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Introduction

The following analysis is an appraisal of Actuator Disc Theory and Blade Element Theory applied to a
rotor in axial flight. The solutions to the methods require scrutiny to choose which is correct for the
particular flight condition. The report discusses the manner in which the solutions interact and
proposes a scheme to assemble them together in a unified whole.

The analysis is then extended to Annulus Theory.

Nomenclature

T Thrust

R Rotor Radius

Vy Tip Speed

V¢ Climb Velocity

Vp Descent Velocity

Vi Rotor Downwash Velocity

N No of Blades

C Blade Chord (Constant)

p Air Density

a Lift Curve Slope

s Rotor Solidity

0o Collective Pitch

K Overall Blade Twist (Linear)

X Non- Dimensional Spanwise Variable
U, Vertical Advance Ratio

A Non Dimensional Rotor Downwash
Cr Thrust Coefficient

BET Blade Element Theory

ADT Actuator Disc Theory

AT Annulus Theory
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Qr Disc Plane

Q r Disc Plane

Diagram 1 - BET for Climb
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Diagram 3 - ADT for Climb

Diagram 2 - BET for Descent
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Diagram 4 - ADT for Descent

Diagram 5 - Annulus Theory
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Blade Element Theory with Momentum
Theory

Climb Root

BET gives:

1
T:l VTZ-NCR-aJ'XZ(HO—KX—ﬂZ+/1‘j-dx (1)
2 5 X

which on normalisation becomes:

(2.)
_ O W, +4
3 2
ADT gives the following expression for rotor thrust:
T =pAV, +V,)-2V,
(3.

= 2pAVE (1, + 4, )

which on normalisation becomes:
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Combining equations (2) & (4) results in the quadratic equation:

yh +/1i{ﬂz +S;}—Sj{0;5 —’L;Z}zO (5)

AX +AB+C =0 o

where the coefficients are defined as:

A=1
Sa

B=py, +—
“ 8 (7.)

C:_Sa 015 M,
4 | 3 2

if we introduce the product sa as a basic normalisation variable, the above equations reduce to:
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ﬂzzi
Sa
i
Sa
— 0
975_8_2 (8.)
— C
C; = T2
(sa)
O A
3 2
-2 o | 1 1 575 ;
Ai + Ai —t——y—=——-"—">;=0 :
i {”Z+8} 4{3 2} ©)

KZ?+MB+6=O 1o

A =

|

@
[l
= |
+

1
’ 8 (11.)

O]

[l

I

L
K_JQ\

A
W 5
I\JF‘
%K_J

It is now possible to solve this problem within a domain where rotor scale factors have been
completely removed.

I
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The solutions of (10) & (11) are:

(12.)

These are denoted C+ & C-

In order for either solution to exist, the following condition must be met:

B —4AC >0 a3,

u,—=| +-25>0 14)

which is a parabolic region defined by:

2

9—75:_3. ;z_% (15.)

Provided that this region is avoided, the remaining part of the domain will give rise to a positive or
negative solution.

I



For a positive solution we have from inspection of (12):

LUNIVERSITY OF

Southampton

C+
— 1
+—1<0
)
(16.)
;z < _E
8
OR
— 1Y G| |- 1
H:—g +? Z\ M, +§ (17)
which on squaring out gives:
. (18.)

3
O:5 ZEIU

the domain now sub-divides as shown in Figure 1:
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@
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+ve solution

-ve solution

no solution

M,

Figure 1 - C+ Solution Space

a positive root will be obtained if:

(19.)

AND
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S|, +— (20.)

which on squaring out gives:

_ 3 _
975 < E H, (21.)

the domain now sub-divides as shown in Figure 2:

+ve solution

-ve solution

no solution

M,

Figure 2 — C- Solution Space
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Descent Root

BET gives:

1
T:% VTZ-NcR-asz(é’o—lo(—ﬂz+/1‘j-dx (22)
0

X

which on normalisation becomes:

(23.)
_ 05 M T 4
3 2
ADT gives the following expression for rotor thrust:
T=pA-V, -V,)- 2y,
(24.)

= 2pAV (- 1, = 4

2

which on normalisation becomes:

25.
CT (25.)
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Equations (23) & (25) combine to give:

X+ A luz—g —I—Sa O _ 1y =0 e
8 4 |3 2

Aﬂ.flz-i-ilB-l—C:O (27,

where the coefficients are defined by:

A=1

8 (28.)

normalisation using sa gives:

Z?+Zi ;Z—E +l 95 _Hy =0 (29.)
8 4| 3 2

Ali +AiB+C =0 .
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where:

A=1
5., _1

H 8 (31.)
c_ 1)0s 4

41 3 2

It is now possible to solve this problem within a domain where rotor scale factors have been
completely removed.

The solutions of (30) & (31) are:

(32.)

These are denoted D+ & D-

In order for a solution, the following condition must be met:

B —4AC>0 )
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— 1Y 6. u
S _j_i__zzo
#:78) T3 T2
B 12 9_ (34.)
+=| ——2>0
K, 2

This is a parabolic region, but defined by:

_ — 1Y
05 =3- /Uz"'g (35

Provided that this region is avoided, the remaining part of the domain will give rise to a positive or
negative solution.

For a positive solution we have from inspection of (32):

D+

(36.)

OR
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M, —— (37.)

which on squaring out gives:

— 33—
O, <— (38
55 H,

the domain now sub-divides as shown in Figure 3:

>

75

D+

+ve solution

-ve solution

no solution

M,

Figure 3 - D+ Solution Space
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D-
a positive root will be obtained if:
— 1
(:uz _g <0
(39.)
— 1
H, =
8
AND
5 —
— 1V 0| |- L
/«l — ——| < ILI _— (40.)
© 8 3 8
which on squaring out gives:
S 3 —
675 2 E ILlZ (41.)

the domain now sub-divides as shown in Figure 4:
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+ve solution

-ve solution

no solution

>

75

M,

Figure 4 — D- Solution Space
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Combined Solution

It is now possible to determine a calculation strategy permitting climb and descent with positive &
negative pitch angles.

The following procedure is proposed:

The C+ & D- solutions form the basis. (The C- & D+ solutions are not appropriate.) These are shown
together in Figure 5:

975
+ve solution +ve solution
-ve solution -ve solution
no solution no solution

Figure 5 — Comparison of C+ & D- Solution Spaces

for any point in the domain of ;Z & 575 575 a choice of C+ or D- solution is required.

The tables show the choice order.

Select 1* Choice if it exists

Otherwise

Select 2" Choice




The choices are as follows:
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05 [ 1% Choice 2" Choice
=>0 C+ C+
=>0
<0 D- C+
=>0 C+ D-
<0
<0 D- D-
This can be simplified to:
L, 1% Choice 2" Choice
=>0 C+ D-
<0 D- C+
Extension to Annulus Theory
The thrust over an elemental annulus is given by BET:
1 + A,
dT = E,o(Qr) ‘Ncdr-a| -2 770 e
X

I
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Momentum Theory - Climb

from momentum theory over the annulus:

dT = p(V, +V, )-27rdr - 2V @)

Equating (42) & (43) gives:

2
(VC +V. )Vi :% Ne .(VT Xj.a(g_ H +2’Ij (44.)
VA

From which we have:

(,le +i)ﬂ1 :—(QX—IUZ—/’L) (45.)

Hence:

goi(n+ 2 Rloxp)0

Normalizing on sa gives finally:
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1?+Z{;Z+%j—%(§x_pz):0 (47.)

Momentum Theory - Descent

The thrust over an elemental annulus is given by BET:

dT = p(Vp —V,)- 2zrdr - 2V, ()

Noting that:

= — (49.)
Vp ==V,

from momentum theory over the annulus:

dT =—p(V, +V;)- 27rdr - 2V, (50)

Equating gives:

2
.+ v, =~ LN [VrX ,a(g_ﬂz_%j
87 \ R X

From which we have:

I
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(b +2)h == 00—, =2)
A?M.(uz —S§j+sg‘(9x—uz)=o
Normalizing on sa gives finally:
zmi(;z _%H(éx_;z):o

Comparison of Actuator Disc Theory
(ADT) & Annulus Theory (AT)

The quadratic equations for ADT & AT are presented below:
Climb

ADT

Zf+1i{ﬁz+1}—l @—& =0 (55.)
8 41 3 2

AT
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Py ;Z% —%(éx—ﬁz)zo

Descent

ADT

=
+
&
RS
|
|
|
I
o

(57.)

AT

Py ;z_% +%(§x—;z)=o

Inspection of these equation pairs shows the following equivalence between the local pitch angle
(AT) and the pitch at 75% radius (ADT):

OX=—-07 (5

In other words, the AT solution can be achieved using the same choice of solution developed for the
ADT.

The thrust variation can then be evaluated by:

I
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1
T:E VTZ-NCR-aJ‘XZ(Q—ﬂZJ”%ij-dX (60.)
2 ; X
whence:
1
C_T:Ixz(e—ﬂz+/1‘j-dx (61,
sa X
where finally:
— C
Cr= (saT)2
L _ _ (62.)
— + A
_ JXZ 6 . /uz ' dX
3 X
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