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Abstract. The novel optical properties of holey optical fibres are reviewed, and a
complete hybrid vector model for these structures is described.

INTRODUCTION

A new class of optical fibre has emerged in the last few years; the holey or
microstructured optical fibre. A typical holey fibre is shown in Fig. 1. The core
of the fibre is formed by a solid silica region, and the cladding is comprised of air
holes which run along the fibre. These new fibres have generated a great deal of
interest largely because they can possess a wide range of novel optical properties
which are not easily attainable in more conventional fibre types [1,2].

FIGURE 1. A typical holey fibre: the air holes define the cladding.

In fibres like the one shown in Fig. 1, light can be guided using either one of two
quite different mechanisms. Ref. [3] originally proposed that these structures could
guide light via photonic band gap effects; and this was demonstrated in Ref. [4].
The second means of guiding light in these structures makes fewer demands on
the fibre geometry. In fibres like the one shown in Fig. 1, light can be guided due
to an effective average index difference between the central core and the region
containing air holes, which acts as the cladding. This effective indez guidance is
routinely observed in these fibres, and their basic operation does not depend on
having a periodic array of holes; in fact the holes can even be arranged randomly
[5]. Such fibres are generally labelled holey fibres (HFs) or microstructured fibres.



OVERVIEW OF HF PROPERTIES

The effective index difference between core and cladding (An) is a strong function
of wavelength in a HF. At longer wavelengths, the mode extends further into the
holes, thereby reducing the effective cladding index. At shorter wavelengths, the
mode is tightly confined to the core, and An is reduced. This results in a range of
novel properties for such fibres, some of which are listed below.

1. Endless single-modedness HFs with small air holes can be endlessly single-
moded [1]. The structure remains single-mode at short wavelengths because
An is reduced as the wavelength decreases. Such a fibre remains single-moded
even if the physical dimensions of the structure are scaled.

2. Tailorable mode size The mode area in a HF can be tailored over three
orders of magnitude by scaling the dimensions of the structure. Mode areas
can from less than 1 um? to over 500 um? are possible [2]. The small mode
fibres can be used to explore a non-linear effects [6], whereas the large mode
fibres allow high power delivery [7).

3. Tailorable mode shape The shape of HF modes depends on the arrangement
of air holes and the fibre dimensions. The mode shown in Fig. 2 reflects
the hexagonal arrangement of air holes. In fibres like the one in Fig. 1, the
interstitial holes can act to circularize the mode profile by as much as 15% [8).
This should aid the integration of these fibres with conventional fibre systems.

FIGURE 2. A single-mode small-core holey fibre. The guided mode @1.55 um is superimposed.

4. Evanescent field interaction with air HFs open up new opportunities for
exploiting the interaction of light with gases and liquids via evanescent field
effects. The HF geometry can naturally provide long optical path lengths; by
appropriate fibre design, up to 40% of the guided mode can be located in the
holes [9]. Applications include gas sensing, nonlinear switching etc.

5. Dispersion flattening Holey fibres can demonstrate ultra-broadband disper-
sion flattening [2,10]. The dispersion slope can be ~ 0.002 pskm~' nm~2 from
A=1.3— 1.6 um [2]. Applications include broadband WDM devices, etc.

6. Anomalous dispersion below 1.3 microns The zero-dispersion wavelength
can be as low as 650nm [11] in a single-mode HF, something not possible




with conventional fibres. This leads to a range of new possibilities, including:
solitons in the visible, continuum generation, etc.

7. Dispersion compensation Particular types of HF designs can be highly
dispersive, with normal dispersion values as large as -2000 ps/nm/km [12].
Such fibres could be used for dispersion compensation.

MODELLING HOLEY FIBRES

The first method which was developed to model holey fibres was the effective
index model [1], which approximates HF using a step-index fibre with a cladding
index n.ys equal to the effective index in the HF cladding. This approach ignores
the spatial distribution of the refractive index profiles within HF's. Even so, it can
provide some insight into HF operation. However this reduced model is unable to
accurately predict modal properties such as the dispersion or birefringence, which
depend critically on the hole configuration [15,2]. To do this a model which takes
into account the complicated transverse refractive index profile is required.

One candidate approach was developed by Silvestre et al. [13] which decom-
poses the modal fields and the refractive index profile into plane waves, and can
describe any complex spatial index distribution. However, as it does not take
advantage of the localisation of the guided modes, many terms are needed for ac-
curacy. This technique defines the refractive index in a restricted region and uses
periodic boundary conditions to extend the structure. This additional periodicity
restricts its applicability to HFs, which do not need to be periodic [5]. A similar
approach is the variational plane-wave method in Ref. [14]. An alternate approach
was developed by Mogilevtsev et al. [15] which describes the modes using localised
functions. Although this technique takes advantage of mode localisation, and so
is more efficient than the plane-wave methods, it cannot be accurate unless the
refractive index is also represented well.

Here we describe a hybrid approach, which combines the best features of the
techniques described above. In this approach the core and the air holes are de-
scribed independently, so that each quantity can be represented accurately and
efficiently. A scalar version of this approach was described in Ref. [2], followed by a
vector implementation in Ref. [8]. In both papers, only symmetric structures and
modes were considered. In order to model HFs with an asymmetric index profile or
to obtain accurate predictions for the second-mode cutoff, it is necessary to extend
this approach. Here we present a completely general implementation of this hybrid
approach, which can be used to explore the full range of HF structures and modes.

Hybrid Orthogonal Function Model

We assume the fibre is uniform in the z-direction, so the modal electric field is

Ej(z,y,2) = (e}(z,1) + €i(z, 9)2) exp (i6;2) (1)




where (2, ) is the transverse plane, §; is the propagation constant of the 7% mode,
and e and e? are the transverse and longitudinal components. The transverse field
is then wr1tten as €; = e;X +¢e,¥. Using Eq. (1) in the vector wave equation yields
the following coupled equations for the electric fields e,(z,y) and ey(z,y) [16]
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where k = 27/ is the wavenumber and n(z,y) is the transverse index profile. The
subscript (j) has been dropped for brevity. To solve Egs (2), we decompose the
refractive index and the modal field. The choice of functions is the crucial step in
making this method efficient and accurate, and they are described next.

Decompositions

The modal electric field is expanded as
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where the ¢ are orthonormal Hermite-Gaussian (HG) functions with a width
Wy, o A, where A is the inter-hole separation. More details are given in Ref. [2].
In this 1mp1ementat10n odd and even HGs are used, to allow symmetric and non-
symmetric mode profiles to be calculated. Typically only a small number of terms
is needed to reconstruct the observed modal profiles.

The transverse refractive index profile is described in two parts. The hole arrange-
ment is described using a Fourier decomposition, and the central core is described
using HGs of width wg o d, where d is the hole diameter. Hence we write
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Z (pS cos(asz) + pS sin(asz)) (p; cos(bsy) + p; sin(bsy)) (4)
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where C and P terms are used for the core and holes respectively, s = 27 /4, £ is the
transverse extent, and ¢ is Y™ with wy, replaced by wg. Typically, the number of
terms required for an accurate solution are C' = 20 and P = 200. To simplify the
analysis we expand In (n?) in the same way as n?, since they have the same spatial
distribution. The coefficients in the decompositions are evaluated by performing
overlap integrals, which only need to be calculated once for any structure.




The decompositions defined above can be used to turn Egs (2) into an eigenvalue
problem. Using the decompositions, the vector wave equations can be written as
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where the components of ¥ are: (£, ...E5x, &y, ---E 55, Ed0 -+-Eors EXoy - EF ) Where
F = F — 1 for compactness. The matrices M¥ from Egs (5) take the form
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and the I are overlap integrals of the modal functions, defined as
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These overlap integrals can all be evaluated analytically for the choice of decom-
positions made here, which is a significant advantage of this approach.

By solving Eqs (5) the modes and corresponding propagation constants of the
fibre can be calculated. No assumptions need to be made about the polarisation
of the guided modes. Solving the eigenvalue equation in Eq. 5 produces 2F? eigen-
value/eigenvector pairs. Only one or a few of these pairs correspond to guided
modes, and these modes can be distinguished by extracting the eigenvalues which
fall within the range allowed by the structure (see Ref. [2]).




Using the model outlined here, the full range of possible ideal HF structures
can be explored. In addition, the model can predict the properties of actual HFs.
Typically, small imperfections in the hole arrangement arise during fabrication, and
SEM photographs of real HF structures can be used to define the refractive index
profile in the model [17]. This allows the deviations in optical properties which are
caused by the subtle changes in structure to be explored for the first time.

CONCLUSIONS

A broad range of novel optical properties are possible in holey fibres, and these are
largely determined by the air hole arrangement in the cladding. We have developed
an efficient and accurate approach to modelling these structures which can provide
insight into these properties. This model has been validated experimentally [6,17],
and it is an important tool for the further development of this technology.
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