The University of Southampton
University of Southampton Institutional Repository

Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers

Wimpenny, Josh, James, Rachael H., Burton, Kevin W., Gannoun, Abdelmouhcine, Mokadem, Fatima and Gíslason, Sigurður R. (2010) Glacial effects on weathering processes: New insights from the elemental and lithium isotopic composition of West Greenland rivers Earth and Planetary Science Letters, 290, (3-4), pp. 427-437. (doi:10.1016/j.epsl.2009.12.042).

Record type: Article

Abstract

Greenland is by far the dominant source of glacial runoff to the oceans but the controls on the chemical and isotopic composition of this runoff are poorly known. To better constrain glacial effects on weathering processes, we have conducted elemental and lithium isotope analyses of glacial and non-glacial rivers in gneiss catchments in West Greenland. The glacial rivers have high total suspended solids (0.5 g l? 1) and low total dissolved solids (12 ?Scm? 1) relative to the non-glacial rivers, and they contain a higher proportion of dissolved Ca2+ and K+ because of subglacial, preferential, weathering of trace carbonates and biotite. The glacial rivers also have high SO42? because of the oxidation of trace sulphides under the ice. Both glacial and non-glacial rivers have high ?7Li (respectively, not, vert, similar 26‰ and not, vert, similar 30‰) relative to the rocks from which the Li is derived (not, vert, similar 8‰). Saturation state modelling suggests that this is due to the formation of Fe-oxyhydroxides in the non-glacial rivers, with preferential uptake of 6Li during inner sphere sorption of Li+ on the Fe-oxyhydroxide surface. Glacial rivers, however, are undersaturated with respect to clay minerals and Fe-oxyhydroxides. Nevertheless, leaching of suspended sediments indicates that not, vert, similar 65% of the Li in these sediments is associated with Fe-oxyhydroxide phases, and the ?7Li value of this Li is low, not, vert, similar 5‰. These results suggest that these Fe-oxyhydroxides formed under the ice, as a product of sulphide oxidation, with preferential uptake of 6Li onto the mineral surface. Solubilisation of Li from these Fe-oxyhydroxide phases is unlikely to represent a significant flux of Li to the oceans. Moreover, because the difference between the ?7Li values of glacial vs non-glacial rivers is small, glaciation has not had a significant impact on the Li isotopic composition of the riverine flux delivered to the oceans in the past, even at the height of the last deglaciation.

Full text not available from this repository.

More information

Published date: 20 February 2010
Organisations: Marine Geoscience

Identifiers

Local EPrints ID: 172257
URI: http://eprints.soton.ac.uk/id/eprint/172257
ISSN: 0012-821X
PURE UUID: 7ed5018a-dcfa-4682-b041-743fc56eeff0

Catalogue record

Date deposited: 24 Jan 2011 16:11
Last modified: 18 Jul 2017 12:14

Export record

Altmetrics

Contributors

Author: Josh Wimpenny
Author: Kevin W. Burton
Author: Abdelmouhcine Gannoun
Author: Fatima Mokadem
Author: Sigurður R. Gíslason

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×