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Summary
Track dynamic behaviour is important for the prediction of the rolling noise, corrugation growth and track damage. Various models have been developed in the literature but problems still remain. On the one hand, analytical models become insufficient because of the need to include cross-section deformation at high frequencies. On the other hand, FE models are straightforward but the truncation of the infinite length is unavoidable. A new tapered plate rail model is developed in this paper. This model takes into account all the main motions required for frequencies below 7 kHz. The rail head is represented by a rectangular beam, the web by a plate of constant thickness and the foot by a plate of variable thickness. The out-of-plane and in-plane motions of the plates are approximated using cubic and linear functions respectively based on the relevant wave speeds. Freely propagating waves in the rail are studied by means of Hamilton’s principle. Comparing the results in terms of the dispersion relations, the tapered plate rail model shows good agreement with an FE model. Comparison with simpler beam models confirms the improvements at high frequencies due to the taper of the foot. 
1
Introduction
Railway rolling noise induced by the roughness of the rail and wheel surfaces forms the principal source of noise from railway operation [1]. These surface irregularities produce dynamic interaction forces between the wheel and rail. The resulting high frequency vibrations are transmitted into both wheel and track and then the sound is radiated from the vibration of the structures. 
Dynamic models are required to predict the noise emitted from the track and frequencies up to at least 5 kHz should be considered [2]. Below about 1500 Hz, a single Timoshenko beam is sufficient to represent the rail dynamic behaviour [3]. However, it is more difficult to study the dynamic behaviour of railway track at high frequencies due to cross-section deformation of the rail as found by Thompson [4]. The vertical vibration is dominated by the rail foot flapping and the lateral motion is even more complicated. 
Most of the models taking into account of cross-section deformation are based on finite element methods (FEM). Thompson [4] developed an FE model of a finite length of rail using beam elements for the head and plates for the remaining parts. Since such a model only allows frequencies to be predicted for a given wavenumber, this is not enough to study the frequency response of the track. To improve the application of FE methods to an infinite rail, the finite strip method (FSM) and some other derivatives of FEM have been developed, e.g. [5]. The deformations of regularly discretized elements in the infinite rail are connected, by considering harmonic waves in the longitudinal direction. Gavric [6] and Gry [7] used an alternative approach based on factorization of the function describing the displacement field. A general shape function is used to describe the deformation of the cross-section, while along the rail axis wave propagation is assumed.
To avoid the large number of degrees of freedom of FE methods, simplified beam models were developed by Wu and Thompson 


[8-9] ADDIN EN.CITE , where the rail head and foot were represented by infinite Timoshenko beams. The web was modelled as a spring in the vertical direction or by an array of beams for the lateral direction. The vertical and lateral vibrations of the rail were studied separately based on the assumption of symmetry of the cross-section.
Foot deformation at high frequency is significant and an analytical model which took account of the variable thickness of the rail foot was developed by Bhaskar et al. [10]. However, little information is given for this model. In addition, in-plane motions of the plates were approximated by simple beam bending. This requires improvement because they are quite deep beams. Moreover, the stretching of the web in the direction normal to the wave propagation was neglected to simplify the model, which could result in considerable discrepancies. 
Therefore, a tapered plate rail model will be implemented in this paper. It will be compared with both a 3D FE model and the simple beam models from 


[8-9] ADDIN EN.CITE .


The cross-section of the model (UIC60 rail) is shown in Fig. 1. This model takes into account all the main motions required for frequencies below 7 kHz. The rail head is represented by a rectangular beam, the web by a plate of constant thickness and the foot by plates of variable thickness. The motion of the rail head can be characterized by beam bending in two directions, torsion and compression in the longitudinal direction. The deformation of the web and foot can be described by plate out-of-plane bending and twisting, and in-plane stretching and shear. In the rail axis (z direction), harmonic waves are assumed of the form 
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The variational principle is employed to determine unknown deflections in order to avoid solving the differential equations of plate theory. The out-of-plane and in-plane motions of the plates are approximated using cubic and linear functions respectively in the x–y plane. A total of 17 degrees of freedom are used to represent the cross-section. The components are assembled with the stiffness matrix formulated in terms of the wavenumber in the axial direction. The resulting eigenvalue problem is solved to find the dispersion characteristics and the propagation modes for the freely propagating waves in the rail.
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Fig. 1. Mechanical idealization of the theoretical rail model. A, B, C and D are the four nodal points which are located in the middle plane of each plate. Point E represents the centre of the beam and the dashed lines represent the actual shape of the beam and plates.
2.1   Foot modelling using a tapered plate and web with constant thickness
The foot element AB is shown in Fig. 2 where the cross-section is defined in the x–y plane. The local coordinate 
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 denotes the distance from point B. The deflections in the x, y and z directions are written as u, v and w respectively. The variable thickness can be expressed as 
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 is the thickness at point B. The thickness at the point A is thus 
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where  is the foot length.
The vibration energies of plate AB consist of both out-of-plane and in-plane motion, and can be written as 
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with U for potential energy, T for kinetic energy and subscripts i, o represent in-plane and out-of-plane respectively. Here E is Young’s modulus, G is the shear modulus, ν is Poisson’s ratio, 
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 are normal strains and 
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 is the shear strain.  
is the plate bending stiffness, and the subscripts z and  denote the derivatives with respect to z and 
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Fig. 2. Schematic diagram of foot AB showing the relevant dimensions and the co-ordinate axes.
The highest derivatives appearing in the energy expressions are second and first respectively for plate out-of-plane and in-plane motion. At each node, it is thus necessary to take displacement and rotation as degrees of freedom for the bending motion. Since only the first cantilever mode is of interest, the plate out-of-plane bending deformation can be approximated by a polynomial having four constants, that is, a cubic function. For the in-plane motion, the minimum requirement is a linear function. The shape functions are therefore
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For the rail web, it is quite convenient to put the plate slope equal to zero. Although the web is quite long compared with the foot, for a steel plate with constant thickness, at 5000 Hz the wavelengths of longitudinal and shear waves are about 1.1 m and 0.63 m respectively. Therefore, one element of length 0.11 m is still sufficient to satisfy the requirement of at least 6 elements per wavelength. 
2.2   Rail head represented by a beam 
The rail head can be modelled with a rigid cross-section because of its high stiffness. Its dimensions are small compared with the wavelength of shear or longitudinal waves in the frequency range of interest. At around 5000 Hz, the minimum vertical and lateral bending wavelengths are about 0.35 m and 0.27 m from an FE analysis (see [11]), which are about 9 and 4 times the corresponding dimension of rail head. Although the rail behaviour actually becomes mainly dominated by foot vibration, shear deformation and rotational inertia effects become important for the lateral motion at high frequency. Therefore, it is sufficient to use the elementary beam theory for the head for the vertical motion but Timoshenko beam theory has to be employed for the lateral motion.
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where A is the area of the cross-section of rail head, J is the torsion constant of the cross-section, θE is the rotation of the rail head, Ix is the second moments of area of the cross-section about x-axis the rail, but Iy is the second moments of area of the head base axis (the longitudinal axis where the point D located). 
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 is called the Timoshenko shear coefficient and 
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 describes the rotation of the head cross-section about the vertical.
2.3   Freely propagating waves in the rail
By applying the compatibility at points B and D, the total number of degrees of freedom is 17. The following equation is obtained by applying Hamilton’s principle based on a unit length of rail in the integral:  
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The solutions to this equation represent waves in the free rail without support. To solve this generalized polynomial eigenvalue problem in k for a given frequency, it is convenient to convert it into state space form
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where 
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(I is the identity matrix and 0 is a matrix of zeros), and  i=0, 1, 2, 3. 
3
Results 

The symmetric and anti-symmetric waves of a free rail are shown separately in Figs 3 and 4 since they do not couple with each other due to the symmetry of the cross-section. A short length of free UIC60 rail has been modelled using ANSYS finite element package and the results are used as a reference. The dispersion relations from simplified beam models 
 ADDIN EN.CITE 
[8-9]
 are also presented as comparison. 
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Fig. 3. Dispersion relation for vertical/longitudinal motion of free rail, ​
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, the original FE model.
From these two figures, it can be seen that both analytical models give good results compared to FE analysis. However, the improvements brought by the tapered plate model are still significant especially at high frequencies. 

For the vertical motion, the foot flapping mode (iii) which cuts on about 5 kHz is well represented by both plate and beam models, but the tapered plate model gives much better representation for the vertical bending wave (i) for frequency higher than 4 kHz. It is found from the mode shapes (not shown) that the vertical bending wave is dominated by the deformation of the rail foot at high frequency. Although the beam model takes account of the foot flapping by modelling the foot as a separate beam, it cannot represent the deformation of the foot itself. In addition, the double beam model does not give the longitudinal waves (ii) at all because there is no degree of freedom in the rail direction assigned to this model. It should be noted that the wave that cuts on at about 5 kHz from simple beam model is actually the warping behaviour of one of the beams, but not the second-order longitudinal wave (iv) where the head and the foot move anti-phase. 
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Fig. 4. Dispersion relation for lateral motion of free rail. 
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For the lateral motion, the torsion (II) and simple web bending (III) modes are well represented by both analytical models but for the lateral bending wave (I), these two models deviate from about 2 kHz. As found from the mode shapes from the FE analysis, above 2 kHz the lateral bending wave is dominated by the rocking of the foot. In the beam model, a constant thickness beam is used for the rail foot. As found by Yang [11] this assumption makes the lateral bending motion much less stiff than the real structure at high frequency. However, the tapered plate model makes a big improvement on this by including the taper of the rail foot. The remaining small difference from the FE model is due to the fact that the real structure has a more complicated tapered foot. The discrepancy for the double web bending wave (IV) is also due to the foot modelling.
4
Conclusions

A new analytical model of a rail with a tapered foot is presented. The rail head, web and foot are constructed using a beam, a plate with constant thickness and a tapered plate respectively. Cubic shape functions are used to approximate the plate out-of-plane motions and linear shape functions are used for the in-plane motions. The head beam is represented by an Euler beam vertically but a Timoshenko beam laterally. The potential and kinetic energy of each part are found first using stress-strain relations. Then the whole structure is assembled and the dispersion relations of the free rail are found using Hamilton’s principle. It can be seen that this tapered plate model gives good agreement with an FE model. 
In addition, it is clear from the comparison with the simplified beam models that big improvement on this is achieved at high frequency by including the taper of the rail foot. First, it gives more complete modelling of the rail by considering all possible motions up to 7 kHz. Second, at high frequency, the simplified beam models tend to underestimate the vertical response and to overestimate the lateral response. As the tapered plate model considers more details of the rail, more parameters can be varied to optimize the rail design for noise reduction purposes. 
In order to use the model to predict noise it is necessary to include the support structure (ballast, sleepers and railpads) and to couple the model to a prediction of acoustic radiation. This is beyond the scope of the paper. However, it can be expected that the present model will give improved results, particularly for the decay rate of vibration along the rail.
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