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Preamble 

This document examines the application of an unsteady aerodynamic model to a sinusoidal variation 

in pitch angle. It is based on the concept of the Wagner or Kussner lift variations. Both of these 

models produce approximations consisting of a combination of unity and two exponential decays. To 

simplify the introductory analysis, only one exponential decay term is retained. 

Nomenclature 

Variable Definition 

U Forward Speed 

ρ Air Density 

λ Exponential Decay Factor 

Δα Incremental Pitch Angle Change 

φ Wagner Function 

τ Integrating time variable 

ΔL Incremental Lift Force 

ΔCL Incremental Lift Coefficient 

ΔCL QS Incremental Lift Coefficient (Quasi-Steady) 

ΔCL US Incremental Lift Coefficient (Unsteady) 

d Lift Decrement 

c Wing Chord 

b Wing Semi-Chord 

α, β Dummy Parameters 
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Basic Analysis 

The Wagner lift variation is given by: 

 ∆𝐿 = 2𝜋𝜌𝑈2𝑏 ∙ ∆𝛼 ∙ 𝜙 𝑠  (1.) 

 

The Wagner function, φ, provides the unsteady lift variation using the reduced frequency as the 

independent variable. 

The reduced frequency is defined by: 

 

𝑠 =
𝑈𝑡

𝑏
 (2.) 

 

Here, the term b is the semi chord and the reduced frequency represents the wing movement in 

terms of semi-chord – or alternatively, the increase in the streamwise extension of the wake. 

 

Equation (1) can be converted to a lift coefficient thus: 

 

Whence the ratio of the Unsteady lift coefficient change to that of the Quasi Steady result is given 

by: 

 

 

 

The Wagner function can be considered to consist of the quasi-steady response of unity and a 

decrement function, d: 

 

 

Δ𝐶𝐿 =
∆𝐿

1
2
𝜌𝑈2𝑐

=
2𝜋𝜌𝑈2𝑏𝛼𝜙 𝑠 

1
2
𝜌𝑈2𝑐

= 2𝜋𝛼𝜙 𝑠  (3.) 

 Δ𝐶𝐿 𝑈𝑆

Δ𝐶𝐿 𝑄𝑆
= 𝜙 𝑠  (4.) 
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Figure 1 

 

We use a simplified version of the conventional Wagner function, namely an single exponential 

decay term: 

 
 𝑑 𝑠 = 𝐴𝑒−𝜆𝑠  (6.) 

 

The shape of this function is shown in Figure 1. 

The response, R(t), to a forcing function f(t),  with an indicial response g(t) is given by the Duhammel 

Superposition Integral: 

 

𝑅 𝑡 = 𝑓 0 ∙ 𝑔 𝑡 +  
𝑑𝑓 𝜏 

𝑑𝜏

𝑡

0

∙ 𝑔 𝑡 − 𝜏 𝑑𝜏 (7.) 

 

In our case, the function g is equal to φ, hence using (5) & (6), (7) becomes: 

 𝜙 𝑠 = 1 − 𝑑 𝑠  (5.) 
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Which can be simplified by integrating by parts: 

 

In our case, the decrement function is given by: 

 

  

 

𝑅 = 𝑓 0  1 − 𝑑  
𝑈𝑡

𝑏
   

+  𝑓′ 𝜏 

𝑡

0

∙  1 − 𝑑  
𝑈 𝑡 − 𝜏 

𝑏
  𝑑𝜏 

(8.) 

 

𝑅 = 𝑓 𝑡 − 𝑓 0 𝑑  
𝑈𝑡

𝑏
  

− 𝑓′ 𝜏 

𝑡

0

∙ 𝑑  
𝑈 𝑡 − 𝜏 

𝑏
 𝑑𝜏 

(9.) 

 

𝑑 𝑡 = 𝐴𝑒−
𝜆𝑈
𝑏

𝑡  (10.) 



 

 

 
Page 7 

 
  

Whence, (9) becomes: 

 

We therefore have the lift coefficient ratio as: 

 

If the forcing function, f, satisfies: 

 

Equation (12) simplifies to: 

 

 

𝐶𝐿

𝐶𝐿 𝑄𝑆
= 𝑓 𝑡 − 𝐴𝑒−

𝜆𝑈𝑡
𝑏  𝑓′ 𝜏 

𝑡

0

∙ 𝑒
𝜆𝑈𝜏
𝑏 𝑑𝜏 (14.) 

 

 

  

 

𝑅 = 𝑓 𝑡 − 𝑓 0 𝐴𝑒−
𝜆𝑈
𝑏

𝑡  

− 𝑓′ 𝜏 

𝑡

0

∙ 𝐴𝑒−
𝜆𝑈
𝑏

 𝑡−𝜏 𝑑𝜏 
(11.) 

 𝐶𝐿

𝐶𝐿 𝑄𝑆
= 𝑓 𝑡 − 𝑓 0 𝐴𝑒−

𝜆𝑈
𝑏

𝑡  

−𝐴𝑒−
𝜆𝑈𝑡
𝑏  𝑓′ 𝜏 

𝑡

0

∙ 𝑒
𝜆𝑈𝜏
𝑏 𝑑𝜏 

(12.) 

 𝑓 0 = 0 (13.) 
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Particular Forcing Function – 
Sinusoidal Ramp 

The function for this is piecewise and defined thus: 

 

This satisfies the condition: 

 

The profile of this function is shown in Figure 2: 

 

Figure 2 

The derivative of this function with respect to t is given by: 

 

𝑓 𝑡 =  
𝜃 ∙ 𝑠𝑖𝑛2  

𝜋𝑡

2𝑇
  ; 0 ≤ 𝑡 ≤ 𝑇

𝜃 ;  𝑡 > 𝑇

  (15.) 

 𝑓 0 = 0 (16.) 

 

𝑓′ 𝑡 =  
𝜋𝜃

2𝑇
∙ sin  

𝜋𝑡

𝑇
  ; 0 ≤ 𝑡 ≤ 𝑇

0 ;  𝑡 > 𝑇

  (17.) 
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If we define two parameters thus: 

 

Then a typical integral is: 

 

In the case of the response after the forcing function has achieved its final value, the integral of (19) 

is the special case of: 

 

 

 

Noting that: 

 

𝛼 =
𝑈𝜆

𝑏

𝛽 =
𝜋

𝑇

 (18.) 

 

 𝑒𝛼𝜏

𝑡

0

∙ sin 𝛽𝜏 ∙ 𝑑𝜏

=
𝛽 + 𝑒𝛼𝑡  𝛼 sin 𝛽𝑡 − 𝛽 cos 𝛽𝑡 

𝛼2+𝛽2
 

(19.) 

 

 𝑒𝛼𝜏

𝑇

0

∙ sin 𝛽𝜏 ∙ 𝑑𝜏

=
𝛽 + 𝑒𝛼𝑇 𝛼 sin 𝛽𝑇 − 𝛽 cos 𝛽𝑇 

𝛼2+𝛽2
 

(20.) 
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Equation (20) simplifies to: 

 

From the above results, the final equation for the lift coefficient ratio is given by: 

 

 

  

 𝛽𝑇 = 𝜋
sin 𝛽𝑇 = 0

cos 𝛽𝑇 = −1
 

 

(21.) 

 

 𝑒𝛼𝜏

𝑇

0

∙ sin 𝛽𝜏 ∙ 𝑑𝜏 =
𝛽 1 + 𝑒𝛼𝑇 

𝛼2+𝛽2
 (22.) 

 

𝐶𝐿

𝐶𝐿 𝑄𝑆
=

 
 
 

 
 
𝜋𝜃

2𝑇
∙ sin  

𝜋𝑡

𝑇
 −

𝐴𝛽𝜃

2
 
𝛽𝑒−𝛼𝑡 + 𝛼 sin 𝛽𝑡 − 𝛽 cos 𝛽𝑡

𝛼2+𝛽2
  ; 0 ≤ 𝑡 ≤ 𝑇

𝜋𝜃

2𝑇
∙ sin  

𝜋𝑡

𝑇
 −

𝐴𝛽2𝜃

2
 
𝑒−𝛼𝑡  1 + 𝑒𝛼𝑇 

𝛼2+𝛽2
  ;  𝑡 > 𝑇

  (23.) 
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Results 

The analysis was used to evaluate the lift variation for a sinusoidal-squared input. 

 

The incidence variation is shown in Figure 3: 

 

Figure 3 – Pitch Angle Variation 

The Kussner function is shown in Figure 4: 
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Figure 4 – Kussner Function 

 

The resulting lift variation ratio is shown in Figure 5: 
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Figure 5 - Unsteady and Steady Lift Variation 
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Matlab File 

% 
%   Unsteady Aerodynamics -Exponential Lift Decrement 
% 
%   SJN 9/3/08 
% 
clear 
colordef white 
lambda=.1; 
A=1; 
U=100; 
c=1; 
dclda=5.8; 

  
thetadeg=10; 
T=.5; 

  
tmax=1; 
nt=101; 

  
b=c/2; 
thetamax=thetadeg*pi/180; 
alf=U*lambda/b; 
bet=pi/T; 
den=alf^2+bet^2; 

  
t=linspace(0,tmax,nt); 
clqs=zeros(1,nt); 
clus=clqs; 
thetdeg=clqs; 

  
for i=1:nt 
    if t(i) < T 
        f=thetamax*sin(bet*t(i)/2)^2; 
        num=(bet*thetamax/2)*(alf*sin(bet*t(i))-bet*cos(bet*t(i))+bet*exp(-

alf*t(i))); 
    else 
        f=thetamax; 
        num=(bet^2*thetamax/2)*(exp(-alf*(t(i)-T))+exp(-alf*t(i))); 
    end 
    clqs(i)=dclda*f; 
    clus(i)=dclda*(f-A*num/den); 
    thetdeg(i)=(180/pi)*f; 
end 
clf 
plot(t,thetdeg,'b','LineWidth',2); 
grid on 
title(['Pitch Angle Variation     T = ',num2str(T),'  \theta_M_A_X = 

',num2str(thetadeg),'\circ']); 
xlabel('Time'); 
ylabel('\theta'); 

  
figure 
clf 
plot(t,clqs,'b','LineWidth',2); 
hold on 
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plot(t,clus,'r','LineWidth',2); 
grid on 
title(['Lift Coefficient Ratio  A = ',num2str(A),'  \lambda = 

',num2str(lambda),'  T = ',num2str(T),'  \theta_M_A_X = 

',num2str(thetadeg),'\circ']); 
legend('Quasi Steady','Unsteady'); 
xlabel('Time'); 
ylabel('\DeltaC_L_U_S / \DeltaC_L_Q_S'); 

  
figure 
clf 
s=linspace(0,50,201); 
phi=1-A*exp(-lambda*s); 
plot(s,phi,'b','LineWidth',2); 
grid on 
title(['Indicial Response     A = ',num2str(A),'  \lambda = 

',num2str(lambda)]); 
xlabel('s'); 
ylabel('\phi'); 
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