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a b s t r a c t

The characteristic frequencies o of the vibrations of an elastic solid subject to boundary

conditions of either zero displacement or zero traction are given by the Rayleigh quotient

expressed in terms of the corresponding exact eigenfunctions. In problems that can be

analytically expanded in a small parameter e, it is shown that when an approximate

eigenfunction is known with an error OðeNÞ, the Rayleigh quotient gives the frequency

with an error Oðe2NÞ, a gain of N orders. This result generalizes a well-known theorem for

N=1. A non-trivial example is presented for N=4, whereby knowledge of the 3rd-order

eigenfunction (error being 4th order) gives the eigenvalue with an error that is 8th order;

the 6th-order term thus determined provides an unambiguous derivation of the shear

coefficient in Timoshenko beam theory.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of the characteristic frequencies o of vibrations in a solid is a central issue in the theory of linear
elasticity. Approximate methods include perturbation expansions in a small parameter e and the variational method. This
paper deals with a synergy between the two: if a perturbed eigenfunction with error OðeNÞ is used judiciously in a variational
functional, the eigenvalue can be evaluated with an error Oðe2NÞFa gain of N orders ‘‘for free’’. To be specific, vibrations in an
elastic solid are described by the displacement field nðr,tÞ, where t is the time, r¼ ðr1,r2,r3Þ ¼ ðx,y,zÞ is the position and
n¼ ðx1,x2,x3Þ ¼ ðu,v,wÞ is the displacement. Linearized displacements satisfy the time-dependent equation of motion (1) in a
certain volume V and either one of the conditions (2) or (3) on its boundary S:

r q2xi

qt2
¼ qj½Cijk‘ðqkx‘Þ�, (1)

xi ¼ 0, (2)

njCijk‘ðqkx‘Þ ¼ 0, (3)

for i=1, 2, 3, where rðrÞ is the density, Cijk‘ðrÞ are the stiffness constants (not necessarily isotropic) and nj are the components
of the unit normal toS. The convention of summing over repeated indices is adopted. The position-dependence ofr, Cijk‘ and n

will henceforth not be displayed. The possibility is allowed that (2) holds on one part of S and (3) holds on another. Normal
modes pcosot satisfy the eigenvalue equation with eigenvalue l¼o2:

�qj½Cijk‘ðqkx‘Þ� ¼ lrxi: (4)
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The eigenvalue can be expressed exactly in terms of the Rayleigh quotient (RQ) [1,2]:

l¼Q ½n� �
V ½n�

T½n�
, (5)

where V/2 and o2T=2 are essentially the potential and kinetic energies:

V ½n� ¼

Z
Cijk‘ðqixjÞðqkx‘Þ dV, (6a)

T½n� ¼

Z
rxjxj dV, (6b)

and n is the corresponding exact eigenfunction. It will be everywhere understood that volume integrals are carried out over V
and surface integrals over S. To prove (5), integrate (6a) by parts and notice that surface terms vanish by (2) or (3); then V is
seen to be lT by (4).

The RQ leads to the variational principle [3]: the solutions to (4) are given by dQ ½n� ¼ 0 over the linear space L of all n

satisfying the boundary conditions. This is readily proved by noticing that, since both V and T are quadratic in n, one can
equivalently vary V under the constraint T ¼ 1 implemented by a Lagrange multiplier l:

dðV�lTÞ ¼ 0, (7)

and l will turn out to be the eigenvalue denoted by the same symbol.
The object of the present paper, however, is not to consider Q over all n 2 L, but for those n close to the exact eigenfunction.

To formalize the idea in a perturbation scheme, let Cijk‘ and/or r be described by a small parameter e:

Cijk‘ ¼ Cijk‘ðe; rÞ, r¼ rðe; rÞ, (8)

with an analytic limit as e-0; Cijk‘ and r need not be linear in e. The exact eigenfunction n is expanded in powers of e:

xi ¼
X1
n ¼ 0

enxðnÞi : (9)

For some NZ1, divide n into the noN terms (denoted as low-order or L) and the nZN terms (denoted as high-order or H):

xi ¼ xL
i þx

H
i , (10)

xL
i ¼

XN�1

n ¼ 0

enxðnÞi , xH
i ¼

X1
n ¼ N

enxðnÞi , (11)

so that xL
i is an approximation to xi with an error that is OðeNÞ. In all these formulas, the expansions in powers of e are meant to

be asymptotic, with no claims on convergence. In other words, the attention is on the e-0 behaviour of the series truncated at
fixed N, and not on the N-1 limit at fixed e.

Our key result is: this approximation, when used in the RQ, yields the eigenvalue with an error that is Oðe2NÞ. More
precisely, we shall prove the following theorem:

l�Q ½nL
�, (12)

where the notation A� B shall mean A�B¼Oðe2NÞ.
It is well known that RQ allows one order to be gained [2]: an approximate eigenfunction with an error of OðeNÞ gives the

eigenvalue with an error of OðeNþ1Þ; in the familiar N¼ 1 case, the unperturbed eigenfunction with error OðeÞ gives the first-
order eigenvalue with error Oðe2Þ [1,4]. However, it is less obvious, and indeed surprising at first sight, that N orders can be
gained ‘‘for free’’. The analogous theorem for the Schrödinger equation is known, but not prominently, being contained for
example in a footnote [5], which also cites a discussion about partitioning the Hilbert space into two parts coupled by a
parameter e [6]. Adams [7] also gives an expression for the eigenvalue with an error of Oðe2NÞ in terms of the eigenfunction
with an error of OðeNÞ, though not in the form of an expectation value (the quantum-mechanical analog of the RQ) and
therefore taking a more cumbersome form. The case of elasticity considered here is more complicated, not only because of the
tensorial nature, but also because the boundary condition (3) can link different orders in e. The theorem is powerful (for
N41), but has hitherto received little attention, probably because it is in general difficult to obtain the eigenfunction to many
orders; however, Section 3 shows an N¼ 4 example in elasticity related to Timoshenko beam theory, where a
computable 3rd-order eigenfunction [error of Oðe4Þ] allows the eigenvalue to be determined with an error of Oðe8Þ; it
turns out that the 6th-order term, which can thus be obtained, is physically non-trivial.

2. Proof

In obvious notation, both the numerator V and the denominator T are the sum of LL, LH and HH terms. The last of these are
negligible, being Oðe2NÞ, so the key result requires only a proof that the LH cross-terms do not contribute. The proof is in fact
not that much different from the familiar case of N=1.
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2.1. Denominator

Start with Z
rnL

i n
L
i dV �NL40, (13a)

Z
rnL

i n
H
i dV ¼NLf ðeÞ ¼OðeNÞ, (13b)

where (13a) is just a normalization. There is the freedom to make an e-dependent change of normalization:

n/½1�f ðeÞ�n, (14a)

nL/nL, (14b)

nH/nH
�f ðeÞnL, (14c)

Z
rnL

i n
H
i dV/0: (14d)

Thus, we can assume that nL and nH are orthogonal in this sense, and

T½n� � T½nL
�: (15)

2.2. Numerator

Similarly, in the numerator consider the cross-term:Z
Cijk‘ðqix

L
j Þðqkx

H
‘ Þ dV �

Z
Cijk‘ðqixjÞðqkx

H
‘ Þ dV ¼

Z
nkCijk‘ðqixjÞ � x

H
‘ dS�

Z
qk½Cijk‘ðqixjÞ� � x

H
‘ dV, (16)

where in the last step we have integrated by parts. In the surface integral, either the first or second factor vanishes if the
boundary condition is respectively (3) or (2). By (4), the final volume integral in (16) becomes

l
Z

rx‘x
H
‘ dV ¼

Z
rxL

‘x
H
‘ dVþ

Z
rxH

‘ x
H
‘ dV, (17)

in which the first term vanishes by the orthogonality (14d) proved earlier, and the second term is Oðe2NÞ. This then completes
the proof

V ½n� � V ½nL
�, (18)

and hence the key result (12).

2.3. Discussion

The key to the simplification lies in the orthogonality relationship (14d), which, order-by-order, consists of the N

conditions

Xj

k ¼ 0

Z
rxðkÞi xðNþ j�kÞ

i dV ¼ 0, j¼ 0, . . . ,N�1: (19)

These are tedious especially for large N, but we only require that the orthogonalization can be carried out. If, as is usually the
case, the orthogonalization is not actually carried out, this would amount to reversing the transformation (14a), under which

V ½n�/½1�f ðeÞ��2V ½n�, T½n�/½1�f ðeÞ��2T½n�, (20)

so that LH cross-terms re-emerge in V and T; as a result (15) and (18) would not hold. But because the ratio Q ½n� is unchanged
under (20), the LH terms must exhibit a cancellation when the quotient is evaluated, in a manner that might otherwise have
been unexpected. Observation of such a cancellation in the example in the next section motivated the present work.

Several remarks should also be made in relation to the e-dependence of Cijk‘ andr. First, they may link different orders in e,
so that nL and nH do not separately satisfy the equation of motion (1) or (4), nor the condition of zero surface traction (3); the
latter property means, in particular, that nL=2L. However, the two parts nL and nH do separately satisfy the condition of no
displacement (2) on those parts of S where it is imposed for nFand this is precisely the condition needed above. Second,
nowhere above do we expand Cijk‘ or r, e.g., as

Cijk‘ ¼
XJ

a ¼ 0

eaCðaÞijk‘ , r¼
XK

b ¼ 0

ebrðbÞ: (21)
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In this connection, note that V ½nL
� and T½nL

� are defined with the full Cijk‘ and r but a truncated n; as such they are positive
definite if Cijk‘ and r are physical and positive operators. In contrast, suppose a product (say for T) is expanded as a whole in
powers of e:

T ¼

Z
rxixi dV ¼

X1
n ¼ 0

enTðnÞ, (22a)

T ð0Þ ¼

Z
rð0Þxð0Þi xð0Þi dV, (22b)

T ð1Þ ¼

Z
½rð1Þxð0Þi xð0Þi þ2rð0Þxð0Þi xð1Þi � dV, (22c)

etc., and the series for T truncated, then the result is not guaranteed to be positive definite.
It is necessary to point out the fallacies in two apparently simpler derivations. (a) Let the error in the eigenfunction be OðeNÞ

with some N41, and define d¼ eN . Then it may seem that by the familiar theorem (namely the N=1 special case of the
theorem discussed here), the error in the eigenvalue will be Oðd2

Þ ¼Oðe2NÞ. This argument is invalid because it violates the
implicit (but necessary) condition that functions are analytic in the small parameter—but here the eigenfunctions and
eigenvalues are power series in d1=N . (b) One may also try to express the approximate eigenfunction, say nL, as a linear
superposition of the exact eigenfunctions, and adapt the derivation given by Rayleigh for finite degrees of freedom; see Eq. (2)
in article 88 in Ref. [1]. However, because of the e-dependence of Cijk‘ and the boundary condition (3), the space of functionsL
is e-dependent, i.e., L¼LðeÞ. As a consequence, nL=2LðeÞ and cannot be expressed as a linear superposition of the exact
eigenfunctions. Incidentally, this problem does not occur in finite systems [1] or in simpler continuous analogs such as
quantum mechanics [5–7]. The derivation presented in this paper avoids both of these difficulties.

3. Example

The ability to get N more orders ‘‘for free’’ is powerful for large values of N, but would require knowledge of the
eigenfunction in some manageable form with an error of OðeNÞ, which is often difficult in practice. This may be the reason why
the theorem seems little known and seldom applied for N41, even though the general proof is no more difficult than for N=1.
An example is given in Appendix A in the context of a ‘‘toy’’ (but non-trivial) one-dimensional analog. More physically, this
section sketches an N=4 example where it is possible to obtain an eigenfunction to 3rd order [i.e., with error of Oðe4Þ], and
consequently the eigenvalue with an error that is Oðe8Þ. The 6th-order coefficient1 thus obtained is deeply related to
Timoshenko beam theory [8], and provides one perspective to understand why it works so well.

The system of interest is the transverse flexural vibration of a uniform cylinder (beam) of length L and characteristic lateral
dimension a (in the direction of vibration). In most engineering applications, a=L51 provides a small parameter for an
asymptotic power-series expansion. Equivalently, consider an infinitely long cylinder (say oriented along the z direction), in
which there are sinusoidal waves say psinqz; one then seeks the dispersion relation o¼oðqÞ. The case of a finite cylinder,
say with hinged end-points, is recovered if q is restricted to integral multiples of pa=L. Thus equivalently one can expand in
e¼ qa, or simply q, for example:

o2 ¼ A4q4þA6q6þ � � � : (23)

The powers of q emerge when qz operates on sinqz or cosqz, so to keep track of orders we can simply add a formal small
parameter e to qz: qi/q?i þedi3qz.

In (23), the leading q4 term is just the classic Euler–Bernoulli theory, and depends on the cross-sectional shape only
through a radius of gyration rg. The next order, relevant for thicker and shorter cylinders, depends on the cross-section in a
more complicated way. It might have been thought that A6 requires a daunting calculation to 6th (or at least 5th) order.
The import of the present paper is that one only need the eigenfunction up to 3rd order. The 0th, 1st and 2nd orders are easy,
while the 3rd-order eigenfunction requires the solution of a partial differential equation in the two-dimensional cross-
sectional plane, giving rise to the Saint Venant flexure function [9]. The details of the straightforward but lengthy calculation
will be given elsewhere; suffice it to say here that prior knowledge of the cancellation of higher-order terms makes the
calculation much less onerous—in fact, one is then entitled to set the 4th-, 5th- and 6th-order terms in the eigenfunction to
zero for this purpose.

Timoshenko beam theory [8] gives a correction to Euler–Bernoulli theory for shorter and thicker beams (i.e., a/L not so
small) and works very well in practice. The theory is based on a physical insight, through a shear coefficient k that describes
the shear deformation of the cross-sectional plane as the beam is bent. The theory leads to a quadratic for o2, which can
likewise be developed into a power series in q, which (for the mode that satisfies o-0 as q-0) again has the form

o2 ¼ AT
4q4þAT

6ðkÞq
6þ � � � , (24)

1 With N ¼ 4 and the error being Oðe8Þ, the eigenvalue is known to 7th order, but in this example, odd orders vanish by symmetry.
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where the superscript T denotes that these coefficients come from Timoshenko theory. The lowest-order coefficient is, by
design, the same as that from Euler–Bernoulli theory (AT

4 ¼ A4), while the next coefficient is k-dependent. Requiring (23) and
(24) to agree to q6:

AT
6ðkÞ ¼ A6, (25)

then allows k to be determined unambiguously since the perturbative calculation invokes no physical assumptions.
This settles any remaining controversy [10,11] on the ‘‘best’’ choice for k among those derived by different and slightly
ad hoc methods, and puts Timoshenko beam theory, with a canonical choice of the shear coefficient [12–15], on a
firm footing.

4. Conclusion

We have shown that once the eigenfunction has been found with an error that is OðeNÞ, RQ gives the eigenvalue with an
error that is Oðe2NÞFa gain of N orders ‘‘for free’’. Such use of RQ, by truncating the eigenfunction but retaining the full Cijk‘ and
r, also ensures positivity for all values of e, a desirable property. RQ is also more compact than the implicit recursive formulas
sometimes used [5,7]. A non-trivial application has been sketched for N=4, where a computable 3rd-order eigenfunction
gives the 6th-order eigenvalue; this leads to a mathematically unambiguous way of determining the shear coefficient in
Timoshenko theory.
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Appendix A. One-dimensional example

The theorem is here illustrated with a one-dimensional analog, described by [compare (4)]

�
d

dx
CðxÞ

d

dx
xðxÞ

� �� �
¼ lrðxÞxðxÞ, (A.1)

for x 2 V ¼ ½�1,1�, with x¼ 0 at the end-points. As an example, take

CðxÞ ¼ 1, rðxÞ ¼ 1þ2edðxÞ: (A.2)

This system can be interpreted as the transverse vibration of a string loaded with a point mass 2e at the mid-point.
Up to an irrelevant normalization, the solution is

xðxÞ ¼ sin½qð1�xÞ� for xZ0, (A.3)

and symmetric about x¼ 0; this is the exact solution for all e, and different values of e only lead to different q¼ qðeÞ, which is
determined through the discontinuity of the derivative across x=0 to satisfy

cotq¼ eq: (A.4)

Expanded in powers of e, the lowest eigenvalue is

qðeÞ ¼ p
2
½1�eþe2�ð1�p2=12Þe3þOðe4Þ�: (A.5)

Truncating this at N=2 and putting q¼ qðeÞ into (A.3) then gives the low-order eigenfunction to be

xL
¼ sinðpy=2Þ�e½ðp=2Þycosðpy=2Þ� � xð0Þ þexð1Þ, (A.6)

where y=1�x. Straightforward evaluation then gives

T½xL
� ¼

Z 1

�1
rðxÞxL

ðxÞ2 dx¼ 2exL
ðx¼ 0Þ2þ2

Z 1

0
ðxL
Þ
2 dx

¼ 2

Z 1

0
ðxð0ÞÞ2 dx

" #
þe 2þ4

Z 1

0
xð0Þxð1Þ dx

" #
þe2 2

Z 1

0
ðxð1ÞÞ2 dx

" #

¼ 1þe�ð1=2Þð1�p2=6Þe2, (A.7a)

V ½xL
� ¼

Z 1

�1
ðdxL=dxÞ2 dx¼ 2

Z 1

0
ðdxð0Þ=dxÞ2 dx

" #
þe 4

Z 1

0
ðdxð0Þ=dxÞðdxð1Þ=dxÞ dx

" #
þe2 2

Z 1

0
ðdxð1Þ=dxÞ2 dx

" #

¼ ðp2=4Þ 1�eþð1=2Þð1þp2=6Þe2
� �

, (A.7b)
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Q ½xL
� ¼

p2

4

1�eþð1=2Þð1þp2=6Þe2

1þe�ð1=2Þð1�p2=6Þe2
(A.7c)

�
p2

4
½1�2eþ3e2�ð4�p2=6Þe3þOðe4Þ�, (A.7d)

which agrees with the exact l¼ q2 obtained from (A.5) up to the e3 term [i.e., the error is Oðe4Þ]—even though xL stops at OðeÞ
and both the numerator and denominator in (A.7c) stop at Oðe2Þ. This example can be carried out to higher orders N without
difficulty.
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