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INTERFACES IN NUMERICAL RELATIVISTIC HYDRODYNAMICS

by Stephen Timothy Millmore

This thesis investigates numerical techniques for modelling sharp interfaces
between relativistic fluids. The motivation for this work lies in obtaining ac-
curate models of neutron star interiors for use in multidimensional simulations
in general relativity. The interior structure of a neutron star is believed to
contain several regions, often separated by sharp transition layers. These lay-
ers are too thin to be explicitly incorporated in a numerical simulation of the
entire star. We investigate how techniques can be developed to model these
layers as sharp interfaces, across which the matter model can change, with
the microphysical behaviour of the transition layer described through some
appropriate boundary conditions.

The physical situations in which strong, detectable, gravitational waves are
produced are, by their nature, violent events. As a result, we expect that large
non-linear features, such as shock waves, will be formed. Therefore it is essen-
tial that the techniques developed to incorporate these sharp interfaces allow
for their interaction with non-linear features in a stable manner numerically.

The techniques required for modelling sharp interfaces between two fluid
components has not previously been considered in relativity. However, in New-
tonian computational fluid dynamics, the boundary conditions required for
stable, accurate behaviour across a sharp interface between two fluids, mod-
elled using level set methods, have been developed. These techniques lend
themselves naturally to an extension to the relativistic situations we wish to
consider. In this thesis we start from the Ghost Fluid Method of Fedkiw et al.
We first investigate whether it can be extended to simple relativistic situations,
hence use special relativity in 1+1 dimensions. In order to use this method in
neutron star simulations, however, full general relativity is required. We there-
fore extend these initial results to a spherically symmetric self-gravitating body
in 1+1 dimensional general relativity. Finally, since gravitational wave produc-
tion requires a fully asymmetric system, we show that our method extends to
multidimensional relativistic situations. To this end, the final chapter presents
results using 2+1 dimensional special relativistic simulations.



Contents

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

1.1 Neutron stars and general relativity . . . . . . . . . . . . . . . . 2

1.2 Neutron star formation and structure . . . . . . . . . . . . . . . 3

1.3 Gravitational waves from neutron stars . . . . . . . . . . . . . . 12

1.3.1 Gravitational wave detection . . . . . . . . . . . . . . . . 16

1.4 Modelling a neutron star . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Current neutron star simulations . . . . . . . . . . . . . 21

1.4.2 Modelling interfaces in a neutron star . . . . . . . . . . . 23

1.5 Notation and structure . . . . . . . . . . . . . . . . . . . . . . . 25

2 Theoretical basis 28

2.1 Newtonian fluid evolution equations . . . . . . . . . . . . . . . . 28

2.1.1 Spherically symmetric fluid evolution equations . . . . . 33

2.2 Relativistic fluid evolution equations . . . . . . . . . . . . . . . 34

2.2.1 3+1 decomposition of the Einstein equations . . . . . . . 38

2.2.2 The special relativistic fluid evolution equations . . . . . 43

2.2.3 The general relativistic fluid evolution equations in spher-

ical symmetry . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1 Wave types in the Newtonian Riemann problem . . . . . 60

2.4.2 Solving the Newtonian Riemann problem . . . . . . . . . 65

2.4.3 Wave types in the special relativistic Riemann problem . 68

2.4.4 Solving the special relativistic Riemann problem . . . . . 71

ii



CONTENTS iii

2.4.5 The special relativistic Riemann problem with non-zero

tangential velocities . . . . . . . . . . . . . . . . . . . . . 72

2.5 Approximate Riemann solvers . . . . . . . . . . . . . . . . . . . 75

2.5.1 Newtonian HLLE solver . . . . . . . . . . . . . . . . . . 76

2.5.2 Relativistic HLLE solver . . . . . . . . . . . . . . . . . . 77

2.5.3 Roe and Marquina solvers . . . . . . . . . . . . . . . . . 78

2.6 The TOV equations . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.6.1 The TOV equations for multicomponent stars . . . . . . 82

2.7 Recovering the primitive variables . . . . . . . . . . . . . . . . . 84

3 Numerical methods 87

3.1 Method of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Runge-Kutta methods . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 The Lax-Wendroff Theorem and convergence . . . . . . . . . . . 94

3.3.1 Measuring convergence . . . . . . . . . . . . . . . . . . . 98

3.4 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.1 Minmod slope limiter . . . . . . . . . . . . . . . . . . . . 103

3.4.2 MC limiter . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.3 PPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4.4 Alternative reconstruction methods . . . . . . . . . . . . 107

3.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5.1 Exact boundary conditions . . . . . . . . . . . . . . . . . 109

3.5.2 Periodic boundary conditions . . . . . . . . . . . . . . . 110

3.5.3 Solid boundary conditions . . . . . . . . . . . . . . . . . 110

3.5.4 Far-field boundary conditions . . . . . . . . . . . . . . . 111

3.5.5 Vacuum boundary conditions . . . . . . . . . . . . . . . 112

3.6 Source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.7 Multicomponent fluids . . . . . . . . . . . . . . . . . . . . . . . 113

3.7.1 Level set methods . . . . . . . . . . . . . . . . . . . . . . 117

3.7.2 The level set function . . . . . . . . . . . . . . . . . . . . 119

3.7.3 Numerical methods for the level set function . . . . . . . 122

3.7.4 Ghost Fluid Method . . . . . . . . . . . . . . . . . . . . 124

3.7.5 Alternative methods . . . . . . . . . . . . . . . . . . . . 130

3.8 Atmosphere treatment . . . . . . . . . . . . . . . . . . . . . . . 131



CONTENTS iv

4 Results 133

4.1 Preliminary results for Newtonian hydrodynamics . . . . . . . . 133

4.1.1 Motivation for use of the Ghost Fluid Method . . . . . . 134

4.1.2 The Newtonian Ghost Fluid Method . . . . . . . . . . . 138

4.2 The Ghost Fluid Method in special relativity . . . . . . . . . . . 145

4.2.1 Comparison of reconstruction methods for the Ghost

Fluid Method in special relativity . . . . . . . . . . . . . 167

4.3 The Ghost Fluid Method in general relativity . . . . . . . . . . 170

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5 2+1 dimensional Ghost Fluid Method 190

5.1 Numerical techniques for solving multidimensional equations . . 190

5.2 Multicomponent fluids in more than one dimension . . . . . . . 192

5.2.1 Level set methods . . . . . . . . . . . . . . . . . . . . . . 192

5.2.2 Ghost Fluid Method . . . . . . . . . . . . . . . . . . . . 192

5.2.3 Relativistic effects in the Ghost Fluid Method . . . . . . 194

5.3 Higher order methods for the level set evolution . . . . . . . . . 194

5.4 Results for the Newtonian multidimensional Ghost Fluid Method197

5.5 Results for the special relativistic multidimensional Ghost Fluid

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.5.1 Comparing the velocity extrapolation techniques . . . . . 198

5.5.2 Bubble tests for the Ghost Fluid Method in special rel-

ativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 Conclusions 212

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

A Calculations for relativistic equations 217

A.1 Derivation of the 3+1 decomposition of the Einstein equations . 217

A.1.1 Projection operators . . . . . . . . . . . . . . . . . . . . 217

A.1.2 Extrinsic curvature tensor . . . . . . . . . . . . . . . . . 221

A.1.3 Preliminary results for the 3+1 decomposition of the

Einstein equations . . . . . . . . . . . . . . . . . . . . . 224

A.1.4 The 3+1 split of the Einstein equations . . . . . . . . . . 231

A.1.5 The Lorentz factor . . . . . . . . . . . . . . . . . . . . . 236



CONTENTS v

A.2 Derivation of the spacetime and fluid evolution equations in

spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.2.1 Spacetime quantities . . . . . . . . . . . . . . . . . . . . 238

A.2.2 Hamiltonian constraint . . . . . . . . . . . . . . . . . . . 239

A.2.3 Momentum constraint . . . . . . . . . . . . . . . . . . . 240

A.2.4 Slicing condition . . . . . . . . . . . . . . . . . . . . . . 242

A.2.5 Conservation of rest mass density . . . . . . . . . . . . . 244

A.2.6 Conservation of total energy density . . . . . . . . . . . 246

A.2.7 Conservation of momentum . . . . . . . . . . . . . . . . 248

A.3 Derivation of the TOV equations . . . . . . . . . . . . . . . . . 249

B Calculations for numerical techniques 252

B.1 PPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



List of Figures

1.1 Maximum mass of a neutron star . . . . . . . . . . . . . . . . . 4

1.2 Neutron star interior . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Inner core possibilities . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The 3+1 split . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Possible form of the Riemann problem . . . . . . . . . . . . . . 59

2.3 Rarefaction fan . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Rarefaction shock . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Shock wave characteristics . . . . . . . . . . . . . . . . . . . . . 63

3.1 Conservative vs. non-conservative methods . . . . . . . . . . . . 96

3.2 Minmod slope limiter . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 MC limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Issues at the boundaries . . . . . . . . . . . . . . . . . . . . . . 108

3.5 The level set function . . . . . . . . . . . . . . . . . . . . . . . . 118

3.6 Motivation for the Ghost Fluid boundary conditions . . . . . . . 126

3.7 The Ghost Fluid Method . . . . . . . . . . . . . . . . . . . . . . 129

4.1 The Newtonian Sod test . . . . . . . . . . . . . . . . . . . . . . 135

4.2 The failure of the colour function . . . . . . . . . . . . . . . . . 137

4.3 The Newtonian Sod test with an artificial interface . . . . . . . 139

4.4 A shock wave hitting an interface in Newtonian physics . . . . . 141

4.5 A shock wave hitting a slab of material in Newtonian physics . . 143

4.6 A low resolution version of a shock wave hitting a slab of mate-

rial in Newtonian physics . . . . . . . . . . . . . . . . . . . . . . 144

4.7 A Sod-type test in special relativity . . . . . . . . . . . . . . . . 146

4.8 A moving contact discontinuity in special relativity . . . . . . . 148

vi



LIST OF FIGURES vii

4.9 A zoom of the moving contact discontinuity test . . . . . . . . . 149

4.10 Two rarefaction waves in special relativity . . . . . . . . . . . . 151

4.11 A zoom of the contact discontinuity in the two rarefaction test . 152

4.12 Two shock waves in special relativity . . . . . . . . . . . . . . . 153

4.13 A zoom of the contact discontinuity in the two shock case . . . 154

4.14 A zoom of the shock in the two shock case . . . . . . . . . . . . 155

4.15 A shock hitting a contact discontinuity in special relativity . . . 157

4.16 A zoom of contact discontinuity after it has been hit by a shock 158

4.17 A zoom of various features after a shock has hit a contact dis-

continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.18 A highly relativistic shock hitting a contact discontinuity in spe-

cial relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.19 A shock hitting a slab of material in special relativity . . . . . . 164

4.20 A zoom of a slab hit by a shock . . . . . . . . . . . . . . . . . . 165

4.21 A low resolution version of a shock hitting a slab of material in

special relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.22 An advected sine wave in special relativity: 200 cells . . . . . . 168

4.23 An advected sine wave in special relativity: 800 cells . . . . . . 169

4.24 A shock hitting a perturbed density profile in special relativity:

200 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.25 A shock hitting a perturbed density profile in special relativity:

800 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.26 A stable single component star in general relativity . . . . . . . 173

4.27 Convergence of a stable single component star . . . . . . . . . . 175

4.28 A stable single component star with an artificial interface in

general relativity . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.29 Convergence of a stable single component star with an artificial

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.30 Further examination of a single component star with an artificial

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.31 A two component star with γouter = 1.9 in general relativity . . . 180

4.32 Convergence for a two component star with γouter = 1.9 . . . . . 181

4.33 A two component star with γouter = 5
3

in general relativity . . . 182

4.34 Convergence for a two component star with γouter = 5
3

. . . . . . 183

4.35 A perturbed two component star in general relativity . . . . . . 185



LIST OF FIGURES viii

4.36 Convergence of a perturbed two component star . . . . . . . . . 186

4.37 Velocity and interface movement in a perturbed two component

star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.1 Shock hitting a bubble in Newtonian physics . . . . . . . . . . . 199

5.2 Shock hitting a slab in 2+1 dimensional special relativity . . . . 201

5.3 Shock hitting a bubble in special relativity using MC limiter . . 204

5.4 Shock hitting a bubble in special relativity using PPM . . . . . 205

5.5 Schlieren comparison of shock-bubble interaction . . . . . . . . . 206

5.6 Moderate shock hitting a bubble in special relativity . . . . . . 207

5.7 Large shock hitting a bubble in special relativity . . . . . . . . . 209

5.8 Labelling features from a shock hitting a bubble . . . . . . . . . 210



LIST OF FIGURES ix

DECLARATION OF AUTHORSHIP

I, Stephen Timothy Millmore, declare that the thesis entitled “Interfaces in

Numerical Relativistic Hydrodynamics” and the work presented in the thesis

are both my own, and have been generated by me as the result of my own

original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research

degree at this University;

• where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated;

• where I have consulted the published work of others, this is always clearly

attributed;

• where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself;

• parts of this work have been published as:

Millmore S. T., Hawke I., “Numerical simulations of interfaces in rel-

ativistic hydrodynamics”, 2010, Classical and Quantum Gravity, 27,

015007.

Signed:

Date:



Acknowledgements

I would first like to thank my supervisor Ian Hawke for all his help and guidance

that lead to the production of this thesis. I have enjoyed working with him

immensely, and have learnt to appreciate the intricate workings of numerical

methods.

I am incredibly grateful for the support provided throughout my educa-

tion by my parents, Mike and Alice Millmore, and to my sister, Jennifer, for

teaching (forcing me to learn) how to argue my point.

My time working in Southampton has been enjoyable, and I would like

to thank those in the general relativity group for their support and company.

Notably I thank Sam Lander for coping with my deluded ramblings for three

and a half years, as well as being a continuous source of interesting music.

Throughout the time spent getting code to produce the correct results, and

the final stages of this thesis, I thank Katie Ng for the love, support and cakes.

The task of proof reading my thesis cannot have been an easy one, and I

therefore owe gratitude to those who have dedicated their time to this: Leonie

Hicks, Mike Hogg and, again, Ian.

I feel I should offer a special mention to my housemates, who have caused

me (almost) no problems, and have kept the house in such a state that turning

up to work in the mornings was a much more enjoyable experience than it

might otherwise have been.

Finally I would like to thank everyone who has contributed to my collection

of penguins, both in the office and at home.

x



Chapter 1

Introduction

Astronomical objects have long been identified as valuable test-beds for many

areas of physics since they are subject to conditions that cannot be replicated

in a laboratory situation. Neutron stars (NSs) are a classic example of this,

with a typical mass of ∼ 1.4M⊙ and radius of ∼ 10km, they can achieve a

central density in excess of nuclear density (2× 1014g cm−1) making them one

of the densest objects known [119]. They provide the means to allow us to

probe the extremes of compactness, magnetic field strength and rotation and

provide an environment which may lead to the creation of exotic particles. It

is useful to consider just how extreme these conditions are in a quantifiable

manner. We quantify compactness by determining just how ‘close’ a NS is

to being a black hole (BH) (i.e. how close it is to the Schwarzschild radius).

Specifically if we take 2 GM /(Rc2) where G is the gravitational constant, M

the total mass, R radius and c the speed of light, then we find the compactness

of a typical NS is ∼ 10−1 of that for a BH. The magnetic field of a NS can

exceed 1015G [60], a factor of ∼ 1015 times greater than that of the Earth. The

fastest observed rotation rate of a NS is ∼ 1ms [120], hence the surface of this

star will be rotating ∼ 0.1c. The densities within a NS mean that matter can-

not remain bound within nuclei. It is possible that at these densities we may

find strange matter (baryons which contain at least one strange quark), which

would be unstable in terrestrial situations [209]. It is perhaps not surprising

that with behaviour so far removed from that found on Earth, to model a NS

accurately we would expect to use general relativity (GR), magnetohydrody-

namics and nuclear physics. One result of these conditions, in particular the

1
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extreme densities within a NS, is that this makes these objects perhaps the

most promising source for detectable gravitational wave (GW) emission. Only

by carefully matching observational data with accurate theoretical models can

we hope to probe the physics of these objects.

The first theoretical predictions of the existence of NSs were made by Baade

and Zwicky in 1934 [21], just two years after the discovery of the neutron [42].

The actual discovery of NSs came serendipitously in 1967 when a pulsating ra-

dio source was discovered by Bell and Hewish [96]. Shortly after this discovery,

the source was identified as a NS [77]. Since then many of these rapidly pulsat-

ing radio sources (pulsars) have been identified and represent one of the most

commonly observed forms of NS. Several more classes of NS have also been

identified, including those with x-ray and gamma-ray emissions in addition to

further radio sources, see e.g. [78, 215].

1.1 Neutron stars and general relativity

Einstein’s theory of general relativity, first published in 1915, is a geometric

theory of gravitation [62]. The theory states that matter and energy distort the

geometry of space and time (spacetime), and that the geometry of spacetime

in turn affects how matter and energy behave. In a weak gravitational field,

the differences between GR and the Newtonian theory of gravity are small. In

a strong field, Newtonian gravity can, however, no longer offer a reasonable

description of how matter moves. It is therefore unsurprising that NSs, which

fall into this strong gravitational regime, require GR to accurately describe

their behaviour.

Observational evidence also suggests that an accurate model of a NS must

use GR. From the observations, information about the mass range of NSs

can be inferred. Current estimates of the maximum mass are in the range

1.5 M⊙ to 3 M⊙. Observational difficulties and model-based dependence of

the interpretation of these observations may lead to the uncertainties in the

maximum mass estimates, but for individual models, there is always a clear

maximum [87]. In Newtonian physics, there is no limiting constraint that can

explain this maximum mass. In GR, by contrast we do have a limit above

which a NS becomes unstable, at which point there is no known mechanism
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which can prevent collapse to a BH. The actual value of this maximum is

dependent on the model used to describe the interior of the NS, its rotation

and its magnetic field. For all realistic models in GR, we find the maximum

mass is consistent with that provided by the observations [86, 136, 177, 210].

The maximum masses of a variety of models are shown in figure 1.1.

1.2 Neutron star formation and structure

In order to model NSs we need to understand both how they are formed and

their composition. Even in the first predictions of NSs, Baade and Zwicky

suggested that NSs could be formed during a supernova (SN) [21]. Since

this initial prediction, observational evidence has been identified in support of

this. The Crab pulsar was discovered in the SN remnant SN1054, and the SN

itself was observed and documented at the time [164, 165]. Similarly the Vela

pulsar is also associated with a SN remnant [117]. It is now apparent that

most NSs are formed from type IIb SN, the collapse of the core of a massive

star. Progenitor stars for NS production are thought to be those with masses

in the range 8M⊙ . M . 100M⊙ [113, 119].

Core collapse SNe are just one of the possible outcomes that arise at the

end of a star’s ‘life’. The majority of the life of a star consists of the fusion

of hydrogen into helium within its core. This provides radiative pressure to

prevent gravitational collapse, sustaining the star for ∼ 106−108 years for a NS

progenitor, or ∼ 1010 years for a solar mass star [107]. Once approximately 10%

of the hydrogen in the core of the star has been used, the pressure provided

by this fusion is no longer sufficient to support the star. At this point the

core of the star starts to contract, increasing pressure and temperature in this

region. If the star is sufficiently massive, this can initiate the fusion of helium in

addition to the remaining hydrogen, and preventing further contraction of the

core. The quantity of helium is significantly less than that of hydrogen, hence

this helium fusion cannot be sustained nearly as long ∼ 105−106 years [107]. If

the star is massive enough, fusion of heavier elements may continue until iron

is produced. For elements lighter than iron, the fusion of two nuclei generates

energy, but for fusion to continue beyond this point energy must be added to

the system, therefore radiative pressure no longer has the capability to halt
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Figure 1.1: Illustrating the maximum masses of a NS based on the choice of
model. The central density (ρc) is plotted against total gravitational mass
(M). It is clear that for each model a maximum is reached (above which
increasing the central density appears to reduce the total mass, suggesting the
NS is unstable). The shaded region represents the range of known (accurately
measured) NS masses. Source: [86].
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matter falling towards the core [177]. In order for a star to generate iron in the

core (and hence later undergo a type IIb SN) it must be massive enough for

the contraction of the core to provide temperature and pressure required for

the fusion of all nuclei up until this point. It is this that provides the ∼ 8M⊙

minimum mass constraint for NS formation.

The unavoidable gravitational collapse that occurs at this point that trig-

gers the SN explosion. Once this collapse has started, the pressure (and tem-

perature) within the core continue to rise as a result of the infalling mat-

ter. This continues until the density of the core is sufficient for the Pauli

exclusion principle to apply. The general case of this principle states that no

two fermions (quarks or leptons) may share the same quantum state. Con-

sequently the fermions in sufficiently dense regions effectively cannot be too

close together and, in the core, they experience a pressure known as degen-

eracy pressure. This pressure prevents further collapse of the material at the

centre of the core and effectively provides a solid boundary against which the

remaining infalling matter will impact [103]. In these conditions subatomic

interactions favour isolated neutron production, hence a neutron-rich core is

formed, referred to as a proto NS [103].

This impact of the infalling matter onto the degenerate core is known as

core bounce. This sends a shock wave propagating outwards through the in-

falling matter. The remaining infalling matter is then prevented from reaching

the proto NS as it hits this outgoing shock wave. The lack of matter reaching

the proto NS itself means that aside from some accretion of the post-shocked

matter, it does not grow significantly. It then can cool rapidly, in ∼100 s, to

form a (cold) NS (< 109K) [150, 151]. It would seem that this outgoing shock

can be linked to the explosion seen during a SN. Current theory, however,

suggests that the energy within the shock is rapidly lost through photodis-

sociation of atomic nuclei into nucleons, and through neutrino losses in the

post shock region, causing the shock to stall. Since type IIb SN are well doc-

umented, there is clearly some mechanism through which the shock wave is

revived. The causes of this are not yet completely understood. For a review

the overall SN procedure see e.g. [103] and the possible mechanisms by which

the shock is revived are found in e.g. [151].

For a sufficiently massive progenitor star, the accretion onto the proto NS

can reach a point where even neutron degeneracy pressure is no longer suf-
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ficient to prevent further collapse. At this point it is believed that a BH is

formed. This can either occur as a result of mass accreted onto the proto NS,

or, in the most extreme cases, directly as a result of the collapse. In these

cases a SN is still observed, since the infalling matter will still bounce off the

core when it has become degenerate, but before the BH is formed. We expect

this to happen for stars with masses above ∼ 25 to ∼ 100M⊙, with the com-

position of the progenitor star in this mass range playing an important role in

determining whether a BH is formed [111, 177].

In this thesis we focus on NSs in the absence of e.g. further accretion from a

partner star in a binary system, and hence can be considered to have reached

some equilibrium configuration. In order to understand the behaviour of these

objects we must consider the internal structure and common features of such

NSs. The precise composition of a NS is then dependent on both the conditions

in which it was formed, e.g. the mass and the composition of the progenitor

star and the model assumed for the interior matter. Typically we expect that

NSs in some equilibrium configuration will have several distinct regions: the

inner core, outer core, crust, envelope (or ocean) and the atmosphere [87, 119].

The outer layers

The two outer layers - the atmosphere and the envelope - are very thin, with

depths of ∼ 1cm and ∼ 10 − 100m respectively. The atmosphere of a NS

can be directly observed through x-ray emission. It is expected that the at-

mosphere is composed of the lightest element available (typically hydrogen),

which can be accreted from the interstellar medium or from the SN remnant.

Heavier elements then ‘sink’ into the deeper layers in the envelope [8]. This

lightest element then forms either a true (gaseous) atmosphere, or a solid or

liquid surface, dependent on the temperature of the NS [218]. It is this region

which dictates the emission spectrum from the actual NS, although there is

a further contribution from the magnetic field. As a result, the atmosphere

provides much of the information about the NS. The temperature of the sur-

face is directly calculated through this emission, and further information can

be inferred e.g. mass and radius [87]. The internal temperature profile of the
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NS can also be inferred from these observations if we understand the processes

through which a NS cools and either know, or can infer, its age.

In the envelope, the density is sufficient that electrons can no longer remain

bound to nuclei. Here a fluid region is formed (hence the alternative name,

the ocean) consisting of these nuclei and electrons. The envelope then plays a

major role in determining how a NS cools [84].

The crust

The crust of a neutron star has a depth of ∼ 1km, and is often split into

subregions, namely the inner and outer crust. A common feature of these

subregions is the presence of neutron rich nuclei bound in a crystal lattice

structure [29]. In the outer crust it is this lattice which, along with free elec-

trons, forms the primary component of the crust. At a depth of ∼ 300m, and

a density ∼ 1011g cm−3, we move to the inner crust [87]. At these densities,

we approach neutron drip density, where neutrons start to dissociate from nu-

clei [32]. The lattice structure is then permeated by a neutron fluid, which

for a typical cold NS (with temperature . 109K), can form a superfluid [173].

We believe that the solid lattice structure of the crust results in it displaying

elastic properties [41, 106].

At the base of the crust, at densities of ∼ 1014g cm−3, neutrons and protons

can no longer be contained within nuclei. A transition to a uniform neutron

fluid then occurs. Some models include an extended transition region through

which the nuclei move through a variety of structures, becoming increasingly

elongated with greater density, known as the pasta phase [153, 156]. The width

of this phase is then equally model-dependent, but could be present in as much

as a third of the crust.

The inner and outer core

The two core regions of a NS make up the majority of the volume, comprising

all but the last kilometre of the star, and containing up to 99% of the mass.

The outer core consists primarily of a neutron fluid, with protons, electrons

and possibly muons, making up a few percent of the matter [87]. The presence

of this neutron fluid means that, as with the crust, it is believed this region
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has superfluid properties, see e.g. [17, 174]. The presence of the electrons in

this region can also form a superconducting fluid in the outermost regions of

the core [163].

At densities of ∼ 5×1014g cm−3 our intuition as to the nature of matter breaks

down. In this region, termed the inner core, there is great uncertainty about

the composition of a NS. At these densities it is possible for particles to exist

that would usually be unstable in free space, or within a nucleus. We expect

that even in the outer core the density may be sufficient for muons to exist,

and there are many further models that have been proposed for the inner core,

see e.g. [30, 209]. One of the most favoured possibilities for exotic matter

is the existence of hyperons. These are hadrons which contain at least one

strange quark (instead of being composed entirely of up and down quarks).

These particles (denoted Λ, Σ and Ξ in order of ascending mass) would lead

to a more compact NS if they are present, and hence accurate measurements

of mass and radius, as well as GW information (see section 1.3) could lead

to evidence for such a configuration. Other possibilities include a meson core

(particles composed of two quarks), either pions (π−) or kaons (K−), or decon-

fined quarks. We currently believe that such meson cores (especially pions) are

unlikely [146]. Finally, it is possible that the presence of quark matter in the

inner core could then trigger a phase transition throughout much of the star,

causing the entire core to be predominantly composed of such matter [120].

The internal regions of a NS, along with some of the structure within these

regions, are illustrated in figure 1.2. The various transition structures of the

pasta phase are illustrated, showing the transition from the crystal lattice of

nuclei to the homogeneous neutron fluid. Also highlighted are vortices within

the inner crust and outer core, expected to exist in the neutron superfluid [17,

186]. Figure 1.3 shows some of the theorised models for the inner core of a

NS. Various models for a quark core star and a strange star (for which a phase

transition has resulted in quark matter throughout the star) are listed.
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Figure 1.2: Illustrating the possible regions present within a NS. Some ad-
ditional features of the NS are included. The crust lattice permeated by su-
perfluid (the lower left inset), the pasta phase transition between the crust
(the upper inset) and the core and the superfluid/superconducting outer core
region are also shown (the lower right inset). Source: http://www.astroscu.
unam.mx/neutrones/dany.html
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Figure 1.3: A figure detailing some of the models for the inner core of a NS.
Source: http://www-rohan.sdsu.edu/~fweber.

External features

In addition to information about the interior of NSs, observations reveal much

about the general external behaviour of these objects. From the onset of NS

observations it was apparent that these objects rotate very rapidly, with the

first measured pulsar having a period of 1.337s [96]. Since these initial mea-

surements, rotational periods from ∼ 10s to ∼ 1ms have been observed [120].

For all but the most rapidly rotating NSs, this rotation rate arises directly from

the conservation of angular momentum in the contracting core of the progen-

itor star during SN. This is not the case for the rapidly rotating millisecond

pulsars. It is expected that they are in some accreting binary system, and this

results in spinning up of the pulsar, see e.g. [213].

In has also been observed that NSs have very strong magnetic fields, with sur-

face fields of ∼ 1012G. These fields can be inferred from measurements of the
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rotational period, and the rate of decrease of the period (a rotating magnetic

dipole has been shown experimentally to be subject to loss of energy). It should

be noted that the estimates for magnetic fields are subject to large (orders of

magnitude) uncertainties based on poorly known quantities, such as the age of

the NS. It is this magnetic field that leads to the electromagnetically ‘beamed’

emission that we detect as pulsars, through acceleration of protons and elec-

trons on the NSs surface [108]. A class of NSs with even stronger magnetic

fields, up to ∼ 1015G, termed magnetars, have also been identified [60, 152].

The magnetic field of NSs are still far from fully understood with many open

questions, such as whether it penetrates the core. Therefore the theory of

these fields, and observations of phenomena associated with magnetic fields,

are very active fields of research.

A complete model

It is clear that an accurate model of a NS will need to take many (or all)

of the features discussed in this section into account. Practically this is not

a simple task since neither the full behaviour, nor the composition, of these

regions is completely understood. We can describe the regions within a NS with

some accuracy through an equation of state (EOS) which effectively describes

the microphysical aspects of the matter being modelled in a macrophysical

manner. This would then allow us to investigate behaviour of the entire star.

We would expect, therefore, that this EOS (in some manner) represents the

various regions at the appropriate densities. The choice of EOS that we use in

this thesis is discussed in section 2.3. Ideally we need to include rotation and

magnetic fields within the model too. Qualitatively many of the properties of

a non-rotating NS are also present for rotating models (e.g. maximum mass

and internal structure). We therefore treat NSs in this thesis as non-rotating

(and hence spherically-symmetric) objects. It has also been shown that, with

the exception of very strong magnetic fields, there are many cases in which

they do not have a large effect on NS behaviour (see e.g. [72]), therefore we

will model NSs without magnetic fields in this thesis.
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1.3 Gravitational waves from neutron stars

One of the key predictions of GR is that asymmetric bodies will radiate gravi-

tationally. These GWs are exceptionally weak. The effect of a wave is expected

to have a maximum effect of approximately 1 part in 1021. As a result no di-

rect GW detection has yet been made. The greatest chances of detectable

GWs arise from situations in which the largest GWs will be produced, i.e. in

the strongest gravitational fields. It is not surprising that NSs fall into this

category and the (comparatively) common nature of these stars , compared to

the even more compact BHs, makes them very promising sources for the first

direct GW detection. Any scenario which leads to an asymmetric structure,

and hence a mass quadrupole in a NS, or in the external structure of a system,

will release (potentially detectable) GWs. Here we consider some of the key

GW release mechanisms, more details can be found in e.g. [15].

Mountains

The rapid rotation of NSs discussed in the previous section results in these

objects being close to perfectly axisymmetric. If a rotating NS has even a

slight asymmetric deformation, however, then this will result in the release of

GWs. These deformations are typically referred to as mountains, though the

size of NSs means that for a mountain to have a noticeable GW signature, it

may need to be only a few millimetres high. Such mountains can be formed

through strains within the crust, as a result of accretion, or even due to effects

of the magnetic field. The magnitude of the GWs will obviously be dependent

on the size of these mountains, and this in turn is dependent on the composition

of the NS. For example, a mountain on the crust is dependent on the maximum

strain the crust can sustain before it ‘breaks’ and the star returns to a more

axisymmetric configuration. For these deformations it has been suggested that

the maximum supported mountain will result in the NS having an ellipticity of

∼ 10−5 [93, 97]. Although the NS can support this maximum, there is still an

issue as to whether mechanisms that lead to the formation of mountains could

achieve ellipticities this large. It may be that accretion, which would lead to

obvious deformations, is the best candidate for this, but the complex nature

of accretion means there is currently a lack of satisfactory models quantifying

these effects [15].
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Neutron star instabilities

Any oscillation of a NS interior which causes the structure to deviate from

axisymmetry will lead to some GW production. If there is some unstable be-

haviour which excites these oscillations significantly then there is a possibility

that the GW signal will be significantly large that we have a chance of de-

tecting it. NSs can experience a wide range of instabilities, many of which are

associated with unstable modes of oscillation: a comprehensive description of

these instabilities is presented in [13]. Modelling these instabilities requires

an accurate description of the interior structure of a NS. Currently there is

a number of promising mechanisms for producing GWs, but further work is

required to quantify the expected wavesignal [15].

Detection of GWs from these oscillations will allow insight into the inte-

rior structure of NSs. Since the structure of a NS will provide constraints on

these oscillations, or when instabilities become apparent, this GW asteroseis-

mology will allow for the testing of various models [16, 30]. In order for the

NS to actually emit any GWs, some behaviour which excites these instabil-

ities must occur. Various methods by which this can happen are proposed

based on observational data, with one prominent example being NS glitches.

Observations of the rotational rate of pulsars show an expected slow decrease

in angular frequency due to loss of angular momentum through e.g. magnetic

torque and maybe GWs. Some observations have also shown that occasionally

the frequency suddenly jumps; this phenomena is generally referred to as a

glitch [112, 132]. It is thought that glitches occur when the angular momen-

tum from vortices within the superfluid region of a NS, shown in figure 1.2, is

transferred to the entire star. Mechanisms through which this transfer occurs

are described in e.g. [124, 170, 208].

Precession

If the rotational axis of a NS is not aligned with the axis of symmetry (as-

suming an otherwise axisymmetric NS), then this can be seen as a ‘wobble’

known as free precession. This occurs in order for the star to conserve angular

momentum [105]. The energy of this precession will be dissipated within the

star as thermal energy, with some of the damping also manifesting itself as

GWs [105, 219]. Evidence for precessing NSs may exist, [189], although the
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number of precessing stars is not as high as may be expected. It has been

suggested that this could be due to the interior behaviour of a NS as detailed

in e.g. [74, 75]. The actual mechanisms which will lead to precession are also

not fully understood. It is however believed that behaviour such as glitches

may be one such method by which precession can be induced [105].

Core collapse supernova

The formation of a NS through a core collapse SN is, by its nature, a violent

event involving matter at very high densities, and therefore a promising source

of GW emission. There are many stages of a SN that can lead to the asym-

metric behaviour required for GW emission. One such situation is the revival

of the stalled shock. It is expected that this will be a highly non-linear event,

since it it is believed (and observed in computational simulations) that the

stalled shock experiences an instability, the standing accretion shock instabil-

ity (SASI) [151]. In addition to this, GWs may be produced from asymmetries

in rotational instabilities during collapse, core bounce, convection behind the

shock or from pulsations in the proto NS [111].

In order to gain a more complete insight into the processes that occur

during SN, and understand how e.g. the stalled shock is revived, it would be

desirable to obtain observational data from within the collapsing core. Al-

though observations of the progenitor star and the SN remnant yield some

useful information, the opacity of the matter surrounding the SN means that

electromagnetic observations are ruled out as a means of probing the core be-

haviour. GWs and neutrinos can, however, pass through matter with almost

no interaction, and therefore they could reveal information about the condi-

tions within the core of a star during SN. In a SN as much as 99% of the energy

is carried away though neutrino losses, with these neutrinos actually observed

in SN1987a [33, 203]. At this time, the detections were not significant enough

to determine the behaviour in the core of this SN.

The signature of detected GWs and neutrinos is dependent on the model

used to model the behaviour that occurs during SN [55]. As an example,

there are currently three favoured models which could explain the revival of

the stalled shock. Firstly it is possible that there is neutrino heating of the

shock [103]. Alternatively magnetic fields could transfer rotational energy
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from the proto NS to the stalled shock [144]. Finally an acoustic method has

been proposed where shocked sound waves from g-mode oscillations in the core

transfer energy to the stalled shock [36].

Binary inspiral

When any two bodies are in orbit there is a very small fraction of the angular

momentum of the system lost continuously through GWs. In the case of

compact objects (white dwarfs, NSs and BHs), this loss can be sufficient for

these objects to inspiral and eventually merge on a timescale such that we

could expect to observe these events. It is believed that short gamma-ray

bursts are such observations of (distant) compact binary mergers [139].

In the case of white dwarf mergers, it is the GW signal from the final

stages of inspiral that is most prominent [100]. For binaries involving BHs or

NSs, we would, however, not only expect strong GW emission from the late

stages of the inspiral but also from the merger itself and possibly from the

post-merger behaviour, the ringdown. Compared to other sources of GWs,

the emission mechanism for compact binaries is well understood, since there is

significantly less dependence on the internal composition of the objects. It is

therefore possible, for the inspiral phase in particular, for accurate waveforms

to be obtained.

For binary BH systems, the full waveforms for the merger and ringdown

phases can also be calculated. The violent non-linear behaviour of the system

at merger makes computer simulations a necessity. Through these simulations

it is possible to obtain exact waveforms to very high accuracy. These simula-

tions, pioneered in [160], can now cover a wide parameter space for comparable

mass (a mass ratio M1/M2 ≤ 10) BH binaries [79, 88]. Alternatively, at the

centres of galaxies, extreme mass ratio inspirals exist, in which a small stellar

BH is inspiralling into a supermassive galactic BH. In such cases we typically

have a mass ratio of M1/M2 ≥ 105. Here GW calculations rely on a perturba-

tive approach, with a review given in [27]. For mergers that fall within these

two mass ranges, perturbative methods are generally unable to provide the

necessary accuracy, whilst there is insufficient computational power to provide

simulations in full GR, see e.g. [11].

For binaries involving NSs (either BHNS or NSNS) the waveforms are de-
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pendent on the parameters of the NSs (e.g. mass and composition) [24]. Exact

calculations are therefore not feasible, but once a model for the NSs has been

selected, computer simulations can still be undertaken. For the BHNS case, it

is not surprising that many of the features of the merger are found to be similar

to those in the BHBH case. The merger results in almost all of the NS matter

accreted onto the BH, with maybe a small fraction remaining in some disk

structure around the BH [64, 183]. In the NSNS case the final outcome of the

merger is again believed to be a BH in almost all cases. In this case, however,

the collapse of the merged object to this BH is not necessarily immediate. For

some NSs, a massive (unstable) merged object can exist temporarily before a

delayed collapse occurs [23]. The current status of the field of NSNS inspiral

simulations is detailed in section 1.4.1, where we consider effects of different

parameters in the NS models.

1.3.1 Gravitational wave detection

The inherently weak nature of GWs means that they currently have not yet

been directly detected. In contrast, indirect evidence for GWs has been ob-

served. As detailed above, compact binaries inspiral due to angular momentum

losses through GWs. This decreases the orbital period of the binary system,

an effect which can be measured. The first such measurement came from the

binary pulsar PSR1913+16 (the Hulse-Taylor pulsar), showing an excellent

agreement with the predictions of GR [197]. This has since been augmented

with measurements of the inspiral in other binary systems.

Despite this indirect evidence for GWs, direct detection is desirable for a full

confirmation of the predictions of GR. In the 1960s with Weber made the

first efforts to observe GWs using the first bar detectors [211]. Despite early

optimism ([212]), these bar detectors could not reach sufficient sensitivity for

any reliable GW detection. Instead it is now possible to exceed the sensitivity

of bar detectors by many orders of magnitude using laser interferometers, and

as such, almost all current (and future) efforts to detect GWs are concentrated

on such interferometers.

Attempts to detect GWs are conducted by measuring how they move sus-

pended test masses, insulated (as well as possible) against other interference.
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Laser interferometers consist of two perpendicular arms, with lengths of up to

4km and with two mirrors (the test masses) suspended at either end. A laser

beam is then fired between the mirrors, and the effects of a passing GW on the

spacetime will be apparent through a phase difference between the two laser

beams when they arrive at a final detector.

Current laser interferometers are the LIGO detectors (two 4km and one

2km detectors) [7], the 3km VIRGO detector [40], and the smaller 600m

GEO and 300m TAMA detectors [130, 204]. The larger detectors (LIGO and

VIRGO) can detect finer movement of the test masses, and hence smaller ef-

fects of GWs and are the most likely to yield detection results. The smaller

GEO and TAMA detectors are primarily test-beds for technological develop-

ments, but can also be used when the larger detectors are offline providing

cover primarily in the case of a large galactic event occurring. Both the LIGO

and VIRGO detectors have achieved their design sensitivities (each at a level

of 10−19 m/
√

Hz) [2, 4, 5], and upgrades to even more sensitive detectors,

advanced LIGO and VIRGO+, are currently under construction (second gen-

eration ground-based detectors) aiming for an order of magnitude improvement

in the sensitivity [172]. Beyond that a third generation ground based detector,

the Einstein Telescope (ET) has also been proposed with a further one to two

orders of magnitude increase in sensitivity [1].

Even with the sensitivity of current detectors, the direct detection of GWs

remains elusive. We are, however, still able to make some predictions as to

how likely it is that these detectors (and the future generations) will make

a detection. We can measure this likelihood based on, for a specific type of

event, the maximum distance for which we would expect to see the GWs of the

event (those listed at the beginning of this section). Considering the amount

of such events we would expect to see within this distance, we can then obtain

an event rate for a given detector. Many of the phenomena associated with

the interiors of NSs (e.g. for waves from NS glitches) are too small to allow for

GW detection even with third generation detectors [187]. SN and particularly

binary merger, however, offer more promising sources of GWs.

Galactic SN would offer an excellent potential source of GWs, but with

only one such event every ∼ 30 − 100 years, a lot of luck is required for such

an observation. With the third generation detectors, the observable distance
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makes for more reliable rates, though even these may not be more that 0.5 per

year [18, 150].

By far the most promising source of GWs, with achievable detection rates

for at least the second generation detectors, are NSNS binary inspirals. Here,

we might expect ∼ 10 − 100 detections per year [15, 110]. BHNS and BHBS

inspirals also offer strong potentially detectable signals, however, these events

are significantly rarer that NSNS binaries (due to the high mass progenitors for

BHs being rarer themselves), and as a result the event rates are significantly

lower.

So far we have only considered the mechanisms by which GWs will reach the

detectors. In addition to this, the actual task of extracting GW signatures

from the data collected by the interferometer data is by no means trivial. The

weak nature of these signals results in them only being discernible amongst

the detector noise and other terrestrial noise sources through careful statisti-

cal analysis. The quantity of data that can is collected, combined with the

frequency range of expected GW signals, mean that for practical purposes,

this analysis must be as efficient as possible. The best chance of successful

detection relies on the availability of accurate templates of the expected wave-

forms. The interferometer data can then be searched for these waveforms, a

technique known as matched filtering [95]. Alternative searches for the data

are available: e.g. direct analysis of the waveforms for large amplitude signals.

For more detailed description of data analysis see e.g. [172].

The lack of GW signals means that if we desire to test whether these

data analysis techniques can detect waveforms we must use artificially created

data. This has been the goal of the Numerical INJection Analysis (NINJA)

project [20, 38]. This project initially used the expected signals for BH binary

inspirals, injected into (unrealistic) detector noise, for use in the data analysis

pipelines. Attempts to use more realistic detector noise, and to use NSNS

inspiral data are underway.

The success of data analysis pipelines, such as the matched filtering tech-

niques, requires accurate templates of the expected GW signal to be available.

We must therefore have some method to obtain this signal from the GW re-

lease mechanisms detailed at the beginning of this section. More explicitly, we

should solve the Einstein equations and matter evolution equations for these
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scenarios and extract the GWs from some region suitably far from the source.

This is not a trivial task; the equations form a coupled system in which non-

linear behaviour is often expected to form. In order to obtain an accurate

solution to such a system we require computational simulations (such as the

inspiral simulations mentioned at the start of this section). We must therefore

be able to express the Einstein equations, and the relativistic matter evolution

equations, in a manner that allows these simulations to be carried out, this

field is known as numerical relativity (NR). Since the exact details of a NS

interior are unknown we must also use some approximate model which con-

tains (to some degree of accuracy) all of the features we wish to use in the

simulation. We now consider how such a model can be obtained. It should be

noted that full GR is not always necessary for an accurate waveform, in some

cases, where non-linear behaviour is not expected; the post-Newtonian (PN)

approximation can give suitable GW data.

1.4 Modelling a neutron star

Before undertaking any numerical simulation of a NS, we must make choices

(and assumptions) about how the star is modelled. These choices are, in

part, based on the behaviour we wish to model (e.g. fast rotation rates, strong

magnetic fields or hyperons in the inner core) and on unknown factors in the

models (e.g. the extent of a nuclear pasta region or magnetic fields within

the core). These choices will also be heavily influenced by the computational

demands of the problem being considered. Effectively there must be some

‘trade-off’ between the accuracy of the model and the computational resources

required for the simulation.

Whenever any properties of a physical system are evaluated numerically,

the system must be discretised to some extent (both in space and time for a

dynamical system). The smaller the length of the discretisation, the better

the accuracy obtained from the simulation. Note that increases in accuracy

are not automatically guaranteed from decreasing the length of the discretisa-

tion. The methods used for the simulation must be chosen carefully to ensure

that this is possible (see chapter 3 for further information). However, any

decrease in the size of the discretisation does lead directly to an increase in
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the computational cost of the simulation. For a system to emit GWs it must

be asymmetric, and therefore the computational simulation must be carried

out in three spatial dimensions. This means that by halving the level of dis-

cretisation, the computational requirements for the simulation increase by a

factor of 23. Additionally the discretisation time must also be decreased by

this same factor, leading to a total factor of 24 increase in the computational

requirements. Therefore for practical situations, the microphysics of the dif-

ferent regions of the NS, and the behaviour at the transitions between these

regions cannot be incorporated into a system that requires the evolution of the

entire NS over timescales such as those required for merger simulations.

It should be noted that it is not always necessary for the discretisation of

a system to be uniform. We might consider decreasing the level of discretisa-

tion only where some feature changes on small lengthscales. This can even be

achieved dynamically (if such features are expected to move during the sim-

ulation) using techniques such as adaptive mesh refinement [31]. Even using

these advanced techniques, the computational requirements will still increase

dramatically as the accuracy of the solutions obtained is increased.

We now consider some of the assumptions that go into modelling an entire NS

for numerical simulations. We need some system of equations which describes

how the matter within the star evolves over time. The extreme densities within

a NS mean that for all but the finest scales, it is a valid assumption to treat the

matter as a continuum. Furthermore, as described in section 1.2, it is believed

that much of the NS interior is a fluid. We assume, therefore, that the NS

can be modelled using some system of hydrodynamical evolution equations.

If necessary, such a model can be extended to include e.g. an elastic crust or

solid core.

If we were to model a hydrodynamical system using Newtonian physics

then the Navier-Stokes equations would be an obvious choice for the evolution

equations. These are a system of non-linear evolution equations for a viscous

fluid allowing for the inclusion of external forces, such as gravity. For mod-

elling a NS, however, we must use GR, and ideally we need an extension of the

Navier-Stokes equations to incorporate relativistic effects. Attempts at such

an extension have been made, [101, 114, 155], but currently there is no single

generally accepted form. The issue with these extensions is there is a possible
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violation of causality in the propagation of viscous forces and heat flow [214].

It is, however, often assumed that the viscous effects in a NS are less important

in determining short term behaviour than e.g. pressure gradients. As a result

these terms can be neglected in many cases such as NSNS mergers. In New-

tonian physics, for this inviscid, or perfect, fluid the Navier-Stokes equations

reduce to the Euler equations. These equations can be extended to relativistic

hydrodynamics and as such are the natural choice for use in NSs [201]. In

addition to this, the effects of magnetic fields can also be included within the

model, see [69] for a review.

The Euler equations, both in their original Newtonian form and under the

relativistic extension, do not form a complete set of equations. There is a

degree of freedom remaining, and this allows the type of fluid being modelled

to be constrained: e.g. we need to be able to differentiate whether water or a

neutron fluid is being used. This is achieved through the EOS which, as men-

tioned in section 1.2, effectively encompasses the microphysical behaviour of

the fluid as a global property. The requirements of an EOS, and some specific

choices are considered in detail in section 2.3.

1.4.1 Current neutron star simulations

Computational simulations have been carried out for many of the mechanisms

for producing GWs listed in section 1.3. These simulations have considered

oscillation modes [115, 154], glitches [187], core collapse SNe [150] and NSNS

binary merger [23, 24, 65]. In this thesis we are interested in developing nu-

merical techniques for simulations involving NSs initially in, or close to, some

equilibrium configuration and where the entire star is modelled. One major

area for which these techniques are applicable is NSNS binary mergers. We

therefore consider the current status of these simulations in more detail.

For the majority of a NSNS inspiral, the system is in a quasi-equilibrium state

with angular momentum being lost through GW radiation, this can be mod-

elled satisfactorily through a PN approximation [35]. Once the GW timescale

becomes comparable to the dynamical timescale of the system, the PN ap-

proximation is no longer sufficient. Beyond this point a numerical solution in
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full GR is required for an accurate description of the behaviour of the two ob-

jects [65]. It is this stage of the event that is most likely to produce detectable

GWs, and therefore must be modelled accurately to obtain a suitable waves-

ignal. In general we require some simulation using NR to describe at least the

last few orbits of the inspiral, the merger itself and the eventual collapse to

BH. If there are sufficient orbits included in the NR simulation, then there will

be some overlap with the PN quasi-equilibrium solution in the region where

this approximation is still valid. This allows the GW signals from the two so-

lutions to be matched in this region, giving a full description of the waveform

of the merger.

In order to undertake a NR simulation of a merger, some initial data for

the two NSs in quasi-equilibrium orbits must be provided. This is not a trivial

task, see e.g. [47, 83] which describes how this initial data can be formulated,

and e.g. the Meudon group’s work, in which this is implemented using the

Lorene code [3, 194]. To this end, a variety of initial configurations for merger

simulations have been formulated, with varying initial separations, masses and

EOSs. At the beginning of any simulation using such quasi-equilibrium initial

data, there will be some artificial error as it ‘settles’ into the inspiral orbits.

This is then recorded as a burst of junk radiation in the GW signal from the

simulation. The matching of the signal to the PN waveform can again be used

here, allowing this junk radiation to be identified and removed.

It is, in fact, only comparatively recently that the computational requirements

became available for a NR simulation of a few inspiral orbits, merger and

ringdown. The first NSNS inspiral simulations were produced by Shibata et

al. [182]. These, along with other early simulations ([12, 23, 216]) used equal

mass NSs with a simple EOS, the polytropic EOS, described in section 2.3.

Later simulations considered unequal mass NSNS binaries [23, 180]. The re-

sults of these simulations show that the larger the mass of the system, the

more rapidly the merged object collapses to a BH. As a result, the low-mass

systems produce a longer, noisier GW signal from the merger, and this should

be obvious in any detections of these events. It is clearly apparent, therefore,

how successful GW detection from mergers can give insight into the properties

of the NSs undergoing such events. Further differences arise if the EOS of the

NSs in the simulation varies, as shown by [181, 23]. Here it is seen that if the
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EOS is changed, allowing the temperature within the NSs to change, then the

delayed collapse of the merger object to a BH is observed even for higher mass

systems. EOSs based on nuclear physics have been used in [181, 179], and

some of the most realistic, EOSs currently only available in Newtonian physics

have been implemented through an ‘approximative treatment’ to GR [145].

The simulation of NSNS mergers with magnetic fields has also been consid-

ered [72, 161]. Here it is found that with the exception of very large magnetic

fields (which are not expected to exist during the final merger stages), there is

little difference compared to the non-magnetised cases.

In addition to these scenarios which have currently been investigated, there

is a wide parameter space which may need to be considered in further NSNS

merger simulations. It is likely that energy transport through neutrinos must

be included, with particular relevance for the post-merger object [59]. Addi-

tionally all simulations so far have used only a single component fluid i.e. the

star is described entirely by a single EOS. As we discussed in section 1.2 we

know, however, that NSs have several different interior regions. In order to

develop an accurate model of a NS for use in simulations, we need it to be

able to include these differing regions. It is believed that these regions are

described by different EOSs, therefore we would want our model to also reflect

this. The techniques required to include multiple regions within a NS has been

the focus of this thesis. We present a treatment that allows these features to

be considered, and hence lead to an accurate model of a NS.

1.4.2 Modelling interfaces in a neutron star

Including different regions of a NS in a NR simulation of e.g. a NSNS inspiral

and merger is not a trivial task. Ideally we would want to consider a full model

in which each region (e.g. crust and outer core) is separated by some transition

layer. In this transition layer we would then need to include the microphysics

that describes how the matter changes, such as that shown in the pasta phase.

In many cases, these transition layers will be very thin (e.g. the Ekman layer

which may exist at the crust/core boundary has a width ∼ 1 − 10 cm [14]).

At the beginning of this section we highlighted some of the issues associated

with numerical simulations when dealing with features which change on small

lengthscales. The length of the discretisation required for these features is
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in many cases incompatible with the requirements of the overall simulation.

These transition layers are an example of this: in section 3.7.1 we give a

detailed quantitative presentation of the difficulties associated with including

a transition layer within a NS in the context of binary inspiral.

An alternative method for incorporating these different regions into a NS is

to neglect the transition layers and assume there is a genuinely sharp interface

between regions (i.e. the interface has zero width). This does not necessarily

mean that the effects these transition layers have on the matter within the

NS cannot be included in the model. By some suitable choice of boundary

conditions at these sharp interfaces we may hope to reproduce accurately the

behaviour here. In addition to correctly providing the physical conditions at

the interface, we must also take great care with how these are implemented

numerically. Since we are assuming a sharp interface between regions of the NS,

this means that at least some of the variables in the evolution equations will

be discontinuous at this point. Such discontinuities often present difficulties

in numerical simulations, with unphysical errors, such as oscillations, being

introduced. For example, in section 4.1.1 we show some of the issues a naive

implementation of such conditions can have on a numerical simulation. This

implies that we must be very careful with how any boundary conditions are

introduced to model behaviour across interfaces.

Techniques to implement such boundary conditions in Newtonian compu-

tational fluid dynamics CFD have been considered, see e.g. [148]. One such

successfully implemented method is to treat the system in a multicomponent

manner, in which each fluid region (each region which obeys a different EOS)

is treated individually. This allows a final solution to be ‘pieced’ together from

these components. Typically the interface treatment in such multicomponent

models can be considered as being composed of two techniques; one to identify

the location of the interface and one to apply appropriate boundary conditions.

When the location of some sharp feature, such as interfaces in this treat-

ment, is required, then level set methods are frequently used. These have

been applied to such features in both Newtonian CFD [148, 149, 176] and

relativistic situations (such as BH event horizons [53, 199]). Level set meth-

ods can accurately track the location of a sharp feature, and deal naturally

with topological changes in behaviour. Work on boundary conditions in a

multicomponent fluid system has been considered, however, in this case only
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in Newtonian CFD [67, 129]. We therefore offer the first analysis of the via-

bility of extending these methods into relativistic situations. To achieve this

we consider the Ghost Fluid Method, devised for Newtonian CFD by Fedkiw

et al. [67]. This technique has been selected for both comparative simplicity

and the ease in which it can be extended to multidimensional situations with

general EOSs.

Techniques such as the Ghost Fluid Method are required to make some

assumptions of the fluid behaviour around the interface in order to provide

boundary conditions. It is possible that there will be cases in which these are

not applicable to to NSs. Firstly, the evolution of the level set function assumes

that there is no mass transfer across the interface. In a long-scale evolution of

a NS, this may not going to be accurate, matter is expected to move between

regions, particularly in the case of the NS returning to an equilibrium config-

uration after e.g. additional matter is added to the star. However, in many of

the cases we consider, the effects of matter transfer between regions will occur

on a longer timescale than for the dynamic behaviour which is being simulated,

such as if merger is followed by prompt collapse to BH. Therefore we expect

such methods to be useful in a wide range of NS simulations. The Ghost Fluid

Method itself also relies on a constant extrapolation of entropy across the in-

terface. This may also not be the case in some NS simulations, and hence in

these cases we may not obtain the correct behaviour at the interface. How-

ever, if this problem arises, methods, such as those described in section 3.7.5,

deal with cases in which these assumptions are not applicable. The success of

the Ghost Fluid Method in Newtonian CFD, even within complex situations,

suggests that the relativistic extension will be of value to studying interfaces

within NSs.

1.5 Notation and structure

In this work, geometric units (c = G = 1) and the renormalisation M⊙ = 1

are used throughout (unless otherwise stated) and we use the metric signa-

ture (−1, 1, 1, 1). In tensor components, Greek indices refer to all spacetime

components (µ, ν, . . . ∈ {0, 1, 2, 3}) and Latin indices refer to only the spatial

components (i, j, . . . ∈ {1, 2, 3}). The Einstein summation convention applies
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to all tensor indices except those in reference to a particular coordinate system

i.e. {t, x, y, z} or {t, r, θ, φ} where indices represent a specific tensor component.

Approximated quantities, such as those used in approximate Riemann

solvers, or in discretised quantities, are written with a circumflex e.g û. Dis-

cretised quantities are specified through subscripts i, j, k, . . ., referring to grid

location, and through a superscript n referring to the time at which this dis-

cretisation is made e.g. ûn
i . In chapter 3 we deal with reconstructed quantities,

which are notated with a bar, e.g. ūn
i+1/2.

The work within this thesis is carried out in the Eulerian frame. There are

several advantages to this, the most important of which is that many of the

techniques devised for modelling sharp interfaces are described in this frame.

Furthermore, when considering multidimensional situations, if a Lagrangian

frame is used, then it is possible for the coordinate grid to become ‘twisted’ due

to e.g. rotational behaviour. Clearly the fixed grid implemented for an Eulerian

implementation of the hydrodynamics evolution equations offers advantages.

The terminology used within this thesis follows many of the standard con-

ventions of the relativistic literature, and certain phrases may differ from those

used in e.g. Newtonian CFD. Therefore it is advantageous to define a few terms

in more detail. When referring to multicomponent fluids, this describes any

case in which an interface is present (i.e. level set methods are being used).

The two (or more) regions which arise based on the zeroes of the level set

function are each termed a component. Across these interfaces we will also

make reference to a ‘jump in the EOS’. This incorporates any case in which

the properties of the fluid either side of the interface change, including if the

parametrisation of the EOS changes. We therefore consider the situation in

which each component of the system is described by the ideal EOS, but each

region has a different value of the parameter γ (see section 2.3), as containing

a jump in the EOS.

The structure of this thesis is as follows. In chapter 2 we describe the theoret-

ical background required to model fluids in the simplified model of a NS set

out in section 1.4.2. We also consider how initial data for various problems

can be set up. In particular, we show how a stable multicomponent star can

be initialised in section 2.6.1. In chapter 3 we detail the numerical methods

used to solve the fluid (and spacetime) evolution equations. We give special
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attention to the methods for evolving multicomponent fluids in section 3.7.

The results for simulating multicomponent fluids are presented in chapter 4.

Here we demonstrate our relativistic extension of the Ghost Fluid Method in-

troduced in section 1.4.2. We first investigate the method in 1+1 dimensional

special relativity, and then extend this to general relativity. Work on our rel-

ativistic extension to the Ghost Fluid Method and the results in this section

have been published in [135]. Finally we give some preliminary results for our

multidimensional relativistic Ghost Fluid Method. Conclusions and extensions

to this work are described in chapter 6.



Chapter 2

Theoretical basis

In order to simulate a physical system, we must describe the behaviour at any

point in spacetime through a set of evolution equations, one for each inde-

pendent quantity. In this section, we outline the derivation of such equations

for a perfect fluid and the spacetime containing the fluid. The techniques

used throughout this thesis originate in Newtonian CFD. As a result, we gain

an advantage from first considering the Newtonian evolution equations from

which we construct reference models using these currently existing techniques.

The effects of extending these techniques to relativistic situations will then be

clearer.

2.1 Newtonian fluid evolution equations

In Newtonian hydrodynamics, the Euler equations for the evolution of a per-

fect fluid arise naturally in integral form by considering the conservation of

mass, M , momenta, S (for which there is a component in each coordinate di-

rection), and energy, E, [116, 123]. We detail the derivation for a single spatial

dimension (i.e. we have a single momentum component), but these techniques

extend to multiple dimensions. For simplicity we use Cartesian coordinates

for this calculation, but the results can be obtained in any coordinate system

by use of the appropriate transformations. It is initially assumed that there

are no additional forces acting on the fluid, e.g. no gravity or heat conduction.

As we shall show, these can be included in a more general set of equations in

which these forces balance the conserved quantities exactly.

28
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We first consider conservation of mass. This conservation law states the

change in the mass of fluid within a domain x0 < x < x1 over time t0 < t < t1

is equal to the total mass of fluid which passes through the boundaries of this

domain over the interval ∆t = t1−t0. We assume that there is no mass created

or destroyed within the interval ∆x = x1 − x0 and that the flow across the

boundaries is measured in the positive x-direction. This can be expressed in

integral form as

∫ x1

x0

[ρ0 (x, t1) − ρ0 (x, t0)] dx = −
∫ t1

t0

[ρ0 (x1, t) v (x1, t) − ρ0 (x0, t) v (x0, t)] dt

(2.1.1)

where ρ0 is the rest mass density, or mass per unit volume, and v the velocity.

Conservation of momentum can be expressed as the change in the total

momentum over ∆x being equal to the total momentum flow through the

boundaries of ∆x during ∆t and the change of momentum at these boundaries

due to pressure, p, in this same time interval. In integral form, this conservation

law is

∫ x1

x0

[S (x, t1) − S (x, t0)] dx =

−
∫ t1

t0

[S (x1, t) v (x1, t) − S (x0, t) v (x0, t)] dt

−
∫ t1

t0

[p (x1, t) − p (x0, t)] dt.

(2.1.2)

Finally, conservation of energy states that the total change of energy over

∆x is equal to the energy flow though the boundaries of ∆x plus the overall

energy change due to pressure during ∆t. This has integral form

∫ x1

x0

[E (x, t1) − E (x, t0)] dx =

−
∫ t1

t0

[E (x1, t) v (x1, t) − E (x0, t) v (x0, t)] dt

−
∫ t1

t0

[p (x1, t) v (x1, t) − p (x0, t) v (x0, t)] dt.

(2.1.3)

The three conservation equations, (2.1.1), (2.1.2) and (2.1.3) form a coupled
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system of equations. We can express this system in terms of a state vector, q,

and flux vector f . This allows the integral conservation equations to be written

as

∫ x1

x0

[q (x, t1) − q (x, t0)] dx = −
∫ t1

t0

[f (x1, t) − f (x0, t)] dt. (2.1.4)

The two vectors introduced above are then given by

q =







ρ0

S

E






(2.1.5)

and

f =







S

Sv + p

(E + p) v






. (2.1.6)

These conserved variables, q, couple through the so-called primitive vari-

ables ρ0, v, p and specific internal energy ε, where the momentum and energy

are given by

S = ρ0v, E = ρ0

(

ε +
v2

2

)

. (2.1.7)

We refer to these as primitive variables since they are often those that are the

easiest to measure directly in a physical system. Additionally they allow for a

more intuitive understanding of the behaviour of a fluid system.

Currently the conservation equations, (2.1.4), do not form a closed set.

There are currently three equations, but four independent quantities, i.e. the

primitive variables ρ0, v, p and ε. The system is closed by an additional

equation which describes one of these primitive quantities in terms of the

others, and effectively constrains the type of fluid being considered. This is an

EOS, typically of the form

p = p (ρ0, ε) . (2.1.8)

The EOS is dependent on the fluid being modelled. Further details as to the

choice of EOS in this work are in given section 2.3. Once we have an EOS, we



CHAPTER 2. THEORETICAL BASIS 31

can then define a vector of primitive variables, e.g.

w =







ρ0

v

ε






. (2.1.9)

The most common form in which the conservation equations, (2.1.4), are writ-

ten is not in integral form, but rather as a system of partial differential equa-

tions (PDEs). To see how we can write our integral equations in this form, we

first note that if q is differentiable in time, we have

q (x, t1) − q (x, t0) =

∫ t1

t0

∂q

∂t
dt. (2.1.10)

A similar result is apparent if f is differentiable in space,

f (x1, t) − f (x0, t) =

∫ x1

x0

∂f

∂x
dx. (2.1.11)

These two relations can be inserted into the integral equation, (2.1.4), to give

∫ x1

x0

∫ t1

t0

∂q

∂t
dt dx = −

∫ t1

t0

∫ x1

x0

∂f

∂x
dx dt. (2.1.12)

Assuming that the order of integration is reversible, this can then be simplified

to
∂q

∂t
+

∂f

∂x
= 0. (2.1.13)

Note that the constants of integration that arise from this simplification must

be zero due to the limits of integration being arbitrary, i.e. the relationship

in (2.1.12) must hold for all values of these limits. This result, for the vectors

q and f given by (2.1.5) and (2.1.6) respectively, is the standard differential

equation form of the Newtonian 1+1 dimensional Cartesian Euler equations

in conservation form.

The generalisation of this equation, (2.1.13), to multidimensional (Carte-

sian) systems with non-trivial body forces (forces which act on the fluid, e.g.

gravitational potential) can be derived in a similar manner. Such a calculation
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yields
∂q

∂t
+

∂f i

∂xi
= s (2.1.14)

where xi = {x, y, z}. The state vector, q, is similar to (2.1.5), but now must

include momentum components for each direction xi, i.e.

q =

















ρ0

Sx

Sy

Sz

E

















(2.1.15)

with

Si = ρ0vi, E = ρ0

(

ε +
viv

i

2

)

, (2.1.16)

where subscript or superscript i represents the momentum or velocity compo-

nent in the direction xi. There is now also a flux vector f for each direction

xi, given by

f i =

















Si

Sxv
i + δi

xp

Syv
i + δi

yp

Szv
i + δi

zp

(E + p) vi

















, (2.1.17)

where the Kronecker delta,

δi
j =







1 i = j

0 otherwise
, (2.1.18)

has been used. All body forces are included in the source vector s. Equa-

tion (2.1.14) then gives the full three dimensional Euler equations in Cartesian

coordinates. If s = 0 then (2.1.14) is in conservation form. When non-zero

sources are present, provided they contain no derivatives of the conserved quan-

tities, these equations can be thought of as being in balance law form, since it

is these forces that exactly balance the conserved quantities.

Aside from originating from the intuitive description of fluid behaviour, the

importance in writing the evolution equations in conservation (or balance law)
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form arises when non-linear behaviour is present. The differential equation

form was dependent on the solution being differentiable, which is clearly not

the case for shocks, where the fluid variables jump. This is explored in more

detail in section 3.3.

2.1.1 Spherically symmetric fluid evolution equations

We have so far derived the fluid evolution equations in Cartesian coordinates;

however, in many practical cases this will not be the natural coordinate sys-

tem to use. One case of particular importance to us is the modelling of stars

(e.g. NSs), for which spherical coordinates are a more natural choice. Here we

shall consider the spherically symmetric evolution equations (i.e. in 1+1 di-

mension with only the radial derivatives non-vanishing). These can be written

in the same form as (2.1.13), but the coordinate transformation results in an

additional source term, (see e.g. [201]),

d

dt







ρ0

S

E






+

d

dr







S

Sv + p

(E + p) v






=







−2
r
ρ0v

−2
r
ρ0v

2

−2
r
v (E + p)






. (2.1.19)

This form of the equations is not necessarily the most ‘natural’ form, particu-

larly for accurate numerical solutions, since the presence of the 1/r term in s

leads to singular behaviour at the origin. The source terms can, however, be

incorporated into f , giving

d

dt







ρ0

S

E






+

1

r2

d

dr







r2S

r2Sv

r2 (E + p) v






+

d

dr







0

p

0






= 0. (2.1.20)

This has removed the source terms, and hence, the singular behaviour at r = 0

that would arise from such terms. There is now, however, a 1/r2 factor in front

of the flux vector term. The relationship

1

r2

d

dr
= 3

d

d (r3)
. (2.1.21)
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then allows this additional singular term to be removed, and hence we obtain

the so-called ‘natural’ form of the spherically symmetric evolution equations,

d

dt







ρ0

S

E






+ 3

d

d (r3)







r2S

r2Sv

r2 (E + p) v






+

d

dr







0

p

0






= 0. (2.1.22)

The equations above are still expressed in the absence of body forces, and,

therefore, are not yet suitable for use in describing the evolution of matter

within a star. A source term which incorporates the effects of the gravitational

potential can be added to this natural form, [201],

s =







0

−ρ0∇Φ

−ρ0v∇Φ






. (2.1.23)

Therefore the evolution equations for a self-gravitating spherically symmetric

fluid in Newtonian physics can be written as

d

dt







ρ0

S

E






+ 3

d

d (r3)







r2S

r2Sv

r2 (E + p) v






+

d

dr







0

p

0






=







0

−ρ0∇Φ

−ρ0v∇Φ






.

(2.1.24)

Note that in these spherically symmetric coordinates, we have ∇Φ = dΦ
dr

.

2.2 Relativistic fluid evolution equations

In relativistic situations there is a coupling between space and time, and this

must be taken into account when considering the equations that govern a fluid’s

behaviour. We must also consider the effects of Einstein’s General Theory of

Relativity, which describes gravity as the curvature of spacetime. In GR, mat-

ter and energy distort the geometry of spacetime, whilst this distortion then

affects how matter moves. The geometry of the spacetime is described by a 4-

dimensional manifold, M (see e.g. [9, 136, 205]). On M, the invariant distance

between two events is given by a metric, gµν , which is a symmetric tensor. The

structure of this manifold would then be expected to enter equations for the
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evolution of the mass-energy of the system. For simplicity, this mass-energy

is typically referred to as matter. Similarly, the evolution of the spacetime

manifold would then is also expected to be dependent on the matter.

In GR the density and flux of matter is described through the stress-energy

tensor Tµν . Since in this thesis we consider only perfect fluids, we will deal

with a stress-energy tensor of the form

Tµν = ρ0huµuν + pgµν (2.2.1)

where ρ0 is the rest-mass density of the fluid, h the specific enthalpy, uµ the

covariant 4-velocity and p the pressure. The 4-velocity of a particle in GR is

defined by

uµ =
dxµ

dτ
(2.2.2)

where τ is proper time and xµ is the coordinate position of the particle. The

specific enthalpy for a relativistic fluid is given by

h = 1 + ε +
p

ρ0

, (2.2.3)

where (as in Newtonian physics) ε is the specific internal energy of the fluid.

We also have a covariant derivative, ∇µ associated with the metric gµν , such

that ∇αgµν = 0. For an arbitrary tensor Sµ1...µk
ν1...νl

the covariant derivative

is given by

∇αSµ1...µk
ν1...νl

= ∂αSµ1...µk
ν1...νl

+ Γµ1

βα Sβ...µk
ν1...νl

+ . . .

+ Γµk

βα Sµ1...µk−1β
ν1...νl

− Γβ
ν1α Sµ1...µk

β...νl

− . . . − Γβ
νlα

Sµ1...µk

ν1...νl−1β.

(2.2.4)

Here ∂µ is a partial derivative and Γµ
να are connection coefficients, or Christoffel

symbols, which are given by

Γµ
να =

1

2
gµβ (∂αgνβ + ∂νgαβ − ∂βgνα) . (2.2.5)

The presence of the metric terms in the covariant derivative mean that the

curvature of spacetime will effect the evolution of a fluid. In addition to this

it is already evident that the spacetime will enter the description of matter
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through the stress-energy tensor (2.2.1).

The curvature of an arbitrary manifold is given by the Riemann tensor, Rµ
ναβ,

and can be given in terms of the Christoffel symbols through

Rµ
ναβ = ∂αΓµ

νβ − ∂βΓµ
να + Γµ

γαΓγ
νβ − Γµ

γβΓγ
να. (2.2.6)

Contractions of the Riemann tensor can also be defined, with the Ricci tensor

given by

Rµν = Rα
µαν (2.2.7)

and the Ricci scalar by

R = Rµ
µ. (2.2.8)

The curvature of spacetime (which is subject to various simplifications from

a general 4-dimensional manifold, see e.g. [136, 177]) can then be described

through the Einstein tensor, Gµν . This is given by

Gµν = Rµν −
1

2
gµνR. (2.2.9)

The manner in which the matter distorts the spacetime is then given by the

Einstein equations,

Gµν = 8πTµν . (2.2.10)

Due to the symmetric nature of both the Einstein tensor and the perfect fluid

stress-energy tensor, this is a system of 10 coupled PDEs.

As with Newtonian physics, the matter evolution equations are based on locally

conserved quantities. In GR these quantities are baryon number, the flow of

which is given by ρ0u
µ, and stress-energy, T µν . These have analogies in a

Newtonian fluid; the former of these can be compared to conservation of mass

and the latter incorporates the conservation of momentum and energy. For a

vector, F, which represents the flux of some conserved quantity through the

boundaries of a hypersurface Σ, this can be represented in integral form as

∮

Σ

F · n dΣ = 0, (2.2.11)
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where n is the unit-normal of the surface Σ. This result also holds for each

free index of a conserved tensor quantity (e.g. T µν). Effectively we have stated

that there is no transfer of matter through the boundaries of Σ. We can then

apply Gauss’ theorem to this result to give

∫

V

(∇ · F) dV = 0 (2.2.12)

where V is the spacetime volume bounded by Σ. This is a generalisation of the

result given in (2.1.13) where the integral equations for a vector of conserved

quantities, u, can now be written as a system of PDEs. In this general case

we have

∇µF
µ = 0 (2.2.13)

where, for a relativistic fluid we have the conserved quantities as described

above, ρ0u
µ and T µν . Note that the constants of integration will also vanish

in this case, as described in section 2.1. The conservation equations are then

often written as the conservation of baryon number,

∇µ (ρ0u
µ) = 0, (2.2.14)

and conservation of stress-energy,

∇µT
µν = 0. (2.2.15)

The coupled nature of space and time means interpreting any solutions of the

conservation and Einstein equations is not necessarily intuitive. Furthermore

the ‘natural’ 4-dimensional geometric form of the equations is often not suit-

able for use in a numerical simulations of relativistic fluid evolution. Since

most physically relevant situations do not have analytic solutions, these nu-

merical simulations are often essential. It is, therefore, useful to consider a

decomposition of the 4-dimensional manifold, M, and hence of the Einstein

and evolution equations. Typically a ‘3+1’ formalism used, a decomposition

of M into 3 ‘spatial’ dimensions and one ‘time’ dimension. The first such

3+1 formalism was the Arnowitt-Deser-Misner (ADM) formalism [19], and
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the derivation given here is based on the reformulation of York [217], with the

applications to fluid evolution equations are based on e.g. [44, 140, 142].

2.2.1 3+1 decomposition of the Einstein equations

Here we outline some of the major features and results from making a 3+1

decomposition of the Einstein equations. Full details of this calculation are in

appendix A.1. To make a 3+1 decomposition of the spacetime, M, we foliate

it into a set of spacelike hypersurfaces, Στ , which are level surfaces of a scalar

field, τ , interpreted as some ‘time’ function. These hypersurfaces are then

described locally by a closed dual-vector field, Ωµ, where

Ωµ = ∇µτ. (2.2.16)

The norm of this dual-vector field is then defined to be

gµνΩµΩν = −α−2, (2.2.17)

where α is a scalar function, known as the lapse function. The lapse can be

thought of as a measure of the perpendicular distance between spacetime slices

Στ . From this, a unit-normal dual-vector field, nµ, can be constructed,

nµ = −αΩµ. (2.2.18)

The sign of this dual-vector is chosen such that the normal vector nµ is future

pointing. This normal vector then acts as a projection operator so that the

contraction of a tensor with nµ will give its timelike components.

We can also define a projection operator which, when used in the contraction

of a tensor, gives the spacelike components. This projection tensor is given by

⊥µ
ν≡ δµ

ν + nµnν . (2.2.19)

If we have an arbitrary tensor Sµ1µ2...µk
ν1ν2...νl

, then we define ⊥ to be the
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spatial projection of every index of this tensor,

⊥ Sµ1µ2...µk
ν1ν2...νl

=⊥µ1

α1
⊥µ2

α2
. . . ⊥µk

αk
⊥β1

ν1
⊥β2

ν2
. . . ⊥βl

νl
Sα1α2...αk

β1β2...βl
.

(2.2.20)

A tensor projected in such a manner is referred to as a spatial tensor.

From these projections we can define the metric on the hypersurfaces, the

spatial metric, γµν , through the projection of the full metric ⊥ gµν ,

γµν = gµν + nµnν . (2.2.21)

We also have the contravariant form of this metric,

γµν = gµν + nµnν . (2.2.22)

Similarly we can define the spatial covariant derivative operator, Dµ, in the

obvious manner

Dµ ≡⊥ ∇µ. (2.2.23)

The intrinsic curvature of any spacelike slice can be defined through the spa-

tial Riemann tensor, (3)Rµ
ναβ, which is the Riemann tensor associated with

γµν . This can be defined in an analogous manner to the full Riemann tensor,

through its action on an arbitrary spatial dual-vector ωµ,

(DµDν − DνDµ) wα =(3)R β
µνα wβ. (2.2.24)

As with its 4-dimensional counterpart, we can define a 3-dimensional Ricci

tensor and Ricci scalar,

(3)Rµν =(3)Rα
µαν ,

(3)R =(3)Rµ
µ. (2.2.25)

The intrinsic curvature gives a description of the curvature within a slice Στ ,

but we also need to define how these slices are embedded in the 4-dimensional

spacetime. This is done through the extrinsic curvature tensor, a symmetric
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tensor given by

Kµν = − ⊥ ∇µnν . (2.2.26)

The extrinsic curvature can also be defined through a Lie-derivative of the

spatial metric along the normal vector field,

Kµν = −1

2
Lnγµν = −1

2
⊥ Lngµν . (2.2.27)

The 3+1 decomposition of a tensor effectively splits it into timelike and space-

like components. For reference, the 3+1 decomposition of an arbitrary sym-

metric tensor σµν is

σµν =⊥ σµν − 2n(µ ⊥ σν)n̂ + nµnνσn̂n̂ (2.2.28)

where an index n̂ represents a contraction with nµ. It is convention that

a contraction with nµ introduces a minus sign, i.e. for arbitrary vector ωµ,

ωn̂ = −ωµnµ.

When considering the 3+1 decomposition of the stress-energy tensor, Tµν ,

the projections are defined as

̺ ≡ Tn̂n̂ = Tµνn
µnν , (2.2.29a)

jµ ≡⊥ T µn̂ = − ⊥ (T µνnν) , (2.2.29b)

Eµν ≡⊥ Tµν . (2.2.29c)

These projections then have the physical interpretation of the local energy

density, ̺, and momentum density, jµ, and the local stress-energy tensor mea-

sured by observers moving along nµ, Eµν .

In order to obtain a 3+1 form of the Einstein equations, since we wish to

express the derivatives of quantities in terms of spatial and time derivatives, it

is necessary to specify a vector along which we compute these time derivatives.

In section (A.1.3) we justify the natural choice of vector for this is

tµ = Nµ + βµ, (2.2.30)
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Στ (xi, t)
γij (t)

Στ+∆τ

(xi, t + ∆t)

γij (t + ∆t)

αnµ

tµ

βµ

Figure 2.1: Showing how the vector tµ describes the movement between two
spacetime slices. The normal, αnµ, and tangential, βµ, components are also
shown.

where Nµ = αnµ and βµ is an arbitrary spatial vector, the shift vector. This

generalised vector, and how it relates to movement between the spacetime

slices, is shown in figure 2.1.

From the generalised vector field, tµ, the full line element for the 3+1

decomposition, as used in [9, 142], can be given as,

ds2 = −
(

α2 − βiβ
i
)

dt2 + 2βidxidt + γijdxidxj. (2.2.31)

and in this case, we have normal vector

nµ =

(

1

α
,−βi

α

)T

(2.2.32)

and its dual-vector

nµ = (−α, 0, 0, 0) . (2.2.33)

The contractions involved in making the 3+1 decomposition of the Einstein

equations, (2.2.10), along with the definition of the extrinsic curvature ten-

sor, (2.2.27), allow for a full description of the behaviour of the spacetime

within this framework. This description provides two constraint equations for

the spacetime and two evolution equations, one for the intrinsic spacetime of
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Στ and one for the extrinsic curvature. These equations are derived in sec-

tion A.1.4, and only the results are given here.

Contracting both indices of the Einstein equation with nµ gives the Hamil-

tonian constraint,

R + K2 − Kµ
νK

ν
µ = 16π̺. (2.2.34)

The second constraint equation, the momentum constraint, is achieved by

contracting the contravariant form of the Einstein equations with −nµ and

then making the spatial projection. This gives the momentum constraint,

DνK
µν − DµK = 8πjµ. (2.2.35)

These two equations are know as the constraint equations since they contain

only spatial tensors and their derivatives. They must hold for γµν and Kµν for

all time when solving the Einstein equations.

From the definition of the extrinsic curvature tensor, (2.2.27),

Kµν = −1

2
Lnγµν , (2.2.36)

we obtain the evolution equation for the spatial metric γµν ,

Ltγµν = −2αKµν + Lβγµν . (2.2.37)

Finally the evolution equation for the extrinsic curvature tensor arises from

the full spatial contraction of the Einstein equation, which can be written as

LtK
µ
ν = LβKµ

ν − DµDνα + α

{

Rµ
ν + KKµ

ν + 8π

[

1

2
⊥µ

ν (E − ̺) − E
µ
ν

]}

(2.2.38)

where E = Eµ
µ.

We have now given the 3+1 evolution equations for a general spacetime, charac-

terised by the metric gµν . The fluid evolution equations, (2.2.14) and (2.2.15)

can also be written in this form using the metric for the 3+1 decomposi-

tion, (2.2.31). In order to obtain evolution equations that can be used in

computational simulations, we need to specify the coordinates used on the
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spacetime, γij, as well as the lapse, α, and shift, β.

When making a numerical simulation, it is more natural in many ways to work

with the 3-velocity of the fluid. This is defined in terms of the 4-velocity, uµ,

by

vi =
ui

αut
+

βi

α
. (2.2.39)

We also have a covariant form given by a contraction with γij,

vi =
ui

W
, (2.2.40)

where we have the scalar parameter

W = −uµnµ = αut. (2.2.41)

Using the normalisation uµuµ = −1, we show, in appendix A.1.5, that this

parameter is simply the Lorentz factor as measured by Eulerian observers,

W =
1√

1 − vivi
. (2.2.42)

We are then able to use the Lorentz factor to replace ut terms in evolution

equations for the fluid.

2.2.2 The special relativistic fluid evolution equations

Here we consider the equations for the evolution of matter in special relativity

(SR). This is a special case for the full GR scenario described above in which

gravitational effects are neglected, i.e. we have a static spacetime with no

curvature. We therefore work in Minkowski spacetime, which, in Cartesian

coordinates, has the metric

gµν = ηµν = diag [−1, 1, 1, 1] . (2.2.43)

In SR, the flat and static spacetime leads to all Christoffel symbols Γµ
να van-

ishing, hence covariant derivatives become equivalent to partial derivatives.

In terms of the 3+1 split, we can choose that the lapse and shift take their
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‘trivial’ values, α = 1 and βi = 0. Therefore we have 4-velocities, obtained

using (2.2.39), (2.2.41), (A.1.121) and (A.1.124),

uµ = W
(

1, vi
)T

, uµ = W (−1, vi) . (2.2.44)

We now consider the conservation laws, (2.2.14) and (2.2.15). We start with

the conservation of mass, (2.2.14),

∇µ (ρ0u
µ) = 0. (2.2.45)

Considering the timelike and spacelike components, and using (2.2.44) to write

the 4-velocity component in terms of the 3-velocity and the Lorentz factor, we

get

∂t (ρ0W ) + ∂i

(

ρ0Wvi
)

= 0. (2.2.46)

We then define the quantity D = ρ0W , which is the rest mass density seen

from the Eulerian frame, giving

∂tD + ∂i

(

Dvi
)

= 0. (2.2.47)

We also consider the conservation of stress-energy, (2.2.15),

∇µT
µ
ν = 0. (2.2.48)

In SR, the components of the stress-energy tensor are given by

T t
t = ρ0hutut − pδt

t = ρ0hW 2 − p, (2.2.49)

T t
i = ρ0hutui + pδt

i = ρ0hW 2vi, (2.2.50)

T i
t = ρ0hutui + pδi

t = ρ0hW 2vi, (2.2.51)

T i
j = ρ0huiuj + pδi

j = ρ0hW 2vivj + pδi
j. (2.2.52)

These components, as described in section 2.2, give the total energy density

measured in the Eulerian frame, E = ρ0hW 2 − p, and the momentum Si =

ρ0hW 2vi. These definitions then yield a useful relation,

Si = (E + p) vi. (2.2.53)
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Considering the t component of the conservation of stress-energy we have

∂µT
µ
t = ∂tT

t
t + ∂iT

i
t = 0, (2.2.54)

which can then be written

∂tE + ∂i

[

(E + p) vi
]

= 0. (2.2.55)

The total energy density comprises the various energies present in the system;

e.g. the self-energy, characterised by the ρ0 component of E, and the kinetic

energy. At low velocities the self energy of the system is much greater than

the kinetic energy and dominates the energy term. As a result, the evolution

equation for E becomes approximately equal to that for D, (2.2.47). When

solving this equation numerically, this can lead to errors in obtaining the cor-

rect solution for E. To avoid these problems, the variable τ is defined, such

that

τ ≡ E − D (2.2.56)

and, by subtracting (2.2.47) from (2.2.55), we obtain

∂tτ + ∂i

[

(τ + p) vi
]

= 0. (2.2.57)

The spatial components of (2.2.48) are given by

∂µT
µ
i = ∂tT

t
i + ∂jT

j
i = 0, (2.2.58)

which, using (2.2.52) can be written

∂tSi + ∂j

(

Siv
j + pδj

i

)

= 0. (2.2.59)

The three conservation laws derived, (2.2.47), (2.2.59) and (2.2.57) can be

written in vector form
∂q

∂t
+

∂f i (q)

∂xi
= 0 (2.2.60)
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with state vector

q =

















D

Sx

Sy

Sz

τ

















(2.2.61)

and flux vector

f i =

















Dvi

Sxv
i + δi

xp

Syv
i + δi

yp

Szv
i + δi

zp

(τ + p) vi

















. (2.2.62)

We can see that the conserved variables in SR, D, Si and τ , lead to the

same form of the state vector, q, and flux vector, f i as in the Newtonian

case, (2.1.14).

2.2.3 The general relativistic fluid evolution equations

in spherical symmetry

Before we consider the specific case of the GR fluid evolution equations in

spherical symmetry, it is worth considering the case in full 3+1 GR. This

formalism of the evolution equations is derived in [26] and used in e.g. [25, 70],

the equations shown in this section follow from these results. As with the

special relativistic case, we have the conserved variables

D = ρ0W, (2.2.63a)

Si = ρ0hW 2vi, (2.2.63b)

τ = ρ0hW 2 − p − D. (2.2.63c)

The 3+1 form of the conservation equations can then be written

1√−g

[

∂t (
√

γq) + ∂i

(√−gf i
)]

= s (2.2.64)
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where g ≡ det (gµν) and γ ≡ det (γi,j). The state vector is then given by

q =







D

Sj

p






, (2.2.65)

the flux vector by

f i =











D
(

vi − βi

α

)

Sj

(

vi − βi

α

)

+ δi
jp

τ
(

vi − βi

α

)

+ pvi











, (2.2.66)

and source vector by

s =







0

T µν
(

∂µgνj − Γδ
νµgδj

)

α
[

T µt∂µ (ln α) − T µνΓt
νµ

]






. (2.2.67)

Polar-areal coordinates

In this work, since we restrict ourselves to spherical symmetry, meaning only

radial derivatives are non-vanishing. The most general spherically symmetric

3+1 line element can be written as

ds2 =
(

−α2 + a2 (βr)2) dt2 + 2a2βr dtdr + a2dr2 + r2b2d Ω2 (2.2.68)

where dΩ2 = dθ2+sin2θdφ2. In spherical symmetry all but the r component of

βi vanish due to spherical symmetry and a and b are functions of r and t only.

We then need to make a choice of gauge conditions to specify within which

coordinate system we are working. Here we follow e.g. [140, 142] by using

the polar slicing condition and the areal or radial condition [9, 28, 45]. The

form of the equations presented in this thesis does differ from these sources

however, since we have matched the form used in many 3+1 dimensional NS

simulations e.g. [25, 26]. The polar slicing condition is a condition such that

the only non-zero component of the extrinsic curvature tensor Kµν is Krr. The

areal condition chooses the radial coordinate such that the proper area of a
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two-sphere is 4πr2, which gives b = 1. When combined, these gauge conditions

are result in the shift vector vanishing everywhere i.e. βr = 0.

The resulting coordinate system, known as polar-areal coordinates, then

has line element

ds2 = −α2dt2 + a2dr2 + r2d Ω2 (2.2.69)

with the metric given by

gµν = diag
[

−α2, a2, r2, r2 sin2 θ
]

(2.2.70)

which has contravariant form

gµν = diag
[

−α−2, a−2, r−2, r−2 sin−2 θ
]

. (2.2.71)

For this coordinate choice, we have normal vector nµ, (2.2.32), and its dual

nµ, (2.2.33), given by

nµ =

(

1

α
, 0, 0, 0

)T

, nµ = (−α, 0, 0, 0) . (2.2.72)

In this section we will outline the derivation of the fluid evolution equations and

relevant constraint equations in polar-areal coordinates. Here we use the form

of [26], i.e. the evolution equations are obtained from (2.2.64). An alternative

derivation of the equations directly from the conservation laws is shown in

appendix A.2.

One useful quantity we can define is the mass aspect function, m(t, r) which

can be interpreted as the gravitational mass within a radius r. We obtain this

function by comparison of the polar-areal line element (2.2.69) with the vacuum

Schwarzschild line element

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2d Ω2 (2.2.73)

where M is the (constant) gravitational mass of a body. Outside a star, the

polar-areal and Schwarzschild metrics are equivalent, as stated by Birkhoff’s
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theorem ([34]), hence we have

a2 (r) =

(

1 − 2M

r

)−1

(2.2.74)

This leads naturally to the definition of the mass aspect function within the

star,

m (t, r) ≡ r

2

(

1 − 1

a (t, r)2

)

. (2.2.75)

In section 2.6 we will justify why this function can be interpreted as the grav-

itational mass within r.

We now need to compute the components of the perfect fluid stress-energy ten-

sor, T µν = ρ0huµuν+pgµν , in polar-areal coordinates. We first need the compo-

nents of the 4-velocity uµ which are given by (2.2.41), ut = W/α, and (2.2.39),

ui = ut (αvi − βi), hence we have

uµ = W
(

α−1, vr, 0, 0
)

. (2.2.76)

The non-vanishing components of the stress-energy tensor in polar areal coor-

dinates are then given by

T tt = ρ0hW 2

α2 − p
α2 = E

α2 ,

T tr = ρ0hW 2vr

α
= Sr

α
,

T rr = ρ0hW 2vrvr + p
a2 = Srvr + p

a2 ,

T θθ = p
r2 ,

T φφ = p
r2 sin2 θ

.

(2.2.77)

The use of the perfect fluid stress energy tensor also allows us to write the con-

straint and evolution equations for the spacetime variables α and a explicitly.

To achieve this it is useful to consider how the contractions of the stress-energy

tensor, given in (2.2.29), relate to the conserved variables. The local energy

density, (2.2.29a), is

̺ = Tn̂n̂ = Tµνn
µnν = Tttn

tnt = E (2.2.78)

where we have used the fact that the only non-zero component of the normal
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vector is nt. The momentum density, (2.2.29b) can be written

jµ =⊥ T µn̂ = − ⊥ (T µνnν)

= − (δµ
α + nαnµ) Tανnν

= − (δµ
α + nαnµ) Tαtnt

= − (δµ
t + ntn

µ) T ttnt − (δµ
r + nrn

µ) T rtnt.

(2.2.79)

The only non-vanishing component of the momentum density will then be

jr = T rtnt = Sr (2.2.80)

with covariant form

jr = Sr. (2.2.81)

Spacetime equations

We then write the evolution and constraint equations obtained by making

the 3+1 split of the Einstein equations in polar-areal coordinates. From the

Hamiltonian constraint, (2.2.34),

R + K2 − Kµ
νK

ν
µ = 16π̺, (2.2.82)

we obtain a constraint equation for the spacetime variable a (see appendix A.2.2

for this derivation),

∂ra

a
= a2

[

4πr (τ + D) − m

r2

]

. (2.2.83)

From the momentum constraint, (2.2.35),

DνK
µν − DµK = 8πjµ. (2.2.84)

we can also derive an evolution equation for a,

∂ta = −4πrαaSr. (2.2.85)
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as shown in appendix A.2.3. Finally, from the evolution equation for the

extrinsic curvature, (A.1.112),

LtKµν = LβKµν − DµDνα + α

{

Rµν + KKµν

−2KµαKα
ν − 8π

[

Eµν −
1

2
γµν (E − ̺)

]}

.

(2.2.86)

we are able to derive a constraint equation for the lapse, α. In particular,

this is obtained from the Kθθ component which, in appendix A.2.4 we find the

result
∂rα

α
= a2

[

4πr (Srv
r + p) +

m

r2

]

. (2.2.87)

This has then coupled the two spacetime variables a and α, and therefore the

evolution of α can be described through this constraint equation and (2.2.83).

The Hamiltonian constraint, (2.2.85), is therefore not required to solve for

spacetime variable, which, as described in section 3.3.1, allows it to be used to

check the accuracy of a NR simulation.

Fluid evolution equations

The evolution of the rest mass density in the Eulerian frame, D, is derived, as

in SR, from the conservation of mass (2.2.14),

∇µ (ρ0u
µ) = 0. (2.2.88)

In appendix A.2.5 we show that this leads to the evolution equation

∂t (aD) +
1

r2
∂r

(

r2αaDvr
)

= 0. (2.2.89)

To obtain an equation for the total energy density E we consider the t

component for the conservation of stress-energy (2.2.15),

∇µT
µt = 0. (2.2.90)

As in SR, we use the variable τ ≡ E − D, and the evolution equation we
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obtain, as derived in appendix A.2.6, is

∂t (aτ) +
1

r2
∂r

[

r2αa (τ + p) vr
]

= −αamSr

r2
. (2.2.91)

Finally the evolution of the single non-vanishing momentum component,

Sr, is obtained from the spatial components of (2.2.15),

∇µT
µr = 0. (2.2.92)

This results in

∂t (aSr) +
1

r2
∂r

[

r2αa (Srv
r + p)

]

= αa

[

−a2m

r2
(Srv

r + p + τ + D) +
2p

r

]

(2.2.93)

which is derived in appendix A.2.7.

We now have balance-law equations for the conserved variables, (2.2.89), (2.2.93)

and (2.2.91). As with the Newtonian and SR equations, we typically write

these in vector form

∂t






a







D

Sr

τ












+

1

r2
∂r






r2αa2







Dvr

Srv
r + p

(τ + p) vr












=

αa







0

−a2m
r2 (Srv

r + p + τ + D) + 2p
r

−Srm
r2






.

(2.2.94)

This equation can be rearranged to reduce problems with the coordinate sin-

gularity at the origin, in a similar manner to that used for the Newtonian fluid

evolution equations in spherical symmetry in section 2.1.1. The pressure term

in the momentum equation, (2.2.93), can be rearranged to give

1

r2
∂r

(

r2αap
)

= ∂r (αap) +
2αap

r
. (2.2.95)

Using this and by removing 1/r2 terms with (2.1.21),

1

r2

d

dr
= 3

d

d (r3)
, (2.2.96)
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means we can write the system of equations, in vector form, as

∂t (aq) + 3∂r3

(

r2αaf (1)
)

+ ∂r

(

αaf (2)
)

= αas. (2.2.97)

Here we have

q =







D

Sr

τ






, (2.2.98)

f (1) =







Dvr

Srv
r

(τ + p) vr






, (2.2.99)

f (2) =







0

p

0






(2.2.100)

and

s =







0

−a2m
r2 (Srv

r + p + τ + D)

−Srm
r2






. (2.2.101)

It is instantly apparent that these equations have a similar form to those for

a Newtonian spherically symmetric fluid, (2.1.24). We can also see the cou-

pling of the matter to the spacetime through the variables a and α, introduced

through relativistic formulation of these equations. When solving these equa-

tions, we must therefore ensure that the equations governing the spacetime

(e.g. (2.2.85) and (2.2.87)) are solved simultaneously.

2.3 Equation of state

In section 2.1, we demonstrated the necessity for an additional equation, the

EOS, to close the system of evolution equations. This is an equation of the

form

p = p (ρ0, ε) . (2.3.1)

The EOS gives specific information about the type of fluid being modelled.

As a result the choice of EOS will always be model dependent, and will be
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based both on the desire to incorporate an accurate description of the fluid

and the ease with which it can be implemented for the problem in question

(be it analytical or a numerical). Ideally the EOS will be derived from the

microphysical properties of the fluid to offer a global description of the fluid

behaviour.

In this work one requirement of our choice of EOS is that it must provide a

suitable description of matter within a NS. One fairly simple EOS that achieves

this, whilst also offering a reasonable description of many common fluids, e.g.

air or helium, is the ideal fluid EOS [9]. This can be derived from the standard

relationship,

pV = nkT, (2.3.2)

where V is the volume of the fluid, n the number of particles in this volume, k

the Boltzmann constant and T the temperature of the fluid. The specific heat

of the fluid is a quantity that can be defined as the amount of heat, Q, per

unit mass required to raise T by one degree. This quantity does in fact have

two possible values, which depend upon whether it is calculated whilst either

V or p are kept constant. These two values give the specific heat at constant

volume,

cV =
1

M

(

dQ

dT

)

V =const.

(2.3.3)

and the specific heat at constant pressure

cp =
1

M

(

dQ

dT

)

p=const.

(2.3.4)

where M is the total mass of the fluid within V . Assuming all particles are

of equal mass, the total mass is given by M = nm, with m the mass of the

individual particles. It is assumed that there is no mass transfer into or out of

V , therefore M is a constant.

The first law of thermodynamics states

dQ = dU + p dV, (2.3.5)

where U is the internal energy, related to the specific internal energy by U =

nmε. If we consider the case where V is constant, then (2.3.5) reduces to
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dQ = dU , and we can therefore write (2.3.3) as

dU = McV dT. (2.3.6)

If it is assumed that cV is constant, then this can be integrated to give

U = McV T. (2.3.7)

Alternatively, at constant pressure, we can use (2.3.2) to obtain the relationship

pdV = nk dT. (2.3.8)

The two results, (2.3.6) and (2.3.8) allow the first law of thermodynamics, (2.3.5)

to be written

dQ = McV dT + nk dT. (2.3.9)

Using this relationship in (2.3.4) we can now write cp as

cp =
McV dT + nk dT

M dT
= cV +

k

m
(2.3.10)

which, when rearranged, gives

k

m
= cp − cV . (2.3.11)

We then use (2.3.7) to remove the explicit dependence on T from the EOS (2.3.2),

which, when rearranged, gives

p =
nkU

McV V
(2.3.12)

which can then be written in terms of the individual particle mass m,

p =
kU

mcV V
. (2.3.13)

We now define the adiabatic index, γ, as the ratio of the specific heats,

γ =
cp

cV

(2.3.14)
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which, using (2.3.11) allows this to be written

p =
(γ − 1) U

V
. (2.3.15)

Finally, the definition U = nmε, along with the relationship ρ0 = nm/V yields

the EOS in the form,

p = (γ − 1) ρ0ε. (2.3.16)

This provides a relationship that allows us to close the systems of evolution

equations introduced so far in this chapter.

From the EOS we can define the specific entropy of the system, s, in terms of

the fluid variables(see e.g. [116]). For an ideal fluid we have

s = cV ln p − cp ln ρ0 + const. (2.3.17)

It is useful to consider the case when entropy is constant (we shall see later

some practical cases in which this occurs). From (2.3.17), we can see clearly

that this implies

p = Kργ
0 (2.3.18)

where K is a constant. This relationship is sometimes known as the polytropic

EOS (a special case of the ideal fluid EOS), and K is referred to as the poly-

tropic constant.

The ideal fluid EOS is described as a fairly simple example of an EOS since it

uses a single parameter, γ, to differentiate between fluid types. To achieve this

we must make many assumptions about the fluid being modelled such as taking

constant values for the specific heats cV and cp. This has the advantage that

despite this simplicity, it can offer a reasonable description of many common

fluids (e.g. air or helium), and, of particular interest here, the γ = 2 case offers

a surprisingly good description for a NS interior (based on e.g. mass-radius

profiles and interior dynamics using this EOS) [177].

By introducing more parameters into the choice of EOS we hope to to

encompass a greater range of microphysical behaviour of the fluid. These

parameters will often become specific to the fluid being modelled, for example
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in a NS we may wish to include nuclear interactions between particles, which

are negligible in air or helium.

For NSs, several more ‘realistic’ EOSs are available, the most commonly

used are those by Shen et al. ([178]) and Lattimer and Swesty ([118]). These

are specific EOSs for dense matter such as that in NSs, and parametrise the

fluid through electron fraction, Ye, and more realistic dependence on temper-

ature, T , in addition to density. Using these EOSs can increase the accuracy

of a NS model, however, in general, their more complex nature of means that

there is not a simple analytic form for the EOS. Instead the fluid properties are

prescribed through tabulated data. When making a numerical simulation of

e.g. a NS, it is repeatedly necessary to convert between primitive variables (ρ0,

vi, ε and p) and conserved variables (D, Si and τ for a relativistic fluid). Mak-

ing this conversion with tabulated data is computationally expensive. Since

the tabulated data cannot fully represent the continuum of the fluid, extrap-

olation of the physical quantities is required. As a result for many purposes,

such as testing numerical techniques (such as those in this thesis), there is a

clear advantage to using an EOS with a simple analytic form.

2.4 The Riemann problem

The motivation for considering the Riemann problem is twofold. Firstly, when

developing numerical techniques for solving the fluid evolution equations, test

cases with exact solutions are important for ensuring that these developments

have been implemented correctly. For Newtonian and special relativistic flu-

ids, the Riemann problem is one such test case. Secondly, and perhaps more

importantly, many of the numerical techniques used for solving these equa-

tions rely on repeatedly solving the Riemann problem. The specific role of the

problem in the numerical methods used in this thesis is described in detail in

section 3.4. As a result, a detailed understanding of the Riemann problem is

essential.

The Riemann problem is a class of 1+1 dimensional initial value problems

for a system of evolution equations for any state vector u. The initial condi-

tions, if coordinates are chosen such that the problem is centred on x = x0 at
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t = t0, are given by

u (t0, x) =

{

uL, x < x0

uR, x > x0

(2.4.1)

where uL and uL are constant vectors.

The solution of the Riemann problem for the fluid evolution equations

is self-similar. A self-similar problem can be written in terms of a single

independent variable ξ defined as a function of the coordinate variables, e.g.

ξ = f (t, x) for a 1+1 dimensional self-similar solution. For the Riemann

problem with initial data (2.4.1), we have

ξ =
x − x0

t − t0
. (2.4.2)

For any initial data uL and uR, then we have some information as to the

structure of the solution to the Riemann problem. If our state vector u has

N variables, then the general solution will consist of N waves which separate

N + 1 constant states. Therefore for the 1+1 dimensional fluid evolution

equations, we would expect three waves which separate four constant states.

In this solution, each wave will then have some associated velocity. There are

three possible wave types that can occur. The waves with the largest (most

positive) and smallest (most negative) velocities are determined by regions

where characteristics either converge or diverge. These two waves are denoted

W→, W← respectively. Diverging characteristics at either of these waves will

lead to a rarefaction, whilst converging characteristics result in a shock wave.

The characteristics at the remaining wave are parallel, and here we have a

contact discontinuity, denoted C. All three waves are self-similar: i.e. they

follow a line ξ = const. The constant state to the left of W←, and to the right

of W→, will be the initial states qL and qR respectively. The ‘intermediate’

constant states, between W← and C, and C and W→, are then denoted qL∗ and

qR∗ respectively. An example of a solution for the Riemann problem in which

all three wave types are formed is shown in figure 2.2.

The waveform of W← is determined by

W← =

{

R←, pL∗ < pL

S←, pL∗ > pL

(2.4.3)
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x

t

qL

qL∗ qR∗

qR

Figure 2.2: One possible solution to the Riemann problem showing a rarefac-
tion wave between qL and qL∗ , a contact discontinuity separating the resultant
states qL∗ and qR∗, and a shock wave separating qR∗and qR. Since the solu-
tion to the Riemann problem is self-similar, all features propagate along lines
ξ = x/t = constant.

where R← is a rarefaction, and S← a shock. Similarly, W→ can be determined

by substituting R for L in the conditions given above.

Here we first consider the solution to the Riemann problem in Newtonian

physics, as a reference solution. This allows for a greater understanding of the

form of the solution, such that when we consider the SR problem, we have

intuition for the more complex form of the solution in this case. The Riemann

problem is set up in the absence of gravitational effects (a constant gravita-

tional field is assumed). It is, however, still used in the numerical techniques for

simulations of e.g. stars. In these techniques, the Riemann problem is solved

many times, in each case over a small domain. Therefore in these regions, we

can consider the spacetime to be locally flat, and hence the techniques remain

valid [158].

In this section, many features will have a sign dependence depending on the

direction of movement of the wave being considered, i.e. if they are associated

with W← or W→. Unless otherwise stated, the positive case corresponds to a

wave moving in the positive x-direction, and negative case to a wave moving

in the negative x-direction.
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x

t

Figure 2.3: Illustrating the characteristic form of a rarefaction fan. We see
that the solution is continuous across the fan.

2.4.1 Wave types in the Newtonian Riemann problem

To calculate the solution to the Riemann problem, it is first useful to consider

each type of wave individually. The results in this section are derived in

e.g. [116, 201]. We consider each wave in terms of the two constant states

either side of the wave. We denote these in terms of the state ahead of the

wave qa and behind the wave qb. Therefore for a wave moving in the negative

x-direction we have a = L, b = L∗, and if it is moving in the positive x-

direction a = R, b = R∗. In general the waves resulting from the Newtonian

Riemann problem are described in terms of the state ahead of the wave, qa,

and pressure behind the wave, pb.

Rarefactions

Here we consider a situation in which we have a rarefaction wave between the

states qa and qb. At a rarefaction, characteristic lines diverge and there is

more than one mathematically viable solution describing the characteristics

within the wave. The wave illustrated in figure 2.2 is a rarefaction fan, across

which the solution is continuous, the full characteristic structure around this

wave is shown in figure 2.3.

Alternatively the wave could be described by a rarefaction shock, the char-

acteristics of which are illustrated in figure 2.4. This solution, although mathe-

matically allowed, is unstable (see e.g. [201]), with small perturbations leading

to major changes in the solution. Therefore the rarefaction fan shown in fig-

ure 2.2 is indeed the physical solution when characteristics diverge.



CHAPTER 2. THEORETICAL BASIS 61

x

t

Figure 2.4: Illustrating the characteristic form of a rarefaction shock. We see
the characteristics remain parallel, and ’emerge’ from the single self-similar
line, the rarefaction shock.

A rarefaction is bounded by the characteristics

ξ = va ± cs,a, ξ = vb ± cs,b, (2.4.4)

where cs is the speed of sound, given by

c2
s =

γp

ρ0

. (2.4.5)

To obtain these characteristics, we first write the evolution equations in the

form

C∂ξw = 0 (2.4.6)

where we have the matrix C = C (ξ,w) and w, as previously defined, is

the vector of the primitive variables. The characteristics are then given by

the requirements on ξ such that non-trivial solutions exist for this system of

equations, i.e. det (C) = 0 ([94]).

Across a rarefaction, the Riemann Invariant

v ∓ 2cs

γ − 1
(2.4.7)

is constant. By equating the invariant quantity at the boundaries of the rar-

efaction we get

vb = va ±
2

γ − 1
(cs,b − cs,a) . (2.4.8)

One feature of a rarefaction is that it is adiabatic - there is no entropy change
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across it. In section 2.3 we saw that for an ideal fluid with constant entropy

we have the relationship ((2.3.18))

p ∝ ργ
0 . (2.4.9)

Using the definition of the speed of sound can then yield another relationship,

cs ∝ ρ
(γ−1)/2
0 . (2.4.10)

Assuming knowledge of the speed of sound at the boundaries of the rarefaction

we get

ρ0,b = ρ0,a

(

cs,b

cs,a

)2/(γ−1)

(2.4.11)

and

pb = pa

(

cs,b

cs,a

)2γ/(γ−1)

. (2.4.12)

By using the latter of these relationships in (2.4.8) to eliminate cs,b we get

vb = va ±
2cs,a

γ − 1

[

(

pb

pa

)(γ−1)/(2γ)

− 1

]

. (2.4.13)

We could obtain the obvious analogous result if we want to obtain va in

terms of wb and pa.

Shock waves

If a shock wave is present in the solution of the Riemann problem (as deter-

mined by the conditions given in (2.4.3)), then characteristic lines converge,

shown in figure 2.5. This differs from the rarefaction wave case where charac-

teristic lines diverged.

The discontinuity in the variables at a shock wave is governed by the

Rankine-Hugoniot conditions,

fb − fa = vS (qb − qa) (2.4.14)

where vS is the velocity of the shock and q and f are the state and flux
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x

t

Figure 2.5: Illustrating the characteristic form of a shock wave. We see the
characteristics merge along a self-similar line, forming the discontinuous shock
wave.

vectors for the fluid evolution equations. It is this velocity that determines the

characteristic line of the shock,

ξ = vS . (2.4.15)

The convergence of the characteristic lines results in a compression condition

for vS ,

va ± cs,a ≥ vS ≥ vb ± cs,b. (2.4.16)

As with the rarefaction case, we assume wa and pb are known, and want to

calculate the remaining variables in wb. To achieve this we first consider the

Rankine-Hugoniot conditions in the frame moving with vS. The velocities of

the two states in this frame are given by

ṽa(b) = va(b) − vS. (2.4.17)

In this frame, the Rankine-Hugoniot conditions reduce to fa = fb which, written

explicitly, are

ρ0,aṽa =ρ0,bṽb, (2.4.18a)

ρ0,aṽ
2
a + pa =ρ0,bṽ

2
b + pb, (2.4.18b)

ṽa

(

Ẽa + pa

)

=ṽb

(

Ẽb + pb

)

. (2.4.18c)

We can then introduce the mass flux Qa as the quantity given by (2.4.18a),
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i.e.

Qa = ∓ρ0,aṽa = ∓ρ0,bṽb. (2.4.19)

Using (2.4.18b) and converting back to the Eulerian frame, the vS component

of the mass flux can be removed, giving

Qa = ±pb − pa

vb − va

. (2.4.20)

Rearranging this gives a relationship for vb,

vb = va ±
pb − pa

Qa

. (2.4.21)

Alternatively we can use (2.4.18a) to obtain a relationship for Qa which does

not depend on vb,

Q2
a = ± pb − pa

1
ρ0,b

− 1
ρ0,b

. (2.4.22)

Using the final Rankine-Hugoniot condition (2.4.18c) and the ideal fluid EOS

we can obtain

ρ0,b = ρ0,a





γ−1
γ+1

+ pb

pa
(

γ−1
γ+1

)(

pb

pa

)

+ 1



 (2.4.23)

and eventually, using this in (2.4.22), get

Qa =

(

pb + Ba

Aa

)1/2

(2.4.24)

where

Aa =
2

(γ − 1) ρ0,a

(2.4.25)

and

Ba =

(

γ − 1

γ + 1

)

pa. (2.4.26)

This then allows us to obtain the post-shock velocity vb by substituting this

result for Qa in (2.4.21),

vb = va ±
(

Aa

pa + Ba

)1/2

(pb − pa) . (2.4.27)

As with the rarefaction case, an analogous result could be obtained is we as-



CHAPTER 2. THEORETICAL BASIS 65

sumed wb and pa were known.

Contact discontinuities

Contact discontinuities are the final wave type that can result from the Rie-

mann problem solution. At a contact discontinuity, characteristic lines are

parallel. Here we find that pressure and (normal) velocity remain constant

across the wave, whilst all other properties jump. Therefore for the 1+1 di-

mensional Riemann problem we have

vL∗ = vR∗ = v∗, (2.4.28)

pL∗ = pR∗ = p∗, (2.4.29)

and therefore the contact discontinuity occurs along the characteristic line

ξ = v∗. (2.4.30)

This implies that a contact discontinuity moves with the velocity of the fluid,

and hence there is no actual flow of fluid across the feature. As such, they

can separate two distinct fluid regions, and the case in which the EOS changes

across the contact discontinuity can be implemented with comparative ease.

2.4.2 Solving the Newtonian Riemann problem

We have stated that an exact solution to the Riemann problem can be found

if we know the initial constant states qL and qR. By using the results for

the wavetypes seen in the previous section, we can identify the variables in

the intermediate states, qL∗ and qR∗. There are many ways in which we

can achieve this, but in general we must solve some implicit equation for one

variable within the intermediate states, typically p∗. From this the remaining

variables can be calculated. Here we follow the method given by [201], but

make the extension to deal with a change in the EOS (a change in γ for an

ideal fluid EOS) across the contact discontinuity.

In the previous section we derived results for the intermediate velocity (vb,

where we have either b = L∗ or b = R∗) for both rarefactions (2.4.13) and shock
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waves (2.4.27). We also determined that vL∗ = vR∗ (and pL∗ = pR∗ (2.4.28)),

hence these two results can be equated. We can therefore obtain the implicit

equation for p∗,

P (p∗,wL,wR) ≡ P← (p∗,wL) + P→ (p∗,wR) + ∆v = 0 (2.4.31)

where

∆v = vR − vL (2.4.32)

and

PK (p∗,wK) =











(p∗ − pK)
(

AK

p∗+BK

)1/2

p∗ > pK

2cs,K

γK−1

[

(

p∗
pK

)(γK−1)/(2γK)

− 1

]

p∗ < pK

. (2.4.33)

where K represents either the left moving state (P← and wL) or right state

(P→ and wR). The constants AK and BK are as given in (2.4.25) and (2.4.26),

and for a multicomponent fluid are

AK =
2

(γK − 1) ρ0,K

, BK =

(

γK − 1

γK + 1

)

pK . (2.4.34)

The two cases of (2.4.33) are dependent on whether the wave in the direction

K is a shock (i.e. p∗ > pK or a rarefaction p∗ < pK , (2.4.3)).

We now have enough information to solve (2.4.31) iteratively, and obtain the

intermediate pressure p∗. Furthermore, for the Newtonian Riemann problem,

we do have information about what each wave type will be, and hence can

ensure that our initial value for the iteration is reasonable. This is based on

the pressures of the two initial constant states, and the velocity difference. We

will assume, without loss of generality, that we have pL < pR. The wave type

is determined by the sign of P (pL,wL,wR) and P (pR,wL,wR), which, for

simplicity, are denoted PpL
and PpR

respectively. Note that in calculating e.g.

PpL
, the P← (pL,wL) term will automatically vanish, but all the others can be

non-zero.
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The solution to the Riemann problem will be two rarefaction waves if

PpL
< 0, PpR

< 0. (2.4.35)

If we have

PpL
< 0, PpR

> 0. (2.4.36)

then we have a left-moving rarefaction and a right moving shock. Finally if

we have

PpL
> 0, PpR

> 0. (2.4.37)

then we have two shocks.

Once we have calculated p∗, and in doing so determined the wavetypes within

the solution, then obtaining the remaining variables is trivial. The intermedi-

ate velocity v∗ can be calculated through either (2.4.13) or (2.4.27) and then the

density in each intermediate state through (2.4.9) for a rarefaction or (2.4.23)

for a shock. If a shock wave is present in the solution then we need to calculate

the speed with which it moves. This is done through the Rankine-Hugoniot

conditions (2.4.14), e.g. we can get

vS =
ρ0,bvb − ρ0,ava

ρ0,b − ρ0,a

. (2.4.38)

If we have a rarefaction, then we can use the Riemann Invariant (2.4.7) to

calculate the variables across the fan,

vfan ∓
2cs,fan

γa − 1
= va ∓

2cs,a

γa − 1
= vb ∓

2cs,b

γa − 1
(2.4.39)

where we note that γ takes the same value in both the initial and interme-

diate states. This gives us the velocity and speed of sound within the fan,

and (2.4.11) and (2.4.12) then allow the density and pressure respectively to

be calculated. The final information required for the full solution is the char-

acteristic lines of the waves. These can be calculated using (2.4.4) for rarefac-

tions, (2.4.15) for shocks and (2.4.30) for the contact discontinuity.
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2.4.3 Wave types in the special relativistic Riemann

problem

When we make the special relativistic extension of the Riemann problem, we

find that qualitatively we obtain the same behaviours as experienced in the

Newtonian case. That is the solution is still self-similar, with ξ = x/t as

in (2.4.2), and that there are three waves present in the solution, two of which

can be either a rarefaction or a shock, and one a contact discontinuity. The

solution to the Riemann problem in SR was found by Mart́ı and Müller [133],

and an extension to include non-zero tangential velocities in more than one

dimension was made by Pons, Mart́ı and Müller [159]. The case with non-

zero tangential velocity is not a trivial extension in relativistic cases since the

Lorentz factor W 2 = 1/ (1 − vivi) couples all velocity components in addition

to the coupling through the energy (which was also true in Newtonian physics).

Due to this, we will first consider the 1+1 dimensional case, and then the

multidimensional extension. As with the Newtonian case, we first consider

each wave type individually, following [133].

Rarefactions

A rarefaction fan for the SR Riemann problem is bounded by the characteristics

ξ =
va ± cs,a

1 ± vacs,a

, ξ =
vb ± cs,b

1 ± vbcs,b

, (2.4.40)

As with the Newtonian case, we assume that we know the state ahead of the

rarefaction wave, wa, and the pressure behind the wave, pb. Again we wish

to calculate the remaining primitive variables behind the rarefaction, wb. The

velocity behind the rarefaction is given by

vb =
(1 − va) A±,b − (1 − va)

(1 − va) A±,b + (1 − va)
(2.4.41)

where A±,b is given by

A±,b =

{[

(γ − 1)1/2 − cs,b

(γ − 1)1/2 + cs,b

][

(γ − 1)1/2 + cs,a

(γ − 1)1/2 − cs,a

]}±2(γ−1)−1/2

. (2.4.42)
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The speed of sound of a relativistic fluid is given by

c2
s =

γp

ρ0h
, (2.4.43)

with h the specific enthalpy as defined by (2.2.3),

h = 1 + ε +
p

ρ0

. (2.4.44)

As with the Newtonian case, entropy is constant across a rarefaction, hence

we can obtain the density through the relationship p ∝ ργ
0 , hence again we

have (2.4.9),

ρ0,b = ρ0,a

(

pb

pa

)1/γ

. (2.4.45)

This then gives us enough information to calculate vb by expressing the speed

of sound, and hence A±,b, (2.4.42), in terms of pb (and wa). A full solution

will again require information about the fluid within the rarefaction fan, qfan.

The characteristic lines within the rarefaction are given by

ξ =
vfan ± cs,fan

1 ± vfancs,fan

(2.4.46)

which can be rearranged to give an expression for cs,fan,

cs,fan = ± vfan − ξ

1 − ξvfan

. (2.4.47)

The velocity within the rarefaction is then given by (2.4.41),

vfan =
(1 − va) A±,fan − (1 − va)

(1 − va) A±,fan + (1 − va)
(2.4.48)

where A±,fan can be given by (2.4.42). Once we have vfan, the remaining vari-

ables within the rarefaction fan can be found. From (2.4.47) we can determine

cs,fan, and then (2.4.43) and (2.4.45) allow pfan and ρ0,fan to be obtained.
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Shock waves

The jump in variables across a shock wave is governed by the relativistic

Rankine-Hugoniot conditions ([195])

[ρ0u
µ] nµ = 0, [T µν ] nν = 0, (2.4.49)

where the notation

[F ] = Fa − Fb (2.4.50)

has been used, and nµ is the unit normal to a spacetime slice Στ as described

in section 2.2. In the frame with which a shock has velocity vS then this is

given by

nµ = WS (−vS , 1, 0, 0) , (2.4.51)

where WS is the Lorentz factor associated with the shock. As with the rar-

efaction case, we assume knowledge of the pre-shock region qa and the post

shock pressure pb. The post shock velocity, vb, is given by

vb =

WS

j
(pb − pa) + haWava

haWa + (pb − pa)
(

WSva

j
+ 1

Waρ0,a

) , (2.4.52)

where j is the mass flux across the shock. The mass flux can again be obtained

through the Rankine-Hugoniot conditions, and in relativistic situations is given

by

j = ±
√

pb − pa

ha

ρ0,a
− hb

ρ0,b

. (2.4.53)

A relation for the post-shock enthalpy, hb is given by the Taub adiabat ([196]),

[

h2
]

=

(

hb

ρ0,b

+
ha

ρ0,a

)

[p] . (2.4.54)

Using the EOS to express ρ0,a in terms of pa and rearranging gives a quadratic

equation for hb,

[

1 +
γ − 1

pbγ
(pa − pb)

]

h2
b −

[

γ − 1

pbγ
(pa − pb)

]

hb +
ha

ρ0,a

(pa − pb) − h2
a = 0.

(2.4.55)
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Solving this will yield one positive (and hence physical) value for hb, and from

this, ρ0,b and then j can be calculated.

To obtain vb we then need the velocity of the shock, which, as in the

Newtonian case, is obtained from the Rankine-Hugoniot conditions,

vS =
1

j2 + (ρ0,aWa)
2



(ρ0,aWa)
2 va ± j2

√

1 +

(

ρ0,a

j

)2


 . (2.4.56)

This allows the Lorentz factor associated with the shock to be computed in

the obvious manner, hence all information to calculate vb is available.

Contact discontinuities

There is no difference in how a contact discontinuity behaves in 1+1 dimen-

sional SR when compared to the Newtonian case. Therefore we still have

pa = pb = p∗, va = vb = v∗ (2.4.57)

and characteristic line

ξ = v∗. (2.4.58)

2.4.4 Solving the special relativistic Riemann problem

As with the Newtonian Riemann problem, in SR we obtain an implicit equation

for the intermediate pressure p∗ by equating the expressions for the interme-

diate velocities for each wave, i.e. we have

P̃← (p∗,wL) − P̃→ (p∗,wR) = 0. (2.4.59)
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Note that there is now no explicit ∆v term for SR, the velocity terms are

incorporated in the P̃ terms. These functions are then given explicitly by

P̃K (p∗,wK) =















WS,K
jK

(p∗−pK)+hKWKvK

hKWK+(p∗−pK)

„

WS,KvK
jK

+ 1
WKρ0,K

« p∗ > pK

(1−vK)AK∗−(1−vK)
(1−vK)AK∗+(1−vK)

p∗ < pK

(2.4.60)

where again K represents either the left moving state (P← and wL) or right

state (P→ and wR). Here we have defined AK∗ to be either A−,L∗ or A+,R∗ for

left or right moving rarefactions respectively, and that jK has a sign depen-

dence shown in (2.4.53). Also note that if the EOS changes across the contact

discontinuity then WS,K, jK , hK and Ak∗ are all dependent on the value of γ.

To solve this implicit equation, we can select an initial guess for the inter-

mediate pressure, p̃∗, and iteratively solve (2.4.59). At each iteration we must

determine whether the left and right moving waves need to be solved as shocks

or rarefactions for the current guess p̃∗.

It is possible to determine the expected wave types a priori in a similar

manner to the Newtonian problem. This is done by comparing the special

relativistic relative velocity,

vLR ≡ vL − vR

1 − vLvR

, (2.4.61)

to some relative limiting velocities for the different wavetypes. This procedure

is detailed for single component fluids in [166], and it is also noted that this

procedure can be extended to the situations considered here, where the EOS

jumps across the contact discontinuity.

2.4.5 The special relativistic Riemann problem with non-

zero tangential velocities

We will now consider the solution to the (1+1 dimensional) Riemann problem

in which we have more than one spatial dimension, i.e. with the discontinuity

in the initial data perpendicular to the x-axis. This case is non-trivial in SR if

we allow for non-zero tangential velocities, since we have coupling of velocities

through the Lorentz factor W = 1/
√

1 − vivi. The results given here were
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derived in [159]. When considering the different wave types, the relationships

hWvy = const., hWvz = const., (2.4.62)

always hold, which implies vy/vz = const, and hence means the direction of

the tangential velocity does not change with time, only its magnitude does.

Therefore the waves produced from the initial data will remain perpendicular

to the x-axis, and hence we can still write the solution in terms of the similarity

variable ξ = x/t.

Rarefactions

For a non-zero tangential velocity, the Riemann fan has characteristic lines

ξ =
vx (1 − c2

s) ∓ cs

√

(1 − v2)
[

1 − v2c2
s − (vx)2 (1 − c2

s)
]

1 − v2c2
s

(2.4.63)

where the notation used throughout this section holds, i.e. minus or plus cor-

responds to R→ and R← respectively.

As with the previous situations, velocity within the rarefaction fan can be

given in terms of the pressure. In this case, however, we have an ordinary

differential equation to solve,

dvx

dp
= ∓ 1

ρ0hW 2cs

1
√

1 + g (ξ∓, vx, vT )
(2.4.64)

where we have defined vT to be the absolute value of the tangential velocity,

vT =

√

(vy)2 + (vz)2, (2.4.65)

and the function g is given by

g
(

ξ∓, v
x, vT

)

=

(

vT
)2 (

ξ2
∓ − 1

)

(1 − ξ∓vx)2 . (2.4.66)

When solving the Riemann problem for the non-zero tangential velocity

case, we will follow the same general procedure as outlined for the 1+1 dimen-

sional case given in 2.4.3. Therefore we assume knowledge of the fluid ahead
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of the rarefaction, wa and the post-rarefaction pressure pb. We then obtain an

expression for the velocity behind the rarefaction, vx
b in terms of wa and pb.

Using the condition hWvT = const we obtain

vT
b = haWav

T
a

[

1 − (vx
b )2

h2
b + (haWavT

a )2

]1/2

. (2.4.67)

We can use the EOS and the fact that p ∝ ρ0 to express h in terms of p, and

then use this to express cs also in terms of p. This then allows the differential

equation for vx, (2.4.64), to be written in terms in terms of p only. The

differential equation then needs to be solved across the rarefaction until we

have vx
b in terms of pb.

Shock waves

The special relativistic Rankine-Hugoniot conditions given by (2.4.49) still

hold for non-zero tangential velocity. The dependence of the tangential ve-

locity when calculating the post-shock variables is not as obvious as it was in

the rarefaction case. The velocity behind the shock, vx
b is given by a similar

equation to (2.4.52),

vx
b =

WS

j
(pb − pa) + haWav

x
a

haWa + (pb − pa)
(

WSvx
a

j
+ 1

Waρ0,a

) . (2.4.68)

Here the tangential velocity components only enter through the Lorentz fac-

tors. We obtain the mass flux j and the post shock enthalpy hb in the same

way as the 1+1 dimensional case ((2.4.53) and (2.4.55) respectively), and the

obvious extension for the shock velocity vS applies,

vS =
1

j2 + (ρ0,aWa)
2



(ρ0,aWa)
2 vx

a ± j2

√

1 +

(

ρ0,a

j

)2


 . (2.4.69)

The density in the post shock region can then be calculated using the relativis-

tic Rankine-Hugoniot conditions as shown previously. The tangential velocity



CHAPTER 2. THEORETICAL BASIS 75

components are also given by the relativistic Rankine-Hugoniot conditions,

vy,z
b = haWav

y,z
a

[

1 − (vx
b )2

h2
b + (haWav

y,z
a )2

]1/2

. (2.4.70)

Contact discontinuities

There is no difference in the treatment of contact discontinuities in this case

compared to those previously considered. The pressure and normal velocity

remain constant across the contact discontinuity, whilst density and tangential

velocity components are not constrained.

2.5 Approximate Riemann solvers

In section 2.4 we motivated our interest in the Riemann problem by stating

that many numerical techniques require repeatedly solving the Riemann prob-

lem. These techniques effectively require the solution at x = 0 at a time t = ∆t

for initial data as given in (2.4.1) centred on x = 0, as described in section 3.4.

The exact solutions to the Riemann problem (in both the Newtonian and spe-

cial relativistic cases) all require the solution of an implicit equation, and in the

case of SR with tangential velocities an ordinary differential equation (ODE)

as well. Solving such equations is computationally expensive, hence repeatedly

obtaining the exact solution when using such numerical techniques is undesir-

able. To address this issue, approximate Riemann solvers have been developed.

These attempt to provide a close approximation to the intermediate states pro-

duced in the Riemann problem (qL∗ and qR∗) using the information available

analytically, i.e. qL and qr. The advantage these approximate solvers have

over the analytic solutions is they are very much cheaper computationally,

hence practical for repeatedly obtaining solutions. Many approximate Rie-

mann solvers have been developed, here we shall describe those used in this

work, see e.g. [201] for further examples. Typically these solvers have been

developed for the Newtonian Riemann problem, and from these, extensions to

the relativistic problem were then developed.
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2.5.1 Newtonian HLLE solver

One of the simplest approximate solvers is the Harten-Lax-van-Leer-Einfeldt

(HLLE) solver, developed by Einfeldt [61], based on the Harten-Lax-van-Leer

(HLL) solver [91]. This solver greatly simplifies the expected solution from

the Riemann problem, assuming there are just two waves formed. Therefore

we have a single constant intermediate state state, q∗,HLLE, separating the

two waves. It is then assumed that each wave moves with a single velocity

(i.e. behaves like a shock or contact discontinuity). These are the maximum or

minimum wave velocities for the left or right moving wave moving respectively,

which are denoted λ± respectively. Despite this simplicity, the HLLE solver

is, by construction, consistent with the conservation form of the evolution

equations [91], the importance of which is discussed in section 3.3. The solution

can then be expressed as

q̂ =











qL, ξ < λ−

q̂∗,HLLE, λ− < ξ < λ+

qR, ξ > λ+

(2.5.1)

where q̂ represents an approximate solution to the Riemann problem. Since

the assumption is made that the waves have a single velocity, the approxi-

mate intermediate state can be calculated using the Rankine-Hugoniot condi-

tions (2.4.14), which, for the two waves can be expressed as

fR − f̂∗ = λ+ (qR − q̂∗) , f̂∗ − fL = λ− (q̂∗ − qL) . (2.5.2)

Rearranging these to remove f∗ gives the intermediate state as

q̂∗,HLLE =
λ+qR − λ−qL − f (qR) + f (qL)

λ+ − λ−
. (2.5.3)

The maximum and minimum wavespeeds then require some approximation

since the explicit form of the two waves is not calculated. One suggestion, [51],

is to use the characteristic speed of the leading front of a rarefaction, (2.4.4),

λ− = vL − cs,L, λ+ = vR + cs,R. (2.5.4)
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Another suggestion for λ±, [51, 201], which is more commonly used is to con-

sider only the maximum (absolute) wavespeed, λmax,

λmax = max {|vL| + cs,L, |vR| + cs,R} (2.5.5)

and then set λ± = ±λmax.

When using an approximate Riemann solver in a numerical simulation, it

is in fact the fluxes within the region f̂∗ that are required, not the conserved

variables. These can be calculated from q̂∗, however it is simpler to calculate

them directly from the Rankine-Hugoniot conditions, (2.5.2), giving

f̂∗,HLLE =
λ+fL − λ−fR + λ+λ− (qR − qL)

λ+ − λ−
. (2.5.6)

It is clear that using the HLLE solver to approximate the entire solution to

the Riemann problem will contain serious errors. When used in a numerical

method, it is, however, only the solution at a single point that is required. In

this case the accuracy to which this value is obtained is often sufficient for

a numerical simulation to be able to reproduce the physical problem being

modelled.

2.5.2 Relativistic HLLE solver

The extension of the HLLE method to relativistic situations (the relativistic

HLLE, or RHLLE method) was first proposed by Schneider et al. [175]. Many

of the techniques from the HLLE method carry over to the relativistic case.

The intermediate state vector, q̂∗, and flux vector, f̂∗, are again obtained us-

ing (2.5.3) and (2.5.6) respectively. The maximum and minimum wavespeeds

in relativity are given by those of a rarefaction in SR, (2.4.46), i.e.

λ− =
ṽL − c̃sL

1 − ṽLc̃s,L

, λ+ =
ṽR + c̃s,R

1 + ṽRc̃s,R

. (2.5.7)

When solving the special relativistic fluid evolution equations using an ap-

proximate Riemann solver, two values are obtained for qL and qR. The tilde

notation then represents the arithmetic mean of these two values. More details

about how these left and right states are obtained is in section 3.4.

Working in relativity often allows a simplification for the RHLLE solver
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however, since wave speeds are constrained by the speed of light. For SR and

in many cases in GR this allows us to set λ± = ±1. In some cases, gauge

choices may result in c 6= 1, but in such cases, the value for the speed of light

will still provide the appropriate wavespeeds.

2.5.3 Roe and Marquina solvers

The Roe solver, [168], and Marquina solver, [57], are two approximate Riemann

solvers which are based on a linearisation of the fluid evolution equations. They

are constructed by first writing the 1+1 dimensional fluid evolution equations

as

∂tq + A (q) ∂xq = 0. (2.5.8)

where A (by using the chain rule) is the Jacobian matrix,

A (q) =
∂f

∂q
. (2.5.9)

The Roe solver then linearises this form of the evolution equations by replacing

A with a constant Jacobian matrix Ã (q̃ (qL,qR)). The point at which the

Jacobian is evaluated, q̃, is known as the Roe mean, and must be chosen

according to the problem being considered. In many cases is given simply by

the arithmetic mean of the initial states,

q̃ =
1

2
(qL + qR) . (2.5.10)

To find the full solution for the Riemann problem, we then can solve the linear

equation

∂tq + Ã (q̃) ∂xq = 0. (2.5.11)

To solve this, we must find the wave strengths α̃i which are found through the

projection of ∆q ≡ qR − qL onto the right eigenvector of Ã, ri. For a system

of k variables, this is given by solving

∆q =
k
∑

i=1

α̃ir
i. (2.5.12)

For this linear system, the flux along the characteristic ξ = 0 can then be
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given by

f̂∗,Roe =
1

2

(

fL + fR −
k
∑

i=1

|λi| α̃ir
i

)

(2.5.13)

where λi is the ith eigenvalue.

The Roe solver will not always give the correct solution since (2.5.13) assumes

that the characteristic ξ = 0 is within the intermediate state of the Riemann

problem. The Marquina solver is an “extension” of the Roe solver which

allows the solution along the characteristic ξ = 0 to be approximated when

this characteristic is contained within a rarefaction. As with the Roe solver,

the characteristic matrix and its eigenvalues and eigenvectors are required. We

then define left and right characteristic variables and fluxes,

ωi
L,R = li (qL,R) · qL,R, ϕi

L,R = li (qL,R) · fL,R, (2.5.14)

where li is the left eigenvector of Ã. associated with λi. The Marquina flux

formula then defines two fluxes, ϕi
±, by

ϕi
+ =











ϕi
L, λi (qL) λi (qR) > 0 and λi (qL) > 0

0, λi (qL) λi (qR) > 0 and λi (qL) < 0
1
2
(ϕi

L + αiω
i
L) , λi (qL) λi (qR) < 0

(2.5.15)

ϕi
− =











0, λi (qL) λi (qR) > 0 and λi (qL) > 0

ϕi
R, λi (qL) λi (qR) > 0 and λi (qL) < 0

1
2
(ϕi

R + αiω
i
R) , λi (qL) λi (qR) < 0

(2.5.16)

where

αi = max {|λi (qL)| , |λi (qR)|} . (2.5.17)

The flux along the characteristic line ξ = 0, which is what is required in a

numerical simulation, is given by

f̂∗,Marq. =
∑

i

[

ϕi
+ri (qL) + ϕi

−r
i (qR)

]

. (2.5.18)

Note that the Marquina solvers does not provide any estimates for the in-

termediate states q̂∗, it simply provides the approximate flux f̂∗ along the
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characteristic line ξ = 0. This solver therefore has been designed specifically

for use in numerical methods as described in section 3.4.

2.6 The TOV equations

When undertaking a numerical simulation of the evolution of a star, or other

self-gravitating body, it is essential to know whether the initial data for the

system is stable. That is whether the body will, over some timescale, achieve

hydrostatic equilibrium. The Tolman-Oppenheimer-Volkoff (TOV) equations

describe the structure of a static spherically symmetric self-gravitating perfect

fluid body in GR, and hence allow for initial data for a star in hydrostatic

equilibrium to be produced for 1+1 dimensional GR. As a result they are an

important resource for providing simple test cases for the numerical techniques

we implement in this thesis, i.e. they are a case in GR in which an exact

solution is known. They can also be used to provide static initial data upon

which a (non-linear) perturbation can be added for dynamic tests of numerical

techniques. The TOV equations are a coupled system of first-order ODEs,

discovered by Tolman, Oppenheimer and Volkoff in 1939 [200, 147]. They can

be derived by considering the Einstein equations and conservation equations

for a static spherically symmetric metric, i.e. we have line element

ds2 = −α2dt2 + a2dr2 + r2d Ω2 (2.6.1)

where α and a are now functions of r only. The metric associated with this

line element is, however, just a special case of the spherically symmetric metric

1+1 dimensional we considered when deriving the evolution equations for GR

in section 2.2.3. We can therefore obtain the TOV equations by considering

the static case of the GR fluid evolution equations and constraint equations

(i.e. all time derivatives and velocities vanish). Typically the TOV equations

are written in terms of three variables, m, the mass aspect function, (2.2.75),

m (r) =
r

2

(

1 − 1

a2

)

, (2.6.2)

the spacetime variable, Φ = ln α, and the pressure, p. This choice of variables

was made such that in the Newtonian limit, the TOV equations reduce to the
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definitions of mass, the Poisson equation for gravitational potential and the

equation for hydrostatic equilibrium (see e.g. [136]),

dm

dr
= 4πr2ρ0, (2.6.3a)

∇2Φ = 4πρ0, (2.6.3b)

1

r2

d

dr

(

r2

ρ0

dp

dr

)

= −4πρ0. (2.6.3c)

By considering the Newtonian limits, we see why the mass aspect function can

be interpreted as the gravitational mass within the radius r, and similarly Φ

can be thought of as some ‘relativistic equivalent’ of gravitational potential.

We obtain the TOV equation for m from the Hamiltonian constraint (2.2.83).

This gives
dm

dr
= 4πr2ρ0 (1 + ε) . (2.6.4)

The equation for Φ comes from the evolution equation from the slicing condi-

tion, (2.2.87), and results in

dΦ

dr
=

m + 4πr3p

r (r − 2m)
. (2.6.5)

Finally, the ODE for the pressure uses the evolution equation for momentum,

Sr, (2.2.97) (in particular from the pressure balance term in this equation).

This then yields
dp

dr
= [ρ0 (1 + ε) + p]

dΦ

dr
. (2.6.6)

The full derivation of these equations is given in appendix A.3.

In order to obtain initial data for a numerical simulation of a star, we must

provide initial data for the three ODEs ((2.6.4), (2.6.5), (2.6.6)). At r = 0, we

have m = 0 and p = pc, some chosen central pressure. The initial condition for

Φ is not so obvious. Since Φ can be thought of as being a relativistic equivalent

of gravitational potential in Newtonian physics, it is standard to set Φ to zero

as r → ∞. To achieve this, an arbitrary initial value is picked for Φ, and then

once (2.6.5) has been solved, the solution is scaled such that Φ → 0 as r → ∞.

Once the pressure has been obtained, the density can then be calculated
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using the EOS. For the ideal fluid EOS, the entropy within a static star is

chosen to be constant hence we use the polytropic EOS,

p = Kργ
0 . (2.6.7)

We are able to use the TOV equations to determine whether static initial data

will be stable in an evolution. Once we have picked an EOS, the TOV equations

are then governed by a single parameter, typically the central density ρ0,c is

used. We can then investigate the relationship between e.g. ρ0,c and the total

mass of the star, M . As motivated in section 1.1, GR provides a maximum

mass for a NS. When considering the mass-central density plot, there is indeed

a maximum value above which an increase in ρ0,c leads to a decrease in M .

This is identified as the maximum mass of a TOV star, see e.g. [136, 177].

2.6.1 The TOV equations for multicomponent stars

In this thesis we will need initial data for static, stable multicomponent stars,

and therefore we consider how the TOV equations extend to such cases .

Across the interface it is obvious that mass will not jump, and since the inter-

face is modelled as a contact discontinuity, pressure will also remain constant.

From (2.6.5) we see that the derivative of Φ depends only on continuous vari-

ables across the interface, and hence Φ must also be continuous. The TOV

equations can now be solved as in the single component star case, providing

the jump in density at the interface is known.

Since pressure is continuous across the interface, we can use (2.6.7) to

obtain a relationship for the density jump,

p = KEρ
γE
0,E , (2.6.8)

where subscript E represents an exterior quantity at the interface. We therefore

can obtain ρ0,E by

ρ0,E =

(

p

KE

)1/γE

. (2.6.9)

We therefore need to know γE and KE for the exterior fluid. We can choose a
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value for γE based on the type of fluid that we wish to model in the exterior.

If we have freedom to choose a value for KE too, then the magnitude of the

density jump is unconstrained, and this can lead an unstable solution. That

is, under evolution, we would either experience collapse of exponential growth.

We found that by ensuring the derivative of the pressure is continuous over the

interface, then stable solutions could be achieved. It is important to note that

this may not necessarily generalise to multidimensions, where instabilities due

to e.g. shearing effects may be important. Using (2.6.6) this gives

[ρ0,I (1 + εI) + p]
dΦ

dr
= [ρ0,E (1 + εE) + p]

dΦ

dr
. (2.6.10)

where subscripts I represents an interior quantity at the interface. We know

that the derivative of Φ is continuous across the interface, therefore simplifying

this equation and using the ideal fluid EOS, p = (γ − 1) ρ0ε, we get

ρ0,I +
p

γI − 1
= ρ0,E +

p

γE − 1
. (2.6.11)

Using (2.6.9) and rearranging we get

(

p

KE

)1/γE

= ρ0,I +
(γE − γI) p

(γI − 1) (γE − 1)
(2.6.12)

hence we can obtain KE by

KE = p

[

ρ0,I +
(γE − γI) p

(γI − 1) (γE − 1)

]−1/γE

. (2.6.13)

From (2.6.9) and this result we then have enough information to provide the

exterior density profile. We now have all the information required for initial

data for a stable multicomponent star in 1+1 spherically symmetric GR. As

with the single-component TOV equations, the maximum stable central den-

sity for given fluid components and interface location can again be obtained

through e.g. a mass-central density plot.
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2.7 Recovering the primitive variables

When solving the fluid evolution equations, we need to be able to convert

between the conserved variables, (ρ0, Si, E) in Newtonian or (D,Si, τ) in rela-

tivity, to the primitive variables, (ρ0, vi, p). For the ideal fluid EOS, obtaining

the conserved variables from primitive variables is trivial, based on the defini-

tion of these quantities. Similarly the reverse conversion in Newtonian physics

is equally trivial, with a simple closed form,

vi =
Si

ρ0

, p = (γ − 1)

(

E − 1

2
ρ0viv

i

)

. (2.7.1)

The simple nature of this conversion is, in part, due to the analytic form of

the EOS, it is clear that for more complicated EOSs, there is no guarantee an

explicit form of this conversion will exist.

In the relativistic case, the coupling of variables through the Lorentz factor

means that even for the ideal fluid EOS there is no guarantee that an explicit

conversion from conserved to primitive variables can be found. Even when

such a conversion is available, computationally expensive methods will often be

required to calculate the primitive variables. This is an issue specifically during

a numerical simulation, where conversion between variables needs to happen

repeatedly. In order for the simulation to be computationally achievable it is

then desirable to use a rapidly converging iterative scheme for this conversion

(see section 3.3.1 for a description of convergence). Here we use the method

in [10] where a Newton-Raphson scheme is used to solve a root for finding the

pressure.

In order to start the iteration, we first need to guess a value for the pres-

sure, p̃, and using this, with the known values for the conserved variables, we

obtain estimates for the remaining primitive variables. Once the density and

specific internal energy have been estimated, the EOS can be used to provide

an equation for the root finding method,

f (p̃) = (γ − 1) ρ0,∗ (p̃) ε∗ (p̃) − p̃, (2.7.2)

where a subscript ∗ represents a quantity estimated using p̃. Note that this
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determines the difference between the pressure as calculated using the EOS

compared to that of the estimated value. It is therefore obvious to make an

extension to this equation should a different EOS be required.

We first note that from (2.2.53), Si = (E + p) vi, we can obtain an estimate

of the velocity components,

vi,∗ (p̃) =
Si

τ + D + p̃
, (2.7.3)

where the obvious equivalent relationship can be used to obtain vi
∗. This can

then be used to obtain a Lorentz factor

W∗ (p̃) =
1

√

1 − vi,∗ (p̃) vi
∗ (p̃)

. (2.7.4)

The density and specific internal energy can then be estimated by

ρz,∗ (p̃) =
D

W∗ (p̃)
(2.7.5)

and

ε∗ (p̃) =
τ + D

(

1 − W∗ (p̃)
)

+ p̃
[

1 − (W∗ (p̃))2]

DW∗ (p̃)
. (2.7.6)

From these equations, we can now calculate f (p̃) for a given p̃.

The Newton-Raphson method (sometimes referred to simply as the Newton

method) calculates the root of an equation through the iterative scheme

un+1 = un − f (un)

f ′ (un)
(2.7.7)

where prime represents a derivative with respect to u. In this case we use

u = p with f given by (2.7.2). It is possible to calculate the derivative of f ,

but it is cheaper computationally to use the approximation given in [10],

f ′ (p̃) ≃ vi,∗ (p̃) vi
∗ (p̃) (cs,∗ (p̃))2 − 1 (2.7.8)
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where the speed of sound for the estimated variables is given by

(cs∗ (p̃))2 =
γ p̃

ρ0,∗ (p̃)
(

1 + ε∗ (p̃) + p̃
ρ0,∗(p̃)

) . (2.7.9)

The Newton-Raphson method is a useful method for such conversions since

it converges rapidly, the error in the approximated root falls off proportionally

to the square of the number of iterations.

The drawback of such an accurate method is that the correct root will be

obtained only for ‘appropriate’ selection of the initial guess for p̃. This guess

must be close enough to the actual root or the method may not converge.

Effectively if the gradient of the root is not ‘pointing’ towards the actual root

(i.e. if the distance from the actual root to the intersect of the tangent to f (p̃)

is greater than that to p̃ itself) then the scheme will not not find a root. In

most cases when evolving the fluid evolution equations this is not a major issue

since the most recently known value of the pressure will provide a suitably close

initial estimate for p̃.



Chapter 3

Numerical methods

This chapter concerns the numerical techniques required to solve the fluid

evolution equations. The necessity for numerical solutions of the equations

that govern the behaviour of a NS has previously been discussed; we now

outline the techniques for solving such equations. In particular we will give

careful consideration as to why the conservation form (or balance-law form) in

which we expressed these equations is necessary.

The use of numerical techniques for solving a system of equations will

always require some balance between accuracy of the solution and limitations

based on the computational cost. The use of these techniques for the fluid

evolution equations requires some discretisation of a continuum system and as

a result, this will obviously introduce some level of error. For a sensible choice

of numerical method we would expect this error to decrease as the resolution

of the simulation increases. Increasing resolution, however, means an increase

in computational cost of the simulation, which is obviously limited through

practical requirements. Our requirements for a suitable numerical technique

are that we will have close to have minimal error within the solution per unit

of time spent on a simulation. Note that this could lead to a crude, but

computationally cheap technique being more useful than a very accurate but

expensive one. The computational requirements for implementing a scheme

with high accuracy may be greater than running a less accurate scheme at

high resolution.

Many techniques have been developed for the numerical solution of PDEs.

Amongst the most commonly used are finite volume and finite difference ([116,

87
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123, 201]), spectral methods ([80, 39]) and smoothed particle hydrodynamics

(SPH) ([73, 131, 137]). These methods all have both advantages and disad-

vantages, and the choice of method depends strongly on the physical situation

being modelled along with the expected behaviour. For example, spectral

methods can offer high accuracy with modest computing power, but have se-

vere issues dealing with non-linear behaviour. When using such methods it

is standard to add some artificial dissipation which prevents true shocks from

forming. In this work, the interaction of non-linear behaviour with interfaces is

a key aspect that we intend to investigate. As a result, our choice of numerical

technique is heavily dictated by this, and finite volume methods are a natural

choice. For obtaining comparable levels of accuracy in smooth regions of a

fluid simulations to e.g. spectral methods, these methods are computationally

expensive. Despite this, the major advantage of finite volume methods is that

techniques have been constructed in order to deal accurately with non-linear

behaviour (without dissipating features), hence with care we can provide ac-

curate solutions across the entire computational domain.

We will now consider the use of finite volume methods in solving a 1+1 di-

mensional system of hyperbolic PDEs in balance law form,

∂q

∂t
+

∂f (q)

∂x
= s (q) , (3.0.1)

with arbitrary source vector q, flux vector f and source vector s. In chapter 2

we saw that the evolution equations in both Newtonian and relativistic hydro-

dynamics could be expressed in this form. We will describe how the numerical

methods introduced in this chapter generalise to multidimensional situations

in section 5.1. Detail on many of the standard techniques introduced can be

found in detail in e.g. [116, 123, 201].

Obtaining the numerical solution to this system of equations means that

we must first discretise our domain. Here we chose to split the spatial domain

into N cells of width ∆x, denoted Xi, i ∈ [1, N ] where xi denotes the value

of x at the centre of the cell. The time domain is then discretised into ‘lev-

els’ separated by a timestep ∆t, which are denoted tn, n ∈ [0,
(

tend − t0
)

/∆t]

where t0 and tend represent the initial and final times of the numerical solution

respectively. The magnitude of this discretisation determines the resolution
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of the numerical simulation. Here we have made the choice to use equally

spaced discretisation, however, in general there is no specific requirement that

either the time or space discretisations are kept constant. Advanced numer-

ical methods have been developed which use more cells in the regions where

there is complex behaviour (e.g. across a shock) than in smooth regions. One

such common method is adaptive mesh refinement (AMR) which can identify

regions in which high resolution is required, and use this to obtain a more

accurate solution. When using AMR in a simulation, the desired accuracy can

be achieved with significant reductions in computational power, since smooth

regions can be simulated at a lower resolution than the fine features. This is

of particular importance in large 3+1 dimensional simulations where compu-

tational resources are a major limiting factor. Details of this technique can be

found in e.g. [31]. In this work we are aiming to test a numerical technique,

therefore it is desirable that we keep all other features of our model as simple

as possible. This will allow for greater ease in both analysing the effects of

this technique, and identifying and dealing with any problems that may arise.

Therefore we will assume a fixed grid and timestep for each simulation (∆x

and ∆t are constant). The domain of a cell Xi is given by Xi ∈ [xi−1/2, xi+1/2]

where xi±1/2 = xi ± 1
2
∆x.

The discretised values for the vector quantities in (3.0.1) are denoted by

q̂n
i . Finite volume methods assume that q̂n

i is the integral average of the cell

Xi at time tn, i.e.

q̂n
i =

1

∆x

∫ xi+1/2

xi−1/2

q (tn, x) dx. (3.0.2)

When choosing a numerical technique to use, stability is a very important

consideration. We muse ensure that the technique does not introduce oscilla-

tions or other unphysical behaviour into the solution. To determine whether

a technique is stable, we can consider its total variation, TV , given, for an

arbitrary discretised vector ûn
i by

TV (ûn) = sup
∀xi

∞
∑

i=−∞

∣

∣ûn
i+1 − ûn

i

∣

∣ (3.0.3)

where the supremum means we take all possible samples from the domain of

the calculation. A method is said to be strong stability preserving (SSP), [81],
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if the total variation does not increase after any timestep,

TV
(

ûn+1
)

≤ TV (ûn) . (3.0.4)

This property is also commonly referred to as total variation diminishing

(TVD), and this is particularly the case when only the variation of the spatial

derivative are being considered [123]. A SSP method ensures that the evolution

itself (moving to the next timestep) also introduces no increase in variation. A

SSP method can be implemented such that unphysical oscillations are always

avoided. A weaker condition can be placed on a technique, that it is essentially

non-oscillatory (ENO). Here we have increase in total variation proportional

to some power r,

TV
(

ûn+1
)

≤ TV (ûn) + O [(∆x)r , (∆t)r] . (3.0.5)

In the limit ∆x → 0, ∆t → 0 we will recover the SSP condition. See e.g. [116]

for further details on stability.

The discretisation of the numerical domain cannot be undertaken arbitrarily,

i.e. ∆x and ∆t must be chosen with some care. For many numerical methods

the choice of ∆t is constrained by the choice of ∆x (or vice versa). This

is related to the numerical domain of dependence of the method versus the

physical domain of dependence of the physical system.

The numerical domain of dependence comprises the region from which in-

formation is required for obtaining a solution at a single point. For example,

the value for q̂n+1
i may require information from q̂n

j , j ∈ [i− δ1, i + δ2], where

δ1 and δ2 are integers dependent on the numerical method implemented and

δ1 ≤ δ2. It would be this range that then gives the numerical domain of de-

pendence, since we cannot obtain q̂n+1
i without knowledge of these integral

averages.

The physical domain of dependence is the range over which the behaviour of

q at a time e.g. t = tn can affect the solution at a point e.g. q (tn+1, xi). The size

of this domain is based on the maximum (most positive) and minimum (most

negative) wavespeeds of the fluid. The left boundary of the physical domain

of dependence, εL is defined by the point where information from q (tn, εL),
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travelling at the maximum wavespeed, will reach xi at time tn+1. This therefore

is the minimum value on the domain at time tn at which q (tn, x) can affect

q (tn+1, xi). The right boundary of the physical domain of dependence can be

obtained in an analogous manner using the minimum wavespeed. In order for

our numerical solution to include all possible behaviour we would therefore

expect to have ε1 ≥ δ1 and ε2 ≤ δ2.

This therefore implies that for a given grid size ∆x there is a maximum

timestep ∆t that can be taken for the entire physical domain of dependence

to be included. This maximum is given by some multiple of the grid size, λ,

using information about the maximum wavespeed, umax,

umax∆t

∆x
= λ. (3.0.6)

This constraint is known as the Courant-Friedrichs-Lewy (CFL) condition [48,

49]. The value for λ is typically given by the numerical method being used.

When working in relativity and using geometric units, since all velocities are

bounded by the speed of light, it is standard to take umax = 1. In almost

all cases, if the CFL condition is not satisfied, then the solution will not be

stable. There are, however, (very few) exceptions to this, such as the weighted

average flux CFL2 method of Toro and Billett [202], which allows for a CFL

factor λ = 2. There are also a series of methods, semi-Lagrangian methods,

which can achieve a CFL factor λ > 6, though these methods are typically

only appropriate for e.g. advection equation type problems [190].

3.1 Method of lines

In order to solve a PDE numerically it is common to first convert it into an

ODE using the method of lines (MOL). Many techniques then exist to solve

ODEs numerically [201], e.g. Runge-Kutta methods, the Euler and backward

Euler methods or the trapezoidal method.

To demonstrate this we apply the MOL to a hyperbolic PDE as given

in (3.0.1) for which s = 0. Discretising the state vector only in space, using
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integral averages, gives

q̂i (t) =
1

∆x

∫ xi+1/2

xi−1/2

q (t, x) dx, (3.1.1)

which can be inserted into the hyperbolic PDE (3.0.1) to give

d

dt
q̂i (t) =

1

∆x

[

f
(

q
(

xi−1/2, t
))

− f
(

q
(

xi+1/2, t
))]

. (3.1.2)

This is then an ODE for q̂i. In order to solve it, we need to know the value

of f
(

q
(

xi±1/2, t
))

. Again we make some approximation of these quantities,

known as the intercell fluxes, f̂i±1/2 (t). A variety of methods exist for de-

termining these approximated intercell fluxes, some of which are discussed in

detail in section 3.4, and methods for including the source terms in section 3.6.

3.2 Runge-Kutta methods

Once we have used the MOL to convert the fluid evolution equations into an

ODE, we obtained using the MOL as in (3.1.2). Here we need to solve an ODE

of the form
du

dt
= −F (u) (3.2.1)

for arbitrary u and F. Many factors must be considered when selecting an

appropriate ODE solver to use. Most importantly, the technique must be

compatible with the reconstruction techniques used for obtaining the inter-

cell fluxes f̂i±1/2 such that the evolution is numerically stable. Additionally

we must also consider computational accuracy, cost and data storage require-

ments (how many time levels tn must be stored). Here we use Runge-Kutta

(RK) methods, a family of fairly simple, but accurate ODE solvers.

The first developments towards the RK class of ODE solvers came in 1895 [171],

and since then there have been many further improvements and developments

to these methods [37]. RK methods are an ideal tool for solving the fluid

evolution equations since they allow accurate numerical evaluation of an ODE

for modest computational cost. They also require only one time level to be

stored (only ûn is required to calculate ûn+1) hence minimising the amount of
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data storage required. The need for only one time level is often referred to as

self-starting, since the initial data alone is sufficient to provide the solution at

later times.

RK methods are often referred to as a type of predictor-corrector method,

since they work by taking an initial estimated solution (the prediction) at some

time tn < t ≤ tn+1. A series of corrections are then made to this prediction,

leading to a solution with the desired level of accuracy at time t = tn+1.

Different RK methods are characterised by their level of accuracy, their order

of convergence, which will be discussed in detail section 3.3.1.

A general N th order RK method can be written

û(0) = ûn,

û(i) =
i−1
∑

k=0

(

αikû
(k)+ ∆tβikF̂

(

u(k)
)

)

, i = 1, . . . , N, (3.2.2)

ûn+1 = û(N).

Here û(i) is the predicted value (i = 1) or the ith order correction (i > 1) and

αik and βik are constant coefficients. These coefficients are chosen such that

the solver obtains the desired level of accuracy, and ensures numerical stability.

From this general formalism, a variety of Runge-Kutta methods have been

developed. In this thesis work we consider a standard second-order method,

û(1) = ûn + ∆tF̂ (un) ,

ûn+1 =
1

2

(

q̂n + q̂(1) + ∆tF̂
(

q̂(1)
)

)

,
(3.2.3)

third-order method,

û(1) = ûn + ∆tF̂ (un) ,

û(2) =
1

4

(

3q̂n + q̂(1) + ∆tF̂
(

q̂(1)
)

)

,

ûn+1 =
1

3

(

q̂n + 2q̂(2) + 2∆tF̂
(

q̂(2)
)

)

,

(3.2.4)
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and fourth-order method

û(1) = ûn +
1

2
∆tF̂ (ûn) ,

û(2) = ûn +
1

2
∆tF̂

(

û(1)
)

,

û(3) = ûn + ∆tF̂û(2),

ûn+1 =
1

6

(

−2ûn + 2û(1) + 4û(2) + 2û(3) + ∆tF̂û(3)
)

.

(3.2.5)

It has been shown that the second- and third-order methods are SSP, [184],

and, furthermore, that fourth-order methods cannot be SSP, [82]. It has,

however, been found practically that the fourth-order method given here does

not introduce oscillatory behaviour for the majority of situations.

3.3 The Lax-Wendroff Theorem and conver-

gence

In both Newtonian physics and GR, the fluid evolution equations can lead

to the formation of non-linear behaviour, even from smooth initial data. In

such cases, the differential equation form, such as in (3.0.1), is no longer valid,

since spatial derivatives become infinite. However, the integral form of the

equations, which can be written

∫ t1

t0

∫ b

a

[qt + f (q)x] dx dt = 0, (3.3.1)

still holds.

When this form, known as the weak form, is being solved, non-linear be-

haviour can be described, with the solution then termed a weak solution. It is

possible for a single differential equation to have more than one weak solution,

the choice of a rarefaction wave or rarefaction shock, shown in section 2.4.1 is

an example of this. Care must be taken in order to ensure that the correct be-

haviour is obtained when weak solutions are formed, (i.e. to ensure the correct

equation is actually being solved), which can be achieved through additional

information e.g. some entropy condition [123].
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We now consider why we have expressed the evolution equations in chapter 2

in either conservation or balance law form, and why this helps us to find

at least a weak solution to the system. These equations can then be solved

using a conservative numerical method (one that is also written in conservation

form). Such methods guarantee that if there is any discontinuous behaviour,

either in the initial data, or formed during the evolution, then the location of

the discontinuity will be correctly positioned throughout the evolution. The

exact location of the shock may not be known, but a tightly constrained region

containing the shock is identifiable, this behaviour is known as shock capturing.

This feature of conservative numerical methods can be seen by consider-

ing the MOL ODE, (3.1.2), on an arbitrary domain [xM , xN ]. Once we have

obtained the intercell fluxes f̂i±1/2, the MOL ODE is

d

dt
q̂i (t) =

1

∆x

(

f̂i−1/2 − f̂i+1/2

)

. (3.3.2)

If we consider the sum of this ODE across the entire domain noting that

f̂i+1/2 = f̂(i+1)−1/2, we get

d

dt

N
∑

i=M

q̂i =
N
∑

i=M

1

∆x

(

f̂i−1/2 − f̂i+1/2

)

=
1

∆x

(

f̂M−1/2 − f̂N+1/2

)

.

(3.3.3)

This means that the overall change in q̂ can be described purely by the flow

through the boundaries of the domain, i.e. q̂ has been conserved over the

domain. The advantages this has for non-linear behaviour can be seen by

assuming there is a discontinuous feature within the domain at xS , i.e. xM <

xS < xN . If a conservative numerical method is used then the result given

above means that if we let xM or xN approach xS then q̂ is still conserved.

This means that the shock must be correctly positioned within the simulation.

Such behaviour is not guaranteed around a discontinuity if a non-conservative

method is used. We illustrate this property in figure 3.1.

In general, it is not essential for a numerical method to be conservative.

Non-conservative methods can produce the correct solution if the solution is

smooth for the entire simulation. In fact in the absence of strong non-linear be-

haviour (discontinuities), many non-conservative methods can offer significant
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Conservative method. Non-conservative method.

Figure 3.1: Showing the potential differences between conservative and non-
conservative numerical methods. In each case the solid line represents the exact
solution to some non-linear PDE, and the dashed line a numerical solution.
The left panel shows the conservative method, where (3.3.3) means that the
location of the discontinuity has been captured correctly. The right panel
shows what can happen if a non-conservative method is used in a situation
involving a discontinuity, where the speed of this feature has not been obtained
correctly.

improvements in the accuracy of solutions obtained, e.g. spectral methods [80].

These advantages in accuracy mean that even for some situations in which non-

linear behaviour is expected (though is not a major feature in the simulation)

then there may be advantages to using non-conservative methods. Care must

then be taken such that large errors are not introduced. Typically these meth-

ods can be designed with some artificial dissipation that is introduced around

non-linear features. This should be implemented in such a manner that these

features are smoothed sufficiently to avoid the issues shown in figure 3.1. For

such techniques to work there is often the need to introduce some additional

technique to determine the location of the shock. In this thesis we are inter-

ested in modelling the effects of shock interactions with other features within

a fluid (particularly sharp interfaces). Therefore being able to model shocks as

accurately as possible, by using conservative finite volume numerical schemes,

is essential.

Although conservative methods are guaranteed to obtain the correct shock

location, this is not sufficient to ensure that the correct solution to the system

of equations is also obtained. We have made no statements as to the accuracy

with which the shock is captured, or whether the correct behaviour local to the

shock is observed, simply that it is in the correct position. Many conservative

methods introduce spurious oscillations around shocks, hence simply knowing
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the location of the shock offers no advantages. We therefore need to place

additional conditions on our choice of numerical method.

It is essential to ensure that the numerical method we use is stable, e.g. we

ensure the method is TVD or ENO. Assuming we do have such a method, there

are two other essential properties we require the method to possess. Firstly

the solution must converge to some function, i.e. as we increase the amount of

cells used in a simulation, the solution obtained should increasingly resemble

some configuration. As with other properties of numerical methods, by itself a

solution which is convergent is not sufficient for accuracy since the convergence

may be towards an incorrect solution. The second property is that the method

must be consistent. This states that in the limit ∆x → 0 and ∆t → 0, the

numerical method is equivalent to the system of equations we are solving.

The Lax-Wendroff theorem then states that for a conservative numerical

method with a solution that converges to some function in the limit ∆x → 0

and ∆t → 0 and is consistent, then it is guaranteed that this is a weak so-

lution to the system of equations [121]. In fact it can also be shown that

non-conservative schemes will not converge to even the weak solution if a

shock wave is present [98]. As stated previously, care then needs to be taken

to ensure that this weak solution is the correct one. We must ensure that this

solution satisfies the physical problem that we are considering. To ensure that

the correct weak solution is obtained then we must ensure that the numerical

method obeys some entropy condition (i.e. that entropy is non-decreasing with

time), for more information see e.g. [123].

In order to know whether our choice of conservative numerical method satisfies

the Lax-Wendroff theorem, we need to be able to test these properties. Consis-

tency can be tested relatively easily and usually analytically by simply taking

the appropriate limits ∆x → 0 and ∆t → 0. Whether the method is conver-

gent is not as trivial to calculate. In all but a few cases, which generally lack

physical relevance, convergence of a scheme must be tested practically. By us-

ing the numerical method to solve scenarios for which an exact solution exists,

and then comparing the simulated results at different resolutions to this exact

solution we can obtain some measure of the convergence of the method. Alter-

natively, we may have constraint equations (e.g. the Hamiltonian constraint in

GR), which, as we detail below, can also used to determine convergence. We
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now detail how the convergence of a method can be quantified.

3.3.1 Measuring convergence

The rate of convergence of a numerical method is a description of how fast

it approaches a solution. When developing a numerical method it is impor-

tant to know this rate, both for ensuring the Lax-Wendroff theorem is obeyed,

and to give an indication to some of the advantages (and disadvantages) of

the method. For example, a computationally expensive method would not

be practical to implement in many cases unless it approaches a solution very

rapidly, i.e. has a high rate of convergence. In situations where a new numerical

method is not be being developed, the rate of convergence of the established

methods used will be known. In these cases convergence testing is still impor-

tant since it allows the specific implementation of a numerical method to be

tested by ensuring it displays the correct rate of convergence.

Convergence of a numerical method can be quantified by determining the rate

at which a numerically approximated solution to some system of equations

approaches the exact solution as a function of the resolution of the grid. In

general, the order of a numerical method for a PDE depends on both the

methods used to obtain both the spatial and time derivatives. It will usually

be the method with the slowest rate of convergence that dominates the over-

all convergence of the method. For the numerical techniques considered in

this thesis, the timestep and grid spacing are not independent, being related

through the CFL factor λ given in (3.0.6). Therefore increasing the resolution

of one of these discretisations automatically leads to a similar increase in the

other. The resolution, and hence rate of convergence of the entire solution,

can then given in terms of just one of the discretised quantities, typically the

grid spacing ∆x.

When describing the accuracy of a numerical method, we use the order of

convergence. This details the rate at which the errors in a solution decrease

as resolution is increased. For example, the solutions obtained with a first-

order method will approach the exact solution linearly as resolution increases,

whilst for a second-order method, the error decreases in proportion to the
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square of the resolution. In general, a kth-order method means that we have

the relationship between cell width and error

error ∝ (∆x)k . (3.3.4)

It is this measure of error that characterises the Runge-Kutta methods in

section 3.2. It is possible to select the constant coefficients in (3.2.2) to achieve

the desired level of convergence, with the explicit equations shown being some

examples of this.

Two measures of the error in a solution are available, the local error, and the

global error. The local error takes the error of a solution over a single timestep

as a function of space. By comparing how two resolutions scale, we can easily

obtain the order of convergence of this local error. We do not, however, have

any information as to whether this level of convergence is maintained at other

times. This requires some measure of how the error evolves as a function of

time, hence we can obtain the global error. Various techniques exist which

allow the global error to be quantified. One such technique is to use the p-

norms of some averaged error at each timestep [123]. We can then compare the

scaling of p-norms at different resolutions to obtain the order of convergence

of this global error.

The p-norms

The name p-norm refers to a family of such norms, ‖∆‖p, which have the

general formula

‖∆‖p =

(

∆x

∞
∑

i=−∞

|∆i|p
)1/p

(3.3.5)

for any integer p where ∆i is the error at point xi given by q̂i − q(xi). Note

that the p-norm is calculated for each variable in q independently. Although

there are in theory an infinite number of available norms, in practice there are

three standard choices of norm, the 1-norm

‖∆‖1 = ∆x

N
∑

i=M

|∆i| (3.3.6)



CHAPTER 3. NUMERICAL METHODS 100

the 2-norm

‖∆‖2 =

√

√

√

√∆x
N
∑

i=M

|∆i|2 (3.3.7)

and the ∞-norm

‖∆‖∞ = max
M<i<N

|∆i| . (3.3.8)

This final case is the obtained from the limit p → ∞, and is simply a measure

of the largest error across the domain. Note that for these three definitions we

have assumed a computational domain i ∈ [M,N ].

The choice of norm can greatly affect the order of convergence obtained

when comparing resolutions. As the value of p increases, the dominance of

the largest error in the calculation of the corresponding p-norm also increases

(up until the ∞-norm where it is the single measurement required). This then

means that in these cases the overall convergence measured by the p-norm is

going to be dominated by the regions in which convergence is slowest (which

are therefore likely to have the highest errors). As a result, we will often denote

the 1-norm as a weaker measure of convergence, it will not necessarily highlight

if there are small regions where the method is failing to converge at the correct

order.

Relying solely on the higher-order norms, however, is also not guaranteed to

give a useful measure of convergence. Where non-linear features such as shocks

are present, there is often a known local reduction in the order of convergence

of a numerical method (see section 3.4), and therefore we will also want to

know how the technique is converging in the smoother regions of the simula-

tion. This is particularly an issue if we attempt to use the ∞-norm for such

cases, since we will often have some constant (but not increasing) error intro-

duced around a shock. The amplitude if these errors are often non-convergent,

and as a result, the ∞-norm would show low- to zeroth-order convergence.

Knowledge of the exact solution is not always required to ensure a numeri-

cal technique is convergent for given initial data. It is possible to evaluate

the errors for results run at two different resolutions compared to a run at a

third resolution. In such cases some care must be taken since although we

may know that the numerical simulations are converging to a solution, we do

not necessarily know that this is the correct solution. If the Lax-Wendroff
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theorem is satisfied by the numerical technique, however, we can at least be

certain that convergence is towards a weak solution of the system of equations.

Convergence testing through constraint equations

When working in GR, we saw in section 2.2.3 that constraint equations are in-

troduced. In polar-areal coordinates we had the Hamiltonian constraint, (2.2.83),

∂ra

a
= a2

[

4πr(τ + D) − m

r2

]

(3.3.9)

and slicing condition, (2.2.87),

∂rα

α
= a2

[

4πr (Srv
r + p) +

m

r2

]

. (3.3.10)

When solving the evolution equations, the slicing condition is used to calculate

the lapse, α, once a is known. However, a itself is obtained from an evolution

equation arising from the momentum constraint, (2.2.85)

∂ta = −4πrαaSr. (3.3.11)

The Hamiltonian constraint is then not required for describing how the space-

time changes through the evolution. This allows it to be used as a simple

method of checking the numerical error of the solution.

Once evolved data has been obtained at a timestep we can compare the

derivative of a, which we must calculate from the numerical solution, to the

quantity on the right hand side of the Hamiltonian constraint, (3.3.9). As

stated by the constraint, these two quantities should be equal, however, since

this equation is not being solved during the evolution, numerical errors will

be highlighted. The errors used here can again give the local error at a single

timestep, or we can take p-norms to give a measure of global error. Note that

in this case, if the order of the method is greater that the order to which the

derivative of a is calculated then it is again this lower order which will domi-

nate. Providing a is smooth, a Taylor series expansion allows the derivative to

be taken to arbitrarily high-order with relative ease and in a computationally

cheap manner. Therefore as long as the order to which the derivative is taken
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is greater than or equal to that of the numerical method, then an accurate

measure of convergence can be obtained.

We also note here that since the two equations used to obtain α and

a, (3.3.9) and (3.3.10), are ODEs, then the RK methods in section 3.2 can

be used to solve them during the evolution of the fluid equations.

3.4 Reconstruction

In section 3.1 we reduced our hyperbolic system of PDEs to a system of

ODEs, (3.1.2). To solve these ODEs at between times t0 and t1 = t0 + ∆t

we need to approximate the intercell fluxes, f̂i±1/2, at this time using the infor-

mation from t0. We obtain this information by setting up a Riemann problem

at the cell boundary for the state vector q̂ (t0, x). Using any Riemann solver

of choice, such as those detailed in section 2.5, we can obtain an approximate

solution for q̂ (t1, x), and hence f̂ (t1, x). It is only actually the intercell fluxes

f̂ (t1, x) that are required to solve the ODE, therefore it is computationally

cheaper for all Riemann solvers that we implement to calculate this directly.

In fact, some Riemann solvers, such as the Marquina solver, do not give the

variables at time t = t1, and instead calculate only the intercell flux.

In order to set up a Riemann problem at a cell boundary, we need to

obtain a constant left and right state, obtained, or reconstructed, from the

integral averages, q̂n
i , of the cells local to the cell boundary. This technique was

pioneered by Godunov [76], and therefore methods to make this reconstruction

are often known as Godunov-type methods. The original Godunov method

simply uses the integral average either side of the cell boundary to provide these

constant states, i.e. the reconstructed variables at xi+1/2, typically denoted

q̄±i+1/2, can be given by

q̄−i+1/2 = q̂L = q̂i, q̄+
i+1/2 = q̂R = q̂i+1. (3.4.1)

From this initial data we can then obtain a single value for the intercell flux,

f̄i+1/2 by solving the Riemann problem (exactly or approximately).

Whilst Godunov’s method provides an obvious method for obtaining a

Riemann problem to give the intercell fluxes, the simple approximations to

the constant states (the zeroth-order extrapolation of the left and right state)



CHAPTER 3. NUMERICAL METHODS 103

result in it being overall a first-order convergent method. In practice, first-order

methods are too computationally expensive if reasonable levels of accuracy

are to be obtained from large multidimensional simulations. It is therefore

essential that we can use better than first-order convergence in the numerical

methods used. We therefore consider the techniques available for higher order

reconstruction of q̄±i+1/2, which are known collectively as high resolution shock

capturing (HRSC) methods. Here high resolution refers to a global order of

convergence greater than one, hence greater resolution of the physical features

of a simulation.

It is obvious that to achieve greater than first-order convergence, we will

move beyond zeroth-order reconstruction of the left and right states. Although

this means that the reconstruction will no longer be constant for these states

(and hence the problem is not a true Riemann problem), as long as this recon-

struction is no greater than first-order, unphysical behaviour is not introduced

by making this assumption. Unfortunately it was shown by Godunov [76] that

greater than first-order reconstruction leads to oscillations being introduced at

non-linear features. The aim of HRSC methods then has been to provide a re-

construction which is better than first-order where the solution is smooth, but

reduces to a first-order method around non-linear features. This way, we can

achieve a global order of convergence which is better than first-order. Various

techniques through which this reconstruction can be obtained are available.

These limit the behaviour of the reconstructed function around extrema, and

ensure derivatives near non-linear features are kept as small as possible. One

class of such techniques, which achieve this in a transparent manner, are slope

limiters.

3.4.1 Minmod slope limiter

One of the simplest available slope limiting techniques is the minmod limiter

[169]. For this method, the reconstructions at the cell boundaries are made

linearly, based on a first-order approximation for the gradient (slope) of q̂i,

which we denote si,. There are two obvious linear approximations that can be

used to give the slope of q̂i across the cell xi,
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xi

sL,i sR,i

Figure 3.2: Detailing how the minmod method selects which slope to use. In
this illustration there is some discontinuity between xi−1 and xi. Therefore we
have |sR,i| < |sL,i| and as a result this is selected for the reconstruction.

sL,i =
q̂i − q̂i−1

∆x
, sR,i =

q̂i+1 − q̂i

∆x
. (3.4.2)

These slopes are known as the downwind and upwind slopes respectively. The

minmod method then selects one of these slopes to make the reconstruction

with. This is done by taking the smallest slope in absolute value. An exception

to this occurs if the direction of the slope changes across the cell (i.e. the signs

of the upwind and downwind slopes are different) in which case we assume

that the slope can be approximated as being zero. We can express this choice

of slope as

si =

{

sgn (sL,i) min (|sL,i| , |sR,i|) , sL,isR,i > 0

0 otherwise
. (3.4.3)

This is illustrated in figure 3.2.

Note that we can arbitrarily choose which slope to take the sign of, both

slopes must be in the same direction for a non-trivial result. From the slope

si, the reconstructed variables for use at xi+1/2 are then given by

q̄−i+1/2 = q̂i +
1

2
∆xsi, q̄+

i+1/2 = q̂i+1 −
1

2
∆xsi+1. (3.4.4)

As resolution increases, the minmod method tends to second-order conver-
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xi

sL,i sR,i

The options for si

Figure 3.3: Showing how the MC limiter chooses a reconstruction based on
the different combinations of |sL,i| and |sR,i|. The situation is set up as in
figure 3.2. In this illustration the interpolated value 2 |sR,i| is selected.

gence. However, it is a fairly diffusive limiter, and as a result, the overall

accuracy of a simulation is lower when compared with other techniques, even

those of comparable order of convergence.

3.4.2 MC limiter

The monotonized central (MC) limiter is a similar in many ways to minmod,

but offers greater accuracy [122]. The upwind and downwind slopes, as given

by (3.4.2), are again required here. The choice of slope for the reconstruction

is, however, now calculated in a different manner,

si =























sgn (sL,i) min
[

2 |sL,i| , 2 |sR,i| ,
1
2
(|sL,i| + |sR,i|)

]

,
sL,isR,i > 0

0 otherwise

. (3.4.5)

This is illustrated in figure 3.3

Again we see that if the slope changes sign across a cell, then the MC
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limiter returns a slope of zero. We can see that otherwise, in general, the

arithmetic mean of the two slopes will be used, except in cases in which one

of the two slopes is sufficiently large. Once this slope has been obtained, the

reconstruction at cell xi+1/2 is again given by (3.4.4).

The method by which minmod and the MC limiter ‘limit’ the slope is very

apparent: if any slope gets too large, then it is effectively ignored. The MC

limiter also clearly identifies how the order of the method is reduced at non-

linear features. The arithmetic mean is the centred difference approximation

of the slope, a second-order accurate approximation. As previously stated, this

will lead to oscillation if used for reconstruction close to non-linear features.

Therefore, when the slope is large, suggesting we are near such a feature, a

first-order approximation is then used.

3.4.3 PPM

The two slope limiting techniques presented so far are fairly simple. Higher

order convergence is achievable with more complex methods. In this work we

consider one such method, the piecewise parabolic method (PPM) [46]. This

makes use of higher order reconstruction to achieve greater accuracy. As a

result of this, some additional dissipation is necessary to avoid the issues with

high-order reconstruction around non-linear features. Here we outline the steps

taken in the method, a more complete description as to how it is implemented

is given in section B.1.

PPM first makes a fourth-order polynomial reconstruction at the intercell

boundaries. This is undertaken in a manner that steepens this reconstruction

at discontinuities. Once this polynomial has been obtained, it is steepened

further at discontinuities. To achieve this, it must must implemented with

some procedure which determines where such discontinuities are. In certain

cases this may attempt to steepen regions which are actually continuous, but

even in this case, the reconstruction remains second-order accurate. In or-

der to prevent oscillatory behaviour, PPM then ‘flattens’ the reconstruction

around shocks, using some artificial viscosity. Finally it is ensured that the

reconstructions are monotonic (that the intercell value is not a maximum or

minimum). An extension of PPM to relativistic situations was made in [134].
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3.4.4 Alternative reconstruction methods

The techniques described so far to make the reconstruction can be described

as a MUSCL scheme (Monotone Upstream-centered Scheme for Conservation

Laws) [122]. These then make use of e.g. slope limiters or PPM to avoid

oscillatory behaviour at sharp features. Other techniques within the MUSCL

scheme framework exist, such as further slope limiters, including the superbee

limiter [169] or the Sweby limiter [193]. It is possible to make improvements to

convergence, above those attainable through MUSCL schemes, by using ENO

methods to make the reconstruction. Such methods were introduced by Harten

et al. [92, 90], with improvements made by Shu and Osher [184, 185]. These

take several polynomial reconstructions of q̂i making use of neighbouring cells,

and then pick the ‘smoothest’ for the final reconstruction. The standard ENO

scheme achieved third-order convergence. In practice ENO methods can be

constructed with arbitrary levels of convergence.

The standard ENO method will only make use of one of the polynomial

reconstructions. It is possible for greater accuracy (and hence higher order

convergence) to be achieved if a linear combination of all possible polynomial

reconstructions (up to some desired order) can be used. This is the idea

behind the weighted ENO (WENO) method [127, 128]. The contribution of

individual reconstructed polynomials to this linear combination is determined

by some weighting. This is carried out in a manner that over discontinuities,

the contribution of the polynomials drops to very near zero, and as a result

leads to non-oscillatory behaviour in these regions. As with the ENO method,

the WENO method can theoretically achieve an arbitrary order of convergence.

Practically, the initial implementation of the WENO method was fourth-order

convergent, and, through improvements made in [104], a fifth-order convergent

method was formulated.

3.5 Boundary conditions

At the beginning of this chapter we described the numerical domain of depen-

dence of a method. Here we consider what issues arise if the domain of q̂n+1
i

requires information from time t = tn which lie outside the computational do-

main. As an example of this we consider the numerical domain of dependence
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Numerical domain
of dependence
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Figure 3.4: This figure demonstrates the issues that arise at the boundaries of
the computational domain. Here, the left boundary of this domain (at xM−1/2)
is indicated by the dashed line. The numerical domain of dependence required
for obtaining q̂n+1

M is given by the shaded region. It is clear that this includes
cells which are not defined (those to the left of xM).

of q̂n
M where this is the integral average of the first cell on the computational

domain. The solution for q̂n+1
M will require information from the cells xj,

j ∈ [M − δ1,M + δ2], where δ1 and δ2 give the range of the numerical domain

of dependence as defined by the numerical method being used. If δ1 6= 0 then

q̂n+1
M requires information from outside the computational domain. This is

illustrated in figure 3.4

There are several possibilities for dealing with this issue. It may be possible

to use a different numerical method near the boundaries such that the numer-

ical domain of dependence lies entirely within the computational domain (see

e.g. [116] for descriptions of such methods). In many cases, including when

solving the fluid evolution equations, this will not, however, cover the physical

domain of dependence, and as a result unphysical behaviour may be intro-

duced into the solution. A more versatile alternative is to actually include

this extra region required by the numerical domain of dependence into the

computational domain. These cells are then artificially populated in such that

the fluid behaves correctly at the edges of the domain. Since these regions are

not actually part of the physical solution of a simulation, they are known as

ghost zones. Typically we would introduce ng = max (δ1, δ2) ghost cells into
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this region. Once they have been populated, the same numerical method can

be used across the entire domain.

In order to populate the ghost zones, we need to know how the fluid behaves

at the edge of the computational domain, i.e. we need to know the boundary

conditions of the physical problem. These are then incorporated into the ghost

zones through some boundary treatment. Imposing a suitable boundary treat-

ment is not necessarily a straightforward task. It must be implemented in

such a manner that the numerical methods being used remain stable and they

must not introduce (or limit the introduction of) unphysical behaviour. Here

we follow [116] and consider techniques for two types of boundary, solid and

far-field boundaries. The former of these describes the cases where the edge

of the domain corresponds to some physical feature, such as a wall, which re-

flects the matter in the simulation. The latter is a purely numerical treatment

where constraints on the computational cost of a simulation demand that the

grid must be truncated before any physical boundary is reached (e.g. the only

physical boundary in 3+1 dimensional NS simulations is at infinity, and there-

fore unfeasible to implement in a numerical simulation). In addition to this

we will also briefly describe exact and periodic boundaries. In this section, all

boundary conditions are populated for j ∈ [1, ng] cells beyond the computa-

tional domain in all directions.

3.5.1 Exact boundary conditions

Knowledge of the exact solution of a problem (if such a solution exists) means

that this can be used to populate the ghost cells. For a numerical method that

requires ng ghost zones and using the boundary in figure 3.4 this treatment

can then be expressed as

q̂M−j = q (xj) . (3.5.1)

The obvious analogy applies for the condition on other boundaries within the

system.

Although this should result in the correct treatment in all such cases, is-

sues arise due to the numerical error inherent in any simulation. This error

will lead to a discrepancy between the simulated value and the exact value at

the boundary. This may then lead to unphysical behaviour which can propa-
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gate back into the domain. Additionally, the practical uses of this treatment

are limited since if an exact solution exists, a numerical simulation is largely

unnecessary.

3.5.2 Periodic boundary conditions

When fluid leaves one boundary of the computational domain, if it then enters

the domain again through a different boundary we have periodic boundaries.

The boundary treatment for this case is then obvious, if there is a periodicity

in the boundaries at xM and xN then the ghost zones will be populated by

q̂M−j = q̂N−j. (3.5.2)

Here we are effectively populating the ghost zones with cells within the compu-

tational domain. As with the exact boundaries, physical uses of this condition

are limited. If this treatment can be used, however, it will not introduce any

additional behaviour or errors into the simulation. The most obvious applica-

tion of such a treatment would then be for testing numerical methods without

interference from the boundaries.

3.5.3 Solid boundary conditions

If we have a solid boundary then for a perfect fluid we would expect the

boundary conditions here to be reflective, no matter should pass through the

boundary. In terms of the ghost zone boundary treatment, the behaviour at

the solid boundary is exactly that of there being an identical fluid (in terms of

density, pressure and EOS) with the opposite normal velocity. This technique

is known as reflection or imaging. The boundary treatment for the boundary

illustrated in figure 3.4 would be given by

ρ̂0M−j = ρ̂0M+j−1 (3.5.3)

v̂n,M−j = −v̂n,M+j−1 (3.5.4)

v̂t,M−j = v̂t,M+j−1 (3.5.5)

p̂M−j = p̂M+j−1 (3.5.6)
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where vn and vt are the normal and tangential components of the velocity,

and an analogous treatment is applied to all other boundaries.

In many cases this boundary treatment is very successful. Issues can arise,

however, if there non-zero derivatives of variables as they approach boundary.

The reflection fluid in the ghost zones will then mean the derivative at the

boundary does not exist. This can then lead to a reduction in the order of

convergence of the numerical techniques. There can also be issues with this

treatment when a shock hits a boundary. It was found that an unphysical spike

can be introduced in a numerical solution. In this spike density reduces and

specific internal energy and temperature increase. This behaviour is therefore

sometimes known as shock heating, and is documented in [58].

3.5.4 Far-field boundary conditions

Far-field boundaries are imposed when a physical boundary lies outside of the

computational domain. The treatment at these boundaries should allow waves

from the computational domain to propagate outwards without reflection, an

outflow condition. The treatment should also specify any ingoing waves that

are required from outside of the computational domain, an inflow condition.

In this work, we do not consider situations where any information should enter

from outside the computational domain. Therefore we will restrict ourselves

to considering purely outflow boundaries.

Determining how the ghost zones are populated in order to achieve outflow

boundaries is far from straightforward. If the fluid variables are continuous

at the boundary, then some polynomial extrapolation of the variables into the

ghost zones could provide a suitable treatment. This should ensure that the

fluid is continuous across the boundary, and hence we would not expect any

reflected waves. Care must be taken if non-linear behaviour approaches the

boundary since this treatment may no longer give appropriate conditions, since

a polynomial extrapolation will no longer be appropriate.

In many cases, such as all those considered in this thesis, the interaction

of the fluid with the boundary is not the focus of the numerical simulations.

As a result, we can pick appropriate choices of computational domain such

that all important features, particularly non-linear ones, remain within this

domain. In these cases then we can make a simple zeroth-order extrapolation
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to populate the ghost zones, i.e. for the situation in figure 3.4 we have

q̂M−i = q̂M . (3.5.7)

In multidimensional situations this boundary condition is clearly inappro-

priate, the zeroth-order extrapolation (if it is to be used) should occur in the

direction of the velocity at the boundary. In our preliminary work in multi-

dimensional situations in section 5, it was beyond the scope of the work to

consider a more appropriate boundary treatment. Instead the computational

domain has been chosen such that we consider only the region suitably far

from the boundaries that the effects of the inadequate treatment have not yet

reached.

3.5.5 Vacuum boundary conditions

In astrophysical simulations, we will often be dealing with cases where the fluid

boundary treatments are not of great importance (even in multidimensional

situations) since the boundaries lie within the vacuum region. In GR, how-

ever, both the fluid and the spacetime can evolve, and therefore we must also

consider the boundary conditions of the spacetime variables. At the bound-

aries there is no guarantee that the constraint equations are obeyed. This can

then lead to errors in the spacetime propagating inwards from these bound-

aries (which appear as GWs). There are two commonly used methods to avoid

these issues.

It is possible to pick gauge conditions within the boundaries such that they

are maximally dissipative. This then prevents constraint violating errors from

entering the numerical domain (these conditions are also known as constraint

preserving boundary conditions) [71, 191].

Alternatively, the outer boundaries can be set at a sufficient distance that

the effects of constraint violation do not propagate at a sufficient speed to

effect the region in which results are obtained from a numerical simulation.

This approach is only viable when using AMR, in which the outer boundaries

can be set where only a low resolution grid is used, reducing the computational

cost of a simulation.
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In this thesis, since we restrict ourselves to 1+1 dimensions when working

in GR, we do not have to worry about constraint violation at the outer bound-

aries. Since there is no GW formation in spherical symmetry, errors at the

boundaries will not propagate inwards.

3.6 Source terms

When we outlined the MOL in section 3.1, we assumed that we were solving

the evolution equations in the absence of source terms. Fortunately, from a

numerical perspective, including source terms is relatively simple. Assuming

we have some discretised source term, si, then the balance law PDE (3.0.1)

∂q

∂t
+

∂f (q)

∂x
= s (q) , (3.6.1)

can then be written in ODE form using the MOL, which gives

d

dt
q̂i (t) =

1

∆x

[

f
(

q
(

xi−1/2, t
))

− f
(

q
(

xi+1/2, t
))]

+ si. (3.6.2)

Since the source vector depends on the state vector, s = s (q), there are no

problems presented by including these terms in the RK methods in section 3.2.

The only remaining issue is then how we discretise the source terms such

that si is the appropriate integral average. Fortunately the intuitive method

by which we might attempt to do this,

si = s (q̂i) , (3.6.3)

is accurate to second-order. By making some appropriate reconstruction of q̂i

higher order approximations can be obtained, but we shall not consider them

here.

3.7 Multicomponent fluids

When modelling multicomponent fluids all techniques described so far in this

chapter apply to the fluid evolution, but further conditions must be taken. In

section 1.4.2 we motivated the use of sharp interfaces as a method of dealing
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with the different regions within a NS. It is expected that there will be a differ-

ent EOS describing the fluid properties in each region. It is worth considering

a quantitative example which details why it is impractical to explicitly model

the transition layer. This model assumes we use AMR and we consider the

lengthscales and resolution of the model that including a transition layer would

require.

For this calculation, we consider a region for which there is a quantitative

estimate of size, the Ekman layer in hot proto NS cores. This calculation

is detailed in [14] and, to follow these results and allow for the result to be

interpreted with ease, we use cgs units. The width of this region has been

estimated as

δEkman ∼
(

ην

ρ0Ω

)1/2

(3.7.1)

where ην is the viscosity coefficient and Ω the rotation rate. There is a large

temperature dependence in ην , but for a typical temperature of a proto NS

> 109 K, we expect ην ∼ 1013−1019 g cm−1 s−1. If we assume that at a density

ρ0 ∼ 1014 g cm−1 and ην ∼ 1016 g cm−1 s−1, then we have a lengthscale for the

Ekman layer of

δEkman ∼ 10Ω−1/2cm. (3.7.2)

We now consider the numerical requirements for incorporating features of

this size into a full 3+1 simulation of a NSNS binary inspiral for which a

GW signal is to be extracted. We will assume HRSC methods (and hence the

finite volume methods) will be used with computational power based on that

achievable with near-future developments. Thus the calculation will therefore

be based on a fully parallelised code using AMR to allow for the best possible

spatial resolution. We assume that ∼ 1010 timesteps can be simulated, and

that, in order to cover several orbits and the merger, we need this simulation

to run for 10 ms. We therefore have the finest timestep at ∼ 10−12 s, which,

using the CFL criteria (3.0.6),

umax∆t

∆x
= λ, (3.7.3)

gives us a constraint on the spatial resolution. The maximum wavespeed in

a relativistic situation is c, and we assume that λ = 1, therefore we have

umax = 3×1010 cm s−1. This gives the smallest grid spacing of ∆x ∼ 10−1 cm.
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In standard numerical methods, there is a smearing of features which, if a fea-

ture is initially a contact discontinuity, will be spread over T 1/(p+1) cells after

T timesteps where p is the order of convergence of the method [89]. By mak-

ing the (optimistic) assumption that fourth-order convergence can be achieved

then by the final time this contact discontinuity will be spread over 102 cells.

This will give this initial feature a width of ∼ 10 cm. In order for the physics

of a transition region to be modelled we require that the width of the feature is

at least an order of magnitude greater than the smearing lengthscale. There-

fore we would require δEkman ∼ 100 cm for it to be resolved. It is clear that

for standard NS rotation rates ∼ 100 Hz this lengthscale will not be achieved,

hence motivating the treatment of these regions as genuine interfaces. It is also

worth noting that for a typical simulation of a NS, for which GW information

is to be obtained at some suitable distance from the source, we will require

the total size of the computational domain to be at least 100 km. Therefore

achieving resolution of 10−1 cm will require ∼ 20 levels of AMR, assuming

resolution is doubled at each resolution. Although large, this would be feasible

for near-future simulations if necessary. It must also be considered whether

the computational cost of such a simulation justifies the use of this resolution.

If the behaviour in the transition layer is largely stable, then the accuracy

gained from ∼ 20 levels of AMR would not provide physically interesting re-

sults. This suggests that regions, such as the Ekman layer, are too small to be

included within a model of an entire NS and hence provides motivation for the

use interface modelling techniques. In this case, the actual behaviour of the

layer would never be explicitly calculated. Instead it would either be apparent

through boundary conditions placed on the interface, or, if the effects did not

effect the overall behaviour of the NS, not included in the model.

Further motivation for sharp interfaces comes from considering how a jump

in the EOS can be implemented. Naively it may seem trivial to include an

EOS which is a function of space. This means that the conversion between

primitive and conserved variables (and calculation of quantities such as the

speed of sound) would be dependent on this function. By introducing an

evolution equation for this function we might then expect that this would

continue to apply the correct EOS in the various fluid regions. At the sharp

interfaces we would therefore have a jump in the EOS function. If we are using
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HRSC methods (which are used for dealing with non-linear behaviour in the

simulations) then there is going to be some smearing of the EOS function due

to this discontinuity. This is obviously undesirable since it was the smearing

of features that motivated the introduction of using sharp interfaces. There

are further detrimental effects of using the discontinuous EOS as a function of

space however.

The smearing of a discontinuous EOS function can be interpreted as the

mixing of two fluid components. In some cases, this may be desirable (if such

mixing is genuinely expected) and in these cases it must be ensured that this

happens in a thermodynamically consistent manner. The smearing induced by

HRSC methods in a purely numerical artifact, and therefore there is no guar-

antee that this is thermodynamically consistent. This then can lead to large

errors being introduced at the interfaces [6]. In section 4.1.1, we use numer-

ical simulations to explicitly show the problems associated with this technique.

In order to successfully model a system in which there is a change in EOS

in a stable manner and a sharp interface, we must therefore consider other

techniques. Having suggested that a single component model is unfeasible

for such situations, we now consider a multicomponent method for modelling

sharp interfaces. The idea behind such a model is to treat each fluid compo-

nent separately, hence a system with n fluid types will have n components,

each evolved using a single EOS. The final solution can then be ‘pieced’ back

together from these components. In order for this technique to be viable, we

must introduce additional features into our model. We must know the location

of any interfaces, how they evolve with time and also how the fluid behaves

at these interfaces. This final consideration must ensure that as waves in one

fluid type reach an interface they interact with the other fluid type. Effectively

we must place some boundary conditions on the fluid at the interfaces. This

may appear to be significantly complicating the model, however successful and

comparatively simple techniques have been developed for capturing the loca-

tion of interfaces, and for providing these boundary conditions. We consider

how the interface is modelled and how the boundary conditions are applied

separately.
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3.7.1 Level set methods

Level set methods present a valuable tool for tracking sharp features, such as

interfaces [148, 176]. In order to locate such features, these methods intro-

duce an external scalar function, typically denoted φ, known as the level set

function. Here we shall explicitly assume that all features being tracked are in-

terfaces, however the techniques described can generalise to any sharp feature.

Assuming there are two fluid components, the level set function is initialised

such that the contour φ (x) = 0 gives the position of the interfaces, i.e. we

use the zeroes of φ. In this work we shall entirely focus on two-component

fluids although it is possible to extend this to situations with additional fluid

components. The sign of the level set function gives us the required informa-

tion to ‘piece’ the solution together from the separate components. If we have

φ > 0 then one component will be present whilst for φ < 0 we have the other

component. In order to track the interfaces in time, we then need to evolve φ

along with the rest of the fluid, and do so in a manner that is consistent with

how the interface is expected to move. This effectively requires the evolution

equation for φ is determined using the physics of the system being modelled.

Level set methods are not the only possibility which allow for the mod-

elling of sharp interfaces. Other possibilities exist, such as the particle level

set technique ([63, 148]), volume-of-fluid method ([141, 167]) or phase-field

method ([102]). To provide an argument for why we will use level set meth-

ods, we describe some of the advantages to this technique, and how they apply

to this work.

One key feature of level set methods is their ability to deal with changes in

topology of an interface. If the interface becomes twisted (e.g. due to rotation)

or two initially unconnected regions merge, (e.g. in binary NS merger) this is

dealt with naturally in the level set formulation. In some cases, a physical NS

situation may result in the case in which a new fluid model is ‘spontaneously’

required (e.g. if there is a transition to exotic model in the core). Here it is not

obvious how to deal with this in the context of level set techniques without

the additional information as to how, and when, this transition occurs. It

may be possible to connect the function φ to e.g. some temperature variable,

determining when a transition to exotic matter occurs, though we shall not

consider this scenario.



CHAPTER 3. NUMERICAL METHODS 118

Fluid 1

Fluid 2

y = 0

Fluid 2

Fluid 1

y = 0

φ

φ

Figure 3.5: Showing how a level set function, φ, models the location of in-
terfaces. In the left panel we see example data for an early time in a 1+1
dimensional multicomponent fluid simulation in which there are two separate
regions of fluid. The right panel then shows a possible solution for the late
time evolution of this system. The level set function has naturally allowed the
‘fluid 1’ regions to merge.

In figure 3.5 we show how a level set method identifies interfaces, in a

simple 1+1 dimensional multicomponent situation. The left panel shows an

initial set up in which there are two regions of ‘fluid 1’, separated by ‘fluid 2’

i.e. the level set function has four zeroes, and hence we have four interfaces.

At some future time, as shown in the right panel, these two regions of ‘fluid 1’

have merged, we now have only two interfaces. The evolution equations for

the level set allow this to occur naturally. It is obvious that this is useful for

NS simulations, in which, if we consider a two-component star, may at some

point during merger require these components to merge.

Although figure 3.5 considers only the 1+1 dimensional level set function,

the methods extend naturally for arbitrary dimensions, which is clearly nec-

essary for NS simulations. Additionally, since the evolution equation for φ is

determined from the behaviour of the fluid variables, many of the numerical

techniques for evolving φ can similarly be ‘borrowed’ from those already being

used if necessary. Further techniques which we use only for level set tech-

niques are described in section 3.7.3. For a comprehensive description of the

advantages of level set techniques, see e.g. [176].
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Some final motivating features for the use of level set techniques are firstly

that they are widely employed in determining the boundary conditions at an

interface. Therefore for the purposes of this work, it is sensible to follow these

examples. Secondly the use of level set methods in GR is well established,

particularly in capturing the position of event and apparent horizons in black

hole simulations [53, 199]. We therefore know that there should be no issues

with their implementation to model a multicomponent NS.

3.7.2 The level set function

The first consideration when using level set methods is how the function φ is

initialised. If we are considering a physical situation, then we must ensure that

φ accurately gives the location of the interfaces present. In many cases this

may not be a trivial task, particularly for a fluid modelled in 3+1 dimensions,

with a complex initial structure to the interfaces. In this work, however, we

predominantly consider simple physical situations or test cases, for which we

can choose the initial shape of the interfaces in a much more arbitrary manner.

As an example, the Riemann problem described in section 2.4 requires a single

interface at x = x0. Therefore we have initial data for φ given by

φ (x) = x − x0. (3.7.4)

Determining the evolution equation for φ requires the physical behaviour of the

fluid at the interface to be taken into account. For the interfaces we consider

in this work there is an obvious form for the evolution of φ. The regions of

a NS described in section 1.2 are those that are expected to be present in a

stable isolated NS. For a sharp interface to be stable in this manner, there

must then be pressure balance across it. We then make the assumption that

there is no matter transfer across the interface. This effectively constrains the

interface to be moving with the fluid. In general we therefore expect velocity

to be continuous across the interface. It is then apparent that the interface

can be described as a contact discontinuity (see section 2.4.1), hence we can
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treat it as a being advected with the fluid. In the general case, the evolution

of φ can be described as being Lie-dragged with the 4-velocity of the fluid

Luφ = 0. (3.7.5)

In both the Newtonian Cartesian coordinate and SR cases this, when written

explicitly, gives the standard advection equation form

∂φ

∂t
+ vi ∂φ

∂xi
= 0. (3.7.6)

In GR, the spacetime effects enter the evolution equation through the Lie-

derivative. When written in polar-areal coordinates (as described in sec-

tion 2.2.3), the evolution of φ can be written explicitly as

∂φ

∂t
+ αvr ∂φ

∂r
= 0. (3.7.7)

Note that these equations are not in conservation form. Whilst they can easily

be converted to conservation form, e.g. (3.7.6) becomes

∂ (ρ0φ)

∂t
+

∂ (ρ0v
iφ)

∂xi
= 0, (3.7.8)

and hence make use of the methods described so far in this section, this formal-

ism is not ideal in this case. The key motivation for writing the fluid evolution

equations in conservation form is to avoid the issues that arise due to non-linear

behaviour. Since the only information that is required from φ is the location

of the interface, its structure is therefore arbitrary. We are therefore free to

enforce that φ is free from such behaviour, i.e. contains no discontinuities.

In fact, for level set functions, conservation form can actually be detri-

mental to the accuracy of the simulation. The conserved variable (ρ0φ) is

discontinuous at the interface. Although HRSC methods mean that (3.7.8)

can be evolved without introducing oscillations, there is still some unavoidable

error due to the reduction in accuracy of these methods about discontinuities.

This will manifest as an error in the location of the interface. In fact the ini-

tial work on level set methods was in fact done with φ discontinuous at the

interfaces [149], and suffered from these issues. If a function does not con-

tain discontinuous features however, an evolution of its non-conservative form,
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e.g. (3.7.6), can be achieved without introducing errors [138].

If we ensure that the initial data for φ is continuous at the interface, there is

no guarantee that it will remain as such. If the velocity profile of the fluid is

not constant then the profile of φ can steepen. If this occurs then the errors

associated with non-conservative methods will arise. In these cases, however,

we can again use the fact that the only information required from φ is the

interface locations. At any stage in the evolution we are free to redefine φ and,

as long as the interface locations are not changed, the physical model will not

be affected. Therefore reinitialisation techniques, which will ‘smooth’ out a

level set function which gets too steep, have been developed [43]. In practice,

rather that waiting for φ to steepen, a reinitialisation technique will be imple-

mented after a certain number of timesteps. The number of timesteps will be

chosen on a case-by-case basis, depending on how rapidly φ steepens.

In many cases we consider in this work, there we have a single interface, and

we can use this to avoid the need for reinitialisation whilst retaining the ability

to undertake long term evolutions. A single interface means the evolution of

φ can be described everywhere using only the velocity of the interface. This

then means we have a constant coefficient advection equation for φ, and are

able to evolve it across the entire domain using simply the 4-velocity at the

interface, uint = u|φ(x)=0. We therefore have a general evolution equation given

by

Luint
φ = 0. (3.7.9)

In this case, since φ is advected with constant velocity across the entire domain,

it retains its initial profile, i.e. sharp features will never form.

Level set techniques capture the location of the interface, rather than ex-

plicitly tracking it (i.e. we know the location to within one cell on the numerical

grid). In order to increase the accuracy of the evolution of (3.7.5) it is useful

to make some interpolations to obtain the velocity at the interface itself. We

must then first obtain the position of the interface. If we use a linear profile

for φ, then this position can be calculated exactly. We first locate the cell xi

for which φ̂iφ̂i−1 < 0, where φ̂i is the integral average of φ across cell xi. This

indicates that the interface lies in the range xint ∈ [xi−1, xi]. The interface
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location is then given by

xint =
xi−1φ̂i − xiφ̂i−1

φ̂i − φ̂i−1

. (3.7.10)

We can then make a linear extrapolation of the 3-velocity at the interface,

vint =
(vi − vi−1) xint + (vi−1xi − vixi−1)

∆x
. (3.7.11)

This then provides us with a second-order accurate approximation of vint.

Higher order extrapolation can be used if necessary, but since φ will usually

be close to linear, these do not offer a significant advantage.

It is not always the case that the advection equation is sufficient for describing

the evolution of φ. If additional physics is added to the model (i.e. we move

away from an ideal fluid EOS) then this may impact the behaviour of the in-

terface. For example, in some cases there will be non-negligible surface tension

between the two fluid components. For further information about how such

situations can be modelled see [148].

3.7.3 Numerical methods for the level set function

So far in this section we have stated that the level set function φ will be

evolved using the non-conservative form of the advection equation ((3.7.6)

or (3.7.7)). These will differ from the HRSC methods that have been the

focus of this chapter, since these require conservation form of the evolution

equations. Many of the features introduced so far, such as discretisation, still

apply however.

The advection equations, given in (3.7.6) and (3.7.7) are specific examples

of Hamilton-Jacobi equations [148]. The general form of such equations is

∂φ

∂t
+ H (∇φ) = 0. (3.7.12)
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In the cases we consider, we therefore have

H (∇φ) = vi ∂φ

∂xi
(3.7.13)

for the Newtonian and SR advection equations, (3.7.6), and

H (∇φ) = αvr ∂φ

∂r
(3.7.14)

for the GR equations in polar-areal coordinates, (3.7.7).

Many techniques have been developed to solve Hamilton-Jacobi equations

and here, we shall employ one such technique, a Lax-Friedrichs scheme as

described in [50]. As with the fluid evolution equations, we begin by making

a discretisation of H such that (3.7.12) reduces to an ODE. At this point, any

ODE solver, such as the RK methods outlined in section 3.2, can be used to

solve this equation. One possible discretisation we can make for a Hamilton-

Jacobi equation is

H (∇φ) = Ĥ
(

φ−x , φ+
x , φ−y , φ+

y , φ−z , φ+
z

)

, (3.7.15)

where e.g. φ±x represents some choice of upwind and downwind approximations

to the derivative of φ in the x-direction. For the Lax-Friedrichs scheme, Ĥ is

defined by

Ĥ = H

[

1

2

(

φ−x + φ+
x

)

,
1

2

(

φ−y + φ+
y

)

,
1

2

(

φ−z + φ+
z

)

]

− α̂x

[

1

2

(

φ+
x − φ−x

)

]

− α̂y

[

1

2

(

φ+
y − φ−y

)

]

− α̂z

[

1

2

(

φ+
z − φ−z

)

]

(3.7.16)

where α̂i are dissipation coefficients (note these are not related to the lapse

function α). In order to determine these coefficients, we first define coefficients

H1, H2 and H3 through

H1,(2,3) =
dH

d
(

∂x,(y,z)φ
) . (3.7.17)

We then choose

α̂x = max (H1) (3.7.18)



CHAPTER 3. NUMERICAL METHODS 124

where the maximum value over the entire grid is taken, and the obvious re-

sult for α̂y and α̂z. It is not necessarily straightforward to calculate the α̂i

coefficients, since taking derivatives of H (∇φ) with respect to ∂iφ may not be

obvious. Fortunately, in the case of the advection equation, we have a simple

form for H, hence these coefficients are obvious. For Newtonian and SR, with

the evolution of φ given by (3.7.13), we have

α̂i =
∣

∣vi
∣

∣ (3.7.19)

and for polar areal coordinates in GR, (3.7.14), we have

α̂r = |αvr| . (3.7.20)

In the 1+1 dimensional cases considered in section 4, φ should retain an

approximately linear shape (or be reinitialised to such a shape) around the

interface, it is sufficient for first-order approximations to be used for φ±,

φ+ =
φ̂i+1 − φ̂i

∆x
, φ− =

φ̂i − φ̂i−1

∆x
. (3.7.21)

Higher order methods for obtaining these approximations are required for rea-

sonable accuracy in multidimensional situations however, see section 5.3. This

scheme is far from the only such method available for solving Hamiltonian-

Jacobi equations, see e.g. [148] for further options.

3.7.4 Ghost Fluid Method

Level set methods, outlined in the previous section, are a robust and widely

used set of methods for capturing a sharp feature such as an interface between

two fluid components. Unfortunately, by themselves levels set methods do not

give enough information to accurately model the physical behaviour of these

fluid components. Level set methods simply give a location of the interface

and do not in any way affect the evolution of the fluid. The actual behaviour

of the fluid components at the interface are then modelled through the imple-

mentation of some dynamical boundary conditions. Several techniques have

been developed in Newtonian CFD to implement suitable boundary conditions,

e.g. [67, 129]. Whether these methods extend to relativistic situations has not
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previously been investigated. We will make this extension, and therefore, it

is advantageous for this work if we start from a simple, robust method. As a

result, we will work with the Ghost Fluid Method of Fedkiw et al. [67].

The Ghost Fluid Method is the simplest successful method for providing

boundary conditions at an interface using level set techniques. The tech-

niques employed by the Ghost Fluid Method are reminiscent of those used

to provide the boundary conditions at the edge of the computational domain

in section 3.5. For the boundary between two fluid components, the conditions

implemented must, however, be dynamic: they must move with the interface

and must also capture the effects of the change in EOS at the interface.

When using level set methods to capture the location of the interface, we

are able to model the fluid components separately. The final solution of an

evolution using such methods is then pieced back together, with the sign of

the level set function determining the physical extent of each component. This

means that there are no actual constraints on the computational domain over

which each fluid component is modelled.

In figure 3.6 we show the computational domain for one component of a mul-

ticomponent model. This component only enters the physical domain when

φ < 0, where it is shown by the solid line. When φ > 0, this component will

have no effect on the overall evolution of the fluid, even if it is included in the

computational domain of these regions, as illustrated by the dashed line. This

allows us to implement boundary conditions in a similar manner to the way

ghost zones are implemented. That is we populate cells ‘behind’ and interface

with artificial values such that the behaviour at the interface is appropriately

modelled. This artificially altered fluid is the ghost fluid. Since the ghost fluid

is created in the region not present in the physical model, this alteration will

not manifest itself at any point other than through the provision of boundary

conditions.

It should be noted that the Ghost Fluid Method is not actually a conser-

vative method. When we reconstruct fluxes at a cell boundary, as described

in section 3.4, we would normally obtain a single flux e.g. f̄i+1/2. This then

describes both the flux through the right boundary of the cell xi and the left

boundary of xi+1. When using the Ghost Fluid Method, however, these two
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φ
y = 0

The ghost fluid region

Figure 3.6: Illustrating the region across which a single fluid component can
be modelled. Although the component depicted only enters the physical model
when φ < 0, it can be modelled across the entire domain. When φ > 0, this
fluid component does not effect the physical solution, hence allowing it to be
modelled across the entire domain does not present an issue. These regions
then form the ghost fluid region described in this section.
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fluxes are not equal. If an interface exists between xi and xi+1 then the flux

through the right boundary of xi is computed using the ghost fluid for one fluid

component. Similarly the flux through the left boundary of xi+1 is computed

using the ghost fluid for the other component. Obviously there is no guarantee

that these two fluxes will then be equal. Despite this reservation, the method

has been used successfully in many cases. This does however suggest that care

should be taken in some situations, particularly in some extreme scenarios (e.g.

those involving high velocity shocks).

There are many advantages, beyond simplicity, for using the Ghost Fluid

Method as the basis for this extension. It is an extremely versatile method,

and many extensions we may wish to consider in NS modelling are investi-

gated in the context of Newtonian CFD. The compatibility of the Ghost Fluid

Method with AMR has been investigated, [143, 206], which is essential for use

in e.g. NS merger simulations. It has also been shown that the method can be

used in cases in which an Eulerian description of a fluid can be coupled to a

Lagrangian description of a solid, [66], which would allow for e.g. a solid core

to be simulated within a NS. We also note that the Ghost Fluid Method is

not restricted solely to use with level set methods, but can be used with other

sharp interface tracking techniques [198].

We now detail how the Ghost Fluid Method provides these boundary condi-

tions. The conditions are based on the expected behaviour of the primitive

variables (ρ0, v and p) across the interface. As we detailed in section 3.7.1, we

know that normal velocity and pressure should remain continuous. To reflect

this, the ghost fluid simply takes the corresponding values for these variables

directly from the physical fluid. There is no such condition, however, on the

density and tangential velocity at the interface as there are no constraints on

the size of the jumps in these variables. The Ghost Fluid Method makes the

assumption that entropy and tangential velocity are constant across the inter-

face. As such, they are extrapolated into the ghost fluid region at zeroth-order

in the normal direction to the an interface. From the entropy extrapolation,

the density can then be recovered using this extrapolated value, the EOS and

pressure. This assumption clearly will not always be correct; for example, when

a shock hits an interface there is a jump in entropy governed by the Rankine-

Hugoniot conditions. However, since this simple assumption has been used
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successfully in a wide range of cases in Newtonian CFD, we expect that it will

extend naturally to SR.

The manner in which the Ghost Fluid Method is implemented is considered

explicitly for a 1+1 dimensional two-component fluid system. Note that in

this case the single velocity component is always normal to the interface, so

we do not have a tangential component to extrapolate. Here we assume a

total computational domain of xi ∈ [xM+1, xN ], in order to allow for consistent

notation.

1. Beginning with an initial cell, xM+1, which represents either the start

of the domain, or the first cell after a previous interface. Identify the

location of the next interface based on the point at which the sign of φ

changes, i.e. φ̂i−1φ̂i < 0. Alternatively, the end of the domain could be

reached. We assign xI = xi, the final cell before this next interface. This

introduces a region, xj, j ∈ [M +1,I], for which the Ghost Fluid Method

can be applied at the boundaries. In this region, we have a single fluid

component with a single EOS.

2. The Ghost Fluid Method must be applied in the region xl, l ∈ [M,M −
ng] and xr, r ∈ [I+1,I+ng +1], where ng is the number of ghost zones

required by the numerical method being used. If either xM+1 or xI are a

cell at the edge of the physical domain, we ignore this region, since there

is no interface present. The additional cell on top of ng is required, since

the interface may move by one cell during the evolution. If this happens

before the final corrector step for solving the ODE provided by the MOL

(see section 3.2) then the information provided by this additional cell

will be required.

3. Copy the physical values of the velocity and pressure into the ghost fluid

regions xl and xr. This comes from the other fluid component at these

cells.

4. Make the zeroth-order extrapolation of entropy from xM+1 into xl and

xI into xr. In section 2.3 we gave the entropy for an ideal fluid, (2.3.17),

s = cv ln p − cp ln ρ0 + const. (3.7.22)
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Fluid 2

Fluid 1

Interface

Entropy

and
Pressure

Velocity

Ghost Fluid Region

Figure 3.7: An illustration of how the Ghost Fluid Method is applied. We
show how the ghost fluid region of fluid 1 is populated. The crosses and
squares represent the fluid that would be seen in the physical model, and the
circles the artificial ghost fluid. Analogous modification for the boundaries of
fluid 2 can easily be inferred from this figure.

If this is constant we have the relation p ∝ ργ
0 . We can then implement

this extrapolation directly, with the density within the ghost fluid region

given by

ρ0,l = ρ0,M+1

(

pl

pM+1

)1/γ

, ρ0,r = ρ0,I

(

pr

pI

)1/γ

. (3.7.23)

5. Update the fluid within xj using the desired HRSC method.

This procedure must be carried out for every region between two interfaces,

or between an interface and the boundary of the computational domain, at

every substep within the numerical method. To offer greater insight as to how

the Ghost Fluid Method is applied, figure 3.7 illustrates this 1+1 dimensional

implementation of one fluid component at one interface.

The description given so far was initially devised for a fluid in Newtonian

physics. In relativistic situations we would expect that the 4-velocity normal

to the interface should copied from the real fluid to the ghost fluid. When

working in 1+1 dimensions however, the continuity of the velocity (and space-

time factors in GR) across the interface mean that the 3-velocity can be used
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(as in the Newtonian case) without issue. When moving to multidimensions,

the coupling of the velocity components through the Lorentz factor means

that the full 4-velocity may need to be considered. This is discussed in further

detail in section 5.

3.7.5 Alternative methods

The Ghost Fluid Method has been widely used in Newtonian CFD, with many

applications shown in [67, 99]. Perhaps not surprisingly, the simplicity of the

technique, in particular the zeroth-order entropy extrapolation, does result in

cases in which the Ghost Fluid Method suffers inaccuracies, or fails altogether.

These have been studied in e.g. [125, 126], where the interaction of strong

shocks with the interface was seen to cause issues. The cause of these issues

lies in the fact that the Ghost Fluid boundary conditions make the assumption

that a shock impacting an interface is reflected as a rarefaction wave. If a shock

is sufficiently strong, however, then a reflected shock wave can form instead

(or, under certain conditions, no reflected wave is seen). When these cases

were investigated using the original Ghost Fluid Method, there were spurious

oscillations introduced at the interface, or in some cases failure to capture

its location accurately. In [125], these issues were addressed with a modified

Ghost Fluid Method. This effectively ensures that the boundary conditions

are appropriate for the form of the reflected wave. This allows for the entropy

to be extrapolated into the ghost fluid region from the exact location of the

interface, instead of the first cell before the interface as shown in figure 3.7.

In addition to modifying the Ghost Fluid Method, further issues have been

addressed through alternative treatments of the boundary conditions at the

interface. One such method is the Explicit Simplified Interface Method (ESIM),

introduced for acoustic problems in [157] and extended to multicomponent fluid

problems in [129]. This method is concerned with correcting the problem the

Ghost Fluid Method experiences due to the zeroth-order entropy extrapolation

at the interface. In the original method, this lead to issues with the accuracy

with which behaviour around the interface is captured if entropy gradients

exist across it. The ESIM method makes a higher order reconstruction at

the interface and hence addresses these issues. However, ESIM is still not a

conservative method, hence care must still be taken in the presence of non-
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linear features.

Further alternatives exist which do not use level set techniques. If a single

component model can be devised in a thermodynamically consistent manner

(through an appropriate choice of colour function), then a conservative method

for dealing with fluid systems with a change in EOS will be available. Such

a method was presented in [207], the thermodynamically consistent and fully

conservative (TCFC) method. Despite having many of the advantages of a

conservative method, the TCFC method has other issues, such as dealing with

situations involving weak shocks. Additionally, by using a single component

method, there will be unavoidable smearing of the interface.

3.8 Atmosphere treatment

One major problem with numerical evolutions of compact objects is how the

surface is treated, and how we deal with the vacuum region beyond. Ideally

we would want a NS model to include the outer regions, the crust, envelope

and atmosphere, as described in section 1.2. If these could be included in a

simulation, then the correct physics might be modelled at the surface. This

is not necessarily straightforward for a model which includes the entire NS,

however, especially for the thin regions (considering the argument given in

section 3.7). In practice, current NS simulations assume that the region near

the surface of the NS is composed of the same matter as the rest of the star.

Therefore the surface will be determined purely by the point at which the

density and pressure drop to zero. Here the assumption has been made that

outside the star there is vacuum which, for most scenarios involving a cold NS,

is reasonable.

Vanishing density and pressure can present several issues computationally,

e.g when converting from conserved to primitive variables as described in sec-

tion 2.7. Close to the surface, the magnitude of these variables means that

small errors can lead to unphysical values for these variables, e.g. negative

density or pressure. This can then lead to further unphysical behaviour which

propagates into the star.

Currently no satisfactory techniques have been developed to tackle the
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errors resulting from the surface in a physical manner. Here we use a stan-

dard treatment which, in many cases, does not have a significant effect on the

behaviour of the system. An artificial atmosphere is imposed in the vacuum

region of the star, as used in e.g. [54, 140, 142], and hence we remove the issues

of vanishing quantities. This treatment typically involves setting a (constant)

low density, static and polytropic atmosphere. In many cases this has been

found to produce good results for reasonably long simulations. The artificial

nature of this atmosphere can, however, lead to many undesirable effects. It is

obvious that by adding additional matter to the exterior of the star, it is being

moved away from true hydrostatic equilibrium. This can lead to matter ac-

creting onto the star, and if this accretion is large enough then this will lead to

unphysical behaviour. It has been found that if the atmosphere is a sufficiently

small proportion of the central pressure, pc, then the effects are negligible over

many dynamical timescales of the star. Typically in this work we select an

atmosphere pressure patm ∼ 10−12pc. At the start of every timestep within

an evolution, the atmosphere is then reset to this constant level. This means

propagation of behaviour from within the atmosphere into the star is limited.

In addition to the issues with accretion onto the star, the behaviour of a

perturbed star at the surface is not going to be accurately reproduced using

the atmosphere technique. In the models used in this thesis, the surface of

the star can be thought of as a boundary between fluid and vacuum, therefore

whatever treatment is used should model these conditions. In the absence

of satisfactory boundary conditions, we therefore cannot guarantee that there

will be no unphysical reflections from the surface, or information lost into the

atmosphere (which is indeed major issues in many simulations). It is possi-

ble that through use of level set techniques and appropriate Ghost Fluid-like

boundary conditions that some suitable genuine vacuum surface may be able to

be implemented. Some initial attempts to produce such a boundary condition

were attempted, however these were not successful. Further considerations as

to how this can be achieved in terms of the future work that may result from

this thesis will be discussed in section 6.1.



Chapter 4

Results

In this chapter we present the results for modelling interfaces in relativistic

hydrodynamics using the techniques outlined in the previous section. To en-

able better interpretation of the results from these relativistic scenarios, we

first consider some reference solutions in Newtonian hydrodynamics. We then

present the initial tests of the Ghost Fluid Method in SR, and then move on

to a simple 2-component star in GR. Many of the results presented in this

section are published in [135]. All plots in this chapter show tests in which a

MUSCL scheme has been used with MC limiter to make the reconstruction,

HLLE or the Marquina solver to obtain the fluxes and a RK2 time evolution,

unless otherwise stated. Furthermore, the presence of a solid line in all plots

in Newtonian physics and SR represents an exact solution, unless otherwise

stated.

4.1 Preliminary results for Newtonian hydro-

dynamics

In order to test the Ghost Fluid Method in relativistic situations, it is im-

perative that we have some techniques available to gain both qualitative and

quantitative analysis for the accuracy of the results. In section 2.4.3 we de-

tailed how the Riemann shock tube problem was one of the few cases for which

there was an exact solution for the ideal fluid evolution equations in SR. To

fully test the Ghost Fluid Method in relativistic situations, however, further,

more demanding tests must be considered, and these will not have exact so-

133



CHAPTER 4. RESULTS 134

lutions. A qualitative analysis of the success of the relativistic Ghost Fluid

Method can still be achieved in these solutions through the consideration of

analogous cases in Newtonian hydrodynamics. This section details these re-

sults, obtained through an implementation of the original Ghost Fluid Method.

All tests in this section are set up on a domain x ∈ [0, 1].

Many results we will show in this chapter are based on the Riemann shock

tube problem. It is therefore instructive as a first result to simply display the

solution to a classical one component Riemann problem. In addition to this, it

is useful to ensure that the fluid evolution equations are correctly implemented.

The chosen test is often referred to as Sod’s test problem [188], and is a test

designed to produce a clear example of all three wave types that result from a

Riemann problem, the rarefaction, shock and contact discontinuity.

The initial data for this test gives left and right states, qL and qR, by

{

ρ0 = 1, v = 0, p = 1, x < 0.5

ρ0 = 0.1, v = 0, p = 0.125, x ≥ 0.5
. (4.1.1)

The test is run to a final time of 0.2 for an ideal fluid with γ = 1.4.

Results from this test are shown in figure 4.1. We see from this test that all

features, the rarefaction, shock and contact discontinuity have been correctly

positioned, and the latter of which appears only in the density profile. This

test shows very clearly the smearing issues that the numerical techniques for

a single component fluid suffer from at a contact discontinuity. We also note

that the location of the shock has been captured correctly without oscillatory

behaviour for the two resolutions shown due to the use of HRSC methods.

As expected, the results converge towards the exact solution with increasing

resolution.

4.1.1 Motivation for use of the Ghost Fluid Method

The test shown in the previous section shows the smearing inherent within

single component fluid models. The major problem, however, with modelling

a fluid system as a single component comes when we desire different regions to

be governed by individual EOSs. In such a system, we will need to introduce an

additional equation which governs the movement of these different regions. The
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Figure 4.1: Results for the Sod test. Two resolutions are shown, 200 cells
and 800 cells, though for each resolution, only 100 cells are shown. All three
expected features, the rarefaction, shock and contact discontinuity, are clearly
identifiable, and correctly located. This test shows the smearing that single
component simulations have around contact discontinuities. We do, however,
see that there is convergence with resolution for all features, as desired.
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obvious choice of such an equation is a “colour function”, as detailed in [123],

which, for an ideal fluid, would simply give the value of γ as a function of time

and space. In the situations we consider, the interfaces between regions behave

as contact discontinuities, therefore the colour function is simply governed by

an advection equation,

∂t (ρ0 (x, t) γ (x, t)) + ∂i

(

ρ0 (x, t) γ (x, t) vi (x, t)
)

= 0. (4.1.2)

Here we investigate a simple situation where the only physical feature is

this interface, visible through the corresponding jump in density. A non-trivial

velocity is introduced, hence the interface should simply be advected with this

fluid. This test is known to be physically stable, hence any failure within the

solution must be numerical. The initial data for this test is

{

ρ0 = 1, v = 0.1, p = 2
3
, x < 0.5

ρ0 = 1
2
, v = 0.1, p = 2

3
, x ≥ 0.5

(4.1.3)

with the colour function given by

γ (x) =

{

5
3

x < 0.5
4
3

x ≥ 0.5
(4.1.4)

Figure 4.2 shows the results for the colour function at a time t = 0.2. It is

clear that even after this short time, severe problems have occurred with the

solution. Around the interface in all three primitive variables large oscilla-

tions have been introduced. Furthermore, there is no clean convergence with

resolution, hence this technique can not be used to get accurate results.

The reasons for this failure have been documented in e.g. [6]. As men-

tioned previously HRSC methods introduce some level of smearing, particu-

larly around a contact discontinuity. This smearing will be apparent in the

colour function, and hence effectively “mixes” the two fluid types. How this

mixing occurs will in some way depend on the resolution of the model, but is

unavoidable. This numerical (and hence unphysical) mixing leads to spurious

generation of entropy at the interface, hence the method is not thermodynam-

ically consistent. It is this inconsistency that leads to the formation of large
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Figure 4.2: The failure of using the colour function (4.1.4) to model a stable
moving contact discontinuity. This plot shows the results for two resolutions,
200 and 800 cells, after a time t = 0.2. It is clear that spurious non-convergent
oscillations have been introduced after this short time, hence the colour func-
tion has failed to model the correct physical behaviour of the interface.
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errors as shown in figure 4.2. Some of the alternative techniques for modelling

multicomponent fluids discussed earlier, e.g. [207], lead to thermodynamically

consistent methods to deal with the change in EOS. The issue with the loss of

accuracy due to the smearing of the interface remains in this case however.

4.1.2 The Newtonian Ghost Fluid Method

The first reference solution we will show using the original Newtonian Ghost

Fluid Method uses the same initial data as in (4.1.1), but we introduce a

“trivial” interface, i.e. separating two fluid components with the same EOS.

Therefore in order to include the initial discontinuity at x = 0.5, we include a

level set function

φ = x − 0.5. (4.1.5)

The results of this test, shown in figure 4.3, can be compared directly to fig-

ure 4.1 and show the same behaviour for the shock and rarefaction. In this

case, use of the Ghost Fluid Method means the contact discontinuity no longer

smeared. We see convergence towards the exact solution across almost the en-

tire domain. We do, however, see an undershoot in the density profile at

the contact discontinuity. This is an artifact of combining the Ghost Fluid

Method with initial data which is not in some equilibrium state across the

interface, which results in the technique introducing an artificial ‘overheating’

error [67, 68]. This can be overcome through the application of the ‘isobaric fix’

discussed in these references. This technique, for an interface located within

the cell xi, uses the entropy from cell xi−2 to make the constant extrapolation,

but otherwise is the same method discussed in section 3.7.4. The situations

we consider within this thesis, beyond the initial tests, do not consider such

initial data, hence we do not implement the isobaric fix. We can show that

this is not necessary through a further test.

The test we shall consider here is an isolated shock hitting an interface. This

was used to test the Ghost Fluid Method in the original paper [67], as “Test

B”. In this test, we introduce a “genuine” interface, in which the EOS changes.
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Figure 4.3: Results for the Sod test with an “artificial” interface initially po-
sitioned at x = 0.5 such that the initial data is equivalent to that in (4.1.1).
These results should therefore be compared to figure 4.1. We see the same be-
haviour for the shock and rarefaction, as expected. The contact discontinuity
is now been captured perfectly. There is, however, a clear undershoot either
side of the contact discontinuity. This is not a physical effect, and is in fact
due to the overheating errors experienced by methods such as the Ghost Fluid
Method. Resolutions of 200 and 800 cells are shown, and only 100 cells of each
resolution are shown.
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The initial data is given by











ρ0 = 1.3333, v = 0.3535
√

105, p = 1.5 × 105, x < 0.05

ρ0 = 1, v = 0, p = 1 × 105, 0.05 ≤ x < 0.5

ρ0 = 0.1379, v = 0, p = 1 × 105, x ≥ 0.5

(4.1.6)

with the jump in EOS given by

{

γ = 1.4, x < 0.5

γ = 1.67, x ≥ 0.5
. (4.1.7)

The level set function is therefore initialised to (4.1.5). This test is run to a

time t = 0.0012.

Results for an isolated shock hitting an interface are shown in figure 4.4. For

such a test it is expected that once the shock has hit the interface then some

of it will be transmitted through the interface, and some will be reflected as

a rarefaction wave, along with the interface moving as a result of this inter-

action. This is clearly apparent in the results, which can be compared to an

exact solution. This comparison is possible since the instant the shock hits

the interface we have a Riemann problem with two constant left and right

states. As expected, in this test, we do not suffer the overheating issues at

the interface, hence we do not see the undershoots. As a result, we see con-

vergence towards the exact solution everywhere. It is, however, clear that at

lower resolution, the shock has not been captured very tightly.

A final reference test we shall consider is one for which an exact solution

does not exist. The test we consider is, however, also considered in [207],

hence we can ensure that our implementation of the Ghost Fluid Method

gives comparable results. This test is set up such that an isolated shock hits

a slab of lower density material. The behaviour in this test is more complex

since the presence of two interfaces means the transmitted and reflected waves

can interact with other interfaces and with each other. In addition to this,

since the slab is of lower density, we would expect the impact to both move
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Figure 4.4: Results for the “Test B” from [67] in which an isolated shock hits
an genuine interface. We see the shock transmitted through the interface as
well as the reflected rarefaction. The interface has been captured sharply, and
the undershoots seen in figure 4.3 are no longer present due to the equilibrium
across the interface in the initial data. We also see that at the lower resolution,
the capturing of the shock is not particularly tight. Resolutions of 200 and
800 cells are shown, and only 100 cells of each resolution are shown.
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and compress the slab. The initial data for this test is























ρ0 = 1.3795, v = 0.3948, p = 1.57, x < 0.25

ρ0 = 1, v = 0, p = 1, 0.25 ≤ x < 0.4

ρ0 = 0.138, v = 0, p = 1, 0.4 ≤ x < 0.6

ρ0 = 1, v = 0, p = 1, x ≥ 0.6

(4.1.8)

with the EOS parametrised by











γ = 1.4, x < 0.4

γ = 1.67, 0.4 ≤ x < 0.6

γ = 1.4, x ≥ 0.6

. (4.1.9)

The level set function is initially given by

φ = 0.1 − |x − 0.5| (4.1.10)

and the test is run to time t = 0.3.

The results for an isolated shock hitting a low-density slab of material are pre-

sented in figure 4.5. The movement and compression of the slab are instantly

obvious. The leading shock transmitted through both interfaces, and rarefac-

tion from impact with the first interface are apparent. In addition, complex

behaviour due to interactions between the further reflected and transmitted

features is clearly apparent. Comparison to the original presentation of this

test in [207] shows that this behaviour has been correctly modelled. It can

also clearly be seen that the various features are more pronounced and accu-

rately captured at higher resolution, with convergence towards some solution.

In figure 4.6 results for a low-resolution simulation (100 cells) of this test are

shown. This allows every point to be seen, hence we can ascertain that there

are no features being missed by a ‘selection effect’ of the reduced sample of

points shown in previous figures. This test was chosen to show this since due

to its more complicated nature, we see that there are no issues with unphysical

behaviour being generated for the Ghost Fluid Method in Newtonian physics.

In this figure, we have also included the specific internal energy, ε, since errors

are often prominent here.
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Figure 4.5: Results for the “Test B” (as documented in [207]) in which an
isolated shock hits a slab of low-density material. The leading transmitted
shock and reflected rarefaction as a result of the initial shock hitting the two
interfaces are apparent. There are many more details that can also be seen as
a result of further interactions of shocks and rarefactions with the interfaces.
The slab has moved from its initial location and contracted as a result of these
effects. Resolutions of 200 and 800 cells are shown, and only 100 cells of each
resolution are shown.
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Figure 4.6: The results for a shock hitting a slab of material at a resolution
of 100 cells. This allows us to see every cell, to ensure that there is no hidden
behaviour missed in the higher resolution tests. We see the expected reduction
in accuracy with which the features are captured. However, we also see there
are no features that are hidden due to a selection effect in previous plots for
the original Ghost Fluid Method.
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4.2 The Ghost Fluid Method in special rela-

tivity

In this section we present the results from extending the Ghost Fluid Method

to SR. We first consider some simple tests for which exact solutions exist, hence

we can ensure that the correct results are being obtained. Since exact solutions

typically only exist for comparatively simple situations, in order to fully test

the robustness of the method, we will also consider some more complicated

tests (such as an analogy of the “slab test” shown in figure 4.5). We will use

these tests to both investigate how the Ghost Fluid Method copes in these

non-trivial situations, and also to investigate some of the known sources of

error that were identified for the Newtonian method, such as those suggested

in [125, 126]. In this section, unless otherwise stated, tests are carried out on

a domain x ∈ [0, 1].

We will begin by ensuring that the Ghost Fluid Method can be used to model

a Sod-type test in the same manner as given in figure 4.3. This test again has

initial data

{

ρ0 = 1, v = 0, p = 1, x < 0.5

ρ0 = 0.1, v = 0, p = 0.125, x ≥ 0.5
(4.2.1)

and the initial level set function by

φ = x − 0.5. (4.2.2)

We use a fluid with γ = 1.4 and the test is now run to a time t = 0.5 to reflect

the differences in the scales between Newtonian and relativistic situations.

Figure 4.7 shows the results of this Sod-type test in SR. For this test, we can

clearly see that the features have been correctly positioned, and that these

are converging towards the exact solution with resolution. As with the Newto-

nian Ghost Fluid Method, the overheating errors at the interface are apparent.

True tests of the Ghost Fluid Method will require a genuine interface over

which the EOS changes. For the remainder of this section we will therefore
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Figure 4.7: Results for a Sod-type test with an “artificial” interface in SR,
as shown for an analogous Newtonian case in figure 4.3. Comparison with
the exact solution reveals that the features have been correctly captured with
similar undershoots observed due to the discontinuous initial data. Resolutions
of 200 and 800 cells are shown, and only 100 cells of each resolution are shown.
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focus solely on such cases. The first test to consider is still comparatively

simple, and will investigate whether the Ghost Fluid Method really does have

advantages over a single component model. To achieve this we recreate the

scenario shown in figure 4.2, the advected contact discontinuity. For the Ghost

Fluid Method to be viable in SR, it must be able to model this situation

without introducing oscillations and maintaining a sharp contact discontinuity.

The initial data will be the same as in (4.1.3),

{

ρ0 = 1, v = 0.1, p = 2
3
, x < 0.5

ρ0 = 1
2
, v = 0.1, p = 2

3
, x ≥ 0.5

(4.2.3)

with γ initially given by

{

γ = 5
3
, x < 0.5

γ = 4
3
, x ≥ 0.5

(4.2.4)

and the level set, as in (4.1.5), by

φ = x − 0.5. (4.2.5)

This test was run to a final time t = 2.

The results for the moving contact discontinuity in SR are shown in figure 4.8.

The results in the left panels are plotted at t = 0.2, allowing for a direct com-

parison can be made to figure 4.2, where we saw the failure of this test in

single component Newtonian model. The simple nature of this test, in which

the pressure balance throughout the system means that the advection of the

contact discontinuity is the only behaviour expected, hence this direct com-

parison between the two cases can be made. Here we see that by using the

Ghost Fluid Method, no oscillations have been introduced. We also see that

at later times, t = 2, the interface has been advected with the correct velocity,

v = 0.1, hence now lies at x = 0.7.

In order to ensure that the interface has indeed been correctly located by the

level set function, figure 4.9 shows a zoomed region of the density profile of

this moving contact discontinuity test at t = 2. For all resolutions shown, it
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Figure 4.8: A moving contact discontinuity for a multicomponent fluid in SR
for resolutions of 200 and 800 cells. The left hand set of plots for this test
can be compared to figure 4.2, where the results are plotted at the same time
t = 0.2. It is clear that the oscillation experienced by the single component
model are no longer present. The right hand set of plots shows the same set
of variables plotted at the later time t = 2. We can see that even at this late
time, no oscillations have been introduced.
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Figure 4.9: Focusing on how accurately the contact discontinuity is captured
for a moving contact discontinuity in SR. This is a zoom in on the t = 2
density profile shown in figure 4.8. We can see that there have been no issues
in capturing the position of the interface correctly and without oscillation.
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is clear that this position has been correctly located, with no oscillatory be-

haviour introduced.

The success of the Ghost Fluid Method in these preliminary tests means we

now want to consider tests in which the fluid does not have constant velocity

and pressure everywhere hence some evolution of the fluid variables will occur.

In particular we focus on some examples of the Riemann problem in SR. In

these cases, we will see that the Ghost Fluid Method suffers from the overheat-

ing issues at the interfaces, hence the undershoots seen in e.g. figure 4.7, will

again be present in many of these tests. Despite this, these will still be valu-

able for testing the SR Ghost Fluid Method since, as detailed in section 2.4.4,

exact solutions exist for these Riemann problem cases, we can still determine

if the resultant waves are correctly captured.

The first test we consider is formulated such that it results in two rarefaction

waves moving in opposite directions. This test has initial data

{

ρ0 = 1, v = −0.3, p = 1, x < 0.5

ρ0 = 1, v = 0.3, p = 1, x ≥ 0.5
. (4.2.6)

The EOS is parametrised by (4.2.4), and level set function given by (4.2.5), as

was used for the moving contact discontinuity case. This test is run to time

t = 0.4.

The results for the Riemann problem with two rarefactions moving away from

each other are shown in figure 4.10. It is clear that the positions of both

rarefactions have been correctly captured (note that the speed which the rar-

efactions themselves move is not equal due to the differences in EOS in each

component), and the accuracy of the solution increases with resolution. As

with the previous test, we will focus on the region around the contact disconti-

nuity to ensure that its position has been located correctly without introducing

oscillatory behaviour.

A zoomed view of the contact discontinuity in this test is shown in figure 4.11.

The undershoots caused by the overheating are clearly apparent, but no other
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Figure 4.10: A Riemann problem in SR in which two rarefactions are formed
by two fluid components initially moving away from each other. We see that
both rarefactions and the contact discontinuity have been correctly captured,
and that the accuracy of the solution increases with resolution. For clarity
only 100 cells of each resolution have been used.
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Figure 4.11: The density profile around the contact discontinuity for the SR
Riemann problem in which two rarefactions move away from each other, as
shown in full in figure 4.10. We see that the jump in EOS means that the
contact discontinuity moves slightly from its initial location.

unphysical behaviour.

A similar Riemann problem can be considered in which two shock waves move

away from each other. This will test whether the Ghost Fluid Method can be

used with the HRSC methods employed to capture shocks without oscillation.

Initial data is similar to that given in the previous test,

{

ρ0 = 1, v = 0.3, p = 1, x < 0.5

ρ0 = 1, v = −0.3, p = 1, x ≥ 0.5
(4.2.7)

and again the value of γ is given by (4.2.4), the level set function by (4.2.5)

and the test is run to t = 0.4.

The results for this test are shown in figure 4.12. We see that the position of

the shocks is correct, and that the accuracy with which the shocks are cap-

tured increases with resolution. Similarly the contact discontinuity has been

correctly located, and shows the expected overheating error. It is again worth

focusing on the region around the contact discontinuity to ensure that the ac-
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Figure 4.12: Results for a Riemann problem in SR in which two shock waves
are moving away from each other (reflected off of each other). The shock
position has been captured accurately without introducing oscillations, and
the accuracy of the results increases with resolution. For clarity, only 100 cells
of each resolution are shown.
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Figure 4.13: The density profile around the interface for the test in which two
shock waves move apart from each other, shown in full in figure 4.12. We see
that aside from the expected overheating errors, there have been no issues with
capturing the position of this feature.

curacy with which it is captured genuinely does improve with resolution.

In figure 4.13 we see the contact discontinuity has been correctly captured

for the test in which two shock waves move apart. It is also apparent that

there are no oscillations introduced at the contact discontinuity, with the only

non-convergent error from the overheating discussed previously.

It is also worth ensuring that the SR Ghost Fluid Method experiences no

issues in dealing with the two shock waves in this test. This will ensure that

the HRSC methods are working correctly.

The behaviour around the two shock waves is shown in figure 4.14. We see

that in all cases the shocks are captured over about four grid cells due to the

use of HRSC methods. There are also no unexpected oscillations introduced at

the shocks, showing the slope-limiting techniques employed are working suc-

cessfully.

We now consider a test for which will induce more significant movement of
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Figure 4.14: The density profile for the two shocks produced for the SR Rie-
mann problem with initial data given by (4.2.7). The ability of the HRSC to
capture the shocks over only a few grid cells is clearly visible. As a result, the
accuracy with which these shocks are captured increases with resolution. We
can also see that there is no severe oscillation at either of the shocks.
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the interface between the two fluid components. This test is an analogy in

SR to figure 4.4 (“test B” from [67]), where this scenario was presented for

the Newtonian Ghost Fluid Method. As with this previous test, we set up

an isolated shock moving towards an interface. Again the exact solution can

be obtained by considering the Riemann problem that arises the instant the

shock hits the interface. The initial data for this test is given by











ρ0 = 1.3346, v = 0.1837, p = 1.5, x < 0.05

ρ0 = 1, v = 0, p = 1, 0.05 ≤ x < 0.5

ρ0 = 0.1379, v = 0, p = 1, x ≥ 0.5

(4.2.8)

and γ by
{

γ = 1.4, x < 0.5

γ = 1.67, x ≥ 0.5
. (4.2.9)

Since the interface is again positioned at x = 0.5, the level set function is again

given by (4.2.5). The initial data for the isolated shock is given by solving the

equations given in section 2.4.3 for given pre-shock variables and post-shock

pressure. The test is run to time t = 1.

In figure 4.15 we show the results for an isolated shock hitting an interface.

As with the Newtonian case shown in figure 4.4, we see that some of the shock

wave has been transmitted through the interface, and some has been reflected

as a rarefaction wave. It is also clear that the effects of the shock hitting the

interface have moved it from its initial position of x = 0.5.

In order to ensure that the movement of the interface has been accurately

captured when a shock wave hits an interface, we show a zoomed region about

this feature in figure 4.16. Aside from showing that the interface movement

has been correctly captured, we see that there are no undershoots for this test.

This is a result of the interface in the initial data being in some equilibrium

configuration, hence the overheating errors do not arise.

In figure 4.15 the magnitude of the rarefaction is too small to ascertain that
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Figure 4.15: Results for an isolated shock hitting an interface. This test is
an SR analogy of the results shown in figure 4.4. The transmitted shock is
very clear in the velocity and pressure profiles, and hence we can see that
there is convergence with resolution. The rarefaction is significantly smaller
in all plots, but still clearly visible. The position of the contact discontinuity
is shown by the dashed line. For clarity, only 100 cells of each resolution are
shown.
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Figure 4.16: A density plot for the region around the interface in a test in
which an isolated shock has hit an interface in SR, as shown in figure 4.15.
It is clear that the position has been accurately captured. We can also see
the effects of beginning the simulation with the interface in an equilibrium
configuration has resulted in there being no overheating issues, hence there
are no undershoots present.
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Figure 4.17: The pressure plots zoomed on the shock and rarefaction for the
test shown in figure 4.15 in which an isolated shock hits an interface. In the
left panel we see that there is convergence towards the exact solution for the
rarefaction (which, in figure 4.15, is too small to allow any definitive statements
about convergence to be made). We also confirm that there is convergence for
the shock too, along with no additional oscillatory behaviour.
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the simulation is converging to the exact solution. In figure 4.17 we zoom in

on this region, as well as that around the shock wave (for the pressure only,

since the rarefaction is most prominent for this variable, though any variable

could have been used). We see the convergence towards the exact solution for

both waves, and also that there is no oscillatory behaviour around the shock.

The tests shown so far suggest that the Ghost Fluid Method successfully ex-

tends to SR. The velocities in these plots have all been only mildly relativistic.

We therefore now present a test very similar to that shown in figure 4.15,

with an isolated shock hitting an interface, but with highly relativistic veloc-

ities. This will test the Ghost Fluid Method in the regime in which standard

Newtonian physics is no longer suitable. The initial data for this test is











ρ0 = 10.2384, v = 0.9411, p = 50, x < 0.05

ρ0 = 1, v = 0, p = 1, 0.05 ≤ x < 0.5

ρ0 = 0.1379, v = 0, p = 1, x ≥ 0.5

(4.2.10)

with the parametrisation of the EOS given by (4.2.9), and level set function

by (4.2.5). The high velocities in this test mean that we will use a domain

of x ∈ [0, 3] and run to a time t = 2 to ensure that all features are identifiable.

In figure 4.18 we show the results for a highly relativistic shock hitting a contact

discontinuity. The same qualitative features are seen as in figure 4.15, where

we have a similar test with lower a velocity shock, we see there is still a reflected

rarefaction wave and transmitted shock. The high velocity in this test does

however lead to some complications. In setting up an isolated shock, there

is, due to discontinuous initial data, start-up error present (as happens at the

contact discontinuity for previous tests), which follows with the shock velocity,

vS . This error is documented in [123], and, for the shocks so far considered

in figures 4.4 and 4.15, has been to small to be an issue. Unfortunately, for

this highly-relativistic shock, this initial error is non-negligible, and follows the

shock very closely.

If there is sufficient separation between shock and start-up error then it

can be manually removed, since all variables in the post-shock region are con-

stant. We can also see in figure 4.18 that the coordinate distance between the
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Figure 4.18: The results for a highly relativistic shock (v ∼ 0.94) hitting an
isolated contact discontinuity. The effects of this high velocity show that when
compared to figure 4.15, in which the velocity was much lower, the coordinate
distance between the transmitted shock and the interface is much smaller. The
necessity for the extended domain in this test is evident by the extent of the
movement of the interface from its initial position at x = 0.5. For clarity, only
200 cells of each resolution are shown.
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interface and the transmitted shock is small. Therefore if the start up error is

not removed then this small distance means that it interferes with the inter-

face, giving an unreliable result. In order to distinguish, and hence remove,

the start-up error, we must therefore run these simulations at high resolution,

hence we have shown plots for 2000 and 4000 cells. It is important to note

that this is a purely numerical issue, and would not occur with realistic initial

data. We therefore see that the Ghost Fluid Method has continued to work in

highly relativistic situations.

All tests so far have been chosen specifically since exact solutions are available

and as a result, the behaviour seen has been fairly simple (from a physical

point of view, even the highly relativistic test shown in figure 4.18 is simple,

though this is not the case when considering it from a numerical point of

view). A further test will now consider a situation in which we will see more

complex behaviour. Since an exact solution will not be available for such a

test, we will use an analogous test in Newtonian physics to ensure that the

correct behaviour is observed. We therefore base this next test on the isolated

shock hitting a slab of low-density material, as proposed by [207] and shown

in figure 4.5. The initial data for this test is























ρ0 = 1.37795, v = 0.17933, p = 1.57, x < 0.25

ρ0 = 1, v = 0, p = 1, 0.25 ≤ x < 0.45

ρ0 = 0.138, v = 0, p = 1, 0.45 ≤ x < 0.55

ρ0 = 1, v = 0, p = 1, x ≥ 0.55

(4.2.11)

where γ is given by











γ = 1.4, x < 0.45

γ = 1.67, 0.45 ≤ x < 0.55

γ = 1.4, x ≥ 0.55

(4.2.12)

and the level set function by

φ = 0.05 − |x − 0.5| . (4.2.13)

This initial data is not directly comparable to that used in the original Newto-
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nian test, given by (4.1.8). In order to see the full range of behaviour, so that

comparison can be made to figure 4.5, without the low-density slab leaving the

domain, we found it was necessary to decrease the width of this slab. The test

is run to time t = 0.8.

The results for an isolated shock hitting a low-density slab of material are

shown in figure 4.19. Comparison to the Newtonian version of this test, fig-

ure 4.5, shows that the visible behaviour in this test is as expected. There

are two clear reflected rarefactions and a large transmitted shock, along with

a smaller, but still visible, second transmitted shock. It is clear that the mag-

nitude of the behaviour resulting from further interactions between waves and

the interface is too small to be fully identified in this plot. The expected move-

ment and contraction of the slab is also apparent, and we see that for this more

complex test, we still have convergence as resolution increases.

The finer behaviour which cannot be seen in figure 4.19 is shown in figure 4.20

where, to allow for accurate identification of all features, we have used in-

creased resolution of 800 and 1600 cells. This shows that the same range of

behaviour seen in the Newtonian version of this test is still apparent. Due to

the magnitude of these features, the scales we consider also show the slight

oscillatory behaviour that we would expect within a numerical simulation. In

all other tests, at this scale, we would see this feature (both in the Newtonian

and relativistic results), and it is not a source of worry for the Ghost Fluid

Method in SR. In figure 4.21 we show results for this test at a lower resolution

of 100 cells. As in figure 4.6, this ensures that no behaviour is missed as a

‘selection effect’ due to showing only a sample of points in higher resolution

figures. Again we show specific internal energy, ε, and can see in all cases, the

features are not showing unexpected behaviour.
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Figure 4.19: Results for an isolated shock hitting a slab of low-density material
in SR. Two reflected rarefactions and the leading transmitted shock are clearly
visible. A second transmitted shock, though much smaller in magnitude, is still
visible. Comparing to figure 4.5, we see that these major features are expected.
We can see that the slab has been both moved and compressed when compared
to the initial data. Convergence as resolution increases is apparent. For clarity,
only 100 cells of each resolution are shown, and here, the solid line represents
a reference solution with 6400 cells.



CHAPTER 4. RESULTS 165

 1.373

 1.374

 1.375

 1.376

 1.377

 1.378

 1.379

 0.4  0.6  0.8

D
en

si
ty

800 Points

 1.373

 1.374

 1.375

 1.376

 1.377

 1.378

 1.379

 0.4  0.6  0.8

1600 Points

 0.1775

 0.178

 0.1785

 0.179

 0.1795

 0.18

 0.1805

 0.4  0.6  0.8

V
el

oc
ity

 0.1775

 0.178

 0.1785

 0.179

 0.1795

 0.18

 0.1805

 0.4  0.6  0.8

 1.562

 1.564

 1.566

 1.568

 1.57

 1.572

 0.4  0.6  0.8

P
re

ss
ur

e

x

 1.562

 1.564

 1.566

 1.568

 1.57

 1.572

 0.4  0.6  0.8

x

Figure 4.20: Zoomed results for the isolated shock hitting a slab of low density
material, shown in full in figure 4.19. Higher resolutions of 800 and 1600
cells have been used to ensure the small magnitude behaviour is now clearly
visible. The oscillatory behaviour we observe is expected due to the numerical
simulation, and, due to its magnitude, not a severe issue.



CHAPTER 4. RESULTS 166

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

D
en

si
ty

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

V
el

oc
ity

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.2  0.4  0.6  0.8  1

P
re

ss
ur

e

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

S
pe

ci
fic

 In
te

rn
al

 E
ne

rg
y

Figure 4.21: The results for a shock hitting a slab of material at a resolution of
100 cells in SR. As with the Newtonian analogy, figure 4.6, we are able to show
every cell for this test, and ensure that there is no behaviour missed by not
showing every cell in previous plots. This shows that the Ghost Fluid Method
is not introducing any spurious error in SR. At this resolution, the smearing
of the level set function leads to a narrower slab than expected at this time.
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4.2.1 Comparison of reconstruction methods for the Ghost

Fluid Method in special relativity

The tests shown so far have used only MC Limiter as a reconstruction tech-

nique. In order to fully test the versatility of the Ghost Fluid Method, it is

useful to consider how it performs under other techniques. We therefore will

compare results using MC limiter, described in section 3.4.2, with those using

PPM in section 3.4.3. We do not use minmod in any tests in this section,

although practically it was found to give comparable results to MC limiter,

but non-linear features suffered a greater degree of smearing. In order to high-

light the differences between these two methods, we select tests for which the

Newtonian Ghost Fluid Method is known to have issues. These issues arise

from cases in which the entropy gradient is not constant across the interface.

The zeroth order extrapolation of entropy implemented by the Ghost Fluid

Method therefore leads to the introduction of errors.

To compare the two methods (MC limiter and PPM) we ideally need situ-

ations in which an exact solution exists. Unfortunately, cases in which the

entropy gradient changes across the interface are not abundant. One of the

few such cases we are able to consider is, in many ways, similar to the moving

contact discontinuity test shown in figure 4.8. This test, suggested by [129],

uses an advected sine wave, allowing entropy to remain continuous across the

interfaces, but with non-zero gradient. The initial data for this test is











ρ0 = 1, v = 0.5, p = 1, x < 0.16

ρ0 = 1 + 0.3 sin (50 (x − 0.16)) , v = 0.5, p = 1, 0.16 ≤ x < 0.537

ρ0 = 1, v = 0.5, p = 1, x ≥ 0.537

(4.2.14)

with EOS parametrised by











γ = 1.4, x < 0.16

γ = 1.67, 0.16 ≤ x < 0.537

γ = 1.4, x ≥ 0.537

(4.2.15)
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Figure 4.22: The density profile for the advected sine wave test for a 200 point
resolution. The solid line shows the exact solution. It is clear that PPM (shown
in the right panel) has more accurately captured the features of the sine wave.
Both methods, however, suffer at the interfaces, with large errors introduced
due to the entropy gradients. The dashed line indicates the location of the
interfaces.

and the level set function by

φ = 0.1885 − |x − 0.3485| . (4.2.16)

This test is run to a time t = 0.4.

Figures 4.22 and 4.23 show the results for the advected sine wave test. Only

the density is shown in these plots since the continuous velocity and pressure

across the entire domain leads to the correct, and trivial, solution for these

variables. The issues the Ghost Fluid Method suffers from the large entropy

gradient across the interface is clear in these plots. There is a large error at the

interfaces which does decrease with resolution, but not rapidly (the ∞-norm

of this test was calculated to be order 0.7 for both methods). Although the

Ghost Fluid Method does suffer this source of error, no oscillatory behaviour

is introduced. The differences between MC limiter and PPM are clearly ap-

parent in the 200 point test, in which the accuracy with which the maxima
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Figure 4.23: The density profile for the advected sine wave test for an 800
point resolution. Again the solid line shows the exact solution and the dashed
line indicates the location of the interfaces. Both methods now capture all
features of the sine wave well. The errors at the interfaces have clearly been
reduced due to increase in resolution, but still exist.

and minima of the sine wave are captured is clearly better with PPM. We also

note that the magnitude of the error at the interfaces is (slightly) smaller when

using PPM, but the order of convergence is no higher.

We now present a test in which there is evolution of the fluid variables in a

situation in which there is a change in entropy gradient across the interface.

This is a shock-tube type test, in some ways similar to the Riemann problem

though the density profile in the right state is a sine wave, rather than constant.

This “perturbed” shock tube test, proposed by [56] and used by e.g. [52], has

initial data

{

ρ0 = 5, v = 0, p = 50, x < 0.5

ρ0 = 2 + 0.3 sin (50x) , v = 0, p = 5, x ≥ 0.5
(4.2.17)

with γ given by
{

γ = 1.4, x < 0.5

γ = 1.67, x ≥ 0.5
(4.2.18)
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and the level set function by

φ = x − 0.5. (4.2.19)

This test was run to a time t = 0.35.

We show the results for the perturbed shock tube test for 200 cells in figure 4.24

and for 800 cells in figure 4.25. Since we cannot obtain an exact solution for this

test, we instead include a very high resolution simulations, with 12800 cells,

to check the solution converges as resolution increases. We see that, as in the

previous test, PPM captures the features of the sine wave more accurately,

though at high resolution, neither method struggles to resolve these features.

Again the sharp entropy gradient at the interface has lead to errors here,

which slowly converge, but are still present in the 800 point simulations. No

spurious oscillations have been introduced however, it is be noted that the

slight oscillatory behaviour which can be seen between the rarefaction and

shock is indeed physical.

4.3 The Ghost Fluid Method in general rela-

tivity

The results in the previous section have shown that the Ghost Fluid Method

can be successfully extended to SR. For it to be useful in modelling of neutron

stars, we now need to show that it works in full GR. Here the tests are designed

primarily to test the Ghost Fluid Method, rather than investigate physically

relevant situations. Therefore the criterion for determining these test cases was

for all effects of the interface to be obvious in the analysis of the results. As

a result we will make no statements about the behaviour of multicomponent

neutron stars based on these results.

In all tests in this section we can use the Hamiltonian constraint, as given

in section 2.2.3,
∂ra

a
= a2

[

4πrτ + D − m

r2

]

(4.3.1)

to obtain a measure of the error introduced into the system. We can either

look at a snapshot to gauge where errors are most prevalent within a star, or
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Figure 4.24: Results for the perturbed shock tube test for MC limiter and
PPM at a resolution of 200 cells. The solid line represents a reference solution
of 12800 cells. We see that all features have been correctly located in this
test. The greater accuracy of PPM in capturing the features of the sine wave
is again apparent, as is the error at the interface due to entropy gradient.
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Figure 4.25: Results for the perturbed shock tube test for MC limiter and
PPM at a resolution of 800 cells, again the solid line represents a reference
solution of 12800 cells. All features are now well captured, and a decrease in
the error at the interface is visible.
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Figure 4.26: The density and pressure profiles for a stable TOV star at time
t = 1000. We see that the central density has remained at its initial value of
ρc = 1.28 × 10−3. We have used a resolution of 1280 cells for this test.

use the norms of the error in the Hamiltonian constraint to test the conver-

gence of the entire evolution.

In order to analyse the results obtained from these tests, we will first show

a reference solution for an initial star configuration known to be stable. We

choose a typical polytropic approximation to a NS (that is it has a mass of

about 1.4M⊙ and radius about 10 km) obtained by solving the TOV equations

given in section 2.6 for a given central density, ρ0 (t = 0, r = 0) = ρc, γ and K.

The initial data required for such a star is

ρc = 1.28 × 10−3, γ = 2, K = 100. (4.3.2)

This configuration provides a physically stable star, hence can also be used

to ensure that the GR evolution code has been correctly implemented. In or-

der to ensure that the evolution equations have been implemented correctly

we must simulate it over several dynamical timescales (for this case we have

tdyn ∼ 150). We therefore run this test until time t = 1000.

The density and pressure profiles for a stable single component star at time

t = 1000 are shown in figure 4.26. We see that the central density retains
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its initial value given by (4.3.2) and that there is no unexpected behaviour

apparent in the star.

In order to ensure that this test is working correctly we must consider con-

vergence results, shown in figure 4.27. The numerical methods used in this

section should yield second order convergence of the results. The top panel of

this figure shows the error in the Hamiltonian constraint as a function of radius

at time t = 1000. This is shown for two resolutions, 640 and 1280 cells, and

scaled to show that second order convergence is indeed achieved nearly every-

where. We do however see that at r ∼ 10 there is a region of large error, and a

loss of second order convergence. We can see from figure 4.26 that this is the

location of the surface of the star. It is clear that this is an expected issue due

that the atmosphere algorithm, as described in section 3.8 which causes this

loss of convergence. The central panel shows the 1-norm of the Hamiltonian

constraint as a function of time. This is scaled to show that the overall error

in the star scales at an order of 1.55. Comparing this to the snapshot of con-

vergence at t = 1000, it is clear that the errors associated with the surface and

the interaction with the atmosphere are dominating in the 1-norm, hence we

do not see second order convergence here. The lower panel shows the 1-norm

of the error in the density. Since we are modelling a static star, the initial data

therefore provides the exact solution, hence this error plot can be obtained.

The low density of the atmosphere means that the errors that occur here do

not dominate the 1-norm, and as a result we see that the convergence here is

second order as desired. These plots show that the second order techniques

used in the simulation are working correctly. This also provides a reference

solution which will allow any errors introduced by the Ghost Fluid Method to

be identified.

In order to test whether the introduction of an interface into a stable star causes

any issues, we can, as in previous tests in Newtonian and SR cases, introduce

a “trivial” interface. We therefore have the same initial data as (4.3.2), though

we include a level set function

φ = x − 3.015 (4.3.3)
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Figure 4.27: Showing measures of convergence for a single component reference
solution. The upper panel shows second order convergence for the error in the
Hamiltonian constraint as a function of radius at late times (t = 1000). The
central panel shows the 1-norm of the error of the Hamiltonian constraint as
a function of time. Here the order of convergence is scaled to 1.55, since the
errors at r ∼ 10, the surface of the star, dominate the 1-norm. The lower
panel shows the 1-norm of the error in the density of the star as a function of
time. Here the effects of the surface are less pronounced, hence this approaches
second order convergence.
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Figure 4.28: The density and pressure profiles for a stable TOV star with an
artificial interface at x ∼ 3 at time t = 1000. We see that the central density
has remained at its initial value of ρc = 1.28 × 10−3. We also note that there
is no visible behaviour introduced by this artificial interface. We have used a
resolution of 1280 cells for this test.

which adds this trivial interface at x = 3.015. Since the EOS is the same both

sides of the interface, there are no discontinuities in the initial data, hence we

expect a solution as shown in figure 4.26.

In figure 4.28 we see the density and pressure profiles are indistinguishable

from the true single component case shown in figure 4.26. There is no un-

physical behaviour arising introduced through the interface, and the star has

remained in its initial configuration.

To determine whether the presence of the artificial interface has had a detri-

mental effect on the rate of convergence, we present the error plots for this test

in figure 4.29. These can be directly compared to the plots for a corresponding

single component star in figure 4.27. The error in the Hamilton constraint as

a function of time is virtually indistinguishable in the two cases. It is clear

that the interface at r = 3.015 has not introduced unphysical behaviour. As a

result of this, the plot of the 1-norm of the error in the Hamiltonian constraint,

and the lower panel showing the 1-norm of the error in the density, are also
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Figure 4.29: Convergence results for a static star with an artificial interface
placed at r ∼ 3. These plots should be compared to those for a genuinely single
component star, shown in figure 4.27. Again the top panel shows second order
convergence almost everywhere for the Hamiltonian constraint, when plotted
as a function of radius. Importantly, there is no visible error introduced by
the interface in this plots. As a result, the central plot, the 1-norm of the error
in the Hamiltonian constraint, again has convergence of order 1.55. Similarly,
there is no visible change in the 1-norm of the error in the density, shown in
the lower panel. Again we see near perfect second order convergence.
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Figure 4.30: Results for the velocity and entropy of a static star with an
artificial interface at r ∼ 3 at time t ∼ 270. These plots show the (small)
detectable effects of the interface. The left panel compares the velocity in
the interior of the star for the two situations; with no interface and with an
artificial interface. It is clear that the velocity remains constant across the
interface. We can, however, see that there are some differences between the
two. These arise from the surface, suggesting any minor differences in velocity
in the two cases are magnified and reflected by the treatment of the surface
and atmosphere. The right panel shows the error in the entropy of the star
around the interface. There is a slight jump across the interface, due to the
errors in the extrapolation of the Ghost Fluid boundary condition, at the 10−8

level.

indistinguishable from those in figure 4.27. That is these have convergence

order of 1.55 and 2 respectively.

Further investigation as to whether there are any visible effects of the interface

can be achieved by comparing velocity and entropy of the single component

and artificial interface cases. These results are shown in figure 4.30. The left

panel shows the velocity profiles in the interior of the star at time t ∼ 270.

Only the interior velocity is shown since the behaviour at the surface dominates

the plots and other effects would be indistinguishable. It is clear that there is

no discontinuity in the velocity profile at the interface. There is, however, a

definite difference between the two cases, clearly originating from the surface

and not the interface. The choice of t ∼ 270 was chosen for this plot since at
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this point the source of this difference is so clear. At late times, this difference

propagates inwards, hence the cause would be indeterminable. This velocity

is still comparatively small, hence we still see the appropriate convergence re-

sults shown in figure 4.29. The differences emerge since any slight errors in the

velocity introduced by the extrapolation at the interface are magnified and re-

flected by the surface and atmosphere treatment. The right panel in figure 4.30

shows the error in the entropy when compared to the exact solution. We see

that there is a clear effect of the interface, but this is a very small effect, of

order 10−8. These suggest that there is no major source of error that occurs

through the inclusion of a sharp interface in the context of GR.

The success of these preliminary results means we now consider cases for a

static star with a genuine interface, across which the EOS changes. In these

cases the interface is always positioned in a region in which the pressure and

density are comparatively large. This allows for ease in analysing any be-

haviour that arises from the interface. Again we stress that these models are

not based on physically relevant scenarios. The first test we consider has a

small change in the value of γ across the interface. The initial data for this

test is

{

ρc = 1.28 × 10−3, γ = 2, K = 100, r < 3.015

γ = 1.9, K = 51.57, r ≥ 3.015
(4.3.4)

with the level set equation given by (4.3.3). As with the previous static star

cases, this is run to time t = 1000.

We show the results for the density and pressure for a star with an outer EOS

parametrised by γ = 1.9 in figure 4.31. In the density we see the jump at the

interface, again located at r = 3.015, with the pressure remaining continuous.

The central density suggests that this star has indeed remained static.

In figure 4.32 we see how introducing a genuine interface has affected the con-

vergence results for the star. The top panel shows that there is a noticeable
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Figure 4.31: The density and pressure profiles for a stable TOV star with an
interface at r ∼ 3 over which there is a small change in γ. This is plotted
at time t = 1000. We see that there is a jump in the density profile at the
interface, but the pressure remains continuous. We have used a resolution of
1280 cells for this test.

effect from introducing a jump in the EOS. There are some errors introduced

at the interface, although convergence is not greatly affected. This is not sur-

prising due to the simple nature of the boundary conditions in the Ghost Fluid

Method. The magnitude of these errors is small, however, and, as we see in the

middle panel, there is still reasonable convergence in the 1-norm of the error

for the Hamiltonian constraint. In fact we see that the order of convergence

here, 1.65, is greater than for the single component star. The larger errors at

the interface mean that these will have a greater effect on the 1-norm of the

error. Since these are, to some degree convergent, this could raise the overall

convergence indicated through the 1-norm of the Hamiltonian constraint. It

is also possible that this increase in convergence arises from the softer exterior

EOS leading to a slightly more extended star. This effectively reduces the

influence of the surface on the convergence rate, thus leading to this improve-

ment. The lower panel again shows second order convergence in the 1-norm of

the density as we would expect.

We now consider a static star with a softer exterior EOS. This test has initial
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Figure 4.32: Convergence plots of the errors in the Hamiltonian constraint and
density for a static star with γ = 1.9 in the outer region. This plot can be
compared to that of the reference solution in figure 4.27. We see that there
is now a visible effect of the interface in the error plot for the Hamiltonian
constraint at t = 1000. Although there are these errors, they are largely
convergent, and hence do not present a major problem, with the 1-norm of the
Hamiltonian constraint converging with order 1.65. We see that the 1-norm of
the error in the density again converges at second order.
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Figure 4.33: The density and pressure profiles for a stable TOV star with an
interface at r ∼ 3 and a softer exterior EOS, γ = 5

3
plotted at time t = 1000.

Again we see the jump in the density profile due to the EOS change, with a
continuous pressure profile as expected. The softer exterior EOS results in this
configuration having a larger radius. We have used a resolution of 1280 cells
for this test.

data

{

ρc = 6 × 10−4, γ = 2, K = 100, r < 3.015

γ = 5
3
, K = 11.17, r ≥ 3.015

. (4.3.5)

Note that in order for this configuration to be stable we need a lower central

density that used in previous tests. Again the interface is at r = 3.015, hence

φ is given by (4.3.3), and we run to t = 1000.

We show the results for a static start with γ = 5/3 in the exterior in figure 4.33.

The density jump at the interface is again apparent, with the pressure remain-

ing continuous. The softer EOS means that the radius of the star with this

configuration is greater, with the surface now at r ∼ 14.

In figure 4.34 we show convergence plots for a star with a γ = 5/3 exterior

component. Comparing these plots to the reference solution in figure 4.27 we
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Figure 4.34: Convergence results for a static star with an interface at r ∼ 3
and γ = 5/3 in the exterior region. Comparison to the reference solution,
figure 4.27, shows that the effects of the interface are again noticeable. We
can again see that they are not large enough to pose a serious problem, and
do appear to converge with resolution. The softer exterior EOS leads to the
errors at the surface of the star being smaller in magnitude. The 1-norm of
the error in the density again shows second order convergence until late times,
at which point the errors from the surface have increased sufficiently to start
dominating.
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see that, as in figure 4.32, the effects of a non-trivial interface are clearly visi-

ble. Again this error is predominantly convergent and not significantly large.

The plot showing the error in the Hamiltonian constraint at t = 1000 also

shows the effects of the softer external EOS. We see that the magnitude of

the error is smaller, though again it does not converge at second order. The

larger radius of the star means that this surface behaviour does not have such

a large contribution to the 1-norm of the error in the Hamiltonian constraint.

As a result we see a convergence order of 1.8, greater than that in the reference

solution. Compared to the reference solution, the softer exterior EOS requires

a lower central density to be stable. This, along with the more extended low-

density region at the surface of the star, means that the errors in the density

at the surface have a greater impact on the 1-norm convergence. As a result,

we see the 1-norm of the error in the density drift away from second order

convergence after t ∼ 800.

The tests so far have shown that the Ghost Fluid Method does not introduce

major unphysical behaviour into static stars in GR. In particular, the error

in these stars is dominated by the surface algorithm. For the Ghost Fluid

Method to be useful in more physically relevant situations, we also need to

show that it can deal with interface movement and non-linear behaviour e.g.

shock formation. In a 1+1 dimensional context, we can artificially perturb

the star such that a shock wave forms in the interior and propagates radially

outwards. We add this artificial perturbation onto a two-component star with

initial data given by

{

ρc = 1.28 × 10−3, γ = 2, K = 100, r < 3.015

γ = 1.9, K = 51.57, r ≥ 3.015
(4.3.6)

as in (4.3.4). We then perturb the interior region using

ρ0 = ρ0,TOV [1 + h(r)] , p = pTOV [1 + h(r)] , (4.3.7)

where

h(r) =







1
20
{1 − tanh [50(r − 2)]} r < 2.5

0 r ≥ 2.5
. (4.3.8)
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Figure 4.35: Density and pressure profiles for a 2-component star with an
initial perturbation. The left panel shows the initial data where the steep
perturbation is clearly visible. The right panel shows the evolved data at time
t ∼ 15. At this point we can see that the initial perturbation has split into
an outgoing shock, which has moved through the interface, and an ingoing
feature which has been reflected at the origin and is now shocked, but has
not yet reached the interface. Since the perturbation of the initial data made
in an ad-hoc fashion, a “bulge” in the density can be seen at r ∼ 2, whilst
the pressure has reverted to a smooth profile. The interface position has been
marked by the vertical dashed line, and we can see that pressure remains
continuous here.

This inserts a sharp (but not yet non-linear) feature which, as it propagates

through the star, rapidly forms two shocks moving in opposite directions. This

initial perturbation was chosen over a true discontinuity since this introduced

problems, most likely from the evolution of the metric quantities at early times.

Figure 4.35 shows the density and pressure profiles for the initial and evolved

data for this perturbed star case. The left panel shows the initial configuration

with the large perturbation clearly visible. The right panel shows this star af-

ter evolution in which the perturbation has split into two components. We see

an outward moving shock, which has passed through the interface. We also

see a second shock, which started as an inward moving feature and has been

reflected at the origin. We can see that the pressure profile remains continuous

over the interface, even after the shock has passed through it. The initial data
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Figure 4.36: Showing the errors in the Hamiltonian constraint at time t ∼
15. As with the previous tests, we can see the effects of the interface at
r ∼ 3 and the surface at r ∼ 10. We also see errors present at the two
shocks, as we would expect. Away from these features we see that there is
the second order convergence we expect. Also plotted is the results for an 80
point run (appropriately scaled for second order convergence) showing that
this convergence rate still holds for the lower resolutions possible in full 3+1
simulations.

has also left a “bulge” in the density profile due to the simple manner in which

the perturbation was implemented. The results of this test have only been

shown after a a comparatively short time (the right panel shows the results at

t ∼ 15) since the simple atmosphere algorithm applied here results in unreli-

able data once the shock reaches the surface. This is, however, sufficient to

assess the effects the shock has on the interface. Note that in these tests the

reflected features from the shocks hitting the interface, which were seen in the

SR tests e.g. in figure 4.15, are too small to be identified in figure 4.35.

We show the errors in the Hamiltonian constraint for the perturbed star test in
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Figure 4.37: The left panel shows the velocity profile of the star at t ∼ 15. The
locations of both shocks are clear, and we can see that there is no oscillatory
behaviour generated at the interface as a result of the interaction with the
outgoing shock. The right panel shows the movement of the interface as a
function of time. Both the interpolated and discrete locations are plotted, as
obtained from the level set function. We see that the movement of the interface
is consistent with resolution.

figure 4.36. Since we have not used an equilibrium configuration in the initial

data, we do not have an exact solution available and hence cannot determine

the error in the density profile. This plot shows that in addition to the effects

of the interface and surface, we see that there are also errors at the shock

waves. These errors do not converge at second order since the HRSC methods

reduce down to a first order technique at shocks. Away from these features,

however, convergence is second order as we would expect.

The effects of the initial perturbation on the behaviour of the star and in

particular the interface are highlighted in the results presented in figure 4.37.

The left panel of this figure shows the velocity profile of the star at t ∼ 15.

We see the two shock waves very clearly, and also that the effect of the leading

shock passing through the interface has left no visible shock, we can see no

discontinuous behaviour or spurious oscillation. The comparative magnitude of

the shock is much greater here than in figure 4.35, hence we can now confidently

see that the shock locations are being captured consistently. We also see that
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the pre-shocked outer regions of the star are falling inwards. This is a result

of the initial perturbation of the star. By artificially increasing the density

towards the centre of the star, we increase the gravitational mass of the star

here. This then affects the spacetime and causes the outer layers to contract.

The right panel of figure 4.37 shows the interface location as a function of

time. We include both the discretised location, which simply records when the

zero of the level set function changes cell, and the interpolated position of the

interface from the level set function. From the discretised plot we see that the

interface genuinely does move change numerical cells within an evolution. By

considering the other plots for the perturbed star, this shows that this move-

ment does not introduce any unphysical behaviour. The interpolated position

shows that initially, the additional gravitational mass in the interior causes the

interface (along with the rest of the matter in the star) to fall inwards. The

impact of the leading shock at t ∼ 4 halts this infall and moves the interface

outwards again. At t ∼ 13 the effects of the interaction with the shock are

no longer enough to prevent the infall of the interface again. The interaction

of the trailing shock at t ∼ 18 slows this infall, but the “bulge” in density

left from the initial data visible in figure 4.35 means that there is still some

infalling matter. This test has successfully demonstrated that the Ghost Fluid

Method can deal with non-linear behaviour in GR.

4.4 Summary

The results in this section have demonstrated the extension of the Ghost Fluid

Method in 1+1 dimensional relativistic situations. The results given in sec-

tion 4.2 show the initial extension for SR. A variety of scenarios, based on

Riemann shock-tube problems, were simulated to robustly test the capabil-

ities of this extension to SR. We showed that the correct results could be

obtained even in highly relativistic scenarios (see figure 4.18). We were also

able to present results comparable to those in the Newtonian CFD literature

(e.g. [207]) for a more complex test with multiple interfaces in figure 4.19.

Some of the known shortcomings of the Ghost Fluid Method were investigated

in section 4.2.1. Here we found that these issues, although still present, did
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not pose a major issue to the relativistic extension.

Our extension of the Ghost Fluid Method was then tested in 1+1 dimen-

sional GR in section 4.3. Here we ensured first that multicomponent stars

in hydrostatic equilibrium could be successfully simulated. We then investi-

gated the effects of non-linear behaviour within a star, see figure 4.35. In all

these cases, we could analyse the convergence of our method. We showed that

the second-order convergence expected from the numerical methods was ob-

tained, and our method could successfully deal with non-linear features, such

as shocks.



Chapter 5

The Ghost Fluid Method in

multidimensions

A key test of the viability of the relativistic Ghost Fluid Method is whether

it extends to multidimensional situations. This is essential for use with the

3+1 NS simulations required for obtaining GW templates. In this section we

present preliminary results in which the Ghost Fluid Method is tested in 2+1

dimensional SR.

5.1 Numerical techniques for solving multidi-

mensional equations

In chapter 3 all numerical techniques described pertained to the solution of

1+1 dimensional equations. We must now consider how these can be extended

when dealing with multidimensional situations. When solving such equations

numerically, one standard technique to use is dimensional splitting [192]. In or-

der to use this technique, we must first be able to write our system of equations

with state vector u and spatial coordinates x = (x1, x2, x3)
T in the form

∂tu + ∂x1
f (u,x) + ∂x2

g (u,x) + ∂x3
h (u,x) = s (u,x) . (5.1.1)

In chapter 2 we considered the fluid evolution equations in the general multi-

dimensional case for both Newtonian and relativistic situations. In all cases,

it was indeed possible to express the conservation form of the equations in this

190
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manner. We can then make the reconstruction for each spatial derivative term,

as described in section 3.4, individually.

In this thesis, our implementation of dimensional splitting differs from the

original presentation in [192]. We will therefore contrast these two approaches

assuming, without loss of generality, a 2+1 dimensional system with no source

terms and using a first-order RK method for the time update, i.e. we use only

a single step in the time evolution and h = s = 0. In 1+1 dimensions, the first

order RK update is given by

ûn+1 = ûn + ∆t
(

f̂i−1/2 − f̂i+1/2

)

(5.1.2)

To make the update using dimensional splitting, we define the quantities

F∆t = f̂i−1/2 (∆t) − f̂i+1/2 (∆t) , G∆t = ĝj−1/2 (∆t) − ĝj+1/2 (∆t) , (5.1.3)

where we have assumed these quantities are evaluated for all (xi, yj). In this

work, we will then make the update at t = tn+1 in a single step,

ûn+1 = ûn + ∆t (F∆t + G∆t) . (5.1.4)

By comparison, the update introduced in [192] is made through

u∗1 = ûn +
∆t

2
F∆t/2,

u∗2 = û∗1 + ∆tG∆t,

un+1 = û∗2 +
∆t

2
F∆t/2.

(5.1.5)

The advantage of the form used here, (5.1.4), is that it preserves the symmetry

of a solution if this exists and is not aligned with a coordinate axis.

When using dimensional splitting, the CFL factor described in section 3

must be chosen consistently for all spatial dimensions, i.e. it is determined by

the overall maximum wavespeed.
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5.2 Multicomponent fluids in more than one

dimension

5.2.1 Level set methods

The level set methods introduced in section 3.7.1 were developed with the mod-

elling of sharp features in multidimensional fluids in mind. In such situations

the locations of these features are simply described by zeroes of some surface or

hypersurface. Again the fluid components can simply be identified by the sign

of the level set function, φ. Additionally, the methods for solving Hamilton-

Jacobi equations presented in 3.7.3 also extend naturally to multidimensions.

The need for the reinitialisation of φ due to steepening is, however, now likely

to arise frequently due to non-trivial behaviour of the velocity components in

multidimensional simulations. In this preliminary work, we shall not consider

reinitialisation, and restrict our analysis of simulations to regions in which φ

is suitably smooth. The techniques for reinitialisation are, however, described

in e.g. [67, 148].

5.2.2 Ghost Fluid Method

In 1+1 dimensions, the Ghost Fluid boundary conditions are trivially imple-

mented. In particular the extrapolation of the entropy and copying of normal

velocity are greatly simplified by the single spatial dimension. In a multidi-

mensional situation, we must be careful that any extrapolation occurs in the

normal direction to the interface, and must also deal with the tangential ve-

locity components in some way. In the original Ghost Fluid Method paper of

Fedkiw et al. ([67]), the multidimensional Newtonian case was considered.

When there is more than one component to the velocity, then the Ghost

Fluid Method assumes that across an interface the normal component of the

velocity is copied from the actual fluid into the ghost fluid region. The tan-

gential component is then extrapolated in the same manner as the entropy.

Obviously there is no requirement that these components align with the co-

ordinate axes. To obtain these components, we first determine the normal

vector, N, to the level set function. This is done at every grid point and is
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given by

N =
∇φ

|∇φ| . (5.2.1)

The normal is only required for providing information within the ghost fluid

region, hence the structure of φ away from the interface will not lead to adverse

effects. This does mean that if we were to reinitialise φ, we would have to

ensure that this was done for the entire ghost fluid region. Care must also be

taken in determining N numerically if ∇φ = 0.

Once we have N, we can define the normal and tangential velocity compo-

nents. The magnitude of the normal component, vN , is given by

vN = v · N (5.2.2)

which, for the purpose of the dimensional splitting, is put into vector form,

vN = vNN. (5.2.3)

The tangential velocity vector, vT , can then be defined by

vT = v − vNN. (5.2.4)

The normal velocity can now be copied into the ghost fluid region from

the real fluid. The extrapolation of the entropy and tangential velocity should

result in these variables being constant along N. Therefore it is logical that

we wish these variables to satisfy

N · ∇I = 0 (5.2.5)

where I is any variable to be extrapolated, i.e. the entropy and each component

of vT . In order for this to be satisfied, we need some technique which allows

us to make an initial guess for I, and then make some iteration that results in

I satisfying (5.2.5). This can be achieved through the solution to the PDE

∂t̃I ± N · ∇I = 0 (5.2.6)

where the sign of the PDE corresponds to the sign of φ in the ghost fluid

region. The time derivative in this PDE is not necessarily the physical time in
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the simulation. Instead we can solve for some fictitious time t̃, in which this

PDE is evolved for several artificial timesteps until a static solution is reached,

i.e. (5.2.5) is satisfied.

The velocity in the ghost fluid region can then be ‘built’ from the copied

normal velocity vN and the extrapolated tangential velocity vT .

5.2.3 Relativistic effects in the Ghost Fluid Method

The relativistic extension of the Ghost Fluid Method in 1+1 dimensions was

trivial. The coupling of velocity components through the Lorentz factor in

multidimensional situations could complicate matters however. In relativity,

it would be expected that the 4-velocity should be used in the Ghost Fluid

boundary conditions. The coupling of the velocity components through the

Lorentz factor means that making an extrapolation of the 3-velocity, as was

done without issue in the 1+1 dimensional case, will not necessarily provide

the correct result. This is particularly an issue for GR when spacetime factors

enter the conversion between 3- and 4-velocities, as described in section A.1.5.

In a Minkowski spacetime (i.e. SR), however, we would not expect such com-

plications. In section 5.5.1 we investigate if there are any effects due to this

choice.

5.3 Higher order methods for the level set evo-

lution

In section 3.7.3 we detailed the numerical methods required for the evolution of

the level set function φ. These used a Lax-Friedrichs scheme to evolve φ and,

due to the simple nature of this function in 1+1 dimensional situations, it was

sufficient to use first order approximations to the derivatives, φ±. In multidi-

mensional situations there is no such guarantee that this simple approximation

will be suitable, the behaviour of the fluid, and hence the level set function,

can be much more complex. It is therefore advantageous that the evolution of

the level set function moves beyond this first-order approach. The extension of

ENO methods to Hamilton-Jacobi equations was shown in [149], hence we now

consider a third-order ENO approximation to φ±x as described in [148]. The
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obvious result to obtain the derivatives in the y-direction, φ±y , holds. We begin

by defining D1
i+1/2, xφ as the divided differences in the x-direction, equivalent

to the first order approximations to the derivative of φ, i.e.

D1
i+1/2, xφ =

φi+1, j − φi, j

∆x
. (5.3.1)

In terms of the first order approximations we have φ+
x = D1

i+1/2, xφ and φ−x =

D1
i−1/2, xφ. We then have the second divided differences

D2
i, xφ =

D1
i+1/2, xφ − D1

i−1/2, xφ

2∆x
(5.3.2)

and third divided differences

D3
i+1/2, xφ =

D2
i, xφ − D2

i, xφ

3∆x
. (5.3.3)

The idea behind the ENO method is to then, if we consider a constant y value,

make a polynomial reconstruction of φ,

φ̂ (x) = Q0(x) + Q1(x) + Q2(x) + Q3(x) (5.3.4)

where Qn is an nth order polynomial. From this we obtain φ±x though the

derivatives of this function,

∂xφ̂ (x) = ∂xQ1(x) + ∂xQ2(x). + ∂xQ3(x) (5.3.5)

Based on our definitions of the polynomials Qn (x) we can evaluate this

approximation to at xi to obtain φ±x . In the following definitions, we set

k = i − 1 if we want to obtain φ−x and k = i for φ+
x . We first define Q1(x)

through

Q1 (x) =
(

D1
k+1/2, xφ

)

(x − xi) (5.3.6)

hences we have

∂xQ1 (xi) = D1
k+1/2, xφ. (5.3.7)

If this result is used solely in defining φ±x then we have the first-order method

described in section 3.7.3. We can then make a second order correction, which

could either use D2
k, xφ or D2

k+1, xφ. In order to ensure that oscillatory behaviour
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is kept to a minimum, we define

D =







∣

∣D2
k, xφ

∣

∣ ,
∣

∣D2
k, xφ

∣

∣ ≤
∣

∣D2
k+1, xφ

∣

∣

∣

∣D2
k+1, xφ

∣

∣ , otherwise
(5.3.8)

and we also define

k⋆ =







k − 1,
∣

∣D2
k, xφ

∣

∣ ≤
∣

∣D2
k+1, xφ

∣

∣

k, otherwise
. (5.3.9)

The second order polynomial correction is then given by

Q2 (x) = D (x − xk) (x − xk+1) (5.3.10)

with derivative

∂xQ2 (xi) = D [2 (i − k) − 1] ∆x. (5.3.11)

Finally a third order correction is given in a similar manner. We first define

D⋆ =







∣

∣

∣D3
k⋆+1/2, xφ

∣

∣

∣ ,
∣

∣

∣D3
k⋆+1/2, xφ

∣

∣

∣ ≤
∣

∣

∣D3
k⋆+3/2, xφ

∣

∣

∣

∣

∣

∣D3
k⋆+3/2, xφ

∣

∣

∣ , otherwise
(5.3.12)

where we note that k⋆, which was defined, but not used, during the second

order correction, is now used. The final polynomial correction is then given by

Q3 (x) = D⋆ (x − xk⋆) (x − xk⋆+1) (x − xk⋆+2) (5.3.13)

with derivative

∂xQ (xi) = D⋆
[

3 (i − k⋆)2 − 6 (i − k⋆) + 2
]

(∆x)2 . (5.3.14)

Using these three polynomial results, we have a third-order accurate ENO

scheme for evolving the level set function.
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5.4 Results for the Newtonian multidimensional

Ghost Fluid Method

The 2+1 dimensional Ghost Fluid Method was demonstrated in Newtonian

physics [67], hence it is first worth using this to obtain a reference solution.

This test considers the effect a shock wave of air has on a bubble of helium,

previously considered both as a physical experiment (e.g. [85]) and numer-

ically (e.g. [162]). This test is carried out on a domain x ∈ [0, 325] and

y ∈ [−44.5, 44.5], with MC limiter for the fluid evolution and for accuracy

we use the third order ENO scheme described in section 5.3 for the evolution

of φ. The boundaries at y = ±44.5 are a solid wall, whilst those at x = 0

and x = 325 are constant extrapolation outflow boundaries. The computa-

tional domain effectively has three regions, the post-shocked air (qpost), the

pre-shocked air (qpre) and the helium (qHe). The initial data for this test is

given by











































ρ0, post = 1.3764, vx,post = −0.394, vy,post = 0,

ppost = 1.5698, γpost = 1.4,

ρ0, pre = 1, vx,pre = 0, vy,pre = 0,

ppre = 1, γpre = 1.4,

ρ0, He = 0.138, vx,He = 0, vy,He = 0,

pHe = 1, γHe = 1.67,

(5.4.1)

with the shocked condition initially in the region x > 225. The shock has been

initialised such that it has M = 1.22 where M is the Mach number, given by

M =
vS

cs,pre

(5.4.2)

with vS the shock velocity, as defined in section 2.4.1. The level set function

is initialised to give

φ = 25 −
√

(x − 175)2 + y2 (5.4.3)

with φ > 0 giving the helium bubble, and φ < 0 the air. The symmetry of this

problem about y = 0 means that the actual calculation need only use half of

the domain (i.e. y ∈ [0, 44.5]). The test, shown in figure 5.1, was run with a

resolution of 650 × 89 cells, and to a time t ≈ 185.
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The results for the shock wave hitting a cylindrical bubble of helium are shown

for several stages of the evolution in figure 5.1. The low density region of

the helium bubble (and hence the zeroes of the level set function) are clearly

visible. The top panel shows the initial data, and the remaining panels show

a succession of images as the shock wave passes through the bubble. We can

clearly see the complex patterns of reflected features off the bubble, the outer

walls and the symmetry axis. The bubble is also heavily distorted into a ‘C’

shape, as identified in previous similar simulations [22, 67]. Beyond the final

time shown in this figure, t ≈ 185, the physical behaviour of the system would

cause the bubble to split. Numerically this presents a challenge in obtaining the

correct behaviour for φ, which usually requires reinitialisation. For simplicity

of implementation, it was therefore necessary to stop the simulation before this

occurred.

5.5 Results for the special relativistic multidi-

mensional Ghost Fluid Method

We now apply the Ghost Fluid Method to 2+1 dimensional situations in SR.

One potential difference between Newtonian physics and relativity for the

Ghost Fluid Method comes from the treatment of the velocities. In relativis-

tic situations we may either use the 3-velocity or the 4-velocity to determine

normal and tangential components. Differences may then arise when copying

the normal and extrapolating the tangential components. The first test we

consider in 2+1 dimensional is therefore designed to test this.

All tests in this section feature an isolated shock hitting some low-density

region. We therefore will provide initial data for three constant states, the

post-shock region, qpost, the pre-shock region, qpost, and the low density region,

qlow.

5.5.1 Comparing the velocity extrapolation techniques

In order to ensure that there is no obvious difference between extrapolating

3- and 4-velocities in SR we must consider a test with an exact solution, but
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Figure 5.1: The 2+1 dimensional Ghost Fluid Method in Newtonian physics.
This test shows a shock wave in air hitting a cylindrical bubble of helium. A
succession of plots are shown from the evolution of this system, where we see
a wide array of reflected and transmitted behaviour.



CHAPTER 5. 2+1 DIMENSIONAL GHOST FLUID METHOD 200

with both x and y components of the velocity non-zero. To achieve this, we

use a ‘slab test’, as previously considered in section 4.2, propagating along a

diagonal line within the domain. We set up a shock moving in the direction

x− y = const., and this hits a low density slab. The initial data for this test is











































ρ0, post = 1.37795, vx,post = 0.12681, vy,post = 0.12681,

ppost = 1.57, γpost = 1.4,

ρ0, pre = 1, vx,pre = 0, vy,pre = 0,

ppre = 1, γpre = 1.4,

ρ0, He = 0.138, vx,He = 0, vy,He = 0,

pHe = 1, γHe = 1.67,

(5.5.1)

with the post-shocked region initially given by

x + y < 0.75 (5.5.2)

and the level set function by

φ = 0.12 − |x + y − 1| . (5.5.3)

The low density slab bounded is therefore by the contours y = 1.22 − x and

y = 0.88 − x.

The results for a shock hitting a slab in 2+1 dimensional SR are shown in

figure 5.2. We show the results along the line x = y, orientated in the normal

direction of the velocity. This test was implemented with outflow boundary

conditions in the normal direction of the boundaries. As a result, severe errors

propagate inwards from this boundary. We show these results before the errors

have reached the line x = y. Qualitatively these results can be compared to

the 1+1 dimensional analogy in figure 4.5. Quantitatively there are differences

in scale (due to the increased maximum width of the domain along x = y). We

see the expected reflected and transmitted shocks. The two panels in figure 5.2

compare the two cases using 3- and 4-velocity extrapolation, as explained in

section 5.2.3, to determine normal and tangential components. It is clear that

there is no difference between the 3-velocity extrapolation (upper panel) and

4-velocity extrapolation (lower panel) in the context of SR. As a result, all

tests shown in this section will use only the 3-velocity extrapolation. We note
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Figure 5.2: The density profile for a shock hitting a slab in 2+1 dimensional
SR. The velocity is aligned with the line x = y, hence we have chosen this line
for the plot. We see that qualitatively, all features expected in this test have
been reproduced compared to the 1+1 dimensional test shown in figure 4.5.
The upper panel shows the results when the 3-velocity is used in determining
the normal and tangential components, and the lower panel uses the 4-velocity.
It is clear that there is no qualitative difference between them. This test uses
200 by 200 cells and MC limiter.
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that this result may not hold for GR.

5.5.2 Bubble tests for the Ghost Fluid Method in spe-

cial relativity

In this section we present the results for various bubble tests (analogous to

the Newtonian test shown in figure 5.1). To enable a more direct comparison

between existing results in Newtonian physics, e.g. those in [22], we categorise

these results though the relativistic Mach number of the shock, MSR. This is

given by ([109])

MSR =

vS√
1−v2

S

cs,pre√
1−c2s,pre

. (5.5.4)

Due to the differences in scales between Newtonian physics and SR, all tests

in this section have domain x ∈ [−50, 325] and y ∈ [−44.5, 44.5] where again

the symmetry of this problem means we only simulate y ∈ [0, 44.5] . In all

cases the level set function is given by (5.4.3),

φ = 25 −
√

(x − 175)2 + y2. (5.5.5)

We also do not use reinitialisation of the level set function in this preliminary

work. As a result, in many cases the duration of the simulation is limited by

the point at which the level set function can no longer be accurately modelled.

Beyond this point, these errors can lead to unphysical behaviour.

The first test we consider has relativistic Mach number MSR = 1.22, hence

can be compared to the Newtonian test presented in figure 5.1. We can also

use this test to compare different reconstruction methods in 2+1 dimensional

SR, in particular focusing on the effects these have on the accuracy with which

the interface is captured. The initial data for this test is given by











































ρ0, post = 1.42182, vx,post = −0.19682, vy,post = 0,

ppost = 1.64161, γpost = 1.4,

ρ0, pre = 1, vx,pre = 0, vy,pre = 0,

ppre = 1, γpre = 1.4,

ρ0, low = 0.138, vx,low = 0, vy,low = 0,

plow = 1, γlow = 1.67,

(5.5.6)
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with the shocked region when x > 225.

In figures 5.3 and 5.4 we show the results for a MSR = 1.22 shock hitting a

cylindrical bubble using MC limiter and PPM reconstruction respectively. The

tests were run for resolution of 700 by 89 cells. For MC limiter, a final time of

t ≈ 690 was achieved, and for PPM, t ≈ 590. Qualitatively many features in

these two plots are similar. The reflected and transmitted features have been

slightly more sharply captured using PPM, and in both cases are comparable

to those seen in the analogous Newtonian case in figure 5.1. The key difference

between the Newtonian and relativistic cases comes from the effects the shock

has on the shape bubble. The differences between the two reconstruction

methods is also apparent. There are finer details visible in figure 5.4 when

PPM is used. This higher accuracy leads to stronger distortion of the bubble,

and hence causes the shorter time for this simulation.

We would like to make a more direct comparison with the original results

presented in [67]. In order to make this comparison we produce a Schlieren

image of the density, obtained by plotting the quantity

√

(∂xρ0)
2 + (∂yρ0)

2 (5.5.7)

on a logarithmic scale.

In figure 5.5 we compare the Schlieren image for the SR bubble test using

MC limiter with that produced using the original Ghost Fluid Method. The

differences in scale mean a direct comparison is not straightforward. We have

shown the image for the SR test when the shock and bubble have moved by

approximately the same amount as in the original image. The differences in

bubble structure and speed of the reflected features is apparent. We can also

clearly see a feature behind the shock only present in the SR test. This can be

identified as start-up error in the shock (hence can be removed if necessary).

The pattern of reflected and transmitted features is clearly consistent with the

original results.

We now consider a test with MSR = 1.6. The initial data for this test is given
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Figure 5.3: Showing a MSR=1.22 shock hitting a low density bubble in SR. MC
limiter is used for this test, and we see that this leads to a very deformed ‘C’
shaped bubble. A series of snapshots are shown, and the pattern of reflected
and transmitted features is clearly apparent.
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Figure 5.4: Showing a MSR = 1.22 shock hitting a low density bubble in
SR with PPM reconstruction. This can be compared directly to figure 5.3.
The greater accuracy of PPM leads to a more detailed bubble structure. The
reflected and transmitted features are qualitatively similar.
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Figure 5.5: Comparing the results for a MSR = 1.22 shock wave hitting a
bubble with analogous results in Newtonian physics presented in [67]. The
differences in scale lead to very different behaviour of the bubble. The reflected
and transmitted features are, however, comparable. In the SR case these
features accurately follow the Newtonian results. Source for upper image:
http://physbam.stanford.edu/~fedkiw

by











































ρ0, post = 2.16527, vx,post = −0.42635, vy,post = 0,

ppost = 3.04262, γpost = 1.4,

ρ0, pre = 1, vx,pre = 0, vy,pre = 0,

ppre = 1, γpre = 1.4,

ρ0, low = 0.138, vx,low = 0, vy,low = 0,

plow = 1, γlow = 1.67,

(5.5.8)

with the post-shocked region initially located for x > 300 and the level set

function given by (5.5.5). This test is shown for a resolution of 350 by 45 cells

using PPM and run to a time t ≈ 550.

In figure 5.6 we show the results for a MSR = 1.6 shock hitting a low-

density bubble. Many of the features are comparable to the milder shock case

shown in figures 5.3 and 5.4. The bubble is again deformed into a curved

shape, but is thinner in this case. It also follows the shock more closely than

in this previous test. The interaction of waves off the bubble and boundaries
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Figure 5.6: Results for a MSR = 1.6 shock hitting a bubble in SR. We see that
the larger shock has lead to greater deformation of the bubble, and that it
follows the shock more closely. The general pattern of reflected and transmitted
waves is similar to previous tests.
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is similar to that seen in previous tests, as expected. There is also visible start

up error present throughout the simulation.

The final test we consider has an even stronger shock, MSR = 2. We now have

initial data











































ρ0, post = 2.93661, vx,post = −0.57968, vy,post = 0,

ppost = 4.91233, γpost = 1.4,

ρ0, pre = 1, vx,pre = 0, vy,pre = 0,

ppre = 1, γpre = 1.4,

ρ0, low = 0.138, vx,low = 0, vy,low = 0,

plow = 1, γlow = 1.67,

(5.5.9)

an initial post-shocked region x > 225 and a level set function again given

by (5.5.5). This test uses 350 by 45 cells using PPM and is run to a time

t ≈ 420.

In figure 5.7 we show the results for a MSR = 2 shock hitting a bubble.

Here we see even greater contraction of the bubble that the previous MSR = 1.6

test in figure 5.6. We see that this leads to the break up of the bubble. As

expected, the level set methods have no problems in dealing with this change

of topology. The interactions of the reflected and transmitted waves are again

clearly apparent. It is clear that the x-velocity of the reflected features is very

small, although there is still noticeable y-velocity, as features can be seen re-

flecting of the walls of the shock tube. As with the previous test there is clear

start up error, visible in the post-shock region and trailing the bubble.

5.5.3 Summary

In this section we have presented some preliminary results for the extension

of the Ghost Fluid Method to 2+1 dimensional SR. This work shows that in

these (limited) cases of extensions from 1+1 dimensional tests and shock-tube

tests with a low-density bubble, we obtain the correct qualitative behaviour.

Before we can apply this to a full 3+1 dimensional NS in GR, a more rigorous

investigation of this extension is required. In this thesis, time constraints

limited both the quantity of tests that could be produced and the resolution
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Figure 5.7: Results for a MSR = 2 shock hitting a bubble in SR. The severe
deformation of the bubble is now apparent, it has in fact split into four sepa-
rate regions in the final panel. The qualitative behaviour of the reflected and
transmitted features is comparable to previous tests, though we note that the
x-velocity of the reflected features is now very small.
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Side shock Reflection

Mach stem Expansion fan

Figure 5.8: Labelling the features expected once a shock wave has hit a low-
density bubble. We see the Mach stem, the side shock, the expansion fan and
reflected interaction, as described by Bagabir and Drikakis in ‘Fig. 1. a’ in [22]

of those presented.

In addition to this, there are many cases which could not be simulated

using the current methods implemented. If the behaviour of the bubble lead

to complex features (as in figure 5.4) or if the bubble becomes compressed very

rapidly (for shocks with MSR = 2) then we could not reproduce this behaviour.

This is liable to be partially due to the limited resolution, and also the lack of

reinitialisation. Any future work would therefore make use of reinitialisation.

Despite this room for improvement, these initial tests have been successful, and

follow closely the qualitative behaviour shown from Newtonian shock-bubble

interaction studies. We can compare our results to the expected features shown

in Bagabir and Drikakis (‘Fig. 1. a’ in [22]).

In figure 5.8, we show the features visible as a result of the shock-bubble
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interaction, as listed in [22]. We see the ‘side shock’ feature protruding from

the ‘Mach stem’ and the expansion fan, which leads into the large reflected

feature.



Chapter 6

Conclusions

The motivation for the work presented in this thesis was to improve the models

used in numerical simulations of NSs, such that the internal behaviour could

be better replicated. In order to achieve this, we wanted to develop tech-

niques such that different regions within a NS could be included in a single

model. Specifically we investigated techniques that allowed for these regions

to be included in a multicomponent manner, based on relativistic extension of

methods developed for Newtonian CFD.

Current models of the interior of NSs suggest that there are several regions

(e.g. the crust and the inner and outer cores), and that these regions may be

separated by thin transition layers. If we wish to simulate an entire NS (or

binary system) in 3+1 dimensions, such that GW waveforms can be extracted,

then the practical aspects of including these transition layers in the NS must

be considered. In particular, for simulating a NS over a timescale long enough

for e.g. several orbits and merger in a binary system, the inclusion of tran-

sition layers is prohibited through the computational requirements of such a

simulation. In order to include different regions in a NS model, an alternative

treatment is therefore necessary. We consider treating these transition layers

as sharp (zero width) interfaces and implementing some appropriate boundary

conditions to reproduce the behaviour across the layers.

The problem of developing numerical techniques to model multicompo-

nent fluids separated by sharp interfaces has been tackled in Newtonian CFD.

Whether these methods extend to relativistic situations has, however, not pre-

viously been considered. Therefore as a ‘proof-of-principle’ test we used the

212
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simplest successful method from Newtonian CFD, the Ghost Fluid Method of

Fedkiw et al. [67]. This method makes use of level set techniques to accurately

capture the location of interfaces. The extension we present can effectively

be split into three stages. We first ensure that the method extends to sim-

ple 1+1 dimensional situations in SR. Since a full NS simulation requires 3+1

dimensional GR, we then extend this to both 1+1 dimensional GR to ensure

there are no issues introduced through the additional spacetime curvature in-

troduced here. We finally must also consider the multidimensional extension

of the method, which, due to limited computational resources, has currently

been undertaken in 2+1 dimensional SR.

In chapter 2 we considered the theoretical background to modelling relativistic

fluids. In this chapter we detail how initial data can be provided for multi-

component relativistic situations in which the EOS changes across the inter-

face. Here we provide a novel presentation for the solution to multicomponent

Riemann problems in SR (the feasibility of which was noted by [166]). We

then detail the numerical methods required for HRSC methods and specific

requirements for modelling stars in chapter 3. Section 3.7 details the specific

techniques for modelling interfaces.

The results for tests using our relativistic extension of the Ghost Fluid Method

are presented in chapter 4. In section 4.2 we apply the Ghost Fluid Method

to multicomponent fluids in 1+1 dimensional SR. The initial tests for simple

Riemann shock tube-type tests show that in these comparatively simple cases

the exact solutions have been reproduced by the simulations correctly.

We then probe some more complicated scenarios to thoroughly test the

versatility our extension to the Ghost Fluid Method in SR. We showed (in

figure 4.18) that there were no issues in a highly relativistic test, with v ∼ 0.95c.

Similar success was achieved when cases which display more complex fluid

behaviour are considered. This is demonstrated in figure 4.19, in which a

shock has hit a slab of low density material. The expected pattern of resultant

waves (transmitted shocks and reflected rarefactions) was correctly captured.

The simple nature of the Ghost Fluid Method can result in problems in

dealing with some situations, notably those involving entropy gradients across

an interface. This is well documented in Newtonian CFD [129]. To ensure
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that these issues do not manifest in some more serious manner in relativis-

tic situations, in section 4.2.1 we probed the behaviour of our extension to

the Ghost Fluid Method in analogous relativistic situations to these ‘problem

cases’. Again we find that the strong entropy gradients lead to small errors at

the interface. These errors are, however, (slowly) convergent, and there is no

additional unphysical behaviour introduced.

In section 4.3 we present tests for our extension of the Ghost Fluid Method

in 1+1 GR. These results are based on two-component TOV-type stars. The

density profiles have been set up such that they are similar to those of NSs,

although the choice of interface location is selected with a purely numerical

motivation. We ensure that it is in a region of sufficiently large density for

the behaviour at the interface (and any undesirable affects that may also arise

here) are visible.

Our results for static stars show that our method allows for a stable mul-

ticomponent star to be simulated without difficulty. We see that the conver-

gence of these simulations is (in general) at second order, as expected from the

numerical methods used. There is no significant loss of convergence near the

interface, with the exception of the few grid cells adjacent to the interface loca-

tion. We then investigate a perturbed star in which we investigate the effects

of non-linear behaviour hitting the interface, shown in figure 4.35. We find

that around the shocks, we see an expected reduction in convergence (see sec-

tion 3.4 for details) and elsewhere the convergence remains at the desired level.

We have demonstrated that in 1+1 dimensions GR, our extension to the Ghost

Fluid Method is successful in modelling for multicomponent situations. In or-

der to be of use in current NS simulations, it must also be successful in 3+1

dimensional GR. In chapter 5, we present preliminary results to demonstrate

the viability of our method in multidimensional relativistic situations. These

results are presented for 2+1 dimensional SR, avoiding the computational cost

of 3+1 GR and conceptual and numerical problems of 2+1 GR. We find that

results based on extensions of problems investigated in Newtonian CFD pro-

vide the expected qualitative behaviour, as shown in figure 5.5.

The results presented in this thesis indicate that in general we can extend
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interface modelling techniques from Newtonian CFD to relativity. This there-

fore suggests that such techniques will be applicable for full 3+1 dimensional

NS simulations. We do note that some care may be needed when applying

our method to such simulations. If strong entropy gradients form across an

interface, then, as detailed in section 4.2.1, some error may be introduced into

the results. This may lead to inaccuracies in the GW template obtained from

these simulations. The success of our relativistic extension of the Ghost Fluid

Method does, however, suggest that the techniques developed in Newtonian

CFD to deal with such entropy gradients, e.g. [129], will also extend, allowing

these issues to be tackled.

6.1 Future work

The work presented in this thesis provides a proof-of-principle test of mul-

ticomponent fluid modelling techniques in relativistic situations. We have

demonstrated success in both 1+1 dimensional GR and 2+1 dimensional SR.

The success of these early tests then leads to many obvious future applica-

tions. Most notable is that our extension to the Ghost Fluid Method should

be applied to NS simulations in full 3+1 dimensional GR.

There is also obvious scope for improving the boundary conditions at the

interface. As with the initial work this can follow from the Newtonian CFD

literature, where improvements for certain aspects of the method have been

considered, e.g. [125, 126].

In this work we have used level set methods to capture the location of interfaces

between two fluid components. These techniques can, however, be applied to

any such sharp boundary, e.g. the apparent horizon in black hole simulations.

As a result, one natural extension of the techniques presented in this thesis

would be to improve the treatment of the surface of a NS within numerical

simulations. As we discuss in section 1.2, the atmosphere of a NS has a depth

of ∼ 1 cm, or may not exist at all. Therefore it is clear that the surface of a

NS can be treated as a genuinely sharp matter/vacuum interface. In addition

to using level set methods, we will need to apply boundary conditions. This

case differs from the Ghost Fluid Method used in this thesis, since we do not
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have a fluid interface. However, the appropriate boundary conditions could

be applied using the framework of the method (i.e. by creating an artificial

fluid which behaves as a surface). This could then provide a better boundary

condition than the atmosphere treatment described in section 3.8. This is of

obvious importance to current NS simulations since the lack of accuracy at the

surface is a major source of error, as illustrated in the figures in section 4.3.

The use of level set methods to deal with the surface means we have genuine

vacuum outside the NS and as a result, many of the issues associated with the

atmosphere treatment, in particular the transfer of matter between the star

and the atmosphere would no longer occur. The key challenge with imple-

menting this matter/vacuum interface is the boundary conditions. Assuming

the use of finite volume methods, we need to provide some correct value for the

intercell fluxes in the vacuum region such that the matter behaves correctly at

the surface. We would therefore expect these conditions to be dependent on

both the values of the physical quantities at the surface (many of which drop

trivially to zero) and the derivatives of these quantities.

Improving the physical model used in our simulations is another obvious ex-

tension of this work. Here we have restricted our model to the ideal fluid EOS,

as described in section 2.3, however, there are a vast array of ‘realistic’ EOSs

available for NS interiors. One of the advantages of the boundary conditions

of the Ghost Fluid Method is that they are not constrained to a single choice

of EOS, they depend on general properties of the fluid. In principle, therefore,

these conditions can be applied to any choice of EOS. We may consider imple-

menting a NS with a more realistic core and crust, or an inner and outer core.

In these cases, an interface between two fluid components may not be sufficient

to accurately reproduce the physical behaviour of these regions. We may wish

to model the crust with an elastic lattice structure, or include a solid inner

core. In these cases, as with the surface model described above, a Ghost Fluid

Method-like method could still be used, with careful implementation of correct

boundary conditions (see [66] for a description of a solid-fluid boundary Ghost

Fluid Method in Newtonian CFD). The evolution of the level set function (and

hence the interface) may also need to reflect the physics of these situations.



Appendix A

Calculations for relativistic fluid

equations

A.1 Derivation of the 3+1 decomposition of

the Einstein equations

In this section the 3+1 decomposition of the Einstein equations is derived in

detail. Here we follow e.g. [44, 142].

A.1.1 Projection operators

In section 2.2.1 we describe the foliation of the spacetime M into spacelike

hypersurfaces Στ separated by the normal vector nµ. This dual-vector to this

normal is given by (2.2.18),

nµ = −αΩµ (A.1.1)

where α is the lapse function, and Ωµ describes the hypersurfaces through (2.2.16),

Ωµ = ∇µτ. (A.1.2)

The torsion free nature of ∇µ gives the result

∇[µ Ων] = ∇[µ∇ν]τ = 0. (A.1.3)

217
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The choice of sign for the normal dual-vector nµ was chosen such that nµ is

future pointing, and as a result we have

nµnµ = α2gµνΩµΩν = −1 (A.1.4)

where we have used the definition of α, (2.2.17),

gµνΩµΩν = −α−2. (A.1.5)

The vector nµ can be thought of as a 4-velocity field for observers moving

orthogonally to Στ and therefore move with 4-acceleration

aµ = nν∇νn
µ. (A.1.6)

The spacelike projection tensor, ⊥µ
ν is defined in (2.2.19),

⊥µ
ν≡ δµ

ν + nµnν . (A.1.7)

We can show that this tensor is purely spatial through the contraction of nµ,

a timelike vector,

⊥µ
ν nν =⊥µ

ν nν

= δµ
ν nν + nµnνn

ν

= nµ − nµ = 0.

(A.1.8)

We then define the spatial metric of the slices Στ in (2.2.21),

γµν = gµν + nµnν . (A.1.9)

Using this, it can be shown that the spatial derivative operator, Dµ =⊥ ∇µ,
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introduced in (2.2.23), has the expected property Dαγµν = 0,

Dαγµν =⊥ ∇α (gµν + nµnν)

=⊥ (nµ∇αnν + nν∇αnµ)

= 0.

(A.1.10)

In this derivation, we have used the fact that a spatial projection of the tensor

product of nµ or nµ is zero, since this is the spatial projection of a timelike

projection, as shown by (A.1.8).

Important results for the 3+1 split using the projection operators

It is instructive to consider some results that arise from the projection op-

erators. We shall see that these results are important in making the 3+1

decomposition of the Einstein equations. The first such result we prove is

⊥ ∇[µ nν] = 0. (A.1.11)

This is achieved by considering the full form of ⊥ ∇µnν ,

⊥ ∇µnν =⊥α
µ⊥β

ν ∇αnβ

=
(

δα
µ + nαnµ

) (

δβ
ν + nβnν

)

∇αnβ

= ∇µnν + nνn
β∇µnβ + nµn

α∇αnν + nαnµnνn
β∇αnβ.

(A.1.12)

We then use the relationship

nβ∇µnβ = nβ∇µn
β =

1

2
∇µ

(

nβnβ
)

=
1

2
∇µ (−1) = 0 (A.1.13)

to simplify (A.1.12), giving

⊥ ∇µnν = ∇µnν + nµn
α∇αnν . (A.1.14)



APPENDIX A. CALCULATIONS FOR RELATIVISTIC EQUATIONS 220

In order to show (A.1.11) holds, it is worth considering each term individually.

The first term can be written

∇µnν = −∇µ (αΩν)

= − (∇µα) Ων − α (∇µΩν)

= − (∇µα) Ων − α (∇µ∇ντ)

(A.1.15)

and from this, we can see that

∇[µ nν] = −
(

∇[µ α
)

Ων]. (A.1.16)

Expanding the second term in a similar manner gives

nµn
α∇αnν = (−αΩµ) (−αΩα)∇α (−αΩν)

= −α2Ωα (∇αα) ΩµΩν − α3ΩµΩα (∇αΩν)

= −α2Ωα (∇αα) ΩµΩν − α3ΩµΩα (∇νΩα)

(A.1.17)

where the relation ∇[µ Ων] = 0 has been used to manipulate the indices in the

last line of this expansion. The relation

Ων∇µΩν = Ων∇µΩν =
1

2
∇µ (ΩνΩ

ν) =
1

2
∇µ

(

−α−2
)

= α−3∇µα, (A.1.18)

can then be used to further rewrite (A.1.17),

nµn
α∇αnν = −α2Ωα (∇αα) ΩµΩν − (∇να) Ωµ (A.1.19)

and from this, in a similar manner to that used for (A.1.16), we get

n[µ nα∇αnν] =
(

∇[µ α
)

Ων]. (A.1.20)

Then finally, combining this and (A.1.16), we see that

⊥ ∇[µ nν] = ∇[µ nν] + n[µ nα∇αnν] = 0. (A.1.21)

Another useful result we will derive is

aµ = Dµ (ln α) . (A.1.22)
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This derivation is best shown by considering an expansion of each side of this

equation individually. Using (A.1.19), and the definition of aµ, (A.1.6), we can

see

aµ = nν∇νnµ = αΩν (∇να) Ωµ + α−1∇µα. (A.1.23)

The right hand side of (A.1.22) can be written

Dµ (ln α) =⊥ν
µ ∇ν (ln α)

=
(

δν
µ + nνnµ

)

α−1∇να

= α−1∇µα + (−αΩν) (−αΩµ) α−1∇να

= αΩν (∇να) Ωµ + α−1∇µα.

(A.1.24)

This provides an identical result to (A.1.23), hence we find that (A.1.22), holds.

A.1.2 Extrinsic curvature tensor

Several forms exist for the extrinsic curvature tensor, the tensor which de-

scribes how the hypersurfaces Στ are embedded in the spacetime manifold M.

In (2.2.26), we give the definition

Kµν = − ⊥ ∇µnν (A.1.25)

which, using (A.1.14) gives

Kµν = −∇µnν − nµaν . (A.1.26)

To show that this definition is equivalent to those using the Lie-derivative of

the spatial metric, (2.2.27),

Kµν = −1

2
Lnγµν = −1

2
⊥ Lngµν . (A.1.27)
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we first consider the Lie-derivative of γµν along nα,

−Lnγµν = nα∇α (gµν + nµnν) + (gαν + nαnν)∇µn
α+

(gµα + nµnα)∇νn
α

= nαnµ∇αnν + nαnν∇αnµ + ∇µnν + nνnα∇µn
α

+ ∇νnµ + nµnα∇νn
α.

(A.1.28)

We can then use (A.1.13), and then (A.1.25), to reduce this to

Lnγµν = 2
(

∇(µ nν) + n(µ aν)

)

= 2 ⊥ ∇(µ nν) = −2Kµν (A.1.29)

which gives the definition of extrinsic curvature (A.1.27). To express Kµν using

the Lie-derivative (again in the direction nα) of gµν , we begin with

Lngµν = nα∇αgµν + gαν∇µn
α + gµα∇νn

α

= ∇µnν + ∇νnµ

= 2∇(µ nν).

(A.1.30)

It is then clear that we have

⊥ Lngµν = 2 ⊥ ∇(µ nν) = −2Kµν . (A.1.31)

The further results for Kµν presented in section 2.2.1 are found by first consid-

ering projections of the 4-dimensional Riemann tensor Rµναβ. To obtain the

spatial projection of Rµναβ, we first note the following relationship, in which

vµ is an arbitrary spatial dual-vector,

vµ ⊥ Rµναβ =⊥ (vµRµναβ)

=⊥
(

Rµ
ναβvµ

)

=⊥
(

R µ
βαν vµ

)

=⊥ (∇β∇αvν −∇α∇βvν)

(A.1.32)

where the symmetries of the Riemann tensor are taken into account to obtain
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the third line. We can then consider

⊥ ∇µvν =
(

δα
µ + nαnµ

) (

δβ
ν + nβnν

)

∇αvβ

= ∇µvν + nνn
β∇µvβ + nµn

α∇αvν + nνnµn
αnβ∇αvβ.

(A.1.33)

Using the result

∇ν (nµvµ) = nµ∇νvµ + vµ∇νn
µ = 0 (A.1.34)

and then (A.1.6), we can rearrange (A.1.33) to give

⊥ ∇µvν = ∇µvν − nνvα∇µn
α + nµn

β∇βvν − nµnνvαaα. (A.1.35)

This can then be used to show that

DαDνvµ =⊥ ∇α (⊥ ∇νvµ)

=⊥ ∇α (∇νvµ + nνn
γ∇γvµ − nµvγ∇νn

γ − nνnµvγa
γ)

=⊥ ∇α∇νvµ− ⊥ (∇αnµ) (∇νnγ) vγ

=⊥ ∇α∇νvµ − KαµKνγv
γ

(A.1.36)

where this derivation has made use of the fact that ⊥ nµ = 0. Rearranging

the above result, and using this, along with (2.2.24),

(DµDν − DνDµ) wα =(3)R β
µνα wβ, (A.1.37)

in (A.1.32), gives

vµ ⊥ Rµναβ = DβDαvν − DαDβvν + KβνKαµv
µ − KανKβµv

µ

=
(

Rµναβ + KνβKµα − KναKµβ

)

vµ.
(A.1.38)

Therefore we now have the spatial projection of the 4-dimensional Riemann

tensor,

⊥ Rµναβ = Rµναβ + KβνKαµ − KανKβµ. (A.1.39)

We now want to compute the spatial projection ⊥ Rµναn̂ where we have

Rµναn̂ = Rµναβnβ. (A.1.40)
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Using (A.1.32) and (A.1.11), we obtain

⊥ Rn̂µνα =⊥ (∇α∇νnµ −∇ν∇αnµ)

= − ⊥ [∇α (Kνµ + nνaµ) −∇ν (Kαµ + nαaµ)]

= − ⊥ [∇αKνµ −∇νKαµ + (∇αnν −∇νnα) aµ−
nν∇αaµ + nα∇νaµ]

= − (DαKνµ − DνKαµ)

(A.1.41)

hence the desired spatial projection is

⊥ Rµναn̂ = DνKµα − DµKνα. (A.1.42)

These two spatial projections of the 4-dimensional Riemann tensor, (A.1.39)

and (A.1.42), are collectively known as the Gauss-Codazzi equations.

A.1.3 Preliminary results for the 3+1 decomposition of

the Einstein equations

When making the 3+1 split of an arbitrary symmetric tensor, we use (2.2.28),

σµν =⊥ σµν − 2n(µ ⊥ σν)n̂ + nµnνσn̂n̂. (A.1.43)

The Einstein tensor Gµν and stress-energy tensor Tµν are symmetric tensors,

therefore this can be sued to obtain the 3+1 split of the Einstein equations.

However, before we do this, we first consider some important preliminary re-

sults.

The spatial contraction of the 4-dimensional Ricci tensor (which appears

in Gµν), which, using (2.2.22), can be written

⊥ Rµν =⊥
(

gαβRµανβ

)

=⊥
(

γαβRµανβ

)

− ⊥ Rµn̂νn̂.
(A.1.44)

Since γµν is a spatial tensor, the first term in the result above becomes

⊥
(

γαβRµανβ

)

= γαβ ⊥ Rµανβ = gαβ ⊥ Rµανβ (A.1.45)
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which can then be used in (A.1.44) to give

⊥ Rµν = gαβ ⊥ Rµανβ− ⊥ Rµn̂νn̂. (A.1.46)

By using a 3+1 decomposition, as in (A.1.43), on Rµn̂νn̂ we get

Rµn̂νn̂ =⊥ Rµn̂νn̂ − 2n(µ ⊥ Rν)n̂n̂n̂ + nµnνRn̂n̂n̂n̂ =⊥ Rµn̂νn̂ (A.1.47)

in which the final result is achieved since most terms vanish due to the anti-

symmetry of the Riemann tensor over it first- and last-two indices. This allows

us to write (A.1.46) as

⊥ Rµν = gαβ ⊥ Rµανβ − Rµn̂νn̂. (A.1.48)

It is then useful to consider the contraction of ⊥ Rµν with gµν , which, using

the result above gives

gµν ⊥ Rµν = −Rn̂n̂ + gµνgαβ ⊥ Rµανβ. (A.1.49)

If we consider the 3+1 decomposition of Rµν , using (2.2.28), then we can obtain

an alternative result for the contraction detailed above. A rearrangement of

this decomposition gives

⊥ Rµν = Rµν + 2n(µ ⊥ Rν)n̂ − nµnνRn̂n̂. (A.1.50)

Contraction of this with gµν then gives

gµν ⊥ Rµν = R +
1

2
(nν ⊥ Rνn̂ + nµ ⊥ Rµn̂) − nµnµRn̂n̂

= R + Rn̂n̂

(A.1.51)

which, when combined with (A.1.49), gives a useful result for R,

R = −2Rn̂n̂ + gµνgαβ ⊥ Rµανβ. (A.1.52)

In (2.2.29), we introduce the physical interpretations of the contractions of the
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stress energy tensor,

̺ ≡ Tn̂n̂ = Tµνn
µnν , (A.1.53a)

jµ ≡⊥ T µn̂ = − ⊥ (T µνnν) , (A.1.53b)

Eµν ≡⊥ Tµν . (A.1.53c)

These quantities are the local energy density (̺) and momentum density (jµ),

and the local stress-energy tensor measured by observers moving along nµ

(Eµν). Note that when contracting a tensor with nµ, a minus sign is intro-

duced [217].

We now consider some useful results concerning an arbitrary spatial tensor of

the form S = Sµ1,µ2...µk
. Firstly we show that for this spatial tensor, LnS is

also a spatial tensor, i.e.

⊥ LnSµ1,µ2...µk
= LnSµ1,µ2...µk

. (A.1.54)

We demonstrate this by first expanding the Lie-derivative,

LnSµ1,µ2...µk
= nν∇νSµ1,µ2...µk

+
k
∑

i=1

(∇µi
nν) Sµ1,µ2...ν...µk

(A.1.55)

and then contract the j th index with nµ,

nµjLnSµ1,µ2...µk
= nµjnν∇νSµ1,µ2...µk

+
k
∑

i=1

(∇µi
nν) nµjSµ1,µ2...ν...µk

. (A.1.56)

Because S is a spatial tensor, all components within the sum are zero except

when i = j. We can also use and analogous relationship to (A.1.34) to ‘move’

the derivative term onto nµj , giving

nµjLnSµ1,µ2...µk
= −nν (∇νn

µj) Sµ1,µ2...µk
+ nν (∇νn

µj) Sµ1,µ2...µk
= 0, (A.1.57)

and since the projection of LnS with nµ vanishes, it must be a spatial tensor,

hence we obtain the desired result (A.1.54).

Secondly, we want to show that for any arbitrary function, f , and spatial
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tensor S, we have

LfnSµ1,µ2...µk
= fLnSµ1,µ2...µk

. (A.1.58)

Again we begin this proof by expanding the Lie-derivative, and obtain

LfnSµ1,µ2...µk
= fnν∇νSµ1,µ2...µk

+
k
∑

i=1

∇µi
(fnν) Sµ1,µ2...ν...µk

= fnν∇νSµ1,µ2...µk
+

k
∑

i=1

[(∇µi
f) nνSµ1,µ2...ν...µk

+ f (∇µi
nν) Sµ1,µ2...ν...µk

]

= f

[

nν∇νSµ1,µ2...µk
+

k
∑

i=1

(∇µi
nν) Sµ1,µ2...ν...µk

]

= fLnSµ1,µ2...µk
.

(A.1.59)

We shall now argue that in the decomposition of the Einstein equations,

the vector

Nµ = αnµ (A.1.60)

is a natural choice for use when computing time derivatives. making use of the

results given above. To aid this argument, we first will show that one property

of Nµ is

LN ⊥µ
ν= 0 (A.1.61)

and that this implies

⊥ LNSµ1,µ2...µk
ν1,ν2...νl

= LNSµ1,µ2...µk
ν1,ν2...νl

, (A.1.62)

where this is now a result for a general spatial tensor (rather than the covariant

tensor used previously). The first result can be demonstrated, making use
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of (A.1.6), (A.1.7), (A.1.13) and the expanded form of Dµ =⊥ ∇µ, to give

LN ⊥µ
ν = Nα∇α ⊥µ

ν − ⊥α
ν ∇αNµ+ ⊥µ

α ∇νN
α

= (αnα)∇α (δµ
ν + nµnν) − (δα

ν + nαnν)∇α (αnµ)

+ (δµ
α + nµnα)∇ν (αnα)

= αnµnα∇αnν + αnνn
α∇αnµ −∇ν (αnµ)

− nνn
α∇α (αnµ) + ∇ν (αnµ) + nµnα∇ν (αnα)

= αnµaν + αnνa
µ − nνn

µnα∇αα − αnνa
µ

+ αnµnα∇νn
α − nµ∇να

= αnµ
[

aν − α−1 (∇να + nνn
α∇αα)

]

= αnµ
(

aν − α−1Dνα
)

= αnµ [aν − Dν (ln α)]

= αnµ (aν − aν) = 0.

(A.1.63)

To use this result to show (A.1.62), we first note that since S is a spatial tensor,

Sµ1,µ2...µk
ν1,ν2...νl

=⊥µ1

α1
⊥µ2

α2
· · · ⊥µk

αk
⊥ν1

β1
⊥ν2

β2
· · · ⊥νl

βl
Sα1,α2...αk

β1,β2...βl
,

(A.1.64)

hence taking the Lie-derivative of this, and using (A.1.63), we see

LNSµ1,µ2...µk
ν1,ν2...νl

=

⊥µ1

α1
⊥µ2

α2
. . .⊥µk

αk
⊥ν1

β1
⊥ν2

β2
· · · ⊥νl

βl
LNSα1,α2...αk

β1,β2...βl
,

(A.1.65)

which is simply the expanded form of (A.1.62).

We now justify our choice of Nµ as the natural orthogonal vector. We

introduced the dual-vector field, Ωµ, that locally describes the hypersurface

slices, and is related to nµ through nµ = −αΩµ (the contravariant form of

(A.1.1)). We then have

NµΩµ = αnµΩµ = −α2ΩµΩµ = 1. (A.1.66)

since from (A.1.5) we have ΩµΩµ = −α−2. It is this normalisation which

makes Nµ a natural choice for use in the Lie-derivatives (and hence evolution

equations) of γµν and Kµν . However, there is no reason to restrict the vector
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for use in these Lie-derivatives to being normal to the slices. We can therefore

generalise Nµ by the addition of an arbitrary spatial vector, βµ, known as the

shift vector,

tµ = Nµ + βµ. (A.1.67)

Because βµ is purely spatial, tµ still has the same normalisation as Nµ,

tµΩµ = NµΩµ + βµΩµ = 1 + α−1βµnµ = 1. (A.1.68)

With this generalised vector, the metric of the 3+1 decomposition can be

written as ([9, 142]),

ds2 = −
(

α2 − βiβ
i
)

dt2 + 2βidxidt + γijdxidxj. (A.1.69)

for which we have normal vector components

nµ =

(

1

α
,−βi

α

)T

(A.1.70)

and normal dual-vector components

nµ = (−α, 0, 0, 0) . (A.1.71)

In order to derive the evolution equations that result from the 3+1 split of the

Einstein equations it is instructive to consider the spatial projection of Rµn̂νn̂.

Based on the definition of the Riemann tensor, this is given by

⊥ Rµn̂νn̂ =⊥ [nα (∇ν∇αnµ −∇α∇νnµ)] . (A.1.72)

Using the definition of the extrinsic curvature, (2.2.26), becomes

⊥ Rµn̂νn̂ =⊥ [nα∇α (Kνµ + nνaµ) − nα∇ν (Kαµ + nαaµ)] , (A.1.73)

which, when expanded, and using (A.1.23), aµ = αΩν (∇να) Ωµ + α−1∇µα,
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gives

⊥ Rµn̂νn̂ =⊥ (nα∇αKνµ + aνaµ + nνn
α∇αaµ

−nα∇νKαµ −aµn
α∇νnα − nαnα∇νaµ) .

(A.1.74)

Many terms then vanish under the spatial projection, and by using nµnµ = −1,

this then simplifies to

⊥ Rµn̂νn̂ =⊥ (nα∇αKνµ + aνaµ − nα∇νKαµ + ∇νaµ) . (A.1.75)

Since Kµν is a spatial tensor, i.e. nνKµν = 0, the covariant derivative of this

quantity also vanishes, hence using the product rule we have

−nα∇νKαµ = (∇νn
α) Kαµ. (A.1.76)

We then use this in (A.1.75), giving

⊥ Rµn̂νn̂ =⊥ [nα∇αKµν + (∇νn
α) Kαµ

+ (∇µn
α) Kαν − (∇µn

α) Kαν + aνaµ + ∇νaµ]
(A.1.77)

where we have added and then subtracted a (∇µn
α) Kαν term from the equa-

tion. This last step then allows this equation to be written as

⊥ Rµn̂νn̂ =⊥ [LnKµν − (∇µn
α) Kαν + aνaµ + ∇νaµ] . (A.1.78)

From the definition of the extrinsic curvature, (2.2.26), we can write − ⊥
(∇µn

α) Kαν = K α
µ Kνα, and since Kµν is a spatial tensor, this can be brought

back inside the spatial projection, giving

⊥ Rµn̂νn̂ =⊥
(

LnKµν + K α
µ Kνα + aµaν + ∇νaµ

)

. (A.1.79)

The final two terms in this equation, when used with (A.1.22) can be written

⊥ (aµaν + ∇νaµ) =⊥ [Dµ ln αDν ln α + ∇ν (Dµ ln α)] (A.1.80)
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which simplifies to

⊥ (aµaν + ∇νaµ) =⊥
[

α−2DµαDνα + ∇ν

(

α−1Dµα
)]

. (A.1.81)

The first term is entirely spatial, so using this, and expanding the covariant

derivative gives

⊥ (aµaν + ∇νaµ) = α−2DµαDνα+α−1 ⊥ ∇νDµα−α−2 ⊥ ∇ναDµα. (A.1.82)

The definition of the spatial derivative operator Dµ =⊥ ∇µ, (2.2.23), means

that the first and last terms here cancel and we obtain

⊥ (aµaν + ∇νaµ) = α−1DµDνα. (A.1.83)

We can also simplify the projection of the Lie-derivative in (A.1.79), using the

results in (A.1.54) and (A.1.58), with Nµ = αnµ. From this, we see that since

Kµν is a spatial tensor, we have

⊥ LnKµν = LnKµν = α−1LNKµν . (A.1.84)

Using these two results, we obtain the spatial projection of Rµn̂νn̂,

⊥ Rµn̂νn̂ = α−1LNKµν + KµαKα
ν + α−1DµDνα. (A.1.85)

A.1.4 The 3+1 split of the Einstein equations

Taking the 3+1 split of the Einstein equations results in two constraint equa-

tions and two evolution equations. Here we consider each of these in turn.
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Hamiltonian constraint

If we consider the contraction of both indices of the Einstein equations with

nµ then we get

Gµνn
µnν = Rµνn

µnν − 1

2
gµνn

µnνR = 8πTµνn
µnν (A.1.86)

which, using (A.1.53a) and nµnν = −1, can be written

Rn̂n̂ +
1

2
R = 8π̺. (A.1.87)

We then use (A.1.52) to replace the Ricci scalar, giving

Rn̂n̂ +
1

2

(

−2Rn̂n̂ + gµνgαβ ⊥ Rµανβ

)

= 8π̺ (A.1.88)

which simplifies to
1

2
gµνgαβ ⊥ Rµανβ = 8π̺. (A.1.89)

Using (A.1.39), one of the Gauss-Codazzi equations, this becomes

1

2
gµνgαβ

(

Rµανβ + KβνKαµ − KανKβµ

)

= 8π̺. (A.1.90)

The two contractions then bring this equation into the form

R + K2 − Kµ
νK

ν
µ = 16π̺. (A.1.91)

where K = Kµ
µ. This final result is known as the Hamiltonian constraint. We

refer to it as a constraint equations since it contains no time derivatives hence

must always be satisfied.

Momentum constraint

Another contraction of the Einstein equations uses the contravariant form,

Gµν = Rµν − 1

2
gµνR = 8πT µν . (A.1.92)
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We first contract with −nµ, giving

Rµn̂ +
1

2
nµR = 8πT µn̂. (A.1.93)

and then we project this result onto the slice,

⊥ Rµn̂ +
1

2
⊥ nµR =⊥ Rµn̂ = 8π ⊥ T µn̂ = 8πjµ (A.1.94)

where we have used (A.1.53b). Using (A.1.46), we see

⊥ Rµn̂ = gνα ⊥ Rµνn̂α− ⊥ Rµn̂n̂n̂ = −gνα ⊥ Rµναn̂ (A.1.95)

which, with use of (A.1.42), one of the Gauss-Codazzi equations, then becomes

⊥ Rµn̂ = −gνα (DνKµα − DµKνα) = DµK − DνKµν . (A.1.96)

When indices are suitably raised (noting the minus sign introduced by the nµ

contraction), we can express (A.1.94) as

DνK
µν − DµK = 8πjµ. (A.1.97)

This relationship is known as the momentum constraint. As with the Hamil-

tonian constraint there are no time derivatives present, only spatial derivatives

through Dµ.

Evolution of the spatial metric

The evolution equations for the spatial metric, γµν , follow from the definition

of the extrinsic curvature, as given in (2.2.27),

Kµν = −1

2
Lnγµν . (A.1.98)

For full generality, we need to consider Lie-derivatives along tµ rather than nµ.

We can use the property that for arbitrary vector fields vµ and wµ and tensor

T, we have

Lv+wT = LvT + LwT. (A.1.99)
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For our general vector field tµ, this implies

Ltγµν = αLnγµν + Lβγµν (A.1.100)

which, using the definition in (A.1.98), gives the desired evolution equation

Ltγµν = −2αKµν + Lβγµν . (A.1.101)

Evolution of the extrinsic curvature tensor

To derive the evolution equations for the extrinsic curvature, we first note a

result from the contraction of the Einstein equations,

gµνGµν = gµνRµν −
1

2
gµνgµνR = 8πgµνTµν , (A.1.102)

simplifying to give

G = R − 1

2
δµ
µR = −R = 8πT (A.1.103)

where, in 4-dimensions, we have δµ
µ = 4. Using this, we can write the field

equations as

Rµν = 8πTµν +
1

2
gµνR = 8π

(

Tµν −
1

2
gµνT

)

. (A.1.104)

A spatial projection of this then gives

⊥ Rµν = 8π

(

⊥ Tµν −
1

2
γµνT

)

. (A.1.105)

The 3+1 decomposition of the stress-energy tensor Tµν can be rearranged as

⊥ Tµν ≡ Eµν = Tµν + 2n(µ ⊥ Tν)n̂ − nµnνTn̂n̂. (A.1.106)



APPENDIX A. CALCULATIONS FOR RELATIVISTIC EQUATIONS 235

in which the definition of Eµν , (A.1.53c), has been used. The contraction of

this result then gives

E
µ
µ = E = T + 2nµ ⊥ Tµn̂ − nµnµTn̂n̂. (A.1.107)

The middle term then vanishes since a spatial tensor is being projected with

nµ, and using ̺ = Tn̂n̂, (A.1.53a), and rearranging, we get

T = E − ̺. (A.1.108)

We can therefore rewrite (A.1.105) as

⊥ Rµν = 8π

[

Eµν −
1

2
γµν (E − ̺)

]

. (A.1.109)

The spatial projection of the Ricci scalar, ⊥ Rµν , can also be written in the

form seen in (A.1.46), where the results for contractions of the Riemann tensor,

(A.1.40) and (A.1.85), are used

⊥ Rµν = −
(

α−1LNKµν + KµαKα
ν + α−1DµDνα

)

+gαβ
(

Rµναβ + KµνKαβ − KµαKβν

)

.
(A.1.110)

Applying the contraction with gαβ and simplifying gives

⊥ Rµν = −α−1LNKµν − 2KµαKα
ν − α−1DµDνα + Rµν + KKµν . (A.1.111)

Since Nµ = tµ−βµ, using the property of Lie-derivatives given in (A.1.99) and

equating (A.1.109) and (A.1.111), gives, with some rearranging, an evolution

equation for Kµν ,

LtKµν = LβKµν − DµDνα + α

{

Rµν + KKµν

−2KµαKα
ν − 8π

[

Eµν −
1

2
γµν (E − ̺)

]}

.

(A.1.112)

There is another useful form of the evolution equation for the extrinsic curva-

ture which uses the ‘mixed’ form, Kµ
ν . This is derived from the relationship
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given above, noting that LNKµν = LtKµν − LβKµν , which can be written

−α−1LNKµν − 2KµαKα
ν − α−1DµDνα

+Rµν + KKµν = 8π

[

Eµν −
1

2
γµν (E − ̺)

]

.
(A.1.113)

Since all terms in this equation are spatial, we can use γµν to raise the indices

giving

−α−1γµαLNKαν − 2KµαKαν − α−1DµDνα

+Rµ
ν + KKµ

ν = 8π

[

E
µ
ν −

1

2
⊥µ

ν (E − ̺)

]

.
(A.1.114)

We can then rewrite the Lie-derivative term as

LNKµ
ν = LN (γµαKνα)

= KανLNγµα + γµαLNKαν

= αKανLnγ
µα + γµαLNKαν

= −2αKανK
µα + γµαLNKαν

(A.1.115)

where the definition of the extrinsic curvature, (A.1.98) has been used to obtain

the final result. This result, once Nµ = tµ−βµ, has been used, gives the ‘mixed’

evolution equation for the extrinsic curvature,

LtK
µ
ν = LβKµ

ν − DµDνα + α

{

Rµ
ν + KKµ

ν + 8π

[

1

2
⊥µ

ν (E − ̺) − E
µ
ν

]}

.

(A.1.116)

A.1.5 The Lorentz factor

As a final consideration we consider how some useful physical parameters are

defined based on the 3+1 split of the Einstein equations. We can define a

scalar parameter, W , as

W = −uµnµ (A.1.117)

which, using (2.2.33), simplifies to

W = αut (A.1.118)
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In order to show the physical relevance of this factor, we use the 3-velocity, (A.1.119),

vi =
ui

αut
+

βi

α
. (A.1.119)

A covariant form of the 3-velocity, (2.2.40) is then obtained by lowering the

indices of ui,

ui = giµu
µ = gitu

t + γiju
j (A.1.120)

Using (2.2.31) we see git = βi, and rearranging (2.2.39) to replace uj gives

ui = βiu
t + γiju

t
(

αvj − βj
)

= Wvi (A.1.121)

where since vi and βi are spatial tensors, they can be contracted with γij,

and (A.1.118) has been used. This then yields (2.2.40),

vi =
ui

W
. (A.1.122)

The physical meaning of the scalar W arises from the fact that uµu
µ = −1.

We first need to rewrite ut,

ut = gtµu
µ = gttu

t + gtiu
i (A.1.123)

which, using (2.2.31), (A.1.118) and (2.2.39) can be written

ut =
W

α

(

−α2 + βiβ
i
)

+ βi
W

α

(

αvi − βi
)

= αW
(

−1 + βiv
i
)

. (A.1.124)

We then have

uµu
µ = utu

t +uiu
i = αW

(

−1 + βiv
i
)W

α
+

W 2vi

α

(

αvi − βi
)

= −1. (A.1.125)

Simplifying gives

W 2
(

−1 + viv
i
)

= −1 (A.1.126)

which, when rearranged becomes

W =
1√

1 − vivi
. (A.1.127)

We can clearly see that this is the Lorentz factor as measured by Eulerian
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observers.

A.2 Derivation of the spacetime and fluid evo-

lution equations in spherical symmetry

Here we derive the fluid evolution equations from the conservation equations

in polar-areal coordinates described in section 2.2. We also use the 3+1 split

of the Einstein equations, shown in section 2.2.1, to obtain the constraint

equations and describe the evolution of the spacetime.

A.2.1 Spacetime quantities

In this section, before undertaking any derivations, it is useful to consider

the spacetime quantities in polar-areal form. We first note the non-vanishing

Christoffel symbols in polar-areal coordinates,

Γt
rr = a∂ta/α2, Γt

tt = ∂tα/α, Γt
tr = ∂rα/α,

Γθ
θr = Γφ

φr = 1/r, Γθ
φφ = − sin θ cos θ, Γφ

φθ = cot θ,

Γr
φφ = −r sin2 θ/a2, Γr

θθ = −r/a2, Γr
tt = α∂rα/a2,

Γr
rr = ∂ra/a, Γr

rt = ∂ta/a.

(A.2.1)

The single non-vanishing term of the extrinsic curvature Krr can then be cal-

culated, starting with (A.1.31),

Kµν = −1

2
Lngµν

= −1

2
(nα∇αgµν + gαν∇µn

α + gµα∇νn
α)

= −1

2
(∇µnν + ∇νnµ)

= −1

2

(

∂µnν − Γα
µνnα + ∂νnµ − Γα

νµnα

)

= −1

2

(

∂µnν + ∂νnµ − 2Γα
µνnα

)

.

(A.2.2)
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Using ni = 0, we then get

Krr = Γt
rrnt = −a∂ta

α
. (A.2.3)

From this, it follows that

K = Ki
i = gijKij = −∂ta

αa
. (A.2.4)

It is useful to note the non-zero components of Ri
j,

Rr
r = 2

∂ra

ra3
(A.2.5)

and

Rθ
θ = Rφ

φ =
1

r2a3

(

r∂ra + a3 − a
)

, (A.2.6)

and from these, we obtain

R =
2

r2a3

(

2r∂ra + a3 − a
)

. (A.2.7)

A.2.2 Hamiltonian constraint

We can now consider the polar-areal form of the results from making the 3+1

decomposition of the Einstein equations in section 2.2. We begin with the

Hamiltonian constraint

R + K2 − Kµ
νK

ν
µ = 16π̺. (A.2.8)

In polar-areal coordinates, since the only non-vanishing component of the ex-

trinsic curvature is Krr, we have Kµ
νK

ν
µ = Kr

rK
r
r = K2, and using (A.2.7)

gives the Hamiltonian constraint as

2

r2a3

(

2r∂ra + a3 − a
)

= 16π̺. (A.2.9)
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This can then be rearranged to give

2r∂ra

a3
+ 1 − 1

a2
= 8πr2̺. (A.2.10)

By using the mass aspect function (2.2.75),

m (t, r) ≡ r

2

(

1 − 1

a (t, r)2

)

, (A.2.11)

we can then arrange this to give the Hamiltonian constraint as

∂ra

a
= a2

(

4πr̺ − m

r2

)

. (A.2.12)

This is then a constraint equation for the function a(r, t). We can write this

in terms of the conserved variables using the definition of ̺ in polar-areal

coordinates,

̺ = Tn̂n̂ = Tµνn
µnν = Tttn

tnt = E. (A.2.13)

The polar-areal form of the Hamiltonian constraint can then be written

∂ra

a
= a2

(

4πr (τ + D) − m

r2

)

. (A.2.14)

A.2.3 Momentum constraint

Here we consider the polar-areal form of the momentum constraint, which uses

(2.2.35), but the free index is lowered with gµν ,

DνK
ν
µ − DµK = 8πjµ. (A.2.15)

Using the definition of the spatial derivative, Dµ =⊥ ∇µ, and expanding ⊥ for

the free index, this can then be written

(

δα
µ + nµn

α
)

∇νK
ν
µ −

(

δα
µ + nµn

α
)

∇αK = 8πjµ. (A.2.16)
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Expanding this and noting that the covariant derivative of a scalar (K) is

equivalent to a partial derivative gives,

∇νK
ν
µ + nµn

α∇νK
ν
α − ∂µK + nµn

α∂αK = 8πjµ. (A.2.17)

Since (A.1.53b) defines jµ =⊥ T µn̂, which is a spatial tensor, the above is non-

zero when µ is a spatial index. All spatial components of nµ and nµ are zero

in polar areal coordinates therefore upon expanding the covariant derivative,

we get

∂νK
ν
i + Γν

ναKα
i − Γα

νiK
ν
α − ∂iK = 8πji (A.2.18)

For this to be non-vanishing we require µ = ν = r and i = r hence the equation

above can be simplified to give

Γν
νrK

r
r − Γr

rrK
r
r = 8πjr. (A.2.19)

Upon expanding the dummy index and simplifying we obtain

Γθ
θrK

r
r + Γφ

φrK
r
r = 8πjr. (A.2.20)

Using (A.2.1) and (A.2.4), we can write this as

−2∂ta

rαa
= 8πjr (A.2.21)

typically rearranged to give an evolution equation for a

∂ta = −4πrαajr. (A.2.22)

Finally, this can be written in terms of the conserved variables using (2.2.81),

jr = Sr, (A.2.23)

giving the polar-areal form of the momentum constraint,

∂ta = −4πrαaSr. (A.2.24)
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A.2.4 Slicing condition

A constraint equation for α can be obtained from the evolution equation for

the extrinsic curvature, in particular from the Kθθ component. We begin

with (A.1.112),

LtKµν = LβKµν − DµDνα + α

{

Rµν + KKµν

−2KµαKα
ν − 8π

[

Eµν −
1

2
γµν (E − ̺)

]}

.

(A.2.25)

For this derivation, it is useful to consider each component in this equation

individually. We first note that for µ = ν = θ, all terms involving the extrinsic

curvature tensor vanish, as will any terms involving nµ or nµ. The spatial

derivative term can be expanded to give

DµDνα =⊥ ∇µ (⊥ ∇να)

=⊥ ∇µ [(δα
ν + nνn

α) ∂αα]

=⊥ ∇µ (∂να + nνn
α∂αα) .

(A.2.26)

Expanding the remaining spatial projection operator gives

DµDνα =
(

δα
µ + nµn

α
) (

δβ
ν + nνn

β
)

∇α∂βα

+
(

δβ
µ + nµn

β
)

(δγ
ν + nνn

γ)∇β (nγn
α∂αα)

(A.2.27)

and further manipulation yields

DµDνα =
(

δα
µ + nµn

α
) (

∇α∂να + nνn
β∇α∂βα

)

+
(

δβ
µ + nµn

β
)

[∇β (nνn
α∂αα) + nνn

γ∇β (nγn
α∂αα)] .

(A.2.28)

The only non-vanishing term in the above equation will be

δα
µ∇α∂να = ∇µ∂να

= ∂µ∂να − Γα
µν∂αα

(A.2.29)

which, using (A.2.1) to obtain the non-vanishing Christoffel symbols, means

we have

DθDθα = ∂θ∂θα − Γr
θθ∂rα =

r

a2
∂rα (A.2.30)
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where we note that α is a function of r and t only.

We now consider the Rµν term, which we can write as

Rµν = gµαRα
ν , (A.2.31)

the µ = ν = θ component of which is

gθαRα
θ = gθθRθ

θ =
1

a3

(

r∂ra + a3 − a
)

. (A.2.32)

The Eµν and E = Ei
i terms use (2.2.29c), Eµν =⊥ Tµν . This can then be

expanded as

Eµν =
(

δα
µ + nµn

α
) (

δβ
ν + nνn

β
)

Tαβ. (A.2.33)

In the µ = ν = i case, we can see that the only non-vanishing term will be

δα
i δβ

i Tαβ, hence we have

Eii = Tii. (A.2.34)

Using the results (A.2.30), (A.2.32) and γθθ = r2 in the µ = ν = θ compo-

nent of (A.2.25), yields

− r

a2
∂rα + α

{

1

a3

(

r∂ra + a3 − a
)

− 8π

[

Tθθ −
r2

2

(

T i
i − ̺

)

]}

= 0. (A.2.35)

This can then be rearranged to give the slicing condition for polar-areal coor-

dinates as

∂rα

α
=

∂ra

a
+

1

r

(

a2 − 1
)

+
8πa2

r

[

Tθθ −
r2

2

(

T i
i − ̺

)

]

. (A.2.36)

In order to write this in terms of the conserved variables, we first use the

Hamiltonian constraint (A.2.14), to give

∂rα

α
= a2

(

4πrE − m

r2

)

+
1

r

(

a2 − 1
)

+
8πa2

r

[

Tθθ −
r2

2

(

T i
i − ̺

)

]

. (A.2.37)

We then need T i
i, where, using the symmetry of the metric gµν , we have

T r
r = Srv

r + p, T θ
θ = T φ

φ = p (A.2.38)
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hence we have

T i
i = Srv

r + 3p. (A.2.39)

Similarly, we also have

Tθθ = r2p. (A.2.40)

Using these in (A.2.38), with (2.2.78) gives

∂rα

α
= a2

(

4πrE − m

r2

)

+
1

r

(

a2 − 1
)

+
8πa2

r

[

r2p − r2

2
(Srv

r + 3p − E)

]

.

(A.2.41)

Expanding terms and rewriting m term using the mass-aspect function defini-

tion, (2.2.75), gives

∂rα

α
= 4πra2E − a2

2r

(

1 − 1

a2

)

+
1

r

(

a2 − 1
)

+ 4πra2 (Srv
r + p) − 4πra2E.

(A.2.42)

Simplifying this, we get

∂rα

α
= 4πra2 (Srv

r + p) +
a2

r2

[

r

2

(

1 − 1

a2

)]

(A.2.43)

which can finally be written as the polar-areal constraint equation for α,

∂rα

α
= a2

[

4πr (Srv
r + p) +

m

r2

]

. (A.2.44)

A.2.5 Conservation of rest mass density

Here we consider the polar-areal form of the conservation of mass, (2.2.14),

∇µ (ρ0u
µ) = 0. (A.2.45)

Expanding the covariant derivative gives

∂µ (ρ0u
µ) + Γµ

µν (ρ0u
ν) = 0 (A.2.46)
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which, since the only the t and r components of the 4-velocity are non-

vanishing, (2.2.76), we have

∂t

(

ρ0u
t
)

+ ∂r (ρ0u
r) + Γµ

µt

(

ρ0u
t
)

+ Γµ
µr (ρ0u

r) = 0. (A.2.47)

Writing the 4-velocity components in terms of the 3-velocity components (ut =

W/α, ur = Wvr) and using the non-vanishing Christoffel symbols gives

∂t

(

ρ0W

α

)

+ ∂r (ρ0Wvr) +
(

Γt
tt + Γr

rt

) ρ0W

α

+
(

Γt
tr + Γr

rr + Γθ
θr + Γφ

φr

)

ρ0Wvr = 0.

(A.2.48)

Using D = ρ0W , (2.2.63a), and the polar-areal forms of the Christoffel sym-

bols, (A.2.1), this can be written

∂t

(

D

α

)

+∂r (Dvr)+

(

∂tα

α
+

∂ta

a

)

D

α
+

(

∂rα

α
+

∂ra

a
+

2

r

)

Dvr = 0 (A.2.49)

which can then be expanded and rearranged to give

1

α
∂tD − D

α2
∂tα +

D

α2
∂tα +

D

αa
∂ta

+∂r (Dvr) +
Dvr

α
∂rα +

Dvr

a
∂ra +

2Dvr

r
= 0.

(A.2.50)

Multiplying through by r2αa and rewriting some terms yields

r2a∂tD + r2D∂ta + r2αa∂r (Dvr) + r2aDvr∂rα

+r2αDvr∂ra + αaDvr∂r

(

r2
)

= 0.
(A.2.51)

This can finally be written as

∂t (aD) +
1

r2
∂r

(

r2αaDvr
)

= 0. (A.2.52)
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A.2.6 Conservation of total energy density

The conservation of total energy density, and hence the evolution of τ , is

obtained from (2.2.15),

∇µT
µt = 0. (A.2.53)

Expanding the covariant derivative gives

∂µT
µt + Γµ

µνT
νt + Γt

µνT
µν = 0 (A.2.54)

which can be written for non-vanishing stress-energy tensor components as

∂tT
tt + ∂rT

rt + Γµ
µtT

tt + Γµ
µrT

rt + Γt
ttT

tt + 2Γt
rtT

rt + Γt
rrT

rr = 0. (A.2.55)

Using (2.2.77) to write the components of the stress-energy tensor in terms of

the conserved variables and considering only non-vanishing Christoffel symbols

gives

∂t

(

E

α2

)

+ ∂r

(

Sr

α

)

+
(

Γt
tt + Γr

rt

) E

α2

+
(

Γt
tr + Γr

rr + Γθ
θr + Γφ

φr

) Sr

α
+ Γt

tt

E

α2

+2Γt
rt

Sr

α
+ Γt

rr

(

Srvr +
p

a2

)

= 0.

(A.2.56)

Expanding the derivative terms and giving the explicit form of the Christoffel

symbols, (A.2.1), yields

1

α2
∂tE − 2E

α3
∂tα +

1

α
∂rS

r − Sr

α2
∂rα +

E

α3
∂tα

+
E

α2a
∂ta +

Sr

α2
∂rα +

Sr

αa
∂ra +

2Sr

rα
+

E

α3
∂tα

+
2Sr

α2
∂rα +

a

α2

(

Srvr +
p

a2

)

∂ta = 0.

(A.2.57)

We then rearrange this, and multiply through by r2αa,

r2a∂tE + r2E∂ta + r2αa∂rS
r + r2aSr∂rα + r2αSr∂ra

+ αaSr∂r

(

r2
)

= −r2a2
(

Srvr +
p

a2

)

∂ta − r2aSr∂rα.
(A.2.58)
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If we use (2.2.53), Si = (E + p) vi, to rewrite the Sr terms on the left hand

side of this equation and simplify, we get

∂t (aE) +
1

r2
∂r

[

r2αa (E + p) vr
]

= −a2
(

Srvr +
p

a2

)

∂ta − aSr∂rα, (A.2.59)

a balance-law evolution equation for E. As in SR, we use the variable τ =

E − D, hence by subtracting (A.2.52) from the equation above we get

∂t (aτ) +
1

r2
∂r

[

r2αa (τ + p) vr
]

= −a2
(

Srvr +
p

a2

)

∂ta − aSr∂rα (A.2.60)

We can use the momentum constraint, (A.2.24), and the slicing condition, (A.2.44),

to write the source term as

−a2
(

Srvr +
p

a2

)

∂ta − aSr∂rα

= −a2
(

Srvr +
p

a2

)

(−4πrαaSr)

−αaSr
{

a2
[

4πr (Srv
r + p) +

m

r2

]}

.

(A.2.61)

By noting that the 4πrαa3SrSrv
r terms cancel, this can be written

−a2
(

Srvr +
p

a2

)

∂ta − aSr∂rα

= 4πrαaSrp − 4πrαa3Srp − αamSr

r2
.

(A.2.62)

The right hand side can be simplified since Sr = gµrS
µ = a2Sr, and using this

relationship to rewrite the only remaining term, we have

−a2
(

Srvr +
p

a2

)

∂ta − aSr∂rα = −αamSr

r2
. (A.2.63)

Therefore the evolution equation for τ can be given by

∂t (aτ) +
1

r2
∂r

[

r2αa (τ + p) vr
]

= −αamSr

r2
. (A.2.64)
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A.2.7 Conservation of momentum

The conservation of momentum can be expressed in polar-areal form using

the spatial components of (2.2.15), ∇µT
µi, and noting that only the radial

component is non-vanishing. Therefore this can be written

∇µT
µr = ∂µT

µr + Γµ
µνT

νr + Γr
µνT

µν = 0. (A.2.65)

Considering only the non-vanishing Christoffel symbols and stress-energy ten-

sor components, we can expand this to get

∂tT
tr + ∂rT

rr +
(

Γt
tt + Γr

rt

)

T tr

+
(

Γt
tr + Γr

rr + Γtheta
θr + Γφ

φr

)

T rr + Γr
ttT

tt

+2Γr
trT

tr + Γr
rrT

rr + Γr
θθT

θθ + Γr
φφT

φ = 0

(A.2.66)

In order to obtain the evolution equation for Sr, we again use the result that

Sr = a2Sr to write the stress-energy components T tr = Sr/ (αa2), T rr =

(Srv
r + p) /a2, hence the above equation can be written explicitly as

∂t

(

Sr

αa2

)

+ ∂r

(

Srv
r + p

a2

)

+

(

∂tα

α
+

∂ta

a

)

Sr

αa2

+

(

∂rα

α
+

∂ra

a
+

2

r

)

Srv
r + p

a2
+

α∂rα

a2

E

α2
+

2∂ta

a

Sr

αa2

+
∂ra

a

Srv
r + p

a2
− r

a2

p

r2
− r sin2 θ

a2

p

r2 sin2 θ
= 0

(A.2.67)

Expanding the derivative terms, and rearranging then gives

1

αa2
∂tSr +

Sr

αa3
∂ta +

1

a2
∂r (Srv

r + p) +
Srv

r + p

αa2
∂rα

+
Srv

r + p

a3
∂ra +

Srv
r + p

r2
∂r

(

r2
)

+
E

αa2
∂rα

−(Srv
r + p)

a3
∂ra − 2p

ra2
= 0

(A.2.68)
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We then multiply through by r2αa3 to get

r2a∂tSr + r2Sr∂ta + r2αa∂r (Srv
r + p) + r2a (Srv

r + p) ∂rα

+r2α (Srv
r + p) ∂ra + αa (Srv

r + p) ∂r

(

r2
)

+ r2aE∂rα

−r2α (Srv
r + p) ∂ra − 2rαap = 0

(A.2.69)

which can then be written

∂t (aSr)+
1

r2
∂r

[

r2αa (Srv
r + p)

]

=
2αap

r
+α (Srv

r + p) ∂ra−aE∂rα. (A.2.70)

We can then use the Hamiltonian constraint, (A.2.14), and the slicing condi-

tion, (A.2.44) to rewrite the final two source terms,

α (Srv
r + p) ∂ra − aE∂rα = αa3 (Srv

r + p)
(

4πrE − m

r2

)

−αa3E
[

4πr (Srv
r + p) +

m

r2

]

.
(A.2.71)

To simplify this we note that the 4πrαa3E (Srv
r + p) terms cancel, giving

α (Srv
r + p) ∂ra − aE∂rα = −αa3m

r2
(Srv

r + p + E) . (A.2.72)

Using τ ≡ E − D, the evolution equation for Sr can then be written

∂t (aSr) +
1

r2
∂r

[

r2αa (Srv
r + p)

]

= αa

[

−a2m

r2
(Srv

r + p + τ + D) +
2p

r

]

.

(A.2.73)

A.3 Derivation of the TOV equations

In section 2.6 we introduced the TOV equations for deriving a hydrostatic

equilibrium solution for a self gravitating spherically symmetric body in GR.

Here we derive the TOV equations for m, Φ and p from the static case of

the evolution equations in polar-areal coordinates, (2.2.97) and the respective

constraint equations. The equation for m is obtained from the Hamiltonian
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constraint, (2.2.83),
∂ra

a
= a2

(

4πrE − m

r2

)

, (A.3.1)

where we note that for a static spacetime the partial derivative will become

an ordinary derivative and we have W = 1, hence

E = ρ0hW 2 − p = ρ0h − p = ρ0 (1 + ε) (A.3.2)

where the last step uses the definition of specific enthalpy, h = 1 + ε + p/ρ0.

Using the mass aspect function to express a in terms of m and r gives

d

dr

[

(

1 − 2m

r

)−1/2
]

=

(

1 − 2m

r

)−3/2
[

4πrρ0 (1 + ε) − m

r2

]

. (A.3.3)

Expanding the derivative term gives

−1

2

(

1 − 2m

r

)−3/2(
2m

r2
− 2

r

dm

dr

)

=

(

1 − 2m

r

)−3/2
[

4πrρ0 (1 + ε) − m

r2

]

(A.3.4)

which simplifies to
dm

dr
= 4πr2ρ0 (1 + ε) . (A.3.5)

The equation for α (or Φ) arises naturally from the slicing condition, (2.2.87),

∂rα

α
= a2

[

4πr (Srv
r + p) +

m

r2

]

, (A.3.6)

since
dΦ

dr
=

d

dr
ln α =

1

α

dα

dr
. (A.3.7)

By considering the static case of (A.3.6), again writing a in terms of m and r,

we obtain
dΦ

dr
=

(

1 − 2m

r

)−1
(m

r2
+ 4πrp

)

(A.3.8)

which simplifies to
dΦ

dr
=

m + 4πr3p

r (r − 2m)
. (A.3.9)
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Finally the equation for p comes from the evolution equation for the momen-

tum, (2.2.97),

∂taSr + 3∂r3

(

r2αaSrv
r
)

+ ∂rαap = −αa3m

r2
(Srv

r + p + τ + D) , (A.3.10)

which, in the static case, becomes

d

dr
(αap) = −αa3mρ0h

r2
(A.3.11)

where we have used τ = ρ0hW 2 − p − D. This can be rearranged to give

αa
dp

dr
+ αp

da

dr
+ ap

dα

dr
= −αa3mρ0h

r2
(A.3.12)

and further manipulation yields

dp

dr
= − 1

α

dα

dr
(ρ0h − E) − a2m (E + p)

r2
− 1

a

da

dr
p (A.3.13)

where E = ρ0hW 2 − p has been used. We can then use the Hamiltonian

constraint and slicing condition to write

dp

dr
= − 1

α

dα

dr
ρ0h − a2m (E + p)

r2
+ Ea2

(

4πrp +
m

r2

)

− a2
(

4πrE − m

r2

)

p

(A.3.14)

and, using the definition of E, (A.3.2), and TOV equation for Φ, (A.3.7), we

can simplify this, giving

dp

dr
= [ρ0 (1 + ε) + p]

dΦ

dr
. (A.3.15)

Note all other evolution equations reduce to the trivial vanishing case for a

static star.



Appendix B

Calculations for numerical

techniques

B.1 PPM

Here we give a detailed description of PPM introduced in section 3.4.3. In [46]

the method is given for arbitrary grid spacing. To keep our description con-

sistent with the numerical techniques given throughout this thesis, we restrict

ourselves to the fixed spacing ∆x. We also apply the relativistic corrections

given in [134].

Initially a central differenced approximation of the derivative across a cell,

δq̂i, is taken,

δq̂i =
q̂i+1 − q̂i−1

2∆x
. (B.1.1)

This approximation is then steepened if necessary, to a new estimate of the

slope, δmq̂. As with minmod and MC limiter, if the cell xi contains a maximum

or minimum of q, then we set δmq̂i = 0. Otherwise, the slope may be steepened

using

δmq̂i = sgn (δq̂i) min (|δq̂i| , 2 |δq̂i − δq̂i−1| , 2 |δq̂i+1 − δq̂i|) . (B.1.2)

This ‘smooths’ the approximation to the derivatives near discontinuous fea-

tures, in a similar manner to the method through which the slope was obtained

for the MC limiter, (3.4.5). The region in which the discontinuity is captured

is reduced by this, i.e. the feature has been steepened. From these steepened

252
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derivatives, we can obtain first approximations for the reconstructed values at

the cell boundaries,

q̄−i+1/2 =
q̂i + q̂i+1

2
+

δmq̂i − δmq̂i+1

6
, (B.1.3)

q̄+
(i+1)−1/2 = q̄−i+1/2. (B.1.4)

This is then a fourth-order polynomial reconstruction, and therefore leads to

PPM having a third-order convergence as ∆x is decreased (for uniform grid

spacing).

The discontinuous regions can then be steepened further. We first define a

parameter η̃ is used to determine how much steepening occurs. This parameter

is non-zero if there is a sufficiently large discontinuity, if the density satisfies

the condition

δ2ρ0,i+1δ2ρ0,i−1 < 0, |ρ0,i+1 − ρ0,i−1|−ǫS min (|ρ0,i+1| , |ρ0,i−1|) > 0 (B.1.5)

where δ2ρ0,i is an approximate second derivative of the density at xi,

δ2ρ0,i =
ρ0,i+1 − 2ρ0,i + ρ0,i−1

6 (∆x)2 (B.1.6)

and ǫS is a parameter that determines how large a gradient must be before it

is considered a discontinuity. If this condition is satisfied then we have

η̃i =
ρ0,i−2 − ρ0,i+2 + 4δρ0,i

12δρ0,i

. (B.1.7)

This parameter is then used to define a second parameter, η, which actually

gives the extent of the steepening, and is non-zero if

γk0 |δρ0,i|min (pi−1, pi+1) > |δpi|min (ρ0,i−1, ρ0,i+1) (B.1.8)

where k0 is a problem dependent constant. Assuming this is satisfied, we then

have

ηi = max
{

0, min
[

1, η(1)
(

η̃i − η(2)
)]}

(B.1.9)

where η(1) and η(2) are two further constants and are selected such that the

switch between the steepened and non-steepened reconstructions is smooth.
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Typical values for these constants are ǫS = 0.1, k0 = 1, η(1) = 5 and η(2) = 0.05.

We then use these parameters to steepen the reconstructed density profile in

regions near a discontinuity, hence we redefine ρ̄±i through

ρ̄±i = ρ̄±i (1 − ηi) + ηi

(

ρ0,i∓1 ±
1

2
δmρ0,i∓1

)

. (B.1.10)

By steepening the discontinuities, we have large derivatives over a small region

of the discontinuity, and these can lead to oscillatory behaviour. The accuracy

away from the discontinuity as a result of the steepening suggests that rather

than altering these procedures, it is advantageous to introduce some dissipation

across the region of the discontinuity. This is known as zone flattening, and

applies only to cells which have a large gradient across them. By flattening each

cell individually, reconstructed discontinuities take on a ‘stepped’ appearance

(note this is for finding the intercell fluxes, this stepped appearance will not

be present in the numerical solution). We therefore introduce a flattening

parameter ζ, which provides the degree of flattening that occurs, based on

a further parameter w, which determines whether we are actually within a

discontinuity. Specifically, we have wi = 1 if

δpi > ǫ min (pi−1, pi+1), δvi < 0 (B.1.11)

for a shock moving in the positive x-direction and wi = 0 otherwise, where ǫ

determines the jump required for a feature to be considered a shock. We then

obtain an initial value for the flattening parameter, ζ̃,

ζ̃i = max

{

0, 1 − wi max

[

0, ω(2)

(

pi+1 − pi−1

pi+2 − pi−2

− ω(1)

)]}

(B.1.12)

where ω(1) and ω(2) are constants which determine the level of dissipation.

Typical values for these constants are ǫ = 1, ω(1) = 0.5, ω(2) = 10. Care must

be taken if there is a sudden spike in the density in otherwise smooth data,

i.e. pi+2 = pi−2. In such cases we manually set ζ̃ = 1.

The flattening parameter ζ is then determined based on local values of ζ̃.
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We define σi such that

σi =







1 δpi < 0

−1 δpi > 0
(B.1.13)

from which we have

ζi = max
(

ζ̃i, ζ̃i+σi

)

. (B.1.14)

The reconstructed variables are then flattened by

q̄±i = ζq̄±i + (1 − ζ) q̂i. (B.1.15)

In case of a strong discontinuity, we will have ζ = 0, and hence in these regions

the reconstruction is equivalent to the original Godunov scheme i.e. piecewise

constant reconstruction.

The various stages of PPM can lead to the reconstruction not being mono-

tonic. If this is the case then errors could enter the evolution. The final stage

of PPM therefore ensures that the reconstruction is monotonic everywhere.

This is ensured through



































q̄±i = q̂i

(

q̄+
i − q̂i

) (

q̂i − q̄−i
)

≤ 0

q̄−i = 3q̂i − 2q̄+
i

(

q̄+
i − q̄−i

)

(

q̂i − q̄
+
i +q̄

−

i

2

)

>
(q̄+

i −q̄
−

i )
2

6

q̄+
i = 3q̂i − 2q̄−i

(

q̄+
i − q̄−i

)

(

q̂i − q̄
+
i +q̄

−

i

2

)

< −(q̄+
i −q̄

−

i )
2

6

q̄±i = q̄±i otherwise

. (B.1.16)

We then have SSP reconstructed states that can be used in the Riemann

solver of choice.
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[10] J. M. Aloy, M. H. and Ibáñez, J. M. Mart́ı, and E. Müller. GENESIS: A

High Resolution Code for Three-dimensional Relativistic Hydrodynam-

ics. Astrophys. J., 122:151–166, 1999.

256



BIBLIOGRAPHY 257

[11] P. Amaro-Seoane et al. TOPICAL REVIEW: Intermediate and extreme

mass-ratio inspirals - astrophysics, science applications and detection

using LISA. Classical and Quantum Gravity, 24:113, 2007.

[12] M. Anderson et al. Simulating binary neutron stars: Dynamics and

gravitational waves. Phys. Rev. D, 77(2):024006, 2008.

[13] N. Andersson. TOPICAL REVIEW: Gravitational waves from instabil-

ities in relativistic stars. Classical and Quantum Gravity, 20:105, 2003.

[14] N. Andersson, G. L. Comer, and K. Glampedakis. How viscous is a

superfluid neutron star core? Nucl. Phys., A763:212–229, 2005.

[15] N. Andersson et al. Gravitational waves from neutron stars: Promises

and challenges. ArXiv e-prints, 2009.

[16] N. Andersson and K. D. Kokkotas. Towards gravitational wave astero-

seismology. Mon. Not. R. Astron. Soc., 299:1059–1068, 1998.

[17] N. Andersson, T. Sidery, and G. L. Comer. Mutual friction in superfluid

neutron stars. Mon. Not. R. Astron. Soc., 368:162–170, 2006.

[18] S. Ando, J. F. Beacom, and H. Yüksel. Detection of Neutrinos from
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ulations: The mass ratio 10:1. Phys. Rev. D, 79(12):124006, 2009.

[80] D. Gottlieb and S. A. Orszag. Numerical analysis of spectral methods:

theory and applications. CBMS-NSF Regional Conference Series in Ap-

plied Math. SIAM, 1977.



BIBLIOGRAPHY 263

[81] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu. High order strong stability

preserving time discretizations. J. Sci. Comput., 38(3):251–289, 2009.

[82] S. Gottlieb and C. W. Shu. Total variation diminishing Runge-Kutta

schemes. Math. Comp., 67:73–85, 1998.

[83] E. Gourgoulhon. Construction of initial data for 3+1 numerical relativ-

ity. Journal of Physics Conference Series, 91(1):012001, 2007.

[84] E. H. Gudmundsson, C. J. Pethick, and R. I. Epstein. Neutron star

envelopes. Astrophys. J. Lett., 259:L19–L23, 1982.

[85] J.-F. Haas and B. Sturtevant. Interaction of weak shock waves with

cylindrical and spherical gas inhomogeneities. J. Fluid Mech., 181:41–

76, 1987.

[86] P. Haensel. Equation of State of Dense Matter and Maximum Mass of

Neutron Stars. In C. Motch & J.-M. Hameury, editor, EAS Publications

Series, volume 7 of EAS Publications Series, page 249, 2003.

[87] P. Haensel, A. Y. Potekhin, and D. G. Yakovlev. Neutron Stars 1. Equa-

tion of State and Structure. Springer, 2007.

[88] M. Hannam. Status of black-hole-binary simulations for gravitational-

wave detection. Classical and Quantum Gravity, 26(11):114001, 2009.

[89] A. Harten. The Artificial Compression Method for Computation of

Shocks and Contact Discontinuities: III. Self-Adjusting Hybrid Schemes.

Math. Comp., 32(142):363–389, 1978.

[90] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly High-

Order Accurate Essentially Non-Oscillatory Schemes III. J. Comput.

Phys., 71:231–303, 1987.

[91] A. Harten, P. D. Lax, and B. Van Leer. On upstream differencing and

godunov-type schemes for hyperbolic conservation laws. SIAM Rev.,

25(1):35–61, 1983.

[92] A. Harten and S. Osher. Uniformly High-Order Accurate Nonoscillatory

Schemes I. SIAM J. Numer. Anal., 24:279, 1987.



BIBLIOGRAPHY 264

[93] B. Haskell, D. I. Jones, and N. Andersson. Mountains on neutron

stars: accreted versus non-accreted crusts. Mon. Not. R. Astron. Soc.,

373:1423–1439, 2006.

[94] I. Hawke. Computational Ultrarelativistic Hydrodynamics. PhD thesis,

University of Cambridge, 2001.

[95] C. W. Helstrom. Statistical theory of signal detection. International series

of monographs in electronics and instrumentation, v. 9. Pergamon Press,

Oxford, New York, 1968.

[96] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins.

Observation of a Rapidly Pulsating Radio Source. Nature, 217:709, 1968.

[97] C. J. Horowitz and K. Kadau. Breaking Strain of Neutron Star Crust

and Gravitational Waves. Phys. Rev. Lett., 102(19):191102, 2009.

[98] T. Y. Hou and P. G. Le Floch. Why nonconservative schemes converge to

wrong solutions: Error analysis. Math. Comp., 62(206):497–530, 1994.

[99] X. Y. Hu and B. C. Khoo. An interface interaction method for com-

pressible multifluids. J. Comput. Phys., 198:35–64, 2004.
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