Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers
Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers
Greenland is by far the dominant source of glacial runoff to the oceans but the controls on the chemical and isotopic composition of this runoff are poorly known. To better constrain glacial effects on weathering processes, we have conducted elemental and lithium isotope analyses of glacial and non-glacial rivers in gneiss catchments in West Greenland. The glacial rivers have high total suspended solids (0.5 g l? 1) and low total dissolved solids (12 ?Scm? 1) relative to the non-glacial rivers, and they contain a higher proportion of dissolved Ca2+ and K+ because of subglacial, preferential, weathering of trace carbonates and biotite. The glacial rivers also have high SO42? because of the oxidation of trace sulphides under the ice. Both glacial and non-glacial rivers have high ?7Li (respectively, not, vert, similar 26‰ and not, vert, similar 30‰) relative to the rocks from which the Li is derived (not, vert, similar 8‰). Saturation state modelling suggests that this is due to the formation of Fe-oxyhydroxides in the non-glacial rivers, with preferential uptake of 6Li during inner sphere sorption of Li+ on the Fe-oxyhydroxide surface. Glacial rivers, however, are undersaturated with respect to clay minerals and Fe-oxyhydroxides. Nevertheless, leaching of suspended sediments indicates that not, vert, similar 65% of the Li in these sediments is associated with Fe-oxyhydroxide phases, and the ?7Li value of this Li is low, not, vert, similar 5‰. These results suggest that these Fe-oxyhydroxides formed under the ice, as a product of sulphide oxidation, with preferential uptake of 6Li onto the mineral surface. Solubilisation of Li from these Fe-oxyhydroxide phases is unlikely to represent a significant flux of Li to the oceans. Moreover, because the difference between the ?7Li values of glacial vs non-glacial rivers is small, glaciation has not had a significant impact on the Li isotopic composition of the riverine flux delivered to the oceans in the past, even at the height of the last deglaciation.
427-437
Wimpenny, Josh
ba1df67c-5530-4c5f-ae32-dba3de0fcaa9
James, Rachael H.
79aa1d5c-675d-4ba3-85be-fb20798c02f4
Burton, Kevin W.
b17a2651-0697-4369-bfa7-ece9a9f0a3f1
Gannoun, Abdelmouhcine
5e98e48d-cfd0-4500-b399-630bdd2fe277
Mokadem, Fatima
37dcd9f3-edc3-47ba-87a1-bea5b9cf0940
Gíslason, Sigurður R.
1fba4984-5465-43cc-b3c1-f73cbaa829e0
20 February 2010
Wimpenny, Josh
ba1df67c-5530-4c5f-ae32-dba3de0fcaa9
James, Rachael H.
79aa1d5c-675d-4ba3-85be-fb20798c02f4
Burton, Kevin W.
b17a2651-0697-4369-bfa7-ece9a9f0a3f1
Gannoun, Abdelmouhcine
5e98e48d-cfd0-4500-b399-630bdd2fe277
Mokadem, Fatima
37dcd9f3-edc3-47ba-87a1-bea5b9cf0940
Gíslason, Sigurður R.
1fba4984-5465-43cc-b3c1-f73cbaa829e0
Wimpenny, Josh, James, Rachael H., Burton, Kevin W., Gannoun, Abdelmouhcine, Mokadem, Fatima and Gíslason, Sigurður R.
(2010)
Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers.
Earth and Planetary Science Letters, 290 (3-4), .
(doi:10.1016/j.epsl.2009.12.042).
Abstract
Greenland is by far the dominant source of glacial runoff to the oceans but the controls on the chemical and isotopic composition of this runoff are poorly known. To better constrain glacial effects on weathering processes, we have conducted elemental and lithium isotope analyses of glacial and non-glacial rivers in gneiss catchments in West Greenland. The glacial rivers have high total suspended solids (0.5 g l? 1) and low total dissolved solids (12 ?Scm? 1) relative to the non-glacial rivers, and they contain a higher proportion of dissolved Ca2+ and K+ because of subglacial, preferential, weathering of trace carbonates and biotite. The glacial rivers also have high SO42? because of the oxidation of trace sulphides under the ice. Both glacial and non-glacial rivers have high ?7Li (respectively, not, vert, similar 26‰ and not, vert, similar 30‰) relative to the rocks from which the Li is derived (not, vert, similar 8‰). Saturation state modelling suggests that this is due to the formation of Fe-oxyhydroxides in the non-glacial rivers, with preferential uptake of 6Li during inner sphere sorption of Li+ on the Fe-oxyhydroxide surface. Glacial rivers, however, are undersaturated with respect to clay minerals and Fe-oxyhydroxides. Nevertheless, leaching of suspended sediments indicates that not, vert, similar 65% of the Li in these sediments is associated with Fe-oxyhydroxide phases, and the ?7Li value of this Li is low, not, vert, similar 5‰. These results suggest that these Fe-oxyhydroxides formed under the ice, as a product of sulphide oxidation, with preferential uptake of 6Li onto the mineral surface. Solubilisation of Li from these Fe-oxyhydroxide phases is unlikely to represent a significant flux of Li to the oceans. Moreover, because the difference between the ?7Li values of glacial vs non-glacial rivers is small, glaciation has not had a significant impact on the Li isotopic composition of the riverine flux delivered to the oceans in the past, even at the height of the last deglaciation.
This record has no associated files available for download.
More information
Published date: 20 February 2010
Organisations:
Marine Geoscience
Identifiers
Local EPrints ID: 172257
URI: http://eprints.soton.ac.uk/id/eprint/172257
ISSN: 0012-821X
PURE UUID: 7ed5018a-dcfa-4682-b041-743fc56eeff0
Catalogue record
Date deposited: 24 Jan 2011 16:11
Last modified: 14 Mar 2024 02:53
Export record
Altmetrics
Contributors
Author:
Josh Wimpenny
Author:
Kevin W. Burton
Author:
Abdelmouhcine Gannoun
Author:
Fatima Mokadem
Author:
Sigurður R. Gíslason
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics