediction error

is then determined by looking at the difference between the value the emulator

predicts, and the true value at that point as given by the simulator. The following

expression will be used:

Prediction Error =
1

n′

∑ (|True Value− Predicted Value|)
|True Value|

, (4.18)

where n′ is the number of points the emulators are predicting the function output

at. We choose to divide by the true value so as to normalise the error and

thus enable comparison of emulators of different outputs, across different ranges.

Although this does also have the effect of increasing the error for areas of the

input space which result in a small output value, the resulting error diagnostic

still provides a good indication of the performance of the various emulators.

It is difficult to quantify exactly the computational cost of obtaining deriva-

tives. This is discussed in Section 4.3 but no cost factor is given. Therefore, in

order to investigate the value of derivative information in toy models, we will

analyse how many extra runs are required for an emulator without derivatives,

to give a comparable prediction error to that of an emulator built with derivative

information.

We will also investigate how the uncertainty differs across the emulators. This

will be done by looking at the average standard deviation of the emulators over the

specified input region. Specifically, we estimate this by the following statement

Mean Standard Deviation =
1

n′

∑
σ̂
√

c∗∗(xi, xi), (4.19)

where i ∈ (1, . . . , n′).
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(d) Toy Model 4

Figure 4.4: Toy Models 1 - 4
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4.4.3 Results

To compare the differences in the predictive performance and in the uncertainty

between emulators, Figures 4.5 - 4.7 have been produced. Part (a) of these figures

show the prediction error, as calculated by (4.18) for emulators built with an in-

creasing number of simulator runs. The measure of uncertainty across emulators

built with a growing number of design points, as evaluated by (4.19), are shown

in part (b). Throughout Figures 4.5 - 4.7, blue triangles represent the perfor-

mance of emulators built with derivative information while red crosses display

the equivalent for emulators built only with function output.

Figures 4.5 - 4.7 clearly show that for all the toy models tested here, the

posterior mean of emulators built with the additional information of derivatives

provide a closer approximation to the relevant simulator. The mean standard

deviation is also reduced for that of emulators with simulator derivatives. The

prediction error and the uncertainty for the rough simulator, as shown in Fig-

ures 4.7a and 4.7b, follow a less strict trend than the other toy models. This

may be due to the difficulty in estimating the smoothness parameter, θ, for this

model. We therefore fix this parameter at an appropriate value and rebuild the

emulators, with and without derivatives. Due to the roughness of toy model 4

it is necessary to select a very high value for θ and the results from the previ-

ous emulation show 2000 is approximately suitable. Figures 4.7c and 4.7d shows

the resulting comparisons of the prediction error and uncertainty with θ = 2000.

The derivative information appears to have no effect in the emulators built with

a small number of simulator runs. As the number of design points is increased

beyond 19 the prediction error for the emulators built with derivative information

decreases much more quickly than for the corresponding emulators built only on

function output. A similar pattern is observed in Figure 4.7d which shows how

the uncertainty is affected.
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Figure 4.5: Performance of emulators built with varying numbers of runs of toy

models 1 and 2
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Figure 4.6: Performance of emulators built with varying numbers of runs of toy

models 3 and 5
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fixed at 2000
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Figure 4.7: Performance of emulators built with varying numbers of runs of toy

model 4
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Figures 4.5 - 4.7, while providing a good indication of the effect of derivatives

only provide a scalar to assess how valid any one emulator might be. To illus-

trate what a particular prediction error signifies, we plot the performance of 4 of

the emulators of toy model 4 in Figure 4.8. Emulators built with and without

derivatives when we have only 5 input points, are shown in Figures 4.8a and 4.8b

respectively. We see for the emulator with derivatives (Figure 4.8a) extended

good prediction with low uncertainty at and around each design point, the emu-

lator benefiting from the derivative information at these points. As soon as we as

move further away from the design points though, the emulator completely fails

to capture the behaviour of the simulator and this is summarised by a prediction

error of 3.534. The effect of the derivatives is very clear when we compare with

an emulator built only with model response, shown in Figure 4.8b. For points

close to design points the emulator does not predict well, deviating straight back

to the linear part of the posterior mean due to a very high smoothness parameter.

Clearly the emulator does not capture the behaviour of the function, but due to

the nature of the simulator the prediction error is slightly misleading in its rela-

tively small value of 1.987. The performance of emulators built with 40 points,

shown in Figures 4.8c and 4.8d, is much better. The emulator with derivatives

now captures the behaviour of the simulator across the whole input space and a

prediction error of 0.04655 is achieved. The emulator without derivatives is also

much improved, with only a small number of areas where the behaviour of the

simulator is not captured. The prediction error for this emulator is 0.8849.

As discussed in Section 4.4.2, however, the computational cost of obtaining

derivative information must be taken into consideration. Table 4.3 shows how

many extra runs are required for the emulators without derivatives, to achieve

similar prediction errors to the emulators with derivative information and Table

4.4 displays the equivalent information for the mean standard deviation. We can

see from Tables 4.3 and 4.4, for toy models 2, 3 and 4, an emulator without

derivative information requires approximately twice as many simulator runs as

an emulator with derivative information to achieve similar accuracy. Though it

should be noted that in the case of toy model 4, if less than approximately 20

simulator runs are performed then the emulators perform similarly, regardless of

derivative information.
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derivatives included. The prediction er-

ror is 3.534 with mean standard deviation

7.670.
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(b) Emulator with 5 input points and no

derivatives included. The prediction er-

ror is 1.987 with mean standard deviation

7.905.
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(c) Emulator with 40 input points and

derivatives included. The prediction error

is 0.04655 with mean standard deviation

0.2117.
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derivatives included. The prediction er-

ror is 0.8849 with mean standard deviation

2.536.

Figure 4.8: Illustration of the performances of emulators with low and high pre-

diction errors for toy model 4.
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Model Derivatives Prediction Error Design Points

1 Yes 0.0280 4

1 No 0.0236 5

1 Yes 0.0009 5

1 No 0.0049 6

2 Yes 0.0336 4

2 No 0.0135 8

3 Yes 0.0247 5

3 No 0.0381 10

4 Yes 0.9060 21

4 No 0.8850 40

4 (fixed b) Yes 1.0339 23

4 (fixed b) No 1.0024 40

5 Yes 0.0372 9

5 No 0.0385 14

Table 4.3: Comparison of predictive performance of different emulators
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Model Derivatives Mean Standard Deviation Design Points

1 Yes 0.1766 5

1 No 1.046 6

2 Yes 0.0659 5

2 No 0.0582 8

3 Yes 0.1033 5

3 No 0.1966 10

4 Yes 2.515 18

4 No 2.536 40

4 (fixed b) Yes 1.271 28

4 (fixed b) No 1.391 40

5 Yes 1.924 6

5 No 1.941 14

Table 4.4: Comparison of the uncertainty of different emulators
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4.5 Emulation of radiation transport model with

derivative information

The radiation transport model, as described in Section 1.3.2 of Chapter 1, cal-

culates the measured radiation signature of a gamma-ray-emitting and neutron-

multiplying cylinder. There are 5 inputs which we vary and we choose to inves-

tigate just one of the 5 outputs of this model: the neutron multiplication. This

output is chosen as there may be correlations between the 4 gamma-ray outputs

and as such these outputs are more appropriately investigated in Chapter 6.

A 100 point Latin hypercube is generated across the 5 input dimensions and

the points scaled linearly from [0,1] to appropriate values using the ranges sup-

plied in Table 1.2. We require that Input 5 > Input 4 and so ensure that the

values for Inputs 4 and 5 lie in the upper triangle of a 2-dimensional scatterplot

between these 2 inputs.

4.5.1 Exploratory data analysis

The neutron multiplication factor can be represented as either keff or its inverse

and the radiation transport model produces this output in the inverse form. We

illustrate the data, run at the input configurations from the LHS in Figure 4.9.

Since the neutron multiplication factor can be represented as keff and due

to the spread of the data shown in Figure 4.9 we apply the inverse transforma-

tion on output 5, resulting therefore in the neutron multiplication factor as keff .

The transformed data is shown in Figure 4.10 and provides good justification to

emulate the transformed response rather than the native model response. The

partial derivatives are transformed according to the chain rule: let z5 = 1
y5

, then

the required derivatives of the transformed output, z5, w.r.t to the 5 inputs, x,

are given by:

∂z5
∂x

=
∂z5
∂y5
× ∂y5
∂x

= − 1

y25
× ∂y5
∂x

. (4.20)
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4.5.2 Initial analysis

We want to build emulators, with and without the derivative information, to as-

sess the value of the derivatives in this example. We require a covariance function

which is twice differentiable and choose c(xi,xj) = exp
{
−(xi − xj)

TΘ (xi − xj)
}

.

A linear form for the prior mean is selected and the smoothness parameters, θ{i}
are estimated through maximum likelihood.

To begin, we build emulators with the information from all 100 runs. As we

do not have a separate diagnostic experiment we adopt a leave one out method

to assess the emulators: the information from the first run is left out of the

training data and an emulator built with the remaining 99 runs. We then use

this emulator to predict the observation which was left out and this is repeated for

all 100 observations. Comparisons between the values predicted by the emulators

and the true values are shown in Figure 4.11.
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Figure 4.11: Leave one out results for the prediction of keff

We can see from Figure 4.11 that both emulators are performing well. The

emulator with derivatives would appear to be slightly superior, with better pre-

dictions and less uncertainty, than the emulator without derivatives. The adjoint

of the radiation transport model requires approximately twice the computational

time to run than the standard simulator, (Jeffery Favorite, pers. comm.). The
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question therefore is whether or not the emulator with derivatives in Figure 4.11a

is performing twice as well as the emulator without derivatives in Figure 4.11b.

4.5.3 Comparison of emulators with increasing data

To attempt to answer the question posed at the end of Section 4.5.2, we first in-

vestigate the performances of the emulators with a reduced amount of the training

data. We build emulators, similarly to those described in Section 4.5.2 but now

with only 60 training runs. No further runs of the model are available and so we

take the first 60 runs as indexed in our LHS as training data, and the remaining

40 runs are used for validation. The performances of the subsequent emulators

are shown in Figure 4.12 where the emulators built with 60 training runs have

been used to predict the response at the remaining 40 input sites. We see in

Figure 4.12 that both emulators appear to be performing quite well.
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Figure 4.12: Diagnostic plots of the emulators built with n = 60 training runs

and predicting at n′ = 40 validation points.

We adopt further diagnostic measures as given by Bastos and O’Hagan (2009)

and calculate the Mahalanobis distance and error plots for each emulator. These

diagnostics are discussed further in Section 3.3. Figure 4.13 shows the error

plots for the emulator built with n = 60 responses and the corresponding 300
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derivatives. Standardised errors are plotted against the posterior mean of the

emulator in Figure 4.13a and in Figure 4.13b we see the pivoted Cholesky errors.

Most of the errors lie between −2 and 2 and show no clear pattern of large or

very small values. The observed Mahalanobis distance for this emulator with

derivatives is 26.7, which should be compared to the theoretical mean of n′ = 40

with standard deviation 12.13. The observed Mahalanobis distance is a little low

but is within 2 standard deviations of the theoretical mean and as the error plots

show mostly no conflict between emulator and simulator, with only one outlier,

we conclude that this emulator is valid.
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Figure 4.13: Further diagnostic plots of the emulator, built with derivative infor-

mation, with n = 60 training runs and predicting at n′ = 40 validation points.

The corresponding emulator built with just the simulator response at the

n = 60 input sites produces similar validation results. The standardised errors

for this emulator can be seen in Figure 4.14a and the pivoted Cholesky errors in

Figure 4.14b. Again we see most of the errors fall in the required region of [−2, 2]

with just a couple of outliers. The observed Mahalanobis distance is 64.8, which

is little high but overall there is not too much evidence of conflict between the

simulator and the emulator to warrant further runs.
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Figure 4.14: Further diagnostic plots of the emulator, built without derivative

information, with n = 60 training runs and predicting at n′ = 40 validation

points.

Now we have established that emulators built with n = 60 runs provide satis-

factory results we can continue to hold back 40 runs for validation and comparison

purposes.

We now wish to determine how the derivatives impact the performance of the

emulators. We can do this by reducing the data further, and then investigating

how the performance of the emulators vary when we add further runs with just

the response, and when we add further runs with the derivative information in

addition to the response. We do this for an increasing number of runs up to n = 60

and use the n′ = 40 runs that were held back to calculate the prediction error

and a measure of uncertainty for each emulator. We choose a different method

for calculating the prediction error to the error diagnostic applied in Section 4.4.

In Section 4.4 we adopted equation (4.18) to calculate the prediction error which

is repeated here:

Prediction Error =
1

n′

∑ (|True Value− Predicted Value|)
|True Value|

.

We chose to divide by the true value so as to normalise the error and thus enable

comparison of emulators of different outputs, across different ranges. This does,
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however, also have the effect of increasing the error for areas of the input space

which result in a small output value. For this reason we do not adopt equation

(4.18) but use the root mean squared error as follows:

Prediction error =

√
1

n′

∑
(m∗∗(x′i)− η(x′i))

2,

Mean standard deviation =
1

n′

∑
σ̂
√

c∗∗(xi, xi), (4.21)

where i ∈ {61, . . . , 100} and n′ = 40. The measure of uncertainty, is calculated

as in Section 4.4. Now we want to build emulators with increasing amounts of

training data; starting with n = 2, in the case where we include derivatives, and

with n = 9, in the case where we do not include derivatives, up to n = 60 for

both cases. Since we have truncated a 100 point LHS to provide 60 input sites

to select from, any resulting design is unlikely to be optimal. To account for this

we randomly permute the order of the 60 training runs. We then take the first

2 runs as indexed by this permutation and build an emulator with derivatives,

calculating the prediction error and the measure of uncertainty for this emulator.

Next, we take the first 3 runs as indexed by this permutation and build another

emulator with derivatives. We continue in this way, building emulators without

derivatives in addition from n = 9 onwards, until n = 60. We then randomly

permute the order of the 60 training runs again, to generate a second permutation

and repeat the process. This is repeated 20 times and we then calculate the mean

prediction error and measure of uncertainty across the 20 permutations for each

value of n. Clearly for n = 60 there is no need to permute the order as we only

have the first 60 runs as indexed by the original LHS to choose from and the

order they are in the training data is not important.

The results of the experiment described above are shown in Figure 4.15. Both

the prediction error and the measure of uncertainty for the emulators with deriva-

tives are consistently lower for all n than the emulators without derivatives. The

prediction error decreases as we add to the training data for both emulators, as

expected. The trend of the prediction error for the emulators with derivatives is

still decreasing, even at n = 60. In comparison to this, the prediction error of the

emulators without derivatives appear to have reached a plateau by n = 45. It

may be the case, therefore, that by adding even more runs to the training data an

emulator without derivatives may still not be able to produce a similar prediction

error to that of an emulator with derivatives. The emulators built with 60 input
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points, with and without derivatives, have prediction errors of 0.019 and 0.047 re-

spectively. The diagnostics of these emulators were shown earlier in this section,

in Figures 4.12 to 4.14, and therefore provide an illustration of what prediction

errors of these values signify.
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Figure 4.15: Performance of emulators, with and without derivatives, built with

increasing numbers of simulator or adjoint runs.

Figure 4.15, while providing some insight into how effective the derivatives

are, does not take into consideration the extra computational expense required to

generate the derivatives. The adjoint of the radiation transport model requires

approximately twice the amount of computing time to run than the standard

model. We therefore now compare the emulators, not by number of model runs

but by computational time taken to build the emulator. For simplicity we assume

each simulator run (standard version of the radiation transport model) requires

one computational unit, and therefore each adjoint run requires 2 computational

units. The adjoint model returns the model response and the partial derivatives

w.r.t all 5 inputs. The cost to calculate model response alone at one input config-

uration is therefore 1 unit and the cost to generate model response and the partial

derivatives w.r.t the 5 inputs at the specified input configuration is 2 units. We

do not account for any extra computational time to build the emulator outside of
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the simulator or adjoint run time. As discussed in Section 4.3, including deriva-

tives adds a small amount of computational expense in building the emulator,

even if the derivatives themselves are already available. This is due mainly to

the inversion of the covariance matrix, Ã, which is now bigger in size. This extra

computational cost, though, is expected to be negligible in comparison to the

adjoint model run time, and as such is ignored in this experiment. The results,

accounting for the cost of the derivatives, are shown in Figure 4.16.
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Figure 4.16: Performance of emulators, with and without derivatives, built with

an increasing amount of computational expense.

We can now directly compare, in Figure 4.16, emulators built with and with-

out derivative information. The emulators with derivatives perform consistently

better than the emulators without derivatives, achieving a lower prediction error

regardless of how many computational units are spent. As more runs are added to

the training data, the difference in prediction error between emulators is reduced.

The minimum difference is observed at 46 computational units, with prediction

errors of 0.049975 and 0.051101 for emulators with and without derivatives re-

spectively. The mean standard deviation is very similar for both emulators. This

implies that for the keff output of the radiation transport model it is more ef-

ficient to run the adjoint of the model and include derivative information when
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building an emulator.

4.6 Applications of derivative information in com-

puter models

In Chapter 2 we outlined some of the analyses which can benefit from derivative

information. In addition to these we have shown in Section 4.2 how derivatives

can be included in a Gaussian process emulator and further investigation into the

benefit of emulators with derivatives is given in Sections 4.4 and 4.5.

Killeya and Goldstein (2007) utilise derivative information in the analysis of

compartmental models. A Bayes Linear approach is adopted rather than imple-

menting a fully Bayesian analysis. A Bayes-Linear emulator does not provide

a full probability distribution for the outputs of a complex model, instead, just

means and variances are given. Details of the Bayes Linear approach to emulating

complex models is given by Craig et al. (1997). The methodology of Killeya and

Goldstein (2007) is demonstrated by a compartmental model of plankton cycles.

The first-order input derivatives are calculated analytically by hand and are em-

ployed in a sensitivity analysis. The sensitivity analysis is performed by plotting

derivatives and considering the sample mean and variance. Input variables whose

derivatives have a mean around zero and a small variance may be regarded as

inactive. If an input variable has derivatives with a high variance, however, it

may be termed an active variable. In this way a subset of the input variables

are selected and this enables the input dimensionality to be reduced. Having

determined which of the inputs are active variables they continue to investigate

how the inclusion of derivatives affects the emulator uncertainty. Specifically, 114

input points are chosen at which to evaluate the standard deviation of the emu-

lators; the mean value of the standard deviation, taken across this space, and the

maximum value are recorded. The procedure is repeated for emulators, built with

and without derivative information, with varying numbers of simulator runs. The

mean standard deviation produced from 25 runs of the emulator without deriva-

tive information, is comparable to the mean standard deviation produced from 6

runs of the emulator with derivatives for the first model output and 8 runs for the

second model output. The expected increase in the cost of generating the deriva-

tives, as reported by the authors, is by a factor of 1.8. Therefore, we can consider
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25 runs of the emulator without derivatives to be similar in computational cost

to approximately 14 runs of the emulator with derivatives. This shows that to

achieve comparable uncertainty, in this example, it is computationally cheaper

to include derivative information in the building of an emulator. Killeya and

Goldstein (2007) also evaluate the additional reduction in mean variance caused

by including derivatives, for a given set of runs. In their example for the first

output variable, the maximum additional reduction in variance is 44.5% and for

the second, 31.2%. Thus it is shown that uncertainty about the model is reduced

substantially, if derivative information is included when building an emulator.

They do not compare, however, the prediction error in the emulator means.

The benefit of observing derivatives in modelling nonlinear dynamic systems

is discussed in Leith et al. (2002), Solak et al. (2003) and Azman and Kocijan

(2005). Their work centres around combining linear local models with Gaussian

process models. They use derivative observations as a means to decrease the

number of data points in areas close to the equilibrium of the system. It is often

the case in nonlinear dynamic systems that more experimental data is available

at points close to where the system is in equilibrium, than at points further

away from this state. However, the global dynamics of the system are not fully

explained by just the data at points around equilibrium; information about the

dynamics further away from equilibrium is also required. As explained by Azman

and Kocijan (2005), derivative observations around an equilibrium point can be

thought of as observations of a local linear model at this point. Therefore from the

plentiful data around equilibrium a linear model can be fitted and the coefficients

of the linear model are the partial derivatives of the function. A Gaussian process

model is then built with the sparse data away from equilibrium and the derivatives

around equilibrium. Fitting a Gaussian process model using derivatives to learn

about the function at equilibrium rather than the output reduces the number of

data points and hence computational expense.

4.7 Conclusions

We know from Chapter 3 that if we have a complex model or simulator which

is computationally too expensive to run at every input configuration required,

then a solution to this may be to build a Gaussian process emulator. Having

built an emulator, using only a small number of simulator runs, the emulator can
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then be used as a surrogate to the simulator providing an efficient estimate of the

simulator output at an unknown input configuration with an associated level of

uncertainty. In this chapter we have investigated whether further efficiency in a

Gaussian process emulator can be achieved if we include derivative information

when building the emulator.

We have shown that in most of the 1-dimensional toy models of Section 4.4,

to obtain similar levels of prediction error and uncertainty, an emulator without

derivatives requires approximately twice as many model runs as the emulator

with derivative information. This suggests that if the computational expense of

running the simulator and generating the derivatives is less than twice that of

running the model alone, then derivatives provide a more efficient use of com-

puting time. With the exclusion of the very smooth model (toy model 1), the

level of smoothness of the simulator didn’t appear to have any effect on the value

of the derivative information. The very smooth model, however, showed that

an emulator without derivatives could achieve a similar level of prediction error

with only one more simulator run. The 3-dimensional example (toy model 5),

which involves modelling the flow of water through a borehole, provided fairly

similar results to those of the 1-dimensional models. The emulator with deriva-

tives required approximately two thirds as many runs as the emulator without

derivatives to produce a similar prediction error. Whereas, to obtain similar lev-

els of uncertainty, the emulator with derivatives required just under half as many

simulator runs as the emulator without derivatives.

While valuable indicators, toy models are fabricated examples and their use-

fulness depends on their similarity in behaviour to real complex models. We

therefore include a detailed study of the radiation transport model in Section 4.5,

which is a complex model run and analysed by Jeffery Favorite and colleagues

at Los Alamos National Laboratory. The comparison of emulators of this model

built with and without derivatives showed that with the same computational

expense spent, the emulators with derivatives all performed better than the emu-

lators without derivatives. To compare emulator performance we examined their

prediction error and measure of uncertainty. With less computational expense

available, the derivatives appear to have a large effect, achieving considerably

lower prediction errors than the emulators without derivatives. The difference

in prediction error between the emulators reduces as the computational expense

increases though and while emulators with derivatives are still achieving lower
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prediction errors, the difference is marginal. This may suggest, therefore, that

if an adjoint model is available we could produce a more efficient emulator with

adjoint runs rather than simulator runs. If an adjoint model does not yet ex-

ist though, the added time and expense required to build a working adjoint is

non-negligible and therefore it is unlikely that derivative information would then

provide efficiency. It should also be noted though that the prediction error of the

emulators with derivatives continue to decrease as we increase the computational

cost further; while it would appear that the prediction error of the emulators

without derivatives have reached a plateau. If more data were available it would

be interesting to investigate whether the prediction error of the emulators with-

out derivatives remains in a plateau or decreases in line with the emulators with

derivatives.
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Chapter 5

Emulating model derivatives

5.1 Introduction

Complex models are an important tool for studying a wide range of systems and

as in previous chapters, we refer to a complex model, written as a computer

code, as a simulator. As discussed in Chapter 1, derivative information about

the simulator output with respect to the model inputs is potentially useful to

many model users, for example in the application of sensitivity analysis or data

assimilation. One way of generating such derivatives, discussed in Chapter 2,

is by coding an adjoint model which, despite automatic differentiation software,

remains a complex task and the model when written is computationally expensive

to execute. There may be situations when model users are unwilling, or perhaps

unable, to allocate the initial time and resources required to code the adjoint of

a complex model. For example without access to the source code, an adjoint

model cannot be written. In the situation that the adjoint model already exists,

the additional computational expense required to run this model in place of the

standard version is completely non-negligible.

In this chapter we suggest an alternative method for generating partial deriva-

tives of complex model output, with respect to model inputs: we propose the use

of a Gaussian process emulator. As with emulators of function output, we run

the simulator at a small number of input points to generate the training data.

An emulator of model derivatives can then be built, conditional on this data. Al-

though derivative information is not necessary, if it is available at some or all of the

points in the training data, it can be included and the resulting emulator of model
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derivatives is expected to improve. We detail the methodology of this approach in

Section 5.2; firstly the situation where we only have function output is presented

and then in Section 5.2.2 we give the general case for emulating first derivatives

and model response, with or without derivative information. We then proceed

by demonstrating the approach in Section 5.3 with firstly a one-dimensional toy

model, secondly the 8-dimensional borehole model used by Morris et al. (1993)

and finally with the intermediate complexity climate model, C-GOLDSTEIN.

The methodology can easily be extended to include higher derivatives and this is

briefly explored in Section 5.4.

5.2 Emulating model derivatives with Gaussian

processes

The derivatives of a posterior Gaussian process remain Gaussian processes with

mean and covariance functions obtained by the relevant derivatives of the pos-

terior mean and covariance functions, (O’Hagan, 1992). This can be applied to

any Gaussian process emulator and in Section 5.2.1 we apply it to the standard

Gaussian process emulator as described in Chapter 3. We then show, in Section

5.2.2, how this can be done when there are derivatives available to incorporate

in the training data, in addition to model response. This is the same type of

emulator as is presented in Chapter 4, for emulating model response. Since the

derivatives of a Gaussian process remain a Gaussian process we can validate an

emulator of derivatives using the same approaches to that of a standard emula-

tor. Gaussian process validation is discussed more fully in Chapter 3. For further

detail on emulators of derivatives see the Generic Emulate Derivatives thread in

the MUCM toolkit at http://mucm.aston.ac.uk/MUCM/MUCMToolkit.

5.2.1 Emulating derivatives with only model response

If we cannot afford to run an adjoint model, or an appropriate adjoint model

does not exist, we can still emulate model derivatives as follows. We require the

simulator, η(·), to be a smooth function and, as in Chapter 3, begin by describing

the uncertainty about the simulator output by a Gaussian process. O’Hagan

(1992) shows that the derivatives of a Gaussian process remain a Gaussian process
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and thus we can model the derivatives of η(·), assuming η(·) is differentiable

everywhere, by a Gaussian process. A Gaussian process is defined by its mean

and covariance functions so these must now be described.

We specify the prior mean for the function output as

E [η(x)|β] = h(x)Tβ, (5.1)

and therefore the prior mean for the derivative is:

E

[
∂

∂x(d)
η(x)

∣∣∣∣β] =
∂

∂x(d)
h(x)Tβ

= h̃(x, d)Tβ, for d 6= 0. (5.2)

We have the location in the input space represented by x and the value of d refers

to which input the derivative is with respect to. For example, (xi, d = j) refers to

the derivative at location i in the input space w.r.t input j. We cannot have d = 0

as this refers to the model response and here we are emulating model derivatives.

The vector h(x)T , of length 1 × q, comprises known, differentiable functions of

x; and β is a q × 1 vector of unknown coefficients. We can choose the form of

h(.) based on our prior beliefs about η(·). For example, if we believe η(x) to be

approximately linear in x, then choosing h(x)T = (1 x) would be appropriate

and this would lead to a constant prior mean for the derivative.

The covariances between η(xi) and η(xj) are defined, for some twice differen-

tiable covariance function as:

Cov [η(xi), η(xj)] = σ2c(xi,xj). (5.3)

The covariances between derivatives, therefore, are:

Cov

[
∂

∂x(di)
η(xi),

∂

∂x(dj)
η(xj)

]
= σ2 ∂2

∂x
(di)
i ∂x

(dj)
j

c(xi,xj)

= c̃{(xi, d), (xj, d)}, for d 6= 0. (5.4)

A common form of correlation function is the infinitely differentiable Gaussian

form c(xi,xj) = exp{−(xi − xj)
TΘ(xi − xj)}, where Θ is a diagonal matrix of

positive smoothness parameters, θ{k} with k ∈ {1, . . . , p} and p is the number of

inputs.
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We assume that our prior information about β and σ2 will be weak, and so

for the prior distribution use:

p(β, σ2) ∝ 1

σ2
. (5.5)

In summary our prior beliefs take the form:

η(x)|β, σ2,Θ ∼ GP (h(x)Tβ, σ2c(x,x)) (5.6)

η̃(x, d)|β, σ2,Θ ∼ GP (h̃(x, d)Tβ, σ2c̃{(x, d), (x, d)}), for d 6= 0. (5.7)

We are only concerned here with emulating derivatives and therefore require that

d 6= 0, the general case where d ∈ {0, 1, 2 . . . , p} is covered in Section 5.2.2.

Although η(x) = η̃(x, d = 0), i.e (5.6) is (5.7) when d = 0, we keep the two

separate in this section for reasons which will soon become clear.

The next stage is to create a design which consists of a set of points in the

input space at which the simulator is to be run to create the training data. As

here we are emulating derivatives, not function output, a slightly different design

question is posed. It may be that an optimal design for emulating derivatives, with

only model response in the training data, has different properties to that of the

standard problem of emulating model response with model response. We touch

on this subject further in Section 5.3.1 but without any formal results. Having

specified the location of the design points we arrange this information in D =

{x1,x2, . . . ,xn}. The simulator is then run at each of the input configurations

and this results in our training data of model response:

y = {η(x1), η(x2), . . . , η(xn)}

= η(D), (5.8)

a vector of length n.

The process of deriving the posterior distribution is similar to that for a

standard emulator. We begin by writing the distribution of the training data,

y, conditional on the parameters β and σ2. The training data consists of model

response only and so from (5.6) and (5.8) we get:

y|β, σ2,Θ ∼ N(Hβ, σ2A), (5.9)
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where H = [h(x1), . . . ,h(xn)]T and A is the n × n matrix of correlations of the

training data: A = c(D,D). Now we wish to update the distribution of η̃() and

partition in the following way: (
η̃(x, d)

y

)
,

with mean =

(
h̃(x, d)Tβ

Hβ

)
, and covariance =

(
σ2c̃{(x, d), (x, d)} t̃(x, d)T

t̃(x, d) σ2A

)
,

where

t̃(x, d)T = Corr

[
∂

∂x(d)
η(x), η(x1)

]
, . . . ,Corr

[
∂

∂x(d)
η(x), η(xn)

]
=

∂

∂x(d)
c(x,x1), . . . ,

∂

∂x(d)
c(x,xn)

= c̃{(x, d), D}. (5.10)

We can now use standard techniques of conditioning multivariate normal distri-

butions and this gives:

η̃(x, d)|β, σ2,Θ,y ∼ N(m̃∗(x, d), σ2c̃∗{(x, d), (x, d)}), (5.11)

where

m̃∗(x, d) = h̃(x, d)Tβ + t̃(x, d)TA−1(y −Hβ),

c̃∗{(xi, di), (xj, dj)} = c̃{(xi, di), (xj, dj)} − t̃(xi, di)
TA−1t̃(xj, dj),

and we are only interested in the case here where d 6= 0.

The next part to building an emulator of derivatives with only function output

in the training data is the same as for the standard emulator: we apply Bayes

Theorem to (5.5) and (5.9), and this results in a joint Normal Inverse Gamma

posterior distribution for (β, σ2):

f(β, σ2|y,Θ) ∝ σ2
n+2
2 exp

{
− 1

2σ2
(β − β̂)THTA−1H(β − β̂) + (n− q − 2)σ̂2

}
,

(5.12)

where

β̂ =
(
HTA−1H

)−1
HTA−1y, (5.13)

σ̂2 = (n− q − 2)−1yT
{
A−1 − A−1H

(
HTA−1H

)−1
HTA−1

}
y. (5.14)
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From this we see that:

β|σ2,y ∼ N
(
β̂, σ2(HTA−1H)−1

)
, (5.15)

and integrating (5.12) with respect to β gives us:

σ2|y,Θ ∼ InvGam

(
n− q

2
,
(n− q − 2)σ̂2

2

)
, (5.16)

as in the building of a standard emulator as given in Chapter 3.

Now to find the distribution of the derivatives of the simulator, conditional

only on the function output in the training data the next step is to take the

product of (5.11) and (5.15) and then integrate out β. This results in:

η̃(x, d)|σ2,y,Θ ∼ GP
(
m̃∗∗(x, d), σ2c̃∗∗{(x, d) , (x, d)}

)
, (5.17)

where for d 6= 0 :

m̃∗∗(x, d) = h̃(x, d)T β̂ + t̃(x, d)TA−1(y −Hβ̂), (5.18)

c̃∗∗{(xi, di), (xj, dj)} = c̃{(xi, di), (xj, dj)} − t̃(xi, di)
TA−1t̃(xj, dj)

+
(
h̃(xi, di)

T − t̃(xi, di)
TA−1H

) (
HTA−1H

)−1
×
(
h̃(xj, dj)

T − t̃(xj, dj)
TA−1H

)T
. (5.19)

Finally integrating out σ2 leaves us with, conditional on Θ, a t process with

n − q degrees of freedom. The posterior mean is m̃∗∗(x, d) and can be used

as a fast approximation to the derivative of η(x) with respect to input d. The

posterior covariance between the derivative of η(xi) with respect to input d and

the derivative of η(xj) with respect to input d is σ̂2c̃∗∗(x, d) where

σ̂2 = (n− q − 2)−1yT
{
A−1 − A−1H

(
HTA−1H

)−1
HTA−1

}
y.

The covariance function includes a matrix of roughness parameters, Θ. As

when emulating response, we cannot analytically integrate out Θ from the pos-

terior distribution. In this chapter, as throughout this thesis, we choose to fix θ,

having estimated its value from the training data.

5.2.2 The general case: emulating model response and

derivatives

If we can afford to run an adjoint model, or derivative information has already

been generated perhaps as a result of some sensitivity analysis, we can include
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that information when building an emulator of derivatives. This is a similar

framework to that of Chapter 4, the difference is that in this chapter our goal

is to emulate derivatives, not model response. Due to similarities in the setup

with Chapter 4 and with parallel objectives to Section 5.2.1, in this section we

present the methodology for where we have derivatives and model response with

which to emulate model derivatives within the general case. So far, in this thesis

we have separated emulating model response and derivatives, with and without

derivative information in the training data, and in this section we bring these

situations together and present the general case for emulating model response

and derivatives, with or without derivatives in the training data. As this section

is effectively a summary of methods described earlier in this thesis some repetition

is inevitable.

We begin by describing the uncertainty about the simulator output by a Gaus-

sian process. Assuming η(·) is differentiable everywhere, we can proceed by mod-

elling the derivatives of η(·) also by a Gaussian process:

We specify the prior mean for the function output as

E [η(x)|β] = h(x)Tβ, (5.20)

and the prior mean for the derivative is:

E

[
∂

∂x(d)
η(x)

∣∣∣∣β] =
∂

∂x(d)
h(x)Tβ. (5.21)

We bring these functions together in h̃(x, d), which is defined as:

h̃(x, d)Tβ =

{
h(x)Tβ for d = 0
∂

∂x(d)
h(x)Tβ for d 6= 0 ,

where d ∈ {0, 1, . . . , p}. We have the location in the input space represented by x

and the value of d determines whether or not we are interested in the derivative

at that point. In this way (xi, d = 0), for example, would refer to the model

response at point i in the input space while (xj, d = 1) refers to the derivative

w.r.t input 1 at point j in the input space. The vector h(x)T , of length 1 × q,
comprises known, differentiable functions of x; and β is a q×1 vector of unknown

coefficients. We choose the form of h(.) based on our prior beliefs about η(·).
The covariances between η(xi) and η(xj) are defined, for some twice differen-

tiable covariance function as:

Cov [η(xi), η(xj)] = σ2c(xi,xj), (5.22)
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and covariances between derivatives are:

Cov

[
∂

∂x(di)
η(xi),

∂

∂x(dj)
η(xj)

]
= σ2 ∂2

∂x
(di)
i ∂x

(dj)
j

c(xi,xj). (5.23)

As we are interested in both the model response and derivatives we require the cor-

relations between points, between derivatives and points and also between deriva-

tives themselves. These correlations are all incorporated in c̃{(xi, di), (xj, dj)}:

c̃{(xi, di), (xj, dj)} =


c(xi,xj) for di = dj = 0
∂

∂x
(di)
i

c(xi,xj) for di 6= 0 and dj = 0

∂2

∂x
(di)
i ∂x

(dj)

j

c(xi,xj) for di, dj 6= 0 .

A common form of correlation function is the infinitely differentiable Gaussian

form c(xi,xj) = exp{−(xi − xj)
TΘ(xi − xj)}, where Θ is a diagonal matrix of

positive smoothness parameters, θ{k} with k ∈ {1, . . . , p} and p is the number

of inputs. While the Gaussian form is a popular choice of correlation function

it may not be suitable for every simulator and we discuss alternative correlation

functions in Chapter 4.

We assume that our prior information about β and σ2 will be weak, and so

for the prior distribution use

p(β, σ2) ∝ 1

σ2
. (5.24)

In summary our prior beliefs take the form:

η̃(x, d)|β, σ2,Θ ∼ GP (h̃(x, d)Tβ, σ2c̃{(x, d), (x, d)}), (5.25)

where d ∈ {0, 1, . . . , p}.
The next stage is to create a design which consists of a set of points in the

input space at which the simulator or adjoint is to be run to create the training

data. We are not restricted to a design which has either model response at

every point or all first derivatives at a point. Expert knowledge may help to

identify at which points in the design space model response would be beneficial

and at which point the derivatives w.r.t to various inputs are most informative.

Having specified the location of the design points and determined at which points

we require function output and at which points we require first derivatives, we

arrange this information in D̃ = {(xk, dk)}. We have xk which refers to the
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location in the design and dk determines whether at point xk we require function

output or a first derivative w.r.t one of the inputs. The simulator, η(·), or the

adjoint of the simulator, η̃(·), (depending on the value of each d), is then run at

each of the input configurations. This results in our training data:

ỹ = {η̃(x1, d1), η̃(x2, d2), . . . , η̃(xñ, dñ)}

= η̃(D̃), (5.26)

a vector of length ñ.

We begin the process of deriving the posterior process by writing the distri-

bution of the training data, ỹ, conditional on the parameters β and σ2. The

training data can consist of derivatives and model response and so from (5.25)

and (5.26) we get:

ỹ|β, σ2,Θ ∼ N(H̃β, σ2Ã), (5.27)

where H̃ = [h̃(x1, d1), . . . , h̃(xñ, dñ)]T and Ã is the ñ × ñ matrix of correlations

between points, between points and derivatives and between derivatives them-

selves, in the training data: Ã = c̃(D̃, D̃). Now we wish to update (5.25), the

distribution of η̃(), and we partition in the following way:(
η̃(x, d)

ỹ

)
,

with mean =

(
h̃(x, d)Tβ

H̃β

)
, and covariance =

(
σ2c̃{(x, d), (x, d)} t̃(x, d)T

t̃(x, d) σ2Ã

)
,

where t̃(x, d)T consists of the correlations of the derivative we are emulating and

the training data:

t̃(x, d)T = Corr [η̃(x, d), η̃(x1, d1)] , . . . ,Corr [η̃(x, d), η̃(xn, dn)]

= c̃{(x, d), D̃}. (5.28)

We can now use standard techniques of conditioning multivariate normal distri-

butions to give

η̃(x, d)|β, σ2,Θ, ỹ ∼ N(m̃∗(x, d), σ2c̃∗{(x, d), (x, d)}), (5.29)

where

m̃∗(x, d) = h̃(x, d)Tβ + t̃(x, d)T Ã−1(ỹ − H̃β),

c̃∗{(xi, di), (xj, dj)} = c̃{(xi, di), (xj, dj)} − t̃(xi, di)
T Ã−1t̃(xj, dj),
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and d could take any value in {0, 1, . . . , p}. This, (5.29), is the joint distribution

of η(·) and its derivatives, conditional on the parameters, β, σ2 and Θ.

The next part of building our general emulator is the same as building a

standard emulator, as given in Chapter 3 and repeated here. We apply Bayes

Theorem with (5.24) and (5.27) and this results in a joint Normal Inverse Gamma

posterior distribution for (β, σ2):

f(β, σ2|ỹ,Θ) ∝ σ2
ñ+2
2 exp

{
− 1

2σ2
(β − β̂)T H̃T Ã−1H̃(β − β̂) + (ñ− q − 2)σ̂2

}
,

(5.30)

where

β̂ =
(
H̃TÃ−1H̃

)−1
H̃TÃ−1ỹ, (5.31)

σ̂2 = (ñ− q − 2)−1ỹT

{
Ã−1 − Ã−1H̃

(
H̃TÃ−1H̃

)−1
H̃TÃ−1

}
ỹ. (5.32)

From this we see that:

β|σ2, ỹ ∼ N
(
β̂, σ2(H̃T Ã−1H̃)−1

)
, (5.33)

and integrating (5.30) with respect to β gives us:

σ2| ỹ, θ ∼ InvGam

(
ñ− q

2
,
(ñ− q − 2)σ̂2

2

)
, (5.34)

as in the building of a standard emulator.

Now to find the joint distribution of η(·) and the derivatives of η(·), conditional

only on the training data, the next step is to take the product of (5.29) and (5.33)

and then integrate out β. This results in:

η̃(x, d)|σ2,y,Θ ∼ GP
(
m̃∗∗(x, d), σ2c̃∗∗{(x, d) , (x, d)}

)
, (5.35)

where:

m̃∗∗(x, d) = h̃(x, d)T β̂ + t̃(x, d)T Ã−1(ỹ − H̃β̂), (5.36)

c̃∗∗{(xi, di), (xj, dj)} = c̃{(xi, di), (xj, dj)} − t̃(xi, di)
TÃ−1t̃(xj, dj)

+
(
h̃(xi, di)

T − t̃(xi, di)
TÃ−1H̃

)(
H̃TÃ−1H̃

)−1
×
(
h̃(xj, dj)

T − t̃(xj, dj)
TÃ−1H̃

)T
. (5.37)
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Finally integrating out σ2 leaves us with, conditional on Θ, a t process with

ñ − q degrees of freedom. The posterior mean is m̃∗∗(x, d) and can be used as

a fast approximation to the derivative of η(x) with respect to input d if d 6= 0,

and as a fast approximation to η(x) if d = 0. The posterior covariance between

the derivatives of η(xi) and η(xj) with respect to input d, or between the model

response η(xi), and η(xj), depending on the value of d, is σ̂2c̃∗∗(x, d) where

σ̂2 = (ñ− q − 2)−1ỹT

{
Ã−1 − Ã−1H̃

(
H̃TÃ−1H̃

)−1
H̃TÃ−1

}
ỹ.

The covariance function includes a matrix of roughness parameters, Θ. As

when emulating response, we cannot analytically integrate out Θ from the pos-

terior distribution. In this chapter, as throughout this thesis, we choose to fix θ,

having estimated its value from the training data. Further discussion of methods

to estimate Θ are given in Chapter 3.

5.3 Examples

5.3.1 Toy Example

We illustrate the methods described in Section 5.2 with a 1-dimensional toy model

example. The true model is

η(x) =
x

3
+ sin(x),

and we are interested in this function over the input region [1, 20]. The true

function is shown in Figure 5.1a and the corresponding true derivatives to be

emulated, ∂
∂x
η(x) = 1

3
+ cos(x), are shown in Figure 5.1b.

We take a linear form for the prior mean of the model response, and set

h(x)T = (1 x), which gives a constant prior mean for the derivative: ∂
∂x

h(x)T =

(0 1), and we have q = 2. We choose the Gaussian form for the correlation

function:

c(xi, xj) = exp{−θ (xi − xj)2},

and so the correlation between a derivative, η̃(xi, 1) and a point, η̃(xi, 0) becomes:

∂

∂xi
c(xi, xj) = 2θ (xj − xi)exp{−θ (xi − xj)2}, (5.38)
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(b) Derivatives of Toy Model output

Figure 5.1: Toy Model

and the correlation between two derivatives, η̃(xi, 1) and η̃(xj, 1) is:

∂2

∂xi∂xj
c(xi, xj) =

(
2θ − 4θ2 (xi − xj)2

)
exp{−θ (xi − xj)2}. (5.39)

We begin by choosing n = 6 design points with a maximin Latin hypercube

sample, which in one dimension is simply the set of equidistant points. We scale

the inputs to be in the unit range and also include in the training data the first

derivative at each of the 6 points. This is results in the design,

D̃ = {(x1, 0), . . . , (x6, 0), (x1, 1), . . . , (x6, 1)}.

Evaluating the simulator, and the derivative of the simulator where appropri-

ate, at the points in D̃ results in the training data: ỹ = η̃(D̃), a vector of

length ñ = 12. We now consider ∂
∂x
η(x) as an unknown function and, following

the methodology of Section 5.2, wish to derive the posterior distribution of the

derivative of η(x). We estimate the smoothness parameter, θ, by maximum likeli-

hood estimation and obtain a value of 61.3. The estimated variance is σ̂2 = 1.40.

We now attempt to predict the derivatives of the true function at a number of

new input sites. We can see the performance of this emulator in Figure 5.2. The
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posterior mean is the dashed line and two standard deviations above and below

this mean are shown by the dotted lines. The solid line reveals the true deriva-

tives of the simulator at these points and the location of the n input sites for the

training data are shown as crosses. Figure 5.2 shows that in this example, with

derivatives in the training data in addition to the response, we can emulate the

derivatives very well. Similarly to emulators of function output, at each design

point where a derivative is known (shown by a cross) the uncertainty pinches

in to zero. As expected the uncertainty grows as we predict a derivative away

from a design point; as we reach halfway between design points though, we see

the uncertainty reducing again, although not reaching zero. This is because we

know the response of the function at design points as well as the derivative and

this information allows the emulator to predict more accurately and with less

uncertainty between design points.
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Training data (response & derivative)
Analytical derivatives
Emulator mean
Emulator uncertainty

Figure 5.2: Emulating derivatives based on the function output and derivatives

at 6 points.

The performance of the emulator in Figure 5.2 is very encouraging but if an

adjoint to the simulator does not exist and derivative information is not available

by any other method, then the training data for the emulator would consist of

function output alone. Figure 5.3 shows the performance of the emulator built

exactly as before but now with only the response of the simulator at the 6 points

in the training data. The location of the training data is shown by crosses at the

93



CHAPTER 5. EMULATING MODEL DERIVATIVES

bottom of the plot; clearly these do not lie on the curve as the derivative is no

longer included at these points. It is evident from Figure 5.3 that the emulator
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Figure 5.3: Emulating derivatives based on the function output at 6 points. Note

that in comparison with Figure 5.2 a different scale on the y-axis has been used

to show the much larger uncertainty in this plot.

is performing very badly; clearly there is not enough information in the model

response at 6 points for the mean of the emulator to provide accurate predictions.

As with standard emulation though, we would expect the performance of an

emulator to improve with more runs of the simulator. Figure 5.4 shows the

performance of an emulator, built similarly to that of Figure 5.3 but with n = 11

and n = 12 runs of η(x). We adopt a maximin Latin hypercube sample for each

emulator built which therefore results in 11 and 12 equidistant points for the

emulators in Figures 5.4a and 5.4b respectively. In comparison to the emulator

built with just 6 runs we see an improvement in the prediction of the derivatives in

Figure 5.4b and reduced uncertainty across the whole input region. The emulator

built with n = 11 runs, Figure 5.4a, is performing very badly though and despite

the training data having just one less simulator run, the difference between the

two emulators of Figures 5.4a and 5.4b is considerable. An explanation for the

contrasting performances is the estimates of the smoothness parameter, θ. The

maximum likelihood estimate for θ we obtain when building the emulator with

n = 11 runs is 2889. The corresponding estimate when we have n = 12 runs
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(a) Emulator built with n = 11 points.
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(b) Emulator built with n = 12 points.

Figure 5.4: Emulating derivatives based on the function output alone.

is 36.4. This is a stark contrast brought about by just one extra design point,

though it should be noted that due to the use of equidistant points for each

emulator the two sets of design points are distinct. To investigate this further

we build an emulator with the n = 11 equidistant points but fix the smoothness

parameter at the value as estimated with the n = 12 equidistant points, which

is 36.4. The resulting emulator is shown in Figure 5.5 and we now see a vastly

improved performance, very similar to the emulator with n = 12 equidistant

points. This confirms that the estimate of θ with n = 11 equidistant points is

the cause of the poor performance of the emulator shown in Figure 5.4a.

Since we know that n = 12 equidistant points results in a sensible estimate

of θ, we continue to attempt to build a valid emulator with n = 11 by selecting

the n = 12 equidistant points and removing one point to result in a different

emulator with n = 11. The maximum likelihood estimate for θ is now 50.1

and the performance of the resulting emulator is shown in Figure 5.6a. We can

see from Figure 5.6a that while the uncertainty is slightly higher around x = 6

compared to Figure 5.5, the overall performance of the emulators is very similar

with very good prediction of the derivatives. We can also see in Figure 5.6a

the uncertainty pinching in between design points. Although very small, the
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Figure 5.5: Emulating derivatives based on the function output at n = 11 points

but θ fixed at 36.4

uncertainty does not quite reach zero at these points. For example between the

5th and 6th design points at x = 10.46, the standard deviation of the emulator is

0.016 (with mean -0.176). In contrast, the uncertainty is at its largest at design

points. This is because without any derivative information known, at a design

point the emulator is least certain of the gradient of the function at that point.

The improvement and more appropriate estimate of θ is due to the spread of

the design points. When all points are exactly the same distance apart, despite

being optimally space filling, it becomes very difficult to estimate the smoothness

parameter. Due to this we now adapt our design: a space filling element is

still required and therefore a Latin hypercube sample is still appropriate but we

remove the maximin criteria and instead, impose the condition that the distances

between points is distinct. An emulator, built with n = 11 runs and this adapted

LHS, is shown in Figure 5.6b. The resulting emulator performs very well and it

would appear that 11 simulator runs might not all be required to build a valid

emulator of derivatives for this model.

Since a real complex model would be computationally expensive to run and we

would like to be able to build a valid emulator with small n we now try building

emulators with the adapted LHS design but for n = 9 and 10. The performances

of the resulting emulators can be seen in Figure 5.7. From this we see that while
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(a) Emulator built with one point removed

from 12 equidistant points
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(b) Emulator built with a non-maximin LHS

Figure 5.6: Emulating derivatives based on the function output at n = 11 points.

the predictions from the emulator built with n = 9 points, match the analytical

derivatives in some areas, to provide accurate predictions with low uncertainty

across the whole of the specified input region, n = 10 runs are required.

In summary, although this is only a toy example it demonstrates how the

method can work. With n = 6 runs and including the derivative at each point we

can accurately emulate the derivatives of this model. If we don’t have derivative

information to include in the training data however, similar results can still be

achieved by including the model response at just a few additional points. This is

demonstrated in Figure 5.7b, where with just function output at n = 10 points

the emulator is performing just as well as the emulator with n = 6 points and 6

derivatives, as shown in Figure 5.2.
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(a) Emulator built with n = 9
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(b) Emulator built with n = 10

Figure 5.7: Emulating derivatives with just function output and with the adapted

LHS design.

5.3.2 Borehole Model

The simulator of this example is a model of the flow of water through a borehole

in m3/yr,

flow rate =
2πTu(Hu −Hl)

ln( r
rw

)
[
1 + 2LTu

ln( r
rw

)r2wKw
+ Tu

Tl

] .
This is one of the models chosen to demonstrate the value of derivative informa-

tion when emulating function output in Chapter 4. It is also the model chosen

by Morris et al. (1993) to demonstrate their methodology for including derivative

information in the analysis of computer models. There are eight inputs, shown

along with a range of values that each input takes in Chapter 4, Table 4.2 and

repeated here for completeness.

We vary all 8 input dimensions and build an emulator from 80 training runs

chosen by generating a Latin hypercube sample. As in Example 5.3.1 we adopt

a linear form for the prior mean and choose the covariance function, c(xi,xj) =

exp
{
−(xi − xj)

TΘ (xi − xj)
}

. The correlation then between a point, xi, and a
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Input Name in Description Range Units

model

Input 1 rw radius of borehole 0.05 – 0.15 m

Input 2 r radius of influence 100 – 50,000 m

Input 3 Tu transmissivity of upper aquifer 63,070 – 115,600 m2/yr

Input 4 Hu potentiometric head of upper

aquifer

990 – 1,110 m

Input 5 Tl transmissivity of lower aquifer 63.1 – 116 m2/yr

Input 6 Hl potentiometric head of lower

aquifer

700 – 820 m

Input 7 L length of borehole 1,120 – 1,680 m

Input 8 Kw hydraulic conductivity of bore-

hole

1,500 – 15,000 m/yr

Table 4.2 Inputs for borehole model

derivative w.r.t input k at point j, x
(k)
j , is:

∂

∂x
(k)
j

c(xi,xj) = 2 θ{k}
(
x
(k)
i − x

(k)
j

)
exp{−(xi − xj)

TΘ(xi − xj)},

the correlation between two derivatives w.r.t input k but at points i and j is:

∂2

∂x
(k)
i ∂x

(k)
j

c(xi,xj) =

(
2 θ{k} − 4 θ2{k}

(
x
(k)
i − x

(k)
j

)2)
exp{−(xi−xj)

TΘ(xi−xj)},

and finally the correlation between two derivatives w.r.t inputs k and l, where

k 6= l, at points i and j is:

∂2

∂x
(k)
i ∂x

(l)
j

c(xi,xj) = 4 θ{k} θ{l}
(
x
(k)
j − x

(k)
i

)(
x
(l)
i − x

(l)
j

)
exp{−(xi−xj)

TΘ(xi−xj)}.

We choose a 20 point validation data set also from a Latin hypercube sample

and analytically differentiate the simulator w.r.t each input. This generates 160

validation derivatives. We order the validation derivatives such that 1 - 20 are

the derivatives w.r.t input 1, 21 - 40 are the derivatives w.r.t input 2 etc and
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Figure 5.8: Emulated derivatives at the validation data points plotted against

corresponding analytical derivatives.
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we apply the diagnostic measures as given in Bastos and O’Hagan (2009). The

results are summarised below and in Figures 5.8 and 5.9.

We plot the emulator mean and 2 standard deviations either side of the mean

against the simulator output, at the validation input points, in the top left panel

of Figure 5.8. From this it is clear that the response, the flow of water through a

borehole, is emulated very well with low uncertainty. The emulated derivatives are

plotted against the analytical derivatives w.r.t each of the inputs in the remaining

panels of Figure 5.8. The predictions of the derivatives w.r.t inputs 1, 4, 6, 7 and

8 all match well against the analytical derivatives. There does however appear

to be some conflict between the emulator and the analytical derivatives w.r.t.

inputs 2, 3 and 5. The plots here of emulated derivatives against true derivatives

do not see the points cluster around the y = x line; the uncertainty however

is appropriate with the emulator mean at most points lying within 2 standard

deviations of the truth. The magnitude of the true derivatives for these inputs

are the lowest of all the derivatives. The response therefore, would appear to be

less sensitive to these three inputs and consequently, with function output alone,

it is difficult to accurately estimate the value of these derivatives.

Further validation is required and we calculate the observed Mahalanobis

distance, obtaining a value of 128. This diagnostic gives a measure of overall

fit and should be compared to its reference distribution, which is the scaled F

distribution with mean 160 and standard deviation 33. The observed Mahalanobis

distance is within one standard deviation of its theoretical mean and so suggests

a good level of overall performance of the emulator. We continue by calculating

individual standardised errors and these are shown in the left panel of Figure

5.9. If the emulator is a good approximation to the analytical derivatives 95% of

points would lie between −2 and +2, and with only a small number of outliers,

this is seen in Figure 5.9. The outliers, as identified in Table 5.1, are all at

different validation points but refer to derivatives w.r.t. 4th and 7th input only.

In contrast there are no outliers for any of the derivatives w.r.t inputs 2, 3, or 5.

The panel on the right of Figure 5.9 shows pivoted Cholesky errors. Groups

of unusually large or small errors in various parts of the sequence imply possible

problems with parameter estimates in the emulator. In Figure 5.9 there is no

obvious pattern to the errors though and apart from the small number of outliers

most are within [−2, 2] as required.
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Figure 5.9: Diagnostic plots for the validation of the derivative emulator

Validation Index Validation input point Derivative w.r.t

70 10 Input 4

78 18 Input 4

132 12 Input 7

136 16 Input 7

135 15 Input 7

Table 5.1: Outliers shown in Figure 5.9.
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We can therefore emulate the derivatives of the borehole model well though

estimates of derivatives w.r.t inputs 2,3 and 5 should be considered carefully. An

explanation for the relative poor emulation of the derivatives w.r.t inputs 2, 3

and 5 is that the model output is least sensitive to these inputs. Due to this,

however, a model user may not be concerned with the values of these derivatives;

any optimisation for example is unlikely to benefit much from this derivative

information. To confirm that this is the case, and as the borehole model is a

function which can be evaluated very cheaply, we can vary each of the inputs 2,

3 and 5 in turn while keeping the remaining inputs fixed at their lower limit. We

choose an n = 5 point design, and select the design points from a Latin hypercube

sample. Due to the results of Section 5.3.1, though, we ensure that none of the

points are equidistant. We then calculate the model response and its derivatives

at 100 points spread evenly across the input space and generate the emulator

mean and standard deviation at each point to compare.

The results from this experiment applied to inputs 3 and 5 are shown in

Figures 5.10 and 5.11 respectfully. We see that in just one dimension we can
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(a) Emulating the model response.
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(b) Emulating the derivatives w.r.t input 3.

Figure 5.10: Emulating the borehole model and its derivatives in one dimension.

Input 3 is varied and the remaining 7 inputs are fixed at their lower limit.
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(a) Emulating the model response.
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(b) Emulating the derivatives w.r.t input 5.

Figure 5.11: Emulating the borehole model and its derivatives in one dimension.

Input 5 is varied and the remaining 7 inputs are fixed at their lower limit.

emulate the derivatives w.r.t to these inputs very well. It also is clear how little

the model output is affected by changes in these inputs. The y-axis ranges in

Figure 5.10a from 20.01478 to 20.01480 and in Figure 5.11a from 144.6176 to

145.6759. Comparing this to the range of the model output when we vary all 8

inputs, shown in Figure 5.8 (12.35903 to 198.5579), it is evident that inputs 3 and

5 do have very little effect on the output and explains why it is hard to achieve

accurate estimates of the derivatives w.r.t these inputs with an emulator.

The performance of the emulator built varying only input 2, shown in Figure

5.12, provides less satisfactory results. The function appears to be non-stationary.

We see small changes in the input causing relatively large changes in the output,

for approximately input 2 < 10000, however for the rest of the input space the

change in output is smoother. We can see from Figure 5.12a that as 4 of the

design points are situated in the ‘smoother’ region of the input space the resulting

estimate of the smoothness parameter is appropriate for that region and the

emulator then suffers in the ‘rougher’ region.

We tackle this problem by ‘warping’ the input space so as to obtain a sta-

tionary function. A log transformation is applied to input 2 and the subsequent
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(a) Emulating the model response.

0 10000 20000 30000 40000 50000

-1
.5

-1
.0

-0
.5

0.
0

Input 2
M

od
el

 d
er

iv
at

iv
es

(b) Emulating the derivatives w.r.t input 2.

Figure 5.12: Emulating the borehole model and its derivatives in one dimension.

Input 2 is varied and the remaining 7 inputs are fixed at their lower limit.

emulation of the model response and the derivatives w.r.t the log of input 2 are

shown in Figures 5.13a and 5.13b respectively. We now have a stationary func-

tion, both the model response and the derivatives of which we are able to emulate

very well. Transforming the emulator’s predictions back to the meaningful scale

of input 2 results in Figures 5.13c and 5.13d.

Applying a log transformation to input 2 when varying all 8 input parameters

makes very little difference to the performance of the resulting emulator. This is

because the effect of input 2 is too small in comparison to the the other inputs and

so there is not enough signal for the emulator to accurately predict the derivatives

w.r.t to this input.

5.3.3 C-GOLDSTEIN

As described in Chapter 1, the C-GOLDSTEIN software encodes a computation-

ally fast Earth System Model (ESM) developed by R. Marsh and N. R. Edwards.

In addition to C-GOLDSTEIN, there also exists the adjoint of the model, de-

scribed in Chapter 2, which was written by D. Zachary and N. R. Edwards. The
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(a) Emulating the model response after a

log transformation has been applied to in-

put 2.
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(b) Emulating the derivatives w.r.t to the

log of input 2.
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(c) Emulating the model response with the

log of input 2 and then transforming back

to meaningful scale.
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(d) Emulating the derivatives w.r.t to the

log of input 2 and then transforming back

to obtain the derivatives w.r.t input 2.

Figure 5.13: Emulating the borehole model and its derivatives in one dimension.

Input 2 is transformed and varied while the remaining 7 inputs are fixed at their

lower limit.
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adjoint employs Automatic Differentiation to produce partial derivatives with

respect to the inputs, in addition to the standard model output.

The C-GOLDSTEIN model produces many outputs and we choose global

mean air temperature to study here. The adjoint model has been appropriately

adapted to generate the derivatives of global mean air temperature with respect

to 12 of the input parameters. For the purpose of this example we choose to vary

just one of the 12 input parameters, scf, which is the wind stress scale. While

thought to have some effect on global mean air temperature this input parameter

is chosen primarily due to the performance of the adjoint. All finite difference

(FD) experiments undertaken in an attempt to validate the adjoint, and shown in

Chapter 2, have shown consistently good agreement between the adjoint and FD

for this parameter. In an initial investigation, therefore this parameter is thought

to be suitable.

We build all the emulators in these experiments as in Section 5.2.1 with func-

tion output only and with a linear form for the prior mean. The Gaussian form

for the covariance function is again adopted and validation data is acquired by

running the adjoint model.

In the one-dimensional toy example of Section 5.3.1 we see that 10 simulator

runs, without derivatives in the training data, are required for good emulation

of the derivatives. As a starting point in this one-dimensional C-GOLDSTEIN

example, therefore, we choose to run the C-GOLDSTEIN adjoint at 10 points

to provide training data for the emulator, and a further 20 points to provide

validation data. We only include the function output in the training data so this

provides 30 validation derivatives in total. Ideally more validation derivatives

would be available, however n′ = 30 is a large enough sample to make initial

judgements about the performance of our emulator and taking into considera-

tion the computational expense of the adjoint, this seemed reasonable. Figures

5.14a and 5.14b show the how the global mean air temperature and the partial

derivatives of the temperature with respect to wind stress scale vary for all 30

runs.

We begin by emulating the air temperature at the validation points. Figure

5.15a shows the performance of the emulator (in red) and the points included in

the training data are in bold. We can see that the emulator performs well across

most of the design space. We therefore proceed by emulating the derivatives at all

30 points and Figure 5.15b compares the emulator with the adjoint output. There
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Figure 5.14: C-GOLDSTEIN adjoint output at 30 points.

is a small area of the input space where the emulator mean matches the adjoint

derivatives quite well. The emulator performs badly overall though, particularly

for scf ∈ {2.02, 2.10}.
We attempt to improve on this by performing an additional 50 runs of C-

GOLDSTEIN across the whole input space, in order to gain a better understand-

ing of the function and provide more validation data for the standard emulator.

We then restrict the training data to 11 points between 2.02 and 2.10 and build

a second emulator for function output and derivatives. Figure 5.16 compares

the air temperature of the emulator with the validation data. The black line is

C-GOLDSTEIN output and the red line is the posterior mean evaluated at the

validation points. The output is shown by a solid line but consists of 36 points.

With this training data we now see the emulator is performing very well across

this narrow input region.

No further runs of the adjoint are performed due to the computational ex-

pense. Figure 5.17a shows where the validation data for the derivatives is located

in the input space and Figure 5.17b shows the performance of the emulator here.

We also include estimates of the relevant derivatives using the finite differences

approach with ε = 1e−5. Figure 5.17b shows much less conflict between the em-
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Figure 5.15: Emulating with the model response at n = 10 points.
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Figure 5.16: Emulating air temperature in the narrowed input space with the

model response at n = 11 points. The true simulator output, shown here as a

solid black line, consists of 36 points.
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ulator and the adjoint than before (in Figure 5.15b), the emulator even matches

the adjoint at the high peak at derivative point 3. The emulator however, still

performs very badly at derivative points 7 and 8. There is not a clear explanation

for this as Figure 5.17a shows we can emulate the function output well at these

points. The finite differences estimate at point 7 is much closer to the adjoint

value than the emulator, but at point 8 is so large (0.36) that it is not visible

with the current scale on the y-axis.

2.02 2.04 2.06 2.08

12
.0
32
8

12
.0
33
0

12
.0
33
2

12
.0
33
4

scf

G
lo

ba
l m

ea
n 

ai
r t

em
pe

ra
tu

re

1 2
3 4

5

6

7 8

9
10
11

Emulator
Simulator
Location of validation
derivatives

1-11

(a) Emulating function output

2.02 2.04 2.06 2.08

-0
.0
4

-0
.0
3

-0
.0
2

-0
.0
1

0.
00

0.
01

scf

D
er
iv
at
iv
es

1
2

3

4
5
6

7

8

9 1011

1 2

3

4

5
6

7
8

9

10

111
2

3

4 5

6

7 9 1011

Adjoint
Emulator
FD

(b) Emulating the derivatives

Figure 5.17: Emulating in the narrowed input space with the model response at

n = 11 points. For location of the training data see Figure 5.16.

We now choose to run C-GOLDSTEIN intensively in this narrowed region.

The resulting data set has a further 134 points in the narrowed region and 214

points altogether. The augmented data set, shown in Figure 5.18a, is quite alarm-

ing as we had previously believed C-GOLDSTEIN to be a smooth, continuous

function. Figure 5.18b shows the points where the derivative validation data is

located and it is now clear why in Figure 5.17b, the emulator behaved poorly at

point 8 and to a lesser extent at point 7.

The data in Figure 5.18a can be explained by examining the difference in sur-

face air temperature between neighbouring discontinuous points. This is shown

for the last apparent discontinuity at scf = 2.067 in Figure 5.19. The difference
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(a) C-GOLDSTEIN air temperature
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Figure 5.18: Augmented data set which consists of a total of 214 points.

Figure 5.19: The difference in surface air temperature between the 2 points at

the last “discontinuity” in Figure 5.18.
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in surface air temperature between the points scf = 2.067 and scf = 2.0676 is

pretty much zero everywhere apart from one patch in the southern ocean and

this explains the relatively large difference in global mean air temperature. The

most likely cause for this is changes in ocean convection: when a threshold is

reached there is a switch in the model which can cause small jumps as seen in

Figure 5.18a. The magnitude of the differences in global mean air temperature

is very small, the largest in Figure 5.18a being 2.2e-04◦C at scf = 2.0622. For

comparison, the difference in global mean air temperature between scf = 2.0124

and scf = 2.013, a smooth part of the model, is 2.5e-06◦C. While even the largest

difference in temperature at a discontinuous point is too small to have an effect

on the climate, the corresponding derivatives around these points are very large

in magnitude, and don’t exist at the exact point of discontinuity. Building an

emulator capable of accurately predicting derivatives at such points, so large in

magnitude relative to most of the derivatives in the input space, becomes an im-

possible task. As we see from Figures 5.15b and 5.17b, the emulator smooths out

the derivatives in these areas, the result being estimates of derivatives, which are

more appropriate at first glance. That is, only when we ‘zoom in’ and perform

many model runs do we see the explanation for the values of the adjoint-generated

derivatives. It could be argued that as the real world system is not expected to

fluctuate with such sharp changes of gradient, the emulator is actually providing

estimates which are closer to reality than the simulator and adjoint! The dif-

ference in global mean air temperature is too small to be of any consequence to

climate scientists however, and therefore the exact derivative at and around the

points of discontinuity may not be required. A smoothed over emulator result, on

the other hand, could be appropriate for subsequent analysis. This is discussed

further in Section 5.5.

5.4 Integrals and higher derivatives

The general case which applies to the emulation of both model response and

first derivatives, with or without first derivative information in the training data,

is presented in Section 5.2.2. This methodology can be extended if second or

third derivatives are available, or if we wanted to emulate higher derivatives. The

key concept is that derivatives of Gaussian processes remain Gaussian processes
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with mean and covariance functions given by the relevant derivatives of the orig-

inal functions of the Gaussian processes. Consider our prior distribution for the

first derivatives of η(·), (5.25) with d 6= 0. If we wanted to emulate the second

derivatives of η(·) then (5.25) becomes

∂2

∂x2
η(x)|β, σ2,Θ ∼ GP

(
∂2

∂x2
h(x)Tβ, σ2 ∂4

∂x2i∂x
2
j

c(xi,xj)

)
. (5.40)

Clearly this requires a 4 times differentiable covariance function though and a

twice differentiable mean function. In general higher derivatives of η(·) can be

modelled by Gaussian processes with mean:

E

{
∂u

∂xu
η(x)

}
=

∂u

∂xu
h(x)Tβ

and covariance between two higher derivatives given by:

Cov

{
∂u

∂xui
η(x),

∂v

∂xvj
η(xj)

}
=

∂u+v

∂xui ∂x
v
j

c(xi,xj),

for u, v ∈ Z and assuming that h(·) is u times differentiable and c(·) is (u + v)

times differentiable. The posterior process is then derived similarly to Section

5.2.2.

The methodology can also be adapted to emulate integrals of functions, if

this were required by a model user. This is akin to the special case of emulating

the model response when we only have derivatives in the training data; such

an emulator could be built using the setup and methods described in Section

5.2.2. Suppose now we are interested in the integral I =
∫
χ
η(x)dx where χ

represents the input space. O’Hagan (1991) uses a Gaussian process to make

inferences about I in Bayes-Hermite quadrature. The Gaussian process emulator

methodology applied to I with just model response in the training data results

in:

I|y ∼ GP

(∫
χ

m∗∗(x)dx, σ2

∫
χ

∫
χ

c∗∗(xi,xj)dxidxj

)
.

Similarly this could be extended to include derivatives in the training data and

Oakley (1999) briefly looks at the effect of observing derivatives in quadrature.
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5.5 Conclusions

Adjoint models are becoming increasingly common and valuable but for complex

models they remain difficult to write and expensive in computing resource and

time to run. In this chapter we have adapted existing methodology to emulate

model derivatives and demonstrated the methodology in 3 examples.

The one dimensional toy example, in Section 5.3.1, shows the potential the

Gaussian process emulator approach has: with derivative information in our em-

ulator we can emulate the model derivatives very well. In addition to this, given

just a few extra simulator runs we can accurately emulate the model derivatives

with function output alone. The design problem for building an emulator of

derivatives is briefly investigated with the one dimensional toy model and we find

that an optimal space-filling design in some cases, produces invalid emulators.

This is because all the points are exactly the same distance apart, making it very

difficult to estimate the smoothness parameter in the emulator. This may not

be of serious concern with real complex models though, as in large dimensional

space we are very unlikely to get multiple points with exactly the same distances

between them. If we do have enough training data, in higher dimensional input

space, such that this happens we would likely encounter numerical problems when

building the emulator. Even if the emulator is built without any such hindrance

though, the problem of the resulting poor performance of the emulator can likely

be resolved by removing a small number of the observations, as we saw in Figure

5.6a. The effect on the emulation of derivatives when we have equidistance points

does, however, motivate the need to investigate designs with varying distances

between points to better estimate smoothness parameters. In support of this, we

see the uncertainty reducing between design points which also implies perhaps

space-filling isn’t necessarily optimal when emulating derivatives.

The second example, in Section 5.3.2, shows that in an 8-dimensional model

we can emulate very well the derivatives with respect to 5 of the inputs. The per-

formance of the emulator is not as good with respect to inputs 2, 3 and 5 but the

emulator is appropriately confident about these predictions. In a one-dimensional

setting, individual emulators for each of these inputs perform well, although with

a real complex model such an experiment would unlikely be possible. The model

response, however, is much less sensitive to inputs 2, 3 and 5 which possibly makes

it less important that these derivatives are accurately emulated. The derivatives
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w.r.t these inputs are relatively very small in magnitude and thus the information

they provide is unlikely to have a large effect on any further analysis.

The final example, the emulation of the partial derivatives of C-GOLDSTEIN,

has had mixed success. Firstly, perhaps it should be noted that the function of

the derivatives, as shown in Figure 5.14b, is not a function we would confidently

claim to be able to accurately emulate. We require that the simulator is a smooth

function of its inputs and therefore also that the partial derivatives are a smooth

function of the inputs. This is a key requirement as it accounts for the efficiency

of an emulator. As discussed in Chapter 3, if a model is smooth then knowledge of

the output at xi tells us something about the output at xj for xi close to xj. Monte

Carlo methods do not make use of this extra information and as such the emulator

approach is more efficient. If there are areas of the input space where a model does

not respond smoothly to changes in the inputs, i.e the model is non-stationary,

standard emulation is unlikely to be appropriate. There are options that could

be investigated in this situation though. For example, Gramacy and Lee (2008)

split the output into regions which have a similar level of smoothness. Other

options include ‘warping’ the input space such that we have a stationary function

on this transformed space, as demonstrated in Section 5.3.2, or another option is

to select a non-stationary covariance function. In our C-GOLDSTEIN example,

we split the output into regions, and emulate the derivatives of the ‘rough’ patch

separately. With this method and given enough training data, we can emulate

the derivatives of this model quite well. This is relatively straightforward in one-

dimension as even with limited observations of the function, it is clear which

areas we need to perform further runs, to ‘zoom in’. In higher dimensional space

though, identifying the location and cause of such ‘rough’ regions is much harder.

Even if this can be done, as in the example illustrated in Section 5.3.3, many

simulator runs will be required, and it is unlikely that emulation will be an

efficient alternative to an adjoint model. Of course, an adjoint to the required

model might not exist, so the question becomes about whether emulation is more

efficient than the many runs a finite differences experiment would entail.

The difference between FD and adjoint estimated derivatives, as shown in

Figure 5.17b, is in contrast with the validation results in Chapter 2, where good

agreement is apparent. It is clear, however, from Figure 5.18, that the adjoint

derivatives are accurate here and it is likely that if FD runs are performed with a

more appropriate value of ε, the resulting derivatives would be in closer agreement
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to the adjoint. This highlights the importance and difficulty in selecting a suitable

value of ε when undertaking FD experiments.

We’ve just described how the derivatives from the adjoint model, at and

around the points of discontinuity, appear to be accurate and if the purpose is to

investigate whether the model ‘misbehaves’ at any inputs points, then relatively

large derivative values are very informative of this. This is assuming of course

that the model is expected to be smooth. It could be argued though that the

adjoint-generated derivatives are actually misleading for other types of analysis.

Suppose, for example, we wish to run some optimisation algorithm which makes

use of gradient information. Inputing partial derivatives which, while accurate at

a precise level are unrepresentative of the trend, seen for example at point 8 in

Figure 5.18b, will cause problems for the optimisation algorithm. For example,

the algorithm will be less efficient as it will necessarily spend time searching in

the wrong part of the input space. In addition to this there is a greater chance

that a local maximum or minimum is returned, rather than the global optimum

which we are interested in. In this situation, emulated derivatives could actually

provide more meaningful estimates of the gradient which would in turn assist the

optimisation algorithm.

In summary, we have suggested an alternative approach to the efficient evalu-

ation of model derivatives. While this is encouraging, validation derivatives will

still be required and if an adjoint model does not exist or is too expensive to

execute, then other techniques to produce validation derivatives will have to be

employed. Derivatives generated by the finite differences approach could be an

option, though this requires multiple simulator runs and numerical and approx-

imation errors can cause inaccurate derivatives. This complicates the validation

process as we need to be confident that validation derivatives are accurate enough

to be used as a diagnostic: it is possible that conflict between emulated derivatives

and those generated by finite differences may be in part due to an inappropriate

choice of ε.

116



Chapter 6

Use of derivatives in multivariate

emulation

6.1 Introduction

Complex computer models are an important tool for studying a wide range of

systems and such models tend to have many outputs. The standard approach

to emulating multiple outputs of a complex model is to build an independent

emulator for each output; such an approach, however, ignores any possible corre-

lation between outputs. There are various approaches to emulating multivariate

response; for example, Conti and O’Hagan (2010) emulate multiple outputs of

a complex model with the use of a separable covariance structure, that is treat-

ing covariances between model inputs and model outputs separately. Urban and

Fricker (2009) adopt a similar framework in the multivariate emulation of a cli-

mate model. One of the difficulties in emulating multivariate response is handling

large datasets; we have n model runs and r model outputs which results in an

array of size n× r. For large r, one approach is to use principle component anal-

ysis to reduce the dimension of the output space. Alternatively, Rougier (2008)

introduces the outer-product emulator of which the Conti and O’Hagan (2010)

approach is a special case. The outer-product emulator provides computational

efficiency by utilising a separable structure in the mean function as well as in

the covariance function. The outer-product emulator is demonstrated further in

Rougier et al. (2009).

As discussed in Chapter 2, it is possible to obtain derivatives of model outputs
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with respect to model inputs, for example through the adjoint of the model. The

use of derivative information when building univariate emulators is investigated

in Chapter 4 and here we explore the value of derivatives in multivariate emula-

tion. We adapt the separable covariance approach of Conti and O’Hagan (2010)

to allow for the inclusion of derivative information and the resulting methodology

is given in Section 6.2. We then demonstrate this method with the use of the

radiation transport model, which is the PARTISN model for estimation of radi-

ation measurements from specified material configurations. The model produces

5 outputs and it is reasonable to expect correlation between these outputs. See

Section 1.3.2 for further detail about the radiation transport model. We con-

tinue in this chapter by first building independent emulators, with and without

derivatives, for each of the 5 outputs in order to compare with the multivariate

approach. A multivariate emulator is then built, again with and without deriva-

tives, in Section 6.3.3 and results showing the value of including the derivative

information, in both univariate and multivariate situations are given in Section

6.3.4. In this way we attempt to answer the following question specifically for

the radiation transport model: should we build 5 independent emulators or one

multi-output emulator and, given the type of emulator, would it be more efficient

to include derivative information? We then conclude this chapter with a small

calibration study using one of the emulators built in Section 6.3.

6.2 Multivariate emulation with separable co-

variance and derivatives

To build a multivariate emulator with derivative information we follow the frame-

work of Conti and O’Hagan (2010) for the multivariate aspect and Morris et al.

(1993) for the inclusion of derivatives. As in Chapter 4 there are x input config-

urations and p input dimensions. We are now interested in emulating r multiple

outputs of the simulator.

As with univariate emulation, we model η(·) with a Gaussian process, though

as we are interested in the r outputs of η(·), we require an r-variate Gaussian

process. We now need to specify mean and covariance functions and begin by

defining the mean function to be E[η(x)|B] = h(x)TB, where h(x)T is a 1 × q
vector of known, differentiable functions of x and B is a q× r matrix of unknown
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coefficients, β. Each output therefore shares the function h(x)T but has its own

(β1, . . . , βq). As we are including derivative information in the training data we

must ensure h(·) is differentiable. This will then lead to the derivative of the

mean function: E
[

∂
∂x(d)

η(x)
∣∣B] = ∂

∂x(d)
h(x)TB, where x(d) refers to input d at

point x. We bring these functions together in h̃(x, d), which is defined as:

h̃(x, d)TB =

{
h(x)TB for d = 0
∂

∂x(d)
h(x)TB for d 6= 0 .

The value of d determines whether a partial derivative is to be evaluated at that

point or the model response, and can therefore take any value in {0, 1, . . . , p}.
For example, {(x1, d = 0), (x2, d = 3)} refers to the model response at location

x1 and the partial derivative w.r.t the third input at location x2.

As in Chapter 4 a correlation function, c(xi,xj), which is twice differentiable

is required since we require the correlations between points and derivatives, and

between derivatives themselves. The correlation then between a point, xi and a

derivative w.r.t input k at xj, (denoted by x
(k)
j ) is ∂

∂x
(k)
j

c(xi,xj). The correlation

between a derivative w.r.t input k at xi, (denoted by x
(k)
i ), and a derivative

w.r.t input l at xj, (denoted by x
(l)
j ), is ∂2

∂x
(k)
i ∂x

(l)
j

c(xi,xj). These are combined in

c̃{(xi, di), (xj, dj)}:

c̃{(xi, di), (xj, dj)} =


c(xi,xj) for di = dj = 0
∂

∂x
(di)
i

c(xi,xj) for di = 0 and dj 6= 0

∂2

∂x
(di)
i ∂x

(dj)

j

c(xi,xj) for di, dj 6= 0 ,

Note that a superscript on x refers to the input dimension and a subscript on x

refers to the location of that point in the design space.

A common choice of correlation function, and one we regularly choose in this

thesis, is the Gaussian form: c(xi,xj) = exp{−(xi− xj)
TΘ (xi− xj)}, where the

diagonal matrix, Θ, consists of positive smoothness parameters, θ as in Section

4.2.1. The correlations between points and derivatives, and between derivatives

themselves are given for this function as:

c̃{(xi, di), (xj, dj)} =
2 θ{k}

(
x
(k)
i − x

(k)
j

)
c(xi,xj) for di = 0 and dj = k(

2 θ{k} − 4 θ2{k}
(
x
(k)
i − x

(k)
j

)2)
c(xi,xj) for di = dj = k

4 θ{k} θ{l}
(
x
(k)
j − x

(k)
i

)(
x
(l)
i − x

(l)
j

)
c(xi,xj) for di = k, dj = l
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where k, l could take any value in {1, . . . , p}. Covariances between outputs are

given by the r×r matrix, Σ. We then combine c̃(., .) and Σ resulting in a separable

covariance structure.

As with univariate emulation we have a design, D̃ = {(xk, dk)}, where k =

{1, ñ} and dk ∈ {0, 1, . . . , p}. The location in the design is given by xk and dk

determines whether at point xk, a first partial derivative or function output is

required. Running the simulator, η(·), or the adjoint of the simulator, η̃(.), at

each of the input configurations in D̃ results in the training data, Ỹ , a ñ × r

matrix. Since we have represented η(·) by an r-variate Gaussian process then Ỹ

conditional on B and Σ follows the matrix-Normal distribution:

Ỹ |B,Σ, θ ∼ Nñ×r(H̃B,Σ, Ã), (6.1)

where H̃ = [h̃(x1, d1), . . . , h̃(xñ, dñ)]T, Ã is the ñ × ñ matrix of correlations be-

tween points, between derivatives and points and between derivatives themselves:

Ã = c̃(D̃, D̃) and Σ is the r×r matrix of covariances between outputs. The exact

form of c̃(·, ·) depends on where derivatives are included.

As in the univariate case, standard normal theory shows that:

η̃(·)|B, S, Ỹ ∼ GPr(m̃
∗(.), c̃∗(. , .)Σ), (6.2)

where

m̃∗(x) = h(x)TB + t̃(x)T Ã−1(Ỹ − H̃B), (6.3)

c̃∗(xi,xj) = c(xi,xj)− t̃(xi)
T Ã−1t̃(xj), (6.4)

t̃(x)T = c̃{D̃, (x, 0)}

= [c̃{(x, 0), (x1, d1)}, . . . , c̃{(x, 0), (xñ, dñ)] , (6.5)

Ỹ T = η̃(D̃) = {η̃(x1, d1), . . . , η̃(xñ, dñ)}. (6.6)

Note that in equation (6.3) we have h(x)T B̂ and not h̃(x, d)T B̂. This is because

here we are emulating the multiple output response and not the derivatives; we

therefore require d = 0 and h̃(x, 0)T B̂ = h(x)T B̂. Similarly, in equation (6.5)

we have t̃(x, 0)T = t̃(x)T as we are emulating model response and require d = 0.

The tilde symbol, (˜) , is still required as t̃(.) includes the correlations between

the derivatives in the training data and the point we are predicting the model

response at.
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We now want to obtain the distribution of η(·)| Ỹ unconditional on B and Σ.

As in the univariate case we specify a weak prior for both B and S:

p(B,Σ) ∝ |Σ|−
r+1
2 (6.7)

Applying Bayes Theorem with (6.7) and (6.1) results in the following posterior

distribution for (B,Σ):

f(B,Σ|Ỹ , θ) ∝ |A|−
r
2 |Σ|−

ñ+r+1
2 ×

exp

{
−1

2
Tr[Ỹ TGỸ Σ−1 + (B − B̂)T H̃T Ã−1H̃(B − B̂)Σ−1]

}
,

(6.8)

where

B̂ = (H̃T Ã−1H̃)−1H̃T Ã−1Ỹ , (6.9)

G = Ã−1 − Ã−1H̃(H̃T Ã−1H̃)−1H̃T Ã−1. (6.10)

From this we see that:

B|Σ, Ỹ ∼ Nq×r

(
B̂,Σ, (H̃T Ã−1H̃)−1

)
. (6.11)

Now if we take the product of (6.2) and (6.11) and then integrate out B, it results

in:

η̃(·)|Σ, θ, Ỹ ∼ GPr(m̃
∗∗(·), c̃∗∗(·, ·)Σ), (6.12)

where

m̃∗∗(x) = h(x)T B̂ + t̃(x)T Ã−1(Ỹ − H̃B̂), (6.13)

c̃∗∗(xi,xj) = c(xi,xj) − t̃(xi)
TÃ−1t̃(xj) +(

h(xi)
T − t̃(xi)

TÃ−1H̃
)(

H̃TÃ−1H̃
)−1 (

h(xj)
T − t̃(xj)

TÃ−1H̃
)T

.

(6.14)

Finally we must integrate out Σ and we are left, conditional on θ, with a

r-variate T process:

η̃(x)|θ, Ỹ ∼ τ(m̃∗∗(x), c̃∗∗(x), Σ̂; ñ− q), (6.15)

where

Σ̂ =
1

ñ− q
(Ỹ − H̃B̂)T Ã−1(Ỹ − H̃B̂). (6.16)
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The posterior mean function is m̃∗∗ and posterior covariance function is c̃∗∗. For

detail of the derivation without derivative information see Conti and O’Hagan

(2010).

We again cannot integrate out Θ from (6.15) so could instead estimate the

parameters by maximum likelihood as we do in Chapter 4. Conti and O’Hagan

(2010) give the likelihood function in the multi-output case and with the inclusion

of derivative information this becomes:

f(Θ|Ỹ ) ∝ |Ã|−
r
2 |H̃T Ã−1H̃|−

r
2 |Ỹ TGỸ |

ñ−q
2 ,

with G as defined in (6.10). Other options and further detail about the handling

of Θ are given in Chapter 3.

As in Chapter 4 we can now use m̃∗∗(x) as a fast approximation to η(·) and

uncertainty about the emulator is given by c̃∗∗(x,x)Σ̂.

6.3 Emulating multiple outputs of the radiation

transport model with derivatives

The radiation transport model, as described in Section 1.3.2 of Chapter 1, cal-

culates the measured radiation signature of a gamma-ray-emitting and neutron-

multiplying cylinder. There are 5 inputs and in Chapter 4 just output 5, the

neutron multiplication factor, is investigated. Here we study all 5 outputs of the

model as we believe a priori that there maybe correlations between the outputs.

The data available is that resulting from the 100 point Latin hypercube sample

as in Chapter 4.

6.3.1 Exploratory data analysis

We illustrate all 5 outputs from the radiation transport model, run at the input

configurations from the LHS, in Figure 6.1. In Chapter 4 we transformed output

5 from the neutron multiplication factor inverse, 1
keff

, to keff but include the

original data representation in Figure 6.1 for completeness.

Due to the spread of the data shown in Figure 6.1, we apply log transforma-

tions to the outputs 1 - 4 (the gamma-line outputs). The transformed data is
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Figure 6.1: Histogram showing the output from the radiation transport model.

shown in Figure 6.2 and provides good justification to emulate the transformed

responses rather than the native responses.

As with the derivatives of output 5, the partial derivatives of outputs 1 -

4 require transforming according to the chain rule: let z1 = log(y1), then the

required derivatives of the transformed output, z1, w.r.t to the 5 inputs, x, are

given by:

∂z1
∂x

=
∂z1
∂y1
× ∂y1
∂x

=
1

y1
× ∂y1
∂x

. (6.17)

These transformations, repeated for outputs 2 - 4, are reasonable in the domain

where the gamma-ray activity of the material is reasonably expected to be respond

exponentially to the physical configuration.

Multivariate emulation may be more appropriate if there is correlation be-

tween outputs. Figure 6.3 shows 2-dimensional scatter plots of the outputs and a

very strong relationship between the first 4 outputs is clear. There also appears

to be some, albeit weaker, correlation between output 5 and the first 4. Multivari-

ate emulation, therefore is an appropriate approach to test in this situation. In
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Figure 6.2: Histogram showing the transformed responses.

addition to this we see in Chapter 4 the high value of the derivative information

in the independent emulation of output 5; it would be interesting therefore to see

if derivatives are also required for more efficient emulation of the first 4 outputs

independently, and also in a multivariate setting.

We begin, as when we emulate output 5 in Chapter 4, by building independent,

univariate emulators for each output with the information from all 100 runs. We

adopt a leave one out method to assess the emulators: the information from the

first run is left out of the training data and an emulator built with the remaining

99 runs. We then use this emulator to predict the observation which was left out

and this is repeated for all 100 observations. Comparisons between the values

predicted by the emulators and the true values for output 1 are shown in Figure

6.4. The posterior mean of the emulator at each input configuration is used as the

prediction and we plot 2 standard deviations above and below each mean value

to assess the measure of uncertainty in the emulator. It is clear from Figure 6.4

that both the emulator with, and without, derivatives is performing very well.

The emulators of outputs 2 - 4 perform similarly and the corresponding plots

are therefore omitted here. The performances of the emulators of output 5 are
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Figure 6.3: Scatterplot showing the correlation between the outputs of the model.
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Figure 6.4: Leave one out results for the prediction of output 1.
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illustrated in Chapter 4, (Figure 4.11) and repeated here for completeness. The
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Figure 4.11: Leave one out results for the prediction of output 5.

emulator of output 5 with derivatives, Figure 4.11a, would appear to be slightly

superior, with better predictions and less uncertainty, than the emulator of output

5 without derivatives, Figure 4.11b. The performances of both emulators though,

while not quite as good as those of outputs 1 - 4, are still satisfactory.

Since all outputs have been shown to be well emulated we can afford to reduce

the number of runs we use to build the emulators with, and therefore leave data

to be used as validation. Emulators are built as before but now we follow the

general rule of thumb as given by Loeppky et al. (2009), and use training data

of size n = 10p = 50. We attempt to choose the n = 50 most space filling points

from our 100 point LHS by adopting the maximin criteria: we wish to select 50

points from the 100 available such that the minimum distance between points is

maximised. Calculating the minimum distance of every 50 point combination is

not practical as there are
(
100
50

)
≈ 1× 1029 combinations altogether. We therefore

randomly select a 100, 000 member subset of 50 point combinations and calculate

the minimum distance between the points of each of these combinations. The

combination with the largest minimum distance is then selected as training data,

allowing the remaining 50 input sites to be used for prediction. Performances of
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the emulators of outputs 1, 3 and 5 built with such training data and predicting

at the remaining input sites are shown in Figures 6.5 to 6.7 respectively.
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Figure 6.5: Diagnostics plot of the emulators of output 1 built with n = 50

training runs and predicting at n′ = 50 points. The prediction error is the root

mean squared error calculated as in equation (6.18) and discussed further in

Section 6.3.2.

Both emulators of outputs 1 perform very well with n = 50 runs and the em-

ulators of output 3 also perform well. Both emulators of outputs 2 and 4 perform

similarly to those of outputs 1 and 3 respectively, and so the corresponding figures

are omitted. The emulator without derivatives of output 5, Figure 6.7b, does not

perform quite as well as the first 4 outputs with n = 50 runs. In Chapter 4 we see

that to fully validate emulators of output 5, n = 60 runs are required. However,

since the emulators for the first 4 outputs perform very well and we have some

knowledge of the emulation of output 5 from Chapter 4, for the purposes of a

comparison between independent and multi-output emulators n = 50 runs is an

acceptable amount of training data. This leaves 50 runs that we can continue to

hold back to compare the predictive performances of the various emulators.
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Figure 6.6: Diagnostics plot of the emulators of output 3 built with n = 50

training runs and predicting at n′ = 50 points.
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Figure 6.7: Diagnostics plot of the emulators of output 5 built with n = 50

training runs and predicting at n′ = 50 points.
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6.3.2 Emulating each output independently

We now wish to determine how the derivatives impact the performance of inde-

pendent emulators for each output to compare with the multivariate approach.

We can do this by reducing the data further, and then investigating how the per-

formance of the emulators vary when we add further runs with just the response,

and when we add further runs with the derivative information in addition to the

response. We adopt a similar method to that of Section 4.5 in Chapter 4 but use

an increasing number of runs up to n = 50 of the total training data, as detailed

in Section 6.3.1, and use the n′ = 50 runs that are held back to calculate the

prediction error and a measure of uncertainty for each emulator. We calculate

these as in Section 4.5:

Prediction error =

√
1

n′

∑
(m∗∗(x′i)− η(x′i))

2, (6.18)

Mean standard deviation =
1

n′

∑
σ̂
√

c∗∗(xi, xi), (6.19)

for i ∈ {51, . . . , 100} and n′ = 50.

We want to build emulators with increasing amounts of training data; starting

with n = 2, in the case where we include derivatives, and with n = 9, in the case

where we do not include derivatives, up to n = 50 for both cases. We have

truncated a 100 point LHS to provide 50 input sites to select from. The n = 50

design, however, is not optimal and therefore any design resulting from further

truncations will also not optimally spread the points in the space. This makes

it difficult to compare the emulators built with different numbers of runs as the

inclusion of one extra point may be particularly informative in some cases, and

not in others. To account for this we randomly permute the order of the 50

training runs. We then take the first 2 runs as indexed by this permutation

and build an emulator with derivatives, calculating the prediction error and the

measure of uncertainty for this emulator. Next, we take the third run, as indexed

by this permutation, in addition to the first 2 runs and build another emulator

with derivatives. We continue in this way, building emulators without derivatives

in addition from n = 9 onwards, until n = 50. We then randomly permute the

order of the 50 training runs again, to generate a second permutation and repeat

the process. This is repeated 20 times and we then calculate the mean prediction

error and measure of uncertainty across the 20 permutations for each value of n.
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There are only 50 combinations when n = 49 and due to the random sampling, 3

of these permutations resulted in the same 49 points being selected. Two of these

combinations were therefore discarded and random sampling continued until we

had 20 unique permutations. Clearly for n = 50 there is no need to permute the

order as we only have 50 training runs to choose from, and the order they are in

the training data is irrelevant. All emulators are built with a linear prior mean

and Gaussian correlation function with Θ estimated by MLE.

The results of the experiment described above are shown in Figure 6.8. The

prediction error decreases for all emulators as we increase the training data, as

expected. Figures 6.8a and 6.8b, show that for outputs 1 and 2 initially the

emulators with derivatives achieve lower prediction errors but when n > 20,

approximately, the emulators without derivatives have caught up and are per-

forming similarly. Corresponding plots for outputs 3 and 4, Figures 6.8c and

6.8d, show a similar pattern to outputs 1 and 2. Here though the effect of the

derivatives appears to be slightly weaker as the emulators without derivatives are

achieving similar prediction errors to those with derivatives for approximately

n > 18. Figure 6.8e, which illustrates the performance of the emulators of output

5 provides very different results. The emulators with derivatives consistently out-

perform corresponding emulators without derivatives for all n and the margin in

prediction error between the emulators appears relatively large. This is explored

further in Chapter 4.

The computational expense of building the various emulators is not considered

here but discussed in Section 6.3.4.

6.3.3 Five-output emulation of the radiation transport

model

We now want to build a multi-output emulator, with and without the derivative

information, to compare with the univariate approach. As in Section 6.3.2, we

choose the covariance function: c(xi,xj) = exp
{
−(xi − xj)

TΘ (xi − xj)
}

and

a linear form for the prior mean is selected. We adopt the same method for

comparing emulators as in Section 6.3.2 and select 50 space filling runs for total

training data while holding back the remaining 50 simulator runs for prediction.

Multi-output emulators are then built with increasing training data up to n = 50.

The same permutations of the order of the training data in Section 6.3.2 are used
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Figure 6.8: Comparison of the prediction error for independents emulators of the

5 outputs, built with varying numbers of simulator runs.
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here and multiple emulators are built for each value of n. The mean prediction

error for each n is then evaluated and the results can be seen in Figure 6.9.

The multi-output emulators perform similarly to the independent emulators,

in particular for outputs 3 and 4. Figures 6.9c and 6.9d show that although

for low n emulators with derivatives achieve a lower prediction error, once we

have approximately n > 20 runs in the training data, the inclusion of derivative

information has little effect on the performance of the resulting emulator.

It would appear, for outputs 1 and 2 though, that the derivatives may be more

valuable in a multi-output emulator than in independent emulators. Figures 6.9a

and 6.9b, show the prediction error of the emulators without derivatives does not

quite reach equality with the emulators built with derivative information, even

with n = 50. In comparison, Figures 6.8a and 6.8b show that the independent

emulators achieve similar prediction error regardless of derivative information for

approximately n > 20.

Finally, in Figure 6.9e we see the performance of the multivariate emulator

for output 5. Again similarity with the corresponding independent emulator is

evident and we see the emulators with derivatives consistently outperforming the

emulators without derivatives. The gap in prediction error between emulators is

now smaller though, implying that the derivatives are perhaps less informative

for this output in the multivariate setting.

In summary, the results of this investigation are mixed and we explore this

further, also with consideration of the computational expense required to build

the various emulators, in Section 6.3.4.

6.3.4 Comparisons

Figures 6.8 and 6.9 in Sections 6.3.2 and 6.3.3 show how the prediction error of

independent and multivariate emulators, respectively, vary for increasing n. We

now directly compare the univariate and multivariate approach, with and without

derivative information. Figure 6.10 shows the predictive performance compared

to the computational expense required to build each emulator. We know that the

adjoint requires approximately twice the amount of computing time to run than

the simulator. For simplicity therefore we assume each simulator run (standard

version of the radiation transport model) requires one computational unit, and

each time we run the adjoint of the radiation transport model we require 2 units.
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Figure 6.9: Comparison of the prediction error for multivariate emulators of the

5 outputs, built with varying numbers of simulator runs.
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As an adjoint model outputs the model response in addition to the partial deriva-

tives this means we can obtain the model response and derivatives in return for

2 computational units, or just model response in return for 1 unit. We do not

account for any extra computational time to build either the independent or mul-

tivariate emulators outside of the simulator or adjoint run time. The prediction

errors generated by both the independent and multi-output emulators built with

a computational expense of 4 units, which equates to 2 runs with derivatives, are

very large and removed from Figure 6.10. The minimum number of runs required

to build an emulator without derivatives is 9, which equates to 9 computational

units and is therefore not affected by the enforced range of [5, 50] on the x axis.

This enables a more appropriate scale on the y-axis for overall comparison of the

emulators. In addition to Figure 6.10, and to enable all the data to be presented,

we plot the prediction errors on a log scale. This comparison, which includes the

results for emulators built with a computational expense of 4 units, is shown in

Figure 6.11 and allows a closer examination of the performance of the emulators.

We see from Figures 6.10a and 6.10b that for outputs 1 and 2, though there is little

difference, the independent emulators without derivatives built with a minimum

of 14 computational units achieve the lowest prediction errors. The emulators

with derivatives perform similarly, regardless of whether the prediction is part

of the multi-output emulator. The multi-output emulator without derivatives,

however performs slightly worse for all n. We see a different pattern in Figures

6.10c and 6.10d though: for outputs 3 and 4 the superior emulators for all n are

clearly the emulators without derivative information, and there is very little dif-

ference in prediction error between the multi-output and independent emulators.

The emulators of output 5, shown in Figure 6.10e, however, provide contrast-

ing results to those of outputs 1 to 4. Now we see the independent emulators,

with derivatives, outperforming the other emulators. Derivative information is

clearly very informative for this output as while the independent emulators out-

perform the multi-output emulators, the multi-output emulators with derivatives

are still achieving lower prediction errors than the independent emulator without

derivatives. The results from all 5 outputs are summarised in Table 6.1.

We also compare the uncertainty associated with each of the emulators in

Figure 6.12. This measure of uncertainty, given by equation (6.19), is produced

by taking the standard deviation of each emulator at each validation point; a

mean value is then calculated for each n. The results are, overall, as we would
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Figure 6.10: Comparison of the prediction error of the multivariate and inde-

pendent emulators for all 5 outputs. The prediction errors resulting from the

emulators built with 4 computational units are removed.

135



CHAPTER 6. USE OF DERIVATIVES IN MULTIVARIATE EMULATION

10 20 30 40 50

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Computational units

Lo
g(

pr
ed

ic
tio

n 
er

ro
r)

(a) Output 1

10 20 30 40 50

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Computational units

Lo
g(

pr
ed

ic
tio

n 
er

ro
r)

(b) Output 2

10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Computational units

Lo
g(

pr
ed

ic
tio

n 
er

ro
r)

(c) Output 3

10 20 30 40 50

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Computational units

Lo
g(

pr
ed

ic
tio

n 
er

ro
r)

(d) Output 4

10 20 30 40 50

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

Computational units

Lo
g(

pr
ed

ic
tio

n 
er

ro
r)

(e) Output 5

With derivatives, independent
With derivatives, multi-output

No derivatives, independent
No derivatives, multi-output

Figure 6.11: Comparison of the prediction error on the log scale of the multivariate

and independent emulators for all 5 outputs. All data is presented.
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expect with the emulators achieving the lowest prediction errors in Figure 6.10

also producing the lowest mean standard deviation. There is a bigger gap in the

uncertainty, however, between the independent emulators without derivatives and

the remaining emulators for outputs 1 and 2. These results are also summarised

in Table 6.1 to give an overview of the relative performance of the emulators.

Output Lowest prediction error Lowest uncertainty

Type Derivatives? Type Derivatives?

1,2 Independent No Independent No

3,4 Either No Independent No

5 Independent Yes Independent Either

Table 6.1: Summary of best achieving emulators.
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Figure 6.12: Comparison of the uncertainty of the multivariate and independent

emulators for all 5 outputs.
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6.4 Calibration of radiation transport model

6.4.1 Introduction

In Sections 6.3.2 and 6.3.3 we built emulators of the radiation transport model

to provide an efficient method for performing further analysis on the model. We

now use the emulators to perform calibration, finding what input settings are

consistent with a given model response. Observational data is unavailable, so as

an alternative we choose one run from the training set of 100 to represent such

an observation. The 22nd run is chosen by the domain expert as an interesting

setting of parameters. The inputs and outputs for this run are given in Table 6.2.

Inputs Outputs

Native Transformed

r1 = 7.6113 γ1 = 4.132718e-07 -14.6991603

ρ1 = 18.6040 γ2 = 2.308216e-04 -8.3738654

ρ2 = 7.2778 γ3 = 2.134913e-04 -8.4519145

z1 = 4.3119 γ4 = 1.652884e-03 -6.4052336

z2 = 6.4739 1/keff = 2.039376e+00 0.4903461

Table 6.2: Inputs and outputs for run index 22, chosen to be the target output.

To do this we use a Markov chain Monte Carlo (MCMC) method with the

emulators to learn which other sets of inputs are consistent with the output from

run index 22. MCMC and the method we employ is discussed further in Section

6.4.2 along with the results from this applied to the radiation transport model.

6.4.2 MCMC applied to radiation transport model

If we are interested in inferences from a posterior distribution but cannot analyti-

cally derive the distribution then we can use Markov chain Monte Carlo methods.

We generate a Markov chain and the stationary distribution of the chain is equal

to the desired posterior distribution.

One way of constructing such a chain is by using the the Metropolis-Hastings

algorithm: let xt be the state of the chain a time t.

1. Choose a proposal distribution, q(xc|xt).
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2. Generate a candidate value xc from the proposal distribution.

3. Calculate the likelihood ratio and the ratio of the proposal density between

the current sample, xt and the candidate sample, xc,

4. Draw α from U(0,1).

5. If f(xc)q(xc|xt)
f(x0)q(xc|xt)

> α; then accept the candidate value and xt+1 = xc.

else; reject the candidate value and xt+1 = xt.

To learn which other input configurations are consistent with our target output

we apply MCMC methods using emulators. From the results of the investigation

into the comparison of multivariate and univariate emulators, with and without

derivatives, we choose to build univariate emulators for all outputs and include

derivative information only in the emulator of output 5. We remove the target

output from the training data and build an emulator, for each output, with the

remaining 99 runs in the data set.

We apply the Metropolis-Hastings algorithm as outlined above. We take the

following, approximately mid-range, points for the initial values of the inputs:

x0 = (10 11 11 2.5 5) and generate the first candidate value: xc = x0 + U(0, 1).

We use the following likelihood function:

exp

{
−

5∑
i=1

(
m∗∗i − ti

sd ti

)2
}
,

where m∗∗i is the posterior mean of the emulator, ti is the target output and sd

= 0.1, which represents observational error and is scaled to the measurement. A

uniform prior over the original parameter range results in a posterior distribution

conforming to the likelihood.

We generated 100,000 samples from the posterior distribution. Although the

radiation transport model is relatively quick to run in comparison with other

complex models, performing 100,000 runs would still take an order of days. By

using the emulator instead, the MCMC analysis was complete in approximately

an hour.

The results are summarised in Figure 6.13, which shows two-dimensional

marginal projections of the 5 dimensional space for the last 5000 iterations. Along

the diagonal are histograms showing the density for each input parameter, where

the bottom left panel shows input 1 through to the top right panel which shows
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input 5. The upper panels show contours and the lower panels show two dimen-

sional scatter plots between the inputs, where the black points are from earlier

in the chain and as the chain progresses move to the light colours. The blue star

shows input 22, the observation we are comparing to. Firstly, we can see that for

each input the chain covers the true input configuration of the observation which

is encouraging. It appears that to achieve similar output to the observation, it

is plausible for input 5 to take most values across its input range. In contrast,

input 3 appears to be more tightly constrained. In addition to this we can see

that there exists a tradeoff between the first and third input parameter, which

represents inner radius and outer density respectively.

Input 1 Input 2 Input 3 Input 4 Input 5

In
pu

t 1
In

pu
t 2

In
pu

t 3
In

pu
t 4

In
pu

t 5

Figure 6.13: Two-dimensional plots from the MCMC results.

6.5 Conclusions

In this chapter we have investigated the use of derivative information in both

univariate and multivariate emulation, through the application of the radiation
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transport model. We have not seen here any strong evidence in support of building

a multivariate emulator, with or without derivatives, over independent emulators

for each output. The impact of derivative information has been inconsistent, with

the derivatives proving more informative for some outputs than others, in both

the univariate and multivariate environments.

Despite investigating the use of derivative information in multivariate emu-

lation we still chose to use univariate emulators in the calibration of the radia-

tion transport model in Section 6.4. This is because the multivariate emulator

performs similarly to the independent emulators, and as noted above, therefore

provides no strong reason to choose an emulator other than univariate emulators

for the calibration. Given all the data available, derivatives are not required to

provide accurate emulation of outputs 1 to 4 and therefore are not used in the

calibration study. We have seen here and in Chapter 4 though, that derivative

information does improve the emulation of output 5 and therefore an emulator

built with function output 5 and the corresponding derivatives is selected.

In summary, suppose we wish to build an emulator of the 5 outputs of the

radiation transport model and have only a finite amount of computational time

in which to run the simulator or adjoint. We describe this time in terms of to-

tal computational units, T . In this chapter we have attempted to answer the

question: should we build 5 independent emulators or one multi-output emulator

and, given the type of emulator, would it be more efficient to include derivative

information? We have not seen any strong evidence to support choosing the

multivariate option over univariate and so for this model, the answer to the first

part of the question is straightforward. Whether it is more efficient to include

derivatives in the independent emulators however, is much more difficult to an-

swer. From Figures 6.10 and 6.11 we see that for outputs 1 and 2, derivative

information has little effect and we could choose either to run the adjoint at T
2

input sites, or the simulator at T input sites. Emulators of outputs 3 and 4,

however, clearly do not benefit enough from the inclusion of derivatives to justify

the computation expense of the adjoint. In Chapter 4 we see that emulators of

very smooth models seem to benefit less from the inclusion of derivatives than

emulators of models with a higher degree of variability. We do not adopt a formal

measure to assess smoothness in the radiation transport model, but an indication

can be drawn from the values of the smoothness parameters as estimated by MLE

in the emulators. All inputs were scaled to be on the unit cube hence we can
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combine the 5 θ values for each output in the independent emulators into one

measure, for ease of comparison. We find that the mean values of θ for outputs 3

and 4, 0.285 and 0.294 respectively, are smaller than the corresponding estimates

of θ for outputs 1, 2 and 5, 0.871, 2.507, 0.485 respectively. This implies that

outputs 3 and 4 are smoother functions of the inputs than outputs 1, 2 and 5

and is consistent with the conclusions made in Chapter 4. For outputs 3 and 4,

therefore, we should choose to perform T runs of the simulator. In contrast, the

emulator of output 5 performs much better with derivatives included, despite the

computational expense of the adjoint and the conclusion for this output would

be to perform T
2

adjoint runs. The adjoint model, when run at a particular input

configuration, produces all the partial derivatives of the 5 outputs with respect

to the 5 inputs. It is not possible to ‘switch off’ the derivatives of outputs 3

and 4 and thus reduce the computational expense of running the adjoint. To

achieve this a new adjoint model would have to be especially coded and therefore

is very unlikely to be an efficient solution to our question. We are not restricted,

however, to running either the adjoint at T
2

inputs sites or the simulator at T

inputs sites. We suggest, therefore, that a mixture of adjoint and simulator runs

is likely to be optimal in this case. This generates an interesting design problem

and scope for further work: we would need to decide how many adjoint runs and

how many simulator runs to perform, and also at which input configurations to

obtain derivatives in addition to the model response.
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Chapter 7

Conclusions and further work

In this thesis we have investigated the use of derivative information in the sta-

tistical analysis of computer models. We began in Chapter 1 by introducing

the complex models used in this work and motivated the need for managing un-

certainty in complex models. In Chapter 2 we discussed derivatives of complex

models. Many model users find knowledge of derivatives in complex models in-

formative, with multiple analyses requiring, or improving from, the knowledge of

derivative information. Examples of such analyses are optimisation, data assim-

ilation and sensitivity analysis. Given the apparent value of derivatives, we then

looked at exisiting methods of producing them: adjoint models are becoming in-

creasingly popular as a more accurate and efficient means to generating derivative

information than the traditional, finite differences approach. Adjoint models also

have their drawbacks however, mostly in the additional computational expense

required to run them and the initial time and resource that must be allocated

to produce such a model. Having first discussed the standard Gaussian process

emulator in Chapter 3, we then proposed a new approach to generating deriva-

tives in Chapter 5. We showed how we can build a Gaussian process emulator,

with or without derivative information, to emulate the derivatives of a complex

model. We can then predict the partial derivatives at any input configuration,

within the original range, and each prediction is associated with a level of un-

certainty. The results were encouraging and we were able to accurately emulate

derivatives even without any derivative information in the training data. This is

very likely to be much more efficient than either running an appropriate adjoint

model, or conducting a finite differences experiment. The emulator aprroach to
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prediciting derivatives, however, is not without its limitations. For example, the

simulator and its derivatives must be a suitable function for emulation, which

demands that the model is a smooth function of its inputs and the derivatives

are therefore fully defined across the input space. In addition, a Gaussian process

should be a suitable tool with which to model the simulator. We have seen that

with these conditions satisfied the emulation approach to generating derivatives

has the potential to be an efficient alternative to existing methods.

This thesis has also been concerned with looking at whether the inclusion of

derivative information could result in a more efficient emulator of model response.

In Chapter 4 we presented an investigation into this using both toy models and

a real complex model: a radiation transport model. Whether further efficiency is

likely to be achieved in general depends on the computational cost of obtaining

the derivatives, but we did find that if the model is very smooth the derivative

information is less valuable and negligible further efficiency, if any, is achieved. If

the model exhibits slightly different behaviour though, such that it still responds

smoothly to its inputs but with more change in output for relatively small changes

in inputs, the derivatives appear to be more valuable. We also see through the

use of toy models that the emulators we tested without derivatives generally tend

to require twice as many model runs as the emulators with derivatives to produce

a similar predictive performance. The adjoint of the radiation transport model

is relatively cheap to run, requiring twice the amount of time of the standard

model, and yet, in our emulation study derivatives only provided a more efficient

emulator for one of the 5 outputs. If we only have a very small amount of training

data then the derivatives are required to build a valid emulator of the radiation

transport model, and therefore derivatives may be more valuable in an initial

analysis, especially if the model experts do not have much knowledge a priori of

the behaviour of the model. In conclusion, an optimal solution is likely to be

a hybrid design consisting of adjoint runs in some parts of the input space and

simulator runs in others. This presents an interesting design problem which we

discuss further in the Design section later in this chapter.

Chapter 6 was concerned with multi-output emulators and we concluded that

from our example, regardless of the inclusion of derivative information, the mul-

tivariate emulator was not notably superior to independent emulators built for

each output. Little gain, therefore, would be achieved in building a multi output

emulator in replace of univariate emulators.
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We now discuss some of the findings in this thesis in more detail and speculate

on how the work could be taken forward:

• Emulation and validation of model derivatives

We have discussed in this chapter how an emulator of model derivatives

could be a more efficient alternative to either an adjoint model or a finite

differences experiment. An emulator, however, must be validated before

any predicted derivatives are employed in further analysis. If an adjoint

model does not exist then there is little option other than the finite dif-

ferences approach, the limitations of which were discussed in Chapters 2

and 5. If we have robust diagnostics of an emulator of derivatives, which

account for the uncertainty in the FD approach, then this could be a viable

alternative to validation through the use of an adjoint model. We may not

be able, however, to afford the further simulator runs required to generate

FD validation derivatives. In this case, we could perhaps use a (previously

approved) emulator of the model response to generate the output required

for FD validation derivatives. The emulator of derivatives would not be

guaranteed to pass with this method as validation of a (standard) emulator

of model response does not necessarily imply a valid emulator of the model

derivatives; there have been cases where the emulator of model response

passes the diagnostics set out by Bastos and O’Hagan (2009), but the em-

ulator of model derivatives fails. Careful thought and consideration would

have to be undertaken to ensure such an approach resulted in a credible

emulator of derivatives though.

Of course if we do have some derivative information already available, rather

than building an emulator of derivatives with model response alone and us-

ing the derivatives as validation data, a more sensible option would perhaps

be to include the derivative information in the training data and then adopt

a ‘leave one derivative out’ approach. We may not be able to formally val-

idate with this variation of LOO, but we would gain some insight into the

performance of the emulator of derivatives. If this approach is adopted then

it might be advisable to leave out the model response and all the partial

derivatives at the ‘left out’ input point rather than just the derivative we

are predicting. This is because we are unlikely to have simulator output at

every input configuration we wish to predict a derivative at.
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• Non-stationary models

One of the conditions to generating derivatives, or function output, using

the approach described in this work is that the model must be suitable for

emulation. Adopting the methodology presented in this thesis assumes the

model is a smooth, continuous function of its inputs. As we see in Chapter

5, non-stationarity in the model causes problems for the emulator. The

C-GOLDSTEIN model is a smooth function of the wind stress scale input,

scf, for most of the selected range but between scf = 2.02 and scf = 2.10 we

have observed a ‘rough’ patch and at some points even discontinuities. This

behaviour was not known a priori and it was through the use of an emulator

of derivatives that we were able to discover and home in on the problem

areas in the input space. Now of course the derivatives do not exist at the

discontinuous points, and we were only able to emulate the derivatives in

rest of the ‘rough’ patch of the function by splitting it from the smooth

section and emulating it separately. Emulating non-stationary models, re-

gardless of derivative information, is an area which requires further research.

The option we took in the C-GOLDSTEIN example in Chapter 5, of split-

ting the simulator output into regions is an informal version of the Bayesian

Treed Gaussian process developed by Gramacy and Lee (2008). Alternative

options to investigate include selecting a non-stationary covariance function

and ‘warping’ the input space such that we now have a stationary function

in the resulting space to emulate with a Gaussian process in the standard

approach. An example of ‘warping’ the input space was given in the Bore-

hole model example in Chapter 5. Despite the flexibility of a Gaussian

process it may be that a particular model simply can not be well modelled

by a Gaussian process. If this is the case though, the validation diagnostics

of Bastos and O’Hagan (2009) should highlight this.

• Design

Assuming η(·) and the subsequent derivatives of η(·) can be modelled by

a Gaussian process, and assuming we have derivatives to validate our em-

ulator where required, a topic which also requires further research is that

of design. A lot of work has been done into the design of computer experi-

ments, but not when we wish to emulate derivatives with only the function

output in the training data. As we see in Chapter 5 a purely space-filling
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design may not be optimal. Discussion with Max Morris on this issue has

led to the (informal) conjecture that maximin distance designs are probably

not D-optimal for derivative prediction, but are very close to being optimal.

This is in contrast to the results seen in the 1-d toy example in Chapter

5; though as we explain in Section 5.5 of that chapter, the problem in this

example was due to the maximin distance design resulting in equidistant

points, and we wouldn’t expect this to occur when dealing with higher di-

mensional input space. There is also likely to be the option of obtaining

derivatives in some parts of the input space and the model response at oth-

ers, the optimal, or a near-optimal, combination of derivatives and response

would be ideal and therefore also provides scope for further work.

Morris et al. (1993) look at optimal design, for predicting model response,

in the case where derivatives are available and included in the training

data. They conclude that the same kind of design which is optimal without

derivatives, is still optimal with the inclusion of the derivatives. They only

consider, however, the situation where a derivative is observed at every in-

put site that the model response is also evaluated at. As when we wish to

emulate derivatives it maybe that the optimal solution is actually to have a

hybrid design which requires derivatives at some points, response at some

points and both derivatives and response combined at others. It would be

interesting to investigate such a design and then re-examine the emulation,

with and without derivatives, of the radiation transport model. This is

similar to the situation examined by Cumming and Goldstein (2009) where

there are 2 simulators modelling the same real system: one is accurate and

relatively slow while the other is approximate but much faster. Cumming

and Goldstein (2009) describe an approach that combines the outputs from

the 2 simulators in the building of one emulator. There are of course differ-

ences between Cumming and Goldstein (2009) and our situation here; most

importantly our “fast” model (the standard simulator) is not an approx-

imation of the “slow” model (the adjoint model), instead the two models

provide different types of information. Nevertheless their approach could

perhaps be adapted to fit our situation. The computational cost of the C-

GOLDSTEIN adjoint model is 18 times more than the standard simulator.

While this cost has the potential to decrease by optimising the code further,
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it is still an expensive model and a mixed design of adjoint and simulator

runs could be interesting to investigate.

• Concluding thoughts

Where we’ve included derivative information in an emulator in this thesis

we have assumed these derivatives to be exact within the computational

precision error. It would be interesting to investigate if there is some noise

on the derivative observations, how large an effect there is. If validation

diagnostics could point specifically to this problem this would be useful

when considering whether to include derivative information in a Gaussian

process emulator.

In summary, in this thesis we have presented a new approach to generat-

ing derivatives which, assuming the model is appropriate for emulation, is likely

to be much more efficient than the existing methods of calculating derivatives.

Whether the inclusion of derivative information when building an emulator of

model response results in a more efficient emulator, depends on the computa-

tional expense of generating the derivatives. As a result of work presented here,

however, a design consisting of a mixture of derivatives at some points, model

response at some points and both derivatives and model response at other points

would be advised.
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Appendix A

MUCM toolkit

The Managing Uncertainty in Complex Models (MUCM) toolkit is an online

resource with a large number of pages detailing MUCM methods. Later releases

of the toolkit will build on the current version by adding further material. In this

Appendix we present the MUCM toolkit pages relevant to derivative information.

A.1 Definition of adjoint

We begin with a definition of an adjoint model. This page can be found at:

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=

DefAdjoint.html.
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Definition of term: Adjoint
An adjoint is an extension to a simulator which produces derivatives of
the simulator output with respect to its inputs.

Technically, an adjoint is the transpose of a tangent linear
approximation; written either by hand or with the application of
automatic differentiation, it produces partial derivatives in addition to
the standard output of the simulator. An adjoint is computationally
more expensive to run than the standard simulator, but efficiency is
achieved in comparison to the finite differences method to generating
derivatives. This is because where computing partial derivatives by
finite differences requires at least two runs of the simulator for each
input parameter, the corresponding derivatives can all be generated by
one single run of an appropriate adjoint.

Last modified: 20 April 2010 01:06:57. 
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A.2 Emulating with derivatives

In this section we present the pages which describe how to include derivative

information in a Gaussian process emulator. The objective here is to emulate

function output.

A.2.1 ThreadVariantWithDerivatives

This page describes the ingredients required to build a Gaussian process emulator

with derivative information. This page can be found at:

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=

ThreadVariantWithDerivatives.html.
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Thread: Emulators with derivative
information

Overview

This thread describes how we can use derivative information in addition to standard
function output to build an emulator. As in the core thread for analysing the core problem
using GP methods (ThreadCoreGP) the following apply:

We are only concerned with one simulator.
The simulator only produces one output, or (more realistically) we are only
interested in one output.
The output is deterministic.
We do not have observations of the real world process against which to compare
the simulator.
We do not wish to make statements about the real world process.

Each of these aspects of the core problem is discussed further in page DiscCore.

However now, we also assume we can directly observe first derivatives of the simulator
either through an adjoint model or some other technique. This thread describes the use of
derivative information when building an emulator for the fully Bayesian approach only,
thus we require the further restriction:

We are prepared to represent the simulator as a Gaussian process.

There is discussion of this requirement in page DiscGaussianAssumption. If we want to
adopt the Bayes linear approach it is still possible to include derivative information and
this may be covered in a future release of the toolkit. Further information on this can be
found in Killeya, M.R.H., (2004) "Thinking Inside The Box" Using Derivatives to Improve
Bayesian Black Box Emulation of Computer Simulators with Applications to Compartmental
Models. Ph.D. thesis, Department of Mathematical Sciences, University of Durham.

Readers should be familiar with ThreadCoreGP, before considering including derivative
information.

Active inputs

As in ThreadCoreGP

The GP model

As in ThreadCoreGP the first stage in building the emulator is to model the mean and
covariance structures of the Gaussian process that is to represent the simulator. As
explained in the definition page of a Gaussian process (DefGP), a GP is characterised by a
mean function and a covariance function. We model these functions to represent prior
beliefs that we have about the simulator, i.e. beliefs about the simulator prior to
incorporating information from the training sample. The derivatives of a Gaussian process
remain a Gaussian process and so we can use a similar approach to ThreadCoreGP here.

The choice of the emulator prior mean function is considered in the alternatives page
AltMeanFunction. However here we must ensure that the chosen function is differentiable.
In general, the choice will lead to the mean function depending on a set of
hyperparameters that we will denote by .



The most common approach is to define the mean function to have the linear form 
, where  is a vector of regressor functions, whose specification is part

of the choice to be made. As we are including derivative information in the training
sample we must ensure that  is differentiable. This will then lead to the derivative of
the mean function: . For appropriate ways to model the mean, both

generally and in linear form, see AltMeanFunction.

The covariance function is considered in the discussion page DiscCovarianceFunction and
here must be twice differentiable. Within the toolkit we will assume that the covariance
function takes the form , where  is an unknown scale hyperparameter and 
is called the correlation function indexed by a set of correlation hyperparameters . The
correlation then between a point, , and a derivative w.r.t input  at , (denoted by 

), is . The correlation between a derivative w.r.t input  at , (denoted by 

), and a derivative w.r.t input  at , (denoted by ), is . The

choice of correlation function is considered in the alternatives page AltCorrelationFunction.

The most common approach is to define the correlation function to have the Gaussian
form , where  is a diagonal matrix with
elements the inverse squares of the elements of the  vector. The correlation then
between a point, , and a derivative w.r.t input  at point ,  is:

the correlation between two derivatives w.r.t input  but at points  and  is:

and finally the correlation between two derivatives w.r.t inputs  and , where , at
points  and  is:

Prior distributions

As in ThreadCoreGP

Design

The next step is to create a design, which consists of a set of points in the input space at
which the simulator or adjoint is to be run to create the training sample. Design options
for the core problem are discussed in the alternatives page on training sample design
(AltCoreDesign). Here though, we also need to decide at which of these points we want to
obtain function output and at which points we want to obtain partial derivatives. This adds
a further consideration when choosing a design option but as yet we don't have any
specific design procedures which take into account the inclusion of derivative information.

If one of the design procedures described in AltCoreDesign is applied, the result is an
ordered set of points . Given , we would now need to choose at
which of these points we want to obtain function output and at which we want to obtain
partial derivatives. This information is added to  resulting in the design,  of length .
A point in  has the form , where  denotes whether a derivative or the function
output is to be included at that point. The simulator, , or the adjoint of the simulator, 

, (depending on the value of each ), is then run at each of the input configurations.

One suggestion that is commonly made for the choice of the sample size, , for the core
problem is , where  is the number of inputs. (This may typically be enough to
obtain an initial fit, but additional simulator runs are likely to be needed for the purposes



of validation, and then to address problems raised in the validation diagnostics.) There is
not, however, such a guide for what  might be. If we choose to obtain function output
and the first derivatives w.r.t to all inputs at every location in the design, then we would
expect that fewer than  locations would be required; how many fewer though, is
difficult to estimate.

Fitting the emulator

Given the training sample of function output and derivatives, and the GP prior model, the
process of building the emulator is given in the procedure page ProcBuildWithDerivsGP

The result of ProcBuildWithDerivsGP is the emulator, fitted to the prior information and
training data. As with the core problem, the emulator has two parts, an updated GP (or a
related process called a t-process) conditional on hyperparameters, plus one or more sets
of representative values of those hyperparameters. Addressing the tasks below will then
consist of computing solutions for each set of hyperparameter values (using the GP or t-
process) and then an appropriate form of averaging of the resulting solutions.

Although the fitted emulator will correctly represent the information in the training data,
it is always important to validate it against additional simulator runs. For the core
problem, the process of validation is described in the procedure page ProcValidateCoreGP.
Here, we are interested in predicting function output, therefore as in ProcValidateCoreGP
we will have a validation design  which only consists of points for function output; no
derivatives are required and as such the simulator, , not the adjoint, , is run at

each  in . Then in the case of a linear mean function, weak prior information on
hyperparameters  and , and a single posterior estimate of , the predictive mean
vector, , and the predictive covariance matrix, , required in ProcValidateCoreGP, are
given by the functions  and  which are given in ProcBuildWithDerivsGP. We
can therefore validate an emulator built with derivatives using the same procedure as that
which we apply to validate an emulator of the core problem. It is often necessary, in
response to the validation diagnostics, to rebuild the emulator using additional training
runs which can of course, include derivatives. We hope to extend the validation process
using derivatives as we gain more experience in validation diagnostics and emulating with
derivative information.

Tasks

Having obtained a working emulator, the MUCM methodology now enables efficient
analysis of a number of tasks that regularly face users of simulators.

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate for the simulator,
i.e. to predict what output the simulator would produce if run at a new point in the input
space. In this thread we are concerned with predicting the function output of the
simulator. The prediction of derivatives of the simulator output w.r.t the inputs, at a new
point in the input space is covered in the thread ThreadGenericEmulateDerivatives. The
process of predicting function output at one or more new points for the core problem is
set out in ProcPredictGP. When we have derivatives in the training sample the process of
prediction is the same as for the core problem, but anywhere  etc are required,
they should be replaced with .

For some of the tasks considered below, we require to predict the output not at a set of
discrete points, but in effect the entire output function as the inputs vary over some
range. This can be achieved also using simulation, as discussed in the procedure page for
simulating realisations of an emulator (ProcSimulationBasedInference).

Uncertainty analysis

Uncertainty analysis is the process of predicting the simulator output when one or more of
the inputs are uncertain. The procedure page on uncertainty analysis using a GP emulator
(ProcUAGP) explains how this is done for the core problem. We hope to extend this
procedure to cover an emulator built with derivative information in a later release of the
toolkit.

Sensitivity analysis



In sensitivity analysis the objective is to understand how the output responds to changes
in individual inputs or groups of inputs. The procedure page ProcVarSAGP gives details of
carrying out variance based sensitivity analysis for the core problem. We hope to extend
this procedure to cover an emulator built with derivative information in a later release of
the toolkit.

Examples

One dimensional example

Additional Comments, References, and Links

If we are interested in emulating multiple outputs of a simulator, there are various
approaches to this discussed in the alternatives page AltMultipleOutputsApproach. If the
approach chosen is to build a multivariate GP emulator and derivatives are available, then
they can be included using the methods described in this page combined with the
methods described in the thread for the analysis of a simulator with multiple outputs
(ThreadVariantMultipleOutputs). A variant thread on multiple outputs with derivatives
(ThreadVariantMultipleOutputsWithDerivatives) page may be included in a later release of
the toolkit.

Last modified: 20 April 2010 01:06:57. 
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A.2.2 ProcBuildWithDerivsGP

This page describes the procedure required to build a Gaussian process emulator

with derivative information. This page can be found at:

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=

ProcBuildWithDerivsGP.html.
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Procedure: Build Gaussian process emulator with
derivative information

Description and Background

The preparation for building a Gaussian process (GP) emulator with derivative information involves defining the prior
mean and covariance functions, identifying prior distributions for hyperparameters, creating a design for the training
sample, then running the adjoint, or simulator and a method to obtain derivatives, at the input configurations
specified in the design. All of this is described in the variant thread on emulators with derivative information
(ThreadVariantWithDerivatives). The procedure here is for taking those various ingredients and creating the GP
emulator.

Additional notation for this page

Including derivative information requires further notation than is specified in the Toolkit notation page (MetaNotation).
We declare this notation here but it is only applicable to the derivatives thread variant pages.

The tilde symbol ( ) placed over a letter denotes derivative information and function output combined.
We introduce an extra argument to denote a derivative. We define  to be the derivative of  with

respect to input  and so . When  we have . For simplicity, when  we

adopt the shorter notation so we use  rather than .

An input is denoted by a superscript on , while a subscript on  refers to the point in the input space. For
example,  refers to input  at point .

Inputs

GP prior mean function , differentiable and depending on hyperparameters 
GP prior correlation function , twice differentiable and depending on hyperparameters 
Prior distribution  for  and  where  is the process variance hyperparameter
We require a design. In the core thread ThreadCoreGP the design, , is an ordered set of points 

, where each  is a location in the input space. Here, we need a design which in addition
to specifying the location of the inputs, also determines at which points we require function output and at
which points we require first derivatives. We arrange this information in the design , where 

 and . We have  which refers to the location in the design and  determines
whether at point  we require function output or a first derivative w.r.t one of the inputs. Each  is not
distinct as we may have a derivative and the function output at point  or we may require a derivative w.r.t
several inputs at point .
Output vector is  of length .

Outputs

A GP-based emulator in one of the forms discussed in DiscGPBasedEmulator.

In the case of general prior mean and correlation functions and general prior distribution:

A GP posterior conditional distribution with mean function  and covariance function  conditional on 
. If we want to emulate the derivatives rather than the function output see

ProcBuildGPEmulateDerivs.
A posterior representation for 

In the case of linear mean function, general correlation function, weak prior information on  and general prior
distribution for :

A t process posterior conditional distribution with mean function , covariance function  and degrees
of freedom  conditional on 
A posterior representation for 

As explained in DiscGPBasedEmulator, the "posterior representation" for the hyperparameters is formally the
posterior distribution for those hyperparameters, but for computational purposes this distribution is represented by a
sample of hyperparameter values. In either case, the outputs define the emulator and allow all necessary
computations for tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

Procedure

General case

We define the following arrays (following the conventions set out in MetaNotation where possible).



, an  vector, where , and  if .

 an  matrix, where the exact form of  depends on where derivatives are included. The

general expression for this is:  and we can break it down into three cases:

Case 1 is for when  and as such represents the covariance between 2 points. This is the same as in
ThreadCoreGP and is given by:

Case 2 is for when  and  and as such represents the covariance between a derivative and a point.
This is obtained by differentiating  w.r.t input :

Case 3 is for when  and  and as such represents the covariance between two derivatives. This is
obtained by differentiating  twice: once w.r.t input  and once w.r.t input :

.
Case 3a. If  and  we have a special version of Case 3 which gives:

, an  vector function of . We have  as here we want to emulate function output. To

emulate derivatives,  and this is covered in the generic thread on emulating derivatives
(ThreadGenericEmulateDerivatives).

Then, conditional on  and the training sample, the output vector  is a multivariate GP with posterior

mean function

and posterior covariance function

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is completed by a second
part formally comprising the posterior distribution of , which has density given by

For the output vector  with  see the procedure page on building an emulator of derivatives

(ProcBuildEmulateDerivsGP).

Linear mean and weak prior case

Suppose now that the mean function has the linear form , where  is a vector of  known basis
functions of the inputs and  is a  column vector of hyperparameters. When  we therefore have 

. Suppose also that the prior distribution has the form ,

i.e. that we have weak prior information on  and  and an arbitrary prior distribution  for .

Define  and  as in the previous case. In addition, define the  matrix

the vector

and the scalar

Then, conditional on  and the training sample, the output vector  is a t process with 

degrees of freedom, posterior mean function

and posterior covariance function

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a
second part comprising the posterior distribution of , which has density given by

In order to derive the sample representation of this posterior distribution for the second part of the emulator, three
approaches can be considered.



1. Exact computations require a sample from the posterior distribution of . This can be obtained by MCMC; a
suitable reference can be found below.

2. A common approximation is simply to fix  at a single value estimated from the posterior distribution. The usual
choice is the posterior mode, which can be found as the value of  for which  is maximised. See the
alternatives page on estimators of correlation hyperparameters (AltEstimateDelta).

3. An intermediate approach first approximates the posterior distribution by a multivariate lognormal distribution
and then uses a sample from this distribution, as described in the procedure page ProcApproxDeltaPosterior.

Each of these approaches results in a set of values (or just a single value in the case of the second approach) of ,
which allow the emulator predictions and other required inferences to be computed.

Although it represents an approximation that ignores the uncertainty in , approach 2 has been widely used. It has
often been suggested that, although uncertainty in these correlation hyperparameters can be substantial, taking
proper account of that uncertainty through approach 1 does not lead to appreciable differences in the resulting
emulator. On the other hand, although this may be true if a good single estimate for  is used, this is not necessarily
easy to find, and the posterior mode may sometimes be a poor choice. Approach 3 has not been used much, but can
be recommended when there is concern about using just a single  estimate. It is simpler than the full MCMC
approach 1, but should capture the uncertainty in  well.

References

Morris, M. D., Mitchell, T. J. and Ylvisaker, D. (1993). Bayesian design and analysis of computer experiments: Use of
derivatives in surface prediction. Technometrics, 35, 243-255.
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A.2.3 ExamVariantWithDerivatives1Dim

This page presents a 1-dimensional example where we build an emulator, with

and without derivatives, and then attempt to validate the emulator. This page

can be found at:

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=

ExamVariantWithDerivatives1Dim.html.
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Example: A one dimensional emulator built with
function output and derivatives

Simulator description

In this page we present an example of fitting an emulator to a  dimensional simulator when in addition to learning
the function output of the simulator, we also learn the partial derivatives of the output w.r.t the input. The simulator we
use is the function, . Although this is not a complex simulator which takes an appreciable amount of

computing time to execute, it is still appropriate to use as an example. We restrict the range of the input, , to lie in 
 and the behaviour of our simulator over this range is shown in Figure 1. The simulator can be analytically

differentiated to provide the relevant derivatives: . For the purpose of this example we define the adjoint
as the function which when executed returns both the simulator output and the derivative of the simulator output w.r.t
the simulator input.

Figure 1: The simulator over the specified region

Design

We need to choose a design to select at which input points the simulator is to be run and at which points we want to
include derivative information. An Optimised Latin Hypercube, which for one dimension is a set of equidistant points on
the space of the input variable, is chosen. We select the following  design points:

.

We choose to evaluate the function output and the derivative at each of the  points and scale our design points to lie
in . This information is added to  resulting in the design,  of length . A point in  has the form , where 
denotes whether a derivative or the function output is to be included at that point; for example  denotes
the function output at point  and  denotes the derivative w.r.t to the first input at point .

This results in the following design:

The output of the adjoint at these points, which make up our training data, is:

.

Note that the first  elements of , and therefore , are simply the same as in the core problem. Elements 

correspond to the derivatives. Throughout this example  will refer to the number of distinct locations in the design ( ),
while  refers to the total amount of data points in the training sample. Since we include a derivative at all  points
w.r.t to the  input, .

Gaussian process setup

In setting up the Gaussian process, we need to define the mean and the covariance function. As we are including
derivative information here we need to ensure that the mean function is once differentiable and the covariance function
is twice differentiable. For the mean function, we choose the linear form described in the alternatives page on emulator
prior mean function (AltMeanFunction), which is  and . This corresponds to 

and we also have  and so .

For the covariance function we choose  where the correlation function  has the Gaussian form described in
the alternatives page on emulator prior correlation function (AltCorrelationFunction). We can break this down into 3
cases, as described in the procedure page for building a GP emulator with derivative information



(ProcBuildWithDerivsGP):

Case 1 is the correlation between points, so we have  and .

Case 2 is the correlation between a point, , and the derivatives at point , so we have  and . Since in
this example , this amounts to  and we have:

.

Case 3 is the correlation between two derivatives at points  and . Since in this example , the only relevant
correlation here is when  (which corresponds to Case 3a in ProcBuildWithDerivsGP) and is given by:

Each Case provides sub-matrices of correlations and we arrange them as follows:

an  matrix. The matrix  is symmetric and within  we have symmetric sub-matrices, Case 1 and Case 3. Case 1
is an  matrix and is exactly the same as in the procedure page ProcBuildCoreGP. Since we are including
the derivative at each of the  design points, Case 2 and 3 sub-matrices are also of size .

Estimation of the correlation length

We need to estimate the correlation length . In this example we will use the value of  that maximises the posterior
distribution , assuming that there is no prior information on , i.e. . The expression that needs to be
maximised is (from ProcBuildWithDerivsGP)

where

We have  where  and  are defined above in section Gaussian process setup.

Recall that in the above expressions the only term that is a function of  is the correlation matrix .

The maximum can be obtained with any maximisation algorithm and in this example we used Nelder - Mead. The value
of  which maximises the posterior is 0.183 and we will fix  at this value thus ignoring the uncertainty with it, as
discussed in ProcBuildCoreGP. We refer to this value of  as . We have scaled the input to lie in [0,1] and so in terms
of the original input scale,  corresponds to a smoothness parameter of 10 x 0.183 = 1.83

Estimates for the remaining parameters

The remaining parameters of the Gaussian process are  and . We assume weak prior information on  and  and so
having estimated the correlation length, the estimate for  is given by the equation above in section Estimation of the
correlation length, and the estimate for  is

Note that in these equations, the matrix  is calculated using . The application of the two equations for  and , gives
us in this example  and 

Posterior mean and Covariance functions

The expressions for the posterior mean and covariance functions as given in ProcBuildWithDerivsGP are

and

Figure 2 shows the predictions of the emulator for 100 points uniformly spaced on the original scale. The solid, black
line is the output of the simulator and the blue, dashed line is the emulator mean  evaluated at each of the 100
points. The blue dotted lines represent 2 times the standard deviation about the emulator mean, which is the square
root of the diagonal of matrix . The black crosses show the location of the design points where we have evaluated the
function output and the derivative to make up the training sample. The green circles show the location of the validation
data which is discussed in the section below. We can see from Figure 2 that the emulator mean is very close to the true
simulator output and the uncertainty decreases as we get closer the location of the design points.



Figure 2: The simulator (solid black line), the emulator mean (blue, dotted) and 95% confidence intervals shown by the blue,
dashed line. Black crosses are design points, green circles are validation points.

Validation

In this section we validate the above emulator according to the procedure page for validating a GP emulator
(ProcValidateCoreGP).

The first step is to select the validation design. We choose here 15 space filling points ensuring these points are distinct
from the design points. The validation points are shown by green circles in Figure 2 above and in the original input
space of the simulator are:

and in the transformed space:

.

Note that the prime symbol ( ) does not denote a derivative, as in ProcValidateCoreGP we use the prime symbol to
specify validation. We're predicting function output in this example and so do not need validation derivatives; as such
we have a validation design  and not . The function output of the simulator at these validation points is

We then calculate the mean  and variance  of the emulator at each validation design point in  and the
difference between the emulator mean and the simulator output at these points can be compared in Figure 2.

We also calculate standardised errors given in ProcValidateCoreGP as  and plot them in Figure 3.

Figure 3: Individual standardised errors for the prediction at the validation points

Figure 3 shows that all the standardised errors lie between -2 and 2 providing no evidence of conflict between simulator
and emulator.

We calculate the Mahalanobis distance as given in ProcValidateCoreGP:

when its theoretical mean is

 and variance, 

We have a slightly small value for the Mahalanobis distance therefore, but it is within one standard deviation of the
theoretical mean. The validation sample is small and so we would only expect to detect large problems with this test.
This is just an example and we would not expect a simulator of a real problem to only have one input, but with our
example we can afford to run the simulator intensely over the specified input region. This allows us to assess the overall
performance of the emulator and, as Figure 2 shows, the emulator can be declared as valid.

Comparison with an emulator built with function output alone

We now build an emulator for the same simulator with all the same assumptions, but this time leave out the derivative



information to investigate the effect of the derivatives and compare the results.

We obtain the following estimates for the parameters:

 and .

Figure 4 shows the predictions of this emulator for 100 points uniformly spaced on the original scale. The solid, black
line is the output of the simulator and the red, dashed line is the emulator mean evaluated at each of the 100 points.
The red dotted lines represent 2 times the standard deviation about the emulator mean. The black crosses show the
location of the design points where we have evaluated the function output. We can see from Figure 4 that the emulator
is not capturing the behaviour of the simulator at all and further simulator runs are required.

Figure 4: The simulator (solid black line), the emulator mean (red, dotted) and 95% confidence intervals shown by the red, dashed
line. Black crosses are design points.

We add 4 further design points, , and rebuild the emulator, without derivatives as before. This
results in new estimates for the parameters,  and , and Figure 5 shows the

predictions of this emulator for the same 100 points. We now see that the emulator mean closely matches the simulator
output across the specified range.

Figure 5: The simulator (solid black line), the emulator mean (red, dotted) and 95% confidence intervals shown by the red, dashed
line. Black crosses are design points, green circles are validation points.

We repeat the validation diagnostics using the same validation data and obtain a Mahalanobis distance of 4.70, while
the theoretical mean is 15 with standard deviation 14.14. As for the emulator with derivatives, a value of 4.70 is bit
small; however the standardised errors calculated as before, and shown in Figure 6 below, provide no evidence of
conflict between simulator and emulator and the overall performance of the emulator as illustrated in Figure 5 is
satisfactory.

Figure 6: Individual standardised errors for the prediction at the validation points

We have therefore now built a valid emulator without derivatives but required 4 extra simulator runs to the emulator
with derivatives, to achieve this.
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A.3 Emulating derivatives

In this section we present the pages which describe how to emulate derivatives

either with or without derivative information in the training data.

A.3.1 ThreadGenericEmulateDerivatives

This page describes the ingredients required to build an emulator of derivatives.

This page can be found at:

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=

ThreadGenericEmulateDerivatives.html.
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Thread: Generic methods to
emulate derivatives

Overview

This thread describes how we can build an emulator with which we can
predict the derivatives of the model output with respect to the inputs.
If we have derivative information available, either from an adjoint
model or some other means, we can include that information when
emulating derivatives. This is similar to the variant thread on
emulators with derivative information (ThreadVariantWithDerivatives)
which includes derivative information when emulating function output.
If the adjoint to a simulator doesn't exist and we don't wish to obtain
derivative information through another method, it is still possible to
emulate model derivatives with just the function output.

The emulator

The derivatives of a posterior Gaussian process remain Gaussian
processes with mean and covariance functions obtained by the relevant
derivatives of the posterior mean and covariance functions. This can be
applied to any Gaussian process emulator. The process of building an
emulator of derivatives with the fully Bayesian approach is given in the
procedure page ProcBuildEmulateDerivsGP. This covers building a
Gaussian process emulator of derivatives with just function output, an
extension of the core thread ThreadCoreGP, and a Gaussian process
emulator of derivatives built with function output and derivative
information, an extension of ThreadVariantWithDerivatives.

The result is a Gaussian process emulator of derivatives which will
correctly represent any derivatives in the training data, but it is always
important to validate the emulator against additional derivative
information. For the core problem, the process of validation is
described in the procedure page ProcValidateCoreGP. Although here we
are interested in emulating derivatives, as we know the derivatives of a
Gaussian process remain a Gaussian process, we can apply the same
validation techniques as for the core problem. We require a validation
design  which consists of points where we want to obtain validation
derivatives. An adjoint is then run at these points; if an appropriate
adjoint does not exist the derivatives are obtained through another
technique, for example finite differences. If any local sensitivity
analysis has already been performed on the simulator, some
derivatives may already have been obtained and can be used here for
validation. Then in the case of a linear mean function, weak prior
information on hyperparameters  and , and a single posterior
estimate of , the predictive mean vector, , and the predictive
covariance matrix, , required in ProcValidateCoreGP, are given by
the functions  and  which are given in
ProcBuildEmulateDerivsGP. We can therefore validate an emulator of
derivatives using the same procedure as that which we apply to
validate an emulator of the core problem. It is often necessary, in
response to the validation diagnostics, to rebuild the emulator using
additional training runs which can of course, include derivatives. We



hope to extend the validation process using derivatives as we gain
more experience in validation diagnostics and emulating with derivative
information.

The Bayes linear approach to emulating derivatives may be covered in
a future release of the toolkit.

Tasks

Having obtained a working emulator, the MUCM methodology now
enables efficient analysis of a number of tasks that regularly face users
of simulators.

Prediction

The simplest of these tasks is to use the emulator as a fast surrogate
for the adjoint, i.e. to predict what derivatives the adjoint would
produce if run at a new point in the input space. The process of
predicting function output at one or more new points for the core
problem is set out in the prediction page ProcPredictGP. Here we are
predicting derivatives and the process of prediction is the same as for
the core problem. If the procedure in ProcBuildEmulateDerivsGP is
followed,  etc are used in replace of , as required in
ProcPredictGP.

Sensitivity analysis

In sensitivity analysis the objective is to understand how the output
responds to changes in individual inputs or groups of inputs. Local
sensitivity analysis uses derivatives to study the effect on the output,
when the inputs are perturbed by a small amount. Emulated
derivatives could replace adjoint produced derivatives in this analysis if
the adjoint is too expensive to execute or in fact does not exist.

Other tasks

Derivatives can be informative in optimization problems. If we want to
find which sets of input values results in either a maximum or a
minimum output then knowledge of the gradient of the function, with
respect to the inputs, may result in a more efficient search. Derivative
information is also useful in data assimilation.
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A.3.2 ProcBuildEmulateDerivsGP

This page describes the procedure required to build a Gaussian process emulator

of derivatives. This page can be found at:

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=

ProcBuildEmulateDerivsGP.html.
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Procedure: Build Gaussian process emulator of derivatives

Description and Background

The preparation for building a Gaussian process (GP) emulator of derivatives involves defining the prior mean and covariance functions, identifying prior
distributions for hyperparameters, creating a design for the training sample, then running the adjoint, or simulator, at the input configurations specified in the
design. This is described in the generic thread on methods to emulate derivatives (ThreadGenericEmulateDerivatives). The procedure here is for taking those
various ingredients and creating the GP emulator.

Additional notation for this page

Derivative information requires further notation than is specified in the Toolkit notation page (MetaNotation). As in the procedure page on building a GP
emulator with derivative information (ProcBuildWithDerivsGP) we use the following additional notation:

The tilde symbol ( ) placed over a letter denotes derivative information and function output combined.
We introduce an extra argument to denote a derivative. We define  to be the derivative of  with respect to input  and so .

When  we have . For simplicity, when  we adopt the shorter notation so we use  rather than .

An input is denoted by a superscript on , while a subscript on  refers to the point in the input space. For example,  refers to input  at point .

Inputs

GP prior mean function , differentiable and depending on hyperparameters 
GP prior correlation function , twice differentiable and depending on hyperparameters 
Prior distribution  for  and  where  is the process variance hyperparameter
Design, , where  and . We have  which refers to the location in the design and  determines whether

at point  we require function output or a first derivative w.r.t one of the inputs. Each  is not necessarily distinct as we may have a derivative and
the function output at point  or we may require a derivative w.r.t several inputs at point . If we do not have any derivative information, 
and the resulting design is as in the core thread ThreadCoreGP.
Output vector is  of length . If we are not including derivatives in the training data,  and the output vector reduces to 

 as in ThreadCoreGP.

Outputs

A GP-based emulator in one of the forms discussed in the discussion page DiscGPBasedEmulator.

In the case of general prior mean and correlation functions and general prior distribution:

A GP posterior conditional distribution with mean function  and covariance function  conditional on .
A posterior representation for 

In the case of linear mean function, general correlation function, weak prior information on  and general prior distribution for :

A t process posterior conditional distribution with mean function , covariance function  and degrees of freedom  conditional on 
A posterior representation for 

As explained in DiscGPBasedEmulator, the "posterior representation" for the hyperparameters is formally the posterior distribution for those hyperparameters,
but for computational purposes this distribution is represented by a sample of hyperparameter values. In either case, the outputs define the emulator and
allow all necessary computations for tasks such as prediction of the partial derivatives of the simulator output w.r.t the inputs, uncertainty analysis or
sensitivity analysis.

Procedure

General case

We define the following arrays (following the conventions set out in MetaNotation where possible).

, an  vector, where .

 an  matrix, where  includes the covariances involving derivatives. The exact form of  depends on where derivatives are included.

The general expression for this is:  and we can break it down into three cases:

Case 1 is for when  and as such represents the covariance between 2 points. This is the same as in ThreadCoreGP and is given by:

Case 2 is for when  and  and as such represents the covariance between a derivative and a point. This is obtained by differentiating 
w.r.t input :

Case 3 is for when  and  and as such represents the covariance between two derivatives. This is obtained by differentiating  twice:
once w.r.t input  and once w.r.t input :

.
Case 3a. If  and  we have a special version of Case 3 which gives:

, an  vector function of . We have  as here we want to emulate derivatives. To emulate function output,  and this is

covered in ThreadCoreGP or ThreadVariantWithDerivatives if we have derivatives in the training data.

Then, conditional on  and the training sample, the output vector  is a multivariate GP with posterior mean function

and posterior covariance function

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is completed by a second part formally comprising the posterior



distribution of , which has density given by

For the output vector  see the procedure page on building a GP emulator for the core problem (ProcBuildCoreGP) or the procedure page for

building a GP emulator when we have derivatives in the training data (ProcBuildWithDerivsGP).

Linear mean and weak prior case

Suppose now that the mean function has the linear form , where  is a vector of  known basis functions of the inputs and  is a 
column vector of hyperparameters. When  we therefore have . Suppose also that the prior distribution has the form 

, i.e. that we have weak prior information on  and  and an arbitrary prior distribution  for .

Define  and  as in the previous case. In addition, define the  matrix

the vector

and the scalar

Then, conditional on  and the training sample, the output vector  is a t process with  degrees of freedom, posterior mean function

and posterior covariance function

This is the first part of the emulator as discussed in DiscGPBasedEmulator. The emulator is formally completed by a second part comprising the posterior
distribution of , which has density given by

In order to derive the sample representation of this posterior distribution for the second part of the emulator, three approaches can be considered.

1. Exact computations require a sample from the posterior distribution of . This can be obtained by MCMC; a suitable reference can be found below.
2. A common approximation is simply to fix  at a single value estimated from the posterior distribution. The usual choice is the posterior mode, which can

be found as the value of  for which  is maximised. See the alternatives page AltEstimateDelta for a discussion of alternative estimators.
3. An intermediate approach first approximates the posterior distribution by a multivariate lognormal distribution and then uses a sample from this

distribution; this is described in the procedure page ProcApproxDeltaPosterior.

Each of these approaches results in a set of values (or just a single value in the case of the second approach) of , which allow the emulator predictions and
other required inferences to be computed.

Although it represents an approximation that ignores the uncertainty in , approach 2 has been widely used. It has often been suggested that, although
uncertainty in these correlation hyperparameters can be substantial, taking proper account of that uncertainty through approach 1 does not lead to
appreciable differences in the resulting emulator. On the other hand, although this may be true if a good single estimate for  is used, this is not necessarily
easy to find, and the posterior mode may sometimes be a poor choice. Approach 3 has not been used much, but can be recommended when there is concern
about using just a single  estimate. It is simpler than the full MCMC approach 1, but should capture the uncertainty in  well.

Additional Comments

We can use this procedure to emulate derivatives whether or not we have derivatives in the training data. Quantities  and therefore ,

above are taken from ProcBuildWithDerivsGP as they allow for derivatives in the training data, in addition to function output. In the case when we build an
emulator with function output only,  for all the training data and these quantities reduce to the same quantities without the tilde symbol ( ), as defined
in ProcBuildCoreGP. Then to emulate derivatives in the general case, conditional on  and the training sample, the output vector  is a multivariate GP

with posterior mean function

and posterior covariance function

To emulate derivatives in the case of a linear mean and weak prior, conditional on  and the training sample, the output vector  is a t process with 

 degrees of freedom, posterior mean function

and posterior covariance function
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Appendix B

G-GOLDSTEIN manual

The steps required to build, configure, execute and utilise the C-GOLDSTEIN

Earth System Model are described in this Appendix. In addition to the model

itself, the configuration tool mkgoin is described. This tool can be used to gen-

erate multiple configuration files required for computer experiments. This is not

an official manual to the C-GOLDSTEIN software and is not intended to be a

complete user guide.

B.1 Introduction

B.1.1 Purpose, scope and structure of this document

The purpose of this document is to provide more detailed and up-to-date guide-

lines on compiling and executing C-GOLDSTEIN, than available in Marsh et al.

(2002). The reader is assumed to have only a very basic understanding of the Unix

environment, in which the model operates, and the FORTRAN language in which

the model is coded. Accordingly some knowledge of Earth system modelling is

assumed, but only at the most basic level.

This document fundamentally consists of a collection of observations made

during attempts to perform the procedures described. It is not a definitive user

guide and should not be treated as such. The author did not design, and is

not involved in the development of the C-GOLDSTEIN software. All code and

guidelines are intended as suggestions only.

This section describes the purpose, scope and structure of this document

along with a very brief introduction to the C-GOLDSTEIN software. Section
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B.2 details the C-GOLDSTEIN build and installation procedures. Section B.3

contains guidelines on how to run the model as a single run, or in a batch mode

using the mkgoin tool. A list of input variables is given along with a corresponding

description. This is followed by a suggested method for running a spinup and

subsequent runs of the model to the year 2000 and into the future. Finally,

Section B.5 provides details on understanding the output and methods to extract

required information from the output.

B.1.2 The C-GOLDSTEIN model

The C-GOLDSTEIN software encodes a computationally fast Earth System Model

(ESM) developed by R. Marsh and N. R. Edwards (Marsh et al., 2002). It com-

prises three coupled model components:

• The Global Ocean-Linear Drag Salt and Temperature Equation Integrator

(GOLDSTEIN) ocean model.

• An atmospheric Energy Moisture Balance Model (EMBM).

• A simple sea ice model.

Details of the model computational components, variable parameters, input

and output data are given in Marsh et al. (2002) along with a brief description

of installation and execution procedure. This document refers to two versions of

C-GOLDSTEIN:

• Version 1 is the basic model.

• Version 2 incorporates observed carbon dioxide values up to the year 2000

and has forecasting capabilities thereafter.

B.2 Build and Installation

This section outlines the procedures required to build a C-GOLDSTEIN exe-

cutable.
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B.2.1 Requirments

In order to build C-GOLDSTEIN the following software must be available:

• Unix operating system (SOLARIS 9, Suse 9 and Red Hat 10 are known to

work)

• The Make tool (GNU is known to work)

• A text editor

• FORTRAN 77 compiler (G77, gfortran and Intel Fortran 9.0 are known to

work)

• FORTRAN 90 compiler (Intel Fortran 9.0 and gfortran are known to work)

B.2.2 Building

The binary (or executable) is generated automatically within the terminal with

the issuing of the following statement.

$> make goldstein

This instructs the Make program to perform the actions listed in the Makefile

file. Unless your system is identical to the system on which C-GOLDSTEIN was

developed (unlikely!), you will need to modify this Makefile in order to build

C-GOLDSTEIN on your system. Makefile is within the genie-cgoldstein

directory.

The correct FORTRAN compiler for your system may be selected by com-

menting out the other listed compilers. It is important to note that the r8 flag,

or its equivalent, is required for all compilers. Failure to follow this instruction

will result in multiple underflow errors. Correct execution of the make goldstein

command will result in the goldstein binary. You may have to set the executable

file permission in order to perform later tasks. This may be achieved with the

command

$> chmod o+x goldstein

Users familiar with Makefile constructs should have no difficulty in producing a

valid executable.
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B.3 Configuration

This section outlines the procedures required to configure the C-GOLDSTEIN

model. Each instance of C-GOLDSTEIN execution requires an input configu-

ration file, along with various data sets. A method for automatic generation of

the multiple input configuration files needed for ensemble execution is described.

The input configuration file for any run is described in Section B.3.2.

B.3.1 Ancillary data

C-GOLDSTEIN requires various ancillary input files such as taux u.interp and

uncep.silo. These should be located in the genie-cgoldstein directory and

do not require modification by the user.

B.3.2 Inputs overview

The C-GOLDSTEIN executable requires a goin file, containing values for input

parameters and various time-step configurations. The contents of a goin file may

be assigned to five groups:

1. Time step input parameters - these control the duration of a run and tem-

poral resolution of the model outputs. See Section B.3.3.

2. I/O input parameters - input/output filenames etc. See Section B.3.4.

3. Ocean input parameters - see Section B.3.5 and Table B.1.

4. Atmosphere input parameters - see Section B.3.6 and Table B.2.

5. Sea Ice input parameters - see Section B.3.7 and Table B.3.

B.3.3 Time step input parameters

These parameters control the temporal resolution of the recorded output data

and the duration of the run.

nsteps

This specifies the length of the run. There are 100 timesteps per year,

as detailed below, therefore the value of nsteps is 100 times the required

number of years.
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npstp

During a run, diagnostic information of the run is written to an out file

when nsteps is at multiples of npstp.

iwstp

When nsteps is at multiples of iwstp, files are saved so the run could be

restarted from this point if required.

itstp

When nsteps is at multiples of itstp output files are written. For example,

if data were required once per year itstp would be 100.

ianav

Annual averages are obtained over ianav timesteps.

nyearr

timesteps per year = 100

A/O dt ratio

Atmosphere to ocean timestep ratio. This has a default value of 5.

rel

Velocity Relaxation (as defined by Marsh et al. (2002) in Appendix A) with

default value 0.90.

B.3.4 I/O input parameters

These parameters dictate the location of various input and outputs.

n/c

This specifies whether the run is a new or continuing run.

output file number

Output files will be identified with this.

input file name

If c was specified (a continued run), input file name is the restart file

from which this run will continue.
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B.3.5 Ocean input parameters

The following table lists the many parameters used to alter the behaviour of the

ocean in the model.

Input Input Name in Model Default

Value

Inital ocean temperature in

northern hemisphere (◦C)

temp0 10

Inital ocean temperature in

southern hemisphere (◦C)

temp1 10

Wind stress scale scl tau or scf 2.00

Ocean horizontal diffusivity

(m2s−1)

ocean diffusivity iso or diff1 2000.

Ocean vertical diffusivity (m2s−1) ocean diffusivity dia or diff2 1e-4.

Ocean drag coefficient (days) inverse minimum drag or

adrag

2.5

Initial humidity over ocean relh0 ocean 0.

Atlantic-to-Pacific freshwater flux

adjustment values (Sv)

extra1a, extra1b, extra1c,

extra1d

-0.03, 0.17,

0.18, 0

Scaling factor for Atlantic to Pa-

cific moisture flux

scl fwf 1

Table B.1: Ocean Input Parameters for C-GOLDSTEIN

B.3.6 Atmosphere input parameters

The following table lists the parameters used to alter the behaviour of the atmo-

sphere in the model.
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Input Input Name in Model Default

Value

Atmospheric heat diffusivity

(m2s−1)

atm. diff. amp. for T or

diffamp(1)

5.0e6

Atmospheric moisture diffusivity

(m2s−1)

atm. diff. amp. for q or

diffamp(2)

1.0e6

Width of atmospheric heat diffu-

sivity profile (rad)

atm. diff. amp. dist’n

width or diffwid

1.0

Slope of atmospheric heat diffu-

sivity profile

atm. diff. amp. slope or

difflin

0.1

Zonal heat advection factor atm. advection factors for

T z or betaz1

0.

Meridional heat advection factor atm. advection factors for

T m

0.

Zonal moisture advection factor atm. advection factors for

q z or betaz2

0.4

Meridional moisture advection

factor

atm. advection factors for

q m

0.4

Scales co2 concentration relative

to 350ppm

scl co2 1.0

Specifies a compound annual %

rate of increase

pc co2 rise 0.0

Climate sensitivity (Wm−2) delf2x 5.77

Solar Constant (Wm−2) solconst 1368

Inital temperature of the atmo-

sphere

tatm 0.

Initial humidity over land relh0 land 0

Threshold Relative Humidity

above which precipitation occurs

rmax 0.85

e-folding timescale of Carbon re-

moval (years)

t absorb 150.

Table B.2: Atmosphere Input Parameters for C-GOLDSTEIN
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B.3.7 Sea Ice input parameters

The following table lists the parameters used to alter the behaviour of sea ice in

the model.

Input Input Name in Model Default

Value

Sea ice diffusivity (m2s−1) sea-ice eddy diffusivity or

diffsic

2000.

Sensitivity of Greenland Ice Sheet

melt to warming (Sv ◦C−1)

k gis 0.01

Table B.3: Sea Ice Input Parameters for C-GOLDSTEIN

B.4 Multiple run executions

B.4.1 The mkgoin program

Once an experimental design has been chosen the corresponding goin input file

must be created for each instance of the model. The mkgoin program provides a

simplified mechanism for generating multiple goin files.

The procedure for mkgoin operation is as follws:

1. Ensure the existance of the directories ../goin/ and ../goout/.

2. Provide a goin.std file. This is a typical goin file which will provide all

input parameters not being changed in the experiment.

3. Generate a design file listing the value of each parameter being changed in

the experiment. Each run of the model requires a value for all variables

being changed. This file is described in Section B.4.2.

4. Modify the mkgoin.f source, identifying the parameters to be changed in

the experiment. This is further described in Section B.4.3.

5. Build and execute the mkgoin program to generate the multiple goin files.

6. Execute the C-GOLSTEIN model once for each goin file. This is further

described in SectionB.4.4.
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B.4.2 Design file

The design lists, for each model run, a value for each parameter being varied at

any point in the experiment. Any parameter that remains constant throughout

the experiment will be taken from the goin.std file. Examples of goin.std to

generate a batch of spinup input files in version 1 or 2 of C-GOLDSTEIN are

shown in Sections B.4.5 and B.4.6 respectively. Differences between goin files for

versions 1 and 2 are explained further in Section B.4.6.

The design file itself is simply a space delimited text file enumerating each

combination of input parameters required in the experiment. For example, an

experiment consisting of 10 runs, varying only ocean drag coefficient, atmospheric

moisture diffusivity and climate sensitivity would require a design file as shown in

Figure B.1. This file must be called Design and located in the genie-cgoldstein

directory. The first column consists of the values for the ocean drag coefficient, the

second for atmospheric moisture diffusivity and the third for climate sensitivity.

3.496280 1573731 3.696902 
3.182065 1530661 4.249042 
4.083741 1596162 3.362610  
4.290861 1637941 5.113775  
3.417705 1744212 4.840546  
3.758303 1650016 5.653014  
3.571851 1709990 7.804285  
2.994917 1589768 5.515842 
3.354139 1674013 6.146303  
3.790954 1618322 4.405619!

Figure B.1: Example of a design file

Note that there is no header information. Accordingly the read routine in

mkgoin.f must be modified for each experiment, as shown in Section B.4.3.

B.4.3 Modifying mkgoin

Depending on which input parameters are being varied, the mkgoin.f source

code may need to be altered and recompiled. This source code is located in the

genie-cgoldstein directory. In the previous example the parameters ocean drag

coefficient, atmospheric moisture diffusivity and climate sensitivity were altered.
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This would require the changes shown in Figure B.2 to be made to the line

beginning read(97,) of mkgoin.f.

      read(97,*,iostat=iend,end=99)
     &    adrag,diffamp(2),delf2x

Figure B.2: Example of adapted part of mkgoin.f

The complete FORTRAN source code for mkgoin.f is given in Section B.7.

B.4.4 Executing C-GOLDSTEIN with mkgoin generated

inputs

The mkgoin program will generate multiple goin files. The previous example will

result in the files ../goin/goin.0 to ../goin/goin.9.

The first instance of the model my be executed as follows:

goldstein < ../goin/goin.0 > ../goout/out.0

This will run C-GOLDSTEIN at the first input configuration, goin.0, located in

the directory goin. At multiples of npstp information will be written to out.0,

located in the directory goout. Output will be written to the results/ directory

as detailed in Section B.5.

B.4.5 Spinup without observed CO2

It is recommended to spinup C-GOLDSTEIN for 4000 years. To run the model

to equilibrium without incorporating observed values of carbon dioxide, version

1 of C-GOLDSTEIN must be executed. An example of a goin file to run such a

spin up with default parameter values is given here:
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400001 400000 20000 100 100 nsteps npstp iwstp itstp ianav 
n                           new/continuing 
100   5                     timesteps per year and A/O dt ratio 
10 10 0.90 2.00             temp0 temp1 rel scl_tau 
2000. 1e-4                  ocean diffusivites iso/dia (or horiz/vert) 
2.5                         inverse minimum drag in days 
5.0e6   1e6  1.0 0.1        atm. diff. amp. for T & q & dist'n width, slope 
0. 0. 0.4 0.4               atm. advection factors for T_z, T_m, q_z, q_m  
1.0 0.0                     scl_co2 pc_co2_rise 
2000.                       sea-ice eddy diffusivity 
0. 0. 0.                    tatm relh0_ocean relh0_land 
-0.03 0.17 0.18             extra1a extra1b extra1c 
tmp/tmp                     output file number 
tmp/tmp.avg                 input file name 

Input file for Spinup V1

B.4.6 Spinup with observed CO2 (1800 - 2000)

To spinup C-GOLDSTEIN with observed CO2 values from 1800 to the year 2000,

version 2 of the model must be executed. This version, in addition to extended

source code, contains the file co2 historical.dat within the genie-cgoldstein

directory. This file consists of observed values of atmospheric carbon dioxide, as

reported by Johnston (2007). Ice core observations are used pre 1958. The layout

of a goin file for version 2 is slightly different to that for version 1, due to minor

variations in the source code of the two models. A goin file for version 2 also

requires further input parameters in addition to those existing in a goin file for

version 1. Two additional inputs are t absorb and k gis, see Sections B.3.6 and

B.3.7 respectively for details. An example of a goin file to spinup to the year

2000 is given here:
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400001 10000 20000 100 100  nsteps npstp iwstp itstp ianav 
n                           new/continuing 
100  5                      timesteps per year and A/O dt ratio 
10                          temp0      
10                          temp1   
0.9                         rel 
2                           scl_tau 
2000.                       horiz ocean diff.             
1.e-04                      vertical ocean diff. 
2.5                         adrag 
5.0e6                       diffamp(1) 
1e6                         diffamp(2) 
1.0                         diffwid 
0.1                         difflin 
0.                          betaz(1) 
0.                          betam(1) 
0.4                         betaz(2)   
0.4                         betam(2) 
1.0                         scl_co2 
0.0                         pc_co2_rise 
5.77                        delf2x 
1                           iscen1 
0.85                        rmax 
2000                        diffsic    
0.                          tatm 
0.                          relh0_ocean 
0.                          relh0_land 
1                           scl_fwf 
0.                          extra1d 
1368                        solconst 
tmp/spn                     output file number 
tmp/tmp.avg                 input file name 
150.                        t_absorb 
1e-02                       k_gis 

Input file for Spinup V2

B.4.7 Forecast

C-GOLDSTEIN can forecast past 2000 after an appropriate spinup. Input pa-

rameters for these forecasts are based on IPCC emission scenarios (IPCC, 2000).

The data for the 6 emissions scenarios detailed by IPCC (2000) are located in

the genie-cgoldstein directory for version 2.

Having chosen an emissions scenario, (or created a new one), there are 2

methods to implement it as detailed below.

1. In the genie-cgoldstein directory copy the chosen emissions scenario to

emissions.dat.

2. In the genie-cgoldstein directory go to gseta.F. Where currently emissions.dat

is opened change the file name to the chosen scenario.
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An example of a goin file to continue the previously spunup version 2 model

run, from the goin file in Section B.4.6, up to the year 3000 is shown here:

100001 10000 20000 100 100  nsteps npstp iwstp itstp ianav 
c                           new/continuing 
100  5                      timesteps per year and A/O dt ratio 
10                          temp0      
10                          temp1   
0.9                         rel 
2                           scl_tau 
2000.                       horiz ocean diff.             
1.e-04                      vertical ocean diff. 
2.5                         adrag 
5.0e6                       diffamp(1) 
1e6                         diffamp(2) 
1.0                         diffwid 
0.1                         difflin 
0.                          betaz(1) 
0.                          betam(1) 
0.4                         betaz(2)   
0.4                         betam(2) 
1.0                         scl_co2 
0.0                         pc_co2_rise 
5.77                        delf2x 
1                           iscen1 
0.85                        rmax 
2000                        diffsic    
0.                          tatm 
0.                          relh0_ocean 
0.                          relh0_land 
1                           scl_fwf 
0.                          extra1d 
1368                        solconst 
ctd/000                     output file number 
tmp/spn.0                   input file name 
150.                        t_absorb 
1e-02                       k_gis 

Input file for a continued run

B.5 Output

B.5.1 Location

A directory called results must be created along with a subdirectory with a

three character name for the ensemble of runs. For an ensemble of spinup runs,

for example, the directory may be results/spn. The model will then write

output data to this directory. Output data is in ascii, identified by the 3 character

name given to each run in mkgoin.f, see Section B.4.1. The first member of an

ensemble typically has the name 000 and for a run of this name, Table B.4 gives
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details of the output files. Temperature is measured in Celcius and salinity is

measured in psu.

Output file Description

000.n ‘Restart’ files which can be used as input files in continuing runs

000.t Mean ocean temperature in various regions

000.s Mean ocean salinity in various regions

000.airt Global mean air temperature

000.q Global mean specific humidity

000.opsi Meridional overturning streamfunction

000.zpsi Zonal overturning streamfunction

000.psi Barotropic streamfunction

000.rho Density

000.cost 2d array showing the frequency of convection during the run

000.relh Relative humidity

000.fx0a Net heat flux into atmosphere

000.pptn Precipitation rate

000.evap Evaporation rate

000.runoff River runoff

000.fwfxneto Net freshwater flux into ocean

000.fx0neto Net heat flux into ocean from atmosphere and sea ice

000.fofy Poleward heat flux in Atlantic, Pacific and total

Table B.4: Output files

B.5.2 Plots

Various fields and time series can be plotted from the data. A number of matlab

programs for creating these plots are located in the genie-cgoldstein directory.

In particular, tstq.m is a program to visualise temperature and salinity and

tplot produces various time series data. One of the results from the matlab

program tstq.m is a plot of surface air temperature. This output, at the year

2000 under default parameter settings is shown in Figure B.3.
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Figure B.3: Surface air temperature output from the C-GODLSTEIN model, run

to AD2000 at default parameter settings.

B.6 Directory Structure

In this section we present the directory structure of the C-GOLDSTEIN model.
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Version1

C-GOLDSTEIN

goin

goin.0

genie
-cgoldstein

mains.f
tempann.silo
world1.psiles

diagopsi.f
worbe2.psiles
worbe2.paths

gseto.F
README.cgv

tstepa.f
invert.f

tauy v.interp
var.cmn
readroff.f
tstepsic.f

velc.f
radfor.F
goldstein

tsaliann.silo
lal2sil.f

ubarsolv.f
OWNER

diag.f
gseta.F
laz2siz.f
tplot.m

diagosc.F
tauy u.interp

Makefile
uncep.silo

outm.f
plot2d.m

world1.paths
taux u.interp

tstq.m
tmp.err

worbe2.k1
qa ncep.silo

ts.m
inm.f

readme.key
world1.k1
diagend.F

saliann.silo
wind.f

co.f
surflux.F
drgset.f
diaga.f
jbar.f

diag2.f
diag3.f
island.f

rh ncep.silo
taux v.interp

tstipo.F
vncep.silo
lalo2silo.f

readme.ocean
ta ncep.silo

tstepo.F
veldif.f
tstipa.f

goout

out.0

results

tmp

000.airt
000.fofy
000.opsi
000.pptn
000.rho
000.t

000.arcice
000.fofya

000.fx0neto
000.opsit
000.osc
000.relh
000.zpsi

000.q
000.opsia
000.psi

000.runoff
000.avg

000.fwfxneto
000.opsip
000.qdry
000.cost
000.evap

000.1
000.fx0a
000.psi.1

000.s
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B.7 Source code

The complete FORTRAN source code for mkgoin.f is given here.

program mkgoin

real*8 tv,temp0,temp1,rel,scf,diff(2),adrag,diffamp(2),width

.,slope,betaz(2),betam(2),scl_co2,pc_co2_rise,delf2x,diffsic

.,tatm,relh0_ocean,relh0_land,etxra1a,extra1b,extra1c,scl_fwf

integer nsteps,npstp,iwstp,itstp,ndta,ianav

integer icount

character ans,lout*3,lin*6

character filegoin*20, filegoout*20, outfile*7, infile*7

&,fileerr*20, filelog*20

character*10 fmt

character*10 fmt1

character*10 fmt10

character*10 fmt100

c different formats for runs 0-9, 10-99, 100+

fmt1 =’(a13,i1.1)’

fmt10 =’(a13,i2.2)’

fmt100=’(a13,i3.3)’

open(1,file=’goin.std’,status=’old’)

read(1,*)nsteps,npstp,iwstp,itstp,ianav

read(1,’(a1)’)ans

read(1,*)tv,ndta

read(1,*)temp0,temp1,rel,scf

read(1,*)diff(1),diff(2)

read(1,*)adrag

read(1,*)diffamp(1),diffamp(2),width,slope

read(1,*)betaz(1),betam(1),betaz(2),betam(2)

read(1,*)scl_co2,pc_co2_rise,delf2x

read(1,*)sea_ice
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read(1,*)tatm,relh0_ocean,relh0_land

read(1,*)extra1a,extra1b,extra1c,scl_fwf

read(1,’(a7)’)lout

read(1,’(a11)’)lin

c open design file

open(97,file=’Design’,status=’old’)

c input file

infile=’tmp/tmp.avg’

icount = -1

iend=0

do while (iend.eq.0)

read(97,*,iostat=iend,end=99)

& adrag,diffamp(2),scl_fwf,delf2x,diff(2)

icount=icount+1

if(icount.le.9) write(outfile,’(a6,i1)’) ’tmp/00’,icount

if(icount.ge.10.and.icount.le.99)

& write(outfile,’(a5,i2)’) ’tmp/0’,icount

if(icount.ge.100) write(outfile,’(a4,i3)’) ’tmp/’,icount

c setup correct format

if(icount.le.9) then

fmt=fmt1

else if (icount.le.99) then

fmt=fmt10

else

fmt=fmt100
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endif

write(filegoin,fmt) ’../goin/goin.’,icount

write(filegoout,fmt) ’/goout/out.’,icount

open(2,file=filegoin,status=’new’)

write(2,*)nsteps,npstp,iwstp,itstp,ianav

write(2,’(a1)’)ans

write(2,*)tv,ndta

write(2,*)temp0,temp1,rel,scf

write(2,*)diff(1),diff(2)

write(2,*)adrag

write(2,*)diffamp(1),diffamp(2),width,slope

write(2,*)betaz(1),betam(1),betaz(2),betam(2)

write(2,*)scl_co2,pc_co2_rise,delf2x

write(2,*)sea_ ice

write(2,*)tatm,relh0_ocean,relh0_ land

write(2,*)extra1a,extra1b,extra1c,scl_ fwf

write(2,’(a7)’)outfile

write(2,’(a7)’)infile

open(3,file=filegoout,status=’new’)

close(2)

close(3)

99 continue

enddo

stop

end
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