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Preamble

This document examines the dynamic compression behaviour of an oleo. This is modelled by a linear
spring and damper in parallel.

'NGEST

Figure 1 — Airbus A340 - 600 at Farnborough 2002



UNIVERSITY OF

Southampton
Nomenclature
Variable Description
X Deflection
Xs Static Deflection
M Mass
g Gravity
t Time
k Spring Rate
C Damping Rate
C Critical Damping Factor
Vo Vertical Touchdown Velocity
T Kinetic Energy
U Potential Energy
13 Damping Potential
oW Virtual Work Done
Q, External Work Coefficient
n Ratio of Energy Absorptions
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Basic Analysis

Figure 2
The static deflection is given by:
Xg = % (1.)
From which the spring rate is given by:
k = Mg (2.)
Xs
5
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The natural circular frequency is given by:
W = —_— = g (3.)
M X

Application of Lagrange’s Method

The kinetic energy is given by:

1 .
T = =Mx? (@)
2
The potential energy in the spring is given by:
1
U == kx* (5)
2
The damping potential is given by:
1
§ ==Cx? (6.
2

The virtual work done by the external forces is given by:

oW = Mg - 6x (7.)

The external force contribution to the RHS is given by:

Qr =Mg (&)
6

i



UNIVERSITY (

Southampton
Lagrange’s equation is:
d (OT) aT au af o)
dt\ox/ 0x Ox c’)x x
From which we obtain:
oT
ax
oT _
ox
o _ o
ox *
%3
— = Cx
0x
Qx =M
Assembling the Lagrange Equation:
MX + Cx'+ kx = Mg (11)
We use the following definitions:
k = Mw?
(12.)
C =2Mw(
7
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Solution of Equation of Motion

Particular Integral:

% — xS (13.)
Complementary Function:
Ae/llt + Be/lzt (14.)
Where:
—C +VC?% — 4kM
Al] = ZM (15.)
A2l |—C —VC2 —4kM
2M
Defining:
k = Mw?
(16.)
C =2{Mw

(17.)

). w{-¢+Ve-1}
A2




The boundary conditions are:
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t=20
x =20 (18.)
x —_ VO
General Solution
>1
x = x, + Ae*1t + Bet2t (19)
X = A/lle/llt + Bﬂ,zelzt (20.)
Applying the boundary conditions gives:
A+ B =—x, o1)
A/ll + BAZ —_ VO .
From which:
A = _(Asz + VO)
(A2 — 1) )
_ (Alxs + VO)
(A2 — 24)
9
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x =x; + (A + Bt)e (23

x = —w(A+ Bt)e™®" + Be ! (24

Applying the boundary conditions gives:

A+x,=0
—wA + B =1

(25.)

From which:

(26.)

(<1

X = x5 +e 5" (A COS {wt\/TCZ}
+ B sin {wtm})
x = —(we St . (A cos {wtm} + B sin {wtm})

+wf1=72 e~ (—4sin{wtyT -7} (28)
+ B cos {wt\/l — {2})

(27.)

—
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Applying the boundary conditions gives:
A+x, =0
—w(A + Bwy1 -2 =V, -
From which:
A= —xg
B - Vo — Cwxg o)

11
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Energy Absorption

At the moment of touchdown the energy is the potential energy of the aircraft together with its
vertical kinetic energy — viz:

1 w2
> MVy + Mgxg (51)

When the aircraft reaches its final steady state the energy is the potential energy in the spring viz:

1 1M 1
—kx? == ng2 = -Mgx, (32)

2 2 x, 2

From which we conclude that the energy absorbed by the damper is given by:
1 2 33
E{MVO + Mgx} (33)

Whence the ratio of the energy absorbed by the damper and spring is given by:

1
Damper Energy 7{MV02 + Mgx,}
Spring Energy %ngs
VZ (34.)
—1+—2=n
9Xs
12
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From which the fraction of the total is given by:
. n

Damper Energy Fraction = (35.)

+n
Spring E Fracti - (36
rin ner raction = -

pring gy 1+n

13
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Compressive Load

Oleo Compresswon Mass = 1000 o= 31321 Vo =1

Zeta 0 0

Time(secs)

Figure 3
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Compression

Oleo Compression Mass = 1000 e = 3.1321 V0 =1

Zeta C o

Time(secs)
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Figure 4
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% Oleo Drop Test

% SJN 20/04/08

[drivel,nz]=size(z);

grav=9.81;
omg=sgrt (grav/xs) ;
k=xs/ (M*grav) ;
cdamp=2*M*omg*z;

t=linspace (0, tmax,nt) ;
xplt=[1;
loadplt=[];

landloadplt=I[];

[T,Z]=meshgrid(t,z);

for iz=l:nz
zeta=z (iz);

if zeta>1;
ll=omg* (-zeta+sgrt (zeta™2-1));
12=omg* (-zeta-sgrt (zeta™2-1));
A=-(12*xs+v0)/ (12-11);
B=(1l1l*xs+v0)/(12-11);
x=xs+A*exp (11*t) +B*exp (12*t) ;
xd=11*A*exp (11*t)+12*B*exp (12*t) ;
xdd=11"2*A*exp (11*t) +12"2*B*exp (12*t) ;
elseif zeta==
A=-xs;
B=v0-omg*xs;
x=xs+ (A+B*t) .*exp (-omg*t) ;
xd=-omg* (A+B*t) . *exp (-omg*t) +B*exp (-omg*t) ;
xdd=-omg*exp (-omg*t) .* (2*B-omg*A+B*t) ;
else
A=-xs;
B=(-zeta*omg*xs+v0) / (omg*sqrt (1-zeta"2));
omgl=omg*sqgrt (l-zeta”2);
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cosomglt=cos (omgl*t) ;
sinomglt=sin (omgl*t) ;
x=xst+exp (-zeta*omg*t) .* (A*cosomglt+B*sinomglt) ;
coefl=zeta”2;
coef2=2*zeta*sqrt (l-zeta"2);
coef3=1-zeta”2;
xd=-zeta*omg*exp (-zeta*omg*t) .* (A*cosomglt+B*sinomglt) tomgl*exp (-
zeta*omg*t) .* (-A*sinomglt+B*cosomglt) ;
xdd=omg”*2*exp (-zeta*omg*t) .* ((coefl*cosomglt+B*sinomglt)-coef2* (-
A*sinomglt+B*cosomglt)-coef3* (A*cosomglt+B*sinomglt)) ;
end
load=-M*xdd;
cdamp=2*M*omg*zeta;
landload=cdamp*xd;
xplt=[xplt;x];
loadplt=[loadplt;load];
landloadplt=[landloadplt;landload];

% Deflection Plot
surf (T, Z,xplt);
shading interp;

grid on

colorbar

xlabel ('Time (secs) ') ;

ylabel ('Zeta');

zlabel ('Compression');

title(['Oleo Compression Mass = ',num2str(M),' \omega = ',num2str (omg),’
vV 0 = '",num2str(v0)]);

% Load Plot
figure
surf (T, Z,xplt);
shading interp;

grid on

colorbar

xlabel ('Time (secs) ') ;

ylabel ('Zeta');

zlabel ('Compressive Load');

title(['Oleo Compression Mass = ',num2str (M), \omega = ',num2str (omg), '
V. 0 = '",num2str(v0)]);

% Load v Compression Plot

figure

maxcomp=1[];
for ic=l:nz
maxcomp=[maxcomp max (xplt(ic,:))];
end
maxload=landloadplt(:,1);

plot (maxcomp, maxload) ;
grid on
xlabel ('Maximum Compression');

ylabel ('Landing Load');
title(['Oleo Compression Mass = ',num2str (M), \omega = ',num2str (omg),’
vV 0 = ",num2str(v0)]);
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