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This document examines a system of masses and springs placed in line on a frictionless table. From

these equations, the modal frequencies and shapes can be derived.

I Degree of Freedom

The system is shown in Figure 1

T - T -
X ———
Figure 1

The spring tension is given by:

T1 = kX1

The equation of motion is then:

—T1 = mJ'c'l
From which we obtain:
m5c'1 = —kx1

whence:

m5c'1 + kX1 =0

(1)

(2.)

(3.)

(4.)
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This standard result gives SHM with circular frequency given by:

w% — (5.)
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Figure 2

From which we obtain:

and thus:

Southampton
2 Degree of Freedom
P P F F
——i-—
x; —_— x-_ —
The spring tensions are given by:
T1 = kX1 (6]
Ty = k(x; —x1)
The equations of motion is then:
TZ_Tl = mxq 7)
—Tz = Ame
ij.l = k(Xz—le) @)
/17715(:'2 = —k(XZ — Xl)
m5€'1 + k(le_XZ) =0 @)

and in matrix form:

Amjéz + k(—X1 + Xz) =0
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3 Degree of Freedom
T. " T. ': T T
——-—-—m
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Figure 3
The spring tensions are given by:
Tl = kx1
T, = k(x, —xq) (1)
T3 = k(x3 — x3)

The equations of motion are then:

T,—T, = m¥{ = k(x,—2x1)
T3 — T2 = Amxz = k(X3—2X2 +X1) (12.)
—T3 = umi¥3 = k(x;—x3)

from which we obtain:

1 0 07[¥% 2 -1 0][*
SRR [
0 0 pullx, 0 -1 1llxs
=0
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4 Degree of Freedom
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Figure 4

The spring tensions are given by:

T1 = kx1
T, = k(x; — x1) (14)
T3 = k(x3 — x3)
Ty = k(xs — x3)
The equations of motion are then:
TZ_Tl = almjc'l = k(XZ—le)
T3 — Tz = C(zmjéz = k(Xg—ZXZ +X1) (15,

Ty — T3 = azmi; = k(x4—2x3 + x)
—T4, = a4m3'c'4 = k(Xg—X4,)

From which we obtain:
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24 0 0O 0O ] '56'1'
0 (04) 0O O 5(?2
m 0 0 asz O]]x;3
0 0 0 ay . _55.4- (16.)
2 -1 0 07Xt
. . X
1k 1 2 1 0)17%2| - 0

The above matrix equations are of the form:

MX+KX=0 (17,

Here M is a mass matrix and K is a stiffness matrix.

The basic pattern can now be seen.

If we define the following matrices:

10 0 O
o1 0 o0
Mi=I=19 0 1 0

0 0 0 1

0 1 0 0 e

00 1 0
Ma=1o 0 o 1

0 0 0 o

9
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0 0 0 O
_10 0 0 O
Ms=10 0 0 o
0 0 0 1
The mass and stiffness matrices can be constructed via:
(19.)
K — k{ZMl—Mg—MZ —le}
K =kK
(4] 0 0O 0 ]
_ 0 a, 0 O
M =m 0 0 a3 O (20,
0 0 _ 0 ay]
M =mM
10
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Modal Solution

In order to determine the modes, we use equation (17).

If the masses are executing SHM we have:

X = —(,()ZX =0 (21

Substituting into (17) gives:

—w’MX +KX =0 (22)

whence:
M KX —w?X =0 (23)

i.e. we have an eigenvalue problem where the modal frequencies are the eigenvalues and the mode
shapes the corresponding eigenvectors.
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Non-Dimensionalisation
Using (19) & (20):
ko oz 2
— (M 'K)X — w?X =0 (24)
m
Defining:
. w
w =— (25.)
Wy
(M'K)X —@0’X =0 (26)

This is the non-dimensional equivalent.

12
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MATLAB File - Animation

o

o

N DOF Modes

o

o\°

SJN 23/02/08

\o

°

colordef black

clear

nmode=4; % Define No of masses/springs

%masses=ones (1,nmode); % Define masses - matrix leading diagonal
masses=[1 1 1 1]; % Define masses - matrix leading diagonal

ml=eye (nmode) ;
m2=zeros (nmode) ;
for i=1:nmode-1
m2(i,i+1)=1;
end
m3=zeros (nmode) ;
m3 (nmode, nmode) =1;
stiffmat=2*ml-m3-m2-m2'; % Asemble Stiffness Matrix
massmat=diag (masses) ;
modalmat=inv (massmat) *stiffmat;
[modeshapes,modefreqgl=eig(modalmat); % Calculate Modal Data via Eigenvalues
for iif=1:nmode
freqg(iif)=sqgrt (modefreq(iif,iif));

ntime=1000;
tmax=100;

xmax=>5;

ymax=1;

earthwidth=.5;

xmin=-xmax;

ymin=-ymax;

xwidth=2*xmax/ (nmode+1) ;
xplot=xwidth* (1:nmode) +xmin;
ywidth=2*ymax/ (nmode+1) ;
yplot=ywidth* (1:nmode) +ymin;

for it=l:ntime

clf

hold on

axis off

axis ([xmin xmax ymin ymax]);

for im=1:nmode
moderesp=modeshapes (:,im) *sin (freq(im) *t (it))';
11=[xmin moderesp (nmode) +xplot (nmode) ];
12=[yplot (im) yplot (im)];
plot(l1,12,'y", '"LineWidth', 3);
for imm=1:nmode
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plot (xplot (imm) +tmoderesp (imm) , yplot (im), 'oy', 'LineWidth',2, 'MarkerSize', 10,
'MarkerFaceColor','r');
end

end

xearth=[ (xmin+earthwidth) xmin xmin (xmin+earthwidth)];

yearth=[ymin ymin ymax ymax];

fill (xearth,yearth, 'v');

title(['No of Modes = ',num2str (nmode),' <<LKLL>>>>> Masses
[',num2str (masses), ']1']);

% Input Figure into Display Matrix
m(i)=getframe;

% Create AVI
gmovie2avi (m, 'fredn', 'compression', 'none');
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