Paleoceanographic changes at the northern Tethyan margin during the Cenomanian-
Turonian Oceanic Anoxic Event (OAE-2)

Authors:
Holger Gebhardt\(^1\), Oliver Friedrich\(^2\)\(^3\), Bettina Schenk\(^4\), Lyndsey Fox\(^5\), Malcolm Hart\(^5\) and
Michael Wagreich\(^4\)
\(^1\) Geologische Bundesanstalt, Neulinggasse 38, A-1030 Wien, Austria
\(^2\) National Oceanography Centre Southampton, University of Southampton, European Way,
Southampton SO14 3ZH, UK
\(^3\) present address: Johann Wolfgang Goethe-Universität, Altenhöferallee 1, D-60438 Frankfurt am Main, Germany
\(^4\) Universität Wien, Althanstraße 14, A-1090 Wien, Austria
\(^5\) School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

holger.gebhardt@geologie.ac.at, o.friedrich@em.uni-frankfurt.de, schenkb2@univie.ac.at,
lyndsey.fox@student.plymouth.ac.uk, M.Hart@plymouth.ac.uk,
michael.wagreich@univie.ac.at

Corresponding author: Holger Gebhardt, Tel.: 0043-1-7125674250, Fax: 0043-1-712567456

Abstract

The late Cenomanian – early Turonian Oceanic Anoxic Event (OAE-2) represents major
paleoceanographic and faunal perturbations. Samples from the northern Tethyan margin
(Rehkogelgraben, Eastern Alps) were investigated in order to trace the paleoceanographic
processes. Paleoecologic conditions were reconstructed by combining the results of
assemblage counts of indicative microfossil groups (foraminifera, radiolaria). Assemblages,
size distributions and abundances show a tripartite subdivision for surface and bottom waters:
1) Oligotrophic surface conditions and oxic bottom waters with a reasonably high food supply
for the late Cenomanian interval. 2) An OAE period with black shales characterized by very
low numbers but high diversities and a lack of high productivity indicators among planktic
foraminifera. Low abundances of small sized benthic foraminifera indicate low oxic-dysoxic
conditions at the seafloor. 3) Post-OAE assemblages are characterized by mesotrophic
planktic species and benthic foraminifera suggest oxic bottom waters. It took about 300 ky to re-establish a pelagic carbonate-producing regime. The semi-enclosed basin situation of the Penninic Ocean is thought to be responsible for differences between the high productivity in the world ocean during the OAE-2 and the overall absence of high productivity indicators and high foraminiferal diversities at Rehkogelgraben. The Penninic Ocean may have even served as a refuge during the environmental crisis.

Keywords: Penninic Ocean, Oceanic Anoxic Event 2, foraminifera, radiolaria, trophic levels, oxygenation

1. Introduction

The Oceanic Anoxic Event OAE-2 (or Bonarelli Event (Schlanger et al., 1987), or Cenomanian-Turonian Boundary Event, CTBE) is of global significance and has paleoceanographic, paleontologic and sedimentologic (black shale deposition) consequences of economic importance (hydrocarbon source rocks) in the Atlantic Ocean and adjacent seas (e.g., Kuypers et al., 2002; Kolonic et al., 2005). The widespread black shale deposition went along with dysoxic or anoxic conditions extending from deep waters to the photic zone (e.g., Kuypers et al., 2002; Pancost et al., 2004). The mid-Cretaceous, and the late Cenomanian – early Turonian in particular, was a period of global sea-level highstands (e.g., Haq et al., 1987; Sahagian et al., 1996) and pCO_2 levels 4 times higher than modern (pre-industrial) values are assumed (e.g., Poulsen et al., 1999, 2001). Turonian sea-surface temperatures were the warmest during the entire Cretaceous-Cenozoic (Wilson et al., 2002). OAE-2 is associated with significant extinction events and faunal turnovers. It influenced the evolution of planktic and benthic foraminifera and many other fossil groups (e.g., Elder, 1989; Kaminski et al., 1999; Premoli Silva and Sliter, 1999; Leckie et al., 2002). The presence of several positive $\delta^{13}C$-excursions during OAE-2 enables the correlation of reference sections from various places (e.g., Tsikos et al., 2004) with the GSSP section at Pueblo, Colorado, USA (e.g., Sageman et al., 2006) and also with the section investigated here (Wagreich et al., 2008). However, the causes of the paleoceanographic changes resulting in different sedimentologic records at various locations are still a matter of debate.
Complete boundary sections around the North Atlantic Ocean show a period (or several episodes) of black shale deposition during the transitional interval from the Cenomanian to the Turonian. This period is usually characterized by high surface productivity, as indicated by several paleontological and geochemical proxies, e.g., dominance of indicative foraminiferal taxa (e.g., Premoli Silva et al., 1999; Coccioni et al., 2006). Our contribution focusses on the paleoceanographic situation during OAE-2 at the northern margin of the Tethys ocean system, in particular the northern margin of the Penninic Ocean (Fig. 1). We combine the results of faunal developments of indicative microfossil groups from planktic (foraminifera, radiolaria) and benthic (foraminifera) habitats. The investigated section in the Rehkogelgraben is the only known described Cenomanian-Turonian boundary section in the Eastern Alps containing a black shale interval. It is therefore a unique opportunity to study the changes in fossil content across the Cenomanian/Turonian boundary and the paleoceanographic development in this part of the early Late Cretaceous world. Sediments of the nearest available oceanic Cenomanian-Turonian boundary sections (Italy, Switzerland) were deposited in different paleogeographic settings (Apulian Block or Briançonnais Domain, i.e., in deeper water-depths). Thus, the Rehkogelgraben section represents the conditions in the Penninic Ocean above carbonate compensation depth, at least at its northern margin. We also compare the foraminiferal record of the Rehkogelgraben with key sections for oceanic and upwelling settings around the North Atlantic Ocean in order to be able to assess the recorded assemblages of the section investigated here. We expect information on the temporal process and the influence of OAE-2 on the oxygenation conditions at the seafloor, productivity indicators, and recovery rates.

The questions addressed in this contribution are: 1) Are there indicators pointing to definable ecologic conditions in the upper and lower mixed layers or greater water depths? 2) What precisely are these conditions? 3) Do these conditions change with time? 4) Can the regional results be easily integrated into already existing paleoceanographic models or is a new concept needed for the Penninic Ocean or the northern Tethyan margin? 5) Was high surface productivity a global phenomenon during OAE-2?

2. Geological setting

The present study deals with sediments exposed in the Rehkogelgraben in Upper Austria. The succession of limestones, marls, claystones and black shales is part of the Ultrahelvetic Unit,
outcropping within several tectonic windows in the Rhenodanubian Flysch Zone. The
Ultrahelvetic Unit connects the shallow Helvetic shelf in the north and the abyssal
Rhenodanubian (Penninic) Flysch basin in the south (Faupl and Wagreich, 2000). Both
depositional units are either build up of glauconitic sandstones (Helvetic Unit) or carbonate poor marlstones, shales or turbidites lacking black shales
(Rhenodanubian Flysch Zone).

The exact location of the section, geological setting, nannoplankton biostratigraphy,
sedimentology and some geochemical parameters have been described in detail by Wagreich et al. (2008, including outcrop photographs). The Rehkogelgraben section (initially described in Kollmann and Summesberger (1982)) comprises exclusively pelagic or hemipelagic sediments. With the exception of one clay layer, no clastic layers (turbidites, contourites, pyroclastites, or bentonites) were found. Three black shale layers were logged and have total organic carbon (TOC) contents of up to 5% (Wagreich et al., 2008). The sediments were deposited in a distal slope environment and overall normal marine salinity can be assumed.

3. Material and methods

3.1 Sample treatment

We collected 15 marl, calcareous marl, clayey marl and black shale samples to investigate microfossil assemblages and δ\(^{13}\)C ratios of organic matter. These samples were supplemented by five samples collected for an earlier investigation (Wagreich et al., 2008) of the same section. About 60 to 600 g of sediment were disintegrated completely with hydrogen peroxide (1st step) and tenside (Rewoquat W36 90 PG, 2nd step), cleaned with hydrogen peroxide, and washed over a 0.063-mm sieve. The residues were dried and sieved into >0.250, >0.125, and >0.063 mm-fractions to access species distribution in individual size fractions. These fractions were split into manageable subsamples (aliquots) and completely picked for foraminifera (average c. 400 specimens per aliquot for planktic foraminifera) and radiolaria (Tables 1 to 3).

The number of benthic specimens per sample is much less than those for planktic foraminifera. If only the dominant taxa (>5%) are interpreted, Fatela and Taborda (2002) found that 100 specimens were sufficient to obtain reliable results. The interpretations on
benthic foraminifera made here are on taxa with much higher proportions and are therefore considered to be reliable even if the number of specimens picked is lower.

Thin sections were produced from limestones and marly limestones in order to complement the results from disaggregated samples, in particular to support biostratigraphy. Lithology and dry sample weight are listed in Table 4. Microfossil specimens were identified and counted, numbers for individual fractions were recombined according to the split, and abundance (number of specimens per gram dry sediment) was calculated. Radiolaria were picked and counted but were not further classified (Table 3).

Due to the inadequate preservation status of microfossils from the studied section (diagenetic overprint), reliable carbon stable isotope analyses are only possible for bulk rock samples. Thus, we rely on the interpretation of assemblage counts for paleoceanographic reconstructions of the site investigated here and C-isotope analyses are used for stratigraphic purposes only. $\delta^{13}C_{org}$ (Table 4) was measured at the National Oceanographic Center, Southampton, UK, using a GV Instruments Iso-Prime continuous flow mass spectrometer connected to a EuroVector Elemental Analyser. Powdered and decarbonated sediment samples were weighed into tin capsules, inserted in the autosampler and combusted at 1020°C. Analytical results are measured against a laboratory standard and expressed relative to the VPDB standard.

A complete list of all identified taxa is provided in the appendix. Microfossils from sample REH 4/1 from the stratum directly below the thickest black shale layer look extremely abraded. The microfossils of this sample are therefore considered to be reworked (transported) and are consequently ignored in later interpretations.

3.2 Ecological concepts and groups

3.2.1 Planktic foraminifera

Reproduction of modern planktic foraminifera usually takes place in the deepest environment during their life cycle or near the thermocline (deep-dwellers, Hemleben et al. (1989)). Comparison with equivalent Cretaceous morphogroups allows for inferences on the habitat of the species investigated here (e.g., Hart and Bailey, 1979; Leckie et al., 1998; West et al.,
The assumption of C- and O-isotope incorporation in equilibrium with changes in ambient seawater during subsequent growth stages suggest life cycles similar to modern genera (Norris and Wilson, 1998; Houston et al., 1999). Isotope data from the contributions of Norris and Wilson (1998), Houston et al. (1999), Huber et al. (1999), MacLeod et al. (2000) and Coxall et al. (2007) enable the identification of the occurring morphogroups or genera present. However, isotope data for Cretaceous species are not always unambiguous (e.g., for *Heterohelix*, Huber et al. (1995, 1999), MacLeod et al. (2000), Fassell and Bralower (1999)). Therefore, the successive appearance or disappearance of species or genera along gradients (waterdepth, rise and fall of oxygen minimum zones, nutrient supply) is used to confirm assumed habitats or to find arguments for different ecologic niches (Leckie, 1987; Jarvis et al., 1988; Leary et al., 1989; Koutsoukos and Hart, 1990; Hart, 1999; Premoli Silva and Sliter, 1999). We distinguish between species occupying the upper mixed layer (*Hedbergella* spp., *Gümbelitria cenomana*), the lower mixed layer (intermediate habitats, *Whiteinella* spp.), and deep dwellers from within or below the thermocline (*Rotalipora cushmani, Thalmanninella* spp., *Praeglobotruncana* spp., *Schackoina cenomana*).

Certain species are adapted to eutrophic or unstable conditions (opportunists, *r*-strategists). If such conditions prevail, equilibrium taxa (*K*-strategists) such as *Rotalipora, Thalmanninella* or *Praeglobotruncana* become rare or even disappear from the area (e.g., Jarvis et al., 1988; Leary et al., 1989). *Whiteinella* and *Hedbergella* connect between both groups and are therefore called intermediate species. Dominance of *K*-Strategists is therefore indicative for stable, meso- to highly oligotrophic conditions (Premoli Silva and Sliter, 1999; Coccioni and Luciani, 2004; Friedrich et al., 2008a). Prominent *r*-strategists are *Heterohelix* and *Gümbelitria*. Particularly *Gümbelitria* is known to thrive under conditions where no other planktic foraminifera survive. It is amongst the first to colonize new seaways and has blooms in shallow waters (e.g., Gebhardt, 1997, Leckie et al., 1998), points to nutrient-rich surface waters (Keller et al., 2008) or indicates ecologic disasters (Keller and Pardo, 2004). *Heterohelix* dominates in nearshore assemblages or in unstable areas with salinity or oxygen fluctuations (e.g., Nederbragt, 1991; Nederbragt et al., 1998; Premoli Silva and Sliter, 1999). Also massive productivity disturbances in upwelling areas such as at Tarfaya (Morocco) may lead to strong dominance of heterohelicids (Keller et al., 2008). Therefore, dominance of *Heterohelix* can be seen as a good stress indicator.
Chamber elongation in Cretaceous planktic foraminifera has been interpreted as an adaptive response to eutrophication and corresponding oxygen depletion (e.g., Premoli Silva et al., 1999; Coccioni et al., 2006) because a high surface area to volume ratio enhances gas exchange for metabolic needs (Magniez-Jannin, 1998). Coxall et al. (2007), however, suggest that chamber elongation is an adaptation to a feeding specialization for survival in a food-poor environment close to the OMZ. Prominent schackoinid-rich assemblages frequently characterize the onset and end of OAE-2 in deep-water settings and Schackoina is interpreted to be more competitive in low-oxygen, eutrophic waters than other radially elongated chambered forms (Coccioni et al., 2006). Repeated increased abundance of elongated chambered forms in association with some Cretaceous OAEs, Eocene and modern upwelling suggest a close link with episodes of enhanced ocean productivity (Coccioni and Luciani, 2004; Coxall et al., 2007) or extension of the oxygen minimum zone (Friedrich et al., 2008a). Schackoina is therefore interpreted as a high-productivity, low oxygen(?) indicator.

3.2.2 Benthic foraminifera

Cretaceous species are not found in modern oceans and consequently ecologic interpretations must be made on a generic level for ecologic index taxa or via equivalent morphogroups (e.g., Bernhard, 1986; Koutsoukos and Hart, 1990; Kuhnt and Wiedmann, 1995; West et al., 1998; Gebhardt, 2006). The size distribution of benthic foraminifera can be used to interpret bottom-water oxygenation because small (predominantly deep infaunal) species are assumed to be more adapted to low-oxygen levels of interstitial waters and large organisms demand higher amounts of oxygen for respiration (e.g., Bernhard, 1986; Kaiho, 1994, 1999). Bernhard (1986) distinguished 4 oxic (sphaerical, large planoconvex, biumbilicate, lenticular) and 4 dysoxic (flattened planispiral, cylindrical, tapered, elongated-flattened) morphotypes from Mesozoic and Cenozoic deposits. The detailed study of Koutsoukos and Hart (1990) refined this concept (21 general morphotypes allocated to inferred microhabitats and trophic groups) and applied it to mid-Upper Cretaceous sediments from the Brazilian Sergipe Basin. Kaiho (1994, 1999) developed an oxygenation index (BFOI) for modern and late Cenozoic environments based on a similar concept. Benthic foraminifera adapted to dysoxic environments frequently follow an opportunistic life strategy and exploit increased food availability. Turrilinids (tapered rounded triserial morphotype of Koutsoukos and Hart (1990)) and small gavelinellids (planoconvex low trochspiral) dominate under such conditions in some Cenomanian to Turonian sediments (Koutsoukos and Hart, 1990; Koutsoukos et al.,
However, if oxygen is not acting as a limiting factor, food supply largely governs abundance and distribution of species in the sediment (van der Zwaan et al., 1999). In particular the genus Gabonita and some species of Bolivina (tapered flattened-elongated biserial) have been interpreted to be indicative for increased food supply in combination with high primary production (Kuhnt and Wiedmann, 1995; Holbourn et al., 1999; Gebhardt et al., 2004).

4. Stratigraphy

In order to achieve the highest possible stratigraphic precision for the investigated section, age control was based on two independent lines of evidence: (1) biostratigraphic events and (2) δ¹³C stable isotope stratigraphy. The combination of both methods allowed the detection of chronostratigraphic events occurring in connection with the Cenomanian/Turonian boundary and OAE-2. A rough estimate using ages published in Mitchell et al. (2004), Ogg et al. (2004) and Jarvis et al. (2006) resulted in the calculation of sedimentation rates around 0.2 to 0.4 mm/ky with slightly lower values during the black shale interval.

4.1. Biostratigraphy

Based on established zonal schemes (e.g., Bralower et al., 1995; Robaszynski and Caron, 1995; Premoli Silva and Verga, 2004) three planktic foraminiferal zones were recognized: Rotalipora cushmani-Zone, Whiteinella archaeocretacea-Zone, and Helvetoglobotruncana helvetica-Zone (Fig. 2). We carefully looked for the first occurrence (FO) of H. helvetica in washed residues and thin sections. The occurrence of microfossils in thin sections of the limestone beds is shown in Figure 3. However, the rare occurrence of H. helvetica may be easily missed in thin sections and slight differences in its FO in disaggregated samples and in thin sections are possibly caused by the small size and number of the thin sections (only one per sample) examined. The first proven occurrence of the rare H. helvetica is from disaggregated samples at about the same level as the FO of the calcareous nannofossil Quadrum gartneri. Calcareous nannofossil zonations of Perch-Nielsen (1985) and Burnett (1998) show two or three zones respectively (CC10 to CC11, UC 4 to UC 7, Fig. 2, see Wagreich et al. (2008) for detailed description). Organic-walled microfossils were found in some pilot samples and confirm the age classifications presented here (Pavlishina and Wagreich, 2009).
The calcareous marl below the clay layer that yielded only reworked microfossils (sample RKG-14) contains *R. cushmani*, *T. greenhornensis* and *T. multiloculata* (in thin sections, Fig. 3) and indicates that the very latest Cenomanian interval (when *T. greenhornensis* already became extinct) is not represented in the Rehkogelgraben. This suggests a stratigraphic gap of, however, only short duration (see also discussion in Wagreich et al. (2008)).

4.2 Stable isotope stratigraphy (δ¹³C)

In addition to the δ¹³C-measurements on calcareous matter already published in Wagreich et al. (2008) we also obtained δ¹³C-data of organic matter. The new δ¹³C_{org}-curve (Fig. 2) shows an increase of more than 2 ‰ between the upper Cenomanian average level and the black shale interval (around –26‰ to almost –23‰). Upsection, the values drop steeply to –28‰ during the basal and lower Turonian. Inclusion of the δ¹³C_{org} data enabled us to complete the δ¹³C-record also for the black shale interval where the CaCO₃-content is too low for any δ¹³C_{carb}-measurements (Fig. 2). Based on this improved data set we were able to correlate the δ¹³C-curves from the Rehkogelgraben with δ¹³C-curves from key sections (Eastbourn (England), Gubbio (Italy), Pueblo (USA, also GSSP for the Cenomanian/Turonian boundary)) published in e.g., Tsikos et al. (2004). We used the major positive excursions (peaks P1 to P4) to compile the correlation (Fig. 4). The most prominent peak (P1) is within the thick basal black shale. As at Eastbourne, the δ¹³C_{org} excursion of P2 appears earlier than the δ¹³C_{carb} peak.

5. Results

Comparison of planktic foraminifera and radiolaria abundances indicates the simultaneous decrease of both groups during the late Cenomanian to about 25% of the earlier numbers (Fig. 5). Planktic foraminifera are about 100 times more frequent than radiolaria. The number of radiolaria, however, increases in the latest phase of this interval while planktic foraminifera remain low. Radiolaria are more frequent than planktic foraminifera during the black shale phase of deposition, although both groups occur with low numbers (Fig. 5). Both groups increase in the early Turonian but planktic foraminifera are about 50 times more frequent than radiolaria. However, late Cenomanian abundance levels are not reached within the early Turonian section investigated here. These results correspond largely to those based on thin
sections studied by Wagreich et al. (2008). We assume that these dramatic developments have their causes in fundamental changes in the paleoceanography at that time. We therefore investigated the most prominent microfossil groups in detail, in particular planktic and benthic foraminifera.

The influence of diagenesis on assemblage compositions was apparently low. Even the strata with the highest potential for dissolution (black shales and adjacent layers) show presence of planktic foraminifera (complete calcareous shells), rather high diversities and high proportions of calcareous benthic foraminifera. Severe dissolution would have led to disappearance of species with calcareous shells and strong dominance of arenaceous benthic foraminifera within the assemblages. The thickest (basal) black shale yielded only very few corroded calcareous specimens and we can not completely exclude reworking from older sediments or partial dissolution of specimens with more delicate tests. However, dissolution of calcareous components has completely altered assemblages in other OAE-2 black shales (e.g., at Gubbio, Italy). Furthermore, arenaceous species are relatively rare and of small size at Rehkogelgraben (contrary to deposits of the Rhenodanubian Flysch basin). This points to local environmental conditions as the crucial factor for assemblage composition and chemical dissolution appears to be negligible. Specimens from the second black shale are just as well preserved as those from pre- or post OAE samples.

5.1 Planktic foraminifera

We distinguished between equilibrium species (K-strategists), intermediate species and opportunists (r-strategists), following the concepts explained in Premoli Silva and Sliter (1999) and Coccioni and Luciani (2004), in order to interpret habitats and changes in nutrient supply. Representative specimens of all recognised planktic foraminiferal species are shown in Figure 6.

The relatively poor state of preservation of microfossils in the washed residues made it necessary to combine a group of Whiteinella-species with very similar morphology for counting purposes. Whiteinella archaeocretacea, W.aprica, W. aumalensis, and W. inornata were lumped together under the name W. archaeocretacea, which is probably the most common among these species. Because of their very similar morphology and identical general habit we assume similar ecologic requirements or preferences for these species.
5.1.1 Equilibrium species (K-strategists)

Rotalipora and *Thalmanninella* (Fig. 7A) include *R. cushmani*, *T. deekei* and *T. greenhornensis*. The late Cenomanian samples contain various amounts of these species between 92 to 327 ind/g (or 0.4 to 2.5%). Occasional occurrences of rare “rotaliporids” in one black shale layer and some lower Turonian marl layers (i.e., above δ¹³Corg-peak 1) are interpreted as reworked from older strata.

Praeglobotruncana spp. (Fig. 7B) includes *P. gibba* and *P. stephani*. Numbers vary between 181 and 880 ind/g during the late Cenomanian but their percentages increase slowly from 1 to about 5%. During the black shale interval their number varies between 0 and 1.5 ind/g, i.e., much lower. However, this may corresponds to up to 27% of the assemblage. *Praeglobotruncana* becomes a major component in lower Turonian strata with up to 4300 ind/g (max. 56%).

Dicarinella spp. (Fig. 7C) includes *D. canaliculata*, *D. hagni* and *D. imbricata*. Both, absolute numbers and percentages of this group remain low throughout the investigated section. Maximum values are 62 or 120 ind/g in upper Cenomanian and lower Turonian strata respectively and even below 0.03 ind/g during the black shale interval. Proportions are always below 1%.

5.1.2 Intermediate species

Whiteinella spp. (Fig. 7D) includes *W. archaeocretacea*, *W.aprica*, *W. aumalensis*, *W.baltica*, *W. brittonensis* and *W. inornata*. The *Whiteinella* spp. content decreases from more than 9000 to around 2000 ind/g during the late Cenomanian. There is however no distinct decrease in *Whiteinella* if expressed as percentages (6-20%). Directly above the lower thick black shale layer, *Whiteinella* rises abruptly from zero to 32%, but their numbers remain low (max. 3.4 ind/g). Its percentages remain constant during the early Turonian but the absolute numbers increase continuously to pre-black shale levels.

Hedbergella spp. (Fig. 8A) includes *H. delrioensis*, *H. planispira* and *H. simplex*. *Hedbergella* is the major component of late Cenomanian assemblages (9000 to 37000 ind/g or
63 to 80 %). Their numbers decrease drastically during the black shale interval (0.2 to 6.6 ind/g) but percentages remain high (42 to 73 %). One sample of the thick basal black shale layer contains only a single specimen and no other genera. Absolute numbers as well as percentages are much lower during the early Turonian if compared with the late Cenomanian (452 to 2843 ind/g or 22 to 23 %).

5.1.3 Opportunists (r-strategists)

Schackoina cenomana (Fig. 8B) varies with low numbers (0 to 282 ind/g) throughout the section. Its highest percentage (5.3%) is within the black shale interval although the absolute number is very low (0.56 ind/g) and its absolute content is higher below and above.

Heterohelix spp. (Fig. 8C) includes H. moremani and H. reussi. Absolute numbers as well as percentages decrease from 6390 to 425 ind/g (or 11.9 to 2.4%) during the lower portion of the late Cenomanian but slightly increase towards the end of this interval (2143 ind/g or 9.7 %). Their absolute content is low during the black shale interval (0 to 0.5 ind/g or 0 to 5.1 %) and increases slowly to pre-black shale levels during the basal to early Turonian (99 to 1856 ind/g or 2.4 to 15.0 %).

Gümbelitria cenomana (Fig. 8D) occurs with low numbers within the section (0 to 416 ind/g or 0 to 2.3 %). However, this species shows a distinct increase towards the end of the late Cenomanian interval but never reaches more than 1381 ind/g or 6.3 %.

5.2 Benthic foraminifera

Diversity of assemblages below and above the black shale interval is high (compare Table 2) but decreases within the black shale interval. Parallel to this, the absolute number (ind/g) of benthic foraminifera is markedly reduced. However, black shale interval assemblages do not show a significantly higher proportion of arenaceous species (Fig. 9, left column), which would point to dissolution on the ocean floor during time of deposition. Thus, dissolution hardly plays a role for the species composition of the samples investigated. All important occurring benthic foraminifera are shown in Figure 10.

5.2.1 Arenaceous against calcareous species and benthic morphogroups
Percentages of arenaceous foraminifera (Fig. 9) vary around 12% for the late Cenomanian, fluctuate strongly during the black shale interval (0 to 72%) and increase to around 30% during the early Turonian.

The benthic foraminiferal morphogroups listed here are named mostly after genera and their distribution is shown in Figure 9. *Ammobaculites* (including *Bulbobaculites*) has its maximum close to the base of the investigated section (435 ind/g). A further, second peak occurs during the early Turonian (120 ind/g). *Bathysiphon* is only frequent during the late Cenomanian (max. 191 ind/g). *Haplophragmoides* shows two maxima: 258 ind/g at the beginning of the late Cenomanian interval and a smaller maximum in the early Turonian with 60 ind/g. *Reophax* shows higher frequencies in the early Turonian (max. 301 ind/g) than in the late Cenomanian (max. 263 ind/g). *Spiroplectammina* is restricted to the upper part of upper Cenomanian strata (max. 256 ind/g). *Tritaxia* is less frequent (max. 23 ind/g) and restricted to the lower portion of the late Cenomanian part. *Trochammina* is most frequent in the early Turonian part (max. 105 ind/g). Other arenaceous taxa are more or less evenly distributed in the entire section (max. 65 ind/g).

The largest portion among calcareous benthic foraminifera is made up by turritinids (*Neobulimina, Praebulimina*). Their abundance pattern shows two prominent peaks at the beginning and the end of the late Cenomanian interval (>1800 ind/g) and in the youngest early Turonian sample (584 ind/g). Gavelinellids and *Planulina* combined are generally less frequent but show the greatest abundance of all benthic groups (4104 ind/g) at the base of the Rehkogelgraben section. Elongated nodosariids (*Dentalina, Nodosaria*) are relatively rare throughout the section with a maximum of 76 ind/g during the late Cenomanian. *Gyroidinoides* occurs in almost all samples and reaches maximum abundance (643 ind/g) in the upper portion of the late Cenomanian interval. Lensiform nodosariids (*Lenticulina, Planularia*) are generally rare (max. 18 ind/g). *Gabonita* is only frequent at the base of the section (max. 869 ind/g). *Bolivina* is rather rare (max. 57 ind/g) and is missing in early Turonian samples. Other calcareous species occur with less than 413 ind/g.

5.2.2 Trends in size distribution of benthic foraminifera
The investigated section shows a clear tripartite subdivision for the three size fractions analysed (Fig.11). Late Cenomanian and early Turonian samples show high and relatively similar benthic foraminiferal numbers in all size fractions. During the black shale interval benthic foraminifera are less abundant. Specimens of the smallest fraction are present in all samples. This is also valid for specimens of the middle fraction but with significantly lower numbers. Specimens of the largest fraction are missing in all but one sample of the black shale interval but occur in almost all samples before and after this interval.

5.3 Occurrence of radiolaria

Nasselarian species are extremely rare and only single specimens were found in some samples. The overwhelming majority of specimens belong to the order Spumellaria. Radiolarian distribution in the samples is listed in Table 3. Abundances of radiolaria vary between 53 and 423 ind/g during the late Cenomanian interval. It is from 0.2 to 132 ind/g during the black shale interval and increases again to 91 to 165 ind/g during the early Turonian. Figure 5 clearly shows the inversion of the relation to planktic (and also benthic) foraminifera. The abundances of radiolaria are about two orders of magnitude lower than those for planktic foraminifera during “normal” periods. It is the opposite for the black shale interval. The abundances of radiolaria during the black shale interval (12.7 to 131.6 ind/g) are however still a quarter of those of the late Cenomanian (53 to 423 ind/g). The highly similar curves show unidirectional, coeval fluctuations and approximately constant differences in abundances for radiolaria, benthic and planktic foraminifera on a logarithmic scale.

6. Paleoceanographic interpretation and discussion

6.1 Environmental changes at the seafloor

Paleo-water depth can be estimated by using ratios of planktic to benthic foraminifera (or percent planktic foraminifera). Proportions of planktic foraminifera outside the black shale interval vary around 90 % and point to bathyal depositional environments (c. 800 to 1000 m paleo-water depth) if compared with modern settings (e.g., van der Zwaan et al., 1990) or estimates for the Cenomanian-Turonian of the Western Interior Basin (Leckie et al., 1998). This confirms the categorization (distal slope) of Wagreich et al. (2008).
The size distribution of benthic foraminifera points to a clear tripartite subdivision of the section investigated which can be used to interpret bottom-water oxygenation (Fig. 11). High numbers of small, medium and large specimens indicate oxic conditions for the late Cenomanian interval. The black shale interval is characterized by very low numbers of small specimens and absence of larger forms, pointing to low oxic or even dysoxic conditions during OAE-2. Oxic conditions re-appear during the early Turonian, indicated by high numbers of small and large benthic foraminifera.

Species belonging to the tapered (turrilinids, *Gabonita*), elongated flattened (*Bolivina*) and flatteded trochospiral (small gavelinellids) morphogroups are frequent in the late Cenomanian portion of the Rehkogelgraben section. In combination with the high number of “large” benthic specimens, we interpret this as a food-rich but moderately oxygenated setting. High abundances of planktic foraminifera confirm this conclusion. Nutrient supply was probably lower in the early Turonian, indicated by lower total numbers and very restricted occurrences of *Gabonita* and *Bolivina*. The black shale interval shows the lowest abundances, going down to 1/1000 or less of late Cenomanian rates (Table 4, Fig. 5). The assemblages of small sized specimens are relatively diverse and contain *Ammobaculites*, *Haplophragmoides*, *Bolivina*, *Reophax*, gavelinellids, *Gyroidinoides* and some *Bathysiphon* and turrilinids. *Gabonita* does not occur in these samples. Although the total organic carbon content is relatively high in the black shales, the extremely low abundances and the absence of *Gabonita* and rareness of other high productivity indicators (e.g., *Bolivina*, turrilinids) point to very low surface productivity and subsequent food supply to the seafloor combined with low oxic to dysoxic conditions.

6.2 Environmental changes in surface waters

Similar to bottom-water conditions, a tripartite subdivision is reported for surface waters. Moderate numbers of mesotrophic (*Praeglobotruncana*) to highly oligotrophic (*Rotalipora, Thalmanninella*) equilibrium species are characteristic for the late Cenomanian portion of the Rehkogelgraben section. Presence of the deep dwellers also indicates the absence, or a very deep upper surface of an oxygen minimum zone (i.e., far below thermocline). Also the low numbers of stress tolerant *Heterohelix* and *Gümbelitria* point to stable conditions with limited nutrient supply. The latter genus became a little more frequent (<7%) in the last samples of this interval, but never reached levels indicative of eutrophication and highly oligotrophic
species are still present. The assemblages are complemented by hedbergellids and whiteinellids. The high productivity indicator *Schackoina* is always very rare. Thus, an oligotrophic regime is assumed for the late Cenomanian at Rehkogelgraben.

The black shale interval (representing OAE-2) is characterized by very low numbers of planktic foraminifera. Spumellarian radiolaria are more frequent than planktic foraminifera but also significantly less frequent than in previous and successive periods. Figure 12 shows reduced diversity and number of specimens in the thick lower black shale layer, but a higher number of species and a lower amount of individuals in the marly clay layer above. This pattern is repeated in the next black shale/marly clay couplet. Here, the percentage of (and also numbers of) *Schackoina* is the highest (5.3%). This pattern points to higher nutrient availability during times of black shale deposition than during marly clay-periods, although there were apparently neither distinct eutrophication events leading to blooms of indicator species such as *Schackoina* nor increased numbers of stress indicating *Heterohelix* or *Gümberliria*. The low numbers of *Heterohelix* and absence of a "*Heterohelix* shift" to dominance with the onset of OAE-2 (e.g., Leckie et al., 1998; Keller et al., 2008) suggest that the upper water column was not nearly as stressed as observed at other localities (see chapter 6.4). The slightly increased number and percentage of *Schackoina* in one sample does not point to eutrophic or mesotrophic conditions (compare data published by e.g., Coccioni and Luciani (2004)). The thin marly clay-layer directly above the third black shale layer yielded an already rather diverse (six genera), but individual poor assemblage with an almost “normal” species composition. This assemblage may already indicate the re-establishment of stable oligotrophic conditions. Also the fact that radiolaria are now again less common than benthic and planktic foraminifera (Fig. 5) point to a return to almost pre-OAE conditions.

Early Turonian post-OAE assemblages became more and more specimen-rich and reached pre-OAE levels during the *H. helvetica*-Zone. Already during the recovery phase, the assemblages are dominated by mesotrophic *Praeglobotruncana* and *Whiteinella*. Although rare, *Dicarinella* became more frequent than during the late Cenomanian. Thus, stable, well-oxygenated conditions must have prevailed down to thermocline depths. *Heterohelix* varies around 10 %, and *Gümberliria* and *Schackoina* occur with very low numbers. Therefore, surface productivities similar to pre-OAE-levels were not re-established before the beginning of the *H. helvetica*-Zone. Based on ages published in Ogg et al. (2004), a period of about 300 ky was needed to re-establish a planktic carbonate-producing regime.
6.3 Foraminifera, radiolaria and paleo-productivity

The curve progressions of benthic and planktic foraminifera and of radiolaria (Fig. 5) point to a strong coupling of the frequencies of these groups during the periods before and after the black shale interval. Radiolaria and planktic foraminifera depend on prey such as diatoms, coccolithophores or other algae and bacteria (e.g., Brasier, 1980; Hemleben et al., 1989; Murray, 1991; Leckie et al., 2002), and deep-sea benthic foraminifera on the organic rain that reaches the seafloor (e.g., van der Zwaan et al., 1999; Gooday, 2003). Thus, abundances of radiolaria, planktic and benthic foraminifera can be used to estimate changes in surface (paleo-) productivity. We assume sufficiently stable paleoceanographic conditions that facilitated the sedimentation of calcareous deposits (i.e., limestones and marls) during pre- and post-black shale periods. The cause for the coupling may be found in general primary productivity changes in the region.

At Rehkogelgraben, the ecologic crisis during OAE-2 is expressed by extremely low and erratically fluctuating abundances of planktic and benthic foraminifera and, most prominent, c. 10 times higher abundance values for radiolaria than for foraminifera (Fig. 5). Compared with the late Cenomanian interval, the pelagic eco-system was able to sustain significantly lower numbers of radiolaria and foraminifera during the early Turonian, probably an aftermath of OAE-2.

6.4 Comparison with other deep-water sites

The impact of OAE’s is assumed to be widespread, if not global (e.g., Schlanger et al., 1987). Similar faunal consequences are assumed for similar paleoceanographic and paleoecologic conditions. Therefore, we compared the micro-faunal successions of selected key sections in order to classify the Rehkogelgraben record or to show its peculiarity.

The Bonarelli Level represents the OAE-2 in northern Italy (Gubbio; Fig. 1). Many differences exist with the Rehkogelgraben section. The black shales are mainly devoid of carbonates and very rare planktic foraminifera occur as silicified ghosts (Premoli Silva et al., 1999). Nannofossil assemblages and a relative increase in Schackoina (up to > 50%, Coccioni and Luciani (2004)) indicate increased surface fertility shortly before the event. The higher
surface productivity is possibly related to upwelling. A slow recovery of planktic foraminiferal assemblages, represented by scattered \textit{Heterohelix} and \textit{Hedbergella}, follows the black shale. Percentages of praeglobotruncanids and whiteinellids are constantly low. The Bonarelli Level itself is devoid of benthic foraminifera, but so-called Deep-Water Agglutinated Foraminifera (DWAF) are common below and above the Bonarelli level (Coccioni et al., (1995) in Premoli Silva et al., (1999)). Furthermore, radiolaria of the black shales are dominated by deep-dwelling Nasselaria. Similar to Rehkogelgraben are a general dominance of \textit{Hedbergella}, low frequencies of \textit{Heterohelix} before and after the event, and relatively low percentages of rotaliporids in the pre-OAE-2 interval. Coccioni and Luciani (2004) propose an extremely stressed environment with a very much expanded oxygen minimum zone and a highly eutrophic surface layer for the Bonarelli Level. Increased surface productivity (\textit{Schackoina}-bloom) and an enhanced oxygen minimum zone characterize the pre-OAE phase, while environmental perturbations continued long after the event, very different from what is shown for the Rehkogelgraben section.

The record of Roter Sattel in Switzerland (Romandes Prealps, Strasser et al. (2001)) near the southwestern end of the Penninic Ocean is similar to Gubbio in many ways (absence of planktic foraminifera in black shale interval, dominance of radiolaria) but differs from the Rehkogelgraben record by its high terrigenous influx (quartz, higher plant organic matter). Sediments of Roter Sattel were deposited on a platform (terrain, Briançonnais Domain).

Identification of OAE’s by microfaunas is difficult at permanent upwelling sites with constantly high surface productivity like, e.g., the northwestern African magin. Foraminiferal assemblages from the Tarfaya Basin are characterized by successively lower diversities and restriction to dysoxic indictors (dominantly \textit{Neobulimina albertensis} and occasional \textit{Praebulimina}, \textit{Gabonita} and small \textit{Gavelinella} specimens) as a consequence of successive subsidence and cyclic eustatic onlap of oxygen-depleted bottom waters (Gebhardt et al., 2004). The onset of OAE-2, as indicated by the δ^{13}C excursion (Kuhnt et al., 2005), could not be traced by changes in benthic foraminiferal assemblages. In contrast, the planktic assemblages at Tarfaya show a severe impact on the diversity, as well as the permanent dominance of \textit{Hedbergella planispira} and \textit{Heterohelix moremani} across the boundary interval, a \textit{Heterohelix}-shift shortly after the extinction of rotaliporids and persistent also into the early Turonian \textit{H. helvetica}-Zone, and a short \textit{Gümbelitria}-bloom preceeding the
Heterohelix-shift (Keller et al., 2008). All these differences point to a completely dissimilar initial situation when compared to the Rehkogelgraben section.

Sediments from the Demerara Rise (Central Atlantic Ocean) consist entirely of black shales with up to 29% TOC during OAE-2 (Erbacher et al., 2005) and were deposited in 500 to 1000 m water depth (Friedrich et al., 2008b). The benthic foraminiferal assemblages show low diversities and are dominated by high productivity - dysoxic/anoxic indicators (Bolivina, Gavelinella, buliminids). The deepest of several sites indicates the most oxygenated bottom waters before OAE-2, while anoxic to dysoxic conditions prevailed in shallower sites, pointing to a position within an oxygen minimum zone (Friedrich et al., 2006). A strengthened oxygen minimum zone further reduced oxygenation, i.e., almost complete disappearance of benthic foraminifera in the shallow sites, but did not lead to complete anoxia in the deepest site during the OAE. Pre-OAE conditions returned after the carbon isotope excursion with a further weakening of the oxygen minimum zone later on. The abundances of benthic foraminifera (ind/g) were in the same range as at Rehkogelgraben, but the assemblages were much less diverse and restricted to eutrophication indicators (Friedrich et al., 2006). Cenomanian to Coniacian geochemical proxies and Turonian planktic foraminiferal assemblages from Demerara Rise consisting of abundant hedbergellids and heterohelicids with rare specimens of Pseudoguembelina, Marginotruncana and Clavihedbergella (Friedrich et al., 2008a) and point to extremely high sea-surface temperatures (Norris et al., 2002; Wilson et al., 2002; Bice et al., 2006; Bornemann et al., 2008). Assemblages dominated by clavate planktic foraminifera and Heterohelix pulchra are interpreted to represent the phases with the highest surface productivity (Friedrich et al., 2008a). Similar assemblages do not occur at Rehkogelgraben. The records from Tarfaya and Demerara Rise represent a paleoceanographic setting with extremely high surface productivity during OAE-2 and even before and after the event. This setting can therefore not serve as a model for the interpretation of the Rehkogelgraben record.

The incomplete section at Blake Nose (0.5 My of OAE-2 are missing, including organic rich sediments, Huber et al. (1999)) shows dominance of hedbergellids (in combination with Whiteinella) in the pre-OAE interval and a change to biserial forms after OAE-2 (Heterohelix-shift). As at Rehkogelgraben, keeled morphotypes are more frequent in post-OAE sediments. Rotaliporids are also relatively rare but dicarinellids are much more frequent throughout. In contrast to Rehkogelgraben, helvetoglobotruncanids contribute significantly to
the planktic assemblages in the early Turonian interval. Also as at Rehkogelgraben, no
significant amounts of Schackoina were recorded. The similarities between Blake Nose and
Rehkogelgraben may be explained by almost equal paleo-latitudes (Fig. 1), the differences by
the less restricted location of Blake Nose in the far larger North Atlantic Ocean. Assemblages
and abundance pattern similar to Rehkogelgraben (but without a distinct black shale interval)
were also recorded from Tibet, i.e., the southern margin of the Tethyan Ocean at that time
(Wan et al., 2003), pointing to similar ecological conditions at least for pre- and post-OAE
sediments.

6.5 A special paleoceanographic situation in the Penninic Ocean

Erbacher et al. (1996) described a general model for the formation of OAEs during the mid-
Cretaceous. The productivity-driven OAE-2 at the Cenomanian/Turonian boundary was
probably caused (among other factors) by a high sea level leading to leaching of nutrients
from coastal lowlands and subsequent increased productivity (see Mort et al. (2007) for role
of phosphorus). This in turn caused the expansion of the oxygen minimum zone (e.g., Leckie
et al., 2002) with coeval reduction of ecological niches and extinction events for both planktic
and benthic dwellers, e.g., rotaliporids among planktic foraminifera. Dominance of type 2
kerogen is thought to be indicative for increased (marine surface) productivity (Jenkyns et al.,
1994). This indicator is present in the black shale interval at Rehkogelgraben (Wagreich et al.,
2008). However, the planktic and benthic foraminiferal assemblages found at Rehkogelgraben
do not confirm such a depositional system. Thus, a different concept is required for the
Penninic Ocean.

Modern paleogeographic reconstructions for around 94 Ma (e.g, Kuypers et al., 2002;
Friedrich et al., 2006; Mort et al., 2007, 2008; www.scotese.com/cretaceo) show the Penninic
Ocean as an almost completely enclosed deep basin (Fig. 1). This special bathymetric
situation may play a key role for the explanation of the apparent differences between the high
productivity in most parts of the world ocean and the overall absence of high productivity
indicators in the foraminiferal assemblages at Rehkogelgraben during OAE-2. The increased
nutrient flux and related increased productivity recorded in the adjacent oceans (Kuypers et
al., 2002; Mort et al., 2007) has probably not reached the northern part of the Penninic Ocean,
but an oxygen minimum zone developed in this region. This explains coeval low
foraminiferal abundances and absence of increased numbers of high productivity indicators
such as *Gabonita* (benthic) or *Heterohelix* and *Schackoina* (planktic) during the black shale interval. Dysoxic bottom-water conditions are assumed for adjacent seas (Mort et al., 2007) as well as for the Penninic Ocean (this study). First results of palynological investigations on samples from the Rehkogelgraben also point to anoxic/dysoxic conditions rather than to high productivity (Pavlishina and Wagreich, 2009). Causes for the recorded pattern may include: 1) a generally west-east oriented coast line in the north and low air pressure systems that did not allow for upwelling equivalent to modern and ancient settings along the western coasts of continents (Parrish and Curtis, 1982). Atmospheric General Circulation Models (GCM) predict low wind stress and current velocities as well as predominance of a low air pressure system in the region of the Penninic Ocean for the Turonian, both unfavorable for the development of upwelling cells (Poulsen et al., 1999, 2001; Flögel, 2002). 2) Absence of large continents in the surrounding of the Penninic Ocean that could supply the sea with nutrients from river runoff (Fig. 1). 3) Surface current driven removal of leached nutrients from the flooded shelves away from the Penninic Ocean.

We speculate that the already restricted water exchange with the Tethys was further reduced during the OAE. A somewhat more sluggish circulation related to higher temperatures in greater water depths and weakened temperature gradients (e.g., Huber et al., 1999; Friedrich et al., 2008b) in adjacent Tethys and North Atlantic Ocean might have been a sufficient cause and stored nutrients were used up in the Penninic Ocean, resulting in the recorded low-productivity microfossil assemblages. The OAE had a less severe impact on the diversity of planktic and benthic foraminifera than in upwelling areas as, e.g., the deeper part of the Tarfaya Basin (no benthic and only two planktic species were recorded by Keller et al. (2008)) or the Demerara Rise (Friedrich et al., 2006). We recorded 1-3 planktic and 1-5 benthic taxa per sample in the thick black shale layer at the base of the OAE and even 8-15 planktic and 12-15 benthic taxa per sample above but still within the black shale interval at Rehkogelgraben. The Penninic Ocean may have even served as a refuge for some of these species during the environmental crisis elsewhere.

Increased CO$_2$-uptake of the ocean, derived from large igneous province activity, played an important role in the formation of OAE-2 (Kerr, 1998; Huber et al., 1999), or at least preconditioned the climatic and oceanic regimes (Ando et al., 2009). This might account for part of the dysoxic bottom-water conditions reported at Rehkogelgraben and elsewhere.

Increased pCO$_2$ may have also led to acidification of large portions of the water column and
subsequent difficulties in carbonate secretion for foraminifera (Moy et al. (2009), with other references therein). Radiolaria with their silica skeletons were possibly less affected by acidification and had a competitive advantage against organisms secreting a carbonate shell, leading to the reversals in the recorded radiolaria to foraminifera ratios.

7. Conclusions

The Rehkogelgraben section shows a tripartite subdivision for surface and bottom waters. High numbers of mesotrophic to highly oligotrophic planktic foraminiferal species and low numbers of stress tolerant species are characteristic for the late Cenomanian and indicate an oligotrophic regime in the upper water column. The black shale interval representing OAE-2 is characterized by very low numbers and relatively high diversities of planktic foraminifera. High productivity indicators do not form significant proportions within the assemblages. Post-OAE assemblages are dominated by mesotrophic species and reduced surface productivities similar to pre-OAE-levels were re-established. About 300 ky were needed to re-establish an effective pelagic carbonate-producing regime.

High numbers of small to large benthic foraminifera and frequent high nutrient-flux indicators point to oxic and food-rich conditions on the late Cenomanian seafloor. The black shale interval showed the lowest abundances, going down to 1/1000 or less of late Cenomanian values. The assemblages are characterized by low numbers of small specimens and absence of larger forms, pointing to low oxic or dysoxic conditions. Oxic conditions re-appeared during the early Turonian, indicated by high numbers of small and large benthic foraminifera. Nutrient supply was probably lower in the early Turonian if compared with the late Cenomanian, indicated by lower total numbers and very restricted occurrences of high nutrient-flux indicators.

Abundances of planktic foraminifera were about one order of magnitude higher than those of benthic foraminifera, and those in turn one order of magnitude higher than those of radiolaria. The regular coupling of abundances indicates strong dependences within the ecologic system during the stable late Cenomanian and early Turonian periods. This system was less efficient during the early Turonian if compared with the late Cenomanian period, probably an aftermath of the ecologic crisis at the Cenomanian/Turonian boundary. The ecologic crisis during OAE-2 is expressed by extremely low and erratically fluctuating abundances of
planktic and benthic foraminifera and c. 10 times higher abundances for radiolaria than for foraminifera.

Overall, the Rehkogelgraben record points to unusual paleoceanographic conditions during the OAE-2. We assume that the paleogeographic and bathymetric situation of the Penninic Ocean (semi-enclosed basin) played a key role for the explanation of the apparent differences between the high surface productivity in most parts of the world ocean and the overall absence of high productivity indicators in the foraminiferal assemblages at Rehkogelgraben. The record reported here suggests that high surface productivity during OAE-2 was not a global phenomenon in oceanic settings and it might be worth to look for other sites with similar conditions.

If compared with Cenomanian-Turonian boundary sections with black shale intervals elsewhere, the Rekogelgraben record shows much higher benthic and planktic foraminiferal diversities during OAE-2. The Penninic Ocean may therefore have even served as a refuge during the environmental crisis.

Acknowledgements

Markus Kogler (GBA) is thanked for picking and counting radiolarians. We thank Mike Bolshow and Shir Akbari (both NOCS) for δ^{13}C$_{org}$ sample preparation and analyses. Mark Leckie and an anonymous reviewer made valuable suggestions to improve the manuscript. Micheal Wagreich acknowledges financial support by FWF Joint Seminar AJS 308-B17 and IGCP 555 “Rapid Environmental/Climate Change in the Cretaceous Greenhouse World: Ocean-Land Interactions”. Lindsey Fox acknowledges receipt of an Undergraduate Research Bursary (2009) from The Nuffield Foundation. This study was partly funded by the European Commission while Oliver Friedrich held a Marie Curie Intra-European Fellowship at the University of Southampton (project PLIO-CLIMATE) and finished while he held an Emmy-Noether Research grant of the DFG (FR 2544/2-1).

Appendix: List of identified taxa. Reworked specimens from sample REH 4/1 are not included.

1. Planktic foraminifera
2. Benthic foraminifera

808 *Ammobaculites* sp. cf. *A. amabilis* Fuchs 1967

809 *Ammobaculites fragmentarius* Cushman 1927

810 *Ammobaculites subcretacea* Cushman and Alexander 1930

811 *Ammobaculoides mosbyensis* Eicher 1965

812 *Ammodiscus cretaceus* Reuss 1845
Ammomarginulina lorangerae Stelck and Wall 1955
Ammosphaeroidina sphaeroidiniformis (Brady 1884)
Bathysiphon spp.
Berthelina dakotensis Fox 1954
Bolivina anambra Petters 1982
Bolivina sp. cf. B. incrassata Reuss 1851
Bulbobaculites problematicus (Neagu 1962)
Cibicidites beaumontianus (d'Orbigny 1840)
Dentalina catenula Reuss 1860
Dentalina marginuloides Reuss 1851
Eouvigerina cretae (Ehrenberg 1854)
Eouvigerina sp.
Gabonita cf. ogugensis Petters 1982
Gavelinella spp.
Gyroidinoides lenticulus (Reuss 1845)
Gyroidinoides umbilicatus (d'Orbigny 1840)
Haplophragmoides excavatus Cushman and Waters 1927
Haplophragmoides rugosa Cushman and Waters 1927
Haplophragmoides sp. cf. H. walteri (Grzybowski 1898)
Haplophragmium sp.
Hyperammina gaultina ten Dam 1950
Kalamopsis sp.
Lenticulina exarata (v. Hagenow 1842)
Lenticulina gaultina (Berthelin 1880)
Lenticulina marcki (Reuss 1860)
Lenticulina pulchella (Reuss 1863)
Lenticulina saxocretacea Bartenstein 1955
Marssonella oxycona (Reuss 1860)
?Martinottiella sp.
Neobulimina albertensis (Stelck and Wall 1954)
Nodosaria sp.
Nonionella sp. cf. N. robusta Plummer 1931
Osangularia cordieriana (d'Orbigny 1840)
Osangularia sp.
Planularia complanata (Reuss 1845)
Planularia dissona Plummer 1931
Planularia sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
Planulina sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
Planulina sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
Planulina sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
Planulina sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
Planulina sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
Planulina sp. cf. P. umbonata Loetterle 1937
Planulina stelligera Marie 1941
Planulina texana Cushman 1938
Plectina pinswangensis Hagn 1953
References

Friedrich, O., Erbacher, J., Mutterlose, J., 2006. Paleoenvironmental changes across the Cenomanian/Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by benthic foraminifera from the Demerara Rise (ODP Leg 207). Rev. Micropaléontol. 49, 121-139.

Holbourn, A., Kuhnt, W., El Albani, A., Pletsch, T., Luderer, F., Wagner, T., 1999. Upper Cretaceous palaeoenvironments and benthonic foraminiferal assemblages of potential source rocks from the western African margin, Central Atlantic. In: Cameron, N.R., Bate, R.H.,

Brazil) and the western Anglo-Paris Basin (southern England). Palaeogeogr., Palaeoclimatol.,
Palaeoecol. 77, 145-177.

Kuhnt, W., Wiedmann, J., 1995. Cenomanian - Turonian source rocks: paleobiogeographic
and paleoenvironmental aspects. In:Huc, A.-Y. (Ed.), Paleogeography, paleoclimate and

Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J., Wagner, T., 2005. Orbital-scale record of
the late Cenomanian-Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin

productivity led to increased organic carbon burial in the euxinic North Atlantic basin during
the late Cenomanian oceanic anoxic event. Paleoceanography 17, PA1051, doi:

Leary, P.N., Carson, G.A., Cooper, M.K.E., Hart, M.B., Horne, D., Jarvis, I., Rosenfeld, A.,
Tocher, B.A., 1989. The biotic response to the late Cenomanian oceanic anoxic event;

ocean and epicontinental sea assemblages. Micropaleontol. 33, 164-176.

Paleoceanography of the southwestern Western Interior Sea during the time of the
Cenomanian-Turonian boundary (Late Cretaceous). SEPM Concepts Sedimentol. Paleontol.
6, 101-126.

Leckie, R.M., Bralower, T.J., Cashman, R., 2002. Oceanic anoxic events and plankton
evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography

MacLeod, K.G., Huber, B.T., Le Ducharme, M., 2000. Paleontological and geochemical
constraints on the deep ocean during the Cretaceous greenhouse interval. In: Huber, B.T.,

Figure and Table captions

Figure 1. Paleogeographical map of the mid-Cretaceous (c. 94 Ma) showing the locations of the investigated section at Rehkogelgraben (1) and important sections referred in the text (2 Pueblo, 3 Eastbourne, 4 Gubbio, 5 Tarfaya, 6 Demerara Rise, 7 Blake Nose). Modified from Kuypers et al. (2002), Gebhardt (1999), Stampfli and Borel (2002). P.O. - Penninic Ocean, W.I.S. – Western Interior Seaway, N.S. – Norwegian Seaway, S.A. – South Atlantic.
Biostratigraphical zonation, carbonate content, δ^{13}C-values of calcareous and organic matter, and sample positions. Calcareous nannoplankton zones, carbonate and δ^{13}C$_{\text{carb}}$-values from Wagreich et al. (2008).

Figure 3. Occurrence of microfossils in thin section. 1) FO of *H. helvetica* based on disaggregated samples, 2) FO of *H. helvetica* based on thin sections.

Chemio- and biostratigraphic correlation between the Cenomanian-Turonian sections at Pueblo (USA, GSSP), Eastbourne (GB), Rehkogelgraben (Austria), and Gubbio (Italy). δ^{13}C-curves from Pueblo, Eastbourne, and Gubbio modified from Tsikos et al. (2004).

Abundances (ind/g) of planktic and benthic foraminifera and of radiolaria.

Distribution of *K*-strategist planktonic foraminifera (equilibrium species) and intermediate species. Note that percentages (open circles) are displayed always with the same scale, while individuals per gram sediment (black diamonds) are displayed on different scales.

Figure 8. Distribution of \(r \)-strategist planktonic foraminifera (potential opportunists) and intermediate species. Note that percentages (open circles) are displayed always with the same scale, while individuals per gram sediment (black diamonds) are displayed on different scales. A: *Hedbergella* spp., B: *Schackoina cenomana*, C: *Heterohelix* spp., D: *Gümbelitria cenomana*.

Figure 9. Arenaceous/calcareous benthic foraminifera ratio and distribution (ind/g) of benthic morphogroups.

Lenticulina marcki (sample REH-4/2b), 48. Lenticulina pulchella (sample RKG-06), 49.

Lenticulina saxocreata (sample REH-4/4o), 50. Neobulimina albertensis (sample RKG-12),
51. Nodosaria sp. (sample RKG-12), 52. Nonionella cf. robusta (sample REH-4/4o), 53.

Osangularia cordieriana (sample RKG-02), 54. Osangularia sp. (sample REH-2/32), 55.

Planularia complanata (sample RKG-09), 56. Planularia dissona (sample REH-4/2b), 57.

Planularia sp. cf. P. umbonata (sample RKG-02), 58. Planulina stelligera (sample RKG-06),
59. Planulina texana Cushman (sample REH-4/2b), 60. Pleurostomella subnodosa (sample
RKG-11), 61. Praebulimina sp. (sample RKG-08a), 62. Praebulimina robusta (sample RKG-
07), 63. Praebulimina ventricosa (sample RKG-02), 64. Pullenia minuta (sample RKG-03),
65. Pullenia reussi (sample RKG-03), 66. Ramulina aculeata (sample RKG-03), 67. Rotalia
polyrraphes (sample REH-4/4u), 68. Scheibnerova sp. (sample RKG-03), 69. Tappanina
laciniosa (sample RKG-12). Length of scale bars: 0.1 mm.

Figure 11. Benthic foraminiferal size-trends and interpretation. Closed circles indicate
frequency of large specimens >0.250 mm, open circles for specimens of 0.125 to 0.250 mm,
and black diamonds for small specimens from 0.063 to 0.125 mm. Absence of symbols
indicates absence of specimens in the sample. Note the logarithmic scale.

Figure 12. Frequency of planktic foraminiferal genera during the Cenomanian-Turonian
boundary interval and simple diversity (number of taxa) of planktic and benthic foraminifera.

Key to genera: closely dotted line - Gymbelitria, narrowly dashed line with open circles -
Schackoina, poin-dash line with open circles - Heterohelix, double pointed line -
Praeglobotruncana, widely dashed line - Whiteinella, continuous line - Hedbergella.

Table 1. Distribution of planktic foraminifera picked. Data for sample REH 4/1 are displayed
in italics because of the allochthone origin of the specimens.

Table 2. Distribution of benthic foraminifera picked. Data for sample REH 4/1 are displayed
in italics because of the allochthone origin of the specimens.

Table 3. Distribution of radiolaria picked.

Table 4. δ^{13}C$_{org}$ and abundances of planktic and benthic foraminifera and of radiolaria.
<table>
<thead>
<tr>
<th>Late Cenomanian</th>
<th>Early Turonian</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC 10</td>
<td>CC 11</td>
</tr>
<tr>
<td>UC 4</td>
<td>UC 5-6</td>
</tr>
<tr>
<td>UC 7</td>
<td>UC 7</td>
</tr>
<tr>
<td>R. cushmani</td>
<td>W. archaeocretacea</td>
</tr>
</tbody>
</table>

Nannofoss. biostrat.
Planktic foram. zones
Foraminiferal index species
Lithology
Samples (this paper)

\[
\begin{array}{c}
\text{CaCO}_3 \\
\text{LO Rotalipora spp.} \\
\text{FO H. helvetica} \\
\text{Samples (this paper)} \\
\end{array}
\]

\[
\begin{array}{c}
\text{13C carb} \\
\text{13C org} \\
\end{array}
\]
CC 10
Late Cenomanian
- UC 4

CC 11
Early Turonian
- UC 5-6
- UC 7

Rotalipora cushmani Zone
- *Rotalipora* cushmani
- *Corollithion kennedyi*
- *Lithraphidites acutus*

Enoplolithus odontopetalus Zone
- *E. odontopetalus* & *Quadrum cf. intermedium*

Quadrum gartneri Zone
- *Quadrum gartneri*
- *H. helvetica*

H. helvetica Zone
- *H. helvetica*
- *E. octopetalus* & *Quadrum cf. intermedium*

UC 7
- *Rotalipora* cushmani
- *Corollithion kennedyi*
- *Lithraphidites acutus*

PLANKTONIC FORAMINIFERA

- *Dicarinella hagni*
- *D. imbricata*
- *D. spp. indet.*
- *Globigerinelloides sp. indet.*
- *H. praehelvetica*
- *H. helvetica*
- *Crucella sp. A*
- *C. sp. B*
- *C. spp. indet.*
- *Dictyomitra spp. indet.*
- *?Gongylothorax spp. indet.*

RADIOLARIA

- *Ammodiscus cretaceus*
- *Eggerellina sp. indet.*
- *Lenticulina spp. indet.*
- *Marssonella oxycona*
- *Pleurostomella spp. indet.*
- *Textularia spp. indet.*

MICRO-FACIES

- *Calcispheres (circular)*
- *Calcispheres (elliptical)*
- *Fine-scale bioturbation*
- *Visible organic matter*
high numbers of small and large specimens
very low numbers of small and no large specimens

very low oxic/ dysoxic
oxic

Benthic foraminiferal trend

UC 4
UC 5-6
UC 7

R. cushmani
W. archaeocretacea
H. helvetica

0.125-0.250 mm
0.063-0.125 mm
> 0.250 mm
no. of taxa 15

Planktic taxa

Hedbergella

Benthic taxa

Whiteinella
Heterohelix

Praeglobotruncana

Gümbelitria
Schackoina
Hedbergella

UC 7

UC 5-6

UC 4

H. helvetica
W. archaeocretacea
R. cushmani
A: Fraction >0.250 mm

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RKG-01</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKG-02</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKG-03</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKG-04</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>214</td>
<td>80</td>
<td>66</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>32</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>75</td>
<td>41</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-05</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>27</td>
<td>4</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>39</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-06</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>271</td>
<td>41</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>54</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>61</td>
<td>17</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: Fraction 0.125-0.250 mm

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RKG-01</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKG-02</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKG-03</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>53</td>
<td>25</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>21</td>
<td>35</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RKG-04</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>214</td>
<td>80</td>
<td>66</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>32</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>75</td>
<td>41</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-05</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>79</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>27</td>
<td>4</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>39</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-06</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>271</td>
<td>41</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>54</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>61</td>
<td>17</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C: Fraction 0.063-0.125 mm

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RKG-01</td>
<td>16384</td>
<td>1</td>
<td>223</td>
<td>47</td>
<td>15</td>
<td>22</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>54</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-02</td>
<td>8192</td>
<td>2</td>
<td>261</td>
<td>39</td>
<td>19</td>
<td>41</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>74</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-03</td>
<td>8192</td>
<td>3</td>
<td>255</td>
<td>66</td>
<td>16</td>
<td>34</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>28</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-04</td>
<td>8192</td>
<td>4</td>
<td>333</td>
<td>61</td>
<td>13</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>41</td>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-05</td>
<td>8192</td>
<td>4</td>
<td>296</td>
<td>40</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>37</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-06</td>
<td>8192</td>
<td>5</td>
<td>269</td>
<td>40</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>37</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-07</td>
<td>8192</td>
<td>6</td>
<td>296</td>
<td>40</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>37</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-08</td>
<td>8192</td>
<td>7</td>
<td>143</td>
<td>26</td>
<td>1</td>
<td>13</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>35</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-09</td>
<td>8192</td>
<td>8</td>
<td>243</td>
<td>49</td>
<td>9</td>
<td>27</td>
<td>18</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-10</td>
<td>8192</td>
<td>9</td>
<td>243</td>
<td>49</td>
<td>9</td>
<td>27</td>
<td>18</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-11</td>
<td>8192</td>
<td>10</td>
<td>48</td>
<td>19</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>153</td>
<td>186</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Genus</td>
<td>Species</td>
<td>Format</td>
<td>nodule</td>
<td>Calcareous</td>
<td>stroll</td>
<td>Cerithidea</td>
<td>Dentalina</td>
<td>Gyroidinoides</td>
<td>Haplophragmium</td>
<td>cf</td>
<td>Lenticulina</td>
<td>N. albertensis</td>
<td>P. pinswangensis</td>
<td>Nodosaria</td>
<td>Planularia</td>
<td>Saccammina</td>
<td>Trochammina</td>
<td>unknown calcareous foraminifera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>----</td>
<td>------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-01</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REH4/2</td>
<td>8192</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-02</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-07</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-08</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REH4/2</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-03</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-04</td>
<td>8192</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REH2/3</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-05</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-06</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-07</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-08</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REH4/2</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-09</td>
<td>4096</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REH2/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-10</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RKG-11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L. lorangerae
D. Dentalina
G. Gyroidinoides
H. Haplophragmium
N. Nodosaria
P. Planularia
S. Saccammina
T. Trochammina
V. V. münsteri
W. Wheelerella

- **Sample**: The sample number or identifier.
- **Genus**: The genus of the organism.
- **Species**: The species of the organism.
- **Format**: The format of the measurement.
- **nodule**: The number of nodules.
- **Calcareous**: The percentage of calcareous material.
- **stroll**: The percentage of stroll material.
- **Cerithidea**: The percentage of Cerithidea material.
- **Dentalina**: The percentage of Dentalina material.
- **Gyroidinoides**: The percentage of Gyroidinoides material.
- **Haplophragmium**: The percentage of Haplophragmium material.
- **cf**: The percentage of cf material.
- **Lenticulina**: The percentage of Lenticulina material.
- **N. albertensis**: The percentage of N. albertensis material.
- **P. pinswangensis**: The percentage of P. pinswangensis material.
- **Nodosaria**: The percentage of Nodosaria material.
- **Planularia**: The percentage of Planularia material.
- **Saccammina**: The percentage of Saccammina material.
- **Trochammina**: The percentage of Trochammina material.
- **unknown calcareous foraminifera**: The percentage of unknown calcareous foraminifera material.

The table contains data on the composition of various foraminifera species and genera, categorized by genus and species, with measurements for nodule, calcareous, stroll, Cerithidea, Dentalina, Gyroidinoides, Haplophragmium, cf, Lenticulina, Nodosaria, Planularia, Saccammina, Trochammina, and unknown calcareous foraminifera.
<table>
<thead>
<tr>
<th>sample</th>
<th>Fraction >0.250 mm</th>
<th>Fraction 0.125-0.250 mm</th>
<th>Fraction 0.063-0.125 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>split no.</td>
<td>split no.</td>
<td>split no.</td>
</tr>
<tr>
<td>RKG-01</td>
<td>32 0</td>
<td>32 67</td>
<td>512 90</td>
</tr>
<tr>
<td>RKG-02</td>
<td>16 10</td>
<td>32 195</td>
<td>512 85</td>
</tr>
<tr>
<td>RKG-12</td>
<td>32 0</td>
<td>64 55</td>
<td>1024 16</td>
</tr>
<tr>
<td>RKG-03</td>
<td>32 1</td>
<td>64 55</td>
<td>1024 15</td>
</tr>
<tr>
<td>REH 4/4 u</td>
<td>32 0</td>
<td>64 66</td>
<td>512 32</td>
</tr>
<tr>
<td>REH 4/4 o</td>
<td>16 0</td>
<td>32 51</td>
<td>128 25</td>
</tr>
<tr>
<td>REH 4/2b</td>
<td>16 0</td>
<td>32 40</td>
<td>256 17</td>
</tr>
<tr>
<td>RKG-04</td>
<td>16 0</td>
<td>64 45</td>
<td>512 30</td>
</tr>
<tr>
<td>RKG-05</td>
<td>16 2</td>
<td>32 85</td>
<td>256 35</td>
</tr>
<tr>
<td>RKG-14</td>
<td>16 9</td>
<td>64 86</td>
<td>512 60</td>
</tr>
<tr>
<td>RKG-15</td>
<td>4 94</td>
<td>64 113</td>
<td>16 28</td>
</tr>
<tr>
<td>RKG 2/31</td>
<td>16 105</td>
<td>256 31</td>
<td>256 4</td>
</tr>
<tr>
<td>RKG 2/32</td>
<td>2 5</td>
<td>4 124</td>
<td>16 44</td>
</tr>
<tr>
<td>RKG-06</td>
<td>1 303</td>
<td>16 304</td>
<td>8 117</td>
</tr>
<tr>
<td>RKG-07</td>
<td>1 99</td>
<td>32 188</td>
<td>64 108</td>
</tr>
<tr>
<td>RKG-08a</td>
<td>1 2</td>
<td>8 0</td>
<td>2 11</td>
</tr>
<tr>
<td>RKG-09</td>
<td>32 1</td>
<td>512 52</td>
<td>1024 33</td>
</tr>
<tr>
<td>RKG-10</td>
<td>32 0</td>
<td>128 16</td>
<td>256 44</td>
</tr>
<tr>
<td>RKG-11</td>
<td>32 2</td>
<td>256 38</td>
<td>512 50</td>
</tr>
<tr>
<td>Sample</td>
<td>Lithology</td>
<td>13Corg</td>
<td>Dry sample weight</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>RKG-01</td>
<td>marl</td>
<td>-25.38</td>
<td>129</td>
</tr>
<tr>
<td>RKG-02</td>
<td>marl</td>
<td>-25.92</td>
<td>132</td>
</tr>
<tr>
<td>RKG-12</td>
<td>marl</td>
<td>-25.95</td>
<td>176</td>
</tr>
<tr>
<td>RKG-03</td>
<td>marl</td>
<td>-25.02</td>
<td>218</td>
</tr>
<tr>
<td>REH 4/4 u</td>
<td>calcareous marl</td>
<td>n.d.</td>
<td>191</td>
</tr>
<tr>
<td>REH 4/4 o</td>
<td>marl</td>
<td>n.d.</td>
<td>36</td>
</tr>
<tr>
<td>REH 4/2 b</td>
<td>marl</td>
<td>n.d.</td>
<td>106</td>
</tr>
<tr>
<td>RKG-04</td>
<td>marl</td>
<td>-25.64</td>
<td>175</td>
</tr>
<tr>
<td>RKG-05</td>
<td>marl</td>
<td>-24.89</td>
<td>69</td>
</tr>
<tr>
<td>RKG-06</td>
<td>marl</td>
<td>-25.12</td>
<td>86</td>
</tr>
<tr>
<td>RKG-07</td>
<td>marl</td>
<td>-25.12</td>
<td>86</td>
</tr>
<tr>
<td>RKG-15</td>
<td>black shale</td>
<td>-24.01</td>
<td>61.2</td>
</tr>
<tr>
<td>REH02/31m</td>
<td>black shale</td>
<td>-23.80</td>
<td>n.d.</td>
</tr>
<tr>
<td>REH 2/31</td>
<td>black shale</td>
<td>-23.30</td>
<td>199</td>
</tr>
<tr>
<td>REH 2/32</td>
<td>clayey marl</td>
<td>-24.11</td>
<td>95</td>
</tr>
<tr>
<td>RKG-06</td>
<td>black shale</td>
<td>-24.65</td>
<td>147</td>
</tr>
<tr>
<td>RKG-07</td>
<td>clayey marl</td>
<td>-24.65</td>
<td>257</td>
</tr>
<tr>
<td>RKG-08</td>
<td>marl</td>
<td>n.d.</td>
<td>110</td>
</tr>
<tr>
<td>RKG-09</td>
<td>marl</td>
<td>-25.77</td>
<td>662</td>
</tr>
<tr>
<td>RKG-10</td>
<td>marl</td>
<td>-28.73</td>
<td>85</td>
</tr>
<tr>
<td>RKG-11</td>
<td>marl</td>
<td>-28.08</td>
<td>214</td>
</tr>
</tbody>
</table>

n.d. = not determined