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“Quis hic locus, quae regio, quae mundi plaga? 

What seas what shores what grey rocks and what islands.” 

– T.S. Eliot, Marina. 
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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 

SCHOOL OF OCEAN AND EARTH SCIENCES 

Doctor of Philosophy 

THE EVOLUTIONARY HISTORY AND PHYLOGENY OF THE 

LITHODINAE (DECAPODA: ANOMURA: LITHODIDAE) 

By Sarah Marie Snow (k/a Sally Hall) 

The anomuran sub-family Lithodinae comprises a great diversity of morphological and 

ecological forms, whose global radiation has not been specifically addressed since the 

modern syntheses of plate tectonics, oceanography, species theory and cladistic 

systematics. The focus of this thesis was to investigate the origin and radiations of the 

deep-sea Lithodinae as a case study for interchanges between deep and shallow oceans 

in mobile benthic fauna.  Molecular sequences were obtained from six genes (for 47 

species belonging to 10 genera of Lithodidae) and different aspects of morphology were 

examined in order to identify nested monophyletic groups based on shared, derived 

characteristics.  The hypothesis that lineage-specific temperature tolerances influence 

the distribution of deep- and shallow-water groups was tested by examining habitat 

alongside phylogeny.  

  Lithodid ancestors are likely to have had a north Pacific, shallow-water distribution 

and planktotrophic larvae.  Some shallow-water populations of Lithodidae are tied to 

locations north of 30°N because of the restricted thermal tolerance of pelagic larval 

stages; however, life-history changes allowed the subfamily Lithodinae to expand 

through the global deep sea, where they are now living at the frontier of their lower 

temperature threshold in the Southern Ocean. Phylogenies indicate the importance of 

large-scale dispersals within deep-sea groups, linked to the cold deep-water currents 

that connect the major oceans.  The subfamily Lithodinae includes examples of at least 

two genera in which diverse morphologies have arisen within the deep ocean in the 

absence of discernable barriers to gene flow. Adult migration and larval dispersal 

partially explain the widespread occurrence of the Lithodidae, but this does not indicate 

that lithodids roam the ocean depths unconstrained by physical or chemical conditions.  

Climate change throughout the Cenozoic has substantially altered the marine 

environment and shaped the distribution and radiation of the extant Lithodidae.  In the 

forthcoming years, measurable changes in ocean temperature, ocean currents and 

benthic habitat will affect the distribution of the lithodids and the communities they live 

in, as they have in the past. 
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CHAPTER SUMMARIES 

 

Chapter A1: Molecular Phylogeny of the Lithodidae 

To examine the hypothesis of a basal position for the soft-bodied North Pacific 

Hapalogastrinae, the monophyly of shallow and deep-water groups of Lithodinae was 

tested.  Mitochondrial and nuclear genes (COI, COII, 16S, 18S, 28S, ITS) of 47 species 

(10 genera) of Lithodidae were analysed to search for scenarios of evolution that 

optimally reflected the patterns of molecular divergence observed between species.  

Phylogenetic trees based on the shared, derived features present in single gene-

fragments largely corroborated those based on ‘total molecular evidence (TEB )’.  There 

was a low level of genetic variation within the subfamily Lithodinae; typically variable 

regions of ribosomal genes (18S and 28S) have only a few nucleotide substitutions 

separating genera.  This indicates a recent sequence divergence, or raises the possibility 

of a particularly slow rate of mutation in this lineage.  Phylogenetic trees strongly 

indicate the monophyly of most of the lithodid genera currently accepted on the basis of 

morphology.  Tree topologies suggest that deep-sea radiations have occurred 

independently in at least two (Paralomis and Lithodes) of the three globally distributed 

genera from a shallow-water ancestor.      

 

Chapter B1: King crabs up-close: ontogenetic changes in ornamentation in the 

family Lithodidae (Decapoda: Anomura), with a focus on the genus Paralomis 

Evidence of ontogenetic change in the surface ornamentation of lithodids has 

previously been studied for one species of Paralomis (P. granulosa Jaquinot); however, 

its wider occurrence within the genus has never been formally examined.  Growth-

related change in dorsal spines and tubercles was considered, using growth-series from 

eight species of Paralomis. Tubercular structures from adult specimens of 24 additional 

species of Paralomis are figured in order to provide a reference for future diagnosis.  

This study highlights one aspect of ontogenetic change between juvenile crab stages 

and mature adults, which is an important theme in the life history of the Lithodinae.   

Changes such as these need to be considered when identifying species of Paralomis. 

 

Chapter B2: Morphological phylogeny of the Lithodes genus 

The genus Lithodes contains 21 species, which are known to inhabit most of the world’s 

oceans, including one representative (L. murrayi) in the Bellingshausen Sea, Southern 

Ocean.  Lithodes species typically inhabit depths greater than 200 m, although above 40 

degrees of latitude (north and south) some Lithodes species are found in shallower 
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waters.  Closely related genus Paralithodes contains 6 species, all of which are endemic 

to the North Pacific, above 30 °N, generally shallower than 300 m.  Linear 

measurements and multi-state discrete morphological characters, were collected for 158 

specimens belonging to 17 species of Lithodes and Paralithodes, and were used to 

produce two independent estimations of Lithodes phylogeny.  Results presented here 

strongly indicate that central and Southern Pacific lineages of Lithodes are closely 

related to one another and to the Indian Ocean and South Atlantic Lithodes species. A 

transition from the North Pacific to the Atlantic was made by the ancestors of L. maja 

and/ or L. santolla and L. confundens.  Subsequent range-expansion followed a deep-

water pathway from the Atlantic, through the southern Indian Ocean to the Central 

Pacific. 

 

Chapter B3: Morphological Phylogeny of the genus Paralomis 

Paralomis is the largest genus of the Lithodidae, which is represented by 61 species, 

including at least two in the Southern Ocean.  Twenty-five Paralomis species were 

systematically studied using morphometric and descriptive morphological characters.  

Distance matrices were produced by these two methods, and combined for analysis with 

Fitch-Margoliash tree-search criteria. Results showed that the pattern of global radiation 

in Paralomis is complex, with at least four distinct sub-groups.  The east Pacific 

coastline was important in the meridional radiation of at least two of these lineages, and 

inter-oceanic circulation in the Southern Hemisphere could have been important for 

long-distance dispersal.  These radiations at slope-depths (500-2000 m) relate to a time 

prior to the closing of equatorial links between the Pacific and the Atlantic, and after 

the opening of the circum-Antarctic waterways.     

  

Chapter C1: Global bottlenecks in the distribution of marine Crustacea: 

temperature constraints in the family Lithodidae 

Members of the family Lithodidae share preferences for cold-water environments; 

however, the specific role of temperature in governing lithodid biogeography has not 

been examined to date.  It was hypothesized that lineage-specific temperature 

thresholds underlie differences in the distribution of the two lithodid subfamilies.  

Descriptions of 90 species of lithodids, sampled at 871 locations worldwide, were 

obtained from a wide range of published and original sources.  For each specimen, the 

water temperature at the time and locality of collection was recorded.  The link between 

the habitat temperature range and the position of taxa within the lithodid phylogeny was 

examined.  Phylogenetic evidence indicated that the deep-water lithodid lineages had 

ancestors that inhabited the coastal waters of the North Pacific.  Adults of North Pacific 



The Evolutionary History of the Lithodinae   Introduction & Context 

16 

lithodid taxa were found in regions where water temperatures ranged from 0º to 25°C; 

however, deep-water lineages of the Lithodinae were absent in waters exceeding 

temperatures of 13°C.  Despite the range of temperatures tolerated by adults, North 

Pacific intertidal/subtidal genera were restricted to regions that had water temperatures 

of less than 16°C during periods of larval development.   

 

O: INTRODUCTION 

 

O.1 Scope of the thesis 

The family Lithodidae Samouelle 1819 comprises a great diversity of morphological 

and ecological forms: from abyssal crabs with walking legs longer than a metre, to 

intertidal forms such as the genus Cryptolithodes Brandt 1848, which has tiny legs 

covered by a laterally expanded carapace (Bowman 1972).  In the deep sea, the large 

subfamily Lithodinae includes species occupying hydrothermal vent environments (de 

Saint Laurent & Macpherson 1997), as well as species amongst the few known ‘reptant’ 

decapods from the Southern Ocean (Thatje & Arntz 2004).  Study of the origins of the 

Lithodidae has increased in recent decades (Zaklan 2002a), with particular interest 

being placed on the putative relationship between primitive lithodids and hermit crabs 

of the family Paguridae.  In this thesis I will investigate the process of global radiation 

in groups of deep-sea Lithodinae (Bouvier 1896, Makarov 1938): a topic that has not 

specifically been addressed since the advent of cladistic systematics (Hennig 1966).  

This will be done in three sections: 

A. The production of a molecular phylogeny to investigate the origins of the 

deep-sea Lithodinae from within the Lithodidae. 

B. Elucidation of phylogenetic relationships within deep-sea lithodine genera 

Paralomis and Lithodes as case-studies of deep-sea radiations.   

C. Comparison of potential geographical and physiological boundaries with 

the present distribution of the deep-sea Lithodinae and their shallow-water 

relatives in South America. 

  

O.2 The Anomura 

O.2.1 Lithodid biological definition and classification 

The family Lithodidae is divided into two sub-families: Lithodinae (10 genera) 

Samouelle 1819, and Hapalogastrinae (5 genera) Brandt 1850 (117 species in total, 

Appendix A).  The Lithodidae were recently elevated to the taxonomic rank of 

superfamily (Lithodoidea, McLaughlin et al 2007), containing families Lithodidae and 
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Hapalogastridae.  This rank is based on the results of a morphological phylogeny 

(McLaughlin et al 2007), which called for a radical rearrangement of anomuran 

systematics.  For stability, prior to a unifying consensus between molecular and 

morphological analyses, I will refer to the family Lithodidae in its former sense 

(Samouelle 1819), containing subfamilies Hapalogastrinae and Lithodinae.       

 

-Diagnosis 

The Lithodidae are crab-like anomurans which lack uropods in both sexes, as well as 

having a sexually dimorphic abdominal asymmetry.  Males lack all pleopods 

(abdominal appendages) and females lack pleopods 2-5 on one (usually the right, 

Zaklan 2000) side.  The Hapalogastrinae have a short, broad, triangular rostrum; 

external obliteration of the cervical groove; weakly defined abdominal segmentation; 

and complete loss of calcification on abdominal tergites 2–5.  The Lithodinae have 

calcified abdominal tergites in the form of plates or nodules, as well as a developed 

trispinose rostrum (Macpherson 1988a, McLaughlin et al 2007).   

 

O.2.2 Classification of the Lithodidae within the Decapoda  

The infraorder Anomura MacLeay 1838 is classified within the group ‘reptantia’: the 

decapods in which the thoracic appendages are aligned to allow for walking 

(McLaughlin 1983a, Martin & Davis 2001, Dixon et al 2003).  Anomurans are unified 

morphologically by a novel arrangement of the coxosternal joints of the walking legs 

and the presence of linea anomurica on the lateral margins of the carapace (Makarov 

1938, Dixon et al 2003).  Until recent revisions, four superfamilies existed within the 

Anomura: Lomisoidea, Galathoidea, Hippoidea and the Paguroidea (which often 

contains the family Lithodidae, McLaughlin & Holthuis 1985, McLaughlin et al 2007).   

   

 -Classification of the Lithodidae within the Anomura 

The phylogeny and systematics of the Anomura is a source of much debate (Richter & 

Scholtz 1994, McLaughlin et al 2007).  Developmental and morphological evidence 

ally lithodids variously with the Paguridae, the Lomisidae and the Galathoidea; 

however, molecular reconstructions have invariably demonstrated a link between the 

Lithodidae and the Paguridae (hermit crabs, Cunningham et al 1992, Zaklan 2002a, 

Morrison et al 2002).  Lithodids are in many ways dissimilar to derived hermit crabs, 

and share several ‘ancestral’ features with the stem Anomura (Richter & Scholtz 1994); 

however, detailed analysis of morphology reveals a lot of apparently conflicting 

evidence, which will be discussed briefly here. 
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--Carcinisation in the Anomura  

Carcinisation is the process of morphing from the ancestral shrimp or lobster-like body 

plan to one in which the abdomen is held close to the sternum and the carapace is 

significantly broader than long.  Numerous instances of carcinisation are observed 

within the Anomura in addition to the family Lithodidae: including Lomis hirta 

(Lomisidae), Birgus latro (Linnaeus 1767, Paguroidea: Coenobitidae), and Probeebei 

mirabilis (Boone 1926: Paguroidea).  Morrison et al (2002) presented genetic evidence 

that carcinisation has occurred multiple times in parallel within the Anomura, under an 

unknown selective pressure.  McLaughlin & Lemaitre (1997) provide a detailed review. 

Lithodids of the subfamily Hapalogastrinae are amongst the only anomurans that have a 

fully uncalcified abdomen and have also undergone full carcinisation (Zaklan 2002a). 

 

--Paguroidea theories 

The taxon Paguroidea typically contains families Pylochelidae (symmetrical hermit 

crabs, McLaughlin & Lemaitre 2009), Parapaguridae (terrestrial hermit crabs, Martin & 

Davis 2001), Coenobitidae (including the terrestrial robber crab, Birgus latro), 

Diogenidae (left-handed hermit crabs, Ortmann 1892), Paguridae (right-handed hermit 

crabs), and the Lithodidae (Richter & Scholtz 1994).  The evidence to support the 

placement of the Lithodidae within this taxon includes: the presence of an accessory 

ampulla in the spermatophore and morphology of the spermatozoa, which ally Lithodes 

with the Paguroidea and particularly the Paguridae (Tudge et al 1998); the similarity of 

the larval scaphognathites in the Lithodidae and other pagurioid families (Van Dover et 

al 1982); and uncalcified abdominal tergites 2–5, which exist in the Hapalogastrinae 

and the shell-dwelling pagurids (Richter & Scholtz 1994).  The most compelling 

morphological evidence for a link between the Paguridae and the Lithodidae comes 

from the asymmetry of the abdomen in females and the shared reduction in the number 

of pleopods on abodominal segments (Richter & Scholtz 1994).  The morphological 

transition from a shell-dwelling hermit crab to a carcinised lithodid requires the re-

acquisition of primitive character states, including well-developed 4
th
 pereiopods (in 

both megalopae and adults, MacDonald et al 1957); the calcification of the dorsolateral 

carapace and the abdominal tergites of the Lithodinae; and the ‘reaquisition’ of 1
st
 

abdominal pleopods in females (Richter & Scholtz 1994).  Such reversions are given 

different weight in different studies (Stiassny 1992), but an improving understanding of 

genetics has revealed potential mechanisms for explaining these phenomena (e.g. 

Averof & Patel 1997). 
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--Lomisoidea theories 

Martin & Abele (1986) described a close relationship between Lomis hirta (Lomisidae) 

and the Lithodidae, based on a shared loss of ocular acicles, a loss of uropods, and 

further features relating to their shared carcinised state.  This grouping was resolved 

close to a clade containing the remaining families of the Paguroidea, and separate from 

the Galathoidea and the Hippoidea.  A close relationship between lithodids and Lomis 

does not explain the evidence of the shared characters between the Lithodidae and the 

Paguroidea (Richter & Scholtz 1994, Tudge et al 1998). 

     

--Lithodoidea theories 

McLaughlin et al (2007) do not support the idea of a close relationship between the 

Lithodidae and the Paguroidea, instead linking the lithodids loosely with the Hippidae 

(e.g. genus Emerita) and the Aeglidae.  The distance between the Lithodidae and all 

other taxa was considered to be so great that they were elevated in systematic rank.  In 

this scenario, all similarities between the Paguridae and the Lithodidae are assessed as 

being either convergent or misinterpreted in previous analyses.  Particularly, this view 

is supported by an ontogenetic study of abdominal calcification, female abdominal 

asymmetry and pleopod development in both sexes.  These reveal similar but not 

necessarily homologous mechanisms for plate differentiation and pleopod reduction in 

lithodids and the pagurids (McLaughlin et al 2004). In Pagurus megalopae, the 2
nd

 

abdominal plate is intact (Carvacho 1988), losing its distinction through dechitinisation 

after the moult to crab-stage 1.  In the Hapalogastrinae, the megalopal tergites fail to 

calcify at metamorphosis, whereas in the Lithodinae (which have well-calcified 

abdominal plates or nodules in adults Fig B3.13), the intact megalopal abdominal 

tergites divide by narrow inter-plate decalcification in late juvenile crab stages 

(McLaughlin et al 2004).  This is contrary to the long-standing hypothesis that lithodid 

abdominal morphology is the product of secondary calcification of a pagurid-like 

abdomen, followed by the sequential fusion of calcified nodules into larger plates (Boas 

1880).      

 

O.2.3 Relationships between lithodid genera: Historical perspective   

Bouvier (1895) based his theories of lithodid evolutionary history on Boas’ earlier 

study of abdominal calcification (1880), as well as on characters of the rostrum and the 

antennal acicles (Makarov 1938).  He suggested that the abandonment of shell-dwelling 

in the earliest lithodids led to carcinisation and calcification of the abdomen (Boas 

1880).  Hapalogaster was the most ‘primitive’ extant lithodid genus, which gradually 

moved out of the shelter of kelp forests and into shallow gravel-bottom environments 
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(Zaklan 2002a).  In this scheme, the deep-sea species Neolithodes was the most 

primitive taxon of the Lithodinae, based on the division of its abdominal tergites into 

numerous weakly calcified nodules.  The divergence within the Lithodinae was the 

result of a split in the paraphyletic Paralithodes genus, with P. brevipes, Paralomis, 

Lopholithodes and Rhinolithodes descendents of one lineage and P. camtschatica 

descended from a common ancestor with the genus Lithodes.  The heavily calcified, 

highly specialised Cryptolithodes was considered to be the ‘pinnacle’ of the 

evolutionary line (Bouvier 1895, Makarov 1938). This view was formulated prior to the 

development of a cladistic approach to systematics (after Hennig 1966) and 

developmental studies (McLaughlin et al 2004) lead us to question these assumptions.   

Representitives of all lithodid genera can currently be found in the North Pacific, 

whereas only a subset of these is found in the Atlantic and Indian Oceans.  The 

Hapalogastrinae, regarded as morphologically primitive, are found only in the North 

Pacific, with 89% of species found in the eastern part of this region and only 45% in the 

western (Zaklan 2002a).  Makarov (1938) hypothesised the spread of the ancestral 

Hapalogastrinae along the Aleutian ridge into the North West Pacific, and along 

coastlines towards Japan and Baja California at the southern extremities of their range 

(Zaklan 2002b).  The Hapalogastrinae have still never been found outside the North 

Pacific in fossil or modern manifestations (Appendix E).  From this evidence, the north 

eastern Pacific coastline of North America is considered to be the evolutionary 

environment for the incipient Lithodidae and their global, deep-sea distribution is the 

result of a later ecological adaptation (Bouvier 1896, Makarov 1938, Zaklan 2002a). 

  

O.2.4 Geological and molecular clock 

Using a calibrated molecular clock, Cunningham et al (1992) estimated that the 

Lithodidae are millions of years younger (13–25Ma BP) than the Paguridae, which are 

known from fossils in the Cretaceous (113 Ma BP).  The approach of that study has 

been challenged as simplistic (Bromham & Penny 2003, Drummond et al 2006, 

McLaughlin et al 2007); however, no updated estimates have been offered.  By more 

recent methods, the age of the anomuran divergence has been calculated at more than 

325 Ma BP (Porter et al 2005). The fossil record of decapods is rich from the 

Cretaceous onwards (Schram 1986), and the anomuran family Aeglidae are known 

from this period (Feldmann 1984).  Deep-water decapods are underrepresented in the 

fossil record (Feldmann 2003); decomposition of the arthrodial membrane followed by 

disarticulation can disperse body segments and make samples unidentifiable (Plotnick 

1986).  The only lithodid fossil record is Paralomis debodeorum Feldmann (1998) from 

the mid–late Miocene in New Zealand. 
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O.3 Aspects of change in the marine environment throughout the Cenozoic 

O.3.1 The modern marine environment  

Physical and chemical properties of an environment have an effect on the distribution 

and adaptations of lineages over time.  Seventy-one percent of the earth’s surface is 

marine and approximately 65 % is deep sea (Sverdrup et al 1942, Briggs 1991), yet the 

challenges facing animals in the deep sea are not fully understood.  The average depth 

of the ocean is approximately 4 km and the deepest trenches extend to up to 10 km 

below the surface.  The modern continental shelf is typically 100–200 m deep, although 

that of the Antarctic continent is depressed by the weight of the ice-cap and scoured by 

ice to depths around 500 m.  The deep sea conventionally begins at the shelf-break (c. 

200 m), where the sea-floor gradient increases and the continental slope descends to the 

continental rise (3000–4000 m) and abyssal plain (>4000 m, Gage & Tyler 1991).  

Tectonic systems govern the geography of the oceans over time, and the relatively 

homogenous topology of the abyssal ocean floor is punctuated with ridges, trenches, 

volcanoes, and hydrothermal vents (Anikouchine & Sternberg 1973).    

Modern average surface temperatures  (3–100 m deep) at high northern latitudes (60 

°N) are 2–4 °C, with more than a 20 °C gradient in surface temperature to the equatorial 

Atlantic (26–27 °C) and Pacific (28–29 °C) (Nikolaev et al 1998).  Water temperature 

below the surface mixed layer declines rapidly to current global deep-water 

temperatures between 1 and 4 °C (Thistle 2003).  Surface temperature fluctuations can 

be large, especially in temperate regions, which are seasonally variable.  Local polar 

surface temperatures are relatively constant on an annual cycle, with minimum 

temperatures in some places reaching approximately -1.8 °C (Lamb 1977).   

In addition to temperature, the deep sea poses challenges to life, such as darkness, low 

energy availability and high barometric pressures.  Light intensity declines 

exponentially with depth, such that no measurable light penetrates to 1000 m below the 

surface (aphotic zone, Gage & Tyler 1991).  With the exception of chemoautotrophic 

primary production at vent and seep localities (Van Dover 2000), the deep sea is 

dependent on energy flux from the euphotic zone (0–100 m) in the form of particulate 

organic carbon (POC) (Anikouchine & Sternberg 1973).  Depending on the 

composition of the plankton, POC decreases from the continental shelf to the abyssal 

plain because of trophic activity in the water column and clines in primary production 

at the surface (Gage & Tyler 1991).  Pressure increases linearly with depth: 

approximately 1 atmosphere per 10 m.  It is not uncommon for slope species to have a 

bathymetric range of 1000 m (Brey et al 1996), so they need the capacity to tolerate 

100-fold increases in pressure and its associated effects on physiology (Hochachka & 

Somero 1984, Mestre et al 2009). 



The Evolutionary History of the Lithodinae   Introduction & Context 

22 

With a few exceptions, the deep sea has a salinity of around 35 psu and is relatively 

insulated from major fluctuations caused by the input of fresh water.  Oxygen is not, in 

general, a limitation to life in the deep sea because the majority of deep water sinks 

from oxygen-saturated surface layers in high-latitude regions (Thistle 2003); however, 

seasonal oxygen minimum zones within stratified water columns may affect the 

distribution of the benthos at different depths (Wishner et al 1995).  Paradoxically, the 

deep sea is insulated from physical conditions at the surface and also heavily reliant on 

photosynthetic and gas exchange processes occurring in the upper 100 m of the water 

column.   

 

O.3.2 Oceanic circulation (modern) 

Oceanic circulation occurs on a global scale and links the world’s large oceans, 

allowing limited mixing of physical and biological components in the water.  

Latitudinal differences in air temperatures produce stable planetary wind systems 

which, in conjunction with planetary motion (Coriolis forces), drive oceanic surface 

circulation as subtropical and sub-polar gyres (Tomczak & Godfrey 1994).  The 

topology of southern sub-polar ocean basins is such that strong eastward winds at 40–

60 °S drive a continuous circumpolar current (The ACC, Section O.3.2.1); in the 

Southern Ocean, gyres only form in bays such as the Weddell and Ross Seas (Deacon 

1937).   

Vertical and meridional transport of water in the deep seas is additionally the product of 

latitudinal gradients in water density (temperature and/or salinity).  Cold (0– -0.8 °C), 

saline Antarctic bottom water (AABW) is formed by the submergence of extremely 

dense surface waters under sea-ice in the Ross Sea and Weddell Sea (Jacobs et al 1970, 

Deacon 1984).  This is the densest body of water in the ocean systems and it flows 

northwards, spreading along the sea floor into the Northern Hemisphere.  North 

Atlantic deep water (NADW) is formed around Greenland in the Norwegian Sea and 

spreads southwards through the Atlantic to form part of the circumpolar deep water at 

high southern latitudes (Tomczak & Godfrey 1994). Thus, currents in the Atlantic are 

an important part of global thermohaline circulation.  No equivalent North Pacific deep 

water is created because of the combined effect of a shallow Pacific-Arctic connection 

at the Bering Sea and low sea-surface salinity (Thomas 2004). 

 

O.3.2.1 The ACC past and present  

The modern position of the continents means that Drake Passage, between the Antarctic 

Peninsula and Cape Horn, forms the only deep-water link between the Pacific and 

Atlantic Oceans.  The Antarctic circumpolar current (ACC) therefore has a significant 
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effect on global circulation and inter-ocean transfer.  It is bounded to the north by the 

subtropical front at 35–45 °S, where cold sub-Antarctic waters meet warm, saline 

subtropical waters (Orsi et al 1995, Rintoul et al 2001).  To the south, the ACC ends at 

the Antarctic Divergence (c. 60 °S), where it is marked by the upwelling of deeper 

waters.  Within this range, there are three zones (Subantarctic, Polar, and Southern 

Antarctic), divided by two fronts (subAntarctic 42–48 °S and Polar c. 50 °S) – each 

marked by substantial temperature changes and accompanied by increased primary 

production (Smetacek et al 1997).  Although it is driven by strong westerly winds, the 

ACC is not only a surface feature and there is evidence of eastward flow down to at 

least 2500 m (Barker & Thomas 2004).  The path of the ACC is determined both by the 

fronts and by the topology of the basins through which it travels (Patterson & 

Whitworth 1990, Wei & Wise 1992).  Where they are not constrained by bottom 

topography, the latitudinal position of each front meanders (Moore et al 1999), and 

there is substantial latitudinal variation in the position of the fronts at different 

longitudes.  

Biologically, it is not uncommon for Antarctic plankton to be transferred into 

subantarctic waters (Antezana 1999), and recent evidence suggests that sub-Antarctic 

incursions into Antarctic surface waters may also occur at eddies within the ACC 

(Nowlin & Klink 1986, Gouretski & Danilov 1994, Thatje & Fuentes 2003).  The role 

of the deep-water isolation of Antarctica (28–32.5 Ma BP) and formation of the ACC 

(at least 25 Ma BP) in curtailing meridional heat exchange is debated (Toggweiler & 

Samuels 1995, Toggweiler & Bjornsson 1999, Huber & Sloan 2001).   

 

O.3.3 Marine Conditions and events through the Cenozoic 

(*dates for boundaries taken from the international commission for stratigraphy 2009 

http://www.stratigraphy.org/upload/ISChart2009.pdf). 

Based on molecular and fossil evidence (Cunningham et al 1992, Feldmann 1998), the 

history of the Lithodidae is confined mainly within the Cenozoic era: 0 – 65.5 million 

years (Ma) before present (BP).  Prior to the Cenozoic, the Cretaceous (145.5–65.5 Ma 

BP) environment was generally warmer than present, with high sea levels and a small 

latitudinal gradient in temperature (Nikolaev et al 1998, Zachos et al 2001).  During the 

Cretaceous, tropical sea-surface temperatures may have averaged around 37 °C (Forster 

et al 2007) and deep-water temperatures were up to 20 °C higher than their present 

levels (Schnitker 1980, Nikolaev et al 1998).  The Tethys Sea, which connected the 

oceans at tropical latitudes, was a source of the highly saline (dense) warm water that 

formed a component of northern deep water (2000–4000 m) in the Atlantic and Indian 

Oceans (Wright et al 1992, Ramsey et al 1998).   
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The transition from the Mesozoic to the Cenozoic was followed by a gradual global 

cooling trend, thought to have occurred in four main stages over the last 50 Ma (Lear et 

al 2000).  Over the Cenozoic, the deep sea cooled by more than 12 °C relative to the 

surface temperature (Lear et al 2000); the overall global average temperature dropped; 

and a latitudinal gradient of 20–22 °C in sea surface temperature developed (Nikolaev 

et al 1998), including the formation of permanent ice at both poles by 2.4 Ma BP 

(Crame 1999).  The initiation and progression of global cooling, bathymetric- and 

latitudinal differentiation are thought to be the cumulative result of a decrease in 

atmospheric CO2  (Barker & Thomas 2004) and fundamental rearrangements of ocean 

basin topology (Von der Heydt & Dijkstra 2006) such as:    

• Antarctic isolation: Antarctica has lain over the South Pole for around 

120 Ma (DiVenere et al 1994), although in the early Cretaceous (124–

97 Ma BP) high latitude marine fauna had a temperate affinity (Olivero 

& Martinioni 1996).  By the end of the Cretaceous, the large southern 

landmass had fragmented and deep-water pathways between Antarctica 

and Australia had opened (Crame 1999).  Substantial cooling and 

expansion of the east-Antarctic ice cap began around 37 Ma BP, at 

which time there was already a shallow connection through Drake 

Passage – the last remaining continental link between Antarctica and 

the other Southern landmasses (Lawver et al 1992, Crame 1999).   

• Restriction of deep-water oceanic interchange at tropical latitudes: 

In the northern Atlantic 14 Ma BP, cold, dense water formed in the 

Norwegian Sea was ‘trapped’ behind a high Greenland–Scotland ridge 

(Woodruff & Savin 1989, Ramsey et al 1998).  At 14–13 Ma BP, it is 

thought that tectonic changes in the North Atlantic allowed cold, dense 

water to flow out of the Norwegian Sea and into the Atlantic where it 

replaced warmer water (from the closing Tethys Sea) in the deep sea 

(Woodruff & Savin 1989).   

• Restriction of Panama seaway: A deep-water (3000 m) connection 

between the Atlantic and Pacific Oceans through the Panamanian 

seaway existed until the early Miocene (25–15 Ma BP).  This seaway is 

thought to have allowed deep North Atlantic water to flow into the 

Pacific and warm, tropical Atlantic water to enter the Pacific at shallow 

depths (Lunt et al 2008).  Between c. 13–2.6 Ma BP, the tropical 

connection between the Atlantic and Pacific gradually closed with the 

uplift of the Panama land-bridge (Haug & Tiedemann 1998), and this 
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may have strengthened the Atlantic thermohaline circulation (Lunt et al 

2008).  

 

Significance of these events for the global climate cooling are debated; however, the 

importance of the North Atlantic and the Antarctic to modern deep-water circulation 

indicates that these events of the Eocene and Miocene had a great influence on the 

development of modern ocean temperatures and global circulation (Shackleton & 

Kennett 1974).       

   

O.3.3.1 Recent glacial/ interglacial cycles 

During the Quaternary period (the part of the Cenezoic in the last 2.58 Ma) the earth 

has been in an ice age.  This is characterised by cyclical bipolar glacial advance and 

retreat, in cycles lasting between 40 and 100 thousand years (ka).  Glacial periods are 

associated with low sea levels and there has been a 100 m rise in sea levels since the 

last glacial maximum in the northern hemisphere (Rex 1981, http://www.ngdc.noaa.gov 

/paleo/ctl/clisci100k.html#sea).  The last glacial maximum in the Southern Hemisphere 

(19–23 ka BP) led to Western Patagonia being covered by a glacier stretching from 38–

55 °S, including the narrow continental shelf to the west and south (da Silva et al 1997, 

Hulton et al 2002).  Deglaciation began c. 17.5 ka BP and the first marine incursions 

into the Magellan Strait are thought to have occurred periodically for the last 5 ka 

(McCulloch et al 2000).  These events were mirrored by similar glacial cycles in the 

northern hemisphere. During the most recent North American glaciation (26–13.3 ka 

BP, Wisconsin stage) ice sheets extended to about 45 °N in both the east and the west  

coast of the continent (Thackray 2001).  

 

O.4 Physiological effects of temperature 

The change in the temperature profile of the marine environment throughout the 

Cenozoic was gradual, but substantial.  It is likely to have had an impact on the 

physiology and ecology of marine organisms and to have affected their distribtuion. 

Reaction rates, including biological enzymatic processes, increase exponentially with 

increasing temperatures (Atkins & De Paula 2006).  At low temperatures metabolic rate 

(energy consumption and activity in tissues) is lower than at high temperatures (Cossins 

& Bowler 1987).   

Complex animals, with low surface area/volume ratios and specialised tissues, rely on 

ventilation and circulatory systems to supply their cells with oxygen.  Despite a lower 

metabolic requirement at low temperatures, the activity of tissues involved in critical 

ventilatory functions (heart, nervous conductivity) decreases such that, at some stage, 
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oxygen supply does not match demand and aerobic metabolism can not occur (Pörtner 

2002).  The effect of low reaction rates on physiology can be exacerbated by 

temperature related decreases in membrane fluidity and by the effect of [Mg
2+

]
 
on the 

nervous system (Frederich et al 2000).  The magnesium ion (Mg
2+

) is highly soluble in 

water and is also increasingly soluble with decreasing temperature.  It competes with 

the Ca
2+ 

ion, which normally regulates the release of neurotransmitter substances at 

synapses, and at high concentrations Mg
2+

 is an effective narcotising agent (Robertson 

1953). 

At the other end of the scale, increased environmental temperature induces a higher 

metabolic requirement, which at some stage exceeds ventilatory and enzymatic capacity 

(Pörtner 2002).  Higher metabolic activity also increases the production of highly 

reactive oxygen radicals which can interfere with cellular processes (Cooke et al 2003).  

Temperatures above certain critical levels will denature proteins (threshold dependent 

on the structure of the protein), which can be an irreversible process leading to cell 

death (Daniel et al 2010). 

    

O.4.1 Physiological temperature thresholds 

Ectothermic animals, by definition, have no internal control over core body 

temperature.  Ectotherms are tolerant of certain environmental temperature ranges, 

thought to be narrower in cold-adapted than tropical animals (Peck & Conway 2000).  

Adaptation to high or low temperatures can involve trade-offs in the ability of an 

organism to survive at the opposite extreme (Fields 2001).  Both high and low 

thresholds are related to the physiological ability of the organism to avoid the transition 

from aerobic to anaerobic metabolism (Pörtner 2002).  Between threshold temperatures, 

supply of oxygen to the tissues matches metabolic demand; beyond these temperatures 

in both directions, the capacity for aerobic metabolism decreases.  Outside the optimal 

temperature range, basic metabolic processes can be maintained, but non-essential 

processes such as growth, reproduction and voluntary movement are reduced (Cossins 

& Bowler 1987, Young et al 2006).  Beyond certain critical temperatures all 

metabolism is anaerobic.  Anaerobic processes are not stable over time, as the product 

(lactate) requires subsequent oxidation before removal as CO2 and water (Schmidt-

Nielsen 1997), so survival under these conditions is time limited (Pörtner 2002).   

Thresholds are not the same for different species and can have adaptive significance.  

Physiologically, adaptation can include processes such as a change in mitochondrial 

density (Hazel 1995) and expression of proteins or cell membranes with different 

thermal properties (activation temperature, denaturation temperature, fluidity: Somero 

1992, Lin & Somero 1994).  In the Southern Ocean, anomuran and brachyuran 
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crustaceans are almost absent, whereas shrimps (Natantia) are relatively abundant 

(Thatje et al 2005).  This difference has been attributed to the greater ability of natant 

decapods to regulate [Mg
2+

] in their haemolymph below sea water concentrations 

(Frederich et al 2001).  As discussed above, Mg
2+ 

has a synergistic narcotising effect 

with decreasing temperature, and the ability to regulate the concentration of the ion 

might explain this disparity in distribution (Frederich et al 2000).            

 

O.4.2 Effects of temperature on developmental processes 

At low temperatures, feeding requirements decrease because of decreasing metabolic 

costs (Zhou et al 1998).  Growth and development are retarded, such that inter-moult 

interval doubles with a decrease in water temperature from 6 to 3 °C in Paralomis 

granulosa (Anger et al 2003, 2004).  Calcagno et al (2005) demonstrated that lower 

environmental temperatures slowed development to reproductive maturity in Paralomis 

granulosa.  

Developmental speed can be particularly important for early life stages, which are 

vulnerable to seasonal fluctuations in food abundance and size-related predation 

pressures (Thatje 2004).  Nakanishi (1985) and Kurata (1960) reported temperature-

determined increases in larval inter-moult periods, as well as longer embryonic 

development time (maternal brooding) in Paralithodes camtschatica.  Spawning 

duration is further protracted in P. camtschatica at temperatures of 3 °C (76 days) when 

compared to 6–9 °C (29 days), although this could be adaptive trait rather than a 

physiological effect (Shirley et al 1990). 

Significantly reduced survival to first moult is reported when lithodid larvae are 

exposed to temperatures above 13°C (Nakanishi 1981, 1985, Vinuesa et al, 1985) or 

15°C (Kurata 1960, Shirley & Shirley 1989, Calcagno et al 2005). 100% larval 

mortality occurs at -1.8°C in Paralithodes camtschatica (Nakanishi 1981) and the 

minimal temperature at which larval development is possible is around 0–2 °C (Shirley 

& Shirley 1989, Thatje 2004).  Experimentally determined optimal temperatures for 

larval development are between 5–10 °C, in all examined lithodids, provided salinity is 

above 20 psu (Anger et al 2003, Jørgensen et al 2005).     

 

O.5 Lithodid life cycles 

O.5.1 Life-history adaptations to temperature 

Extreme seasonality of primary production is one of the major challenges of life in the 

polar environment (Holm-Hansen 1985); this is coupled with a slow-down of 

developmental rates in cold water in comparison to tropical organisms (Bosch et al 

1987, Pearse et al 1991).  The adoption of a lecithotrophic larval mode of development 
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allows independence from seasonal primary production and enables tolerance of the 

protracted development times associated with cold waters in polar and deep-sea 

environments (Shirley & Zhou 1997, Thatje 2004).  Latitudinal clines in fecundity 

(Wägele 1987, Gorny 1992) are indications of the increased cost of reproduction at high 

latitudes and the transition to a reproductive strategy with increased energy investment 

per offspring (Atkinson et al 2001, Thatje 2004).  Lithodids are predominantly cold-

water animals (although this is particularly the case for the deep-water Lithodinae, Hall 

& Thatje 2009a) and aspects of their life history are congruent with an adaptation to 

cold-water conditions.     

 

O.5.2 Adult life 

In all arthropods, including the Lithodidae, size doesn’t increase continuously as a 

function of age. Growth occurs only in relation to the moult cycles and each 

incremental increase is dependent on temperature, nutritional and reproductive 

condition, as well as pre-moult size.  The increments of growth (in males) generally 

increase up to reproductive maturity and then begin to decrease as proportionally more 

energy is partitioned into reproduction (McCaughran & Powell 1977).  Intermoult 

periods are of variable length, ranging from annual synchronous moults in P. 

camtschatica (Stevens 2006) to 1120 day asynchronous cycles in mature P. 

spinosissima (Reid et al 2007).  In most cases, moults are closely connected to egg 

extrusion and fertilisation events (Hoggarth 1993, Stevens 2006).  Size at maturity 

varies between species, sexes and in relation to environmental temperature (Hoggarth 

1993) (and, of course, final adult size); males are usually slightly larger than females at 

maturity (Zaklan 2002b).   

 

O.5.3 Early life history 

-Eggs 

In lithodids, eggs are carried on the female abdominal pleopods on the left-hand side of 

abdominal segments 2–5, and also on both sides of the 1
st
 abdominal segment in some 

groups (Makarov 1938).  Eggs are extruded onto the pleopods and are incubated 

between the abdomen and the sternum for between 1–2 years, depending on the species; 

the environmental conditions (e.g Nakashini 1985, Paul & Paul 2001, Stevens 2006); 

and the synchronicity of spawning (Reid et al 2007). 

Egg size is broadly related to the volume of yolk sequestered into each egg by the 

mother.  Yolk has both protein and lipid components, which are used selectively 

through embryonic development and, in some cases, are the exclusive energy source for 

development until metamorphosis to the first crab stage (Anger 1996, Shirley & Zhou 
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1997, McLaughlin et al 2001, Paul & Paul 2001, Kattner 2003).  Near South Georgia in 

the sub-Antarctic, there is an increase in egg size with depth from Paralomis 

spinosissima to Paralomis formosa (Morley et al 2006).  Egg diameter of Paralithodes 

camtschatica and P. platypus range from 0.8–1.2 mm, whereas those of Lithodes 

aequispina and L. couesi (from the same localities) are more than 2.2 mm in diameter 

(Zaklan 2002b, see red dots Fig B2.9), indicating the different reproductive strategies 

(zoeal planktotrophy or lecithotrophy) within the Lithodidae. 

          

-Hatching 

In all lithodids, hatching is protracted in comparison to decapod groups from similar 

environments.  In each female, larval release at 6–8 °C takes between 17 (Placetron, 

Crain & McLaughlin 2000) and more than 61 days (Paralomis granulosa, Thatje et al 

2003).  Many other decapods have highly synchronous hatching events lasting only 

minutes or hours, which are often triggered by extrinsic factors (Forward 1987, Ziegler 

& Forward 2005; Lovrich & Thatje 2006).  Paralithodes camtschatica takes 28.8 ± 4 

days (Shirley et al 1990) to complete larval release – a process that is initiated by 

temperature cues (4 °C, Stevens 2006).  This protracted release occurs despite the fact 

that its planktotrophic larvae are highly dependent on specific seasonal plankton blooms 

(Paul et al 1989, Shirley et al 1990, Starr et al 1994).  Protracted larval release – 

investing fewer larvae per day – is thought to be a bet-hedging behaviour, which can 

increase overall fitness in an unpredictable environment.  This may be particularly 

crucial in species that invest long periods of time into brooding (up to two years in 

some known cases, Lovrich & Vinuesa 1999, Reid et al 2007) and have a low fecundity 

because of the cost of increased maternal energy investment into single offspring 

(Thatje 2004, Morley et al 2006).  Deep-water lithodids with lecithotrophic larvae (e.g. 

Paralomis spinosissima, Reid et al 2007) are particularly disconnected from seasonal 

temperature variations at the surface (Sloan 1985).  Females of studied Lithodes and 

Paralomis release larvae asynchronously (Reid et al 2007); in L. aequispinus, for 

example, adults of all reproductive stages are found throughout the year below 200 m 

(Shirley & Zhou 1997, Paul & Paul 2001). 

  

-Larval stages 

Variation in number and duration of larval stages occur within the Lithodidae, and there 

is a pattern of abbreviation of larval development in the Lithodinae (Thatje 2004).  All 

Hapalogastrinae have at least four zoeal stages prior to the megalopa (Crain & 

McLaughlin 2000); four or five stages have been observed in lithodine species 

Lopholithodes mandtii (Crain & McLaughlin 2000) and Paralithodes camtschatica 
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(Kurata 1960, Nakanishi 1985).  Three zoeal stages are found in Lithodes maja (Anger 

1996), L. santolla (Campodicono & Guzman 1971) and L. aequispina (Crain & 

McLaughlin 2000); and a further reduction to two stages is observed in Paralomis 

granulosa (Anger et al 2003), P. spinosissima (Watts et al 2006) and Paralomis spp. 

(Konishi & Taishaku 1994). This may be a concession to the greatly protracted 

development times and associated risks of moulting in colder waters (Thatje 2004).  

 

Zoeal planktotrophy is found in most North Pacific Lithodinae and Hapalogastrinae. 

Species Paralithodes camtschatica (Paul et al 1989, Epelbaum & Borisov 2006), 

Placetron wossnessenskii (Crain 1999), Lopholithodes foraminatus (Duguid & Page 

2009), L. mandtii (Jensen 1995), Acantholithodes hispidus (Hong et al 2005), 

Cryptolithodes expansus (Kim & Hong 2000), Paralithodes brevipes and P. platypus 

are all known to have food-dependent zoeal stages.   

Lecithotrophic development occurs in all studied Lithodes and Paralomis and is 

speculated for Neolithodes (Anger 1996, Shirley & Zhou 1997, Watts et al 2006, 

Morley et al 2006, Thatje & Mestre 2010).  An obligatory non-feeding larval mode is 

accompanied by physiological evidence in lithodids, such as the reduced development 

of mouthparts (Campodicono & Guzman 1981, McLaughlin et al 2001, Watts et al 

2006) or a lack of digestive enzymes (Saborowski et al 2006).  There is a variation in 

lecithotrophic adaptation within the non-feeding lithodid larvae (Anger 1996, Kattner et 

al 2003), with mouthparts slightly better developed in Paralomis spinosissima and P. 

granulosa compared to L. santolla (Watts et al 2006), as well as a variation in yolk 

composition and energy content (Kattner et al 2003, Thatje & Mestre 2010).  

    

Larval behaviour, as observed in laboratory experiments, is dependent on feeding 

mode.  Planktotrophic larvae of Paralithodes camtschatica (Paul & Paul 1980), 

Paralithodes platypus (Paul et al 1989), and Lopholithodes foraminatus (Duguid & 

Page 2009) are phototactic.  They display diurnal migration (or reverse diurnal 

migration), moving through the water column in what is thought to be a food-searching 

behaviour (Paul et al 1989).  Non-feeding zoeae, including Lithodes aequispina (Jewett 

et al 1988, Shirley & Zhou 1997), Lithodes maja and Lithodes santolla, Paralomis 

granulosa (Vinuesa et al 1985, 1999) are not active swimmers and are thought to have 

an epibenthic, demersally drifting habit (Lovrich 1999, Thatje 2004).    

 

-Megalopa and settlement 

The megalopa is the final swimming pre-crab stage, preceding metamorphosis and 

settlement as a juvenile benthic instar.  There is evidence that all Lithodidae have 
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lecithotrophic megalopal stages, regardless of the feeding mode of the preceding zoeal 

stages (Miller & Coffin 1961, Anger 1989, Abrunhosa & Kittaka 1997, Duguid & Page 

2009).  This secondary lecithotrophy might enable a prolonged period in the water 

column to search for suitable settlement habitats and has been suggested to be an 

evolutionary relic from pagurid ancestors (Anger 1989, Duguid & Page 2009).  

Megalopal stages are selective of settlement habitat and (at least in Paralithodes 

camtschatica) are able to temporarily delay settlement over mud and silt in favour of 

finding a complex environment (Stevens 2003).   

    

-Early crab stages 

After metamorphosis, early stage (juvenile) lithodid crabs seek protected environments 

(such as kelp holdfasts in shallow-water species) and display solitary behaviour (Loher 

& Armstrong 2000).  Habit and habitat of juveniles is often substantially different to 

that of adults, and there is evidence of ontogenetic bathymetric migrations in several 

species in response to differential requirements of life-stages for temperature, oxygen 

and food (Abelló & Macpherson 1991, Hoggarth 1993, Loher & Armstrong 2000, 

Pereladov & Miljutin 2002).  As the crabs progress towards reproductive maturity, they 

begin to exhibit ‘podding’ behaviour, in which large single sex groups of crabs perform 

annual migrations; males and females only usually mixing during reproductive seasons 

(Abelló & Macpherson 1991, Stevens 2003).        

 

In summary, a range of reproductive strategies are present in the Lithodidae, most 

notably a division between species with planktotrophic and lecithotrophic larval 

development stages. Features common to the lithodids may affect their population 

dynamics and distribution: 

• all lithodids release larvae over protracted periods of weeks or months as a 

way to promote survival in unpredictable environments. 

• lithodids have a pattern of progressively abbreviated larval development from 

the Hapalogastrinae (4 zoeal stages) to a minimum of 2 zoeal stages in the 

Lithodinae. 

• larvae of deep-sea species are demersal and this may affect dispersal 

potential. 

• fertilisation events are often seasonally synchronised and involve mass 

migrations of adults to suitable mating grounds.  
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• behaviour of both adult and larval stages is influenced by reproductive mode 

and environmental temperature, particularly the direction and scale of 

bathymetric ontogenetic migration. 

 

O.6 Species and speciation in the deep ocean 

O.6.1 Species 

The idea of species has existed since the earliest recorded studies of biology.  Pre-

Darwinian systems of classification, from Aristotle to Linnaeus, view species as distinct 

and immutable entities in which all variety is deviant from the example form (Sokal & 

Crovello 1970, de Queiroz 2007). Darwin’s (1859) view that that species are constructs 

of convenience, drawn on a ‘seamless continuum’ of extant and extinct varieties, is one 

which still incites debate (Mayr 1957, Ereshefsky 2009).  The question is whether there 

is a meaningful difference between taxonomic levels such as genus, species and variety 

(Darwin 1859, Mallet 1995, Goldstein & DeSalle 2005), and whether we can identify 

(or at least define) what that difference is.  Although the philosophy of the existence 

and significance of species continues to be discussed, species are recognised as 

‘common sense’ discontinuities in nature (Huxley 1942, Mayr 1963, Sokal & Crovello 

1970). 

At least seven accepted definitions of species exist in modern biology (Mallet 1995); 

some attempting to produce an all-encompassing concept (Monism, Templeton 1989), 

whereas some accept that there are many biological processes that can produce 

functional evolutionary units – species – and which allow the context to dictate the 

species definition (Ereshefsky 1998).  In the majority of cases, these concepts define the 

same sets of organisms, albeit with different theoretical boundaries (Goldstein & 

DeSalle 2005). Given that the focus of this study is on sexually reproductive, benthic 

Metazoa, I will discuss only a selection of relevant concepts. 

 

-Biological Species Concept (BSC) 

Dobzhansky’s (1936) and Mayr’s (1963) species concept is widely employed in the 

study of sexually reproductive (and dioecious) animals.  Species are groups of actually 

or potentially interbreeding populations which are reproductively isolated from other 

such groups (Mayr 1963).  Reproductive isolation is an incompatibility of mating 

system, habitat preference, or post-zygotic isolation such as chromosome 

incompatibility.  The genetic basis for the vast majority of reproductive isolation is 

unknown, the best examples being egg–sperm interaction in sea urchins (e.g. Metz & 

Palumbi 1996).  A modification on the reproductive isolation concept is one of 
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recognition, where species are groups of organisms which recognise one another as 

mates, regardless of whether a genetic hybridisation would be theoretically viable 

(Paterson 1985).  Species identification (by taxonomists) in natural populations relies 

on the fact that populations reproductively isolated from one another will display 

concordant differences in a suite of additional characters because of genetic drift or 

selection (Avise & Ball 1990, Knowlton 2000). 

 

-Ecological Species Concept (ESC) 

Species are sets of organisms adapted to a particular niche.  According to this concept, 

individuals of intermediate adaptation are less fit than either of the parent populations 

and are selected against.  Reproductive isolation is not necessary in this concept, 

because even where ranges overlap and hybridisation is prevalent, fusion of the two 

populations will not occur.  As ecological niches can be ephemeral, the species are not 

necessarily stable over time (Simpson 1961, Grether 2005). 

 

-Phylogenetic Species Concept (PSC) 

The PSC is defined as separating two groups that have any fixed difference between 

them; as such it is a practical rather than a mechanistic concept (Carcraft 1989, Avise & 

Ball 1990, Turelli et al 2001).  Genetic studies, among other things, have shown that a 

difference can be found between any pair of individuals if the appropriate part of the 

genome is examined.  It is now considered that the PSC is more appropriate when a 

suite of characters is used to distinguish species (Knowlton 2000).  Species are the 

minimal units to which the term ‘monophyletic’ can be applied:  they begin at the 

boundary between a reticulating network and a divergent genealogy (Hennig 1966, 

Medwar & Medwar 1983, Carcraft 1983, 1989, de Queiroz & Donoghue 1988, Kluge 

1990). 

 

O.6.2 Speciation in the Sea 

How we define ‘species’ dictates what we mean by speciation; however, speciation in 

its broadest sense produces the discrete units of diversity observed in the natural world.  

Three theoretical scenarios of speciation are prevalent in the literature (allopatry, 

sympatry and parapatry) and most (although not all, Mayr 1963) sources would agree 

that more than one mechanism can be found in nature (Slatkin 1987, Turelli et al 2001). 

 

-Allopatric speciation 

Allopatric speciation occurs when a population is physically separated for enough time 

to allow reproductively isolating mechanisms and/or other significant morphological 
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traits to arise.  This phenomenon is thought to occur particularly where a small sample 

of genes from the parental population is present in each ‘daughter’ population (Mayr 

1954).  Allopatric speciation requires that hybrids are less viable than the parent 

populations (or that they don’t form at all) so that new ‘species’ will not merge on 

reintroduction (Dobzhansky 1936, Mayr & Ashlock 1991, Turelli et al 2001). 

 

-Parapatric speciation 

Parapatric speciation occurs within a contiguous population where there is no physical 

isolation, and gene flow can be assumed to occur throughout the process.  The marine 

environment is conducive to large-scale movements of gametes, individuals and 

populations (Gage & Tyler 1991).  Species typically have large population sizes, 

distributed (perhaps sparsely) over large ranges.  Over large distances, it is possible that 

gene flow is too rare to bind species together as a cohesive unit over their whole range, 

allowing local adaptation and genetic drift in the semi-isolated populations (Erlich & 

Raven 1969).  Gene flow can act to homogenise species, but this will only happen if the 

selective advantage of local adaptation is low compared to the level of mixing (Slatkin 

1987, Barton 1989).  If hybrid fitness for two locally adapted populations is lower than 

parental fitness, then a preference for inbreeding could be selected (Harrison 1990, 

Ridley 2004, Nosil & Crespi 2006).   

Sympatric speciation, in which two species are formed without any geographical 

separation, is the most controversial theory.  Sympatry can describe the natural 

distribution of sister species; however, in many cases the observed overlapping 

distribution is secondary to their speciation (Baraclough & Vogler 2000).  Sympatric 

species often exhibit ecological differences, such as zonation by depth in the deep sea 

(France & Kocher 1996).   

 

-Environmental stability and homogeneity in the deep sea 

Most speciation theories rely to some extent on differential adaptation to ecological 

niches, which occurs in the presence of a heterogeneous or disrupted environment.  The 

benthic deep-sea biome is one of marked heterogeneity and long-term stability, albeit 

sparsely punctuated by tectonic activity.  Currents in the deep ocean are typically a few 

cm/sec, and are not strong enough to disturb the sea bed substantially (Gage & Tyler 

1991).  In some locations on the abyssal plain, however, the currents are strong enough 

to cause habitat disturbance to soft-bottom communities (Hollister et al 1984).   

Marine environments differ in several ways from those applicable to paradigms of 

speciation on land.  Terrestrial animals don’t reproduce or disperse by broadcasting 

gametes or larvae into the environment; in this way, marine animals have more in 
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common with plants – for which hybridisation and dispersal distances are enigmatic 

(Gardner 1997).  Species ranges in the open ocean are typically broad, with dispersal of 

larvae and mobile adults being aided by large-scale ocean currents (Miya & Nishida 

1997).  The deep sea is thought to be characterised by a high degree of genetic 

similarity within species over large distances (Gardner 1997).  Perhaps contrary to this 

is the evidence of numerous ‘cryptic’ marine species, in which there is substantial 

genetic divergence, but little morphological differentiation (Miya & Nishida 1997, Etter 

1999, Raupach & Wägele 2006).  In addition, the observations of morphological 

diversity and high number of rare species encountered in deep-sea samples (Rex 1981, 

Grassle & Maciolek 1992) indicates that speciation does occur in the absence of any 

discernable barriers to gene flow (Wilson & Hessler 1987, Miya & Nishida 1997). 

   

 

M:  METHODOLOGY AND TERMINOLOGY 

 

M.1 Measurements and data collection 

All linear measurements were taken using digital callipers, capable of obtaining internal 

and external measurements in millimetres to an accuracy of 3 decimal places.  Carapace 

length (CL) is used as a linear indicator of size.  It is taken from the baseline of the orbit 

to the posterior edge of the carapace (Fig BM.1).  It does not include any crests or 

spines protruding from the carapace (Macpherson 1988a). 

In all cases, photographs were taken using the ‘macro’ setting of a Sony digital 8.1 

megapixel camera with 4x optical zoom.  Often, microscopic images were taken (using 

various light microscopes) by using the macro setting and focussing the camera down 

the lens of the microscope.  Computer programs <Sigmaplot 11> and <Microsoft 

Excel> were used for statistical analyses.  Distributional data was collected from all 

samples encountered in this study.  Each data point was recorded as a location marker 

in <Google Earth>, along with depth, collection and taxonomic data where available.  

This distributional file is attached as Appendix E (DVD). 

 

M.2 Phylogenetic nomenclature 

Phylogenetic systematics (Hennig 1966) is a method of taxonomic classification based 

on evolutionary relationships; it aims to identify nested monophyletic groups based on 

shared, derived characteristics to produce a hierarchical tree (in its mathematical sense).  

Phylogenetic terms used throughout this manuscript are defined below (de Queiroz & 

Gauthier 1994): 
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Terminal taxa:  In this case, extant groups which form the set of taxa analysed (the in-

group). 

Characters:  Genetic features (or morphological features with a genetic basis) that are 

inherited and undergo selection as independent units.  Character states 

are different forms of a character that have been lost, gained or changed 

over evolutionary history.  

Nodes:  Points of divergence between lineages.  Nodes represent the last common 

ancestor of the divergent lineages. 

Branches:  Ancestral history as represented by lines on a tree.  Branches represent a 

lineage connecting an ancestral node with a more recent node.  Branch 

lengths often represent the ‘distance’ between nodes based on the likely 

number of evolutionary steps.   

Clades:   

- branch based: a group containing all descendents of the last 

common ancestor of the specified terminal taxa that was not also an 

ancestor of a more distant taxon.    

- character based: a group containing all descendents of the terminal 

taxa since the appearance of the derived character that links those 

taxa.    

- node based: a group including the last common ancestor of specified 

terminal taxa and all of its extant and extinct descendents. 

This study deals only with extant terminal taxa, so these definitions are 

equivalent in practical terms, and will be referred to as clades.   

Basal:   Clade A is basal in relation to clade B if clade B is contained within clade A. 

Monophyletic:  A monophyletic taxon contains only lineages branching from a single 

node.  Members of a monophyletic taxon are more closely related to one 

another by descent than to any taxon outside the clade.   

Paraphyletic:  Paraphyletic taxa are those for which the last common ancestor is also 

the ancestor of groups not included in that taxon.  It has other clades 

nested within it. 

Polyphyletic:  Taxon including members of more than one monophyletic group (and 

is not monophyletic itself). 

Homology:  A character state which has a single evolutionary origin as opposed to 

being the product of evolutionary convergence between two lineages (a 

homoplasy) (Patterson 1988). 
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Synapomorphy: Shared, derived characters, which form the basis for cladistic 

methodologies.    

Symplesiomorphy: Characters present in the last common ancestor (LCA) of all taxa 

on the tree and which are shared between taxa because of this ancestry 

rather than being a derived condition. 

Sister taxa:  Two taxa connected by a node, from which there are no other 

descendents. 

Polytomy:  A node with more than two descendent lineages.  This can represent a 

multi-way divergence from a single ancestor, but more likely represents a 

node at which the hierarchical relationships between lineages can not be 

resolved.   

Out-group:  The extant taxon used to provide evidence of symplesiomorphies.  Any 

similarity between the out-group and the in-group taxa was present in the 

last common ancestor.  Any differences are either derived within in-

group lineages (synapomorphies), or are ancestral features which have 

since been lost in the out-group lineage.  To minimise the latter, extant 

out-groups are chosen to be close to the last common ancestor of the in-

group. 

 

M.3 Theory of computational phylogenetics: search and optimality 

Modern cladistic studies have incorporated many types of data, including restriction 

fragments (Vivek & Simon 1999), allozyme frequencies (Grant et al 1994), molecular 

sequence data and morphological characters (Zaklan 2002a).  The optimal criteria for 

inclusion of characters - homology, independence, and the ability to code characters 

consistently and accurately - are comparable, regardless of data-source.  The process of 

formulating hypotheses of evolution from observed shared, derived differences between 

character states has two components: a method of efficiently generating trees (search), 

and a criterion by which to identify the ‘best’ of those trees (optimality). 

 

M.3.1 Search   

Computational power and time are important considerations in the choice of search 

mechanism when taxon numbers and character numbers are large.  The most accurate 

search would generate and examine every possible topology, but the number of trees 

involved increases rapidly with sample size.  Heuristic search methods are used as an 

alternative for large datasets.  Random samples are taken from the set of possible tree 

topologies and then rearrangements of those trees are made until a ‘better’ tree is found.  

These are commonly referred to as ‘hill climbing’ algorithms, because the search will 
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iteratively generate better ‘related’ trees.  Hill climbing methods are prone to find local 

rather than global maxima, and they can be improved by searching multiple initial trees 

in parallel and using a branch swapping algorithm (sub-tree pruning and regrafting or 

tree bisection and reconnection (TBR)) to make occasional jumps between topological 

families (Page & Holmes 1998).   

 

M.3.2 Optimality 

Optimality criteria enable the user to score how good a tree is, and several types of 

optimisation are used in computational phylogenetics.  Distance criteria (e.g Minimum 

Evolution) assess trees based on their total ‘length’ in terms of evolutionary change: the 

best tree(s) have the shortest total branch length and assume the least possible evolution 

has occurred.  The most simplistic measure of evolutionary change for any ‘sequence’ 

of characters is an enumeration of differences between pairs of sequences (p-distance).  

The parsimony criterion also requires that the observed data have been produced by the 

smallest possible number of base changes, and this is done by deriving the character 

states of hypothesised ancestors at intermediate nodes (Eck & Dayhoff 1966, Kluge & 

Farris 1969, Fitch 1971). 

In molecular phylogenetics, ‘characters’ refer to homologous loci within genes and 

there can be one of four character states at each locus: Adenine (A), Cytosine (C), 

Guanine (G) and Thymine (T).  Several factors inherent to the nature of molecular 

evolution mean that p-distance underestimates true evolutionary distances in predictable 

ways (Kelchner & Thomas 2006) such as: 

• the possibility of multiple mutations at the same site (including the possibility 

of reversions, which are not unlikely in a system with 4 possible character 

states). 

• the difference in likelihood of transversions (A-C or T-G) and transitions (A-G 

or C-T), since purines (AG) are larger than pyrimidines (TC) and are 

mechanically less likely to be substituted for one another (Jukes 1987, Collins 

& Jukes 1994). 

• different selective costs of substitutions at different positions in the genome (for 

example, in a protein coding gene, substitutions at the 3
rd

 position in a codon 

are less likely to cause change in translated protein and so they mutate more 

rapidly than 1
st
 or 2

nd
 positions: Goldman & Yang 1994). 

• the potential for a difference in evolutionary rate between lineages (Tamura & 

Kumar 2002).  
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Most models of evolutionary change employed in computational molecular 

phylogenetics are simplified examples of the General Time Reversible model (GTR).  

This assumes a symmetrical substitution matrix (change from A to G is as likely as G to 

A) with parameters representing each of 6 possible changes between 4 character states; 

4 parameters representing the base frequencies at equilibrium; and one parameter 

representing the rate per unit time (Tavaré 1986). In addition, the models are often 

modified by incorporating the Gamma function, which allows the rate of substitution to 

vary over space (the space of the gene or genome), in addition to time (Page & Holmes 

1998).  

Likelihood or probability-based analyses (Maximum likelihood or Bayesian analysis) 

use assumptions about molecular evolution directly to model the chance of obtaining 

the observed sequence data for a given tree topology (Hasegawa & Yano 1984, 

Hasegawa et al 1991, Beaumont & Rannala 2004).   In these cases, the most probable or 

most likely tree(s) are selected to represent evolutionary events.  

In this study, molecular sequences were obtained from six genes and different aspects 

of morphology were also examined for separate phylogenetic analyses.  Comparison of 

different data sources can provide a minimal estimate for the amount of error present in 

the methods if and when analyses do not yield congruous results (Draper et al 2007, 

Pisani et al 2007).  Molecular and morphological data were not combined to produce a 

single (total evidence) tree (Mickevich 1978, Kluge 1989) because the results of the 

molecular phylogeny were implicit in rooting the smaller morphological trees; however, 

the congruence of the results is discussed.  Within molecular and morphological data 

types, where datasets are independent of one another, total-evidence trees were 

produced by combining the data prior to analysis (Kluge 1989) as well as examining the 

separate phylogenetic signal from each partition to determine overall congruence of the 

results.  

 

M.4 Choice of outgroups 

In computational phylogenetics, it is usually necessary to designate an out-group in 

order to determine the polarity of change.  If we knew the ‘true’ evolutionary history of 

the Lithodidae, the best possible out-group would have diverged from the lithodid 

lineage immediately before the last common ancestor of all lithodids.  As discussed 

elsewhere in this thesis, the position of the Lithodidae within the Anomura is 

controversial.  Cunningham et al (1992) showed that the genus Pagurus is paraphyletic 

with respect to the Lithodidae; themselves monophyletic.  Contrary to this result, more 

recent morphological revisions of the Anomura have entirely removed the Lithodidae 

from the Paguridoidea and created a separate super-family Lithodoidea (McLaughlin et 
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al 2007).  It is important in phylogenetic analysis that a taxon within the lithodid clade 

is not chosen to root the analysis, as this would provide misleading evidence about 

derived differences.   

Possible out-groups selected from within the Anomura include:  

• the Paguridae, such as Pagurus criticornis Dana 1852, P. brevidactylus 

Stimpson 1859, and P. leptonyx Forest & de Saint Laurent 1968 from Brazil, 

the Gulf of Mexico and Uruguay (Hebling & Rieger 1986); P. comptus White 

from the Beagle Channel, Patagonia (Lovrich & Thatje 2006); P. longicarpus 

Say 1817 from the Western Atlantic.   

• the Aeglidae, a family of fresh-water anomurans from South America 

containing the genus Aegla (Perez-Losada et al 2004).  These were formerly 

classified within the anomuran taxon Galatheoidea, but were elevated to 

super-family level at the same time as the Lithodidae (McLaughlin et al 

2007). 

•  the genus Emerita, commonly the ‘mole crab’ or ‘sand crab’, which is 

classified within the family Hippidae (Anomura: Hippoidea), and is found 

intertidally on the Pacific and Atlantic coasts of America.  Emerita and Aegla 

are not suggested to have an especially close ancestral relationship with the 

Lithodidae, but unlike Pagurus, the relationship is not overshaddowed by 

questions of paraphyly or polyphyly.  

 

M.5 Lithodid terminology 

In this section, I will briefly cover some aspects of lithodid morphological and 

anatomical terminology to ensure the terms in this work are accessible. The species 

Lithodes galapagensis and Paralomis alcockiana, described in Hall & Thatje 2009 

(Appendix F) are used to exemplify typical morphology and homologies between the 

lithodid (Lithodinae) genera Lithodes and Paralomis. 

The segments of the head (5) and thorax (8) are fused dorsally to produce the carapace, 

with each segment bearing an appendage (McLaughlin 1983b).  Lithodids have two 

pairs of antennae, the second (and longer) of which sometimes bears an elaborate acicle 

on the second of five segments (the exopod of the antenna, otherwise known as the 

scaphocerite or scale, Fig M.1a).  The corneae are at the end of stalked ocular 

peduncles (or eyestalks, Fig M.1a,c).  The thoracic appendages (pereiopods) of which 

there are five, are modified such that the first pair are chelate (Fig M.2d), the following 

three are similar in size and locomotory (Fig M.2b) and the fifth is much reduced and 

typically held under the carapace where they act to clean the gills and egg mass in 
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ovigerous females (Pohle 1989).  The pereiopods are uniramous and consist of 

segments dactylus, propodus, carpus, merus (Fig M.2b), attached to the sternum 

through joints on smaller segments: the coxa and the basis (Martin 2005).  Lithodids 

typically have several spines on their carapace, including prominent rostral spines 

between the eyestalks (Fig M.1b,c, Macpherson 1988a).  Grooves on the carapace are 

sites of internal attachment for structural and functional musculature, and they aid in 

visually delimiting the carapace into gastric, cardiac and branchial regions (Pilgrim 

1973, Fig M.1a). 

Six abdominal segments are present in most of the Decapoda (Pilgrim 1973, 

McLaughlin 1983b).  In the Lithodidae, the first abdominal segment is reduced and 

usually obscured by the carapace or fused to the second segment.  The third to the sixth 

abdominal segments (Fig M.2a) of the Lithodinae are flexed underneath the body, close 

to the sternum.  The appendages of the abdominal segments are pleopods, which are 

present only on the left-hand side in adult female lithodids and these are used for the 

attachment of egg-masses in reproductive stages (Pohle 1989).   
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Figure M1. Lithodid Terminology
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Figure M2 Lithodid terminology. a) schematic
of a Paralomis abdomen showing abdominal 
segments 3-6. iv: lateral plates; v: medial plate
of segment 4; vi: marginal accessory plates; vii: 
telson. b) walking leg 2 (pereiopod 3) of Lithodes
galapagensis. c) carapace of L. galapagensis.
d) right chela of L. galapagensis. viii: cervical 'knob'.  
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AO: SECTION INTRODUCTION 

AO.1 The genetic basis of species  

The nucleic acids (DNA and RNA) are the essential molecules of heredity and cell 

function, common to all known organisms.  In the Metazoa, DNA is found 

predominantly in the cell nucleus, but also in multiple cellular organelles such as the 

mitochondria (Brown et al 1979, Henze & Martin 2003). Drosophila melanogaster, the 

‘model’ arthropod used for genetic studies, has a nuclear genome of 165 million base 

pairs of DNA (bp), with an estimated 14,000 genes (Tweedy et al 2009); its 

mitochondrial genome has approximately 16,000 bp and codes for 2 ribosomal RNA 

molecules, 22 tRNA molecules and several proteins involved in metabolic pathways 

(Clary & Wolstenholme 1984). Mutations of the genetic code can be caused by 

chemical damage, by uncorrected errors during replication and through interactions 

with viral DNA (Peterson 1985, Greene & Jinks-Robertson 2001, Cooke et al 2003).  If 

changes are not detrimental to cell function, they are propagated by reproduction and 

can become fixed within an interbreeding population (Barton 1989, Gillespie 1998).  

Even within a well-mixed population there is some genetic variation between 

individuals; conversely, there can be selective pressure for sequence conservation in 

parts of genes across phyla (Slatkin 1987).  There is not an established threshold of 

genetic divergence that is used to imply species formation, not least because mutation 

rates can vary between different lineages (Britten 1986, Slatkin 1987, Knowlton 2000, 

Wu 2001).  Nevertheless, the consistent genetic differences between homologous genes 

will become measurably greater over time and there will be some correlation between 

degree of change and length of separation of two (reproductively, physically or 

ecologically) isolated populations (Turelli et al 2001, Drummond et al 2003, Bromham 

& Penny 2003).  This cumulative genetic change over time justifies the use of 

molecular data in the reconstruction of ancestral relationships between species.  

 

AO.2 Molecular techniques overview 

The polymerase chain reaction (PCR) and the advent of large-scale, rapid, and 

relatively inexpensive versions of dideoxy-chain termination sequencing (Sanger et al 

1977) made molecular sequence data available as a tool for taxonomists and 

phylogeneticists towards the end of the 20th century (Mullis et al 1986, Saiki et al 1988, 

Martin et al 1990).  PCR involves the iterative replication of a short piece of DNA 

(amplicon) from a genomic sequence in vitro, which can then be sequenced in a 

separate reaction (Sanger et al 1977).  When double-stranded DNA is heated, the 

hydrogen bonds between paired bases melt, and when it is cooled the bases rejoin in the 
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most energetically stable order (Breslauer et al 1986).  In PCR, oligonucleotides of 

synthetic DNA (primers ≈ 20 bp) bind to any somewhat complementary single-stranded 

DNA (the higher the temperature, the better the match has to be for the duplex structure 

to be stable).  Addition of mononucleotides (dNTPs) and thermostable DNA 

polymerase, and incubation in the right conditions leads to elongation of primers from 

their 3’ end.  This reflects the mechanisms of DNA replication in vivo.  Repeated 

melting, annealing and elongation steps enable the exponential increase of amplicon 

copy number (Sambrook et al 1989).   

A number of techniques employ the principle of PCR to amplify sections of genetic 

code; although some (e.g Random Amplified Polymorphic DNA: RAPD Williams et al 

1990) suffer from low degrees of duplicability when the template DNA is fragmented 

(Skroch & Nienhuis 1995).  One of the most common uses of PCR in taxonomic studies 

is the amplification and comparison of homologous sections of genomic DNA using a 

single pair of primers.  Sequences of more than 1000 bp can be amplified from distantly 

related organisms even when only small amounts of intact DNA can be isolated (France 

& Kocher 1996, Palero et al 2010).  Even though techniques have improved in speed 

and cost, the work done to date barely begins to describe the genetic diversity within 

most organisms – sampling two or three genes from tens of thousands (Etter et al 1999, 

Wu 2001).  

 

AO.3 Lithodid molecular genetics  

Molecular genetics began to influence the study of lithodids in the mid 1990s, when 

Cunningham et al (1992) used part of the mitochondrial 16S rRNA gene to demonstrate 

the close affinity of the Lithodidae with the genus Pagurus (Paguridae).  From this 

basis, Zaklan (2002a) used parts of nuclear and mitochondrial genes (Cytochrome 

Oxidase I & II [COI, COII] and rRNA genes 28S, 18S, 16S) to investigate the position 

of the Lithodidae within the Anomura.  Zaklan’s target species were chosen to represent 

the 15 lithodid genera equally and one only species of Paralomis and two of Lithodes 

were sampled out of a possible 82 species in those genera (Appendix A).  Molecular 

work since then has accelerated and several other contributors have uploaded lithodid 

sequences to the international databases (http://www.ncbi.nlm.nih.gov/, Appendix B).  

Where appropriate, the molecular targets for this thesis are chosen to be compatible 

with the data obtained in other studies, but with a focus on the globally distributed 

subfamily Lithodinae rather than divergent lineages at the root of the family Lithodidae.  
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AO.4 Practical problems with molecular techniques 

AO.4.1 Preservation and extraction 

Mobile benthic specimens from the deep sea are expensively and rarely encountered, 

and many of the species currently recognised have been collected only once, often with 

the holotype and one or two other specimens held as a precious resource by museums 

(Palero et al 2010). Specimens prized for their morphological novelty are also crucial 

for studies of genetic diversity and historical radiations (Thatje et al 2008), so it is 

desirable to overcome barriers to molecular analysis caused by the traditional museum 

processes of preservation. 

Historically, fluid-preserved museum specimens have first been fixed in buffered 

formalin solution and then later transferred into alcohol or industrial methylated spirit 

(IMS) for archival storage (France & Kocher 1996). Extraction and amplification of 

DNA from such traditionally fixed material is difficult (France & Kocher 1996, Boyle 

et al 2004). It is currently unclear whether difficulties with the PCR amplification are 

caused by DNA being trapped in a matrix of cross-linked proteins, severe DNA damage 

caused by low pH or by the presence of PCR inhibitors in solution (Fang et al 2002). 

Many reports have been published on this topic and numerous protocols have been 

proposed (Schander & Halanych 2003), but the fact remains that no reproducible, 

generic method has been reported to date. One of the latest protocols introduced in the 

literature to solve the problem of DNA extraction from formalin-fixed material is based 

on critical point drying, a technique used for preparation of samples for electron 

microscopy (Fang et al. 2002, Palero et al 2010). 

 

AO.4.2 Analysis 

Several times in the history of the Metazoa, large amounts of genetic material have 

been randomly duplicated within a genome, leaving evidence of multiple copies of 

genes (gene families) (Durand & Hoberman 2006).  When comparing genes from 

different species, it is important that similarities and differences are the result of a 

common descent (homology) rather than parallel evolution following an intra-genomic 

duplication (Bensasson et al 2001, Keeling & Palmer 2008).  Gene duplications can 

produce pseudogenes which, when released from selectional constraints, mutate at a 

rate much higher than the ‘original’ (functional) copy of the gene.  Degradation of 

function, such as translation-termination codons and frame-shift mutations, can indicate 

the presence of a pseudogene (Durand & Hoberman 2006).  Duplicates can be prone to 

variation in length because of insertion or deletion mutations, so the occurrence of 

multiple sizes of PCR product in a single sample can indicate the presence of 

differences in a multi-copy gene.  While there are indicators that genes are unique and 
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functional, this can not be easily verified, and caution is exercised in the interpretation 

of these results.     

 

AM: SECTION METHODS 

 

AM.1 Sampling 

AM.1.1 Sample procurement 

Tissue samples were obtained from several sources in order to get a wide coverage and 

high number of replicates of lithodid species.  Egg and dactylar tissue from preserved 

museum specimens were obtained with permission from: Natural History Museum, 

London; Senckenberg Museum, Frankfurt; Musée National d’Histoire Naturelle, Paris; 

Institut de Ciencies del Mar, Barcelona; United States National Museum of Natural 

History, Smithsonian Institute, Washington; collections in Chile and Miami; CADIC, 

Ushuaia, Argentina; and the ‘Discovery Collection’, National Oceanography Centre, 

Southampton.  Tissue from fresh specimens was obtained from Spanish cruises around 

Mauritania (2008), French fishing vessels near Kerguelen (2008), ROV Isis from on 

board RRS James Clark Ross (JCR167), fisheries and dives around the Falklands and 

South Georgia, and Norwegian commercial fishing vessels. 

 

AM.1.2 Species sampling 

To elucidate world-wide relationships between species of Lithodinae, the sampling aim 

was to obtain molecular sequences from a wide range of the 117 lithodid species 

described globally.  Although obtaining specimens was not a limitation, the difficulty of 

obtaining non-fragmented DNA from preserved deep-sea samples led to reduced (and 

slightly unpredictable) success.  Approximately 30% of all DNA samples were 

extracted from ethanol-preserved or frozen tissue, and 70% from formalin-preserved 

specimens.  Including sequences obtained from the NCBI GenBank nucleotide 

database, 16/61 Paralomis, 9/21 Lithodes and 3/10 Neolithodes species were used in 

this study, covering approximately one quarter of the species known to exist worldwide 

(Appendix A, B i-v).  In addition, sequences were obtained from NCBI GenBank for 

some genes of Cryptolithodes (2 species), Hapalogaster (2 species), Oedignathus, 

Lopholithodes (2 species), Glyptolithodes, Phyllolithodes, Paralithodes (3 species) and 

non-lithodid genera Aegla, Pagurus, Emerita and Lomis (Appendix B). 
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AM.1.3 Gene targets 

Appropriate genetic targets for family-level phylogenetic analysis are those that mutate 

quickly enough for differences to be observed between taxa, but not so quickly that they 

diverge substantially within an interbreeding population (Brown et al 1979, Wolfe et al 

1989, Chuang & Li 2003, Galtier et al 2009).  Targeting a gene where there is no 

detailed prior knowledge of the organism’s genome can be done using universal 

primers that anneal with highly conserved regions of functional copies of the gene 

(Palumbi & Metz 1991, Folmer et al 1994).  Once the target gene has been investigated 

using universal primers, then for accuracy, duplicability, and resistance to 

contamination by other organisms, specific internal primers can be designed.  Universal 

primers for mitochondrial genes 16S and Cytochrome Oxidase I (COI) and Cytochrome 

Oxidase II (COII) exist (see Table A1), which amplify these genes in most eukaryotes.  

Their structure can be compared with a large amount of data gathered from other 

organisms, so the viability of the sequence can be ascertained to a degree.  Large 

subunit mitochondrial rDNA (16S), and other rRNA-coding genes are suited to this sort 

of analysis because their secondary structure is composed of regions that are rigidly 

constrained, as well as those that are more freely evolving and can show evidence of 

large deletions or insertions within lineages (Hancock et al 1988).  Ribosomal 

expansion segments are regions of rDNA that are not common to the basic ribosomal 

structure of prokaryotes and eukaryotes; they tend to be constrained in terms of 

secondary structure, but at a lower level than the ‘core’ regions (Larsson & Nygård 

2001, McTaggart & Crease 2009).  Two sections of the nuclear small subunit ribosomal 

gene (18S), and three sections of nuclear large subunit rDNA (28S) were examined 

because of a high rate of sequence divergence observed in the expansion segments of 

related organisms (Nelles et al 1984, Crease & Taylor 1998, Held 2000).  The 

‘internally transcribed spacer 1’ (ITS1) is a region of non-translated DNA which is 

transcribed along with functional rRNA genes in eukaryotes.  Its principally non-

structural role means that it is largely free from conservative selection and can be 

particularly useful for phylogenetic analysis of closely related groups, particularly 

decapods (Chu et al. 2001, Armbruster & Korte 2006, Chow et al 2009).  All of the 

genes mentioned have a high copy-number within each cell, and for this reason are 

often readily amplified even without cloning.  A caveat is that non-unique genes, 

especially in the nucleus can have an unpredictable level of heritability, and non-

functional versions may exist.    

 

 

 



The Evolutionary History of the Lithodinae    Section A Introduction & Methods 

50 

AM.2 Primers 

Table A1 Primers used in this study and primer-specific methodological details.  

Primer 

name 

Gene targeted Sequence of synthesised 

oligonucleotide 5’ to 3’ 

Melting (Tm)/ 

Annealing 

temperature °C 

Reference 

16Sar CGC CTG TTT ATC 

AAA  AAC AT 

51.2/48 Palumbi et 

al (1991) 

16Sbr 

527-529 bp of 

in-group 

mitochondrial 

rDNA 

CCG GTC TGA ACT 

CAG ATC ACG 

61.8/48 Palumbi et 

al (1991) 

LCO1490 GGT CAA CAA ATC 

ATA AAG ATA TTG G  

56.4/51 Folmer et 

al (1994) 

HCO2198 

658 bp of in-

group mtDNA: 

Cytochrome 

Oxidase I gene 

TAA ACT TCA GGG 

TGA CCA AAA AAT 

CA   

58.5/51 Folmer et 

al (1994) 

NURI1 GGT AAG CAG AAC 

TGG CGC TGT GGG 

70.41/62 Palero 

(2009) 

NURI2 

415 bp of 28S 

nuclear rDNA 

(Fig AM.1a) GGG ATC AGG CTT 

TCG CCT TGG G 

70.44/62 Palero 

(2009) 

28BF/Lsp28

BF 

Primer sequence as 

designed for Palinurus: 

GGG CCA AGG AGT 

CCA ACA TGT G 

Lithodid-specific primer 

sequence: GGA CCA 

AGG AGT CTA ACA 

TGT G 

60.3/55 Palero 

(2009) 

28BR 

683 bp of 28S 

nuclear rDNA 

(Fig AM.1a) 

 

CCC ACA GCG CCA 

GTT CTG CTT ACC 

67.8/55 Palero 

(2009) 

28AF AGT AAG GGC GAC 

TGA AMM GGG A 

59.66/55 Palero 

(2009) 

28AR 

739 bp of 28S 

nuclear rDNA 

(Fig AM.1a) CAC ATG TTG GAC 

TCC TTG GCC CG 

70.39/55 Palero 

(2009) 

ITS1F CAC ACC GCC CGT 

CGC TAC TA 

63.5/ 51 Chu et al 

(2001) 

ITS1R 

 

474 bp of non-

coding nuclear 

DNA ATT TAG CTG CGG 

TCT TCA TC 

55.3/51 Chu et al 

(2001) 

COIIF AGC GCC TCT CCT 

TTA ATA GAA CA 

58.9/ 50.5 Zaklan 

(2002a) 

COIIR 

542 bp of 

mitochondrial 

Cytochrome CCA CAA ATT TCT 57.6/50.5 Zaklan 
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Oxidase II gene. GAA CAT TGA CCA (2002a) 

18A1 CTG GTT GAT CCT 

GCC AGT CAT ATG C 

66.55/61 Medlin et 

al (1988) 

1800R 

1836 bp of the 

18S nuclear 

rDNA (Fig 

AM.1b) 

GAT CCT TCC GCA 

GGT TCA CCT ACG 

67.62/61 Medlin et 

al (1988) 

V4for CGG TTA AAA AGC 

TCG TAG TTG G 

58.83/52 C. Held 

V4rev 

V4for/ 

V4rev: 268 bp of 

18S rDNA (Fig 

AM.1b) 

CCC CCG CCT GTT 

TCT ATT AG 

59.39/52 C. Held 

 

AM.2.1 28S amplicons 

Several sets of sequences were available for parts of the anomuran 28S gene on the 

NCBI GenBank nucleotide database.  The longest stretches of lithodid DNA, covering 

2478, 2473 and 2474bp respectively are from Lithodes santolla (GenBank 

AY596100.1), Paralithodes camtschatica (AB193824.1), and Paralithodes platypus 

(AB193821.1).  Lithodid genes from 2 additional genera (Neolithodes brodiei x2, 

Paralomis formosa, P. elongata) were sequenced in order to supplement an alignment 

of Lithodes santolla and Paralithodes for a preliminary analysis of sequence 

divergence.  The lithodid 28S gene was amplified in three sections in order to probe for 

levels of inter-specific variation at different locations on the gene.  Based on the results 

of this preliminary analysis (Section A1.3.8), the Lsp28SBF and 28SBR primers were 

used to amplify a partial 28S sequence from a wider lithodid taxon set. 

 

AM.2.2 18S amplicons 

1830 bp of the Lithodes santolla 18S gene (AF439385.1), and 14 other anomuran 

sequences of similar length were obtained from the NCBI GenBank database 

(Appendix B.v).  Comparison with the 18S secondary structure of Drosophila 

melanogaster in Hancock et al (1988) shows that this fragment contains the V2 and V4 

expansion segments of the molecule.  Primers 18A1 and 1800R amplify a theoretical 

1800 bp of the gene.  V4for and V4rev target 246 bp of ingroup DNA, to ensure that a 

double-stranded section (where forward and reverse sequences overlap) of this variable 

region is amplified in all samples (Fig AM.1b).  To investigate the suitability of the 18S 

gene for phylogenetic studies in Lithodidae, the genes from 4 species (Neolithodes 

brodiei x2, Paralomis formosa, P. elongata) were sequenced for comparison with L. 

santolla.  
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Figure AM.1 Schematic of nuclear rDNA genes, with an indication of regions amplified in this
 study.   Numbers are given for the positions of bases on an aligned sequence of lithodid genes
 after comparison with the secondary structure of rRNA in Drosophila melanogaster (Hancock
 et al 1998).
a) Large subunit rDNA, 28S gene.  D1-D5 are named expansion segments.  Narrow lines
 indicate the relative positions of amplified sequences (Z) from Zaklan (2002a), and 
three fragments amplified in this study: 28SA, 28SB and NURI.       
b) Small subunit rDNA, 18S gene.  V1-V4 are expansion segments present 
in many eukaryotes.  V4 is targeted by both long-range primers and short sequence 
amplification.
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AM.3 Tissue sampling protocols 

Wherever fresh tissue was obtained for this study, the samples were either frozen 

whole, or sampled in semi-sterile conditions into cold (0°C) 70% ethanol as soon as 

possible after death.  Frozen tissue, after sampling, was stored in ethanol at 4°C, since 

repeated freezing and thawing of tissue is detrimental to the structure of DNA (Shikama 

1965). 

Approximately 1.5mm
3
 muscular tissue from one of the elements of the walking legs 

was sampled through a small incision in the arthrodial membrane.  On some occasions, 

it was only possible to obtain material from gill tissue or from eggs.  The success of 

amplification from embryonic tissue was lower than for muscular tissue, and especially 

so in formalin preserved samples.  Gill tissue was rarely sampled in this study because 

it was noted that the largely indigestible chitinous structures became stuck in the filters 

and physically impede DNA collection from Qiagen spin columns.  Sampling gill tissue 

is also a lot more destructive to the specimen than the sampling of muscle through the 

arthrodial membrane.   

Once removed from the specimen with sterile implements (sterilised using a Bunsen 

burner), the tissue was dried on semi-sterile tissue to remove the preserving fluid.  It 

was then cut into smaller sections to provide digestive enzymes with access to a large 

surface area.  Depending on the method of DNA extraction, the tissue was placed 

directly into the critical-point drying protocol, or into a Qiagen buffer with proteinase 

K, which digests the tissue and prevents any autolytic processes (Appendix Ci, ii). 

 

AM.3.1 Methods for well preserved samples 

Tissue was placed in 20 µl proteinase K, buffered with 180 µl ATL and incubated at 55 

°C for 1-8 hours according to the instructions of the Qiagen DnEasy Blood and Tissue 

kit protocol (Appendix Ci).  Selective filtration of the resulting DNA solution was done 

using Qiagen centrifuge columns, and DNA is eluted after two wash-steps into AE 

buffer for storage or PCR.    All sample extractions were repeated once.  All DnEasy 

extractions were performed at AWI, Bremerhaven, Germany. 

 

AM.3.2 Methods for sub-optimally preserved samples 

Samples taken from wet-preserved museum specimens, including those for which the 

Qiagen columnar filtration system isolated DNA, underwent additional extraction using 

a method based on critical-point drying (Palero et al 2010, Appendix Cii).  In order to 

reduce costs and provide a similar effect to that proposed in (Fang et al. 2002), this 

study used tetramethylsilane (TMS) as a strong dehydrating agent which maintains 

tissue structure (Ubero-Pascal et al 2005,  Palero et al 2010).  Muscle from the dactylus, 
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was extracted into 50-100 µl TMS solution and incubated for one hour with gentle 

agitation so that the tissue absorbed the dehydrating agent.  The cap of the tube was 

then opened within a sterile laminar flow cabinet to let the TMS evaporate.  Dehydrated 

tissue was transferred to a 1.5 ml eppendorf tube with 200 µl of 10% Chelex solution in 

pH 8.0 TE buffer and 20 µl of proteinase K solution (20mg/ml).  This was incubated for 

2-3 hours at 55 ºC in a thermomixer and then centrifuged for one minute at 10,000 rpm 

to separate the Chelex from the supernatant.  Cells were heat-shocked at 95ºC for 15 

minutes.  100 µl of supernatant, containing extracted DNA and minimal Chelex, was 

transferred into a fresh tube.  1-2 µl of this supernatant was used for each 25 µl PCR 

reaction (further details in Appendix Cii). 

 

AM.3.3 PCR and cleaning 

PCR reactions were conducted using GE Healthcare illustra PuRe-Taq ready-to-go PCR 

beads: these contain 2.5 units of PuReTaq DNA polymerase, 10 mM Tris-HCl, (pH 9.0 

at room temperature), 50 mM KCl, 1.5 mM MgCl2, 200 µM of each dNTP.  Beads are 

temperature-stable until hydration to a total reaction volume of 25 µl, at which time 

they were stabilised at 4 °C in an ice bucket. Rehydration mixture consisted of nuclease 

free water, 10 pmol each of forward and reverse primer (Table A1) and approximately 

50ng of DNA template in solution (AE or TE buffer). PCR reactions were performed 

using an Eppendorf Master Cycler with temperature profile as follows, according to the 

guidelines provided for the PuReTaq polymerase, with steps 2-4 repeated 35 times:  

1. 2 minutes, 94 °C: initial DNA denaturation. 

2. 20 seconds, 94 °C: denaturation 

3. 10 seconds, annealing temperature dependent on the melting properties of 

the primer pair (Table A1).   

4. 1 minute, 72 °C: extension 

5. 5 minutes, 72 °C: final extension  

   

3 µl of PCR product (+ 1 µl of loading buffer, peqlab) was separated by size using 

electrophoresis on a TBE buffered horizontal 1.5% agarose gel.  The results were 

visualised by staining DNA in an (0.1%) ethidium bromide bath followed by de-

staining in a distilled water bath.  A ‘ladder’ of molecular size standards (Fermentas 

FastRuler DNA ladder, Middle Range) was used to quantify the size of amplified DNA 

when the ethidium bromide stain was visualised under UV light. 

PCR products were separated from the residual primers, polymerase and salts using the 

Qiagen QIAquick PCR-purification kit, using the manufacturer’s protocol (Appendix 

Ciii). Dideoxy-chain termination sequencing (Sanger et al 1977) was performed 
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remotely, either by Eurofins, Germany or Macrogen Inc, Korea.    Information given on 

the Macrogen website states that 20µl of cleaned PCR product and 10µM primer were 

used for cycle-sequencing under BigDye™ terminator cycling conditions, and the 

reacted products were purified using ethanol precipitation and separated by size using 

Automatic sequencer 3730XL. 

 

AM.4 Analysis and verification of results 

Sequencing results were returned as chromatograms representing single-strand samples 

of amplified template DNA.  These were interpreted by the <DNAstar_Seqman> 

program (Swindell & Plasterer 1997), and forward and reverse sequences from each 

sample were matched up to produce a reconstruction of double-stranded DNA. The 

match between the annealed sequences was compared manually to ensure there was 

agreement between the forward and reverse sequences, and that there were no artefacts 

that had been misread by the program.  Ambiguous bases at the ends of the sequences 

were trimmed manually.  The chromatogram was additionally checked after 

polymorphic loci had been identified in alignments of homologous genes to ensure that 

variable bases were correctly identified by the program and that the sequence was of 

high quality in that region. 

 

BLAST searches (Altschul et al 1990) were performed by comparing a trimmed 

sequencing result with other sequences uploaded to the NCBI GenBank database.  The 

search returns a percentage similarity between the input sequence and those stored on 

the database.  This is used both to find additional sequences to support an alignment, 

and also to check the authenticity of the sequence and the sample amplified. 

 

Alignment was in most cases performed using the <Clustal W> program (Larkin et al 

2007), which uses pairwise comparison and tree-building methods to align multiple 

sequences so that biological homology between corresponding bases can be assumed.  

<MUSCLE 3.7> (Edgar 2004a, b)was used to align lithodid sequences with those of 

other anomuran families for the 16S, 18S and 28S genes in which long sections of base 

insertions were found; it was an especially powerful algorithm for use with whole 

taxon-set alignment (ATA), which included distantly related anomuran genus Emerita.  

Manual inspection of the algorithmically produced alignments was done, whilst 

incorporating some assumptions about structure and function of the transcribed gene 

product.   For example, those genes coding for rRNA were examined alongside the 

secondary structure of Drosophila melanogaster, and conserved structural ‘stems’ were 

identified within the sample set (Hancock et al 1988).  Protein coding genes, COI and 
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COII were examined for codon sense and mutations which altered the reading frame. In 

any case where alignment was ambiguous (particularly for the out-groups), the bases 

were replaced with an ambiguity code (N). 

Base frequency variations between taxa for the same gene were examined using a Chi-

squared statistical test (the ‘BASEFREQS’ command in <PAUP*4.0b10>: Swofford 

2000). This established whether there was a significant difference in the frequency of 

the four nucleotides occurring at equilibrium in different taxa, which could have an 

effect on analytical assumptions. 

 

-Development of out-group assumptions 

Sequences were obtained from GenBank for non-lithodid anomuran genera Emerita, 

Pagurus and Aegla.  From these, an out-group was chosen for use in this analysis.  Five 

species of Pagurus (P. criniticornis, P. longicarpus, P. brevidactylus, P. leptonyx, P. 

comptus); three species of Aegla (A. intercalata, A. platensis, A. neuquensis); and three 

species of Emerita (E. analoga, E. brasiliensis, E. benedicti) were compared.  A 

phylogenetic tree of aligned sequences (lithodid and non-lithodid) was selected by the 

minimum evolution (ME) criterion in <MEGA3.1> for 529 bp of the gene 16S.  The 

ME criterion was used for such preliminary tests because searches are orders of 

magnitude faster than ML analyses.  Trees for this analysis were rooted at the mid-point 

of maximum sequence divergence, so there was no initial out-group assumption.  In this 

tree (ATA, standing for ‘all taxa’), the lithodid taxon set is large and unresolved in 

comparison to the long branches of the out-groups; ATA is figured with monophyletic 

groups of lithodids condensed to a single taxon label.  From these, a monophyletic out-

group genus was selected for use in further analyses, and this is discussed in the results 

(Section A1.3.9). 

If the monophyly of the Lithodidae and each of the anomuran genera Aegla, Pagurus, 

and Emerita was supported by high confidence levels (bootstrap analysis, 1000 

replicates), then an examination of the variability within these taxa was conducted.  An 

enumeration of polymorphic loci in a trimmed alignment (all sequences of the same 

length except where there are internal insertions) was used as an approximate measure 

of variability.  Insertions, point-mutations, and deletions were all given equal 

weighting.  Scores for Pagurus, Aegla and Emerita were compared with levels of 

variability observed within the same set of loci in lithodid genera (Paralomis [16 

species], Lithodes [9 species] and Neolithodes [3 species]). This aimed to provide a 

very conservative estimate of variation in homologous genes between closely related 

species of different taxa.   
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-Production of consensus sequences 

For each species, at least 5 different individuals were sampled if these could be 

obtained.  Often (because of the sporadic nature of sampling deep-sea organisms), this 

was not possible.  Where sequences from the same morphological species were 

identical, these were condensed down to one sequence for analysis, because reducing 

taxon number substantially increases processing time.  Where isolated autapomorphies 

existed within sequences of a species, a consensus was formed by retaining aligned 

bases where there was agreement between all specimens, and by indicating ambiguities 

using the IUPAC ambiguity codes (1986) where base identities disagree. In cases where 

sequences of the same morpho-species showed polymorphisms consistently at several 

loci or in more than one gene, these were treated as potential sub-populations and two 

consensus sequences were produced.  For non-lithodid anomuran taxa, a generic 

‘consensus’ was produced (Appendix B). This provides a conservative estimate of the 

ancestral gene sequence, as opposed to using the derived sequences from one species 

which will have mutated further since divergence.  This also avoids, to some extent, 

problems with rooting alignments based on members of polyphyletic taxa (Fig A1.2b).   

 

AM.5 Phylogenetic analysis methods 

A molecular phylogenetic tree is a topological representation of sequence divergence 

within a hierarchically related lineage. A set of assumptions about the nature of 

sequence evolution, based on data gathered from extant taxa, was used to estimate 

ancestral events (Cavalli-Sforza & Edwards 1967, Page & Holmes 1998).  The ‘best’ 

tree(s) were found using three different optimality criteria: minimum evolution (ME), 

maximum likelihood (ML) and Bayesian analysis (BAY).  The aim was to obtain three 

independent estimates of phylogenetic topology from the data, to ensure that  different 

assumptions inherent in the analytical methods did not skew the results.   

 

AM.5.1 Phylogenetic analysis methods overview 

1. Total evidence (TEB) datasets were created using gene fragments 16S, COI, 

28SB and ITS1; alignments contained 50 unique sequences of length (l) 2110 

bp (ambiguous alignment in out-groups or missing data [N] were distinguished 

from insertion mutations [–]). 

2. In <PAUP*4.0b10> (Swofford 2000), a partition homogeneity test (Farris et al 

1995, command name <<HOMPART>>) examined whether ME trees 

generated for the single-gene (partition) datasets [16S, COI, ITS, 28S] varied 

significantly over 1000 replicates from those produced when the data are 
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combined as TEB.  This tested the hypothesis that a natural partition of TEB (by 

genes) was significantly different from a random partition of the dataset.   

3. For each gene and for the combined dataset (TEB), the model of evolution most 

likely to account for the observed sequence divergence was assessed using 

<Modeltest 3.7> (hLRT).   

4. The phylogenetic signal from each gene (COI, COII, ITS1, 16S, 28SB) was 

examined by creating ME and ML trees in <MEGA3.1> and 

<PHYLIPDNAml> respectively.   

5. For TEB, ML, ME and BAY trees were produced, and these are discussed in the 

text (Section A1.3.11).   

6. For discussion, a schematic of relationships between the genera was taken from 

TEB trees to form a single tree, TEC.  In TEC, species within monophyletic 

genera were condensed to a single taxon label and polyphyletic or paraphyletic 

genera were indicated by multiple taxon labels.  Less frequent alternative 

topologies were indicated by dotted lines on the same tree.     

 

AM.5.2 Phylogenetic software 

- Modeltest 3.7 

The executable <Modeltest 3.7> uses hierarchical Likelihood Ratio Testing (hLRT) to 

examine 56 nested models of molecular evolution (14 basic models which can be 

modified to include between-site rate heterogeneity: Shoemaker & Fitch 1989, Posada 

& Crandall 1998, Posada & Buckley 2004)).  The program works in sequence from the 

less complex to the more complex models, reflecting the trade-off between under-

estimation of change, and over parameterisation (Posada & Crandall 1998).         

  

 -MEGA 3.1: Minimum Evolution criterion 

Distance-based analyses of alignments were performed in <MEGA3.1> (Kumar et al 

2004) using the ME optimality criterion (Saitou & Imanishi 1989, Rzhetsky & Nei 

1992).  Within the ME analysis, <MEGA> allows the use of several different GTR 

based models, incorporating prior knowledge about parameters (from <Modeltest 3.7>) 

or assumptions about the data in order to estimate evolutionary change.  Searches were 

performed using a close-neighbour-interchange (CNI) algorithm to examine the 

neighborhood of an initial Neighbour Joining (NJ) tree (distance-based method in 

which the tree is produced by a clustering algorithm rather than a search-and-optimality 

method: Saitou & Nei 1987).  The topology with the smallest total branch length was 

selected (Nei et al 1998, Takahashi & Nei 2000).  The program was instructed to delete 

missing data from alignments for pair-wise comparisons only, rather than the default 
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setting, which completely deletes all missing data.  With this exception, all other 

parameters were set to default.  All trees were rooted at the midpoint of the maximum 

sequence divergence and no outgroup was formally assigned; although Pagurus and 

Aegla were included in the taxon set. 

 

-PHYLIP:DNAml settings 

Maximum likelihood analyses of datasets were performed using <PHYLIPDNAml> 

(Hasegawa & Yano 1984, Hasegawa et al 1991, Felsenstein 1993, Felsenstein & 

Churchil 1996).  Parameters for relative rates of transition and transversion mutations 

and equilibrium base frequencies were calculated in <Modeltest 3.7> for each 

alignment (see Results Section A1.3). The Gamma function was used to infer different 

rates of evolution at different sites if this were required (Yang et al 1994, Yang 1994, 

1995, 1996, Felsenstein & Churchill 1996).  This effectively removes the artificial 

assumption that all sites have the same rate of change. Global rearrangements were 

applied, which means that for the ‘best trees’ found, each of the terminal branches were 

sequentially removed and replaced to test that no new trees could be found with a 

higher likelihood.  The tree was rooted using the consensus sequence of the out-group 

genus chosen in preliminary analysis of tree ATA (as detailed in Section A1.3.9).   

For all ME and ML analyses, confidence in the selected topology was assessed with a 

bootstrap analysis.  One thousand iterations of the search algorithm were performed on 

replicate datasets produced by sampling with replacement from the original dataset.  

The proportion of times each clade was retrieved over multiple iterations was reflected 

in the bootstrap value (Table A3, Figs A1.3a, b).  In <PHYLIP>, bootstrap searches 

were performed using the executable <Seqboot> (Felsenstein 1985). 

 

-Bayesian analysis using MrBayes 

<MrBayes3.1> is a program for the Bayesian estimation of phylogeny (Huelsenbeck et 

al 2001, Senn 2003, Beaumont & Rannala 2004). Bayesian inference of phylogeny is 

similar in principle to a maximum likelihood analysis; however, it incorporates prior 

knowledge of the distribution of tree topologies, as estimated over 2 x 1,000,000 

iterations by Markov chain Monte Carlo (MCMC) in two parallel runs (Huelsenbeck & 

Ronquist 2001).  The TEB dataset was partitioned four ways (by gene) in the input 

(Nexus) file prior to implementation, which allows unlinked models and model 

parameters to be calculated for the different partitions.  Following the manual of 

<MrBayes 3.1> (http://mrbayes.csit.fsu.edu/wiki/index.php/Manual), the number of 
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parameters (<Modeltest3.7>) was specified, but the parameter values were allowed to 

vary during the initial iterations (Huelsenbeck & Ronquist 2001).  This approach is 

thought to provide a more conservative but more realistic posterior probability of each 

node (Raupach et al 2009).  A number of initial iterations were discarded, until it was 

determined by inspection that the two parallel runs had converged on a family of 

topologies (split standard deviation <0.05).  Trees selected from the remaining MCMC 

iterations were pooled to indicate the most probable overall topology. Confidence 

values indicate the probability of a particular node given the prior assumptions, the 

model parameters and the observed data (Huelsenbeck & Ronquist 2001).   As in the 

ML analysis, the tree was rooted using the consensus sequence of the out-group genus 

chosen in preliminary analysis (as detailed in Section A1.3.9).     
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CHAPTER A1: MOLECULAR PHYLOGENY OF THE 

LITHODIDAE 

A1.1 Aims and context 

The Lithodidae have an enigmatic evolutionary history.  Molecular evidence obtained 

by other authors indicates a strong and recent (13 Ma-25 Ma BP) relationship between 

fully-carcinised lithodids and shell-dwelling members of the genus Pagurus 

(Cunningham et al 1992).  From this, it has been hypothesised that the un-calcified 

abdomen uniting the subfamily Hapalogastrinae reflects the retention of a primitive 

condition, and that ‘primitive’ groups from the shallow north Pacific were the seeding 

populations for the global deep-water expansion of the Lithodinae.   This hypothesis 

remains a source of controversy (McLaughlin et al 2007).   

More than 100 species are recognised from the subfamily Lithodinae; the majority of 

these belong to the globally distributed, predominantly deep-sea genera Paralomis, 

Lithodes and Neolithodes (Appendix A).  With the exception of the genus 

Glyptolithodes from South America, these are the only genera of Lithodidae that are not 

endemic to the North Pacific (Zaklan 2002b). 

The objectives of this chapter are to use gene-sequence data to:  

• assess the hypothesis that the Lithodinae arose from ancestors with 

uncalcified abdomens in shallow-water of the North-East Pacific. 

• investigate the monophyly and interrelationships of genera within the 

Lithodinae, especially the larger lithodine taxa: Paralomis, Lithodes, 

Neolithodes and Paralithodes.   

• estimate the scale and minimum number of transitions from the shallow 

environment to the deep sea and vice versa. 

 

A1.2 Synopsis of methods 

More than 200 tissue samples of 21 identified species (and several unidentified 

specimens) were obtained from a variety of preserved and fresh sources.  These were 

supplemented with sequence data from a further 17 lithodid and non-lithodid 

anomurans from the NCBI GenBank database.  Three mitochondrial genes 

(Cytochrome oxidase I [COI], Cytochrome oxidase II [COII] and ribosomal DNA 

[16S]) and three nuclear regions (small subunit rDNA [18S], large subunit rDNA [28S] 

and internally transcribed spacer 1 [ITS1]) were amplified and sequenced.  Sequence 

data were algorithmically aligned and then optically examined within each gene. 

Minimum Evolution (ME), Maximum Likelihood (ML) and Bayesian (BAY) 

probability criteria were used to score phylogenetic tree topologies.  Trees were rooted 



The Evolutionary History of the Lithodinae    Section A Chapter 1 

62 

with a consensus of three Aegla sequences as the result of a preliminary investigation 

into the position of the Lithodidae with respect to other anomuran taxa.           

 

A1.3 Results 

A1.3.1 Extraction and Amplification 

PCR products of expected lengths were produced using the Qiagen DNeasy blood and 

tissue protocol (Appendix Ci) for approximately 80% of freshly sampled (non-museum) 

specimens, and around 5% of museum specimens preserved using an unknown medium 

or method. 

Of the thirty formalin-fixed lithodid tissue samples from which DNA was extracted 

using critical point drying (Palero et al. 2010; Appendix Cii), 18 failed to produce 

amplicons, 5 produced PCR products but were not successfully sequenced and 7 

samples (23%) produced fully-sequenced PCR products (GenBank accession numbers: 

EU493266-EU493270, EU493272-EU493275 and EU493277-EU493278). The results 

obtained from a database search on GenBank using Megablast (BLASTN v2.2.18) 

showed that the sequences from formalin-fixed specimens were homologous to the 

available lithodid sequences. 

 

A1.3.2 Base frequency homogeneity   

Base frequency homogeneity tests showed no significant variation in base frequencies 

between taxa for 16S (p=1.000), ITS (p=1.000), 28S (p=0.9988) and COI (p=0.991) 

datasets.  Any minor deviations in base frequency are not expected to affect 

phylogenetic reconstructions.   

 

A1.3.3 COI 

621 sites were included in the final alignment of the COI gene.  The reading frame 

began on the 3
rd

 position of the alignment and did not include any termination codons.  

Including changes between the ingroup and outgroup, 230/621 sites were variable.  As 

would be expected in a protein coding gene, mutations are heavily biased onto the third 

position of the codon: there are 39 1
st
 position changes, 3 2

nd
 position changes, and 188 

3
rd 

position changes.  The translated protein structure was verified using the NCBI 

<BLASTP> algorithm and it matched the product of functional COI genes in other 

organisms.  ME trees produced separately for the first and third codon positions of COI 

showed that a similar phylogenetic signal could be retrieved from both (Fig A1.1).  No 

insertions or deletions were found in either the ingroup or the outgroup sequences and 

so the alignment was unambiguous when inspected manually. 
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Figure A1.1 Minimum evolution trees produced in MEGA for COI codon positions 1 and 3.  
Trees were rooted at the mid-point of the maximum sequence divergence. Abbreviations: 
N= Neolithodes, L = Lithodes P= Paralomis, Pa = Paralithodes, Lo=Lopholithodes, Cr= 
Cryptolithodes, Ha= Hapalogaster, Oe= Oedignathus, G=Glyptolithodes, Ph= Phyllolithodes.
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Analysis of the COI dataset in <Modeltest 3.7> indicated that a GTR model best 

describes the molecular evolution. Between-site rate heterogeneity was modelled by the 

Gamma function (shape parameter = 1.0879) with a proportion (0.5884) of invariable 

sites (GTR+I+G).  Equilibrium base frequencies (A:0.3076 C:0.1676 G:0.1370 

T:0.3878), number of substitution types = 6,  Rate matrix = ([A:C 1.1574] [A:G 

12.1127] [AT: 0.6581] [C:G 1.5420] [C:T 7.2343] [G:T 1.000]).  For ME analysis, the 

best approximation to this model in <MEGA 3.1> is that of 6- parameter model, 

Tamura-Nei.  The Gamma function with shape parameter 1.0 was used to model rate 

heterogeneity between sites.  For ML analysis in <PHYLIP DNAml>, base frequencies, 

rate heterogeneity and Transition/Transversion (Ti/Tv) ratios are defined as above.  

Phylogenetic trees based on COI data alone are not figured, but confidence values for 

selected nodes are shown in Table A3.    

 

A1.3.4 16S  

16s amplicons were sequenced and aligned for 113 specimens.  These were used 

directly in tree ATA  (Fig A1.2a) and then condensed into 48 consensus sequences, 

including those for out-group genera Pagurus and Aegla.  When sequences were 

trimmed to the length of the shortest sequence, the resulting alignment was 402 bp; the 

longest sequence was 529 bp.  Even though rDNA doesn’t have the same reading-frame 

constraints as a protein coding gene, insertion mutations were absent from the in-group 

16S sequences (except 2 single-base insertions in Cryptolithodes sitchensis).  At least 7 

separate regions of nucleotide insertion are present in outgroups, which added some 

ambiguity to the alignment process in some variable regions. 

The model of evolution governing the 16S data for an alignment of all taxa (excluding 

Emerita) had two substitution parameters (HKY+I+G) with unequal base frequencies 

(A:0.3938 C:0.1067 G:0.1355) and between-site rate heterogeneity modelled by the 

Gamma function with a shape parameter of 0.2505, and a proportion (0.4282) of 

invariant sites.  Ti/Tv Ratio=4.2248.  In <MEGA 3.1>, this model is approximated by 

the Kimura 2-parameter model, with a Gamma function shape parameter of 0.2.  In 

<PHYLIPDNAml>, parameters were defined as above.  With the exception of the ‘all-

taxa’ tree (ATA, Fig A1.2a), confidence values for selected nodes on the 16S ME and 

ML trees are shown in Table A3.    

   

A1.3.5 COII 

Five out of 44 unique lithodid COII sequences had single frame-shift mutations and a 

number of stop-codons were produced when translating the alignment.  These could 

have either been introduced through an error in sequencing (the polymerase adding 
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bases stochastically), or could indicate that this is not a functional copy of the gene.  No 

frame-shift mutations were seen in the amplified copy of the COI gene: it is possible 

that these COII primers target analogous versions of the gene and potentially 

misleading phylogenetic signals are expected.  50 1
st
 position changes, 15 (8 in ingroup) 

2
nd

 position, and 148 3
rd

 position changes were seen in the alignment.  Based on this 

evidence, COII was excluded from the ‘total evidence’ (TEB) analysis.     

The model most likely to explain the sequence evolution of the COII gene fragment is 

(HKY+I+G) selected by hLRT in <Modeltest 3.7>.  It is a 2-parameter model (Ti/Tv 

Ratio = 4.3667) with unequal base frequencies (A:0.3498 C:0.1582 G:0.1228 T:0.3692) 

and between-site rate heterogeneity modelled by the Gamma function (Shape=0.6797) 

with a proportion (0.4661) of invariant sites.  In <MEGA 3.1>, this model is 

approximated by the Kimura 2-parameter model, with a Gamma shape parameter of 

0.5.   

 

A1.3.6 ITS1 

490 base pairs of ITS1 were amplified, and there was no ambiguity in the alignment 

process.  Using <Modeltest 3.7>, the model most likely to reflect the molecular 

evolution of the lithodid ITS1 region was the single substitution rate model (Jukes-

Cantor), which specifies equal base frequencies at equilibrium, equal probabilities of 

transition and transversion mutations and homogenous mutation rates across all sites in 

the amplified region.  In the ME analysis in <MEGA>, the Jukes-Cantor model of 

evolution was used.  In the ML analysis in <PHYLIPDNAml>, Ti/Tv was set to 1 and 

all other parameters were default. 

 

A1.3.7 18S 

In total, three point-mutations were observed in lithodids over 1836 bp of 18S rDNA.  

The V4 expansion segment (Fig AM.1b), was amplified in species from three lithodid 

genera (Lithodes santolla, Paralomis formosa, P. elongata and Neolithodes brodiei), 

but only a single point-mutation was observed.  The low level of variation meant that 

the 18S rDNA gene was not targeted further for analysis.         

  

A1.3.8 28S  

An alignment of 28S gene fragments from 22 anomuran taxa, including 14 species of 

Lithodidae, indicated low levels of in-group variability in the 5’ region (3/301 bp 

polymorphic: GenBank AF425344-59, Zaklan 2002a).  Gene fragment 28SA (Fig 

AM.1a) includes the D1 expansion segment (Hancock et al 1988), and polymorphies 

occurred at 8/739 sites within four lithodine genera (GenBank AY596100.1, 
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AB193824.1, AB193821.1, HM020882-5). Fragment 28SB was variable at 25/683 

positions, including base insertions in the sequence of Lithodes santolla. Gene fragment 

NURI had 3 polymorphic positions in 415 bp of the lithodine genome (GenBank 

HM020886-9).         

60 specimens produced 30 unique sequences for the 28SB gene fragment, including 2 

out-group consensus sequences (Pagurus & Aegla).  No additional GenBank sequences 

for in-groups were available in this region, as this appears to be a novel use of these 

primers within the Lithodidae.  The high degree of similarity between in-group 

sequences meant that the secondary structure of transcribed rRNA could be compared 

to the conserved arthropod structure.  At least six regions of base insertion (or deletion) 

occur between the out-group and the in-group sequences, indicating a high level of 

divergence between these sequences in the anomura.     

Using <Modeltest 3.7>, a 2 substitution type model (HKY+I, Ti/Tv = 2.4685) was the 

most likely to reflect the molecular evolution of the lithodid 28S gene fragment B.  A 

high proportion (0.8484) of invariable sites and mutation rate homogeneity across the 

gene was indicated.  Base frequencies= (A:0.1984, C:0.2606, G:0.3160, T:0.2350).  

These parameters were then used where required for defining the model of evolution. In 

the ME analysis in <MEGA>, the Kimura 2-parameter model of evolution was 

assumed, and the Gamma function was not used to model inter-site rate heterogeneity.   

 

A1.3.9 Out-groups  

(Bootstrap values of tree ATA  [Fig A1.2a] indicated by *) 

From the results of an ME analysis of all taxa for the 16S rDNA gene, a consensus of 

Aegla species A. platensis, A. intercalata and A. neuquensis was chosen to root 

subsequent ML and Bayesian analyses.  Tree ATA (Fig A1.2a) shows that Pagurus 

species, whilst being close to the monophyletic Lithodidae (*99), were themselves 

paraphyletic based on the 16S sequence.  Results match with a hypothesised scenario 

(Fig A1.2b) in which a consensus sequence of Pagurus species should provide a good 

outgroup for this study.  Nevertheless, a compromise was made in rooting the trees with 

Aegla species because of the less complicated relationship between them and the 

Lithodidae.  The Pagurus consensus sequence was retained in all taxonomic sets and 

was used as a substitute to root analyses if no corresponding Aegla sequence was 

available.  The Emerita sequences were particularly different from those of the 

Lithodidae, implying a distant relationship.  Emerita was excluded from all other 

phylogenetic analyses to maximise graphical resolution for taxa within the Lithodidae.      
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Figure A1.2 Preliminary investigation of out-groups using the 16S rDNA gene. a) AT  tree. A

Produced using a close-neighbour interchange algorithm from an initial neighbour joining 
tree, using the minimum evolution (ME) optimality criterion.  Analysis includes all taxa 
obtained for the 16S rDNA gene, but the lithodid lineage is condensed to a single taxon 
label.  b) Schematic of a relationship between Lithodidae (Li), Pagurus (P) and Aegla (A),
 and the principle of producing an out-group consensus sequence.  
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A1.3.10 Genetic Variability within the Lithodidae  

(Bootstrap values of tree ATA  [Fig A1.2a] indicated by *). The monophyly of clades 

within genera Pagurus (South American species P. brevidactylus, P. criniticornis, P. 

leptonyx *99), Aegla (*100) and Emerita (*100) was confirmed by the production of 

ME tree ATA for the 16S gene (Fig A1.2a).  Results for enumeration of polymorphic 

loci are summarised in Table A2.   

 

Table A2. Number of single base polymorphisms between trimmed homologous 

alignments of parts of 5 genes (number of species in brackets). 

Clade COI: 

621 

bp 

16S: 

402 bp 

28SB: 

582 bp 

ITS1: 

490 bp 

COII: 

570 bp 

18S 

Pagurus: 3 South 

American species 

N/A 

 

53 (3) N/A N/A N/A N/A 

Lithodidae: 

40 species (10 

genera)  

219 

(40) 

68 (45) N/A 57 (25) 181 

(18) 

N/A 

Lithodinae 

(excluding 

Cryptolithodes): 

35 species (7 

genera)   

198 

(35) 

53 (33) 19 (22) 46 (20) 158 3/1960 (3 

genera: 

Paralomis, 

Lithodes and 

Neolithodes) 

Neolithodes: 3 

species 

48 (3) 4 (3) 2 (3) 1 (3) 14 (2) N/A 

Lithodes: 9  

species 

48 (9) 17 (6) 0 (4) 17 (4) 68 (4) N/A 

Paralomis: 

 16 species 

156 

(16) 

27 (15) 9 (13) 15 (8) 92 (9) 0/1960 (2) 

Aegla: 3-8 species 74 (3) 25 (3) 17 (3) N/A N/A 6/1960(8) 

Emerita: 3 

species 

135 

(3) 

61 (3) 

 

N/A N/A N/A 11/1980 (E. 

analoga, E. 

brasiliensis) 

   

 

A1.3.11 Total Evidence Trees [TEB] = (16S+COI+ITS+28S)  

Over 1000 replicates, ME trees generated for each gene independently did not yield a 

significantly different phylogenetic signal to that of the combined dataset (p = 0.63).  

This indicates that the data can be combined into a single alignment (TEB) without 

introducing conflicting results.   

When molecular evidence from fragments of COI, 16S, ITS1, 28SB were combined, 

<Modeltest 3.7> predicts the following model of molecular evolution (using hLRT): 

(HKY+I+G) is a 2-substitution rate model (Ti/Tv ratio = 3.7305) with unequal base 

frequencies (A:0.2862, C: 0.1995, G:0.1981, T:0.3162), and between-site rate 

heterogeneity modelled by the Gamma function (shape = 0.3470) and a proportion 
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(0.5318) of invariant sites. For the ME analysis in <MEGA3.1>, the Kimura 2-

parameter model of evolution was assumed.  For Maximum Likelihood analysis in 

<PHYLIPDNAml>, all parameters were taken from the above estimations. For Bayesian 

analysis, the number of substitution types, (COI:6, 16S:2, ITS:1, 28S:2) were indicated 

for each of 4 gene partitions (Bayes block included in Appendix D) values of model 

parameters were allowed to change during iterations of the algorithm (described in 

methods AM.5.1.5).   

 

-Phylogeny results for analysis of the TEB  alignment  

Confidence indicators (bootstrap values for ME and ML, posterior probabilities for 

BAY) from three analyses indicated are indicated by the bracket style (ME) [ML] 

{BAY}. Letters in bold square brackets refer to commonly resolved clades on the 

phylogenies: refer to figures (A1.3 a-c). 

 

--Root of the tree 

The ME tree (Fig A1.3a) is rooted at its mid-point, and so no outgroup is explicitly 

defined in the input data.  In this case, Lomis hirta and Aegla species are paired (99) to 

the exclusion of the Lithodidae and Pagurus.  The Lithodidae [A] are monophyletic in 

all topologies (93[100{0.89}]).  

 

--Genera 

Genera Cryptolithodes [D] (98[100{0.82}]), Hapalogaster [E] (82[95{0.92}], 

Oedignathus inermis, and Paralithodes brevipes are excluded from a clade [G] 

(67[90{0.61}]) containing the remaining Lithodidae.  Relationships between these basal 

groups are ambiguous, because the ML, Bayesian and ME topologies do not agree 

whether the subfamily Hapalogastrinae [C] includes the (lithodine) genus 

Cryptolithodes.  Oedignathus and Hapalogaster are sister taxa within clade [C] in the 

ME and Bayesian (51{0.81}) but not the ML topology, in which Oedignathus and 

Cryptolithodes are sister taxa [65].  Paralithodes brevipes, whilst being placed 

consistently outside a clade [G] uniting other lithodine genera, is placed alternately with 

the Hapalogastrinae [B] (63{0.81}) or at the base of the Lithodinae [F] [60] by different 

methods of analysis.   

Monophyly of Lithodes [K] (55[72{0.97}]), Neolithodes [J] (99[99{1.0}]) and 

Paralomis (plus Glyptolithodes) [M] (98[56{1.0}]) are supported under all analytical 

methods.  Support for a grouping of Lithodes with Neolithodes [I] (which is sometimes 

inclusive of Paralithodes camtschatica and P. platypus) is weak but present in all 

analyses (57[40{0.81}]).  Lopholithodes is closely allied with 
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Paralomis+Glyptolithodes [L] in the ML and Bayesian analyses [99{1.00}], and is 

never included within the monophyletic Paralomis (+Glyptolithodes) taxon [M]. 

The genus Paralithodes is represented by three species: Paralithodes camtschatica, P. 

platypus and P. brevipes.  This genus is not supported as a monophyletic clade in any of 

the selected topologies.  P. platypus and P. camtschatica are resolved as sister taxa in 

clade [H] under ML analysis [60].  Neolithodes asperrimus and N. duhameli are paired 

within clade [N] (99[99{0.98}]) to the exclusion of N. brodiei, and another Southern 

Pacific Neolithodes (species indeterminate) sample. 

 

--Lithodes 

 Maximum Likelihood analysis resolves two groups within Lithodes; separating L. 

maja, L. santolla and L.confundens [O] [40{0.63}] from L. murrayi, L. longispina, and 

L. nintokuae [Q] (97[98{1.00}]). Within clade [O], South American species L. santolla 

and L. confundens are paired, forming clade [P] [99{1.00}].  L. ferox, L. couesi, L. 

maja, and L. aequispinus can not be resolved with confidence on the basis of these 

results, instead appearing in a polytomy at the base of the Lithodes clade [K] in both the 

ME and ML analyses.  In the Bayesian analysis, L. aequispinus is allied with L. 

nintokuae, L. longispina and L. murrayi outside clade [Q] {0.85}; and L. ferox, L. 

couesi outside the clade of Atlantic Lithodes, [O]. 

 

--Paralomis 

Paralomis elongata (paratype) is the sister group of P. aculeata, as indicated by clade 

[R] (100[100{1.00}]).  There are no polymorphic sites in a comparison of 2110 bp of P. 

elongata and P. aculeata DNA.  Clade [R] is nested within a larger clade of sub-

Antarctic specimens [S] (99[99{1.00}]), including P. anamerae (caught by long-line 

fisheries in South Georgia); sample SA06 (morphological I.D. close to P. anamerae) in 

South Georgia; P. birsteini (sample SA147: Crozet); and Paralomis unidentified tissue 

sample (2 specimens: Crozet).  

An ‘African clade’ of Paralomis (P. elongata, P. africana, P. cristulata) is supported 

by ME analysis [Y[ (72), but not by other optimisation criteria. ML analysis and 

Bayesian inference, produce topologies in which P. africana (+P. cristulata) are the 

sister taxa of clade [S] within a larger clade [T] [98{1.00}].  Clade [U] (Figs A1.3 b, c) 

includes P. erinacea as sister taxon to clade [T] with a high degree of support in the 

ML and Bayesian analyses [80{0.99}].      

 



 Paralomis anamerae

 Paralomis c.f. anamerae
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Figure A1.3 Trees produced from a total evidence alignment (TE ) of genes ITS1, 16S, B

COI and 28SB. Terminal taxa are consensus sequences produced from multiple specimens
using IUPAC ambiguity codes.  Where sequences within species differ consistently at
multiple loci species are split into multiple labels.  Letters at nodes refer to clades 
discussed in the text.  a) Minimum evolution tree produced in MEGA 3.1.  Mid-point
 rooted. Numbers at nodes are bootstrap values (1000 replicates).
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b) Maximum likelihood tree produced in PHYLIPDNAml.  Rooted using a consensus
 sequence of 3 Aegla species.  Numbers at nodes are bootstrap values (1000 replicates).
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c) Tree produced by Bayesian analysis in MrBayes 3.1.  Rooted using a consensus sequence of
3 Aegla species. Numbers at nodes are posterior probabilities.
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Paralomis spinosissima is the sister taxon of Paralomis multispina [V] (73[99{1.00}]), 

although the position of this clade is ambiguous within Paralomis as a whole.  There is 

some indication that these species might be associated with clade [U], to form clade 

[W] [45{0.86}].   

 A derived relationship is indicated between Paralomis formosa and P. cristata in clade 

[X] (85[100{1.00}]), as well as a similarity between an Antarctic specimen of 

Paralomis birsteini and P. pacifica sequences from GenBank.  Several other species, 

Glyptolithodes cristatipes, P. dofleini, P. zealandica, P. granulosa, are always included 

within Paralomis [M]; however, these species are never grouped with sufficient 

confidence alongside any of the other species included in the analysis.     

64/1523 bp (4.2% of bases) are polymorphic when P. birsteini from the Crozet islands 

in the southern Indian Ocean, is compared with P. birsteini from the Ross Sea and 

Bellingshausen Sea (SA101+SA85). These two strains of the P. birsteini morphotype 

do not form a monophyletic clade based on the genes sampled.  In fact, fewer loci are 

polymorphic (1.57% of bases) when P. birsteini from Crozet is compared with P. 

aculeata (also from Crozet).   

 

A1.3.12 Overview of phylogenetic signal from individual genes 

Analyses are heavily based on the models used, and many different assumptions must 

be incorporated into the models.  Many trees were produced during this study: not all of 

which have had their results examined explicitly in the text, including those produced 

for individual genes.  It is important to consider the effects of the assumptions, and of 

the difference in information provided by each gene as an evolutionary unit.  An 

overview is provided in Table A3.   The phylogenetic signal of the in the TEB alignment 

(Fig A1.3) appears to be derived predominantly from the COI gene, which has the 

highest level of sequence divergence within the group.  Other genes support some of the 

very strong divisions (between genera, or pairs of terminal taxa), but conflict exists at 

some of the intermediate nodes.  Although there are gaps in species sampling and gene 

sampling, the topology of the tree should not change when more species are added, 

especially in well supported groupings.   

 

Table A3. Confidence indicators at nodes for phylogenetic analysis of individual genes. 

KEY: (ME [ML]) (-) = unresolved; X = Rejected.   

Clade labelled on Fig A1.3 COI 16S 28SB COII ITS1 

[C] Clade containing Oedignathus 

and Hapalogaster: with or without 

Cryptolithodes. 

(-[-]) 

 

(53[X]) N/A N/A N/A 
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[G] Lithodinae exclusive of P. 

brevipes  

(91[38]) 

 

(-[X]) N/A (X) (71) 

[I] Lithodes + Neolithodes: with or 

without Paralithodes camtschatica 

and P. platypus. 

(75[-]) 

 

(-[-]) (58[60]) (X) (X) 

[J] Neolithodes (98[81]) (-[45]) (98[88]) (99) (98) 

[K] Lithodes (and P. camtschatica 

/ P. platypus) 

(63[47]) 

 

(-[-]) (95[43]) (53) (91) 

[M] Paralomis (and 

Glyptolithodes) 

(66[60])  (X) (60[36]) (-) (55) 

[N] N. asperrimus + 

N. duhameli 

(99[74]) 

 

(53[X]) (81[77]) (99) (-) 

[O] L. maja + L. confundens + L. 

santolla. 

(-)  (X) N/A N/A  N/A 

[P] L.santolla + 

L. confundens 

(-[34]) 

 

(79[83]) (-[-]) (60) (97) 

[Q] L. nintokuae + L. longispina + 

L. murrayi  

(68)  N/A N/A N/A N/A 

[R] P. elongata + P. aculeata (100[97]) (98[97]) (-[-]) (67) (-) 

[S] P. elongata + P. aculeata + P. 

anamerae. 

(96[92])  (-[X]) (-[-]) (-) (-) 

[T] P. elongata + P. aculeata + P. 

anamerae + P. africana + P. 

cristulata. 

(X[X]) (-[-]) 

 

N/A (-) (-) 

[U] ([T] + P. erinacea) (66[71]) (-[X]) N/A (X) (-) 

[V] P. multispina + P. 

spinosissima 

(53[29]) 

 

(99[93]) N/A N/A (81) 

P. cristulata + P. africana (99[79])  (96[98]) (-[-]) N/A (64) 

[W] ([U] + [V]) (-[-]) (-[-]) (-[-]) (X) (55) 

P. formosa + P. cristata (99[97]) (-[-]) N/A N/A N/A 

[X] P. formosa + P. birsteini + P. 

cristulata + P. pacifica 

(46[-]) (-[-]) (-[-]) (X) (92) 

Lithodes + Paralithodes 

camtschatica + P. platypus 

(63[-]) (-[-]) (-[X]) N/A 

(-) 

P.multispina + P. spinosissima + 

P. erinacea 

(X[X]) (-[-]) N/A  N/A X 
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A1.4 Discussion 

A1.4.1 Mutations Rates within the Lithodidae 

The number of polymorphic loci in the 5’ half of the 28S gene, and the V4 region of the 

18S gene was so low that the study of these genes was discontinued to economise on 

resources.  A low level of sequence diversity within the Lithodidae is indicated; 

however, there is only incidental evidence to suggest that the expected levels of 

variation should be higher (Nelles et al 1984, Crease & Taylor 1998, Held 2000).  A 

like-with-like comparison of mutation rates between different lineages is almost 

impossible without geological calibration for the age of the taxon (which we don’t have 

for the Lithodidae).   

For a homologous alignment of the 16S gene, a conservative estimate of expected 

amounts of variation was taken from monophyletic groups within the genera Pagurus, 

Aegla and Emerita (I emphasise the comparison of genus-level anomuran taxa with the 

whole sub-family Lithodinae).  For 402 (in-group) bp of the 16S gene, the variation 

within a monophyletic clade of South American Pagurus was equal to that found within 

the whole Lithodine sub-family, and 10 times the variation found within genus 

Neolithodes.  The same degree of disparity was found within three species of Emerita; 

however, three species of Aegla had the same number of variable sites as the 15 tested 

species of the genus Paralomis.   In the 18S gene, there were 3 variable positions 

between three Lithodine genera, but 11 within Emerita and 6 within Aegla.  Disparity 

was less marked in the COI gene and comparisons were not made for 28S, COII or ITS.  

These results are not conclusive, but there is an indication that the Lithodinae have an 

atypically low genetic variation for such a large (and diverse) anomuran taxon.   This 

could be evidence of a number of scenarios:  

• a low rate of molecular evolution as a product of temperature-related change 

decreased enzymatic activity, decreased or less efficient DNA replication 

rates, and increased generation times experienced at low temperatures 

(Bargelloni et al 1994, Martin 1999); alternatively, it could reflect a lineage-

specific mutation rate that is not linked to temperature (Held 2001).            

• a relatively recent radiation. 

• a residual level of gene-flow tending to increase the homogeneity of related 

species.  

 

A1.4.2 Relationships between lithodid genera 

Of those studied, all lithodid genera are monophyletic as currently defined, with the 

exception of Paralithodes (see below), and Paralomis, which includes the single 
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species of genus Glyptolithodes.  Paralomis, Glyptolithodes and Lopholithodes are all 

lithodids with compact, well calcified carapaces, and calcified plates on their abdominal 

segments (as opposed to nodules of calcification like in Lithodes, Paralithodes and 

Neolithodes; or uncalcified plates like those present in the Hapalogastrinae).  

Glyptolithodes occurs off the coast of Chile and has a known bathymetric range of 250-

800 m.  Lopholithodes species L. mandtii and L. foraminatus diverge outside, but close 

to the base of the clade containing all sampled Paralomis and Glyptolithodes species.   

The arrangement of the genera does not provide conclusive evidence for or against the 

‘hermit to king’ (Cunningham et al 1992, Zaklan 2002a) or ‘king to hermit’ 

(McLaughlin & Lemaitre 1997) theories, nor was that the aim of the study.  The data 

indicate that under the strict definition of the Lithodinae (including genus 

Cryptolithodes), the subfamily is probably paraphyletic (Fig A1.3a-c).  This is a 

tentative confirmation of the evidence given by McLaughlin et al (2004, 2007) that the 

soft abdomen of the Hapalogastrinae is not an ancestral feature (Cryptolithodes has a 

fully calcified abdomen with the fewest tergal plates of all Lithodidae).  Nevertheless, 

Cryptolithodes and the Hapalogastrinae belong to a lineage that diverged from the other 

Lithodinae [F] at the base of the lithodid stem; these data indicate that a shallow water, 

North Pacific habitat and planktotrophic larval feeding mode are plesiomorphic features 

of the Lithodidae (Schematic tree TEC , Fig A1.4).     

 

A1.4.3 Paralithodes 

There are six species included in the genus Paralithodes (Appendix A), three of which 

are sampled here: P. brevipes, P. camtschatica, P. platypus.  The group is unified 

morphologically by having five plates rather than three on the 2
nd

 segment of the 

abdomen, and has no reduction of the antennal acicles.  Small eggs (indicative of 

planktotrophic larval development) are shared between Paralithodes brevipes, P. 

camtschatica, P. platypus and several other North Pacific genera and are probably a 

plesiomorphic feature.  Any derived morphological similarities between P. 

camtschatica, P. brevipes and P. platypus are contradicted by the evidence from their 

genetics that they are paraphyletic.  Data intriguingly corroborate pre-cladistic theories 

developed by Bouvier (1895) and Makarov (1938) that predict the paraphyletic status of 

the genus Paralithodes, and specifically the closer relationship of P. camtschatica to 

Lithodes than to P. brevipes.  The results of this analysis show that P. camtschatica and 

P. platypus are weakly allied with the Lithodes and Neolithodes genera.      
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A1.4.4 Neolithodes 

A markedly low within-genus mutation rate was observed for all genes sampled from 

specimens of Neolithodes (Table A2).  This suggests that either the three species 

sampled in this study are, by chance, particularly closely related within Neolithodes; or 

that these genes evolve more slowly in Neolithodes than they do in other genera.   

Neolithodes asperrimus occurs around the cape of Africa (from northern Namibia to 

Madagascar), at depths of 518-1050 m.  Around 2000 km south of the cape, N. 

duhameli is known from the Crozet islands 620-1500 m.  N. brodiei is known from the 

Pacific islands of Vanuatu 950-1250 m (Appendix E).  All three of these species are 

characterised within Neolithodes by having a large number of spinules on the carapace 

and all appendages. It is notable that of these three species, the two that are 

geographically closest are the most closely related.     

 

A1.4.5 Lithodes 

The structure of the Lithodes clade is not well resolved.  Analysis of the same dataset 

produces a number of contradicting topologies.  L. murrayi and Pacific species L. 

nintokuae and L. longispina are typically separated from the Atlantic species L. 

santolla, L. confundens, L. ferox and L. maja.  L. murrayi shares a morphological 

affinity with Lithodes species from the Central Pacific and Indian Oceans (L. 

longispina, L. richeri), rather than with those from the North East Pacific or Atlantic (L. 

aequispinus, L. santolla) (Section B2).  L. murrayi is, however, currently considered to 

have a wide distribution around the Southern Ocean: reported from Crozet (as sampled 

here), as well as the Bellingshausen Sea (Garcia-Raso et al 2005), and morphological 

similarities are strong with L. turkayi from the Scotia Sea.  Lithodes ferox is found off 

the coast of Namibia, and shares a number of morphological features with L. murrayi 

which are discussed elsewhere (Section B2).  The separation of Lithodes murrayi and 

Lithodes ferox suggests that the common ancestor of these two groups possessed 

morphological characteristics that these two now share.  It is noteworthy that L. maja is 

placed close to L. santolla and L. confundens in the TEB ML and Bayesian trees, since 

these are all Atlantic species from northern and southern high latitudes respectively.    
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Lithodes santolla is morphologically similar to L. confundens, primarily based on the 

absence of a prominent mid-rostral spine, and this feature distinguishes them from 

many in the genus (Macpherson 1988a).  The distinction between the species is based 

on the number and size of spines on the dorsal carapace and articles of the walking legs 

(which are larger and fewer in L. santolla).  A survey of collected knowledge on the 

distribution of the two species (Appendix E) indicates that they have an overlapping 

distribution in and around Patagonia (South America).   Information obtained in this 

study shows a consistent genetic difference between individuals belonging to the two 

species.  There also appears to be two ‘hapalotypes’ of Lithodes santolla: one from 

individuals sampled around Puerto Montt (west coast Chile, 40° S), and one from 

individuals sampled at Punta Arenas (Straits of Magellan).  The two strains of Lithodes 

santolla are more closely related to one another than either is to Lithodes confundens.  

The Straits of Magellan consist of several basins with hydrological and geological 

boundaries between them (Brambati et al 1991, Panella et al 1991, Antezana et al 

1992).  In several places, shallow sills constrain water exchange to the upper 40 m; it is 

possible that there is some restriction in the level of gene flow between the shallow 

water (10-212m) populations of Lithodes santolla from the West Coast and those in the 

central parts of the Straits of Magellan (Antezana 1999).  Samples of Lithodes 

confundens were obtained from two locations (unfortunately neither of them the same 

as L. santolla sample sites): Cabo San Sebastian (0-10 m), on the Eastern coast of 

Argentina, and further (and deeper: 162 m) off shore on the Argentinean Plateau.     

    

A1.4.6 Paralomis  

61 species (including Glyptolithodes cristatipes) are currently recognised from within 

the genus Paralomis.   Molecular data have been obtained for 16 of these species, 

broadly representing the total distribution of the genus throughout most of the world’s 

oceans.   Ancestral relationships at the base of the Paralomis clade have proved 

difficult to reconstruct based on these data.  Pacific species P. zealandica, 

Glyptolithodes cristatipes, P. dofleini, and South Atlantic species P. granulosa in 

particular are not close enough to any other sampled species for ancestral similarities to 

be recognised.  This perhaps reflects gaps in sampling in the Pacific region, which is 

known to have a high morphological diversity of Lithodidae (Appendix E, Section B).  

From this basal polytomy, two or three larger clades are resolved ([V, U, X] or [W, X]).   

Clade [X] contains an apparent assortment of North Pacific and South Atlantic 

Paralomis, and strongly implies a relationship between P. formosa and P. cristata that 

does not seem to reflect a distinct morphological or distributional similarity (although 

see Section B3).     
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West African species P. erinacea, P. africana and P. cristulata diverge at the base of a 

second clade, [U].  The recognised ranges of P. africana and P. cristulata have been 

recently expanded by explorations off the coast of Mauritania (courtesy of Ana Ramos, 

Vigo) and videos from the Serpent drilling projects off Nigeria (courtesy of Dan Jones, 

NOCS).  Crabs with morphologies similar to P. africana and P. cristulata are now 

known from locations all along the coast around equatorial western Africa, around 1366 

m deep off Nigeria, and 1500 m off Mauritania.  This extends the previously recorded 

southern distribution of P. africana substantially.  It also means that the two groups 

have an adjacent, if not overlapping distribution in this area.  Molecular evidence 

supports a very close genetic relationship between these species, which can be 

distinguished by the form of lateral spines on the legs and carapace.  These appear as 

strong crests in P. cristulata but several spines in P. africana (Macpherson 1988a).   

Paralomis erinacea has a broadly overlapping range with P. cristulata, and was found 

alongside this species in Mauritania. It is morphologically quite different to the two 

other African species: most notably in the presence of spines uniformly covering the 

carapace, each with many long setae around the mid portion of the spines (Section B1).  

The original description (Macpherson 1988a) states that P. erinacea is close to P. 

spinosissima from the South Atlantic, with its carapace covered uniformly in large 

spines.  Paralomis erinacea, however, does not have an obviously enlarged spine in the 

mid part of its gastric region, which (among other features) distinguishes it from P. 

multispina and P. spinosissima.  In addition, the setae on the spines of P. erinacea are 

of a substantially different form to those in the later species (Section B1).   

A consistently well resolved part of the tree, within clade [U] contains specimens 

exclusively from the sub-Antarctic region of the Atlantic and Indian Oceans at latitudes 

above 45° S [S].  P. anamerae, P. aculeata and P. elongata have distributions around 

isolated islands and seamounts at the latitudes associated with the eastward flowing 

Antarctic circumpolar current (Appendix E).  The close genetic relationship between 

these groups suggests that they are not as isolated as their patchy distribution would 

suggest.  No monophyletic group exists containing all southern high latitude Paralomis 

species; P. formosa, P. granulosa and P. spinosissima from sub-Antarctic waters all 

resolved elsewhere on the tree.      

     

Known from opposite ends of the globe, P. spinosissima and P. multispina (clade [V]) 

certainly do not have an adjacent distribution (Appendix E).  The tissue sample of P. 

multispina used in this study was taken from a preserved specimen found in waters off 

Japan (and also sequences from GenBank), although the species is known throughout 

the Bering Sea, and from the coast of North America between 600-1500 m.  P. 



The Evolutionary History of the Lithodinae  Section A Chapter 1 

82 

spinosissima is known from the Scotia Sea and the South Atlantic, as well as from 

waters south of Cape Horn (162-1200 m), with distribution skewed towards the 

shallower end of this range (Purves et al 2003).  Evidence suggests a close ancestral 

relationship between the two species.   

P. multispina and P. spinosissima have a uniform coverage of spines across the 

carapace and legs, which in adults have an oblique face at the apex, with a ring of setae 

around the tip (Section B1).  They both have 3-5 large, pointed spines without setae 

emanating from the gastric and branchial regions, and also from the lateral margins and 

legs.  Tissue samples from preserved specimens of P. phrixa from the western coast of 

Peru (815-860 m) did not yield any good quality DNA, and no genetic data was 

obtained for this species.  P. phrixa does, however, have spines and aspects of 

morphology of a similar form to P. spinosissima and P. multispina.   Its intermediate 

distribution bridges the geographic gap between the North Pacific and the South 

Atlantic, and implies a radiation of this group along the western coast of the American 

continent.        

    

-Spines: A plesiomorphy? 

Presence or absence of a continuous coverage of spines is an obvious morphological 

trait by which Paralomis can be classified.  There are several heavily spined Paralomis 

species in the global oceans, only three of which have been sampled for the genetic 

study, although most have been examined for morphological traits (Section B3).  P. 

bouvieri from the Barents Sea, P. hystrix from Japan, and P. aspera (and similar species 

P. makarovi – described Hall & Thatje 2009b, Appendix F) are all distinguished based 

on many aspects of morphology, including spine form on a microscopic level (Section 

B1).  If P. erinacea does have a monophyletic relationship with P. anamerae to the 

exclusion of P. spinosissima [U], then either the common ancestor of this lineage [W] 

was covered in spines, or the condition has arisen separately in at least two lineages.      

  

-Paralomis granulosa 

On the strength of evidence from many genes, P. granulosa is distantly related to all of 

the other Paralomis species examined in the genetic study.  The Magellanic fauna is 

thought to be relatively young, as until recently the area was glaciated and had no 

marine influence (McCulloch et al 2000, Hulton et al 2002).  P. granulosa is also 

known from the Falkland islands, and from deeper waters (100-150 m) between the 

Falkland islands and the Straits of Magellan (Appendix E); however, it shares neither 

strong morphological nor genetic links, with any of the currently known Scotia Sea 

Paralomis.  No west-coast Paralomis species were sampled for this study, but it might 
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be hypothesised that the ancestral links of P. granulosa are with deeper (400 m +) 

Paralomis on the continental slopes of northern Chile, where a wide variety of species 

are known.  It should be mentioned, however, that the morphology of P. granulosa is 

strongly influenced by (or adapted to) the shallow water habitat in which it lives (Anger 

et al 2003).          

 

-Paralomis birsteini 

Specimens of P. birsteini have been sampled from populations in the Ross Sea, 

Bellingshausen Sea, and southern Indian Ocean.  These specimens conform to the 

original species description (Macpherson 1988a, Ahyong & Dawson 2006), based on 

personal examination of 10 specimens covering these three locations. 

Analysis of the COI, 16S, 28S, ITS genes in the a Bellingshausen sea specimen of 

Paralomis birsteini (SA101), and a Ross Sea specimen (SA85), in comparison with 

several Crozet specimens suggest that gene flow within this morphotype is limited or 

absent between the Southern Ocean and Crozet populations. Cryptic speciation has been 

previously discovered in other Antarctic taxa with limited dispersal potential (Held & 

Wägele 2005, Raupach & Wägele 2006); however, the level of variation between these 

populations seems to surpass a cryptic speciation event.  Within the context of the global 

diversity of genus Paralomis, it seems that these populations are not closely related.  

The morphological similarities between Indian Ocean (Crozet) and Southern Ocean 

(Bellingshausen Sea, Ross Sea: similar to one another) examples of Paralomis are not 

reflected in genetic markers.  It is possible that these populations have been mistakenly 

unified as a species, and are in fact similar by convergence.  Otherwise, a study 

including greater sample numbers from each of these populations might be able to 

identify multiple genotypes at each location. 

 

A1.5 Conclusions 

• There are indications of lower than expected levels of mutation within the 

Lithodidae, and a thorough investigation of this phenomenon will be 

proposed for further work.  This could indicate a recent common ancestor to 

the extant group, or a slow rate of molecular evolution in the Lithodidae. 

• The Lithodinae as defined to include North Pacific genus Cryptolithodes may 

be paraphyletic, with the Hapalogastrinae and Cryptolithodes as sister taxa.  

This implies that the soft-bodied abdomen of the Hapalogastrinae might not 

be plesiomorphic for the Lithodidae.    
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• Paralomis, Lopholithodes, Phyllolithodes, Lithodes and Neolithodes share a 

common ancestor, from which the North Pacific Hapalogastrinae did not 

descend.  Lithodid ancestors are likely to have had a north Pacific, shallow 

water distribution and to have had planktotrophic larvae.   

• North Pacific genus Paralithodes is paraphyletic; P. brevipes is the most 

basal member of the genus (as sampled) while P. camtshaticus and P. 

platypus are more closely related to the genera Lithodes and Neolithodes.   

• Genera Lithodes, Neolithodes and Paralomis (as sampled) are monophyletic 

if Glyptolithodes is included within Paralomis.  Lopholithodes is closely 

related to, but not included within the Paralomis genus. 

• Paralomis is divided into at least two major lineages: one containing South 

Atlantic, west African, and Indian Ocean species, and the other containing 

Pacific and South American species.  Several species of Paralomis do not 

resolve consistently with any other groups sampled, implying a complex and 

possibly rapid global evolution early in the history of the genus.         

• Relationships within the Lithodes genus vary between analytical methods, 

suggesting that conclusions may not be stable.  Consistently, however, Indian 

Ocean and Pacific forms – L. murrayi, L.longispina and L. nintokuae form a 

group separated from Atlantic species such as L. santolla, L. confundens, L. 

maja and L. ferox. 
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Section B: Using morphology to delimit, identify and relate 

species 



The Evolutionary History of the Lithodinae  Section B Introduction & Methods 

86 

BO: SECTION INTRODUCTION AND DEVELOPMENT OF 

METHODS 

 

BO.1 Defining and delimiting species 

Huxley (1942), a pioneer of the ‘Modern Synthesis’ of evolutionary theory, describes 

the species problem succinctly: “although the degrees of discontinuity represented by 

good species are such that borderline cases are rare, there can not be any hard-and-fast 

distinction between a species and a subspecies, since in many instances one arises 

gradually out of another in the course of evolution; it is a matter of taste and 

convenience where the line is drawn.”  As discussed in the main introduction, the 

philosophy of the nature of species and speciation is complex; nevertheless, ‘species’ as 

cohesive units have an important practical role in biodiversity and biogeographical 

studies (Wheeler 1995, Carcraft 1997, Mace 2004).  Therefore, it is important that 

species can be individually defined in an unambiguous way.         

 

BO.1.1 The concept of a holotype   

Practical definitions of zoological morphospecies assign a taxon name to a single 

specimen (holotype) or series of specimens (syntypes).  This ‘name-bearing type’ is 

defined in the international code of zoological nomenclature as ‘that which provides the 

objective standard of reference whereby the application of the name of a taxon can be 

determined’ (ICZN 1985).  As such, the holotype does not necessarily represent a 

‘typical’ member of the species, nor does it have to delimit the total variation found 

within the taxon, which may not be known at the time of description.  As species 

definitions refer formally to only a few individuals, it is important to recognise and 

describe the full scope of variation when further evidence becomes available.    

 

BO.1.2 Characters variant within species: ontogeny 

Significant changes with growth account for a major source of polymorphism within 

species.  One example is a progressive change in carapace ornamentation, which has 

been noted by several authors for the Lithodidae (Haig 1974, Takeda 1974, Ingle & 

Garrod 1987, Macpherson 1988a, 1990, 2008).  “The clear difference between juvenile 

and adult lithodids has been pointed out, and illustration is strongly recommended” 

Macpherson (2008).  This phenomenon occurs in other decapod families, such as in 

Cancer pagurus Linnaeus, 1758, which displays progressively fewer features on its 

carapace in successive moults, from crab stage 1 to adults (Ingle 1981). Particularly in 

members of the lithodid genus Neolithodes, variation in spine length and density 



The Evolutionary History of the Lithodinae  Section B Introduction & Methods 

87 

between juveniles and adults makes identification to species level problematic – 

especially when a whole growth series isn’t available for comparison.  In descriptions 

of several species of the genus Neolithodes, the ontogenetic change itself is mentioned 

as a characteristic for identification (e.g. N. agassizii Smith 1882, N. diomedeae 

Benedict 1894, N. asperrimus Barnard 1947: in Macpherson 1988a).   Differing growth 

stages can usually be unified as a single species using features other than the spines and 

tubercles; however, the microscopic changes often have substantial effects on the 

macroscopic appearance of a specimen.  The identification process would be enhanced 

by increasing the available knowledge about variation within species.   

 

BO.1.3 Characters variant within species: Environmental damage   

Variation in carapace ornamentation within a moult stage caused by the erosion of 

spines, breakage and re-growth, or fouling of the surface, can hinder identification.  The 

state of fouling on the carapace can assist in determining the age of a moult stage.  

Whereas juvenile and young reproductive adult stages have annual or semi-annual 

moult cycles, it is estimated that there can be several years between moulting stages of 

larger adults (McCaughran & Powell 1977).  The effect of environmental attrition can 

therefore be assumed to be greater in larger adults.  

 

BO.2 Handling continuity in phylogenetic analysis 

Characters obtained for the production of a phylogeny have traditionally been omitted if 

it is not possible to code them discretely, and if they vary within a species (Wiens 

2000).  It can be argued that exclusion of continuous characters (if they are homologous 

to one another) is detrimental to the accuracy of the phylogeny (Kluge 1989, Campbell 

& Frost 1993, Wiens 2000).   

 

There are two opposing considerations when coding continuous variation for 

phylogenetic analysis: 

 

I) There is a trade-off in morphological phylogenetic analysis between 

incorporating a large amount of evidence (Kluge 1989), and maintaining the 

accuracy and mutual independence of the characters collected.  Very often, there 

are few truly discrete and novel features separating closely related organisms 

(those in which the character is ‘present’ or ‘absent’).  In many cases, a 

modification of an ancestral characteristic is informative of inter-species 

difference, for example ‘short setae’ and ‘long setae’.  Where features are 

characterised in pseudo-discrete terms, such as ‘long’ and ‘short’, there is an 



The Evolutionary History of the Lithodinae  Section B Introduction & Methods 

88 

implicit description of a continuous range of values present within, and possibly 

between, taxa (Thiele 1993).  The aim of morphological character coding is to 

select the maximum number of independent, homologous characters (both 

discrete and continuous) until the creation of further characters would be 

biologically tenuous (Kluge 1989).      

 

II) The complexity of the process of gene expression (epigenetic, environmental 

effects) means that even in within one genotype, there might be variation in the 

expression of a character (Jaenisch & Bird 2003, Lamb & Jablonka 2005).  

Therefore, it is almost always simplistic to suggest that any character state is 

invariant.  Phenotypic variation in this sense can be non-hereditary, and therefore 

confounding to a phylogenetic reconstruction.  It is important to be able to 

separate random variation from underlying and hereditary gene expressions.   

 

There are two different approaches that can be taken to code for continuous characters:  

Direct, continuous coding of measurements allows an unlimited number of different, 

ordered, states to be recorded without data loss (Rohlf & Marcus 1993).  Importantly, 

continuous coding allows the statistical significance of intra-species vs inter-species 

variation to be incorporated into the analysis.  Alternatively, pseudo-discrete coding 

divides a theoretically continuous dataset into discrete units based on a tendency for 

clustering in the data.  Practically, this is done by assigning numerical limits to the 

cluster (e.g. short = 0-10 mm; long = 20-30 mm) (Wiens 2000).   In any sense, it is 

desirable to be able to code inter-species variation in a way that allows us to analyse 

derived differences between both continuous and discrete character states. 

 

BO.2.1 Morphometrics 

Morphometrics is the study of measuring change in a complex shape; in this case the 

evolution of carapace shape in a lithodid crab.  There are many branches to the field of 

morphometrics, including geometric morphometrics, in which the mapping of one 

shape onto another is investigated using multivariate analysis (Bookstein 1991, Rohlf & 

Marcus 1993). These methods preserve information about relative spatial arrangements 

of Cartesian coordinate (landmark) data (Rohlf 1998).  Data are collected by recording 

multiple homologous landmarks in the same plane, and then scaling each shape to a unit 

size (Procrustes analysis: Hurley & Cattell 1962) before comparison (Bookstein 1991).  

Although ‘geometric morphometrics’ does provide the most up to date methods for 

analysing complex shapes, there are several problems which meant that a more 

simplistic approach to morphometrics was developed for this study. 
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• In 2-D geometric morphometrics, large amounts of data must be collected 

either by photography or by scanning.  This technique was trialled for the 

dorsal carapace features in Paralomis granulosa, which are in a more-or-less 

2-D plane and can be aligned to the camera using clamps.   While this is 

technically possible for dorsal carapace features; legs and lateral features 

could not be analysed by two dimensional methods.  Three-dimensional 

analysis would not have been possible because of the nature of sample 

collection in this study. 

• When multiple landmarks are considered, average shape changes can be 

misleadingly dominated by characters for which homology is less certain, or 

for which measurement is difficult to place accurately (especially when 

perspective distorts the 2D plane in photographs).  This probably non-

biological variation affects the analysis more than do the smaller but 

consistent variations in other measured lengths – the techniques are prone to 

error.             

• The aim of this study is primarily to produce a phylogeny of the Lithodinae 

and to maximise the confidence in the conclusions produced.   Rohlf (In 

Wiens 2000) describes techniques for using ‘partial warps’ of shape-space 

(Fink & Zelditch 1995) to produce variables for use in phylogenetic study.  

There are, however, concerns about homology in comparing shape-space 

warps and their use in phylogenetic study is not fully established (Zelditch et 

al 1995, Rohlf 1998b, Monteiro et al 2002, Adams et al 2004).  I have opted 

for a more simplistic method in which parameters are derived from basic 

biological principles, and the logical conclusions are less obscure. 

 

“The complexity of morphological data means that we must dissect organisms into 

individual features.  This dissection is often difficult and we rarely know a priori which 

lines of dissection correspond to evolutionary units.  Yet this dissection is a crucial 

stage of character analysis.  Morphometric data, because they are especially explicit 

about the features analysed, and because they force us to be explicit about our lines of 

dissection might be a useful general paradigm for complex data (Zelditch et al 1995, 

Zelditch: In Wiens 2000)”. 

 

BO.2.2 Landmark homologies in morphometric study 

Establishing the homology of landmarks (points between which measurements are 

taken) underpins all morphometric and all phylogenetic study based upon it.  Three 
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kinds of homology are defined in Rohlf’s ‘morphometric glossary’ (1998a) and 

characters described by the first two are acceptable in this study. 

 

Type I landmark: One whose homology is supported by anatomical or histological 

evidence. 

Type II landmark: Homology is supported by geometric rather than anatomical 

evidence, for example, ‘the tip of the rostrum’. 

Type III landmark: At least one deficient dimension to the landmark, e.g. ‘the 

longest diameter’, or ‘bottom of a concavity’.  These are permitted in some 

multivariate techniques, but homology is not ascertainable. 

 

BO.3 Background and theoretical derivation of morphometric methods 

used in this study 

BO.3.1 Allometry: controlling for size 

Allometry is a branch of morphometrics that investigates the change of shape as a 

function of size (Klingenberg 1996).  If size can be removed as a variable, a meaningful 

comparison can be made between different lineages (Weston 2003). 

 

Let character Y represent a linear difference between a pair of landmarks within an 

organism.  If each landmark is biologically meaningful, we can assume that it is has a 

genetic origin and that the genetic basis for character Y is heritable.   

 

Hypothesis H1 is that Y depends on functions of G (size), and Sp (a lineage-specific 

factor which varies because of changes in genes governing the position of the biological 

landmark).   

 

 Y= f(G,Sp) 

 

In order to examine potential differences in measurement Y between species (Sp1, 

Sp2….Spn), it is necessary to remove all correlation between Y and size (G).  The 

challenges with this are twofold: 

i) Recognising the unknown function of G which is correlated with Y 

ii) Ensuring that different species are governed by the same function of G. 

 

Unless the data show otherwise, I will assume for simplicity that the function of G is 

the same for each of n species within character Y.   
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A not-exhaustive list of possibilities is  

1) a linear relationship with growth: Y=aG 

2) a polynomial relationship with growth: Y= aG + bG²… 

3) an exponential relationship with growth: Y = e
aG

 

 

It makes biological sense for there to be no scalar element to the polynomial equation 

(Y=aG, not Y=aG + b) because very small values of G will have very small values of 

Y.   

 

Individual phenotype does not only depend on heritable factors and size. The above 

calculations are made for an idealised population; however, measured data are expected 

to demonstrate an additional unpredictable variation.  Statistical tests allow underlying 

parameters to be estimated from sampled data.  

 

BO.3.2 Statistics 

The r
2
 statistic tests the appropriateness of a linear (or other) model for describing the 

relationship between two variables, such as Y and G in this case (Daly et al 1995).  The 

value of r
2 

describes the proportion of variability in Y that is explained by a change in 

G, given a model of linear regression.  In practical terms, r
2 
takes a value between 0 and 

1, where 0 indicates no relationship, and 1 indicates a perfect relationship between Y 

and a linear function of G.  An intermediate value, such as r
2 
=0.7 indicates that 30% of 

the variation in Y is derived from sources not related to a linear function of G.  For the 

scenario described here, statistic r is also known as the Pearson product-moment 

correlation coefficient (Fisher 1921, Daly et al 1995).   

If Y= f(G,Sp) can be transformed such that f(Y)=f(Sp), then it might be desirable to use 

further statistical tests to investigate the whether the value of Sp is the same in different 

lineages.  A prerequisite for many tests of significance is to establish whether the 

sample is normally distributed and whether compared populations have an equal 

variance of the character measured (Daly et al 1995).   Analysis of variance (ANOVA) 

is a method of examining variance within a population when the data are subdivided by 

different explanatory variables.  In this case, there is one studied explanatory variable 

(species) with n different states, and M total observations.  The ANOVA is performed 

in several steps to produce an F-statistic, which has a particular distribution (Fisher 

1921) and probabilities can be calculated for obtaining certain values of F from two 

poplulations with equal variance.  Very roughly, a large value of F indicates a 
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significant difference between intra-species means, although a probability of 

significance can be obtained from statistical tables (Daly et al 1995).   

The Kruskal-Wallis test is a non-parametric version of the one-way ANOVA which can 

be used on ranked data if the condition of normality is not upheld (Kruskal & Wallis 

1952).  The result of ANOVA can determine whether there is significant inter-specific 

variance when compared to levels of intra-specific variance.  ANOVA does not indicate 

which species are different to one another and which are indistinguishable. 

 

BO.3.3 Size proxies 

In work on lithodids, the standard linear size measurement is carapace length (CL).  

The segmental structure (Pilgrim 1973) and other aspects of thoracic anatomy (such as 

positions of the organs and the gills) can be used to demonstrate homology of this 

measurement when comparing members of the Lithodidae and other anomurans.  There 

is no biological reason to think that CL should be dependent on any other 

measurements, with the exception of a mutual correlation with ‘size’.  The fact that CL 

is the standard measurement of size also means that data can be compiled for other 

studies as part of this work, and that data can be taken from the literature. Carapace 

width is rejected as an alternative to CL because no determination of homology can be 

made in this dimension.  There is also no landmark on the branchiolateral margin that 

can be accurately and repeatably defined for comparison between all Lithodidae.      

 

BO.4 Morphological Phylogeny 

BO.4.1 Parsimony methods of phylogeny 

The computer program <PHYLIPpars> uses the Wagner parsimony optimality criterion 

to select the tree topology that assumes the fewest changes (Eck & Dayhoff 1966; 

Kluge & Farris 1969).  It allows an input of 8 discrete, unordered states for each 

character. Wagner parsimony is particular in its use of unknown ancestral states, so 

changes between all states are equally probable.  The search algorithm considers both 

bifurcations and multifurcations of the tree.  As the search algorithm is somewhat 

dependent on the species order in the input file, a ‘Jumble’ option in <PHYLIP> 

conducts multiple searches in which the input order is rearranged in a random order 

(Felsenstein 1993).   

          

This test for maximum parsimony assumes (Felsenstein 1988): 

1. Characters evolve independently.  
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2. Lineages evolve independently.  

3. These changes are a priori improbable over the evolutionary time spans involved in 

the differentiation of the group in question.  

4. Retention of polymorphism is far less probable than these state changes.  

5. Rates of evolution in different lineages are sufficiently low that two changes in a 

long segment of the tree are far less probable than one change in a short segment.  

     

BO.4.2 Distance methods of morphological phylogeny 

Distance methods of phylogeny lend themselves to the investigation of continuous 

morphological data, since input values describe the pairwise distance between members 

of the input group.  Distance algorithms select a single tree to represent the data, by 

minimising the disparity between observed values (in the input matrix) and distances 

obtained between nodes on the tree.  It is useful that shape data from different parts of 

an organism can be assessed separately, and then combined into a single matrix for 

phylogenetic comparison (Adams et al 2002).     

 

Fitch-Margoliash and <PHYLIPfitch> 

An implicit assumption of the distance methods is that each distance is measured 

independently from the others, and that no item of data contributes to more than one 

distance. Felsenstein (1984), the author of <PHYLIP>, discusses that character 

independence is often not a valid assumption; he states that <PHYLIPFitch> should not 

give positively misleading results provided the assumption of additivity holds (Page & 

Holmes 1998).     

The Fitch-Margoliash (1967) algorithm for fitting trees to distance matrices is one of 

several methods that select the tree which minimises the sum of squared differences 

between observed and expected data:   

                              

  Sum of Squares =   ΣiΣj  (  nij (Dij – dij )
2
) 

    Dij
P 

                               

Where D is the measured distance between species i and j, and d is the sum of branch 

lengths joining i and j on the proposed tree.  The set of distance methods which include 

Fitch-Margoliash assume that the measurement error varies with the P
th
 power of the 
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magnitude of the distance between species. In the Fitch-Margoliash algorithm, P=2 

(Fitch & Margoliash 1967), which assumes that the error in measurement is nearly 

constant regardless of the magnitude of the evolutionary distance. 

 

In the forthcoming sections, both parsimony and distance criteria will be used to 

investigate different aspects of morphological variation within groups of lithodids. 

 

 

BM: SECTION METHODS 

 

BM.1 Samples and scope of the section 

Morphological sampling made use of preserved specimens curated by the following 

institutions: Natural History Museum, London; Senckenberg Museum, Frankfurt; 

Musée National d’Histoire Naturelle, Paris; Institut de Ciencies del Mar, Barcelona; 

United States National Museum of Natural History, Smithsonian Institute, Washington; 

the “Discovery Collection”, National Oceanography Centre, Southampton; and un-

deposited cruise materials (Mauritania: MAU 1107) at the Instituto Español de 

Oceanografica, Vigo.  Species identities were verified with reference to type specimens 

and using comparative keys compiled by taxonomic specialists (Dawson 1985a, 

Macpherson 1988a).  Examinations were made of more than 1000 specimens across the 

Lithodidae. Sample numbers, museum catalogue numbers, and location of capture are 

listed in chapters where relevant.  For each specimen, the carapace was measured (CL), 

and photographs were taken of dorsal and ventral aspects of the carapace using the 

‘macro’ setting of a Sony 8.2 megapixel digital camera; additional morphological data 

were collected as described in the following chapters.   

 

This section contains three chapters describing how morphological variation poses 

challenges to species identification, but also how it can provide evidence of ancestral 

history.  Variation with ontogeny, as well as variation within equivalent size-classes 

was assessed prior to phylogenetic analysis so that each species could be accurately 

delimited.  Specifically, the dorsal carapace, abdomen and legs of each specimen were 

examined under a light microscope to assess the consistency of tubercle form within 

one specimen (Section B1).  In Sections B2 and B3, the parallel global radiations of two 

lithodid lineages (Lithodes and Paralomis) were examined by the production of 

morphological phylogenies using both continuous measurements and discrete 

morphological traits.   
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BM.2 Ornamentation terminology 

The terminology used to describe ornamentation of Paralomis in this study (Fig. B1.1) 

were: ‘tubercle’, which replaced previously used synonyms: granule and papilla to 

describe structures that are not spines; and ‘spine’, which describes structures 

measuring more than 1.5 times as high as they are wide at the base.  A distinction was 

then made between conical, flattened, pedunculate or rounded tubercles, and regular or 

irregular tubercles.  

 

BM.3 Phylogenetics  

Two large groups within the Lithodinae were considered separately, based on the 

results of the molecular study (Section A1).  24 Paralomis species, plus Glyptolithodes 

cristatipes and Lopholithodes mandtii were examined in the first study; 13 Lithodes 

species, and 4 Paralithodes species were examined for the second.  Subdividing the 

Lithodinae allows the formation of different sets of characters to represent each lineage, 

without having to assert the homology of character origin between more distantly 

related groups.   

Morphological variation was subdivided into two types for analysis: discrete-character 

data and morphometric data.   

1. Discrete-character analysis. Truly discrete characters are those of novel 

generation, which appear in one species and not in another.  These are very 

rare, especially within such closely related groups.  Some morphological 

characters that were essentially continuous measurements were classified 

discretely if they formed clusters with no intermediates.     

2. Morphometric analysis.  Continuous characters, for which subdivision 

into state-categories would be arbitrary (Section BM.3.2.2), were examined 

using statistical methods to obtain quantitative figures for degrees of 

difference between species.    

 

BM.3.1 Outgroup principles 

Polarity of morphological change was derived from molecular evidence.  In Section 

A1.4, it was shown that the genus Lopholithodes diverged close to the base of a 

strongly monophyletic Paralomis lineage.  In parallel, it was shown that Paralithodes is 

paraphyletic with respect to Lithodes (with P. brevipes the most distantly related).  In 

discrete-character based phylogenetic studies, polarity of each character was 

investigated independently.  Character states observed in the designated outgroup 

(Lopholithodes mandtii and Paralithodes brevipes respectively) were assessed against 
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homologous characters in the Hapalogastrinae (Oedignathus, Hapalogaster, 

Dermaturus, Placentron), as well as the base of the other lineage (comparing 

Lopholithodes with Paralithodes brevipes).  This is the outgroup comparison method 

(Watrous & Wheeler 1981).  The process of assigning polarity for each discrete 

character is discussed in detail in sections B2 and B3, with the outgroup state recorded 

as missing if polarity was ambiguous.  

 

BM.3.2 Morphometrics 

BM.3.2.1 Sampling and data capture 

59 linear measurements between pairs of morphological landmarks (Bookstein 1991) 

were taken in a preliminary study of 21 specimens of Parlomis granulosa and 13 

specimens of Lithodes santolla.  Data capture was done using digital callipers, and 

recorded in millimetres to an accuracy of 2 decimal places.  The homology of each 

landmark was derived from anatomy or comparative study.   

For very small stages, measurements are prone to large percentage errors, so only 

specimens with CL> 20 mm were used in these analyses.  Only species for which data 

had been collected for more than five specimens (m>5) were included in the final taxon 

set to increase the statistical significance of the analyses. 

Based on preliminary data collection, the character set was refined to include only those 

which could be accurately defined and repeated with precision.  25 sex-specific 

characters were collected (chelipeds, abdomen), but not used for statistical analyses 

because of low sample sizes when species were further subdivided by reproductive 

stage and sex. 

34 characters were collected for 25 species of Paralomis, Lopholithodes mandtii, 

Glyptolithodes cristatipes (Section B3), 13 species of Lithodes, and 4 species of 

Paralithodes (Section B2).  Those characters that were considered to be unsuitable for 

further analysis after widening the sample set are italicised below:   

1.  (CL) Carapace length.  The conventions described in Macpherson (1988a) 

are used to obtain this measurement of length from the midpoint of the orbital 

groove to the midpoint of the posterior margin excluding spines (Fig BM.1). 

2. (CW) Carapace Width: The width of the carapace at its widest point behind 

the major anterobranchial spine B2 (Fig B2.8).  This is a type II landmark 

(Rohlf 1998a), and its definition, although unambiguous in most cases, has 

no homologous basis.  CW was not analysed statistically. 

3. (LBH) Depth of the branchiostegite along the sulcus verticalis (Fig BM.3) 

4. (LSH) Length from the base of the hepatic spine to the edge of the 

branchiostegite. (Fig BM.3) 



10mm

CL

GL

CDL

Figure BM.1 Carapace measurements in the Lithodinae 1: Lithodes galapagensis schematic with
carapace length (CL), gastric length (GL) and cervical groove depression length (CDL) indicated.
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10mm

AL

GW

HW

Figure BM.2 Carapace measurements in the Lithodinae 2. Lithodes galapagensis schematic with hepatic width 
(HW), gastric width (GW) and anterolateral width (AL) indicated.
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5. (LHH) Length from the lateral edge of the cervical groove to the edge of the 

branchiostegite (Fig BM.3). 

6. (AL) Anterolateral width. Internal width between the anterolateral spines (Fig 

BM.2).  

7. (HW) Internal width between the base of the hepatic spines (Fig BM.2). 

8. (HL) Length from orbit to anterior edge of hepatic spine. This character is too 

difficult to score accurately in many cases, since not all species have a prominent 

hepatic spine.   

9. Length, along the cervical groove of a homologous prominence (Fig M2,vii) 

termed the ‘cervical knob’.  Judged too difficult to score accurately in Lithodes 

because the cervical knob is often reduced. 

10.  Length from the cervical knob to the hepatic margin. Later judged too difficult to 

score accurately in Lithodes. 

11. (CDL) Length of depression at the posterior lateral side of the gastric region this is 

a type I homologous landmark (Rohlf 1998a) and present in all lithodids (Fig 

BM.1).  Its size is related to the insertion area of the thoracic musculature (Pilgrim 

1973).   

12. (GCL) Length of the GC groove including lateral depressions.  Homology can be 

verified by anatomical study, the lateral depressions being muscular insertions.  

Dixon et al (2003) emphasise the stability of such grooves as phylogenetic 

characters within the Anomura. 

13. (GCW) Width of the GC groove (along the anteroposterior axis).  Difficult to score 

accurately in some cases, especially in Lithodes because of a poorly defined limit to 

the groove in some s pecies (e.g. Lithodes murrayi). 

14. (GW) Width of the gastric region between the midlateral gastric spines (always 

approximately at the level of the hepatic spines, and roughly the maximal width of 

the gastric region) (Fig BM.2).     

15. (GL) Length of the gastric region along the midline from the orbit to the gastro-

cardiac groove (Fig BM.1). 

16. (VRL) Length of the ventral rostral spine from its dorsal convergence with the 

paired dorsal spines to the tip (Fig BM.3).  There were concerns about this feature 

because of breakage of the spine in many cases, also that many ventral rostral 

spines are curved. 

17. (RW)Width of rostrum at the level of the orbits.  There were difficulties with 

scoring this character because many species have several spines in this region 

which hinder accurate measurement. 
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18. (DL) Length of the dactylus on pereiopod 3. Measured from the tip to the anterior 

articulation with the propodus (laterally). 

19. (DH) Height of dactylus on pereiopod 3. Measured at the joint of the propodus. 

20. (PL) Length of propodus on pereiopod 3.  Measured along the dorsal edge from the 

articulation with the dactylus to the dorsal point of articulation with the carpus. 

21. (CAL) Length of carpus on pereiopod 3.  From the dorsal articulation with the 

propodus to the level of the anterior articulation of the merus. 

22. (ML) Length of merus on pereiopod 3.  From the anterior point of articulation with 

the coxa to the anterior articulation with the carpus. 

23. (MH) Height of the merus at the joint with the carpus. Measured from the joint with 

the carpus to the dorsal face of the merus at the anterior edge. 

24. (MW) Width of the merus at the joint with the carpus.  

25.  (OCW) Width of the cornea.  

26. (OCL) Length of the cornea.  

27. (ABW) Length of the 2nd abdominal segment at the midline. The first and second 

segments are almost always fused in the groups studied.  If not, then ABW is the 

midline length of segment 1 plus segment 2. 

The allometry of 20 characters (defined above) was analysed, from which quantitative 

inter-species differences were identified.  
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BM.3.2.2 Graphical and statistical analysis of data 

A function of carapace length (CL) was used throughout this analysis to approximate 

growth.  Character measurements are denoted Yk, where k identifies a character (e.g. 

length between anterolateral spines [AL]). Each dataset (YAL, YGW…Yk) consists of 

measurements from m specimens belonging to n species; Yk,n represents one such 

dataset subdivided by species.     

 

-Reduction of the size-related variables governing Yk   

The form of Yk = f(CL) was examined in order of complexity of the function (from CL, 

CL2, to eCL), until all significant correlation of Yk with f(CL) could be removed. 

First, the nature of the polynomial function governing the raw dataset Yk was 

investigated using polynomial regression.  Four estimates of polynomial functions were 

produced, in which the highest terms were successively of the form x0- x3; the fit 

between the data and each of these functions (r2 ) was calculated.  In addition, a one-

tailed t-test was conducted to examine the hypothesis that the coefficient of each term 

in the polynomial is significantly (99% confidence) different from zero.  A t-statistic 

with a probability less than 0.01 is considered to indicate that the tested coefficient is 

not zero.        

 

If the data were adequately described using a polynomial function of size, then Yk/CL 

was examined for each species n to examine the possibility of eliminating CL as a 

variable. 

• If no significant correlation was observed between Yk, n /CL and CL (r2 

< 0.4), then it was concluded that Yk,n depended linearly on CL and not 

on any higher order function (such as CL2, eCL). [in this case, Yk,n 

=aCL]  

• If a significant correlation was observed between Yk,n/CL and CL (r2 > 

0.4) and the probability that coefficient b = 0 is <0.01, it might be 

implied that Yk,n = aCL ± bCL2.   

-   If, in this case, the maximum measured value of b is less 

than 0.01 times the standard deviation of Yk/CL (a and b 

determined by linear regression), then variation with size is 

responsible for less than 1% of the overall variation, and 

the CL2  term was relatively insignificant in the size range 

considered. Under these circumstances, bCL2 was not 

considered further.  (N.B. If a significant component of the variability in 

Yk/CL is governed by a function of CL [in addition to expected sources of 
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variability such as measurement error, individual variability, and species 

difference], then this has the effect of decreasing the statistical significance of 

any underlying inter-species difference - provided the sample size-range is 

similar for two species being compared.  Simplification of variables in this way 

should lead to us falsely rejecting a character for analysis rather than accepting 

misleading results).   

-  Conversely, if b was found to be larger than 0.01 times 

the standard deviation of the Yk/CL dataset, then 

coefficients a and b were estimated for each species (b = 

Yk/CL2 – an/CL), and these coefficients were considered 

separately in the following analyses.    

 

If, after investigating polynomial functions of CL, a dataset without significant 

correlation to CL can not be produced, then logarithmic functions of CL (Yk = eaCL) 

were tested.     

These above methods produce sets of approximately size-independent data, which are 

of the form: Yk /CL; (Yk /CL2 – ak,n/CL); ak,n); or lnYk/CL.  Unless results showed 

otherwise, I assumed that within Yk, all species are dependent on the same f(CL).  For 

simplicity, I will refer to the transformed datasets as fCL(Yk) in the forthcoming text.   

 

fCL(Yk) allows us to test the following hypotheses about inter-species differences- 

 

H0: variation in fCL(Yk) is related only to individual variation, and measurement 

error.   

H1 : variation in fCL(Yk) is additionally caused by significant inter-species variation 

(Sp). 

 

-Tests of distribution and parameterisation   

Normality of distribution and equal variance in the subdivided datasets (fCL(Yk,n)) were 

tested using the Shapiro-Wilk test and the F-test, respectively (Shapiro & Wilk 1965, 

Shapiro et al 1968, Daly et al 1995).  Probabilities of less than 0.01 indicated that there 

is 99% confidence of the population not being normally distributed or not having equal 

variance. It seems reasonable to assume that this test is appropriate for this set of linear 

measurements because they form a continuous, approximately symmetrical distribution 

with data clustering around the mean.  

For all normally distributed populations fCL(Yk,n), a one-way analysis of variance 

(ANOVA; Daly et al 1995) was performed in <Sigmaplot 11>.  In this case, (p < 0.01) 

indicates that there is a significant difference in the mean of fCL(Yk,n) between some 
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species.  A significant ANOVA result indicates that the null hypothesis, H0 can be 

rejected with 99% confidence. 

The Holm-Šidák method for multiple pair-wise comparisons (Šidák 1967, Holm 1979) 

was performed for each dataset subdivided by species with a confidence level of 99%.  

A p-value lower than the critical level (set by H-S correction) indicates a significant 

difference between the means of fCL(Yk,n) for two values of n.  A p-value higher than 

the critical level indicates that any difference in the sample mean of fCL(Yk,n) for two 

species is based on random intra-species variation and measurement error. 

Graphical methods illustrate how morphometric data could, and in some circumstances 

has been, coded discretely.  Species were shaded red, green, or black based on the result 

of multiple pair-wise comparisons (compare Figs BM.4, 5).  There is a statistically 

significant difference between the species shaded red and those species shaded black, 

and no significant difference between species of the same colour.  The species shaded 

green are not significantly different from one another, and each was not significantly 

different from either the black or the red species.  Where species were figured despite 

low sample sizes, and a t-test was not performed, they were shaded yellow.   A 

character would not be used in further analysis if all species were shaded in green, since 

this would indicate that there were no two groups that were significantly different from 

one another.  If a situation occurred where there were no green-shaded species and all 

were either black or red, then the characteristic could be coded discretely (0 and 1).   

The results of this graphical technique are not used directly in the construction of the 

phylogeny, but are used in decisions about character inclusion and interpretation of the 

results.     

 

BM.3.2.3 Morphometric phylogeny 

After the 20 morphometric characters were tested for patterns of inter-species 

variation, those selected were used in a phylogenetic analysis.  Characters were 

useful if there was a rejection of H0 in the analysis of variance (Section 

BM.3.2.2), and also if pair-wise comparisons revealed two or more pairs with 

significant differences between their means. By allowing statistical tests to 

select for useful levels of within/between species variation, it is hoped that the 

subjective character inclusion bias is minimised.  Of those characters selected 

for further analysis, the datasets fCL(Yk) were further transformed to produce 

inter-species distance statistics.  These distances form the elements an n×n 

species comparison matrix that can be analysed by phylogenetic software 

<PHYLIPFitch>. 



2D Graph 1

CL

0 20 40 60 80 100 120 140

M
L

0

20

40

60

80

100

120

140

Lithodes aequispina

L. confundens

L. couesi

L. ferox

L. galapagensis

L. longispina

L. maja

L. mamillifer

L . manningi

L. megacanthus

L. murrayi

L. richeri

L. santolla

Paralithodes californiensis

P. camtschaticus

P. platypus
P. rathbuni

2D Graph 2

CL

0 20 40 60 80 100 120 140

M
L

/C
L

0.4

0.6

0.8

1.0

1.2

1.4

Lithodes aequispinus

L. confundens

L. couesi

L. ferox

L. galapagensis

L. longispina

L. maja

L. mamillifer

L. manningi

L. megacantha

L. murrayi

L. richeri

L. santolla

Paralithodes californiensis

P. camtschaticus

P. platypus

P. rathbuni

140

120

100

80

60

40

20

0
0 20 40 60 80 100 120 140

CL

0 20 40 60 80 100 120 140
0.4

0.6

0.8

1.0

1.2

1.4

CL

M
L

M
L

/C
L

a

b

Lithodes aequispina
L. confundens
L. couesi
L. ferox
L. galapagensis
L. longispina
L. maja
L. mamillifer
L. manningi
L. megacantha
L. murrayi
L. richeri
L. santolla
Paralithodes californiensis
P. camtschatica
P. brevipes
P. rathbuni

Figure BM.4 Graphical example of continuous 
coding in Lithodes.  ML is the morphometric 
character merus length and CL is the size-proxy,
carapace length. All measurements are in 
millimetres, and all data-points are individuals. 
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Figure BM.5 Graphical example of pseudo-discrete 
coding in Lithodes. ML is the morphometric character 
merus length, and all data are exactly the same as in 
Fig. BM.4.  All measurements are in millimetres. Species
shaded black and red are significantly different to one 
another in a statistical pairwise comparison of means (99% 
confidence).  Green shading indicates species that are not
necessarily significantly different from red or black species.  
This figure shows that, whereas there might be a difference 
in ML between species, it should not be coded discretely. 
Those shaded yellow represent species for which fewer 
than five samples were taken.  Plotted points are measurements
of individuals.  
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For any comparison or combination of k different characters, each set of measurements 

fCL(Yk) must be scaled such that unit values represent their size and spread.  If this were 

not done, large characters (merus length: ML) could not be meaningfully compared 

with small characters (gastric width: GW).  The mean and standard deviation are useful 

indicators of scale and spread of distributions and datasets were standardised to centre 

the characters on a mean of 10 and a standard deviation of 1.  Standardising to a mean 

of 10 is an arbitrary choice, which makes all values positive but doesn’t affect the 

distributions.     

 

 

 

For each of the standardised datasets UAL, UGW…Uk, a within-species mean and standard 

deviation are calculated.  Ūk,n is the arithmetic mean of the dataset Uk within species n.  

There are mn sampled members of species n, and UKi is a member of dataset Uk.  The 

sample standard deviation of species n for character k is calculated as  

 

 (Daly et al 1995). 

 

In normally distributed populations, 68% of data is expected to fall within 1 standard 

deviation of the mean (σ), and 90% within 1.64σ (Patel & Read 1982, Fig BM.6).  In 

the context of a normally distributed sample, we can have 68% confidence that the true 

mean falls within 1 standard deviation (Sk,n) of the sample mean (Ūk,n) (Daly et al 

1995).  

For each character, two n×n pair-wise distance matrices were created, each element of 

which was an estimate of difference between two species for that character.  Species 

were ordered by the value of the intra-specific mean (Ūk,n), and the pairwise distances 

for the first matrix were calculated as [(Ū(k, n=R) – S(k , n=R,)) – (Ū(k, n=C) + Sk, n=C,)] (where 

R and C are species in the row and column in the matrix, and Ū(k,  n=R) > Ū(k,  n=C)) 

(distance A on Fig BM.6).  Where the resulting difference was positive, there is 68% 

confidence that the actual difference between species means was of that length or 

greater.  A difference of less than zero indicates that the two species were not 

significantly different at this level of confidence.  In the second matrix, there is 90% 

confidence that the true inter-species distance is of the stated length or greater.   



Sample distributions: pairwise comparison of ordered means
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Figure BM.6 Pair-wise distance measurements between approximately normally
distributed sample populations.  Normally distributed populations are described by
their mean (ì) and standard deviation (ó).  In a sample of a nomally distributed
population(s), the sample mean ( ) and standard deviation (s) can be used to 
calculate the likely magnitude of differences between population means.  Populations 
1 and 2 are different species measured for a normally distributed and standardised 
morphometric character.  Distance statistic A is a minimum difference between the 
means for which there is 68% confidence; statistic B is a minimum difference with 
90 % confidence.    

x
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Distances are calculated as in the first matrix [(Ū(k, n=R) – 1.64*S(k , n=R,)) – (Ū(k, n=C) + 

1.64*Sk, n=C,)] (where R and C are species in the row and column of the matrix, and 

Ū(n=R, k) > Ū(n=C, k)) (distance B on Fig BM.6).  The second matrix will produce a very 

conservative tree that is unresolved at many of its internal nodes; however, this is a 

trade-off for increased confidence in the result.       

 

Each character provides an insight into an aspect of morphological similarity between 

species or groups of species.  In an isolated instance, morphological similarity can be 

incidental and harks back to days of classification before evolutionary theory (Goldstein 

& Desalle 2005).  Suites of character data, however, can provide corroborative or 

contradictory data, which allow scenarios of nested hierarchy to be formulated.  

Addition of the corresponding elements of individual distance matrices produces a 

summed matrix of n×n species representing a total difference between species over all k 

characters.  This method has an analogy with the distance methods of analysing 

molecular data, in which an observed difference per character is summed over many 

characters to produce a total inter-species difference (Rzetsky & Nei 1992).     

 

BM.3.3 Discrete coding 

Discrete characters are selected to reflect synapomorphies within each lineage and 

specifics of sampling will be discussed in the relevant chapter (Sections B2 and B3).  

Each character has two or more character states (0, 1… 8), as well as an 

unknown/missing character state X.   Ambiguous scores do not contribute to the final 

calculation of difference between species, and X is interchangeably used to show that 

the observed state is missing or irrelevant. 

Character states are not ordered and not weighted, which means that a change 0→1 is 

worth the same as a change 1→0, or 0→2.  ‘0’ is not implicitly the ancestral state in the 

model, since the out-group is assigned in the input for the program.  This allows the 

model to select more parsimonious polarities than 0→1 if they exist.  Nevertheless, the 

designation of the binomial code (0 = ancestral, >1 = derived) makes it easier to 

organise the data.  If there is reason to believe that characters are ordered, (e.g. 0→1→2 

and 0→1→3) then these changes can be coded as such using multiple unordered 

characters so that in the above example: 1= 001, 2=101, 3=011 (Felsenstein 1979).      

Polymorphic characters in which the change occurs predictably (i.e. with ontogeny, or 

sex) are coded using multiple characters, or the polymorphy itself is coded where 

homology applies.  In the case of sexual polymorphisms, one character describes the 

case in males and the next in females (e.g. K1=Abdomen asymmetry ♀, K2=Abdomen 

asymmetry ♂).  Polymorphisms, in which a proportion of the population displays 
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attribute A and a proportion attribute B are not used unless the character can be coded 

to encompass both varieties under a single state.  Efforts are made to formulate codes in 

such a way that characters have some level of independence, and in which homology 

can be argued within the remit of the state definitions.   

  

BM.3.3.1 Phylogenetic analysis of discrete characters using the Parsimony criterion 

Phylogenetic analysis was conducted in <PHYLIP_Pars>, with ‘thorough’ search 

options employed.  Trees were assessed on the criterion of Wagner Parsimony (Section 

BO.4.1).  Trees were scored according to the number of observed state changes at the 

predicted internal nodes.  Prior to assessment of most parsimonious trees, 

<PHYLIPseqboot> was used to create 1000 randomly sampled datasets (with 

replacement) for a bootstrap analysis (Felsenstein 1985) to provide confidence 

estimates to nodes on the final tree.  If more than one topology is returned, it will be 

used to produce a majority-rule consensus tree (Margush & McMorris 1981), where 

nodes are represented on the consensus topology are those that are present in the 

majority of trees.  The hypothetical out-group, based on comparison of Lopholithodes 

mandtii or Paralithodes brevipes with other Lithodidae was used to root these trees 

(Watrous & Wheeler 1981).  

 

BM.3.3.2 Phylogenetic analysis of discrete characters using Fitch-Margoliash distance 

methods 

Distance was calculated between pairs of species based on comparisons of their 

morphological character sets.  Discrete character states are in all cases unordered, so all 

differences between numerical (non-X) scores were given a value of 1 and all identical 

characters were given a value of 0.  Where one of the species had a missing entry (X) 

for a character, that comparison wasn’t made.  The total difference between each pair 

was divided by the number of comparisons and multiplied by the total number of 

characters.  The resulting pair-wise distance represents the proportion of characters 

which differ between that pair of species.   

The resulting n×n matrix was analysed using the Fitch-Margoliash distance algorithm 

in <PhylipFitch>, in order to compare the distance-optimised tree with most 

parsimonious tree (methods differ fundamentally).  Branch lengths on the output tree 

represent the ‘length’ (approximately the number of changes) between two nodes on the 

tree.  Internode distances of approximately zero length are collapsed to form a 

polytomy on the tree.   The hypothetical out-group was not used for this analysis; 

instead Lopholithodes or Paralithodes was set as the outgroup state as described in 

sections B2 and B3. 
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BM.3.4 Combination of morphometric and discrete characters 

Within Lithodes and Paralomis, the results for morphometric-character analysis and 

discrete-character analysis are independent of one another.  This offers the opportunity 

for the results corroborate or refute one another, which is particularly important where 

the character numbers are small.  The strongest interpretation occurs when characters 

are combined (Baum & Shaw 1995, Goldstein & DeSalle 2005) to produce a tree based 

upon a larger number of observations. 

Two n×n pair-wise comparison matrices were produced by methods described in 

sections BM.3.2.3 and BM.3.3.2.  The two matrices were weighted to reflect the 

number of characters they each contain (multiplying the smaller one by the number of 

characters in the larger and vice-versa), before being added together.  The final matrix 

containing taxa common to both analyses (there is no possibility to include missing data 

in distance analyses) was combined for analysis in <PHYLIP_Fitch> (Section BO.4.2, 

Fitch & Margoliash 1967, Felsenstein 1993).  Global branch rearrangement (GBR) is 

employed and the input order of species is jumbled randomly in 100 parallel runs.  

Bootstrap testing can not be performed on this type of data, so the results of the 100 

parallel runs are condensed, with nodes only resolved on the final tree if they appear in 

more than 50% of the runs.
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CHAPTER B1: ONTOGENETIC CHANGES IN 

CARAPACE ORNAMENTATION IN THE FAMILY 

LITHODIDAE, WITH A FOCUS ON THE GENUS 

PARALOMIS 

 

B1.1 Rationale and context 

The deep-water, patchy distribution of the subfamily Lithodinae (Hall & Thatje 2009a) 

means that many species are not commonly or easily targeted for sampling.  Many 

species are based on a description of one or two specimens and are found infrequently 

after first publication (Macpherson 1988a, Spiridonov et al 2006, Hall & Thatje 2009b).   

One of the characters used to distinguish species of king crab is the size, position and 

form of dorsal carapace ornamentation (Macpherson 1988a).  The 117 described 

lithodid species, particularly the 61 species of the genus Paralomis, display an array of 

distinctive spines and tubercles, which can aid diagnosis (Macpherson 2003, Spiridonov 

et al 2006, Takeda & Bussarawit 2007, Macpherson 2008, Hall & Thatje 2009b).  Few 

authors have given images of these structures under magnification, but those that have 

(e.g. Haig 1974, Andrade 1980) reveal the intricate structures that adorn carapaces 

within this family.  Ontogenetic changes in tubercle morphology are potential sources 

of confusion for diagnosis, especially when complete growth series are not on hand for 

comparison.  The aims of this chapter are: 

• to catalogue and describe the microscopic and macroscopic form of the spines 

and tubercles that can distinguish species, and to assess variability between 

similar sized specimens. 

• to examine whether ontogenetic changes in carapace spines or tubercles can be 

diagnostic features of species, or whether there is a single pattern of change 

within the genus. 

  

In scientific writing on the Lithodidae, the words used to describe carapace structures 

are various and sometimes vaguely defined.  The word tubercle (Haig 1974, 

Macpherson 1988a) describes small protuberances, swellings or nodules, and is used 

interchangeably with the terms papillae (Faxon 1895, Haig 1974), granule (Macpherson 

1988a, 1992), flattened spinules (Takeda 1974), areolations (Eldredge 1976), vesiculous 

granules (Takeda 1979). These terms actually describe a whole spectrum of 

morphological features (Table B1), but in an inconsistent way that can sometimes be 

unhelpful in diagnosis.  If described in an unambiguous manner through the provision 
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of detailed drawing or photography, real differences could be used to identify species 

more accurately; to delimit lineages; and to allow non-specialists to make useful 

comparisons between the works of different authors.   

A taxonomist attempting to identify a potentially novel species is unlikely to have a 

complete growth series of similar species available to refer to.  I herein aim to look for 

common ontogenetic trajectories within Paralomis, and to provide the basis of a 

catalogue covering within-species variety.    

 

B1.2 Synopsis of methods 

For 32 species of Paralomis, adult specimens (larger than CL 50 mm) were illustrated 

under magnification (Figs B1.2–15; Table B1) in order to provide a reference for future 

descriptive works.  Eight species of Paralomis with good representation in sample 

collections were also selected to illustrate the growth-related changes within the genus 

(P. cubensis Chace, 1939; P. erinacea Macpherson, 1988a; P. granulosa Jaquinot, 

1847; P. inca Haig, 1974; P. mendagnai, Macpherson, 2003; P. multispina Benedict, 

1894; P. spinosissima, Birstein & Vinogradov, 1972; P. stella, Macpherson, 2001). 

These sample species were chosen to cover a range of habitat depths and localities and 

so to reflect the global range of the genus (Appendix E).  

Following the study by Ingle & Garrod (1987) on Paralomis granulosa, specimens 

from two or three size classes (CL 10–25mm, 30–50mm, 50+mm) were chosen for 

illustration. In all Paralomis species figured (except possibly P. inca), the 50+ size 

class typically contains reproductively active adults (Lovrich & Vinuesa 1993, Zaklan 

2002b).  Usual maximum sizes for Paralomis species range between 60 mm and 120 

mm (Macpherson 1988a, Zaklan 2002b, S. Hall, pers. obs.).  No juvenile specimens 

(<30 mm) of Paralomis erinacea are deposited in museums; however, the change in 

form between adults in the studied range warrants their inclusion in the growth series. 

Figured specimens were judged to be representative of their size class by microscopic 

and macroscopic comparison.   Sample measurements are stated in the relevant 

sections, and there was no observed difference in the features to indicate a division 

between the sexes.  Growth series specimens are obtained from as close to the type 

location as possible.   

Photographs were taken under magnification in a light microscope, focussing on the 

mid-point of the right branchial region, unless otherwise stated in the figure legend.  If 

the mid-branchial region was not representative of the entire dorsal carapace, 

exceptions are noted in the text. 
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B1.3 Sample data and results 

B1.3.1 Growth Series 

 

Paralomis cubensis Chace, 1939 (Fig B1.2) 

Paralomis cubensis Chace, 1939: 49; Macpherson, 1988a: 97, Fig 44, pl. 22B, 23A. 

 

Type locality: East of Havana, Cuba 23° 12’ 30’’N., 82° 12’ W., 420–548 m; Also, 

300–600 m Caribbean sea and Western Atlantic, from 1°N to 27°N.  

 

Specimens examined:  5 ♀ (CL 25–52 mm), 13 ♂ (CL 23–85 mm) (including 

paratypes). Specimens figured: ♀ CL 26 mm (USNM 231310), R/V Miss Virginia 329–

366 m, 21.III.1962 ; ♂ CL 45.8 mm (USNM 213542) 26°45’N, 84°55’W, 466–732 m, 

XII.1983 ; ♂ CL 79.6 mm (USNM 231312), Amazon River Mouth, 411 m, XI.1957. 

 

In the original description of the 53.2 mm female holotype of Paralomis cubensis, 

Chace (1939) notes “the dorsal carapace crowded with tubercles of different sizes, low 

and rounded on most surfaces, becoming more acute towards the margins”.  This 

description matches the figured specimen (Fig B1.2d-e) in the CL 30–50 mm size class.  

Substantial ontogenetic change is seen in P. cubensis, with later growth stages bearing 

progressively flattened tubercles (Fig B1.2g). Specimens smaller than CL 30 mm bore 

pedunculate tubercles or spines with a bulbous swelling at the apex (Fig B1.2b,c).  

Setae are not found on the apices of these tubercles at any growth stage, instead 

tubercles are covered evenly in short setae.  Macpherson (1988a) reports corroborating 

features in a CL 28 mm specimen, “granules very acute, forming small spines” but does 

not include a figure.   

 

Paralomis erinacea Macpherson, 1988a (Fig B1.3) 

Paralomis erinacea Macpherson, 1988a: 82, figs 36A, 37, pl. 19A. 

 

Type locality: Guinea Bissau and the Ivory Coast 251–900 m; recently found off 

Mauritania around 1500 m. (Ramos, unpublished). 

 

Specimens examined: 9 ♀ (CL 44–66 mm), 8 ♂ (CL 61–83 mm) studied. Specimens 

figured (Fig B1.3): ♀ CL. 44.87 mm (MNHN Pg-2937); ♀ CL 59 mm; ♂ CL 83 mm (2 

specimens in collection of A. Ramos, Vigo, Spain.), Mauritania 14.XII.07. 
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In the original description of this species (Macpherson 1988a), 9 adult specimens are 

examined, CL 46–78 mm.  Our examination slightly extends this range, doubling the 

specimen count, and examining newly identified individuals from CL 44 mm to 83 mm.   

Macpherson (1988a: Fig 37G therein) shows spines similar to those that we found on 

the smaller size classes (40–50 mm: Fig B1.3b). These are large conical spines, of 

uniform size, bearing small setae.  The larger specimen, at CL 83 mm (Fig B1.3e, f) has 

spines which are wider, lower and blunter than those originally figured specimens. 

The macroscopic appearance of the larger adults is smoother than the spiny smaller 

adults, and can be a cause of misidentification. In P. erinacea, the lateral spines are 

similar in form to the dorsal spines. 

 

Paralomis granulosa Jaquinot, 1847 (Fig B1.4) 

Lithodes granulosa Jaquinot, 1847: figs 15–21, plate 8.   

Lithodes granulosus White, 1847: 56.   

Lithodes granulata Jaquinot, 1853: 94.   

Lithodes verrucosa Dana, 1852: 428. — Dana, 1855: pl. 26, Fig 16 — Cunningham, 

1871: 494.  

Paralomis verrucosa Bouvier, 1895: 187, pl. 13, Fig 3 — Bouvier, 1896: 26.   

Paralomis granulosa White, 1856: 134. 

 

Distribution: 5–130 m Fjords of Patagonia, and the Falkland islands. 

 

Specimens examined: 20 ♀ (CL 28–55 mm), ♂ (CL 13–90 mm). Specimens figured: ♂ 

CL 25.6 mm (USNM 231429) Strait of Le Maire, Tierra del Fuego, 25.IV.1971 ; ♀ CL 

45.6 mm; ♂ CL 65.7 mm (2 specimens, NHM 152710), Tierra del Fuego, 10 m. (Fig 

B1.4) 

 

P. granulosa, studied by Ingle & Garrod (1987), demonstrates the ontogenetic 

progression of tubercular flattening observed in P. cubensis.  Small specimens 

(particularly those CL 10–25 mm) are covered with very distinctive pedunculated 

irregular tubercles (Fig B1.4a, b), sometimes described as ‘boleate’ (Ingle & Garrod 

1987).  These progressively become less pedunculated (Fig B1.4d) until they are 

reduced to low tubercles (Fig B1.4f). This reduction does not happen evenly across the 

carapace, with the more lateral tubercles tending to flatten first.  The largest specimen 

that we found bearing pedunculated tubercles was CL 35 mm.  In very large specimens 

of up to CL 90 mm (not mentioned in the 1987 work on this species), the tubercular 

cover can be quite sparse, and fouling or wear on the carapace can be substantial, as 



The Evolutionary History of the Lithodinae  Section B Chapter 1 

115 

moults become less frequent (McCaughran & Powell 1977).  The 1987 study of 

Falklands populations, conducted by Ingle & Garrod, is supported by these results, and 

can be generalised over the wider geographic range of the species. 

 

Paralomis inca Haig, 1974 (Fig B1.5) 

Paralomis inca Haig, 1974: 157, figs 3, 4. 

 

Type locality: Pacific coast of Ecuador and Peru, 06° 31.5’ S, 81° 01.5’ W 600–800 m. 

Specimens examined: 5 ♀ (CL >90 mm). Information about smaller size classes comes 

from the original description (Haig, 1974). Specimen figured (Fig B1.5): ♀ CL 96 mm 

(USNM 259223) 7°49’00’’S 80°38’00’’W, 705–735 m.  

  

No specimen of Paralomis inca (Fig B1.5) examined was smaller than CL 90 mm, and 

the smallest of the ‘adult’ type collection (Haig 1974) was CL 80 mm.  In the original 

description (Haig 1974, Fig 4 therein), a figure of a juvenile CL 69 mm is double the 

normal minimum size of maturity for many species of the genus (Zaklan 2002b).  Haig 

(1974) does illustrate a marked difference between juvenile and adult spines, as can be 

seen in Fig B1.5. In large specimens, tubercles are low, regular mounds, with a circular 

patch of short setae at the apex. In the small paratype, the dorsal ornamentation is much 

more spiniform, with long setae eminating from the apex. 

 

Paralomis mendagnai Macpherson, 2003 (Fig B1.6) 

Paralomis mendagnai  Macpherson, 2003: p. 414, figs 1–3.  

 

Type locality: Solomon Islands 9°06.9’S, 159°53.2’E, 869–912 m; also found 400–

1200 m Solomon Islands. 

Specimens examined: Examined 6 ♀ (CL 7–49.9 mm), 6 ♂ (CL 11–59 mm). 

Specimens figured (Fig B1.6): 2 ♂ CL 11 mm, 58.8 mm, ♀ CL 36 mm (MNHN Pg-

6408), Solomon Islands 896–1012 m, 25-26.IX.2001. 

 

From an ovigerous female found 700-800 m, they are known to be reproductively 

mature by at least CL 50 mm.  P. mendagnai appears to be different from other South 

Pacific groups studied, (Figs B1.12, 14) in the smoothly rounded tubercles of the adults, 

which have pores (possibly minute setae) on the apex (not in a circular pattern) on the 

apex.  Specimens in the CL 10–25 mm size class had conical, or spiniform tubercles, 

unlike anything found on specimens above CL 30 mm.  The small paratype of P. 

mendagnai, (Fig B1.6a, b) has a spiniform enlargement (Fig B1.6b) of one of the 
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conical tubercles of the mid-branchial region; whereas the surrounding tubercles are 

much smaller.  In positions on the carapace where juveniles have such enlarged conical 

tubercles, specimens larger than CL 30 mm have only wide (> 3 mm diameter, flat or 

rounded tubercles.)      

 

P. multispina Benedict, 1894 (Fig B1.7) 

Leptolithodes multispina Benedict 1894: 484. – Rathbun, 1904: 165.  

Paralomis multispina Schmitt, 1921: 159, pl. 23; pl. 30, figs 7, 8. – Makarov 1962 

(1938): 257, Fig 102. – Sakai, 1971: pl. 6, Fig 2; pl. 14, figs 1, 2. 

 

Distribution: Approximately 500–1100 m North Pacific, particularly around Japan. 

 

Specimens examined: 7 ♀ (CL 14–93 mm) 9 ♂ (CL 7–105 mm) were examined.  

Specimens figured (Fig B1.7): ♀ CL 17 mm (USNM 18591), Sea Lion rocks, WA, 

1253 m ; ♀ CL 68 mm (USNM 18589) San Diego, CA, 1503 m. 

 

In P. multispina, the spines in the larger size classes (> CL 50 mm) are stout, sharp-

tipped, and conical, flattened at an oblique (posterior facing) angle, and with a 

circumference of short setae around that face (Fig B1.7e). Juveniles (CL 7–30 mm) of 

P. multispina have short, blunt, pedunculated tubercles, bearing a halo of short setae 

(Fig B1.7b, c).  In specimens of around CL 30 mm, there is evidence for the tubercles 

becoming longer, and developing an acute tip, as in larger adults; however, the angle of 

the oblique, posterior directed face is smaller.  In all specimens, one spine in the mid-

gastric region is larger than the other spines or tubercles, which has no setae, nor does it 

have a flattened region posteriorly: this spine appears to be particularly large in relation 

to the lower tubercles on small specimens.         

 

Paralomis spinosissima, Birstein & Vinogradov, 1972 (Fig B1.8) 

Paralomis spinosissima Birstein & Vinogradov, 1972: 352, figs 1, 2. 

 

Type locality: 53°37’S, 36°13’W, off South Georgia, 640–650 m; Also found: 150–800 

m South Georgia and the southern and western coasts of Cape Horn. 

Distribution: 8 ♀ (CL 17–56 mm), 10 ♂ (CL 28–80 mm) specimens examined. 

Specimens figured (Fig B1.8):  ♀ CL 17.1 mm (USNM 154634) Drake’s Passage, 384–

394 m, .IX.1963 ; ♀ CL 55.6 mm (USNM 231422) South Georgia, 563–598 m, May 

1975. 
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The spines in the larger size classes of P. spinosissima (CL >50 mm) appear to be 

almost identical to P. multispina previously examined.  Spines in adult specimens are 

stout, sharp and conical, flattened apically at an oblique (posterior facing) angle, and 

with an apical circumference of short setae (Fig B1.7e; Fig B1.8d).  Juveniles (CL 7–30 

mm) of P. spinosissima have long, sharp spines with long setae (Fig B1.8b). Again, 

similar to P. multispina, one spine in the mid-gastric region on all sizes of specimen is 

prominent and without setae or a posterior face. 

        

P. stella Macpherson, 1988c (Fig B1.9) 

Paralomis stella Macpherson, 1988c: p. 118, Fig 1; pl. 1 A-C. 

Type locality: La Réunion, 350-937 m.   

 

Specimens examined: 6 ♀ (CL 39–49 mm) 7 ♂ (CL 17–86 mm).  Figured specimens 

(Fig B1.9) ♂ CL 24.5 mm (MNHN Pg-4257) Réunion Islands, 350–750 m, 

28.VIII.1982 ;  holotype ♂ 71.3 mm (MNHN Pg-4255).   

 

P. stella, from the south-eastern Indian Ocean, has a very similar adult spine 

morphotype, and a comparable ontogenetic progression to P. mendagnai.  In both 

groups, the CL 10–25 mm size class have conical, spiniform tubercles, although in P. 

stella, none of the spines on the carapace are consistently enlarged in comparison to 

others on the same specimen.  Adults larger than CL 30 mm have regular, rounded 

tubercles with pores (possibly minute setae) dispersed across the apex.     

 

B1.3.2 Additional adult morphologies 

Images of 24 additional species of the genus Paralomis (Figs B1.10–15; Table B1) 

demonstrate the diversity of ornamentation within adults (and in two cases, of 

juveniles) of the Lithodidae, with a view to standardising terminology and aiding future 

identifications using carapace features.  

 

B1.4 Discussion 

B1.4.1 Ontogenetic Patterns 

There appears to be no single function governing the ontogenetic change of carapace 

ornamentation across the genus Paralomis.  In several of the groups (P. cubensis Fig 

B1.2, P. erinacea Fig B1.3, P. granulosa Fig B1.4, P. inca Fig B1.5, P. stella Fig 

B1.9), there is evidence for a progressive flattening of tubercles over subsequent moult 

stages.  Additionally, in P. africana Macpherson, 1982 (Figs B1.10b, d), the juvenile 

paratype (CL 15.7 mm) has the ornamentation of the carapace “as in adults, but 
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proportionally longer” (Macpherson 1982).   This is not the case for all species – with 

the large spines of adult P. multispina (Fig B1.7) developing contrary to this hypothesis 

from the pedunculated tubercles present in juveniles.  It is clear, however, that 

significant and consistent changes do occur within species. If the ontogenetic 

progression for more species were recorded, it may also be possible to detect trends 

within lineages.   

 

B1.4.2 Lineages and forms 

Based on the carapace ornamentation, several basic forms of ornamentation appear to 

exist.  Some vague geographical patterns are apparent, for example the similarity of P. 

dofleini, P. haigae and P. ochthodes from the Pacific and Indian Oceans, respectively.  

In general however, trying to make such links without knowing life histories might be 

flawed.  In the ‘western South America’ region, ornamentation seem to be most similar 

to that from species from neighbouring biogeographic zones (e.g. P. phrixa is 

comparable to P. spinosissima (Southern Ocean, Fig B1.8) and P. multispina (North 

Pacific, Fig B1.7); P. otsuae (South Atlantic, Fig B1.12d) to P. verrilli (North Pacific, 

Fig B1.13f), suggesting a complex pattern of dispersal to or from this region.   

 

B1.4.3 Functionality 

Little is known about the significance of the setae and tubercles for camouflage or 

protection in different habitats.  Migrations during development are recorded for many 

lithodid species (Miquel et al 1985, Abelló & Macpherson 1991, Stone et al 1992, 

Lovrich & Vinuesa 1995), and it seems reasonable to suggest the environmental 

pressures of changing habitats to explain a change in ornamentation.  Thus, it is 

possible that changes in ornamentation are partially environmentally controlled.  

Juveniles are generally more densely ornamented than adults, and their spines tend to 

be proportionally longer.  This may reflect the more vulnerable trophic position of the 

juveniles.  Alternatively, the change in appearance may be a by-product of the 

mechanics of tubercle structure formation; whereby the feature-forming nuclei in the 

epidermis are spread apart as a result of growth.   The mechanism by which spines and 

tubercles are formed at each moult, and the genetic or epigenetic mechanism that 

controls their form is unknown at present, and experimental work would need to be 

done to test this hypothesis. 

 

 

 

B1.4.4 Application to other genera 
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This study could have been extended to encompass some of the other lithodid genera.  

Paralomis has 61 species (Appendix A), and as such is the most speciose genus of the 

Lithodidae.  Species of this genus inhabit a wide variety of habitats, locations, and 

depths, and their identification can pose a challenge for field-ecologists. Ontogenetic 

changes are well documented for the 10 species of the deep-sea genus Neolithodes, as 

noted in many of their species descriptions (Benedict 1894, Barnard 1946, Macpherson 

1988a). Spines in Neolithodes are long, thin and devoid of setae.  The global, abyssal 

habitat of Neolithodes is more homogenous than that of Paralomis (Hall & Thatje 

2009a), but it has been observed that those species of Neolithodes inhabiting shallower 

water have a spinier carapace and legs than those in deeper waters in the same region 

(Smith 1882, Benedict 1894, Stebbing 1905, Barnard 1946).  This may be evidence of a 

higher predatory pressure in shallow seas.      

The genus Paralomis is paraphyletic, but only with respect to Glyptolithodes (Section 

A1.4.2), and the forms of carapace ornamentation documented here, are not found in 

any of the other lithodid groups. Genera Lithodes Latreille, 1806, and Neolithodes have 

thin spines with no setae; Hapalogastrine have overlapping features, described as 

‘scales’, which have setae on their anterior edges (Zaklan 2002a).    

 

B1.4.5 Terminology  

It is with particular difficulty that the tubercular stuctures of the Lithodidae are 

described.  Aligning the descriptions in original works with pictures taken of adults 

(type specimens where possible: Table B1), highlights deficiencies in the current 

semantics (for example, where P. aculeata in Spiridonov (2006) [Fig B1.11a, b] is 

described in the same way as P. pectinata in Macpherson (1988a) [Fig B1.10f]).  

Ornamentational structures with different basic forms are not adequately differentiated 

in descriptions.  While it might be possible to create a complex universal classification 

of carapace ornamentation for the Lithodidae, this would involve conjecture on the 

homology and the biological processes involved in tubercle development. In this thesis, 

the terminology used to describe ornamentation of Paralomis (Fig B1.1) is: ‘tubercle’, 

which replaces previously used synonyms: granule and papilla to describe structures 

less than 1.5 x as tall as wide; and ‘spine’ to describe structures more than 1.5 x as tall 

as wide.  A distinction should then be made between conical, flattened, pedunculate or 

rounded tubercles, and regular or irregular tubercles (Fig B1.1 for details).   
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This emphasises the fact that tubercles 

may be able to change between these 

forms within an individual between 

moults.  This standardisation of descriptive 

terms encourages the use of diagrams or 

photographs (which are lacking from most 

of the original descriptions) to illustrate 

the different forms of tubercles found in 

this genus.   

 

B1.5 Conclusions 

This work highlights the need for the 

entire growth spectrum to be taken into 

account when identifying species.  The 

fact that many described lithodid species 

are represented by only a few specimens 

underlines the importance of this 

comparative approach, in which general 

patterns for the genus are sought.   

• In Paralomis, particularly, dramatic 

changes in tubercle form can occur over a 

succession of moults. 

• Tubercle variability within specimens 

and within size classes of the same species 

is low in comparison to ontogenetic 

variations. 

• No single pattern could be found to 

describe the directionality of ontogenetic 

change within Paralomis, indicating that the trajectory of change itself might be a 

diagnostic character: potentially useful in morphological phylogeny.   

• The most common trend within Paralomis was for a reduction in the height of 

ornamentation – from spines or conical tubercles to flattened tubercles.  This was not 

universal.       

 



a b

c

d e

f g

Figure B1.2 Carapace ornamentation of Paralomis cubensis Chace, 1939.  
a, b, c) Female CL 26 mm (USNM-231310), R/V Miss Virginia 329–366 m, 21.III.1962; 
d, e)  Male CL 45.8 mm (USNM-213542) 26°45'N, 84°55'W, 466–732 m, XII.1983; 
f, g) Male CL 79.6 mm (USNM-231312), Amazon River Mouth, 411 m, XI.1957. 
a) carapace, dorsal view, scale: 5 mm; b) mid-branchial spines, posterio-lateral view, scale 
bar: 1 mm;  c) branchial spines, posterior view, scale bar: 1 mm; d) carapace, dorsal view,
scale bar: 5 mm; e) mid-branchial region, dorsal view, scale bar: 1 mm; f) carapace, dorsal 
view, scale bar: 5 mm; g) mid-branchial region, dorsal view, scale bar: 1 mm
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a b

c d

e f

Figure B1.3 Carapace ornamentation of Paralomis erinacea Macpherson, 1988. a, b) Female
CL 44.87 mm (MNHN Pg-2937); c, d) Female CL 59 mm (specimen in collection of A Ramos, 
Vigo), Mauritania 14.XII.07 e, f) Male CL 83 mm (specimen in collection of A Ramos, Vigo) 
Mauritania 14.XII.07.  a) carapace, dorsal view, scale bar: 5 mm; b) dorsal spines, posterior 
view, scale bar: 1 mm; c) carapace, dorsal view, scale bar: 5 mm; d) dorsal spines, posterior 
view, scale bar: 1 mm;  e) carapace, dorsal view, scale bar: 5 mm; f) dorsal tubercles,

posterior view, scale bar: 1 mm. 
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a b

c d

e f

Figure B1.4 Carapace ornamentation of Paralomis granulosa Jaquinot, 1852.  a, b), Male CL 25.6 mm 
(USNM-231429) Strait of Le Maire, Tierra del Fuego, 25.IV.1971; c, d) Female CL 45.6 mm 
(NHM-152710); e, f) Male CL 65.7 mm (NHM-152710), Tierra del Fuego, 1939; a) carapace, dorsal
view, scale bar: 5 mm; b) mid-branchial region pedunculated tubercles, dorsal view, scale bar:
0.5 mm; c) carapace, dorsal view, scale bar: 5 mm; d) mid-branchial tubercle, postero-lateral 
view, scale bar: 1 mm; e) carapace, dorsal view, scale bar: 5 mm; f) mid-branchial region, 
dorso-lateral view, scale bar: 1mm.
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a b

c d

Figure B1.5 Carapace ornamentation of Paralomis inca Haig, 1974. a, b) Male CL 69 mm (image 
of paratype from Haig, 1974), 12 miles SW of Banco de Mancora, Peru, 620 m, III.1971 c, d)
Female CL 96 mm (USNM-259223) 7°49'00''S 80°38'00''W, 705–735 m; a) carapace, dorsal view, 
scale bar: 10 mm; b) carapace spine, lateral view, scale bar: 1 mm; c) carapace, dorsal view,
scale bar: 10 mm; d) mid-branchial tubercle, lateral view, scale bar: 1 mm. 
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c

e f

d

b

Figure B1.6 Carapace ornamentation of Paralomis mendagnai Macpherson, 2003. a, b) Male CL 
11 mm (MNHN Pg-6408), Solomon Islands 1001–1012 m, 26.IX.2001 c, d) Female CL 36 mm 
(MNHN Pg-6408), Solomon Islands 896–912 m, 25.IX.2001 e, f) holotype Male 58.8 mm (MNHN
Pg-6408)  Solomon Islands 896–912 m, 25.IX.2001; a) carapace, dorsal view, scale : 2 mm; b) 
mid-branchial region, dorsal view, scale bar: 1 mm; c) carapace, dorsal view, scale bar: 5 mm;
d) mid-branchial region, dorsal view, scale bar: 1 mm ; e) carapace, dorsal view, scale bar: 5 mm; 
f) mid-branchial flattened tubercle, scale bar: 1 mm.
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a b c

d e

Figure B1.7 Carapace ornamentation of Paralomis multispina Benedict, 1895. a, b, c) Female
CL 17 mm (USNM-18591), Sea Lion rocks, WA, 1253 m; d, e) Female CL 68 mm (USNM-18589);
a) carapace, dorsal view, scale bar: 5 mm; b) mid-branchial spine, dorsal view, scale bar: 0.5 mm; 
c) mid-branchial spine, right lateral view, scale bar: 1 mm; d) carapace, dorsal view, scale bar:
5 mm; e) typical mid-branchial spine, right lateral view, scale bar: 1 mm.  
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b

c d

Figure B1.8 Paralomis spinosissima. Birstein & Vinogradov, 1972. a, b) Female 
CL 17.1 mm (USNM-154634) Drake Passage, 384–394 m, IX.1963; c, d) Female
CL 55.6 mm (USNM-231422) South Georgia, 563–598 m, V.1975; a) carapace,
dorsal view, scale bar: 5 mm; b) branchial spines, right lateral view, scale bar: 
1 mm; c) carapace, dorsal view, scale bar: 5 mm; d) typical mid-branchial spine,
 right lateral view, scale bar: 1 mm.  
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c d

Figure B1.9 Paralomis stella Macpherson, 1988. a, b) Male CL 24.5 mm (MNHN Pg-4257) 
Réunion Islands, 350–750 m, 28.VIII.1982. c, d) holotype Male 71.3 mm (MNHN Pg-4255);
a) carapace, dorsal view, scale bar: 5 mm; b) mid-branchial spines, left lateral view, scale bar: 
0.5 mm ; c) carapace, dorsal view, scale bar: 5 mm; d) mid-branchial tubercle, left lateral view, 
scale bar: 1 mm .
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e f

Figure B1.10 Carapace ornamentation of northern and central Atlantic species of Paralomis. 
Scales 1 mm. a) P. cristulata  holotype Female CL 55 mm (MNHN Pg 3427) Senegal, 650 m, 
mid-branchial region, dorsal view; b, d) P. africana Male CL 68.4 mm (USNM 213153)

mid-branchial region, dorsal view; c) P. bouvieri Male CL 17.7 (USNM 231209), dorsal carapace 
spines, lateral view; e) P. grossmani holotype Female CL 93.4 mm (USNM 228832) mid-branchial
tubercle, dorsal view; f) P. pectinata holotype Female CL 96.4 mm (USNM 233599) mid-branchial 
region, dorsal view. 

The Evolutionary History of the Lithodinae Section B Chapter 1

129



d e f

a b c

hg

Figure B1.11 Carapace ornamentation of  Southern Ocean Paralomis species.  
Scales 1 mm. a, b) P. aculeata, holotype Male CL 41 mm (NHM 88.33) Prince Edward Islands,
 a) mid-branchial region, dorsal view, b) antero-lateral carapace, dorsal view; c) P. elongata 
Female CL 65 mm (collection S. Thatje, NOCS) Bouvet Island, mid-branchial region, depicting 
significant intermoult wear on the tubercles, dorsal view; d) P. anamerae Female CL 72 mm (MD
24 Crozet Islands, 655—700 m, IX.1980) mid-branchial region, dorsal view; P. formosa  
e) paratype Male CL 16.4 mm (NHM 88.33), Rio Plata, base of a lateral spine, showing 
secondary tubercles in juvenile specimen, dorsal view; f) Male CL 72.6 mm (collection, 
S. Thatje, NOCS) South Georgia groundfish survey mid-branchial region, not showing 
main spines, which are up to 10 mm in length, dorsal view; g, h) P. birsteini  holotype Female 
CL 54.7 mm (USNM 228830).
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e

Figure B1.12 South Pacific Paralomis species 1. Scales 1 mm a) P. aspera Male CL 53 mm (NHM) 
Coquimbo, 560 m, VI.1971 mid-branchial spines, postero-lateral view; b) P. phrixa holotype Female 
CL 64.6 mm (USNM 259380) mid-branchial spines, lateral view; c) P. arae  holotype Male CL 74.5 mm
(MNHN Pg 5945) mid-branchial region, dorsal view; d) P. otsuae Female 73.4 mm (USNM 259219) 
mid-branchial region, dorsal view; e) Glyptolithodes cristatipes mid-branchial region, dorsal view. 
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Figure B1.13 Japan and North Pacific species of Paralomis. Scales 1 mm a, b) P. histrix
mid-branchial spines, lateral view a) Female CL 63.2 mm (NHM 1985.140), b) Male CL 34.9 mm 
(MNHN Pg 2212); c) P. japonica Male CL 46.7 mm (MNHN) mid-branchial tubercles, dorsal
view; d) P. makarovi holotype Male CL 23 mm (USNM 1122582) mid-branchial carapace 
spine, lateral view; e) P. cristata Female 76.4 mm (USNM 229721) mid-branchial tubercle, 
dorso-lateral view; f) P. verrilli (Benedict, 1894) holotype Male CL 78 mm (USNM 18537) 
mid-branchial region, dorsal view. 
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d

Figure B1.14 Central Pacific species of Paralomis. Scale 1 mm a) P. seagranti Eldredge, 1976,
Male CL 74.7 mm (Pg 4265) mid-branchial region, dorsal view;  b) P. dawsoni  Female 57.3 mm 
(MNHN Pg-4279) mid-branchial tubercles, dorsal view; c) P. haigae Male CL 49.9 mm
 (MNHN Pg-4276) mid-branchial tubercle, dorsal view; d) P. hirtella Male CL 47 mm (MNHN 
Pg-4662) mid-branchial region, dorsal view.
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Figure B1.15 Indian Ocean species of Paralomis.Scale 1 mm. a) P. ceres
holotype Male CL 58.1 mm (NHM 1989.926) mid-branchial region, dorsal view; 
b) P. ochthodes holotype Male CL 71.6 mm (USNM 228831) mid-branchial
tubercles, dorsal view.
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Table B1: Some descriptions of tubercular structures taken from the literature, 

alongside results from studies of adult forms using terminology set out in Figure B1.1.  

Both original descriptions and ‘previous’ publications (other than the original 

description) were used to compile this table.  

Species and systematics Material Examined Previous and original descriptions by other 

authors compared with revised descriptions 

P. aculeata Henderson, 

1888 

Type locality: Prince 

Edward Islands; also 

known from the Crozet 

Islands (300—

approximately 1500m; 

Macpherson 2004, 

Spiridonov et al 2006). 

30 specimens CL 25–

74 mm. 

Previous: Carapace dorsally covered with 

small granules (Spiridonov et al 2006) 

Revised: Sparsely covered with rounded 

tubercles less than 1 mm in diameter (Figs 

B1.11a, b).  Some tubercles towards the 

anterior edge of the carapace are acute and 

conical, and some bear setae, especially in 

smaller adults (Fig B1.11b). 

P. africana Macpherson, 

1982 

Type locality: off 

Namibia 550–750 m; 

also known from 

Mauritania (Ramos 

unpublished records). 

 

7 ♀ CL 31-57 mm, 6 

♂ CL 62-78 mm. 

Original: Covered in granules of  

variable but small size with stiff setae on the 

summit. (Macpherson 1982) 

Revised: Flattened to rounded tubercles, with 

several pores and very short setae scattered 

over the surface of the tubercle (Figs B1.10b, 

d).  In smaller specimens of P. africana, 

around 30 mm, tubercles are more rounded; 

becoming flattened in larger adults.   

P. anamerae 

Macpherson, 1988a.  

Type locality: North of 

the Falkland Islands, 

132-135 m; now known 

from South Georgia, 

around 300-500 m.  

4♀ 4♂CL 68-98 mm 

(USNM 1079617; 

collection of S. 

Thatje, NOCS).   

 

P. arae Macpherson, 

2001 

Type locality: Fiji 1058-

1091 m.  

 

Holotype ♂ CL 74.5 

mm (MNHN Pg 

5945). 

Original: Granules usually with several setae.  

Dorsal surface covered with small granules of 

different sizes (Macpherson 2001). 

Revised: Carapace ornamentation is made up 

of irregularly rounded tubercles, tightly 

packed and clustered, with individual setae on 

some tubercles. (Fig B1.12c) 

P. aspera Faxon, 1893 ♂ Holotype CL 53 Previous: Whole surface of carapace and 
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Type locality: Off 

Ecuador and western 

Panama, 750-1200 m 

(Del Solar 1972, Haig, 

1974) 

 

mm (NHM) 

Coquimbo, 560 m, 

June 1971. 

abdomen thickly beset with papillae or 

tubercles, each one of which is encircled with 

a crown of stiff setae (Faxon 1985). 

Revised: A dense coverage of spines or 

conical tubercles, each with a ring of stiff 

setae around the acute tip. (Fig B1.12a) 

Paralomis birsteini 

Macpherson 1988b 

Type locality: Ross Sea; 

now known from the 

Bellingshausen Sea 

(Thatje, 2008) and 

Crozet Islands 

(Macpherson 2004). 

5♀ 5♂ examined CL 

46-99 mm.  (USNM 

228830; collection of 

S. Thatje, NOCS; 

MD08 1976 cruise to 

Crozet Islands, 1500 

m).   

 

Original: Covered with granules of small 

size, and several spines. 

Revised: Small rounded tubercles less than 1 

mm in diameter, in addition to several much 

larger conical tubercles in consistent positions 

on the carapace.  (Fig B1.11g, h) 

P. bouvieri Hansen, 1908 

Type locality: off 

Iceland, 1471 m; also 

found off south western 

Ireland (4152 m: 

Macpherson, 1988a) and 

the eastern seaboard of 

the USA and Canada 

(1460 m: Macpherson, 

1988a). 

 

2 ♂ juveniles, CL 13 

mm (USNM 

231309), 17 mm 

(MNHN: 

Geomanche, 

November 1985, 

47°60’N, 12°19’W). 

Previous: Dorsal surface covered with many 

long spines, without granules among them.  

Normally no setae on spines.  Sizes of spines 

variable, some clearly longer than others. 

(Macpherson 1988a) 

Revised: All specimens caught to date are 

between 13 and 34 mm, and have several long 

spines on their carapace.  Previous reports 

have stated that spines usually have no setae 

(Macpherson 1988a), but we find this not to 

be the case in the specimens examined (Figs 

B1.10c).  Setae are long and apical, but not in 

the circumferential arrangement found in 

small specimens of P. spinosissima Birstein & 

Vinogradov 1972 (Fig B1.8b), or other similar 

species. 

P. ceres Macpherson, 

1989 

Type locality: Ra’s al 

Haad, Arabian Sea, 

1189-1354 m. 

 

♂ holotype, CL 58.1 

mm (NHM 1989.926) 

Original: Thickly covered with rounded 

prominent granules of varying sizes 

(Macpherson, 1989) 

Revised: Several rounded tubercles with a 

roughly defined ring of single setae towards 

the top.  Lateral, tubercles are conical and 

which have many setae towards their base 

(Fig B1.15a). 

Paralomis chilensis 

Andrade, 1980. 

Not studied. 

 

Original: Rows of spiniform tubercles of 

greater length with some smaller spiniform 
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Type locality: 420 m, 

off Chile, 40°S. 

 

tubercles in the interspaces. Spines with a ring 

of several stiff setae around the tip, but the tip 

of spines not obliquely cut. (Andrade, 1980).  

See original description for diagram, in which 

it is described as having tubercles similar to P. 

aspera Faxon 1893 (Fig B1.12a) (Andrade 

1980) 

P. cristata Takeda & 

Ohta, 1979. 

Distribution: Around 

Sagami Bay, and the 

coast of Japan.  

 

12 specimens, CL 

74–96mm. 

Original: Thickly covered with 

vesiculous granules of variable but small 

size, thus the carapace surface of scaly 

appearance. (Takeda & Ohta 1979). 

Revised:  Covered with rounded 

tubercles (Fig B1.13e), each with a ring 

of short setae around the top.  Often these 

tubercles are clustered into groups. 

P. cristulata 

Macpherson, 1988 a.  

Type locality: Guinea 

Bissau, eastern Atlantic, 

385 m.   

2 ♀, including 

holotype. CL 55.5 

(MNHN-Pg 3427), 

CL 48.34 (ICMD 

130/1991). 

Revised: Rounded or flattened tubercles 

in adults. Some pores visible across the 

apex, possibly bearing setae. (Fig B1.10a) 

P. cubensis Chace, 1939 

 

See text. Original: Covered with crowded tubercles of 

different sizes, low and rounded on most 

surfaces, becoming more acute towards the 

margins (Chace, 1939). 

Revised: Fig B1.2 & discussion herein 

P. dawsoni Macpherson, 

2001 

Distribution: Solomon 

Islands and New 

Caledonia 897—1057 m 

(Macpherson 2001, 

2003). 

 

4 specimens CL 57–

77 mm.  

Original: Rounded clustered granules of 

different sizes. Granules with short setae 

(Macpherson, 2001). 

Revised:  Dorsal surface of the carapace 

covered with clusters of rounded or conical 

tubercles, each with a ring of setae around the 

apex (Fig B1.14b).   

P. dofleini Balss, 1911. 

Distribution: Sagami 

Bay, and the coast of 

Japan.  

 

 

3 ♂ CL 46-89mm. 

Mouth of Tokyo bay, 

off Tateyama 350-

400m March 1991. 

Previous: Studded with tubercles of varying 

sizes (Sakai, 1971). 

Ornamentation is very similar to that in P. 

haigae (Fig B1.14c) (Macpherson 2008) 

P. elongata Spiridonov Three paratypes. Original: Carapace dorsally covered with 
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et al 2006 

Type locality: Spiess 

seamount, Bouvet Island, 

South Atlantic, 300-900 

m. 

 

 small granules (Spiridonov et al 2006). 

Revised: Sparsely covered with rounded 

tubercles less than 1 mm in diameter (Fig 

B1.11c). Larger specimens with evidence of 

environmental inter-moult wear on the 

tubercles. 

Paralomis formosa 

Henderson 1888 

Distribution: South  

East Atlantic, off the 

coast of Argentina, and 

South Georgia 400-1600 

m. 

4 ♀ inc. juv. 

paratypes, CL 14-85 

mm, 3♂ 70-84 mm. 

(USNM 231436-

231439; NHM 88.33; 

collection of S. 

Thatje, NOCS) 

Previous: Entire surface covered with small 

granules, and a few spines. (Macpherson 

1988a) 

Revised: Small rounded or conical tubercles 

less than 1 mm in diameter, in addition to 

several much larger conical tubercles or spines 

in consistent positions on the carapace.  The 

smaller tubercles from juvenile specimens 

(Fig B1.11e) are very densely packed, and 

proportionally larger in relation to the conical 

tubercles than those in the adult form (Fig 

B1.11f).   

P. grossmani 

Macpherson 1988a 

Type locality: off the 

coast of Suriname and 

Northern Brazil, 770 m. 

 

2 ♀ov including 

holotype, CL 93, 97 

mm (USNM 228832, 

228833). 

Original: Dorsum and sides covered with 

granules that are more or less acute, without 

forming spines.  Granules bearing thin setae. 

Revised: Rounded (Fig B1.10e), or conical 

tubercles, bearing rings of short setae around 

the apex of individual tubercles. 

P. haigae Eldredge, 1976 

Distribution: Guam and 

the Solomon Islands 

(Eldredge 1976, 

Macpherson, 2008). 

 

7 specimens CL 43– 

92 mm. Figured: ♂ 

CL 49.9 mm (MNHN 

Pg 4276) 

Original: Covered with large and small round 

tubercles, each with a circlet of short setae 

near the uppermost portion (Eldredge, 1976). 

Revised: P. haigae (Fig B1.14c) has 

individual or clustered, rounded tubercles on 

its carapace and abdominal plates, with a thick 

ring of setae around the apex of each tubercle. 

P. hirtella de Saint 

Laurent & Macpherson 

1997 

Type locality: Vent sites 

in Lau, and North Fiji 

Basins, South West 

Pacific.  

 

4♀ CL 46-62 mm 3♂ 

CL 32-54 mm. 

(MNHN Pg-4658, 

4659, 4661, 4662). 

Original: Carapace devoid of granules, 

tubercules [sic], or spines, but sparsely 

covered by tufts of erect setae. (de Saint 

Laurent & Macpherson 1997). 

Revised: No raised tubercles on the carapace.  

It does, however, have long (possibly sensory) 

setae, in semicircular arrays across all surfaces 

of the carapace (Figs B1.14d).   

Paralomis hystrix De 3♀ CL 63-96 mm 3♂ Previous: Spines very long and sharply 
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Haan 1849 

Distribution: Around 

Sagami Bay, the coast of 

Japan, and Solomon 

Islands. 

CL 16-98 mm (NHM 

1894.7.8.7; 1985.40; 

USNM 1079610).  

 

pointed.  (Sakai 1971) 

Revised: Long, curved, round-tipped spines, 

without setae in any size of individual 

examined (Figs B1.13a, b).  Spines are 

particularly densely packed in this species, 

covering all surfaces of the legs, abdomen, 

and dorsal carapace. 

P. hystrixoides Sakai, 

1980: 1. 

Distribution: Pacific 

coast of Japan, and 

Sagami Bay, Japan, 700-

1100 m. 

Not studied. 

 

Original: Spines of the carapace are slender 

and sharp.  In P. hystrix, they are basally 

swollen in the form of a bulb, especially in 

fully-grown specimens.  In younger 

specimens, however, the spines are slender 

and not particularly swollen basally (Sakai, 

1980). 

Revised: Compare with P. hystrix (Figs 

B1.13a, b) 

P. inca Haig, 1974 See text. Original: Covered in tubercles of different 

sizes, each bearing a cluster of very short, stiff 

setae over the summit.  Juveniles sharp tipped 

spines with rudimentary setae at the apex. 

(Haig, 1974) 

Revised: Fig B1.5 & discussion herein. 

P. indica Alcock & 

Anderson, 1899 

Type locality: 800 m, 

off south-east India 

(Travancore coast). 

Not studied. 

 

Original: The surface of the carapace is 

studded with vesiculous, pustulous and 

conical tubercles of various sizes (Alcock & 

Anderson, 1899). 

P. investigatoris Alcock 

& Anderson, 1899 

Type locality: 800 m, 

off south-east India 

(Travancore coast). 

Not studied. 

 

Original: Closely covered with equal sized 

papilliform tubercles each with a crown of 

small stiff hairs (Alcock & Anderson, 1899). 

Ornamentation visible in original description 

(Alcock & Anderson 1899). P. investigatoris 

appears to have similar carapace 

ornamentation to P. cristata from Japan, and 

P. ceres Macpherson 1989 (Fig B1.15a) from 

the Arabian sea. 

P. japonica Balss, 1911. 

Distribution: Around 

Sagami Bay, and the 

coast of Japan. 

♂ CL 46.7 mm 

(MNHN) 

 

Original: Carapace covered with conical 

processes of variable size, and the surfaces 

covered with tiny tubercles, thus the entire 

body [has a] frosted appearance (Sakai, 1971). 
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 Revised: Many large clusters of small, 

rounded tubercles (Fig B1.13c) arranged on 

ridges across the carapace, especially the 

branchial region.   

P. longipes Faxon, 1893. 

Type locality: 1410 m, 

6°S, 87°W; also known 

from off the coasts of 

Ecuador and Peru, 700-

1800 m.   

Not studied. 

 

 

Original: Whole surface of the carapace 

thickly covered with blunt tubercles; viewed 

under a lens, each tubercle is seen to be 

encircled with a ring of short stiff setae 

(Faxon, 1895). Figured in Faxon (1895); 

appearance similar to ornamentation in P. 

grossmani, from Brazil in having rounded 

tubercles with a ring of short setae at the apex 

(Haig 1974) (Fig B1.10e) 

P. mendagnai 

Macpherson, 2003 

See text. Original: Dorsal carapace surface densely 

covered with rounded, more or less prominent 

granules of different sizes (Macpherson, 

2003). 

Revised: Fig B1.6 and discussion herein 

P. multispina Benedict, 

1894 

See text. Previous: Most of the spinules of the 

carapace are cut obliquely from behind or 

rectangularly, terminating in a round elliptical 

face. (Sakai, 1971) 

Revised: Fig B1.7 & discussion herein 

P. ochthodes 

Macpherson, 1988b 

Type locality: Gulf of 

Boni, Indonesia, 1281 m 

 

 

♂ holotype CL 71.6 

mm (USNM 

228831). 

 

Original: Thickly covered with spinulous 

tubercles, with dense stiff setae on the summit 

(Macpherson, 1988b). 

Revised: Rounded tubercles, but with thick 

bands of stiff setae ringing the top of the 

tubercles, similar to P. haigae and P. dofleini 

(Figs B1.15b; 14c). 

P. otsuae Wilson, 1990 

Type locality: off the 

coast of Chile 800-1800 

m. 

 

8 specimens CL 52-

110mm. 

Original: Carapace covered with granules of 

small size (Wilson, 1990). 

Revised: Several flattened tubercles, 

sometimes clustered together, and usually 

quite sparsely covering the carapace.  

Sometimes very short setae are found on the 

tubercles in P. otsuae (Fig B1.12d). 

P. pectinata 

Macpherson, 1998a 

Type locality: 1400-

♀ holotype CL 64.6 

mm (USNM 

259380). 

Original: Covered with small granules of 

various sizes (Macpherson, 1988a). 

Revised: Flattened tubercles on the carapace 
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1600 m, off the coast of 

Venezuela.  

 

of the holotype, bearing rings of short setae 

around individual tubercles. (Fig B1.10f).  

P. phrixa Macpherson, 

1992. 

Type locality: Ecuador 

and Peru, 1700-1900m. 

 

5 ♀ CL 55–64 mm.  

 

Original: Thickly covered with long spines 

Macpherson, 1992. 

Revised: A dense coverage of spines, each 

with an obliquely blunt tip, and the oblique 

face surrounded by a ring of setae (Fig 

B1.12b). 

P. roeleveldae 

Kensley, 1981 

Type locality: The cape 

of Africa, 625-900 m 

Not studied. 

 

Original: Short, rounded tubercles of varying 

sizes. (Kensley, 1981). Tubercles seem to be 

of a form very similar to P. ceres from the 

northern Indian Ocean (Fig B1.15a). 

P. seagranti Eldredge, 

1976 

Distribution: Guam and 

Kiribati, Central Pacific.  

 

2 specimens 46, 

75mm.  

Original: Carapace surface covered with low 

areolations, covered with minute bristles or 

setae arranged mostly in circular patterns at 

the bases of the areolateion, occasional shorter 

setae on the surface of the mounds. (Eldredge, 

1976) 

Revised: P. seagranti, has densely setose legs 

and carapace edges. Its dorsal carapace 

surface has many flattened tubercles (Fig 

B1.14a), each with scattered setae on the 

surface.  This gives the carapace a smooth 

appearance when viewed macroscopically, but 

is rough to the touch.   

P. serrata Macpherson 

1988a 

Type locality: 1100 m, 

off the coast of 

Colombia. 

♂ holotype CL 104.8 

mm (USNM 

228836). 

See P. pectinata, Fig B1.10f. 

P. truncatispinosa 

Takeda, 1980 

Distribution: Around 

Japan. 

Not studied. 

 

Original: Wart-like truncated tubercles of 

various size which are symmetrically disposed 

in basic pattern, some larger tubercles among 

them. (Takeda, 1980). For high resolution 

figure, see Macpherson 2008  

P. tuberipes 

Macpherson, 1988b 

Type locality: Southern 

Chile, No depth 

Not studied. 

 

Original: Granules similar to P. granulosa 

but not clustered or pedunculated, and more 

prominent and numerous [than P. granulosa 

of a similar size].  Known only from the CL 
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recorded. 76 mm holotype in Macpherson (1988b), and 

figured therein. 

Paralomis verrilli 

(Benedict, 1894). 

 Distribution: Around 

the coast of Japan to the 

Bering sea. (Sakai, 

1971). 

 

7 specimens, CL 58-

94mm. 

Previous: Very thickly covered with flat 

tubercles (Sakai, 1971). 

Revised: Many flattened tubercles (Fig 

B1.13f), sometimes clustered together, and 

usually quite sparsely covering the carapace.  

Sometimes very short setae are found on the 

tubercles in P. verrilli, and its carapace 

ornamentation bears a strong resemblance to 

that of P. otsuae (Fig B1.12d) from the Pacific 

coast of South America. 

P. zealandica Dawson & 

Yaldwin, 1971.  

Type locality: Chatham 

Rise, South of New 

Zealand, 640 m. 

Not studied. 

 

Original: Dorsal surface with numerous 

subequal conical blunt pointed short spines 

(Dawson & Yaldwin, 1971). Detailed figure 

unavailable.  The original description suggests 

the closest allegiance is with adult P. 

granulosa (Fig B1.4) 
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CHAPTER B2: MORPHOLOGICAL PHYLOGENY OF THE 

GENUS LITHODES 

B2.1 Context and objectives 

The genus Lithodes contains 21 species (Appendix A) which are known to inhabit most 

of the world’s oceans, including one representative (L. murrayi) in the Bellingshausen 

Sea, Southern Ocean (Klages et al 1995).  Lithodes species typically inhabit depths 

greater than 200 m, although above 40 ° of latitude (north and south) some Lithodes 

species are found in shallower waters (Appendix E).  Paralithodes contains 6 species, 

all of which are endemic to the North Pacific, above 30 °N, generally shallower than 

300 m (Zaklan 2002b).       

A close relationship between the genus Lithodes and the North Pacific group 

Paralithodes has been indicated in several studies (including Section A1 herein).  

Paralithodes was shown to be paraphyletic and the divergence of species Paralithodes 

brevipes was closest to the base of the Lithodinae.  Paralithodes and Lithodes genera 

both have their medial abdominal plates 3-6 constructed from numerous heavily 

calcified nodules.     

From a North Pacific origin, it is hypothesised that the Lithodes genus made a 

transition into deeper waters in other oceans.  Analysis of morphological traits shared 

uniquely between species of Lithodes can begin to elucidate pathways and links 

between different regions that may not be evident by examination of species outside of 

a phylogenetic context.  The aims of this chapter are: 

• to place species of Lithodes within a nested hierarchy of ancestry, in order to 

identify historically related groups. 

• to examine the biogeographic distribution of closely related species. 

• to provide an analysis in parallel to that of another globally distributed 

lineage, Paralomis (Section B3), so that comments can be made on the 

differences and similarities of these two radiations. 

B2.2 Synopsis of methods 

Linear measurements and multi-state discrete characters were collected for 158 

specimens belonging to 17 species of Lithodes and Paralithodes (Appendix A for 

species list).  These were used to produce two independent estimations of Lithodes 

phylogeny as follows:  

For the linear-measurement data, analysis of variance (ANOVA) was used to test 20 

growth-standardised character-measurements for significant levels of inter-species 

variation.  Those character-measurements selected for further analysis were used to 

produce distance matrices that compared each pair of species in the taxon set.  Each 



The Evolutionary History of the Lithodinae   Section B Chapter 2 

 144 

element in these matrices was an estimate of the actual inter-species difference for that 

character, and was calculated using properties of the normal distribution.  A sum of all 

distances matrices was analysed by Fitch-Margoliash least squares optimisation 

<PHYLIPFitch> which produced an estimate of phylogeny to best describe the 

observed differences.      

Additionally, 24 discrete characters were coded for 17 species of Lithodes and 

Paralithodes.  These were analysed in <PHYLIPPars> using the criterion of Wagner 

parsimony to select the tree topology that optimally described the observed data.   

   

Analyses were based on the assumption that any features shared between the species 

Paralithodes brevipes and the genus Lithodes were present in their last common 

ancestor.  Where possible, ancestral states for the analysis were produced from a 

comparison of P. brevipes with more distant groups, such as Paralomis (Lithodinae) 

and Hapalogaster (Hapalogastrinae).  The comparison of multiple outgroups reduces 

the chance of being misled by autapomorphies within the Paralithodes brevipes 

lineage.   

 

B2.3 Results 

B2.3.1 Morphometry results 

B2.3.1.1 Morphometric sampling results and data inclusion 

The deep-water habitat of the Lithodes genus meant that sampling was sporadic; it was 

desirable to include some species in the taxon set for which five or fewer samples are 

available.  This reduces the statistical power of some of the tests employed; however, it 

was important to include these species so that a global view of lithodid evolution could 

be examined (habitat-depth is an important factor governing how readily available 

sample specimens are).  Such samples are included for distance analyses; however, 

they are not included in tests of regression or as part of the analysis of variance.  This 

applies to Lithodes manningi (3 specimens), L. galapagensis (2 specimens), and L. 

longispina (3 specimens).  These groups are coloured yellow on graphs (Figs BM.5, 

B2.1, B2.2). The other 14 species are more commonly encountered and larger sample 

sizes could be obtained. 

 

B2.3.1.2 Growth standardistation        

All of 20 morphometric characters (Yk) have a demonstrably positive and 

approximately linear relationship with carapace length (CL).  The first order (1°) 

polynomial regression indicates that CL is a good ‘explanatory variable’ for the change 

in all characters measured, as indicated by a high r
2 
value and a low probability that the 
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coefficient of the linear term (Yk = aCL) is zero (Appendix J.a, Fig BM.5a).   In most 

cases, there was no strong or significant relationship indicated between higher order 

functions of CL and measurements Yk before data were subdivided by species. 

An approximately linear relationship between CL and Yk was tested further in species-

subdivided datasets Ykn.  In all but a few cases, there was no significant relationship 

between Yk,n/CL and CL, as indicated by a low r
2 

value when tested against a linear 

regression (Appendix J.b, Fig BM.5b).  In most cases, there was a high probability that 

coefficient B was zero in the equation Yk /CL= A + BCL.  Wherever a relationship 

between Yk,n/CL and CL existed (high r
2
), the coefficient of CL

 
in the linear regression 

(Yk,n/CL = A + BCL) was less than 0.01 times the standard deviation of Yk,n/CL 

(Appendix J.b).  The size-specific variation of data Yk/CL was so small that it should 

be expected to have a very small effect on overall variation.  Yk/CL was used as the 

size-standardised statistic in all cases for simplicity and consistency.   

 

B2.3.1.3 Parameter testing and analysis of variance 

F-statistics (Appendix J.a) indicated that measurements Yk,n did not come from species 

with significantly unequal variances (p(EV)>0.01).  The majority of characters did not 

have a significantly non-normal distribution (p(N)>0.01) when considered as a single 

population.  One-way analysis of Variance (ANOVA) indicated that 13 out of 20 

characters (Highlighted, Appendix J) have significantly different inter-species means 

when compared with the total amount of variation present in the population.  In the 

remaining character-sets, there is no evidence that species are significantly different 

from one another, and they were not analysed further. 

For all subdivided datasets (Yk,n), the assumption of normality was upheld (Appendix 

J.b), indicating that properties of normally distributed populations could be used to 

give confidence estimates for evolutionary distances calculated from these data.   Pair-

wise tests based on the t-statistic were used to indicate differences between species for 

each character The results of significance tests for some of the of pair-wise species 

differences are illustrated graphically (Figs BM.5, B2.1, B2.2).        
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Figure B2.1 Standardised measurements of individual specimens from species of Lithodes 
and Paralithodes. Specimens shaded within species, based on the results of pair-wise significance 
testing, in which red and black groups are significantly different from one another.  All 
measurements in millimetres. a) Anterolateral length (AL) standardised for size (CL).
b) Propodus length (PL).  
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Fig B2.2
Specimens shaded within species, based on the results of pair-wise significance

testing, in which red and black groups are significantly different from one another.  All measurements
rdin millimetres. a) Dactylus of 3  pereiopod length (DL) standardised for size (CL).

b) Gastric Width (GW).  

 Standardised measurements of individual specimens from species of Lithodes 
and Paralithodes.  
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B2.3.1.4 Morphometric distance phylogeny  

Size-standardised linear measurements from 13 characters (Appendix J.a) were used to 

estimate the mean and standard deviation of differences between 17 species.  These 

differences were used to produce two distance matrices in which there is either 64% or 

90% confidence that ‘true’ inter-species differences are as long or longer.  Fitch-

Margoliash distance methods were then used to select phylogenetic tree topologies that 

best represented the data.  In these distance trees (Fig B2.3), nodes are described by 

letters e.g. [Ф] as discussed in the text. 

 

-TREE 1: Mean ± 1.64*standard deviation 

The more conservative of the two morphometric distance trees (Fig B2.3a) indicates the 

Lithodes lineage is split into two groups.  The first, clade [Б], includes four North 

Pacific species belonging to the genera Lithodes and Paralithodes.  The second group 

[Ж] contains South Atlantic, Indian Ocean, and Central Pacific species, with South 

Atlantic species L. confundens as a sister group to this clade.  A monophyletic group 

[Ф] of central Pacific species: L. longispina, L. megacantha, and L. richeri is nested 

within clade [Ж].  The obelus symbol indicates species for which there is a low 

confidence in the values of the sample mean because of low sample size (e.g. L. 

galapagensis). The placement of these groups should be treated with caution.   

 

-TREE 2: Mean ± 1 standard deviation 

A tree based on data for which there is 68 % confidence of the minimum inter-species 

difference (Fig B2.3b) also splits into two lineages, with outgroup Paralithodes 

brevipes and North Pacific species P. camtschatica at its base. The first group includes 

shallow S. Atlantic species Lithodes santolla and L. confundens at its base and clade 

[Б] containing only North Pacific Lithodes species, Paralithodes californiensis and P. 

rathbuni.  The second group [Ж] contains south Atlantic and Indian Ocean species L. 

ferox, L. murrayi and L. mamillifer as well as south/central Pacific species: L. 

megacantha and L. richeri and L. longispina (3 samples).          
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Figure B2.3 Morphometric trees produced for 17 species of Lithodes and Paralithodes using
data from 13 characters.  Trees are rooted using data collected for Paralithodes brevipes. 
Species based on the average of fewer than 5 specimens are indicated (†).  Species
typically inhabiting shallow water environments (< 100 m) are indicated (*).  
a)Distances calculated as pairwise differences between ordered means ± 1.64*standard deviation.
b)Distances calculated as pairwise differences between ordered means  ± 1 standard deviation.
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B2.3.2 Formulation and scoring of discrete morphological characters 

For results, refer to Table B2. 

-Enlarged spines on the carpus of the walking legs 

 --Ancestral state: No evidence of enlarged spines on the proximal and distal joints of 

the carpus is seen in any of the other lithodid genera (except Neolithodes, which may 

share some ancestral history with Lithodes but needs to be investigated further).  No 

evidence of such spines is seen in Paralithodes brevipes or any other species of 

Paralithodes at any life-stage.  

Characters 1&2. --Enlarged spines on the proximal and distal portions of the walking 

leg carpus and distal portion of walking leg merus in juveniles (CL < 30 mm) and 

adults (Fig B2.4). 

(0X) No evidence of spines at these positions at any life stage (measured 

specimens 10-100 mm CL, Fig B2.4a, b).   

(10) Long spines at these positions are found only in juvenile specimens (Fig 

B2.4c, d).   

(11) Elongated spines on the merus and carpus joints, are found to be at least 

three times the size of other spines on the merus in adults and juveniles (Fig 

B2.4e).  

 

-Rostrum spines 

--Ancestral state: Paralithodes brevipes, Paralomis and Neolithodes all have a pair of 

dorsal spines and a prominent ventral rostral spine between the eyestalks.  Common to 

Paralithodes and Paralomis, and therefore assumed to be ancestral, is a second pair of 

dorsal spines behind the first.  A large, usually bifurcated mid-rostral spine is found in 

Lithodes and some Paralithodes only.   

--Characters: 

3.---Presence of an unpaired spine at the base of the rostrum (Fig B2.5a, b). 

(0)No unpaired spine at the base of the rostrum 

(1)Large unpaired spine medially and dorsally at the base of the rostrum 

4.---Presence of a long pedunculation to the medial (mid-rostral) spine (Fig B2.5c). 

(0)No elongated mid-rostral spine   

(1)An unpaired mid-rostral spine (sometimes bifurcate at the tip)  

Groups scoring 4:0 are recorded as (6:X, 7:X) in order to maintain character 

independence.    

5.---Paired spines dorsally at the base of the rostrum (Fig B2.5). 

(0)Spines at the base of the rostrum.    

(1)Absence of spines at the base of the rostrum.  
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6.---Paired dorsal spines on the mid-rostral spine (after the divergence of the later 

from the ventral spine) (Fig B2.5c). 

(0)Spines absent.  

(1)Spines present. 

7.---Rostral spine bent in the middle (always directly distal of the mid-rostral spines, 

Fig B2.6). 

(0) Mid-rostral spine is not bent (where present).   

(1) Rostrum is markedly bent approximately half way along the spine (often 

coinciding with the spines in [6]).      

 

-Antennal Acicle 

--Ancestral state: The scaphocerite, acicle or scale on the antenna is, in Paralithodes 

brevipes, large and with several (2-3) branches on the outer edge.  All members of the 

genus Paralomis, Lopholithodes and the Hapalogastrine genus Acantholithodes have 

large acicles with several (>3) branches on their lateral aspect. Oedignathus, 

Hapalogaster and Cryptolithodes have large, plate-like acicles. The ancestral state for 

the Lithodinae is likely to have been a large, multi-branched antennal acicle.     

--Characters (Fig B2.7):   

8.---Un-branched antennal acicle. 

(0)Multi-branched acicle.    

(1)Un-branched acicle. 

9.---Greatly reduced antennal acicle. 

(0)Large antennal acicle.   

(1)Acicle reduced to a size of <2 mm. 

 

-Eyestalk 

--Ancestral position: Phyllolithodes, Paralithodes, Paralomis, and some Lithodes have 

spines, often one large spine, on the dorsal portion of the ocular peduncle.  Paralithodes 

brevipes has a small spine on the edge of the dorsal side of the cornea. 

--Characters 

10.---Large spine on cornea. 

(0) A spine or spines on the dorsal surface of the ocular peduncle. 

(1) A completely smooth dorsal surface of the ocular peduncle.   

 

 

 



e

c

a b

d

rd Figure B2.4 Walking leg spines in Lithodes a) Carpus of 3 pereiopod Paralithodes brevipes 
rdUSNM 18580 ?  ov CL 103 mm  scale 10 mm; b) Carpus of 3  pereiopod P. brevipes USNM

18597 ?  CL 17 mm scale 1 mm; c) Lithodes couesi USNM 52745 ?  CL 103 mm scale 10 mm;
d) L. couesi USNM 18532 ?  CL 18.2 mm scale 1 mm e) L. richeri USNM 266470 ?  
CL 48.5 mm scale 10 mm.
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Figure B2.5 Dorsal view of the rostral spines in Lithodes a) Lithodes aequispina USNM 18528  
?  CL 100.9 mm scale 5 mm; b) Paralithodes brevipes USNM 18580 ?  ov CL 103 mm  
scale 2 mm; c)  L. murrayi USNM 1027852 ?  CL 52.2 mm scale 1 mm; d)  L. santolla 
NHM 2004.3001 ?  CL 76.1 mm scale 1 mm.  Lithodes character 4 is present in its derived state
in parts a and c of this figure.  The ‘primitive’ state is shown in part b.
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d
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c

Figure B2.6 Lateral view of the rostral spines in Lithodes. a) Paralithodes brevipes
USNM 18580 ?  ov CL 103 mm  scale 1 mm; b) L. santolla NHM 2004.3001 ?
CL 76.1 mm scale 1 mm; c) L. longispina ?  ov CL 116.13 mm scale 1 mm. 
d) L. maja ?  CL 50.78 mm scale 1 mm. The mid-rostral spine is ‘bent’ in figured image 
c and is a derived state for Lithodes character 7.
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a b

c d

Figure B2.7 Antennal acicle of Lithodes a) L. aequispina antennal acicle and right antenna, 
partially obscured by external orbital spine USNM 259209 ?  CL 32. 1 mm, scale 1 mm;   
b) L. couesi  demonstrating much reduced antennal acicle, highlighted, USNM 52745 ?  CL 
103 mm, scale 1 mm; c) Paralithodes camtschaticus acicle and base of right antenna USNM 
204290 ?  CL 68.2 mm scale 1 mm.  d) Paralithodes brevipes acicle only USNM 18580 ?  ov 
CL 103 mm.  Scale 1 mm.
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Section B Chapter 2The Evolutionary History of the Lithodinae 

Figure B2.8 Hypothesised homologies between spines in Lithodes and Paralithodes.  The 
hepatic spine (Hep), anterior branchiolateral spines (B1 and B2) and the most anterior of
the posterior branchiolateral spines (AH) is indicated.  Scale = 10 mm
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-Carapace spines (Fig B2.8) 

The position, although not necessarily the size, of primary spines seems to be consistent 

within species of Lithodes (Macpherson 1988a).  The size and position of the lateral 

spines are particularly consistent.  It follows, then, that there should be some genetic 

basis for this spine pattern, and that it should be informative in phylogenetic analysis.  

--Ancestral state:   12 spines were considered for this analysis, and are labelled on the 

figure of Paralithodes brevipes (Fig B2.8).  These are also found in other Paralithodes 

species (e.g. P. camtshcaticus).  Spines A-K& M can be compared to those found in 

Neolithodes, and spines A, D-I, K & M are found throughout Paralomis.  A major 

problem with this analysis is that most of the other lithodid genera have complex 

ornamentation which obscures any ‘major’ spines.  Within Lithodes and Paralithodes, a 

cursory examination of the anatomy underlying spine formation was unable to 

demonstrate a relationship between dorsal spine position and internal anatomy or 

muscular insertion.  For this reason, assertion of homology between dorsal spines 

remains largely speculation.   

Based on the similarities between Paralomis, Neolithodes and Paralithodes, the 

ancestral position is coded such that the loss of a spine is considered a derived 

character.  Some species have multiple additional spines which make identification of 

homologous spines ambiguous.  In most instances, this is handled by encoding 

ambiguities as ‘missing data’ (X). 

 --Characters (Fig B2.8): 

11.---Spine A- posterior to the gastro-cardiac groove, mid-branchial. 

(0) Spine A present.   

(1) Absent. 

12.---Spine B - spine on lateral side of branchial region, anterior one of two. 

(0) Spine B present.   

(1) Absent. 

13.---Spine C - spine on lateral side of branchial region, posterior of two. 

(0) Spine C present.   

(1) Absent. 

14.---Spine D - spine on mid-posterior third of branchial region, anterior on of two 

usually arranged obliquely. 

(0) Spine D present.   

(1) Absent. 

15.---Loss of Spine E - spine on mid-posterior third of branchial region, posterior one 

of two usually arranged obliquely. 

(0) Spine E present.   
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(1) Absent. 

16.---Spine F - close to the convergence of the gastro-branchial grooves posteriorly. 

(0) Spine F present.   

(1) Absent. 

17.---Spine G - anterior of two on the cardiac region (sometimes indicated by 

spinules). 

(0) Spines G and H are of similar size to one another and to other major spines on 

the carapace.   

(1) Absent. Spines G are sometimes spinules, but are coded as absent. 

18.---Spine K, posterior pair of spines on the gastric region. 

(0) Spines K present.   

(1) Absent. 

19.---Spines L: pair of tubercules directly between K and J. 

(0) Spines L present.   

(1) Absent. 

 

-Lateral branchial spines (Fig B2.8) 

--Ancestral states:  Three spines are found on the anterior edge of the branchial region 

in Paralithodes, Lithodes, some specimens of Paralomis and several other genera.  In 

Paralithodes, Acantholithodes and Paralomis, these spines are of roughly equal length.  

In Neolithodes and some Lithodes, the spines are markedly different, with some very 

reduced and some very long.     

--Characters (Fig B2.8): 

20.---Spine B1 is the more anterior of the three antero-branchial edge.   

(0)Spine not substantially enlarged in comparison to other spines in the region. 

(1)Spine enlarged more than twofold compared to the antero-lateral spine. 

21.---Spine B2 is the more posterior of the three antero-branchial edge.   

(0)Spine not substantially enlarged in comparison to other spines in the region. 

(1)Spine enlarged more than twofold compared to the antero-lateral spine. 

22.---Spine AH is the most anterior spine on the edge of the posterior-branchial 

region.   

(0)Spine not substantially enlarged in comparison to other spines in the region. 

(1)Spine enlarged more than twofold compared to the antero-lateral spine. 

 

-2
nd

 Abdominal segment   

--Ancestral state: The definition of the genus Paralithodes, and the main way in which 

it is distinct from Lithodes is the presence of 5 plates rather than 3 plates on the 2
nd
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abdominal segment.  The 2
nd

 abdominal plate of Lopholithodes and Paralomis is 

composed of a single plate.  McLaughlin et al (2004) present evidence that all lithodid 

megalopa have a single tergal plate on the 2
nd

 segment.  Division into multiple plates 

occurs at juvenile crab stages after metamorphosis, and the marginal plates of Lithodes 

are homologous to those in Paralithodes; however, marginal and lateral plates in 

Lithodes fuse into three plates at a later stage in development. 

--Characters: 

23.---Plates on abdominal tergite 2. 

(1) 3 plates on the 2
nd

 abdominal tergite. 

(2) 5 plates on the 2
nd

 abdominal tergite.  

 

-Egg-size and/or reproductive strategy 

--Ancestral state: Empirical studies (References in Section O.5.3) have shown that 

Lithodes species from around the world (L. santolla, L. maja, and L. aequispina) 

produce lecithotrophic larvae, whereas Paralithodes camtschatica and P. brevipes have 

planktotrophic larval stages.  For 11 out of 17 species of Lithodes and Paralithodes here 

examined, I have been able to find ovigerous females in museum collections and/or 

fresh specimens.  Although this is only a proxy for reproductive strategy, it is thought 

that the average size of the egg is an indication of maternal investment into food-

independent larval development.  When egg diameter is plotted for species of 

Lithodidae (Fig B2.9), there is a pseudo-discrete division between species with eggs 

larger than 1.5 mm and those smaller than 1.2 mm.  Species P. brevipes and P. 

camtschatica, known to have planktotrophic larval development, have eggs smaller 

than 1.2 mm; those known to have lecithotrophic development have egg size around 2 

mm diameter.   

Paralithodes brevipes shares egg size <1.2 mm with lithodine genera Lopholithodes, 

Rhinolithodes, and hapalogastrine genera Hapalogaster and Oedignathus, building a 

fairly strong case that egg size smaller than 1.2 mm is the ancestral state for the 

Lithodinae.   

--Characters (Fig B2.9): 

24. ---Average egg diameter 

(0) Egg diameter on average smaller than 1.2 mm (indicative of planktotrophic 

zoeal feeding modes).   

(1) Egg diameter on average larger than 1.5 mm. 
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Figure B2.9 Egg size ranges in the Lithodidae. Average diameter (mm) of eggs 
obtained from ovigerous females of different species of Lithodidae.  Each of the 
black points represents the average diameter of at least 30 eggs from a single 
ovigerous female. Red points are taken from Zaklan 2002a and references therein. 
Abbreviations: Pa= Paralithodes P= Paralomis L= Lithodes Lo = Lopholithodes. 
U indicates an uneyed embryonic stage and E indicates that an eyed embryo is visible.  
Note that developmental stage might affect egg size although the effect does not
se e m  t o  b e  s i g n i f i c a n t  b a s e d  o n  t h e s e  d a t a .  
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Figure B2.10 Discrete-character phylogeny for the Lithodes genus.  Tree rooted with a
hypothetical 'outgroup' based on a comparison of Paralithodes brevipes with other 
Lithodinae and Hapalogastrinae.  Tree selected using Wagner Parsimony with 1000 
replicates in a bootstrap analysis.  Bootstrap confidence values are placed at nodes on
the tree as percentages.  Letters on the tree refer to the text.
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 1 2 3 4 5 6  7 8 9 10 A B C D E F G H I J K L 20 21 22 23 24 

L. aequispina 0 x 1 1 0 1 0 0 0 1 x x x x x x x x x x x x x x x 2 1 

P. 

californiensis 0 x 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

P. 

camtschatica 0 x 1 1 0 0 0 1 0 1 x x x 0 0 0 0 0 0 0 0 1 x x x 1 0 

L. confundens 0 x 1 0 0 x x 1 1 1 x x x x x x x x x x x x x x x 2 1 

L. couesi 1 0 0 1 0 1 0 1 1 1 x x x 0 0 0 0 0 0 0 0 1 1 1 0 2 1 

L. ferox 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 x x x 2 1 

L. 

galapagensis 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 2 x 

L. longispina 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 2 x 

L. maja 0 x 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 x x x 2 1 

L. mamillifer 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 2 x 

L. manningi 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 2 x 

L. 

megacantha 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 2 1 

L. murrayi 1 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 x x 0 2 1 

P. brevipes 0 x 1 0 x x x 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 x x x 1 0 

P. rathbuni 0 x 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 

L. richeri 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 0 0 2 x 

L. santolla 0 x 0 0 0 x x 1 1 1 x x x x x x 0 0 x 0 0 0 x x x 2 1 

Outgroup 0 x 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 

 

Table B2 Discrete character codes for phylogenetic analysis of Lithodes genus.  Note that H-J (Fig B2.8) were invariable for all of the tested 

groups and were excluded.  
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B2.3.3 Discrete-character phylogeny results  

Nodes e.g. [Ж] discussed in the following text refer to clades on a phylogenetic tree 

selected by the Wagner Parsimony criterion based on discrete-character data (Fig 

B2.10).  In this analysis, the ‘outgroup’ sequence was broadly based upon Paralithodes 

brevipes; however, the position of P. brevipes was theoretically unconstrained if its 

basal position was not parsimonious.  Paralithodes species, excluding P. camtschatica 

group into a clade [β], which is nested within several ‘unresolved’ North Pacific and 

Atlantic species at the base of the tree.    

A clade diverging at node [Ж] contains only South Atlantic, Indian Ocean and 

South/Central Pacific Lithodes species, with nested clades in this region supported by 

high bootstrap values (> 50).  Species diverging at the base of clade [Ж], L. ferox, L. 

murrayi and L. mamillifer are known from the South Atlantic and Indian Ocean.  A 

clade containing L. richeri, L. galapagensis, L. megacantha, L. longispina (all species 

from the Central and South Pacific) appears furthest from the base of the tree at node 

[Ф].   

 

B2.4 Discussion  

The two methods of estimating phylogeny employed in this chapter are based on small, 

but independent character sets.  It is significant that both discrete-character analysis and 

morphometric analysis converge upon very similar topologies:     

 

- Relationships within Paralithodes   

The effect of choosing a North Pacific species (Paralithodes brevipes) to indicate the 

‘primitive state’ in the morphometric phylogeny perhaps has an effect of artificially 

centring the phylogeny on the North Pacific.  I believe that this assumption is justified, 

based on molecular evidence for the whole family.  It is also a prior assumption of this 

analysis that Paralithodes is paraphyletic with respect to Lithodes (as its name 

suggests).  Paralithodes species have a close relationship in both analyses to one 

another and to Lithodes aequispina.  Gross morphology indicates an important division 

within the genus Paralithodes (which are unified on the basis of sharing 5 tergal plates 

on their 2
nd

 abdominal segment).  P. camtschatica, P. brevipes and P. platypus have 

planktotrophic larval stages, a similar body shape, and are native to the Bering Sea from 

Kamtschatca, Russia to British Columbia, Canada.  P. rathbuni and P. californiensis are 

found from Washington state, USA to Mexico and they both produce large eggs, 

indicative of lecithotrophic zoeal development.  This division within Paralithodes is 

evident in the results of both the discrete [Б] and morphometric [β] analyses.  The 
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morphometric analysis (Fig B2.3) indicates that the Lithodes genus is not 

monophyletic; however, this is not necessarily supported by the discrete-character 

analysis, in which the crucial node is unresolved (Fig B2.10).   

 

- Phylogenetic position of Lithodes santolla and L. confundens 

Lithodes santolla and L. confundens are the only species of Lithodes that are regularly 

found in shallow waters: up to the intertidal zone in the cold water around Patagonia 

(Appendix E).  L. confundens confounds field scientists with its morphological 

similarities to L. santolla; however, in the morphometric analysis of the two species, 

they are placed quite far apart (Fig B2.3a, b).  The separation of the two species is 

different at different levels of confidence in the morphometric analysis and it may be 

explained by a higher than usual variance of the characters measured in L. santolla.  

Habitat is almost unknown for the deep-water species of Lithodes and is something 

which has not been considered in this analysis.  It is possible that a similarity in habitat 

between shallow/intertidal species L. santolla, L. confundens and P. brevipes has a 

convergent effect on morphometric variables such as leg length.    This may reflect a 

tendency for morphometric data to group species by morphological similarity rather 

than ancestral history and as such is it not a fundamentally cladistic technique.   

In the discrete-character analysis, L. santolla and L. confundens (S.W. Atlantic) are 

resolved within a clade containing Lithodes ferox (S.E. Atlantic).  This type of analysis 

is unlikely to be affected by habitat in the same way as the morphometric analysis.  In 

general, results (Fig B2.3a, Fig B2.10) indicate that L. confundens (at least) emerged 

into shallow water in the southern high latitudes following a deep-water ancestry.    

   

- Relationship between central Pacific species and Indian Ocean species 

Results presented here converge upon the conclusion that central and southern Pacific 

lineages of Lithodes are closely related to one another (clade [Ф]) and to the Indian 

Ocean and South Atlantic Lithodes species (clade [Ж]). Lithodes murrayi is perhaps 

typical of a basal Indian Ocean/Southern Pacific morphotype and it has a notably 

widespread southern distribution.  The range of L. murrayi is thought to be almost, if 

not, circum-Antarctic: from the Crozet islands in the southern Indian Ocean, to the 

Macquarie islands south of New Zealand (Appendix E).  Such widespread southern 

species distributions may have been typical throughout the evolutionary history of the 

clade labelled [Ж].   

 

The evidence from this study and from the literature suggests a shallow north Pacific 

ancestry for the Lithodes genus, sharing plesiomorphies including a planktotrophic 
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larval stage.  From this hypothesised origin, a transition was made towards a more 

deep-sea life history, as displayed by basal north Pacific species Lithodes aequispina.   

Ancestors of Atlantic species Lithodes maja, L. santolla and L. confundens may have 

made the first ‘escape’ from the Pacific through an Arctic and/or Antarctic pathway into 

the Atlantic, as both groups occupy fairly basal (but unresolved) positions within the 

phylogeny of the genus.  Subsequent radiations out of the Atlantic followed a deep-

water pathway around southern Africa, through the southern Indian Ocean and into the 

central and southern Pacific.  There is little or no evidence of a biogeographic link 

between the north Pacific and the central Pacific within the species tested.  Deep, cold-

water currents that connect the Atlantic sequentially with the Indian Ocean and the 

Pacific may have facilitated the circum-global pathway of dispersal indicated by these 

results. 

    

17 species of Paralithodes and Lithodes were included in the taxonomic sample for 

these morphological analyses.  Although an effort has been made to equally represent 

the morphotypes within this genus, the sample does not reflect the full diversity of the 

Lithodes genus (27 species if Paralithodes is included, Appendix A).  Some notable 

gaps in sampling exist along the eastern Pacific margin, where L. wiracocha and L. 

panamensis inhabit depths from 600-1500 m; north/central Pacific island chains, where 

species such as Lithodes nintokuae, L. longispina may provide evidence of a link 

between the deep north Pacific and central Pacific as far south as 20 °N; and along the 

western Pacific margin from Japan to Indonesia, where some species of Lithodes of a 

central Pacific morphotype have been found (such as Lithodes paulayi, Appendix E).  

In theory, the topology of the trees produced in this analysis should not change when 

new species are added, provided that assumptions about the polarity of change 

(ancestral states) are correct.  

 

B2.5 Summary of conclusions 

 

• Those Paralithodes species with a more southerly distribution within the 

coastal North Pacific (P. californiensis and P. rathbuni) may represent a 

transitional state between ancestors close to P. brevipes and the genus Lithodes.  

• Morphometric and discrete character analyses corroborate one another, with the 

exception of the placement of shallow southern species L. santolla and L. 

confundens.  Morphometric techniques are useful in systematics, but a tendency 

to group on similarity rather than ancestry must be interpreted with caution. 
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• Atlantic species L. maja and L. santolla were amongst the earliest species to 

leave the ancestral region of the north Pacific.  It is unclear whether these 

movements were linked, or whether they were independent.   

• A clade containing species from southern African, Indian Ocean, and south 

Pacific waters indicates the importance of large scale dispersals in a west-east 

direction.  This may be linked with west-east cold deep-water currents which 

connect the south Atlantic with the other major oceans.   
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CHAPTER B3: MORPHOLOGICAL PHYLOGENY OF THE 

GENUS PARALOMIS 

 

B3.1 Rationale 

Paralomis White, 1856 is a genus with a global distribution, found in waters deeper 

than 500 m and shallower at high latitudes (Hall & Thatje 2009a).  The genus is the 

most speciose of the Lithodidae, currently including 61 species, and new descriptions 

have been frequent in recent decades (Macpherson 2003, Spiridonov et al 2006, Takeda 

& Bussarawit 2007, Macpherson 2008, Hall & Thatje 2009b).  Molecular evidence 

(Section A1) has shown that Paralomis includes the single species described from the 

genus Glyptolithodes Faxon 1893.  The presence of an undivided medial plate on the 3
rd

 

abdominal segment, and fusion of all plates of the 2
nd

 abdominal segment unites 

Paralomis and Glyptolithodes to the exclusion of the other major groups of Lithodidae.  

In terms of abdominal morphology, the nearest genera to Paralomis are Lopholithodes 

and Cryptolithodes, which have additional medial accessory plates on the 3
rd

 abdominal 

segment, and an undivided 2
nd

 abdominal plate (Macpherson 1988a, Zaklan 2002a, 

McLaughlin et al 2004).  Molecular data strongly suggest that Lopholithodes has a 

relatively recent ancestor in common with the monophyletic group containing 

Paralomis (+ Glyptolithodes) (Section A1).  Lopholithodes contains two species (L. 

mandtii and L. foraminatus) in the north east Pacific, which have a distribution typically 

20-300 m, and have been found no further south than the Baja California, Mexico.     

The aim herein is to elucidate relationships within the Paralomis genus based on 

morphology to: 

• examine the evolutionary context of a transition from the shallow north Pacific 

into the deep sea, independent from that in genus Lithodes. 

• provide a basis for comparison of results with phylogenies based on molecular 

data (Synthesis D.3). 

• map distinct lineages within the genus to biogeographic regions and pathways 

within its present and hypothesised past distribution. 

• assess the phylogenetic position of the single shallow-water species Paralomis 

granulosa (Patagonia) within the deep-sea members of the genus. 

 

B3.2 Synopsis of Methods 

Twenty linear measurements and 31 multi-state discrete characters (defined in Section 

BM.3.2.1) were collected for 25 species of Paralomis and were used to produce two 

independent estimations of Paralomis phylogeny as follows:  
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For the linear measurement data, analysis of variance (ANOVA) was used to test 20 

growth-standardised character-measurements for significant levels of inter-species 

variation.  Those characters selected for further analysis were used to produce matrices 

that compared each pair of species in the taxon set.  Each element in these matrices was 

an estimate of the actual inter-species difference for that character, and was calculated 

using properties of the normal distribution where appropriate.  A sum of all distance 

matrices was analysed by Fitch-Margoliash least squares optimisation <PHYLIPFitch> 

which produced an estimate of phylogeny to best describe the observed differences.      

Additionally, 30 discrete characters, each with up to 4 states were coded for 25 species 

of Paralomis, Glyptolithodes, and Lopholithodes.  These were analysed in 

<PHYLIPPars> using the criterion of Wagner parsimony to select the optimal tree 

topology.  These discrete characters were also transformed into a pseudo-continuous 

character set so that they could be combined with the results of the morphometric 

analysis.   

Analyses were based on the assumption that any features shared between the species 

Lopholithodes mandtii and the genus Paralomis were present in their last common 

ancestor.  Where possible, ancestral states for the analysis were produced from a 

comparison of Lopholithodes with more distant groups, such as Lithodes (Lithodinae) 

and Hapalogaster (Hapalogastrinae).  The comparison of multiple outgroups reduces 

the chance of being misled by autapomorphies within the Lopholithodes lineage 

(Watrous & Wheeler 1981).   

 

B3.3 Results 

B3.3.1 Morphometry results  

B3.3.1.1 Growth standardistation  

All 20 morphometric character measurements (BM.3.2.1) have a demonstrably positive 

and approximately linear relationship with carapace length (CL, Appendix K.a).  The 

first order (1°) polynomial regression indicates that CL is a good ‘explanatory variable’ 

for the change in all characters measured, as indicated by a high r
2 

value and a low 

probability that the coefficient (a) of the linear term (Yk = aCL) is zero (Appendix K.a, 

Fig BM.5a).  In most cases, there was no strong or significant relationship indicated 

between higher order functions of CL and measurements Yk before data were 

subdivided by species. 

An approximately linear relationship between CL and Yk was tested further in species-

subdivided datasets Ykn.  In all but a few cases, there was no significant relationship 

between (Yk,n/CL) and CL, as indicated by a low r
2 

between the data and the linear 
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regression (Appendix K.b, Fig BM.5b).  There was in most cases, a high probability 

that the coefficient B is zero in the equation Yk /CL= A + BCL.  

Approximately one species per character does have a relationship between measured 

values Yk,n with CL
2 

, as indicated by r
2 

(Yk,n/CL, CL) > 0.4 (highlighted Appendix 

K.4b).  Lateral branchial height (LBH/CL) in 8 specimens of Paralomis anamerae, for 

example, has a correlation with CL; however, in this and in all similar cases, the 

coefficient of CL
 
in the linear regression (Yk,n/CL = A + BCL) was less than 0.01 times 

the standard deviation of Yk,n/CL (Appendix K.b).  This size-specific variation was so 

small that should be expected to have a very small effect on overall variation. Yk/CL 

was used as the size-standardised statistic in all cases for simplicity and consistency.   

 

B3.3.1.2 Parameter testing and analysis of variance 

 F-statistics (Appendix K.b) indicated that measurements Yk,n did not come from 

species with significantly unequal variances (p(EV)>0.01). The majority of characters 

did not have a significantly non-normal distribution (p(N)>0.01) when considered as a 

single population.  One-way analysis of Variance (ANOVA) indicated that seven out of 

20 characters (HW, AL, ML, LBH, GL, GCL, DL) have significantly different intra-

species means when compared with the total amount of variation present in the 

population.  In the remaining character-sets, there was no evidence that species were 

significantly different from one another, and they were not analysed further. 

For all subdivided datasets (Yk,n), the assumption of normality was upheld, indicating 

that properties of normally distributed populations could be used to give confidence 

estimates for evolutionary distances calculated from these data.   Pair-wise tests based 

on the t-statistic indicated differences between pairs of species samples for each 

character. The results of these significance tests are represented graphically (Figs B3.1-

4).        
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Figure B3.1 Standardised measurements of individual specimens belonging to species of Paralomis. 
Specimens shaded within species, based on the results of pair-wise significance testing, in which red 
and black groups are significantly different from one another when standardised for size (CL).  
All measurements in millimetres. a) Gastro-cardiac groove length (GCL). b) Gastric length (GL).  
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Figure B3.5 Phylogenetic trees based on: a)Morphometric analysis of the difference between the 
means of 20 species tested for 7 characters.  Distances calculated using the mean +/- 1 standard 
deviation. b)Discrete character analysis of 27 Paralomis and outgroup taxa using 31 unordered,
multi-state discrete characters.  Tree selected using the criterion of wagner parsimony in 
<PHYLIPpars>.  Node values indicate the results of a bootstrap analysis with 1000 replicates. 
c)Discrete character analysis of the same taxon set as in Fig 3.5b, with the same 31 unordered
multi-state discrete characters converted into pair-wise distances: where a difference is scored 1, 
an identity is scored 0 and the totals summed.  d)Morphometric and discrete-character distance 
matrices combined to produce a summed pair-wise distance matrix for 38 characters.  Trees a, c and
d selected using the Fitch-Margoliash least squares optimisation method (distance), and branch
lengths indicate distance between nodes.
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B3.3.1.3 Morphometric distance phylogeny  

The set of 25 species of Paralomis examined was reduced to 20 commonly encountered 

species for which more than five specimens could be obtained.  Seven size-standardised 

morphometric characters which displayed significant inter-specific variation were used 

to produce a pair-wise distance matrix for the taxon set.  The difference between groups 

of species was not as clear as it was in Lithodes (Section B2) for the characters 

measured, so only the less conservative tree (difference of sample means modified by 

one standard deviation, as described in section BM.3.2.3) is presented (Fig B3.5a).  

Properties of the normal distribution mean there is 68% confidence that inter-species 

distances produced by these methods are at least as great as the true difference between 

populations.     

Paralomis granulosa resolves nearest to the base of the tree in this analysis, which is 

rooted using Lopholithodes mandtii.  Node [Ω], containing P. birsteini, P. aculeata, P. 

anamerae, P. cubensis, and P. mendagnai is the most clearly resolved clade.  Many 

nodes are unresolved on the tree because the pair-wise distances were zero if no 

significant difference could be found between the species.  Two south-east Pacific 

species, P. inca and Glyptolithodes cristatipes, resolve as sister taxa close to the base of 

the tree.       

 

B2.3.2 Formulation and scoring of discrete morphological characters 

Results of coding in Table B3. 

 -Spine morphology   

Paralomis is peculiar amongst the Lithodinae in the great diversity of ornamentation 

found covering the carapace and legs (Section B1).  As shown elsewhere in this thesis, 

ornamentation varies between life-stages, and can vary predictably within an individual.  

In many cases, spines in certain locations on the carapace (such as a single spine in the 

mid-gastric region) are different from the ornamentation ‘uniformly’ covering the rest 

of the carapace.  The following characters refer only to the ‘secondary’ ornamentation 

cover, and not to lateral, mid-gastric, or mid-branchial spines, which are covered in 

later sections.     

--Ancestral state: Spine morphology in the last common ancestor of Paralomis is 

ambiguous, because there is little similarity between the different lithodine lineages.  In 

Lopholithodes and Phyllolithodes, the carapace is covered with irregular clusters of 

circular, flattened tubercles of approximately 1 mm in diameter (Fig B3.6a, b).  Short 

setae are found in Lopholithodes, but at a frequency of less than one per tubercle.  

Where Lithodes, Paralithodes and Neolithodes have anything analogous to secondary 

ornamentation, it is always in the form of acute spines or spinules and no setae are 
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found in any size-class.  Hapalogastrinae, such as Oedignathus and Dermaturus have 

scale-like ornamentation, with a fringe of setae at the anterior edge; the hapalogastrine 

tubercles do not resemble anything found in Paralomis (Fig B3.6c, d).  On balance, the 

intricate tubercle formations in Paralomis are likely to be of novel origin within the 

lineage, from a lithodine ancestor with few setae on the carapace. 

--Characters (Fig B3.7): 

A.---Tubercles evenly spaced across the carapace (not in clusters). 

(0) Clusters of between one and ten tubercles across the carapace and sometimes 

legs (Fig B3.6a, Fig B1.12c, B1.13c).   

(1) Evenly spaced spines or tubercles, never in clusters (e.g. Fig B1.12a, b, d, e).   

The outgroup state is ambiguous (X) because of the substantial differences between 

Lopholithodes (0) and Paralithodes (1). 

B1.---Ornamentation flattened/pointed in juveniles (<30mm CL).   

Juvenile specimens usually have more acute or spiniform tubercles than adults of the 

same species.  This character examines only secondary ornamentation, and not the mid-

gastric or mid-branchial spines.  

(0) Flattened tubercle.  

(1) Conical tubercle or spine (Fig B3.7).          

B2.---Ornamentation flattened/pointed in adults (>40 mm CL).  

(0) Flattened tubercle (Fig B3.6a, B3.7).   

(1) Conical tubercle or spine (e.g Fig B1.12a, B3.7). 

C.---Spines as secondary ornamentation in adults.  

(0) Tubercles are less than 1.5 times as high as wide at the base (Fig B3.6a). 

Spines can technically be either pointed or have flattened apices.     

(1) Spines are defined as features of ornamentation in which height is more than 

1.5 times width at the base (e.g. Fig B1.12a, b).  

          

[B and C coded in a way which allows a relationship between conical tubercles and 

spines to be recorded, but also taking account of changes with ontogeny (Fig B3.7)] 

 

D.---Posterior-directed oblique face to spine or tubercle in adults.   

(0) No oblique face to spine or tubercle.   

(1) Posterior-directed, oblique face to spines or tubercles (e.g. Fig B1.12b, B3.7).  

This state was ambiguious in P. grossmani, which scored D:X.        

E.---Setae isolated/multiple clusters on tubercles.  

(0) Very few or no setae per unit of ornamentation (Fig B3.6a).  

(1) Many setae in clusters on each tubercle.  



a b

e

c

a

dc

b

Figure B3.6 Spine morphology coding in Lopholithodes Scales 1mm. a) Lopholithodes
mandtii ?  CL 107.8 mm; b) Phyllolithodes papillosus ?  CL 32.5 mm; c) Oedignathus
inermis?  CL  22.5; d) Dermaturus mandtii ?  CL17 mm.
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Figure B3.7 Schematic of spine coding for phylogeny characters B-D in Paralomis.
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F.---Arrangement of setae on units of ornamentation. Only those scoring E:1 are 

distinguished for the present character.   

(1) Setae in a ring at or near the apex (Fig B1.12b, B1.14c).  

(2) Setae in a tuft on the apex (Fig B1.11b).  

(3) Setae distributed evenly over the surface (Fig B10.a,b,d).    

G.---Setae in ‘single ring’ or ‘multiple ring’: Character divides F:1 into two groups 

species scoring F:2 or F:3 score G:X.   

(1)Setae in a single ring (Fig B1.12b).   

(2)Setae in multiple rings (Fig B1.14c).   

 

-Carapace spines 

The mid-gastric spine is peculiar in that its form does not vary to the same degree as the 

secondary ornamentation.  To a lesser extent, this is true of a spine in the mid-branchial 

region and many spines on the lateral edges of the carapace.  Several spine positions 

(e.g Fig B2.8), derived from similarities between Lopholithodes, Lithodes and 

Paralithodes, were assessed.  The results indicated that whilst ornamentation at certain 

positions were different from the rest of the carapace, homologies were obscured by the 

nature of the secondary ornamentation. In Paralomis, it is often unclear whether a 

thickened tubercle can be equivalent to an enlarged spine where they appear at 

consistent locations on the carapace.   

--Ancestral state: A spine in the middle of the gastric region is very pronounced in 

Lopholithodes (Fig B3.8) and Phyllolithodes.  Lithodes, Paralithodes, Neolithodes and 

Rhinolithodes have four spines in a square on the gastric region and no mid-gastric 

spine.  In general, the Hapalogastrinae have no prominent spines and the gastric region 

is flat. 

--Characters: 

H.---Prominence of mid-gastric spine.   

(0) Mid-gastric spine prominent, at the level of the anterior part of the hepatic 

region.  The largest spine on the carapace (with possible exception of a single 

mid-branchial spine: Fig B3.8a, b, d).  

(1) Mid-gastric spine reduced to spinule or the same size as all other spines, with 

little or no enlargement of the anterior part of the gastric region (Fig B3.8c).   

In P. aculeata and P. anamerae, the gastric spine is not greatly enlarged; 

however, the gastric region is skewed anteriorly, with a small spine visible at the 

apex and so these cases are scored (0).  
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In some cases, the nature of the secondary ornamentation makes this a difficult 

feature to score.  In such cases, the ‘ambiguity value’ of X is recorded so that this 

character has no effect on the phylogenetic resolution of those species. 

 

-Rostral spines   

--Ancestral states: The form of the rostral spines in Lopholithodes mandtii (Fig B3.9e) 

matches the form in Paralithodes, and seems likely to be a symplesiomorphy of the 

Lithodinae.  A ventral rostral spine (Macpherson 1988a) protrudes from between the 

ocular peduncles; dorsally, paired (primary) spines diverge from one another after a 

short anterior elongation of the carapace.  Between the dorsal spines and the ventral 

spine there is an unpaired prominence in Lopholithodes and Phyllolithodes.  Paired 

secondary dorsal spines behind the primary paired spines are found in Lopholithodes, 

Paralithodes, and some Lithodes.  A single unpaired spine, with possible homology to 

the ventral rostral spine is found in the Hapalogastrinae. 

--Characters:  

I.---Paired primary spines dorsally (Fig B3.9).  

(0) Present  

(1) Absent  

(2) Unpaired spine   

J.---Paired secondary spines dorsally.  

(0) Pair of spines present behind the primary spines (Fig B3.9a, e).  

(1) No pair of spines behind the primary spines (see Fig B3.9b-d).  

K.---Unpaired spine dorsally at the base of the rostrum (typically between spines J).   

(0) Present (see Fig B3.9a, e).  

(1) Absent (see Fig B3.9b-d).   

L.---Keeled rostrum.  A deep keel on the ventral-rostral spine.  

(0) Absent.  

(1) Present. 

M.---Medial-dorsal spine. Spine or prominence between spines I, above the ventral 

rostral spine.  

(0) Absent (see Fig B3.9a-c).  

(1) Present (see Fig B3.9d, e).  

N.---Third paired spines dorsally, behind spines J.   

(0) Absent.  

(1) Present (see Fig B3.9a). 

 

 



The Evolutionary History of the Lithodinae   Section B Chapter 3 

181 

-Lateral spines 

--Ancestral states: Comparing basal groups Paralithodes and Lopholithodes, and 

keeping the morphologies of other genera in mind, it is difficult to discern the ancestral 

shape of the carapace margin.  The hepatic spine is of moderate in size in Lopholithodes 

and Paralithodes brevipes, as well as Acantholithodes (Hapalogastrinae) and 

Rhinolithodes.  In Lithodes and Neolithodes, there is an enlargement of several lateral 

spines, including the hepatic spine, at consistent positions.  In all Lithodinae, there is a 

point at the mid-branchial region where the dorsal carapace becomes flush with the 

lateral wall, and the dorsal aspect of the carapace is more or less ‘pinched’ in.  At the 

posterior angle of the branchial region is a very large spine (and deformation of the 

carapace) in Lopholithodes (Fig B3.10e) and a smaller spine is present at this position 

in Paralithodes.  On the posterior margin are several small spines, less significant than 

those on the anterior margins. Lopholithodes has 4-6 spines between the anterolateral 

spine and the mid-branchial region; most of these on the anterobranchial rather than 

hepatic region.  Hapalogaster has 6 spines on the corresponding region anterobranchial 

region, although the carapace shape is much more rounded towards the posterior. 

--Characters: 

O.---Spines between the anterolateral and anterobranchial region.   

(0)4-7 spines on the antero-lateral and antero-branchial regions (Fig B3.10c, e).  

These spines are found mostly on the anterobranchial region in Lopholithodes, P. 

otsuae, P. formosa, and others.   

(1)Fewer than 4 spines on the anterolateral and anterobranchial regions.  This is 

found in P. ceres, P. haigae and P. cristata, and these spines are found on the 

anterobranchial region, none on the hepatic margin of the carapace.   

(2)More than 8 spines found on the anterolateral and anterobranchial regions (Fig 

B3.10a, b, d).  In this case, more spines are found on the hepatic region, and there 

is little or no distinction between the hepatic and anterobranchial margins.    

P.---Transition between the anterobranchial and posterobranchial margins.     

(1)Expanded flange behind the mid-branchial region, and a marked angle at 

the.posterior margin (Fig B3.10c, e).  

(2)No marked angle at the posterior branchial postion and a more or less 

continuous margin of spines (Fig B3.10a, d).  

(3)A significant change between anterior and posterior branchial margins 

(notably, spines on the anterior but absent on the posterior margins) (Fig B3.10b).  
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Figure B3.8 Gastric spines in Paralomis and Lopholithodes, lateral view of the anterior part
of the carapace. Scales 5 mm. a)P. arae, ?  CL 74.5 mm (MNHN Pg 5945); b) Lopholithodes
mandtii ?  CL 107.8 mm (USNM 2103);  c)P. cubensis ?  CL 61 mm  d)P. spinosissima ?  
CL 58.9 mm.
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Figure B3.9 Rostrum. Scales 1 mm.
a)P. aculeata holotype ?  CL 41 mm (coding Paralomis I:0; J:0 K:0 M:0 N:1).
b)P. verrilli ?  57.8 mm (coding Paralomis I:0; J:1 K:1 M:0 N:0).
c) P. haigae ?  CL 52 mm (coding Paralomis I:1; J:1 K:1 M:0 N:0) 
d) P. inca ?  CL 99 mm (coding Paralomis I:0; J:0 K:1 M:1 N:0)
e) Lopholithodes ?  CL 107.8 mm (coding Paralomis I:0; J:0 K:0 M:1 N:0).   
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Figure B3.10 Lateral spines.  Scales 5 mm
a) P. aculeata ?  CL 62 mm (coding Paralomis O:2 P:2).
b) P. dawsoni ?  CL 62 mm (coding Paralomis O:2 P:3).
c) P. verrilli ?  57.8 mm (coding Paralomis O:0 P:1),
d) P. stella ?  56.5 mm (coding Paralomis O:2 P:2).
e) Lopholithodes mandtii ?  CL 107.8 mm (coding Paralomis O:0 P:1). 
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-Walking legs   

--Ancestral states: Short patches of setae at the dorsal tip of the dactylus are found in 

the outgroup Lopholithodes, and in the Hapalogastrinae.  They are not found at all in 

Lithodes, Neolithodes and Paralithodes.  Arrangement of spines in the walking legs is 

left as ambiguous for the out-group state. 

--Character: 

Q.---Merus cross-section.  

(1)Pereiopod 3 merus with an approximately triangular cross-section to the 

merus, skewed towards the anterior (Fig B3.11a, b).  

(2)Distinctly quadrilateral cross section to the pereiopod 3 merus, with two dorsal 

edges usually but not necessarily with spines on each (Fig B3.11c, d). 

(3)Closely tessellating and almost triangular merus of walking legs in dorsal 

view, with the thicker end distally (Fig B3.11e, f).  

R.---Comb of curved spines along the anterior aspect of walking legs. 

(0)Irregularly sized spines arranged more or less in rows along the merus, carpus 

and propodus of the walking legs (Fig B3.11c, d).   

(1)A comb of strong, curved spines running in a continuous line along the 

anterior edge of the merus, carpus, and the dorsal edge of the propodus (Fig 

B3.11: R:1).       

S.---Prominent rows of setae flanking the dorsal tip of the dactylus.  

(0)Two rows of setae less than 1/6 (typically a lot less) of dactylus length at the 

tip of the walking leg dactylus (Fig B3.12a, c).   

(1)Two rows of setae extending for more than 1/5 of length of the dactylus on the 

walking legs (Fig B3.12b, d).   

Variation occurs in such a way that the long and short patches can be coded with 

a lack of ambiguity in most cases. 

T.---Dactyl lateral setae. 

(0)The lateral faces of the walking leg dactyli free of setae (Fig B3.12a, b, d).   

(1)Walking leg dactyli with setae on the dorsal, ventral and lateral faces (Fig 

B3.12c).   

U.---Spines on proximal end of dactylus. Importantly, this character is not dependent 

on the extent of the carapace spines. 

 (1)  0-4 small spines present at the proximal end of the walking leg dactylus (Fig 

B3.12a, c, d).  

 (2) 5-8 large spines on the proximal portion of the walking leg dactyli (Fig 

B3.12b).     
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Figure B3.11 walking legs in Paralomis and Lopholithodes Scales 5 mm.
a, b) P. verrilli ?  57.8 mm pereiopod 3 (a) carpus (b) merus.
c, d) P. aculeata ?  CL 62 mm pereiopod 3 (a) carpus (b) merus. 
e) Lopholithodes mandtii ?  CL 107.8 mm. Merus, dorsal view.
f) P. granulosa ?  CL 65 mm.  Merus, dorsal view.
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-Abdominal segments 

--Ancestral states: All examined Paralomis, Glyptolithodes and Lopholithodes have a 

single plate on 2
nd

 abdominal segment; in all cases except some of the juveniles, the 

second and first segments are demonstrably fused.  This fusion occurs by juvenile crab 

stage II in both Lopholithodes and Paralomis (McLaughlin et al 2004).  Spines on the 

first abdominal segment, present in the outgroup are present to a variable extent in the 

ingroup with no discernable pattern.   

Lopholithodes, Paralomis and several other genera have medial accessory plates on 

segments 3-6 of the abdomen, which form after the primary divisions of the megalopal 

tergites in juvenile crab stages (McLaughlin et al. 2004).  Under schemes of evolution 

in which the Lithodidae evolved from pagurid ancestors with uncalcified abdomens 

(Boaz 1880, Richter & Scholtz 1994), the fusion of abdominal plates is a derived 

character (see Section O.2.2).  Developmental studies, however, show that division of 

the medial and lateral plates, and the additional calcification of nodules at the 

abdominal margin and medial regions are novel within the Lithodidae (McLaughlin et 

al 2004).  Up to 16 marginal plates are found in Paralomis species, although often these 

are secondarily fused into several larger units.  Neolithodes has up to 21 marginal plates 

allied with segments 3-6, which makes homologies between the two groups difficult to 

determine without further comparative developmental studies.  Fusion of marginal 

accessory plates to one another or to the lateral plates is likely to be a derived character 

within this group (McLaughlin et al 2004).  

--Characters: 

V.---Fusion of lateral and marginal plates on male abdominal segment 3.  

(0): No fusion of marginal and lateral plates on the 3
rd

 abdominal segment (Fig 

B3.13a, b).  

(1)Marginal segments at least partially fused to 3
rd

 lateral plates (as identified by 

spines on the margin of the lateral plate) – partial fusion can not be distinguished 

from full fusion, because the positional homology of the ‘unfused’ plates can not 

currently be determined (Fig B3.13c).     

W.---Fusion of the marginal plates associated with abdominal segments 4 and 5. 

(0)At least two separate marginal plates associated with each of the lateral plates 

in abdominal segments 4 and 5 (Fig B3.13a-c).   

(1)Marginal plates are fused into two blocks associated with the 4
th
 and 5

th
 lateral 

plates.   

X.---Spines on the upper margin of the basis of pereiopod 2-4. 

(0)A smooth upper margin to the basis on each of the walking legs (Fig B3.13a-

c).   
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(1)Spines are present on the upper margin of each pereiopod (2-4) basis.  

-Ocular peduncle  

Y.---Large spine on the eyestalk. 

(0)At least one large spine on the terminal dorsal part of the ocular peduncle (Fig 

B3.14a, c). 

(1)No large spines on the dorsal portion of the eyestalk (Fig B3.14b).   

 

-Antennal acicles 

--Ancestral state: The antennal acicle in lithodids typically consists of a long central 

spine with a number of spines branching from its medial and lateral sides; however, 

many different forms exist.  In Cryptolithodes, the acicle is flattened and large, with no 

spines.  In Lithodes and Neolithodes, the acicle is substantially reduced in size.  In 

Paralithodes, there are up to three spines on the external surface.  In Rhinolithodes, 

Phyllolithodes and Lopholithodes, the acicle is large, with up to ten spines of similar 

sizes coming from either side, and several additionally from the central axis.   

--Characters 

Z.---Form of the antennal acicle: The antennal acicle can vary slightly in the number 

of spines within a species; however, all variation is within the categories as they are 

formulated here (Fig B3.15).   

(1)Acicles with 5-8 (or more) stout spines arranged in a comb like pattern on each 

side of a central spine, sometimes with several smaller spines along the central 

axis in addition (Fig B B3.15c, d).   

(2)3-4 stout spines on each side of a stout central axis, the outer spines longer 

(Fig B3.15 b).   

(3)Acicle with long, slender spines (Fig B B3.15a). Typically, two or three large 

spines on the outer side or towards midline and one or two smaller spines on the 

inner surface towards the base.  Often, the inner spines are heavily reduced. 

 

-Secondary ornamentation covering accessory spines 

Lateral spines are usually consistent within Paralomis, even when the rest of the dorsal 

ornamentation varies substantially.  Where tubercles cover the carapace, spines on the 

carapace and antennal acicle are almost always conical and prominent.   In 

Lopholithodes, Phyllolithodes and Rhinolithodes, secondary ornamentation covers 

prominent, conical lateral spines.  In Lithodes, Paralithodes and the Hapalogastrinae, 

the spines of the antennal acicle are smooth and free of secondary ornamentation and 

setae. 

--Characters: 
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AA.---Lateral spine ornamentation. 

(0)Setae and/or secondary carapace ornamentation along the length of lateral 

spines or crests.   

(1)Lateral spines free of setae or tubercles from the base.   

AB.---Secondary texture on spines of the antennal acicle. 

(0)Antennal acicle spines with no setae or secondary tubercles (Fig B3.15a, d).   

(1)Antennal acicle has many tubercles and setae in addition to the spines (Fig 

B3.15b, c). 

 

-Chelae 

AC♂, AD♀. --Ratio between cutting surface and crushing surface on the right 

cheliped of adults (CL > 50 mm). 

There are some quantitative characters (like egg size in the Lithodes part) that I would 

like to incorporate into analyses, but do not have enough data to produce a statistical 

comparison of means for all species.  Sexually dimorphic characters, such as the chela 

size, are also influenced by reproductive maturity.  Subdividing the dataset by sex and 

stage dramatically reduces the sample size.  Cutting (black sclerotised) vs crushing 

(white teeth) ratio of right chela on different reproductively mature Paralomis (> 50 

mm CL) were examined in males and females (Fig B3.16).  The measurement of 

cutting surface (black sclerotised surface) was made from the tip of the dactylus to the 

end of the cutting surface.  The measurement of the whole dactylus length is made from 

the tip of the article to the articulation point with the propodus.  It is estimated that the 

crushing surface is the part of the dactylus that is not sclerotised (Fig B3.16).  For each 

distribution, a division of the dataset was done by inspection into a high ratio and a low 

ratio group.  Coding used a value of 0 for those above a defined level for males or 

females and 1 for those above it.  Any data within 0.05 units of the mean are coded as 

ambiguous (Fig B3.17).  This is a very rough method for determining a difference 

between species and should be replaced by statistically rigorous techniques when 

sufficient data are available. 
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Figure B3.12 Dactylus of Paralomis species. Scales 5 mm.
a) P. aculeata holotype ?  CL 41 mm (coding Paralomis S:0 T:0 U:1 ).
b) P. arae ?  CL 74.5 mm (coding Paralomis S:1 T:0 U:2 )
c) P. dawsoni ?  CL 62 mm (coding Paralomis S:0 T:1 U:1 )
d) Glyptolithodes cristatipes ?  CL 71.2 mm (coding Paralomis S:1 T:0 U:1 )
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Figure B3.13 Abdominal tergites 3-5 in male Paralomis. Scales 5 mm.
a)P. cristata ?  96.9 mm (coding Paralomis V:0 W:0 X:0)
b)Lopholithodes mandtii ?  65 mm (coding Paralomis V:0 W:0 X:0 ).
c)P. cubensis ?  61 mm (coding Paralomis V:1 W:0 X:0 )
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Figure B3.14 Eyestalk of Paralomis and Lopholithodes Scales 1 mm.
a)P. cubensis ?  CL 61 mm (coding Paralomis Y:0).
b)Lopholithodes mandtii ?  65 mm (coding Paralomis Y:0).
c)Paralomis aculeata holotype ?  CL 41 mm (coding Paralomis Y:1).
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Figure B3.15 Antennal acicle of Paralomis and Lopholithodes. Scale 1 mm.
a)P. aculeata ?  CL 41 mm (coding Paralomis Z:3 AB:0). 
b)P. arae  ?  CL 74.5 mm (coding Paralomis Z:2 AB:1). 
c)P. haigae ?  CL 49.9 mm (coding Paralomis Z:1 AB:1).
d)Lopholithodes mandtii  ?  65 mm (coding Paralomis Z:1 AB:0). 
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The Evolutionary History of the Lithodinae 

Figure B3.16 Right ?  chelae. White line indicates sclerotised cutting surface;
black line indicates dactylus length measurement.  Scale 5 mm.  
a)P. inca ?  CL 99 mm (coding Paralomis AD: 1) 
b)P. mendagnai ?  CL 50 mm (coding Paralomis AD: 0).  
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Figure B3.17 Graph of sizes of Paralomis cutting surface as a proportion of the right chela 
dactylus length.  Grey box indicates the cut-off point, placed by eye in the middle of the
 distribution, and the 'ambiguous' region 0.05 units wide either side of it within which points
 aren't scored. a)Males with CL > 50 mm. b)Females with  > 50 mm CL.
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 A B B2 C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD 

P. aculeata 1 1 1 0 0 1 2 X 0 0 0 0 0 0 1 2 2 2 0 0 0 1 1 1 0 1 3 1 0 X 1 

P. africana 1 0 0 0 0 1 3 X 1 0 1 1 0 0 0 2 1 1 0 1 0 1 1 0 0 0 2 0 1 0 0 

P. anamerae 1 1 1 0 0 1 2 X 0 0 0 1 0 0 1 2 2 2 0 0 0 1 1 1 0 1 3 1 0 0 1 

P. arae 0 0 0 0 X 0 X X 0 0 1 1 0 0 0 0 1 1 1 1 0 2 1 0 0 0 2 0 1 1 X 

P. birsteini 1 1 0 0 0 1 2 X 0 0 0 1 0 0 0 0 2 2 0 0 0 1 1 0 0 1 3 1 0 0 1 

P. ceres 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 3 1 1 X 0 1 0 0 0 0 1 0 1 X X 

P. cristata 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 

P. cubensis 1 1 0 0 0 1 3 X 1 0 0 0 0 0 0 2 2 2 0 0 0 1 1 0 0 0 3 1 0 0 0 

P. dawsoni 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 2 3 3 0 0 1 1 1 0 0 0 1 0 X 0 0 

P. erinacea 1 1 1 1 0 1 3 X X 0 0 1 0 0 X 2 2 2 0 1 X X 1 0 0 0 2 0 X 0 1 

P. formosa 1 0 0 0 0 X X X 0 0 1 1 0 0 0 0 1 X 1 1 0 1 1 0 0 0 3 X 0 X 0 

P. granulosa 0 1 0 0 0 0 X X 1 0 0 0 0 1 0 2 3 3 0 0 1 2 1 0 0 0 2 0 X 0 0 

P. grossmani 1 0 0 0 X 1 1 1 0 0 0 0 0 0 0 2 2 2 0 1 0 2 X 0 0 0 2 0 0 1 1 

P. haigae 0 0 0 0 0 1 1 2 1 1 1 1 0 X 0 0 3 1 0 0 0 1 1 0 0 0 1 0 1 0 0 

P. inca 1 1 0 0 0 1 2 X X 0 X 1 0 1 0 X 2 2 0 1 0 2 X 0 1 0 2 0 0 X 1 

P. mendagnai 1 1 0 0 0 1 3 X 1 0 1 1 0 0 0 2 2 X 0 X 0 1 1 0 0 1 3 1 0 0 0 

P. multispina 1 0 1 1 1 1 1 1 0 0 0 X 0 0 0 2 2 2 0 1 0 2 1 0 X 0 3 0 0 1 1 

P. otsuae 0 0 0 0 0 0 X X 0 0 1 1 0 0 0 0 1 1 1 1 0 2 1 0 0 0 2 1 0 X 0 

P. phrixa 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 2 2 2 0 1 0 2 1 0 1 0 3 0 0 X 1 

P. seagranti 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 2 3 3 0 0 1 1 0 0 0 0 1 0 X 0 0 

P. serrata 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 3 0 0 0 X 

P. spinosissima 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 2 2 2 0 1 0 2 1 0 1 0 3 0 0 1 1 

P. stella 1 1 0 0 0 1 3 X 1 0 0 1 0 0 0 2 2 2 0 0 0 1 1 1 0 0 3 1 0 0 X 

P. verrilli 0 0 0 0 0 0 X X 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 0 0 0 2 1 0 1 1 

Lopholithodes 0 0 0 0 0 0 X X 0 0 0 0 0 1 0 0 1 3 0 0 0 1 0 0 0 0 1 0 0 X X 

G. cristatipes 1 0 0 0 0 0 X X 0 2 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 2 0 1 0 0 

Outgroup X X X 0 0 0 X X 0 0 0 0 0 X 0 0 X X 0 0 0 X 0 0 0 X X 0 X X X 

Table B3 Discrete character codes for phylogenetic analysis of Paralomis genus.   
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B3.3.3 Discrete-character phylogeny result  

-Parsimony  

The most parsimonious tree based on 31 characters for 27 taxa (Fig B3.5b) shows two 

well-resolved terminal clades ([∆] and [Ұ]) connected at an unresolved polychotomy.  

Close to the base of the tree, central Pacific species P. seagranti, P. dawsoni and South 

American (shallow-water) species P. granulosa resolve near to the outgroup and to 

Lopholithodes.    

Clade [∆] includes species from waters near the American continent(s), off both the 

Pacific and South Atlantic coasts (as well as P. arae, from the mid-Pacific).  Within this 

clade, the Atlantic species P. formosa and P. serrata diverge near the base; a close 

relationship was indicated between P. verrilli and P. otsuae from the northern and 

southern Pacific Ocean respectively.     

Clade [Ұ] divides into two clades: one, labelled [Ω], containing three Southern Ocean 

and sub-Antarctic species (P. aculeata, P. anamerae, P. birsteini), as well as species 

from the Southern Indian, Atlantic and Pacific Oceans.  A second clade [Π] contains 

‘spiney’ species, also with a distribution throughout the eastern Pacific continental 

margin.  Basal groups of clade [Π], P. inca and P. grossmani, are found either side of 

the isthmus of Panama in the Pacific and Atlantic, respectively.  P. multispina, P. 

phrixa and P. spinosissima appear as a strongly supported group (bootstrap value = 82) 

within clade [Π].  

       

-Fitch-Margoliash distance 

In comparison to the parsimony-based tree (Fig B3.5b), there are fewer weak nodes 

(indicated by short branch length) in the tree produced from the same discrete-character 

data transformed into a distance matrix (Fig B3.5c).  The designation of Lopholithodes 

as the out-group does not substantially affect the topology of the distance-based tree in 

comparison to the parsimony-based tree in which a hypothesised out-group state was 

used (Fig B3.5b,c).  Nodes [∆, Π, Ω] are present on both trees in more or less 

equivalent topologies (Fig B3.5b, c).  Clade [Ю] (Fig B3.5c) includes central Pacific 

species P. haigae, P. dawsoni and P. seagranti, along with South Atlantic species 

Paralomis granulosa and this clade is resolved close to the base of the Paralomis 

lineage as tested here. 

  

B3.3.4 Combination of discrete-character and morphometric distance matrices  

A distance-based tree (Fig B3.5d) was created for the 20 species of Paralomis for 

which both morphometric and discrete character data could be collected.  P. granulosa 

was the most basal species on this topology, which was rooted with Lopholithodes.  
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Three well-resolved clades were labelled [∆], [Π] and [Ω].  Clade [Π] contains P. 

spinosissima, P. phrixa and P. multispina; species that share derived features such as 

spines with oblique faces uniformly covering the carapace; large gastric spines; 

relatively large merus compared to body length.  Clade [∆] includes species P. otsuae, 

P. verrilli, Glyptolithodes cristatipes and P. formosa; these share several derived 

characteristics such as the triangular cross-section of the walking-leg merus.  Clade [Ω] 

contains species P. stella, P. cubensis, P. mendagnai, P. anamerae, P. aculeata, P. 

birsteini, with the later three appearing as an internal clade [Σ]: these groups share 

features such as relatively long GC groove; relatively large anterolateral lengths 

compared to body length, and the morphology of the tergites on the third abdominal 

segment.   

 

B3.4 Discussion 

The pattern of dispersal in Paralomis from their proposed origin close to Lopholithodes 

is one of radiations between the Pacific and other oceans; however, directionality of the 

radiations is not clear.  Four groupings have emerged from this morphology-based 

analysis and are supported to a greater or lesser extent by evidence from both 

morphometrics and discrete character analysis.  Several species don’t resolve 

consistently within any group mentioned in the discussion so far, such as P. africana, P. 

erinacea, P. cristata, P. ceres and P. haigae.  Just less than 50% of Paralomis species 

are included in this analysis and, despite attempts to include representatives of the key 

morphotypes of Paralomis, there are many areas which simply have not been covered.  

It is quite likely that those species which do not resolve well here could be allied with 

some of the missing groups.      

 

Sometimes forming a clade (Ю, Fig B3.5), are a group of species from the mid-Pacific 

Ocean — P. dawsoni and P. seagranti — as well as Paralomis granulosa from the 

shallow waters of S. America.  In the combined distance analysis (Fig B3.5d), most of 

these species are excluded because of small sample sizes, so P. granulosa resolves 

alone at the base of the tree.  With the exception of aspects of stout leg morphology, the 

carapace of P. granulosa shares only a few features with Lopholithodes and in many 

ways (e.g tubercle structure) is quite derived in its morphology. P. dawsoni and P. 

seagranti are both found in the deep waters (to at least 1050 m) of the south west 

Pacific Ocean, whereas P. granulosa has the shallowest range of any in its genus (10-

100 m).  A south west/east Pacific radiation close to the base of the Paralomis lineage 

could fit with the only fossil evidence of the genus, P. debodeorum in New Zealand 

from the mid-late Miocene (Feldmann 1998).   
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The first well resolved group (Fig B3.5 [∆]) contains P. formosa, P. arae, P. otsuae, P. 

verrilli, P. serrata and sometimes Glyptolithodes cristatipes.  In general, P. otsuae, P. 

verrilli and P. arae are most closely allied within this clade, with the other three species 

resolved at the base of the clade.  With the exception of P. arae (mid-Pacific), all of 

these species occupy water along the Pacific coast of the Americas, Japan, the Gulf of 

Mexico and the Patagonian continental shelf, predominantly between 800 and 2000 m 

(Appendix E).  This distribution, despite being bipolar, is geographically limited to 

waters close to the American Pacific coast.  Glyptolithodes cristatipes (Pacific coast, 

California to Chile) is often resolved within this clade, strongly implying that 

Paralomis — as currently defined — is paraphyletic. 

A second clade (Fig B3.5 [Π]) includes P. multispina, P. spinosissima, P. phrixa, P. 

grossmani, and P. inca.  The first three species almost always appear in a clade 

exclusive of the latter two.  Again, a bipolar distribution along the eastern Pacific 

continental margin is implied by the exclusive relationship of these species.  P. 

multispina is found in Japan and the Bering Sea; P. phrixa, P. spinosissima, P. inca and 

P. grossmani are from the western coast of South America or waters geographically 

close to South America (including the Gulf of Mexico).  

A complex pattern of dispersal is indicated by these data, especially emphasising the 

importance of bipolar links between the north and south Pacific along the western coast 

of America.  This potential dispersal pathway is indicated for least two lineages ([Π], 

[∆]) although there is no evidence that it was a unidirectional (north→south) movement 

in either case. Both of these lineages include additional species from the Caribbean (P. 

grossmani and P. serrata respectively).  There are no species in either of these lineages 

on the continental slope of eastern South America between Rio Plata 34 °S and 7 °N.  

Between these latitudes the only Paralomis species found are P. shinkaimaruae  in the 

mid-Atlantic at 31 °S and P. cubensis at 2 °N (Appendix A,E).  An absence of species 

in the present (identified) distribution doesn’t mean that these lineages aren’t or haven’t 

been connected on the eastern continental slope of S. America; however, an 

uninterrupted distribution of Paralomis along the western continental slope of S. 

America suggests that this is the more likely route for dispersal along isobaths.   

 

The third well-resolved group (Fig B3.5 [Ω]) containing P. stella, P. mendagnai, P. 

cubensis and P. anamerae, P. birsteini and P. aculeata, is furthest from the outgroup in 

the morphometric analysis and is well resolved based on discrete-character data.  In all 

cases, P. aculeata and P. anamerae are allied with one another, and in most cases P. 

birsteini is a sister species to these. P. birsteini is a Southern Ocean species with a 

theoretically circum-Antarctic distribution.  It has been found in the Ross Sea, the 
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Bellingshausen Sea, as well as in Crozet in the southern Indian Ocean.  P. anamerae 

and P. aculeata have a demonstrably close relationship, despite a considerable 

geographic distance between P. anamerae populations in South Georgia (south-east 

Atlantic), and P. aculeata in the Southern Indian Ocean.  P. cubensis, P. stella, P. 

mendagnai are native to the southern parts of the Atlantic, Indian and Pacific Oceans 

respectively.  Circum-Antarctic gene-flow may have established this link between 

Paralomis species in the southern parts of the world oceans.    

 

Paralomis species are found predominantly at slope rather than abyssal depths (<2000 

m) and although some species can theoretically tolerate depths up to 4000 m, there is no 

evidence of this being a genus-wide trend.  In reconstructions indicated here, pathways 

of dispersal largely follow continental margins.  Species with trans-oceanic or mid-

ocean distributions in Paralomis are not unknown (particularly in the Pacific), but 

dispersal patterns occur along island chains or along mid-oceanic ridges.  The 

lecithotrophic larval stages of Paralomis are not recorded from pelagic environments; 

experimental observation (Lovrich 1999) indicates that they might have a demersally 

drifting habit.  On the other hand, development is slow in low temperature 

environments and larval stages are likely to be long-lived.  Deep ocean currents in 

addition to adult migration are perhaps the means by which dispersal occurs in this 

taxon. 

 

B3. 5 Conclusions 

• In a sample set of 25 out of 61 species of Paralomis, several do not resolve 

within these morphological phylogenies.  Such groups may be closer to some 

of the non-sampled Paralomis lineages. 

• Glyptolithodes cristatipes nests within Paralomis on the basis of morphology 

when Lopholithodes is assumed to be the outgroup.    

• Shallow-water species Paralomis granulosa bears some (perhaps convergent) 

similarity to Lopholithodes in the morphometry of its walking legs and some 

aspects of discrete morphology.  When P. dawsoni and P. seagranti are 

included in the taxon set, all three of these cluster close to the base of the 

Paralomis lineage.   

• Meridional links between the north and south Pacific Oceans and South 

Georgia are evident in two lineages of Paralomis. 

• Relatively recent circum-Antarctic interchange seems to link species on 

subAntarctic seamounts and island chains. 
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CHAPTER C: TEMPERATURE CONSTRAINTS IN THE 

FAMILY LITHODIDAE 

 

Sections from an article published in the Journal of Biogeography. Hall & Thatje 

(2009a), with additional data incorporated.  

 

C.1 Introduction  

Ten out of the 15 lithodid genera (Appendix A) are restricted to the coast of North 

America and linked island chains, at depths typically shallower than 200 m.  The 

concept of a bottleneck in the radiation of lithodids, connected to their transition into 

the deep sea, has been proposed by several authors over the last 150 years (Bouvier 

1896, Makarov 1938, Zaklan 2002a).  They have hypothesized that, commencing from 

a shallow water origin, lithodids followed one route of radiation along the coastline of 

the North Pacific, and another through the deep water into adjacent oceans.  Ecological 

or physiological factors have limited the range of the shallow-water lineage(s), resulting 

in an endemic North Pacific subfamily.  Isothermal submergence at the poles is a 

phenomenon known from several other taxa with bipolar distributions (Andriashev 

1986, Harrison & Crespi 1999, Briggs 2003, Raupach et al 2009).  This principle may 

explain how some lineages followed a deep-sea route out of the North Pacific, and into 

other water bodies.   

Despite the substantial evidence for cold water preferences or restrictions (Zaklan 

2002a, Thatje et al 2004), the exact nature of the relationship between biogeography 

and temperature has not yet been examined in this group.  This study tests the 

hypothesis that lineage-specific temperature tolerances influence the distribution of 

lithodid subfamilies.    

 

C.2 Methods  

C.2.1 Data sources 

Data were gathered from three sources, as follows:  

(1)  197 published records of lithodids were sourced from peer-reviewed journals and 

other literature.  Identity was verified from descriptions and pictures, or by inspection 

where samples were deposited in museums.  Data were included only for genus-level 

analyses if species identity was ambiguous. 

(2)  More than 1000 specimens (mostly unpublished records) were examined from 

museum collections in the Natural History Museum, London (NHM); Senckenberg 

Museum, Frankfurt; Musée National d’Histoire Naturelle, Paris (MNHN); Institut de 
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Ciencies del Mar, Barcelona; United States National Museum of Natural History, 

Smithsonian Institute, Washington (USNM); and the “Discovery Collection”, National 

Oceanography Centre, Southampton (NOCS).    

(3)  56 specimens with associated environmental data were obtained courtesy of 

commercial vessels or scientific cruises, from locations in the Southern Ocean, South 

America and un-deposited West African samples (Mauritania: MAU 1107) at the 

Instituto Español de Oceanografica, Vigo. 

 

For each specimen studied, the depth, location and date of sample collection were 

noted.  Most records were for crab stages; however, a few larval records were included.  

The study included 82% of the lithodid species (90 /117) described to date (Appendix 

A), with 65% of these species represented by more than 10 sample sites.   Data from 

871 worldwide sample locations (Fig C.1, Appendix E) were used.   

Water temperature at the time of sampling was obtained from cruise reports where 

possible.  Otherwise, temperatures were estimated, based on time of year, depth and 

location.  The majority of the climatic data were taken from the National 

Oceanographic Data Centre <World Ocean Atlas 2005> (Locarnini et al 2006) and the 

National Oceanic and Atmospheric Administration – Earth System Research 

Laboratory (NOAA-ESRL), Physical Sciences Division (http://www.cdc.noaa.gov/).   

Southern Ocean data were obtained from the <Southern Ocean Atlas> (Olbers et al 

1992) (http://odv.awi.de/en/data/ocean/southern_ocean_atlas/).  

 

C.2.2 Phylogeny 

The link between the habitat temperature range and the position of taxa within the 

lithodid phylogeny was examined.  Molecular phylogenies were produced by Maximum 

Likelihood (ML) and Minimum Evolution (ME) criteria and Bayesian inference (BAY), 

using molecular alignment TEB formed from parts of the COI, 16S, ITS and 28S genes 

(Section A1, Fig A1.4).   A schematic of TEB  trees was produced for this chapter by 

condensing all monophyletic (or single species) genera to a single branch, and 

indicating the paraphyletic status and position of the other genera (Fig C.2).  Where 

ML, ME and BAY TEB trees disagree with one another, the conflict is indicated with a 

dashed line for the minority condition and solid line for the majority condition. Genera 

that include species with distributions outside the north Pacific were highlighted. 
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Figure C.2 Maximum likelihood tree created with <PHYLIPdnaml> for species 

representing 10 genera of Lithodidae.  Analyses were conducted in Chapter 1 of this thesis 

(TE ) based on sequences of ITS1, 16S, COI (mitochondrial), and 28S (nuclear) B

genes.  Monophyletic genera were condensed to a single taxon label, and 

polyphyletic genera are indicated by multiple branches.  Subfamilies Lithodinae

and Hapalogastrinae are labelled.  Genera, within which members occur below 

200 m and/or outside the Pacific Ocean, are distinguished with a box. Outgroup 

genera from other anomuran families (Pagurus and Aegla) were used to root the tree.

The Evolutionary History of the Lithodinae Section C Chapter 1

205



The Evolutionary History of the Lithodinae   Section C Chapter 1 

206 

C.2.3 Analysis 

Latitudinal and bathymetric data 

Records of shallowest specimen depth were compared with sample-site latitude.  Most 

species had a range covering several tens of degrees of latitude; however, within 

species there was no significant (r²<0.05) difference in depth across sites of differing 

latitude.  This observation justified the pooling of data from different sample locations 

into a mean latitude for each species.  The shallowest depth was calculated as the 90
th
 

percentile of records within species groups (points, Fig C.3).    

 

Depth, location and temperature data 

Records of depth and local temperature for individual samples were compared – data 

were not pooled into species groups for this analysis.  Mean seasonal variation in 

temperature was projected for each sample location (Fig C.4).  Estimates of maximal 

and minimal global temperature profiles were taken from the <World Ocean Atlas 

2005> (Locarnini et al 2006), excluding data from inland or sheltered shallow seas that 

have atypical temperature profiles, and in which lithodids have not been found.  This 

provided a diagrammatic sense of the range of temperatures typically found at different 

depths in world oceans.  

To investigate patterns of variation between lineages, data points were classified in all 

analyses according to their position in the molecular phylogeny (Fig C.2), as follows.  

(1) Subfamily Hapalogastrinae.  

(2) Members of genera within the subfamily Lithodinae, which share larval 

planktotrophy and shallow (<300 m) North Pacific habitats with the Hapalogastrinae. 

(3) Lithodinae belonging to genera within which members are found deeper than 200 m 

and/or outside the North Pacific: Paralomis, Lithodes, Neolithodes and Glyptolithodes. 

     

Southerly range boundaries and upper temperature limits for North Pacific subtidal 

populations 

In order to examine the nature of the upper temperature thresholds in lithodids, the 

species tolerant of temperatures higher than 13°C were considered in further detail. All 

of these species occur exclusively in the North Pacific (Table C1).  The most southerly 

populations of Lithodidae are found along the oceanic coast of Baja California, Mexico 

(29°47N; 15 m deep).  Detailed weekly average temperature profiles are available for 

this region between August 1992 and 2008, courtesy of the NOAA-ESRL 

(http://www.cdc.noaa.gov/).  For each month from 1992-2002, the temperature in the 

subtidal range (5–15 m) was recorded for latitudes 26, 30, 32, 34 and 36°N (Fig C.5).  

This enabled the seasonality of larval release to be examined with respect to water 
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temperature. Hatching seasons for North Pacific lithodids were similar throughout the 

group, occurring between February and May (Table C1, Zaklan, 2002b).  Additionally, 

the locations of the coastal 15.5 °C isotherms between February and May in years 1996-

2000 were calculated from the NOAA-ESRL (http://www.cdc.noaa.gov/) dataset for 

North America (Fig C.6). A comparison was then made between the latitude of the 

most southerly lithodid populations and the fluctuating positions of the subtidal 15.5°C 

isotherm.     

 

Southern Ocean and sub-Antarctic range limits 

The distribution of decapods in the southern hemisphere has been used to indicate a 

separation of the temperate/tropical fauna from the subAntarctic/Southern Ocean fauna 

(Gorny 1999). The subAntarctic/Southern Ocean region, which includes some of the 

coldest waters on earth (Barnes et al 2006), was divided into two groups for 

examination, based on latitude and oceanographic features.  The range 45-60 °S includes 

locations within the Antarctic Circumpolar Current (ACC), from the sub-Antarctic front 

to the southern circum-Antarctic front (Antarctic divergence) and is split internally by 

the Polar Front (c. 50 °S; Section O.3.2.1).  The ACC passes south of Patagonia before 

diverging across the Argentine continental shelf (Antezana 1999), so fauna in and 

around coastal South America are not included in this part of the study.  The Scotia Arc 

is an array of trenches and elevations for 1500 km between the Antarctic Peninsula and 

Patagonia (Acosta et al 1989), which have previously been thought of as a possible route 

of faunal transmission into the Antarctic (although there is no direct evidence of this, 

Dayton 1990). The arc has a northern (South Georgia, c. 52 °S) and a southern arm 

(South Shetland, South Orkney, c. 59 °S) which have different temperature profiles and 

faunal distributions (Figs C.8i, iii), despite both being south of the Polar front (c. 50 °S; 

Section O.3.2.1, Lovrich et al 2005).  Of the other circum-Antarctic islands included in 

the 45-60 °S range, Bouvet Island and the Kerguelen islands all lie south of the Polar 

Front; and the Falkland Islands, Prince Edward Islands, Crozet Islands, and the 

Macquarie Islands all lie north of the Polar Front (Eckmann 1953).  Latitudinal variation 

of the polar currents within this range made it difficult to split the ACC graphically into 

sub-Antarctic and Polar water; however, the longitudinal location of these islands is 

indicated on temperature profiles (Fig C.8).         

 

The second range (60-75 °S) approximately includes all waters south of the Antarctic 

divergence (the southern boundary of the ACC).  Each oceanic front marks a transition 

in water density; often a notable change in temperature at the surface.  Scott Island in 
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the Ross Sea, Peter I island in the Bellingshausen Sea, and the West Antarctic Peninsula 

(WAP) (all south of 60 °S) lie south of the Antarctic divergence (Section O.3.2.1). 

Within each latitudinal range outlined above, the longitudinal and depth distributions 

are examined within and between species of lithodids (Fig C.7).  The southern-most 

frontier of the lithodid distribution is examined by plotting water temperature variation 

with depth and longitude at 60 °S, 65 °S, 70 °S and 75 °S (Fig C.8-10).  This was 

performed using data from <Southern Ocean Atlas> (Olbers et al 1992); each 

temperature estimate was taken by pooling all data within one degree of the stated 

latitude (e.g. 60 ± 1°S).  Temperature at depths of 200 m, 500 m, 1000 m, and 2000 m 

were sampled, as they are relevant to the distribution of lithodids in this region.  

 

C.3 Results 

C.3.1 Latitudinal bathymetry clines 

A distributional bottleneck (Bouvier 1896, Makarov 1938, Zaklan 2002a) separated 11 

genera occurring at shallow northern latitudes from four deep-water genera: 

Neolithodes, Lithodes, Paralomis and Glyptolithodes.  All lithodids appeared to be 

competitively or physiologically excluded from waters shallower than 400 m between 

30°N and 40°S (Fig C.3).  In addition, a pattern of emergence from the deep sea could 

be seen towards high southern latitudes (41-55°S) in the genera Lithodes and 

Paralomis.  
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C.3.2 Temperature thresholds 

GROUP 1: The Hapalogastrinae are predominantly non-migratory and endemic to the 

North Pacific intertidal/subtidal zones.  This study confirmed that adults of the 

Hapalogastrinae inhabit water with a much larger range of temperatures (from 0°C in 

the northern Sea of Okhotsk to 25°C off the coast of California) than do the adults of 

the Lithodinae (Fig C.4).   However, experimental evidence of defined temperature 

thresholds has only been shown for larval stages.  Analyses of local temperature data 

(Figs C.5 & C.6) indicated some range limitation in response to maximal water 

temperature during the larval hatching and development period.  Over a sample period 

of 10 years, the water temperature at the most southerly subtidal sample locations 

dipped to 16.5°C (from summer maxima of 25°C) for the duration of hatching and 

larval development [67-87 days March – May (from Crain & McLaughlin 2000, 

Zaklan, 2002b)].  Hapalogaster cavicauda was the most southerly recorded species, 

inhabiting waters that were usually within 1°C of the spring 15.5°C isotherm (Fig C.6).  

The position of this isotherm varied by several degrees of latitude annually (Fig C.6), 

and most of the species were only found north of this fluctuation. 

 

GROUP 2: The Lithodinae (including those not inhabiting the deep sea) have 

experimentally determined physiological temperature thresholds at 0.5 °C and 13-15 °C 

(Kurata 1960, Nakanishi 1981, 1985, Vinuesa et al 1985, Shirley & Shirley 1989, 

Calcagno et al 2005).  Subtidal North Pacific species of Lithodinae have a similar 

distributional range to those shallow-water species of Hapalogastrinae (Table C1, Fig 

C.6).  This may be an indication of a shared ancestral trait.   

 

GROUP 3: For those genera occurring globally (highlighted, Fig C.2), there appeared 

to be little effect of temperature on range below depths of 1000 m.  Most temperatures 

encountered at depth were within the predicted larval temperature thresholds for the 

subfamily.  At depths shallower than 500 m, distributions were restricted at both ends 

of the temperature scale, with limits at 0.5° and 13°C.  At the shallowest, warmest 

locations in which these groups were found, seasonal temperature fluctuations occurred 

(Fig C.4). At some sample locations, temperature would be expected to approach a 

maximum of 15°C over the course of a typical year.  Vertical migratory behaviour 

(Miquel et al 1985, Abelló & Macpherson 1991, Paul & Paul 2001) in relation to the 

reproductive cycle might be linked to the narrower temperature tolerances of early life-

stages. 
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Figure C.4

i: The effect of temperature on the depth distribution of the two subfamilies of Lithodidae.  

ii: The relationship between temperature and depth for genera of 'deep-sea' Lithodinae.

Dashed lines at 0, 13 and 15 degrees indicate possible temperature thresholds as determined

experimentally for lithodid larvae. 
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Subtidal temperatures in coastal California 1992-2000
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Figure C.5 Subtidal temperatures along the coast of California.  For each month from 1992
–2002, the average temperature in the subtidal range (5–15 m) was recorded for latitudes 
26, 30, 32, 34 and 36°N (NOAA-ESRL).  A projection at a temperature of 15.5°C indicates 
the maximum, empirically predicted, larval survival threshold.  Shading blocks out the 
months February to May, which represent an estimate of the period during which lithodid 
larvae would hatch and develop to the megalopal stage at 9°C (from Crain & McLaughlin, 
2000; Zaklan 2002b).  This period may be shorter at the elevated temperatures considered 
here.
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Position of the 15.5 isotherm in Feb-April on the California Coast 1996-2000, 

with  maximum southerly extents and depth ranges of endemic shallow or subtidal North Pacific species
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Figure C.6 The most southerly records of subtidal Lithodidae on the North American Pacific 
coastline in relation to the spring 15.5°C isotherm. Dashed line-plots represent the location, to 
the nearest 0.5° latitude, of the 15.5°C isotherm (NOAA-ESRL) between February and May 
within 100 km of the west coast of North America.  One plot per year from 1996 to 2000 is
displayed.  In addition, the location of the most southerly sample sites and depth ranges of 
species (Table 1) along the west coast of North America are indicated with coloured blocks. 
Please note that some of these overlap on the diagram.
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C.3.3 Antarctic and Subantarctic distribution of ‘Group 3 Lithodinae’ 

At the lower end of the temperature scale, it has been reported that members of the 

subfamily Lithodinae inhabit some of the relatively warmer waters around Antarctica 

(Klages et al 1995, Arana & Retamal 1999, Garcia-Raso et al 2004, Thatje et al 2008).  

No lithodids are found at water temperatures colder than 0.5 °C (Fig C.7), and median 

temperatures for lithodids in Antarctic/sub-Antarctic waters are between 1 and 4 °C.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45-60 °S  

13 species of lithodids are found between 45 and 60 °S (Paralomis aculeata, P. 

anamerae, P. birsteini, P. elongata, P.  formosa, P. granulosa, P. spinosissima, 

Lithodes confundens, L. murrayi, L. santolla, L. turkayi, Neolithodes diomedae, N. 

duhameli, N. capensis).  P. spinosissima, P. formosa and P. anamerae have overlapping 

distributions, and high concentrations of these species have been found around South 

Georgia (Fig C.8ii).  Exploratory fisheries (63-643 m) in the area have shown that P. 

spinosissima is encountered regularly in waters between 200-800 m around Shag Rocks 
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and South Georgia (López Abellán & Balguerías 1993, Purves et al 2003); however, P. 

formosa was not found often within that range (600-1600 m: Purves et al 2003) and 

adults tolerate temperatures at least between 0.5 and 2.1 °C (Fig C.7).  In the southern 

islands of the Scotia Arc (60 °S, 25-60 °W: 0.5 - -1°C, Fig C.8i), no populations of 

Paralomis have been identified above 500 m, despite a significant sampling effort 

(López Abellán & Balguerías 1993).  P. aculeata was described at 600 m off the Prince 

Edward Islands (45 °S), and is known also from the Crozet Islands in the southern 

Indian Ocean (46 °S, Miquel et al 1985).  It has a wide bathymetric range, 

approximately 150 to 1500 m, and a recorded temperature range from 1 to 2 °C (Figs 

C.7, C.8).   Between 25 °W and 30 °E, no records of any lithodids exist with the 

exception of P. elongata at 300 m close to Bouvet Island (54 °S, 2°E; 0.5-3 °C, Fig 

C.8iii).  This gap in distribution coincides with a plunge in water temperatures in the 

mid-Atlantic at 55 °S in comparison to the South American continental slope (1.5-0°C, 

Fig C.8iii); bottom temperatures in this void are not far outside the normal range for 

several species of lithodid (e.g. Neolithodes yaldwyni, P. stevensi, P. formosa, Fig C.7).    
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Figure C.8. ii: Lithodidae captured between 45 and 60 °S, approximately south of the sub-Antarctic 
front and north of the Antarctic divergence.  Represented by depth and longitude.  To
increase graphical clarity, species Lithodes murrayi, L. santolla, L. confundens and 
L. turkayi are pooled; as are species Neolithodes diomedae (50-30 °W) , N. duhameli 
(60-80 °E) and N. brodiei (170 °E).  Paralomis elongata (3 °E) and P. aculeata (30-60 °E) 
were shown to be more or less equivalent in molecular studies (Chapter 1). 
iii: Temperatures at depths 200, 500, 1000, 2000 and 3000 m below sea level at longitudes
between 54 and 56 °S. Data obtained from the <Southern Ocean Atlas> (Olbers et al 1992)
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Figure C.9
i: Lithodidae captured south of 60 °S, approximately south of the Antarctic circumpolar
current.  Most southerly records were north of 70 °S.  Represented by depth and longitude.
Neolithodes species are N. yaldwyni (160 °E), N. capensis and N. diomedae (60-100 °W).
ii: Temperatures at depths 200, 500, 1000 and 2000 m below sea level at longitudes
between 64 and 66 °S. Data obtained from the <Southern Ocean Atlas>
(Olbers et al 1992).
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Figure C.10 i: Temperatures at depths 200, 500, 1000 and 2000 m below sea level at 
longitudes between 69 and 71 °S. Data obtained from the <Southern Ocean Atlas> (Olbers 
et al 1992). ii: Temperatures at depths 200, 500 and 1000 m below sea level at longitudes 
between 73 and 76 °S. Data obtained from the <Southern Ocean Atlas> (Olbers et al 1992).
Grey blocks represent landmass above sea-level.
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60+ °S 

Within high Antarctic waters above 60 °S, lithodid diversity declines substantially to 

include species Paralomis birsteini, P. stevensi, Lithodes murrayi, Neolithodes 

diomedae, Neolithodes yaldwyni (Fig C.9).  At 65 °S, temperature dips substantially 

below zero in the Weddell Sea and in the Australian-Antarctic basin (Fig C.9).  The 

areas between 60-70 °S in which lithodids are found are those with particular peaks in 

temperature (0.5-2.5 °C, Figs C.9-10), such as the Bellingshausen Sea and Ross Sea 

(north of 70 °S).  Lithodids are present on the continental slope of the West Antarctic 

Penninsula but not on the continental shelf, where temperatures are around 1 °C (60 

°W, Fig C.9).  No lithodids have been found below 70 °S and they are absent at all 

latitudes from the Weddell Sea.  The Southern Ocean below 70 °S is not a continuous 

body of water, and is divided by the continent into a Weddell Sea section (-2 to 1 °C), 

and a Ross Sea section (0.5 to 1.5 °C).  Below 75 °S, both the Weddell Sea and the 

Ross Sea (continental shelf) are colder than 0.5 °C (Fig C.10).   

 

C.4 Discussion 

The molecular phylogeny (Fig C.2, Section AO) indicates that the lithodid ancestors 

were shallow/subtidal animals in the North Pacific with planktotrophic larvae.  This 

substantiates the hypothesis (Bouvier 1896, Makarov 1938) that a movement from the 

North Pacific to the global deep sea and the associated transition to a lecithotrophic 

larval feeding mode was important in lithodid evolutionary history.       

Protracted larval hatching (Section O.5) and a cold-tolerant physiology are shared by all 

Lithodidae.  These features are likely to be the result of a common adaptive history in a 

cold and unpredictable environment.  From such a common ancestor, the subfamilies 

Hapalogastrinae and Lithodinae progressed along diverging evolutionary pathways.  

 

C.4.1 Subtidal groups 

The Hapalogastrinae inhabit a wide range of shallow water environments.  The results 

here indicate that adult Hapalogastrinae tolerate higher temperatures than do the adults 

of the Lithodinae.  Despite the wider range of temperature tolerance, the 

Hapalogastrinae and some genera of the Lithodinae are restricted to the North Pacific.   

Data presented here show that non-migratory adults are tied to areas where seasonal 

temperature drops (or rises) to a level optimal for larval survival (at least during the 

months of hatching and larval development; Crain & McLaughlin 2000, Zaklan 2002, 

shaded area, Fig C.5).     

It is conceivable that the North Pacific Hapalogastrinae were once more widespread and 

were subject to a subsequent range-restriction. However, the lack of present or fossil 
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populations of Hapalogastrinae in the Atlantic suggests that they did not pass through 

the Arctic Ocean, or through the Panama seaway before it closed 3.5–13 Ma BP 

(Schneider & Schmittner 2006, Section O.3.3).  In this case, distribution-limiting 

barriers (geographical or physiological) must have isolated the North Pacific population 

since the divergence of the family.   Dates for the divergence of lithodids from their 

most recent ancestors suggest that North Pacific populations have existed for 13–25 

Myr (Cunningham et al 1992).  The only fossil evidence is from a deep-sea lithodid of 

the genus Paralomis, 10 Ma BP in New Zealand (Feldmann 1998).  Without substantial 

fossil evidence or updated molecular clock estimates (McLaughlin et al 2007), it is 

difficult to speculate further, but this study may eventually help to impose some 

limiting dates on the timescale of divergence in this family. 

 

C.4.2 Vertically migrating North Pacific Lithodinae 

The lithodine genus Paralithodes is known experimentally to have increased larval 

mortality above 15°C (Kurata 1960, Shirley & Shirley 1989).  Unlike the small 

Hapalogastrinae, which have uncalcified abdomens and a range tied to protective kelp 

forests or rocks (Zaklan 2002a), Paralithodes species are anatomically capable of 

migrating very large distances (Jørgensen et al 2005).  Their sampled range (Table C1) 

indicates that they are able to survive in waters deep enough to avoid seasonally-

influenced temperature fluctuations, but their planktotrophic larval phase (of at least P. 

camtschatica, P. brevipes and P. platypus) links them to surface waters.  In these 

circumstances, range expansion south of the spring 15°C isotherm (Fig C.6) would not 

be possible (Somerton 1985).                

 

C.4.3 Submergence 

Each of the three deep-sea genera (Lithodes, Neolithodes, and Paralomis + 

Glyptolithodes) had distinct distributional characteristics (Fig C.4ii), and the molecular 

phylogeny (Fig C.2) suggested that at least two deep-sea radiations were independent.  

Several advantages may be associated with an increase in habitat depth, including a 

lowered metabolic energy consumption and an increase in environmental stability – 

especially in areas where surface waters are affected by seasonal fresh water influx 

(Shirley & Shirley 1989).   

In the deeper regions of the sea, there is increased difficulty in coordinating spawning 

with favourable surface temperature, as the cues are more remote (Stevens 2006).  A (at 

least) facultative lecithotrophic larval mode of development allows some independence 

from seasonal variations in primary productivity. Experimentally determined 

lecithotrophy is known from zoeal stages of the genera Lithodes and Paralomis (Anger 
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1996, Shirley & Zhou 1997, Kattner et al 2003, Calcagno et al 2003, 2005, Watts et al 

2006, Thatje & Mestre 2010) in geographically disparate species.  This higher maternal 

investment might have become a feature of deep-sea lithodids because of the mismatch 

between prolonged embryo/larval developmental times at low temperatures and 

unpredictable pulses of primary production coming from the surface (Shirley & Zhou 

1997, Thatje et al 2005, Morley et al 2006).    

 

C.4.4 Emergence 

Polar emergence (actually, subAntarctic emergence 40-50 °S) is a trend within species 

of both Paralomis and Lithodes genera (Fig C.3).  There is no such trend in the genus 

Neolithodes, possibly because of its abyssal specializations.  In Patagonia, where 

members of the deep-sea genera of Lithodinae have emerged into a subtidal or intertidal 

environment (Lovrich et al 2002), they retain full and apparently obligatory 

lecithotrophy in all larval stages (Kattner et al 2003, Saborowski et al 2006).  Adults of 

these groups (P. granulosa, Lithodes santolla, L. confundens, Fig C.4) seem to have 

lower maximum temperature tolerances (12-13 °C) than do confamilial North Pacific 

genera; this may be a retention of adaptations to the cold-stenothermal environment of 

the deep-sea.  The possibility of a transition from larval lecithotrophy back to 

planktotrophy is doubted by larval ecologists and physiologists (Strathman 1978).  If 

this viewpoint is accepted, then the observation of lecithotrophy in Paralomis 

granulosa and Lithodes santolla represents further support for a deep-sea emergence 

pattern in the Southern Hemisphere, and furthermore refutes the possibility of North 

Pacific populations originating in the deep sea.    

 

C.4.5 Lower temperature limits in the deep-water Lithodinae 

Temperatures in the Southern Ocean are low, but stable; seasonal temperatures only 

fluctuate by a few degrees Celsius (Foster 1984).  Diversity of lithodids in the region 45-

60 °S is higher than 60-70 °S, and species Neolithodes yaldwyni and Paralomis stevensi 

are both endemic to waters south of 60 °S.  This indicates that some adaptations to very 

low temperatures are present in lithodids living at the lowest end of the family’s 

temperature range. 

A limit to the southern distribution of the Lithodidae coincides with regions where water 

temperature is colder than 0.5 °C (Fig C.7): at locations including the Weddell Sea (Fig 

C.9-10); waters shallower than 500 m on the southern Scotia arc islands (Fig C.8i); and 

on the Antarctic continental shelf (from 70 °S) in all longitudes (Fig C.10).  

Temperature inversion in the surface waters of the Southern Ocean mean that often the 

shallower waters are colder than the surrounding deeper waters (Figs C.8-10, Section 
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O.3).  Close to the Antarctic continent, particularly in the Weddell Sea, extremely dense, 

cold Antarctic Bottom water (AABW) sinks from the surface to the deep sea.  This 

makes the water of the Weddell Sea and south-east Scotia Ridge (Figs C.9-10) 

particularly cold and is a possible reason for the exclusion of the Lithodidae from these 

regions. 

The correlation between lithodid distribution and temperatures greater than 0.5 °C is not 

perfect.  At 55 °S in the mid-Atlantic (25-30 °S, Fig C.8iii), water temperatures are 

between 0 and 1.5 °C; similarly at 70 °S in the Ross Sea, temperatures are greater than 

0.5 °C (Fig C.10i); and the continental shelf of the WAP has temperatures only slightly 

lower than the continental slope, where lithodids are present (1-1.5°C, Fig C.10) (Thatje 

et al 2008).  Several reasons could be proposed to explain this:  

• It is possible that those species present at temperatures lower than 1 °C 

(Fig C.7) might have lower (colder) temperature thresholds than 

congeneric species from lower latitudes 

• Adult specimens found in the very coldest water temperatures might be 

migrant rather than reproductive populations – adults may tolerate 

temperatures lower than do larvae or juveniles, so reproductive 

populations can not establish at the frontier of the lithodid range. 

• Warming of the polar oceans might be gradually opening up new 

habitats to the Southern Ocean lithodids (Aronson et al 2007), and these 

data could be evidence of a range-expansion in progress.    

Thirteen specimens of P. birsteini, including juveniles, were video recorded between 

1123 m and 1394 m water depths on the Antarctic continental slope/rise in the 

Bellingshausen Sea (Thatje et al. 2008) and an individual from this population was 

sampled by ROV for the present study (P. birsteini_SA101, Section A1).  This, as well 

as the presence of ovigerous females of P. stevensi, and P. birsteini (Ross Sea: Ahyong 

& Dawson 2006; Bellingshausen Sea: Arana & Retamal 1999) above 60 °S, indicates 

that reproductive populations of lithodids do in fact exist south of the Antarctic 

divergence.  

 

C.4.6 Implications 

The changing thermal structure of oceans may play an important role in patterns of 

lithodid biogeography.  This could be an increasingly important phenomenon in 

consideration of climate change and oscillations in oceanic upwelling zones (Thatje et 

al 2005).  Species of the genera Paralomis, Lithodes and Neolithodes are among the 

few anomuran taxa found at high latitudes in the Southern Ocean and it seems likely 



The Evolutionary History of the Lithodinae   Section C Chapter 1 

222 

that a history of deep-sea adaptation, particularly of life history (Thiel et al 1996, Thatje 

2004), has been associated with their successful colonization of Polar regions.    

In the Antarctic particularly, lithodids in the Bellingshausen Sea have the potential to 

threaten the isolated shelf communities (Thatje et al 2005, Aronson et al 2007), which 

have evolved in the absence of crushing predators such as crabs, lobsters, sharks and 

rays that would be found in shelf ecosystems at lower latitudes (Dayton et al 1974, 

Feldmann & Tshudy 1989, Crame 1994, Arntz et al 1994, McClintock & Baker 1997).  

Here, where lithodids seem to be living at the lower boundary of their physiological 

threshold, even a slight increase in temperature might open up new habitats.  

 

C.5 Conclusions 

• Distributional traits, shared between paraphyletic members of the Lithodinae 

and the Hapalogastrinae, suggest an ancestral population of shallow-water 

anomurans in the North-East Pacific Ocean, which were cold-eurythermal.  

•  Some shallow-water populations of Lithodidae (those with no ancestral link to 

the deep sea) are tied to waters north of 30°N because of the restricted thermal 

tolerance of larval stages.   

• At least two lineages from within the subfamily Lithodinae (Fig C.2) have an 

expanded bathymetric range and widespread distribution.  These groups are 

limited to greater depths, except at high latitudes, and have narrower adult 

temperature tolerance as an adaptation to the cold stenothermal deep sea.   

• Lithodids of the subfamily Lithodinae are living at the frontier of their lower 

temperature threshold in the Southern Ocean.  They have the potential to 

expand into previously uninhabitable regions of polar seas if water 

temperatures continue to increase, with potentially devastating effects for the 

Antarctic shelf fauna. 
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Table C1 Table of distributional data for species belonging to genera of Lithodidae 

endemic to the North Pacific Ocean.  These data were obtained predominantly from 

Zaklan (2002b) and the collections of the United States National Museum of Natural 

History (USNM).   

 

Species Most southerly 

range extent along 

west coast 

America 

Depth Range 

(metres) 

Hatching 

Period  

Subfamily Lithodinae    

Phyllolithodes papillosus Monterey, CA 

36.35°N 

0-183 March – May 

Rhinolithodes wosnessenskii Crescent city, CA 

41.45°N 

6-73 March 

Sculptolithodes derjugini N/A 20-35  

Cryptolithodes expansus British Columbia 50-60  

Cryptolithodes sitchensis San Diego, CA 

32.43°N 

0-37  

Cryptolithodes typicus Monterey, CA 

36.35°N 

0-45 March – April 

Paralithodes brevipes N/A 0-66 March – April 

Paralithodes camtschatica N/A 5-200 February-May 

Subfamily Hapalogastrinae    

Acantholithodes hispidus Monterey, CA 

36.35°N 

0-245  

Dermaturus mandtii N/A 0-72  

Hapalogaster cavicauda Isla San Jeronimo, 

Mexico 29.47°N 

0-15  

Hapalogaster dentata N/A 0-180 February – 

March 

Hapalogaster grebnitzkii Humboldt bay, CA 

40.46°N 

0-90  

Hapalogaster mertensii Puget Sound, WA 

48°N 

0-55 February – 

March 

Oedignathus inermis Pacific Grove, CA 

36.35°N 

0-15 February – 

March 

Placetron wosnessenskii Puget Sound, WA 

48°N 

0-110 March 
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Section D. SYNTHESIS 

D.1 Comparison of main aims and conclusions 

At the beginning of this thesis, I set out three aims by which to examine the origins, 

environmental adaptations and distributional limits of the deep-sea Lithodinae.  In this section, 

I will revisit those original aims and discuss how the results of the research chapters have 

addressed them.   

 

Aim 1: Investigate the origins of the deep-sea Lithodinae within the family 

Lithodidae, including the monophyly and interrelationships of the major deep-sea 

genera; specifically to look at the minimum number of interchanges between the 

deep and shallow seas.  

 

Conclusions 

• Lithodid ancestors are likely to have had a North Pacific, shallow water distribution 

and planktotrophic larvae; however, the soft-bodied abodomen of the Hapalogastrinae 

might not be plesiomorphic for the Lithodidae.   

• At least two monophyletic lineages from within the subfamily Lithodinae (Paralomis 

and Lithodes (+ Neolithodes)) have an expanded bathymetric range and widespread 

distribution.  These groups are limited to greater depths, except at high latitudes, and 

have narrower adult temperature range (0.5–13°C) as an adaptation to the cold-

stenothermal deep sea. 

• The North Pacific genus Paralithodes is paraphyletic; those Paralithodes species with 

a more southerly distribution within the coastal North Pacific (P. californiensis and P. 

rathbuni) may represent a transitional state between ancestors close to P. brevipes and 

the genus Lithodes.    

• There may be indications of lower than expected levels of mutation within the 

Lithodidae, and a thorough investigation of this phenomenon will be proposed for 

further work.   

 

Aim 2         

Aim 2: To elucidate phylogenetic relationships and indications of environmental 

adaptation within deep-sea lithodine genera Paralomis and Lithodes.     

 

Conclusions 

• Clades of Lithodes and Paralomis containing species from southern African, Indian 

Ocean, and south Pacific waters indicates the importance of large scale dispersals in a 
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west-east direction.  This may be linked with west-east cold deep-water currents, which 

connect the south Atlantic with the other major oceans.   

• Indian Ocean and Pacific forms – L. murrayi, L. longispina and L. nintokuae form a 

group separated from Atlantic species such as L. santolla, L. confundens, L. maja and 

L. ferox.     

• Ancestors of Atlantic species L. maja and L. santolla were amongst the earliest to leave 

the ancestral region of the North Pacific.  It is unclear whether these movements were 

linked, or whether they were independent.   

• Meridional links between the north and south-east of the Pacific Ocean are evident in 

two lineages of Paralomis. 

• The shallow-water species Paralomis granulosa bears some (perhaps convergent) 

similarity to Lopholithodes in the morphometry of its walking legs and some aspects of 

discrete morphology.  When central Pacific species are included in the taxon set, these 

cluster close to the base of the Paralomis lineage. 

• In Paralomis, particularly, dramatic changes in tubercle form can occur over a 

succession of moults indicating differential adaptation of different life stages to their 

environment. 

 

Aim 3: Comparison of geographical and physiological boundaries with the present 

distribution of the deep-sea Lithodidne and the species that have secondarily 

emerged into shallow waters. 

 

Conclusions 

• Some shallow-water populations of Lithodidae (those with no ancestral link to the deep 

sea) are tied to waters north of 30°N, because of the restricted thermal tolerance of 

larval stages.   

• Lithodids of the subfamily Lithodinae are living at the frontier of their lower 

temperature threshold in the Southern Ocean.  They are currently excluded from some 

regions with low water temperature, but they have the potential to expand into 

previously uninhabitable regions of polar seas if water temperatures continue to 

increase.  This could have potentially devastating effects on the Antarctic shelf fauna. 

 

 

D.2 Origins 

The origin of large deep-sea Lithodinae from within shallow-water ancestral populations in the 

North Pacific is incredible given the ecology and morphology of extant species.  The timescale 



The Evolutionary History of the Lithodinae   Synthesis 

226 

and mechanism by which the very diverse subfamilies Hapalogastrinae and Lithodinae evolved 

has incited much debate in the past 150 years (Bouvier 1895, Cunningham et al 1992, Richter 

& Scholtz 1994, McLaughlin et al 2007).  Evidence presented in this thesis is consistent with a 

North Pacific, shallow-water ancestry for deep-sea lineages of the Lithodinae, but it does not 

resolve the arguments about the position of the family within the Anomura based on 

morphology.  Ancestral features such as larval planktotrophy and cold-eurythermal shallow-

water ecology are retained by the majority of lithodid genera, including all of the subfamily 

Hapalogastrinae. 

 

The genus Paralithodes may retain transitional features, critical to the emigration taxa from the 

North Pacific.  Of five out of six species of Paralithodes examined using phylogenetic 

methods, P. brevipes, P. platypus and P. camtschatica represent lineages that diverged early in 

the history of the subfamily Lithodinae (Fig A1.3).  Like many others of the same rank (e.g. 

Lopholithodes, Phyllolithodes) Paralithodes remains endemic to the cold/temperate continental 

shelf of the North Pacific (Butler & Hart 1962).  A switch in reproductive strategy (as 

approximated by egg size) appears to have taken place between species of the North Pacific 

genus Paralithodes (Fig D.1).  A binary mode of reproduction observed in the Lithodidae (Fig 

D.1) probably represents two adaptive strategies which make trade-offs between fecundity and 

maternal energy investment into individual offspring (Thorson 1950, Mileikovsky 1971).  

Morphological examination and systematics linked P. californiensis and P. rathbuni with the 

global deep-sea genus, Lithodes (Section B2; Figs B2.3, B2.10 [Б, β]).  Where they are found 

on the coast of California, Paralithodes californiensis and P. rathbuni inhabit depths far below 

the 15.5 °C spring isotherm (34 °N, Fig C.6); maternal investment into lecithotrophic larval 

development may have broken the link between life-history cycles and seasonal primary 

production in the euphotic zone.   

 

The focus of this thesis was to examine the conditions and constraints of the dispersal of 

lithodids from the north Pacific into the global deep ocean.  Compared to other genera, 

Paralomis, Lithodes and Neolithodes have an expanded distribution, both in terms of 

bathymetry (0–3500 m, Fig C.4) and geographical range (Fig C.1).  Each genus has a 

characteristic bathymetric range (Fig C.4), possibly indicating that they occupy different 

ecological niches (Gage & Tyler 1991). 

• The Lithodes genus has the shallowest and smallest range and, in general, species 

within this genus are found at upper continental-slope depths (200–1000 m).  Species-

specific variations from this pattern exist, with some Lithodes species found at shelf 

depths in the NE and NW Atlantic as well as the large continental shelf east of 

Argentina (0–200 m, Lovrich et al 2002).  
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• Species of Paralomis are normally found at continental slope depths, between 200 and 

2000 m.  Paralomis granulosa is anomalous in its shallow-water distribution around 

Patagonia; and a single juvenile specimen of P. microps has been reported from abyssal 

depths of 4000 m in the Bay of Biscay (Macpherson 1988a). 

• The genus Neolithodes has a depth range around 600 – 3500 m; containing the only 

species of Lithodidae that can be thought of as habitually abyssal (e.g. Neolithodes 

grimaldii, mid Atlantic ≈1000–3200 m).  There is depth zonation of species within 

genera; however, the bathymetric range of species is often in excess of 1000 m 

(Appendix E).      

 

Distributions of the globally occurring Lithodinae largely follow slope-depths on continental 

margins (Appendix E).  Species with trans-oceanic or mid-ocean distributions are not unknown 

(particularly in the Pacific), but proposed dispersal events could more or less follow isobaths 

along island chains or along mid-oceanic ridges.  Major oceans are connected at depths of 

around 2000 m by relatively homogenous environments; below depths of 4000 m, the oceans 

are divided into discrete basins (Allen & Sanders 1996).  Deeper seas are somewhat insulated 

from fluctuations in physical conditions such as temperature and salinity.  All of the globally 

distributed genera have an approximate in-situ temperature range from 0.5–12.5 °C; although 

temperatures are usually between 0 and 5 °C at depths below 1000 m (Locarnini et al 2006). 

Species are likely to have different ‘preferred’ temperature ranges within these limits (Fig C.5), 

although experimental evidence is limited to those shallow-water species that can be 

maintained in aquaria (Anger et al 2003).   

 

D.3 Dispersal routes and timescale 

The major challenge in the interpretation of phylogenetic data within the Lithodidae is that the 

timescale and chronology of events that led to modern distributions can only be very roughly 

estimated.  Using a geologically calibrated molecular clock, Cunningham et al (1992) estimated 

that the divergence of the family Lithodidae is millions of years younger (13–25Ma BP) than 

the Paguridae, which are known from fossils in the Cretaceous (113 Ma BP).  What that study 

actually estimated was time since the divergence of Lithodes aequispina and Paralithodes 

camtschatica, which was an event occurring close to the first deep-sea radiations of the extant 

Lithodes lineage (Fig A1.3).  Deep-water decapods are under represented in paleontological 

studies (Feldmann 2003) and the only lithodid fossil record is Paralomis debodeorum 

Feldmann (1998) from the mid–late Miocene (10–15 Ma BP) in New Zealand.  The age of the 

other anomuran families (Feldmann 1984) suggests that the Lithodidae may have been present 

in the North Pacific for a period prior to the worldwide radiation(s) of the extant taxa.  A 

lithodid molecular clock was not produced in this study, both because no geological calibration 
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could be justified and because the low rates of molecular divergence observed within extant 

deep-sea genera warrants more detailed consideration (Section A.1, Table A2; Held 2001).  The 

limited and preliminary evidence from fossil and molecular data indicate that deep-sea lithodine 

radiations are likely to have occurred predominantly during the Cenozoic era (0–65 Ma BP).   

Within the paeleo-oceanological framework of the Cenozoic, common geographical pathways 

of global radiation were suggested for the lineages Lithodes and Paralomis using cladistic 

methods (Fig D.2).  The Eocene to late Miocene spans a period of global cooling and 

significant shifts in ocean circulation, particularly affecting the bathymetric and latitudinal 

temperature gradient (Flower & Kennett 1994, Nikolaev et al 1998, Lear et al 2000, Von der 

Heydt & Dijkstra 2006).  The gradual opening of deep circum-Antarctic pathways throughout 

the early Cenozoic had a significant impact on global oceanic circulation (Deacon 1937, 

Shackleton & Kennett 1974, Sykes et al 1998), and is implicated as an important pathway for 

inter-oceanic dispersal in southern Lithodes and Paralomis lineages (Figs D.2, A1.3 [U], B2.10 

[Ж], B3.5 [Ω]). Specifically, a directional west-east pathway of dispersal from the Atlantic to 

the Pacific, through the southern Indian Ocean, is indicated in the genus Lithodes (Fig B2.10 

[Ж]) when systematic studies are rooted with North Pacific species Paralithodes brevipes.  

Directionality of dispersal can not be inferred from similar studies of Paralomis, but closely 

related sub-Antarctic species P. anamerae, P. aculeata and P. elongata (Fig A1.3 [S], B3.5 [Σ]) 

are distributed near to the pathway of west-east circum-Antarctic currents (Deacon 1984).  

 

The nature of early faunal links between the Pacific and the Atlantic are not clear.  In the 

Lithodes lineage, some of the most basal morphological alliances were indicated between North 

Atlantic L. maja and North Pacific L. aequispina (Fig B2.10).  Around the Arctic Ocean, 

Paralithodes species are found in shallow waters of the Bering Sea and Barents Sea (c. 50 m) to 

70 °N; although anthropogenic manipulation is responsible for this particular circum-Arctic 

distribution (Jørgensen et al 2005).  Arctic-Pacific marine links did not exist between the end of 

the Cretaceous and the late Pliocene (65–3.5 Ma BP, Zenkevitch 1963, Dunton 1992), making 

an Arctic faunal link unlikely in the timeframe discussed here.  Since the Pliocene, 

biogeographic links between the North Atlantic and Pacific are evident in molluscs 

(Marincovich et al 1990); however, there is no distributional evidence to indicate that lithodid 

dispersal through the Arctic routes would be possible in modern climatic conditions. 

 

In the early Miocene (25–13 Ma BP), hydrological interchange between Atlantic and Pacific 

tropical oceans occurred through the deep Panamanian seaway.  Depth-stratified water masses 

would have affected faunal transfer differently depending on habitat depth:  at 3000 m, deep 

North Atlantic water is thought to have flowed into the Pacific; at 500 m, low salinity 

intermediate water passed from the Pacific into the Atlantic; and at the surface, warm, tropical 
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Atlantic water influenced the shallow Pacific coastline (Lunt et al 2008).  High seasonal 

temperatures in shallow waters seem to limit the modern distribution of some Hapalogastrinae 

and Lithodinae to Pacific latitudes higher than 30 °N, because of temperature sensitive 

planktotrophic larval stages (Fig C.9).  Even before the closure of tropical links between the 

Atlantic and Pacific (13–2.6 Ma BP, Haug & Tiedemann 1998), it may be that the warm 

Caribbean surface waters would have been an impediment to the range expansion of the 

shallow water Lithodidae.  At the greater depths observed in the genera Lithodes and 

Paralomis, water was colder and transfer between the intermediate or deep Pacific and Atlantic 

may have occurred.  Two lineages from within Paralomis (Fig B3.5 [∆] [Π]) show evidence of 

a tropical faunal link between the Pacific and Atlantic, although the directionality of this 

movement is not clear. 

 

The most southerly point of confluence between the Atlantic and Pacific, Drake Passage, 

opened before 37 Ma BP (Lawver et al 1992, Crame 1999) and substantial tectonic activity 

proceeded to create a deep-water pathway c.28–32.5 Ma BP (Barker & Burrell 1977, Barker et 

al 1991).  Historical links between west-coast South American and South Georgian (S. 

Atlantic) species are indicated for two separate lineages of Paralomis (Fig B3.5 [∆] [Π]).  This 

fits partially with the pattern of biogeography within the extant southern Decapoda, where there 

is a link between fauna on the southern tip of the South American continent with the sub-

Antarctic islands (such as South Georgia, Gorny 1999).  Cold-water currents in the Cape Horn 

region may have an important role in facilitating such transport (Antezana 1999).  At present, 

with the exception of three species inhabiting the marine waterways of Patagonia, there are no 

lithodid species with a distribution both west and east of Cape Horn (Appendix E).  It is 

possible that the sampling record is patchy in this region and that the western range extent for 

South Atlantic species isn’t yet known. 

 

D.4 Dispersal and speciation mechanisms 

Long-distance dispersal is implied by the close relationships of geographically disparate deep-

water Lithodinae (Sections A1, B2, B3).  Mechanisms of dispersal in the Lithodinae are adult 

migration and swimming or drifting in larval stages. As a result, characteristics of life history 

affect dispersal distances.  Within the normal habitat range of species of the Lithodinae (a 

subset of 0-12°C: Fig C.4, C.5), temperature can have a substantial effect on the duration of 

larval development (Kurata 1960, Nakanishi 1985, Shirley et al 1990, Anger et al 2003, 2004).  

In Lithodes maja, development from larval hatching to megalopa takes around 49 days at 9 °C 

(Anger 1996); however, the duration of the larval stage more than doubles at temperatures  
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Distributional pathways are referred to in the text.  Broken lines represent pathways only weakly implied by 
the data.  Different colours represent different lineages.  The main interpretation of the data is shown by the orange
line, connecting L. ferox, L. murrayi, L. mamillifer, L. longispina and L. richeri, to the exclusion of the lineages 
represented by the purple (L. maja) and green (L. santolla) pathways.
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typical of deep-sea and subpolar environments (0–5 °C Fig C.4, C.5, Kurata 1960, Watts et al 

2006).  Non-feeding zoeae of species including Lithodes aequispina (Jewett et al 1985, Shirley 

& Zhou 1997), Lithodes maja, Lithodes santolla and Paralomis granulosa (Vinuesa et al 1985, 

1999) do not have active swimming behaviour in experimental conditions.  Larvae of these 

species are not found in pelagic zooplankton samples and these stages are thought to have an 

epibenthic, demersally drifting habit (Lovrich 1999).  Currents just above the sea floor in the 

deep ocean are typically a few cm/sec (Eckman & Thistle 1991); however, they can be 

persistent enough to provide a conduit for long-distance transport.  A demersally drifting habit 

may not be as conducive to long-range dispersal as pelagic development; however, the 

protracted development times of cold-water lithodids mean that larval stages have a higher 

chance of being transported by epibenthic currents. 

 

Adults of Paralithodes camtschatica have a body shape and long walking legs that are not 

dissimilar in proportion to many of the deep-water Lithodinae (Section B2).  This relatively 

shallow-water species is known to migrate long distances as part of their reproductive cycle (13 

km/day Jørgensen et al 2005). Migration is also observed in Lithodes confundens, which 

migrates from deeper water to the intertidal regions of Patagonia, despite having non-feeding 

larval stages (Lovrich et al 2002).  A migratory habit is common amongst these genera of 

Lithodinae and it seems reasonable to extrapolate a long-distance adult dispersal potential for 

lesser known deep-sea species (Abelló & Macpherson 1991, Hoggarth 1993, Loher & 

Armstrong 2000, Pereladov & Miljutin 2002).  Despite a tolerance of high pressure, there may 

be physiological or ecological reasons why lithodids are rarely, if ever, found at the greatest 

oceanic depths between 3,500 and 10,000 m.  Adult migration provides part of the explanation 

for the widespread occurrence of the Lithodidae, but does not indicate that they roam the ocean 

depths unconstrained.     

 

-Dispersal into and within the deep sea 

Evidence presented here indicates at least two transitions from the shallow North Pacific into 

the deep-sea.  Such events are known to have occurred in other deep-sea fauna, including 

several parallel submergence events within the crustacean group Asellota (Raupach et al 2009).  

Like temperature, pressure has a physical effect on chemical reactions at a very basic level and 

can affect all biological processes (Angilletta 2009).  Acclimatisation or adaptation to pressure 

is a unique challenge of the deep sea environment and can govern bathymetric range limits in 

both directions (Marsland 1938, 1950, Young & Cameron 1989, Mestre et al 2009).  Large 

bathymetric ranges of species indicate that lithodids are not only tolerant of high pressures but 

also of differences in pressure. Many theories of distributional submergence, however, consider 

temperature to be the main constraining factor (Tyler & Young 1998), relying on the 
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observation that temperature tolerance ranges compared to bathymetric temperature gradients 

are often larger than the equivalent effects of gradual increases in pressure (Mestre et al 2009).  

Isothermal submergence at the poles is a mechanism by which cold-adapted organisms in high 

latitudes might have been pre-adapted to temperatures found in the deep sea since the Miocene 

(Kussakin 1973, Menzies et al 1973).  This principle is used to explain the bipolar distribution 

of deep-sea organisms in several taxa (Andriashev 1986, Harrison & Crespi 1999, Briggs 2003, 

Raupach et al 2008), and could be extended to the Lithodidae.   

 

-Adaptation to environmental niches and speciation 

The deep sea is characterised by a high degree of genetic similarity within species distributed 

over large distances (Gardner 1997) as well as ecological homogeneity and environmental 

stability (Gage & Tyler 1991). Although there are exceptions to this rule, (Miya & Nishida 

1997, Etter et al 1999, Raupach & Wägele 2006) this characterisation appears to be valid for 

the Lithodidae.  Molecular results are not conclusive for the Lithodidae, but they do indicate a 

low level of genetic variation for such a large and diverse anomuran taxon.  

Little is known about the ecology of the deep-sea Lithodidae; as is the case for many deep-sea 

organisms, they are rarely observed in-situ.  Environmental adaptation is inferred from their 

distribution, their morphology and from the rare occasions when they have been successfully 

maintained in laboratory environments (Anger et al 2003, Reid et al 2007).  Remote technology 

for observing organisms in their natural environment continues to improve, but still only 

provide a snapshot of population dynamics and behaviour (Thatje et al 2008).  Some 

morphological properties, such as the locomotory mechanics of the walking legs have an 

obvious adaptive significance: those with long legs (Neolithodes species) can efficiently cover 

long distances of homogenous sea-floor, whereas those with short and compact legs (e.g. 

Paralomis granulosa) can resist tidal motion in kelp hold-fasts close to the surface (Lovrich & 

Vinuesa 1995).  The adaptive significance of the carapace setae, spines and tubercles in 

different habitats is unknown, although it they seem likely to afford some camouflage or 

protection.  Ontogenetic shifts in ornamentation, particularly, may reflect adaptive changes to 

defined ecological niches throughout the life cycle (Benedict 1894, Barnard 1946, Macpherson 

1988a, Lovrich & Vinuesa 1995).  Speciation theorists struggle to explain the great 

morphological diversity (Rex 1981, Grassle & Maciolek 1992) in the deep ocean in the absence 

of discernable barriers to gene flow (Wilson & Hessler 1987).  The Lithodidae provide at least 

two examples of deep-sea genera in which a great diversity of morphology is found to have 

arisen entirely within the deep sea (i.e., not seeded from several shallow-water radiations).   

 

The Strait of Magellan and Beagle Channel are two major marine inlets in southern Patagonia, 

which harbour shallow-water lithodids in the Southern Hemisphere (Lovrich & Vinuesa 1993).  
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These inlets consist of several basins with hydrological and topographical boundaries between 

them (Brambati et al 1991, Panella et al 1991, Antezana et al 1992).  Unlike the deeper 

environment inhabited by congeneric species, P. granulosa, L. santolla and L. confundens 

occupy a disjoint environment which has been disturbed over time by glacial processes 

(McCulloch et al 2000).  Throughout the late Cenozoic, glacial periods have been associated 

with low sea levels and it is only in the last 5 ka that there have been marine incursions into the 

Strait of Magellan (Hulton et al 2002).  Morphological evidence indicates that Lithodes 

santolla, L. confundens and P. granulosa all emerged at some point from within deep-water 

lineages (Figs B2.10, B3.5c); this conclusion is also supported for the Lithodes species by 

molecular evidence (Fig A1.3).  Molecular samples taken from specimens of Patagonian 

Lithodes suggest that these recent colonisers of shallow waters already have morphological 

differences consistent with their molecular divergence.  Additionally, there are consistent 

molecular differences between western and south eastern populations of L. santolla indicating 

reduced gene flow. Physically disjoint habitats, periodic habitat disturbance and perhaps higher 

temperatures (Fig C.5) could contribute to a faster rate of mutation, adaptation and speciation in 

such shallow-water species (Erlich & Raven 1969, Bargelloni et al 1994, Martin 1999). 

 

D.5 Constraints to dispersal throughout the Cenezoic 

Within deep-sea lineages of the Lithodidae, distribution is constrained to a large extent by the 

topology and pressure within the ocean basins, which change slowly (Gage & Tyler 1991).  A 

major theme of this work was to examine the frontiers of the lithodid distribution in order to 

predict and explain shifting patterns of biogeography (Thatje et al 2005, Jørgensen et al 2005). 

As ectothermic organisms, the distribution of the Lithodidae is influenced by water temperature 

(Section C, Fig C.4).  Basic chemical processes in eukaryotes occur from -2 to 60 °C (Tansey & 

Brock 1972), but complex organisms have a narrower tolerance within this range because of the 

cost of a complex system and trade offs in specific adaptation to high or low temperatures 

(Angilletta 2009).  Different life stages and different individuals have unique sets of reactions 

and reaction rates that define the limits of their temperature tolerance, although those with a 

genetic basis are constrained additionally by ancestral history (Fig C.5; Fields 2001).  

Experimentally determined optimal temperatures for larval survival (5–10 °C, Vinuesa et al 

1985, Calcagno et al 2005) in lithodids indicate that species in the Southern Ocean do not 

always live within a temperature range that maximises their theoretical fitness.  Some species 

can both survive and reproduce in temperatures as low as 0.5 °C (Fig C.7, Section C.4.5, 

Klages et al 1995, Thatje et al 2005).  There is an imperfect match between fitness-maximising 

selective pressure and environmental adaptation, especially in a fluctuating or changing 

environment (Aronson et al 2007).    
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Temperature thresholds, beyond which long-term survival is impossible, exist for a variety of 

biochemical and physiological reasons (Cossins & Bowler 1987, Pörtner 2002).  If species in 

the Southern Ocean are living outside their optimal temperature range but within their 

physiological thresholds, then this environment represents a frontier of survival.  For species, 

the geographic location of frontiers can be fluid, both because of continual but imperfect 

adaptation of species to the environment (Angilletta 2009) and because the frontier can 

physically move.   

Climate change has occurred throughout the Cenozoic, from a hot-house Cretaceous to the ice-

ages of the Quaternary and has substantially altered the marine environment (Zachos et al 

2001).  Anthropogenic effects on the climate may not be larger than changes witnessed over 

geological time, but they are pertinent, measurable and like all climatic events, difficult to 

predict (Oreskes 2004).  Linked climatic and tectonic events in the recent millennia have 

shaped the distribution and radiation of the extant Lithodidae, producing such diversity as the 

intertidal umbrella crab Cryptolithodes and the deep-sea predators Paralomis, Lithodes and 

Neolithodes.  At frontiers all over the world, measurable changes in ocean temperature, ocean 

currents and benthic habitat in the forthcoming years will change the distribution of the 

lithodids and other marine biota as they have in the past.       

  

D.6 Future perspectives 

This thesis leaves open several questions which can be addressed in future work: 

A first line of investigation might examine the plasticity of egg size in Lithodidae varying with 

depth, temperature and maternal size.  For this study, I have collected and measured a large 

number of eggs from ovigerous females (Fig D1) in different genera of Lithodidae.  There 

seems to be some trend with depth although only a few ovigerous specimens of the abyssal 

genus Neolithodes were found.  An expanded dataset might provide insights into variation in 

maternal investment in relation to multiple physical factors.   

 

This study did not set out to examine properties of mutation rates within the Lithodidae, the 

effect of mutation rates in deep sea organisms and particularly the effect of temperature on the 

efficiency and speed of DNA replication.  An apparently low mutation rate hindered the 

gathering of variable sequences for the Lithodidae, to the detriment of resolution in molecular 

phylogenies.  Experimental design is difficult, because to test the effect of the deep-sea 

environment on mutation rate all other variables need to be controlled and the taxon selected 

needs to: 

a) be of a similar age and size (number of species) to the Lithodidae  

b) have similar ancestry, ideally from within the Decapoda 

c) have evolved in a similar temperature regime but in shallow water  
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The first constraint is perhaps the greatest, since the age of the Lithodidae is not known.  This 

work perhaps can not be done until more fossil evidence is collected, or until a clearer idea is 

formed about the position of the Lithodidae within the Anomura, for which fossil records exist.  

If such conditions can be satisfied, then statistical tests to examine the significance of various 

environmental effects on mutation rate could be conducted.  To this end, it would be interesting 

to compare the mutation rate in secondarily shallow species of Lithodidae (Paralomis 

granulosa, Lithodes confundens) with that of congeneric deep-sea groups.     
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Appendix A: Taxonomic list of lithodid species. 

 

The Hapalogastrinae contain genera Dermaturus Brandt 1850, Hapalogaster Brandt 

1850, Oedignathus Benedict 1894, Acantholithodes (Stimpson) and Placetron 

Schalfeew 1892; a total of 9 species.  The Lithodinae contain genera Lithodes Latreille 

1806, Lopholithodes Brandt 1848, Paralithodes Brandt 1848, Cryptolithodes Brandt 

1848, Rhinolithodes (1 species: R. wosnessenski) Brandt 1848, Phyllolithodes Brandt 

1848, Paralomis White 1856, Neolithodes A. Milne Edwards & Bouvier 1894, 

Glyptolithodes Faxon 1895, and Sculptolithodes Makarov 1934; a total of 108 species. 

 

Lithodidae 117 species 

*= used only in molecular studies 

^= used only in morphological phylogeny 

**= used in both molecular and morphological studies 

 

Hapalogastrinae: 9 species 

*Oedignathus inermis Stimpson 1860  

Acantholithodes hispidus Stimpson 1860 

Dermaturus mandtii Brandt 1850 

Placetron wosnessenskii Schalfeew 1892 

Placetron forcipatus Benedict 1895 

*Hapalogaster dentata Haan 1849 

*H. mertensii Brandt 1850 

H. grebnitzkii Schalfeew 1892 

H. cavicauda Stimpson 1859  

 

Lithodinae: 108 

(10 below) + 21 Lithodes, 61 extant Paralomis, 6 Paralithodes, 10 Neolithodes. 

**Glyptolithodes cristatipes Faxon 1893 

**Lopholithodes mandtii Stimpson 1859 

*Lopholithodes foraminatus Brandt 1848 

*Phyllolithodes papillosus Brandt 1848 

Sculptolithodes derjugini Makarov 1934 

Rhinolithodes wosnessenskii Brandt 1848 

*Cryptolithodes typicus Brandt 1848 

*C. sitchensis Brandt 1853 

C. expansus Miers 1879 
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C. brevifrons 

 

21 species Lithodes Latreille 1806 

 

**Lithodes aequispina 

Benedict 1894 

=Paralithodes longirostris (Navosov Lavroff 1929) 

 

Lithodes ceramensis Takeda & Nagai 2004 

 

**Lithodes confundens Macpherson 1988 

Macpherson 1988a, fig 24, pls 11, 12. 

 

**Lithodes couesi Benedict 1894 

 

**Lithodes ferox 

Filhol 1885 

=Pseudolithodes pyriformis Birstein & Vinogradov 1972  

=Lithodes murrayi in Kensley 1980 p. 22 (not Henderson 1888) 

=Lithodes tropicalis A. Milne Edwards 1833, p. 13 

 

Lithodes formosae Ahyong & Chan 2010 

Lithodes sp. Macpherson & Chan 2008: 47-48; Ahyong & Chan 2010, figs 1-4. 

 

^Lithodes galapagensis Hall & Thatje 2009 

 

**Lithodes longispina Sakai 1971 

 

**Lithodes maja Linnaeus 1758 

Cancer maja Linnaeus 1758, p. 269 

Lithodes maia Samouelle 1819, p. 90 

Lithodes maja Ortmann 1898 pl. 52; Holthuis 1950, figs 51-53; Williams 1984 fig 166; 

Macpherson 1988a figs 25, 26, pl. 13. 

 

^Lithodes mamillifer Macpherson 1988 

= Lithodes murrayi Kensley 1976 off Natal 
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^Lithodes manningi Macpherson 1988 

Macpherson 1988a figs 27, 28, pl. 14. 

 

^Lithodes megacantha Macpherson 1991 

 

**Lithodes murrayi Henderson 1888 

 

*Lithodes nintokuae Sakai 1978 

 

Lithodes panamensis Faxon 1893 

Faxon 1895, 50 pl. 10 figs. 1 a-c; Macpherson & Wehrtmann 2010 fig. 1 

=Phyester macrocephalus Linnaeus 

 

Lithodes paulayi Macpherson & Chan 2008 

 

^Lithodes richeri Macpherson 1990 

 

**Lithodes santolla Molina 1782 

Cancer santolla Molina 1782 p. 207 

Lithodes antarctica Jaquinot 1844, pls 7, 8, figs 9-14 

Lithodes antarcticus White 1847, p. 56 

Pseudolithodes zenkevitchi Birstein & Vinogradov 1972, p. 356, figs 5, 6. 

Lithodes santolla Philippi 1867, p. 777; Macpherson 1988a figs 21-23, pls. 9, 10. 

 

Lithodes turkayi Macpherson 1988 

=Lithodes murrayi Campodicono 1972; Revuelta & Andrade 1978; Retamal 1981; 

Takeda 1984 (not Henderson 1888). 

 

Lithodes turritus Ortmann 1892 

 

Lithodes unicornis Macpherson 1984 

Macpherson 1984 figs 20-23; Macpherson 1988a, fig 32, plate 17D. 

 

Lithodes wiracocha Haig 1974 

Haig 1974, fig.1; Macpherson & Wehrtmann 2010, fig. 2 

 

6 species Paralithodes Brandt 1848 
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**Paralithodes brevipes A. Milne Edwards & Lucas 1841 

=Lithodes brevipes Milne Edwards & Lucas 1841, Benedict 1894,  

=Lithodes camtschaticus Richters p404 fig 9 and 10 

 

**Paralithodes camtschatica Tilesius 1815 

=Maja camtschatica Tilesius 1815 

=Lithodes camtschaticus Latreille, Benedict 

=Lithodes spinosissimus Brandt 1857 

 

^Paralithodes californiensis Benedict 1895 

 

*Paralithodes platypus Brandt 1850 

 

^Paralithodes rathbuni Benedict 1895 

 

Paralithodes rostrofalcatus MacKay 1932 

 

 

10 species Neolithodes  A. Milne Edwards & Bouvier 1894 

 

Neolithodes agassizii Smith 1882 

Lithodes agassizii Smith 1882, p. 8 pl 1, fig. 1 (not fig 2, = N. grimaldii) 

Not Smith 1884, p 54; Smith 1886, p. 34, pl. 3, Figs 1, 2; Henderson 1888 p. 42 (= N. 

grimaldii) 

Neolithodes agassizii Macpherson 1988a figs 13, 14, 15A, plate 2C. 

 

*Neolithodes asperrimus Barnard 1947 

Barnard 1950 p. 411, Figs 77d-77f; Macpherson 1983 p. 5, figs 1,2; Macpherson 1988a 

figs 15D, 16, plates 3, 4. 

 

*Neolithodes brodiei Dawson & Yaldwyn 1970 

 

Neolithodes capensis Stebbing 1905 

Stebbing 1905 pls. 19,20; Barnard 1950 figs 77a-77c; Macpherson 1988 fig 17, pl. 5. 

 

Neolithodes diomedeae Benedict 1894  

Lithodes diomedeae Benedict 1894 
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Neolithodes diomedeae Baez et al 1986 p 106, fig.1; Macpherson 1988a figs 12, 15c, 

plates 1, 2A,B. 

= Neolithodes martii Birstein & Vinogradov 1972 p361, Figs 8, 9.  

 

*Neolithodes duhameli  

  

Neolithodes grimaldii A. Milne Edwards & Bouvier 1894 

Lithodes agassizii Smith 1882, p. 8 pl. I, fig. 2 (juvenile only); Smith 1886 p. 34, pl. 3, 

figs 1, 2 (not N. agassizii Smith 1882). 

Lithodes goodei Benedict 1894, p. 479. 

Neolithodes grimaldii Macpherson 1988a figs 15B, 18, pl. 6, 7. 

 

Neolithodes nipponensis Sakai 1971 

 

Neolithodes vinogradovi Macpherson 1988a 

Macpherson 1988a, fig. 19, pl. 8.  

 

Neolithodes yaldwyni Ahyong & Dawson 2006 

 

 

 

62 species Paralomis (61 extant)  

 

**Paralomis aculeata  Henderson 1888 

Paralomis aculeatus Henderson 1888: p. 45, pl 5, fig. 1. 

Paralomis aculeata Spiridonov et al 2006, p. 144 fig. 6 

 

**Paralomis africana Macpherson, 1982 

 

Paralomis alcockiana Hall & Thatje 2009 

 

**Paralomis anamerae Macpherson, 1988a 

 

^Paralomis arae Macpherson, 2001 

 

Paralomis arethusa Macpherson, 1994 

 



The Evolutionary History of the Lithodinae  Appendix A 

 6 

Paralomis aspera Faxon, 1893 

Paralomis aspera Faxon, 1893, p. 164; Faxon, 1895, pl. 8; Bouvier, 1896, p. 26; del 

Solar, 1972, p. 5,14. 

Leptolithodes asper Faxon, 1895, p. 47. 

 

**Paralomis birsteini Macpherson 1988b 

Paralomis spectabilis; Birstein & Vinogradov, 1967 p. 390, figs 1, 2 (not Hansen 

1908). 

Paralomis birsteini Macpherson, 1988b, p. 72, figs 4, 5a-e; Macpherson 2004, p. 421; 

Ahyong & Dawson 2006; Thatje et al 2008, p. 1146. 

 

Paralomis bouvieri Hansen 1908 

Paralomis bouvieri Hansen, 1908, p. 24, pl. 2, figs 2a-f; Stephensen, 1912, p. 578; 

Birstein & Vinogradov, 1967 (in list); Takeda, 1974 (in list); Takeda et al 1984, (in 

list); Dawson & Yaldwyn, 1985 (in list); Macpherson, 1988, p. 85, fig. 38. 

 

*Paralomis ceres Macpherson 1989 

Paralomis ceres Macpherson, 1989, p. 117, figs 1-2. 

 

Paralomis chilensis Andrade 1980 

 

*Paralomis cristulata Macpherson 1988a 

 

**Paralomis cristata Takeda & Ohta 1979 

Paralomis cristata Takeda & Ohta 1979, p. 195, pls 1-3. 

 

^Paralomis cubensis Chace 1939 

 

Paralomis danida Takeda 2007 

 

^Paralomis dawsoni Macpherson 2001 

 

Paralomis debodeorum † Feldmann 1998 

 

Paralomis diomedeae Faxon, 1893 

Faxon 1893, 1895 pl. 7 figs 3, 3a, b; Bouvier 1896; Haig 1974; Macpherson, 1992 313; 

Macpherson, 2010 fig. 3.  
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*Paralomis dofleini Balss 1911 

Paralomis dofleini Balss 1911, p. 8, figs. 16, 17;  Sakai 1971, p.18, pl. 7, fig. 1; pl 12. 

 

*Paralomis elongata Spiridonov 2006 

Paralomis elongata Spiridonov, 2006, p. 138, figs 1-5. 

 

**Paralomis erinacea Macpherson 1988 

Macpherson, 1988a: p. 82, figs 36A, 37; plate 19A. 

 

**Paralomis formosa Henderson 1888 

Paralomis formosus Henderson, 1888, p. 46, pl. 5, fig. 2 

Paralomis formosa Bouvier, 1896, p. 26; Boschi et al 1981, p. 244; Macpherson, 

1988a, p. 88, figs 36B, 40, pl. 20. 

Paralomis spectabilis Birstein & Vinogradov, 1972, p. 352 (not Hansen, 1908) 

 

** Paralomis granulosa Jaquinot 1847 

Lithodes granulosa Jaquinot, 1847: figs 15-21, pl. 8. 

Lithodes granulosus White, 1847: p. 56. 

Lithodes granulata Jaquinot, 1853: p. 94. 

Lithodes verrucosa Dana, 1852: p. 428; Dana, 1855: plate 26, fig. 16; Cunningham, 

1871: p. 494.  

Paralomis verrucosa Bouvier, 1895: p. 187, plate 13, fig. 3; Bouvier, 1896: p. 26.  

Paralomis granulosa White, 1856: p. 134. 

 

^Paralomis grossmani Macpherson 1988 

 

^Paralomis haigae Eldredge 1976 

 

Paralomis hirtella de Saint Laurent & Macpherson 1997 

 

Paralomis hystrixoides Sakai 1980 

 

Paralomis histrix De Haan 1849 

Lithodes histrix De Haan 1849, p. 218, pl. 48, figs. 1a-c. 
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Acantholithus hystrix Strimpson 1858, p. 231; Bouvier 1894, p. 182, pl. 11: figs 8, 14, 

pl.12: figs 9, 20; Stimpson, 1896, p. 25; Doflein 1902, p. 948; Doflein, 1906, p. 236; 

Balss, 1913, p. 75; Yokoya, 1933, p. 95; Miyake, 1965, p. 650, fig. 1104. 

Paralomis hystrix Ortman, 1892, p. 321, pl. 12, fig. 27; Sakai 1971, p. 17. 

 

^Paralomis inca Haig 1974 

 

Paralomis indica Alcock & Anderson 1899 

 

Paralomis investigatoris Alcock & Anderson 1899 

 

Paralomis jamsteci Takeda & Hashimoto 1990 

 

Paralomis japonica Balss 1911 

 

Paralomis kyushupalauensis Takeda 1985 

 

Paralomis longidactyla Birstein & Vinogradov 1972 

 

Paralomis longipes Faxon 1893 

Paralomis longipes Faxon 1893 p. 165; Faxon 1895, pl. 9; Bouvier, 1896, p. 25; del 

Solar, 1972, p. 5, 14; Haig 1974, p. 155. 

Leptolithodes longipes Faxon 1895, p. 48. 

 

Paralomis makarovi Hall & Thatje 2009 

 

Paralomis manningi Williams 2000 

 

Paralomis medipacifica Takeda 1974 

 

^Paralomis mendagnai Macpherson 2003  

 

Paralomis microps Filhol 1884 

Paralomis microps Filhol 1884, p. 330, fig p. 329. 

Rhinolithodes biscayensis A. Milne Edwards & Bouvier, 1894; Bouvier, 1895, p. 187, 

199, pl. 11: fig 10, 18; pl 12: figs 12, 23, 30, 32; pl. 13: fig. 5; Bouvier, 1896, p. 26; A. 
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Milne Edwards & Bouvier, 1900, p. 269, pl 27, fig 21; Macpherson, 1988, p. 113, fig 

52.  

 

**Paralomis multispina Benedict 1894 

Leptolithodes multispina Benedict 1894: p. 484; Rathbun, 1904: p. 165 

Paralomis multispina Schmitt, 1921: p. 159, pl. 23; pl. 30, figs 7, 8; Makarov 1962 

(1938), p. 257, fig. 102; Sakai, 1971: pl. 6, fig. 2; pl 14, figs 1, 2. 

 

Paralomis nivosa Hall & Thatje 2009 

 

Paralomis ochthodes Macpherson 1988b 

 

Paralomis odawari Sakai 1980 

Lopholithodes odawarai Sakai 1980 

Paralomis odawarai Macpherson 1988a 

 

^Paralomis otsuae Wilson 1990 

 

Paralomis pacifica Sakai 1978 

 

Paralomis papillata Benedict 1895 

Leptolithodes papillatus Benedict, 1895 p. 485. 

Paralomis papillata Bouvier, 1896, p. 25; Haig, 1974 p. 157, fig. 2; del Solar 1981. 

 

Paralomis pectinata Macpherson 1988a 

 

^Paralomis phrixa Macpherson 1992 

 

Paralomis roeleveldae Kensley 1981 

 

^Paralomis seagranti Eldredge 1976 

 

^Paralomis serrata Macpherson 1988a  

 

Paralomis shinkaimaruae Takeda 1984 

 

Paralomis spectabilis Hansen 1908 
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Paralomis spectabilis Hansen, 1908, p. 22, pl. I, figs. 3a-d. Pl. II, figs 1a, b; 

Stephensen, 1912, p. 577; Heegaard, 1941, p. 15; Birstein & Vinogradov 1967 (in list); 

Takeda, 1974 (in list).   

Not Paralomis spectabilis Birstein & Vinogradov, 1967, p. 390, figs 1, 2; Zarenkov, 

1970, p. 184 (= P. birsteini, Macpherson 1988b). 

Not Paralomis spectabilis Birstein & Vinogradov, 1972, p. 352 (= P. formosa 

Henderson 1888). 

 

**Paralomis spinosissima Birstein & Vinogradov 1972 

Birstein & Vinogradov, 1972: p. 352, figs 1, 2. 

 

Paralomis stevensi Ahyong & Dawson 2006 

 

^Paralomis stella Macpherson 1988c 

 

Paralomis truncatispinosa Takeda & Miyake 1980 

Paralomis truncatispinosa Takeda & Miyake 1980, p. 42 figs 1-4. 

= Paralomis heterotuberculata Yumao & Zhicheng 1984, p. 331 

 

Paralomis tuberipes Macpherson 1988b 

 

^Paralomis verrilli Benedict 1864 

 

*Paralomis zealandica Dawson & Yaldwyn 1971  
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Name of 

consensus 

sequence 

Sample location Sample 

number 

COI 

alignment 

position 

COI 

GenBank 

accession 

16S 

alignmen

t position 

16S 

GenBank 

accession 

ITS1 

alignment 

position 

ITS1 

accession 

28SB 

amplic

on 

length 

28SB 

accession 

N. asperrimus Mauritania L36 SA310 642-1325 HM020891 13-567 HM020938 12-496 HM021016   

N asperrimus Mauritania L3 SA324 685-1279 HM020890 13-568 HM020937     

N. asperrimus Mauritania L3 SA319   1-569 N/S 10-496 HM021019   

N. asperrimus Mauritania L9 SA312   1-569 N/S 7-496 HM021018 1-598 HM020848 

N. asperrimus Mauritania L9 SA320     14-496 HM021020   

N. asperrimus Mauritania L36 SA311   13-567 N/S 7-496 HM021017 1-598 HM020847 

Neolithodes  sp 

158 

1446-1466 m  

Crozet  

50°41S-69°22'E 

 

SA158 643-1325 HM020895 156-558 HM020948   1-598  

N. brodiei 1 NIWA02  

 

SA86 

(H) 

707-1220 HM020893 158-515 HM020944   1-598 HM020851 

N. brodiei 1 NIWA SA95 

(C) 1 

648-1323 HM020894 158-515 FJ462644   1-598 HM020852 

N. brodiei 1 NIWA01 SA 95 

(C) 2 

      1-598  

N. brodiei 2 964-1036m 

14°44'48S 

167°8'40E 

CP2312 Vanuatu 

SA159  687-1277 EU493263 

 

158-515 HM020942     

N. brodiei 2 NIWA07 SA 83 

(I) 

704-1260 N/S 158-515 HM020943   1-598 HM020853 

N. duhameli  1297-853 m 

45°32.64S 

51°2.84E Crozet 

SA 202 656-1279 N/S 156-558 HM020945 12-496 HM021021 1-598 HM020849 

N. duhameli 1297-853 m SA 203 673-1279 HM020896 156-558 HM020946 12-496 HM021022 1-598 HM020850 
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45°32.64S 

51°2.84E 

Crozet 

Paralithodes 

brevipes 

 GBK 665-1305 AB211297.1

AB211298.1

AB211299.1

AB211300.1 

8-875 AF425337.1   1-598 AB211308.

1 

 

Paralithodes 

platypus 

 GBK 685-1330 AB211448.1

AB211301.1

AB211302.1 

AB211447.1 

AB211444.1 

    1-598 AB193822.

1 

AB193821.

1 

Paralithodes 

camtschaticus 

 GBK 643-1329 AF425376 8-879 AF425338.1   1-598 AB193824 

AB193823 

Lithodes 

longispina 

 GBK 778-1330 AB476813 

AB476814 

AB476815 

      

L. aequispina  GBK 4-1334 AF425308 2-878 N/S     

L. couesi  GBK 675-1314 DQ882086 

DQ882085 

      

L. maja  GBK 556-1314 FJ581742 

FJ581745 

8-844 AF425330.1     

L. santolla A Puerto Montt 

41°36’40.86’’S 

72°53’45.61’’W 

SA213 656-1279 HM020897 156-557 HM020955 13-494 HM021015 1-598 HM020861 

L. santolla A  GBK   48-823 AY595927.1   1-598 AY596100 

L. santolla B Punta Arenas SA211   156-557 HM020955   1-598 HM020860 

L. santolla B Punta Arenas 

15-30 m 

54°53’8.94’’S 

SA215 722-1279 HM020898     1-598 HM020859 
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68°17’0.14’’W 

L. santolla B  GBK   93-560 AF425331.1     

L. nintokuae  GBK 675-1293 AB375135 

AB375146 

AB375137 

 

      

L. murrayi  SA208     8-496 HM021014   

L. murrayi 1289-529 m 

46°49.05S 

51°28E 

Crozet 

 

 

SA 204 837-1279 HM020899 157-557 HM020953 14-496 HM021012 1-598 HM020857 

L. murrayi 662-570 m 

46°49.26S 

51°29.96E 

Crozet 

 

 

SA 207 691-1279 HM020899 157-557 HM020953 8-496 HM021013 1-598 HM020858 

L. confundens 53°9’48.52’’S 

68°28’19.96’’W 

St 10T1. 

SA15 642-1322 EU493257 

 

155-535 EU493273     

L. confundens 119-124 m 

53°32'60.00"S 

64°55'60.00"W 

 

SA14 

Lcon 

636-1341 HM020901 155-557 HM020949 48-477 HM021008   

L. confundens Chile 

 

SA216 655-1279 HM020900 155-557 FJ464648   1-598 HM020855 

L. ferox ICMD 331/2000  

23°03'S 12°55'E 

SA125 726-1232 HM020903 156-546 HM020952 7-486 HM021009 1-598 HM020856 
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607-615 m  

21/04/1981 

 

L. ferox ICMD 112/1991 

32-A A-15 

 

SA130 726-1232 N/S 157-557 HM020950 8-496 N/S   

L. ferox Mauritania L2 SA318 726-1232 N/S 1-496 HM021011 8-496 N/S   

L. ferox Mauritania L2 SA317 726-1232 N/S 9-571 HM020951 8-496 HM021010   

P. aculeata 570-662 m 
46° 49.26S  

51° 29.96E 

Crozet 

 

SA 205 656-1279 HM020904 156-557 HM020957 8-496 HM020984 1-598 HM020862 

P. aculeata 865-752 m 

45°31.69S 

49°49.72E 

 

SA 201 701-1279 HM020904 156-557 HM020958 12-496 HM020985 1-598 HM020862 

P. aculeata 949-981 m 

45°30.27S 

49°59.3E 

 

 

SA 206 656-1279 HM020904   58-465 HM020983 1-598 N/S 

P. anamerae KEP aquarium, 

died 3.1.04. crab 

number 404 

Male, caught 

during 2003 

toothfish season 

 

SA01 

Extracti

on 

D200 

635-1325 HM020905 157-557 HM020959   1-598 N/S 

P. anamerae KEP aquarium, SA01 621-1341 HM020905 157-557 HM020959   1-598 HM020866 
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died 3.1.04. crab 

number 404 

Male, caught 

during 2003 

toothfish season 

Extracti

on 

D204 

P. anamerae EVT 18 Male, 

KEP. Date 

16.01/04 

 

SA02 

D201 

597-1327 HM020906 157-530 HM020960 8-484 HM020987 1-598 HM020865 

P. anamerae EVT 18 Male, 

KEP. Date 

16.01/04 

 

SA02 

D205 

641-1343 HM020906 156-534 N/S   1-598  

P. africana ICMD 302/2000 

Namibia 

24°40S 13°20E  

571-578m 

23/04/1983 

 

SA116 588-1343 HM020907 157-482 EU493272 

 

  1-598 HM020864 

P. africana 3A A-1-6- 

ICMD81/1991 

 

SA 134   157-369 EU493275 

 

8-485  1-598  

P. cristulata ICMD 130/1991 

11° 22'N 

17°22W 

13/01/1985 

385m 

 

SA141 597-1343 HM020908 156-483 EU493271 

 

  1-598 HM020870 

P. birsteini 1 1300m 

JCR crab 

SA101 700-1326 EU493260 

 

157-557 

 

N/S 8-496 HM020988 1-598 HM020867 
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25.01.07 JCR 

157 1300m 

 

 

P. birsteini 1 Scott Islands, 

Ross Sea 

SA85 

(A) 

642-1324 

644-1324 

HM020909 157-525 N/S     

P. birsteini 2 1240-1275m 

Kerguelen St 

Pal. 60 

16.12.1999 

 

SA147 641-1322 HM020910 157-557 

 

 

N/S 75-238  1-598 HM020868 

P. indet 1 Crozet Islands 

 

SA91 

(G) 

706-1260 N/S 157-520 N/S   1-598 HM020869 

P. indet 1 Crozet Islands SA92 

(B)  

649-1256 N/S 157-557 HM020961   1-598  

P. cristata 22530 

900m 

Japan shikoku 

Tokushima ken 

Gamoda Misaki 

900m  

 

SA112 732-1331 HM020911 156-557 EU493267     

P. dofleini SKG 31816 

340-360m 

Japan, Tochyo 

Bucht im Suden 

von Sunosaki 

340-360 Tiefe 

10.02.97 Jan O5 

 

SA104  645-1327 HM020912     1-598 HM020871 

P. dofleini SKG 31816 SA109  747-1303 HM020913 156-540 HM020962     



The Evolutionary History of the Lithodinae  Appendix B- Molecular samples and GenBank codes 

 7 

340-360m 

Japan, Tochyo 

Bucht im Suden 

von Sunosaki 

340-360 Tiefe 

10.02.97 Jan O5 

 

 

P. elongata 300m 

54°44.4 S 

0°8.13E 

Syntype 300m  

11.01.04 

Polarstern 

 

Sa96 645-1324 HM020914 156-558 N/S 10-494 HM020989 1-598 HM020872 

P. erinacea L56 

Mauritania 

SA305 596-1324 HM020917 13-570 HM020965 13-496 HM020991 1-598 HM020873 

P. erinacea L29   

Mauritania 

SA306   2-580 HM020966 8-486 HM020992 1-598 HM020873 

P. erinacea L56 Mauritania SA307   2-569 HM020967 8-496 HM020993 1-598 HM020873 

P. erinacea L56 vile 

Mauritania 

Sa303 597-1344 HM020916 13-567 HM020964 12-484 HM020990 1-598 HM020873 

P. erinacea Mauritania L39 SA322 588-1342 HM020915 15-566 N/S 14-482 HM020994 1-598 HM020873 

P. erinacea Mauritania L29 SA321   14-566 HM020963 10-490 HM020995 1-598 HM020873 

P. formosa KCF 400 

Aquarium Death 

02/03/04 

SA08 

D211 

601-1327 HM020918 157-557 N/S     

P. formosa KCF event ID 

1304 TMP51.  

 

SA71  643-1324 HM020919 157-557 HM020973 48-484 HM020998 1-598 HM020875 
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P. formosa KCF event ID 

1298 TMP51 

Tierra del fuego 

haul 99 

SA72  642-1321 HM020920 157-557 HM020972 9-484 HM020999 1-598 HM020874 

P. formosa KCF leg event 

ID 1295 TMP 51 

T d F haul 35 

 

SA73  643-1324 HM020921 157-557 HM020974 12-485 HM021000 1-598  

P. formosa KCF leg, event 

ID 1303 TMP 51 

Polar pesca haul 

106 

SA75 

2109 

644-1323 HM020922 157-557 HM020975   1-598  

P. formosa Long line South 

Georgia 

SA102  705-1263 EU493262 

 

156-556 FJ462645   1-598 HM020876 

P. formosa L013701 

Atlantis 08 
SA309   13-567 HM020970 12-496 HM021001   

Paralomis sp. 

c.f. anamerae 

Longline South 

Georgia 

SA06 620-1343 N/S 157-557 N/S     

P. granulosa  GBK   10-859 AF425339.1     

P. granulosa Punta Arenas, 

Lovrich 

SA 174 656-1279 EU493264.1 

HM020925 

157-558 HM020976 12-284 HM021004   

P. granulosa Punta Arenas, 

Lovrich 

SA 212     48-283 HM021003 1-598 HM020877 

P. granulosa From Sven's Box 

3733.  No Claw 

 

SA20 645-1323 EU493264 

HM020926 

157-558 EU493274.1 49-283 HM021002 1-598  

P. granulosa From Sven's Box 

3733.  Small sp 

SA19   157-558 EU493278.1     

P. spinosissima Event 14 Cruise 

DOS GO1O4 

SA03 588-1343 EU493258 

 

156-557 N/S     
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Species KCV 

P. spinosissima Event 14 Cruise 

DOS GO1O4 

Species KCV 

SA03 

ExD206 

597-1343 HM020927 156-557 N/S   1-598 HM020879 

P. spinosissima DOS GO104 

Frozen sample.  

Event 20 Date 

17.01.04. KCV   

 

SA04 

Ex 

D203 

596-1323 EU493259 

 

156-557 HM020982   1-598 

 

 

 

 

P. spinosissima Longline South 

Georgia 

Sa04 Ex 

D207 

680-1324 HM020928 156-557 EU493259   1-598 HM020880 

P. spinosissima Cruise DOS 

GO1O4, Event 3, 

KCV 

SA10 

D217 

601-1331 HM020931 156-557 N/S 8-496 HM021007 1-598  

P. spinosissima Cruise 

DOSGO104 

Event 20 Date 

17/01/04 Sp 

KCV1 

 

SA09 

D216 

641-1330 HM020932 156-557 N/S 48-286 HM021005 1-598  

P. spinosissima Cruise DOS 

GO1O4 Event 

14, KCV 

SA05 

D208 

627-1327 HM020933 156-557 N/S 8-490 HM021006 1-598  

P. indet SA11 Longline South 

Georgia 

SA11 705-1279 HM020930 156-557 N/S   1-598 HM020881 

P. indet SA11 Longline South 

Georgia 

SA11 

Ex2 

656-1342 N/S 156-557 N/S   1-598  

P. indet SA11 Longline South 

Georgia 

SA11 

ExD219 

624-1343 N/S 156-557 N/S   1-598  

P. indet SA11 Longline South SA11 601-1343  156-557 N/S   1-598  
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Georgia Ex218 

P. pacifica  GBK 675-1330 AB476747 

AB476748 

AB476749 

      

P. multispina SKG 30854 

Japan 

SA099 

 

 

642-1293 N/S       

P. multispina  GBK 642-1293 AB375545 

AB428440 

AB428440 

AB428437 

      

P. zealandica 1 NIWA17  

 

SA87 

(F)  

705-1257 HM020935 156-491 HM020981     

P. zealandica 1 NIWA 21 SA93 

(E) 

760-1170 HM020936 156-557 HM020980     

P. zealandica 2 NIWA18 

 

SA 82 

(D) 

726-1234 N/S 156-482 N/S     

Lopholithodes 

foraminatus 

 GBK 654-1314 DQ882089.1 

DQ882087.1 

      

Loph. mandtii  GBK 1-1299 AF425372 47-869 AF425333.1     

Phyllolithodes 

papillosus 

 GBK 22-1330 AF425378 69-872 AF425340.1     

Cryptolithodes 

sitchensis 

 GBK 55-1311 AF425363 51-818 AF425324.1     

C. typicus  GBK 51-1299 AF425364 23-846 AF425325.1     

Glyptolithodes 

cristatipes 

 GBK 2-1319 AF425365 132-872 AF425326.1     

Hapalogaster 

mertensi 

 GBK 1-1299 AF425367 2-879 AF425328.1     

H. dentata  GBK 10-1299 AF425366 12-871 AF425327.1     
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Oedignathus 

inermis 

 GBK 915-1299 EU329164.1       

Oedignathus 

inermis 

 GBK 7-1446 AF425373 12-871 AF425334.1 275-496 Z14062.1   

Lomis hirta  GBK  AY595672.1  

AF436035.1 

8-571 AY595928.1 

AF436052.1 

  1-598 AF435993.1 

Aegla lingulata  GBK     309-496    

Aegla 

uruguayana 

 GBK     295-496    

Aegla 

intercalata 

 GBK  AY595666.1 

AY595665.1 

AY595664.1 

78-560 AY595920.1 

AY595919.1 

AY595918.1 

  1-598 AY596091.

1 

AY596090.

1 

AY596089.

1 

Aegla 

neuquensis 

 GBK  AY595668.1 78-560 AY595922.1 

AY595921.1 

 

 

  1-598 AY596093.

1 

AY596092.

1 

Aegla platensis  GBK  AY595663.1 

AY595662.1 

AY595644.1 

AY595643.1 

78-560 AY595917.1 

AY595916.1 

AY595898.1 

AY595897.1 

  1-598 AY596088.

1 

AY596087.

1 

AY596069.

1 

AY596068.

1 

Aegla 

longorostri 

 GBK  AY595608.1 

AY595609.1 
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1,009 bp 

linear DNA 

AY595610.1 

 

Pagurus 

comptus 

 GBK    FJ869144.1 

FJ869142.1 

FJ869145.1 

 

    

Pagurus 

pollicaris 

 GBK  AF483171.1 

AF483170.1 

AF483169.1 

25-565 FJ869152.1 

U96089.1 

    

Pagurus 

longicarpus 

 GBK  FJ581826.1 

FJ581825.1 

FJ581824.1 

FJ581823.1 

 AF150756.1 

 

  1-598 AY739185.

1 

NC_003058

.1 

Pagurus 

bernhardus 

 GBK  AF483157.1       

Emerita 

analoga 

 GBK  L43101.1 

L43099.1 

 

 L43108.1 

AF246154.1 

AF246153.1 

L43107.1 

    

Emerita 

brasiliensis 

 GBK  L43151.1 

 

 DQ079712.1 

L43110.1 

   DQ079786.

1 

Emerita 

talpoida 

 GBK  L43106.1 

L43105.1 

L43104.1 

 

 AF246152.1 

AF246151. 

AF246150.1 
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Pagurus 

brevidactylus 

 GBK   25-565 DQ369945 

 

    

Pagurus 

leptonyx 

 GBK   77-565 DQ369946.1 

 

    

 

N/S = non-submitted to GenBank either because of ambiguous species ID or because of an exact duplicate of one previously submitted. 

GBK= data from GenBank, not obtained in this study. 
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Kit Contents

DNeasy Blood & Tissue Kit (50) (250)

Catalog no. 69504 69506

Number of preps 50 250

DNeasy Mini Spin Columns (colorless)
in 2 ml Collection Tubes 50 250

Collection Tubes (2 ml) 100 500

Buffer ATL 10 ml 50 ml

Buffer AL* 12 ml 54 ml

Buffer AW1 (concentrate)*† 19 ml 95 ml

Buffer AW2 (concentrate)†‡ 13 ml 66 ml

Buffer AE 22 ml 2 x 60 ml

Proteinase K 1.25 ml 6 ml

Handbook 1 1

* Contains a chaotropic salt. Not compatible with disinfecting agents containing bleach. See page 8 for
safety information. 

† Buffer AW1 and Buffer AW2 are supplied as concentrates. Add ethanol (96–100%) according to the bottle
label before use to obtain a working solution.

‡ Contains sodium azide as a preservative.



DNeasy 96 Blood & Tissue Kit (4) (12)

Catalog no. 69581 69582

Number of preps 4 x 96 12 x 96

DNeasy 96 Plates 4 12

S-Blocks* 2 2

Collection Microtubes, 1.2 ml (racked) 4 x 96 12 x 96

Collection Microtube Caps 2 x (120 x 8) 5 x (120 x 8)

Elution Microtubes RS (racked) and caps 4 x 96 12 x 96

AirPore Tape Sheets 25 3 x 25

Buffer AL† 86 ml 247 ml

Buffer ATL 80 ml 3 x 80 ml

Buffer AW1 (concentrate)†‡ 98 ml 3 x 98 ml

Buffer AW2 (concentrate)‡§ 68 ml 3 x 68 ml

Buffer AE 2 x 110 ml 500 ml

Proteinase K 2 x 7 ml 5 x 7 ml

96-Well-Plate Register 4 12

Handbook 1 1

* Reusable; see Appendix B (page 54) for cleaning instructions.
† Contains a chaotropic salt. Not compatible with disinfectants containing bleach. See page 8 for safety

information. 
‡ Buffer AW1 and Buffer AW2 are supplied as concentrates. Add ethanol (96–100%) according to the bottle

label before use to obtain a working solution.
§ Contains sodium azide as a preservative.

Storage
DNeasy spin columns, DNeasy 96 plates, and all buffers should be stored dry, at room
temperature (15–25°C) and are stable for 1 year under these conditions.

DNeasy Blood & Tissue Kits contain a ready-to-use proteinase K solution, which is
supplied in a specially formulated storage buffer. Proteinase K is stable for at least
1 year after delivery when stored at room temperature. For storage longer than one
year or if ambient temperatures often exceed 25°C, we suggest storing proteinase K at
2–8°C.

DNeasy Blood & Tissue Handbook   07/20066
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Product Use Limitations
DNeasy Blood & Tissue Kits and DNeasy 96 Blood & Tissue Kits are intended for
research use. No claim or representation is intended to provide information for the
diagnosis, prevention, or treatment of a disease. 

All due care and attention should be exercised in the handling of the products. We
recommend all users of QIAGEN® products to adhere to the NIH guidelines that have
been developed for recombinant DNA experiments, or to other applicable guidelines.

Product Warranty and Satisfaction Guarantee
QIAGEN guarantees the performance of all products in the manner described in our
product literature. The purchaser must determine the suitability of the product for its
particular use. Should any product fail to perform satisfactorily due to any reason other
than misuse, QIAGEN will replace it free of charge or refund the purchase price. We
reserve the right to change, alter, or modify any product to enhance its performance
and design. If a QIAGEN product does not meet your expectations, simply call your
local Technical Service Department or distributor. We will credit your account or
exchange the product — as you wish. Separate conditions apply to QIAGEN scientific
instruments, service products, and to products shipped on dry ice. Please inquire for
more information.

A copy of QIAGEN terms and conditions can be obtained on request, and is also
provided on the back of our invoices. If you have questions about product specifications
or performance, please call QIAGEN Technical Services or your local distributor (see
back cover).

Technical Assistance
At QIAGEN we pride ourselves on the quality and availability of our technical support.
Our Technical Service Departments are staffed by experienced scientists with extensive
practical and theoretical expertise in molecular biology and the use of QIAGEN
products. If you have any questions or experience any difficulties regarding DNeasy
Blood & Tissue Kits or QIAGEN products in general, please do not hesitate to contact
us.

QIAGEN customers are a major source of information regarding advanced or
specialized uses of our products. This information is helpful to other scientists as well as
to the researchers at QIAGEN. We therefore encourage you to contact us if you have
any suggestions about product performance or new applications and techniques.

For technical assistance and more information please call one of the QIAGEN Technical
Service Departments or local distributors (see back cover).
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Quality Control
In accordance with QIAGEN’s ISO-certified Quality Management System, each lot of
DNeasy Blood & Tissue Kits and DNeasy 96 Blood & Tissue Kits is tested against
predetermined specifications to ensure consistent product quality.

Safety Information
When working with chemicals, always wear a suitable lab coat, disposable gloves,
and protective goggles. For more information, please consult the appropriate material
safety data sheets (MSDSs). These are available online in convenient and compact PDF
format at www.qiagen.com/ts/msds.asp where you can find, view, and print the MSDS
for each QIAGEN kit and kit component. 

CAUTION: DO NOT add bleach or acidic solutions directly to the sample-preparation
waste.

Buffer AL and Buffer AW1 contain guanidine hydrochloride, which can form highly
reactive compounds when combined with bleach. If liquid containing this buffer is spilt,
clean with suitable laboratory detergent and water. If the spilt liquid contains potentially
infectious agents, clean the affected area first with laboratory detergent and water, and
then with 1% (v/v) sodium hypochlorite.

The following risk and safety phrases apply to components of DNeasy Blood & Tissue
Kits and DNeasy 96 Blood & Tissue Kits.

Buffer AL and Buffer AW1 (concentrate)

Contains guanidine hydrochloride: harmful, irritant. Risk and safety phrases:* R22-
36/38, S13-26-36-46

Proteinase K

Contains proteinase K: sensitizer, irritant. Risk and safety phrases:* R36/37/38-
42/43, S23-24-26-36/37

24-hour emergency information

Emergency medical information in English, French, and German can be obtained
24 hours a day from:

Poison Information Center Mainz, Germany

Tel: +49-6131-19240

* R22: Harmful if swallowed; R36/37/38: Irritating to eyes, respiratory system and skin; R36/38: Irritating
to eyes and skin; R42/43: May cause sensitization by inhalation and skin contact; S13: Keep away from
food, drink, and animal feedingstuffs; S23: Do not breathe spray; S24: Avoid contact with skin; S26: In
case of contact with eyes, rinse immediately with plenty of water and seek medical advice; S36: Wear
suitable protective clothing; S36/37: Wear suitable protective clothing and gloves; S46: If swallowed,
seek medical advice immediately, and show container or label.
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Introduction
DNeasy Blood & Tissue Kits are designed for rapid purification of total DNA (e.g.,
genomic, mitochondrial, and pathogen) from a variety of sample sources including
fresh or frozen animal tissues and cells, blood, or bacteria. DNeasy purified DNA is
free of contaminants and enzyme inhibitors and is highly suited for PCR, Southern
blotting, RAPD, AFLP, and RFLP applications.

Purification requires no phenol or chloroform extraction or alcohol precipitation, and
involves minimal handling. This makes DNeasy Blood & Tissue Kits highly suited for
simultaneous processing of multiple samples. For higher-throughput applications, the
DNeasy 96 Blood & Tissue Kit enables simultaneous processing of 96 or 192 samples.

The buffer system is optimized to allow direct cell lysis followed by selective binding of
DNA to the DNeasy membrane. After lysis, the DNeasy Blood & Tissue spin-column
procedure can be completed in as little as 20 minutes. Using the DNeasy 96 Blood &
Tissue Kit, 96 or 192 samples can be processed in just 1 hour after lysis. 

Simple centrifugation processing completely removes contaminants and enzyme
inhibitors such as proteins and divalent cations, and allows simultaneous processing of
multiple samples in parallel. In addition, DNeasy Blood & Tissue procedures are
suitable for a wide range of sample sizes.

Purified DNA is eluted in low-salt buffer or water, ready for use in downstream
applications. DNeasy purified DNA typically has an A260/A280 ratio between 1.7 and
1.9, and is up to 50 kb in size, with fragments of 30 kb predominating. The DNeasy
procedure also efficiently recovers DNA fragments as small as 100 bp.

Principle and procedure
DNeasy Blood & Tissue procedures are simple (see flowchart). Samples are first lysed
using proteinase K.* Buffering conditions are adjusted to provide optimal DNA-
binding conditions and the lysate is loaded onto the DNeasy Mini spin column or the
DNeasy 96 plate. During centrifugation, DNA is selectively bound to the DNeasy
membrane as contaminants pass through. Remaining contaminants and enzyme
inhibitors are removed in two efficient wash steps and DNA is then eluted in water or
buffer, ready for use. DNeasy purified DNA has A260/A280 ratios of 1.7–1.9, and
absorbance scans show a symmetric peak at 260 nm confirming high purity.

* Lysis efficiency can be improved by cell disruption using a rotor–stator homogenizer, such as the QIAGEN
TissueRuptor, or a bead mill, such as the QIAGEN TissueLyser. A supplementary protocol allowing the
simultaneous disruption of up to 48 tissue samples using the QIAGEN TissueLyser is available from
QIAGEN Technical Services.
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The DNeasy membrane combines the binding properties of a silica-based membrane
with simple microspin technology or with the QIAGEN 96-Well-Plate Centrifugation
System. DNA adsorbs to the DNeasy membrane in the presence of high concentrations
of chaotropic salt, which remove water from hydrated molecules in solution. Buffer
conditions in DNeasy Blood & Tissue procedures are designed to enable specific
adsorption of DNA to the silica membrane and optimal removal of contaminants and
enzyme inhibitors.
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Description of protocols
Different protocols in this handbook provide detailed instructions to use DNeasy Kits for
purification of total DNA. 

The protocol “Purification of Total DNA from Animal Blood or Cells (Spin-Column
Protocol)”, page 25, is for use with the DNeasy Blood & Tissue Kit, for purification of
DNA from animal blood (with nucleated or nonnucleated erythrocytes) or from cultured
animal or human cells. 

The protocol “Purification of Total DNA from Animal Tissues (Spin-Column Protocol)”,
page 28, is for use with the DNeasy Blood & Tissue Kit, for purification of DNA from
animal tissues, including rodent tails. 

The protocol “Purification of Total DNA from Animal Blood or Cells (DNeasy 96
Protocol)”, page 31, is for use with the DNeasy 96 Blood & Tissue Kit, for high-
throughput purification of DNA from animal blood (with nucleated or nonnucleated
erythrocytes) or from cultured animal or human cells. 

The protocol “Purification of Total DNA from Animal Tissues (DNeasy 96 Protocol)”,
page 35, is for use with the DNeasy 96 Blood & Tissue Kit, for high-throughput
purification of DNA from animal tissues, including rodent tails.

Pretreatment and specialized protocols

There are several pretreatment protocols included in this handbook, which are
optimized for specific sample types. These pretreatment protocols are used in
conjunction with one of the DNA purification protocols described above.

The following pretreatment protocols are included in this handbook.

Pretreatment for Paraffin-Embedded Tissue, page 41

Pretreatment for Formalin-Fixed Tissue, page 43

Pretreatment for Gram-Negative Bacteria, page 44

Pretreatment for Gram-Positive Bacteria, page 45

Additional optimized protocols for purification of DNA from yeast, hair, insects, crude
lysates, bone, saliva, and other specialized sample types are available online at
www.qiagen.com/literature/protocols/DNeasyTissue.aspx or from QIAGEN Technical
Services (see back cover).



DNeasy Blood & Tissue Handbook   07/2006 13

Equipment and Reagents to Be Supplied by User
When working with chemicals, always wear a suitable lab coat, disposable gloves,
and protective goggles. For more information, consult the appropriate material safety
data sheets (MSDSs), available from the product supplier.

For all protocols

Pipets and pipet tips

Vortexer

Ethanol (96–100%)*

Optional: RNase A (100 mg/ml; cat. no. 19101)

For DNeasy Blood & Tissue Kit (spin column) protocols

Microcentrifuge tubes (1.5 ml or 2 ml)

Microcentrifuge with rotor for 1.5 ml and 2 ml tubes

Thermomixer, shaking water bath, or rocking platform for heating at 56°C 

For DNeasy 96 Blood & Tissue Kit protocols

Centrifuge 4-15C or 4K15C with Plate Rotor 2 x 96 (see page 20)

Multichannel pipet with extended tips 
For efficient processing , we recommend the use of an electric multichannel pipet
with a capacity of at least 1 ml per pipet tip. Options include the Matrix Impact®

cordless electronic multichannel pipet, which has a unique, adjustable tip-spacing
system allowing the user to transfer liquid directly from sample tubes to 96-well
plates.
We recommend using extended tips with a maximum volume of 1250 µl with the
Matrix multichannel pipet (available from Matrix, cat. no. 8255 for tips with filters
or 8252 for tips without filters).
These multichannel pipets and pipet tips can be purchased from Matrix
Technologies Corporation ( www.matrixtechcorp.com ).†

Reagent reservoirs for multichannel pipets

Heavy plate or similar object to place on top of collection microtubes during
incubation

Oven or incubator for heating at 56°C

* Do not use denatured alcohol, which contains other substances such as methanol or methylethylketone.
† This is not a complete list of suppliers and does not include many important vendors of biological supplies.
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For blood and cultured cells

PBS, pH 7.2 (50 mM potassium phosphate, 150 mM NaCl)

For pretreatment of paraffin-embedded tissue (page 41)

Xylene

For pretreatment of formalin-fixed tissue (page 43)

PBS, pH 7.2 (50 mM potassium phosphate, 150 mM NaCl)

For pretreatment of gram-positive bacteria (page 45)

Enzymatic lysis buffer:

20 mM Tris·Cl, pH 8.0

2 mM sodium EDTA

1.2% Triton® X-100

Immediately before use, add lysozyme to 20 mg/ml
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Important Notes
Sample collection and storage
Best results are obtained with fresh material or material that has been immediately
frozen and stored at –20°C or –70°C. Repeated freezing and thawing of stored
samples should be avoided, since this leads to reduced DNA size. Use of poor-quality
starting material will also lead to reduced length and yield of purified DNA.

After proteinase K digestion, tissue samples can also be stored in Buffer ATL for up
6 months at ambient temperature without any reduction in DNA quality.

For certain bacterial cultures that accumulate large amounts of metabolites and/or form
very dense cell walls, it is preferable to harvest cells in the early log phase of growth.
Fresh or frozen cell pellets can be used in the procedure.

Starting amounts of samples
DNeasy Blood & Tissue procedures give DNA yields that increase linearly over a wide
range, for both very small and large sample sizes (e.g., from as little as 100 cells up
to 5 x 106 cells).

Maximum amount of starting material
In order to obtain optimum DNA yield and quality, it is important not to overload the
DNeasy spin column or DNeasy 96 plate, as this can lead to significantly lower yields
than expected (see Figure 1). For samples with very high DNA contents (e.g., spleen,
which has a high cell density, and cell lines with a high degree of ploidy), less than the
recommended amount of sample listed in Table 1 should be used. If your starting
material is not shown in Table 3 (page 23) and you have no information regarding DNA
content, we recommend beginning with half the maximum amount of starting material
indicated in Table 1. Depending on the yield obtained, the sample size can be
increased in subsequent preparations.

Very small sample sizes
DNeasy Blood & Tissue procedures are also suitable for purifying DNA from very small
amounts of starting material. If the sample has less than 5 ng DNA (<10,000 copies),
3–5 µg carrier DNA (a homopolymer such as poly-dA, poly-dT, or gDNA) should be
added to the starting material. Ensure that the carrier DNA does not interfere with your
downstream application. In order to prevent any interference of the carrier with the
downstream application, an RNA carrier can be used. This can be removed later by
RNase digestion. DNA or RNA homopolymers can be purchased from various
suppliers.
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Figure 1 Schematic diagram of effect of sample size on DNA yield. If more than the maximum amount of
starting material is used, DNA yield will be lower than expected. 

Table 1. Maximum Amounts of Starting Material

Sample Amount

Animal tissue (see Table 3, page 23) 25 mg (spin-column protocols) 

20 mg (DNeasy 96 protocols)

Mammalian blood (see Table 4, page 23) 100 µl

Bird or fish blood (with nucleated erythrocytes) 10 µl

Mouse tail 0.6–1.2 cm

Rat tail 0.6 cm 

Cultured cells 5 x 106

Bacteria 2 x 109

D
N

A
 y

ie
ld

Amount of starting material

Maximum

Actual
yield

Expected
yield
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Quantification of starting material
Weighing tissue or counting cells is the most accurate way to quantify starting material.
However, the approximate guidelines given below can also be followed.

Animal tissue

A 2 mm cube (approximately this size: ; volume, approximately 8 mm3) of most animal
tissues weighs approximately 10–15 mg.

Animal cells

The number of HeLa cells obtained in various culture dishes after confluent growth is
given in Table 2.

Table 2. Growth Area and Number of HeLa Cells in Various Culture Dishes

Cell culture vessel Growth area* (cm2) Number of cells†

Multiwell plates

96-well 0.32–0.6 4–5 x 104

48-well 1 1 x 105

24-well 2 2.5 x 105

12-well 4 5 x 105

6-well 9.5 1 x 106

Dishes 

35 mm 8 1 x 106

60 mm 21 2.5 x 106

100 mm 56 7 x 106

145–150 mm 145 2 x 107

Flasks

40–50 ml 25 3 x 106

250–300 ml 75 1 x 107

650–750 ml 162–175 2 x 107

* Per well, if multiwell plates are used; varies slightly depending on the supplier.
† Cell numbers given are for HeLa cells (approximate length = 15 µm) assuming confluent growth. Cell

numbers vary since animal cells can vary in length from 10 to 100 µm.
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Bacteria

Bacterial growth is usually measured using a spectrophotometer. However, it is very
difficult to give specific and reliable recommendations for the correlation between OD
values and cell numbers in bacterial cultures. Cell density is influenced by a variety of
factors (e.g., species, media, and shaker speed) and OD readings of cultures measure
light scattering rather than absorption. Measurements of light scattering are highly
dependent on the distance between the sample and the detector and therefore readings
vary between different types of spectrophotometer. In addition, different species show
different OD values at defined wavelengths (e.g., 600 or 436 nm).

We therefore recommend calibrating the spectrophotometer used by comparing OD
measurements at appropriate wavelengths with viable cell densities determined by
plating experiments (e.g., see Ausubel, F.M. et al., eds. [1991] Current Protocols in
Molecular Biology, New York: John Wiley & Sons, Inc.). OD readings should be
between 0.05 and 0.3 to ensure significance. Samples with readings above 0.3 should
be diluted so that the readings fall within this range and the dilution factor used in
calculating the number of cells per milliliter.

The following calculation can be considered as a rough guide, which may be helpful.
An E. coli culture of 1 x 109 cells per milliliter, diluted 1 in 4, gives OD600 values of
0.25 measured using a Beckman DU®-7400 or 0.125 using a Beckman DU-40
spectrophotometer. These correspond to calculated OD values of 1.0 or 0.5 respec-
tively for 1 x 109 cells per milliliter. 

Preparation of Buffer AW1 and Buffer AW2
Buffer AW1 and Buffer AW2 are supplied as concentrates. Before using for the first
time, add the appropriate volume of ethanol (96–100%) as indicated on the bottle and
shake thoroughly. Buffer AW1 and Buffer AW2 are stable for at least 1 year after the
addition of ethanol when stored closed at room temperature (15–25°C). 

Buffer AL
Purification of DNA from animal blood, cultured cells, or Gram-positive bacteria

Buffer AL must be added to the sample and incubated at 56°C before ethanol is added.
Ensure that ethanol has not been added to Buffer AL beforehand. Buffer AL can be
purchased separately (see page 56 for ordering information).

Purification of DNA from animal tissues

Buffer AL and ethanol (96–100%) are added in the same step. Buffer AL and ethanol
can be premixed and added together in one step to save time when processing multiple
samples. 
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For the protocol “Purification of Total DNA from Animal Tissues (DNeasy 96 Protocol)”:
Add 90 ml ethanol (96–100%) to the bottle containing 86 ml Buffer AL or 260 ml
ethanol to the bottle containing 247 ml Buffer AL and shake thoroughly. Mark the bottle
to indicate that ethanol has been added. (Please note that, for purification of DNA from
animal blood, Buffer AL must be used without ethanol. Buffer AL can be purchased
separately if the same kit will be used for purification of DNA from animal blood.)

Buffer AL is stable for 1 year after the addition of ethanol when stored closed at room
temperature.

Proteinase K
DNeasy Blood & Tissue Kits contain ready-to-use proteinase K supplied in a specially
formulated storage buffer. The activity of proteinase K is 600 mAU/ml solution (or
40 mAU/mg protein), and has been chosen to provide optimal results.

Also included in the kits is an optimized buffer for tissue lysis, Buffer ATL. To enable
efficient lysis, it is advisable to cut animal tissue into small pieces. If desired, lysis time
can be reduced to 20 minutes by grinding the sample in liquid nitrogen* before
addition of Buffer ATL and proteinase K. Alternatively, tissue samples can be effectively
disrupted before proteinase K digestion using a rotor–stator homogenizer, such as the
QIAGEN TissueRuptor, or a bead mill, such as the QIAGEN TissueLyser. A supplementary
protocol for simultaneous disruption of up to 48 tissue samples using the TissueLyser can
be obtained by contacting QIAGEN Technical Services (see back cover).

Proteinase K is stable for at least one year after delivery when stored at room
temperature (15–25°C). To store for more than one year or if ambient temperature often
exceeds 25°C, we suggest keeping proteinase K at 2–8°C.

Please contact QIAGEN Technical Services or your local distributor if you have any
questions about the use of proteinase K (see back cover).

Copurification of RNA
DNeasy Blood & Tissue Kits copurify DNA and RNA when both are present in the sam-
ple. Transcriptionally active tissues such as liver and kidney contain high levels of RNA,
which will be copurified. RNA may inhibit some downstream enzymatic reactions,
although it does not affect PCR. If RNA-free genomic DNA is required, RNase A should
be added to the sample before addition of Buffer AL, to digest the RNA. DNeasy
protocols describe the use of an RNase A stock solution of 100 mg/ml. However, the
amounts of RNase can be adjusted with less concentrated stock solutions, but not more
than 20 µl of RNase solution should be used. Refer to the protocols for details.

* When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective
goggles. For more information, consult the appropriate material safety data sheets (MSDSs), available from
the product supplier.
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Centrifugation (DNeasy 96 procedures)
Centrifuges 4-15C and 4K15C

DNeasy 96 spin protocols use a streamlined centrifugation procedure that enables
purification of DNA from up to 2 x 96 samples in parallel for direct use in any
downstream application. The DNeasy 96 Blood & Tissue procedure requires use of the
QIAGEN 96-Well-Plate Centrifugation System, comprising the Plate Rotor 2 x 96 and
the table-top Centrifuge 4-15C or the refrigerated table-top Centrifuge 4K15C (see
page 55 for ordering information). In addition to the Plate Rotor 2 x 96, a wide range
of other rotors can be used with these centrifuges.

Standard table-top centrifuges and microtiter plate rotors are not suitable for the
DNeasy 96 protocol for 2 reasons: the microtiter plate buckets are either not deep
enough for the complete DNeasy 96 package or they will not swing out properly, and
furthermore, high g-forces (>5500 x g) are required for optimal performance of the
DNeasy 96 procedure. The speed limit of the Centrifuge 4-15C and the Centrifuge
4K15C (6000 rpm; 5796 x g) is programmed so that the given g-force will not be
exceeded. All centrifugation steps are performed at room temperature.

IMPORTANT: Centrifuges must be properly maintained for optimal performance. It is
particularly important that the buckets and rotor pins are routinely greased to prevent
suboptimal running conditions that may lead to cracking of DNeasy 96 plates.

For further information about QIAGEN Centrifuges and the Plate Rotor 2 x 96, contact
QIAGEN Technical Services or your local distributor (see back cover for contact
information).

Note: If the Centrifuge 4K15C is used, set the temperature to 40°C for all centrifugation
steps.

Note: Use AirPore Tape Sheets (provided) to seal DNeasy 96 plates during all
centrifugation steps to prevent cross-contamination between samples.

Abbreviated instructions for using the Centrifuge 4-15C and Centrifuge 4K15C

Warning: Never run the centrifuge with empty plate carriers placed inside the buckets,
that is, without the collection microtubes or DNeasy 96 plates and S-Blocks. If
unsupported, the carriers will collapse under high g-forces. Therefore, remove the
carriers during test runs. Standard microtiter plates may be centrifuged in the same
carriers if the g-force does not exceed 500 x g.

1. Switch on the centrifuge by pressing the main switch on the back.

2. Select the rotor selection list in the display field by turning the knob. After pressing
the knob, turn the knob again to select the rotor/bucket combination
“09100/09158” for the Plate Rotor 2 x 96. Confirm entry by pressing the knob.
Entering the rotor number automatically sets the time and speed limits for
centrifugation for that particular rotor, thus eliminating the danger of the centrifuge
over-speeding.
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3. Select “Speed” by turning the knob. Press the knob and by turning the knob again,
set the speed to “6000”. Confirm entry by pressing the knob. The corresponding
relative centrifugal force (RCF) is calculated from the rotor number and speed and
appears automatically in the RCF field. It is also possible to enter the RCF value
“5796 x g” manually in the RCF field after selecting “RCF” in the same way.

4. Select “Time” by turning the knob. Press once and by turning the knob again, set
the time as recommended in the particular protocol step. Confirm entry by pressing
the knob.

5. For the Centrifuge 4K15C, set the temperature to 40°C.

6. Open the lid, place the 96-well plates with the metal carriers in the buckets then
close the lid. The start and lid keys light up.

7. Push “Start” to start the centrifuge. When the centrifuge is running the lid key will
not be lit. Each run can be interrupted by pushing “Stop”.

8. At the end of the run, the lid key will light up. Open the centrifuge lid by pressing
the lid key. Remove the plates. All preset parameters remain after a run has
finished. 

Elution of pure nucleic acids
Purified DNA is eluted from the DNeasy Mini spin column or DNeasy 96 plate in either
Buffer AE or water. For maximum DNA yield, elution is performed in two successive
steps using 200 µl Buffer AE each. For more concentrated DNA, elution can be
performed in two successive steps of 100 µl each. Keep in mind that elution volume and
number of elution steps depends on the amount of DNA bound to the DNeasy
membrane (see Figure 2).

Figure 2 Yields of total nucleic acids in successive elutions of 100 or 200 µl.
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For samples containing up to 10 µg DNA, a single elution step using 200 µl is sufficient.
For samples containing more than 10 µg DNA, a second elution step with another
200 µl Buffer AE is recommended. Approximately 60–80% of the DNA will elute in the
first elution. If >30 µg DNA is bound to the DNeasy membrane, elution in 3 x 200 µl
may increase yield (see below).

Elution in 100 µl increases the DNA concentration in the eluate, but reduces overall
DNA yield. To prevent dilution of the first eluate, the subsequent elution step can be
performed using a fresh 1.5 ml microcentrifuge tube. More than 200 µl should not be
eluted into a 1.5 ml microcentrifuge tube because the spin column will come into contact
with the eluate, leading to possible aerosol formation during centrifugation.

For very small samples (containing less than 1 µg DNA), only one elution in 50 µl of
Buffer AE or water is recommended.

Buffer AE is 10 mM Tris·Cl, 0.5 mM EDTA, pH 9.0. Elution with Buffer AE guarantees
optimal recovery and stability of eluted DNA. However, if you wish to elute DNA with
water please ensure that the pH of the water is at least 7.0 (deionized water from certain
sources can be acidic). For long-term storage of DNA, elution in Buffer AE is strongly
recommended since DNA stored in water is subject to acid hydrolysis. Buffer AE should
be used at room temperature (15–25°C). Heating Buffer AE before elution is not
necessary.

Expected yields
Yields of genomic DNA will vary from sample to sample depending on the amount and
type of material processed. In addition, the quality of starting material will affect DNA
yield.

Tables 3 and 4 can be used to provide an estimate of expected yield.
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Table 3. Typical DNA Yields from Animal Tissues Using DNeasy Blood & Tissue Kits

Source Amount DNA (µg)

Mammalian blood (see Table 4) 100 µl 3–6

Bird blood 5 µl 9–40

Lymphocytes 5 x 106 15–25

HeLa cells 2 x 106 15–25

Liver 25 mg 10–30

Brain 25 mg 15–30

Lung 25 mg 5–10

Heart 25 mg 5–10

Kidney 25 mg 15–30

Spleen 10 mg 5–30

Mouse tail 1.2 cm (tip) 10–25

Rat tail 0.6 cm (tip) 20–40

Pig ear 25 mg 10–30

Horse hair 10 hairs 2–4

Fish fin 20 mg 10–20

Fish spawn (mackerel) 10 mg 5–10

Table 4. Typical DNA Yields from Animal Blood Using DNeasy Blood & Tissue Kits

Animal Amount (µl) DNA (µg)

Cattle 100 4–5

Horse 100 3–5

Pig 100 3–6

Sheep 100 3–6

Dog 100 4–5

Cat 100 3–6

Goat 50* 3

Chicken† 5 9–15

* Using more than 50 µl goat blood gave no significant increase in DNA yield.
† Bird blood contains nucleated erythrocytes, giving higher DNA yields than mammalian blood.
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Purification of high-molecular-weight DNA
QIAGEN Genomic-tips and Blood & Cell Culture DNA Kits are recommended for large-
scale purification of high-molecular-weight DNA (see page 56 for ordering
information). QIAGEN Genomic-tips are available for purification of up to 500 µg of
genomic DNA ranging in size from 50 to 150 kb. They are highly suited for use in
Southern blotting, library construction, genome mapping, and other demanding
applications. Please contact QIAGEN Technical Services or your local distributor for
more information (see back cover).
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Protocol: Purification of Total DNA from Animal Blood
or Cells (Spin-Column Protocol)
This protocol is designed for purification of total DNA from animal blood (with
nucleated or nonnucleated erythrocytes) or from cultured animal or human cells.

Important points before starting

If using the DNeasy Blood & Tissue Kit for the first time, read “Important Notes”
(page 15).

All centrifugation steps are carried out at room temperature (15–25°C) in a
microcentrifuge.

Vortexing should be performed by pulse-vortexing for 5–10 s.

PBS is required for use in step 1 (see page 14 for composition). Buffer ATL is not
required in this protocol.

Optional: RNase A may be used to digest RNA during the procedure. RNase A is
not provided in the DNeasy Blood & Tissue Kit (see “Copurification of RNA”,
page 19).

Things to do before starting

Buffer AL may form a precipitate upon storage. If necessary, warm to 56°C until
the precipitate has fully dissolved.

Buffer AW1 and Buffer AW2 are supplied as concentrates. Before using for the
first time, add the appropriate amount of ethanol (96–100%) as indicated on the
bottle to obtain a working solution.

Preheat a thermomixer, shaking water bath, or rocking platform to 56°C for use
in step 2.

Procedure

1. For blood with nonnucleated erythrocytes, follow step 1a; for blood with nucleated
erythrocytes, follow step 1b; for cultured cells, follow step 1c.

Blood from mammals contains nonnucleated erythrocytes. Blood from animals
such as birds, fish, or frogs contains nucleated erythrocytes.

1a. Nonnucleated: Pipet 20 µl proteinase K into a 1.5 ml or 2 ml microcentrifuge tube
(not provided). Add 50–100 µl anticoagulated blood. Adjust the volume to 220 µl
with PBS. Continue with step 2.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml)
and incubate for 2 min at room temperature before continuing with step 2.
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1b. Nucleated: Pipet 20 µl proteinase K into a 1.5 ml or 2 ml microcentrifuge tube (not
provided). Add 5–10 µl anticoagulated blood. Adjust the volume to 220 µl with
PBS. Continue with step 2.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml)
and incubate for 2 min at room temperature before continuing with step 2.

1c. Cultured cells: Centrifuge the appropriate number of cells (maximum 5 x 106) for
5 min at 300 x g. Resuspend the pellet in 200 µl PBS. Add 20 µl proteinase K.
Continue with step 2.

When using a frozen cell pellet, allow cells to thaw before adding PBS until the
pellet can be dislodged by gently flicking the tube.

Ensure that an appropriate number of cells is used in the procedure. For cell lines
with a high degree of ploidy (e.g., HeLa cells), it is recommended to use less than
the maximum number of cells listed in Table 1, page 16.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml),
mix by vortexing, and incubate for 2 min at room temperature before continuing
with step 2.

2. Add 200 µl Buffer AL (without added ethanol). Mix thoroughly by vortexing, and
incubate at 56°C for 10 min.

Ensure that ethanol has not been added to Buffer AL (see “Buffer AL”, page 18).
Buffer AL can be purchased separately (see page 56 for ordering information).

It is essential that the sample and Buffer AL are mixed immediately and thoroughly
by vortexing or pipetting to yield a homogeneous solution.

3. Add 200 µl ethanol (96–100%) to the sample, and mix thoroughly by vortexing.

It is important that the sample and the ethanol are mixed thoroughly to yield a
homogeneous solution.

4. Pipet the mixture from step 3 into the DNeasy Mini spin column placed in a 2 ml
collection tube (provided). Centrifuge at �6000 x g (8000 rpm) for 1 min. Discard
flow-through and collection tube.*

5. Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add
500 µl Buffer AW1, and centrifuge for 1 min at �6000 x g (8000 rpm). Discard
flow-through and collection tube.*

6. Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add
500 µl Buffer AW2, and centrifuge for 3 min at 20,000 x g (14,000 rpm) to dry
the DNeasy membrane. Discard flow-through and collection tube.

It is important to dry the membrane of the DNeasy Mini spin column, since residual
ethanol may interfere with subsequent reactions. This centrifugation step ensures
that no residual ethanol will be carried over during the following elution.

* Flow-through contains Buffer AL or Buffer AW1 and is therefore not compatible with bleach. See page 8 for
safety information.
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Following the centrifugation step, remove the DNeasy Mini spin column carefully
so that the column does not come into contact with the flow-through, since this will
result in carryover of ethanol. If carryover of ethanol occurs, empty the collection
tube, then reuse it in another centrifugation for 1 min at 20,000 x g (14,000 rpm).

7. Place the DNeasy Mini spin column in a clean 1.5 ml or 2 ml microcentrifuge tube
(not provided), and pipet 200 µl Buffer AE directly onto the DNeasy membrane.
Incubate at room temperature for 1 min, and then centrifuge for 1 min at �6000 x g
(8000 rpm) to elute.

Elution with 100 µl (instead of 200 µl) increases the final DNA concentration in
the eluate, but also decreases the overall DNA yield (see Figure 2, page 21).

8. Recommended: For maximum DNA yield, repeat elution once as described in
step 7.

This step leads to increased overall DNA yield.

A new microcentrifuge tube can be used for the second elution step to prevent
dilution of the first eluate. Alternatively, to combine the eluates, the microcentrifuge
tube from step 7 can be reused for the second elution step.

Note: Do not elute more than 200 µl into a 1.5 ml microcentrifuge tube because
the DNeasy Mini spin column will come into contact with the eluate.
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Protocol: Purification of Total DNA from Animal Tissues
(Spin-Column Protocol)
This protocol is designed for purification of total DNA from animal tissues, including
rodent tails.

Important points before starting

If using the DNeasy Blood & Tissue Kit for the first time, read “Important Notes”
(page 15).

For fixed tissues, refer to the pretreatment protocols “Pretreatment for Paraffin-
Embedded Tissue”, page 41, and “Pretreatment for Formalin-Fixed Tissue”,
page 43.

All centrifugation steps are carried out at room temperature (15–25°C) in a
microcentrifuge.

Vortexing should be performed by pulse-vortexing for 5–10 s.

Optional: RNase A may be used to digest RNA during the procedure. RNase A is
not provided in the DNeasy Blood & Tissue Kit (see “Copurification of RNA”,
page 19).

Things to do before starting

Buffer ATL and Buffer AL may form precipitates upon storage. If necessary, warm
to 56°C until the precipitates have fully dissolved.

Buffer AW1 and Buffer AW2 are supplied as concentrates. Before using for the
first time, add the appropriate amount of ethanol (96–100%) as indicated on the
bottle to obtain a working solution.

Preheat a thermomixer, shaking water bath, or rocking platform to 56°C for use
in step 2.

If using frozen tissue, equilibrate the sample to room temperature. Avoid repeated
thawing and freezing of samples since this will lead to reduced DNA size.

Procedure

1. Cut up to 25 mg tissue (up to 10 mg spleen) into small pieces, and place in a 1.5
ml microcentrifuge tube. For rodent tails, place one (rat) or two (mouse) 0.4–0.6
cm lengths of tail into a 1.5 ml microcentrifuge tube. Add 180 µl Buffer ATL.
Earmark the animal appropriately.

Ensure that the correct amount of starting material is used (see “Starting amounts
of samples”, page 15). For tissues such as spleen with a very high number of cells
for a given mass of tissue, no more than 10 mg starting material should be used.
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We strongly recommend to cut the tissue into small pieces to enable more efficient
lysis. If desired, lysis time can be reduced by grinding the sample in liquid
nitrogen* before addition of Buffer ATL and proteinase K. Alternatively, tissue
samples can be effectively disrupted before proteinase K digestion using a
rotor–stator homogenizer, such as the QIAGEN TissueRuptor, or a bead mill, such
as the QIAGEN TissueLyser (see page 56 for ordering information). A
supplementary protocol for simultaneous disruption of up to 48 tissue samples
using the TissueLyser can be obtained by contacting QIAGEN Technical Services
(see back cover).

For rodent tails, a maximum of 1.2 cm (mouse) or 0.6 cm (rat) tail should be used.
When purifying DNA from the tail of an adult mouse or rat, it is recommended to
use only 0.4–0.6 cm.

2. Add 20 µl proteinase K. Mix thoroughly by vortexing, and incubate at 56°C until
the tissue is completely lysed. Vortex occasionally during incubation to disperse the
sample, or place in a thermomixer, shaking water bath, or on a rocking platform.

Lysis time varies depending on the type of tissue processed. Lysis is usually
complete in 1–3 h or, for rodent tails, 6–8 h. If it is more convenient, samples can
be lysed overnight; this will not affect them adversely.

After incubation the lysate may appear viscous, but should not be gelatinous as it
may clog the DNeasy Mini spin column. If the lysate appears very gelatinous, see
the “Troubleshooting Guide”, page 47, for recommendations.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml),
mix by vortexing, and incubate for 2 min at room temperature before continuing
with step 3.

Transcriptionally active tissues such as liver and kidney contain high levels of RNA,
which will copurify with genomic DNA. For tissues that contain low levels of RNA,
such as rodent tails, or if residual RNA is not a concern, RNase A digestion is not
necessary.

3. Vortex for 15 s. Add 200 µl Buffer AL to the sample, and mix thoroughly by
vortexing. Then add 200 µl ethanol (96–100%), and mix again thoroughly by
vortexing.

It is essential that the sample, Buffer AL, and ethanol are mixed immediately and
thoroughly by vortexing or pipetting to yield a homogeneous solution. Buffer AL
and ethanol can be premixed and added together in one step to save time when
processing multiple samples.

* When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective
goggles. For more information, consult the appropriate material safety data sheets (MSDSs), available from
the product supplier.
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A white precipitate may form on addition of Buffer AL and ethanol. This precipitate
does not interfere with the DNeasy procedure. Some tissue types (e.g., spleen,
lung) may form a gelatinous lysate after addition of Buffer AL and ethanol. In this
case, vigorously shaking or vortexing the preparation is recommended.

4. Pipet the mixture from step 3 (including any precipitate) into the DNeasy Mini spin
column placed in a 2 ml collection tube (provided). Centrifuge at �6000 x g
(8000 rpm) for 1 min. Discard flow-through and collection tube.*

5. Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add
500 µl Buffer AW1, and centrifuge for 1 min at �6000 x g (8000 rpm). Discard
flow-through and collection tube.*

6. Place the DNeasy Mini spin column in a new 2 ml collection tube (provided), add
500 µl Buffer AW2, and centrifuge for 3 min at 20,000 x g (14,000 rpm) to dry
the DNeasy membrane. Discard flow-through and collection tube.

It is important to dry the membrane of the DNeasy Mini spin column, since residual
ethanol may interfere with subsequent reactions. This centrifugation step ensures
that no residual ethanol will be carried over during the following elution.

Following the centrifugation step, remove the DNeasy Mini spin column carefully
so that the column does not come into contact with the flow-through, since this will
result in carryover of ethanol. If carryover of ethanol occurs, empty the collection
tube, then reuse it in another centrifugation for 1 min at 20,000 x g (14,000 rpm).

7. Place the DNeasy Mini spin column in a clean 1.5 ml or 2 ml microcentrifuge tube
(not provided), and pipet 200 µl Buffer AE directly onto the DNeasy membrane.
Incubate at room temperature for 1 min, and then centrifuge for 1 min at �6000 x g
(8000 rpm) to elute.

Elution with 100 µl (instead of 200 µl) increases the final DNA concentration in
the eluate, but also decreases the overall DNA yield (see Figure 2, page 21).

8. Recommended: For maximum DNA yield, repeat elution once as described in
step 7.

This step leads to increased overall DNA yield.

A new microcentrifuge tube can be used for the second elution step to prevent
dilution of the first eluate. Alternatively, to combine the eluates, the microcentrifuge
tube from step 7 can be reused for the second elution step.

Note: Do not elute more than 200 µl into a 1.5 ml microcentrifuge tube because
the DNeasy Mini spin column will come into contact with the eluate.

* Flow-through contains Buffer AL or Buffer AW1 and is therefore not compatible with bleach. See page 8 for
safety information.
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Protocol: Purification of Total DNA from Animal Blood
or Cells (DNeasy 96 Protocol)
This protocol is designed for high-throughput purification of total DNA from animal
blood (with nucleated or nonnucleated erythrocytes) or from cultured animal or human
cells.

Important points before starting

If using the DNeasy 96 Blood & Tissue Kit for the first time, read “Important Notes”
(page 15).

All centrifugation steps are carried out at room temperature (15–25°C).

PBS is required for use in step 1 (see page 14 for composition). Buffer ATL is not
required in this protocol.

Ensure that ethanol has not been added to Buffer AL (see “Important Notes”,
page 15). Buffer AL can be purchased separately (see page 56 for ordering
information).

Optional: RNase A may be used to digest RNA during the procedure. RNase A is
not provided in the DNeasy 96 Blood & Tissue Kit (see “Copurification of RNA”,
page 19).

Things to do before starting

Buffer ATL and Buffer AL may form precipitates upon storage. If necessary, warm
to 56°C for 5 min until the precipitates have fully dissolved.

Buffer AW1 and Buffer AW2 are supplied as concentrates. Before using for the
first time, add the appropriate amount of ethanol (96–100%) as indicated on the
bottle to obtain a working solution.

Mix Buffer AW1 before use by inverting several times.

Preheat an incubator to 56°C for use in step 2.

Procedure

1. For blood with nonnucleated erythrocytes, follow step 1a; for blood with nucleated
erythrocytes, follow step 1b; for cultured cells, follow step 1c.

Blood from mammals contains nonnucleated erythrocytes. Blood from animals
such as birds, fish, or frogs contains nucleated erythrocytes.

1a. Nonnucleated: Pipet 20 µl proteinase K into each collection microtube. Add
50–100 µl anticoagulated blood per collection microtube. Use a 96-Well-Plate
Register (provided) to identify the position of each sample. Adjust the volume to
220 µl each with PBS. Continue with step 2.
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Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml)
and incubate for 5 min at room temperature before continuing with step 2.

Keep the clear covers from the collection microtube racks for use in step 3. 

1b. Nucleated: Pipet 20 µl proteinase K into each collection microtube. Add 5–10 µl
anticoagulated blood. Use a 96-Well-Plate Register (provided) to identify the
position of each sample. Adjust the volume to 220 µl each with PBS. Continue with
step 2.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml)
and incubate for 5 min at room temperature before continuing with step 2.

Keep the clear covers from the collection microtube racks for use in step 3. 

1c. Cultured cells: Centrifuge the appropriate number of cells (maximum 5 x 106 each)
for 5 min at 300 x g. Use a 96-Well-Plate Register (provided) to identify the position
of each sample. Resuspend the pellets in 200 µl PBS each. Add 20 µl proteinase K
each. Continue with step 2.

When using a frozen cell pellets, allow cells to thaw before adding PBS until the
pellet can be dislodged by gently flicking the tube.

Ensure that an appropriate number of cells is used in the procedure. For cell lines
with a high degree of ploidy (e.g., HeLa cells), it is recommended to use less than
the maximum number of cells listed in Table 1, page 16.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml).
Seal the collection microtubes properly using the caps provided, mix by vortexing,
and incubate for 5 min at room temperature before continuing with step 2.

Keep the clear covers from the collection microtube racks for use in step 3. 

2. Add 200 µl Buffer AL (without added ethanol) to each sample.

Ensure that ethanol has not been added to Buffer AL (see “Buffer AL”, page 18).
Buffer AL can be purchased separately (see page 56 for ordering information).

3. Seal the collection microtubes properly using the caps provided. Place a clear cover
(saved from step 1) over each rack of collection microtubes, and shake the racks
vigorously up and down for 15 s. To collect any solution from the caps, centrifuge
the collection microtubes. Allow the centrifuge to reach 3000 rpm, and then stop
the centrifuge.

Do not prolong this step.

IMPORTANT: The rack of collection microtubes must be vigorously shaken up and
down with both hands to obtain a homogeneous lysate. Inverting the rack of
collection microtubes is not sufficient for mixing. The genomic DNA will not be
sheared by vigorous shaking. The lysate and Buffer AL should be mixed
immediately and thoroughly to yield a homogeneous solution.

Keep the clear covers from the collection microtube racks for use in step 6. 
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4. Incubate at 56°C for 10 min. Place a weight on top of the caps during the
incubation. Mix occasionally during incubation to disperse the sample, or place on
a rocking platform.

Note: Do not use a rotary- or vertical-type shaker as continuous rotation may
release the caps. If incubation is performed in a water bath make sure that the
collection microtubes are not fully submerged and that any remaining water is
removed prior to removing the caps in step 5.

5. Carefully remove the caps, and add 200 µl ethanol (96–100%) to each sample.

6. Seal the collection microtubes properly using the caps provided. Place a clear cover
over each rack of collection microtubes, and shake the racks vigorously up and
down for 15 s. To collect any solution from the caps, centrifuge the collection
microtubes. Allow the centrifuge to reach 3000 rpm, and then stop the centrifuge.

Do not prolong this step.

IMPORTANT: The rack of collection microtubes must be vigorously shaken up and
down with both hands to obtain a homogeneous lysate. Inverting the rack of
collection microtubes is not sufficient for mixing. The genomic DNA will not be
sheared by vigorous shaking. The lysate and ethanol should be mixed immediately
and thoroughly to yield a homogeneous solution.

7. Place two DNeasy 96 plates on top of S-Blocks (provided). Mark the DNeasy 96
plates for later sample identification.

8. Remove and discard the caps from the collection microtubes. Carefully transfer the
lysis mixture (maximum 900 µl) of each sample from step 6 to each well of the
DNeasy 96 plates.

Take care not to wet the rims of the wells to avoid aerosols during centrifugation.
Do not transfer more than 900 µl per well.

Note: Lowering pipet tips to the bottoms of the wells may cause sample overflow
and cross-contamination. Therefore, remove one set of caps at a time, and begin
drawing up the samples as soon as the pipet tips contact the liquid. Repeat until
all the samples have been transferred to the DNeasy 96 plates.

9. Seal each DNeasy 96 plate with an AirPore Tape Sheet (provided). Centrifuge for
4 min at 6000 rpm.

AirPore Tape prevents cross-contamination between samples during centrifugation.

After centrifugation, check that all of the lysate has passed through the membrane
in each well of the DNeasy 96 plates. If lysate remains in any of the wells, cen-
trifuge for a further 4 min.

10. Remove the tape. Carefully add 500 µl Buffer AW1 to each sample.

Note: Ensure that ethanol has been added to Buffer AW1 prior to use.

11. Seal each DNeasy 96 plate with a new AirPore Tape Sheet (provided). Centrifuge
for 2 min at 6000 rpm.
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12. Remove the tape. Carefully add 500 µl Buffer AW2 to each sample.

Note: Ensure that ethanol has been added to Buffer AW2 prior to use.

13. Centrifuge for 15 min at 6000 rpm.

Do not seal the plate with AirPore Tape.

The heat generated during centrifugation ensures evaporation of residual ethanol
in the sample (from Buffer AW2) that might otherwise inhibit downstream
reactions.

14. Place each DNeasy 96 plate in the correct orientation on a new rack of Elution
Microtubes RS (provided).

15. To elute the DNA, add 200 µl Buffer AE to each sample, and seal the DNeasy 96
plates with new AirPore Tape Sheets (provided). Incubate for 1 min at room
temperature (15–25°C). Centrifuge for 4 min at 6000 rpm.

200 µl Buffer AE is sufficient to elute up to 75% of the DNA from each well of the
DNeasy 96 plate.

Elution with volumes less than 200 µl significantly increases the final DNA
concentration of the eluate but may reduce overall DNA yield. For samples
containing less than 1 µg DNA, elution in 50 µl Buffer AE is recommended.

16. Recommended: For maximum DNA yield, repeat step 15 with another 200 µl
Buffer AE.

A second elution with 200 µl Buffer AE will increase the total DNA yield by up to
25%. However due to the increased volume, the DNA concentration is reduced.
If a higher DNA concentration is desired, the second elution step can be performed
using the 200 µl eluate from the first elution. This will increase the yield by up to
15%.

Use new caps (provided) to seal the Elution Microtubes RS for storage.
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Protocol: Purification of Total DNA from Animal Tissues
(DNeasy 96 Protocol)
This protocol is designed for high-throughput purification of total DNA from animal
tissues, including rodent tails.

Important points before starting

If using the DNeasy 96 Blood & Tissue Kit for the first time, read “Important Notes”
(page 15).

All centrifugation steps are carried out at room temperature (15–25°C).

Optional: RNase A may be used to digest RNA during the procedure. RNase A is
not provided in the DNeasy 96 Blood & Tissue Kit (see “Copurification of RNA”,
page 19).

Things to do before starting

Buffer AL should be premixed with ethanol before use. Add 90 ml ethanol
(96–100%) to the bottle containing 86 ml Buffer AL or 260 ml ethanol to the bottle
containing 247 ml Buffer AL and shake thoroughly. Mark the bottle to indicate that
ethanol has been added. (Please note that, for purification of DNA from animal
blood, Buffer AL must be used without ethanol. Buffer AL can be purchased
separately if the same kit will be used for purification of DNA from animal blood.)

Buffer AW1 and Buffer AW2 are supplied as concentrates. Before using for the
first time, add the appropriate amount of ethanol (96–100%) as indicated on the
bottle to obtain a working solution.

Buffer ATL and Buffer AL may form precipitates upon storage. If necessary, warm
to 56°C for 5 min until the precipitates have fully dissolved.

Mix Buffer AW1 before use by inverting several times.

Preheat an incubator to 56°C for use in step 4.

If using frozen tissue, equilibrate the sample to room temperature. Avoid repeated
thawing and freezing of samples since this will lead to reduced DNA size.

Procedure

1. Cut up to 20 mg tissue (up to 10 mg spleen) into small pieces. For rodent tails, place
one (rat) or two (mouse) 0.4–0.6 cm lengths of tail into a collection microtube.
Earmark the animal appropriately. Use a 96-Well-Plate Register (provided) to
identify the position of each sample.
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Ensure that the correct amount of starting material is used (see “Starting amounts
of samples”, page 15). For tissues such as spleen with a very high number of cells
for a given mass of tissue, no more than 10 mg starting material should be used.

We strongly recommend to cut the tissue into small pieces to enable more efficient
lysis. If desired, lysis time can be reduced by disrupting the sample using a bead
mill, such as the QIAGEN TissueLyser (see page 56 for ordering information),
before addition of Buffer ATL and proteinase K. A supplementary protocol for
simultaneous disruption of up to 48 tissue samples using the TissueLyser can be
obtained by contacting QIAGEN Technical Services (see back cover).

For rodent tails, a maximum of 1.2 cm (mouse) or 0.6 cm (rat) tail should be used.
When purifying DNA from the tail of an adult mouse or rat, it is recommended to
use only 0.4–0.6 cm.

Store the samples at –20°C until a suitable number has been collected (up to
192 samples). Samples can be stored at –20°C for several weeks to months
without any reduction in DNA yield. DNA yields will be approximately 10–30 µg,
depending on the type, length, age, and species of sample used (see “Expected
yields”, page 22).

Keep the clear covers from the collection microtube racks for use in step 3. 

2. Prepare a proteinase K–Buffer ATL working solution containing 20 µl proteinase K
stock solution and 180 µl Buffer ATL per sample, and mix by vortexing. For one
set of 96 samples, use 2 ml proteinase K stock solution and 18 ml Buffer ATL.
Immediately pipet 200 µl working solution into each collection microtube
containing the tail sections or tissue samples. Seal the microtubes properly using
the caps provided.

Note: Check Buffer ATL for precipitate. If necessary, dissolve the precipitate by
incubation at 56°C for 5 min before preparing the working solution.

IMPORTANT: After preparation, the proteinase K–Buffer ATL working solution
should be dispensed immediately into the collection microtubes containing the tail
or tissue samples. Incubation of the working solution in the absence of substrate
for >30 min reduces lysis efficiency and DNA purity.

3. Ensure that the microtubes are properly sealed to avoid leakage during shaking.
Place a clear cover (saved from step 1) over each rack of collection microtubes, and
mix by inverting the rack of collection microtubes. To collect any solution from the
caps, centrifuge the collection microtubes. Allow the centrifuge to reach 3000 rpm,
and then stop the centrifuge. It is essential that the samples are completely sub-
merged in the proteinase K–Buffer ATL working solution after centrifugation.
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If the proteinase K–Buffer ATL working solution does not completely cover the
sample, increase the volume of the solution to 300 µl per sample (additional
reagents are available separately; see page 56 for ordering information). Do not
increase volumes above 300 µl as this will exceed the capacity of the collection
microtubes in subsequent steps.

Keep the clear covers from the collection microtube racks for use in step 5. 

4. Incubate at 56°C overnight or until the samples are completely lysed. Place a
weight on top of the caps during the incubation. Mix occasionally during
incubation to disperse the sample, or place on a rocking platform.

Lysis time varies depending on the type, age, and amount of tail or tissue being
processed. Lysis is usually complete in 1–3 h or, for rodent tails, 6–8 h, but optimal
results will be achieved after overnight lysis. 

After incubation the lysate may appear viscous, but should not be gelatinous as it
may clog the DNeasy 96 membrane. If the lysate appears very gelatinous, see the
“Troubleshooting Guide”, page 47, for recommendations.

Note: Do not use a rotary- or vertical-type shaker as continuous rotation may
release the caps. If incubation is performed in a water bath make sure that the
collection microtubes are not fully submerged and that any remaining water is
removed prior to centrifugation in step 5.

5. Ensure that the microtubes are properly sealed to avoid leakage during shaking.
Place a clear cover over each rack of collection microtubes and shake the racks
vigorously up and down for 15 s. To collect any solution from the caps, centrifuge
the collection microtubes. Allow the centrifuge to reach 3000 rpm, and then stop
the centrifuge.

IMPORTANT: The rack of collection microtubes must be vigorously shaken up and
down with both hands to obtain a homogeneous lysate. Inverting the rack of
collection microtubes is not sufficient for mixing. The genomic DNA will not be
sheared by vigorous shaking.

Keep the clear covers from the collection microtube racks for use in step 7. 

Ensure that lysis is complete before proceeding to step 6. The lysate should be
homogeneous following the vigorous shaking. To check this, slowly invert the rack
of collection microtubes (making sure that the caps are tightly closed) and look for
a gelatinous mass. If a gelatinous mass is visible, lysis needs to be extended by
adding another 100 µl Buffer ATL and 15 µl proteinase K, and incubating for a
further 3 h. It is very important to ensure that samples are completely lysed to
achieve optimal yields and to avoid clogging of individual wells of the DNeasy
96 plate.
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Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml).
Close the collection microtubes with fresh caps, mix by shaking vigorously, and
incubate for 5 min at room temperature. To collect any solution from the caps,
centrifuge the collection microtubes. Allow the centrifuge to reach 3000 rpm, and
then stop the centrifuge. Remove the caps, and continue with step 6.

Transcriptionally active tissues such as liver and kidney contain high levels of RNA,
which will copurify with genomic DNA. For tissues that contain low levels of RNA,
such as rodent tails, or if residual RNA is not a concern, RNase A digestion is
usually not necessary.

6. Carefully remove the caps. Add 410 µl premixed Buffer AL–ethanol to each
sample. 

Note: Ensure that ethanol has been added to Buffer AL prior to use (see “Buffer
AL”, page 18).

Note: A white precipitate may form upon addition of Buffer AL–ethanol to the
lysate. It is important to apply all of the lysate, including the precipitate, to the
DNeasy 96 plate in step 9. This precipitate does not interfere with the DNeasy
procedure or with any subsequent application.

If the volumes of Buffer ATL and proteinase K were increased in steps 3 or 5,
increase the volume of Buffer AL and ethanol accordingly. For example, 300 µl
proteinase K–Buffer ATL working solution will require 615 µl Buffer AL–ethanol.

7. Ensure that the microtubes are properly sealed to avoid leakage during shaking.
Place a clear cover over each rack of collection microtubes and shake the racks
vigorously up and down for 15 s. To collect any solution from the caps, centrifuge
the collection microtubes. Allow the centrifuge to reach 3000 rpm, and then stop
the centrifuge.

Do not prolong this step.

IMPORTANT: The rack of collection microtubes must be vigorously shaken up and
down with both hands to obtain a homogeneous lysate. Inverting the rack of
collection microtubes is not sufficient for mixing. The genomic DNA will not be
sheared by vigorous shaking. The lysate and Buffer AL–ethanol should be mixed
immediately and thoroughly to yield a homogeneous solution.

8. Place two DNeasy 96 plates on top of S-Blocks (provided). Mark the DNeasy 96
plates for later sample identification.

9. Remove and discard the caps from the collection microtubes. Carefully transfer the
lysate (maximum 900 µl) of each sample from step 7 to each well of the DNeasy
96 plates.

Take care not to wet the rims of the wells to avoid aerosols during centrifugation.
Do not transfer more than 900 µl per well.
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Note: Lowering pipet tips to the bottoms of the wells may cause sample overflow
and cross-contamination. Therefore, remove one set of caps at a time, and begin
drawing up the samples as soon as the pipet tips contact the liquid. Repeat until
all the samples have been transferred to the DNeasy 96 plates.

Note: If the volume of proteinase K–Buffer ATL working solution was increased in
steps 3 or 5, transfer no more than 900 µl of the supernatant from step 7 to the
DNeasy 96 plate. Larger amounts will exceed the volume capacity of the
individual wells. Discard any remaining supernatant from step 7 as this will not
contribute significantly to the total DNA yield.

10. Seal each DNeasy 96 plate with an AirPore Tape Sheet (provided). Centrifuge for
10 min at 6000 rpm.

AirPore Tape prevents cross-contamination between samples during centrifugation.

After centrifugation, check that all of the lysate has passed through the membrane
in each well of the DNeasy 96 plates. If lysate remains in any of the wells,
centrifuge for a further 10 min.

11. Remove the tape. Carefully add 500 µl Buffer AW1 to each sample.

Note: Ensure that ethanol has been added to Buffer AW1 prior to use.

It is not necessary to increase the volume of Buffer AW1 if the volume of proteinase
K–Buffer ATL working solution was increased in steps 3 or 5.

12. Seal each DNeasy 96 plate with a new AirPore Tape Sheet (provided). Centrifuge
for 5 min at 6000 rpm.

13. Remove the tape. Carefully add 500 µl Buffer AW2 to each sample.

Note: Ensure that ethanol has been added to Buffer AW2 prior to use.

It is not necessary to increase the volume of Buffer AW2 if the volume of proteinase
K–Buffer ATL working solution was increased in steps 3 or 5.

14. Centrifuge for 15 min at 6000 rpm.

Do not seal the plate with AirPore Tape.

The heat generated during centrifugation ensures evaporation of residual ethanol
in the sample (from Buffer AW2) that might otherwise inhibit downstream
reactions.

15. Place each DNeasy 96 plate in the correct orientation on a new rack of Elution
Microtubes RS (provided).

16. To elute the DNA, add 200 µl Buffer AE to each sample, and seal the DNeasy 96
plates with new AirPore Tape Sheets (provided). Incubate for 1 min at room tem-
perature (15–25°C). Centrifuge for 2 min at 6000 rpm.

200 µl Buffer AE is sufficient to elute up to 75% of the DNA from each well of the
DNeasy 96 plate.
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Elution with volumes less than 200 µl significantly increases the final DNA
concentration of the eluate but may reduce overall DNA yield. For samples
containing less than 1 µg DNA, elution in 50 µl Buffer AE is recommended.

17. Recommended: For maximum DNA yield, repeat step 16 with another 200 µl
Buffer AE.

A second elution with 200 µl Buffer AE will increase the total DNA yield by up to
25%. However due to the increased volume, the DNA concentration is reduced.
If a higher DNA concentration is desired, the second elution step can be performed
using the 200 µl eluate from the first elution. This will increase the yield by up to
15%.

Use new caps (provided) to seal the Elution Microtubes RS for storage.
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Protocol: Pretreatment for Paraffin-Embedded Tissue
This protocol is designed for purification of total DNA from fixed, paraffin-embedded
tissues using the DNeasy Blood & Tissue Kit. The protocol describes the preliminary
removal of paraffin by extraction with xylene.

Important points before starting

The length of DNA purified from fixed tissues is usually <650 bp, depending on
the type and age of the sample and the quality of the fixative used.

Use of fixatives such as alcohol and formalin is recommended. Fixatives that cause
cross-linking, such as osmic acid, are not recommended as it can be difficult to
obtain amplifiable DNA from tissue fixed with these agents.

Lysis time will vary from sample to sample depending on the type of tissue
processed.

Yields will depend both on the size and the age of the sample processed. Reduced
yields compared with fresh or frozen tissues are to be expected. Therefore, eluting
purified DNA in 50–100 µl Buffer AE is recommended.

This pretreatment protocol has not been thoroughly tested and optimized for high-
throughput DNA purification using the DNeasy 96 Blood & Tissue Kit. As a general
guideline, we recommend to decrease the amount of starting material when using
this protocol with the DNeasy 96 Blood & Tissue Kit.

Things to do before starting

Preheat a heating block, incubator, or water bath to 37°C for use in step 9.

Procedure

1. Place a small section (not more than 25 mg) of paraffin-embedded tissue in a 2 ml
microcentrifuge tube (not provided).

2. Add 1200 µl xylene. Vortex vigorously.

3. Centrifuge in a microcentrifuge at full speed for 5 min at room temperature
(15–25°C).

4. Remove supernatant by pipetting. Do not remove any of the pellet.

5. Add 1200 µl ethanol (96–100%) to the pellet to remove residual xylene, and mix
gently by vortexing.

6. Centrifuge in a microcentrifuge at full speed for 5 min at room temperature.

7. Carefully remove the ethanol by pipetting. Do not remove any of the pellet.

8. Repeat steps 5–7 once.
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9. Incubate the open microcentrifuge tube at 37°C for 10–15 min until the ethanol has
evaporated.

10. Resuspend the tissue pellet in 180 µl Buffer ATL, and continue with step 2 of the
protocol “Purification of Total DNA from Animal Tissues (Spin-Column Protocol)”,
page 29.
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Protocol: Pretreatment for Formalin-Fixed Tissue
This protocol is designed for purification of total DNA from fixed, paraffin-embedded
tissues. The protocol describes the preliminary washing with PBS to remove the fixative.

Important points before starting

The length of DNA purified from fixed tissues is usually <650 bp, depending on
the type and age of the sample and the quality of the fixative used.

Use of fixatives such as alcohol and formalin is recommended. Fixatives that cause
cross-linking, such as osmic acid, are not recommended as it can be difficult to
obtain amplifiable DNA from tissue fixed with these agents.

Lysis time will vary from sample to sample depending on the type of tissue
processed.

Yields will depend both on the size and the age of the sample processed. Reduced
yields compared with fresh or frozen tissues are to be expected. Therefore, eluting
purified DNA in a total volume of 50–100 µl Buffer AE is recommended.

This pretreatment protocol has not been thoroughly tested and optimized for high-
throughput DNA purification using the DNeasy 96 Blood & Tissue Kit. As a general
guideline, we recommend to decrease the amount of starting material when using
this protocol with the DNeasy 96 Blood & Tissue Kit.

Procedure

1. Wash the sample (not more than 25 mg) twice in PBS to remove the fixative. 

2. Discard the PBS and continue with step 1 of the protocol “Purification of Total DNA
from Animal Tissues (Spin-Column Protocol)”, page 28.
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Protocol: Pretreatment for Gram-Negative Bacteria
This protocol is designed for purification of total DNA from Gram-negative bacteria,
such as E. coli. The protocol describes the preliminary harvesting of bacteria before
DNA purification.

Important points before starting

See “Quantification of starting material”, page 17, for details of how to collect
and store samples, and how to determine the number of cells in a bacterial culture.

This pretreatment protocol has not been thoroughly tested and optimized for high-
throughput DNA purification using the DNeasy 96 Blood & Tissue Kit. As a general
guideline, we recommend to decrease the amount of starting material when using
this protocol with the DNeasy 96 Blood & Tissue Kit.

Procedure

1. Harvest cells (maximum 2 x 109 cells) in a microcentrifuge tube by centrifuging for
10 min at 5000 x g (7500 rpm). Discard supernatant.

2. Resuspend pellet in 180 µl Buffer ATL.

3. Continue with step 2 of the protocol “Purification of Total DNA from Animal Tissues
(Spin-Column Protocol)”, page 29.
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Protocol: Pretreatment for Gram-Positive Bacteria
This protocol is designed for purification of total DNA from Gram-positive bacteria, such
as Corynebacterium spp. and B. subtilis. The protocol describes the preliminary
harvesting of bacteria and incubation with lysozyme to lyse their cell walls before DNA
purification.

Important points before starting

See “Quantification of starting material”, page 17, for details of how to collect
and store samples, and how to determine the number of cells in a bacterial culture.

Ensure that ethanol has not been added to Buffer AL (see “Buffer AL”, page 18).
Buffer AL can be purchased separately (see page 56 for ordering information).

This pretreatment protocol has not been thoroughly tested and optimized for high-
throughput DNA purification using the DNeasy 96 Blood & Tissue Kit. As a general
guideline, we recommend to decrease the amount of starting material when using
this protocol with the DNeasy 96 Blood & Tissue Kit.

Things to do before starting

Prepare enzymatic lysis buffer as described in “Equipment and Reagents to Be
Supplied by User”, page 14.

Preheat a heating block or water bath to 37°C for use in step 3.

Procedure

1. Harvest cells (maximum 2 x 109 cells) in a microcentrifuge tube by centrifuging for
10 min at 5000 x g (7500 rpm). Discard supernatant.

2. Resuspend bacterial pellet in 180 µl enzymatic lysis buffer.

3. Incubate for at least 30 min at 37°C.

After incubation, heat the heating block or water bath to 56°C if it is to be used
for the incubation in step 5.

4. Add 25 µl proteinase K and 200 µl Buffer AL (without ethanol). Mix by vortexing.

Note: Do not add proteinase K directly to Buffer AL.

Ensure that ethanol has not been added to Buffer AL (see “Buffer AL”, page 18).
Buffer AL can be purchased separately (see page 56 for ordering information).

5. Incubate at 56°C for 30 min.

Optional: If required, incubate at 95°C for 15 min to inactivate pathogens. Note
that incubation at 95°C can lead to some DNA degradation.
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6. Add 200 µl ethanol (96–100%) to the sample, and mix thoroughly by vortexing. 

It is important that the sample and the ethanol are mixed thoroughly to yield a
homogeneous solution.

A white precipitate may form on addition of ethanol. It is essential to apply all of
the precipitate to the DNeasy Mini spin column. This precipitate does not interfere
with the DNeasy procedure.

7. Continue with step 4 of the protocol “Purification of Total DNA from Animal Tissues
(Spin-Column Protocol)”, page 30.
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Troubleshooting Guide
This troubleshooting guide may be helpful in solving any problems that may arise. The
scientists in QIAGEN Technical Services are always happy to answer any questions you
may have about either the information and protocols in this handbook or molecular
biology applications (see back cover for contact information).

Comments and suggestions

Low yield

a) Storage of starting material DNA yield is dependent on the type, size,
age, and storage of starting material. Lower
yields will be obtained from material that
has been inappropriately stored (see
“Sample collection and storage”, page 17).

b) Too much starting material In future preparations, reduce the amount of
starting material used (see ”Quantification
of starting material”, page 16).

c) Insufficient mixing of sample DNeasy spin-column protocols: In future
with Buffer AL and ethanol preparations, mix sample first with Buffer AL
before binding and then with ethanol by pulse vortexing for

15 s each time before applying the sample
to the DNeasy Mini spin column.

DNeasy 96 protocols: In future preparations,
ensure that samples are mixed by vigorous
shaking, as described in the protocols,
before applying the sample to the DNeasy
96 plate.

d) DNA inefficiently eluted Increase elution volume to 200 µl and
perform another elution step. See also
“Elution of pure nucleic acids”, page 21.
Check that ethanol was added before
applying the sample to the DNeasy Mini
spin column. Check that any precipitate in
Buffer ATL and/or Buffer AL was dissolved
before use. 

e) Buffer AW1 or Buffer AW2  Make sure that ethanol has been added to
prepared incorrectly Buffer AW1 and Buffer AW2 before use (see

“Things to do before starting”, pages 25,
28, 31, and 35). 



DNeasy Blood & Tissue Handbook   07/200648

Comments and suggestions

f) Water used instead of The low pH of deionized water from some
Buffer AE for elution water purifiers may reduce DNA yield.

When eluting with water, ensure that the pH
of the water is at least 7.0. 

g) Animal tissue: Insufficient lysis In future preparations, reduce the amount of
starting material used (see ”Quantification
of starting material”, page 17). 

Cut tissue into smaller pieces to facilitate
lysis. After lysis, vortex sample vigorously;
this will not damage or reduce the size of the
DNA. 

If a substantial gelatinous pellet remains
after incubation and vortexing, extend
incubation time at 56°C for proteinase K
digest and/or increase amount of
proteinase K to 40 µl. (For DNeasy 96
protocols, always check that the sample is
completely lysed before addition of Buffer AL
and ethanol. If a gelatinous mass is still
present after the overnight incubation, lysis
needs to be extended.)

Ensure that the sample is fully submerged in
the buffer containing proteinase K. If
necessary, double the amount of Buffer ATL
and proteinase K, and use a 2 ml
microcentrifuge tube for lysis. Remember to
adjust the amount of Buffer AL and ethanol
proportionately in subsequent steps. (For
example, a lysis step with 360 µl Buffer ATL
plus 40 µl proteinase K will require 400 µl
Buffer AL plus 400 µl ethanol to bind DNA
to the DNeasy membrane). 

DNeasy spin-column protocols: Pipet the
sample into the DNeasy Mini spin column in
two sequential loading steps. Discard flow-
through between these loading steps. 

DNeasy 96 protocols: Transfer a maximum
of 900 µl of each sample to the DNeasy 96
plate.
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Comments and suggestions

h) Bacteria: Insufficient lysis In future preparations, extend incubation
with cell-wall–lysing enzyme and/or
increase amount of lysing enzyme.

Harvest bacteria during early log phase of
growth (see “Sample collection and
storage”, page 15).

i) DNeasy spin-column protocols: Check that ethanol was added before 
DNA not bound to DNeasy Mini applying the sample to the DNeasy Mini
spin column spin column.

j) DNeasy 96 protocols: Inefficient Repeat elution with Buffer AE preheated to
DNA elution 70°C.

After addition of Buffer AE preheated to
70°C, the DNeasy 96 plate should be
incubated at room temperature for 1 min. To
increase elution efficiency, extend the
incubation to 5 min at 70°C.

k) DNeasy 96 protocols: Unequal Ensure that all tips are firmly fitted to the
volumes of Buffer AE or water pipet. Check liquid levels in tips before 
delivered by the multichannel pipet dispensing.

DNeasy Mini spin column or DNeasy 96 plate clogged

Too much starting material Increase g-force and/or duration of 
and/or insufficient lysis centrifugation step. In future preparations,

reduce the amount of starting material used
(see ”Quantification of starting material”,
page 17). For rodent tails or bacteria, see
also “Insufficient lysis” in the “Low yield”
section above. 

Low concentration of DNA in the eluate

Second elution step diluted Use a new collection tube for the second 
the DNA eluate to prevent dilution of the first eluate.

Reduce elution volume to 50–100 µl. See
“Elution of pure nucleic acids”, page 21. 

A260/A280 ratio of purified DNA is low

a) Water used instead of buffer to Use 10 mM Tris·Cl, pH 7.5 instead of water
measure A260/A280 to dilute the sample before measuring purity.

See “Appendix A: Determination of Yield,
Purity, and Length of DNA”, page 52. 

b) Inefficient cell lysis See “Low yield”, above.
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Comments and suggestions

A260/A280 ratio of purified DNA is high

High level of residual RNA Perform the optional RNase treatment in the
protocol.

DNA does not perform well in downstream applications

a) Salt carryover Ensure that Buffer AW2 has been used at
room temperature (15–25°C). 

Ensure that Buffer AW1 and Buffer AW2
were added in the correct order. 

b) Ethanol carryover DNeasy spin-column protocols: Ensure that,
when washing with Buffer AW2, the column
is centrifuged for 3 min at 20,000 x g
(14,000 rpm) to dry the DNeasy membrane.
Following the centrifugation step, remove
the DNeasy Mini spin column carefully so
that the column does not come into contact
with the flow-through. If ethanol is visible in
the DNeasy Mini spin column (as either
drops or a film), discard the flow-through,
keep the collection tube, and centrifuge for
a further 1 min at 20,000 x g. 

DNeasy 96 protocols: Incubate the DNeasy
96 plate, uncovered, in an oven or
incubator for 10 min at 80°C after the
second wash to remove all traces of Buffer
AW2.

c) Too much DNA used For PCR applications, a single-copy gene
can typically be detected after 35 PCR
cycles with 100 ng template DNA. 

DNA sheared

a) Sample repeatedly frozen  Avoid repeated freezing and thawing of
and thawed starting material.

b) Sample too old Old samples often yield only degraded
DNA.

White precipitate in Buffer ATL or Buffer AL

White precipitate may form at  Any precipitate formed when Buffer ATL or
low temperature after prolonged Buffer AL are added must be dissolved by
storage incubating the buffer at 56°C until it

disappears. 
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Comments and suggestions

Discolored membrane after wash with Buffer AW2, or colored eluate

a) Rodent tails: Hair not removed DNeasy spin-column protocols: In future
from rodent tails during preparations, centrifuge lysate for 5 min at
preparation 20,000 x g after digestion with proteinase

K. Transfer supernatant into a new tube
before proceeding with step 3. 

DNeasy 96 protocols: In future preparations,
centrifuge the rack of collection microtubes
containing the lysates for 5 min at 6000 rpm
at step 5. Remove the caps. Carefully
transfer the lysates, without disturbing the
pelleted debris, to another rack of collection
microtubes. Continue the protocol at step 6.

b) Animal blood: Contamination  Reduce amount of blood used and/or 
with hemoglobin double the amount of proteinase K used per

preparation. Try using buffy coat instead of
whole blood.
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Appendix A: Determination of Yield, Purity, and Length
of DNA
Determination of yield and purity

DNA yield is determined by measuring the concentration of DNA in the eluate by its
absorbance at 260 nm. Absorbance readings at 260 nm should fall between 0.1 and
1.0 to be accurate. Sample dilution should be adjusted accordingly. Measure the
absorbance at 260 nm or scan absorbance from 220–330 nm (a scan will show if there
are other factors affecting absorbance at 260 nm; for instance, absorbance at 325 nm
would indicate contamination by particulate matter or a dirty cuvette). An A260 value of
1 (with a 1 cm detection path) corresponds to 50 µg DNA per milliliter water. Water
should be used as diluent when measuring DNA concentration since the relationship
between absorbance and concentration is based on extinction coefficients calculated
for nucleic acids in water.* Both DNA and RNA are measured with a spectrophotometer
at 260 nm; to measure only DNA in a mixture of DNA and RNA, a fluorimeter must be
used.

An example of the calculations involved in DNA quantification is shown below.

Volume of DNA sample = 100 µl

Dilution = 20 µl of DNA sample + 180 µl distilled water
(1/10 dilution)

Measure absorbance of diluted sample in a 0.2 ml cuvette

A260 = 0.2

Concentration of DNA sample = 50 µg/ml x A260 x dilution factor

= 50 µg/ml x 0.2 x 10

= 100 µg/ml

Total amount = concentration x volume of sample in milliliters

= 100 µg/ml x 0.1 ml

= 10 µg DNA

The ratio of the readings at 260 nm and 280 nm (A260/A280) provides an estimate of
the purity of DNA with respect to contaminants that absorb UV, such as protein.
However, the A260/A280 ratio is influenced considerably by pH. Since water is not
buffered, the pH and the resulting A260/A280 ratio can vary greatly. Lower pH results in
a lower A260/A280 ratio and reduced sensitivity to protein contamination. For accurate
values, we recommend measuring absorbance in 10 mM Tris·Cl, pH 7.5, in which pure
DNA has an A260/A280 ratio of 1.8–2.0. Always be sure to calibrate the
spectrophotometer with the same solution.

* Wilfinger, W.W., Mackey, M., and Chomcynski, P. (1997) Effect of pH and ionic strength on the
spectrophotometric assessment of nucleic acid purity. BioTechniques 22, 474.
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Determination of length

The precise length of genomic DNA should be determined by pulse-field gel
electrophoresis (PFGE) through an agarose gel. To prepare the sample for PFGE, the
DNA should be concentrated by alcohol precipitation and the DNA pellet dried briefly
at room temperature (15–25°C) for 5–10 minutes. Avoid drying the DNA pellet for
more than 10 minutes since overdried genomic DNA is very difficult to redissolve.
Redissolve in approximately 30 µl TE buffer, pH 8.0,* for at least 30 minutes at 60°C.
Load 3–5 µg of DNA per well. Standard PFGE conditions are as follows:

1% agarose gel in 0.5 x TBE electrophoresis buffer*

switch intervals = 5–40 seconds

run time = 17 hours 

voltage = 170 V

* When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective
goggles. For more information, please consult the appropriate material safety data sheets (MSDSs),
available from the product supplier.
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Appendix B: Cleaning S-Blocks
Cleaning S-Blocks

To avoid cross-contamination, after each use rinse the S-Blocks thoroughly in tap water,
incubate for 1 min at room temperature in 0.4 M HCl,* empty, and wash thoroughly
with distilled water. Used S-Blocks can also be autoclaved after washing. Additional 
S-Blocks can be ordered separately (see page 55 for ordering information).

* When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective
goggles. For more information, please consult the appropriate material safety data sheets (MSDSs),
available from the product supplier.
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Ordering Information

Product Contents Cat. no.

DNeasy Blood & Tissue Kit (50) 50 DNeasy Mini Spin Columns, 69504
Proteinase K, Buffers, Collection 
Tubes (2 ml)

DNeasy Blood & Tissue 250 DNeasy Mini Spin Columns, 69506
Kit (250) Proteinase K, Buffers, Collection 

Tubes (2 ml)

DNeasy 96 Blood & Tissue For 4 x 96 DNA minipreps: 69581
Kit (4)* 4 DNeasy 96 Plates, Proteinase K, 

Buffers, S-Blocks, AirPore Tape 
Sheets, Collection Microtubes 
(1.2 ml), Elution Microtubes RS, 
Caps, 96-Well Plate Registers

DNeasy 96 Tissue Kit (12)* For 12 x 96 DNA minipreps: 69582
12 DNeasy 96 Plates, Proteinase K, 
Buffers, S-Blocks, AirPore Tape 
Sheets, Collection Microtubes 
(1.2 ml), Elution Microtubes RS, 
Caps, 96-Well Plate Registers

QIAGEN 96-Well Plate Centrifugation System

Centrifuge 4-15C Universal laboratory centrifuge with  Inquire
brushless motor

Centrifuge 4K15C Universal refrigerated laboratory  Inquire
centrifuge with brushless motor

Plate Rotor 2 x 96 Rotor for 2 QIAGEN 96-well plates, 81031
for use with QIAGEN Centrifuges

Accessories

Collection Tubes (2 ml) 1000 Collection Tubes (2 ml) 19201

Collection Microtubes Nonsterile polypropylene tubes 19560
(racked, 10 x 96) (1.2 ml), 960 in racks of 96

Collection Microtube Caps Nonsterile polypropylene caps for 19566
(120 x 8) collection microtubes (1.2 ml) and 

round-well blocks, 960 in strips of 8

S-Blocks (24) 96-well blocks with 2.2 ml wells, 19585
24 per case

* Larger kit sizes and/or formats available; please inquire.
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Ordering Information

Product Contents Cat. no.

AirPore Tape Sheets (50) Microporous tape sheets for covering 19571 
96-well blocks: 50 sheets per pack

TissueRuptor Handheld rotor–stator homogenizer Inquire

TissueRuptor Disposable 25 nonsterile plastic disposable 990890
Probes (25) probes for use with the TissueRuptor

TissueLyser Universal laboratory mixer-mill Inquire
disruptor

TissueLyser Adapter Set 2 x 24 2 sets of Adapter Plates and 2 racks 69982
for use with 2.0 ml microcentrifuge 
tubes on the TissueLyser

TissueLyser Adapter Set 2 x 96 2 sets of Adapter Plates for use with 69984
Collection Microtubes (racked) on 
the TissueLyser

Stainless Steel Beads, Stainless Steel Beads, suitable for 69989
5 mm (200) use with the TissueLyser system

QIAGEN Proteinase K (2 ml) 2 ml (>600 mAU/ml, solution) 19131

QIAGEN Proteinase K (10 ml) 10 ml (>600 mAU/ml, solution) 19133

RNase A (17,500 U) 2.5 ml (100 mg/ml; 7000 units/ml, 19101
solution)

Buffer AL (216 ml) 216 ml Lysis Buffer 19075

Buffer ATL (200 ml) 200 ml Tissue Lysis Buffer for 19076
1000 preps

Buffer AW1 (Concentrate, 242 ml Wash Buffer (1) Concentrate 19081
242 ml)

Buffer AW2 (Concentrate, 324 ml Wash Buffer (2) Concentrate 19072
324 ml)

Buffer AE (240 ml) 240 ml Elution Buffer 19077

Related products

QIAGEN Genomic-tip 20/G 25 columns 10223

QIAGEN Genomic-tip 100/G 25 columns 10243

QIAGEN Genomic-tip 500/G 10 columns 10262

Blood & Cell Culture DNA 25 QIAGEN Genomic-tip 20/G, 13323
Mini Kit (25) QIAGEN Protease, Buffers
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Ordering Information

Product Contents Cat. no.

Blood & Cell Culture DNA 25 QIAGEN Genomic-tip 100/G, 13343
Midi Kit (25) QIAGEN Protease, Buffers

Blood & Cell Culture DNA 10 QIAGEN Genomic-tip 500/G, 13362
Maxi Kit (10) QIAGEN Protease, Buffers

BioSprint 15 DNA Blood For 45 preps on the BioSprint 15 940014
Kit (45)* workstation: 5-Rod Covers, 

5-Tube Strips, MagAttract 
Suspension G, Buffers and Reagents

BioSprint 96 DNA Blood For 48 preps on the BioSprint 96 940054
Kit (48)* workstation: Large 96-Rod Covers, 

96-Well Microplates MP, S-Blocks, 
MagAttract Suspension G, Buffers 
and Reagents

RNeasy® Mini Kit (50)* For 50 RNA minipreps: 50 RNeasy  74104
Mini Spin Columns, Collection Tubes 
(1.5 ml and 2 ml), RNase-free 
Reagents and Buffers

RNeasy Midi Kit (10)* For 10 RNA midipreps: 10 RNeasy 75142
Midi Spin Columns, Collection 
Tubes (15 ml), RNase-free Reagents 
and Buffers

RNeasy Maxi Kit (12) For 12 RNA maxipreps: 12 RNeasy 75162
Maxi Spin Columns, Collection 
Tubes (50 ml), RNase-free Reagents 
and Buffers

RNeasy Protect Mini Kit (50)* For RNA stabilization and 50 RNA 74124
minipreps: RNAlater® RNA 
Stabilization Reagent (50 ml), 
50 RNeasy Mini Spin Columns, 
Collection Tubes (1.5 ml and 2 ml), 
RNase-free Reagents and Buffers

* Larger kit sizes and/or formats available; please inquire.
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Ordering Information

Product Contents Cat. no.

RNeasy Fibrous Tissue For 50 RNA minipreps: 50 RNeasy 74704
Mini Kit (50)* Mini Spin Columns, Collection Tubes 

(1.5 ml and 2 ml), Proteinase K, 
RNase-free DNase I, RNase-free 
Reagents and Buffers

RNeasy Lipid Tissue Mini For 50 RNA minipreps: 50 RNeasy 74804 
Kit (50)* Mini Spin Columns, Collection Tubes 

(1.5 ml and 2 ml), QIAzol Lysis 
Reagent, RNase-free Reagents and 
Buffers

* Larger kit sizes and/or formats available; please inquire.
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QIAGEN Distributors and Importers
Please see the back cover for contact information for your local QIAGEN office. 

Argentina
Tecnolab S.A.
Tel: (011) 4555 0010
Fax: (011) 4553 3331
E-mail: info@tecnolab.com.ar

Bangladesh
GeneTech Biotechnology
Tel: +880-2-8624304
Fax: +880-2-9568738
E-mail: info@genebiotechbd.com

Bosnia-Herzegovina
MEDILINE d.o.o.
Tel.: +386 1 830-80-40
Fax: +386 1 830-80-70

+386 1 830-80-63
E-mail: info@mediline.si

Brazil
Uniscience do Brasil  
Tel: 011 3622 2320 
Fax: 011 3622 2323
E-mail: info@uniscience.com 

Chile
Biosonda SA
Tel: +562 209 6770
Fax: +562 274 5462
E-mail: ventas@biosonda.cl

China
Eastwin Scientific, Inc. 
Order: +86-400-8182168
Tel: +86-10-51663168
Fax: +86-10-82898283
E-mail: laborder@eastwin.com.cn

Gene Company Limited
Tel: +86-21-64951899
Fax: +86-21-64955468
E-mail:
info_bj@genecompany.com (Beijing)
info_sh@genecompany.com (Shanghai)
info_cd@genecompany.com (Chengdu)
info_gz@genecompany.com
(Guangzhou)

Genetimes Technology, Inc.
Order: 800-820-5565
Tel: +86-21-54262677
Fax: +86-21-64398855
E-mail: order@genetimes.com.cn

Colombia
GENTECH – Genetics & Technology
Tel: (+57)(4)2519037
Fax: (+57)(4)2516555
E-mail:
gerencia@gentechcolombia.com
soporte@gentechcolombia.com

Croatia
INEL Medicinska Tehnika d.o.o.
Tel: (01) 2984-898
Fax: (01) 6520-966
E-mail: 
inel-medicinska-tehnika@zg.htnet.hr

Cyprus
Scientronics Ltd
Tel: +357 22 467880/90
Fax: +357 22 764614
E-mail: a.sarpetsas@biotronics.com.cy

Czech Republic
BIO-CONSULT spol. s.r.o.
Tel/Fax: (+420) 2 417 29 792
E-mail: info@bioconsult.cz 

Ecuador
INMUNOCHEM S.A.C.
Tel: +51 1 4409678
Fax: +51 1 4223701
E-mail: inmunochem@terra.com.pe

Egypt
Clinilab
Tel: 52 57 212
Fax: 52 57 210
E-mail: Clinilab@link.net

Estonia
Quantum Eesti AS
Tel: +372 7301321
Fax: +372 7304310
E-mail: quantum@quantum.ee

Greece
BioAnalytica S.A.
Tel: (210)-640 03 18
Fax: (210)-646 27 48 
E-mail: bioanalyt@hol.gr

Hong Kong SAR
Gene Company Limited
Tel: +852-2896-6283
Fax: +852-2515-9371
E-mail: info@genehk.com

Genetimes Technology International
Holding Ltd.
Tel: +852-2385-2818
Fax: +852-2385-1308
E-mail: hongkong@genetimes.com.hk

Hungary
BioMarker Kft.
Tel: +36 28 419 986
Fax: +36 28 422 319
E-mail: biomarker@biomarker.hu

India
Genetix
Tel: +91-11-51427031
Fax: +91-11-25419631
E-mail: genetix@genetixbiotech.com

Indonesia
PT Research Biolabs
Tel: +62 21 5865357
E-mail:
indonesia@researchbiolabs.com

Israel
Eldan Electronic Instruments Co. Ltd.
Tel: +972-3-937 1133
Fax: +972-3-937 1121
E-mail: bio@eldan.biz

Jordan
SAHOURY GROUP
Tel: +962 6 4633290-111
Fax: +962 6 4633290-110
E-mail: info@sahoury.com

Korea
LRS Laboratories, Inc.
Tel: (02) 924-86 97
Fax: (02) 924-86 96
E-mail: webmaster@lrslab.co.kr

Philekorea Technology, Inc.
Tel: 1544-3137
Fax: 1644-3137
E-mail: support@philekorea.co.kr

Latvia
SIA “J.I.M.”
Tel: 7136393
Fax: 7136394
E-mail: jim@mednet.lv

Lithuania
INTERLUX 
Tel: +370-5-2786850
Fax: +370-5-2796728
E-mail: spirit@interlux.lt 

Malaysia
RESEARCH BIOLABS SDN. BHD.
Tel: (603)-8070 3101
Fax: (603)-8070 5101
E-mail: biolabs@tm.net.my

Mexico
Quimica Valaner S.A. de C.V.
Tel: (55) 55 25 57 25 
Fax: (55) 55 25 56 25
E-mail: ventas@valaner.com

New Zealand
Biolab Ltd
Tel: (09) 980 6700

0800 933 966
Fax: (09) 980 6788
E-mail:
biosciences@nzl.biolabgroup.com 

Oman
Al Mazouri Medical & Chemical 
Supplies
Tel: +971 4 266 1272  

(ext. 301, 310, 311) 
Fax: +971 4 269 0612

(ATTN:  LAB DIVISION)
E-mail: shaji@almaz.net.ae

Pakistan
Pakistan Microbiological Associates
Tel: +92-51-5567953
Fax: +92-51-5514134
E-mail: orderpma@comsats.net.pk

Peru
INMUNOCHEM S.A.C.
Tel: +51 1 4409678
Fax: +51 1 4223701
E-mail: inmunochem@terra.com.pe 

Poland
Syngen Biotech Sp.z.o.o.
Tel: (071) 798 58 50 - 52
Fax: (071) 798 58 53
E-mail: info@syngen.pl

Portugal
IZASA PORTUGAL, LDA
Tel: (21) 424 7312
Fax: (21) 417 2674
E-mail: consultasbiotec@izasa.es

Romania
Zyrcon Medical S. R. L. 
Tel: +40 21 2245607
Fax: +40 21 2245608
E-mail:
virgil.dracea@zyrconmedical.ro
secretariat@zyrconmedical.ro

Saudi Arabia
Abdulla Fouad Holding Company
Tel: (03) 8324400
Fax: (03) 8346174
E-mail:
sadiq.omar@abdulla-fouad.com

Singapore
Research Biolabs Pte Ltd
Tel: 6777 5366
Fax: 6778 5177
E-mail: sales@researchbiolabs.com

Slovak Republic
BIO-CONSULT Slovakia spol. s.r.o.
Tel/Fax: (02) 5022 1336
E-mail: bio-cons@cdicon.sk

Slovenia
MEDILINE d.o.o.
Tel: (01) 830-80-40
Fax: (01) 830-80-70

(01) 830-80-63
E-mail: info@mediline.si

South Africa
Southern Cross Biotechnology 
(Pty) Ltd
Tel: (021) 671 5166
Fax: (021) 671 7734
E-mail: info@scb.co.za

Spain
IZASA, S.A.
Tel: (93) 902.20.30.90
Fax: (93) 902.22.33.66
E-mail: consultasbiotec@izasa.es

Taiwan
TAIGEN Bioscience Corporation
Tel: (02) 2880 2913
Fax: (02) 2880 2916
E-mail: order@taigen.com

Thailand
Theera Trading Co. Ltd.
Tel: (02) 412-5672
Fax: (02) 412-3244
E-mail: theetrad@samart.co.th

Turkey
Medek Medikal Ürünler
ve Saglik Hizmetleri A. S.
Tel: (216) 302 15 80
Fax: (216) 302 15 88
E-mail: makialp@med-ek.com

United Arab Emirates
Al Mazouri Medical & Chemical 
Supplies
Tel: +971 4 266 1272

(ext. 301, 310, 311)
Fax: +971 4 269 0612

(ATTN:  LAB DIVISION) 
E-mail: shaji@almaz.net.ae

Uruguay
Bionova Ltda 
Tel: +598 2 6130442 
Fax : +598 2 6142592 
E-mail: bionova@internet.com.uy 

Venezuela
SAIXX Technologies c.a.
Tel: +58212 3248518

+58212 7616143
+58212 3255838

Fax: +58212 7615945
E-mail: ventas@saixx.com 

saixxventas@cantv.net 

Vietnam
Viet Anh Instruments Co., Ltd.
Tel: +84-4-5119452
Fax: +84-4-5119453
E-mail: VietanhHN@hn.vnn.vn

All other countries
QIAGEN GmbH, Germany
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Australia ■ Orders 03-9840-9800 ■ Fax 03-9840-9888 ■ Technical 1-800-243-066

Austria ■ Orders 0800/28-10-10 ■ Fax 0800/28-10-19 ■ Technical 0800/28-10-11

Belgium ■ Orders 0800-79612 ■ Fax 0800-79611 ■ Technical 0800-79556

Canada ■ Orders 800-572-9613 ■ Fax 800-713-5951 ■ Technical 800-DNA-PREP (800-362-7737)

China ■ Orders 021-51345678 ■ Fax 021-51342500 ■ Technical 021-51345678

Denmark ■ Orders 80-885945 ■ Fax 80-885944 ■ Technical 80-885942

Finland ■ Orders 0800-914416 ■ Fax 0800-914415 ■ Technical 0800-914413

France ■ Orders 01-60-920-920 ■ Fax 01-60-920-925 ■ Technical 01-60-920-930

Germany ■ Orders 02103-29-12000 ■ Fax 02103-29-22000 ■ Technical 02103-29-12400

Ireland ■ Orders 1800 555 049 ■ Fax 1800 555 048 ■ Technical 1800 555 061

Italy ■ Orders 02-33430411 ■ Fax 02-33430426 ■ Technical 800 787980

Japan ■ Telephone 03-5547-0811 ■ Fax 03-5547-0818 ■ Technical 03-5547-0811

Luxembourg ■ Orders 8002-2076 ■ Fax 8002-2073 ■ Technical 8002-2067

The Netherlands ■ Orders 0800-0229592 ■ Fax 0800-0229593 ■ Technical 0800-0229602

Norway ■ Orders 800-18859 ■ Fax 800-18817 ■ Technical 800-18712

Sweden ■ Orders 020-790282 ■ Fax 020-790582 ■ Technical 020-798328

Switzerland ■ Orders 055-254-22-11 ■ Fax 055-254-22-13 ■ Technical 055-254-22-12

UK ■ Orders 01293-422-911 ■ Fax 01293-422-922 ■ Technical 01293-422-999

USA ■ Orders 800-426-8157 ■ Fax 800-718-2056 ■ Technical 800-DNA-PREP (800-362-7737)
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Bench Protocol: Animal Blood 
(Spin-Column Protocol)
Note: Before using this bench protocol, you should be completely familiar with the
safety information and detailed protocols in the DNeasy Blood & Tissue Handbook.

Important points before starting

Perform all centrifugation steps at room temperature (15–25°C).

If necessary, redissolve any precipitates in Buffer AL.

Ensure that ethanol has been added to Buffers AW1 and AW2.

Preheat a thermomixer, shaking water bath, or rocking platform for heating at
56°C.

Procedure

1a. Nonnucleated blood: Pipet 20 µl proteinase K into a 1.5 ml or 2 ml microcentrifuge
tube. Add 50–100 µl anticoagulated blood. Adjust the volume to 220 µl with PBS. 

1b. Nucleated blood: Pipet 20 µl proteinase K into a 1.5 ml or 2 ml microcentrifuge
tube. Add 5–10 µl anticoagulated blood. Adjust the volume to 220 µl with PBS. 

1c. Cultured cells: Centrifuge maximum 5 x 106 cells for 5 min at 300 x g. Resuspend
in 200 µl PBS. Add 20 µl proteinase K. 

2. Add 200 µl Buffer AL. Mix by vortexing. Incubate at 56°C for 10 min.

3. Add 200 µl ethanol (96–100%). Mix thoroughly by vortexing.

4. Pipet the mixture into a DNeasy Mini spin column in a 2 ml collection tube.
Centrifuge at �6000 x g (8000 rpm) for 1 min. Discard flow-through and collection
tube.

5. Place the spin column in a new 2 ml collection tube. Add 500 µl Buffer AW1.
Centrifuge for 1 min at �6000 x g. Discard flow-through and collection tube.

6. Place the spin column in a new 2 ml collection tube, add 500 µl Buffer AW2, and
centrifuge for 3 min at 20,000 x g (14,000 rpm). Discard flow-through and col-
lection tube.

Remove the spin column carefully so that it does not come into contact with the
flow-through.

7. Transfer the spin column to a new 1.5 ml or 2 ml microcentrifuge tube, and add
200 µl Buffer AE for elution. Incubate for 1 min at room temperature. Centrifuge
for 1 min at �6000 x g. 
Recommended: Repeat this step for maximum yield.



Bench Protocol: Animal Tissues 
(Spin-Column Protocol)
Note: Before using this bench protocol, you should be completely familiar with the
safety information and detailed protocols in the DNeasy Blood & Tissue Handbook.

Important points before starting

Perform all centrifugation steps at room temperature (15–25°C).

If necessary, redissolve any precipitates in Buffers ATL and AL.

Ensure that ethanol has been added to Buffers AW1 and AW2.

Preheat a thermomixer, shaking water bath, or rocking platform for heating at
56°C.

If using frozen tissue, equilibrate the sample to room temperature.

Procedure

1. Cut tissue (up to 25 mg; up to 10 mg spleen) into small pieces, and place in 1.5
ml microcentrifuge tube. For rodent tails, use one (rat) or two (mouse) 0.4–0.6 cm
lengths of tail. Add 180 µl Buffer ATL. 

2. Add 20 µl proteinase K. Mix by vortexing, and incubate at 56°C until completely
lysed. Vortex occasionally during incubation, or place in a thermomixer, in a
shaking water bath, or on a rocking platform.

Lysis is usually complete in 1–3 h or, for rodent tails, 6–8 h. Samples can be lysed
overnight. 

3. Vortex for 15 s. Add 200 µl Buffer AL to the sample. Mix thoroughly by vortexing.
Then add 200 µl ethanol (96–100%). Mix again thoroughly.

Alternatively, premix Buffer AL and ethanol, and add together.

4. Pipet the mixture into a DNeasy Mini spin column in a 2 ml collection tube.
Centrifuge at �6000 x g (8000 rpm) for 1 min. Discard flow-through and collection
tube.

5. Place the spin column in a new 2 ml collection tube. Add 500 µl Buffer AW1.
Centrifuge for 1 min at �6000 x g. Discard flow-through and collection tube.

6. Place the spin column in a new 2 ml collection tube. Add 500 µl Buffer AW2.
Centrifuge for 3 min at 20,000 x g (14,000 rpm). Discard flow-through and
collection tube.

Remove the spin column carefully so that it does not come into contact with the
flow-through.

7. Transfer the spin column to a new 1.5 ml or 2 ml microcentrifuge tube, and add
200 µl Buffer AE for elution. Incubate for 1 min at room temperature. Centrifuge
for 1 min at �6000 x g.
Recommended: Repeat this step for maximum yield.
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Appendix Cii  

From: Palero, Hall et al 2010  

PROTOCOL FOR:  

DNA extraction from formalin-fixed tissue 

 
LEGEND 

�ATTENTION     
* HINT 

����REST 

 

 

REAGENTS 

 

Tetramethylsilane (TMS) (Fluka-Riedel de Haën, Seelze, Germany, cat. no. 87920) 

Tris base (Trizma)-Molecular Biology Grade (Calbiochem, San Diego, CA, USA) 

HCl- sp. g. 1.18 (Analar, VWT Int Ltd, Poole Dorset, UK) 

EDTA-disodium salt dihydrate (Sigma Chemical Co., St Louis, MO, USA) 

Chelex 100 Resin-sodium form (Bio-Rad, Hemel Hemstead, Herts, UK) 

Proteinase K-from Tritirachium album (Roche Diagnostics GmbH, Mannheim, 

Germany) 

 

PROCEDURE 

 

�USE DNA-FREE AUTOCLAVED SOLUTIONS AND USE ONLY DISPOSABLE 

EQUIPMENT TO WEIGHT CHEMICALS AND PREPARE BUFFERS. 

� TMS IS A STRONG DEHYDRATOR AND IT SHOULD BE MANIPULATED 

CAREFULLY. PREFERENTIALLY IN A LAMINAR FLOW HOOD PREVIOUSLY 

STERILISED. 
    

DEHYDRATION 

 

1. Cut off a piece of the specimen (2mm3). 

2. Squeeze tissue sample in a piece of absorbant paper. 

3. Transfer tissue sample to the TMS solution (50-100ul). 

4. Incubate with gentle agitation for 1h.  

    

����THIS INCUBATION MAY BE CARRIED OUT OVERNIGHT, EVEN THOUGH A SHORTER 

TIME IS RECOMMENDED TO REDUCE CONTAMINATION. 
 

5. Open cap and let TMS evaporate in a flow chamber. 
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� FILTER TIPS ARE RECOMMENDED TO MINIMIZE THE RISK OF CROSS-

CONTAMINATION DUE TO DNA AEROSOLS. 
 

TISSUE DIGESTION 

 

6. Transfer tissue to a new 1.5mL eppendorf tube with 200uL of 10% Chelex 

solution in TE pH 8.0 

7. Add 20uL of proteinase K (20mg/ml stock solution). 

8. Incubate for 2-3h at 55ºC in a thermomixer. 

 

����THIS INCUBATION MAY BE CARRIED OUT OVERNIGHT. 

 

9. Centrifuge for 5-10 minutes at 10,000 rpm. 

10. Heat-shock at 95ºC for 15 minutes in a thermomixer. 

11. Keep at 4ºC for 10 minutes. 

12. Vortex tube and short-centrifuge (10sec-10,000 rpm) before transferring 

100uL of the supernatant into a fresh tube. 

* TRY TO AVOID TRANSFERRING ANY CHELEX PARTICLES, AS THIS MAY INTERFERE 

WITH PCR. 

 

13. Centrifuge for 5 minutes at 12,000 rpm before use.  

14. Take 1-2uL of the supernantant for a 25uL total volume PCR reaction. 
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RECIPES 
 

�HYDROGEN CHLORIDE CAN CAUSE SEVERE SKIN BURNS.  

 

Tris-HCl 1M, pH 8 (1 L) 

* MAKE SURE SOLUTION IS AT ROOM TEMPERATURE BEFORE MAKING FINAL 

PH ADJUSTMENTS. 
 

Tris base 121.1 g 

HCl  approx. 42 ml          

First dissolve 121g Tris base in 800 ml of water and adjust pH to the desired value by 

adding approximately 42 ml of concentrated HCl. Bring final volume to 1 liter. Sterilize 

by autoclaving.  

 

EDTA 0.5M, pH 8 (1 L) 

 

* EDTA WILL NOT GO INTO SOLUTION UNTIL THE PH IS ADJUSTED TO APPROX. 

8.0 BY THE ADDITION OF NAOH. 
 

EDTA 186.1g  0.5M 

NaOH approx. 10g 

 

Add EDTA to 800 ml of H2O. Stir vigorously on a magnetic stirrer. Adjust the pH to 

8.0 with NaOH pellets. Dispense into aliquots and sterilize by autoclaving. 

 

TE buffer, pH 8.0 (1 L) 

 

Tris-HCl (1M)    10mL    10mM 

EDTA (0.5M)     2mL      1mM 

 

Add indicated volumes and water up to 1L. Set pH to 8 with NaOH pellets if needed. 

NaOH is caustic, so it should be handled with care. 

 

EQUIPMENT 

  

Flow chamber (Penryn Labspace Special Products, Basildon Essex, UK) 

 

Microcentrifuge (Eppendorf Model 5415D, VWR Int Ltd, Poole Dorset, UK) 

 

Thermomixer (Eppendorf Thermomixer Compact, VWR Int Ltd, Poole Dorset, UK) 

 

Standard laboratory equipment such as different sized tubes, freezer and refrigerator for 

storing extracts and chemicals. 
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QIAGEN Sample and Assay Technologies
QIAGEN is the leading provider of innovative sample and assay technologies, enabling
the isolation and detection of contents of any biological sample. Our advanced, 
high-quality products and services ensure success from sample to result.

QIAGEN sets standards in:

■ Purification of DNA, RNA, and proteins

■ Nucleic acid and protein assays

■ microRNA research and RNAi

■ Automation of sample and assay technologies

Our mission is to enable you to achieve outstanding success and breakthroughs. For
more information, visit www.qiagen.com .
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Kit Contents

* Buffers PB, PN, and QG contain chaotropic salts which are irritants. Take appropriate laboratory safety measures
and wear gloves when handling.

Storage
QIAquick Spin Kits should be stored dry at room temperature (15–25°C). Under these
conditions, QIAquick Spin Kits can be stored for up to 12 months without showing any
reduction in performance and quality. Check buffers for precipitate before use and
redissolve at 37°C if necessary. The entire kit can be stored at 2–8°C, but in this case
the buffers should be redissolved before use. Make sure that all buffers and spin colums
are at room temperature when used.

QIAquick Nucleotide Removal Kits (50) (250)
Catalog no. 28304 28306

QIAquick Spin Columns 50 250
Buffer PN* 30 ml 140 ml
Buffer PE (concentrate) 2 x 6 ml 55 ml
Buffer EB 15 ml 55 ml
Collection Tubes (2 ml) 100 500
Loading Dye 110 µl 550 µl
Handbook 1 1

QIAquick Gel Extraction Kits (50) (250)
Catalog no. 28704 28706

QIAquick Spin Columns 50 250
Buffer QG* 2 x 50 ml 2 x 250 ml
Buffer PE (concentrate) 2 x 10 ml 2 x 50 ml
Buffer EB 15 ml 2 x 15 ml
Collection Tubes (2 ml) 50 250
Loading Dye 110 µl 550 µl
Handbook 1 1

QIAquick PCR Purification Kits (50) (250)
Catalog no. 28104 28106

QIAquick Spin Columns 50 250
Buffer PB* 30 ml 150 ml
Buffer PE (concentrate) 2 x 6 ml 55 ml
Buffer EB 15 ml 55 ml
pH Indicator I 800 µl 800 µl
Collection Tubes (2 ml) 50 250
Loading Dye 110 µl 550 µl
Handbook 1 1
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Product Use Limitations
QIAquick PCR Purification, QIAquick Nucleotide Removal, and QIAquick Gel Extraction
Kits are intended for research use. No claim or representation is intended to provide
information for the diagnosis, prevention, or treatment of a disease.

Product Warranty and Satisfaction Guarantee
QIAGEN guarantees the performance of all products in the manner described in our
product literature. The purchaser must determine the suitability of the product for its
particular use. Should any product fail to perform satisfactorily due to any reason other
than misuse, QIAGEN will replace it free of charge or refund the purchase price. We
reserve the right to change, alter, or modify any product to enhance its performance and
design. If a QIAGEN product does not meet your expectations, simply call your local
Technical Service Department or distributor. We will credit your account or exchange the
product — as you wish. Separate conditions apply to QIAGEN scientific instruments,
service products, and to products shipped on dry ice. Please inquire for more information.

A copy of QIAGEN terms and conditions can be obtained on request, and is also
provided on the back of our invoices. If you have questions about product specifications
or performance, please call QIAGEN Technical Services or your local distributor (see
back cover or visit www.qiagen.com ).

Quality Control
In accordance with QIAGEN’s ISO-certified Quality Management System, each lot of
QIAquick PCR Purification, QIAquick Nucleotide Removal, and QIAquick Gel Extraction
Kits is tested against predetermined specifications to ensure consistent product quality.

Technical Assistance
At QIAGEN we pride ourselves on the quality and availability of our technical support.
Our Technical Service Departments are staffed by experienced scientists with extensive
practical and theoretical expertise in molecular biology and the use of QIAGEN products.
If you have any questions or experience any problems regarding any aspect of QIAquick
Spin Kits, or QIAGEN products in general, please do not hesitate to contact us. 

QIAGEN customers are also a major source of information regarding advanced or
specialized uses of our products. This information is helpful to other scientists as well as
to the researchers at QIAGEN. We therefore also encourage you to contact us if you
have any suggestions about product performance or new applications and techniques.

For technical assistance and more information please call one of the QIAGEN Technical
Service Departments or local distributors (see back cover or visit www.qiagen.com ).
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Safety Information
When working with chemicals, always wear a suitable lab coat, disposable gloves, and
protective goggles. For more information, please consult the appropriate material safety
data sheets (MSDSs). These are available online in convenient and compact PDF format
at www.qiagen.com/ts/msds.asp where you can find, view, and print the MSDS for
each QIAGEN kit and kit component. 

CAUTION: DO NOT add bleach or acidic solutions directly to the
sample-preparation waste.

Buffer PB contains guanidine hydrochloride, which can form highly reactive compounds
when combined with bleach.

In case liquid containing this buffer is spilt, clean with suitable laboratory detergent and
water. If the spilt liquid contains potentially infectious agents, clean the affected area first
with laboratory detergent and water, and then with 1% (v/v) sodium hypochlorite.

The following risk and safety phrases apply to the components of the QIAquick system.

Buffer PB

Contains guanidine hydrochloride and isopropanol: harmful, irritant, flammable. Risk
and safety phrases*: R10-22-36/38. S23-26-36/37/39-46

Buffer PN

Contains sodium perchlorate and isopropanol: harmful, highly flammable. Risk and safety
phrases*: R11-22. S13-16-23-26-36-46

Buffer QG

Contains guanidine thiocyanate: harmful. Risk and safety phrases*: R20/21/22-32.
S13-26-36-46

24-hour emergency information

Emergency medical information in English, French, and German can be obtained 
24 hours a day from:

Poison Information Center Mainz, Germany 
Tel: +49-6131-19240

* R10: Flammable. R11: Highly Flammable. R22: Harmful if swallowed. R20/21/22: Harmful by
inhalation, in contact with skin and if swallowed. R32: Contact with acids liberates very toxic gas.
R36/38: Irritating to eyes and skin. S13: Keep away from food, drink and animal feedingstuffs. 
S16: Explosive when mixed with oxidizing substances. S23: Do not breathe vapour/spray. S26: In case 
of contact with eyes, rinse immediately with plenty of water and seek medical advice. S36: Wear suitable
protective clothing. S36/37/39: Wear suitable protective clothing, gloves and eye/face protection. 
S46: If swallowed, seek medical advice immediately and show the container or label.
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QIAquick QIAquick QIAquick
PCR Purification Nucleotide Gel Extraction 

Kit Removal Kit Kit

Maximum binding capacity 10 µg 10 µg 10 µg

Maximum weight of gel slice — — 400 mg

Minimum elution volume 30 µl 30 µl 30 µl

Capacity of column reservoir 800 µl 800 µl 800 µl

Typical recoveries

Recovery of DNA 90–95% 80–95% 70–80%
(100 bp – 10 kb) (40 bp – 10 kb) (70 bp – 10 kb)

Recovery of oligonucleotides
(17–40mers) 0 60–80% 10–20%

Recovered

Oligonucleotides — 17–40mers —
dsDNA 100 bp – 10 kb 40 bp – 10 kb 70 bp – 10 kb

Removed

<10mers YES YES YES
17–40mers YES no no

Product Specifications
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Introduction
The QIAquick system, designed for rapid DNA cleanup, includes:

■ QIAquick PCR Purification Kits for direct purification of double- or single-stranded PCR
products (100 bp – 10 kb) from amplification reactions and DNA cleanup from other
enzymatic reactions.

■ QIAquick Nucleotide Removal Kits for general cleanup of oligonucleotides and
DNA up to 10 kb from enzymatic reactions (e.g., labeling, dephosphorylation,
restriction, and tailing). 

■ QIAquick Gel Extraction Kits for extraction of DNA fragments (70 bp – 10 kb) from
standard, or low-melt agarose gels in TAE (Tris·acetate/EDTA) or TBE (Tris·borate/
EDTA) buffer and DNA cleanup from enzymatic reactions. 

QIAquick PCR Kits are also available in multiwell format for preparation of 8 to 96 samples
(see page 37 for ordering information).

Enzymatic reaction cleanup using QIAquick Kits

The QIAquick system is suitable for fast cleanup of up to 10 µg of DNA fragments from
enzymatic reactions and agarose gels (Table 1). Enzyme contamination of DNA samples
can interfere with subsequent downstream applications. QIAquick Spin Kits can be used
for highly efficient removal of a broad spectrum of enzymes widely used in molecular biol-
ogy. In addition, QIAGEN offers the MinElute® Reaction Cleanup Kit, which is specially
designed for fast and easy DNA cleanup from all enzymatic reactions. Using proven
microspin technology, the MinElute Reaction Cleanup Kit delivers highly concentrated purified
DNA by using an elution volume of only 10 µl (see ordering information, page 37).
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QIAquick Kits provide high yields of pure nucleic acids, for direct use in applications such as:

■ Fluorescent and radioactive sequencing ■ Ligation and transformation 

■ Restriction ■ Amplification

■ Labeling ■ In vitro transcription

■ Hybridization ■ Microinjection

Table 1. QIAquick DNA Cleanup Guide

From solutions From gels

QIAquick
QIAquick PCR Nucleotide QIAquick Gel QIAquick Gel
Purification Kit Removal Kit Extraction Kit Extraction Kit

Alkaline phosphatase YES YES YES YES

cDNA synthesis YES no no YES

DNase, YES YES YES YES
nuclease digestion

Kinase:

DNA fragments YES YES YES YES

Oligonucleotides no YES no no

Ligation YES YES YES YES

Nick translation YES YES YES YES

PCR YES no no YES

Random priming YES YES YES YES

Restriction digestion YES YES YES YES

Tailing:

DNA fragments YES YES YES YES

Oligonucleotides no YES no no
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QIAquick PCR
Purification Kit

QIAquick Nucleotide
 Removal Kit

b 
01

b 
71

pb
 0

7

pb
 0

01

bk
 0

1

DNA fragment binding size range

QIAquick Gel
Extraction Kit

b 
04

b 
04

pb
 0

4

Fragments removed

Fragments recovered

Figure 1. DNA fragment binding-size range. Recoveries of DNA fragments in the size range between
“removed” and “recovered” are not defined.

Automated DNA cleanup

The QIAquick PCR Purification Kit and QIAquick Gel Extraction Kit can be fully
automated on the QIAcube. The innovative QIAcube uses advanced technology to
process QIAGEN spin columns, enabling seamless integration of automated, low-
throughput sample prep into your laboratory workflow. Sample preparation using the
QIAcube follows the same steps as the manual procedure (i.e., bind, wash, and elute)
enabling purification of high-quality DNA. 

The QIAcube is preinstalled with protocols for purification of plasmid DNA, genomic
DNA, RNA, viral nucleic acids, and proteins, plus DNA and RNA cleanup. The range
of protocols available is continually expanding, and additional QIAGEN protocols can
be downloaded free of charge at www.qiagen.com/MyQIAcube .

A detailed protocol for using QIAquick spin columns on the QIAcube is provided with
the QIAcube.

Note: It is not necessary to add pH indicator I to Buffer PB when using the QIAcube.
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The QIAquick Principle
The QIAquick system combines the convenience of spin-column technology with the selective
binding properties of a uniquely designed silica membrane. Special buffers provided with
each kit are optimized for efficient recovery of DNA and removal of contaminants in each
specific application. DNA adsorbs to the silica membrane in the presence of high con-
centrations of salt while contaminants pass through the column. Impurities are efficiently
washed away, and the pure DNA is eluted with Tris buffer or water (see page 17).
QIAquick spin columns offer 3 handling options — as an alternative to processing the spin
columns in a microcentrifuge, they can now also be used on any commercial vacuum manifold
with luer connectors (e.g., QIAvac 6S or QIAvac 24 Plus with QIAvac Luer Adapters) or
automated on the QIAcube. 

Adsorption to QIAquick membrane — salt and pH dependence

The QIAquick silica membrane is uniquely adapted to purify DNA from both aqueous
solutions and agarose gels, and up to 10 µg DNA can bind to each QIAquick column.
The binding buffers in QIAquick Spin Kits provide the correct salt concentration and pH
for adsorption of DNA to the QIAquick membrane. The adsorption of nucleic acids to silica
surfaces occurs only in the presence of a high concentration of chaotropic salts (1), which
modify the structure of water (2). 

Adsorption of DNA to silica also depends on pH. Adsorption is typically 95% if the pH is
≤7.5, and is reduced drastically at higher pH (Figure 1). If the loading mixture pH is >7.5,
the optimal pH for DNA binding can be obtained by adding a small volume of 3 M sodium
acetate, pH 5.0.

)
%( yrevoceR 

A
N

D

100

50

0
2 4 6 8 10 12 14

pH

Figure 2. pH dependence of DNA adsorption to QIAquick membranes. 1 µg of a 2.9 kb DNA fragment
was adsorbed at different pHs and eluted with Buffer EB (10 mM Tris·Cl, pH 8.5). The graph shows the
percentage of DNA recovery, reflecting the relative adsorption efficiency, versus pH of adsorption.
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Optimized binding buffers for every DNA cleanup task

All QIAquick Spin Kits contain identical QIAquick spin columns but different binding
buffers optimized for each specific application:

■ Buffer PB in the QIAquick PCR Purification Kit allows the efficient binding of single-
or double-stranded PCR products as small as 100 bp and the quantitative (99.5%)
removal of primers up to 40 nucleotides. This kit can therefore be used to remove
oligo-dT primers after cDNA synthesis or to remove unwanted linkers in cloning
experiments. 

■ Buffer PN in the QIAquick Nucleotide Removal Kit promotes the adsorption of both
oligonucleotides ≥17 bases and DNA fragments up to 10 kb to the membrane. 

■ Buffer QG in the QIAquick Gel Extraction Kit solubilizes the agarose gel slice and
provides the appropriate conditions for binding of DNA to the silica membrane. 

All of these buffers are available separately (see ordering information, page 37). 

pH indicator

Binding buffer PB and binding and solubilization buffer QG are specially optimized for
use with the QIAquick silica membrane. Buffer QG contains an integrated pH indicator,
while an optional pH indicator can be added to Buffer PB allowing easy determination
of the optimal pH for DNA binding. DNA adsorption requires a pH �7.5, and the pH
indicator in the buffers will appear yellow in this range. If the pH is >7.5, which can
occur if during agarose gel electrophoresis, the electrophoresis buffer had been used
repeatedly or incorrectly prepared, or if the buffer used in an enzymatic reaction is
strongly basic and has a high buffering capacity, the binding mixture turns orange or
violet (Figure 2). This means that the pH of the sample exceeds the buffering capacity of
Buffer PB or QG and DNA adsorption will be inefficient. In these cases, the pH of the
binding mixture can easily be corrected by addition of a small volume of 3 M sodium
acetate*, pH 5.0, before proceeding with the protocol. In addition, in the QIAquick Gel

Figure 3. Indicator enables easy checking of the optimal pH. Indicator dye in solubilization and binding Buffers
QG and PB identifies optimal pH for DNA binding.

Optimal pH pH too high

* When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective
goggles. For more information, please consult the appropriate material safety data sheets (MSDSs)
available from the product supplier.
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Extraction Kit procedure, the color of the binding mixture allows easy visualization of any
unsolubilized agarose, ensuring complete solubilization and maximum yields. The
indicator dye does not interfere with DNA binding and is completely removed during the
cleanup procedure. Buffers PB and QG do not contain sodium iodide (NaI). Residual NaI
may be difficult to remove from DNA samples, and reduces the efficiency of subsequent
enzymatic reactions such as blunt-end ligation.

Washing
During the DNA adsorption step, unwanted primers and impurities, such as salts,
enzymes, unincorporated nucleotides, agarose, dyes, ethidium bromide, oils, and
detergents (e.g., DMSO, Tween® 20) do not bind to the silica membrane but flow
through the column. Salts are quantitatively washed away by the ethanol-containing
Buffer PE. Any residual Buffer PE, which may interfere with subsequent enzymatic
reactions, is removed by an additional centrifugation step.

Elution in low-salt solutions

Elution efficiency is strongly dependent on the salt concentration and pH of the elution
buffer. Contrary to adsorption, elution is most efficient under basic conditions and low salt
concentrations. DNA is eluted with 50 or 30 µl of the provided Buffer EB (10 mM Tris·Cl,
pH 8.5), or water. The maximum elution efficiency is achieved between pH 7.0 and 8.5.
When using water to elute, make sure that the pH is within this range. In addition, DNA
must be stored at –20°C when eluted with water since DNA may degrade in the absence
of a buffering agent. Elution with TE buffer (10 mM Tris·Cl, 1 mM EDTA, pH 8.0) is possible,
but not recommended because EDTA may inhibit subsequent enzymatic reactions.

DNA yield and concentration

DNA yield depends on the following three factors: the volume of elution buffer, how the
buffer is applied to the column, and the incubation time of the buffer on the column.
100–200 µl of elution buffer completely covers the QIAquick membrane, ensuring
maximum yield, even when not applied directly to the center of the membrane. Elution
with ≤50 µl requires the buffer to be added directly to the center of the membrane, and if
elution is done with the minimum recommended volume of 30 µl, an additional 1 minute
incubation is required for optimal yield. DNA will be up to 1.7 times more concentrated
if the QIAquick column is incubated for 1 minute with 30 µl of elution buffer, than if it is
eluted in 50 µl without incubation (Figure 4, page 14).
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Figure 4. Highly concentrated DNA. Effect of elution buffer volume on DNA yield for the QIAquick PCR
Purification and QIAquick Nucleotide Removal Kit; the QIAquick Gel Extraction Kit. 5 µg of a 2.9 kb DNA
fragment were purified and eluted with the indicated volumes of Buffer EB. 30 µl plus 1 minute incubation on
the QIAquick column gives DNA yields similar to 50 µl without incubation, but at a concentration 1.7 times
greater. 

B

A

A

B

QIAquick PCR Purification Kit
QIAquick Nucleotide Removal Kit

QIAquick Gel Extraction Kit

Loading dye

Loading dye is provided for analysis of purified DNA samples using electrophoresis.
It contains 3 marker dyes (bromophenol blue, xylene cyanol, and orange G) that
facilitate estimation of DNA migration distance and optimization of agarose gel run
time. Refer to Table 2 (page 15) to identify the dyes according to migration distance
and agarose gel percentage and type. Loading dye is supplied as a 5x concentrate;
thus 1 volume of loading dye should be added to 5 volumes of purified DNA.
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Agarose gel analysis of yield

Yields of DNA following cleanup can be determined by agarose gel analysis. Table 3 shows
the total yield obtained following extraction of 1 µg or 0.5 µg starting DNA from an agarose
gel with a recovery of 80% or 60% using the QIAquick Gel Extraction Kit. The corresponding
amount of DNA in a 1 µl aliquot from 50 µl eluate is indicated. Quantities of DNA
fragment corresponding to these 1 µl aliquots are shown on the agarose gel in Figure 4. 

Starting DNA Recovery Total yield Amount of
(50 µl eluate) DNA in 1 µl

1 µg 80% 0.8 µg 16 ng

60% 0.6 µg 12 ng

0.5 µg 80% 0.4 µg 8 ng

60% 0.3 µg 6 ng

Table 3. Amount of DNA in 1 µl aliquots of a 50 µl eluate following QIAquick purification

M 1 µg 16 ng 12 ng 0.5 µg 8 ng 6 ng

—  2.7 kb
Figure 5. High DNA recovery.
Quantities of purified 2.7 kb DNA
fragment corresponding to 1/50 of
the DNA obtained following
purification from 1 µg or 0.5 µg
starting DNA with a recovery of
80% or 60% (see Table 1). Samples
were run on a 1% TAE agarose gel. 
M: lambda–EcoRI-HindIII markers.

Table 2. Migration Distance of Gel Tracking Dyes

%TAE (TBE) Xylene cyanol Bromophenol blue Orange G
agarose gel (light blue) (dark blue) (orange)

0.8 5000 bp (3000 bp) 800 bp (400 bp) 150 bp (<100 bp)

1.0 3000 bp (2000 bp) 400 bp (250 bp) <100 bp (<100 bp)

1.5 1800 bp (1100 bp) 250 bp (100 bp) <100 bp (<100 bp)

2.0 1000 bp (600 bp) 200 bp (<100 bp) <100 bp (<100 bp)

2.5 700 bp (400 bp) 100 bp (<50 bp) <50 bp (<50 bp)
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Applications using QIAquick purified DNA 

DNA purified with QIAquick is suitable for any subsequent application, such as restriction,
labeling, hybridization, PCR, ligation and transformation, radioactive and fluorescent
sequencing, in vitro transcription, or microinjection. 

Quantification of DNA fragments

DNA fragments can be quantified by running a sample alongside standards containing known
quantities of the same-sized DNA fragment. The amount of sample DNA loaded can be
estimated by visual comparison of the band intensity with that of the standards (Figure 5).

M 125 ng 100 ng 75 ng 50 ng U
Figure 6. Agarose gel analysis. An unknown
amount of a 5.5 kb DNA fragment (U) was run
alongside known quantities (as indicated in ng)
of the same DNA fragment. The unknown sample
contained 75–100 ng DNA, as estimated by
visual comparison with the standards.
M: 1 kb DNA ladder.
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PCR or other
enzymatic reaction or
solubilized gel slice

Pure DNA fragment

Vacuum

Vacuum

QIAcube

Optimal pH pH too high

The QIAquick Procedure
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Equipment and Reagents to Be Supplied by User
When working with chemicals, always wear a suitable lab coat, disposable gloves,
and protective goggles. For more information, please consult the appropriate material
safety data sheets (MSDSs) available from the product supplier.

For all protocols

■ Ethanol (96–100%)*

■ Microcentrifuge

■ 1.5 or 2 ml microcentrifuge tubes

■ 3 M sodium acetate, pH 5.0, may be necessary for PCR purification and gel
extraction protocols.

■ Optional: Distilled water or TE buffer (10 mM Tris·Cl. 1 mM EDTA, pH 8) for elu-
tion of DNA.

Vacuum protocols

■ Vacuum manifold (e.g., QIAvac 24 Plus or QIAvac 6S)

■ Vacuum pump (e.g., QIAGEN Vacuum Pump, see ordering information).

Gel extraction protocols

■ Isopropanol (100%)

■ Heating block or water bath set at 50°C

* Do not use denaturated alcohol, which contains other substances such as methanol or methylethylketone.
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QIAquick PCR Purification Kit Protocol
using a microcentrifuge

This protocol is designed to purify single- or double-stranded DNA fragments from PCR
and other enzymatic reactions (see page 8). For cleanup of other enzymatic reactions,
follow the protocol as described for PCR samples or use the MinElute Reaction Cleanup
Kit. Fragments ranging from 100 bp to 10 kb are purified from primers, nucleotides, poly-
merases, and salts using QIAquick spin columns in a microcentrifuge.

Important points before starting 

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).

■ All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a
conventional tabletop microcentrifuge at room temperature.

■ Add 1:250 volume pH indicator I to Buffer PB (i.e., add 120 µl pH indicator I to
30 ml Buffer PB or add 600 µl pH indicator I to 150 ml Buffer PB). The yellow color
of Buffer PB with pH indicator I indicates a pH of �7.5.

■ Add pH indicator I to entire buffer contents. Do not add pH indicator I to buffer
aliquots.

■ If the purified PCR product is to be used in sensitive microarray applications, it may
be beneficial to use Buffer PB without the addition of pH indicator I.

Procedure

1. Add 5 volumes of Buffer PB to 1 volume of the PCR sample and mix. It is not necessary
to remove mineral oil or kerosene.

For example, add 500 µl of Buffer PB to 100 µl PCR sample (not including oil). 

2. If pH indicator I has beein added to Buffer PB, check that the color of the mixture is
yellow.

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate, pH
5.0, and mix. The color of the mixture will turn to yellow.

3. Place a QIAquick spin column in a provided 2 ml collection tube.

4. To bind DNA, apply the sample to the QIAquick column and centrifuge for 30–60 s.

5. Discard flow-through. Place the QIAquick column back into the same tube.

Collection tubes are re-used to reduce plastic waste.

6. To wash, add 0.75 ml Buffer PE to the QIAquick column and centrifuge for 30–60 s.

7. Discard flow-through and place the QIAquick column back in the same tube.
Centrifuge the column for an additional 1 min. 

IMPORTANT: Residual ethanol from Buffer PE will not be completely removed unless
the flow-through is discarded before this additional centrifugation.

PCR Purification 
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8. Place QIAquick column in a clean 1.5 ml microcentrifuge tube.

9. To elute DNA, add 50 µl Buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7.0–8.5) to
the center of the QIAquick membrane and centrifuge the column for 1 min. Alternatively,
for increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick
membrane, let the column stand for 1 min, and then centrifuge.

IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick
membrane for complete elution of bound DNA. The average eluate volume is 48 µl
from 50 µl elution buffer volume, and 28 µl from 30 µl elution buffer. 

Elution efficiency is dependent on pH. The maximum elution efficiency is achieved
between pH 7.0 and 8.5. When using water, make sure that the pH value is within this
range, and store DNA at –20°C as DNA may degrade in the absence of a buffering
agent. The purified DNA can also be eluted in TE buffer (10 mM Tris·Cl, 1 mM EDTA, pH
8.0), but the EDTA may inhibit subsequent enzymatic reactions.

10. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 
5 volumes of purified DNA. Mix the solution by pipetting up and down before
loading the gel. 

Loading dye contains 3 marker dyes (bromophenol blue, xylene cyanol, and
orange G) that facilitate estimation of DNA migration distance and optimization
of agarose gel run time. Refer to Table 2 (page 15) to identify the dyes according
to migration distance and agarose gel percentage and type.
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QIAquick PCR Purification Kit Protocol
using a vacuum manifold

QIAquick spin columns can now be used on any vacuum manifold with luer connectors
(e.g., QIAvac 6S or QIAvac 24 Plus with Luer Adapters). The following protocol is designed
to purify single- or double-stranded DNA fragments from PCR and other enzymatic reactions
(see page 8). For cleanup of other enzymatic reactions, follow the protocol as described
for PCR samples or use the MinElute Reaction Cleanup Kit. Fragments ranging from 
100 bp to 10 kb are purified from primers, nucleotides, polymerases and salts using 
vacuum-driven sample processing.

Important points before starting 

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).

■ Switch off vacuum between steps to ensure that a consistent, even vacuum is
applied during manipulations.

■ Add 1:250 volume pH indicator I to Buffer PB (i.e., add 120 µl pH indicator I to
30 ml Buffer PB or add 600 µl pH indicator I to 150 ml Buffer PB). The yellow color
of Buffer PB with pH indicator I indicates a pH of �7.5.

■ Add pH indicator I to entire buffer contents. Do not add pH indicator I to buffer
aliquots.

■ If the purified PCR product is to be used in sensitive microarray applications, it may
be beneficial to use Buffer PB without the addition of pH indicator I.

Procedure

1. Add 5 volumes of Buffer PB to 1 volume of the PCR sample and mix. It is not necessary
to remove mineral oil or kerosene.

For example, add 500 µl of Buffer PB to 100 µl PCR sample (not including oil). 

2. If pH indicator I has beein added to Buffer PB, check that the color of the mixture is
yellow.

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate, pH
5.0, and mix. The color of the mixture will turn to yellow.

3. Prepare the vacuum manifold and QIAquick columns according to step 3a, 3b, or
3c.

3a. QIAvac 24 Plus (see page 33, and Figure 7):

Insert up to 24 QIAquick spin columns into the luer extensions of the QIAvac 24 Plus.
Close unused positions with luer caps and connect QIAvac 24 Plus to a vacuum
source.

PCR Purification 
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3b. QIAvac 6S manifold (see page 34, and Figure 8):

Open QIAvac 6S lid. Place QIAvac Luer Adapter(s), or blanks to seal unused slots,
into the slots of QIAvac top plate, and close the QIAvac 6S lid. Place the waste tray
inside the QIAvac base, and place the top plate squarely over the base. Attach the
QIAvac 6S to a vacuum source. 

Insert each QIAquick column into a luer connector on the Luer Adapter(s) in the manifold.
Seal unused luer connectors with plugs provided with the QIAvac Luer Adapter Set.

3c. Other vacuum manifolds: follow the supplier's instructions. Insert each QIAquick 
column into a luer connector.

4. To bind DNA, load the samples into the QIAquick columns by decanting or pipetting,
and apply vacuum. After the samples have passed through the column, switch off
the vacuum source.

The maximum loading volume of the column is 800 µl. For sample volumes greater
than 800 µl simply load again. 

5. To wash, add 0.75 ml of Buffer PE to each QIAquick column and apply vacuum.

6. Transfer each QIAquick column to a microcentrifuge tube or the provided 2 ml collection
tubes. Centrifuge for 1 min at 17,900 x g (13,000 rpm).

IMPORTANT: This spin is necessary to remove residual ethanol (Buffer PE).

7. Place each QIAquick column into a clean 1.5 ml microcentrifuge tube. 

8. To elute DNA, add 50 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water
(pH 7.0–8.5) to the center of each QIAquick membrane, and centrifuge the
columns for 1 min at 17,900 x g (13,000 rpm). Alternatively, for increased DNA
concentration, add 30 µl elution buffer to the center of each QIAquick membrane,
let the columns stand for 1 min, and then centrifuge.

IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick
membrane for complete elution of bound DNA. The average eluate volume is 48 µl
from 50 µl elution buffer volume, and 28 µl from 30 µl elution buffer.

Elution efficiency is dependent on pH. The maximum elution efficiency is achieved
between pH 7.0 and 8.5. When using water, make sure that the pH value is within this
range, and store DNA at –20°C as DNA may degrade in the absence of a buffering
agent. The purified DNA can also be eluted in TE (10 mM Tris·Cl, 1 mM EDTA, pH 8.0),
but the EDTA may inhibit subsequent enzymatic reactions.

9. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 
5 volumes of purified DNA. Mix the solution by pipetting up and down before
loading the gel. 

Loading dye contains 3 marker dyes (bromophenol blue, xylene cyanol, and
orange G) that facilitate estimation of DNA migration distance and optimization
of agarose gel run time. Refer to Table 2 (page 15) to identify the dyes according
to migration distance and agarose gel percentage and type.
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QIAquick Nucleotide Removal Kit Protocol
using a microcentrifuge

This protocol is designed for cleanup of radioactive-, biotin-, or DIG-labeled DNA
fragments and oligonucleotides ≥17 nucleotides from enzymatic reactions (see page 8). The
protocol ensures removal of primers <10 bases, enzymes, salts, and unincorporated
nucleotides. It is possible to use this kit with a vacuum manifold as well as with a
microcentrifuge, and a protocol for vacuum processing is available on request from
QIAGEN Technical Services or your local distributor. However, we do not recommend
processing radioactive samples with a vacuum manifold.

Important points before starting

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).

■ All centrifugation steps are in a conventional tabletop microcentrifuge at room
temperature.

Procedure

1. Add 10 volumes of Buffer PN to 1 volume of the reaction sample and mix.

For example, add 500 µl Buffer PN to a 50 µl reaction sample. For DNA fragments
≥100 bp, only 5 volumes of Buffer PN are required.

2. Place a QIAquick spin column in a provided 2 ml collection tube.

3. To bind DNA, apply the sample to the QIAquick column and centrifuge for 1 min 
at 6000 rpm.

4. For radioactive samples:
Place the QIAquick column into a clean 2 ml collection tube and discard the tube 
containing the radioactive flow-through appropriately.

For non-radioactive samples:
Discard the flow-through and place QIAquick column back into the same tube.

Collection tubes are reused to reduce plastic waste.

5. For radioactive samples:
To wash QIAquick column, add 500 µl of Buffer PE and centrifuge for 1 min at 
6000 rpm. Discard the flow-through appropriately and repeat wash with another
500 µl of Buffer PE.

For non-radioactive samples:
To wash QIAquick column, add 750 µl of Buffer PE and centrifuge for 1 min at 
6000 rpm. 
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6. Discard the flow-through and place the QIAquick column back in the same tube,
which should be empty. Centrifuge for an additional 1 min at 13,000 rpm (17,900 x g).

IMPORTANT: Residual ethanol from Buffer PE will not be completely removed unless
the flow-through is discarded before this additional centrifuge.

7. Place the QIAquick column in a clean 1.5 ml microcentrifuge tube.

8. To elute DNA, add 100–200 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water
(pH 7.0–8.5) to the center of the QIAquick membrane and centrifuge the column for
1 min at 13,000 rpm (17,900 x g). Alternatively, for increased DNA concentration,
add 30–50 µl elution buffer to the center of the QIAquick membrane, let the column
stand for 1 min, and then centrifuge.

IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick
membrane for complete elution of bound DNA.

Elution efficiency is dependent on pH. The maximum elution efficiency is achieved
between pH 7.0 and 8.5. When using water, make sure that the pH value is within
this range, and store DNA at –20°C as DNA may degrade in the absence of a
buffering agent. The purified DNA can also be eluted in TE (10 mM Tris·Cl, 
1 mM EDTA, pH 8.0), but the EDTA may inhibit subsequent enzymatic reactions.

9. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 
5 volumes of purified DNA. Mix the solution by pipetting up and down before
loading the gel. 

Loading dye contains 3 marker dyes (bromophenol blue, xylene cyanol, and
orange G) that facilitate estimation of DNA migration distance and optimization
of agarose gel run time. Refer to Table 2 (page 15) to identify the dyes according
to migration distance and agarose gel percentage and type.
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QIAquick Gel Extraction Kit Protocol
using a microcentrifuge

This protocol is designed to extract and purify DNA of 70 bp to 10 kb from standard or
low-melt agarose gels in TAE or TBE buffer. Up to 400 mg agarose can be processed per spin
column. This kit can also be used for DNA cleanup from enzymatic reactions (see page 8).
For DNA cleanup from enzymatic reactions using this protocol, add 3 volumes of Buffer
QG and 1 volume of isopropanol to the reaction, mix, and proceed with step 6 of the 
protocol. Alternatively, use the MinElute Reaction Cleanup Kit.

Important points before starting

■ The yellow color of Buffer QG indicates a pH ≤7.5. 

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).

■ All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a conventional
table-top microcentrifuge at room temperature.

Procedure

1. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.

Minimize the size of the gel slice by removing extra agarose.

2. Weigh the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume of
gel (100 mg ~ 100 µl).

For example, add 300 µl of Buffer QG to each 100 mg of gel. For >2% agarose
gels, add 6 volumes of Buffer QG. The maximum amount of gel slice per QIAquick
column is 400 mg; for gel slices >400 mg use more than one QIAquick column.

3. Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). To help
dissolve gel, mix by vortexing the tube every 2–3 min during the incubation. 

IMPORTANT: Solubilize agarose completely. For >2% gels, increase incubation time.

4. After the gel slice has dissolved completely, check that the color of the mixture is
yellow (similar to Buffer QG without dissolved agarose). 

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate, 
pH 5.0, and mix. The color of the mixture will turn to yellow. 

The adsorption of DNA to the QIAquick membrane is efficient only at pH ≤7.5. 
Buffer QG contains a pH indicator which is yellow at pH ≤7.5 and orange or violet at
higher pH, allowing easy determination of the optimal pH for DNA binding.

5. Add 1 gel volume of isopropanol to the sample and mix.

For example, if the agarose gel slice is 100 mg, add 100 µl isopropanol. This step
increases the yield of DNA fragments <500 bp and >4 kb. For DNA fragments
between 500 bp and 4 kb, addition of isopropanol has no effect on yield. 
Do not centrifuge the sample at this stage.

G
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6. Place a QIAquick spin column in a provided 2 ml collection tube.

7. To bind DNA, apply the sample to the QIAquick column, and centrifuge for 1 min.

The maximum volume of the column reservoir is 800 µl. For sample volumes of more
than 800 µl, simply load and spin again.

8. Discard flow-through and place QIAquick column back in the same collection tube.

Collection tubes are reused to reduce plastic waste.

9. Recommended: Add 0.5 ml of Buffer QG to QIAquick column and centrifuge for 1 min.

This step will remove all traces of agarose. It is only required when the DNA will
subsequently be used for direct sequencing, in vitro transcription, or microinjection.

10. To wash, add 0.75 ml of Buffer PE to QIAquick column and centrifuge for 1 min.

Note: If the DNA will be used for salt-sensitive applications, such as blunt-end ligation
and direct sequencing, let the column stand 2–5 min after addition of Buffer PE,
before centrifuging.

11. Discard the flow-through and centrifuge the QIAquick column for an additional 1 min
at 17,900 x g (13,000 rpm).

IMPORTANT: Residual ethanol from Buffer PE will not be completely removed unless
the flow-through is discarded before this additional centrifugation.

12. Place QIAquick column into a clean 1.5 ml microcentrifuge tube.

13. To elute DNA, add 50 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7.0–8.5) to the
center of the QIAquick membrane and centrifuge the column for 1 min. Alternatively,
for increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick
membrane, let the column stand for 1 min, and then centrifuge for 1 min.

IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick
membrane for complete elution of bound DNA. The average eluate volume is 48 µl
from 50 µl elution buffer volume, and 28 µl from 30 µl.

Elution efficiency is dependent on pH. The maximum elution efficiency is achieved
between pH 7.0 and 8.5. When using water, make sure that the pH value is within
this range, and store DNA at –20°C as DNA may degrade in the absence of a
buffering agent. The purified DNA can also be eluted in TE (10 mM Tris·Cl, 1 mM
EDTA, pH 8.0), but the EDTA may inhibit subsequent enzymatic reactions.

14. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5
volumes of purified DNA. Mix the solution by pipetting up and down before loading
the gel. 

Loading dye contains 3 marker dyes (bromophenol blue, xylene cyanol, and orange
G) that facilitate estimation of DNA migration distance and optimization of agarose
gel run time. Refer to Table 2 (page 15) to identify the dyes according to migration
distance and agarose gel percentage and type.
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QIAquick Gel Extraction Kit Protocol
using a vacuum manifold

QIAquick spin columns can now be used on any vacuum manifold with luer connectors
(e.g., QIAvac 6S or QIAvac 24 Plus with Luer Adapters). The following protocol is
designed to extract and purify DNA of 70 bp to 10 kb from standard or low-melt
agarose gels in TAE or TBE buffer using vacuum-driven processing. Up to 400 mg
agarose can be processed per spin column. This kit can also be used for DNA cleanup
from enzymatic reactions (see page 8). For DNA cleanup from enzymatic reactions using
this protocol, add 3 volumes of Buffer QG and 1 volume of isopropanol to the reaction
and mix. Set up the vacuum manifold as described in step 4 and then and proceed with
step 7 of the protocol. Alternatively, use the new MinElute Reaction Cleanup Kit.

Important points before starting

■ The yellow color of Buffer QG indicates a pH ≤7.5.

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).

■ Switch off vacuum between steps to ensure that a consistent, even vacuum is applied
during manipulations.

Procedure

1. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel.

Minimize the size of the gel slice by removing extra agarose.

2. Weigh the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume of
gel (100 mg or approximately 100 µl).

For example, add 300 µl of Buffer QG to each 100 mg of gel. For >2% agarose
gels, add 6 volumes of Buffer QG. The maximum amount of gel slice per QIAquick
column is 400 mg; for gel slices >400 mg use more than one QIAquick column.

3. Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). To help
dissolve gel, mix by vortexing the tube every 2–3 min during the incubation. 

IMPORTANT: Solubilize agarose completely. For >2% gels, increase incubation time.

4. During the incubation, prepare the vacuum manifold and QIAquick columns 
according to steps 4a, 4b, or 4c.

4a. QIAvac 24 Plus (see page 33, and Figure 7):

Insert up to 24 QIAquick spin columns into the luer extensions of the QIAvac 24 Plus.
Close unused positions with luer caps and connect QIAvac 24 Plus to a vacuum
source.
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4b. QIAvac 6S manifold (see page 34, and Figure 8):

Open QIAvac 6S lid. Place QIAvac Luer Adapter(s), or blanks to seal unused slots,
into the slots of QIAvac top plate, and close the QIAvac 6S lid. Place the waste tray
inside the QIAvac base, and place the top plate squarely over the base. Attach
the QIAvac 6S to a vacuum source. 

Insert each QIAquick column into a luer connector on the Luer Adapter(s) in the man-
ifold. Seal unused luer connectors with plugs provided with the QIAvac Luer Adapter
Set.

4c. Other vacuum manifolds: follow the suppliers instructions. Insert each QIAquick-
column into a luer connector.

5. After the gel slice has dissolved completely, check that the color of mixture is yellow
(similar to Buffer QG without dissolved agarose). 

Note: If the color of the sample is orange or violet, add 10 µl of 3 M sodium acetate, 
pH 5.0, and mix. The color of the mixture will turn to yellow. 

The adsorption of DNA to the QIAquick membrane is efficient only at pH ≤7.5. 
Buffer QG contains a pH indicator that is yellow at pH ≤7.5 and orange or violet at
higher pH, allowing easy determination of the optimal pH for DNA binding.

6. Add 1 gel volume of isopropanol to the sample and mix by inverting the tube
several times.

For example, if the agarose gel slice is 100 mg, add 100 µl isopropanol. This step
increases the yield of DNA fragments <500 bp and >4 kb. For DNA fragments
between 500 bp and 4 kb, addition of isopropanol has no effect on yield. Do not
centrifuge the sample at this stage.

7. To bind DNA, pipet the sample onto the QIAquick column and apply vacuum. After
the sample has passed through the column, switch off vacuum source.

The maximum volume of the column reservoir is 800 µl. For sample volumes of more
than 800 µl, simply load again.

8. Recommended: Add 0.5 ml of Buffer QG to QIAquick column and apply vacuum.

This step will remove all traces of agarose. It is only required when the DNA will
subsequently be used for direct sequencing, in vitro transcription, or microinjection.

9. To wash, add 0.75 ml of Buffer PE to QIAquick column and apply vacuum.

Note: If the DNA will be used for salt-sensitive applications, such as blunt-end ligation
and direct sequencing, let the column stand 2–5 min after addition of Buffer PE before
applying vacuum.
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10. Transfer QIAquick column to a clean 1.5 ml microcentrifuge tube or to a provided 2 ml 
collection tube. Centrifuge for 1 min at 17,900 x g (13,000 rpm).

IMPORTANT: This spin is necessary to remove residual ethanol (Buffer PE).

11. Place QIAquick column in a clean 1.5 ml microcentrifuge tube.

12. To elute DNA, add 50 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water (pH 7–8.5) to
the center of the QIAquick membrane and centrifuge the column for 1 min at
17,900 x g (13,000 rpm). Alternatively, for increased DNA concentration, add 30 µl
elution buffer, let stand for 1 min, and then centrifuge for 1 min.

IMPORTANT: Ensure that the elution buffer is dispensed directly onto the QIAquick
membrane for complete elution of bound DNA. The average eluate volume is 48 µl
from 50 µl elution buffer volume, and 28 µl from 30 µl.

Elution efficiency is dependent on pH. The maximum elution efficiency is achieved
between pH 7.0 and 8.5. When using water, make sure that the pH value is within
this range, and store DNA at –20°C as DNA may degrade in the absence of a
buffering agent. The purified DNA can also be eluted in TE buffer (10 mM Tris·Cl, 
1 mM EDTA, pH 8.0), but the EDTA may inhibit subsequent enzymatic reactions.

13. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 
5 volumes of purified DNA. Mix the solution by pipetting up and down before
loading the gel. 

Loading dye contains 3 marker dyes (bromophenol blue, xylene cyanol, and
orange G) that facilitate estimation of DNA migration distance and optimization
of agarose gel run time. Refer to Table 2 (page 15) to identify the dyes according
to migration distance and agarose gel percentage and type.
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Comments and Suggestions

Low or no recovery

a) Buffer PE did not Ethanol must be added to Buffer PE (concentrate) before use.
contain ethanol Repeat procedure with correctly prepared Buffer PE.

b) Inappropriate DNA will only be eluted efficiently in the presence of low-salt
elution buffer buffer (e.g., Buffer EB: 10 mM Tris·Cl, pH 8.5) or water.

See “Elution in low-salt solutions”, page 13.

c) Elution buffer Add elution buffer to the center of the QIAquick membrane
incorrectly dispensed to ensure that the buffer completely covers the membrane.

This is particularly important when using small elution
volumes (30 µl).

Gel
d) Gel slice incom- After addition of Buffer QG to the gel slice, mix by vortexing

pletely solubilized the tube every 2–3 min during the 50°C incubation. DNA
will remain in any undissolved agarose.

e) pH of electro- The electrophoresis buffer has been repeatedly used or incor-
phoresis buffer too rectly prepared, resulting in a sample pH that exceeds the 
high (binding  buffering capacity of Buffer QG and leads to inefficient DNA 
mixture turns binding. Add 10 µl of 3 M sodium acetate, pH 5.0, to the
orange or violet) sample and mix. The color of the mixture will turn yellow

indicating the correct pH for DNA binding. Even for binding
mixtures with only small color changes (slight orange color),
add the 10 µl sodium acetate.

f) Gel slice was too 70–80% recovery can only be obtained from ≤400 mg gel
large (>400 mg) slice per QIAquick column. For gel slices >400 mg, use

multiple QIAquick columns.

Gel: refers to QIAquick Gel Extraction Kits only.

PCR: refers to QIAquick PCR Purification Kits only.

Other notes refer to all kits.

Troubleshooting Guide
This troubleshooting guide may be helpful in solving any problems that may arise. For
more information, see also the Frequently Asked Questions page at our Technical Support
Center: www.qiagen.com/FAQ/FAQList.aspx . The scientists in QIAGEN Technical
Services are always happy to answer any questions you may have about either the
information or protocols in this handbook or sample and assay technologies (for contact
information, see back cover or visit www.qiagen.com ).
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Comments and Suggestions

PCR
g) Insufficient/no PCR Estimate DNA recovery by running 10% of PCR product

product before and after purification on an agarose gel.

PCR/Gel

h) Cloudy and This may be due to salt precipitation, and will disappear upon
gelatinous ap- mixing the sample. Alternatively, the gel slice may not be com-
pearance of sample pletely solubilized. In this case, apply the mixture to the 
mixture after QIAquick column, centrifuge, and then add 0.5 ml Buffer QG
addition of to the column. Let stand for 1 min at room temperature, and 
isopropanol then centrifuge and continue with the procedure. This

additional wash will solubilize remaining agarose.

i) Binding mixture turns The pH in the sample exceeds the buffer capacity of Buffer
orange or violet QG or PB respectively. Add 20 µl of 3 M sodium acetate,

pH 5.0, to the sample and mix. The color of the mixture
will turn yellow indicating the correct pH for DNA bind-
ing. Even for samples with slight color changes (orange
color), add 10 µl sodium acetate.

DNA does not perform well (e.g., in ligation reactions)

a) Salt concentration Modify the wash step by incubating the column for 5 min at 
in eluate too high room temperature after adding 750 µl of Buffer PE, then

centrifuge.

b) Eluate contains  Ensure that the wash flow-through is drained from the collection
residual ethanol tube and that the QIAquick column is then centrifuged at

17,900 x g (13,000 rpm) for an additional 1 min.

Gel

c) Eluate contami- The gel slice is incompletely solubilized or weighs >400 mg.
nated with agarose Repeat procedure, including the optional Buffer QG

column-wash step.

PCR

d) Eluate contains Primer-dimers formed are >20 bp and are not completely
primer-dimers removed. After the binding step, wash the QIAquick

column with 750 µl of a 35% guanidine hydrochloride
aqueous solution (35 g in 100 ml). Continue with the
Buffer PE wash step and the elution step as in the protocol.
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Comments and Suggestions

e) Eluate contains Use the eluted DNA to prepare the subsequent enzymatic
denatured ssDNA, reaction but omit the enzyme. To reanneal the ssDNA,
which appears as incubate the reaction mixture at 95°C for 2 min, and allow
smaller smeared the tube to cool slowly to room temperature. Add the enzyme
band on an ana- and proceed as usual. Alternatively, the DNA can be eluted
lytical gel in 10 mM Tris buffer containing 10 mM NaCl. The salt and

buffering agent promote the renaturation of DNA strands.
However the salt concentration of the eluate must then be
considered for subsequent applications. 
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Appendix: QIAvac Vacuum Manifolds
Handling guidelines for QIAvac 24 Plus
■ Always place the QIAvac 24 Plus on a secure bench top or work area. If dropped,

the QIAvac 24 Plus manifold may crack.

■ Always store the QIAvac 24 Plus clean and dry. For cleaning procedures see the
QIAvac 24 Plus Handbook.

■ The components of the QIAvac 24 Plus are not resistant to certain solvents (Table 4).
If these solvents are spilled on the unit, rinse it thoroughly with water. 

■ To ensure consistent performance, do not apply silicone or vacuum grease to any
part of the QIAvac 24 Plus manifold. 

■ Always use caution and wear safety glasses when working near a vacuum mani-
fold under pressure. 

■ Contact QIAGEN Technical Services or your local distributor for information con-
cerning spare or replacement parts. 

QIAGEN
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21
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Figure 7. QIvac 24 Plus. Setting up the QIAvac 24 Plus with QIAprep®, QIAquick, MinElute, or RNeasy® Mini
Spin Columns.

1. QIAvac 24 Plus vacuum manifold

2. Luer slot closed with luer plug

3. Spin column*

* Not included with the QIAvac 24 Plus. Included in appropriate purification kits. 

1

2

3
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Handling guidelines for QIAvac 6S

QIAvac 6S facilitates DNA cleanup with QIAquick by providing a convenient modular
vacuum manifold, which, in combination with QIAvac Luer Adapters, allows easy
processing of QIAquick spin columns as an alternative to centrifugation. The following rec-
ommendations should be followed when handling the QIAvac 6S vacuum manifold.

■ Always store the QIAvac 6S vacuum manifold clean and dry. To clean, simply rinse
all components with water and dry with paper towels. Do not air-dry, as the screws
may rust and need to be replaced. Do not use abrasives or solvents.

■ Always place the QIAvac 6S vacuum manifold on a secure bench top or work area.
If dropped, the manifold may crack.

■ The components of QIAvac manifolds are not resistant to ethanol, methanol, or other
organic solvents (Table 5). Do not bring solvents into contact with the vacuum man-
ifold. If solvents are spilled on the unit, rinse thoroughly with distilled water, and do
not incubate acrylic components in alcohol-containing reagents for long periods of
time. Ensure that no residual Buffer PE remains in the vacuum manifold.

■ To ensure consistent performance, do not apply silicone or vacuum grease to any
part of the QIAvac 6S manifold. The spring lock on the top plate and the self-sealing
gasket provide an airtight seal when vacuum is applied to the assembled unit. To
maximize gasket lifetime, rinse the gasket free of salts and buffers after each use and
dry with paper towels before storage.

■ Remove blanks from the slots of the top plate after use and store them under the
manifold.

Resistant to:

Acetic acid Chaotropic salts Chlorine bleach

Chromic acid Hydrochloric acid SDS

Sodium chloride Sodium hydroxide Tween 20

Urea

Not resistant to:

Benzene Chloroform Ethers

Phenol Toluene

Table 4. Chemical Resistance Properties of the QIAvac 24 Plus
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Resistant to:

Chlorine bleach (12%) Diluted alcohol Hydrochloric acid

Sodium chloride Sodium hydroxide Urea

Not resistant to:

Acetone Benzene Chloroform

Chromic acid Ethers Phenol

Toluene

Table 5. Chemical Resistance Properties of the QIAvac 6S

10

8

9

5

71

2

4

6

3

6

1. QIAvac base, which holds a waste tray, 
a strip holder, or a microtube rack

2. Waste tray
3. QIAvac strip holder to hold 8-well strips
4. QIAvac top plate with slots for 8-well strips or

QIAvac Luer Adapters

5. Microtube rack
6. 8-well strip*
7. Blanks to seal unused slots
8. QIAvac Luer Adapter †

9. QIAquick spin column*
10. Plug to seal unused luer connectors†

Figure 8. QIAvac 6S. Components of the QIAvac 6S manifold.

* Not included with QIAvac Manifold. Included in appropriate kits.
† Not included with QIAvac 6S. Must be purchased separately.
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Ordering Information
Product Contents Cat. no.

QIAquick Spin Kits

QIAquick PCR Purification Kit (50) 50 QIAquick Spin Columns,  28104
Buffers, Collection Tubes (2 ml)

QIAquick PCR Purification Kit (250) 250 QIAquick Spin Columns,  28106
Buffers, Collection Tubes (2 ml)

QIAquick Nucleotide Removal Kit (50) 50 QIAquick Spin Columns, Buffers, 28304
Collection Tubes (2 ml)

QIAquick Nucleotide Removal Kit (250) 250 QIAquick Spin Columns, Buffers, 28306
Collection Tubes (2 ml) 

QIAquick Gel Extraction Kit (50) 50 QIAquick Spin Columns, Buffers, 28704
Collection Tubes (2 ml)

QIAquick Gel Extraction Kit (250) 250 QIAquick Spin Columns, Buffers, 28706
Collection Tubes (2 ml) 

Related products

MinElute Reaction Cleanup Kit (50) 50 MinElute Spin Columns, 28204
Buffers, Collection Tubes (2 ml)

MinElute Reaction Cleanup Kit (250) 250 MinElute Spin Columns, 28206
Buffers, Collection Tubes (2 ml)

MinElute Gel Extraction Kit (50) 50 MinElute Spin Columns, 28604
Buffers, Collection Tubes (2 ml)

MinElute Gel Extraction Kit (250) 250 MinElute Spin Columns, 28606
Buffers, Collection Tubes (2 ml)

MinElute PCR Purification Kit (50) 50 MinElute Spin Columns, Buffers, 28004
Collection Tubes (2 ml)

MinElute PCR Purification Kit (250) 250 MinElute Spin Columns, Buffers, 28006
Collection Tubes (2 ml)

Individual buffers

Buffer PB (500 ml) 500 ml Binding Buffer 19066

Buffer PN 500 ml Binding Buffer 19071

Buffer PE (concentrate) 100 ml Buffer PE (5x concentrate; 19065
final volume 500 ml)

Buffer QG* (250 ml) 250 ml Solubilization and Binding Buffer 19063
(with pH indicator)

* Additional Buffer QG may be required for routine purifications from gel slices >300 mg from gels
containing >2% agarose.
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Ordering Information
Product Contents Cat. no.

QIAcube and accessories

QIAcube* Robotic workstation for automated 9001292†

purification of DNA, RNA, or proteins 9001293‡

using QIAGEN spin-column kits, 3-year 
warranty on parts and labor

Starter Pack, QIAcube§ Pack includes: reagent bottle racks (3); 990395
rack labeling strips (8); 200 µl filter-tips 
(1024); 1000 µl filter-tips (1024); 
1000 µl filter-tips, wide-bore (1024); 
30 ml reagent bottles (18); rotor 
adapters (120); rotor adapter holder

QIAvac manifolds and accessories

QIAvac 24 Plus Vacuum manifold for processing 1–24 spin 19413
columns: includes QIAvac 24 Plus Vacuum
Manifold, Luer Plugs, Quick Couplings

QIAvac 6S Vacuum manifold for processing 1–6 19503
QIAGEN 8-well strips: includes  
QIAvac 6S Top Plate with flip-up lid, 
Base, Waste Tray, Blanks, Strip Holder

QIAvac 96 Vacuum manifold for processing 19504
QIAGEN 96 well-plates: includes
QIAvac 96 Top plate, Base, 
Waste Tray, Plate Holder

QIAvac Luer Adapter Set¶ For processing 1–24 QIAGEN spin 19541
columns on QIAvac 6S: 6 adapters with 
4 luer connectors each, 24 plugs

Vacuum Regulator For use with QIAvac manifolds 19530

Vacuum Pump Universal vacuum pump 84000**
(capacity 34 L/min, 8 mbar 84010†† 

vacuum abs.) 84020‡‡

* Agreements for conprehensive service coverage are available; please inquire. † US, Canada, and Japan.
‡ Rest of world.     § All starter pack items are available separately.     ¶ Compatible only with QIAvac Top
Plates containing flip-up lid.     **  Japan.     †† US and Canada.     ‡‡ Rest of world.

The QIAcube is intended to be used only in combination with QIAGEN Kits for
applications described in the respective Kit handbooks. All other Kits are intended for
research use. No claim or representation is intended to provide information for the
diagnosis, prevention, or treatment of a disease.
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Trademarks: QIAGEN®, QIAEX®, QIAquick®, QIAprep®, MinElute®, QIAcube®, RNeasy® (QIAGEN Group); Tween® (ICI Americas
Inc.)

Limited License Agreement

Use of this product signifies the agreement of any purchaser or user of the QIAquick PCR Purification Kit, the QIAquick Nucleotide
Removal Kit and the QIAquick Gel extraction Kit to the following terms:

1. The QIAquick PCR Purification Kit, the QIAquick Nucleotide Removal Kit and the QIAquick Gel extraction Kit may be used
solely in accordance with the  QIAquick Spin Handbook and for use with components contained in the Kit only. QIAGEN
grants no license under any of its intellectual property to use or incorporate the enclosed components of this Kit with any
components not included within this Kit except as described in the QIAquick Spin Handbook and additional protocols
available at www.qiagen.com .

2. Other than expressly stated licenses, QIAGEN makes no warranty that this Kit and/or its use(s) do not infringe the rights of
third-parties.

3. This Kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.

4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated.

5. The purchaser and user of the Kit agree not to take or permit anyone else to take any steps that could lead to or facilitate
any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall
recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement
or any of its intellectual property rights relating to the Kit and/or its components.

For updated license terms, see www.qiagen.com .

© 2007–2008 QIAGEN, all rights reserved.
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Australia ■ Orders 03-9840-9800 ■ Fax 03-9840-9888 ■ Technical 1-800-243-066

Austria ■ Orders 0800/28-10-10 ■ Fax 0800/28-10-19 ■ Technical 0800/28-10-11

Belgium ■ Orders 0800-79612 ■ Fax 0800-79611 ■ Technical 0800-79556

Canada ■ Orders 800-572-9613 ■ Fax 800-713-5951 ■ Technical 800-DNA-PREP (800-362-7737)

China ■ Orders 021-51345678 ■ Fax 021-51342500 ■ Technical 021-51345678

Denmark ■ Orders 80-885945 ■ Fax 80-885944 ■ Technical 80-885942

Finland ■ Orders 0800-914416 ■ Fax 0800-914415 ■ Technical 0800-914413

France ■ Orders 01-60-920-926 ■ Fax 01-60-920-925 ■ Technical 01-60-920-930 ■ Offers 01-60-920-928

Germany ■ Orders 02103-29-12000 ■ Fax 02103-29-22000 ■ Technical 02103-29-12400

Hong Kong ■ Orders 800 933 965 ■ Fax 800 930 439 ■ Technical 800 930 425

Ireland ■ Orders 1800-555-049 ■ Fax 1800-555-048 ■ Technical 1800-555-061

Italy ■ Orders 02-33430411 ■ Fax 02-33430426 ■ Technical 800-787980

Japan ■ Telephone 03-5547-0811 ■ Fax 03-5547-0818 ■ Technical 03-5547-0811

Korea (South) ■ Orders 1544 7145 ■ Fax 1544 7146 ■ Technical 1544 7145

Luxembourg ■ Orders 8002-2076 ■ Fax 8002-2073 ■ Technical 8002-2067

The Netherlands ■ Orders 0800-0229592 ■ Fax 0800-0229593 ■ Technical 0800-0229602

Norway ■ Orders 800-18859 ■ Fax 800-18817 ■ Technical 800-18712

Singapore ■ Orders 65-67775366 ■ Fax 65-67785177 ■ Technical 65-67775366

Sweden ■ Orders 020-790282 ■ Fax 020-790582 ■ Technical 020-798328

Switzerland ■ Orders 055-254-22-11 ■ Fax 055-254-22-13 ■ Technical 055-254-22-12

UK ■ Orders 01293-422-911 ■ Fax 01293-422-922 ■ Technical 01293-422-999

USA ■ Orders 800-426-8157 ■ Fax 800-718-2056 ■ Technical 800-DNA-PREP (800-362-7737)
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e Bench Protocol: QIAquick PCR Purification 

Microcentrifuge and Vacuum Protocol
New users are strongly advised to familiarize themselves with the detailed protocols
and safety information provided in the QIAquick Spin Handbook before using this
bench protocol.
Notes before starting
■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).
■ All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a

conventional tabletop microcentrifuge at room temperature.
■ Add 1:250 volume pH indicator I to Buffer PB. The yellow color of Buffer PB

with pH indicator I indicates a pH of �7.5. 
Note: If the purified PCR product is to be used in sensitive microarray
applications, it may be beneficial to use Buffer PB without addition of pH
indicator I. Do not add pH indicator I to buffer aliquots.

Procedure
1. Add 5 volumes of Buffer PB to 1 volume of the PCR reaction and mix. 

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate,
pH 5.0, and mix. The color of the mixture will turn yellow.

2. Place a QIAquick column in ▲ a provided 2 ml collection tube or into ● a
vacuum manifold.
See the QIAquick Spin Handbook for details on how to set up a vacuum
manifold. 

3. To bind DNA, apply the sample to the QIAquick column and ▲ centrifuge for
30–60 s or ● apply vacuum to the manifold until all samples have passed
through the column. ▲ Discard flow-through and place the QIAquick column
back into the same tube.

4. To wash, add 0.75 ml Buffer PE to the QIAquick column and ▲ centrifuge for
30–60 s or ● apply vacuum. ▲ Discard flow-through and place the QIAquick
column back in the same tube. 

5. Centrifuge the column in a 2 ml collection tube (provided) for 1 min.
6. Place each QIAquick column in a clean 1.5 ml microcentrifuge tube.
7. To elute DNA, add 50 µl Buffer EB (10 mM Tris·Cl, pH 8.5) or water to the center

of the QIAquick membrane and centrifuge the column for 1 min. For increased
DNA concentration, add 30 µl elution buffer to the center of the QIAquick
membrane, let the column stand for 1 min, and then
centrifuge.

8. If the purified DNA is to be analyzed on a gel, add 1 volume
of Loading Dye to 5 volumes of purified DNA. Mix the
solution by pipetting up and down before loading the gel.
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eBench Protocol: QIAquick Nucleotide Removal Protocol

New users are strongly advised to familiarize themselves with the detailed protocols
and safety information provided in the QIAquick Spin Handbook before using this
bench protocol.
Notes before starting
■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume).
■ All centrifugation steps are in a conventional in a conventional tabletop

microcentrifuge.
Procedure
1. Add 10 volumes of Buffer PN to 1 volume of the reaction sample and mix.
2. Place a QIAquick spin column in a provided 2 ml collection tube. 
3. To bind DNA, apply the sample to the QIAquick column and centrifuge for 1 min

at 6000 rpm.
4. For radioactive samples:

Place the QIAquick column into a clean 2 ml collection tube and discard the tube
containing the radioactive flow-through appropriately.
For non-radioactive samples:
Discard the flow-through and place QIAquick column back into the same tube.

5. For radioactive samples:
To wash QIAquick column, add 500 µl of Buffer PE and centrifuge for 1 min at
6000 rpm. Discard the flow-through appropriately and repeat wash with
another 500 µl of Buffer PE. 
For non-radioactive samples: 
To wash QIAquick column, add 750 µl of Buffer PE and centrifuge for 1 min at
6000 rpm.

6. Discard the flow-through and place the QIAquick column back in the same tube,
which should be empty. Centrifuge for an additional 1 min at 13,000 rpm 
(17,900 x g).

7. Place the QIAquick column in a clean 1.5 ml microcentrifuge tube.
8. To elute DNA, add 100–200 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water to

the center of the QIAquick membrane and centrifuge the column for 1 min at 
13,000 rpm (17,900 x g). Alternatively, for increased DNA concentration, add
30–50 µl elution buffer to the center of the QIAquick membrane, let the column
stand for 1 min, and then centrifuge.

9. If the purified DNA is to be analyzed on a gel, add 1 volume
of Loading Dye to 5 volumes of purified DNA. Mix the
solution by pipetting up and down before loading the gel.
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e Bench Protocol: QIAquick Gel Extraction 

Microcentrifuge and Vacuum Protocol
New users are strongly advised to familiarize themselves with the detailed protocols
and safety information provided in the QIAquick Spin Handbook before using this
bench protocol.

Notes before starting

■ The yellow color of Buffer QG indicates a pH �7.5. 

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for volume). 

■ Isopropanol (100%) and a heating block or water bath at 50°C are required. 

■ All centrifugation steps are carried out at 17,900 x g (13,000 rpm) in a
conventional table-top microcentrifuge. 

Procedure

1. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel. 

2. Weigh the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 1 volume
of gel (100 mg ~ 100 µl).

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate,
pH 5.0, and mix. The color of the mixture will turn yellow.

3. Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). 
To help dissolve gel, mix by vortexing the tube every 2–3 min during the
incubation.

For >2% gels, increase incubation time.

4. After the gel slice has dissolved completely, check that the color of the mixture
is yellow (similar to Buffer QG without dissolved agarose).

If the color of the mixture is orange or violet, add 10 µl of 3 M sodium acetate,
pH 5.0, and mix. The color of the mixture will turn to yellow.

5. Add 1 gel volume of isopropanol to the sample and mix.

6. Place a QIAquick spin column in ▲ a provided 2 ml collection tube or into ● a
vacuum manifold.

See QIAquick Spin Handbook for details on how to set up 
a vacuum manifold. 
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e7. To bind DNA, apply the sample to the QIAquick column and ▲ centrifuge for

1 min or ● apply vacuum to the manifold until all samples have passed through
the column. ▲ Discard flow-through and place the QIAquick column back into
the same tube.

The maximum volume of the column reservoir is 800 µl. For sample volumes of
more than 800 µl, simply load and spin/apply vacuum again.

8. Recommended: Add 0.5 ml of Buffer QG to QIAquick column and ▲ centrifuge
for 1 min or ● apply vacuum. ▲ Discard flow-through and place the QIAquick
column back into the same tube.

This step is only required when the DNA will subsequently be used for direct
sequencing, in vitro transcription, or microinjection.

9. To wash, add 0.75 ml of Buffer PE to QIAquick column and ▲ centrifuge for
1 min or ● apply vacuum. ▲ Discard flow-through and place the QIAquick
column back into the same tube.

Note: If the DNA will be used for salt-sensitive applications, such as blunt-end
ligation and direct sequencing, let the column stand 2–5 min after addition of
Buffer PE, before centrifuging.

10. Centrifuge the column in a 2 ml collection tube (provided) for 1 min at
17,900 x g (13,000 rpm).

11. Place QIAquick column into a clean 1.5 ml microcentrifuge tube.

12. To elute DNA, add 50 µl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water to the
center of the QIAquick membrane and centrifuge the column for 1 min.
Alternatively, for increased DNA concentration, add 30 µl elution buffer to the
center of the QIAquick membrane, let the column stand for 1 min, and then
centrifuge for 1 min.

13. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye
to 5 volumes of purified DNA. Mix the solution by pipetting up and down
before loading the gel.
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APPENDIX D 

 

Bayes-block used in TEB molecular phylogenetic analysis for the TEB alignment. 

 

begin mrbayes; 

log start filename=TotBbaylog.txt; 

 

 [The following lines define four character sets, each corresponding to a gene] 

 charset coi = 1-620; 

 charset 16s = 621-1023; 

 charset its = 1024-1512; 

 charset 28s = 1512-2110; 

  

 [The following line defines a partition called "by_gentyp" that divides the sites 

into genes] 

 partition by_gentyp = 4:16s,coi,28s,its; 

 

 [The following line sets the current partition to the one we just defined above. 

If we do not explicitly set the partition to the one we defined, MrBayes will use the 

default partition.  The default partition divides the characters into sets based on their 

data type (DNA, amino acid, etc)] 

 set partition=by_gentyp; 

  

 [The following line allows the genes to have different mutation rates. Without 

the following line, all codon positions will be assumed to evolve at the same rate] 

 prset ratepr=variable;  

  

end; 

 

begin mrbayes; 

                unlink statefreq=(all) revmat=(all) shape=(all)  

pinvar=(all); 

                prset applyto=(all); 

                lset applyto=(1) nst=6 rates=invgamma; 

                [Modelselection coi by hLrt: GTR+I+G] 

                

                lset applyto=(2) nst=2 rates=invgamma; 

                [Modelselection 16s by hLrt: HKY+I+G] 

   

  lset applyto=(3) nst=1 rates=equal; 

                [Modelselection ITS by hLrt: JC] 

   

  lset applyto=(4) nst=2 rates=inv; 

                [Modelselection 28S by hLrt: HKY+I] 

end; 

  

begin mrbayes; 

                mcmcp savebrlens=yes ngen=2000000; 

   

end; 
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Four new species of the family Lithodidae (Decapoda: Anomura) from the 
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Abstract

Four new species of lithodid crab were identified in the collections of the National Museum of Natural History, 
Smithsonian Institution. These include three species of the genus Paralomis: P. nivosa from the Philippines, P. makarovi 
from the Bering Sea, and P. alcockiana from South Carolina; and one new species of the genus Lithodes, L. 
galapagensis, from the Galapagos archipelago. Two of these species, P. nivosa and P. makarovi were part of a collection 
of previously unidentified lithodid samples from the Albatross expeditions of 1906–1908. Paralomis makarovi may have 
been misidentified as P. multispina Benedict, 1894, or P. histrix (De Haan, 1844) in other collections owing to superficial 
similarities in carapace ornamentation and overlapping distributions.

Key words: king crab, Lithodes, Paralomis, Albatross expedition, new species, Anomura, Lithodidae

Introduction

The family Lithodidae Samouelle, 1819, is a commercially important group of crustaceans inhabiting subtidal 
waters at high latitudes, as well as the deep sea in most of the world’s oceans (Hall & Thatje 2009). The 
family consists of 109 species described to date; most of these belonging to the deep-sea genera Lithodes 
Latreille, 1806 (20 species), and Paralomis White, 1856 (57 species) (Zaklan 2002; Macpherson & Chan 
2008; Spiridonov et al. 2006). 

The National Museum of Natural History, Smithsonian Institution, Washington D.C. (USNM) currently 
curates over 700 samples belonging to the family Lithodidae — 684 of which are identified to species level. 

Several of the unidentified samples were collected in the early part of the 20th century by the U.S. Bureau of 
Fisheries steamer, “Albatross”. 

The number of described species of the genus Paralomis has increased in recent decades (Takeda & 
Bussarawit 2007). We are beginning to understand the incredible diversity of deep-water forms at depths 
typically 500–1500 m. 

No species of Paralomis have been previously reported from the Philippines, although the Albatross 
1908–09 expedition to this region also yielded the holotype of Paralomis ochthodes Macpherson, 1988a, from 
the Gulf of Boni, about 1300 km to the south. In addition, P. seagranti Eldredge, 1976 and P. haigae Eldredge, 
1976, were described from Guam, and P. danida Takeda & Bussarawit, 2007, was described from Thailand. 
Several species of Paralomis, including P. dofleini Balss, 1911, are known from Taiwan and Japan 
(Macpherson & Chan 2008; Takeda 1985; Takeda 1990; Takeda 1980; Sakai 1971; Sakai 1987).

The diversity of the family Lithodidae in the North Pacific is notably high, with most of the 14 lithodid 
genera being represented there. Only two species of Paralomis have been reported from the Bering Sea, 
namely P. multispina (Benedict, 1894) and P. verrilli (Benedict, 1894) (Sakai 1971). In this region, species of 
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Paralomis have been encountered at depths of around 1500 m, whereas most other members of the Lithodidae 
in the North Pacific are found intertidally, based on data from the USNM holdings.

Several species of Paralomis are encountered in the Caribbean Sea: P. cubensis Chace, 1939, P. pectinata 
Macpherson, 1988b and P. serrata Macpherson, 1988b, and P. arethusa Macpherson, 1994. None are recorded 
in the waters off South Carolina, and the closest described species from the Atlantic coast of the USA is P. 
bouvieri Hansen, 1908 (see Macpherson 1988b) at 1460 m off the coast of Virginia.

To date, no specimen of Lithodidae has been recorded from the Galapagos Islands. The genus Lithodes is 
typically found between 200 and 1000 m, and it has been recorded from several locations in the Pacific Ocean 
— particularly around the islands chains of the western Pacific (Hall & Thatje 2009). The species of Lithodes 
occurring nearest to the Galapagos Islands are L. wiracocha Haig, 1974, and L. panamensis Faxon, 1893 from 
the coastal waters off Equador and Peru (Haig 1974). 

Materials and methods

All specimens remain in the collections of the USNM. Measurements given are of carapace length (CL) 
excluding the rostrum. Terminology follows Macpherson (1988b). 

Systematic account 

Family Lithodidae Samouelle, 1819

Paralomis alcockiana n. sp.
(Figs 1, 2)

Material examined. South Carolina: 31°20’N, 79°05’W, 1995, 570 m: male holotype, CL 44 mm (USNM 
269032), S. Carolina Department of Natural Resources. 

Etymology. This new species is named after Alfred W. Alcock, 19th century British carcinologist, and 
Fellow of the Royal Society who reported on the findings of the HMS Investigator in the Indian Ocean.

Description of holotype. Carapace about as long as broad; irregularly hexagonal and angular in outline 
(Fig. 1a). Surface covered in smoothly elliptical, raised tubercles becoming somewhat more acute towards 
anterolateral margins; some tubercles enlarged and more acute, with clustered rings of smaller tubercles at 
base (Fig. 1b). Gastric regions with five enlarged tubercles, largest in the centre of region. Cardiac region with 
four enlarged tubercles in a quadrilateral pattern. Branchial region with three enlarged tubercles. (Positions of 
enlarged tubercles corresponding to dorsal spines in other species of Paralomis such as P. formosa 
Henderson). Under magnification, all tubercles with irregular arrangements of very short setae, as seen in 
Paralomis cubensis (Fig. 1d).

No regions particularly inflated above dorsal surface, although gastric region slightly inflated in 
comparison to branchial and cardiac regions. Grooves delimit cardiac region, forming triangle in advance of 
posterior margin. Small anterior spine present on pterygostomian region, as typical of genus. 

Median rostral spine nearly straight, surpassing length of ocular peduncle; ventral surface deeply keeled, 
bearing several small denticulate spinules (Fig 2a). Paired dorsal spines diverging at level of cornea; both 
spines much shorter than ventral spine (Figs 2a, b). Dorsally, base of rostrum covered with more or less acute 
tubercles. Base of the rostrum wide, partially obscuring bases of ocular peduncles in dorsal view. 

External-orbital and anterolateral spine similar in size, shorter than ocular peduncle (Fig. 1a). Several 
irregularly spaced spines (10+) of varying size on lateral margins of anterior half of carapace. Posterior lateral 
margins with acute tubercles. 

Ocular peduncles covered with short spines, and one larger spine disto-dorsal near cornea (Fig. 1c). 
Antennal acicle broad, with one large central spine, 4 or 5 long spines on outer border and 4 spines of similar 
length on inner border.
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FIGURE 1. Paralomis alcockiana n. sp. a–c: male holotype, 44 mm CL (USNM 269032), South Carolina: 31°20’N, 
79°05’W, 570 m. (a) carapace, dorsal. (b) carapace ornamentation, dorsal. (c) part of ocular peduncle visible below 
rostrum, dorsal. Paralomis cubensis Chace. d, e: Male, 46 mm CL (USNM 213542) (d) carapace, dorsal. (e) carapace 
ornamentation, dorsal. Scale bar = 5 mm for a, d; 1 mm for b, c, e.
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FIGURE 2. Paralomis alcockiana n. sp. a–f: male holotype, 44 mm CL (USNM 269032), South Carolina: 31°20’N, 
79°05’W, 570 m. (a) anterior carapace, lateral. (b) rostral spines, dorsal. (c) right antennal acicle, dorsal. (d) abdomen. (e) 
right chela, lateral. (f) whole organism, dorsal. Scale bar = 1 mm for a–c; 5 mm for d–f.
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Cheliped merus with numerous spiniform tubercles dorsally and on outer surface, larger distally, and one 
large spine distally on inner surface. Chela with numerous tufts of long yellow setae covering palm and 
fingers of both hands.

Merus of pereiopod 3 a little over half carapace length, and about four times as long as high, rectangular in 
cross-section. Several rows of spines on dorsal anterior margin and ventral posterior margin. Posterior, dorsal 
and ventral surfaces of merus covered with acute tubercles. Two rows of spines on dorsal surface of carpus, 
larger on anterior row. Propodus with one row of dorsal spines and one row of ventral spines; covered in acute 
tubercles. Dactylus ventral margin with row of long black needle-like spines, and one black spine at tip; dorsal 
margins with a few spines near the articulation with propodus; with tufts of long yellow setae. 

Abdomen covered with tubercles smaller than on dorsal surface. Marginal plates expanded and fused on 
each of abdominal segments 3–5; marginal plates fused to lateral plates on segment 3 (Fig. 2d). 

Remarks. Paralomis alcockiana n.sp. shares many characteristics with P. cubensis, which is found in the 
Gulf of Mexico and Caribbean Sea (Chace 1939) at similar depths to the new species. Some differences are 
listed in Table 1. The most notable distinguishing feature is the presence, in P. alcockiana, of some enlarged 
conical tubercles surrounded by a ring of smaller rounded tubercles (Fig. 1b). 

TABLE 1. Key diagnostic differences between Paralomis alcockiana and two similar species.

Paralomis alcockiana is similar in shape to P. arethusa from the Barbados accretionary prism, a species 
known only from a juvenile specimen of 18 mm CL. Although comparison is difficult between different 
growth stages (Ingle & Garrod 1987), some key diagnostic differences are listed in Table 1. 

Paralomis alcockiana is somewhat similar to P. inca Haig, 1974, from Peru, and P. grossmani
Macpherson, 1988b, from French Guiana, but under magnification, the setal coverage of the dorsal tubercles 
is very different. Paralomis alcockiana has rounded tubercles sparsely covered with a few short setae; P. inca
has rounded or conical tubercles, densely covered with short setae on their apices; and P. grossmani has a 
distinct ring of longer setae around the apex of the tubercles on its dorsal surface. There are also differences in 
the shape of the carapace. P. grossmani is longer and thinner than P. alcockiana, especially in the anterior 
region, and has the gastric region inflated to a much greater level. P. inca has its posterior half very much 
expanded, in contrast to P. alcockiana which has a roughly hexagonal outline.  
 

P. alcockiana n. sp. (Figs 1, 2). P. cubensis Chace, 1939 P. arethusa Macpherson, 1994

Carapace outline  Irregularly hexagonal. Circular in juveniles. Pyriform in 
adults.

Hexagonal.

Spinulation of lateral 
margins of carapace

Several irregularly spaced spines 
(10 +) of varying size on lateral 
margins of anterior carapace. 
Posterior lateral margins with 
acute tubercles.

More than 20 spines of different 
sizes spaced evenly around 
anterior and posterior margins

Three spines on each side of anterior 
margins, several small tubercles on 
posterior margins.

Spinulation of 
eyestalks

Several small spines or conical 
tubercles, largest terminal, 
extending well beyond cornea.

Several small spines or conical 
tubercles, largest terminal, 
extending well beyond cornea.

One distodorsal spine.

Antennal acicle Broad; one large central spine, 4 
or 5 long spines on outer border 
and 4 spines of a similar length 
on inner border.

4–6 spines, terminal pair longest, 
forming a fork. One spine 
proximal of inner spine of 
terminal pair and a fourth still 
more proximal on outer margin.

Large central spine not overreaching 
antennal peduncle; 2 spines on outer 
border. Inner border smooth.

Walking leg 
spinulation

Covered with irregular rows of 
spines and acute tubercles.

Covered with irregular rows of 
spines and acute tubercles.

Comb-like sets of spines on merus 
and carpus. Similar to P. serrata and 
P. pectinata from the Gulf of Mexico. 
Distinguishes all three in this group 
from P. alcockiana.
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Paralomis makarovi n. sp.
(Figs 3, 4)

Material examined. Bering Sea: Bowers Bank, 54°30’N, 179°17’E, Albatross station 4772, 4.06.1906, 629 
m: male holotype, CL 23.8 mm; 3 male paratypes, CL 15–25 mm; 3 female paratypes. CL 12–23 mm (all 
USNM 1122582).

Etymology. This new species is named after V.V. Makarov, the author of an influential 1938 monograph 
on lithodid biogeography. 

Description of the holotype. Carapace pear-shaped; rounded posteriorly, and longer than wide. Dorsal 
surface covered uniformly by conical spines, each with band of long setae half-way along length (Fig. 4c) No 
spines dorsally or laterally notably longer than any other — no prominent spine at apex of gastric or branchial 
regions. Gastric region rounded and more prominent than branchial and cardiac regions, which are relatively 
sunken. Grooves only partially delimiting regions. 

Median spine of rostrum strongly curved upward, and without secondary spinules or tubercles on ventral 
surface; one pair of dorsal spines, and one pair of spinules at their base. Rostrum not pedunculated, such that 
dorsal spines do not surpass cornea in dorsal view (Figs 3f, 4f). 

Spines on the lateral margins of carapace of similar size to those on dorsal surface; spines on frontal 
margin subequal, much shorter than eyestalk; 10–13 spines on each side of anterolateral margin; hepatic 
spines barely enlarged relative to others. 

Ocular peduncles with long spine above cornea, and a few smaller spines along its length. Several setae 
above cornea (Fig. 3c). 

Second peduncular segment of antenna with moderately-sized spine on outer angle, and small spine on 
inner angle. Antennal acicle longer than ocular peduncle, consisting of one central spine, with 2 or 3 long 
outer spines and 2 or 3 smaller inner spines; all spines with several setae (Fig. 3g). 

Cheliped carpus with several spinules on medial face, without crest of large spines. Chelae with few 
spinules on dorsal border of palm, and several clusters of brush-like setae. 

Merus of pereiopods 2–4 with 4 or 5 ill-defined rows of spines of various sizes; each row with 6 spines of 
a similar size to those on carapace. Dactylus of pereiopods 2–4 unarmed dorsally except for one at articulation 
and row of dark needle-like spines ventrally. Claw of dactylus recurved, with several clumps of setae. 

Abdomen with marginal plates of segments 3–5 not separated from lateral plates, atypical of genus (Fig. 
3d); surface of plates without spines, but with low tubercles and several clusters of setae. 

Variations. With the exception of the abdominal asymmetry typical of this family, no notable differences 
are observed between the males and the females. All individuals agree closely with the holotype.

TABLE 2. Key diagnostic differences between Paralomis makarovi, P. aspera and P. chilensis.

Paralomis makarovi n. sp. (Figs 2, 3) Paralomis aspera Faxon Paralomis chilensis Andrade 

Carapace outline Pear-shaped; rounded posteriorly. 
Longer than wide.

Pentagonal; as broad as long. Pear shaped; broader than long. 

Antennal acicle 
spinulation

 One central spine, with 2 or 3 long 
outer spines and 2 or 3 smaller inner 
spines. All spines with several setae.

At least 7 fully developed 
spines, on inner and outer faces 
of the acicle.

Acicle with many spines above 
and below the plane.

Cheliped palms Chelae with a few spinules on dorsal 
border of palm, and several clusters of 
brush-like setae

Thickly set with strong spines. Thickly set with strong spines; 
fingers with no spines.

Abdomen Surface of plates with low tubercles 
and several clusters of setae

Plates bear spines similar to 
those on the dorsal surface of 
carapace. 

Plates bear spines similar to those 
on the dorsal surface of carapace. 

Carapace regional 
differentiation

Poorly defined regions. Well defined gastric, cardiac 
and branchial regions.

Strong definition of all regions.
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FIGURE 3. Paralomis makarovi n. sp. a–d, f–g: male holotype, 23.8 mm CL (USNM 1122582) , Bering Sea, Bowers 
Bank, 54°30’N, 179°17’E, 629 m. e: female paratype 24 mm CL (USNM 1122582). (a) whole organism, dorsal. (b) right 
chela, lateral. (c) ocular peduncles, dorsal. (d) male abdomen. (e) female abdomen. (f) rostral spines, dorsal. (g) antennal 
acicle, dorsal. Scale bar = 5 mm for a, b; 1 mm for c–g.
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FIGURE 4. Paralomis makarovi n. sp. a, c, e, f: male holotype, 23.8 mm CL (USNM 1122582), Bering Sea, Bowers 
Bank, 54°30’N, 179°17’E, 629 m. (a) carapace, dorsal. (c) dorsal carapace spines, lateral. (e) left pereiopod 4, posterior. 
(f) rostrum, lateral. Paralomis multispina Benedict. b, d: USNM 18592, female, 20 mm CL. (b) carapace, dorsal. (d) 
mid-branchial carapace ornamentation, dorsal. Scale bar = 5 mm for a, b, e; 1mm for c, d, f. 
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Remarks. Several species of Paralomis have the dorsal part of their carapace covered in dense, uniform 
spines. Under magnification, however, the structure of the spines is similar only to P. aspera and P. chilensis 
from the coast of South America, both of which have conical spines with a band of long setae half way along 
the length. Diagnostic differences between these species are set out in Table 2.

Paralomis makarovi has a geographic proximity to P. multispina and P. verrilli. A uniform coverage of 
spines on the carapace and on the pereiopods, with no dorsal spine more prominent than any other easily 
distinguishes P. makarovi from P. verrilli. Specimens of P. multispina of a similar size to the types of P. 
makarovi (Fig. 4b) have been studied, and they are distinguished by the following features: 

� No enlarged spine on the apex of the gastric region of P. makarovi, whereas a large spine is found in this 
position on all P. multispina, and is especially prominent in smaller specimens. 

� Dorsal spines in P. makarovi conical, with a band of long setae half way down the spine. P. multispina 
has blunt spines with a single ring of short setae at the expanded apex (Figs 4c, d). 

� P. multispina also has several long lateral spines on the carapace, whereas P. makarovi has none 
particularly more prominent than any other. 

� A pedunculation of the base of the rostrum is found in P. multispina, and not in P. makarovi.

It is quite likely that specimens belonging to P. makarovi have been found previously, but misidentified as 
P. multispina. The equivalent growth stages of these two species are, however, substantially different (Figs 4a, 
b). Juvenile P. histrix, from Japan, also has a carapace covered with spines, but its spines are very long and are 
without setae. Paralomis histrix also has long spines on the abdomen, whereas the abdomen of P. makarovi 
lacks spines. Paralomis bouvieri Hansen, 1908, from the Northern Atlantic seems quite close to this species, 
except that spines have long setae eminating in a cluster from the apex in similar sized specimens. 

Paralomis nivosa n. sp.
(Figs 5, 6)

Material examined. Philippines: Palawan passage 10°57’45”N, 118°38’15”E, 27.12.1908, 685 m: female 
holotype CL 30 mm, collected on the 1907–1908 ‘Albatross’ expedition to the Philippines (USNM 1122581).

Etymology. This species is named nivosa, which is the Latin for snow-like or snowy. The name alludes to 
the fact that the carapace is angular and resembles a snowflake in dorsal view. 

Description of holotype. Carapace angular in outline, with distinct angle at hepatic region (Fig. 6a). 
Gastric and branchial regions of similar size and moderately convex; cardiac region slightly sunken in 
comparison. Inflated whelt towards posterior of branchial regions and at medial entrance to cervical groove. 
Intestinal region flattened to posterior margin. Surface of carapace covered in low, rounded tubercles, each 
with a thick ring of short setae around sides and rounded non-setose apex (Fig. 5b). A few instances of 
clustered tubercles on gastric and cardiac regions. No spines or particularly prominent tubercles on dorsal 
surface. Lateral edges rounded and covered with similar ornamentation as dorsally. Five sharp spines on 
anterolateral portion of carapace: two on anterior margin; one on hepatic region, and two on anterior branchial 
margin. No spines on posterior or posterolateral branchial margin. 

Rostrum pedunculate and wide, almost covering eyestalks in dorsal view. Base of rostrum dorsally 
covered in tubercles, similar to rest of dorsal carapace. Two short, sharp spines at end of this rostral 
prominence, at level of corneae. Median spine of rostrum extending beyond corneae; slightly keeled ventrally, 
and strongly curved upward (Figs 6b, d). 

Eyestalks with several dorsal spines, one very long and extending past cornea (Fig 6e). Antennal acicle 
long, with one long medial spine, five long outer spines, and four short spines on internal surface. Several 
spinules on dorsal surface of acicle. All spines with uniform coverage of short setae along their length.
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FIGURE 5. Paralomis nivosa n. sp. a, b, d–f: female holotype, 30 mm CL (USNM 1122581), Philippines, Palawan 
passage, 10°57’45”N, 118°38’15”E, 685 m. (a) abdomen. (b) mid-branchial carapace ornamentation, dorsal. (d) part of 
right ocular peduncle visible below rostrum, dorsal (e) whole organism, dorsal. (f) carapace lateral spine, dorsal. 
Paralomis haigae Eldredge. e: female 43.8 mm CL (MNHN-Pg4274), Samoa. (e) whole organism, dorsal. Scale bar = 1 
mm for a–d; 5 mm for e, f. 
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FIGURE 6. Paralomis nivosa n. sp. a–f: female holotype, 30 mm CL (USNM 1122581), Philippines, Palawan passage, 
10°57’45”N, 118°38’15”E, 685 m. (a) carapace, dorsal. (b) rostral spines, dorsal. (c) right chela, lateral. (d) rostrum, 
lateral. (e) antennal acicle, frontal. (f) left chela, lateral. Scale bar = 5 mm for a; 1 mm for b–f
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Cheliped carpus with a series of 4 enlarged spines on internal angle and a few tubercles on other surfaces. 
Very few spinules on surface of chelae palms, none on fingers. Fingers with row of clusters of setae external 
to cutting surfaces, and several setae on mobile finger. 

Pereiopods uniformly covered with tubercles, with some prominent sharp spines as on lateral margins. 
Merus of pereiopod 4 about half carapace length and 1.5 times length of propodus, with rounded cross-
section. Five prominent spines on dorsal anterior edge, and several sharp spinules on ventral posterior edge of 
walking leg meri. Sharp spinules covering carpus and propodus. Dactylus slightly shorter than propodus and 
compressed in cross-section. One or two spines in articulating region, but smooth surfaces elsewhere. With 5 
short, black needle-like spines on ventral side of dactylus, as well as several tufts of setae.

Abdomen of holotype female asymmetrical, although with very little ‘right-hand skew’ — telson almost 
in line with body axis (Fig. 5a). Mid portion of second abdominal segment prominent in dorsal view. Medial 
and paired lateral plates on each abdominal segment 3–5. Marginal plates on left side separate from lateral 
plates. Surface of abdominal plates with low tubercles similar to those found dorsally. 

Remarks. The dorsal ornamentation in Paralomis nivosa n.sp. is very similar to P. haigae Eldredge, 1976 
(Fig 5c), and P. dofleini Balss, 1911 and this feature allies these three species within Paralomis. This 
specimen is a small adult; 30 mm in carapace length. Direct comparison with similar sized specimens of P. 
haigae and P. dofleini have been made at the USNM and Muséum National d’Histoire Naturelle, Paris 
(MNHN). 

 � P. nivosa has several sharp spines on the lateral borders, dorsally on the rostrum, and on the legs. There 
is no indication of any spines laterally in P. haigae or P. dofleini, with the exception of one on the 
anterior margin. No specimens of P. haigae studied have spines dorsally on the rostrum. 

� The outline of the carapace in P. nivosa is quite angular, whereas in P. haigae, the carapace is more 
rounded. 

� The rostrum in P. haigae and P. dofleini has a wide base, which ends in a blunt prominence above a 
short, straight ventral spine. In P. nivosa, the ventral spine is very prominent and curved upward.

Lithodes galapagensis n. sp.
(Figs 7, 8)

Material examined. Galapagos Archipelago: Johnson Sea-Link II Cruise station 3101, Cabo Douglas, 
Fernandina Island, 00°17’30”S, 091°39’36”W, 17.07.1998, 648m: male holotype, CL 114 mm; female 
paratype, CL 84 mm, Seymour Island, 00°21’42”S, 090°15’00”W, 25.07.1998, 740 m (all USNM 1122586).

Etymology. This species is named after its type locality, the Galapagos Islands. 
Description of the holotype. Carapace roughly pyriform in outline (Fig. 7d); as wide as long when 

measured at maximal width of carapace. Dorsal regions well defined; covered uniformly with small spinules 
more or less acute at apex, without setae (Fig. 7b). Gastric region convex and slightly more inflated than 
branchial and cardiac regions. One pair of slender spines 7 mm in length, emanating from the mid part of this 
region — level with hepatic spines on lateral margin. Spinules sparse on apex of gastric region and very few 
around base of prominent spines. Cardiac region depressed and separated from gastric region by smooth, 
wide, and saddle-shaped groove. Cardiac region depressed anteriorly, and more inflated posteriorly around 
single pair of long, slender spines in this region. A pair of acute spinules directly anterior to this pair. 
Triangular cardiac region separated from branchial regions by grooves which converge posteriorly, and then 
diverge close to the margin to describe posterior of branchial regions. Branchial regions each with single long, 
slender spine at apex; a few large, acute spinules posteriorly. A pair of conical spines in intestinal region 
almost on posterior margin. 

Exterior orbital spine just surpassing length of eyestalks; anterolateral spine about equal in length or 
slightly smaller. Hepatic spines slightly inflated at base, with long slender spine reaching 20 mm. Two spines 
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on anterior portion of each branchial lateral margin, and several much smaller, conical spines interspersed 
between them and on posterolateral margins.

Rostrum with long, straight median projection rising dorsally from surface of carapace and terminating in 
pair of spines. Mid way along length of median projection emanate a pair of dorsal lateral spines of about the 
same length as terminal bifurcation. Base of rostrum narrow, without granulation. Ventrally, with long, 
smooth spine curving gently upward, terminating approximately at level of corneae. 

Eyestalks prominent and without granulation, but with crenulation of dorsal edge of the corneal margin 
(Fig. 8b). 

Second segment of antennal peduncle with long slender spine on exterior aspect. Antennal acicle reduced 
to very small conical process.

Cheliped merus and carpus with several strong spines on terminal border and poorly defined rows of short 
spines on dorsal, interior and exterior surfaces. Palm with several poorly defined rows of short spines on 
dorsal border and two rows on exterior surface leading to articulation with movable finger. Fingers 0.4 × total 
length of right hand, and 0.5 of left hand. Fingers bearing few tufts of short setae. 

Walking legs long and slender. Merus of pereiopod 3 about 0.8 × length of carapace, and 0.2 × as high as 
long. Covered densely with spinules on dorsal/posterior surface, and smooth on ventral surface (Fig. 7c). Two 
or three rows of larger conical spines along length of merus and long spine on terminal border. Carpus of 
walking legs with spinulation on dorsal surfaces and smooth ventral surfaces, as well as two very long spines 
at proximal and distal ends of dorsal border. Propodus sparsely covered with irregular rows of spinules. 
Dactyli of walking legs over half length of merus and equal to length of carpus; very sharp, slender spines on 
dorsal border to tip; few or no spines on ventral border; no tufts of setae present. 

Abdomen of a form typical of Lithodes, with nodules in the medial portion of segments 3–5; separate 
marginal and lateral plates well-calcified (Fig. 8f). Second abdominal segment with medial and lateral plates 
fused; marginal plates almost joined or with suture visible. Surface of abdominal plates with several warty 
tubercles on edges but no spines decorating surface.

Variations. The female paratype of this species is slightly smaller than the male. It differs from the 
holotype in having less acute spinules on the dorsal surface, and the less prominent spines on the proximal and 
distal angles of the walking-leg carpi. 

Remarks. This species is distinguished from all other members of this genus, except Lithodes wiracocha 
Haig, from Peru, in that it has carapace and dorsal surface of the walking legs densely covered in spinules. 
This species differs from L. wiracocha in the following ways:

� The spines on the dorsal surface are less dense in L. galapagensis than in L. wiracocha. 
� The walking legs of L. galapagensis have spinules only on the dorsal and not on the ventral surfaces of 

the walking-leg segments, whereas L. wiracocha has densely packed spinules covering the surface of 
all segments. 

� In the holotype, and somewhat on the paratype of L. galapagensis, certain spines on the dorsal surface 
and on the walking legs are very long and slender, unlike the stout conical spines in L. wiracocha.

� The rostrum of L. galapagensis is very long and slender — similar in this respect to Lithodes 
megacantha Macpherson, 1991 from the central Pacific; however, the rostrum of L. wiraconcha is 
rather stout in comparison. 

� There are no acute spinules on the dorsal base of the rostrum in L. galapagensis, whereas spines cover 
the proximal part of all of the lateral spines in L. wiracocha. 

� No spines on the surface of the abdominal plates in L. galapagensis. Instead, plates are covered with 
low tubercles. 

Other species close to this location include Lithodes panamensis Faxon from Panama and Peru, and 
Lithodes santolla Macpherson (1988b), from Patagonia, both of these are readily distinguishable from the 
present species because of the peculiar spination of Lithodes galapagensis in which a dense coverage of acute 
spinules are combined with the few very long spines and long rostrum. 
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FIGURE 7. Lithodes galapagensis n. sp. a–d, male holotype, 114 mm CL (USNM 1122586), Galapagos Archipelago, 
Cabo Douglas, Fernandina Island, 00°17’30”S, 091°39’36”W, 648 m. (a) carapace, lateral. (b) dorsal carapace spine, 
lateral. (c) left walking leg 3, posterior. (d) whole organism, dorsal (note damage to carapace on the left branchial 
region). Scale bar = 10 mm for a, c, d; 1 mm for b.
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FIGURE 8. Lithodes galapagensis n. sp. a–h, male holotype, 114 mm CL (USNM 1122586), Galapagos Archipelago, 
Cabo Douglas, Fernandina Island, 00°17’30”S, 091°39’36”W, 648 m. (a) left chela, lateral. (b) ocular peduncle, frontal. 
(c) right chela, lateral. (d) anterior carapace, lateral. (e) second abdominal segment, posterior. (f) abdominal plates. (g) 

dactylus 3rd walking leg, posterior. (h) rostral spines, dorsal. Scale bar = 10 mm for a, c–h; 1 mm for b. 
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Discussion

The discovery of these species adds to the considerable number belonging to the genera Lithodes (now 21 
species), and Paralomis (now 60 species). These genera have representatives in most areas of the world’s 
oceans, and species numbers in different oceans probably reflects the more on the intensity of sampling in that 
locality than actual level of biodiversity. Especially in Paralomis, the highest species counts are found along 
the western coast of South America (9 species), and around Japan (10 species). A gap in knowledge is present 
around eastern Africa (and much of the Indian Ocean), and the Southern Ocean. The four species of 
Paralomis in the northern and central Indian Ocean are known only from their respective type localities. Only 
P. birsteini Macpherson 1988a and P. stevensi Ahyong & Dawson 2006, are known from the Southern Ocean 
above 60°S (Thatje et al. 2005, 2008). The full extent of diversity in Paralomis can only be found by an 
increase in sampling effort and reporting of novel morphotypes. 
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SUMMARY: DNA samples were extracted from ethanol and formalin-fixed decapod crustacean tissue using a new method 
based on Tetramethylsilane (TMS)-Chelex. It is shown that neither an indigestible matrix of cross-linked protein nor 
soluble PCR inhibitors impede PCR success when dealing with formalin-fixed material. Instead, amplification success from 
formalin-fixed tissue appears to depend on the presence of unmodified DNA in the extracted sample. A staining method that 
facilitates the targeting of samples with a high content of unmodified DNA is provided.

Keywords: tetramethylsilane, ethidium bromide, formalin, Carcinus, Lithodidae.

RESUMEN: Extracción de ADN a partir de tejido fijado en formol: nueva luz desde el mar abisal. – Muestras 
de ADN de distintos crustáceos decápodos fueron obtenidas independientemente a partir de tejidos fijados en etanol y teji-
dos fijados en formol mediante un nuevo protocolo basado en el Tetrametilsilano (TMS)-Chelex. Los resultados obtenidos 
muestran que el ADN no se encuentra atrapado de forma irreversible en una matriz proteica y que el éxito de amplificación 
no depende de la extracción de inhibidores de PCR solubles. Sin embargo, nuestros resultados indican que el éxito de ampli-
ficación depende de la presencia de ADN no modificado en la muestra. Se incluye un sencillo método de tinción que facilita 
la identificación de muestras con un alto contenido en ADN no modificado.

Palabras clave: tetrametilsilano, bromuro de etidio, formol, Carcinus, Lithodidae.
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INTRODUCTION

Lithodids, commonly known as king crabs (Deca-
poda: Anomura: Lithodidae) are decapod crustaceans 
found in global cold and deep waters (Macpherson, 
2003). Deep-sea marine specimens are expensive to 
collect and are rarely encountered, so that many li-
thodid species have been collected only once and are 
held as a precious resource by museums (Macpherson, 
1988; Chase et al., 1998). While there is much discus-
sion in the literature, there is no agreement on a theory 
of Lithodidae evolution (Cunningham et al., 1992; 
Thatje et al., 2005), and lack of suitable material avail-
able for molecular analysis means that theories of phy-

logeny and early radiations cannot yet be fully tested 
(McLaughlin, 1983; Zaklan, 2002; Hall and Thatje, 
2009). In order to launch a molecular phylogeny of 
Lithodidae, it is first necessary to obtain suitable DNA 
from museum specimens. However, museum material 
produced negative results when DNA extraction was 
attempted using silica-based columns (Díaz-Viloria et 
al., 2005).

Historically, fluid-preserved museum specimens 
have been initially fixed in formalin and then later 
transferred into alcohol or industrial methylated spirit 
(IMS) for archival storage (Simmons, 1995). Gener-
ally, a sodium tetraborate (borax) or sodium phosphate 
buffer has been used to maintain the pH of the formalin 
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near neutrality, since buffering the formalin is essential 
to ensure satisfactory long-term storage of samples 
(Quay, 1974). In fact, many specimens prized for their 
morphological novelty have been kept in formalin for 
years (Thatje et al., 2008). Therefore, it becomes desir-
able to overcome barriers to molecular analysis caused 
by the traditional processes of preservation and consid-
erable resources are being invested in obtaining DNA 
from formalin-fixed museum specimens (Scatena and 
Morielle-Versute, 2008; Santos et al., 2009).

Extraction and amplification of DNA from such 
traditionally fixed material has proven to be difficult 
and the reason for this is not resolved yet (France and 
Kocher, 1996; Gilbert et al., 2007). Several hypoth-
eses have been proposed for explaining the difficulties 
found with the polymerase chain reaction (PCR), in-
cluding DNA being trapped in a matrix of cross-linked 
proteins, severe DNA damage caused by low pH or the 
presence of PCR inhibitors in solution (Shibata, 1994; 
Fang et al., 2002). Many reports have been published 
and numerous protocols have been proposed on extrac-
tion and amplification of DNA from formalin-fixed 
material, but the fact remains that no reproducible and 
generic method has been reported to date (Diaz-Cano et 
al., 1997; García-Vázquez et al., 2006). Furthermore, it 
should be pointed out that many of these protocols are 
problematic, since they require multiple wash steps or 
long incubation periods that increase the risk of con-
tamination (Cawkwell and Quirke, 2000; Schander and 
Halanych, 2003).

As a suitable starting point, the present study follows 
up on the latest protocols introduced in the literature to 
resolve the problem of DNA extraction from formalin-
fixed material, which are based on critical point drying 
(Fang et al., 2002) and Chelex (García-Vázquez et al., 
2006). In order to reduce costs and provide a similar 
effect to that proposed in Fang et al. (2002), tetram-
ethylsilane (TMS) will be used as a strong dehydrating 
agent that maintains tissue structure (Ubero-Pascal et 
al., 2005). Moreover, a series of investigations is set up 
to determine the specific way in which formalin acts to 
prevent amplification. Finally, tissue from both ethanol 
and formalin-fixed samples will be analysed in order to 
define a quick and inexpensive test for the validity of 
DNA extracts for molecular analysis.

MATERIALS AND METHODS

Thirty formalin-fixed and ten ethanol-preserved 
lithodid samples were extracted and amplified using 
a protocol based on Tetramethylsilane (TMS) (Fluka-
Riedel de Haën, Seelze, Germany, cat. no. 87920) and 
Chelex 100 resin (sodium form) (Bio-Rad, Hemel 
Hemstead, Herts, UK) (Fang et al., 2002). Samples 
were obtained from the dactylus or propodal mus-
cle tissue of lithodid specimens in the Natural His-
tory Museum (NHM), London; the Muséum National 
d’Histoire Naturelle, Paris; and the Centre Mediterrani 
d’Investigacions Marines i Ambientals, Barcelona. 

After cutting off a piece of the specimen (2 mm3), the 
tissue sample was squeezed in a piece of absorbant 
paper, transferred to TMS (50-100 µl) and incubated 
with gentle agitation for 1h. This incubation may be 
carried out overnight, even though a shorter time is 
recommended to reduce contamination. Tissue was 
transferred to a new 1.5ml Eppendorf tube with 200 
µl of 10% Chelex solution in TE pH 8.0 and 20 µl of 
proteinase K (20 mg/ml stock solution) and incubated 
for 2-3 h at 55ºC in a thermomixer. Finally, sample was 
centrifuged for 5-10 minutes at 10000 rpm and 100 µl 
of supernatant was transferred into a fresh tube and 
kept at 4ºC until used. About 1-2 µl of the supernatant 
was taken for each 25 µl total volume PCR reaction.

Initially, a total of 3 lithodid-specific primers were 
designed for amplifying hemi-nested fragments of the 
mitochondrial 16S gene region (440 bp) using multi-
plex PCR (LITF1: 5’-GCCGCAGTATTTTGACTGT-
GCGAA-3’; LITF2: 5’-GGCTTGAATGAAAGGTT-
GGACAA-3’ and LITR1: 5’-TCTCTTATAGCGGC-
TGCACCA-3’). In order to check the specificity of 
the primers and optimise amplification conditions, 
multiplex PCR was first carried out on DNA extracted 
from ethanol-fixed lithodid samples, and spiny lobster 
tissue (obtained from Palinurus elephas) was used as 
a negative control. Multiplex amplification reactions 
were carried out in a 10 µl reaction containing 30 ng of 
genomic DNA, 0.5x QIAGEN Multiplex PCR Kit 2x 
and 0.2x of equimolar (1 mM) primer mix. The PCR 
thermal profile used was 94°C for 4 min for initial 
denaturation, followed by 30 cycles of denaturation at 
94°C for 30 s, annealing temperature at 54°C for 30 
s, extension at 72°C for 30 s, and a final extension at 
72°C for 4 min. The PCR reaction was loaded to a 1% 
agarose gel in TBE with EtBr together with HyperLad-
der I and HyperLadder IV (Bioline). Sequences were 
obtained using the Big-Dye Ready-Reaction kit v3.1 
(Applied Biosystems, Foster City, USA) on an ABI 
Prism 3770 automated sequencer from the Molecular 
Biology Unit, NHM.

To examine the effect of formalin on the process of 
DNA liberation from tissue, a 30 h time-series protei-
nase K digestion (proteinase K from Tritirachium al-
bum, Roche Diagnostics GmbH, Mannheim, Germany) 
of both formalin-fixed (n = 8) and control ethanol-fixed 
(n = 4) samples was carried out. The amount of DNA 
in solution (ng/µl) was measured using a NanoDropTM 
1000 Spectrophotometer (Thermo Fisher Scientific) at 
several time intervals. Secondly, in order to attempt 
to eliminate the effect of soluble PCR inhibitors, both 
physical (filtering) and chemical DNA cleaning tech-
niques were applied to the Chelex-extracted DNA. 
Therefore, two different filtering systems provided 
by Millipore, namely the 96-well MultiScreen plates 
(Cat. MAPBMN310) together with a MultiScreen™ 
Vacuum Manifold, and the Microcon columns (YM-
100) used with a Microcentrifuge (Eppendorf Model 
5415D, VWR Int Ltd, Poole Dorset, UK) were applied 
to the crude DNA extract following the manufacturer’s 

SCIE
NTIA

 M
ARIN

A

pro
of

SCIE
NTIA

 M
ARIN

A

pro
of



DNA EXTRACTION FROM FORMALIN-FIXED TISSUE • 3

SCI. MAR., 74(3), September 2010, 000-000. ISSN 0214-8358

guidelines (http://www.millipore.com/userguides/). 
The chemical-based DNA cleaning techniques were 
used in separate treatments of genomic extracts prior to 
PCR amplification. Both Phenol: Chloroform: Isoamyl 
alcohol purification (Sigma-Aldrich cat. P2069, Dor-
set, UK) and Isopropanol precipitation methods were 
carried out following the standard protocols included 
in Sambrook et al. (1989).

In addition, and in order to confirm the validity of 
a simple test for predicting PCR success, a total of 88 
Carcinus samples collected from different localities 
were analysed. From these, 66 samples were obtained 
from NHM collections (Sandy Bay and Europa Point, 
Gibraltar and Ebro Delta, Spain; Clark et al., 2001) and 
12 samples were obtained from recent ethanol-fixed 
material (Cullera, Spain; present study). Multiplex am-
plification reactions were carried out as previously stat-
ed but using Folmer et al. (1994) (LCO1490: 5’-GGT-
CAACAAATCATAAAGATATTGG-3’; HCO2198: 
5’-TAAACTTCAGGGTGACCAAAAAATCA-3’) 
and Darling et al. (2008) (COIF-PR115: 5’-TCWAC-
NAAYCAYAARGAYATTGG-3’; COIR-PR114: 
5’-ACYTCNGGRTGNCCRAARARYCA-3’) mito-
chondrial cytochrome oxidase I (COI) primers at 45°C 
annealing temperature for 30 s. A one-side Fisher’s 
exact probability test was carried out on the PCR 
success/failure table for the green/orange DNA as im-
plemented in the function fisher.test of the stats pack-
age in R v2.9.1 (R Development Core Team, 2009). 
Fisher’s exact probability test is recommended in order 
to test for differences in success rates from two-by-two 
contingency tables with moderate sample sizes (Martín 
Andrés et al., 2004).

RESULTS

Of the thirty formalin-fixed lithodid tissue samples 
analysed, 18 failed to produce 16S PCR products, 
5 produced amplicons but were not successfully se-
quenced, and 7 samples with band sizes of 250-300 
bp produced fully-sequenced PCR products (Gen-
Bank accession numbers: EU493266, EU493268-72 
and EU493275). Moreover, all 10 ethanol-preserved 
lithodid samples produced fully-sequenced PCR 
products (GenBank accession numbers: EU493267, 
EU493273-74, EU493276-EU493278, FJ462644-45 
and FJ462648). A database search in GenBank using 
Megablast (BLASTN v2.2.18) showed that sequences 
from formalin-fixed specimens were homologous to 
available lithodid sequences. Sequences from forma-
lin-fixed samples were either closer to those obtained 
from species with similar geography and morphology, 
or they matched exactly with sequences that had been 
independently obtained from fresh specimens of the 
same species in other laboratories. For example, two 
specimens of Paralomis cristata (Takeda and Ohta, 
1979) included in the present study correspond to one 
specimen preserved in formalin in 1987 and analysed 
in NHM (EU493266), and another sequence independ-

ently obtained in Germany by S. Hall from an etha-
nol-fixed sample (EU493267). Moreover, one of the 
successful samples from this study, Lithodes turkayi 
Macpherson, 1988 (NHM registration no. 2004.2994; 
GenBank code: EU493268) had been kept in formalin 
continuously since its fixation in 1932.

The results obtained from the proteinase K time-
series digestion experiment indicate that DNA can be 
released from formalin-fixed tissue (Fig. 1). Further-
more, gel electrophoresis of extracted DNA showed 
that despite increased DNA degradation in formalin-
fixed samples, fragments larger than 1 Kb can still be 
found in formalin-fixed specimens (Fig. 2A). Never-
theless, the presence of large fragments of DNA could 
not be taken as an effective predictor of PCR success, 
since none of the four cleaning protocols tested (Milli-
pore MultiScreen plates, Microcon columns (YM-100), 
Phenol: Chloroform: Isoamyl alcohol purification, and 
Isopropanol precipitation) gave positive 16S PCR re-
sults for those samples that had failed when processed 
directly from the Chelex extraction supernatant. In 
fact, our results from lithodid samples pointed out that 
rather than overall DNA fragment size, it was DNA 
staining behaviour that could be used as an effective 
predictor of PCR success.

In order to confirm the validity of our staining pro-
tocol for predicting PCR success from genomic DNA, 
two sets of ethanol-fixed (12) and formalin-fixed (66) 
Carcinus samples were analysed. After running 5 µl 
of DNA-Chelex supernatant on a 1% agarose gel and 
staining with ethidium bromide, the gel was photo-
graphed under UV light (250-360 nm) (Fig. 2A). This 
simple test identified two different types of extracted 
DNA; while PCR-negative samples only contained 
green autofluorescent material, both green autofluores-
cent and ethidium bromide-stained orange DNA could 
be observed on PCR-positive samples. When ethanol-
preserved tissue from fresh specimens is analysed us-
ing this method, only ethidium bromide-stained orange 
DNA is observed (Fig. 2A). In fact, NHM Carcinus 
samples containing orange DNA yielded a consider-
ably larger proportion of successes (9.2 times more 
success) than samples containing just green DNA. 
From 66 formalin-fixed NHM Carcinus samples, those 
with orange DNA provided a larger number of PCR 

Fig. 1. – Time course of proteinase K-induced release of DNA ob-
tained from formalin-fixed samples and from ethanol-fixed controls 

as measured by NanoDrop spectrophotometry.
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bands (18) than negative results (10), while most sam-
ples with green DNA failed to amplify (32) and just 6 
produced PCR bands (Fig. 2B). This difference in COI 
PCR success between formalin-fixed samples contain-
ing green DNA only and those containing green and 
orange DNA was found to be significant according to 
Fisher’s exact probability test (p<0.01). All 12 ethanol-
fixed Carcinus samples from Cullera provided positive 
results.

DISCUSSION

While previous studies using oligonucleotides or 
isolated DNA have described the presence of lesions in 
DNA exposed to formaldehyde (Huang and Hopkins, 
1993), the present study indicates that, even though 
only 24% of lithodid samples gave positive results, 
fully reliable sequence data can still be retrieved from 
formalin-fixed museum specimens. The comparison of 
sequence data from formalin-fixed samples and fresh 
and ethanol preserved specimens collected at independ-
ent laboratories for the same species (i.e. Paralomis 
granulosa from Zaklan, 2002) confirms the validity 
of sequences obtained from formalin-fixed material. 
In other cases we have been able to compare sequence 
data from closely related species belonging to the same 
genus (i.e. Paralomis africana and Paralomis granu-
losa). Moreover, although the TMS-Chelex protocol is 
reported for the first time in this validation study, it has 
been used previously with success on formalin-fixed 
spiny lobster specimens from the National Museum of 
Natural History, Washington (Palero et al., 2009). 

Among the most interesting results from this vali-
dation study, it is worth pointing out that none of the 
four cleaning protocols tested had a measurable effect 
on amplification success, which suggests that either 
no direct PCR inhibitor is present in the solution, or 
it could not be removed by these techniques. PCR 
inhibition did not seem to be caused by DNA shear-

ing either, since positive results were obtained from 
museum samples with sheared-DNA. Therefore, by 
using a quick and inexpensive test on both successful 
and failed DNA extracts from formalin-fixed samples, 
it was inferred that green-stained material on the agar-
ose gel corresponds to DNA molecules that have been 
modified by formalin (and are therefore unsuitable as 
PCR templates), while orange-stained material corre-
sponds to unmodified DNA molecules (which can be 
used as functional PCR templates).

The results obtained in the present study indicate 
that formalin does directly modify DNA molecules 
themselves and impedes PCR without the need for 
other PCR inhibitors or protein complexes. These ob-
servations agree with predictions made by Chaw et al. 
(1980) concerning cross-link interactions among amino 
groups of nucleosides from DNA. Indeed, amplifica-
tion success did not depend on digestion time, since 
DNA extracts from successful samples showed PCR 
band amplification after 1-3 h digestion while non-suc-
cessful samples did not amplify irrespectively of the 
incubation time (results not shown). It is well known 
that PCR is sensitive enough to provide a million cop-
ies of a target DNA sequence from only a few mole-
cules (Saiki et al., 1988), so that it seems reasonable to 
expect positive results from formalin-fixed samples for 
which some unmodified DNA is still available. There-
fore, the presence of unmodified DNA molecules in the 
samples analysed could explain the positive results for 
many (if not all) of the protocols previously proposed 
(Fang et al., 2002; García-Vázquez et al., 2006). 

Obtaining DNA sequences from specimens that 
have been initially fixed in formalin is not a straight-
forward task and more work is required to optimise 
methodologies, and reduce costs and handling times 
(Schander and Halanych, 2003). Indeed, the present 
study does not claim that a final solution has been 
found for any formalin-fixed tissue. Nevertheless, this 
study shows that it is possible to obtain reliable and in-

Fig. 2. – Different staining behaviour and PCR success of the COI gene from DNA obtained from formalin and ethanol-fixed material. 
Agarose gel analysis of (A) 5 µl of Chelex supernatant and (B) 3 µl of PCR amplicon (~640 bp) is presented. MW-I = DNA HyperLadder I; 

MW-IV = DNA HyperLadder IV. HyperLadder IV produces a pattern of 9 regularly spaced bands, ranging from 100 to 1000 bp.SCIE
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formative sequence data from formalin-fixed samples 
and presents an easy-to-use diagnostic test to assess the 
suitability of DNA extracts for molecular analysis. Fac-
tors such as pH and temperature can modify the effects 
of formalin fixation on DNA (Chang and Loew, 1994; 
Shi et al., 2004) and it is possible that some unmodified 
DNA is still available in formalin-fixed samples pre-
served many years ago. The fact that this inexpensive 
method can be used as a simple and direct test for DNA 
modification in multiple samples, provides the oppor-
tunity for future studies to screen several tissues and 
select those most suitable for use in molecular analyses 
while optimising resources for PCR amplification and 
sequencing.
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Encounter of lithodid crab Paralomis birsteini 
on the continental slope oV Antarctica, sampled by ROV
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Abstract A population of stone crab (Lithodidae) was
encountered on the continental slope oV Antarctica in the
Bellingshausen Sea between 1,123 and 1,304 m water
depths using the ROV-Isis during leg 166 of the RV James
Clark Ross, in January 2007. Specimens were video
recorded and one specimen was retrieved by ROV for
morphological and molecular identiWcation. Based on
morphology and molecular data from the mitochondrial
COI gene, this specimen identiWed as P. birsteini,
Macpherson, 1988a. The signiWcance of the molecular data
and their implications for biogeography and evolution of
lithodids in the Southern Ocean are brieXy discussed.

Keywords Southern Ocean · Stone crab · 
Molecular phylogeny · Biogeography

Introduction

The shallow waters of the Antarctic continental shelf are virtu-
ally free of benthic top predators, such as shark, rays, teleost
Wsh, and crabs (Aronson et al. 2007). The absence of such pre-
dators results from harsh physiological constraints, mainly low
temperature that has prevailed in this environment for tens of
millions of years. The process of Antarctic cooling was

initiated by the breakup of Gondwana in the early Eocene, with
a last cooling step until about 14 million years ago that resulted
in conditions similar to those as seen today (see Aronson et al.
2007, and references therein). Since then, and in the absence of
top predators structuring the faunal community, the Antarctic
benthos of the shallow continental shelf evolved and
maintained a rather ancient structure that today is not found
anywhere else on Earth (Aronson et al. 2007).

The increased records of lithodid crabs in deeper waters
and on seamounts surrounding the Antarctic continent in
recent years raised the question of established lithodid crab
populations in the Southern Ocean (López Abellan and
Balguerías 1993; Klages et al. 1995; Arana and Retamal
1999; Thatje and Arntz 2004; Thatje and Lörz 2005).
Although the origin and especially the timescale of lithodid
radiation in the Southern Ocean remains obscure (Thatje
et al. 2005), there is consensus that these largest arthropods
currently inhabiting the oceans are the most likely candi-
dates to invade the shallow waters of the Antarctic continen-
tal shelf under conditions of climate change (Meredith and
King 2005; Thatje et al. 2005). Warming is likely to remove
physiological barriers on lithodid crabs that currently place a
limit on the invasion of shallow waters of the high Antarctic;
a scenario that is especially likely for waters oV the Antarc-
tic Peninsula (Aronson et al. 2007, and references therein).

First records of lithodid crabs of the species Neolithodes
capensis and Paralomis birsteini from 1,408 to 1,947 m,
respectively, were made on the continental rise of Antarctica
in the Bellingshausen Sea (García Raso et al. 2005). P. bir-
steini now appears to be widespread in the Bellingshausen
Sea and so far remains the most commonly recorded Antarc-
tic lithodid species south of 60°S (Arana and Retamal 1999;
Thatje and Arntz 2004; Ahyong and Dawson 2006).

In the present work, we present new records of P. bir-
steini Macpherson, 1988a (=P. spectabilis Birstein and
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Vinogradov 1967, not Hansen 1908) from 1,100 to 1,400 m
water depths in the Bellingshausen Sea, which constitute
the shallowest records of lithodids on the continental slope/
rise of Antarctica. Comparative analysis of a fragment of
the mitochondrial cytochrome oxidase I gene from the sam-
pled specimen of P. birsteini and sequences obtained from
related species are discussed from a biogeographical and
evolutionary point of view.

Materials and methods

Sampling—thirteen specimens of the lithodid genus Paral-
omis were video-recorded on the continental slope/rise oV

Antarctica in the Bellingshausen Sea between 1,123 and
1,394 m water depth using the ROV-Isis during leg 166 of
the RV James Clark Ross in January 2007 (Fig. 1, dive sta-
tions 5 and 6, Tyler et al. 2007). One male specimen
(Fig. 2a–d) was sampled using the ROV’s manipulator arm
(66°24�81 S; 71°30�79 W; 1,394 m). The specimen was
surfaced and died shortly thereafter.

Species identiWcation—Morphological identiWcation fol-
lowed descriptions by Macpherson (1988a) in the form of
the carapace and the antennal acicle, and additional com-
parison was made with other specimens of P. birsteini from
the Musée National d’Histoire Naturelle (MNHN) in Paris.
The specimen examined was 65 mm of Carapace Length
(CL), measured from the orbit to the posterior carapace

Fig. 1 Biological dive stations 
with the ROV-Isis during leg 
166 of RV James Clark Ross to 
the Antarctic Bellingshausen 
Sea in January/February 2007. 
Specimens of the lithodid crab 
Paralomis birsteini were 
encountered during dive Nos. 5 
& 6 (starting points: 68°23�48 S; 
71°32�95 W and 66°24�24 S; 
71°81�82 W, respectively) on 
the continental slope/rise oV the 
Western Antarctic Peninsula
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edge, and making it similar in size to the nominal P. bir-
steini (two paratypes studied: maximum CL = 67.78 mm;
maximum CW = 67.74 mm).

DNA extraction, PCR, and sequencing—Tissue was
sampled from the dactylus muscle of the retrieved sample
and preserved in pre-cooled, 70% ethanol. Muscle samples
from related species were also frozen very soon after death.
DNA was extracted using Qiagen (Hilden, Germany)
DNeasy Blood & Tissue kits following manufacturers’ pro-
tocol. Using universal primers HCO2198 and LCO1490
(Folmer 1994) and Qiagen Taq polymerase approximately

850 bp of the mitochondrial COI gene were ampliWed
(Saiki et al. 1988). The amplicons were cleaned using
Qiagen QIAquick puriWcation columns and sent to Macro-
gen Inc (Korea) for sequencing. Sequences can be retrieved
from GenBank (Table 1).

Alignment and phylogenetic analyses—DNA sequences
were aligned with no gaps or ambiguity using the Clustal W
program (Thompson et al. 1994). Identical sequences were
omitted from the analysis. Alignments were run through
Modeltest 3.7 to obtain estimates of parameters for Maxi-
mum likelihood analysis. Phylogenetic trees were inferred

Fig. 2 Male specimen of Paral-
omis birsteini on the continental 
slope oV Antarctica, Bellings-
hausen Sea, sampled by ROV-
Isis during leg JCR166 on 25 
January 2007. P. birsteini in its 
natural habitat (a, b), sampled by 
ROV-Isis (c, d), specimen 
CL = 64.9 mm

Table 1 Collection data for the lithodid specimens studied

Morphological ID Lat Long Genbank accession IdentiWed by Caught by

Paralomis spinosissima 53°36 S 36°38� W EU493258 S. Hall Long line oV South Georgia

Paralomis spinosissima 53°36� S 36°38� W EU493259 S. Hall Long line oV South Georgia

Paralomis birsteini 66°24�81 S 71°30�79 W EU493260 S. Hall JCR166 ROV-Isis

Paralomis birsteini 48°2� S 71°18� E EU493261 S. Hall Palangrier Aldbaran, Kerguelen
St Pal. 60 6/12/1999

Paralomis formosa 53°36� S 36°38� W EU493262 S. Hall Long line oV South Georgia

Paralomis formosa 53°36�4.42� S 36°38�43.86� W EU493265 M. Belchier Long line oV South Georgia

Paralomis granulosa 54°47�59.14� S 65°15�0.15� W EU493264 G.A. Lovrich Artisanal trap Wsheries,
Beagle Channel

Lithodes confundens 54°47� S 65°15� W EU493257 S. Hall ICEFISH 04, st 10T1

Neolithodes brodiei 14°44�48 S 167°8�40 E EU493263 Original,
E. Macpherson;
Reviewed S. Hall

BOAO Alis CP 2312
Vanuatu, 15/11/2004

Pagurus bernhardus Unknown Unknown AF483157 Young et al. Genbank Unknown
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from DNA sequences using PAUP 4 beta version 10. Out-
groups were taken from both within the family Lithodidae
(Neolithodes brodiei and Lithodes confundens), and from a
closely related group (Pagurus bernhardus). Inclusion of
either lithodid outgroup did not change the outcome. In
addition, an iterative Bayesian analysis was run with Mrba-
yes 3.1 (Huelsenbeck and Ronquist 2001; Ronquist and
Huelsenbeck 2003). The trees are presented for comparison
(Fig. 3a, b).

Results

Thirteen specimens of P. birsteini were video recorded
between about 1,123 and 1,394 m water depths on the Ant-
arctic continental slope/rise in the Bellingshausen Sea
(Figs. 1, 2). The present video footage included the record
of one juvenile specimen of less than 2 cm CL in a gravel
substratum that tried to escape the ROV’s slurp gun and
unfortunately was destroyed during hovering.

The genus Paralomis is well supported in the present
molecular work, with species from the South Atlantic and

Indian oceans clustering very closely together. While the
phylogeny doesn’t resolve fully with molecular methods,
the recognized morphospecies of Paralomis spinosissima
and P. formosa are upheld (Fig. 3a, b). It may be of signiW-
cance that the specimens of P. birsteini from the Crozet
Islands appear in this analysis distinct from the specimen in
question despite close morphological similarity. Compara-
tive analysis of a fragment of the mitochondrial cytochrome
oxidase I gene from the sampled specimen of P. birsteini
and sequences obtained from related species indicates a
close aYnity of species of Paralomis from either side of the
Scotia arc and the Bellingshausen Sea (Fig. 3a, b). Rela-
tionships within this group cannot be further resolved based
on the present data.

Discussion

Paralomis birsteini is morphologically closely related to P.
spectabilis, which so far has only been found oV Iceland
and eastern Greenland at depths ranging from 1,470 to
2,075 m (Macpherson 1988b) and P. formosa Henderson,

Fig. 3 a Phylogram produced using the Mrbayes program, displaying
Bayesian posterior probabilities at the internal nodes. Genbank acces-
sion numbers provided. ANT Bellingshausen Sea, CRZ Crozet, KER

Kerguelen Plateau. b Phylogram produced using PAUP 4 beta 10 using
a Maximum Likelihood Method and a GTR_G_I model of substitution.
ANT Bellingshausen Sea, CRZ Crozet, KER Kerguelen Plateau

a b
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which is common in waters oV the island of South Georgia
in the South Atlantic, at depths ranging from around 300 to
1,700 m (Thatje et al. 2005). P. birsteini is distinguished
from P. spectabilis by shorter, stouter legs and the dactylus
shorter than the propodus in P. spectabilis; the rostrum not
pedunculate in P. birsteini, which is pedunculate in
P. spectabilis; and the antennal acicle having short spines
on its inner surface in P. birsteini (for details see Birstein
and Vinogradov 1967; Macpherson 1988a). Personal obser-
vations of southern ocean P. birsteini specimens (Table 1)
reveal a high degree of variability in these character states,
and we recognize little substantial diVerence between the
two species.

P. birsteini distinguishes from P. formosa in having
longer legs and less prominent spines than in P. formosa;
P. formosa has a large spine in the centre of its gastric
region drawn out anteriorly which makes this region very
convex. This spine is present but less pronounced in P. bir-
steini. P. formosa is also distinguishable by having long
slender spines variable in number on both sides of its anten-
nal acicle, and in having its carapace and walking legs cov-
ered completely in granules (although this disappears in
larger individuals; for details see Macpherson 1988b).

Because only one specimen was retrieved by ROV for
morphological and molecular studies it remains unclear
whether other species of Paralomis co-occur with P. bir-
steini in the same habitat, which is not uncommon in this
genus (Thatje and Arntz 2004). So far, species from other
lithodid genera, Neolithodes and Lithodes, and Paralomis
have been recorded for the Bellingshausen Sea and the
Scotia arc region (Thatje and Arntz 2004; García Raso et al.
2005).

This record of a juvenile specimen of P. birsteini may
indicate a reproductively active population in the area
under investigation, given that lithodid species in the
Southern Ocean are assumed to possess a low potential for
larval dispersal. This was frequently discussed to be due to
demersally drifting, lecithotrophic larvae with limited
swimming ability, as found in several species from south-
ern high latitudes based on Weld and laboratory observa-
tions (Lovrich 1999; Thatje et al. 2003; Watts et al. 2006;
Reid et al. 2007). Radiation in Southern Ocean lithodids is
thus likely dependent on adult migration, although one may
indeed discuss the potential of demersally drifting larvae in
bottom currents to distribute over long distance, given that
larval development in Southern Ocean lithodids is likely
exceeding 4–5 months in duration (Thatje et al. 2005). The
topic needs much closer future investigation.

The phylogenetic analysis of the COI gene of Paralomis
species from either side of the Scotia arc indicates a close
aYnity of species from South Georgia (P. formosa and
P. spinosissima) with morphologically similar groups from
as far away as Crozet in the Indian Ocean, and the Bellings-

hausen Sea (Table 1, Fig. 3a, b). Although deWned species
do show constant morphological characters that aid identiW-
cation of morphospecies (Macpherson 1988a, b) the molec-
ular analysis provides an initial suggestion of an ongoing or
very recent speciation process within this group in the
Southern Atlantic/Indian Ocean.

Analysis of the COI gene in the Bellingshausen Sea
specimen of Paralomis birsteini allows us to suggest that
gene Xow within this morphotype is limited over distance,
possibly to the extent of a cryptic speciation. Cryptic speci-
ation has been previously discovered in other Antarctic taxa
with limited dispersal potential (Held and Wägele 2005;
Raupach and Wägele 2006). Genetic diVerences between
P. birsteini from three diVerent localities presented in this
work (Fig. 3a, b) could point at a species complex that con-
sists of at least two cryptic species. This supports the neces-
sity of comparative analyses among type locality specimens
from around Antarctica and adjacent seas in order to
unravel biogeography and radiation patterns of Antarctic
invertebrates in general.

Relatively close phylogenetic relationships between
south Atlantic and Bellingshausen species supports
hypothesis of a biogeographic relationship between these
two areas (Gorny 1999), and gives further insight into the
potential colonization of Antarctica from lower latitudes.
Given that dispersal of larvae and thus potential gene
Xow between populations of Southern Ocean is dis-
cussed to be very low (Thatje et al. 2003; Watts et al.
2006), the close-relatedness of species across the Scotia
Arc could point at a relatively recent separation of spe-
cies and possible radiation in the Southern Ocean. Evo-
lutionary timescales and exact radiation patterns of
lithodid species remain obscure (Zaklan 2002; Thatje
et al. 2005) and such work is so far particularly biased by
the lack of suYcient numbers of lithodid specimens from
Antarctic waters available for phylogenetic and molecu-
lar studies.
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APPENDIX J 
 

Table.a: Statistics relating to non-species-subdivided datasets for the Lithodes 

morphometric analysis (section B2).  

 

Yk 1
st
; 2

nd
 order 

polynomial 

regression of 

undivided datasets x 

= CL; y = Yk. 

 

p = probability that 

the coefficient of 

the highest term in 

the regression is 

zero. 

ANOVA of 

fCL(Yk) 

subdivided into 

17 species. F 

statistic is 

explained. 

 

H0: no 

difference in Yk 

between 

species. 

Shapiro-Wilk 

test for 

normality. 

 

p(N) = 

probability that 

all within-

species 

samples are 

normally 

distributed. 

F-test for equal 

variance. 

 

p(EV) = 

probability that 

all species have 

equal variance 

in the 

measurement 

Yk. 

 

AL 1°: r
2
 = 0.911 (p 

<0.001) ; 2°: r
2
 = 

0.000009 (p = 

0.897) 

F = 69.701  

p(H0) < 0.001 

p(N) = 0.193 

 

p(EV) =0.686 

DL 1°: r
2
 = 0.911 (p 0 

001); 2°: r
2
 = 

0.000723 (p = 

0.264) 

F= 34.685 

p(H0) < 0.001 

p(N) = 0.606 

 

p(EV) = 0.068 

ML 1°: r
2
 = 0.805 (p < 

0.001); 2°: r
2
 = 

0.00238 (p = 0.168) 

F= 211.091 

p(H0) < 0.001 

p(N) = 0.04 

 

p(EV) = 0.032 

PL 1°: r
2
 = 0.824 (p < 

0.001); 2°: r
2
 = 

0.00131 (p = 0.285) 

F = 17.865 

p(H0) < 0.001 

p(N) = 0.02 

 

p(EV) = 0.0299 

GW 1°: r
2
 = 0.88 (p < 

0.001); 2°: r
2
 = 

0.007 (p = 0.002)   

F = 79.823 

p(H0) < 0.001 

p(N) = 0.598 

 

p(EV) = 0.095 

LBH 1°: r
2
 = 0.797 (p < 

0.001); 2°: r
2
 = 

0.0001 (p = 0.781)   

F = 125.766 

p(H0) < 0.001 

p(N) = 0.133 

 

p(EV) = 0.188 

 

GCL 1°: r
2
 = 0.619 (p < 

0.001); 2°: r
2
 = 

0.0261 (p = 0.001)   

F= 120.907 

p(H0) < 0.001 

p(N) = 0.038 

 

p(EV) = 0.154 

 

DH 1°: r
2
 = 0.719 (p < 

0.001); 2°: r
2
 = 

0.0181 (p = 0.001)   

F = 53.325 

p(H0) < 0.001 

p(N) = 0.067 

 

p(EV) = 0.03 

CAL 1°: r
2
 = 0.906 (p < 

0.001); 2°: r
2
 = 

0.00023 (p = 0.532)   

F= 27.456 

p(H0) < 0.001 

p(N) = 0.0124 

 

p(EV) = 0.034 

LSH 1°: r
2
 = 0.797 

(p < 0.001); 2°: r
2
 = 

0.000101 (p = 

0.781) 

F= 135.892 

p(H0) < 0.001 

p(N) = 0.247 

 

p(EV) = 0.105 

GL 1°: r
2
 = 0.976 (p < F= 19.819 p(N) = 0.671 p(EV) = 0.28 
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0.001); 2°: r
2
 = 

0.00313 (p = 0.001) 

p(H0) < 0.001  

MW 1°: r
2
 = 0.753 (p < 

0.001); 2°: r
2
 = 

0.0247 (p = 0.001) 

 

F = 49.904 

p(H0) < 0.001 

p(N) = 0.396 

 

p(EV) = 0.269 

ABL 1°: r
2
 = 0.866 

(p<0.001); 2°: r
2
 = 

0.0093 (p = 0.112) 

 

F = 65.067 

p(H0) < 0.001 

p(N) = 0.057 

 

p(EV) = 0.236 

     

LHH 1°: r
2
 = 0.813 (p < 

0.001); 2°: r
2
 = 

0.00038 (p = 0.572) 

F =1.142 

p(H0) = 0.338 

 

p(N) = p(EV) = 0.124 

HW 1°: r
2
 = 0.975 (p < 

0.001); 2°: r
2
 = 

0.00268 (p = 0.001) 

F = 2.714 

p(H0) = 0.006 

 

H0 is rejected 

based on these 

data with a 

confidence of 

99%; however, 

in pair-wise 

comparisons, 

differences are 

found only 

between a single 

pair of species, 

and thus are not 

phylogenetically 

informative 

p(N) =0.05 p(EV) = 0.433.   

CDL 1°: r
2
 = 0.782 (p < 

0.001); 2°: r
2
 = 

0.00047 (p = 0.56) 

F = 1.875 

p(H0) = 0.07 

p(N) = p(EV) = 0.648 

VRL 1°: r
2
 = 0.388* (p 

<0.001); 2°: r
2
 = 

0.0423 (p = 0.001) 

*indicating VRL is 

not well explained 

by  correlation with 

CL 

F=2.021 

p(H0) = 0.055 

p(N) = p(EV) = 0.058 

OCW 1°: r
2
 = 0.648 (p 

<0.001); 2°: r
2
 = 

0.0058 (p = 0.112) 

 

F=1.391 

p(H0) = 0.207 

 

 

p(N) = p(EV) = 0.217 

 

 

b. Statistics relating to species-subdivided datasets for the Lithodes morphometric 

analysis. 

K, n r
2  

test of linear 

regression 

within species, 

in which x = 

CL and y = Yk, 

Shapiro-

Wilk test 

of 

normality  

 

Sample 

number 

 

Standardised 

within-

species 

sample 

mean: Ūk,n 

Standardised 

within-

species 

sample 

standard 
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n/CL.
 

 

p = probability 

that B=0 in the 

equation y = A 

+ Bx .  

p(N) = 

probability 

that the 

sample is 

taken from 

a normally 

distributed 

population 

deviation 

Sk,n 

      

ALL.aequispina r
2
 = 0.0453  

(p = 0.391) 

 

p(N) = 

0.507 

18 8.993716 0.340765 

ALL. confundens r
2 
= 0.120 

(p = 0.361) 

 

p(N) = 

0.263 

9 10.11531 

 

0.269107 

 

ALL. couesi r
2 
= 0.343 

(p = 0.011) 

 

p(N) = 

0.713 

 

18 8.399211 

 

0.578858 

 

ALL. ferox r
2 
= 0.522  

(p = 0.005) 

A = 0.452 

B = 0.0005 

 

p(N) = 

0.370 

13 10.35392 

 

0.456793 

 

ALL. galapagensis N/A  2 10.45871 

 

0.667137 

 

ALL. longispina N/A  3 11.045 

 

0.737178 

 

ALL. maja r
2  

= 0.206 

(p = 0.026) 

 

p(N) = 

0.126 

24 10.69483 

 

0.784147 

 

ALL. mammilifer r
2  

= 0.151 

(p = 0.518) 

 

p(N) = 

0.713 

5 11.1458 

 

0.39641 

 

 N/A  3 11.22334 

 

0.377259 

 

ALL. megacantha r
2  

= 0.339 

(p = 0.17) 

 

p(N) = 

0.034 

7 10.89782 

 

0.415116 

 

ALL. murrayi r
2  

= 0.0397 

(p = 0.4) 

 

p(N) = 

0.335 

20 10.61635 

 

0.368364 

 

ALL. richeri r
2  

= 0.112 

(p = 0.463) 

 

p(N) = 

0.581 

7 11.133 

 

0.324539 

 

ALL. santolla r
2  

= 0.0446 

(p = 0.488) 

 

p(N) = 

0.081 

13 9.645107 

 

0.237464 

 

ALP. californiensis    8.597065 

 

0.037732 

 

ALP. 

camtschaticus 

r
2  

= 0.796 

(p = 0.017) 

A = 0.469 

B = 0.0014 

 

p(N) = 

0.492 

 9.823005 

 

0.614291 
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ALP. platypus r
2  

= 0.451 

(p = 0.215) 

 

p(N) =  

0.852 

 9.942947 

 

0.137258 

 

ALP. rathbuni r
2  

= 0.242 

(p = 0.508) 

 

 

p(N) = 

0.498 

 8.831877 

 

0.155646 

 

DL/CL      

DLL.aequispina r
2
 
 
= 0.0941 

(p = 0.216) 

 

p(N) = 

0.02 

18 9.669195 

 

0.297442 

 

DLL. confundens r
2  

= 0.0140 

(p = 0.762) 

 

p(N) = 

0.309 

9 10.81185 

 

0.653937 

 

DLL. couesi r
2  

= 0.371 

(p = 0.762) 

 

p(N) = 

0.151 

18 9.100429 

 

0.379543 

 

DLL. ferox r
2 
= 0.00045 

(p = 0.945) 

 

p(N) = 

0.148 

13 10.77344 

 

0.577214 

 

DLL. galapagensis N/A  2 9.603473 

 

0.512549 

 

DLL. longispina N/A  3 10.38071 

 

1.095118 

 

DLL. maja r
2 
= 0.0725 

(p = 0.203) 

 

p(N) = 

0.035 

24 9.484499 

 

0.379517 

 

DLL. mammilifer r
2  

= 0.122 

(p = 0.565) 

 

p(N) = 

0.061 

5 10.40278 

 

0.11246 

 

DLL. manningi N/A  3 10.59639 

 

0.410021 

 

DLL. megacantha r
2 
= 0.123 

(p = 0.0441) 

 

p(N) = 

0.222 

7 10.41484 

 

0.486243 

 

DLL. murrayi r
2 
= 0.333 

(p = 0.008) 

 

p(N) = 

0.443 

20 11.28695 

 

0.470424 

 

DLL. richeri r
2 
=

 
0.00511 

(p = 0.879) 

 

p(N) = 

0.371 

 

7 11.12418 

 

0.82368 

 

DLL. santolla r
2 
= 0.000879 

(p = 0.923) 

 

p(N) = 

0.537 

13 8.43482 

 

0.530773 

 

DLP. californiensis    9.334537 

 

0.207762 

 

DLP. 

camtschaticus 

r
2  

= 0.132 

(p = 0.478) 

 

p(N) = 0.1  10.12561 

 

0.388684 

 

DLP. platypus r
2
 
 
= 

0.00000001 

(p = 0.999) 

 

p(N) = 

0.937 

 9.356586 

 

0.345495 

 

DLP. rathbuni r
2
 
 
= 0.437 p(N) =  10.67086 0.306723 



The Evolutionary History of the Lithodinae  Appendix J  

5 

(p = 0.339) 

 

0.159   

ML/CL      

MLL.aequispina r
2 
= 0.245 

(p = 0.037) 

 

p(N) = 

0.795 

 

18 8.758359 

 

0.211606 

 

MLL. confundens r
2
=0.032 

(p = 0.644) 

 

p(N) = 

0.105 

9 10.50912 

 

0.190359 

 

MLL. couesi r
2 
=0.626 

(p = 0.001) 

A = 0.648 

B = 0.00124 

 

p(N) = 

0.996 

18 9.43242 

 

0.30952 

 

MLL. ferox r
2 
= 0.231 

(p = 0.097) 

 

p(N) = 

0.836 

13 10.7681 

 

0.313517 

 

MLL. galapagensis N/A  2 9.920552 

 

0.089123 

 

MLL. longispina N/A  3 10.99919 

 

0.576157 

 

MLL. maja r
2
 
 
= 0.000001 

(p = 0.966) 

 

p(N) = 

0.723 

24 9.311014 

 

0.153171 

 

MLL. mammilifer r
2
 
 
= 0.00233 

(p = 0.939) 

 

p(N) = 

0.988 

5 10.83066 

 

0.141209 

 

MLL. manningi N/A  3 11.76072 

 

1.084515 

 

MLL. megacantha r
2
 
 
= 0.0605 

(p = 0.595) 

 

p(N) = 

0.485 

 

7 11.88014 

 

0.297333 

 

MLL. murrayi r
2
 
 
= 0.00365 

(p = 0.8) 

 

p(N) = 

0.278 

 

20 10.55907 

 

0.156692 

 

MLL. richeri r
2  

= 0.0368 

(p = 0.68) 

 

p(N) = 

0.491 

 

7 12.22601 

 

0.482621 

 

MLL. santolla r
2
 
 
= 0.151 

(p = 0.189) 

 

p(N) = 

0.379 

13 9.447799 

 

0.351335 

 

MLP. 

californiensis 

   9.183966 

 

0.220888 

 

MLP. 

camtschaticus 

r
2  

= 0.00561 

(p = 0.888) 

 

p(N) = 

0.009 

6 9.65186 

 

0.398086 

 

MLP. platypus r
2  

= 0.811 

(p = 0.014) 

A = 0.59 

B = 0.00151 

 

p(N) = 

0.937 

 9.162561 

 

0.123303 

 

MLP. rathbuni r
2  

= 0.822 

(p = 0.093) 

A = 1.015 

p(N) = 

0.449 

 9.768982 

 

0.232148 
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B = 0.00314 

 

PL/CL      

PLL.aequispina r
2
 
 
= 0.0446 

(p = 0.4) 

 

p(N) = 

0.075 

 

18 9.094656 

 

0.151181 

 

PLL. confundens r
2  

= 0.0186 

(p = 0.726) 

 

p(N) = 

0.462 

 

9 11.07691 

 

0.275324 

 

PLL. couesi r
2  

= 0.118 

(p = 0.163) 

 

p(N) = 

0.021 

18 9.32746 

 

0.401518 

 

PLL. ferox r
2  

= 0.111 

(p = 0.266) 

 

p(N) = 

0.003 

 

13 10.73205 

 

0.415753 

 

PLL. galapagensis N/A 

 

 2 10.15934 

 

0.427966 

 

PLL. longispina N/A  3 11.37872 

 

0.554417 

 

PLL. maja r
2  

= 0.0017 

(p = 0.0848) 

 

p(N) = 

0.442 

24 9.154187 

 

0.27448 

 

PLL. mammilifer r
2  

= 0.123 

(p = 0.563) 

 

p(N) = 

0.054 

5 10.34732 

 

0.64231 

 

PLL. manningi N/A  3 12.04794 

 

1.079276 

 

PLL. megacantha r
2  

= 0.155 

(p = 0.383) 

 

p(N) = 

0.443 

7 11.69353 

 

0.322291 

 

PLL. murrayi r
2  

= 0.188 

(p = 0.056) 

 

p(N) = 

0.434 

20 10.35934 

 

0.204318 

 

PLL. richeri r
2  

= 0.0519 

(p = 0.623) 

 

p(N) = 

0.185 

7 12.00916 

 

0.487641 

 

PLL. santolla r
2  

= 0.0107 

(p = 0.736) 

 

p(N) = 0.6 13 9.352897 

 

0.390363 

 

PLP. californiensis    10.09239 

 

0.170483 

 

PLP. camtschaticus r
2
 
 
= 0.0901 

(p = 0.563) 

 

p(N) = 

0.023 

 9.493362 

 

0.418149 

 

PLP. platypus r
2
 
 
= 0.775 

(p = 0.021) 

 

p(N) = 

0.016 

 9.056738 

 

0.189207 

 

PLP. rathbuni r
2
 
 
= 0.491 

(p = 0.299) 

A = 0.968 

B = 0.242 

 

p(N) = 

0.481 

 10.5876 

 

0.29515 

 

GW/CL      

GWL.aequispina r
2  

= 0.0251 p(N) = 18 9.304505 0.350607 
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(p = 0.53) 

 

0.206   

GWL. confundens r
2  

= 0.113 

(p = 0.376) 

 

(P = 0.532 9 9.619086 

 

0.25986 

 

GWL. couesi r
2  

= 0.556 

(p = 0.001) 

A = 0.326 

B = 0.000384 

 

p(N) = 

0.389 

18 9.323632 

 

0.42631 

 

GWL. ferox r
2  

= 0.336 

(p = 0.038) 

 

p(N) = 

0.328 

13 10.06356 

 

0.369597 

 

GWL. 

galapagensis 

N/A  2 10.72544 

 

0.37597 

 

GWL. longispina N/A  3 11.37686 

 

0.383897 

 

GWL. maja r
2  

= 0.275 

(p = 0.009) 

 

 

 

p(N) = 

0.346 

24 9.725036 

 

0.413565 

 

GWL. mammilifer r
2  

= 0.234 

(p = 0.409) 

 

p(N) = 

0.121 

5 11.40718 

 

0.164424 

 

GWL. manningi N/A  3 10.83604 

 

0.069428 

 

GWL. megacantha r
2  

= 0.0284 

(p = 0.718) 

 

p(N) = 

0.438 

7 12.13541 

 

0.415434 

 

GWL. murrayi r
2  

= 0.000001 

(p = 0.998) 

 

p(N) = 

0.850 

20 10.67942 

 

0.315608 

 

GWL. richeri r
2  

= 0.0908 

(p = 0.511) 

 

p(N) = 

0.193 

7 11.87623 

 

0.200978 

 

GWL. santolla r
2 
0.0591 

(p = 0.424) 

 

p(N) = 

0.529 

13 9.553519 

 

0.558522 

 

GWP. 

californiensis 

N/A  3 8.702118 

 

0.1294 

 

GWP. 

camtschaticus 

r
2  

= 0.0684 

(p = 0.617) 

 

p(N) = 

0.767 

6 9.725388 

 

0.494413 

 

GWP. brevipes r
2  

= 0.00642 

(p = 0.88) 

 

p(N) = 

0.471 

6 9.02056 

 

1.226498 

 

GWP. rathbuni r
2  

= 0.242 

(p = 0.508) 

 

p(N) = 

0.854 

 

4 8.065695 

 

0.736115 

 

      

LBHL.aequispina r
2  

= 0.0767 

(p = 0.266) 

 

p(N) = 

0.775 

18 

10.83303 0.237455 
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LBHL. 

confundens 

r
2 
 = 0.0163 

(p = 0.743) 

 

p(N) = 

0.087 

9 

10.08844 0.310204 

LBHL. couesi r
2
 = 0.0166 

(p = 0.622) 

 

p(N) = 

0.257 

18 

11.77738 0.30553 

LBHL. ferox r
2
 = 0.271 

(p = 0.068) 

 

p(N) = 

0.725 

13 

9.962117 0.386866 

LBHL. 

galapagensis 

  2 

10.67933 0.240712 

LBHL. longispina   3 9.507839 0.12971 

LBHL. maja r
2
 = 0.0545 

(p = 0.272) 

 

p(N) = 

0.549 

24 

9.190542 0.336479 

LBHL. 

mammilifer 

  5 

9.53221 0.359721 

LBHL. manningi   3 9.903769 0.101375 

LBHL. 

megacantha 

r
2  

= 0.0926 

(p = 0.558) 

 

p(N) = 

0.993 

7 

8.970096 0.332112 

LBHL. murrayi r
2
 = 0.0434 

(p = 0.378) 

 

p(N) = 

0.564 

20 

8.887776 0.348895 

LBHL. richeri r
2  

= 0.00110 

(p = 0.944) 

 

p(N) = 

0.298 

7 

9.153715 0.248085 

LBHL. santolla r
2
 = 0.00238 

(p = 0.863) 

 

p(N) = 

0.556 

13 

9.93038 0.353551 

LBHP. 

californiensis 

  3 

11.36212 0.043419 

LBHP. 

camtschaticus 

r
2
 = 0.321 

(p = 0.241) 

 

p(N) = 

0.035 

6 

9.722175 0.252858 

LBHP. brevipes r
2
 
 
= 0.363 

(p = 0.206) 

 

p(N) = 

0.903 

6 

10.31357 0.483531 

LBHP. rathbuni 

 

r
2
 
 
= 0.0535 

(p = 0.769) 

 

p(N) = 

0.408 

4 

11.93921 0.18088 

DHL.aequispina r
2
 
 
= 0.00262 

(p = 0.84) 

 

p(N) = 

0.015 

18 

9.435652 0.4824 

DHL. confundens r
2
 
 
= 0.244 

(p = 0.176) 

 

p(N) = 

0.346 

9 

11.42958 0.190931 

DHL. couesi r
2  

= 0.0937 

(p = 0.232) 

 

p(N) = 

0.403 

18 

9.230104 0.396863 

DHL. ferox r
2  

= 0.00178 

(p = 0.891) 

 

p(N) = 

0.936 

13 

9.864549 0.57115 

DHL. galapagensis   2 9.111268 0.490928 
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DHL. longispina   3 9.507137 1.296007 

DHL. maja r
2  

= 0.0434 

(p = 0.329) 

 

p(N) = 

0.481 

24 

10.51581 0.159952 

DHL. mammilifer r
2  

= 0.300 

(p = 0.453) 

 

p(N) = 

0.267 

5 

9.350418 0.454773 

DHL. manningi   3 9.09492 0.549844 

DHL. megacantha r
2  

= 0.0183 

(p = 0.772) 

 

p(N) = 

0.639 

7 

8.513598 0.182042 

DHL. murrayi r
2  

= 0.00548 

(p = 0.756) 

 

p(N) = 

0.084 

20 

9.769846 0.410312 

DHL. richeri r
2  

= 0.126 

(p = 0.434) 

 

p(N) = 

0.384 

7 

8.817117 0.773726 

DHL. santolla r
2  

= 0.0487 

(p = 0.429) 

 

p(N) = 

0.364 

13 

10.46434 0.285082 

DHP. 

californiensis 

  3 

9.558699 0.153496 

DHP. 

camtschaticus 

r
2  

= 0.0633 

(p = 0.631) 

 

p(N) = 

0.600 

6 

11.94297 0.388397 

DHP. brevipes r
2  

= 0.305 

(p = 0.256) 

 

p(N) = 

0.184 

6 

12.25189 0.346648 

DHP. rathbuni r
2  

= 0.342 

(p = 0.415) 

 

p(N) = 

0.895 

4 

10.0088 0.211561 

CALL.aequispina r
2  

= 0.0587 

(p = 0.333) 

 

p(N) = 

0.08 

18 

8.797777 0.403699 

CALL. 

confundens 

r
2  

= 0.0873 

(p = 0.44) 

 

p(N) = 

0.74 

9 

11.37621 0.16749 

CALL. couesi r
2  

= 0.397  

(p = 0.007) 

A = 0.337 

B = 0.00068 

 

p(N) = 

0.155 

18 

8.63398 0.700755 

CALL. ferox r
2  

= 0.0377 

(p = 0.525) 

 

p(N) = 

0.356 

13 

10.37704 0.624178 

CALL. 

galapagensis 

  2 

9.773678 0.376642 

CALL. longispina   3 10.94264 0.43293 

CALL. maja r
2  

= 0.0859 

(p = 0.164) 

 

p(N) = 

0.315 

24 

9.771101 0.293167 

CALL. 

mammilifer 

r
2  

= 0.575 

(p = 0.242) 

A = 0.577 

p(N) = 

0.251 

5 

9.861083 0.899345 
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B = 0.00203 

 

CALL. manningi   3 11.856 1.340678 

CALL. 

megacantha 

r
2  

= 0.0616 

(p = 0.592) 

 

p(N) = 

0.987 

7 

11.30805 0.251335 

CALL. murrayi r
2  

= 0.0313 

(p = 0.455) 

 

p(N) = 

0.06 

20 

10.42753 0.403432 

CALL. richeri r
2  

= 0.0680 

(p = 0.572) 

 

p(N) = 

0.831 

7 

11.48428 0.763249 

CALL. santolla r
2  

= 

0.00000359 

(p = 0.984) 

 

p(N) = 

0.502 

13 

9.594548 0.364928 

CALP. 

californiensis 

  3 

9.995611 0.176694 

CALP. 

camtschaticus 

r
2  

= 0.553 

(p = 0.09) 

 

p(N) = 

0.693 

6 

10.33845 0.118902 

CALP. brevipes r
2  

= 0.72  

(p = 0.033) 

A = 0.368 

B = 0.00152 

 

 

p(N) = 

0.975 

6 

10.09338 0.355566 

CALP. rathbuni r
2  

= 0.828 

(p = 0.09) 

A = 0.640 

B = 0.00216 

p(N) = 

0.42 

 

4 

10.38995 0.459331 

GCLL.aequispina r
2
 = 0.0690 

(p = 0.292) 

 

p(N) = 

0.203 

18 

9.500899 0.140219 

GCLL. 

confundens 

r
2
 = 0.00537 

(p = 0.851) 

 

p(N) = 

0.809 

9 

10.30991 0.113942 

GCLL. couesi r
2
 = 0.000874 

(p = 0.910) 

 

p(N) = 

0.759 

18 

7.871441 0.203042 

GCLL. ferox r
2
 = 0.447 

(p = 0.012) 

A = 0.306 

B = 0.000820 

 

p(N) = 

0.036 

13 

10.25457 0.58069 

GCLL. 

galapagensis 

  2 

8.801645 0.272262 

GCLL. longispina   3 9.475551 0.040274 

GCLL. maja r
2
 = 0.0374 

(p = 0.365) 

 

p(N) = 

<0.001 

24 

11.03019 0.315248 

GCLL. 

mammilifer 

  5 

10.13903 0.236683 

GCLL. manningi   3 10.04336 0.12267 
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GCLL. 

megacantha 

r
2
 = 0.0964 

(p = 0.498) 

 

p(N) = 

0.001 

7 

10.07404 0.312334 

GCLL. murrayi r
2  

= 0.00293 

(p = 0.821) 

 

p(N) = 

0.821 

20 

10.78131 0.391019 

GCLL. richeri r
2
 = 0.239 

(p = 0.266) 

 

p(N) = 

0.671 

7 

10.45288 0.50648 

GCLL. santolla r
2  

= 0.0686 

(p = 0.346) 

 

p(N) = 

0.493 

13 

10.2408 0.310962 

GCLP. 

californiensis 

  3 

8.645871 0.154222 

GCLP. 

camtschaticus 

r
2  

= 0.0000205 

(p = 0.992) 

  

p(N) = 

0.781 

6 

10.57272 0.469242 

GCLP. brevipes r
2
 = 0.0337 

(p = 0.728) 

 

p(N) = 

0.387 

6 

10.43554 0.305387 

GCLP. rathbuni r
2
 
 
= 0.717 

(p = 0.153) 

 

p(N) = 

0.473 

4 

8.472898 0.218867 

GLL.aequispina r
2  

= 0.00965 

(p = 0.698) 

 

p(N) = 

0.137 

18 

10.98283 0.575082 

GLL. confundens r
2  

= 0.00537 

(p = 0.851) 

 

p(N) = 

0.059 

9 

9.588729 0.501407 

GLL. couesi r
2  

= 0.268 

(p = 0.033) 

 

p(N) = 

0.309 

18 

9.35232 0.705955 

GLL. ferox r
2 
= 0.651 

(p = <0.001) 

A = 0.502 

B = 0.000528 

 

p(N) = 

0.512 

13 

9.014984 0.683552 

GLL. galapagensis   2 9.718241 0.370931 

GLL. longispina   3 9.96155 0.638549 

GLL. maja r
2  

= 0.211 

(p = 0.024) 

 

p(N) = 

0.43 

24 

9.86631 0.679434 

GLL. mammilifer   5 10.13821 0.557084 

GLL. manningi   3 10.08408 0.927541 

GLL. megacantha r
2  

= 0.00256 

(p = 0.914) 

 

p(N) = 

0.067 

7 

11.75804 0.322581 

GLL. murrayi r
2  

= 0.000846 

(p = 0.903) 

 

p(N) = 

0.289 

20 

10.28741 0.615497 

GLL. richeri r
2  

= 0.403 

(p = 0.126) 

 

p(N) = 

0.063 

7 

10.58442 0.411954 

GLL. santolla r
2  

= 0.263 p(N) = 13 9.440825 0.938374 



The Evolutionary History of the Lithodinae  Appendix J  

12 

(p = 0.051) 

 

0.969 

GLP. californiensis   3 8.387551 0.389072 

GLP. 

camtschaticus 

r
2  

= 0.0805 

(p = 0.537) 

 

p(N) = 

0.033 

6 

10.43103 0.162219 

GLP. brevipes r
2 
= 

 
0.922 

(p = 0. 002) 

A =0.567 

B = 0.000924 

p(N) = 

0.681 

 

6 

10.89173 0.435418 

GLP. rathbuni r
2 
= 0.699 

(p = 0.164) 

A = 0.539 

B = 0.00139 

p(N) = 

0.841 

 

4 

8.34934 0.730536 

MWL.aequispina r
2 
0.219 

(p = 0.05) 

 

p(N) = 

0.412 

18 

10.17546 0.310988 

MWL. confundens r
2 
0.178 

(p = 0.258) 

 

p(N) = 

0.707 

9 

11.34535 0.543003 

MWL. couesi r
2 
0.519 

(p = 0.001) 

 

p(N) = 

0.034 

18 

8.850754 0.50265 

MWL. ferox r
2 
0.00251 

(p = 0.871) 

 

p(N) = 

0.399 

13 

9.39566 0.49285 

MWL. 

galapagensis 

  2 

9.335397 0.987352 

MWL. longispina   3 8.814645 0.330112 

MWL. maja r
2 
0.0327 

(p = 0.409) 

 

p(N) = 

0.79 

24 

10.86658 0.466091 

MWL. mammilifer   5 9.546072 0.268358 

MWL. manningi   3 9.184509 0.322008 

MWL. 

megacantha 

r
2 
0.0608 

(p = 0.594) 

 

p(N) = 

0.269 

7 

8.667802 0.311328 

MWL. murrayi r
2 
0.00931 

(p = 0.686) 

 

p(N) = 

0.355 

20 

9.659591 0.419634 

MWL. richeri r
2 
0.304 

(p = 0.2) 

 

p(N) = 

0.322 

7 

8.975221 0.302871 

MWL. santolla r
2 
0.131 

(p = 0.184) 

 

p(N) = 

0.726 

13 

10.56871 0.665396 

MWP. 

californiensis 

  3 

9.63455 0.171989 

MWP. 

camtschaticus 

r
2 
0.418 

(p = 0.165) 

 

p(N) = 

0.226 

6 

11.27363 0.294646 

MWP. brevipes r
2 
0.126 

(p = 0.490) 

 

p(N) = 

0.361 

6 

11.81863 0.351257 
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MWP. rathbuni r
2 
0.00249 

(p = 0.950) 

 

p(N) = 

0.285 

4 

9.616808 0.11746 

ABLL.aequispina r
2 
0.282 

(p = 0.023) 

 

p(N) = 

0.955 

18 

10.40658 0.284475 

ABLL. 

confundens 

r
2 
0.0873 

(p = 0.44) 

 

p(N) = 

0.74 

9 

9.374634 0.281969 

ABLL. couesi r
2 
0.0298 

(p = 0.508) 

 

p(N) = 

0.692 

18 

8.022824 0.378305 

ABLL. ferox r
2 
0.0107 

(p = 0.737) 

 

p(N) = 

0.651 

13 

10.2377 0.59691 

ABLL. 

galapagensis 

  2 

9.216119 0.997909 

ABLL. longispina   3 10.25447 0.549117 

ABLL. maja r
2 
0.00811 

(p = 0.676) 

 

p(N) = 

0.485 

24 

10.26596 0.330769 

ABLL. 

mammilifer 

  5 

9.920055 0.301264 

ABLL. manningi   3 10.17545 0.265388 

ABLL. 

megacantha 

r
2 
0.0552 

(p = 0.612) 

 

p(N) = 

0.355 

7 

10.10293 0.326542 

ABLL. murrayi r
2 
0.0102 

(p = 0.671) 

 

p(N) = 

0.478 

20 

10.31612 0.476831 

ABLL. richeri r
2 
0.173 

(p = 0.353) 

 

p(N) = 

0.12 

7 

9.249437 0.228422 

ABLL. santolla r
2 
0.00388 

(p = 0.825) 

 

p(N) = 

0.12 

13 

10.15058 0.380681 

ABLP. 

californiensis 

  3 

9.40676 0.339896 

ABLP. 

camtschaticus 

r
2 
0.146 

(p = 0.455) 

 

p(N) = 

0.526 

6 

11.99883 0.471287 

ABLP. brevipes r
2 
0.000887 

(p = 0.955) 

 

p(N) = 

0.626 

6 

12.00857 0.316465 

ABLP. rathbuni r
2 
0.486 

(p = 0.303) 

 

p(N) = 

0.476 

4 

9.0907 0.25753 

LSHL.aequispina r
2
 0.252 

(p = 0.034) 

 

p(N) = 

0.491 

18 

9.187146 0.372226 

LSHL. confundens r
2
 0.00934 

(p = 0.805) 

 

p(N) = 

0.828 

9 

9.646891 0.324516 

LSHL. couesi r
2
 0.290 p(N) = 18 8.712032 0.26366 
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(p = 0.026) 

 

0.253 

LSHL. ferox r
2
 0.0432 

(p = 0.496) 

 

p(N) = 

0.982 

13 

10.8234 0.345012 

LSHL. 

galapagensis 

  2 

10.82066 0.329379 

LSHL. longispina   3 10.56317 0.83799 

LSHL. maja r
2 
0.0000605 

(p = 0.971) 

 

p(N) = 

0.118 

24 

9.52798 0.188441 

LSHL. mammilifer   5 10.9512 0.575335 

LSHL. manningi   3 11.83831 0.196639 

LSHL. 

megacantha 

r
2
 0.0585 

(p = 0.644)

  

 

p(N) = 

0.983 

7 

11.39405 0.353105 

LSHL. murrayi r
2
 0.0497 

(p = 0.345) 

 

p(N) = 

0.288 

20 

11.19202 0.318441 

LSHL. richeri r
2
 0.0417 

(p = 0.661) 

 

p(N) = 

0.128 

7 

11.53462 0.598638 

LSHL. santolla r
2 
0.585 

(p = 0.385) 

 

p(N) = 

0.377 

13 

9.524453 0.286484 

LSHP. 

californiensis 

  3 

8.945357 0.237272 

LSHP. 

camtschaticus 

  6 

9.84386 0.354302 

LSHP. brevipes r
2 
0.168 

(p = 0.420) 

 

p(N) = 

0.315 

6 

9.783048 0.279948 

LSHP. rathbuni   4 8.890207 0.101394 
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APPENDIX K 

 

Table.a: Statistics relating to non-species-subdivided datasets for the Paralomis 

morphometric analysis (section B2).  

 

Yk 1
st
; 2

nd
 order 

polynomial 

regression of 

undivided 

datasets x = CL; 

y = Yk. 

 

p = probability 

that the 

coefficient of 

the highest order 

term  is zero (α 

= 0.01). 

ANOVA of 

fCL(Yk) 

subdivided into 

17 species.  

 

H0: no 

difference in Yk 

between species. 

(α = 0.01) 

Shapiro-Wilk 

test for 

normality. 

 

p(N) = 

probability that 

all within-

species samples 

are normally 

distributed (α = 

0.01). 

F-test for equal 

variance. 

 

p(EV) = 

probability that 

all species have 

equal variance 

in the 

measurement Yk 

(α = 0.01). 

  

LBH 1°: r
2
 = 0.884 (p 

< 0.001); 2°: r
2
 

= 0.00441 (p = 

0.247) 

F = 38.681 

p(H0) < 0.001 

  

p(N) = 0.133 p(EV) = 0.188 

HW 1°: r
2
 = 0.928 (p 

< 0.001); 2°: r
2
 

= 0.00360 (p = 

0.01) 

F = 72.55 p(H0) 

< 0.001 

 

p(N) = 0.04 p(EV) = 0.821 

ML 1°: r
2
 = 0.657 (p 

< 0.001); 2°: r
2
 

= 0.00003 (p = 

0.889) 

F = 44.587 

p(H0) < 0.001 

 

p(N) = 0.104 p(EV) = 0.078 

GCL 1°: r
2
 = 0.156 (p 

< 0.001); 2°: r
2
 

= 0.024 (p = 

0.016) 

F = 68.794 

p(H0) < 0.001 

 

X p(EV) = 0.154 

GL 1°: r
2
 = 0.942 (p 

< 0.001); 2°: r
2
 

= 0.0034 

(p(B=0) = 

0.001) 

F = 50.576 

p(H0) < 0.001 

 

p(N) = 0.233 p(EV) = 0.633 

AL 1°: r
2
 = 0.845 (p 

< 0 001); 2°: r
2
 

= 0.00723 

(p(B=0) = 0.01) 

F = 150.6 p(H0) 

< 0.001 

 

X p(EV) = 0.309 

DL 1°: r
2
 = 0.629 (p 

< 0.001); 2°: r
2
 

= 0.00029 

(p(B=0) = 

0.664) 

F = 74.8 p(H0) < 

0.001 

 

p(N) = 0.05 p(EV) = 0.05 

OCL 1°: r
2
 = 0.961 (p 

< 0.001); 2°: r
2
 

= 0.00026 

(p(B=0) = 0.2) 

F = 0.933 p(H0) 

= 0.767 

 p(EV) = 0.23 

OCW 1°: r
2
 = 0.96 (p F = 0.796 p(H0) X p(EV) = 0.815 
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2 

< 0.001); 2°: r
2
 

= 0.00015 

(p(B=0) = 

0.339) 

= 0.711 

ABL 1°: r
2
 = 0.850 (p 

< 0.001); 2°: r
2
 

= 0.00192 

(p(B=0) = 

0.082) 

F = 1.012 p(H0) 

= 0.448 

X p(EV) = 0.431 

LSH 1°: r
2
 = 0.737 (p 

< 0.001); 2°: r
2
 

= 0.000526 

(p(B=0) = 

0.484) 

 F = 1.271 p(H0) 

= 0.2 

p(N) = 0.05 p(EV) = 0.197 

HL 1°: r
2
 = 0.959 (p 

< 0.001); 2°: r
2
 

= 0.000444 

(p(B=0) = 

0.103) 

F = 1.059 p(H0) 

= 0.395 

p(N) = 0.06 p(EV) = 0.212 

CDL 1°: r
2
 = 0.719 (p 

< 0.001); 2°: r
2
 

= 0.0011 

(p(B=0) = 

0.327) 

F = 1.244 p(H0) 

= 0.224 

p(N) = 0.1  p(EV) = 0.296 

GCW 1°: r
2
 = 0.286 (p 

< 0.001); 2°: r
2
 

= 0.00108 

(p(B=0) = 

0.544) 

F = 1.174 p(H0) 

= 0.282 

p(N) = 0.050 p(EV) = 0.281 

VRL 1°: r
2
 = 0.541 

(p(A=0) < 

0.001); 2°: r
2
 = 

0.000789 

(p(B=0) = 

0.517) 

F = 0.614 p(H0) 

= 0.894 

p(N) = 0.050 p(EV) = 0.621 

DH 1°: r
2
 = 0.653 (p 

< 0.001); 2°: r
2
 

= 0.000007 

(p(B=0) = 

0.943) 

F = 1.53 p(H0) = 

0.402 

p(N) = 0.01 p(EV) = 0.970 

PL 1°: r
2
 = 0.84 (p 

< 0.001); 2°: r
2
 

= 0.000067 

(p(B=0) = 

0.748) 

F = 0.634 p(H0) 

= 0.878 

X p(EV) = 0.976 

CAL 1°: r
2
 = 0.946 (p 

< 0.001); 2°: r
2
 

= 0.000479 

(p(B=0) = 

0.138) 

F = 1.337 p(H0) 

= 0.162 

 

X p(EV) = 0.312 

MW 1°: r
2
 = 0.649 (p 

< 0.001); 2°: r
2
 

= 0.0011 

(p(B=0) = 

F = 1.124 p(H0) 

= 0.328 

X p(EV) = 0.736 
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3 

0.378) 

MH 1°: r
2
 = 0.621 (p 

< 0.001); 2°: r
2
 

= 0.00358 

(p(B=0) = 

0.128) 

F = 3.624 p(H0) 

= 0.728 

 p(EV) = 0.86 

LHH 1°: r
2
 = 0.781 (p 

< 0.001); 2°: r
2
 

= 0.00438 

(p(B=0) =0.026) 

F = 0.124 p(H0) 

= 0.828 

 p(EV) = 0.86 

     

 

 

b. Statistics relating to species-subdivided datasets for the Paralomis morphometric analysis. 

 

      

K, n r
2  

test of 

linear 

regression 

within species, 

in which x = 

CL and y = 

Yk, n/CL.
 

 

p is the 

probability 

that B=0 in 

the equation y 

= A + Bx  (α = 

0.01)  

Shapiro-Wilk 

test of 

normality  

 

p(N) = 

probability 

that the 

sample is 

taken from a 

normally 

distributed 

population (α 

= 0.01) 

Sample 

number 

 

Standardised 

within-species 

sample mean: 

Ūk,n 

Standardised 

within-species 

sample 

standard 

deviation: Sk,n 

LBHPacu r
2
 
 
= 0.00618 

(p = 0.674)  

p(N) = 0.165 31 

10.07737 0.399655 

LBHPafr r
2
 
 
= 

0.00000006 

(p = 0.998) 

p(N) = 0.931 15 

10.63838 0.436698 

LBHPana r
2
 
 
= 0.55 

(p = 0.034) 

A = 0.287 

B = 0.000988 

p(N) = 0.964 8 

9.855126 0.532302 

LBHPbir r
2
 
 
= 0.116 

(p = 0.336) 

p(N) = 0.208 10 

9.32681 0.477682 

LBHPcri r
2
 
 
= 0.0864 

(p = 0.354) 

p(N) = 0.279 12 

10.5219 0.363468 

LBHPcub r
2
 
 
= 0.214 

(p = 0.053) 

p(N) = 0.137 18 

9.084735 0.587059 

LBHPeri r
2
 
 
= 0.00915 

(p = 0.715) 

p(N) = 0.304 17 

9.544979 0.349015 

LBHPfor   5 10.70678 0.274101 

LBHPgra r
2
 
 
= 0.0854 

(p = 0.211) 

p(N) = 0.431 21 

8.647572 0.443872 

LBHPhai r
2
 
 
= 0.0734 

(p = 0.449) 

p(N) = 0.995 10 

9.920925 0.444535 

LBHPinc   5 12.46169 0.635755 

LBHPmen r
2
 
 
= 0.00158 p(N) = 0.388 10 9.186788 0.470946 
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(p = 0.919) 

LBHPmul r
2
 
 
= 0.0102 

(p = 0.665) 

p(N) = 0.232 17 

11.36904 0.703783 

LBHPots r
2
 
 
= 0.0006 

(p = 0.953) 

p(N) = 0.723 8 

10.68333 0.411925 

LBHPphr   5 10.47425 0.45228 

LBHPspi r
2
 
 
= 0.0536 

(p = 0.407) 

p(N) = 0.533 15 

10.44068 0.57987 

LBHPste r
2
 
 
= 0.0231 

(p = 0.656) 

p(N) = 0.540 11 

9.357028 0.491302 

LBHPver r
2
 
 
= 0.0434 

(p = 0.654) 

p(N) = 0.178 7 

10.19007 0.633344 

LBHloop r
2
 
 
= 0.6 

(p = 0.04) 

A = 0.6 

B=0.00047 

p(N) = 0.674 8 8.63464 

 

0.575908 

 

LBHgly r
2
 
 
= 0.0675 

(p = 0.534) 

p(N) = 0.361 8 11.34427 

 

0.633841 

 

HWPacu r
2
 
 
= 0.00827 

(p = 0.627) 

p(N) = 0.056 31 

10.94449 0.438185 

HWPafr r
2
 
 
= 0.0685 

(p = 0.346) 

p(N) =  0.011 15 

10.26265 0.404355 

HWPana r
2
 
 
= 0.614 

(p = 0.021) 

A = 0.562 

B = 0.00195 

p(N) = 0.481 8 

11.05168 0.491337 

HWPbir r
2
 
 
= 0.0664 

(p = 0.472) 

p(N) = 0.873 10 

10.1888 0.200508 

HWPcri r
2
 
 
= 0.013 

(p = 0.742) 

p(N) = 0.815 12 

9.580048 0.264079 

HWPcub r
2
 
 
= 0.172 

(p = 0.087) 

p(N) = 0.032 18 

11.70031 0.403616 

HWPeri r
2
 
 
= 0.0224 

(p = 0.566) 

p(N) = 0.833 17 

9.869671 0.326062 

HWPfor   5 9.705189 0.217291 

HWPgra r
2
 
 
= 0.0576 

(p = 0.295) 

p(N) = 0.054 21 

9.649103 0.426745 

HWPhai r
2
 
 
= 0.282 

(p = 0.175) 

p(N) = 0.508 10 

10.17662 0.50601 

HWPinc   5 7.959664 0.430677 

HWPmen r
2
 
 
= 0.00911 

(p = 0.822) 

p(N) = 0.130 10 

11.4048 0.230786 

HWPmul r
2
 
 
= 0.147 

(p = 0.116) 

p(N) = 0.230 17 

9.186394 0.36912 

HWPots r
2
 
 
= 0.665 

(p = 0.014) 

B = 0.00084 

p(N) = 0.336 8 

9.356245 0.40981 

HWPphr   5 9.616889 0.3114 

HWPspi r
2
 
 
= 0.369 

(p = 0.016) 

p(N) = 0.246 15 

8.814251 0.408458 

HWPste r
2
 
 
= 0.0622 

(p = 0.46) 

p(N) = 0.558 11 

10.52866 0.306926 

HWPver r
2
 
 
= 0.315 

(p = 0.19) 

p(N) = 0.260 7 

8.819982 0.485916 
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HWlop r
2
 
 
= 0.36 

(p = 0.116) 

p(N) = 0.229 8 

8.586976 0.426809 

HWgly r
2
 
 
= 0.0171 

(p = 0.758) 

p(N) = 0.537 8 

9.096016 0.26123 

MLcu r
2
 
 
= 0.0818 

(p = 0.119) 

p(N) = 0.562 31 

10.628 0.455472 

MLPafr r
2
 
 
= 0.156 

(p = 0.145) 

p(N) = 0.388 15 

9.846502 0.583136 

MLPana r
2
 
 
= 0.295 

(p = 0.164) 

p(N) = 0.216 8 

10.39801 0.719802 

MLPbir r
2
 
 
= 0.528 

(p = 0.017) 

B =0.00319 

p(N) = 1.0 10 

10.97287 0.707838 

MLPcri r
2
 
 
= 0.0429 

(p = 0.518) 

p(N) = 0.105 12 

8.986513 0.337699 

MLPcub r
2
 
 
= 0.00122 

(p = 0.890) 

p(N) = 0.492 18 

9.847328 0.200707 

MLPeri r
2
 
 
= 0.104 

(p = 0.223) 

p(N) = 0.576 17 

9.788864 0.364249 

MLPfor   5 11.09682 0.389265 

MLPgra r
2
 
 
= 0.470 

(p = 0.001) 

B = 0.00218 

p(N) = 0.682 21 

8.810587 0.427371 

MLPhai r
2
 
 
= 0.00994 

(p = 0.784) 

p(N) = 0.629 10 

9.497893 0.441702 

MLPinc   5 9.417671 0.469464 

MLPmen r
2
 
 
= 0.0369 

(p = 0.62) 

p(N) = 0.765 10 

10.89536 0.528681 

MLPmul r
2
 
 
= 0.1122 

(p = 0.174) 

p(N) = 0.619 17 

11.46685 0.569493 

MLPots r
2
 
 
= 0.273 

(p = 0.184) 

p(N) =0.422 8 

10.53054 0.639866 

MLPphr r
2
 
 
= 0.635 

(p = 0.111) 

B= 0.0172 

p(N) =0.963 5 

10.75157 0.413327 

MLPspi r
2
 
 
= 0.00005 

(p = 0.979) 

p(N) =0.953 15 

10.16861 0.351904 

MLPste r
2
 
 
= 0.0796 

(p = 0.401) 

p(N) = 0.464 11 

9.652465 0.42286 

MLPver r
2
 
 
= 0.125 

(p = 0.437) 

p(N) = 0.859 

 

7 

10.50686 0.58741 

MLlop r
2
 
 
= 0.0246 

(p = 0.711) 

p(N) = 0.462 8 

7.591637 0.21614 

MLgly r
2
 
 
= 0.1122 

(p = 0.987) 

p(N) = 0.637 8 

8.773115 0.548672 

GCLPacu r
2
 
 
= 0.0119 

(p = 0.56) 

p(N) = 0.073 31 

11.18331 0.36325 

GCLPafr r
2
 
 
= 0.0766 

(p = 0.410) 

p(N) = 0.222 15 

9.311326 0.226067 

GCLPana r
2
 
 
= 0.00501 

(p = 0.868) 

p(N) = 0.11 8 

10.68265 0.371433 

GCLPbir r
2
 
 
= 0.00454 

(p = 0.853) 

p(N) = 0.025 10 

10.33285 0.670977 

GCLPcri r
2
 
 
= 0.00526 p(N) = 0.6 12 10.49385 0.284153 
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(p = 0.823) 

GCLPcub r
2
 
 
= 0.0268 

(p = 0.516) 

p(N) = 0.091 18 

9.881939 0.400301 

GCLPeri r
2
 
 
= 0.0194 

(p = 0.594) 

p(N) = 0.789 17 

9.852932 0.244647 

GCLPfor r
2
 
 
= 0.571 

(p = 0. 626) 

B = 0.00277 

p(N) = 0.626 5 

9.680204 0.535297 

GCLPgra r
2
 
 
= 0.0169 

(p = 0.574) 

p(N) = 0.201 21 

10.04633 0.482462 

GCLPhai r
2
 
 
= 0.635 

(p = 0.018) 

A = 0.308 

B = 0.00124 

p(N) = 0.124 10 

10.48195 0.627109 

GCLPinc r
2
 
 
= 0.32 

(p = 0.321) 

p(N) = 0.951 5 

7.256676 0.28594 

GCLPmen r
2
 
 
= 0.000755 

(p = 0.948) 

p(N) = 0.462 10 

10.93959 0.283567 

GCLPmul r
2
 
 
= 0.0651 

(p = 0.307) 

p(N) = 0.012 17 

8.760209 0.441205 

GCLPots r
2
 
 
= 

0.0000472 

(p = 0.987) 

p(N) = 0.630 8 

9.622753 0.213761 

GCLPphr r
2
 
 
= 0.554 

(p = 0.149) 

A = 0.366 

B = 0.0027 

p(N) = 0.862 5 

9.598923 0.205949 

GCLPspi r
2
 
 
= 0.00501 

(p = 0.802) 

p(N) = 0.155 15 

10.51614 0.30719 

GCLPste r
2
 
 
= 0.239 

(p = 0.127) 

p(N) = 0.572 11 

10.64006 0.341553 

GCLPver r
2
 
 
= 0.128 

(p = 0.43) 

p(N) = 0.497 7 

9.312396 0.435655 

GCLlop r
2
 
 
= 0.0022 

(p = 0.912) 

p(N) = 0.175 8 

10.24576 0.386466 

GCLgly r
2
 
 
= 0.138 

(p = 0.364) 

p(N) = 0.47 8 

7.397069 0.339845 

GLPacu r
2
 
 
= 0.00573 

(p = 0.686) 

p(N) = 0.381 31 

11.40946 0.418209 

GLPafr r
2
 
 
= 0.281 

(p = 0.042) 

p(N) = 0.05 15 

8.839237 0.511072 

GLPana r
2
 
 
= 0.00434 

(p = 0.877) 

p(N) = 0.547 8 

11.00938 0.350855 

GLPbir r
2
 
 
= 0.111 

(p = 0.347) 

p(N) = 0.588 10 

11.12611 0.295765 

GLPcri r
2
 
 
= 0.0144 

(p = 0.711) 

p(N) = 0.951 12 

9.597378 0.330529 

GLPcub r
2
 
 
= 0.0709  

(p = 0.285) 

p(N) = 0.914 18 

10.23285 0.31773 

GLPeri r
2
 
 
= 0.00372 

(p = 0.816) 

p(N) = 0.044 17 

10.28247 0.407034 

GLPfor r
2
 
 
= 0.547 

(p = 0.153) 

A = 0.626 

p(N) = 0.422 5 

10.24037 0.361653 
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B = 0.00137 

GLPgra r
2
 
 
= 0.284 

(p = 0.013) 

p(N) = 0.799 21 

10.26582 0.590133 

GLPhai r
2
 
 
= 0.271 

(p = 0.123) 

p(N) = 0.621 10 

10.43765 0.529269 

GLPinc r
2
 
 
= 0.109 

(p = 0.587) 

p(N) = 0.269 5 

7.236884 0.198834 

GLPmen r
2
 
 
= 0.0922 

(p = 0.427) 

p(N) = 0.499 10 

10.21418 0.530511 

GLPmul r
2
 
 
= 0.203 

(p = 0.06) 

p(N) = 0.916 17 

9.524148 0.410944 

GLPots r
2
 
 
= 0.0246 

(p = 0.711) 

p(N) = 0.514 8 

9.648917 0.46497 

GLPphr r
2
 
 
= 0.00652 

(p = 0.897) 

p(N) = 0.866 5 

9.774755 0.584813 

GLPspi r
2
 
 
= 0.033 

(p = 0.517) 

p(N) = 0.755 15 

9.428599 0.452277 

GLPste r
2
 
 
= 0.352 

(p = 0.054) 

p(N) = 0.34 11 

9.52823 0.490308 

GLPver r
2
 
 
= 0.00004 

(p = 0.989) 

p(N) = 0.04 7 

9.570841 0.361237 

GLlop r
2
 
 
= 0.107 

(p = 0.429) 

p(N) = 0.787 8 

9.44901 0.513755 

GLgly r
2
 
 
= 0.0122 

(p = 0.795) 

p(N) = 0.086 8 

8.077554 0.619229 

ALPacu r
2
 
 
= 0.0351 

(p = 0.313) 

p(N) = 0.184 31 

11.34301 0.28009 

ALPafr r
2
 
 
= 0.0141 

(p = 0.674) 

p(N) = 0.219 15 

9.831723 0.167242 

ALPana r
2
 
 
= 0.233 

(p =0.226) 

p(N) = 0.225 8 

10.63229 0.464388 

ALPbir r
2
 
 
= 0.119 

(p = 0.328) 

p(N) = 0.443 10 

11.2289 0.193833 

ALPcri r
2
 
 
= 0.137 

(p = 0.236) 

p(N) = 0.958 12 

8.733416 0.167462 

ALPcub r
2
 
 
= 0.187 

(p = 0.073) 

p(N) = 0.07 18 

10.11957 0.30662 

ALPeri r
2
 
 
= 0.0618 

(p = 0.336) 

p(N) = 0.47 17 

10.28855 0.280451 

ALPfor r
2
 
 
= 0.00775 

(p = 0.888) 

p(N) = 0.856 5 

9.811348 0.291521 

ALPgra r
2
 
 
= 0.251 

(p = 0.021) 

p(N) = 0.925 21 

8.363322 0.256719 

ALPhai r
2
 
 
= 0.104 

(p = 0.364) 

p(N) = 0.699 10 

10.51178 0.415736 

ALPinc r
2
 
 
= 0.459 

(p = 0.209) 

A = 0.245 

B = 0.000745 

p(N) = 0.814 5 

8.528309 0.162441 

ALPmen r
2
 
 
= 0.00614 

(p = 0.854) 

p(N) = 0.037 10 

10.59302 0.233494 

ALPmul r
2
 
 
= 0.256 

(p = 0.032) 

p(N) = 0.08 17 

10.00439 0.352856 

ALPots r
2
 
 
= 0.74 p(N) = 0.494 8 9.808249 0.320035 
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(p =0.006) 

B = 0.0007  

ALPphr r
2
 
 
= 0.0189 

(p = 0.825) 

p(N) = 0.452 5 

11.073 0.161251 

ALPspi r
2
 
 
= 0.0407 

(p = 0.471) 

p(N) = 0.03 15 

10.6354 0.272651 

ALPste r
2
 
 
= 0.0546 

(p = 0.489) 

p(N) = 0.113 11 

9.867093 0.303527 

ALPver r
2
 
 
= 0.0257 

(p = 0.731) 

p(N) = 0.071 7 

9.654274 0.117158 

ALlop r
2
 
 
= 0.137 

(p = 0.367) 

p(N) = 0.790 8 

8.711148 0.287283 

ALgly r
2
 
 
= 0.028 

(p = 0.692 

p(N) = 0.717 8 

8.15583 0.113898 

DLPacu r
2
 
 
= 0.0683 

(p = 0.155) 

p(N) = 0.01 31 

10.95378 0.417343 

DLPafr r
2
 
 
= 0.54 

(p = 0.002) 

A = 0.263 

B = 0.00313 

p(N) = 0.394 15 

9.964007 0.431166 

DLPana r
2
 
 
= 0.319 

(p = 0.145) 

p(N) = 0.939 8 

10.74625 0.664669 

DLPbir r
2
 
 
= 0.217 

(p = 0.175) 

p(N) = 0.746 10 

11.36447 0.299519 

DLPcri r
2
 
 
= 0.00112 

(p = 0.918) 

p(N) = 0.65 12 

9.518856 0.081091 

DLPcub r
2
 
 
= 0.0865 

(p = 0.236) 

p(N) = 0.096 18 

9.53168 0.165124 

DLPeri r
2
 
 
= 0.0048 

(p = 0.799) 

p(N) = 0.01 17 

9.61102 0.21275 

DLPfor r
2
 
 
= 0.374 

(p = 0.273) 

p(N) = 0.626 5 

11.07164 0.427858 

DLPgra r
2
 
 
= 0.602 

(p = 0.01) 

A = 0.195 

B = 0.00215 

p(N) = 0.358 21 

8.606782 0.41313 

DLPhai r
2
 
 
= 0.013 

(p = 0.754) 

p(N) = 0.157 10 

9.066233 0.319837 

DLPinc r
2
 
 
= 0.0405 

(p = 0.746) 

p(N) = 0.125 5 

9.66038 0.360125 

DLPmen r
2
 
 
= 0.0983 

(p = 0.411) 

p(N) = 0.537 10 

10.41884 0.411826 

DLPmul r
2
 
 
= 0.219 

(p = 0.05) 

p(N) = 0.192 17 

11.15104 0.630466 

DLPots r
2
 
 
= 0.607 

(p = 0.023) 

B = 0.0026  

p(N) = 0.061 8 

10.52136 0.543332 

DLPphr r
2
 
 
= 0.111 

(p = 0.583) 

p(N) = 0.88 5 

10.37525 0.064954 

DLPspi r
2
 
 
= 0.205 

(p = 0.09) 

p(N) = 0.968 15 

10.38141 0.190245 

DLPste r
2
 
 
= 0.00366 

(p = 0.86) 

p(N) = 0.249 11 

9.211343 0.204303 

DLPver r
2
 
 
= 0.23 p(N) = 0.720 7 10.60038 0.512587 
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(p = 0.276) 

DLlop r
2
 
 
= 0.185 

(p = 0.288) 

p(N) = 0.532 8 

7.542282 0.149323 

DLgly r
2
 
 
= 0.00819 

(p = 0.831) 

p(N) = 0.309 8 

9.373372 0.351435 

 

 


