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Preamble

This document examines the application of an unsteady aerodynamic model to a vertical
gust variation. It is based on the concept of the Kussner lift variation.

The Kussner function, W, provides the unsteady lift variation using a reduced frequency as

the independent variable.

The passage of a transverse vortex is used as an example.
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Nomenclature
Variable Definition
U Forward Speed
p Air Density
ke, ko Exponential Kussner Factors
Aa Incremental Pitch Angle Change
W Kussner Function
o Integrating variable
AL Incremental Lift Force
AC, Incremental Lift Coefficient

AC, s Incremental Lift Coefficient (Quasi-Steady)

AC, s Incremental Lift Coefficient (Unsteady)

Vv Induced Velocity of Vortex

C Wing Chord

b Wing Semi-Chord

h Height of Vortex below Aerofoil
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Basic Analysis

The Kussner lift variation for a vertical gust, Vy, in a uniform stream, U, is given by:

Vn(0) - p(s)
st=ampl- (N g,

0

Here, the independent variable is the distance moved by the uniform stream expressed in

semi-chords, b.

The second integral of the RHS can be transformed using integration by parts thus:

f dVélV éa)

-Y(s —o)do

0
s

= V(@) (s = g + [ Va(@) 95 = 0)do

0

(2)

From which we obtain:

N

dVy (o)
Of N

o Y(s —o)do

N

= Vu(s) - Y(0)—Vyy (0) - (s) + j V(o) - /(s — 0)do

0

(3.)
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Which simplifies to:

S

0

Since
P(0) =0

The lift variation is now given by:

AL = 2mtpUb {j V(o) -y’ (s — a)da}

0

The standard form of the Kussner Function is:

1 1
l/)(S) =1 —Ee_kl —Ee_kz

Where:

kz — 1

The derivative of the Kussner Function is:

’ 1 _k _k
Y (s) = E{kle 1+ kye™"2}
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dv, H
j élvéa) P(s —o)do = —Vy(0) - p(s) + f V(o) - ¥'(s — o)do
0
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(4.)

(5.)

(6.)

(7.)

(8.)
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Combining (6) & (10) gives the lift variation as:
s
AL = anUb% jVN(a) [kle_kl(s_“) + kze_kZ(S_“)]da (10.)

0

The exponential terms in s are constant for the integrals so (11) can be simplified thus:

s
1
AL = anUbE e‘klstN(a)[klekl"]da
g 0 (11.)
+e_k25jVN(0)[kzek20]da
0
The RHS of (12) contains terms of the form:
s
_ p—ks ko
I,(s)=¢€ jVN(a)e do (12.)
0

In general, the form of V(o) makes the RHS of (12) not integrable in closed form. In order to
achieve this, a numerical procedure must be used. As the form of the Kussner Function
consists of numerical constants and exponential functions only, the numerical scheme
becomes very straightforward.

Using the first two terms of a Taylor Series applied to the I integral we have:

dl, (s)
RIS
ds >

I, (s +8s) =1,(s) + (13.)
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Applying the scheme of (14) to (13) gives:

dl S
ZES) = —k.-e7ks U VN(a)e’“’da} +e ks ek vy (o)

0

From which we obtain:

dli(s)
ds

= —k - It (s) + Vy(0)
The scheme then becomes finally:

I, (s + 6s) =I,,(s) + (VN(s) —k- Ik(s)) - 0S
= I, (s)(1 — kbs)+Vy(s) - Os

If we now consider the lift in terms of strength of bound vorticity, I":
AL = pUT’

Combining (12), (13) & (18) gives:

['(s) = nb{l, (s) + I, ()}
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Example - Passage of a Transverse
Vortex

Figure 1

The axis origin is placed at the aerofoil leading edge with the X axis in a horizontal
downstream direction and the Y axis in the lift direction.

The vortex commences its motion, at time zero, a distance xob ahead of the leading edge at
a height of hb below the aerofoil centreline. At time t, the vortex position is:

x =Ut—xob =b(s —xp)

(19.)
y = —hb
The induced velocity of the vortex, V, is given by:
V r (20.)
- 2md
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The vertical component is:

Vy = o cos o (21.)

Ut —xob _ b(s —xq)

cosd = 7 = 7 (22)
2 = (Ut — x¢b)? + (hb)? = b? - {(s — x)* + h?} (23
VN = r . (S — xO) (24.)

2nb (s — xy)% + h?

If we define a normalised vertical velocity as:

S—X
VN’ = ( 0) (25.)
(s — x9)% + h?
We have:
V d V' (26.)
N = an N .

Then, working with the normalised vertical velocity, we redefine normalised integrals as:

I' (s) = e"ks { j V’N(a)e’“’da} (27)

0

B
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And the recursive scheme becomes:

I',(s+6s)=TI(s)+ (V’N(s) — k- I’k(s)) - 0S

(28.)
=1, (s)(1 — k6s)+V'y(s) - Os
Whence (18) becomes
! F ! ! 29
I'(s) = E-nb{l ke, () +1 kz(s)} (29.)
And finally:
I'(s) 1
=2 {11, () + ', ()} @0)
Bound Vorticity Ratio - ( Vortex Height =52 )
03 I 1 I L] T T I 1 I
: : : Unsteady
Bl s oo o i
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Figure 2
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Constant Vertical Velocity

For comparison, if the vertical velocity, Vy, is constant, then the following applies:

1
AL=2pU?-Aa-c-2m = pUn-Vy2b=pU-Ty -

From which:

FO = 271b - VN (32.)

——
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Matlab File

% Unsteady Aerodynamics - Transverse Vortex
% Kussner Function

% SJN 14/3/08

colordef white
kl=.13;

k2=1;
srange=50;
ns=101;

x0=5;

h=5.2;

deltas=srange/ (ns-1);
s=linspace (0, srange,ns) ;
vortx=s-x0;

vdash= (vortx) ./ ((vortx-x0) .”2+h"2) ;
%$vdash=ones (1,ns) ;

ikl=zeros (1,ns);

ik2=1ik1;

for is=l:ns-1
ikl (is+1)=1ikl (is)* (1-kl*deltas)+vdash(is) *deltas;
ik2 (is+1)=ik2 (is) * (1-k2*deltas)+vdash(is) *deltas;
end
bndrat=(kl*ikl+k2*ik2)/2;
bndOrat=vdash;

clf

plot (vortx,bndrat, 'b', 'LineWidth', 2);

hold on

plot (vortx,bndOrat, 'r', 'LineWidth',2);

grid on

title(['Bound Vorticity Ratio - (',' Vortex Height = ',num2str(h),"' )']l);
xlabel ('Vortex Position in Semi-Chords (Relative to Wing Leading Edge) '):;

(
ylabel ("\Gamma / \Gamma V O R T E X'");
(

legend ('Unsteady ','ngsz—gtgaayT);
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