The University of Southampton
University of Southampton Institutional Repository

Bayesian lightweight emulators for multivariate computer models

Overstall, Antony M. and Woods, David C. (2011) Bayesian lightweight emulators for multivariate computer models , Southampton, GB Southampton Statistical Sciences Research Institute 27pp. (S3RI Methodology Working Papers, M11/01).

Record type: Monograph (Working Paper)

Abstract

Statistical emulators for the outputs of complex computer codes (simulators) are typically constructed using nonparametric regression methods, such as Gaussian Process (GP) regression. For many simulators, emulators based on parametric models may provide adequate descriptions whilst enabling straightforward and computationally inexpensive fitting, inference and prediction. We place such so called “lightweight” emulators into the same Bayesian framework as the more usual nonparametric emulators, and provide methodology for their application to two novel examples with multivariate output: an emergency-relief simulator and a low-level atmospheric dispersion simulator. For the former, the inputs to the simulator are both continuous and categorical, and a comparison is made to GP emulators; for the latter, the output is zeroinflated and an appropriate emulator is developed from a Tobit model. In each case, sensitivity analyses are performed to identify the inputs to the simulator that have a substantive impact on the response, using both traditional methods and Bayesian model selection.

PDF s3ri-workingpaper-M11-01.pdf - Other
Download (2MB)

More information

Published date: 14 January 2011
Keywords: bayesian linear regression, gaussian process, markov chain monte carlo model composition, tobit model, zero-inflated response

Identifiers

Local EPrints ID: 171217
URI: http://eprints.soton.ac.uk/id/eprint/171217
PURE UUID: 2de196c3-6851-471c-ab33-62d5e553373b

Catalogue record

Date deposited: 14 Jan 2011 15:31
Last modified: 18 Jul 2017 12:16

Export record

Contributors

Author: Antony M. Overstall
Author: David C. Woods

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×