

Silica holey fibres: fabrication and nonlinear effects

W Belardi, T M Monro, J H Lee, Z Yusoff, J H V Price, A. Malinowski, A. Piper, and D J Richardson

Optoelectronics Research Centre, Southampton University, Southampton SO17 1BJ, UK
Tel: +44 2380 597673, Fax: +44 2380 593141, e-mail: wb@orc.soton.ac.uk

Holey fibres (HFs) [1] have emerged as a novel class of optical fibres which can provide completely new optical properties, such as endlessly single mode operation and novel dispersion properties as anomalous dispersion below $1.3\mu\text{m}$, broadband flat dispersion and highly normal dispersion at $1.55\mu\text{m}$. Moreover by changing the HF parameters (i.e. hole and core size), it is possible to fabricate HFs with an effective area so high as $800\mu\text{m}^2$ or so low as approximately $1\mu\text{m}^2$ [2]. A holey fibre perform is fabricated by stacking silica rod and capillaries inside a silica tube. This perform is then drawn to a fibre using a conventional fibre drawing equipment.

In particular we will discuss the basic fabrication procedure for the production of HFs with a very high nonlinearity, and describe recent progress in nonlinear applications of HFs.

For example we have demonstrated for the first time a HF-based Brillouin laser. This experiment used a robust silica jacketed HF with a $1.5\mu\text{m}$ core, a $100\mu\text{m}$ outer diameter (see figure 1) and an effective area of $2.85\mu\text{m}^2$. The laser threshold was found to be 125mW , and the slope efficiency $\sim 70\%$ [3].

Fig 1. SEM of a HF with a $1.5\mu\text{m}$ core

Fig 2. Broadband continuum spectra

By using the same fibre perform and modifying the drawing parameters during the fabrication process, we obtained a different HF with a standard outer dimension of $125\mu\text{m}$ and a $2\mu\text{m}$ core. Using this fibre we achieved ultra-broad supercontinuum generation, as shown in figure 2, by launching 20KW peak power pulses at $1.06\mu\text{m}$ into 7 meter fibre length[4].

References

- [1] J C Knight, T A Birks, P St J Russell, and D M Atkin, 1996, *Opt. Lett.* **21**, 1547-9
- [2] T M Monro, D J Richardson, N G R Broderick, P J Bennett, 1999, *J. Lightwave Technol.*, **17**, 1093-1102
- [3] Z Yusoff, J H Lee, W Belardi, M Ibsen, T M Monro, and D J Richardson, 2001, CLEO, paper CMJ7
- [4] J H V Price, W Belardi, T M Monro, A. Malinowski, A. Piper, and D J Richardson, 2001, *Optics Express*, Vol. 10, n. 8