d impact of
ponents

RC Southampton University
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Fig 5.1: Internet traffic & penetration
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US internet traffic still growing at x4 per year — Roberts et al. 2001, Caspian Networks
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Niels Bohr, Nobel Laureate @

"The future isn't what it used to be !" —

IBM PC executive 1992 =/
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Sreatpredictions: ofithe 20t century

SLOCKSI HEVENEaCheaWwnatlooks! like glpermanently high plateau.”

==rving| FisherpProfessor of Economics, Yale University, 1929

4B
‘Everyiningthat can be inventec T'n«p peen invented.”

J

-- CharlestH=Duelii=Commissioner, U.S. Office of «J‘tsl ts, 1899

--Bill Gates, Free Market and the LA Times

“Bandwidth is like health-care — you can never have too much”
-- David Payne ECOC 2000




-
tury technical predictions

- emas, 88 ”‘..
Fig. 17.2 A French prediction

? =T £ ?
for the year 2000. Le photo-telephone

Laszlo Solymar: Getting the message




“This 'telephone’ has too many shortcomings to be seriously considered as a
means of communication. The device is inherently of no value to us.”
-- Western Union internal memo, 1876.

Laszlo Solymar: Getting the message
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2 telecommunications

- The optimum mix

El
bl

larization management

- Integration and cost reduction %

e
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- Towards 3

efficiency

um — 1.7um

g technology (Fibre, Raman, Diode?)

z‘uires better wavelength control

SOUTHAMPTON



Gain (dB)
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Spectral Region covered by Fiber Amplifiers

PDFA : Praseodymium-doped FA
TDFA : Thulium-doped FA
EDTFA : Erbium-doped Tellurite FA
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-doped fibre amplifier

-

A\

-
N

thulium

erbium

)

=
N

c o

5 S

c @ .%

® P s

| e © Length 70cm

® = NA 0.4

e ]

3 0.4 £

b4 4

1460 1480 1500 1520 1540

wavelenath (nm)
-y \ 7

» Telluride glass fibre L
+ 800nm/1064 double pump scheme =/
SOUTHAMPTON




y Problem

i
L]
A0

2rs, add/drops, routers) are

CIHIC

ired for 160-channel systems

Wi .*h

cdI\C C 21 1Y Wlditauic (U ig‘*':ig

-

. The plug-and-play network?

- New fail-safe component configurations ,7
Remote provisioning%.

SOUTHAMPTON




€ length self-routing

for space switching

N 2ly tuned to the ITU grid
- Da “

alayY -
7 [

\D v
)

* These are tough requirements! %

e
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G-DBR Tunable Laser Source

Module 9831L Tuning Comb; Superimposed
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University
of Southampton

Tunable grating filters and DFB lasers
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- 04
- 0.2
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® Compression-tunable Bragg grating filter

Record 70nm continuous tuning-range
(1544nm — 1614nm)
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M. Ibsen et al., ORC , 2002.
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M. Ibsen et al., “Advanced fibre Bragg grating devices”,
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m [he most effective optical switch is mechanical!
m [he smaller the mass the faster the switch
Speed in ms range at present

AY.SY _-N_V_ H\
v

SOUTHAMPTON






Background

Silica holey fibre

«Core formed by solid region A XXX AAA Y
p g .. .!.l.l...l.l.l.l.t‘l‘:‘~‘
*Air holes act as fibre cladding Q‘!. ‘l l‘l.l.l .l‘l‘l‘!‘t‘Q.'
A
A1 AN AT

‘Wavelength-scale features lead to CERAERLAERERRLR l.
novel optical properties '.'.‘.““. * .'.‘.‘.“"‘

AN A AN CERCRAN
*Made by stacking capillaries JUSCIUIOIUU SO

CERERRRRRRARARN
Cel .
I'l L l.l.i.l I.l.l‘l‘(‘l‘l

AR AN
ll‘llllll!! ]

10 microns

Small core (3um2)
L

large air-fraction cladding — LOW switching threshold

-~ Tight mode confinement



Swutchinglregeneration
Results

. switching power

j’

a
I < 0.04 7 noisy data
\g/ : T 10%
I “;’ 0.03 -
@)
o
§- 0.0 Transfer function of
3 0.01 - the data regeneration regenerated data
device ]5‘*. A
' ' ' ' / %j \
0 10 20 30 40 B AL

Input Power (W)

Further large reductions in switching power by using soft glass



Soft-glass preform extrusion

e

Advantages:
«Controllable/Reproducible  Fewer interfaces c.f. stacking
«Good surface quality « Wider range of profiles possible

-Efficient use of glass . Suitable for many materials



predicted
mode profile

Can be polarization preserving
Dispersion =100ps/nm/km (anomalous)

SF57 glass has nonlinearity 20x silica



Holey Fibre Raman Amplifier

Pump Laser
A: 1536nm > ]

() AOTF

Optical

Spectrum
Analyser

e High nonlinearity fiber gives reduced device length/pump power
e Pumped using high power amplifier

« Gains up to 42dB, noise figure 6dB demonstrated



Wavelength Conversion through
a Nonlinear Optical Loop Mirror

DSF 1 km
A,: 1550nm

10GHz Control Pulses —>4[> 50:50

coupler
Continuous Wave —» EDFA z ,  Wavelength
F_’I’: Converted Pulses
inter

Arb. Amplitude (dB)

-15
-20 ;
25 ;
-30 ;
-35 ;
-40 ;
45 ;
-50 ;

-55
1540 1541 1542 1543 1544 1545 1546 1547 1548

1.0 -

SHG Intensity (arb. unit)
(9]

o
, ©

Wavelength (nm) Time Delay (ps)



EENVAsIve power

P~

cost of pumpidiodesiis diopping rapldly
OSISTAIOPNIERVVATO kigéﬂ- ea high-power devices

estS Wil BEranveni by the emerging industrial solid-state
aser market (cutting, welding, defense)

ties for: parallel-pumping of telecom devices

ulse instrumentation

X-ray generation
TRY)

SOUTHAMPTON




Outputs

Up to Tkm
-

Semiconduc
(non-channel spe

Multi-laser or -amplifier pack

Advantages
- Power management at convenient locations

- Cost savings by sharing reduced no. of SDLs

N

< Built-in SDL pump redundancy

7 Inventory problem solved by non-channel-specific SDLs @gy
SOUTHAMPTON
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Cladding Pumped Fibre Device

* Large inner cladding guides MM pump beam
 RE-doped core converts pump to high brightness signal

»  Core diameter — 5- 50 mm

* Pump cladding diameter 50 — 500 mm

* Device length 1 — 100 m (depends on core/cladding ratio)

4 July 2001 Optical Amplifiers and Their Applications @
Stresa, Italy



976 nm Fibre Laser:

Yb-Doped Fibre

Pump cladding — 35 pm
Pump NA= 0.4 nm

* Fibre efficiency > 70%
Device length — <40 cm
2W output at 976nm

B150kv 6.0 500x  BSE 10.1 0.3 Torr

4 July 01 o Optical Amplifiers and Their Applications @
Stresa, Italy
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Modul e Layout

977nm CW Yb-fibre-laser 980nm 1 x 8 splitter ~ 1550nm fibre DFB-laser 50GHz array
(3dB couplers @ 980nm)

Channel 1
Channel 2
Channel 3
Channel 4

Channel 5

sindino

Channel 6

Channel 7

Channel 8

Single fiber pump source
10 — 16 dBm channel output
Shared pump prevents channel failure

E
@
=
=
o
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Q
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&
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B
E
=
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Q
=
o
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o
w
a

8-channel DFB Array

Chan 1 Chan 8
a) i | 1 A i 1 o) Voo
il = G
A = A e |
R\ 1 1 e e A WA o o
It o e s o s et Yt
LN N NN NN NN
,..N/’{‘ i Boq o B N T
iR it
1550.4 1651.2 1552.0 1552.8 1553.6 1554 .4
b) W avelength [nm]
=
= = .
0 100 200 360 460 500 600 700 800 900 10’00

977nm pump incident in 1x8 splitter [MW]

Strictly Private. Not to be distributed without prior consent of Southampton Photonics, Inc.
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High Power Er/Yb Fibre Amplifier

* 5.5 W output power at 1550nm

« Efficiency close to theoretical
limit

* Small signal gain >50dB

* Noise <5dB 1533 -1560nm

Saturated Output Power, W

0 2 4 6 8 10 12
Absorbed Power, W

Scalable to 1kW and above?

4 July 2001 Optical Amplifiers and Their Applications @
Stresa, Italy



st sensitive 6L

e A d ¢ 2ms assembly is still done manually!

_|N " n&tmi

v |
-

ques - replication, stamping, polymers

There is no optical equivalent of silicon!

How far have we got with partial integration? @4%&
=/

SOUTHAMPTON




7 u.nsm\_\;nmﬁ_ﬂi-,

PC motherboard
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PRGLIORICS |

1948 Manchester Mk1 valve computer W
SOUTHAMPTON



Phelenicintec iration

e

A4l Detector
Urop o, .
Multiplexer -

Y,

UC Santa Barbara

» 3-dimensional optical circuits give increased freedom

SOUTHAMPTON



_} ide technologies

ice performance

*Will we sacri

'or cost? %

e

SOUTHAMPTON



Silica-on-silicon glass Deposition and Core Structures &

Glass deposition in FHD Core ridge structures in Embedded core
directional coupler after RIE



NEL

Close-up View of AWG




. . - NTT
Phase-Error Compensation using UV Irradiation et @
UV laser light

Metal mask< ;

A

\

Array waveguides

Half-wave plate
st and 2nd 4

metal masks

(a) Collective phase trimming (b) UV irradiation through metal masks

} il "u”ﬁﬂ.!"& Mﬂ[ ‘i@fﬁ!‘“’i‘l‘ !“!M”"W i \"’W M "W

‘M a’m

1555 1560 WAVELENGTH (nm) 1565 1570
(c) Transmis characteristics of 160ch-10GHz AWG
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PLC Micro-mirror for Surface Coupling

Bird’-eye view

Cross-sectional photograph
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Slica Ratfor m+ Hip-chp MOEMS

Slica wavegu des

8 aray MS ch pflip-ch p
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Passli ve/ MOEMS HybridInt egrati on

AWG+VOA+TDA
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]00100)0)0101001%)

QROARCRR




) -
1.? e i T LT

- ol e = ;
et S T T SR

Cheap optical fibres Expensive components gg /

I\

e

« Can we bridge the gap? SOUTHAMPTON



Signal

monitor Output

Pump a ° compound-glass substrate %

Signal fE@ v

SOUTHAMPTON
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University
of Southampton

Hot Dip Spin Coating of
Planar Glass Waveguides

Boron nitride

/ vacuum chuck

Undoped glass
substrate

430C .Nd—doped Neodymium doped
e SPIN coated film A O/ glass film (Sum)
1000C X Undoped overcladding
Undoped molten Glass (20um)

overcladding glass

o UV writing lowers refractive index of channel.

e Use 2-Step process to produce 5um thick planar waveguide.
e Guide between channels pumped at 800nm (100mW).

e Lasing at 1317nm observed.




or photorefractivity

® Cerium doping leads to
strong UV absorption

® CW exposure with
frequency doubled argon
ion laser and 6u spot

® Writing speed 1.2-
630mm/min

® Laser power 0.5W

CD and DVD rewritable technology is thermal!



a)-0.03m/min

0.3m/min
0.5m/min
0.7m/min
1.0m/min

1.5m/min

Losses 0.38 + 0.05 dB/cm



Simultaneously UV-Written Planar Waveguides
and Bragg Gratings

Taper - width +
refractive index

— nected first,

then waveguides

written to the fibre
Encoded grating core

Phase shifts

e Gratings can be chirped, appodised and contain phase shifts
« Waveguides can be aligned to the fibre rather than the fibre to the waveguide
e Mode converting tapers



Planar silica waveguide with UV written Bragg grating

C 55+ £
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S|y , field access gratings
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Femtosecond Direct-writing:
The Principle

o Tight focusing of laser into glass

e High intensity leading to multi-
photon absorption

e Structural changes in matter
confined to focal volume due to
short pulse duration - 3-D

e Photosensitivity not required

-ve or +ve index changes

Intensity ~ 10" W/cm?
Temperature ~ 10° K
Pressure ~ 106 bar

......
he TMF O N EA N
ry 3

=005 Hirao Active Glass Project



Microscope Images of ‘Fiber Gratings’

Viewing microscope focused:

Gratings : on,surface 5 um below surface
Period = 2 pm .
Depth = 5 pm
Form:

e1-d

e2-d

eHexagonal

Velocity = 200 pm/s

5 um below surface 5 um below surface
A, = 1250 nm 2 um
d =125 um

Shutter open 3 ms Shutter open 3 ms




Prospects for full
integration

Full integration requires light generation, modulation,
switching, routing, filtering and detection

An isolator is really difficult

No current photonics platform satisfies these
requirements

What are the possibilities?



(Silicon) Industry Roadmap v time

Optical fibre/
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Acknowledgements: W J Stewart



Photonic band gap integration
technology

* High confinement implies dense circuits
e Could match electronic densities
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Photonic Integrated Circuits

Joannopoulos, MIT



Conclusions

Despite progress large-scale component integration
remains a dream

There is no winning platform technology for
integration

Glass and IlI/1V semiconductors are the current
leaders

Thermal stabilization remains a problem

Hybrid technologies offer better performance and
higher power

Cost is still an issue and can be reduced by by new
approaches
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