Silica holey fibres: fabrication and nonlinear effects

W Belardi, T M Monro, J H Lee, Z Yusoff, J H V Price, A. Malinowski, A. Piper, and D J Richardson
Optoelectronics Research Centre, Southampton University, Southampton SO17 1BJ, UK
Tel: +44 2380 597673, Fax: +44 2380 593141, e-mail: wb@orc.soton.ac.uk

Holey fibres (HFs) [1] have emerged as a novel class of optical fibres which can provide completely new optical properties, such as endlessly single mode operation and novel dispersion properties as anomalous dispersion below 1.3µm, broadband flat dispersion and highly normal dispersion at 1.55 µm. Moreover by changing the HF parameters (i.e. hole and core size), it is possible to fabricate HFs with an effective area so high as 800µm² or so low as approximately 1µm² [2].

A holey fibre perform is fabricated by stacking silica rod and capillaries inside a silica tube. This perform is then drawn to a fibre using a conventional fibre drawing equipment.

In particular we will discuss the basic fabrication procedure for the production of HFs with a very high nonlinearity, and describe recent progress in nonlinear applications of HFs.

For example we have demonstrated for the first time a HF-based Brillouin laser. This experiment used a robust silica jacketed HF with a 1.5 µm core, a 100µm outer diameter (see figure 1) and an effective area of 2.85µm². The laser threshold was found to be 125mW, and the slope efficiency ∼70% [3].

By using the same fibre perform and modifying the drawing parameters during the fabrication process, we obtained a different HF with a standard outer dimension of 125µm and a 2µm core. Using this fibre we achieved ultra-broad supercontinuum generation, as shown in figure 2, by launching 20KW peak power pulses at 1.06µm into 7 meter fibre length[4].

References