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Introduction

This method allows the offset rotor centre of gravity to be determined from the blade lagging
motion and how the resulting frequencies can couple with those of the fuselage sitting on its

undercarriage.

Each rotor blade is modelled by a concentrated mass connected by a light rod to the lagging hinge,

as shown in Figure 1.

Figure 1 - Blade Coordinate System

The location of the mass is given by:-

X =eRsiny, +rysin(y, +{,)
Y= —eRcosy, —rycos(y,+¢, )

For small {, we can use the approximations

cos¢g, ~1

. (2)
SINg, = &y
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from which:-

Xk=eRsiny, +rysiny, +ry cosy, &,
=(eR+rg)Sin‘//k+ rg &y COSY,
Y«=—¢€Rcosy, —ryCOSy, +rySiny, £,
:_(eR"' rg)COSV/k+ re &\ Siny,

(3)

For a rotor with N such blades, if the rotor CG is located at (X.,Y.) then we have:-

1 N
cT T m
X N kzzl‘ Xk
Lo (4)
c— m
Y N kZ:; Yk

A blade is selected to be at an azimuth of { and so the kth blade is at an azimuth angle of:-

27
v, =y+k-1)— (5)
N
Where the inter-blade spacing is:
27
i 6
¢ N (6)
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Whence from equations (2,3) we find for the Y component of the rotor centre of gravity:-

1

c_m [ (eR+rg)COS‘//k+rg§k5|n'//k]

1
:W[ eR+rg ZCOSt//k+rgZ§kS|n ‘/’k} (7)

g
= — D Sk siny,
N >

Where the following result has been used:-

Zk: cosy, =0 (8)

Similarly, for the X component of the rotor centre of gravity, we obtain:-

X =23 ¢, cosy, (9)
N %

If we now assume the lagging behaviour of the blades to be SHM of amplitude ¢y and frequency KQ,
we have for the lag angle of the blade at an azimuth angle of )y :-

é’k=é’OCOS(K1//k) (10)
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Substituting this expression into equations (5) and (7) we find:-

re¢
gN Ozk:cous//ko oSy,

Xe
_TgSo
2N

> [cos(K + 1)y, +cos(K - 1)y, |

‘ p (11)
r .

Yc:—gN 0 Zk:cos Ky, e siny,

= rgl\flo Z[sin(K+1)Wk-5in(K‘1)Wk]

We now require summations of the form:-

N
D cosny,

k=1

N (12)
D sinny,

k=1

where n, in this instance, is not necessarily an integer.

To perform this sum we define the following summations:-

C:icosn(z//+[k-1]¢)
k;l (13)
S=>sinn(y+[k-1]¢)

These can be combined into a single complex quantity:-
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C+i S:i(cosﬂsin){ n(y+[k-1]¢) }

y (14)
= Zein(w[k-lw)
k=1

in in
This is a geometric progression of N terms, with the first term € LIJ, and the multiplying factor € (I).

This results in:-

_ iN¢n_1
Cis=¢| S ”
e -—

Noting that:-

o (16)
. | | |
e -1=¢g> (ez -e 2 )

=ei¢zh2 I Sin (?j
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From which we obtain:-

- 21sin (Mj
C+is=en(v5)e 2
21sin (nfj

sin(wj
=—20( cos+isin ){n(y/+(N '21)¢ H

whence on substitution in (15):-

C+is=07) [ cos+isin ){ n(wwﬂ

. nz N
sin| —
N
From which we obtain on equating real and imaginary parts:-

oo Sin(nz) .Cos[n(l//+(N-l)7r ”
sin(n”j N
N

5= sin(nz) .Sin[ n(w+(N-1)7z H

N

(17)

(18)

(19)

(20)
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For brevity, define:-

(21)

whence:-

= rzgo [ Sk oS (K +1)(y + @)+, cos(K -1)(y +D) ]
= r;lio [ Siaasin (K +1)(y +@)-S,sin (K -1)(y + @) |

Xc
(22)

Ye

which can be re-expressed as:

Xo= 1250 [ 5, cos (K +1)(yr + )+ Sy, COs (1— K)( + ) ]

Y= r;go [ Skarsin (K +1)(y + @)+ Sy 8in (1- K)(y + D) |
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This means that the centre of mass of the N blades can be represented by two masses rotating
around the shaft at different radii and rotational speeds.

Mass=mN

reSo
N

Radius=

®Sk+ 1 (24)

Rotational Speed =(K £ 1)Q

A typical value for Kis 0.3 from which K+1=1.3 and K-1=-0.7, the former result is known as the
progressive mode and the latter the regressive mode. Both masses move in the direction of rotation
of the rotor relative to an inertial frame, however, relative to the rotor, the progressive rotates
faster than the rotor whilst the regressive mode rotates in opposition to the rotor.

The Prolate Epicycloid

The epicycloid is a curve traced out by a point on a circle whilst rolling around another circle. This
can be extended to a point outside of the rolling circle forming the prolate variety.

With reference to Figure 2, the brown circle is rolling around the green circle. The point under
scrutiny is P which lies outside of the brown circle placed a distance | from the centre. The reference
position is with the centre of the rolling circle lying on the abscissa together with the point P.
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Figure 2 - Generation of Prolate Epicycloid

As the circles roll without slipping, the rotation angles are linked via the following relationship:

The coordinates of point P are then given by:

X = (r, +1,)cos @+l cos(6 +7)
Y = (r, +r1,)sin 0+ sin(0 + 1)

Defining the following terms:

(25)

(26)
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If-l

r, fro

| 27) m

r, whic

we find:

A
Mo (28) Her
n ©

pure
presents the ratio of the radii of the generating circles and A the prolate ratio. The former will give
the number of cusps or loops of the epicycloids and the latter the depth of each loop.

Combining (26-28) we find:

1 1

X = rl{(1+ 2] cos 9+L cos(@ + 77)}
r, r
= rl{l + lj cos 0+ 4 cos(@ + /16’)}
U U

= Q{(“—”j cos O+ A cos([L+ /1]9)}
H H

Y = rl{(1+ %]sin 6’+r|—sin(9 + 77)}
1 1

= rl{(l+ l]sin 9+£sin(0 + ye)}
U U

= rl{(lJr—ﬂ]sin 9+isin[1+ ,u]é?)}

(29)

H JZ

Returning to the CG coordinates from (23) we define an angle which includes the phase angle ®:

a=y + O 50
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_re&o
X.= [ Ska1 €08 (K + 1)ar + Sy, €08 (1- K)ex |
2N
(31)
Y.= r;éo [ SkarSin (K +1)a + Sy sin (1- K)er
In addition, we define the following angle:
x=01-K)a (32)
From this we have:
1+K
1+ K)a = 33
L+ K)a=— 7 (33)
We define the term o via:
Q+K)a=0oy
1+K (34)
O =
1-K
Collecting these substitutions together we have the CG coordinates as:
r
Xc= gg‘)[sKﬂcosaﬁsK.lcosz]
2N
c (35)
r . .
Y.= ;NO [ Swa1SiN oy + S1in ¥]
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Recalling (29):

X = rl{(iJ cos 0+ 2 cos([L+ y]e)}
7,

Y7
(36)
Y = rl{(“—u]sin H+isin[1+ y]e)}
H H
Comparing (35) & (36), these coordinates match if the following results are satisfied:
1+u=o
r
n(l—l——ﬂJ B gé/o 'SK_1
H 2N (37)
r
rl(i] = gé/O ’SK+1
Y7, 2N
From this we find the radii ratio as:
u=o-1
Wh
1+ K
= -1 enc
1-K (38) e
2K

1+,u_]?‘—|7|5 2K

u  1-K/1-K
_1+K
2K

(39)
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The fixed (green) circle radius becomes:

2 K rg é/O

. = . .S (40) and
14K 2N ¢ the

prol

ate ratio is:

. Sk 1+K —

SK—l 1— K rati

o of

radii (i) gives the number of cusps or loops in the epicycloid. & through (38) it is linked to the lag
frequency (K). If u is an integer, then the epicycloid is complete in one revolution.

Examples

Equation (38) can be reformed as:

KoM
U+2

(42)  Figy
re3

plots the lag frequencies which result in integer values of . These are listed in Table 1.
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Figure 3 - Lag Frequencies
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U K

0 0

1 0.333333
2 0.5

3 0.6

4 0.666667
5 0.714286
6 0.75

7 0.777778
8 0.8

9 0.818182

10 0.833333

11 0.846154

12 0.857143

13 0.866667

14 0.875

15 0.882353

16 0.888889

17 0.894737

18 0.9

19 0.904762

20 0.909091

Table 1
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Using (21) & (41), the prolate ratio, which governs whether a smooth curve, a curve with cusps or
loops results, is determined by both the lag frequency (K) and the number of blades (N).

Fig No. Kiag N u A
4 0.6 4 3 -1.2997
5 0.3333 6 1 -1.0642
6 0.6 8 3 -1.0646
7 0.6 3 3 -1.6349
8 0.75 6 6 -1.1517
Table 2

Examples of these results — detailed in Table 2 - are shown in the following figures:

K=08B N=4 p=3 A=-12997

Figure 4
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K=033333 N=b pn=1 A=-1.0642

Figure 5

kK=0B N=8 p=3 A=-10645

Figure 6
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K=0B N=3 u=3 A=-16355

Figure 7

K=075 M=B p=8 A=-1.1517

Figure 8
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%

% Ground Resonance CG Plot
%

% SIN 22/7/07

%

colordef black

% Initial Data

plotsize=1.3;
rtipcirc=.05;

e=_1;
klag=.75;
zeta0=.01;
nblade=6;

npsi=72;
nrev=10;

cgradfact=150;
phi=2*pi/nblade; % Inter-Blade Angle
% Establish Two Mass Location Parameters

bigphi=(nblade-1)*pi/nblade;
kpl=klag+1;

kml=klag-1;
skpl=sin(kpl*pi)/sin(kpl*pi/nblade);
skml=sin(kml1*pi)/sin(kml*pi/nblade);
rcg=2*cgradfact*(1-e)*zeta0/(2*nblade);

% Initialise CG Locus

xcgloc=[];
ycgloc=[1;

% Set up Blade Azimuth Array

psib=zeros(1,nblade);

for i1i=1l:nblade
psib(in)=(1i-1)*phi;

end

psi=zeros(l,npsi*nrev);

for jj=1l:npsi*nrev+l

psi(J)=AJ-1)*2*pi/npsi;
end

- e



% Define Circle

tipang=linspace(0,2*pi,72);
xtipcirc=rtipcirc*cos(tipang);
ytipcirc=rtipcirc*sin(tipang);

% Commence Azimuth Loop

for i=l:npsi*nrev+l % Commence Azimuth Loop
clf;

% Clear Rotor CG Position

xcg=0;
ycg=0;

% Commence Blade Loop
for k=1:nblade % Commence Blade Loop

zeta=zetaO*cos(klag*(psi (i) +psib(k)));
xlag=e*cos(psi (i)+psib(k));
ylag=e*sin(psi(i)+psib(k));
xblade=(1-e)*cos(psi(i)+psib(k)+zeta);
yblade=(1-e)*sin(psi(i)+psib(k)+zeta);
xtip=xlag+xblade;

ytip=ylag+yblade;

Xcg=xcg+xtip;
ycg=ycg+ytip;

xplt=[0,xlag, xtip];
yplt=[0,ylag,ytip];
plot(xplt,yplt, "r", "LineWidth",1);
hold on

fill(.5*xtipcirc+xlag, .5*ytipcirc+ylag, "b");
Fill(xtipcirc+xtip,ytipcirc+ytip,“g");

axis([-plotsize,plotsize,-plotsize,plotsize]);
axis square
axis off
end % End Blade Loop
% CG Location
xcg=cgradfact*xcg/nblade;
ycg=cgradfact*ycg/nblade;
xcgloc=[xcgloc,xcqg];
ycgloc=[ycgloc,ycg];
Fill(xtipcirc+xcg,ytipcirc+ycg,“"y");

% Two Mass CG Locations

- e
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xcgpl=-rcg*skpl*sin(kpl*(psi(i)+bigphi));
ycgpl=rcg*skpl*cos(kpl*(psi(i)+bigphi));
Fill(xtipcirc+xcgpl,ytipcirc+ycgpl, "m");

xcgml=rcg*skml*sin(kml*(psi(i)+bigphi));
ycgml=rcg*skml*cos(kml*(psi(i)+bigphi));
Fill(xtipcirc+xcgml,ytipcirc+ycgml,“c");

m(i)=getframe(gcft);

end % End Azimuth Loop
figure(2)
plot(xcgloc,ycgloc, "w");
%movie2avi(m, "fred");



	AFM TR 11-19Cover
	AFM TR 11-19 Body

