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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Ruben Stranders

Unmanned sensors are rapidly becoming the de facto means of achieving situational

awareness—the ability to make sense of, and predict what is happening in an envi-

ronment—in disaster management, military reconnaissance, space exploration, and cli-

mate research. In these domains, and many others besides, their use reduces the need for

exposing humans to hostile, impassable or polluted environments. Whilst these sensors

are currently often pre-programmed or remotely controlled by human operators, there

is a clear trend toward making these sensors fully autonomous, thus enabling them to

make decisions without human intervention.

Full autonomy has two clear benefits over pre-programming and human remote control.

First, in contrast to sensors with pre-programmed motion paths, autonomous sensors

are better able to adapt to their environment, and react to a priori unknown external

events or hardware failure. Second, autonomous sensors can operate in large teams that

would otherwise be too complex to control by human operators. The key benefit of this

is that a team of cheap, small sensors can achieve through cooperation the same results

as individual large, expensive sensors—with more flexibility and robustness.

In light of the importance of autonomy and cooperation, we adopt an agent-based per-

spective on the operation of the sensors. Within this view, each sensor becomes an

information gathering agent. As a team, these agents can then direct their collective

activity towards collecting information from their environment with the aim of providing

accurate and up-to-date situational awareness.

Against this background, the central problem we address in this thesis is that of achiev-

ing accurate situational awareness through the coordination of multiple information

gathering agents. To achieve general and principled solutions to this problem, we for-

mulate a generic problem definition, which captures the essential properties of dynamic

environments. Specific instantiations of this generic problem span a broad spectrum of

concrete application domains, of which we study three canonical examples: monitoring

environmental phenomena, wide area surveillance, and search and patrol.
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The main contributions of this thesis are decentralised coordination algorithms that

solve this general problem with additional constraints and requirements, and can be

grouped into two categories. The first category pertains to decentralised coordination

of fixed information gathering agents. For these agents, we study the application of de-

centralised coordination during two distinct phases of the agents’ life cycle: deployment

and operation. For the former, we develop an efficient algorithm for maximising the

quality of situational awareness, while simultaneously constructing a reliable commu-

nication network between the agents. Specifically, we present a novel approach to the

NP-hard problem of frequency allocation, which deactivates certain agents such that

the problem can be provably solved in polynomial time. For the latter, we address

the challenge of coordinating these agents under the additional assumption that their

control parameters are continuous. In so doing, we develop two extensions to the max-

sum message passing algorithm for decentralised welfare maximisation, which constitute

the first two algorithms for distributed constraint optimisation problems (DCOPs) with

continuous variables—CPLF-MS (for linear utility functions) and HCMS (for non-linear

utility functions).

The second category relates to decentralised coordination of mobile information gath-

ering agents whose motion is constrained by their environment. For these agents, we

develop algorithms with a receding planning horizon, and a non-myopic planning hori-

zon. The former is based on the max-sum algorithm, thus ensuring an efficient and scal-

able solution, and constitutes the first online agent-based algorithm for the domains of

pursuit-evasion, patrolling and monitoring environmental phenomena. The second uses

sequential decision making techniques for the offline computation of patrols—infinitely

long paths designed to continuously monitor a dynamic environment—which are subse-

quently improved on at runtime through decentralised coordination.

For both topics, the algorithms are designed to satisfy our design requirements of qual-

ity of situational awareness, adaptiveness (the ability to respond to a priori unknown

events), robustness (the ability to degrade gracefully), autonomy (the ability of agents

to make decisions without the intervention of a centralised controller), modularity (the

ability to support heterogeneous agents) and performance guarantees (the ability to give

a lower bound on the quality of the achieved situational awareness). When taken to-

gether, the contributions presented in this thesis represent an advance in the state of the

art of decentralised coordination of information gathering agents, and a step towards

achieving autonomous control of unmanned sensors.
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Chapter 1

Introduction

Recent years have seen an explosive growth in the use of both fixed and mobile sensors in

a broad spectrum of application domains, ranging from oceanography, climate research,

and space exploration, to security, disaster management and military operations. Within

these domains, sensors are brought into action to reduce the need for human presence in

remote or hostile environments, and to enable monitoring over extended periods of time.

Working together as a team, rather than as a collection of individuals, these sensors are

able to share information and coordinate their actions in order to increase the accuracy

and resolution of the picture that they compile of their environment.

The varied nature of these application domains is reflected by the diversity of the sen-

sors themselves. This not only comprises the different physical quantities they measure,

and the way in which they are powered, but also their mobility. Some examples include

fixed sensors powered by solar radiation for measuring flood-levels (Figure 1.1(a)), au-

tonomous ground vehicles (AGVs) for space exploration (Figure 1.1(b)), autonomous

aerial vehicles (UAVs) for military surveillance (Figure 1.1(c)), and autonomous under-

water vehicles (UUVs) for mine detection (Figure 1.1(d)). Clearly, these sensors operate

in different domains, and are used to accomplish different missions within them, such

as:

• Monitoring dynamic and uncertain environmental conditions, such as radiation,

temperature and gas concentrations.

• Finding a moving target, be it cooperative (i.e. a wounded civilian in a disaster

scenario), or uncooperative (i.e. an attacker in a military scenario).

• Patrolling a building or perimeter to prevent intrusions.

Abstracting from the specifics of these different missions, we can consider each of these

as an endeavour to provide situational awareness (Endsley 1995). Roughly speaking,

1
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(a) A Floodnet Sensor1 (b) The Mars Rover2

(c) The Predator UAV3 (d) The Talisman UUV4

Figure 1.1: Some examples of fixed and mobile sensors.

situational awareness involves the understanding of events and its impact on the objec-

tives that exist within the scenario, both now and in the future. As such, it is of critical

importance in sensitive scenarios, such as disaster response, where a misunderstanding

of the state of the environment could lead to injury or the loss of life, but also in scenar-

ios that are less time constrained, but where a deep understanding of the phenomena

that exist within an environment can lead to novel and important insights (e.g. climate

research, oceanography, and space exploration).

Given the potentially high stakes and sensitivity of these application domains, it is im-

portant that these sensors execute their missions in a timely fashion, while being robust

against failures and able to adapt to unforeseen events. Thus, it is desirable that these

sensors operate autonomously—taking their own decisions based on information that is

available locally, or through communication with other sensors—for two reasons. First,

the absence of autonomy implies the existence of a central controller, which constitutes

a single point of failure, or reliance on a human operator, whose attention is a scarce

1Source: http://envisense.org/floodnet/pictures/node2hightide.htm
2Source: http://www.jpl.nasa.gov/news/features.cfm?feature=958
3Source: http://www.af.mil/shared/media/photodb/photos/081131-F-7734Q-001.jpg
4Source: http://www.baesystems.com/ProductsServices/autoGen_106919171313.html
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resource that could, in most cases, be better utilised in pursuit of the mission goals. Sec-

ond, an autonomous sensor is capable of reacting quickly to changes in its environment,

since it does not need to communicate all data necessary to compute its control inputs

to this central controller—a process that costs valuable time and consumes scarce com-

munication bandwidth and power. Indeed, these considerations have led to the United

States Air Force to call for fully autonomous UAVs by 2047 in their long-term strategy

on autonomous vehicles (United States Air Force 2009).

In light of the importance of autonomy, the use of agent-based technologies has been

advocated to control sensors in a fully decentralised fashion (Rogers et al. 2009). This

means that control is distributed over multiple computational entities, and thus no

centralised controller exists. Within the agent-based perspective, each sensor becomes

an intelligent agent : “a computer system that is capable of flexible autonomous action

in order to meet its design objectives”, which “should perceive [its] environment and

respond in a timely fashion to changes that occur in it”, exhibits “opportunistic goal-

directed behaviour”, and “should be able to interact [...] with other artificial agents and

humans in order to complete their own problem solving and to help others with their

activities” (Wooldridge & Jennings 1995). In this thesis, we shall refer to these sensing

agents as information gathering agents:

Definition 1.1 (Information Gathering Agent). An information gathering agent is an

intelligent agent that directs its activity towards collecting information from its environ-

ment with the aim of providing high quality and up-to-date situational awareness.

Operating as a team, agents embedded in small, cheap sensors can collectively achieve

through coordination the same results as agents embedded in individual large, expen-

sive sensors—with more flexibility and robustness. This is clearly a desirable trait in

the aforementioned scenarios. Such a team of information gathering agents can be re-

garded as a cooperative multi-agent system, in which multiple agents coordinate in a

decentralised fashion in order to collectively achieve their aims. Concretely, coordina-

tion between mobile agents entails choosing their trajectories through their environment

(e.g. airspace, road networks, or buildings) in order to maximise their information gain,

by minimising redundant sensing coverage of the area. Similarly, for fixed agents that

cannot reposition themselves, coordination is required to maximise coverage by schedul-

ing their activation schedules in time, or by adjusting the viewing direction of their

sensors.

Coordinating a team of agents in the aforementioned hostile environments is a difficult

challenge. Care must be taken to develop algorithms that are robust to the loss of

communication and that degrade gracefully in the event of the failure of one or more

agents, while at the same time providing accurate situational awareness. It is this specific

challenge that we address in this thesis, which, in its simplest form, can be formulated

as follows:
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How to coordinate a team of information gathering agents in a decentralised fashion, so

as to maximise the quality of the situational awareness they provide?

It is important to emphasise that the quality of situational awareness is not solely a

measure of how close the agents’ belief is to the ground truth. Rather, it is a measure

of how well the impact of events and decisions on the mission objectives is understood.

To illustrate this important point with an example, consider a disaster management

scenario. Within this scenario, it is more desirable to achieve high prediction accuracy

within densely populated areas at the cost of having low accuracy in areas with low

density, than to have an homogeneously accurate picture of the entire environment.

In what follows, we further qualify and restrict the central challenge, by identifying

additional design requirements that good coordination algorithms must satisfy. Then, in

Section 1.2 we present our contributions, and discuss how they satisfy these requirements.

Finally, we outline the structure of this thesis in Section 1.3.

1.1 Design Requirements

The design requirements for a decentralised coordination algorithm can be divided into

functional and non-functional requirements. The former refer to what the coordination

algorithm should do, while the latter refer to constraints on how it should operate. In

the discussion above, we have already identified the key functional requirement:

Quality The picture that is compiled by the agents should provide high quality situa-

tional awareness. This implies that the agents should understand the current state

of the world, be able to predict future states, and understand the impact of events

and decisions on the mission objectives.

Apart from this functional requirement, we also mentioned two non-functional proper-

ties, robustness and autonomy :

Robustness Agents should be able to operate under conditions in which communica-

tion is unreliable (for example due to electromagnetic interference or line of sight

obstruction), and the failure of a limited number of agents should have little impact

on the operation of the remaining functioning ones.

Autonomy The responsibility for controlling the agents’ actions should lie with the

agents themselves. This precludes the use of a centralised controller, whose exis-

tence would introduce a single point of failure to the system. Moreover, central

control requires a reliable command link between the agents and the controller,
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which might not always be present, and might introduce unacceptable delays (e.g.

in space exploration) or communication bottlenecks (e.g. in wireless sensor net-

works). Clearly, in light of these considerations, this requirement is strongly inter-

twined with that of robustness.

Additionally, we define four more non-functional requirements:

Adaptiveness Agents must be able to continuously adapt to their changing environ-

ment in order to provide up-to-date situational awareness, and determine what

to do next to maintain it. This is important, because many scenarios are char-

acterised by dynamism and inherent uncertainty. Consequently, agents will have

limited knowledge of the prevalent conditions before deployment. Adaptive agents

are capable of continuously revising a model of their environment to best reflect

the information that has been gathered so far, and are able to predict and evaluate

the outcomes of future decisions.

Scalability A coordination algorithm should scale well with the size of a team of agents,

both in terms of communication and computational overhead. Specifically, in this

thesis, we are interested in decentralised algorithms, the application of which makes

the computational overhead incurred by a single agent scale with the number of

neighbours, not with the size of the team. This implies that the scale of the team

can be virtually unlimited.

Modularity A coordination algorithm should be able to coordinate the actions of het-

erogeneous agents, i.e., agents with different sensing and motion capabilities. This

makes it possible to tailor the composition of a team of agents to the specific re-

quirements of the mission (e.g. in a disaster scenario, UAVs can be used to provide

a high-level overview of the scene, while UGVs comb the area more thoroughly for

survivors). To ensure that different types of agents can cooperate in a single team,

the coordination algorithm should not impose restrictions on the implementation

of the agents, for example whether the control inputs of the sensors are discrete or

continuous, or whether the agents are embodied in fixed sensors or mobile sensors.

Performance Guarantees A coordination algorithm should ideally be able to give

guarantees on the quality of the situational awareness provided by the agents.

Whereas strong empirical results might be sufficient reason to adopt an algorithm

in non-critical domains, in sensitive domains such as space exploration it might not,

since the existence of pathological behaviour can not be ruled out. Thus, the lack

of guarantees can limit an algorithm’s applicability in safety critical applications.

Thus far, previous work on sensor networks and mobile robotics has fallen short of pro-

viding solutions that exhibit many of these properties. Moreover, many of the previously
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developed coordination algorithms are centralised and domain dependent, and thus fail

to provide a principled and general approach for controlling a team of autonomous in-

formation gathering agents (see Chapter 2 for more details).

In more detail, one influential branch of research focuses on the deployment of fixed or

mobile sensors using an offline one-shot optimisation phase (Singh et al. 2007, Guestrin

et al. 2005, Krause et al. 2006, Zhang & Sukhatme 2007, Meliou et al. 2007), under

the assumption that the characteristics of the environment are known beforehand. As

a result, these algorithms are not adaptive, and thus are incapable of responding to

changing environments or a priori unknown events. Moreover, they operate under the

assumption that the environment can be considered static during the time the agents

require to sample from it. As such, these algorithms fail to model the temporal dynamics

of their environment in a principled way; they consider how relevant phenomena vary

in space, but not in time. Consequently, the aim of these algorithms is to collect as

much information as possible during a single traversal of the space, instead of patrolling

it continuously, which is a sine qua non of providing accurate situational awareness

in dynamic environments. Finally, these algorithms do not model sensors as agents,

but rather take a centralised approach. As mentioned earlier, but is worth reiterating,

centralisation puts heavy demands on the communication network that exists between

the agents, and creates a single point of failure. Thus, these approaches do not meet

the requirements of autonomy, adaptiveness, and robustness. As such, they are less

suitable in our domain. However, in Chapter 4, we show that particular aspects of these

algorithms can be adapted to develop an efficient decentralised algorithm for deploying

information gathering agents under additional constraints, and we will discuss these

approaches in further detail in Section 2.5.1.

A second major branch focuses on online algorithms that control the agents’ actions

during deployment, instead of planning these actions before deployment (Osborne et al.

2008, Padhy et al. 2010, Kerr & Spears 2005, Pereira et al. 2004, Grocholsky et al. 2006,

Martinez-Cantin et al. 2007, Vidal et al. 2001, Singh et al. 2009). As a result, they

are often adaptive, and are capable of reacting to events which are unknown a priori,

and are consequently more robust against failure. These algorithms can be further

categorised in terms of the length of their lookahead. In increasing order of lookahead,

these categories are: greedy, finite horizon, and non-myopic. Greedy algorithms, the

first category, select the next action only, without regard for their impact on the longer

future, and are therefore generally computationally efficient (scalable), but can (and

often do) converge to poor solutions and lack quality. Techniques for greedy control

include potential fields (Kerr & Spears 2005, Pereira et al. 2004), and information surfing

(Grocholsky et al. 2003)— directing the heading of a mobile agent up the ‘information

gradient’. Finite horizon planning algorithms, the second category, attempt to maximise

observation value over an interval that encompasses more than a single action, but is

shorter than the remaining mission time (e.g. Martinez-Cantin et al. (2007) and Vidal
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et al. (2001)). They generally provide a good trade-off between quality and scalability,

which is why we adopt this approach in Chapter 6. Non-myopic planning algorithms

consider the entire (remaining) mission time of the agents. These generally compute

high quality solutions, and often give performance guarantees (e.g. Singh et al. (2009)).

However, this invariably comes at the cost of higher computational overhead due to

the large state spaces that need to be searched (for example, using Markov decision

processes, Low et al. (2008)), and are often centralised, and therefore fail to satisfy the

properties of autonomy and robustness. Nevertheless, given the possibility of achieving

performance guarantees, we shall investigate these methods further in Section 2.5.1, and

develop our own non-myopic algorithm with performance guarantees in Chapter 7.

Finally, there is a significant body of research on mobile robotics for target tracking,

event detection and map building (e.g. Grocholsky (2002), Calisi et al. (2007), Murphy

et al. (2000), Lilienthal et al. (2003), Ahmadi & Stone (2006)). These approaches are

robust, modular, and treat each robot as an autonomous agent. However, they are

typically tailored to a specific domain, and as such do not provide general solutions that

facilitate their application in other information gathering domains.

In the next section we outline how we have addressed these shortcomings in our research.

1.2 Research Contributions

The primary aim of the research presented in this thesis is to provide a set of domain

independent techniques for coordinating a team of information gathering agents that

satisfy the requirements discussed above. To this end, we have formulated a generic

model for information gathering with multiple agents (see Chapter 3). This model ab-

stracts from the specifics of an information gathering domain using the notion of value

of observations, which ranks future observations in terms of their ability to improve situ-

ational awareness. We represent this value using a submodular function that intuitively

captures the diminishing returns of making additional observations. This is somewhat

analogous to the work of Meliou et al. (2007) and Singh et al. (2009), except that we

explicitly model the temporal dynamics of an environment, in addition to its spacial

dynamics. This allows us to develop domain-independent algorithms for environments

that exhibit a rapid rate of change, and need to be patrolled continuously.

Using this model, we demonstrate the versatility of our approach by studying specific

instantiations of it, which include all the examples given at the start of this chapter:

monitoring environmental conditions, pursuit evasion (find and capture a moving target),

and patrolling (prevent intrusions).

More specifically, we make four main contributions in this thesis. The first two con-

tributions consist of coordination algorithms for fixed agents that operate during the
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Table 1.1: The roadmap of this thesis.

deployment phase (Chapter 4), and the operation phase of the agents’ life cycle (Chap-

ter 5). The second two pertain to mobile agents, for which we develop algorithms with

a receding planning horizon (Chapter 6), and a non-myopic planning horizon (Chap-

ter 7). The roadmap of this thesis shown in Table 1.1 gives a high-level overview of the

commonalities and relations between these four contributions. For each contribution, we

now briefly highlight their most salient properties in terms of the requirements discussed

earlier. These, and the other properties are summarised in Table 1.2.

Chapter 4. Decentralised Coordination for Fixed Agents during

Deployment Phase

We derive a decentralised algorithm that maximises observation value, while si-

multaneously constructing a reliable communication network between the agents.

Specifically, we present a novel solution to the frequency allocation problem. In-

stead of solving this NP-hard problem (it is equivalent to graph colouring) for

the communication network that exists among all agents directly, the idea is to

deactivate certain agents such that the problem can be provably solved in poly-

nomial time. We show that this modified problem is still NP-hard, and develop

an efficient approximation algorithm that carefully selects which agents should be

deactivated in order to maximise the observation value received by the remaining

(active) agents.

We empirically show that this algorithm is no more than 10% away from the opti-

mal solution, and is thus provides high quality situational awareness. Moreover, it

is robust—it is capable of replacing failed agents with deactivated ones, maintains

the autonomy of the agents, is very scalable (the computational overhead of an

agent grows polynomially with the number of neighbours), and we prove that a

centralised version of this algorithm provides theoretical performance guarantees.

Chapter 5. Decentralised Coordination for Fixed Agents during

Operational Phase

We develop the first algorithms for distributed constraint optimisation problems

(DCOPs) with continuous variables, called CPLF-MS (for linear utility functions)
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Chapter

4 5 6 7

Purpose Deploying
Fixed Agents

Coordinating
Fixed Agents

Coordinating
Mobile
Agents

Coordinating
Mobile
Agents

Requirement

Quality + + + ++

Robustness + + + 0

Autonomy + + + 0

Adaptiveness + + + 0

Scalability ++ + + 0

Modularity + + + +

Performance
Guarantees

+ 0 0 ++

Table 1.2: An overview of our contributions in terms of the design requirements.
The symbols have the following meaning: ‘+’ (‘++’) means that the requirement is

(strongly) satisfied, ’0’ means the requirement is not satisfied.

and HCMS (for non-linear utility functions). These algorithms are based on the

max-sum algorithm (Farinelli, Rogers, Petcu & Jennings 2008), whose applicability

was thus far limited to domains with discrete action variables. We study the

application of these algorithms on two information gathering settings with fixed

agents, and empirically demonstrate their effectiveness.

Specifically, we show that these algorithms respectively improve the solution qual-

ity by 10% and 40% in two information gathering domains compared to the stan-

dard max-sum algorithm, and therefore improve the quality of situational aware-

ness in these domains. Moreover, they scale well, although less so than the algo-

rithm in Chapter 4, since its computational and communication overhead grows

exponentially in the number of neighbours of an agents (but not in the total num-

ber of agents), and are adaptive, since they can be effectively and efficiently run

continuously to respond to changes in the agents environments.

Chapter 6. Decentralised Receding Horizon Control of Mobile Agents

We develop an adaptive receding horizon control algorithm for mobile agents.

Using this algorithm agents, periodically coordinate to maximise the observation

value received as a team for a fixed number of time steps l in the future. In more

detail, agents coordinate their plans (i.e. finitely long paths in their environment),

which they implement for m ≤ l time steps. After this, they coordinate again

to plan their motion for the next l time steps. Moreover, we assume that this

motion is subject to constraints. These motion constraints can be used to model

the physical layout of the environment (such as the floor map of a building), as well

as the intrinsic movement constraints of the agent itself (e.g. the turning radius of

a UAV).
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We benchmark this algorithm against both an un-coordinated algorithm and the

state-of-the-art (Vidal et al. 2001, Hespanha et al. 1999, Sak et al. 2008) and

demonstrate that it increases the quality of situational awareness in a variety of

highly dynamic domains. In more detail, it increases the quality of the situational

awareness of environmental phenomena by up to 50%, decreases the capture time

of a target by approximately 30%, and decreases the damage from intrusion by

approximately 30%. Furthermore, it is scalable since it is based on the max-

sum algorithm, so that the computational overhead of a single agent grows with

the number of neighbours, not the size of the team; it is adaptive, since it is a

receding-horizon control algorithm which revises the paths of the agents frequently;

and it is modular, since it supports agents of different types and corresponding

movement constraints. Most importantly, this algorithm is the first online agent-

based algorithm for the domains of pursuit-evasion, patrolling, and monitoring

environmental phenomena.

Chapter 7. Decentralised Non-Myopic Control of Mobile Agents

We present an algorithm for computing patrols—infinitely long paths designed to

monitor a specific area—in an offline fashion in the same type of environments as

the receding horizon control algorithm from the previous chapter. This algorithm

follows a similar three-step computation as the algorithm by Singh et al. (2009),

i.e., decompose the environment into clusters, compute subpatrols within each

cluster, and concatenate these subpatrols to form the desired patrol. However,

Singh et al. fail to consider the temporality of the environment, which models a

continuous rate of change. As a consequence, their algorithm computes finitely long

paths, which tend not to return to previously visited locations, since no additional

information can be obtained from doing so. In contrast, the patrols computed

by our algorithm are designed to monitor continuously changing environments,

and thus periodically (and infinitely often) return to the same location to provide

up-to-date situational awareness.

Moreover, in contrast to the receding horizon algorithm from the previous chap-

ter, this algorithm is non-myopic, and as such, has an infinite planning horizon.

Because of this, the algorithm is able to provide strong performance guarantees, at

the cost of being less scalable than the receding horizon algorithm. The algorithm

is a hybrid between offline preprocessing and online decentralised coordination,

where the latter is used to improve the accuracy of the former, and provide a more

adaptive solution.

Beside these contributions, this thesis develops several improvements to the max-sum

algorithm, which can be regarded as contributions in their own right, and whose ap-

plicability goes beyond the scope of the information gathering domain. The max-sum

algorithm itself has generated significant attention within the multi-agent community

and has been lauded for constituting the middle ground between algorithms that find
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optimal solutions at the cost of exponential computation or communication (Modi et al.

2005, Mailler & Lesser 2008, Petcu & Faltings 2005) and algorithms that scale well,

but often converge to poor quality solutions (Fitzpatrick & Meertens 2003, Maheswaran

et al. 2005, Kiekintveld et al. 2010). In more detail, these contributions are:

• Two general pruning techniques for reducing the computational overhead of the

max-sum algorithm. The first technique removes single dominated actions—actions

that can never be part of an optimal joint solution. The second technique reduces

the size of the joint action space that needs to be searched by the agents. These

will be discussed in Chapter 6.

• Two extensions to the max-sum algorithm that allow it to operate on decentralised

constraint optimisation problems that are characterised by continuous variables,

instead of discrete ones. The first extension derives an exact algorithmic solu-

tion for settings where the interactions between variables can be represented by

piecewise linear functions. The second extension combines the standard max-sum

algorithm with non-linear optimisation techniques for application in non-linear

settings. These are presented in Chapter 4.

All the aforementioned contributions lie at the foundation of eight papers:

1. R. Stranders, A. Rogers, and N. R. Jennings. A Decentralised, Online Coor-

dination Mechanism for Monitoring Spatial Phenomena with Mobile Sensors. In

Proceedings of the Second International Workshop on Agent Technology for Sensor

Networks (ATSN), Estoril, Portugal, 2008, pp. 9–15. See Chapter 6.

2. R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised Coordi-

nation of Continuously Valued Control Parameters using the Max-Sum Algorithm.

In Proceedings of the Eighth International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS), Budapest, Hungary, 2009, pp. 601–608. See

Chapter 5.

3. R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised Coor-

dination of Mobile Sensors using the Max-Sum Algorithm. In Proceedings of the

21st International Joint Conference on AI (IJCAI), Pasadena, USA, 2009, pp.

299–304. See Chapter 6.

4. A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings. Decentralised Coordi-

nation for Embedded Agents using the Max-Sum Algorithm. Artificial Intelligence

Journal (AIJ). Accepted. See Chapter 6.

5. R. Stranders, F. M. Delle Fave, A. Rogers, and N. R. Jennings. A Decentralised

Coordination Algorithm for Mobile Sensors. In: Proceedings of the Twenty-Fourth
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AAAI Conference on Artificial Intelligence (AAAI), Atlanta, USA, 2010, pp. 874–

880. See Chapter 6.

6. R. Stranders, A. Rogers, and N. R. Jennings. A Decentralised Coordination Algo-

rithm for Maximising Sensor Coverage in Large Sensor Networks. In: Proceedings

of the Ninth International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS), Toronto, Canada, 2010, pp. 1165–1172. BAE Systems, one of

the sponsors of the ALADDIN project, has applied for a patent on the algorithms

in this paper (British Patent application reference GB1001732.5). See Chapter 4.

7. T. Voice, R. Stranders, A. Rogers, and N. R. Jennings. A Hybrid Continuous Max-

Sum Algorithm for Decentralised Coordination. In Proceedings of the Nineteenth

European Conference on Artificial Intelligence (ECAI), Lisbon, Portugal, 2010,

pp. 61–66. Shortlisted for best paper award. See Chapter 5.

8. R. Stranders, E. Munoz de Cote, A. Rogers, and N. R. Jennings. Non-Myopic

Bounded Approximation for Infinite Horizon Patrolling with Mobile Sensors. Ar-

tificial Intelligence Journal (AIJ). In preparation. See Chapter 7.

1.3 Thesis Structure

The remainder of this thesis is organised as follows:

• In Chapter 2, we discuss related work. We propose a generic architecture for an

information gathering agent in order to analyse the state of the art. We review the

techniques that have been employed in each of the components of the architecture,

and identify the key methods that have been adopted in our research.

• In Chapter 3 we present a generic model for the problem of information gathering

with multiple agents. We define the key concept of observation value that is

strongly related to the quality of the situational awareness the agents provide, and

express the objective of the agents in terms of this concept.

• In Chapter 4 we present a decentralised coordination algorithm for deploying a net-

work of fixed information gathering agents. This algorithm maximises observation

value, while simultaneously building a reliable communication network between

the agents.

• In Chapter 5 we investigate the use of decentralised coordination for fixed agents

after their initial deployment. We study two information gathering domains in

which the agents’ control parameters are continuous, and we present and apply

two extensions to the standard max-sum algorithm that allow it to solve continuous

decentralised optimisation problems.
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• In Chapter 6, we turn to the challenge of coordinating mobile agents. We show

how the max-sum algorithm can be applied to coordinate the agents’ movements

in order to maximise their joint performance subject to movement constraints, and

present two generic techniques for reducing its computational overhead.

• In Chapter 7, we develop a coordination algorithm for mobile agents with perfor-

mance guarantees. This algorithm computes infinitely long patrols for continuously

monitoring dynamic environments in an offline phase. We then show how online

decentralised coordination can be used to improve the quality of these patrols, and

to adaptively respond to a priori unknown events.

• Finally, in Chapter 8 we conclude and present directions for future work to broaden

the scope of our research and increase its practical applicability to autonomous

control of unmanned sensors.



Chapter 2

Literature Review

The literature on information gathering systems (agent-based, centralised or otherwise)

is rich and diverse. It encompasses the use of sensors in a multitude of application

domains, ranging from agriculture, military surveillance, disaster management, and cli-

mate research. Within each of these domains, these sensors are embedded in yet another

multitude of different types of hardware, which are either mobile (UAVs and UGVs), or

fixed (e.g. sensor nodes in a wireless sensor network). In order to navigate through and

make sense of this large body of research—in particular in the context of this thesis—we

will analyse the state of the art by providing an ‘exploded’ view of existing approaches

in information gathering, which shows the relationship between their constituting parts.

To assist in this analysis, we propose a general architecture of an information gathering

system in Section 2.2. This architecture consists of the three essential components of an

information gathering system, which correspond to the three central challenges it needs

to address:

1. Representing the environment: how are observations from the environment pro-

cessed to obtain a high-level representation of the environment? (Section 2.3)

2. Valuing observations: how should observations be ranked in terms of their contri-

bution towards more accurate situational awareness? (Section 2.4)

3. Coordination: how should the agents be controlled in order to maximise observa-

tion value, subject to movement and temporal constraints? (Section 2.5)

Now, a large portion of the state of the art is tailored to specific domains, and thus solves

these three challenges in domain dependent ways. However, by decomposing an informa-

tion gathering system in this fashion, it becomes possible to analyse the third component,

coordination, in a domain independent fashion. Whilst the component responsible for

representing the environment transforms inherently domain dependent observations into

an abstract model of the environment, and the observation value component depends on

14
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this model for ranking future observations, the coordination component is fully shielded

from domain dependent features through the domain independent concept of observa-

tion value. The main advantage of this is that it allows us to ascertain the strengths

and weaknesses of coordination algorithms in a domain independent fashion, and adapt

them to suit our purpose.

To further facilitate analysis, we categorise these coordination algorithms into offline

and online algorithms, which perform their computation in different phases: the former

pre-compute coordinated plans for the agents before their deployment, while the latter

controls the agents during their operation. While offline are better suited and more

efficient for deploying agents if it is known beforehand which features of the environment

should be monitored, online algorithms can generally better adapt to more uncertain

environments, and are more robust to failure—two desirable properties in terms of the

requirements discussed in Chapter 1. Decentralised coordination techniques, a subclass

of online algorithms (which also contains centralised online algorithms), will receive

special attention in Section 2.6, given their importance to the main challenge of this

thesis.

Before commencing our analysis of the technical aspects of information gathering sys-

tems, however, we shall first briefly introduce three exemplar information gathering

domains that will be used throughout this thesis, and will serve to illustrate the analysis

offered in this chapter.

2.1 Exemplar Information Gathering Domains

Information gathering is an abstract name for a set of real-life and important applica-

tions. In order to make the upcoming analysis more concrete, and to be able to discuss

application specific techniques, we introduce three instances of information gathering

domains: monitoring environmental phenomena, wide area surveillance and pursuit eva-

sion. These three domains should by no means be regarded as an exhaustive enumeration

of the set in which they are contained. Instead, they are chosen to illustrate they breadth

and richness of this set, and to show that the literature often treats them as completely

unrelated subjects. As we shall see in Chapter 3, this thesis unifies these seemingly

different problems into a single general problem formulation, making it possible to solve

them with general and principled algorithms.

2.1.1 Monitoring Environmental Phenomena

An environmental phenomenon is a real valued field over up to three spatial dimensions,

and possibly a temporal dimension. Examples of environmental phenomena include

radiation, temperature, pressure, gas concentration, pH value, humidity, tidal height
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Figure 2.1: An environmental phenomenon (temperature) with noisy observations
measured over time at a fixed point in space.

and wind speed. These phenomena play an important role in climate research (Padhy

et al. 2010, Hart et al. 2006), agriculture (Zhang 2004, Edordu & Sacks 2006, Galmes

2006, Langendoen et al. 2006, Wark et al. 2007), local weather and tide predictions

(Kho et al. 2009, Osborne et al. 2008), environmental control of “intelligent buildings”

(Deshpande, Guestrin & Madden 2005), and gas source tracing (Kato & Mukai 2005,

Lilienthal et al. 2003).

Agents in this domain are tasked with constructing an accurate model of these phenom-

ena, based on (possibly noisy) observations. An example of a (simple) model is shown in

Figure 2.1, where regression is applied to a few temperature measurements in order to

estimate the underlying dynamics of the phenomenon. This particular example has only

one dimension (a temporal one), but could easily be extended with three spatial dimen-

sions. In fact, in the literature, virtually all possible combinations of spatio-temporal

dimensions are addressed. To give two concrete examples, the Networked Infomechani-

cal System (NIMS) (Rahimi et al. 2004, Pon et al. 2005) is a single sensor suspended on

a wire, that can move horizontally and vertically to take pH measurements in a cross-

section of a river, and thus operates in two spatial dimensions; and Floodnet, a flood

warning system, which consists of multiple fixed sensors each of which samples along

the temporal dimension, but combines their readings into a spatio-temporal picture. We

come back to modelling and representing environmental phenomena in Section 2.3.1.

2.1.2 Wide Area Surveillance

Wide area surveillance is an umbrella term for the passive detection, classification and

tracking of events. Within each of these scenarios, agents are equipped with cameras,

radars, or motion detectors. These agents are usually in some way resource constrained.

For example, they have a limited battery life such that they have to carefully schedule
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Figure 2.2: An example of a wide-area surveillance scenario with 16 agents, and 40
events (dots). The agents are capable of directing their sensors to observe a segment

(grey areas) of their maximum sensing radius (circles).

their sensing intervals (Farinelli, Rogers & Jennings 2008), or can only observe a fraction

of their sensing area at a time (Kim et al. 2010, Dang et al. 2006). An example of the

latter is shown in Figure 2.2, in which agents adjust their viewing angle to observe a

segment within their observation radius. Within this segment, agents are able to detect

or classify targets, depending on the application. In Section 2.3.2, we go into further

detail on representing wide area surveillance scenarios.

2.1.3 Search and Patrol

Search and patrol is a class of problem that is commonly found in disaster management

and security domains, where, for example, agents have to search for wounded civilians

or prevent intrusions of a perimeter. In these domains, agents are tasked with gathering

information about the (possible) location of wounded or attackers, with the aim of

minimising their detection time. In this thesis, we study two concrete instances of

search and patrol: pursuit evasion and patrolling.

Pursuit evasion is characterised by the presence of an evader that the agents need to

capture as quickly as possible (Bopardikar et al. 2008, Hespanha et al. 1999, Vidal et al.

2001, Borie et al. 2009, Halvorson et al. 2009). This evader might want to be found (such

as a confused civilian in a disaster scenario) or it might not (such as an intruder in a

security scenario). Moreover, the environment in which both the agents and the evader
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Figure 2.3: An example of a pursuit evasion scenario with three agents (circles) and
an evader (square) in a layout graph of connected locations. The evader is within

capture range of one of the agents

exist can be bounded (such as a building) or unbounded (such as airspace). Although

they might seem very similar, these two types of environments require significantly

different representations and techniques. In this thesis, we shall primarily focus on

bounded pursuit evasion scenarios, in which the agents’ motion is constrained by the

layout of the environment. An example of such a scenario is shown in Figure 2.3, where

three agents are pursuing a single evader in the Intelligence, Agents, Multimedia (IAM)

lab of the School of Electronics and Computer Science.

The second instance of the search and patrol domain we consider in this thesis is pa-

trolling, in which (possibly multiple) attackers attempt to intrude into the environment

(Agmon, Kraus & Kaminka 2008, Paruchuri et al. 2007, Basilico et al. 2009), for example

via a perimeter (and are thus not already present in the environment as in the pursuit

evasion scenario). Once they succeed, the agents incur an immediate loss. Thus, the

agents’ main challenge is to detect and thwart these intruders so as to minimise this

loss.

In Section 2.3.3, we will discuss techniques for representing both instances in more detail.

2.2 A General Architecture for Information Gathering

Systems

In the previous section, we gave three concrete examples of applications of information

gathering. In this section, we shift our attention from the application dimension to the
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Figure 2.4: A general architecture of an information gathering system.

technical dimension, and investigate how an information gathering system can accom-

plish its goals. We specifically use the term information gathering system here, instead

of information gathering agent, since the state of the art in this field of research is not

limited to agent-based systems. Moreover, at this point, it is important to include all

techniques that could lead to key insights into developing decentralised coordination

algorithms that satisfy many of the requirements stated in Chapter 1.

Now, the operation of information gathering systems can be described as performing

adaptive sampling (Kho et al. 2009, Zhang & Sukhatme 2007, Zhou et al. 2006, Osborne

et al. 2008). Informally, adaptive sampling can be thought of as “intelligent sampling”;

exploiting the specific properties of the environment in order to maximise observation

value, subject to the limited resources of the agents (e.g. battery power and commu-

nication) and the constraints imposed by the environment (such as obstructions). To

illustrate the need for adaptive sampling, consider a very näıve approach that samples

at a fixed rate. Generally speaking, in most dynamic environments the rate of change

is not constant; it varies over space and time. Thus, in these environments, fixed rate

sampling will observe the agent’s surroundings equally often at times in which the envi-

ronment is changing rapidly, as at times when it is fairly static, resulting in suboptimal

observation value. So, instead, an information gathering system needs to carefully de-

cide when and where to make observations in order to best allocate its resources. Given

these considerations, we can define adaptive sampling as:

Definition 2.1 (Adaptive Sampling). Making observations in space, time or both, so

as to maximise observation value obtained by one of more information gathering agents,

(possibly) subject to movement constraints and scarce resources such as communication

bandwidth and time.

Adaptive sampling in the literature is performed in a variety of ways, with an even

larger variety of techniques. The tool that will aid us in organising and analysing

these techniques is a general architecture of an information gathering system. This

architecture consists of the three main components, each of which addresses one of the
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Figure 2.5: A general architecture of an information gathering agent.

sub-challenges of adaptive sampling. These were already mentioned in the introduction

to this chapter, but are repeated here in some more detail:

1. Representing the environment. Observations collected by the sensors are processed

into an abstract model of the environment.

2. Valuing observations. Future observations are valued (ranked) in terms of their

potential to increase the quality of situational awareness.

3. Coordination. The system coordinates the actions of the sensors, and determines

which observations to make so as to maximise the value of these observations.

For a centralised information gathering system, this architecture is shown in Figure 2.4.

Such a system receives observations from multiple sensors (left), goes through the three

steps mentioned above, and communicates the computed control inputs back to the

sensors (right).

Instead of having a centralised controller, an agent-based information gathering system

is characterised by the distribution of control over multiple agents. The architecture

for a single agent is shown in Figure 2.4. A multi-agent system is obtained by allowing

agents to communicate with their neighbours, through the exchange of observations and

coordination messages (the vertical arrows).

Now, in contrast to a centralised system, a single agent’s world view is limited to the

observations it makes itself, and those communicated to it by its neighbours. However,

since these observations can be propagated through multi-hop communication (possi-

bly by piggybacking on coordination messages), agents can potentially achieve a high

level of belief synchronisation (Makarenko & Durrant-Whyte 2006). The observations
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obtained in this fashion are processed by the first two components of the agent, which

are responsible for representing the environment and valuing observations—similar to

the centralised system. However, the third component—coordination, which is the main

focus of this thesis—differs from that of a centralised system, since agents do not have

a global view of the effect of their collective actions. As a result, without coordination

with their neighbours, the agents’ actions often lead to suboptimal team performance

(due to redundant coverage of some areas, no coverage of other areas, collisions, etc.),

which results in low quality of the achieved situational awareness. Thus, agents need to

coordinate by communicating with their neighbours in order to maximise the observation

value received as a team. By so doing, the agents establish decentralised coordination,

which yields coordinated joint actions.

In Section 2.6 we come back to this important topic of decentralised coordination. First,

however, we discuss each of the three aforementioned components in more detail, starting

with representing the environment.

2.3 Representing the Environment

In this section, we focus our attention on the first component of the architecture in Fig-

ures 2.4 (for centralised systems) and 2.5 (for agent-based systems), which is responsible

for transforming a collection of raw observations into a representation, or model, of the

environment.

In order to choose an appropriate representation technique, we first need to identify

the type of environment within which the agents exist. More specifically, the type

of change the environment is subjected to—temporal, spatial or both—is of significant

importance, since it determines to great extent the type of representation that is required

to accurately capture the spatial and temporal dynamics of the environment. These

dynamics are essential to recover the current state of the environment, as well as predict

its future states—the two key requirements of situational awareness.

In more detail, we can distinguish three types of adaptive sampling algorithms, corre-

sponding to three types of environment:

Spatial adaptive sampling These algorithms operate in environments that are not

changing (or changing negligibly) over time. Generally speaking, spatial adaptive

sampling algorithms fall into two different and distinct classes. The first consists

of algorithms for computing informative placements for fixed sensors, given that

the spatial dynamics of the environment are known beforehand (Guestrin et al.

2005, Krause et al. 2006).

The second class consists of algorithms for observing environments with mobile

robots. These environments are either static, or change so slowly that they can
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be considered static during the time it takes to traverse them (Rahimi et al. 2004,

Pon et al. 2005, Krause & Guestrin 2007, Singh et al. 2009, Zhang & Sukhatme

2007). As a consequence, these algorithms compute finitely long paths, which tend

not to return to previously visited locations, since no additional information (or

value) can be obtained from doing so. These paths are used to traverse the space

once; agents attempt to take the most informative observations, after which they

return to a base station.

Temporal adaptive sampling These algorithms are mainly used for controlling fixed

agents that can only choose their observations along the temporal dimension.

These agents are deployed in environments where change occurs over time. Within

the exemplar domains from Section 2.1, the rate of change can vary significantly.

Examples of low rates of change are found in environmental monitoring where the

deployment time is sufficiently long to detect the effect of day-night cycles, such

as temperature and tidal heights (Kho et al. 2009, Osborne et al. 2008) or, on a

longer time-scale, seasonal change (Padhy et al. 2010). Notable examples of do-

mains governed by high rate of changes include military surveillance (e.g. target

tracking or intrusion detection) and disaster management (Waldock et al. 2008,

Dang et al. 2006). In both cases, samples must be carefully scheduled over time in

order to sample efficiently. Sampling at a constant rate wastes resources in periods

where the environment is changing slowly, and provides insufficient resolution in

intervals of rapid change.

Spatio-temporal adaptive sampling The class of spatio-temporal algorithms sam-

ple along the temporal dimension, and at least one spatial dimension. These

algorithms are commonly found in environments that change at a rapid rate, or in

environments in which mobile agents patrol continuously. Examples of the former

include the use of fixed sensors for weather prediction, where multiple fixed sensors

are used to recover the spatio-temporal correlations that govern the surrounding

(micro) climate (Osborne et al. 2008). In the latter case, even if the environment

is changing slowly, conditions might have changed significantly by the time the

agents have traversed the space. Examples of this include gas source tracking

(Kato & Mukai 2005, Lilienthal et al. 2003, Zhang et al. 2005), and target tracking

(Grocholsky 2002, Grocholsky et al. 2006, Makarenko & Durrant-Whyte 2006). In

either case, time is a variable that cannot be neglected. This means that agents

need to be able to determine how to sample in space-time in order to be able to

reconstruct the dynamics of the underlying phenomenon.

It is important to note that, in contrast to spatial adaptive sampling, in spatio-

temporal adaptive sampling it is generally prudent to return to previously visited

locations. As said earlier, by doing so, no new information can be obtained in envi-

ronments that are static over time. However, in environments that do change over
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time, continuous patrolling is essential for achieving accurate situational aware-

ness. Given the prevalence of dynamic environments in the domains we consider

in this thesis (i.e. the exemplar domains from Section 2.1), we develop algorithms

for continuous patrolling in Chapters 6 and 7.

Thus, in order to achieve situational awareness in a dynamic environment, it is vital that

neither its temporal, nor the its spatial dynamics can be ignored. On the one hand, an

algorithm that focuses solely on spatial correlations might be able to give an accurate

picture of the current state of the world, but not on what will happen in the near future.

On the other hand, an algorithm that is able to predict what will happen in only a small

area of the environment provides an incomplete spatial picture of the world. Clearly,

making decisions based on either spatially or temporally deficient situational awareness

exposes the decision maker to risks.

In light of this, in Chapter 3, we explicitly model the spatial and temporal dynamics of

an environment, and develop algorithms in Chapters 4, 5, 6, and 7 that operate directly

on this model, thus achieving spatio-temporal adaptive sampling.

Now that we have classified adaptive sampling in terms of the spatio-temporal dimen-

sions that are taken into consideration, we now turn to the domain specific techniques

that are used for representing the environment in the three exemplar domains of Section

2.1: monitoring environmental phenomena, wide area surveillance, and pursuit-evasion.

2.3.1 Monitoring Environmental Phenomena

The main challenge in monitoring environmental phenomena is identifying spatial and

temporal patterns in the (possibly) noisy observations that have been made. As dis-

cussed earlier, these patterns are required to predict unobserved locations, as well as the

future state of the world. Regression is commonly used to accomplish this, two types of

which we will discuss in this section: linear regression (Section 2.3.1.1), and the more

expressive and flexible Gaussian process regression (Section 2.3.1.2). The latter will

receive some more in-depth coverage, since it is our tool of choice for modelling these

phenomena (see Chapters 6 and 7). Finally, in Section 2.3.1.3, we discuss techniques

that do not fall in either category, but which are, nevertheless, relevant to our work.

2.3.1.1 Linear Regression

Linear regression models a phenomenon by a collection of linear relations between the

explanatory variables (such as time and location) and the variable of interest (such

as temperature or gas concentration). Its attractiveness stems from its simplicity and
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Figure 2.6: The piecewise linear regression method proposed by Padhy et al. (2010)
applied to an environmental phenomena with non-linear correlations. In this example,

the non-linear phenomenon is approximated by three line segments.

computational efficiency. For this reason, its use has been suggested for resource con-

strained sensing agents in Floodnet, a flood monitoring system (Kho et al. 2009), and

for environmental monitoring (Padhy et al. 2010). In the latter case, the environmental

variables (i.e. temperature and pressure) are characterised by their non-linear relation

with time. Consequently, these relations are modelled by piecewise linear functions,

whereby Bayesian inference is used to decide whether the newly obtained sample can be

sufficiently explained by the current regression model, or whether the sample represents

a change point and the model needs to be discarded in favour of a new one (see Figure

2.6 for an example).

In the two-dimensional (spatial) case, Zhang & Sukhatme (2007) employ linear regression

to model temperature variations in a body of water, where temperature measurements

are expected to be inversely correlated to the distance between the locations at which

they were taken.

Although linear regression is attractive due to its simplicity and its low computational

cost, it lacks universal applicability, since many real-life phenomena are governed by

(strongly) non-linear relations. Moreover, to ensure the generality of our algorithms,

we do not wish a regression method to restrict the class of possible applications, even

if this results in less efficient algorithms. Thus, we believe that we should allow for a

more flexible type of regression. With this in mind, we will now turn to the Gaussian

process, which is a more flexible, and therefore more suitable alternative.
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2.3.1.2 Gaussian Processes

Gaussian processes (GPs) provide a very flexible way of performing regression, because,

unlike linear regression, they are not limited to (piecewise) linear functions. In what

follows, we will offer a basic introduction to the Gaussian process.1 First, we will explain

its basic properties, and describe the role played by the covariance function, and how a

GP is fitted to observations made. Then, we discuss the use of the GP in related work,

and explain how it will be used in our work.

Before we continue with the specifics of the GP, we will define some of the notation. Let

the process y = f(x) denote the relation between a D-dimensional input vector x ∈ R
D,

and an output variable y ∈ R. Moreover, let {(xi, yi) | i = 1 . . . n} denote a set of

input-output pairs, which represent the observations of this process f , and is commonly

referred to as the training set. Furthermore, variables subscripted with a star (such as

x∗) denote predictions (or test data). For example, y∗ denotes the predicted function

value for input vector x∗. Finally, we denote the n-dimensional vector of all collected

outputs yi as y, and collect the n inputs xi in a D × n matrix X.

Now, Rasmussen & Williams (2006) define a GP as:

Definition 2.2 (Gaussian process). A Gaussian process is a collection of random vari-

ables, any finite number of which have a joint Gaussian distribution.

It is well-known that a finite set of jointly Gaussian random variables is fully determined

by their mean µ and covariance matrix Σ. Now, given this fact, we can generalise these

definitions of mean and (co)variance to an infinite set of variables, and fully determine

a Gaussian process by a mean function m(x) and covariance function k(x,x′):

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

where E[X] is the expectation of random variable X. Here, covariance function k deter-

mines the covariance between two outputs of f as a function of their associated inputs x

and x′. Generally, this is a decreasing function of the distance between x and x′. Now,

if both m(x) and k(x,x′) are given, they function as a prior over the function f . This

prior is based on properties of f that are known a priori, such as smoothness and rate

of change. It functions as a probability distribution over possible functions, if no evalua-

tions of f are available. However, if training data {(xi, yi) | i = 1 . . . n} (i.e. observations
of function f) are available, a GP can be fitted to these data, thereby increasing the

accuracy of predicting y∗ (the test data) at unobserved locations. In order to do this,

we exploit the fact that the prior joint distribution of [y,y∗]
⊤ is multivariate Gaussian:

1The following technical description of the Gaussian process is adapted from Rasmussen & Williams
(2006), Section 2.2.
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Figure 2.7: Fitting a GP to data. The grey area represents the 95% confidence band
(two standard errors) derived from covariance matrix Σ.

[
y

y∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])

where the matrices K(·, ·) are obtained by evaluating the covariance function k for all

pairs of columns of the offered matrices. Thus, K(X,X) is the covariance matrix for

all pairs of training points, and the K(X,X∗) is the covariance matrix for all pairs of

training and test points. The posterior distribution of y∗ given y can now be easily

obtained from Bayes’ theorem, using the properties of the Gaussian distribution:

P (y∗ | X∗, X,y) = N (µ,Σ)

where mean vector µ, and covariance matrix Σ are given by:

µ = K(X∗, X)K(X,X)−1y (2.1)

Σ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗) (2.2)

Figure 2.7 shows an example of a GP fitted to four observations.

Here, it is important to note that the covariance of y∗ does not depend on any actual

observations y, but only on their input vectors X. Put differently, if the covariance

function is known, the covariance of the predictions depends only on the locations where

the observations were taken, not on their actual values. As we will see in Section

2.4, this is a property of GPs that is widely exploited by algorithms that calculate

informative placements or paths for fixed and mobile agents, without the need for any
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prior sampling, and can lead to an intuitive formulation of the value of observations in

the second component of the architecture of an information gathering agent.

In the Gaussian process, the covariance function k(·, ·) plays a critical role; it determines

the covariance between two sample points of the process f and thus it restricts the class

of functions over which the Gaussian process performs regression. A typical choice

of a covariance function is the squared exponential covariance function. This function

models the correlations between two sample points for a large class of smooth, non-linear

functions. Within this class, the covariance between two points is inversely proportional

to their distance. In its simplest form, the function is defined as:

k(x,x′) = exp

(
−1

2

∣∣x− x′
∣∣2
)

(2.3)

The use of this covariance function leads to a very smooth process. Moreover, this

process will exhibit the same characteristics over each of its input dimensions. That is,

the process is insensitive to translation and rotation. Such a process is called stationary.

To model non-stationary processes, a transformation matrix P = diag(l21, . . . , l
2
D) is

introduced, and |x− x′| is replaced by (x − x′)⊤P−1(x − x′). The entries l21,. . . ,l
2
D,

scale the dimensions of the input vector x independently.2 Depending on the type of

dimension to which they apply, these entries are more commonly referred to as length-

scales or time-scales. Generally, the more gradually the modelled phenomenon varies

over an input dimension, the longer length-scale for that dimension, and vice versa.

To put this in the context of environmental phenomena, these scales allow us to model

processes that are strongly correlated along one input dimension, while weakly correlated

along another. To illustrate this, Figure 2.8 shows an example of the effect of varying

the two length-scales in a two-dimensional process.

Thus far, we have assumed noise-free observations. However, in many practical sensor

deployments observation noise cannot be neglected. In this case, the sensors do not

observe the process f(x) itself, but a noisy version of it: f(x) + ε. Assuming that ε has

a Gaussian distribution with variance σ2
n and is independent of the input x, we add an

extra term σnδxx′ to the covariance function, where δxx′ is the Kronecker delta which

equals one iff x = x′. To see why this models noise, note that this term adds σ2
n to the

diagonal of the covariance matrix, effectively increasing the variance of the associated

output-variable. For example, extending the squared exponential covariance function in

Equation 2.3 for noisy observations, we obtain:

k(x,x′) = exp

(
−1

2

∣∣x− x′
∣∣2
)
+ σ2

nδxx′ (2.4)

2Note that for li = 1 for 1 ≤ i ≤ D, the numerator of the exponent becomes the square of the Eu-
clidean distance between the two vectors, in which case the resulting GP exhibits the same characteristics
over all input dimensions.
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(a) A function drawn from a process with equal length-scales along both di-
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(b) A function drawn from a process with a longer length-scale along the y

dimension than along the x dimension. Note that the process now varies less
rapidly along the y dimension.

Figure 2.8: Two bi-variate functions drawn from GPs with a squared exponential
covariance function, showing the effect of varying the length-scales.
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Algorithm 1 Prediction of values at coordinates X∗ given training data X, y and
covariance function k using the Gaussian process (Adapted from Rasmussen & Williams
(2006), Algorithm 2.1).

1: Input: matrix with training inputs X, training outputs y, covariance function k, noise σ2
n,

X∗ test inputs. K(X,X ′) denotes the matrix obtained by evaluating the covariance function
k for every pair of columns of X and X ′.

2: Output: (µ,Σ) such that y∗ ∼ N (µ,Σ)
3: L← cholesky(K(X,X) + σ2

nI)
4: α← L⊤ \ (L \ y)
5: µ← K(X∗, X∗)

⊤α

6: V ← L \K(X,X)
7: Σ← K(X∗, X∗)− V ⊤V

Now, at the start of this section, we argued that modelling both both spatial and tem-

poral correlations of a phenomenon is crucial for achieving good situational awareness.

The GP allows us to create processes that have different correlation structures along dif-

ferent dimensions. In its most general form, a process with two spatial and one temporal

dimension, where input vector x = [x y t]⊤, has a covariance function k(·, ·) that is

the product of a spatial covariance function ks(·, ·), and a temporal covariance function

kt(·, ·):

k






x

y

t


 ,



x′

y′

t′





 = ks

([
x

y

]
,

[
x′

y′

])
· kt
(
t, t′
)

(2.5)

For example, an environmental phenomenon that exhibits smooth change over space,

but less-smooth change over time, can be modelled by choosing a squared exponential

covariance function for the spatial dimension, and a Matérn covariance function3 for the

temporal dimension. The input-scales of this process are modelled by the P matrices

of the two covariance functions that compose it. For the spatial covariance function

P = diag(l2s , l
2
s), with entries that determine the length-scale of the process, and for the

temporal covariance function P = l2t , containing a single entry encoding the time-scale

of the process. For example, an environmental phenomena that varies slowly over space,

but very quickly over time has a long length-scale l2s , but a short time-scale l2t .

Now that we have discussed some examples of covariance functions and their properties,

only the question of fitting a GP to data remains unanswered. Using Equations 2.1 and

2.2, calculating predictions for arbitrary test inputs y∗ is fairly straightforward. How-

ever, the explicit inversion of the covariance matrix K(X,X) as prescribed is very com-

putationally intensive,4 especially if the training set is very large. Instead, there exists a

more efficient method that exploits the fact that the covariance matrix Σ is symmetric

3This is a second often-encountered class of covariance functions that is more suitable for modelling
less-smooth processes.

4For a n× n matrix K(X,X), explicitly calculating K(X,X)−1 takes n3/3 operations with Gauss-
Jordan elimination.
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and positive definite. This allows for the matrix to be decomposed into a product of a

lower triangular matrix L and its transpose: Σ = LL⊤, known as a Cholesky decompo-

sition. Algorithm 1 efficiently computes the mean and variance of a set of test inputs by

exploiting this decomposition.5 However, computing the Cholesky decomposition can

lead to an unacceptable overhead, particularly if new data points arrive sequentially.

In order to overcome this potential bottleneck, Osborne et al. (2008) present a number

of efficient numerical algorithms for updating the Cholesky decomposition with newly

acquired data points, as well as down dating it after discarding old data points in order

to ensure that the size of the matrix L stays within reasonable bounds. This not only

saves memory and computational resources, but also ensures that predictions are based

on the most recent (and relevant) part of the observation history.

Until now, we have assumed that the covariance function is fully known. In most realistic

scenarios, however, the covariance function has to be learnt from data. In these cases, the

use of GPs can be regarded as a three-level model selection problem. On the top level,

the shape of the covariance function determines the high-level properties of the process.

More specifically, it determines its smoothness (or differentiability), whether the process

is periodic or isotropic. On the second level, the variables of the particular covariance

function determine the extent to which these properties manifest themselves in the

process. To illustrate this, consider again the noisy version of the squared exponential

covariance function in Equation 2.4. In two spatial and one temporal dimensions, this

covariance function has four free variables: the signal variance σf , the noise variance

σn, the length-scale ls and the time-scale lt. These variables are usually referred to

as hyperparameters, since they determine the distribution of weights of an underlying

parametric model (Rasmussen & Williams 2006, Section 2.1). This parametric model

constitutes the bottom level of the model selection problem, and is fitted to the data

with Equations 2.1 and 2.2. In other words, we need only concern ourselves with the

upper two levels of the selection problem, since the GP equations take care of the bottom

level.

Now, in practise, the type of covariance function is usually chosen by an expert based

on the most distinctive properties of the process. For example, we might know that the

squared exponential covariance function is an appropriate choice for modelling a specific

environmental phenomena, but not the values of the hyperparameters. In general these

are not known a priori, but have to be inferred from a set of observations. A standard

way of doing this is the marginal likelihood (ML) method (Rasmussen & Williams 2006,

Section 5.4). However, ML is known to be very sensitive to initial estimates of the

hyperparameters, and often ends up in local maxima, resulting in very poor predictions.

As an alternative, Bayesian Monte Carlo (BMC) (Rasmussen & Ghahramani 2003,

5For a n × n matrix K(X,X), the Cholesky decomposition in line 3 takes n3/6 operations, while
solving the linear systems in steps 4 and 6 with triangular matrix L takes n2/2 operations.
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Osborne et al. 2008), a principled Bayesian approach, was proposed that does not suffer

from these problems.6

Gaussian Processes in Related Work Due to its versatility, the use of GPs for

monitoring environmental phenomena is reasonably widespread. Low et al. (2008) use a

GP to model environmental phenomena in a setting with mobile agents. Guestrin et al.

(2005) and Krause & Guestrin (2005) use the GP in a similar fashion, with the aim of

calculating highly informative placements (i.e. those that yield high observation value)

for fixed wireless sensors. In order to do this, an initial deployment of a large number of

sensors is required to collect a dataset of samples, from which the covariance function

can be inferred. As an extension to this, Krause et al. (2006) also model the quality

of the communication links between the sensors with a GP, to ensure a good trade-off

between the informativeness of the sensor placement, and the expected communication

cost between the sensors in the proposed deployment. However, both of these algo-

rithms learn these models offline, and assume a dataset of samples is available prior to

the deployment of the sensor nodes. In uncertain scenarios where time is of the essence,

though, this assumption is unrealistic. For instance, in our intended application sce-

narios, agents are unlikely to have knowledge of the characteristics of their environment

prior to their deployment.

So, in more time constrained and uncertain scenarios, such as those that are found in our

intended application domains, the covariance function cannot be assumed to be known

in advance. More specifically, for a solution to be adaptive (one of the requirements es-

tablished in Chapter 1), sensors need to be able to learn the features of their surrounding

environment during deployment. In GP terms, this implies that sensors need to be able

to learn the covariance function online. To address this issue, Krause & Guestrin (2007)

and Singh et al. (2007) present an exploration-exploitation approach that is capable of

adapting the representation of the environment online, while moving a mobile agent

towards more informative locations. In a similar vein, Osborne et al. (2008) and Gar-

nett et al. (2009) perform online information processing on data streams from weather

sensors using the BMC techniques mentioned earlier. With these techniques, it is pos-

sible to detect faulty sensors and predict missing sensor data using readings obtained

from the other (functional) sensors. This is especially attractive from the perspective

of robustness. As outlined in the introduction, robustness means that the operation of

the mobile sensor network should not be interrupted when a single sensor fails. This

technique allows the performance of the agents to degrade gracefully, since the failure

of a single agent increases prediction error, but not catastrophically so.

6A full treatment of BMC is beyond the scope of this thesis. However, in an initial study we
performed into agent-based information gathering for monitoring environmental phenomena (Stranders
et al. 2008), we demonstrated the effectiveness of BMC in conjunction with a greedy decentralised
coordination algorithm. Based on this study, in the remainder of this thesis we assume that the values
of the hyperparameters are known, with the knowledge that BMC can be used when they are not.
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In summary, in this section we have argued that the GP is a flexible and powerful

method for performing regression over non-linear data, and, as such, is very suitable

for modelling environmental phenomena. Given this, we choose GPs with covariance

functions of the form in Equation 2.5 to represent and model environmental phenomena

in Chapters 6 and 7, where we study several scenarios in which mobile agents monitor

environmental phenomena.

2.3.1.3 Other Approaches for Modelling Environmental Phenomena

Besides the linear regression and Gaussian processes, other techniques for representing

environmental phenomena have been adopted in previous work. In what follows, we will

briefly discuss these.

As opposed to performing explicit regression, Rahimi et al. (2004) recursively subdivide

the environment into strata, ensuring that the variance of the observations made within

each stratum is below a certain threshold. Each time the variance is found to exceed this

threshold, a stratum is divided into four substrata, and the same sampling method is

recursively applied on each of them. As a result, the spatial resolution is fine grained in

areas where the environmental phenomenon is volatile and coarse grained in areas where

it is not. The tree structure of strata, in combination with the mean and variance of each

of the strata, constitutes the reconstruction of the measured phenomenon. While this is

an elegant and simple solution, it does not recover the spatial and temporal correlations

that are present within the environment. As such, although it presents an accurate

spatial snapshot of the environment, it is not capable of extrapolating this snapshot in

time, resulting in temporally deficient situational awareness.

In contrast, the Kalman filter is a common technique (Julier & Uhlmann 1997, Durrant-

Whyte et al. 1990, Deshpande, Guestrin, Madden, Hellerstein & Hong 2005, Dash et al.

2005, Grocholsky et al. 2006) that does explicitly take into account the temporal dynam-

ics of a phenomenon. Thus far, we have considered regression techniques for modelling

phenomena whose spatio-temporal correlations are unknown and have to be identified.

As opposed to these regression techniques, it is possible to explicitly take into account

the system dynamics using the Kalman filter. For example, in target tracking it is known

that the motion of a target is subject to the laws of Newtonian mechanics. Thus, based

on a target’s previous location, velocity and acceleration, it is possible to predict its

current state (within a certain margin of error). The Kalman filter combines this pre-

diction with noisy range and bearing observations (for example from a radar) to refine

the target’s state estimation.

Another attractive property of the Kalman filter is that it enables sensors to exchange

and fuse beliefs about the state of their environment in a very communication efficient
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manner; sensors simply need to exchange their current state vectors, which are sub-

sequently fused with other sensors’ states to increase tracking accuracy. In contrast, a

drawback of the standard GP formulation is that, unlike the Kalman filter, belief sharing

involves exchange of (possibly many) observations.

In the environments that we aim to deploy our approach in, however, sensors are deal-

ing with a possibly wide variety of environmental phenomena for which the temporal

dynamics are either unknown, or highly complex. For this reason, the Kalman filter is

less suitable for modelling these phenomena, since it requires an explicit model of these

dynamics. Instead, the GP is capable of recovering and approximating the intricate

and complex dependencies between measurements in time and space with limited prior

knowledge of the system dynamics.

In light of the above, a GP/Kalman filter hybrid, which combines the versatility of the

GP and the communication efficiency of the Kalman filter would be desirable. Indeed,

Reece & Roberts (2008) propose exactly such an approach, by showing the equivalence of

the Kalman filter and GP. However, since the GP is more mature, and our work does not

primarily focus on regression techniques, we prefer to use the GP. Further developments

in this line of research should nevertheless therefore be monitored in order to determine

whether it can form a basis for a more flexible method of processing information.

2.3.2 Wide Area Surveillance

Representing the environment in the wide area surveillance domain—the second exem-

plar application domain in Section 2.1—is significantly less complex than representation

environmental phenomena. Representations found in the literature often keep track of

the position of events or targets (Fitzpatrick & Meertens 2003, Vargas et al. 2003), or

assume prior knowledge of the probability distribution for their arrival times and spatial

distribution (Farinelli, Rogers & Jennings 2008, Giusti et al. 2007).

Given the simplicity of these representations, it is not surprising that the challenge of

wide area surveillance lies not in representation, but rather in coordinating the agents’

actions so as to maximise the number of events that are detected (or correctly classified).

In Section 2.5 we will study previous work in this area, and look at these challenges in

more detail.

2.3.3 Search and Patrol

The key challenge in search and patrol is creating a model of the attackers’ behaviour

and keeping track of its location. This behaviour might be strategic (in a game-theoretic

sense), whereby the behaviour of the attackers and the pursuing agents are interdepen-

dent and both groups are aware of their conflicting interests (Agmon, Kraus & Kaminka
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Figure 2.9: An example of a probabilistic map for pursuit evasion with three agents
and an evader. The size of the grey circles is proportional to the estimated probability

that the evader is there.

2008, Agmon, Sadov, Kaminka & Kraus 2008, Paruchuri et al. 2007), or non-strategic,

whereby this behaviour is independent of the long-term behaviour of the pursuing agents

(Hespanha et al. 1999, Vidal et al. 2001). Consequently, these different types of be-

haviour call for radically different techniques. Although this thesis is mainly concerned

with the non-strategic setting, we will briefly discuss the strategic setting, as the appli-

cability of our work to this setting is an open question, and is part of future work (see

Section 8.2).

To model interactions with strategic attackers, various tool from game theory are used,

depending on the type of setting. On the one hand, a Stackelberg game is appropriate

when attackers are capable of observing the agent’s strategy (Agmon, Kraus & Kaminka

2008, Agmon, Sadov, Kaminka & Kraus 2008, Paruchuri et al. 2007). A Stackelberg

game models the so-called leader and follower roles of the agents (the leaders, who

choose their actions first), and the attackers (the followers, who choose their action

after having observed the agents’ actions). If, on the other hand, agents and attackers

choose their actions simultaneously, their interactions are commonly modelled with an

extensive-form game, that represents their action sequence as a tree (Parsons 1978,

Halvorson et al. 2009).

In the non-strategic setting, the key challenge is to maintain a probability distribution

over the evader’s location, known as a probabilistic map (Hespanha et al. 1999) (see

Figure 2.9). In this case, a probabilistic map pe(et = v | Yt−1) estimates the probability

that the evader is at location v, given previously made observations Ot−1
A . Updating

this map with new observations to obtain pe(et+1 = v | Ot
A) proceeds in two steps:
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1. Fuse new observations Ot
A with pe(et = v | Ot−1

A ) to obtain:

pe(et = v | Ot
A) = αpe(et = v | Yt−1)p(yt | et = v,Ot−1

A )

Here, α is a normalising constant, and p(Ot
A | et = v,Ot−1

A ) depends on the sensing

model, for example on the noise level of the agents’ sensors.

2. Predict the motion of the evader given the evader’s motion modelM (e.g. random):

pe(et+1 = v | Ot
A) =

∑

v′∈V

pm(et+1 = v | et = v′,M)pe(et = v′ | Ot
A) (2.6)

Clearly, the last step is only possible if the evader’s motion model is known. In Chapter

6, where we develop a decentralised algorithm for mobile agents, we return to the search

and patrol domain, give more details on the two steps, and extend this model settings

where the evader’s motion model is unknown.

2.4 Valuing Observations

The second component of the centralised and agent-based architectures of information

gathering systems (Figures 2.4 and 2.5) is responsible for valuing (future) observations

in terms of their capability to improve situational awareness.

Now, the techniques discussed in the previous section provide a high-level representation

of the raw observations, which enables information gathering agents to reconstruct the

dynamics of their environment. The quality of this reconstruction critically depends on

the observations that have been taken. To illustrate this with an example, consider a

single agent with a limited battery life. If this agent samples from its environment at

its maximum rate, it may well deplete its battery early in the day. Should we wish to

reconstruct an environmental phenomenon during that day, the observations made by

this agent are clearly less valuable than those obtained if it spaced out the same number

of observations over the entire day. Put differently, the observations that the agent has

collected are of little value in terms of situational awareness. In light of this, the concept

of observation value is of critical importance, and is defined as follows:

Definition 2.3 (Observation value). The value of an observation is equal to the increase

in the quality of situational awareness it contributes to.

Recall from Chapter 1 that quality of situational awareness does not only pertain to

the prediction accuracy of the phenomena that exist within the environment, but also

(and more importantly) to the extent that the impact of events and decisions on the

mission objectives are understood. Therefore, the value of observations depends on the
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Figure 2.10: A GP illustrating the difference between the local and global value of
a new observation. The local metric only measures the uncertainty reduction at the
location where the observation (the circle) is made, whereas the global metric measures

the uncertainty reduction across the entire space.

difference between the agents’ belief and the ground truth, as well as the reduction of

loss they achieve.

Now, when the value of future observations is known, an adaptive sampling algorithm

can accurately decide where and when to sample in order to maximise the quality of

situational awareness. In making this choice, it has to make a trade-off between band-

width usage, movement and sampling (e.g. excessive communication and movement will

leave little battery power for sampling, and vice versa), as well as the time it takes

to reposition and make an observation. However, the only way the true value of a fu-

ture observation can be known, is to actually make it and determine to what extent

it improves situational awareness. Not surprisingly, this paradox presents a challenge.

To address this challenge, the information processing techniques that were discussed in

the previous section are commonly used to obtain an approximation of the value of an

observation.

Generally speaking, in the state of the art, it is common to express this value in terms

of a mathematical formalisation of the notion of expected “surprise” of a newly made

observation. Equivalently, surprise can be thought of as the inverse of the confidence in

the current model; the less confident an adaptive sampling algorithm is about (parts of)

the current model of the environment, the greater the potential surprise (or value) of a

new observation.

Observation value metrics can be divided into in two categories: local metrics, and global

metrics. The former take into account the reduction in uncertainty (or conversely, in-

crease in confidence) at the location where the observation is made. Figure 2.10 shows

an example of this in the context of a Gaussian process. By making a new observation

(indicated by a circle), the confidence bands around it tighten. The local value of this
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observation is a function of the contraction (indicated by the arrows) of the confidence

bands at the coordinate where it was made. In the literature, various metrics are used

to measure local value, such as the width of the confidence bands (Kho et al. 2009),

the variance (Osborne et al. 2008), Kullback-Leibler divergence (Padhy et al. 2010), the

number of events detected (Farinelli, Rogers & Jennings 2008), and entropy (Ko et al.

1995). The last metric, entropy, is a concept from information theory and is often used

in conjunction with GPs. Informally, entropy is a measure of the peakedness of the

probability distribution of a random variable. The more peaked the distribution, the

more confidence exists about the value of the variable, and the smaller the probability

that we will be surprised by a new measurement. Formally, if we denote a set of obser-

vations as a D dimensional vector of random variables y∗ with a multivariate normal

distribution (as is the case in the GP), the entropy H is a function of its covariance

matrix Σ (Equation 2.2) only:

H(y∗) =
1

2
D ln (2π e) +

1

2
ln (|Σ|) (2.7)

Entropy as a value metric can also be used within the pursuit-evasion domain, where

the random variables have a Bernouilli distribution (i.e. either the evader is present at

a location, or it is not). Making an observation at location v ∈ V , the realisation (i.e.

positive or negative) of which is modelled by Bernoilli random variable Xv is worth:

H(Xv) = −p ln(p)− (1− p) ln(1− p)

where p is the probability of the evader being at v.

Global metrics, in contrast to local metrics, measure the increase in situational awareness

that results from a new observation over the entire environment. To again use the

example in Figure 2.10, the global value of the new observation equals the contraction

of the confidence bands over the entire space (indicated by the light grey areas). A

commonly used global metric within information gathering is mutual information (MI)

(Guestrin et al. 2005), which measures the reduction of entropy at all locations V within

the environment by making observations at locations L:

MI(V \ L;L) = H(V \ L)−H(V \ L | L) (2.8)

Two considerations should be made for choosing between local and global metrics.

Firstly, with reference to solution quality, the use of global metrics generally lead to

better performance, since they more accurately represent the true impact of a new ob-

servation on the accuracy of the model. This effect was studied by Guestrin et al. (2005),

who compare mutual information and entropy as a metrics for deploying fixed sensors

in an environment modelled by a GP. By iteratively placing sensors at the location

with maximal entropy, they found that a large proportion of the sensors end up along
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Figure 2.11: Placement of fixed sensors using the entropy and MI value metrics.
Contours lines connect points of equal predictive variance (the lower the predictive

variance, the higher the accuracy of the predictions).

the border of the environment, where they are maximally uncertain about each others’

measurements, but where they also waste a large part of their range (Figure 2.11(a)).

Using MI, however, the sensors were placed more centrally, and, as a result, use their

resources more effectively (Figure 2.11(b)). Thus, their study confirms the superiority

of the global mutual information metric over the local entropy metric.

The second consideration is computational overhead. All else being equal, the use of a

global metric requires more computation than a local one. The reason for this is that

the former needs to compute the effect of a new observation on the entire environment,

instead of a single point. To illustrate this using the entropy and MI metrics, note that

to evaluate MI in Equation 2.8, the entropy at all locations V \L has to be computed,7

while to evaluate entropy, only a single point needs to be taken into consideration.

The choice between a local or global metric should be guided by the specific application

domain and the representation of the environment that is most suitable for that domain.

These representations vary significantly in complexity (as we have seen in Section 2.3),

with a corresponding variation in the computational overhead required to evaluate a

value metric. When the inherent computational overhead of a representation is low,

a global metric should be naturally preferred. For example, as a result of the com-

plex calculations involved in computing the variance (Equation 2.2), evaluating MI in a

Gaussian process is more expensive than in pursuit-evasion where a probability map is

used. In the latter case, MI is clearly more preferred than in the former case. We will

7That is, if we ignore the fact that a new observation generally only affects its neighbourhood, which
is a small subset V ′ ⊂ V . However, even if this property is exploited by computing the entropy reduction
at V ′ instead of V , MI still requires more computation than entropy.
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come back to the trade-off between computation and solution quality in Section 6.3.1.1,

where we benchmark the entropy metric against the MI metric, and demonstrate that

the latter indeed leads to better performance, but also to an increase in computation of

two orders of magnitude.

2.5 Coordination

Now that we have studied methods for representing the environment and metrics for

valuing observations, we can now address the third and final component of the archi-

tectures in Figures 2.4 and 2.5—coordination, which is the central focus of this thesis.

Here, the model of the environment constructed by the first component (representation)

and the value metrics of the second component (valuing observations) are exploited to

determine where and when the agents should take observations.

In the state of the art, two different classes of algorithms can be distinguished: offline

and online coordination algorithms. The former class of algorithms pre-compute a

coordinated plan before the agents’ deployment, instructing them when and where to

observe their environment. The latter class of algorithms coordinate the the agents’

actions during their operation.

Clearly, the latter class is more suitable when no prior knowledge of the environment

is available, such as physical layout, or, for example, the spatio-temporal correlations

of an environmental phenomenon. It is also more suitable in scenarios where agents

need to be robust against a priori unknown events, such as the failure of one or more

agents, or where they have to be able to adapt to a structural change to the way in

which the environment behaves (for example, after the outbreak of a fire). However,

when the environment can be considered static, sufficient knowledge about its layout

is available, and precomputed plans inherently degrade gracefully, offline coordination

algorithms might be preferred over online coordination algorithm because of their ease

of implementation.

In this section, we discuss both classes in more detail from the perspective of a single

agent and highlight their strengths and weaknesses in terms of the requirements defined

in the introduction to this thesis. Then, in the next section, we provide an in-depth

discussion of coordinating the actions of multiple agents, which is a key challenge in our

work.

2.5.1 Offline Coordination Algorithms

A large body of previous work in the area of offline coordination algorithms is based

on the notion of submodularity, which intuitively captures the diminishing returns of
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making new observations: a new observation is more valuable if the agents have only

made a few prior observations, than if they made many. More formally, let f be a set

function that computes the value of a set of observations. Function f is submodular if

it satisfies the following definition:

Definition 2.4 (Submodularity). A set function f : 2E → R defined over a finite set E

is called submodular if for A ⊆ B ⊆ E and e ∈ E, f(A+ e)− f(A) ≥ f(B + e)− f(B).

Under the assumption of submodularity of the value of observations, the incremental

value f(o+O′)−f(O′) of adding an observation o to set O′ is larger than the incremental

value f(o+O)− f(O) of adding o to a set O ⊃ O′. Throughout the rest of this thesis,

we will often use this concept of incremental value, which is formally defined as:

Definition 2.5 (Incremental Value). The additional value (in terms of a set function

f) obtained by adding a set A ⊆ E to another set B ⊆ E is called the incremental value

of A, and is denoted as ρA(B) = f(A ∪B)− f(B).

Thus, using this concept, the main property of a submodular function in Definition 2.4

can be restated as:

ρ{e}(A) ≥ ρ{e}(B)

The importance of submodularity stems from the fact that many of the observation

value functions we discussed in Section 2.4 (and in information gathering in general)

are submodular, for example entropy, mutual information,8 area coverage and number

of events detected (in wide area surveillance, for example).9 As a result, maximising

observation value is equivalent to maximising a submodular function—a problem that

has been extensively studied under cardinality constraints (Nemhauser & Wolsey 1978)

and matroid constraints (Nemhauser et al. 1978). The former involves selecting k el-

ements from a set E, such that their value is maximised, i.e., finding I∗ such that

I∗ = argmaxI⊆E,|I|=k f(I). Since this is a known NP-hard problem (Nemhauser &

Wolsey 1978) no polynomial time algorithm for computing I∗ exists.

The problem of selecting the k optimal elements from a set maps directly onto the

problem of selecting k observations, or, equivalently, deploying k agents, in the presence

of a submodular observation value function. This problem was studied by Guestrin et

al. in a seminal paper (Guestrin et al. 2005), where they resort to approximation in

order to avoid solutions whose computational complexity grows exponentially with the

number of agents (thus violating our requirement of scalability). Specifically, they use

an efficient (polynomial) greedy algorithm for maximising observation value. In each

iteration, this algorithm adds the element e with the highest incremental value to the

8Provided that |V | > 1
2
|L| in Equation 2.8 (Guestrin et al. 2005).

9Additionally, these metrics can be weighted to reflect the importance of certain events or specific
areas within the environment.
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previously selected elements IG ∈ E:

e = argmax
e∈E\IG

ρ{e}IG

until the resulting set IG has the desired cardinality k. Interestingly, submodularity

ensures that this algorithm has strong performance guarantees, as proved by Nemhauser

& Wolsey (1978):

Theorem 2.6. If f is a submodular set function, then, for a given k, the approximation

bound of the greedy algorithm f(IG)
f(I∗) is at least 1−

(
k−1
k

)k
.

For k → ∞, this bound approaches (1 − 1
e
).10 Thus, the greedy algorithm produces

results that are at least ≈ 63% as valuable as the optimal solution.

Guestrin et al. use this greedy algorithm to deploy fixed sensors in a GP with a known

covariance function and hyperparameters. In addition to maximising observation value,

Krause et al. (2006) simultaneously attempts to minimise communication cost between

the deployed nodes. In order to do this, their algorithm exploits the locality property

of the environment. This means that the correlation between observations taken at

two distant locations is small enough to assume they are independent.11 This property

makes it possible to partition the environment in subspaces, such that observations made

in different subspaces are independent. The problem is then solved by generating high

quality deployments for each subspace with the greedy algorithm, which are subsequently

connected to a communication network.

Singh et al. (2007) and Meliou et al. (2007) both extend the work of Guestrin et al.

by exploiting the properties of submodularity and locality for pre-planning valuable

paths for mobile agents. A decomposition strategy similar to the one in the sensor

placement algorithm is used, whereby the environment is divided into grid cells that

can be considered independent under the locality assumption. Their algorithms then

perform a search over paths by connecting grid cells with high value, and return the

agents to their starting location. Similarly, the approach by Zhang & Sukhatme (2007),

which also uses mobile agents, performs a breadth-first search through the space of all

feasible paths. A path is feasible if the boat has sufficient energy to follow it, and does

not return to previously visited locations (recall from Section 2.2 that this is not a

good strategy when the environment is constantly changing). The path that maximises

the cumulative observation value obtained at the locations visited along that path is

returned. Despite the use of heuristics, however, the use of breath-first search causes

this algorithm to scale poorly with the size of the environment.

10Here, e is the base of the natural logarithm, and not an element e ∈ E.
11For example, with the squared exponential covariance function in Section 2.3.1.2, the covariance

between two observations drops exponentially with the distance between them. Thus, if two observations
are sufficiently far apart, their covariance approaches 0, and they can be considered to be independent.
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Within the pursuit and patrol domain, where the agents’ main challenge is to detect

and capture strategic attackers (Section 2.3.3) in an effort to minimise loss, we also find

a number of offline, centralised algorithms (Paruchuri et al. 2007, Basilico et al. 2009,

Agmon, Kraus & Kaminka 2008). These algorithms compute the optimal patrolling pol-

icy by formulating the problem as a mixed integer programming or linear programming

problem. The optimal policy that is produced by these algorithms revisits all locations

often (with varying frequencies based on their vulnerability or value), since attackers

can appear anywhere at any time. However, since finding the optimal policy is an NP-

hard problem (Basilico et al. 2009), these algorithms are only capable of solving small

problem instances, and, as a result, are not scalable.

Now, from the point of view of the requirements laid down in Chapter 1, specifically

those of adaptiveness and autonomy, offline algorithms are less suitable, since the pre-

planning of paths does not allow agents to adjust these paths after the occurrence of

a priori unknown events (e.g. the failure of an agent). Moreover, these algorithms

compute these paths in a centralised way, and distribute the solution over the agents.

This increases their vulnerability to failure of the central controller, which decreases

their robustness.

Despite these drawbacks however, several elements of the techniques described above are

of key importance to our work, all of which are related to the property of submodularity.

First of all, the observation value function f that we define in Chapter 3 is assumed to

be submodular, since many observation gathering domains exhibit this property (includ-

ing the exemplar domains from Section 2.1). Second of all, function f is assumed to

exhibit locality, which enables us to decompose the problem into simpler subproblems in

Chapters 6 and 7 (similar to Singh et al. (2007) and Krause et al. (2006)). Thirdly, we

make extensive use of the greedy algorithm and its associated performance guarantees

for deploying fixed agents (Chapter 4) and computing infinite length patrols for mobile

agents (Chapter 7)

In the next section, we will examine online approaches, which are better suited for

adapting to uncertain and dynamic environments.

2.5.2 Online Coordination Algorithms

In contrast to the offline algorithms discussed in the previous section, online algorithms

do not plan the agents’ actions before deployment. Instead, they are adaptive, and select

observations based on observations made during their operation. As was mentioned ear-

lier, but is worth re-emphasising, the main benefit of online algorithms is their potential

for being robust and their ability to adapt to a priori unknown events (two of the design

requirements of Section 1.1).
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Within the class of online coordination algorithms, we find a variety of techniques, which,

for the purpose of analysis, we divide into three subclasses. Ordered by increasing length

of their planning horizon these are: greedy, receding horizon and non-myopic. Each of

these will now be discussed in turn.

Greedy algorithms maximise observation value for the next action only. They are there-

fore reactive, since they respond to immediate reward signals from their environment,

and do not plan ahead. For instance, a fixed information gathering agent can take a

new observation when the observation value exceeds a pre-set threshold (Osborne et al.

2008, Padhy et al. 2010) Within the literature on mobile information gathering agents,

potential fields is an often encountered greedy and reactive technique (Kerr & Spears

2005, Pereira et al. 2004). Originally proposed for motion planning of robots (Dunias

1996), potential fields are used to attract mobile agents to areas with high observation

value, while repelling them from areas with low value and other agents. For example,

inspired by gas and fluid models, Kerr & Spears (2005) use potential fields to maximise

area coverage with a swarm of mobile robots. Each robot is modelled as a (gas) particle

that bounces off walls and other robots, effectively mimicking the (on-average uniform)

dispersal of gas particles in a volume of space. Consequently, this method is especially

attractive when a large number of robots is available, and degrades gracefully with fail-

ing robots. However, with only a few robots in a large environment, where robot-robot

and robot-wall collisions are less likely, good dispersal and coverage are not guaranteed,

resulting in poor situational awareness. Pereira et al. (2004) also use potential fields

for controlling mobile robots, which collect data from fixed sensors (that are unable to

communicate themselves). Sensors emit a potential field that attracts the mobile robot

with a force proportional to the amount of uncollected observations that it has made,

which, in turn, increases proportional to the rate at which the environment changes

around the sensors. The mobile robots are therefore attracted to sensors in areas that

are subject to rapid change, with corresponding high observation value. Finally, the

work of Grocholsky (2002) and Grocholsky et al. (2005, 2006) can also be regarded an

application of (a form of) potential fields. They refer to this technique as information

surfing, whereby information agents continuously update their speed and heading so as

to move in the direction of the steepest information value gradient. Generally speaking,

due to their very limited lookahead, greedy algorithms are likely to get stuck in local

minima, resulting in poor performance.

Receding horizon planning algorithms, the second class of online coordination algo-

rithms, attempt to maximise observation value over an interval that encompasses more

than a single action, but is shorter than the remaining mission time. It recomputes

when the partially computed plan has been fully executed, or when the state of the en-

vironment changes unexpectedly. In general, this requires more computation time than

greedily maximising the immediate next reward, because the algorithm needs to con-

sider sequences of actions, instead a single one. Applications of this technique include
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the control of single agent whose goal is to minimise uncertainty about its pose as well

as maximise observation value (Martinez-Cantin et al. 2007), and pursuit evasion, where

agents are continuously heading for the most likely location of the evader (a technique

called “global greedy” by Vidal et al. (2001)).

Non-myopic algorithms, the third class of algorithms, consider the entire (remaining)

mission time of an agent. The solution produced by these algorithms are paths of finite

length (in case of a finite mission time) or patrolling policies (in case the mission time is

unknown or infinite). In the latter case, agents are assumed to patrol their environment

infinitely and continuously. While this is clearly an unrealistic assumption, it can be used

to approximate settings wherein an agent is able to extract energy from its environment

(Farinelli, Rogers & Jennings 2008, Kho et al. 2009). Within this class of algorithms,

two lines of research are of particular relevance to this thesis. It is important to note,

though, that both assume the phenomena have spatial, but no temporal correlations,

making them less suitable for highly dynamic environments (see the discussion at the

start of Section 2.3). The first combines the use of Gaussian processes to represent a

phenomenon with the use of Markov decision processes (MDPs) to compute non-myopic

paths for multiple mobile agents with a limited energy supply in an online fashion

(Low et al. 2008). However, whilst this non-myopic approach computes high quality

solutions, it incurs significant computational cost (it is only empirically evaluated for

systems containing only two sensors), and is a centralised solution. The second line of

research extends the techniques used for deploying fixed agents under the assumption of

submodularity (Guestrin et al. 2005, Krause & Guestrin 2005, Krause et al. 2006) that

were discussed in the previous section and develops a non-myopic control algorithm with

strong theoretical bounds (Krause & Guestrin 2007). More specifically, it computes a

policy for a single mobile agent to learn the hyperparameters of the GP online, and

update the plan accordingly. Singh et al. (2009), in turn, generalise this work beyond

environmental phenomena. They develop a polynomial divide and conquer algorithm

that partitions the environment into clusters, such that the value of observations taken

in different clusters are independent (i.e. additive). The algorithm then proceeds to

find valuable paths within each cluster by using the greedy algorithm for submodular

functions discussed in the previous section. Finally, these paths are connected in a way

that ensures the energy cost of traversing it is within budget, the mobile agent returns

to its starting position, and the observation value is maximised. Singh et al. provide

theoretical bounds for solution quality and computation overhead, and introduce the

concept of adaptivity gap to analyse when the environment has changed sufficiently to

warrant recomputation.

Now, there is no general rule that prescribes whether a greedy, receding horizon, or

non-myopic approach should be preferred. Instead, there are a few considerations that

should be made in choosing one of these. Similar to the choice between local and global

value metrics (Section 2.4), a trade-off between the quality of situational awareness and
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scalability (two of the design requirements defined in Section 1.1) has to be made. All

things being equal, the following rough relation can be observed: the longer the planning

horizon, the more computation has to be performed, and the better the solution quality

will be. For example, greedy algorithms are known to get stuck in local maxima, and

can perform very poorly as a result. At the other extreme, non-myopic algorithms

avoid the problem of local maxima, but the high computational overhead that they are

often associated with makes these algorithms less scalable than algorithms with shorter

lookahead. Moreover, the increase in solution quality is not necessarily (or usually)

proportional to the length of the lookahead. Instead, it is characterised by strongly

diminishing returns. This is particularly true when the environment is highly dynamic.

In this case, planning far ahead can be very wasteful since changes in the environment

and endemic uncertainty might quickly invalidate the assumptions on which a plan is

based.

We will discuss the consequences of this trade-off between computational overhead and

solution quality in the summary of this chapter. Next, however, we will focus on de-

centralised coordination, a special subclass of the class of online algorithms. Given the

importance of this topic to this thesis, it is dealt with in a dedicated section, which

follows next.

2.6 Decentralised Coordination

So far, we have implicitly assumed the existence of a centralised controller that controls

the information gathering agents. However, in many cases, a centralised view of the

environment is not available, or the costs associated with obtaining such a view are

prohibitive (see the discussion of autonomy in Section 1.1). In these situations, there

is a necessity for decentralised coordination algorithms. Using these algorithms, control

is distributed over multiple agents, that compute joint, coordinated actions which max-

imise the observation value received as a team. As a result, the team is robust against

failures (since no central point of failure exists), each agent controls its own actions (and

thus is autonomous), and in many cases, the amount of computation that an individual

agent needs to perform scales with the number of its neighbours, not with the size of

the team, thus ensuring the scalability of the solution. Clearly, all these properties are

desirable in terms of the design requirements laid down in Section 1.1.

The literature distinguishes three levels of decentralised coordination (Grocholsky 2002).

Ordered by a decreasing amount of shared belief, these are:

1. Cooperation or negotiated coordination — agents share a common world view, and

negotiate about their actions.
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Figure 2.12: A general architecture of an information gathering agent.

2. Un-negotiated coordination — agents have a shared world view, but individually

decide how to maximise observation value, without negotiating with their neigh-

bours.

3. Passive coordination — agents do not communicate, but coordinate through pas-

sive coordination mechanisms, for example by observing each other’s position or

behaviour.

Returning to the architecture of an information gathering agent introduced at the start

of this chapter, which is repeated in Figure 2.12, we can identify the impact of the three

levels of coordination. Starting with the lowest level of coordination, passive coordination

requires neither belief sharing, nor the exchange of negotiation messages. Consequently,

arrows A and B are not present in the architecture of an agent operating in this mode.

Moving up one level, un-negotiated coordination shares beliefs, but does not explicitly

negotiate about actions. Thus, while arrows A are present for this mode of coordination,

arrows B are not. Finally, in negotiated coordination mode, sensors both share beliefs,

and negotiate about actions. As a result, both arrows A and B are present.

In the negotiated cooperation and the un-negotiated coordination modes, agents share an

approximately common world view through the exchange of messages. These messages

related to the observations that they have made, but do not necessarily contain only

raw samples obtained from the environment. Rather, they can also contain a summary

or aggregation of the samples made so far. In particular, it is very desirable to make

the message size independent of the amount of samples its contents are based on. For

example, the use of the information variant of the Kalman filter lends itself to efficient

communication, since only the agent’s current belief needs to be communicated with

others (Grocholsky et al. 2006, Reece & Roberts 2005). To the best of our knowledge,
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there does not exist any work that achieves a similar efficiency for the distributed use

of the GP.12

The crucial difference between cooperation in negotiated or un-negotiated mode is that,

in the latter mode, each agent unilaterally chooses the best (local) decision, without

informing other agents of its intentions. As a result, agents will usually become aware

of the impact of the collective decision after the fact, at which point it is too late to

correct for any possible conflicts. In negotiated cooperation, however, these conflicts

can be avoided because agents make their decisions after a negotiation phase with their

neighbours, which is aimed at maximising the collective observation value received by

the agents. Compared to un-negotiated coordination, negotiated coordination requires

more computation and communication, but is also likely result in better performance.

Now, it is often the case that the observation value received by a team of agents can

be factorised into a sum of observation values received by individual agents. This is

due to the fact that many observation value functions exhibit the property of locality

(see Section 2.4). Locality implies that observations taken sufficiently far apart in space

are (almost) independent (i.e. their value is additive). When we substitute the term

‘utility’ for ‘observation value’ (two terms we use interchangeably in this thesis), the

sum of observation values is commonly referred to as social welfare within the multi-

agent systems literature.13 Within this setting, we wish to find an action for each agent,

such that the team utility (and thus observation value) is maximised. More formally, let

A = {A1, . . . ,AM} denote the set of agents, and p = {p1, . . . , pM} the set of discrete

control or action variables with domain Di = {a1i , a2i , . . . , akii }. Furthermore, every agent

Ai has a utility (or observation value) function Ui(pi) that depends on the set pi ⊂ p of

action variables belonging to agents whose observations are not independent with those

of Ai. The goal of the team is then to find the optimal action p∗ that maximises the

sum of the agents’ utilities:

p∗ = argmax
p

M∑

i=1

Ui(xi) (2.9)

Furthermore, in order to enforce a decentralised solution, we assume that each agent

only has knowledge of, and can directly communicate with a few neighbouring agents

that influence its utility directly. As a result, the complexity of the computation an

agent has to perform depends its number of neighbours, and not on the total number of

agents in the team, making the decentralised solution scalable. Clearly, these properties

are highly desirable in light of the requirements of scalability, robustness and autonomy

(see Section 1.1).

12Although the methods proposed by Reece & Roberts (2008) seem very promising. As mentioned
before, an investigation into the applicability of these methods is part of future work.

13The same problem is also referred to as the optimal control problem in control theory (Paskin et al.
2005).
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Against this background, we can treat Equation 2.9 as a Distributed Constraint Opti-

misation Problem (DCOP) (Modi et al. 2003), in which “multiple cooperative agents

control one or more variables and work together to optimise a set of constraints that

exists upon these variables”.14 In recent years, this type of problem has been studied ex-

tensively, which has led to a wide range of algorithms that can be readily applied to solve

them. Such algorithms can be broadly divided in two main classes: complete algorithms

that generate optimal solutions such as ADOPT (Modi et al. 2005), OptAPO (Mailler &

Lesser 2008), and DPOP (Petcu & Faltings 2005); and approximate algorithms such as

the Distributed Stochastic Algorithm (DSA) (Fitzpatrick & Meertens 2003), Maximum

Gain Message (Maheswaran et al. 2005), and k-optimal algorithms (Kiekintveld et al.

2010).

Now, while complete algorithms provide guarantees on the solution quality, they also

exhibit an exponentially increasing coordination overhead (either through the size and/or

number of messages exchanged, or in the computation required by each agent) as the

number of agents in the network increases. Conversely, approximate algorithms require

very little local computation or communication, but often converge to poor quality

solutions because agents do not propagate information across the entire team. Rather,

local information is only used in coordinating neighbouring agents. For example, using

DSA each agent communicates its preferred action (e.g., the one that will maximise its

own utility) based on the current preferred actions of its neighbours only.

However, there exists a class of algorithms usually referred to under the framework of

the Generalised Distributive Law (Aji & McEliece 2000), that constitute a compromise

between the extremes represented by these two classes, and can be used to obtain good

approximate solutions. These algorithms have been widely used in the field of informa-

tion theory and probabilistic inference to decompose complex computations on single

processors (MacKay 2003), and more recently both complete and approximate algo-

rithms from this framework have been applied to the coordination of networked sensing

devices within the domain of discrete action parameters (Paskin et al. 2005, Farinelli,

Rogers, Petcu & Jennings 2008, Kim et al. 2010, Waldock et al. 2008).

2.6.1 The Max-Sum Algorithm

In particular, one of the approximate algorithms, called the max-sum algorithm, has

been shown to generate solutions closer to the optimum than previous approximate

stochastic DCOP algorithms (Farinelli, Rogers, Petcu & Jennings 2008). It does so with

an acceptable computation and communication overhead when benchmarked against

representative complete algorithms (specifically DPOP), and it has been shown to be

robust to message loss, making it very relevant in the context of the design requirements

of this thesis.

14http://teamcore.usc.edu/dcop/
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Figure 2.13: Diagram showing (a) the interactions of agents A1, A2 and A3, (b)
factor graph representing the dependencies between the agents actions.

In more detail, the max-sum algorithm operates on a factor graph that represents the

optimisation problem described in Equation 2.9. A factor graph is an undirected bipar-

tite graph in which vertices represent variables pi and utility functions Uj(pj). In such

factor graphs, an edge exists between a variable pi and a function Uj iff pi ∈ pj , (i.e.,

pi is a parameter of Uj). For example, Figure 2.13(a) shows three interacting agents,

and 2.13(b) shows the factor graph encoding the interactions between them. In order to

have a truly decentralised computation, the function that represents an agent’s utility,

as well as the variable that represents the agent’s action variable, are assigned to the

physical computational unit associated with that agent.

Using the max-sum algorithm, each agent Ai is able to compute the marginal utility of

its action variable pi:

Ũi(pi) = max
pi\pi

M∑

i=1

Ui(pi) (2.10)

in a distributed way (i.e. based on local information and communication with direct

neighbours). Here, Ũi(pi) is the marginal function of pi, where for any state a ∈ Di,

Ũi(a) is equal to the maximum value the global objective function (Equation 2.9) can

attain if pi = a. Thus, after computing the marginal function agent Ai can compute

action p∗i that maximises global welfare, as follows:

p∗i = argmax
pi

Ũi(pi) (2.11)

This function Ũi(pi) is computed by message passing between the functions Ui and the

variables in pi as follows:

• From variable pi to function Uj:

qi→j(pi) = αij +
∑

k∈Mi\j

rk→i(pi) (2.12)
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whereMi is a set of function indexes, indicating which functions are adjacent to

variable pi in the factor graph,15 and αij is a normalising constant to prevent values

from growing endlessly to the point of calculation error in cyclic factor graphs.

• From function Uj to variable pi:

rj→i(pi) = argmax
pj\pi

[
Uj(pj) +

∑

k∈Nj\i

qk→j(pk)

]
(2.13)

where Nj is a set of variable indexes, indicating which variables are adjacent to

function Uj in the factor graph.

In acyclic factor graphs, the messages exchanged between variable pi and function Uj are

functions of a single variable (pi) that represent the maximum aggregate utility possible

over the respective halves of the graph formed by removing the edge between pi and Uj ,

for each of pi’s possible states a ∈ Di.

At any time during the propagation of these messages, each agent Ai is able to compute

the value of its action variable p∗ that maximises Equation 2.9. This is done by locally

calculating the marginal function Ũi(pi) with respect to variable pi from Equation 2.10,

by summing the messages received by agent Ai’s variable node:

Ũi(pi) =
∑

j∈Mi

rj→i(pi) (2.14)

and hence finding:

p∗i = argmax
pi

Ũi(pi) (2.15)

The earlier statement that Equation 2.15 results in the optimal joint action has to be

somewhat qualified. In particular, this statement holds when the factor graph is acyclic

(Aji & McEliece 2000).16 In this case, the algorithm is guaranteed to converge, Equation

2.14 is the true marginal of pi, and, as a result, Equation 2.15 is indeed the optimal

solution. However, when applied to cyclic graphs, there is no guarantee of convergence,

and the algorithm returns an approximation of the marginal function Ũi(pi), which

can theoretically result in arbitrarily bad solutions. Despite this, extensive empirical

evidence has demonstrated that the family of algorithms to which max-sum belongs,

generates good approximate solutions (Kschischang et al. 2001, Frey & Dueck 2007).

15For example, in Figure 2.13(b), M1 = {1}, M2 = {1, 2, 3}, and M3 = {3}.
16This implies that the problem can be broken into two simpler subproblems by removing a single

dependency between two agents.
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The Bounded Max-Sum Algorithm Despite the existence of this empirical evi-

dence, however, the lack of performance guarantees limits the applicability of the max-

sum algorithm in many application domains (particularly life-critical ones, such as disas-

ter management and military surveillance), since the existence of pathological behaviour

can not be ruled out. A solution to this problem was proposed by Farinelli et al. (2009),

which involves the removal of dependencies between utility functions and variables, such

that the resulting factor graph is acyclic. As a result, this variant of the max-sum algo-

rithm, called the bounded max-sum algorithm, is guaranteed to converge, and provides

a bounded approximation of the original problem, due to the removal of dependencies.

In more detail, the bounded max-sum algorithm attempts to remove the dependencies

that have the least impact on the solution quality. The impact of a dependency eij

between pi and Uj is referred to as its weight wij , and is defined as:

wij = max
pj\pi

[
max
pi

Uj(pj)−min
pi

Uj(pj)

]
(2.16)

Here, weight wij represents the maximum impact variable pi can have on the value of

function Uj . As a result, if the dependency is ignored, the maximum difference between

the computed solution and the optimal will be wij . Since this difference is to be as small

as possible, the objective is to find a subtree of the original factor graph FG, such that

the sum W of weights of the removed dependencies is minimised:

W =
∑

eij∈C

wij

where C is the set of removed edges. This problem is equivalent to finding a maxi-

mum spanning tree of FG, which is computed in a decentralised fashion using the GHS

algorithm (Gallager et al. 1983).

To obtain the approximate solution, the standard max-sum algorithm is run on this

spanning tree, where utility functions Uj that have had dependencies removed are eval-

uated by minimising over all values of the removed variables pc
j . Consequently, the

algorithm produces an optimal solution to the following problem:

p̃ = argmax
p

∑

i

min
pc
j

Uj(pj) (2.17)

Farinelli et al. (2009) prove that relation between the (unknown) optimal solution V ∗ =
∑

j Uj(x
∗
j ) and the approximate solution Ṽ =

∑
j Uj(x̃j) for a particular factor graph

FG is given by:

V ∗ ≤ ρ(FG)Ṽ (2.18)
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where ρ(FG) is the data-dependent (i.e. dependent on the specific problem encoded by

factor graph FG) approximation ratio. This ratio is computed as:

ρ(FG) = 1 +
Ṽ m +B − Ṽ

Ṽ
(2.19)

and Ṽ m =
∑

j minpc
j
Uj(x̃j) represents the optimal solution to the tree structured con-

straint network.

Message Passing Schedule Now that we have defined the messages that are ex-

changed between the variables and functions, and discussed the bounded max-sum al-

gorithm, one final issue needs to be addressed. This issue pertains to the order in which

messages are sent, and the number of messages that need to be exchanged until the

algorithm terminates.

In more detail, in a cyclic factor graph,17 the messages exchanged between functions and

variables described in Equations 2.13 and 2.12 may be randomly initialised, and then

updated whenever an agent receives an updated message from a neighbour; there is no

need for a strict ordering or synchronisation of the messages. In addition, the calculation

of the marginal function in Equation 2.14 can be performed at any time (using the most

recent messages received), and thus, agents have a continuously updated estimate of

their optimum action.

The solution computed by the algorithm depends on the structure of the agents’ utility

functions, and, in general, three behaviours can be observed:

1. The preferred actions of all agents converge to fixed actions that represent either

the optimal solution, or a solution close to the optimal, and the messages also

converge (i.e. the updated message is equal to the previous message sent on that

edge), and thus, the propagation of messages ceases.

2. The agents’ preferred actions converge as above, but the messages continue to

change slightly at each update, and thus continue to be propagated around the

network.

3. Neither the agents’ preferred actions, nor the messages converge and both display

cyclic behaviour.

Thus, depending on the problem being addressed, and the convergence properties ob-

served, the algorithm may be used with different termination rules:

17This message passing schedule applies to acyclic graphs as well, but more efficient methods exist
for this type of factor graphs (Farinelli, Rogers, Petcu & Jennings 2008).
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1. Continue to propagate messages until they converge, either changing the action of

the agents continuously to match the optimum indicated, or only after convergence

has occurred.

2. Propagate messages for a fixed number of iterations per agent (again either chang-

ing the action of the agent continuously or only at termination).

The first termination rule favours the quality of the solution. When the algorithm

converges, it does not converge to a simple local maximum, but to a neighbourhood

maximum that is guaranteed to be greater than all other maxima within a particular

large region of the search space (Weiss & Freeman 2001). Depending on the structure

of the factor graph, this neighbourhood can be exponentially large. However, only

limited guarantees for convergence of the max-sum algorithm exist, and for general

factor graphs the algorithm might not converge. For practical applications, therefore,

the second termination rule is often preferred. In fact, empirical evidence shows that the

max-sum algorithm reaches good approximate solutions in a number of iterations that

is less than the diameter of the graph, to allow information to be exchanged between

any pair of nodes in the graph (Farinelli, Rogers, Petcu & Jennings 2008). In addition,

in dynamic scenarios where the utilities of the agents or the interactions between them

change over time, the max-sum algorithm can run indefinitely without any termination

rule; each agent can decide at every cycle which action to choose based on Equation

2.14, and operates on a continuously changing coordination problem. In light of this, in

this thesis, we opt for the second termination rule.

This concludes our discussion of the max-sum algorithm. Due to its robustness to mes-

sage loss, the fact that it is fully decentralised, and that it has an acceptable computation

and communication overhead, the max-sum algorithm is an attractive option to serve

as a basis for a coordination algorithm for information gathering agents. In Chapter

6, we will therefore show how max-sum can be applied to an information gathering do-

main with mobile agents, resulting in a decentralised coordination algorithm that has

many of the required properties stated in Chapter 1. Furthermore, since many domains

are characterised by continuous action variables (for instance, agents in the wide area

surveillance setting in Figure 2.2, whose viewing angle can range between 0 and 360

degrees), instead of the discrete variables that the standard max-sum algorithm sup-

ports, we extend the max-sum algorithm to continuous variables and utility functions

in Chapter 5.

2.7 Required Scale of a Team of Agents

In the previous sections we studied related work using the general architecture for an

information gathering system. A few important questions remain, which relate to the
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Figure 2.14: The effect of changing the observation range, rate of change and mobility
on the scale of a team of agents required to achieve a fixed level of performance. The

+ and − indicate a positive and negative relation respectively.

required scale of a team of information gathering agents. More specifically, how does the

rate of change of the environment, the mobility and the observation range of the agents

impact on the number of agents required to achieve a certain level of performance?

Fixing the desired level of performance (expressed in terms of observation value), Figure

2.14 summarises the relations between these variables and the number of agents that

are needed to achieve this level of performance.

The first variable, rate of change, relates to the speed at which the environment changes

in space, time, or both. The rate of change is roughly inversely proportional to the

correlations that exists between observations made at different points in space-time. The

weaker these correlations, the less information is revealed by making an observation. As

a result, in order to maintain a constant level of performance, a larger number of agents

is needed as the rate of change increases.

The second variable, observation range, models how much of its environment an agent

can observe at any given time. This depends in part on the environment itself (e.g. on the

number of obstructions present in it), the nature of the application domain (for example,

radiation strength can only be measured at the agent’s location, while intrusions can be

detected within the agent’s viewing area), and the type and quality of sensing available

to the agents. Clearly, there exists a negative relation between the agents’ observation

range and the size of the team required to achieve a fixed level of performance.

The third variable is mobility, which relates to the speed of agents relative to the size

of the environment. At one end of the scale, we find fixed agents, such as the ones

embedded in fixed sensor networks, while at the other we find UGVs and UAVs. The
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greater an agent’s mobility, the larger the fraction of the environment it can observe,

thus requiring fewer agents to achieve the same level of performance.

Now, in general, the complexity involved in coordinating a team of agents increases

with its size. This is because more agents imply more interactions between the agents.

The magnitude of this complexity increase depends on the nature of the problem and

the type of coordination algorithm used. For instance, the complexity of solving a

problem with dependencies between all pairs of agents with an optimal algorithm (such

as DPOP) increases exponentially faster than the complexity of solving a problem with

sparse interactions with an approximate algorithm (such as max-sum).

Of the relations mentioned above, one in particular—the (negative) relation between

mobility and the number of required agents—is of specific importance to this thesis. In

more detail, the decentralised coordination algorithms developed in Chapters 4 and 5,

which are concerned with fixed agents, need to be able to coordinate a much larger num-

ber of agents to achieve the same level of performance as the algorithms for coordinating

mobile agents which are discussed in Chapters 6 and 7. Thus, the algorithms for fixed

agents need to be more scalable than those for their mobile counterparts. Fortunately,

as we will see in these chapters, this need can be satisfied due to the fact that the action

spaces of fixed agents are much less complex than those of mobile agents.

2.8 Summary

Let us recapitulate what we have discussed in this chapter and determine the impact

of previous work on the work presented in this thesis. At the start of this chapter, we

introduced three exemplar information gathering domains—monitoring environmental

phenomena, wide area surveillance and search and patrol—that will be addressed in this

thesis. While seemingly different, we showed that previous approaches for these domains

exhibit several shared patterns and similarities by analysing them through the lens of

a general architecture for an information gathering system (Figures 2.4 and 2.5). This

architecture consists of three major components: a representation of the environment, a

value metric for observations and a component responsible for coordinating the agents’

actions in order to maximise observation value. In what follows, we briefly summarise

our main findings for every component in turn.

In discussing related work from the perspective of the first component, representing the

environment, we have seen that there exists a wide variety of techniques. Of all the

three components of the architecture, these techniques are the most domain dependent

since they are responsible for transforming observations of inherently domain dependent

features into an abstract model of the environment. We discussed the most commonly

used ones for each of the three exemplar domains. For monitoring environmental phe-

nomena, we have seen that the GP is a very versatile and powerful tool for accurately
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modelling the spatial and temporal dynamics. Specifically, from the perspective of our

requirement of quality, insight into these dynamics for achieving situational awareness

is important, and the GP allows us to recover them in a straightforward way. However,

the versatility of the GP comes at a higher computational cost than, for example, linear

regression. Nevertheless, we believe the GP is an attractive technique, since it does not

put restrictions on the class of phenomena that can be modelled. Consequently, it is our

preferred technique for monitoring environmental phenomena in Chapters 6 and 7.

For wide area surveillance, and search and patrol, the challenge of representing the

environment is less complicated. In the former, this challenge is limited to maintaining

a map of their coordinates, or learning their spatial distribution. In the latter, search

and patrol, the belief over the possible locations of non-strategic attackers, which are the

focus of this thesis, is represented as a probability map. We showed these probability

maps are updated based on new observations and a behaviour model of the attackers.

In terms of valuing observations, the second component, we defined the value of ob-

servations in terms of their contribution towards improving the quality of situational

awareness. We discussed the key mathematical concept of submodularity, which cap-

tures the diminishing returns of making additional observations, and showed that many

observation value metrics found in many information gathering domains exhibit this

property. Because of this, the observation value function in the central problem for-

mulation in Chapter 3 is assumed to be submodular, and the greedy algorithm for

maximising submodular functions forms the foundation of the algorithms we develop in

Chapters 4 and 7. Furthermore, we grouped value metrics into local and global ones,

and discussed the trade-off between solution quality and computation overhead that the

choice between them entails. Generally speaking, the use of global metrics (which take

into account the impact of making an observation on the entire environment) results in

better solutions at the cost of a higher computational overhead, compared to the use of

local metrics (which only take into consideration the reduction surprise at the location

where an observation is taken). Therefore, when the computational overhead associated

with the technique for representing the environment is high, it is often prudent to resort

to a local metric. In Chapter 6, where we use the GP for representing environmental

phenomena, we study this trade-off in more detail by comparing the local entropy metric

against the global mutual information one.

We demonstrated that third and final component, which is responsible coordinating the

agents’ actions, can be studied in a domain independent fashion using our proposed

architecture. We grouped existing coordination algorithms into an offline and an online

subclass. Particularly. we discussed how online algorithms are more appropriate in

dynamic and uncertain scenarios, since they are more robust to failure and are better

able to adapt to a priori unknown events (two of the requirements defined in Chapter

1) than their offline counterparts. In light of this, the algorithms presented in this thesis

are almost exclusively online, with the exception of the online/offline hybrid algorithm
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Chapter

Property 4 5 6 7

Lookahead Greedy Greedy Receding horizon Non-myopic

Value Metric Global Global Both Both

Online vs. Offline Online Online Online Offline/Online

Mobile vs. Fixed Fixed Fixed Mobile Mobile

# Agents > Hundreds Hundreds Tens Tens

presented in Chapter 7. This algorithm computes a baseline offline solution, which is

improved upon through online coordination.

We further subdivided the online coordination algorithms into three categories, based

on the length of lookahead: greedy, receding horizon and non-myopic. We argued that

deciding an appropriate lookahead involves a trade-off between quality and scalability :

in general, increasing the lookahead produces better solutions (although subject to di-

minishing returns), but also results in a dramatic increase of computation (which is often

exponential in the length of the action sequence). Moreover, the non-myopic algorithms

we discussed in Section 2.5.2 are of particular interest since they are capable of give

performance guarantees.

In light of this, in this thesis, we propose algorithms with varying degrees of lookahead.

On the one hand, the algorithms for deploying and coordinating fixed agents presented

in Chapters 4 and 5 can be regarded as greedy: the former uses an algorithm similar to

the greedy algorithm for maximising submodular functions discussed in 2.5; the latter

uses the max-sum algorithm to find the immediate next joint (i.e. coordinated) action

that maximises observation value. On the other hand, the decentralised coordination

algorithms for controlling mobile agents in Chapters 6 and 7 require are receding horizon

(with an adjustable lookahead) and non-myopic control (with performance guarantees)

algorithms respectively.

As a special subclass of online algorithms, we discussed decentralised coordination. In

particular, we focused on the max-sum message-passing algorithm for decentralised co-

ordination and argued that it exhibits desirable properties as robustness, scalability and

autonomy. In light of this, in this thesis, we use the max-sum algorithm for coordinat-

ing both fixed (Chapter 5) and mobile agents (Chapters 6 and 7) and develop several

extensions to it. In particular, in Chapter 5, we extend max-sum to problems with con-

tinuous action variables, and present various techniques for improving its computational

efficiency in Chapter 6.

Finally, we discussed the required scale of a system of information gathering agents,

based on several intrinsic properties of the application domain. These properties—

mobility, rate of change and observation range—impact in different ways on the level

of achieved performance. One relation in particular, the (negative) relation between
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mobility and the number of required agents, is specifically important to this thesis. In

particular, in Chapters 4 and 5, which deal with fixed agents, a much larger number of

agents is required to achieve the same level of performance as the mobile agents that

are discussed in Chapters 6 and 7. As a result, the algorithms for fixed agents need to

be (and, indeed, are) more scalable than those for their mobile counterparts.

Table 2.8 summarises the properties of the algorithms presented in this thesis.

As we have seen in this chapter, there is a wide variety of bespoke algorithms for dif-

ferent types of environments, solving a wide spectrum of seemingly different problems.

However, by analysing these algorithms from the perspective of the architecture for in-

formation gathering systems, we have demonstrated that its three components can be

described in an increasingly domain independent fashion. Thus, whilst the component

responsible for representing the environment transforms domain dependent observations

into an abstract model of the environment, and the observation value component de-

pends on this model for ranking future observations, the coordination component is fully

shielded from domain dependent features through the domain independent concept of

observation value. In the next chapter, we exploit this property by formulating the

problem of coordinating information gathering agents exclusively in terms of this con-

cept. By so doing, the decentralised coordination algorithms that we develop in this

thesis—which operate directly on this problem—are applicable to a wide spectrum of

problem domains.



Chapter 3

The Multi-Agent Information

Gathering Problem

In this chapter we present a general formalisation of the multi-agent information gather-

ing problem. This formulation is domain independent, and therefore makes no reference

to any domain specific properties (e.g. targets, environmental phenomena, or intruders).

As we have seen in Chapter 2, this can be accomplished through the use of the concept

of observation value, which abstracts from the chosen representation of the environ-

ment, and defines the value of observations in terms of their contribution to improving

situational awareness.

Our formalisation is inspired by that of Singh et al. (2007), which we have extended with

a temporal dimension (i.e. the property of temporality), and placed in an agent-based

setting where each sensor is modelled as an autonomous agent that possesses limited

and local knowledge.

In what follows, we describe first the features that are shared between all information

gathering domains. Then, we describe additional features that apply to settings with

mobile agents. Finally, we describe the agents’ objective.

Now, the multi-agent information gathering problem is given by:

• A set of agents: A = {A1, . . . ,AM}

• A set of spatial coordinates L embedded in Euclidian space, in which the agents

take measurements. The Euclidian distance between two coordinates u, v ∈ L is

denoted by d(u, v).

• A discrete set of temporal coordinates T = {1, 2, 3, . . . }, that specify when the

agents can take measurements.

59
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• A set of spatio-temporal observation coordinates O = L × T . An element o ∈ O

is called an observation. We will use the notation o(l) ∈ L, o(t) ∈ T and o(m) to

refer to the o’s spatial coordinate, its temporal coordinate, and its realisation. The

latter refers to what was actually measured, and can be a scalar (e.g. temperature)

or binary (e.g. whether an intruder was detected).

• A set function f : 2O → R
+ that assigns observation value to a set of observations.

This value is proportional to the situational awareness this set of observations

brings about. Thus, function f should assign a value to a set of observations O,

based on the prediction accuracy, as well as the loss prevented by making these

observations. This function has the following (optional) properties:

Property 1 (Non-decreasing). f is non-decreasing: ∀A ⊆ B ⊆ O, f(A) ≤ f(B).

Thus, acquiring more observations never ‘hurts’.

Property 2 (Submodularity). f is submodular: ∀A ⊆ B ⊆ O and ∀o /∈ A:

f(A ∪ {o})− f(A) ≥ f(B ∪ {o})− f(B)

This property encodes the diminishing returns of observations, i.e. making an addi-

tional observation is more valuable if the agents only have a few prior observations,

than if they have made many. As discussed in Section 2.5.1, many observation

value functions exhibit this property, such as entropy, mutual information, and

area coverage.

Property 3 (Locality). Observations taken sufficiently far apart in space are

(almost) independent. That is, there exist a distance δ ≥ 0, and a ρ ≥ 0, such

that for any two sets of observations A and B, if mina∈A,b∈B d(a, b) ≥ δ, then:

f(A ∪B) ≥ f(A) + f(B)− ρ

Property 4 (Temporality). Observations taken sufficiently far apart in time are

(almost) independent. Formally, let σt(·) be a function that selects observations

made at or after t:

σt(A) = {(v, t′) ∈ A | t′ ≥ t}

Then, there exists a τ ≥ 0, such that for all A ⊆ O, ǫ ≥ 0:

f(σt−τ (A)) ≥ f(A) + ǫ

Additionally, for mobile agents the problem is augmented with the agents’ motion con-

straints:

• A graph G = (V,E) that represents the layout of the agents’ environment, where

edges E encode the movements that are allowed between spatial coordinates V .

Distance measure dG(u, v) is the length of the shortest path in G.
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For both fixed and mobile agents, each time step t ∈ T proceeds in three steps:

1. Each agent Ai ∈ A takes a set of observations Ot
i ∈ O. The number of observations

depends on the domain and the type of events that occur within the environment.

For example, when measuring temperature, an agent at some location v is only

capable of taking a temperature reading at v, and Ot
i is a singleton. However,

when scanning its environment for intruders, it might be able to observe locations

other than v alone, such that Ot
i contains multiple observations.

2. Agents coordinate with their neighbours to determine which actions to take next.

Each agent’s neighbours are selected based on its communication range, but also,

for example, on the locality parameter δ, since there is no need for coordination

if the value of observations are independent. This step is optional; at some time

steps coordination might not be required.

3. Each agent takes an action. For mobile agents, this means moving to a loca-

tion adjacent to its current one in graph G. For fixed agents, this might involve

reorienting its viewing direction, or (de)activating itself.

The following examples illustrates the concepts introduced above for a scenario with

mobile agents.1

Example 3.1. Figure 3.1 shows four discrete time steps of the movement of four mobile

agents. Here, it is assumed that the speed of the agents is sufficient to reach an adjacent

vertex within a single time step. For illustration purposes, the observation value function

f assigns a value to observation at vertex v, which is equal to the number of time steps

that have elapsed since v was last observed, with a maximum of 4. Moreover, agents can

only observe the vertex at which they are currently positioned.

The size of the vertices in Figure 3.1 are proportional to the observation value that can

be received at their coordinates in the next time step. Thus, the value that the agents

receive as a team in each of these four time steps are 4, 12, 16 and 13. Clearly, the

decision by agent A3 to go back to its previous position (Figure 3.1(d)) results in a

suboptimal observation value (at least, over these four time steps). If, instead, it had

chosen to move to any other adjacent vertex, the observation value received by the team

would have been 16.

Now, as this example suggests, the goal of the agents is to maximise the observation

value they receive as a team. To formalise this, we require some notation for describing

different sets of observations:
1In this thesis, the term mobile agent is used to refers to an information gathering agent embedded

in a mobile unmanned sensor. This is different from the common usage of this term, where is it used to
refer to software agents that can migrate from one computer to another.
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• The set of observations made by Ai at time t is denoted as Ot
i .

• The set of observations made by all agents at time t is denoted as Ot
A.

• The set of observations made by all agents at or before time t is denoted as Ot
A.

By definition, for t < 0, Ot
A = ∅.

We will refer to the value received by making observations Ot
A, given that observations

Ot−1
A where previously made, as their incremental value ρ:

ρOt
A
(Ot−1

A ) = f(Ot
A ∪Ot−1

A )− f(Ot−1
A ) (3.1)

The agents’ ultimate aim, to provide accurate situational awareness, can now be ex-

pressed in terms of maximising the discounted incremental value received during their

mission:

∑

t∈T

γtρOt
A
(Ot−1

A ) (3.2)

Where 0 ≤ γ ≤ 1 is a discount factor, that is used to control how much observations in

the near future are worth compared to those in the longer future.

Scope and Limitations The properties of this problem have been carefully chosen to

be as generic and realistic as possible, while at the same time offering several properties

that can be algorithmically exploited. However, at this point, it is worth offering a brief

discussion about the limitations of this formalisation. Specifically, these limitations can

be broken down based on the three main properties of value function f :

Submodularity As discussed in Section 2.5.1, the submodularity of function f im-

plies that observations are subject to diminishing returns. Thus, this rules out

the possibility of synergy between the agents. Synergy is found settings in which

the value of observations is superadditive, such as those wherein certain sets of

observations are valuable only if combined with others. Consider, for example,

the case where the information collected about some feature of the world has to

exceed a certain threshold to be of any value (see for example, Bian et al. (2006)).

Suppose, furthermore, that this minimum amount of information is provided by a

set of observations S. Thus, for any A,B ⊂ S, A∪B = S, function f is defined as

f(A) = f(B) = 0, and f(A∪B) = v ≥ 0. Clearly, this function is not submodular.

However, it is important to note that in the absence of such thresholds, two arbi-

trary sets of observations commonly contain a non-negative amount of redundancy.

Therefore, in such cases, submodularity is a valid assumption.
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Chapter

Property 4 5 6 7

Submodularity R R R R

Locality S S S S

Temporality O O S S

Table 3.1: Properties exploited or required by the algorithms presented in this thesis.
‘R’ means the property is required, ‘S’ that it is a soft requirement, and ‘O’ indicates

that the property is not required.

Locality Unlike submodularity, locality is not a binary requirement, but exhibits itself

in degrees. At one extreme, δ = 0, the value of observations is completely indepen-

dent (i.e. additive), while at the other extreme, δ =∞, all pairs of observations are

dependent (given a fixed ρ for both extremes). In the former case, the problem can

be decomposed into several subspaces of L, while in the latter case, the problem is

such that a single observation provides information about all locations of L, and

can therefore not be decomposed without losing important dependencies between

the resulting subproblems. This leaves one final possibility: the existence of both

local and non-local dependencies between sets of observations. Such problems do

not exhibit locality, but can be approximated by taking the largest range δ outside

which observations are guaranteed to be independent.

Now, since locality determines to a large extent the decomposability of the prob-

lem, it affects the computational overhead of the algorithms presented in the up-

coming chapters. In particular, this overhead is a non-decreasing function of δ.

Locality can therefore be regarded as a soft requirement, since the scalability of

the algorithms is adversely affected by lesser degrees of locality. As such, the re-

quirement of locality does not necessarily limit the range of settings in which these

algorithms can be applied, but can affect the quality of situational awareness (in

the case that δ is chosen to be smaller than its true value) or their performance (if

δ is large compared to the size environment).

Temporality Considerations similar to those for locality apply for the property of

temporality. Strong temporality (τ =∞) implies that all observations taken in the

past affect the value of observations taken now or in the future. Conversely, weak

temporality (τ = 0) indicates that the environment is changing so rapidly that

observations taken during two consecutive time steps are completely independent.

Clearly, realistic environments exhibit a degree of temporality that is somewhere

in between these two extremes. Just as locality, temporality is a soft requirement:

strong temporality means that observations need to be stored for a longer time, and

the calculation of observation value needs to take into account a longer observation

history. Again, since since this requirement is soft, assuming temporality does not

limit the applicability of the algorithms presented in the upcoming chapters.
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Not all of the properties discussed above are required or exploited. Table 3 gives a brief

overview of the mapping between chapters and properties. More details are given in the

chapters in question.

Even under these simplifying assumptions, solving this problem (and several varieties of

it) optimally has been shown to be NP-hard (Meliou et al. 2007, Guestrin et al. 2005).

Thus, in the next chapters, we propose several approximate algorithms that compute

high quality and scalable solutions. These algorithms operate at different stages of the

agents life cycle (i.e. before or after deployment), for both fixed and mobile agents. In

the next chapter, we start with the first algorithm for observation value maximisation

at the deployment stage of fixed agents.
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Figure 3.1: Four discrete time steps of a team of mobile agents A = {A1,A2,A3,A4}
moving in an environment whose layout is defined by a graph G = (V,E). The diameter
of the vertices (indicated by the � symbol) is proportional to the observation value that

is be received by moving there in the next time step.



Chapter 4

Decentralised Coordination for

Fixed Agents during Deployment

In this chapter1 and the next, we focus on the challenges of deploying and coordinating

fixed information gathering agents. In addressing the challenge of deploying these agents,

we develop an algorithm to construct a reliable communication network while at the same

time maximising observation value. We then go on in the next chapter to discuss the

use of decentralised coordination during their operation in order to further improve the

agents’ performance.

Now, as we have seen in Section 2.7, in order to achieve an acceptable level of qual-

ity with fixed agents (all other things being equal), their lack of mobility has to be

compensated for by having a large number of them. In such large numbers, a system

of agents resembles a network of micro-sensors or a wireless sensor network. Recently,

these networks have generated a significant amount of interest in several of the areas

we discussed in Chapter 2: climate change research (Padhy et al. 2006), weather and

tidal surge prediction (Osborne et al. 2008, Kho et al. 2009), and monitoring intelligent

buildings (Guestrin et al. 2005), to name a few. These networks consist of cheap sensors

Table 4.1: The contributions of Chapter 4 in the context of the roadmap of this thesis.

1This chapter is based on Stranders, Rogers & Jennings (2010).

66



Chapter 4 Decentralised Coordination for Fixed Agents during Deployment 67

with very limited computational capabilities, which can potentially be deployed by scat-

tering them from airplanes or ground vehicles. In the not-so-distant future, advances in

miniaturisation could reduce the dimensions of these sensors to the micrometer scale,

allowing them to be deployed as an aerosol. This idea was coined by Warneke et al.

(2001), who refer to these sensors as smartdust.

Crucially, their limited size imposes restrictions on the computational resources they

possess. Thus, agents embedded in these sensors need simple and robust algorithms for

performing both the task of maximising observation value, as well as that of controlling

various aspects of the wireless communication network. A particularly important aspect

in this regard is the assignment of radio frequencies or, equivalently, time slots, for

the Frequency or Time Division Multiple Access protocols (Bryan et al. 2007) that

these sensors typically use, to minimise the number of retransmissions required due to

interference. This is the problem we focus on in this chapter.

Several aspects of this problem have already been studied in the literature. In particular,

when cast as a multi-agent graph colouring problem, the frequency assignment problem

can be solved by the max-sum algorithm, as well as the various other message-passing

algorithms that we discussed in Section 2.6.1. However, as we have seen, these algo-

rithms either yield approximate solutions (e.g. max-sum, DSA), that do not rule out

the possibility of interference; or require exponential computation and communication

(e.g. DPOP), which pushes these algorithms beyond the limited computational abilities

of the agents. Moreover, even if the agents were able to solve the frequency problem

optimally, the inherent complexity of the frequency assignment problem often requires a

large number of frequencies to prevent interference entirely. This means that total avail-

able bandwidth has to be divided into many segments, thereby significantly reducing

the effective available bandwidth of the network (Bryan et al. 2007).

In this chapter, we therefore offer a novel approach to this problem. Instead of solving

the graph colouring problem in the original network of agents, we develop a novel decen-

tralised coordination algorithm that deactivates agents, such that the communication

graph that exists between the remaining agents is more easily colourable. In so doing, the

frequency assignment problem can be solved by simple and standard decentralised co-

ordination algorithms. More specifically, our algorithm constructs a triangle-free graph;

a graph that does not contain cliques greater than 2. This is appealing, because it is

known that graphs with this property are 3-colourable (Thomassen 1994) in linear time

(Dvořák et al. 2009). Equally important, we show that this limits the number of re-

quired frequencies to six, which would otherwise be very large for the original network

of agents.

This, however, poses a new question. Which agents should be deactivated in order to

ensure the communication graph is triangle-free, while at the same time maximising
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observation value? We show that this modified problem is NP-hard (based on theo-

retical results from Nemhauser et al. (1978)), and that, therefore, no efficient optimal

algorithm for this problem exists. Instead, we develop an approximate algorithm, which

allows agents to coordinate in a fully decentralised fashion to construct a triangle-free

communication graph and maximise observation value at the same time.

In more detail, the contributions of this chapter are:2

1. We derive a novel decentralised algorithm for solving the frequency assignment

problem, which activates a subset of the available agents so as to maximise obser-

vation value, subject to the communication graph being triangle-free.

2. We develop a centralised greedy algorithm based on the concept of submodular

independence systems, and derive a theoretical lower bound of 1/7 on the approx-

imation ratio of the algorithm, for any submodular function. This algorithm acts

as a benchmark for the decentralised algorithm in the empirical evaluation.

3. We develop dynamic counterparts for these two algorithms that are capable of deal-

ing with failing agents and newly introduced agents, while ensuring the triangle-

free property of the graphs.

4. We empirically evaluate our algorithm and show that it provides 90% of the obser-

vation value provided by an optimal algorithm, and > 60% of the value provided

by activating all agents (ignoring the frequency assignment problem). Moreover,

we show that the frequency assignment problem on the agent network that results

from applying our algorithms can be solved reliably by a simple and standard de-

centralised graph colouring algorithm. Finally, in the dynamic setting, we show

that our algorithm provides 250% more observation value over time compared to

activating all available agents simultaneously.

The remainder of this chapter is organised as follows. In Section 4.1 we extend the

problem formulation from Chapter 3 to this problem. In Section 4.2 we present a

centralised and a decentralised algorithm. In Section 4.3 we extend these algorithms

to operate continually to replace failing agents. In 4.4 we empirically evaluate this set

of algorithms and demonstrate their effectiveness. Finally, we give a summary of the

contributions of this chapter in Section 4.5, and analyse them in terms of our design

requirements.

2Table 4.1 shows the context of these contributions in terms of the roadmap of this thesis.
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Ai

Ak

Aj

Figure 4.1: The communication and collision graph (solid) of an example agent net-
work (solid and dashed). Possible direct and indirect collisions are represented by solid

and dashed edges respectively.

4.1 Problem Description

In this section we define the problem that we address in this chapter. To do this, we

extend the problem of maximising observation value, which was formulated in Chapter

3, with restrictions on the communication graph.

In more detail, let A = {A1, . . . ,AM} denote a set of M agents deployed on the R
2

plane. Their Cartesian coordinates are given by a vector xi = (xi, yi). Let d(xi,xj)

denote the Euclidean distance between Ai and Aj . Each agent Ai has a radio disk with

radius ri within which other agents can receive its transmissions. Consequently agent Aj

can receive Ai’s transmissions iff Aj is contained within Ai’s radio disk: d(xi,xj) ≤ ri.

Each agent Ai has control over its transmission radius ri, which it can set anywhere

between 0 and rmax, which is the maximum transmission radius for all agents. Given

this model, we can construct a communication graph that models the communication

network that exists among the agents:

Definition 4.1. A communication graph C[A] of a set of agents A is a directed graph

C[A] = (A, E) in which E contains a pair of agents (Ai,Aj) if Aj can receive Aj ’s

transmissions.

Now, to ensure transmissions between two agents are not compromised by interference

from other agents, we wish to allocate frequencies to each agent such that no two agents

with overlapping radio disks are allocated the same transmission frequency. However,

note that the communication graph only models direct collisions—those that occur be-

tween Ai and Aj if they are contained within each other’s radio disks. It does not

model the possibility of indirect collisions (Bryan et al. 2007), which occur when two

unconnected agents Ai and Aj transmitting on the same frequency, are in range of an

agent Ak (see Figure 4.1 for an example). In this case, agent Ak will receive garbled

transmissions from Ai and Aj . To model these indirect collisions, we need to consider

the collision graph C2[A]:
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Definition 4.2. The collision graph of a set of agents A is the square of their commu-

nication graph C[A], denoted by C2[A]. This graph contains an edge (Ai,Aj) if there

exists a path between Ai and Aj in C[A] of at most two edges.

By effectively connecting neighbours of neighbours in the communication graph, the

collision graph models the possibility of direct as well as indirect collisions. Thus, solving

the frequency allocation problem is equivalent to colouring C2[A], which is a well-known

NP-complete problem (Karp 1972). Now, to bound the number of required colours

needed to colour the graph (also referred as its chromatic number (Gross & Yellen

1999)), which can be very large in an arbitrary communication network, and to keep the

algorithms as simple and robust as possible, we proceed in two steps.

First, we wish to find a set of agents whose communication graph C[A] is easily colourable,

by ensuring it is triangle-free. A triangle-free graph is a graph that does not contain

any cycles of length 3, or, equivalently, is free of cliques of size 3 and greater. A 3-

colouring of a triangle-free graph is guaranteed to exist (Thomassen 1994), and can be

computed in linear time (Dvořák et al. 2009). This colouring avoids any direct colli-

sions. In the second step we attempt to avoid any indirect collisions by considering the

denser collision graph of this triangle-free communication graph. Simple graph theory

shows that this graph is guaranteed to be K7 minor-free,3 based on the triangle-free

property of the communication graph. By exploiting this property, and applying the

famous Hadwiger conjecture (Bollobás et al. 1980) we know that the obtained collision

graph is 6-colourable.4 Thus, the maximum number of colours needed to colour the

collision graph of a triangle-free communication graph is 6. In Section 4.4, we show

that this can be achieved by a simple decentralised graph colouring algorithm. Due to

this correspondence between triangle-free communication graphs and their associated

6-colourable collision graph (Definition 4.2), in the remainder of this chapter, we will

consider the communication graph only.

Second, besides ensuring reliable communication between the agents, we also wish to

maximise the observation value that the agents receive. Defined as submodular in Chap-

ter 3, this value is given by a submodular function of the agents’ observations. Since the

agents are fixed, the observation value they receive over their lifetime is dependent only

on their location. In order to simplify notation, we slightly deviate from the problem

formulation in Chapter 3, and define observation value function f over the set of active

agents, instead of the set of observations. As a result, the observation value received by

3A K7 minor-free graph does not contain the complete graph K7 as a subgraph, i.e. it contains no
cliques larger than 6.

4The Hadwiger conjecture states that any Kk minor-free graph is (k − 1)-colourable, and has been
proved for k ≤ 6 (Robertson et al. 1993). In this chapter, we assume that the conjecture holds for k = 7,
on the grounds that partial results are known for this case, and no counter example has yet been found.
In more detail, it is known that graph with chromatic number 7 must contain either a K7 minor graph,
or both a K4,4 and a K3,5 (Kawarabayashi & Toft 2005).
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a subset of A is given by a non-decreasing submodular function f : 2A → R
+, which

accurately captures the diminishing returns of activating an extra agent.

Thus, the problem we address in this chapter is to find a subset of all available agents

A′ ⊆ A that maximises f(A′) subject to the communication graph C[A′] being triangle-

free. These agents A′ will then form the deployed network of agents, and agents A \A′

are deactivated.

These agents are later used to replace failing agents in a dynamic version of this problem.

One major cause of agent failure is battery depletion. In this chapter, we assume that

radio transmission accounts for the majority of the energy consumption of an agent, and

thus we do not consider the energy required for sensing.5 In more detail, agents have an

initial energy supply bi, which depletes over time as a result of their transmission power

as follows: ∆bi = −r2i ·∆t.

In the upcoming sections, we show how a simple and standard decentralised algorithm

can be used to compute agent deployments A′ that achieve high observation value, while

ensuring the triangle-free property of the communication graph.

4.2 Two Deployment Algorithms for Fixed Agents

In this section, we develop two algorithms. The first is a centralised greedy algorithm

with theoretical bounds on the solution. This algorithm will act as a benchmark for

the second algorithm, which is a decentralised coordination algorithm. We then demon-

strate that by deactivating agents, the algorithms are likely to break the communication

graph into multiple unconnected components, thereby disrupting the flow of informa-

tion between them, or to a base station. Therefore, in Section 4.2.3, we add a second

phase to these algorithms, which is implemented by a decentralised algorithm that at-

tempts to reconnect the various components of the graph by incrementally increasing

the communication range of particular agents within the network.

To illustrate this two-phase approach, Figure 4.2 shows the output of the centralised

algorithm for an example deployment with M = 100 agents. Figure 4.2(a) shows the

original deployment. Here, the observation value received by the agents is the total area

covered by their observation areas (the disks). Figure 4.2(b) shows the result of phase

1 of the algorithm. Notice how it selects a subset with high coverage, but also breaks

the communication graph into 8 unconnected components. Figure 4.2(c) shows the

effect of phase 2, which reconnects these components, while ensuring that the resulting

communication graph remains triangle-free. The key feature of the resulting deployment

in Figure 4.2(c) is that the communication graph is colourable with 3 colours, and the

5For example, in GLACSWEB, a network of fixed sensors for monitoring glaciers, the energy ex-
pended on transmitting packets is 30 times greater than the energy expended on sensing (Padhy et al.
2006, Table 1).
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(a) The original deployment of 100 agents.

(b) Agents selected by the centralised greedy
algorithm.

(c) The communication graph after the recon-
nection phase.

Figure 4.2: Example execution of the two phase deployment algorithm. The circles
represent the observation areas of the agents, the total area of which is proportional to
the observation value they collectively receive. An edge between two agents indicates

communication between them is possible.
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collision graph with 6 colours, instead of the 23 colours required by the original graph in

Figure 4.2(a), and the≫ 23 colours required to colour its collision graph. Moreover, due

to redundant coverage in the original deployment, the agents selected by the algorithm

provide almost the same amount of observation value as the agents in Figure 4.2(a).

4.2.1 A Centralised Greedy Algorithm

Before introducing the decentralised algorithm, we first develop a centralised greedy

algorithm. This algorithm iteratively activates agents that most increase observation

value without introducing a triangle. To derive a bound on the performance of this

algorithm, we formulate this problem as maximising a submodular function, subject to

an independence constraint. This independence constraint is formulated by the concept

of an independence system from combinatorial optimisation:

Definition 4.3. (Calinescu et al. 2007) An independence system is a pair (E,I ), where

E is a finite set of elements, and I is a collection of subsets of E such that if A ∈ I

and B ⊆ A, then B ∈ I . Sets in I are said to be independent.

Clearly, the set I△-free of subsets of A whose communication graph is triangle-free

forms an independence system, since every induced subgraph of a triangle-free graph

is triangle-free. Now, since not every subset is equal in terms of observation value, we

augment these independence systems with the observation value function f :

Definition 4.4. A submodular independence system is an independence system together

with a non-decreasing submodular set function f .

Unfortunately, the problem of finding the set I∗ ∈ I such that I∗ = argmaxI∈I f(I)

is NP-hard (Nemhauser et al. 1978). Thus, under the assumption that P 6= NP, there

does not exist a polynomial time algorithm for computing I∗. As a result, to obtain

solutions that scale well with the size of the number of agents, we have to resort to

approximation. One of the simplest approximation algorithms is the greedy algorithm

(Algorithm 2), that builds a solution without backtracking by iteratively adding those

elements that most improve the solution (with respect to f), while simultaneously satis-

fying an independence constraint.6 It is efficient, since it requires O(|E|2) computation

steps (in each of the |E|, it computes e∗, requiring at most |E| evaluations of f in line

3).7 Note that this algorithm is similar to the greedy algorithm discussed in Section

2.5.1, with the difference that the latter maximises a submodular function subject to a

cardinality constraint.

6Note that in this algorithm, the independence system I need not be explicitly given. Typically,
an oracle in the form of an algorithm or indicator function 1I (A) = true ⇔ A ∈ I suffices.

7See (Krause et al. 2008) for additional techniques to speed up the greedy algorithm.
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Algorithm 2 The greedy algorithm for a submodular independence system ((E,I ), f)

1: I := ∅

2: while E 6= ∅ do
3: e∗ := argmaxe∈E f(I + e)− f(I)
4: E := E − e∗

5: if I + e∗ ∈ I then
6: I := I + e∗

7: end if
8: end while

9: return I

The greedy algorithm computes a maximal independent set—an independent set I that

becomes dependent by adding any e ∈ E \ I. In other words, no agent can be added to

the network without introducing a triangle.

Now, while the greedy algorithm is simple, it has its drawbacks; the main one being that

it can perform arbitrarily badly, as illustrated by the following example:

Example 4.1. Let E = {A,B1, . . . , BM}, I = {{B1, . . . , BM}, {A}}. Moreover, let

function f be given by f({A}) = n, f({Bi}) = n−ǫ, f({B1, . . . , BM} = (n−ǫ)M . Thus,

the result of the greedy algorithm is I = {A} after a single iteration, whereas the optimal

solution is I∗ = {B1, . . . , BM}. When M → ∞ and ǫ → 0, the approximation ratio

for Algorithm 2, i.e. f(I)/f(I∗) = (n − ǫ)/((n − ǫ)M), approaches 0. In other words,

for arbitrary independence systems, the greedy solution can be arbitrarily far from the

optimal solution.

Fortunately, many independence systems exhibit additional structure that can be ex-

ploited to obtain a lower bound on the approximation ratio for Algorithm 2, such as

p-independence (Calinescu et al. 2007):

Definition 4.5. An independence system (E,I ) is called p-independent if for all A ∈ I

and e ∈ E there exists a set B ⊆ A such that such that |B| ≤ p and A \B + e ∈ I .8

The following is a result in combinatorics that proves a lower bound on the approximation

ratio of the greedy algorithm:

Theorem 4.6 (Calinescu et al. (2007), Nemhauser et al. (1978)). Algorithm 2 yields a

1/(1+p)-approximation to maximising a non-decreasing submodular set function subject

to a p-independence constraint.

Thus, to obtain a lower bound on the observation value for the greedy algorithm, we

need to determine p for (A,I△-free). In order to do so, we need to restrict the problem

defined in Section 4.1 slightly. This restriction involves limiting the radius of the radio

8When p = 1, a p-independence system is called a matroid, which is a well-known structure in
combinatorics.
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Figure 4.3: Visual representation of the proof of Theorem 4.7. See text for explana-
tion.

disks to a constant R for every agent.9 A set of agents with a fixed radio range R is

denoted as AR, and the communication graph obtained is called a unit disk graph. This

construct allows us to prove the following theorem:

Theorem 4.7. System (AR,I△-free) is 6-independent.

Proof. Simple geometry shows that the maximum degree of a triangle-free unit disk

graph is no larger than 11. Let A be an valid solution (i.e. A ∈ I ). Now, deg(e) ≤ 11 in

A+ e, otherwise A 6∈ I . When deg(e) = 11, A+ e contains 11 triangles. To break each

of these, we remove p = ⌈11/2⌉ = 6 vertices from A. Let B denote this set of vertices.

Then A \B + e ∈ I with |B| ≤ 6, as required.

See Figure 4.3 for a visual representation of this proof. In this figure, e is the black

vertex, B is represented by the white vertices and A is represented by the white and

grey vertices. Radio disks are represented by grey circles. (For ease of exposition, these

radio disks have been scaled by 50%. As a result, links exists within this unit disk graph

when the scaled disks overlap.)

As a result of Theorem 4.7, the greedy algorithm is guaranteed to produce a solution

I such that f(I)/f(I∗) ≥ 1/7 for system (AR,I△-free). However, we do not know

whether or not this lower bound is tight. For example, note that in the worst case,

greedy yields a 6/11 approximation on the construction used in the proofs.10 Moreover,

our empirical evaluation (see Section 4.4) obtained approximation ratios no less than

75%, even without the requirement that ri = R for all i, i.e. that all agents have identical

radio ranges.

9We will drop this restriction again in our empirical evaluation, and show that this has no detrimental
effect on the algorithm’s performance.

10This occurs when f(e) = n, and for all a ∈ A, f(a) = n − ǫ. The greedy selection of e in the
first iteration blocks the addition of 5 of 11 elements in A. Thus, the worst case approximation ratio is
limǫ→0 f(A \B + e)/f(A) = 6/11.
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4.2.2 A Decentralised Greedy Algorithm

The centralised algorithm assumes the existence of a centralised controller that has per-

fect knowledge of the locations of the agents, and the structure of their communication

graph. Such centralised control is rarely possible in sensor networks, and thus, in the ab-

sence of a centralised controller, agents do not have access to the knowledge required to

run the centralised greedy algorithm and determine if they should stay active. Moreover,

while it is be possible to construct an algorithm that communicates this knowledge to all

agents, its use would result in excessive communication between agents, which can not

be considered scalable. In this section, therefore, we shall take a different approach and

develop an approximate decentralised algorithm that relies on limited local communica-

tion and computation only. In more detail, this algorithm enables agents to construct a

triangle-free network by ensuring their neighbourhood graph11 is triangle-free. This is

based on the simple fact that, if the neighbourhood of all sensing agents is triangle-free,

the communication graph is triangle-free as well.

Against this background, the key principle behind the algorithm is that no more than

two agents within the same clique can be activated without creating a triangle. The

challenge is then to find which two agents should be activated to maximise observation

value. Clearly, since solving this problem optimally in a central fashion is NP-hard,

solving it optimally in a decentralised fashion is at least as hard. Therefore, we (again)

resort to approximation in the form of a greedy decentralised algorithm. Using this

algorithm, agents coordinate with their neighbours to determine if their activation blocks

the activation of agents that provide more observation value. In more detail, when

running this algorithm, an agent Ai continually checks whether a pair of agents (Aj ,

Ak) exist within the same clique, such that the observation value provided by this pair is

greater than the value provided by either (Ai, Aj) or (Ai, Ak). If this is discovered to be

the case, Ai is said to be Dominated. In all other cases, Ai is said to be Dominating.

In the former case, the activation of agent Ai prevents the activation of Aj or Ak,

resulting in suboptimal sensing. Agent Ai should therefore deactivate itself. Conversely,

in the latter case it is should stay active.

Algorithm 3 captures the necessary steps to determine the status of an agent. Before

starting the main while loop, neighbours are discovered by means of message passing

(lines 2—4).12 Then, in lines 7 and 8, the agent attempts to find a non-Dominated

neighbour that in turn has a non-Dominated neighbour in common with itself (i.e. a

triangle). If no such neighbour can be found, the agent’s best strategy is to activate

itself (line 15), since no triangle is created. If, however, such a neighbour does exist, at

least one of these three agents needs to deactivate in order to ensure that the graph is

triangle-free. In line 11, the algorithm checks whether its activation blocks the activation

11The neighbourhood of a vertex is the subgraph induced by the vertex and its adjacent vertices.
12Naturally, since no collision free communication network exists at this stage, a simple collision

detection and retransmission protocol can be used.
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Algorithm 3 The decentralised greedy algorithm for agent Ai

1: State← Basic

2: AB
i ← adj(Ai) (adj(Ai) denotes the set of neighbours of Ai)

3: Broadcast 〈i,AB
i 〉

4: Receive 〈j,AB
j )〉 for all Aj ∈ adj(Ai)

5: while State = Basic do
6: On random activation
7: AB

i ← {A | A ∈ AB
i ∧ State(S) 6= Dominated}

8: if ∃j : AB
i ∩AB

j 6= ∅ then

9: Randomly select Ak ∈ AB
i ∩AB

j

10: fjk ← f({Aj ,Ak})
11: if fjk ≥ f({Ai,Aj}) and fjk ≥ f({Ai,Ak}) then
12: State← Dominated

13: end if
14: else
15: State← Dominating

16: end if
17: Send 〈i, State〉 to all Aj ∈ adj(Ai)

18: end while

of two more ‘valuable’ agents. If this is found to be the case, the agent sets its state

to Dominated, notifies its neighbours of its updated status, and deactivates itself (line

12).

Termination of this algorithm can be detected by inspecting the states of its neighbours:

if all neighbours are either Dominated or Dominating, the algorithm has terminated.

Termination of this algorithm is guaranteed; as the number of iterations approaches

infinity, a Dominated agent will select a pair (Aj ,Ak) with probability 1 such that the

condition in line 11 holds, and deactivate itself. All Dominating agents will remain

in the Basic state, until all Dominated agents have deactivated themselves. At that

point, Dominating agents will no longer be able to find a triangle (line 8), and thus

detect their Dominating state (line 15).

In terms of complexity, note that it takes a Dominated agent Ai in expectation
(
m
2

)

iterations of the while loop in Algorithm 3 (where m = |adj(Ai)| is the number of

neighbours that Ai has) to find a pair (Aj ,Ak) that satisfies the condition in line 11, if

such a pair is unique (and much less if there are multiple such pairs). A single execution

of the loop takes O(m log(m)) computation steps, which are required by computing the

union of two sets in line 9. As a result, this algorithm is polynomial (O(m3 logm)) and

thus efficient.

4.2.3 The Reconnection Phase

At this point we have developed two greedy algorithms that compute triangle-free sub-

graphs of C[A] with high observation value. However, in this process it is possible that
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Algorithm 4 The reconnection algorithm
1: repeat
2: Broadcast 〈i, adj(Ai)〉
3: Receive 〈j, adj(Aj)〉 for all Aj ∈ adj(Ai).
4: ri ← c · ri {Increase communication radius}
5: until adj(Ai) ∩ adj(Aj) 6= ∅ or ri > rmax {Until a triangle has been created}
6: ri ← ri/

√
c {Break the triangle}

the communication graph is no longer strongly connected,13 since these algorithms only

ensure that the graph is triangle-free. To reconnect the components of the computed

subgraph, we add a second phase to these algorithms. This algorithm is not always ca-

pable of fully reconnecting the graph, since the maximum radio transmission range rmax

is sometimes insufficient, but as we will show in Section 4.4, even when it is not com-

pletely successful, it manages to increase the size of the maximum connected component

significantly.

Now, in an attempt to reconnect the graph, agents incrementally boost their radio signals

to connect with agents that were previously unreachable. Clearly, it is undesirable for

agents to set their radio strength to the maximum setting, for two reasons. Firstly,

it will drain their battery quickly (at a rate of r2max), thereby reducing their lifetime.

Secondly, by doing so, an agent is likely create edges in the communication graph that

compose a triangle, which was exactly what we set out to avoid. To prevent this, each

agent executes Algorithm 4 in order to connect to additional agents whilst maintaining

a triangle-free graph in a fully decentralised fashion.

The algorithm operates by gradually increasing an agent’s communication range (line

4), until it is discovered that a triangle has been introduced (lines 2, 3 and 5). At

that point, the agent reduces its communication range to break it again (line 6). Thus,

Algorithm 4 maximises ri, while maintaining the triangle-freeness of the graph.

4.3 Dealing with Dynamism

In the previous section, we presented two algorithms that perform a one-off optimisation

procedure for simplifying frequency assignment and maximising observation value. In

this section, we consider a more dynamic setting, in which deployed agents can fail and

new agents can be deployed. Now, as the example in Figure 4.2 and the experimental

results in Section 4.4 show, the number of agents needed by both the centralised and

decentralised algorithms is fairly small compared to the number of deployed agents.

The remaining agents lie dormant and do not perform any useful tasks. However, in

13A graph is strongly connected if there exists a path from every vertex to every vertex. For an agent
communication graph, this means that every agent is capable of communicating with all other agents via
multi-hop routing. In the remainder of the chapter, when we use the term connected we mean strongly

connected.
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the dynamic setting, they can be used to replace failed agents. In this section, we show

how this can be achieved, and we develop two dynamic counterparts of Algorithm 2 and

Algorithm 3. Both algorithms continuously monitor the network and select replacements

for agents that stop functioning. These dynamic algorithms are obtained as follows:

Centralised: Once an agent fails, Algorithm 2 is re-run, with I initialised to the ac-

tivated agents, minus the failing agents. The algorithm will then proceed to it-

eratively add new agents (if possible). When new agents are deployed, they are

added to E, and the algorithm is run without modifications.

Decentralised: Instead of completely turning off Dominated agents, these agents

lie dormant while monitoring communication in their neighbourhood. Once a

neighbouring agent fails (which can be detected by a prolonged interval of com-

munication silence), it resets its state to Basic, and re-runs Algorithm 3. Active

agents (i.e. those with a Dominating state) need not re-run the algorithm. Newly

deployed agents set their state to Basic, and run the algorithm without modifi-

cations.

In the next section, these dynamic algorithms are benchmarked against each other to

determine their achieved solution quality over time.

4.4 Empirical Evaluation

We now evaluate the algorithms developed in the previous sections in a large scale

agent deployment scenario. In the first part of the empirical evaluation, we measure

the performance of the centralised and decentralised greedy algorithms (Section 4.4.2).

In the second part, we subject the dynamic versions of these algorithms to empirical

evaluation (Section 4.4.3). First, however, we describe the experimental setup common

to both.

4.4.1 Experimental Setup

We consider a wide area surveillance scenario (Section 2.1.2) in which M agents have

been randomly deployed in a unit square, and are tasked with detecting events. The

observation area ©i in which agent Ai can detect events is a disk with radius si, which

is drawn from the interval [0.05, 0.2] with uniform likelihood. The radius ri within

which agent Ai can receive and send transmissions is uniformly drawn from the interval

[0.5R,R], where R controls the range of ri, and is one of the parameters we vary in our

experiments. Moreover, the maximum radio transmission range is rmax = 1.2R. Events

occur randomly within the unit square with uniform probability. The observation value
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f(A′) received by a subset A′ ⊆ A is the expected number of detected events, i.e. those

that fall within the sensing disk of at least one agent A ∈ A′.

More formally, let ©i ⊂ R
2 denote the observation area of agent Ai. Moreover, let µ(·)

denote the measure14 of an area. Now, function f is defined as:

f(A) = µ



⋃

Ai∈A

©i


 (4.1)

Figure 4.2 shows an example of function f . The observation value obtained by the

activated agents is equal to the total area covered by their observation areas.15 Clearly,

f is a non-decreasing submodular function, since adding an agent Ai to a deployment

A increases observation value less than adding the same agent to a smaller deployment

A′ ⊂ A.

4.4.2 Evaluation of the Greedy Algorithms

In the first set of experiments, we applied the centralised and decentralised greedy algo-

rithms of Section 4.2 on 500 randomly generated deployments with M = 300. We varied

R between 0.1 and 0.5 to generate graphs with increasing density, which effectively con-

trols the constrainedness of the problem: with R = 0.5, the communication range of the

agents spans half the size of the environment, the communication graph contains many

triangles.

We benchmarked the algorithms against an optimal algorithm for this problem, i.e. one

that computes a triangle-free subgraph with optimal observation value (I∗ defined in

Section 4.2.1). This algorithm uses branch and bound and exploits the structure of

submodular functions to improve computational efficiency. Despite these computational

efficiency improvements, however, such an optimal approach does not scale beyond ≈ 30

agents.16 Because of this, we performed two batches of experiments. In the first, we used

30 agents and evaluated the centralised, decentralised and optimal algorithms, and in the

second batch we applied the centralised and decentralised algorithms on a deployment

of 300 agents.

We used the following metrics to determine the performance of the algorithms:

14To avoid confusion, we use the term ‘area’ to describe two dimensional shapes, and ‘measure’ to
denote the extent (or size) of an area.

15Note that this function assigns equal value to observations across the entire space. As such, the
impact of observations on the quality of situational awareness is assumed to be homogeneous across
the spatial dimension (see Definition 2.3). However, it is easy to weigh certain areas based on their
importance, or the expected loss for not observing these areas. By so doing, submodularity is not
violated.

16In more detail, on many problem instances, the optimal algorithm took > 2 hours, while both
greedy algorithms always terminated in less than 5 seconds on a standard desktop computer.



Chapter 4 Decentralised Coordination for Fixed Agents during Deployment 81

• The observation value received by the active agents normalised against the obser-

vation value received by activating all agents (i.e. by ignoring the constraints on

the network).

• The observation value received by the largest connected component of the graph.

This metric captures the trade-off between the graph connectedness and observa-

tion value, and is used to determine the effectiveness of the reconnection algorithm.

More specifically, it is the observation value received in the most favourable case

wherein a base station (a special node that collects data and transmits data for

further analysis) is connected to one of the agents in this component.

• The number of active agents. This measures how well the algorithms are able to

satisfy the constraints imposed by the triangle-free property, and shows how many

agents are available to replace failed ones by the dynamic algorithms.

The results of the first batch (M = 30) are summarised in Figure 4.4. Figure 4.4(a)

shows the observation value as a fraction of the observation value received by all M

agents. This plot clearly shows that the difference between the optimal solution and the

solution computed by both greedy algorithms is less than 10% in the most constrained

case (i.e. R = 0.5). This is a clear indication that both greedy algorithms compute very

good approximations, without the need for exhaustively searching the solution space.

Figure 4.4(b) shows the observation value achieved by the largest component. In this fig-

ure, the postfix ‘no RC’ indicates that the reconnection algorithm from Section 4.2.3 was

not used. This figure demonstrates the effectiveness of the reconnection algorithm. It

manages to connect a sufficient number of components to almost double the observation

value received by the largest component of the graph.

Finally, Figure 4.4(c) shows that the optimal algorithm manages to select a slightly

larger number of agents compared to both greedy algorithms. As expected, both greedy

algorithms are less successful in satisfying the independence constraints while maximising

observation value. However, this effect is only marginal, since the optimal algorithm

activates just 10% more agents than the decentralised greedy algorithm.

The results of the second batch (with M = 300) are shown in Figure 4.5. Overall,

the same behaviour as before can be observed here. However, Figure 4.5(a) shows that

the achieved observation value of the decentralised algorithm drops below 60% of the

maximum achievable observation value for R = 0.5. The same, albeit less strong, effect

can be observed for the centralised greedy algorithm. However, it is important to note

that, with R = 0.5, the agents are able to communicate with agents in a quarter of the

entire area. As a result, the communication graph of the original agent network is very

dense, such that the problem of finding a triangle-free graph is very constrained. Figure

4.5(b) again demonstrates the effectiveness of the reconnection algorithm, but also that

between R = 0.1 and R = 0.3 both algorithms provide at least 75% of the maximum
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Figure 4.4: Empricial results for the static algorithms (M = 30). Error bars indicate
the error of the mean.
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Figure 4.5: Empirical results for the static algorithms (M = 300). Error bars indicate
the error of the mean.
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Figure 4.6: Iterations required by the greedy graph colouring algorithm (M = 300).

possible observation value, while needing approximately half (for R = 0.1) to a tenth

for (R = 0.3) of the available agents.

Finally, to corroborate the theoretical result that the resulting communication and colli-

sion graphs are easily 3 and 6-colourable respectively (see Section 4.1), we used a simple

and standard algorithm to colour 5000 graphs in a decentralised fashion. This algorithm

is an ǫn-greedy algorithm, i.e. with probability 1 − ǫn an agent selects the colour that

minimises the number of adjacent mono-chromatic edges, while with probability ǫn it

picks a random colour. Furthermore, probability ǫn decreases with each iteration of

the algorithm as ǫn ← n−1
n

ǫn, where n is the number of completed iterations. Figure

4.6 shows that colouring the resulting graphs in a decentralised fashion is indeed trivial.

With 300 agents, the algorithm needs 5 iterations on average to correctly colour both the

communication graph, as well as the collision graph. Moreover, this simple algorithm

managed to find a colouring in all problem instances that we considered.

4.4.3 Evaluation of the Dynamic Algorithms

In the second experiment, we evaluated the dynamic algorithms. We simulated a ran-

domly deployed network of agents as before, but we also considered the possibility of

agents failing. In our simulations, agents are deactivated when their battery is depleted.

Initially, every agent Ai has a battery capacity bi of 1 unit. Recall from Section 4.1

that the battery depletion rate is modelled as ∆bi = −r2i · ∆t. Each time an agent

fails, we run the algorithms developed in Section 4.3 to determine whether it can be

replaced by agents that were not selected for the initial deployment. We benchmarked

our algorithms against a näıve strategy (referred to as ‘On’) that activates all agents

without considering any restrictions on the communication graph.

The results are shown in Figure 4.7. The plots in Figure 4.7(a) and 4.7(b) show the

observation value over time achieved by all active agents and the largest component

respectively. As can be observed in this figure, the observation value received by the
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‘On’ strategy decreases rapidly. This is caused by the fact that all agents are active

simultaneously, fail early, and waste their sensing area by redundantly covering the

area. Compared to ‘On’, our algorithms perform notably better by providing coverage

until well after t = 500. It is also worth noting that, whereas the decentralised algorithm

is outperformed by the centralised one for the initial deployment (cf. Figures 4.5(a) and

4.5(b)), the decentralised algorithm starts outperforming its centralised counterpart after

t ≈ 250. The explanation for this is found in Figure 4.7(c) that shows the number of

active agents over time. The decentralised algorithm requires less agents for the initial

deployment, and therefore has more agents available to replace failed ones.

Finally, we recorded the total observation value received over time for several radio

ranges R. Observation value over time is defined as the area of the region below the

graphs shown in Figures 4.7(a) and 4.7(b). For this experiment, we added an additional

benchmark strategy that activates only a single agent at a time (referred to as ‘Single

On’). The performance of this strategy acts as an upper bound on the maximum achiev-

able performance, since no two agents redundantly cover the space. Figures 4.8(a) and

4.8(b) show the results. These figures confirm that ‘On’ is outperformed by both greedy

algorithms for several values of R, and by around 250% for R = 0.2. Moreover, by com-

paring the performance of our algorithms to that of ‘Single On’, we can conclude that

these algorithms quite effectively manage to minimise redundant coverage, since ‘Single

On’ has no redundant coverage by its very nature. Most importantly, we can conclude

that the decentralised algorithm achieves at least 80% of the sensing quality of the cen-

tralised greedy algorithm (92% for R = .2), while only requiring local communication

and computation.

4.5 Summary

In this chapter, we developed a novel decentralised algorithm for simplifying the fre-

quency assignment problem in a network of fixed information gathering agents, while

at the same time maximising observation value. In particular, this algorithm activates

a subset of agents, such that the communication graph is triangle-free. This way, only

six frequencies are needed, and the frequency assignment problem can be solved using a

simple decentralised graph-colouring algorithm. We also developed a centralised greedy

algorithm based on the notion of submodular independence systems, for which we de-

rived a theoretical lower bound of 1/7 on the approximation ratio. We then proceeded

to consider dynamic settings, in which agents can fail, or new agents can be added to

the existing deployment, and extended both our algorithm and the centralised greedy

algorithm to operate in such settings. We empirically evaluated our algorithm by bench-

marking it against the centralised algorithm and an optimal one. We showed that, in

the most constrained case (R = 0.5), the selected agents manage to achieve 90% of the

observation value received by the optimal algorithm, and 60% of the observation value
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Figure 4.7: Results for the dynamic algorithms (M = 300, R = 0.2).
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Figure 4.8: Total observation value over time received by the dynamic algorithms.

received in the unconstrained case (by activating all agents). Finally, in the dynamic

setting, our algorithm provides 250% more observation value over time compared to

activating all available agents simultaneously.

In terms of the design requirements stated at the start of this thesis, we can conclude

the following:

Quality: The empirical results from Section 4.4 show that the decentralised algorithm

performs close to optimal (> 90%) and provides more than 250% observation value

compared to activating all agents simultaneously.

Adaptiveness: Both the centralised and decentralised algorithm compute a deploy-

ment under the assumption that observation value function f does not change

over the lifetime of the agents. If an a priori unknown event radically changes f

the deployment’s performance can degrade significantly. The algorithms could be

modified to detect such an event and re-run the algorithms from scratch, but in

their current form they are not adaptive.
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Robustness: A system of fixed agents that uses the dynamic decentralised algorithm

is robust against failure, or will at least degrade gracefully, since it is capable

of replacing failed agents with dormant ones. Moreover, using any of the algo-

rithms developed in this chapter, the frequency assignment problem can be solved

optimally, thereby ensuring the reliability of the communication network.

Autonomy: The decentralised greedy algorithm has no centralised components, and

thus ensures the autonomy of the agents.

Scalability: The complexity of the centralised algorithm is quadratic in the number of

agents (O(|A|2)), and the complexity of the decentralised algorithm for a single

agent is O(m3 logm), wherem is the number of neighbours. Thus, both algorithms

are efficient (i.e. polynomial) and scale well in the number of agents.

Modularity: Although not specifically addressed in this chapter, the different capa-

bilities of the agents can be encoded into the observation value function f . For

example, agents that provide noisy coverage over a small area (for example, an

infrared sensor) will provide less observation value than agents capable of moni-

toring a large area with high resolution (for example, a radar). We have already

given an example of this when we assigned agents heterogeneous observation areas

in Section 4.4.

Performance Guarantees: The centralised algorithm provides a 1/7 performance guar-

antee. Whether the decentralised algorithm provides similar performance guaran-

tees is an open question, and is subject of future investigation.

In the wide area surveillance scenario we considered in this chapter, we assumed that

agents can detect events within their observation range at all times. Under this assump-

tion, no further coordination is needed after the agents are deployed using the algorithms

developed in this chapter. However, if their operation is somehow constrained, for exam-

ple because agents have a limited power supply, or can only observe one chosen segment

of their observation disk at a time, it often pays off to coordinate their actions after

their deployment as well. Therefore, in the next chapter, we develop a decentralised

coordination algorithm that facilitates coordination at this stage of the agents life cycle.

This algorithm should by no means be considered as mutually exclusive with the one we

developed in this chapter, but rather as complementary. The latter can be used after

the former to further improve solution quality.



Chapter 5

Decentralised Coordination for

Fixed Agents during Operation

Once a group of fixed agents has been deployed—using the algorithms developed in the

previous chapter or otherwise—they face the challenge of coordinating their actions at

“runtime” in order to maximise the observation value they receive as a team. In the

previous chapter, we assumed that this value depends on the agents’ location only. This

is a reasonable assumption at deployment time, when the agents only have knowledge

of some statistical properties of the events that will occur in their environment, such

as their spatial distribution or a probability distribution over their types. During their

operation, however, when they can react and adapt to actual observed events, their

actions, rather than their locations alone, primarily affect the observation value they

receive. Careful coordination of these actions is thus essential to maximise the agents’

performance.

To study these coordination problems, we consider two realistic wide area surveillance

scenarios in which agents have fine grained control over the observations they make after

deployment, thus making coordination between them essential:

Table 5.1: The contributions of Chapter 5 in the context of the roadmap of this thesis.

89
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(a) The event detection scenario. (b) The target classification scenario.

Figure 5.1: Two examples of the wide area surveillance domain.

Event Detection This scenario is very similar to the one we considered in the pre-

vious chapter. However, instead of being able to monitor their observation area

continuously, the agents are energy constrained; they are capable of harvesting

energy from their environment, but at a rate that is insufficient to allow them to

be powered continually. Thus, they need to regularly power down to conserve en-

ergy. However, once they power down, agents no longer observe their environment.

Thus, agents whose observation areas overlap should coordinate over their acti-

vation schedules to maximise the probability of detecting events occurring within

these overlapping areas. Figure 5.1(a) shows an example of this domain. Here,

agents A1 and A2 have coordinated to ensure the intersection of their observa-

tion areas is monitored as long as possible, and the probability of detecting events

occurring in it is maximised.

Target Classification In the second scenario, agents are tasked with classifying targets

in their observation areas. Every agent is equipped with a sensor whose viewing

orientation they control. By directly aiming these sensors at a target, they max-

imise the probability of correctly classifying targets. Since their observation areas

are likely to overlap, agents should coordinate with their neighbours to maximise

the number of targets observed by at least one agent. Figure 5.1(b) shows an ex-

ample of this domain. Here, agents A1 and A2 have coordinated to maximise the

probability of correctly classifying targets t1 and t2, which in this case is achieved

by A1 observing t1 and A2 observing t2.

These scenarios share an important characteristic; the agents’ decision variables have

continuous domains. The activation schedules in the first scenario are set in contin-

uous time, and the viewing orientation in the second scenario is expressed in radians,

which vary between 0 and 2π. Clearly, continuous action variables not only occur in

these domains. Indeed, many other multi-agent coordination problems take place over

continuous variables. For example, the problems of controlling multiple UAVs (whose

control variables include pitch, roll, yaw and thrust), and controlling flows in a network

(internet traffic, electricity grids, etc.), are both governed by variables with continuous

domains.
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The max-sum algorithm would normally be our algorithm of choice to solve decentralised

coordination problems, since its properties are well aligned with our design requirements

(as discussed in Section 2.6.1). However, in its original form, it is limited to settings

where the agents’ action variables are discrete. Thus, should we wish to apply it to

solve the aforementioned continuous coordination problems, we must first discretise the

continuous domains of the variables. This, however, is not without problems. On the one

hand, care must be taken to ensure this discretisation is sufficiently coarse to keep the

computation tractable, since the computation an agent needs to perform is exponential

in the cardinality of its variable domain, as well as that of their neighbours. On the

other hand, the discretisation must be sufficiently fine to enable the algorithm to find

high quality solutions. This is especially true if the global function has sharp peaks1,

in which case the penalty for too coarse a discretisation can be high. Thus, the use of

the standard max-sum algorithm (and, indeed, any other DCOP algorithm discussed

in Section 2.6.1) in continuous domains involves a trade-off between the quality and

scalability of the solution—two of the key design requirements of this thesis. A trade-

off, crucially, that is not inherent to the problem.

In light of this, we identify a need for decentralised coordination algorithms that have

scalable computation and communication costs, and compute good quality solutions for

continuous problems. It is this specific need that we address in this chapter, and to

this end, we present two extensions2 to the max-sum algorithm which are the first two

algorithms for distributed constraint optimisation problems (DCOPs) with continuous

variables. These two extensions differ in the type of utility function they support.

The first extension, max-sum for continuous piecewise linear functions, or CPLF-MS,

provides an exact implementation of the two key mathematical operations used by max-

sum for settings with piecewise linear utility functions. The second extension, hybrid

continuous max-sum, or HCMS, combines the standard (discrete) max-sum algorithm

with non-linear optimisation techniques, and is applicable to settings with non-linear

continuous utility functions.

These algorithms are domain independent, and are thus not only applicable to the two

coordination problems we consider in this chapter. However, to evaluate their perfor-

mance, we apply these algorithms to solve the event detection and target classification

problems, and show that this yields solutions that are highly desirable in terms of the

design requirements of this thesis. In more detail, since the interactions between agents

in the event detection scenario are characterised by linear utility functions, and thus

apply the CPLF-MS algorithm. Similarly, we apply the HCMS algorithm to the target

classification scenario where the utility functions are highly non-linear.

As a result, in this chapter we make two sets of contributions:3

1More formally, if the magnitude of the first and second derivatives of the global function are large.
2These two extension were published as Stranders et al. (2009a) and Voice et al. (2010) respectively.
3Table 5.1 shows the context of these contributions in terms of the roadmap of this thesis.
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CPLF-MS: Max-sum for continuous piecewise linear utility functions:

1. We derive a representation of piecewise linear utility functions using sim-

plexes. Then, using techniques from computational geometry, we develop ex-

act algorithmic solutions for the mathematical operations required to apply

the max-sum algorithm in the domain of continuous variables and piecewise

linear utility functions; specifically, addition and marginal maximisation of

general n-ary piecewise linear functions.

2. We empirically evaluate the performance of CPLF-MS in the event detection

scenario where the activation schedules of agents need to be coordinated in

order to maximise the system-wide probability of detecting events. We com-

pare CPLF-MS against standard discrete max-sum, and show that it outper-

forms discrete max-sum (with up to a 10% increase in solution quality), with

lower coordination overhead in terms of message size (the CPLF-MS yields a

reduction of up to half the message size).

HCMS: Max-sum for non-linear continuous utility functions:4

1. We propose the hybrid continuous max-sum algorithm (HCMS), which com-

bines the standard max-sum algorithm with continuous non-linear optimisa-

tion methods. For problems with acyclic factor graphs, we derive theoretical

optimality results for this algorithm. In particular, we can show that, for

suitable parameter choices, the HCMS algorithm outperforms the discrete

max-sum algorithm operating over the same discretisation of the state space

and, for sufficiently fine discretisations, the HCMS algorithm converges to a

near optimal solution.

2. We empirically evaluate our HCMS approach in the target classification prob-

lem, and compare its performance to the discrete max-sum algorithm. In so

doing, we show that HCMS outperforms discrete max-sum by up to 30%.

3. We further show that the improvements in solution quality that the HCMS

algorithm achieves over discrete max-sum come with neither significant in-

creases in running time nor communication cost.

The remainder of this chapter is structured as follows. In Section 5.1 we formally describe

coordination problem common to both wide area surveillance problems. In Section 5.2

we develop the CPLF-MS algorithm for piecewise linear functions. In Section 5.3 we

describe the event detection problem for energy constrained agents, whose interactions

can be expressed as piecewise linear functions, and evaluate the CPLF-MS algorithm.

Then, in Section 5.4 we give a formal description of HCMS, and statement and proof

4This is joint work with Tom Voice, who laid the foundation for the algorithm and proved its
theoretical properties. I carried out the implementation and empirical analysis, which led to further
improvements to the algorithm in collaboration with Tom.
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of the theoretical results. In Section 5.5, we empirically evaluate its performance in the

target classification problem. Finally, in Section 5.6, we summarise the contributions

made in this chapter and evaluate the developed algorithms in terms of the design

requirements defined in Chapter 1.

5.1 Problem Description

We now formally describe the decentralised coordination problem that we address in

this chapter. This problem extends the problem formulated in Chapter 3 to fixed agents

with continuous control variables. For these settings, we assume that the observation

value received by the team of agents can be decomposed into a set of agent-dependent

factors, such that the max-sum algorithm can be applied. Later in this chapter, we show

how a good decomposition can be derived for the two wide-area surveillance scenarios.

The setup of these scenarios is similar to the one we studied in the previous chapter. We

have a set of M agents A = {A1, . . . ,AM} deployed on the R2 plane. Each agent Ai has

an observation area©i within which it can observe events. Furthermore, each agent has

a single5 continuous action variable pi whose domain Di is a closed and bounded interval

in R. By changing the value of this variable, the agent controls the set of observations

it makes. For example, by changing its viewing orientation in Figure 5.1, agent A2 can

choose to observe target t1 instead of t2 (or none at all).

Since the observation areas of agents can overlap, it is possible that multiple agents

observe the same features of their environment. Since we assume that these observations

are not independent (see Chapter 3), the value of these observations is sub-additive

(through the property of submodularity of the observation value function f). As a

result, the observation value received by agent Ai depends on the observations made by

Ai, and thus pi, but also on the observations made by the agents whose observation areas

overlap with its own. Using the familiar notation of the max-sum algorithm (Section

2.6.1), we express this observation value as a utility function Ui(pi), where pi is the

vector of variables that influence its utility (and thus we have that pi ∈ pi). Since these

variables are continuous, utility functions Ui(pi) are multivariate continuous functions.

As in Chapter 3, the key challenge faced by the agents to maximise observation value as

a team. Using the utility functions and action variables mentioned above, this challenge

can be translated into a welfare optimisation problem; the agents need to compute the

joint action that maximises:

a∗ = argmax
p

M∑

i=1

Ui(pi) (5.1)

5Note both algorithms we develop in this chapter allow multiple variables per agent, with possibly
different domains, but for ease of exposition we present just the single variable case here.
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In order to enforce a truly decentralised solution, we assume that each agent only has

knowledge of, and can directly communicate with, the few neighbouring agents that

influence its own utility directly.

The point of departure for developing the two new algorithms for continuous coordi-

nation problems is the max-sum algorithm, which we discussed in Section 2.6.1. For

convenience, we repeat the equations for computing the messages that are exchanged

between functions and variables below:

• From variable pi to function Uj:

qi→j(pi) = αij +
∑

k∈Mi\j

rk→i(pi) (5.2)

• From function Uj to variable pi:

rj→i(pi) = argmax
pj\pi

[
Uj(pj) +

∑

k∈Nj\i

qk→j(pk)

]
(5.3)

Note these equations apply equally well to both continuously valued and discrete vari-

ables. However, the two core mathematical operations, summation and marginal max-

imisation, required in Equations 5.2 and 5.3 are much more readily implemented in the

case of discrete variables. In Sections 5.2 and 5.4, where we present the two new algo-

rithms, we show how these operations can be defined for piecewise linear and non-linear

utility functions.

5.2 CPLF-MS: Max-Sum for Piecewise Linear Functions

CPLF-MS is the first extension to the max-sum algorithm for solving coordination

problems where the agents’ utility functions are expressible as a multivariate contin-

uous piecewise linear functions (CPLF). In order to apply the max-sum algorithm to

these settings, we need to be able to perform the mathematical operations—summation

and marginal maximisation—on these functions. Under the restriction that the utility

functions are CPLFs, the two aforementioned operations have an intuitive geometric

interpretation that makes it possible to define and manipulate them using standard

techniques from computational geometry, hence allowing the continuous versions of the

operations required by max-sum to be performed. More specifically, in this section we

show how to:

1. Represent each agent’s utility function as a CPLF (Section 5.2.1).



Chapter 5 Decentralised Coordination for Fixed Agents during Operation 95

2. Perform the summation of two CPLFs (Section 5.2.2). This is required in order

to perform the addition in Equation 5.3:

Uj(pj) +
∑

k∈Nj\i

qk→j(pk)

where both operands are now CPLFs.

3. Calculate the marginal maximisation of a CPLF with respect to a single variable

(Section 5.2.3). This operation is needed in order to find the maximum of a CPLF

with respect to a set of variables pj \ pi in Equation 5.3:

max
pj\pi

[
Uj(pj) +

∑

k∈Nj\i

qk→j(pk)

]

4. Use the operators defined in Sections 5.2.3 and 5.2.2 to instantiate the CPLF-MS

algorithm (Section 5.2.4).

5.2.1 Representing CPLFs with Simplexes

A CPLF is a function whose domain can be partitioned into a set of convex polytopes,6

such that it is linear on each of these polytopes. For example, for one variable, a CPLF

is a function that can be represented with a finite number of line segments, and for two

variables a CPLF can be represented by a finite number of two-dimensional polygons.

Figure 5.2 shows an example of the latter. The domain of this function is partitioned

into 14 triangles (shown on the (p1, p2) plane) such that the function is indeed linear on

each of them.

In our formalism, we use n-dimensional simplexes, or n-simplexes, to partition the do-

main of an n-ary CPLF. The reason for this is that an n-simplex is the simplest n-

dimensional polytope and it is therefore easy to manipulate. An n-simplex is constructed

by taking the convex hull of a set of n+1 affinely independent points {x1, . . . ,xn+1} ∈ R
m

(m ≥ n), and is denoted by ∆n. We will omit the superscript n when the dimensionality

is clear from the context. The set of points enclosed by a simplex is given by:

∆n =

{
x ∈ R

m |
n∑

i=1

aixi = x,
∑

i

ai = 1, ∀i : ai ≥ 0

}
(5.4)

Now, an n-ary CPLF f : D → R is defined by a set {∆1, . . . ,∆m} of n-simplexes in

R
n+1. The functions’ domain D is the Cartesian product of the domains of variables

(p1, . . . , pn),
7 i.e. D = D1 × · · · × Dn. Since each Di is a closed interval in R, D is

6A convex polytope is a multi-dimensional generalisation of the two-dimensional convex polygon. In
n dimensions, it is a convex hull of at least n+ 1 points.

7In what follows, (p1, . . . , pn) and p are used interchangeably.
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Figure 5.2: An example of a bivariate CPLF.
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Figure 5.3: Three example CPLFs

an interval in R
n, or an n-cube. From the definition of a CPLF, we require that the

projection of the simplexes that define f is a partition PD of D. (For instance, in Figure

5.2 the projection of the simplexes onto the (p1, p2) plane covers this plane without

overlapping.) More formally,

PD =

{
∆̃i | 1 ≤ i ≤ m,

⋃

i

∆̃i = D, ∆̃i

⋂
∆̃j = ∅, 1 ≤ i < j ≤ m

}
(5.5)

where ∆̃i is the projection of ∆i onto the p hyperplane.

Furthermore, in order to guarantee that f is continuous, we must ensure that simplexes

whose projection onto the p hyperplane share the same coordinates in R
n, also share

the same coordinates in R
n+1.

Given this representation of a utility function, we can now derive exact algorithmic

solutions for computing the two fundamental operations required for implementing our

continuous max-sum algorithm.
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Figure 5.4: Domain partitions of the functions in Figure 5.3.

5.2.2 Summation of Two CPLFs

In order to perform the summation of two CPLFs g and h with identical domains, we

need to compute the simplexes that make up function f such that ∀x ∈ D : f(x) =

g(x) + h(x) holds. We denote the operator that adds two CPLFs as ⊕. This operator

works in in two steps. First, it computes the domain partition Pf of f , such that Pf

contains a corner8 at every corner in g and h. Second, it computes the values of f at

each corner point x of the simplexes that partition f . The latter step is trivial; for each

corner point x, evaluate g(x)+h(x). However, the former step is a little more involved,

since computing the domain partition of f involves overlaying or merging the domain

partitions Pg and Ph in order to determine where the sum of g and h might have a

corner.

The following example illustrates this operation for two two-dimensional functions.

Example 5.1. Consider the functions g and h in Figures 5.3(a) and 5.3(b). Their

domain partitions are shown in Figures 5.4(a) and 5.4(b). Function f is the sum of

these two functions, shown in 5.3(c). Note that the partition of f shown in Figure 5.4(c)

indeed has corners at every location where function g and h have corners, including two

new ones.

Algorithm 5 shows the necessary computation for finding the domain partition of f ,

which proceeds in two main steps:

1. Copy partition Pg to the variable Pf that contains the result while it is constructed

(line 1).

2. Compute the intersection of every simplex in Ph with every simplex of Pf :

(a) Add the vertexes of all simplexes in Ph to Pf (lines 2 to 6).

(b) Add the edges of the simplexes in Ph to Pf (lines 7 to 13). These edges are

the corners of h, and therefore need to be present in Pf .
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Algorithm 5 An algorithm for merging two partitions

Require: Partitions Pg and Ph

Ensure: Partition Pf = Pg ⊕ Ph

1: Pf ← Pg

2: for all ∆ ∈ Ph do

3: for all x ∈ {x1, . . . ,xn+1} that define ∆ do

4: Pf ← S(Pf ,x)
5: end for

6: end for

7: for all ∆h ∈ Ph do

8: for all ∆f ∈ Pf do

9: for all intersections x of the edges of ∆h with the (n− 1)-faces of ∆f do

10: Pf ← S(Pf ,x)
11: end for

12: end for

13: end for

14: return Pf

To complete the specification of Algorithm 5, we need to define the split operator S used

in finding the intersections between two simplexes (lines 4 and 10). Specifically, the split

operator S partitions a simplex ∆n around a point x: S(∆n,x) = {∆n
1 , . . .∆

n
m}. Thus,

each ∆n
i ∈ S(∆n,x) is obtained by creating a simplex with vertexes {x,x1, . . . ,xn+1} \

{xi}. Depending on the location of x in ∆n, the split operator creates a different number

of simplexes. In more detail, depending on the complexity of the face9 of ∆n on which x

lies, S splits ∆n into at least 1, and at most n simplexes. Figures 5.5(b) and 5.5(c) show

how the 2-simplex in 5.5(a) is split on points on a 2-face (body) and a 1-face (edge)

respectively. Note that, in the latter case, the simplex is split in two, since vertices

{x1,x2,x} are not affinely independent, and therefore do not form a simplex. Splitting

on a 0-face (or vertex) does not split the simplex, neither does splitting on a point outside

the simplex. To avoid cluttering the notation in Algorithm 5, we denote the operation

of splitting all simplexes in a partition P on a point as S(P,x), which is shorthand for

∪∆∈PS(∆,x).

5.2.3 Marginal Maximisation of a CPLF

Marginal maximisation is the second operator that is needed in max-sum. It takes as

input a function y = f(p1, . . . , pn) and a variable pi, and computes a single-dimensional

CPLF f(pi) = maxp\pi f(p1, . . . , pn).

The computation of the marginal maximisation of a CPLF proceeds in two steps:

8A corner is the location at which two simplexes meet at an angle.
9The faces of a n-simplex are (n-1)-simplexes that make up its boundaries. The complexity of a face

of an n-simplex is its dimensionality, which ranges from 1 to n. A face of complexity i is called an i-face.
A 0-face is a vertex of the simplex, a 1-face is an edge, a 2-face is a triangle, etc. The n-face of the
simplex is the simplex itself, which is also referred to as the body.
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Figure 5.6: A CPLF y = g(p1, p2) projected onto the (p1, y) plane. The dotted line
indicates the upper envelope of these simplexes, and equals g(p1) = maxp2

g(p1, p2).

1. Project all simplexes that define f onto the (pi, y) plane. An n-simplex ∆ is

projected by projecting each of its m =
(
n
2

)
edges to obtain a set of line segments

S∆ = {s1, . . . , sm}.

2. Extract the upper envelope of the line segments in S∆. The upper envelope is a

function ÛS of the set S of all projected line segments of all simplexes that make

up f is then a function:

ÛS(pi) = max{s(pi) | s ∈ S ∧ pi ∈ [ss, se]}

where [ss, se] is the closed interval on which line segment s is defined. The upper

envelope of a set of n line segments can be computed in O(n logn) operations

(Hershberger 1989).
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The following example demonstrates this operation for a two dimensional function.

Example 5.2. Consider the function y = g(p1, p2) = f(p1, p2) + 0.1p2, where f(·, ·) is

the function in Figure 5.2. This function g(p1, p2) is the sum of the function f and a

function q1→f (p2) = 0.1p2, received from variable p2. The dotted line in Figure 5.6 shows

the upper envelope of g’s simplexes projected onto the (p1, y) plane, which is the result

of performing the marginal maximisation operator on this function with respect to p1.

Moreover, it is the message sent from function f to variable p2 computed by Equation

5.3.

5.2.4 Instantiating the CPLF-MS Algorithm

Now that we have defined the utility functions as CPLFs and the two required mathe-

matical operations, we can instantiate the CPLF-MS algorithm for continuous variables,

by defining the processes through which messages between the variables and functions

are computed:

• From variable to function (Equation 5.2). Since the messages rj→i(pi) are real-

valued functions of a single continuous variable pi, the computation of qi→j involves

summing over single-dimensional CPLFs using the⊕ operator of Section 5.2.2. The

addition of scalar aij is trivial.

• From function to variable (Equation 5.3). The computation of the message rj→i(pi)

proceeds in two steps. First, the expression between the brackets is evaluated. The

first term in this expression is the utility of agent Aj , which is a CPLF. The second

term is the sum of multiple single-dimensional CPLFs of different variables, which

is a multi-dimensional CPLF. So, to evaluate this expression, we sum the first and

second term using the ⊕ operator, which, again, results in a CPLF. Second, we

use the marginal maximisation operator on this CPLF to obtain the message as

required.

Now that we have performed the necessary steps to instantiate the continuous max-sum

algorithm, we should note that there is a downside to using simplexes to define CPLFs.

While they are simple to manipulate, the summation of incoming messages with the

utility function in Equation 5.3 often yields functions with a large number of simplexes.

Moreover, the functions are not represented as compactly as possible. Turning to Figure

5.3 we see an example of this. The addition of two fairly simple functions results in

a function with 10 simplexes. Furthermore, Figure 5.2, requires 14 simplexes, while

8 polygons would suffice. Increasing the dimensionality of the function (i.e. making it

a function of more parameters) only exacerbates this problem. We discuss how this

influences the performance of the algorithm in the next section, where we compare the

performance of CPLF-MS and the discrete max-sum algorithm in the event detection

scenario.
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5.3 The Event Detection Scenario

In the event detection scenario used to benchmark the CPLF-MS algorithm, a team

of fixed information gathering agents is randomly deployed within some area to detect

events (e.g. vehicle and pedestrian activity in an urban setting). We assume that these

agents are able to harvest energy from the environment (e.g. using a photovoltaic cell or

vibration-harvesting microgenerators), but at a rate that is insufficient to allow them to

be powered continually. Thus, at any time an agent can be in one of two states: either

sensing or sleeping. In the former state, the agent consumes energy at a constant rate,

and is able to interact with the surrounding environment (e.g. it can detect events within

its observation area and communicate with other agents). In the latter state, the agent

cannot interact with the environment but it consumes negligible energy. To maintain

energy-neutral operation (Kansal et al. 2007), and thus exhibit an indefinite lifetime,

agents adopt a repeated schedule of length L, during which each agent can be active for

only a given time li < L. This amount of time depends on specific characteristics of the

environment surrounding the agent, and the means by which energy is harvested. For

example, if an agent is equipped with solar panels to harvest energy, agents that are in

shaded regions will have shorter duty cycles compared to those with a greater exposure

to sunlight.

In the remainder of this section, we instantiate the problem defined in Section 5.1, by

decomposing the observation value obtained by the agents into a set of utility functions—

one for each agent.

As mentioned in Section 5.6, the observation areas of multiple agents will typically

overlap. However, just a single agent is required to be active in order to detect an

event. Thus, there is no gain for the system in having more than one agent actively

monitoring the same region (i.e. we have a strongly submodular utility function), and

hence, to maximise the probability of detecting events while maintaining energy neutral

operations, agents whose observation areas overlap should coordinate the activation

times of their duty cycles. Therefore, in this setting, the continuously valued action

variable pi represents the time at which agent Ai will start sensing, while the domain

over which this variable can take values is the interval [0, L]. Once the agents have

decided on the value of this parameter, they will repeat this schedule indefinitely.

In order to apply the max-sum algorithm, in either its continuous or discrete forms, we

now show how to instantiate the general coordination problem defined in Section 5.1

for this scenario, by defining the agents’ utility functions. These utility functions are

expressed in terms of observation value, which, in turn, are expressed in terms of the

probability of detecting events. Since these events are randomly distributed within the

area, this probability is proportional to the area that is observed by the active agents.

As before, we denote the area that agent Ai observes as ©i. Furthermore, A{i,k} is the

area that is only observed by agent Ai and the agents Ak with k ∈ k. For example, with
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Figure 5.7: (a) Example coordination problem in which three agents, A1,A2,A3,
have sensing fields that overlap (b) An optimal solution

respect to Figure 5.7(a), which shows the three agents whose sensing areas overlap, the

area A{1,2} is the area that is sensed only by agents A1 and A2. Note that we represent

the entire observation areas of agents A1 and A2 as ©1 and ©2, and thus, area A{1,2}

is different from ©1 ∩©2, since the latter would also include subarea ©1 ∩©2 ∩©3.

In general, we have:

A{i}∪k =
⋂

j∈({i}∪k)

©j \
⋃

l 6∈({i}∪k)

©l (5.6)

The utility of agent Ai is then simply given by the weighted sum of the probability of

detecting an event in any of the subarea it observes:

Ui(xi) =
∑

k⊆{1,...,M}

A{i,k}

|{i} ∪ k| × P (p{i}∪k) (5.7)

where p{i}∪k is the vector of variables corresponding to agents {Ai} ∪ {Ak}k∈k, which
represents the combined activation schedule of these agents, and P (p{i}∪k) is the prob-

ability of detecting an event per unit area given this combined activation schedules. To

ensure the functions are piecewise linear—and facilitate the evaluation of the CPLF-MS

algorithm—we assume this probability is given by the fraction of the time during which

at least one agent is actively sensing during the interval of length L, and hence, we are

assuming that events are instantaneous in time and have no duration.

Note that in Equation 5.7 we divide each subarea by the number of agents that can sense

it to avoid double-counting areas that are represented by multiple agents. In addition,

when the set k is empty we consider the area covered only by the single agent. For

example, the utility of agent A2 shown in Figure 5.7(a), is calculated by considering the

areas A{2}, A{1,2}, A{2,3} and A{1,2,3}.
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Consider the following example that illustrates this formalisation.

Example 5.3. Suppose that agents are deployed as in Figure 5.7(a), and suppose that

to maintain energy neutral operations, the three agents can be active for l1, l2, and l3

time units out of L (with l1 + l2 + l3 = L). In this case, an optimal solution is the one

reported in Figure 5.7(b) where p1 = 0, p2 = l1 and p3 = l1 + l2. Note that, in this case,

there is an infinite number of optimal solutions, which can be generated by shifting the

activation times of all agents by an equal amount. In an optimal solution, A1 receives

an observation value of:

A{1}l1 +
A{1,2}

2
(l1 + l2) +

A{1,3}

2
(l1 + l3) +

A{1,2,3}

3
L

Similar results hold for agents A2 and A3.

This scenario also illustrates the difference between discrete max-sum and a CPLF-MS.

Notice that, while continuous max-sum is able to assign any value in the interval [0, L]

to the agents’ variables, discrete max-sum will be able to find an optimal solution only

if the chosen discretisation includes the points l1 and l1 + l2. However, as previously

mentioned, the agents’ duty cycles depend on where the agents are deployed and on the

type of environment, and thus they are not known before-hand. Hence, it is not possible

to always choose a discretisation that includes the optimal solution and thus discrete

max-sum will yield suboptimal solutions.

Given these utility functions and the agents’ action variables, we can now construct a

factor graph for this problem, by connecting the utility function of agent Ai in Equation

5.7 to the variables of all agents whose observation field overlaps with that of Ai. We

can now directly apply the discrete max-sum algorithm and CPLF-MS to this factor

graph, and compare their performance.

5.3.1 Empirical Evaluation

To empirically evaluate the performance of the CPLF-MS algorithm, we benchmark it

against the discrete max-sum algorithm. Before we do this, however, we first need to

express the utility function in 5.7 as a CPLF. For an area where two agents overlap, this

function is shown in Figure 5.2. The two agents in question can operate l1 = 2, and

l2 = 5 out of L = 10 time units. The function exhibits a minimum plateau when the

active sensing periods of both agents completely overlap in time (e.g. when p1 = p2 = 0),

and a maximum plateau when there is no overlap in the agents’ schedules (e.g. when

p1 = 0 and p2 ∈ [2, 5]). Notice that if we fix p1 = 0 while increasing p2, the utility

received by both agents increases as well. This is because the length of the interval in

which at least one of the two agents is sensing, is increasing. When p2 = 2, the function

assumes the maximum value and then remains constant until p2 = 5. From p2 = 5,



Chapter 5 Decentralised Coordination for Fixed Agents during Operation 104

the function starts decreasing. This is because the interval of A2 wraps around, and it

starts sensing during the intervals [p2, 10] and [0, 10 − p2], the latter of which overlaps

with the sensing interval of A1, thus decreasing the agents’ utility.

As mentioned at the end of Section 5.2.4, the CPLF-MS algorithm has a propensity for

generating a large number of simplexes during the course of its operation. In fact, while

attempting to run this algorithm on problem instances where the observation areas of

more than two agents overlap, thus creating components of three or more parameters

in the agents’ utility functions (Equation 5.7), we found that the addition in Equation

5.3 often produced functions with hundreds of simplexes. In part, this is attributable

to numerical instabilities inherent in our rudimentary implementation of this algorithm,

but the main cause of this problem lies in the use of simplexes as discussed above.

In light of this, to facilitate comparison between CPLF-MS and the discrete max-sum

algorithm, we ignored areas where more than two agents overlap, which is equivalent to

only considering pairwise interactions between agents. This is actually a very common

approach in the DCOP literature (Modi et al. 2005, Mailler & Lesser 2008, Petcu &

Faltings 2005), and one that reduces the computational complexity of the coordination,

while still providing good solutions in this particular scenario.

Given this configuration of our algorithm, we now empirically evaluate its performance.

5.3.2 Experimental Results

We benchmarked the CPLF-MS algorithm against two algorithms:

Discrete Max-Sum The discrete max-sum algorithm is applied to the same factor

graph as CPLF-MS, but the domain [0, L] of the action variables is artificially

discretised into d discrete values.

Centralised Simulated Annealing This is a centralised algorithm for solving con-

tinuous optimisation problems which often yields optimal results (Granville et al.

1994). We include this algorithm to provide an upper bound on achievable perfor-

mance and to normalise the solution quality of CPLF-MS and discrete max-sum.

We measured the quality of the solution and the communication overhead on deploy-

ments of 10 agents, which are randomly scattered across a unit square. These agents

have a circular shaped observation area with a radius of 0.2. The agents’ duty cycles

li are drawn from a uniform distribution over [0.3, 0.6]. These values were chosen af-

ter initial calibration showed that they produced particularly challenging coordination

problems.
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We ran both CPLF-MS and the discrete max-sum algorithm for 20 iterations. Each

experiment consisted of a single run of our CPLF-MS, and multiple runs of the discrete

max-sum algorithm with increasingly fine discretisations. Figure 5.8 shows the aggre-

gated results of 100 runs, where the solution quality is normalised against the solution

quality of the centralised simulated annealing algorithm.

Specifically, Figure 5.8(a) reports the quality of the final solution (e.g., after the 20

iterations), while Figure 5.8(b) reports the average quality of the solutions obtained

after each iteration. The latter metric incorporates information on how the algorithms

behave over time; the quicker the algorithms converge towards better solutions, the

higher the average.

Figure 5.8(a) shows that the final solutions produced by continuous max-sum are better

than those produced by the discrete version. In particular, CPLF-MS exhibits up to a

10% increase in the solution quality for low discretisation levels.

Moreover, Figure 5.8(b) shows that, when considering the average quality of solution

over multiple iterations, this difference is more pronounced, thus showing that CPLF-MS

is able to reach good, stable solutions quicker than the discrete version. This increased

performance for the average solution can partially be explained by the faster convergence

speed of CPLF-MS: since it takes discrete max-sum longer to converge to a good solution,

its solution quality averaged over all 20 iterations is lower than that of CPLF-MS.

In terms of total message size, we can conclude from Figure 5.9 that, as expected, the

communication overhead of discrete max-sum increases proportionally with the level of

discretisation. Most importantly, the CPLF-MS achieves a better solution quality over

the entire range of discretisations, even when the message size of the discrete max-sum

algorithm is greater than that of CPLF-MS. Thus, the latter generates better solutions,

and also requires less communication overhead.

This concludes the empirical evaluation of the CPLF-MS algorithm for continuous con-

trol parameters. While we have shown it outperforms the discrete max-sum algorithm,

its use is limited to settings where the interactions of agents can be represented by

piecewise linear utility functions. Moreover, the complexity of the representation of the

utility functions tends to scale unfavourably with the number of neighbouring agents.

These drawbacks have encouraged us to develop the HCMS algorithm for non-linear

functions, which does not attempt to derive an exact implementation of the mathemat-

ical operations required by max-sum, and by so doing, avoids these problems.

5.4 HCMS: Max-Sum for Non-Linear Utility Functions

HCMS, hybrid continuous max-sum, is the second extension to the max-sum algorithm.

Recall from Section 2.6.1 that the standard max-sum algorithm requires variables pi
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(b) Averaged solution quality over 20 iterations

Figure 5.8: Solution quality as a fraction of the solution quality computed by simu-
lated annealing. Error bars are the standard error in the mean.
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Figure 5.9: Total number of values exchanged between the agents. Error bars are the
standard error in the mean.
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with discrete domains Di = {a1i , a1i , . . . , akii }. As mentioned earlier, should we wish to

use max-sum to solve optimisation problems with continuous variables, we can proceed

by discretising the domain of each variable and run max-sum on this modified problem.

In this case, the max-sum algorithm finds an approximately optimal set of states within

this discretisation. The key principle behind the HCMS algorithm is that it adjusts this

discretisation to seek better quality solutions at each iteration of the max-sum algorithm.

This adjustment is guided by the gradient of the global objective function (i.e. the sum

of utility functions in Equation 2.9) using non-linear optimisation techniques.

In more detail, the HCMS algorithm involves implementing the same message passing

as described in Equations 5.2 and 5.3, using the current discretisations of the variables’

domains. In addition to this, it also sends updates about these domains, as well as

information about the gradient of the global function (Equation 5.1). In more detail,

firstly, each variable pi must communicate to all functions Uj , for j ∈Mi, the values in

its current domain Di. Secondly, each utility function Uj communicates to each variable

pi for i ∈ Nj either f1
j→i(·), or both f1

j→i(·) and f2
j→i(·), where for n = 1, 2, fn

j→i(pi) is

given by:

dn

dpnj
argmax

pj\pi

[
Uj(pj) +

∑

k∈Nj\i

qk→j(pk)

]
(5.8)

As described above, the key difference between the HCMS and the discrete max-sum

algorithm, is that each variable pi evolves its domain in order to find better quality

solutions. To do so, variable pi employs continuous non-linear optimisation techniques,

which proceed as if maximising an objective function which equals the sum of the mes-

sages received from functions
∑

j∈Mi
rj→i(pi) with nth gradient

∑
j∈Mi

fn
j→i(ai) at each

point in its domain ai ∈ Di. The motivation for this is that, as a result of the discrete

max-sum message passing process, for each variable pi, for all ai ∈ Di, the received

values of
∑

j∈Mi
rj→i(ai) can be used as an approximation to the marginal function

Ũi(ai) evaluated at ai (Equation 2.10). Furthermore,
∑

j∈Mi
fn
j→i(ai), can be used as

an approximation of the nth gradient of the marginal function:

dnŨi

dpni

evaluated at ai, which is used to update ai’s value in order to maximise the global

objective function, as we show next.
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5.4.1 Continuous Non-linear Optimisation

Since each variable attempts to optimise its marginal function using a series of approx-

imations, it is important that robust optimisation methods are chosen. We choose gra-

dient methods, which are robust to errors and can be implemented in a highly scalable,

asynchronous, decentralised fashion using only local information (Avriel 1999). This

leads to the intuition that the different state updates of the variables will not interact

in unpredictable or harmful ways.

With these gradient methods, each variable updates its domain after each iteration of

the HCMS message passing process, by adding ∆azi to azi for each z = 1, . . . , ki (recall

that ki is the number of elements in Di), where

∆azi = κi(z)
∑

j∈Mi

f1
j→i(a

z
i )

To complete the HCMS algorithm, scaling factor κi(z) has to be chosen. Here, we

consider two schemes for setting this parameter. Firstly, we consider a straightforward

gradient method, which has a fixed constant κi(z) = κi. This is the simplest way to

choose a step size, and the results from experimenting with this method for different

values of κi should give intuition as to how sensitive the HCMS algorithm is to the choice

of step size. Secondly, we attempt to improve on this simple scheme by making a choice

of step size based on the Newton method, where a fixed constant κi is given so that

κi(z) = κi

( ∑

j∈Mi

f2
j→i(pi(z))

)−1
,

unless this value is negative or above κi, in which case we set κi(z) = κi. This bounding

of κi(z) deviates from normal Newton method behaviour, however it is necessary to

prevent the algorithm from converging to minima, or behaving unpredictably around

points of inflection.

The choice of these parameters must be, to some extent, fitted to the problem in question.

If the values of κi(z) are too small, then the algorithm will evolve slowly, and may not

reach high quality solutions in the specified number of iterations. If the values of κi(z) are

too large, then the algorithm may be limited in how close it can come to converging on

a high quality solution, due to continually overshooting the optimal point. We examine

how the performance of the fixed step size gradient and Newton based methods depend

on the parameter κi in Section 5.5.1. We find that there is a wide range of choices which

yield good results.
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As a rough rule of thumb, we would suggest taking κi to be at most inversely proportional

to an approximate upper bound of:

∑

j∈Mi

∣∣∣
d2Uj

d2pi

∣∣∣ (5.9)

The reason for this is, when using a gradient method to converge to maximise an objec-

tive function f , if the step size parameter is always chosen to be less than 2/K, where

K is an upper bound on f ′′, then each iteration leads to an improved solution. For

example, in the target classification domain (see Section 5.5), we found that 99% of

evaluated values of |d2Uj/d
2pi| were bounded by 2.7. From the number of agents in our

experiments Equation 5.9 prescribes an order of magnitude for κi around 0.1 or 0.01.

This is born out by our empirical results, where κi larger than 0.1 begins to yield poorer

results, and κi = 0.01 gives the best results over all.

5.4.2 Theoretical Results

We now show some theoretical results that apply to the HCMS algorithm over problems

with acyclic factor graphs.

Proposition 5.1. Suppose we apply the HCMS algorithm to an acyclic factor graph. If

the step size is decreasing, and is always sufficiently small, then the maximum achievable

utility given the set of possible states for each variable strictly increases over time.

For every iteration, the message passing algorithm acts like the standard max-sum al-

gorithm for the current variable state space discretisations. Thus, once all messages

have been sent, by the results in Kschischang et al. (2001) for the standard max-sum

algorithm, for each agent i, for z = 1, . . . , ki,

∑

j∈Mi

rj→i(a
z
i ) = max

p\pi,pi=azi

∑

j∈Mi

Uj

(
pj

)
.

For each variable pi let a
∗
i be defined as:

a∗i = argmax
a∈Di

∑

j∈Mi

rj→i(a).

By definition, for a∗ = {a∗1, . . . , a∗M} it holds that:

a∗ = argmax
a∈Dp

M∑

i=j

Uj

(
aj
)
.
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where Dp is the Cartesian product of the domains of variables p, and aj are the elements

of a corresponding to variables pj . Furthermore, for each variable pi, the value of

∑

j∈Mi

f1
j→i(a)

is equal to the partial derivative of the objective function by pi, evaluated at a ∈ Di.

Hence, each update step moves each element in the domain {azi }kiz=1 of pi in the direc-

tion of the gradient of the objective function evaluated at that point. Provided the step

sizes are sufficiently small, then utility at this point will strictly increase (see, for exam-

ple Avriel (1999) chapters 8 and 9). Thus, after each iteration, there is a combination

of states which gives more utility than the previously maximum possible. 2

As a corollary to this proposition, we can deduce that the utility of the solution provided

by the HCMS algorithm can be made to be arbitrarily close to optimal, if the initial

state space discretisations are sufficiently fine. This is because with a sufficiently fine

discretisation, then there will be at least one combination of initial possible states which

is already sufficiently close to the optimal solution, and the progress of the algorithm

can only improve upon this.

5.4.3 Communication and Computation Cost

The HCMS algorithm involves a slightly increased communication and computation

overhead compared to the discrete max-sum algorithm. Specifically, the differences are

as follows:

• Messages passed from function Uj to variable xi include f1
j→i(·), and possibly

f2
j→i(·) (Equation 5.8), instead of just rj→i(·) (Equation 5.3). This results in an

increase in communication cost of at most a factor of three.

• Messages passed from variable xi to function Uj include the updated domain

{a1i , . . . , akii }, in addition to qi→j(·) (Equation 5.2). This results in an increase

in communication cost of a factor of two.

• In terms of additional computation overhead, for each z = 1 . . . ki, f
1
i→j(a

z
i ), and

f2
i→j(a

z
i ) may be calculated using three evaluations of Ui (if there is no fast closed

form expression for these derivatives). However, these extra function evaluations

do not represent a significant computational cost compared to the optimisation

used to calculate the rj→i(·) functions, in which Uj is evaluated for the entire

discrete state space.

So, the increase in communication and computation costs in operating the HCMS algo-

rithm compared to the standard discrete max-sum algorithm is at most a factor of three
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and does not depend on the number of agents. Thus, the HCMS algorithm has the same

general scalability properties as the discrete max-sum.

However, it is worth noting that the above result applies when comparing the two

algorithms operating for the same number of iterations. From Proposition 5.1, we might

expect that it is beneficial to operate the HCMS algorithm for more iterations than

the discrete max-sum algorithm. In Subsection 5.5.1, we empirically explore how the

performance of the HCMS approach is affected by how many iterations are run, and

compare this to the behaviour of the discrete max-sum algorithm.

5.5 The Target Classification Domain

In this section, we empirically evaluate the HCMS algorithm as a means of coordinating

agents in the target classification domain. This domain is similar to the one we used in

Section 5.3. but, instead of merely detecting events, the agents’ goal is now to classify

targets. Moreover, we no longer assume that their operation is energy constrained, or

that they can monitor their observation area with uniform accuracy. Instead, they are

equipped with a sensor whose orientation they control (such as a camera, for example);

targets within a small angular distance from the viewing orientation are more likely to

be accurately classified than targets that are further away. Furthermore, agents have

different capabilities that enable them to classify some classes of targets more accurately

than others.

The observation value within this domain is measured in terms of the certainty with

which targets are classified. Recall from Section 2.4 that entropy is a common way of

formalising certainty, and will be used in this section. Due to the complex interactions

between the actions of the agents and this metric, the utility functions are no longer

(piecewise) linear, which is a clear advantage in the context of evaluating the HCMS

algorithm.

Consider the following example of this problem domain.

Example 5.4. Figures 5.10(a) and 5.10(b) show two scenarios of the target tracking

domain. In both scenarios, there are two targets of class c1 and two agents. Agent A1 is

capable of classifying targets of class c2, but is unable to distinguish between classes c1

and c3. Similarly, agent A2 detects targets of class c3, but can not distinguish between

c1 and c2. In Figure 5.10(a), A1 is directed towards t1, and A2 towards t2. Given this

configuration, the posterior probability distribution over the class of t1 and t2 is shown

on the left in Figure 5.10(a). If, however, the agents are configured as in Figure 5.10(b),

no information is gained about t2’s class, but t1’s class is correctly determined.

In more detail, we consider a network of agents A = {A1, . . . ,AM} and a group of

targets T = {t1, . . . tn} with a random spatial distribution. Targets are assumed to
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(a) Configuration 1 (b) Configuration 2

(c) Factor graph for the agent de-
ployment in (a) and (b).

Figure 5.10: Two example scenarios and the factor graph to represent them.

be stationary, and can be one of C = {c1, c2, . . . } classes. Agents are able to take

(imprecise) measurements of targets within a fixed sensing range, and are able to rotate

their sensor to change its viewing direction. When this sensor is directed at a target, the

probability of correctly classifying it is maximised, but when rotated away from a target,

the agent acquires less information about the target, and this probability is reduced.

More formally, given a target t whose (unknown) class is modelled as random variable

Ct (with domain C), agent Ai obtains a measurement, modelled as random variableMi

(also with domain C), based on its type and viewing direction. For each agent/target

pair, the probability of Ai classifying a target asMi, conditioned on its actual class Ct
is given by p(MiCt, θ), where θ is the angle between the agent’s viewing direction and

target t, which ranges between 0 and π. For θ = π (i.e. the agent looks away from the

target), p(M | Ct, θ) is a uniform probability distribution over C, encoding the fact that

no information about the target’s class is gained. The following equation has the desired

properties:

p(Mi | Ct, θ) = (1− f(θ)) p∗(Mi | Ct) + f(θ)
1

|C| (5.10)

Here, p∗(Mi | Ct) is agent Ai’s optimal sensing signature, which applies when θ = 0,

and f(θ) is some function of θ with f(0) = 0 and f(π) = 1, such that when θ = π,

p(Ms | Ct, θ) is a uniform distribution, as required.

Now, given this, the goal of a team of agents is to minimise the remaining uncertainty

in the classification of the targets after the having taken measurements. This is equal to

the conditional entropy H(C1, . . . , Cm | M1, . . . ,Mn) of the target’s classes given that

the measurements of all agents are known. Since the classes of any two targets (t, t′)

are assumed to be independent, H(Ct, Ct′ | M) = H(Ct | M) + H(Ct′ | M), and the

problem is reduced to minimising a sum of conditional entropies of the classification of



Chapter 5 Decentralised Coordination for Fixed Agents during Operation 113

individual targets. For an individual target t and a set of agents A that are in range,

the conditional entropy of Ct givenMA is given by:

H(Ct | MA) =
∑

m∈M

H(Ct | MA = m)

=
∑

m∈M,c∈C

p(m, c) log
p(m, c)

p(m)

=
∑

m∈M,c∈C

p(m | c)p(c) logαp(m | c)p(c)

(5.11)

where M = ×Ai∈AMi denotes the set of all possible measurements that agents A can

collectively make, α is a normalising constant, and p(c) is a prior over the target, which

is assumed to be a uniform distribution.

Since the viewing angle of an agent is a continuous parameter, taking values from [0, 2π],

this problem is a distributed optimisation problem with continuous state spaces. Given

this, and the fact that the agents’ actions interact in non-linear ways, this domain is

particularly suitable for benchmarking the HCMS algorithm against existing discrete

ones.

In order to instantiate the general problem defined Section 5.6, and to use our HCMS

algorithm (as well as the discrete max-sum algorithm), we now show how to build a

factor graph for this problem. Firstly, we assign a continuous variable pi to agent Ai

representing its viewing direction, ranging from 0 to 2π. Secondly, for each target tj , we

define a function Uj(pj) with parameters pi ∈ pj iff target tj is in range of agent Ai.

Thus, Uj is a continuous function of the agents’ viewing directions and is equal to the

conditional entropy H(Cj | {Mi | pi ∈ pj}) given these viewing directions of agents in

range as in Equation 5.11. Thirdly and finally, to obtain a truly decentralised approach,

we assign the responsibility of computing the outgoing messages for Uj (Equation 5.3)

to one of the agents {Ai | pi ∈ pj} in range, while taking care that the computation load

is balanced over these agents.10 For the simple scenarios in Figures 5.10(a) and 5.10(b),

the factor graph is shown in Figure 5.10(c).

5.5.1 Experimental Results

We benchmark our algorithm against five algorithms:11

10Note that, by so doing, we slightly deviate from the problem description in Section 5.1. In this
problem description, a utility function Ui is associated with an agent Ai, not target ti. However, this
is merely a naming issue, which can be resolved by summing the utility functions assigned to a single
agent and renaming the result. Note also that we took a slightly different approach in Equation 5.7,
where we assigned the observation value of an area to each of the agents capable of monitoring it, while
avoiding double counting. Both approaches are correct, and illustrate that a coordination problem can
be encoded as a factor graph in various ways.

11Since the functions in this domain are not piecewise linear, we were unable to benchmark against
the CPLF-MS algorithm.
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Discrete Max-Sum We directly apply the discrete max-sum algorithm to the factor

graph constructed above.

Local Greedy This algorithm selects the angle that minimises entropy on targets

within range, regardless of the angles of its neighbours. This algorithm shows

the performance that can be achieved without coordination.

Distributed Stochastic Algorithm (DSA) (Fitzpatrick & Meertens 2003) This is

an iterative best-response algorithm. Agents are randomly activated and update

their angle such that the entropy of targets within range is minimised, while fixing

the current angle of their neighbours. DSA is an alternative to discrete max-sum,

propagates information more locally, and has been shown to be outperformed by

max-sum in general settings (Farinelli, Rogers, Petcu & Jennings 2008).

Random For each agent, this algorithm selects a viewing angle at random. The random

algorithm is included to provide a lower bound on achievable performance.

Centralised Simulated Annealing As in Section 5.3.2, we use centralised simulated

annealing to normalise solution quality and as an upper bound for achievable

performance.

For our experimental evaluation, the agents’ variable domain is discretised into 5 angles

for the algorithms with a discrete state space (i.e. discrete max-sum, DSA and Local

Greedy). The HCMS algorithm starts with the same initial discretisation as the discrete

max-sum algorithm. We considered problem instances in which the agents are laid out

in a square lattice formation in a unit square environment, consisting of M = k2 agents,

with k ∈ [3, 8], and the range of each agent is chosen as 1
k
to ensure the agents’ ranges are

overlapping (but not the extent that the coordination problem becomes so dense that

coverage of all targets is trivially ensured). We then randomly generated 100 problem

instances (i.e. target locations) for each lattice formation.

First, we tuned the scaling factor κi for the gradient and Newton method, as discussed

in Section 5.4.1. The results are shown in Figures 5.11(a) and 5.11(b), where solution

quality is expressed as a fraction of the solution quality provided by simulated annealing.

These figures clearly show that the Newton method is much less sensitive to the chosen

value of κi than the gradient method. However, the gradient method, if properly tuned,

gives slightly better results.

Second, we took the best gradient (κi = 10−1.5) and Newton (κi = 10−1) variants

of our HCMS algorithm and benchmarked them against the discrete algorithms. The

results are shown in Figure 5.11(c), and indicate that our hybrid max-sum algorithm

outperforms the discrete coordination algorithms (DSA and discrete max-sum) by up

to 30%. Moreover, and more importantly, the normalised solution quality shows that

our decentralised algorithm performs comparably to the centralised simulated annealing

algorithm.
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(b) Effect of scaling factor (Newton method)
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(d) Speed of convergence of the gradient and Newton
variants of HCMS compared to discrete max-sum.

Figure 5.11: Empirical results for the HCMS algorithm.

Finally, we evaluated the speed of convergence of the gradient and Newton variants

of HCMS on an 8 by 8 lattice formation, as compared to the discrete max-sum al-

gorithm. The results are shown in Figure 5.11(d). This shows that, while discrete

max-sum converges more quickly than HCMS, the solution quality of HCMS variants

grows much faster over time. Around 20 iterations, both HCMS variants achieve a so-

lution quality that is 30% better than discrete max-sum. However, since the gradient

method exchanges the first derivative, and the Newton method both the first and second

derivative (see Section 5.4.1), this comes at a cost of a twofold and threefold increase

in message size respectively. In terms of computation, this 30% improvement requires

twice as many iterations as discrete max-sum (which converges around 10 iterations).

Combined with the results in Section 5.4.3, which state that at most 3 evaluations of

Ui are required to calculate the additional messages, HCMS requires at most 6 times as

much computation as discrete max-sum.
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5.6 Summary

In this chapter, we presented two novel decentralised algorithm—CPLF-MS and HCMS—

for multi-agent coordination problems that are characterised by continuously valued de-

cision variables. Within these settings, the advantage of the two algorithms presented in

this chapter over the standard (discrete) max-sum algorithm (and, indeed any discrete

optimisation algorithm), is that their use does not involve a artificial trade-off between

scalability and quality that results from selecting a suitable level of discretisation for

the variables’ domains. For discrete algorithms, the discretisation should be sufficiently

coarse to keep the computation tractable (for discrete max-sum, the computation an

agent needs to perform is exponential in the number of variable states), while it must

be sufficiently fine to enable the algorithm to find high quality solutions. The latter is

especially true when the global utility function is very ‘peaked’, i.e. when the magnitude

of its first derivative is large. The algorithms presented in this chapter do not suffer

from either drawback.

The first algorithm, CPLF-MS, uses techniques from computational geometry to derive

exact algorithmic solutions for performing the two key mathematical operations required

by max-sum for continuous piecewise linear functions. We benchmarked CPLF-MS

against the standard max-sum algorithm and a centralised simulated annealing algo-

rithm, and found that it outperforms the former by up to 10%, and yields solutions

close to the optimal solution computed by the latter. However, we also found that the

complexity inherent in using simplexes to represent the utility functions tends to scale

unfavourably with the number of neighbouring agents.

The second algorithm, HCMS, avoids these problems. It uses non-linear optimisation

techniques to evolve the variable domains used by the standard max-sum algorithm to

enable the latter to yield near-optimal solutions. A comparison to the standard max-

sum algorithm shows that HCMS improves solution quality by up to 30%, at the cost

of a threefold increase in the size of the messages. Moreover, with a sufficient number

of iterations, it performs comparably to the centralised simulated annealing algorithm.

In terms of the design requirements stated at the start of this thesis, we can conclude

the following:

Quality: The experimental results reported in Sections 5.3.2 and 5.5.1 conclusively

demonstrate the superiority of CPLF-MS and HCMS over the standard max-sum

algorithm in terms of the quality of the achieved situational awareness.

Adaptiveness: The adaptiveness of these algorithms for coordinating fixed agents de-

pends primarily on the way they are used; when used for one-off optimisation

agents are less capable of adapting to their environment than when the algorithms

are run periodically or continuously. In this chapter, we demonstrated how these
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algorithms can be used to solve what are essentially snapshots of the wide area

surveillance problem. However, when this is done repeatedly, the agents are able

to continuously adapt to their environment.

Robustness: Both algorithms extend the max-sum algorithm, and as such, inherit its

robustness against messages loss and failing agents.

Autonomy: Idem as robustness.

Scalability: The use of simplexes in the CPLF-MS algorithm to represent utility func-

tion causes it to scale poorly with the number of neighbours. The HCMS algorithm

does not suffer such an unfavourable complexity increase; the use of HCMS involves

a constant factor complexity increase compared to the max-sum algorithm, both

in terms of computation and communication.

Modularity: The action variables of agents whose controls are inherently continuous

need no longer be discretised in order to apply the max-sum algorithm. This

results in a clear improvement of the modularity of the team of agents, since a

larger variety of agents are now able to interoperate.

Performance Guarantees: Neither CPLF-MS, nor HCMS provide performance guar-

antees in the form we have presented them here. However, the bounded max-sum

techniques proposed by Farinelli et al. (2009) and discussed in Section 2.6.1 can

be directly applied to allow these algorithms to give performance guarantees.

Up until this point, we have studied the challenges inherent in coordinating fixed agents

in two phases of their lifetime: deployment and operation. In the next two chapters,

we shift our focus to mobile agents, and the challenges involved in coordinating their

movements in order to maximise observation value. As we will see, the coordination

problem this poses is more dynamic than the ones we have seen so far. This is due to the

fact that every time the agents reposition themselves, a new coordination problem arises,

which has different utility functions and action spaces than the one before. Moreover,

this problem is more demanding, because the action spaces of individual agents are more

complex. Nevertheless, we show that the max-sum algorithm, which formed the basis

for the two algorithms we developed in this chapter, can also be adopted to solve this

problem.



Chapter 6

Decentralised Receding Horizon

Control of Mobile Agents

In this chapter,1 we turn to the challenge of coordinating mobile agents. Their mobility

allows these agents to observe more of their environment over time than the same number

of fixed agents are able to. Given this, mobile agents can provide equivalent situational

awareness in small numbers, to that of their fixed counterparts in larger numbers. How-

ever, the smaller scale of the teams in which they operate does not necessarily simplify

the challenge of coordinating their actions. Typically, the motion constraints imposed

by the layout of the environment (which is encoded by a graph G as per the problem

formulation in Chapter 3) increase the complexity of their action space as compared

to the fixed agents we have considered in previous chapters. As a result, care must be

taken to ensure the scalability of a coordination algorithm, while preserving the quality

of situational awareness it brings about.

Against this background, in this chapter we develop an efficient decentralised coordina-

tion algorithm that plans the agents’ movements over a receding horizon. This means

that agents periodically coordinate to maximise the observation value received as a team

Table 6.1: The contributions of Chapter 6 in the context of the roadmap of this thesis.

1This chapter is based on Stranders et al. (2009b) and Stranders, Delle Fave, Rogers & Jennings
(2010).
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for a fixed number of time steps l in the future. Using this algorithm, agents coordinate

their plans (i.e. finitely long paths in G), which they implement for m ≤ l time steps.

After this, they coordinate again to plan their motion for the next l time steps. As

a result, the planning intervals of two subsequent executions of the algorithm overlap.

This enables the agents to plan ahead, while still being able to revise their plans based

on observing a priori unknown events, which results in an adaptive and—as we will

show—effective approach.

To implement receding horizon control in a decentralised fashion, we again opt for the

max-sum algorithm. The benefits of this algorithm have already been extensively dis-

cussed in Section 2.6.1, but are worth reiterating. The use of the max-sum algorithm

enables agents to coordinate their information gathering tasks in a fully decentralised

and scalable fashion, while being robust against message loss and failure of individual

agents.

However, the potentially very large action spaces of the individual agents makes the

straightforward application of the max-sum algorithm to this problem infeasible. Specif-

ically, these action spaces consist of paths from the agents’ current location, and since

the set of all possible paths grows exponentially with the length l of the planning hori-

zon, considering all of these allows us to solve only the smallest of problem instances (in

terms of l as well as the number of agents). Therefore, we make three augmentations to

make our algorithm more scalable, all of which aim to reduce the action space that needs

to be searched in the main bottleneck of the max-sum algorithm (i.e. the computation

of messages from function to variable in Equation 2.13). By so doing, we significantly

reduce the computational cost that individual agents incur as a function of the number

of neighbours, thus improving the algorithm’s scalability.

In more detail, the contributions made in this chapter are as follows:2

• We develop an accurate and robust decentralised receding horizon coordination

algorithm for mobile agents based on the max-sum algorithm. To improve the

algorithm’s scalability compared to a straightforward application of max-sum, we

do the following:

– We exploit the property of locality of the observation value function (see

Chapter 3) to reduce the number of dependencies between agents, which

results in an exponential reduction of the joint action space agents need to

search.

– We develop two heuristics for defining an individual agent’s action space

to reduce its action space. Both select a small number of paths from the

exponentially large set of all possible paths from the agents’ current location.

2Table 6.1 shows the context of these contributions in terms of the roadmap of this thesis.
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– We develop two pruning techniques for speeding up the max-sum algorithm.

The first aims to reduce the size of the action space of individual agents by

removing dominated actions. The second uses branch and bound to reduce

the joint action space that needs to be searched. These techniques are general

in the context of max-sum, and their application is thus not limited to the

multi-agent information gathering problem we address in this thesis.

• We demonstrate the algorithm’s domain independence (within the context of the

problem formulated in Chapter 3) by evaluating it in three different information

gathering domains, and show that:

– it increases the prediction accuracy by up to 50% in the environmental mon-

itoring domain;

– it decreases the capture time of an evader by at least 30% in the pursuit-

evasion domain;

– it decreases the damage from intrusion by at least 30% in the patrolling

domain,

compared to an un-negotiated greedy algorithm and the state of the art in agent-

based information gathering (Vidal et al. 2001, Hespanha et al. 1999, Sak et al.

2008).

• By applying our algorithm to environmental monitoring, pursuit-evasion and pa-

trolling, we obtain the first online decentralised coordination algorithms for these

domains.

The remainder of this chapter is organised as follows. In Section 6.1, we extend the

problem formulation in Chapter 3 to the problem of receding horizon control. In Section

6.2 we develop the coordination algorithm for solving this problem. In Section 6.3 we

present an extensive empirical evaluation of this problem on three information gathering

domains. Finally in Section 6.4 we summarise the contributions of this chapter and

analyse them in terms of the design requirements from Chapter 1.

6.1 Problem Formulation

The problem that we address in this chapter extends the mobile agent problem formu-

lated in Chapter 3 for receding horizon control. To do this, we limit the number of time

steps for which the information value is maximised to a finite number l in Equation 3.2.

Thus, at time t, agents should plan their motion for the time interval [t, t + l] in order



Chapter 6 Decentralised Receding Horizon Control of Mobile Agents 121

to maximise the discounted incremental value of the observations they make during this

interval:3

t+l∑

t′=t

γtρ
Ot′

A

(Ot′−1
A ) (6.1)

For every agent, this yields a path of length l from their current position. This compu-

tation is performed every m ≤ l time steps, and thus, recomputation can occur before

the agents have entirely traversed these paths.

This approach does not yield optimal solutions to the NP-hard problem of maximising

discounted observation value maximisation in Equation 3.2. However, even the receding

horizon control problem is NP-hard4, and thus, we need to resort to (further) approx-

imation. Thus, instead of computing optimal solutions to the receding horizon control

problem, which involves computing the value of an exponential number of paths of length

l, the algorithm we develop in this chapter trades off solution quality for a significantly

reduced computational overhead.

6.2 The Coordination Algorithm

As in the previous chapter, we use the max-sum algorithm as a baseline solution for

maximising observation value in a decentralised fashion. In order to use the max-sum

algorithm to achieve receding horizon control, and thus maximise Equation 6.1, we

proceed in three steps:

1. We decompose Equation 6.1 into a sum of utility functions, each of which encodes

how much observation value a single agent contributes to the total observation

value collected as a team.

2. We assign a single action variable to each agent representing the path it will follow

for the next l time steps. Thus, the domain of these variables consist of paths of

length l from the corresponding agent’s current location. We develop two heuristics

for limiting the size of these—otherwise exponentially large—domains.

3. We apply the max-sum algorithm to a factor graph constructed from the utility

functions and and variables defined in the previous steps. We develop two pruning

techniques to further reduce computational overhead, especially in settings where

utility functions are costly to evaluate.

3In this chapter, we assume γ = 1 (i.e. no discounting of observation value). This is done in the
interest of simplifying notation, and does not restrict the application of the algorithm to problems where
this assumption does not hold.

4The NP-hard problem of maximising a submodular function can be reduced to this problem, which
is essentially maximising a submodular function with additional non-trivial constraints.
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In the three subsections that follow, we will further detail these steps.

6.2.1 Factorising the Value of Observation

The first step towards making the receding horizon control problem amenable to optimi-

sation by the max-sum algorithm is factorising Equation 6.1 into a set of agent-dependent

utility functions. To do this, we need to factorise the incremental value of the observa-

tions made by all agents in the next t time steps. We will denote this set as OA, which

is equal to the union of observations made by each individual agent at each of the next

t time steps: OA =
⋃t+l

t′=t

⋃M
i=1O

t
i .

A näıve factorisation—that, as it turns out, is incorrect—is to consider the value of only

those observations that an agent will make, since observation across agents are generally

not independent. Thus, due to the submodularity property of the value function f , this

method overestimates the true value that is obtained:

f(O1 ∪ . . . ∪OM ∪Ot−1
A )− f(Ot−1

A ) ≤
M∑

i=1

f(Oi ∪Ot−1
A )− f(Ot−1

A ) (6.2)

with equality if and only if all pairs of observation sets Oi and Oj are independent.

(Recall from Chapter 3 that this is the case when the observations contained in these

sets are further than δ apart through the property of locality. We come back to this

shortly.) However, this is unlikely to be the case in practise. As a result, if each agent

attempts to maximise the observation value it receives in an uncoordinated fashion, it

is unlikely they will maximise the observation value received as a team.

Instead, we decompose the team utility in Equation 6.1 into a set of factors, one for

every agent, such that these factors sum to the true observation value received by the

team. In order to do this, note that:

f(O1 ∪ . . . ∪OM ∪Ot−1
A )− f(Ot−1

A ) =
M∑

i=1

f




i⋃

j=1

Oj ∪Ot−1
A


− f




i−1⋃

j=1

Oj ∪Ot−1
A




=
M∑

i=1

ρOi




i−1⋃

j=1

Oj ∪Ot−1
A


 (6.3)

Equation 6.3 states that the team utility is a sum of the incremental values (see Defi-

nition 2.3) obtained by adding observations Oi to the observations made by agents Aj ,

j < i. We will call an individual factor of this sum the contribution of an agent, or its

utility.

Definition 6.1 (Agent Contribution/Utility). The contribution agent Ai makes to the

team utility by observing Oi, conditioned on the fact that agents j < imake observations
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O1, . . . , Oi−1 is:

Ui(O1, . . . , Oi) = ρOi




i−1⋃

j=1

Oj ∪Ot
A




Thus, in order to calculate its contribution, an agent need only be aware of the samples

collected by agents with a lower index. This still poses a problem, because these agents

might not be in communication range, and creates a large number of dependencies

between the agents (to be precise, this implies 1
2

(
M
2

)
dependencies, among M agents).

Fortunately, further simplifications to an agent’s contribution function can be made if

we take into account that some observations are independent through the property of

locality defined in Chapter 3. For example, if the observations Ok of some agent Ak,

k < i, are independent from observations Oi, then:

ρOi




i−1⋃

j=1

Oj ∪Ot−1
A


 = f(O1 ∪ . . . ∪Oi ∪Ot−1

A )− f(O1 ∪ . . . ∪Oi−1 ∪Ot−1
A )

= f(O1 ∪ . . . ∪Ok−1 ∪Ok+1 ∪ . . . ∪Oi ∪Ot−1
A )

−f(O1 ∪ . . . ∪Ok−1 ∪Ok+1 ∪ . . . ∪Oi−1 ∪Ot−1
A )

= ρOi




i−1⋃

j=1,j 6=k

Oj ∪Ot−1
A


 (6.4)

Thus, if observations made further apart than δ can be considered independent, and l

is the maximum distance an agent can travel within the planning horizon, observations

made outside a circle of radius d+l centred at the agent’s current location are necessarily

independent from any observation made by the agent (which are taken within the circle

with radius l). We refer to this circle as the agent’s influence circle, of which an example

is given in Figure 6.1(a)). Thus, no dependencies exists between agents outside an agent’s

influence circle.

To clarify this issue further, the following example illustrates the ideas developed in this

section.

Example 6.1. Depicted in Figure 6.1(b) are five agents with their respective influence

circles. Table 6.2 shows the contribution functions Ui of each agent to the team util-

ity. Using Equation 6.4, the expression for their contribution functions can be further

simplified, based on whether the agents’ influence circles overlap.

So far, we have shown how the team utility can be decomposed into a sum of agent utility

functions. For agent Ai, this contribution is calculated by determining the incremental

value of adding observations Oi to the set of observations collected by agents with a
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A1

δ

l

(a) Influence circle of a single agent
(explanation in text).

A1

A5

A2

A3

A4

U5

U1

U2

U3

U4

(b) An example scenario with 5 agents.

Figure 6.1: The influence circles of mobile agents.

Agent Ui Simplified Ui

A1 ρO1

(
Ot−1

A

)
Simplification not possible

A2 ρO2

(
O1 ∪Ot−1

A

)
Simplification not possible

A3 ρO3

(
O1 ∪O2 ∪Ot−1

A

)
ρO3

(
O2 ∪Ot−1

A

)

A4 ρO4

(
O1 ∪O2 ∪O3 ∪Ot−1

A

)
ρO4

(
O2 ∪O3 ∪Ot−1

A

)

A5 ρO5

(
O1 ∪O2 ∪O3 ∪O4 ∪Ot−1

A

)
ρO5

(
Ot−1

A

)

Table 6.2: Contribution functions for the scenario in Figure 6.1(b).

A1

A2

A3

Figure 6.2: Three paths of length l = 5 for three agents on a lattice graph.

lower index, and the observations that were collected previously. In the next section,

we address how the movement constraints imposed by the environment affect which

observations are made by the agents.

6.2.2 The Action Model

Recall from Chapter 3 that the movement of an agent is subject to constraints imposed

by layout graph G. Thus, the observations an agent can make in the next l time steps

have to lie along a path in G of length l from the agent’s current location.

If we consider all possible paths, for agent Ai, the domain Di of its action variable pi

contains all paths to locations reachable within l time steps (an example for three agents
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is shown in Figure 6.2). On average, this domain contains O(dl) paths, where d is the

average degree of graph G. Thus, this set grows exponentially with the length of the

planning horizon l. It is even worse if we consider the joint action space of a team of

M agents, which also grows exponentially with the number of agents: O((dl)M ). For

example, in the very simple environment of Figure 6.2, there are 712 possible paths of

length 5 for agent A2. Clearly, to achieve scalable solutions it is necessary to reduce the

size of this space.

We achieve this using three different techniques. The first is the max-sum algorithm

itself, which restricts the search space of a single agent to the joint action space of its

neighbours, instead of the joint action space of all agents.5 The second are the pruning

techniques we develop in Section 6.2.4.1. The third are two heuristic that limit the

number of paths an individual agent considers.

Both heuristics are based on the fact that many paths are unlikely to result in optimal

solutions, (such as paths that return it to its original position in a short period of time),

and on the fact that similar paths lead to almost identical observation value (such as

two paths leading to the same location via a small but different detour).

• The first heuristic defines the action space of an agent as paths of length l in

in eight directions, corresponding to the major directions on the compass rose.

Figure 6.3(a) shows an example. The big vertices are the eight locations that can

be reachable in l = 20 steps in eight different directions from the agent’s current

location (the white circle). The thick lines (dashed plus solid) are the shortest

paths leading to these locations. The paths are shortened to the length of the

shortest path (in this case, this length is 6), and duplicates are removed, resulting

in 5 distinct paths (solid).

• The second heuristic uses a graph clustering algorithm and information about the

current observation value associated with each vertex, and proceeds in three steps

(see Figure 6.3(b) for an example):

1. It clusters the l-neighbourhood6 NG(v) of the agent’s current location v ∈ V

into a set {C1, . . . , Cc} of c clusters. The agent’s possible destinations are

sought within these clusters, and should therefore contain promising locations.

Here, we use the k-means algorithm to find well-separated clusters. In the

example of Figure 6.3(b) the agent’s 20-neighbourhood is clustered into c = 4

clusters (coloured blue, black, yellow and red).

5Thus, this reduces the joint state space from O((dl)M ) to O((dl)N ), where N ≪ M is the number
of neighbours.

6The l neighbourhood of a vertex v is the subgraph of G induced by the vertices reachable in l steps
from v.
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2. Within each cluster Ci, it identifies the vertex v ∈ Ci for which f currently

reaches a maximum, i.e. the observation made at v is currently the most

valuable within that cluster. In Figure 6.3(b), these are the large vertices.

3. It defines the domain of pi as the set of shortest paths leading to each of these

c vertices. The paths are shortened to ensure they are of the same length,

and duplicates are removed. In Figure 6.3(b), the resulting three paths of

length 7 are indicated by arrows.

Note that the resulting paths are not always of length l. In this case, recomputation is

needed earlier than l time steps (if l < m). In Section 6.3 we empirically determine the

effectiveness of these two heuristics.

At this point, we have defined the action space of the agents, as well as their utility

functions. What remains is the application of the max-sum algorithm to find the joint

action that maximises observation value received over the planning horizon.

6.2.3 Maximising the Value of Observation

The central problem is now to find observation sets O∗
1, . . . , O

∗
M that the maximise

observation value received by the agents as a team:

{O∗
1, . . . , O

∗
M} = argmax

O1,...,OM

[
f(O1, . . . , OM ,Ot−1

A )− f(Ot−1
A )

]
(6.5)

Using Equation 6.3 and Definition 6.1, we can transform this into a sum of agent utilities:

{O∗
1, . . . , O

∗
M} = argmax

O1,...,OM

M∑

i=1

Ui(O1, . . . , Oi) (6.6)

By applying the movement constraints imposed by G encoded in the domains of variables

pi defined in Section 6.2.2, and realising that there exists a correspondence between a

path and a set of observations, Equation 6.6 can be transformed into the familiar form

of a welfare optimisation problem (Equation 2.9):

a∗ = [a∗1, . . . , a
∗
M ] = argmax

p1,...,pM

M∑

i=1

Ui(p1, . . . , pi) (6.7)

As discussed before, we can simplify this equation by exploiting the fact that some

observations are independent by applying Equation 6.4. As a result, the number of

parameters of the utility functions Ui can be reduced; that is, some of the parameters

p1, . . . , pi can be discarded, because the observations of the corresponding agents cannot
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(a) The action space identified by heuristic 1.

(b) The action space identified by heuristic 2.

Figure 6.3: The action spaces that result from the two action selection heuristics.
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U2 U3

p2 p3

U4

p4

U1

p1

A2A1 A3 A4

U5

p5

A5

Figure 6.4: Factor graph encoding the coordination problem from Example 6.1.

influence agent Ai’s contribution to the team utility. In what follows, we will therefore

use the standard max-sum notation pi to indicate the vector of parameters to function Ui.

This vector pi contains only those decision variables on which sensor i’s utility depends.

Since an agent’s contribution necessarily depends on the observations it collects itself,

pi ∈ pi will always hold.

6.2.4 Applying the Max-Sum Algorithm

We have now transformed the problem so it is amenable to optimisation by the max-sum

algorithm; Equation 6.7 is easily translated into a factor graph, on which the max-sum

algorithm can be directly applied. Recall from Section 2.6.1 that, in this factor graph,

the utility functions Uj(pj) are represented by function nodes, and the action variables

pi by variable nodes; an edge exists between Uj(pj) and pi if and only if pi ∈ pj.

The following example shows how Equation 6.7 is encoded as a factor graph for the

coordination problem in Example 6.1.

Example 6.2. Figure 6.4 shows an example factor graph that encodes Equation 6.7

for the coordination problem in Example 6.1. In this example, the utility of agent A1

depends solely on its own action, so p1 = {p1}; the the utility of agent A2 depends

on its own action, and that of agent A1, so p2 = {p1, p2}. Similarly, p3 = {p2, p3},
p4 = {p2, p3, p4}, and p5 = {p5}.

6.2.4.1 Speeding Up Message Computation

Now, while it is possible to apply the max-sum algorithm in its unaltered form, the

computation of the messages from function to variable (Equation 2.13):

rj→i(pi) = argmax
pj\pi

[
Uj(pj) +

∑

k∈Nj\i

qk→j(pk)

]
(6.8)

can form a major bottleneck that can hamper the scalability of the algorithm. The

standard way of computing these messages for a given variable pi is to enumerate all joint
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Algorithm 6 Algorithm for computing pruning message from function Uj to variable
pi

1: Compute an upper bound Uj(pi) ≥ min
pj\pi

Uj(pj)

2: Compute a lower bound Uj(pi) ≤ max
pj\pi

Uj(pj)

3: Send 〈Uj(pi), Uj(pi)〉 to pi

Algorithm 7 Algorithm for computing pruning messages from variable pi to all func-
tions Uj adjacent to pi in the factor graph.

1: if a new message has been received from all Uj : j ∈Mi then

2: ⊥(pi) =
∑

j∈Mi

Uj(pi)

3: ⊤(pi) =
∑

j∈Mi

Uj(pi)

4: while ∃a ∈ Di : ⊤(i) < max
pi
⊥(pi) do

5: Di ← Di \ {a}
6: end while
7: send updated domain Di to each Uj : j ∈Mi

8: end if

paths (i.e. the Cartesian product of the domains of the variables in pj), and find the one

that maximises Uj . Since the size of this joint action space grows exponentially with the

number of neighbours, the amount of computation can become prohibitive. The reason

this has not posed a problem in the previous chapter is that the domains were kept small,

and the utility functions were fairly cheap to evaluate. However, evaluating the utility

functions in Definition 6.1 can be very costly, since the value of many observations has to

be calculated simultaneously.7 Therefore, we introduce two generic pruning algorithms

to reduce the size of the joint action space that needs to be considered. These algorithms

are generic in the context of the max-sum algorithm, and can therefore be applied to

problems other than multi-agent information gathering.

The Action Pruning Algorithm The first algorithm attempts to reduce the num-

ber of actions each agent needs to consider before running the max-sum algorithm. This

algorithm prunes the dominated actions that can never maximise Equation 6.7, regard-

less of the actions of other agents. More formally, an action a′ ∈ Di is dominated if

there exists an action a∗ ∈ Di such that:

∀a−i :
∑

j∈Mi

Uj(a
′,a−i) ≤

∑

j∈Mi

Uj(a
∗,a−i) (6.9)

where a−i is an element of the domain of variables pj \ pi.

7Particularly, determining the value of observations using the entropy metric in Section 6.3.1, involves
inverting a potentially very large matrix K(X,X) (see Equation 2.2).
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The central idea behind this algorithm is that variable and function nodes in the factor

graph collaborate to find lower ⊥(·) and upper ⊤(·) bounds on the value (lines 2–3 of

Algorithm 7) of each action a, i.e.:

⊥(pi = a) = min
a−i∈D−i

∑

j∈Mi

Uj(a,a−i)

⊤(pi = a) = max
a−i∈D−i

∑

j∈Mi

Uj(a,a−i)

Once a variable pi detects that the upper bound of an action a′ ∈ Di is lower than the

lower bound of another another action a ∈ Di, it removes a′ from its domain. Just as

with the max-sum algorithm itself, this algorithm is implemented by message passing,

and operates directly on the variable and function nodes of the factor graph, making it

fully decentralised:

• From function to variable: Function Uj sends a message to pi, containing an

upper and lower bound on the values of Uj with respect to pi = ai, for all ai ∈ Di.

(see Algorithm 6).

• From variable to function: Variable pi sums the minimum and maximum values

from each of its adjacent functions, and prunes dominated actions. It then informs

neighbouring functions of its updated domain (see Algorithm 7).

Using this distributed algorithm, functions continually refine the bounds on the utility

for a given state of a variable, which potentially causes more actions to be pruned.

Therefore, it is possible that action pruning starts with a single action at a single agent,

and subsequently propagates through the entire factor graph. This algorithm terminates

once the messages exchanged between the functions and variables converge. That is,

when all messages along all edges in the factor graph equal the previously received

messages. Also note that termination is guaranteed because of the simple fact that

every variable has a finite number of states: during each iteration either at least one

variable state is pruned or the algorithm has converged. To see why this is true, note

that for the bounds on Uj for a certain action to change, at least one variable state needs

to get pruned. Otherwise, the messages sent from variables to functions will be identical,

and all variables receive the same message twice, which results in the termination of the

algorithm.

Given the highly non-linear relations on which the agents’ utility functions are often

based8 it is very difficult to calculate tight bounds without exhaustively searching the

domain of pj for utility function Uj . Needless to say, this would defeat the purpose of

8Again, entropy is a good example of this, which is based on the variance of a GP expressed in
Equation 2.2.
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Algorithm 8 Greedy algorithm for approximating lower bound Uj(pi)

1: p′
j = pj

2: U ′
j = Uj

3: while p′
j \ {pi} 6= ∅ do

4: Let p be some variable in p′
j \ {pi}.

5: U ′
j(p

′
j \ {p})← min

p
U ′
j(p

′
j)

6: p′
j ← p′

j \ {p}
7: end while
8: return U ′

j(p
′
j) {= U ′

j(pi) = Uj(pi)}

using this pruning technique. In these cases, we can resort to approximation of these

bounds using a greedy algorithm. This algorithm approximates the lower bound Uj(an)

on an action an ∈ Di (pi ∈ pj) by iterating through each neighbouring agent, and

computing the action that reduces the utility of agent j’s action the most. This idea is

formalised in Algorithm 8; in lines 3–6 the algorithm iterates through the variables, and

in line 4 the current variable is “minimised out”. This process continues until only pi

is left. The resulting function U ′
j(p

′
j) equals the desired bound Uj(pi), which encodes

the lower bounds of all actions in the domain of pi. In a similar vein, the upper bounds

on a single action is obtained, by selecting those actions of other agents that reduce the

utility the least. Thus, by substituting max for min in line 4 of Algorithm 8, we obtain

an algorithm for approximating Uj(pi)

The Joint Action Pruning Algorithm Whereas the first algorithm runs as a pre-

processing phase to max-sum, the second one is geared towards speeding up the computa-

tion of the messages from function to variable (Equation 6.8), while max-sum is running.

As described earlier, the standard way of computing this message to a single variable pi

is to determine the maximum utility for each of Ai’s actions by exhaustively enumer-

ating the joint domain of its neighbours’ variables pj\{pi} (i.e. the Cartesian product

of the domains of these variables), and evaluating the expression between brackets in

Equation 6.8, which we denote by:

r̃j→i(pj) = Uj(pj) +
∑

k∈Nj\i

qk→j(pk) (6.10)

However, instead of just considering joint actions, we now allow some actions to be

undetermined, and thus, consider partial joint actions, denoted by â. By doing so, we

can create a search tree on which we can employ branch and bound to significantly

reduce the size of the domain that needs to be searched. In more detail, to compute

rj→i(ai) (a single element of the message from Uj to variable pi) for a single action

ai ∈ Di, we create a search tree T (ai) as follows:
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[2, 4]

〈∅,∅, a13〉

〈a31,∅, a13〉〈a11,∅, a13〉 〈a21,∅, a13〉
[5, 6][5, 9]

〈a21, a22, a13〉〈a21, a12, a13〉
[7, 7] [9, 9]

Figure 6.5: Search-tree for computing rj→3(a
1
3) showing lower and upper bounds on

the maximum value in the subtree.

• The root of T (ai) is a partial joint action âr = 〈∅, . . . ,∅, ai,∅, . . . ,∅〉, which

indicates that ai is assigned to pi, and the remaining variables are unassigned

(denoted by ∅).

• The children of a vertex
〈
a
(1)
1 , . . . , a

(k)
k , ∅, . . . ,∅, ai,∅, . . . ,∅

〉
are obtained by

assigning each of its |Dk+1| actions to the first unassigned variable pk+1.

• The leafs of the tree represent a (fully determined) joint move al (i.e. ∀i : pi 6= ∅).

In the tree, only leafs are assigned a value, which is equal to r̃j→i(al) (Equation

6.10).

The maximum value found in T (ai) is the desired value. To speed up the search for this

value, we can use branch and bound on this tree. In order to do this, we need to put

bounds on the maximum value found in a subtree of T (ai). These bounds depend on Uj

and the received messages q (Equation 2.12). In many cases we can put bounds on the

maximum of the former, that is obtained by further completing a partial joint action â

in a subtree of T (ai). Combining these bounds on Uj with with the minimum q(â) and

maximum q(â) values of messages q for â:

q(â) =
∑

k∈Nj\i
âk 6=∅

qk→j(âk) +
∑

k∈Nj\i
âk=∅

min
pk

qk→j(pk)

q(â) =
∑

k∈Nj\i
âk 6=∅

qk→j(âk) +
∑

k∈Nj\i
âk=∅

max
pk

qk→j(pk)

(where âk is the kth element of â), gives us the desired bounds on r̃j→i(pj) in Equation

6.10.

Figure 6.5 shows an example of a partially expanded search tree for computing a single

element rj→3(a
1
3) of a message from function Uj to variable p3. Given this, the lower and

upper bounds on the maximum (denoted between brackets) subtree
〈
a11,∅, a13

〉
can be

pruned immediately after expanding the root. Similarly, subtree
〈
a31,∅, a13

〉
is pruned

after expanding leaf
〈
a21, a

2
2, a

1
3

〉
, which has the desired maximum value.
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Since the utility functions Uj are domain dependent in the context of the max-sum algo-

rithm, there is no general way of computing these bounds. However, in most domains,

such as the mobile agent domain, a partial joint action has a meaningful interpretation

that can lead to an intuitive way of computing the bounds on Uj in any subtree of T :
a partial joint action â represents a situation in which only a subset of the agents have

determined their action (Figure 6.6(a)). With this interpretation, we can obtain bounds

as follows. The upper bound on this value is obtained by disregarding the agents that

have not determined their action (i.e. agents Ai for which pi = ∅). Since the act of mak-

ing an observation always reduces the incremental value of other observations (because

of the submodularity property of f defined in Chapter 3), disregarding the observations

of these ‘undecided’ agents will give an upper bound on the maximum (Figure 6.6(b)).

To obtain a lower bound on the maximum, we use the locality property of the utility

functions, which tells us that the interdependency between observations weakens as their

distance increases. So, in order to obtain a lower bounds on the maximum, we chose

the actions of the undecided agents that move them away from agent Ai’s destination

(Figure 6.6(c)).

6.2.5 Ensuring Network Connectivity

Besides maximising observation value and a reduced computational overhead, it is also

important in many situations that the agents maintain network connectivity, for exam-

ple to transmit their measurements to a base station, or to coordinate their actions. Not

surprisingly, we can use coordination to accomplish this, by penalising disconnection

from the network in the utility function Uj . To this end, we assume that each agent

maintains a routing table that specifies which agents can be reached through each im-

mediate neighbour. Thus, an action is allowed if all agents are still be reachable through

the links that remain after repositioning. Otherwise, the agent risks disconnection from

the network, in which case a large penalty is added to its utility function Ui.

It is important to note, however, that although maintaining network connectivity is

incentivised, the agents are not guaranteed to remain connected. This is due to the

fact that max-sum is not guaranteed to converge in cyclic graphs (see Section 2.6.1),

and theoretically, solutions can be arbitrarily bad when it does not (although empiri-

cal evidence suggests that, in practise, this does not happen often). So, the solution

computed by max-sum can disconnect the network, even though this results in a strong

negative utility. This problem can be solved by the use of the bounded version of max-

sum (discussed in Section 2.6.1), which guarantees convergence and gives bounds on

the computed solution, at the cost of a decrease in solution quality. By utilising this

extension to the max-sum algorithm, it is possible to guarantee network connectivity by

sacrificing a small amount of observation value. Here, however, we focus on the standard

max-sum algorithm.
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a21A1 A4 A3

A2a42

a41 a43a24

a22

a34 a33a31

a32

a11 a14 a13

a23

a12

a44

(a) A partial joint action â
〈

a11,∅,∅, a14,
〉

, in which agents A1 and
A4 move upwards, while agents A2 and A3 have not determined
their actions yet. (Arrows indicate chosen actions; dotted arrows
represent actions that have not been chosen; dashed arrows are
actions that can still be chosen.)

A4 A3

A2

A1

(b) The upper bound of â for A2 is computed by ignoring (the
actions of) agents A2 and A3. In so doing, the value of the ob-
servations A4 collects is not decreased by the observations of A2

and A3. As a result, this scenario puts an upper bound on the
maximum obtainable utility of S4.

A1 A4 A3

A2

(c) A lower bound on â for A2 is obtained by moving agents A2 and
A3 away from the destination of A4, thereby minimising the depen-
dence between the observations of A2 and A3 and the observations
A4 collects.

Figure 6.6: Computing lower and upper bounds on the utility of a partial joint move.
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A2

A3

A1

A6

A4

A5

Figure 6.7: A communication network between agents.

Now, more formally, let RC
i : A→ 2A be the routing table for agent Ai in the commu-

nication network represented by graph C, that maps each agent to a set of agents that

can be reached through it. If Aj is not a neighbour of Ai (i.e. no direct communication

link exists), then RC
i (Aj) = ∅. Also, we define RC

i (Ai) = {Ai}. Given this routing table,

an agent can detect whether the communication network is connected by checking if all

agents can be reached, i.e.
⋃M

j=1RC
i (Aj) = A. When clear from the context, we will

omit the superscript referring to the communication graph C.

Example 6.3 (Network Connectivity). Figure 6.7 shows a communication network

among 6 agents. The routing table for agent A6 in this scenario is:

R6(A1) = {A1,A2,A3}
R6(A2) = ∅
R6(A3) = ∅
R6(A4) = {A4,A5}
R6(A5) = {A4,A5}
R6(A6) = {A6}

Since {A1,A2,A3} ∪ {A4,A5} ∪ {A6} = A, the network is connected.

Now, given the routing functionR, an agent is able to determine if a move will disconnect

it from the network. In particular, if an action results in the disconnection of one of

its neighbours Aj , the network is still connected if
⋃M

i=1,i 6=j R(Ai) = A. If, however,

this condition does not hold, the agent risks disconnecting itself from (a part of) the

communication network.

Example 6.4 (Network Connectivity, Continued). Suppose agent A6 repositions itself,

causing connection loss with agent A4. Now,
⋃6

i=1,i 6=4R6(i) = {A1,A2,A3,A4,A5,A6} =
A so agent A6 is still connected to all other agents. Thus, any move by agent A6 that

disconnects it from sensor A4 only, does not disconnect the network. If, however, it

loses connection with agent A1,
⋃M

i=1,i 6=1R6(Ai) = {A4,A5,A6} 6= A, and agent A6 is

no longer connected to agents A1, A2, and A3.
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In more detail, let C(p1, . . . , pM ) be the communication network after the agents have

moved according to their action variables p1, . . . , pM . We can now define a Network

Disconnection Penalty that penalises moves that disconnect the communication network:

Definition 6.2 (Network Disconnection Penalty).

PConn
i (p1, . . . , pM ) =




0 if

⋃M
j=1R

C(p1,...,pM )
i (Aj) = A

−∞ otherwise

Of course, since only neighbours influence the result of
⋃M

j=1Ri(Aj), only variables pj

of the agents that are adjacent in the communication network need to be included in

the set of parameters to PConn
i .

The penalty function is used by augmenting it to the original utility functions of the

agents.

Definition 6.3 (Augmented Agent Utility).

UAUG
i (pi) = Ui(pi) + PConn

i (pi)

In conjunction with max-sum, the augmented utility function incentivises the agents

to avoid moves that result in the disconnection of an agent, since the team utility (see

Equation 6.7) of such a move is −∞.

More sophisticated forms of connectivity can also be incentivised with the same tech-

nique. In particular, fault tolerance is one of these more sophisticated forms. A com-

munication network is said to be fault tolerant if it has at least two alternative paths

between any pair of agents, making it more robust against failing agents. This coincides

with the concept of 2-connected graphs, as established by Whitney’s Theorem (Gross

& Yellen 1999). In more detail, 2-Connectivity implies that at least two agents need to

fail simultaneously before the network becomes disconnected (or is reduced to a single

agent). Clearly, the communication network from Example 6.3 is not 2-connected; the

failure of agent A6 breaks the network into two components: {A1,A2,A3} and {A4,A5}

By inspecting its routing table, an agent can easily determine if it satisfies the necessary

condition for 2-connectivity; its failure should still leave the communication network

connected. In order to do this, Algorithm 9 counts the number of components the

network is divided into should the agent fail; if this number is equal to 1, the network

is fault tolerant.

Now, the following penalty function can be used to augment the utility function of the

agent in order to enforce fault tolerance in a decentralised fashion.
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Algorithm 9 A decentralised algorithm for determining whether a communication net-
work is fault tolerant.

Require: RC
i : routing table for agent Ai

Ensure: Returns true iff failure of agent Ai does not disconnect the communication
network
Initialisation:

1: for all Aj ∈ A \ {Ai} do
2: C← C ∪Ri(Aj)
3: end for

Closure:
4: while ∃C1, C2 ∈ C : C1 ∩ C2 6= ∅ do
5: C← C \ {C1, C2}
6: C← C ∪ {C1 ∪ C2}
7: end while
8: return true if |C| = 1, false otherwise

Definition 6.4 (2-Connectedness Violation Penalty).

P 2-Conn
i (p1, . . . , pM ) =




0 if isFaultTolerant(i, C(p1, . . . , pM ))

−∞ otherwise
(6.11)

In general, the technique of augmenting the utility function with a penalty function is

applicable to enforce various constraints on the agents’ collective movement. The only

requirement on such a constraint is that its violation should be locally detectable. That

is, one or more agents should be able to determine if the constraint is satisfied based on

information received from direct neighbours or from its own observations. If this is the

case, a penalty function can be effectively used to filter out solutions that do not satisfy

the constraint. Other examples, besides the ones given above, include the assignment of

roles to agents (i.e. some agents function as communication relays, others as explorers,

etc.), and to ensure certain events or locations are monitored by agents.

6.3 Empirical Evaluation

In this section we empirically evaluate the algorithm developed in the previous section

within three different information gathering domains:9

Monitoring Environmental Phenomena In this scenario, the agents are tasked with

monitoring an environmental phenomenon, such as temperature (Section 6.3.1).

Pursuit Evasion In this scenario, the agents are tasked with capturing a moving object

(Section 6.3.2).

9Empirical results on the first domain were published in Stranders et al. (2009b). Results for the
second and third domain were published in Stranders, Delle Fave, Rogers & Jennings (2010).



Chapter 6 Decentralised Receding Horizon Control of Mobile Agents 138

Patrolling In this scenario, the agents’ goal is to prevent attackers from intruding their

environment (Section 6.3.3).

The structure of these sections is identical. First, we derive a value of information, by

showing how the environment can be represented. Then, we discuss the experimental

setup, and the benchmark strategies against which we compared our algorithm. Finally,

we present and analyse the results.

To allow for a dynamic view of the operation of our algorithm, we have made videos

available of all these experiments, which can be found at http://users.ecs.soton.

ac.uk/rs06r/videos/.

6.3.1 Domain 1: Monitoring Environmental Phenomena

The first domain we use for empirically evaluating the algorithm involves agents mon-

itoring an environmental phenomenon (in this case, temperature) in a rectangular en-

vironment. The agents’ goal is to observe the phenomenon (i.e. take temperature mea-

surements) in such a way as to provide accurate situational awareness. More concretely,

this means that agents need to coordinate their movements to take those observations

that enable them to predict the value of the phenomenon at unobserved locations as

accurately as possible.

Figure 6.8 shows four snapshots of this scenario, taken at time steps 50, 100, 150 and

200. Note how the team makes a sweeping motion through its environment, in order to

maintain low uncertainty throughout, and thus minimise the predictive variance with

which the environmental phenomenon can be predicted. It is also worth noting that the

team maintains connectivity throughout the simulation, using techniques discussed in

Section 6.2.5.

Before applying the coordination algorithm in this setting, we first choose an appropriate

metric for valuing observations.

6.3.1.1 Valuing Observations

In Section 2.3.1.2, we argued that the GP is a flexible and effective regression technique

for modelling environmental phenomena. For this reason we will use it in this domain to

model the agents’ environment and predict the value of the phenomenon at unobserved

locations. In terms of valuing observations, recall from Section 2.4 that within the

context of the GP, we have a choice between entropy and mutual information. The former

is a local metric, and is comparatively cheap to evaluate, but it sometimes causes agents

to waste their effective sensing range by moving close to the borders of the environment.

The latter demands more computational resources, but avoids this undesirable effect.



Chapter 6 Decentralised Receding Horizon Control of Mobile Agents 139

(a) Time step 1–50 (b) Time step 51–100

(c) Time step 101–150 (d) Time step 151–200

Figure 6.8: Snapshots at time steps 50, 100, 150 and 200 of a simulation of four agents
monitoring an environmental phenomenon. The grid represents graph G, which allows
the agents to move in four directions. The arrows indicate the approximate path of the
team in the 50 time steps between two subsequent snapshots. The lines between the

agents indicate that communication between them is possible.

Thus, this choice constitutes a trade-off between solution quality and computational

overhead.

To make this trade-off in an informed manner, we compared these two metrics using

the same parameters and physical layout we will use to benchmark the coordination

algorithm later. Initially, it was our aim to use the algorithm itself to make this compar-

ison, but despite the various improvements to lessen the computational demand of the

max-sum algorithm, repeatedly evaluating mutual information for a large set of observa-

tions proved too demanding. Instead, we chose to use an un-negotiated (see Section 2.6)
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greedy algorithm10 in two settings: deploying fixed agents, and controlling the movement

of mobile agents. We recorded the algorithm’s performance in terms of solution quality

and computation time for a varying number of agents. Specifically, solution quality is

expressed as the average root mean squared error (RMSE) over all time steps, which is

calculated as follows:

1

|T |
∑

t∈T

√√√√
∑

v∈V

σ2
v,t

|V | (6.12)

where σ2
v,t is the variance at spatio-temporal coordinates (v, t), which is calculated by

Equation 2.2.

The aforementioned difference in behaviour of these two metrics is clearly visible in

Figures 6.9 and Figure 6.10 for fixed and mobile agents respectively; while maximising

entropy the agents tend to venture close to the edge of the environment than when

maximising mutual information. These findings are consistent with those of Guestrin

et al. (2005) (see Section 2.4).

However, if we analyse this difference in terms of the average RMSE over 100 time steps

(Figure 6.11(a)), we find that mutual information provides a decrease of RMSE of only

10%. Moreover, this decrease comes at a significant cost (Figure 6.11(b)). The repeated

evaluation of mutual information required by the greedy algorithm requires roughly two

orders of magnitude more computation time than entropy.11 We deem this too high

a price to pay for a small increase in solution quality, especially considering that our

algorithm needs to compute the value of many different sets of observations at every

time coordination between the agents is scheduled.

In light of this, we opt for the entropy metric in this domain. Using this metric, the

utility function of an individual agent (Definition 6.1) is defined as:

Ui(O1, . . . , Oi) = ρOi




i−1⋃

j=1

Oj ∪Ot
A




= f(O1 ∪ . . . ∪Oi ∪Ot−1
A )− f(O1 ∪ . . . ∪Oi−1 ∪Ot−1

A )

= H(O1 ∪ . . . ∪Oi ∪Ot−1
A )−H(O1 ∪ . . . ∪Oi−1 ∪Ot−1

A )

= H(Oi | O1 ∪ . . . ∪Oi−1 ∪Ot−1
A ) (6.13)

10This algorithm was part of our initial study into coordinating mobile agents, and was published as
Stranders et al. (2008)

11These results were obtained after optimising the computation of mutual information by exploiting
the locality property of f . That is, the entropy reduction that results from making an observation is
computed only for those locations within a range of δ. In this case, this range was δ = 20, with an error
of ρ < 0.01.
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(a) Entropy (b) Mutual Information

Figure 6.9: Two deployments of fixed agents using the entropy and mutual infor-
mation value metrics. The size of the vertices is proportional to the RMSE at those

locations.

(a) Entropy (b) Mutual Information

Figure 6.10: Two snapshots at time step 20 of mobile agents using the entropy and
mutual information value metrics. The size of the vertices is proportional to the RMSE

at those locations.

In other words, the utility of agent Ai is the entropy of observations Oi conditioned on

O1 . . . ∪ Oi−1 ∪Ot−1
A , or, equivalently, the entropy of Oi that remains after the agents

with a lower index have made their observations.

6.3.1.2 Experimental Setup

To empirically evaluate the algorithm developed in this chapter in this domain, we

simulated five agents on a lattice graph measuring 26 by 26 vertices (see for example
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Figure 6.11: A comparison of the entropy (H) and mutual information (MI) value
metrics. Errorbars indicate the standard error in the mean.

Figure 6.11(a)). The environmental phenomenon was generated by a GP with a squared

exponential covariance function (see Equation 2.3) with a spatial length-scale of 10 and

a temporal length-scale of 150. This yields an environmental phenomenon with a strong

correlation along the temporal dimension, which therefore changes slowly over time. At

every m time steps, the agents plan their motion for the next l time steps (l ≥ m). In

what follows, this strategy is referred to as MSm-l.

Since the environmental layout is very structured (i.e. a lattice), we use heuristic 1 to

determine the action space of the agents (see Section 6.2.2). Thus, each agent considers

paths of length l in 8 different directions. We will compare the two action selection

heuristics in the next two experiments, where we use a layout with obstacles.

In this experiment, we benchmarked MS1-1 and MS1-5 against four strategies:

Random Randomly moving agents.

Greedy These agents use the un-negotiated greedy coordination algorithm that moves

to the adjacent location with the highest observation value.

J(umping) Greedy The same as Greedy, except that these agents can instantaneously

jump to any location.

Fixed Fixed agents that are placed using a greedy algorithm for maximising mutual

information (Guestrin et al. 2005), which we used earlier to compare entropy with

mutual information.

We randomly generated 200 problem instances (i.e. initial positions for the agents), and

evaluated the performance of all algorithms on each of these instances.
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Figure 6.12: Empirical performance of the MS1-1 and MS1-5 algorithms for monitor-
ing environmental phenomena. Errorbars indicate the standard error in the mean.
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6.3.1.3 Results

The averaged RMSE over 100 time steps is plotted in Figure 6.12(a). From this, it is

clear that both MS strategies outperform the Greedy, Random, and Fixed strategies.

Furthermore, the prediction accuracy of MS1-5 is comparable to that of JGreedy, whose

movement is not restricted by graph G. Moreover, it shows that increasing the length

of the look ahead from 1 to 5, reduces the RMSE by approximately 30%.

We also analysed the speed-up achieved by applying the two pruning techniques de-

scribed in Section 6.2.4.1. Figure 6.12(b) shows the percentage of joint actions pruned

plotted against the number of neighbouring agents. If an agent has 5 neighbours, the two

pruning techniques combined prune around 92% of the joint moves. With such a large

number of neighbours, the agents are strongly clustered, which occurs rarely in large

environments. Should this nevertheless happen, the agent in question needs to evaluate

its utility function for only 8% of roughly 85 joint actions, thus greatly improving the

algorithm’s efficiency.

Finally, we performed a cost/benefit analysis of various MSm-l strategies. More specifi-

cally, we examined the effect of varying m and l on both the number of utility function

evaluations, and the resulting RMSE. Figure 6.12(c) shows the results. The behaviours

of MS1-1, MS2-2, MS4-4, MS5-5, and MS8-8 show an interesting pattern. Up to and

including m = l = 4, both the number of function evaluations and the average RMSE

decrease. This is due to the fact that planning longer paths is more expensive, but

results in lower RMSE. However, for m, l > 4, the action space becomes too coarse

(since only 8 directions are considered) to maintain a low RMSE. At the same time, the

number of times the agents coordinate reduces significantly, resulting in a lower number

of function evaluations. MS1-5 and MS4-8 provide a compromise. They compute longer

paths, but coordinate more frequently. This leads to more computation compared to

MS5-5 and MS8-8, but results in significantly lower RMSE, because agents are able to

‘reconsider’ their paths.

6.3.2 Domain 2: Pursuit Evasion

Pursuit evasion is the second domain in which we evaluate our algorithm. This domain

is characterised by the presence of a single moving object e (called an evader) that the

agents need to capture as quickly as possible. The evader e has a type M (e.g. random,

stationary, etc.) that specifies how it moves in graph G. We assume that agents are

capable of sensing all locations within a radius of rs of their position, but imperfectly:

agents make false positive or false negative observations with probabilities pfp and pfn.

Finally, an evader is captured when it is within one of the agents’ capture ranges rc.

Figure 6.13 shows three snapshots of a pursuit evasion scenario with a randomly moving

evader.
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(a) t = 1

(b) t = 6

(c) t = 13

Figure 6.13: An example pursuit-evasion scenario with three agents. The big circles
represent the agents and the square represents the evader. The size of the grey circles
is proportional to the observation value f at that location. The evader is captured at

t = 14.
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6.3.2.1 Valuing Observations

As in Section 6.3.1, we start with deriving an observation value function. This function

assigns a value to observations which is proportional to the probability that the evader

will be detected. To do this, the agents model their belief of the evader’s location et

at time t using a probabilistic map pe(et = v | Ot−1
A ), representing the probability that

the evader is at location v given their observation history Ot−1
A . This model extends

the work by Hespanha et al. (1999) to a setting with an arbitrary evader (as opposed

to a randomly moving one), or an unknown evader. Each agent has a copy of this

probabilistic map which is kept consistent by exchanging observations. At each time

step t, the agents take new measurements Ot
A and obtain pe(et+1 = v | Ot

A) in two

steps:

1. Fuse measurements Ot
A with pe(et = v | Ot−1

A ) to obtain:

pe(et = v | Ot
A) = α · pe(et = v | Ot−1

A ) · p(Ot
A | et = v,Ot−1

A )

Here, α is a normalising constant, and p(Ot
A | et = v,Ot−1

A ) is computed as:

p(Ot
A | et = v,Ot−1

A ) =
∏

o∈Ot
A

p(o | et = v,Ot−1
A )

and p(o | et = v,Ot−1
A ) is given by probabilities of false negatives and false posi-

tives:

p(o | et = v,Ot−1
A ) =





1− pfp if o(m) = T ∧ o(l) = v

pfp if o(m) = T ∧ o(l) 6= v

pfn if o(m) = F ∧ o(l) = v

1− pfn if o(m) = F ∧ o(l) 6= v

Recall from Chapter 3, that o(m) is the realisation of observation o, in this case

whether an evader was detected, and o(l) is its spatial coordinate.

2. Predict the motion of the evader. If the evader’s type M is known, the agents

compute:

pe(et+1 = v | Ot
A) =

∑

v′∈V

pm(et+1 = v | et = v′,M)pe(et = v′ | Ot
A) (6.14)

Here, pm(et+1 = v | et = v′,M) is the transition (movement) probability of evader

type M from v to v′. Since the evader’s movement is restricted by layout graph

G(V,E), pm(et+1 = v | et = v′,M) = 0 if (v, v′) 6∈ E. If, however, the evader’s

type M is unknown, but it is known that M ∈ {M1, . . . ,Mn}, the agents compute
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a posterior over types M given observations Ot−1
A :

p(Mi | Ot
A) = α · p(Ot

A | Ot−1
A ,Mi) · p(Mi | Ot−1

A ) (6.15)

where p(Ot
A | Ot−1

A ,Mi) =

∑

v∈V

p(Ot
A | et = v,Ot−1

A ,Mi) · pe(et = v | Ot−1
A ,Mi) (6.16)

In this case, pe(et+1 = v | Ot
A) is computed as:

n∑

i=1

pe(et+1 = v | Ot
A,Mi)

Using the probability map obtained from this computation, the measurement value

function f is defined as:

f(Ot
A ∪ · · · ∪Ot+l

A ∪Ot−1
A ) = 1−

t+l∏

t′=t


1−

∑

o∈Ot′
A

pe(et+1 = o(l) | Ot−1
A )




which is the probability that at least one observation made by the agents collectively in

the next l time steps will result in the detection of the evader. Once an agent has made

a positive observation, the agents suspend their information gathering tasks and move

to the location where the evader is expected to be in the next time step to capture it.

6.3.2.2 Experimental Setup

To evaluate our algorithm, we consider two different graphs:

Office The layout of this environment is a model of the IAM lab at the University of

Southampton, which measures 67 by 47.5 metres (see Figure 6.13). The sensing

range rs = 9m and capture range rc = 4m. The number of agents M = 4.

Lattice A 26 by 26 square lattice graph measuring 100 by 100 metres, which was used

in the previous experiment (see Figure 6.10). Sensing range rs = 10m, and capture

range rc = 4m. The number of agents M = 5.

These two types of graphs were chosen to illustrate the effect of the two action selection

heuristics discussed in Section 6.2.2 on the performance of our algorithm compared in a

structured and less-structured graph.

We used three different types of evaders: stationary, random (which moves to a random

adjacent location) or smart (which moves away from the closest agent), with equal
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probability. The first two can be used to model civilians in a disaster scenario; the

second an intruder in a security domain.

For all problem instances, the probability of a false positive or false negative observation

are pfp = pfn = 0.001.12 The key metric we used to measure the agents’ performance is

the capture time; the time needed by the agent to capture the evader. We benchmarked

our algorithm against the state of the art, as well as algorithms that provide an upper

(JGreedy) and a lower bound (GRandom) on achievable performance:

(G)Greedy Greedy agents are controlled by the un-negotiated coordination algorithm

we used before, which moves the agent to the adjacent location with the highest

value in the next step. GGreedy is similar to Greedy, but moves agents toward

the global location with highest value. These algorithms are state of the art for

decentralised control in pursuit-evasion, and were proposed by Vidal et al. (2001).

JGreedy This approach instantaneously jumps to the global location with the highest

value, as in Section 6.3.1.2.

(G)Random These are two random approaches. Random agents move to a random

location adjacent to the agent’s current position. GRandom selects a random

position in the graph and then moves along the shortest path.

TSP This is a state of the art approach proposed by Sak et al. (2008). It computes

the shortest closed walk that visits all vertices (similar to the Travelling Salesman

Problem13). To improve its adaptiveness and competitiveness, we let the agents

deviate from this walk once an evader is detected.

MS-8 This is our algorithm, with action selection heuristic 1, recomputation interval

m = 5 and look ahead l = 15. These values are identical to the configuration of

MS K-M, which allows us to compare heuristic 1 and 2 under the same conditions.

MS K-M This is algorithm with action selection heuristic 2. Here, m = 5, l = 15, and

the number of clusters c = 4.14 These values were chosen after initial calibration

of the algorithm on both layout graphs.

We randomly generated 200 problem instances, and evaluated the performance of all

algorithms on each of these instances.
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Figure 6.14: Empirical performance on 200 instances of the pursuit-evasion domain.
The band near the centre of the boxes is the median of the dataset; the box contains data
points between the 25th and 75th percentile. Whiskers are drawn at 1.5 inter-quartile

range (IQR).

6.3.2.3 Results

The results for the office environment are summarised in box-plots shown in Figure

6.14, showing that MS K-M has a lower median compared to GGreedy, MS-8, Greedy

and TSP, as well as a significantly lower variance. From this, we can conclude that

this algorithm consistently and reliably captures the evader sooner than the benchmark

algorithms. Moreover, these results clearly demonstrate the superiority of heuristic 2

over heuristic 1 for selecting the paths over which the agents coordinate in the office

environment, which is more constrained than the lattice graph. The explanation for this

lies in the fact that heuristic 2 uses knowledge about the local topology of the graph and

the current observation value associated with each vertex, instead of considering paths

in 8 fixed directions like heuristic 1.

To determine the quantitative performance gain of MS K-M, we also performed a paired

Student’s t-test to compute 95% confidence intervals on the difference in performance

between our algorithm and the benchmark algorithms. Table 6.3 reports the lower

bounds of these confidence intervals (with the upper bound being ∞). Again, it is clear

that the adaptive clustering heuristic results in a significant improvement (> 40%) over

MS-8 in the office environment. In the more structured lattice graph this improvement

is more moderate (but still significant). Most importantly, our algorithm with heuristic

2 outperforms all benchmarks by at least 30% in the office environment.

12For a problem instance lasting for 100 time steps with 4 agents taking approximately 15 measure-
ments per time step, the expected number of false positives is 6.

13To compute the TSP cycle of the graph, we used Concorde. (http://www.tsp.gatech.edu/
concorde.html).

14Since both graphs have an average degree of equal to 4, in most cases, these clusters are reached
through all outgoing edges.
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% Improvement (95% CI)
Environment Greedy GGreedy MS-8 TSP

Office 30.5% 39.5% 42.2% 52.2%
Lattice 26.9% 42.0% 10.0% 47.4%

Table 6.3: Lower bounds of the 95% confidence intervals of performance increase of
MS K-M compared to the four most competitive benchmarks in the pursuit evasion

domain.

6.3.3 Domain 3: Patrolling

In the patrolling domain, the third and final domain we consider in this chapter, the

agents’ goal is to prevent attacks on vertices of graph G. An attacker can start an

attack on a vertex at any time (if no attacker is already present) and is successful if

it is not captured by an agent within k time steps. This models intruders that require

time to break into the environment and steal items of value. Each time an attack is

successful, the agents incur a loss of 1. This domain can be regarded as a variation of

the pursuit-evasion domain, but instead of having a single moving evader that is already

present in the environment, there are now multiple stationary attackers that can appear

at any time. Apart from this, the domains the domains are identical. Observations

are imperfect, agents have a observation range of rs and can capture attackers within a

range of rc.

6.3.3.1 Valuing Observations

Similar to the pursuit-evasion domain, the agents maintain a probability map repre-

senting the probability that an attacker is present at each vertex of the layout graph.

However, for every vertex, they not only track whether an attacker is present, but also

for how long. This enables them to prioritise the attacks based on how far they have

progressed, and interrupt those attacks that will otherwise succeed in the very near

future.

To keep track of the state of a possible attack at a vertex v, we build a Markov model

with k + 1 states S = {∅, 1, . . . , k}, where ∅ indicates that no attacker is present, and

1, . . . , k represents that an attacker has been present for the indicated amount of time.

Valid state transitions are:

• ∅→ 1: an attacker appears.

• i→ (i+ 1) for 1 ≤ i ≤ (k − 1): the attack progresses one time step.

• i→ ∅ for 1 ≤ i ≤ k: the attack is interrupted by an agent. No loss is incurred.

• k → ∅: the attack succeeds and the agents incur a loss of 1.
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Using this Markov model, we can now construct a probability map pa(s
v
t | Ot−1

A ) rep-

resenting the probability that a vertex v is in state svt ∈ S at time t conditioned on

previously made observations. To obtain pa(s
v
t+1 | Ot

A) from new measurements Ot
A the

agents follow two step computation, which is similar to the computation performed in

pursuit-evasion (Section 6.3.2.1):

1. Fuse measurements Ot
A with pa(s

v
t | Ot−1

A ) to obtain pa(s
v
t | Ot

A). For ease of

exposition, let us first assume perfect sensing (i.e. pfn = 0 and pfp = 0). Under

this assumption, two cases can be distinguished: v is currently under attack (an

event we denote by a) or it is not (denoted by ¬a). In the former case, we clearly

have that pa(s
v
t+1 = ∅ | a) = 0. For i 6= ∅ we calculate:

pa(s
v
t+1 = i | a) = pa(s

v
t = i | Ot−1

A )

1− pa(stv = ∅ | Ot−1
A )

In the latter case, we clearly have pa(s
v
t+1 = ∅ | ¬a) = 1.

Now, dropping the assumption of perfect sensing, note that in case of a negative

observation an attacker might still be present with probability pfn. Thus, to obtain

pa(s
v
t+1 | Ot

A), we weigh vectors pa(s
v
t+1 | a) by pfn and pa(s

v
t+1 | ¬a) by 1− pfn.

The converse holds for a positive observation.

2. Update the probability map taking into account possible new attacks. If we sup-

pose that at every time step t ∈ T and every v ∈ V the probability p of a new

attacker appearing is constant and independent, this Markov model is fully defined

by the following probabilistic transition function:

pt(s
v
t+1 | Ot

A, svt ) =





1− p if svt+1 = ∅ and svt = ∅

p if svt+1 = 1 and svt = ∅

1 if svt+1 = i and svt = i− 1 for i ≤ k − 1

1 if svt+1 = ∅ and svt = 1

0 otherwise

Using this function we compute:

pa(s
v
t+1 | Ot

A) = pt(s
v
t+1 | Ot

A, svt ) · pa(svt | Ot
A)

to obtain the updated probability map.

After performing this computation, we can define observation value function f for this

domain in terms of the probability of an attack currently in progress at the observed
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locations as follows:

f(Ot
A ∪ · · · ∪Ot+l

A ∪Ot−1
A ) =

t+l∑

t′=t

∑

o∈Ot′
A

k∑

i=1

pa

(
s
o(l)
t = i | Ot′−1

A

)

The inner sum of this expression computes the expected loss prevented by making a single

observation o. Thus, the utility received by the agents is equal to the expected loss they

prevent, when the loss of a successful attack is assumed to be equal for each vertex of the

layout graph. However, function f can be made to reflect the non-homogeneous nature

of the by multiplying the inner sum by the loss incurred from an attack on vertex o(l).

6.3.3.2 Experimental Setup

The experimental setup for this domain is identical to that of the pursuit-evasion domain

in Section 6.3.2, including the algorithms used to benchmark our algorithm, with the

following exceptions:

• Each problem instance lasts for 200 time steps; it does not terminate after an

attacker is captured.

• New attacks appear with p = 3 · 10−4, and last k = 20 time steps.15 These values

were chosen to create problem instances that distinguish between poor performing

and well performing algorithms; for example, by setting the attack probability too

low, all algorithms will do fairly well, while by setting it too high, all algorithms

will exhibit roughly equal poor performance.

• We measured the total loss incurred by successful attacks, instead of the capture

time.

6.3.3.3 Results

The results are shown in Figure 6.15 and Table 6.4 (which are analogous to Figure 6.14

and Table 6.3 for pursuit evasion). First of all, a comparison between Figures 6.15 and

6.14 shows that the algorithms now perform more uniformly. This is due to the fact

that, in contrast to the pursuit evasion domain where there is no bound on the capture

time, the patrolling domain has a bounded worst case performance, which occurs if none

of the (finite) number of attackers is captured.

Again, we conclude that MS K-M outperforms TSP, Greedy, MS-8 and GGreedy in

terms of median loss, and has a smaller statistical dispersion (i.e. a smaller inter-quartile

15Since the office environment has 350 vertices, the expected number of attacks is approximately 20.
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Figure 6.15: Empirical performance on 200 instances of the patrolling domain.

% Improvement (95% CI)
Environment Greedy GGreedy MS-8 TSP

Office 43.7% 46.9% 45.2% 30.0%
Lattice 32.4% 37.2% 21.4% 26.1%

Table 6.4: Lower bounds of the 95% confidence intervals of performance increase of
MS K-M compared to the four most competitive benchmarks in the patrolling domain.

range). Moreover, from Table 6.4, we conclude that the performance increase of MS K-M

compared to these algorithms is statistically significant, and does not drop below 30%

in the office environment.

This concludes the empirical evaluation of our algorithm in three different information

gathering domains. We demonstrated the effectiveness of the techniques for ensur-

ing network connectivity developed in Section 6.2.5, compared the two action selection

heuristics proposed in Section 6.2.2, and concluded that heuristic 2, which uses graph

clustering, is superior to heuristic 1, which considers paths in 8 fixed directions. Most

importantly, we showed that our algorithm outperforms its competitors in all three

domains.

6.4 Summary

In this chapter, we developed a decentralised coordination algorithm for receding horizon

control of mobile agents. To achieve this, it uses the max-sum algorithm to periodically

maximise the observation value received in the next l time steps. We improved the scal-

ability of the max-sum algorithm by exploiting the locality property of the observation

value function to make the factor graph sparser, by carefully selecting the paths over
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which agents coordinate to make the size of their action spaces more manageable, and

by using the two generic pruning techniques we developed in this chapter to alleviate

the main bottleneck of the max-sum algorithm.

Furthermore, since the algorithm operates on the generic problem definition in Chapter

3, it is applicable to a wide range of information gathering domains. We demonstrated

this by extensively analysing its performance in three distinct domains, and concluded

that it outperforms the state of the art, as well the greedy un-negotiated coordination

for monitoring environmental phenomena, pursuit-evasion and patrolling.

More specifically, in terms of the design requirements stated at the start of this thesis,

we can conclude the following:

Quality: The empirical results from Section 6.3 show that the algorithm outperforms its

competitors by 50% in terms of RMSE for monitoring environmental phenomena,

30% in terms of capture time in the pursuit evasion domain, and 30% in terms of

loss from successful intrusions in the patrolling domain.

Adaptiveness: Since the algorithm established receding horizon control, and continu-

ously revises the computed paths, the agents are capable of responding to events

that occur during their deployment. The team is therefore able to adapt to its

environment and a priori unknown events.

Robustness: The algorithm is based on the max-sum algorithm, which is robust to

message loss and failing agents.

Autonomy: The use of the max-sum algorithm maintains the autonomy of the agents.

Scalability: As discussed in Section 2.6.1, the computational demand of the max-sum

algorithm scales favourably (i.e. with the number of neighbours, not with the size

of the team). Moreover, to further improve its scalability, we developed two generic

pruning techniques, reduced the number of dependencies between agents, and used

heuristics to reduce the number of paths over which the agents negotiate.

Modularity: Although not specifically mentioned in this chapter, it is possible to de-

fine the action space of agents in such a way as to reflect their different capabilities,

and to have different layout graphs G for each type of agent. For example, the

layout graph for a UGV is more sparse than that of a UAV to reflect that its

motion is constrained by the terrain. By embedding both graphs in the same envi-

ronment, and having the agents coordinate over paths in their respective graphs,

the algorithm can be directly applied without further modifications.

Performance Guarantees: The algorithm developed in this chapter does not give

performance guarantees.
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Despite its robustness and adaptiveness, the lack of guarantees offered by this algorithm

on its long term performance can limit its applicability in safety critical applications

(such as disaster response, surveillance, etc.), because the existence of pathological be-

haviour can not be ruled out. Given this, in the next chapter, we will investigate how

to address this shortcoming.



Chapter 7

Non-Myopic Control of Mobile

Agents with Performance

Guarantees

In the previous chapter, we developed an accurate, robust, and adaptive algorithm for

decentralised control of mobile information gathering agents. This algorithm established

receding horizon control and thus only considers solution quality over a finite number

of time steps. Consequently, it can not give guarantees on long term solution quality.

As mentioned before, the lack of guarantees, particularly on the worst-case behaviour,

can be an obstacle for the application of this algorithm in safety critical and sensitive

domains.

Hence, we identify a need for a non-myopic (i.e. infinite look-ahead) algorithm with

theoretical guarantees on solution quality. Recent work has already addressed this need

for single (Meliou et al. 2007) and multiple mobile agents (Singh et al. 2009) for envi-

ronments that are static over time, or are changing at a rate that is negligible compared

to the time required to traverse them. As a result, they fall short of dealing with the

(possibly) rapid rate of change within the agents’ environment that we consider here.

Table 7.1: The contributions of Chapter 7 in the context of the roadmap of this thesis.

156
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More specifically, these algorithms do not consider the temporality property of obser-

vation value function f (see Chapter 3). As a consequence, the algorithm proposed by

Singh et al. (2009) computes finitely long paths, which tend not to return to previously

visited locations, since no additional information (or value) can be obtained from doing

so. In contrast, in continuously changing environments (which do exhibit temporality),

it is imperative that agents periodically return to the same location so as to provide

up-to-date situational awareness.

Against this background, in this chapter,1 we develop an algorithm that computes near-

optimal patrols: infinitely long paths designed to continuously monitor the environment.

This algorithm is inspired by the divide and conquer algorithm proposed by Singh et al.

(2009), which proceeds in three steps: it decomposes the environment into clusters,

computes valuable paths within each of these clusters, and concatenates these paths to

form a solution (see Section 2.5.2 for more details). Our algorithm follows a similar three

step computation, but makes non-trivial modifications to operate in the aforementioned

dynamic environments. The majority of these modifications are made in the third step.

In particular, we utilise techniques from sequential decision-making to compute a policy

that, given previously made observations, specifies which observations to make next.

The execution of this policy yields the desired infinitely long patrol for a single agent.

We then use this algorithm to compute solutions for the multi-agent problem based

on the method of sequential allocation proposed by Singh et al. (2009). This method

computes a near-optimal joint policy for a set of agents, by greedily computing a policy

for agent Ai conditioned on the previously computed policies for agents A1, . . . ,Ai−1.

This results in greatly reduced computational overhead compared to searching the joint

policy space for i agents. However, due to the different assumptions on which our work

is based (i.e. continuously changing environments), the modifications we need to make

to the single-agent algorithm are more involved than those described by Singh et al.

(2009).

Finally, we explore the use of online decentralised coordination in an attempt to improve

the agents’ near-optimal joint policies, and provide an extensive empirical evaluation of

the algorithm in two challenging information gathering scenarios.

In summary, the primary contributions of this chapter are as follows:2

• A non-myopic algorithm for computing near-optimal patrols for a single agent.

The novelty of this algorithm lies in the fact that it computes infinite length

paths for patrolling continuously changing environments (i.e. those that exhibit

temporality).

1A journal paper about the research described in this chapter is in preparation and will be published
as Stranders, Munoz de Cote, Rogers & Jennings (2010).

2Table 7.1 shows the context of these contributions in terms of the roadmap of this thesis.
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• An algorithm for computing near-optimal patrols for multiple agents by greedily

computing single-agent policies.

• Strong theoretical guarantees on both solution quality and computation cost of

both the single-agent and multi-agent algorithms.

• An investigation into the use of online decentralised coordination algorithm to

improve the multi-agent policy.

• Empirical analysis of the algorithm by benchmarking it against the receding hori-

zon control algorithm developed in the previous chapter that does not give per-

formance guarantees. We demonstrate that the non-myopic algorithm performs

comparably in terms of average-case performance, and > 10% better in terms of

worst-case performance. Moreover, we show that decentralised coordination re-

sults in a 5% increase in solution quality, but increases the number of searched

states by approximately two orders of magnitude. We consider this evidence for

the near-optimality of the multi-agent policy.

The remainder of the chapter is organised as follows. In Section 7.1 we define the problem

of non-myopic information gathering by extending the problem formulation in Chapter

3. In section 7.2 we describe our algorithm for single and multiple information gathering

agents. In Section 7.3 we derive bounds on the solution quality and the computational

complexity of this algorithm. In Section 7.4 we propose two methods for improving

the multi-agent policy through decentralised coordination. In Section 7.5 we empirically

evaluate the algorithm and the decentralised coordination algorithms. Finally, in Section

7.6, we summarise the contributions made in this chapter, and assess them in terms of

the design requirements of this thesis.

7.1 Problem Definition

We now formally describe the problem that we address in this chapter, by extending

the problem formulated in Chapter 3 to non-myopic patrolling. Specifically, we define

the solution to the observation maximisation problem in Equation 3.2 as a policy. In

more detail, a policy π specifies which observations Ot
A should be made in time step t,

given observations Ot−1
A that were taken in time steps before t (subject to movement

constraints imposed by layout graph G), i.e. Ot
A = π(Ot−1

A ).

To characterise the optimal policy π∗, we define a function Vπ∗(Ot
A), which assigns a

value to the state in which the agent has made observations Ot
A under policy π∗. This

value is equal to the discounted incremental value of observations π∗ makes in the future,

given that observations Ot
A have already been made:
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Vπ∗(Ot
A) = ρπ∗(Ot

A
)(O

t
A) + γVπ∗

(
Ot

A ∪ π∗(Ot
A)
)

(7.1)

Since π∗ is the optimal policy, we know it selects the observations that maximise the

discounted observation value. Thus, π∗ is fully defined by combining Equation 7.1 with:

π∗(Ot
A) = argmax

Ot+1
A

[
ρ
Ot+1

A
(Ot

A) + γVπ∗

(
Ot

A ∪ π∗(Ot
A)
)]

(7.2)

Note that policy π∗ is defined on the set of all possible observation historiesOt
A. The size

of this set is exponential in the number of time steps t that has elapsed, the average degree

of layout graph G, and the number of agents M . As a result, computing the optimal

policy is computationally intractable for all but the smallest of problems. Therefore,

in this chapter we present an efficient algorithm that, instead of the optimal solution,

computes a near-optimal policy, i.e. a policy that is guaranteed to be within a small

factor of the optimal one.

7.2 Near-Optimal Non-Myopic Patrolling

In this section, we first develop a non-myopic algorithm for the single agent case (Section

7.2.1), which is later used as a building block for computing multi-agent policies (Section

7.2.2).

7.2.1 The Single-Agent Algorithm

The prime objective of the single-agent algorithm is to compress the exponentially large

set of possible observation histories Ot
A in Equation 7.2 into a more manageable sized

set of world states, such that it becomes computationally feasible to conduct searches

over the policy space. This is achieved as follows:

1. We exploit the locality property of an observation value function f (see Chapter

3), by partitioning graph G into clusters such that observations taken in different

clusters are independent. The problem of maximising observation value can then

be solved independently for each cluster.

2. We exploit the temporality property of f by discarding observations older than τ .

These observations are independent of observations taken now or in the future,

and can thus safely be ignored.
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3. We divide time into intervals of length B ∈ N, which is the number of time steps

allocated to an agent to patrol a cluster. This parameter B is chosen such that

the agent can collect a reasonable amount of observation value.

By doing so, we can now represent the state of the world more compactly by keeping

track of the number of time steps λC ∈ N that have elapsed since each cluster C was

patrolled by an agent. Since time is discretised into intervals of length B, we furthermore

know that this number is necessarily a multiple of B, and that, whenever it exceeds τ ,

any observation previously made within cluster C has become stale and can be ignored.

The single-agent algorithm exploits each of these properties, and proceeds in three steps:

1. It partitions layout graph G into a set of clusters C = {C1, . . . , C|C|} such that the

distance between them is sufficient to ensure observations taken in different clusters

are independent. Graph G and clusters C are transformed into a bipartite graph

G[C], which encodes the topological relations between the clusters. This graph

defines the high-level constraints imposed on the movement of an agent between

the clusters. For example, Figure 7.1 shows the clusters that can be identified in

the layout graph of the IAM lab. In turn, Figure 7.2 shows G[C].

2. It computes subpatrols within each cluster. A subpatrol is a path within a single

cluster of length B along which a large amount of observation value is received.

Each subpatrol corresponds to a movement allowed within G[C]. For example,

graph G[C] in Figure 7.2 allows the agent to move from T7 through C6 to T6; a

subpatrol for this movement is shown in 7.3.

3. It computes an optimal sequence in which clusters are visited by finding an optimal

concatenation of subpatrols. In order to do this, we construct an MDP in which

states represent the position of the agent, as well as the last visitation time λC of

each cluster C. A solution to this MDP is a policy that instructs the agent which

cluster to patrol next, given its current position and the last time the clusters

were visited. The concatenation of the corresponding subpatrols yields the desired

patrol.

A more detailed description of each of these steps follows.

7.2.1.1 Step 1: Partition the Layout Graph

The objective of the first step is to partition graph G into a set of clusters, ensuring

that the diameter3 D of each cluster is small enough such that any patrol of length B

3The diameter of a graph is the maximum shortest distance between any pair of its vertices.
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Algorithm 10 Algorithm for transforming layout graph G into bipartite cluster graph
GC .
Require: Layout graph G = (V,E)
Require: Maximum diameter D
Ensure: Cluster graph GC = ((C ∪T), EC), such that:

• C = {C1, . . . , C|C| is a set of clusters;

• T = {T1, . . . , T|T| is a set of transfer nodes;

• ∀v ∈ Ci, ∀v′ ∈ Cj , i 6= j : d(v, v′) ≥ δ;

• ∀C ∈ C : diam(C) ≤ D.

Cluster graph G:
1: C = Cluster(G,D)

Identify transfer nodes T:

2: VB =

|C|⋃

i=1

{v ∈ Ci | ∃v′ ∈ V : (v, v′) ∈ E}

3: T = ConnectedComponents(G[VB ])
4: EC = {(C, T ) | C ∈ C, T ∈ T, ∃v ∈ C, ∃v′ ∈ T : (v, v′) ∈ E}

Strip away vertices less than 1

2
δ away from vertices in different clusters:

5: Vδ ← ∅

6: for C ∈ C do
7: Vδ ← Vδ ∪ {v ∈ C | ∃v′ ∈ V \ C : d(v, v′) ≤ 1

2
δ}

8: end for
9: for C ∈ C do

10: C ← C \ Vδ

11: end for
12: return GC = ((C ∪T), EC)

visits at least k vertices (reasons for these constraints will become clear in Section 7.3).

The resulting partitions are transformed into a bipartite graph G[C] that encodes their
topological relations.

Algorithm 10 shows the necessary steps. First, it partitions the graph into a set of

clusters C = {C1, . . . , C|C|} (line 1). There are many different ways of doing this,

however, we are interested in generating clusters with an upper bound on each intra-

cluster diameter. With this in mind, we use the algorithm proposed by Edachery et al.

(1999) as a subroutine,4 which we will refer to as Cluster(G,D). This algorithm takes

as input a graph G and a diameter D and returns a set of clusters C, such that for

each cluster C, diam(C) ≤ D. In more detail, it solves a slight variation of the pairwise

clustering problem. The pairwise clustering problem involves finding the smallest k-

clustering of G, such that each of the k clusters has a diameter smaller than D.

In the second step, the algorithm identifies the transfer nodes T of the clustering (lines 2–

4). These transfer nodes are connected components of graph G that are on the boundary

of the clusters. To compute these, the algorithm identifies the boundary vertices VB of

the clusters, i.e. those vertices that have at least one adjacent vertex in a different cluster.

4We choose this algorithm for its computational efficiency (see Section 7.3.2). However, depending
on the type of graph, there might be other algorithms worth investigating. For an overview, we refer
the reader to Schaeffer (2007).
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Figure 7.1: The clusters and transit nodes identified in the layout graph of the IAM
lab. The dotted lines indicate the boundaries of the clusters C and the solid lines

outline the seven transfer nodes T that connect the clusters.

Let G[VB] be the subgraph induced by VB. The set of transfer nodes T = {T1, . . . , T|T|}
corresponds to the set of connected components in G[VB].

The third step of the algorithm ensures independence of observations made in different

clusters, by stripping away all vertices that are less than 1/2δ away from vertices in

other clusters (lines 5–11).

The resulting clusters, transfer nodes and their connections are represented as a bipartite

graph G[C] = ((C∪T), EC), where an edge exists between a cluster C ∈ C and a transfer

node T ∈ T if and only if the original graph G contains an edge e that has an endpoint

in both C and T (line 4). This graph represents valid high-level movements between

clusters, and is used in step 3 to define valid transitions within the MDP.

The following example illustrates the operation of this algorithm:

Example 7.1. Figure 7.1 shows the six clusters and seven transfer nodes identified in

the layout graph G of the IAM lab. Figure 7.2 depicts the bipartite graph GC which

represents the interconnections between the clusters and transfer nodes in Figure 7.1.
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Figure 7.2: The bipartite graph G[C] that represents the topological relations between
the clusters and transfer nodes in Figure 7.1

Figure 7.3: A patrol within cluster C6 from transit node T7 to T6.

7.2.1.2 Step 2: Compute Patrols

By clustering the layout graph, we have now decomposed the problem of finding a path of

high value through the original (large) graph to a set of easier independent subproblems

that involve finding paths within the (smaller) clusters. The second step of the algorithm

uses a subroutine for computing these paths, which we will refer to as subpatrols. For

each cluster, the subroutine is used to compute subpatrols between each pair of the

cluster’s adjacent transfer nodes. The reason for doing this is that in step three, agents

will be allowed to enter from and exit to any of the adjacent transfer nodes of the cluster.

In more detail, the problem is now to find a sequence of vertices that maximises the
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value of observations, subject to a finite budget B. Since this problem is NP-hard,5

solving this problem optimally is computationally intractable for an arbitrarily large

cluster. Therefore, instead, the patrolling subroutine is chosen to be approximate. That

is, it computes subpatrols of near-optimal value with that are shorter than B.

In more detail, for a given cluster C, entry T and exit T ′, the subroutine (see Algorithm

11) proceeds in two steps. In the first step (lines 3–6), it orders the vertices of C by their

incremental value—the value obtained by greedily adding the observations Ov made at

v to the already selected set O, such that the incremental value f(O ∪ Ov) − f(O)

of observations collected at v is maximised. This results in a greedy sequence sG =

(v(1), . . . , v(|C|)). In the second step (lines 7–15), it seeks to find a subpatrol PT,C,T ′

from T to T ′ with a length of at most B and maximises the length n of the prefix of sG

(i.e. its first n elements) that is visited along the path. This problem can be encoded as

an instance of the Travelling Salesman Problem (TSP) where we seek to find a minimum

cost cycle (T, v(1), . . . , v(n), T ′, T ). Here, the cost of moving between two vertices vi and

vj equals the length of the shortest path between them, and the cost of moving between

T and T ′ equals 0. Since solving the Travelling Salesman Problem (TSP) itself is NP-

hard, we use the heuristic algorithm by Christofides (1976), which has the best known

performance guarantee (32) of any approximate algorithm for the TSP (Gross & Yellen

1999).

Example 7.2. Consider an agent that is capable of perfectly observing all vertices within

a sensing radius of 1.5m. Value function f is defined in terms of the number of vertices

that are observed. Figure 7.3 shows the subpatrol PT7,C6,T6 computed by Algorithm 11 in

the graph shown in 7.1 with B = 50. Note that this patrol is not optimal, in the sense

that the same number of vertices could have been observed with a cost of 44 instead of

46.

7.2.1.3 Step 3: Compute the Patrolling Strategy

In the third and final step of the algorithm, we define and solve a MDP over the simplified

patrolling problem in graph GC . By so doing, we exploit the clustering of the layout

graph and the subpatrols within each of the clusters of the graph. The result of the final

step is a policy for a single agent.

This (deterministic) MDP is a 4-tuple (S,A, δ(·, ·), R(·, ·)) where:

• S is a set of states encoding the current position of the agent and the time each

cluster was last visited.

• A is a set of actions. In this context, each action in this set corresponds to a

subpatrol that start from the agent’s current position.

5It is easy to see that the Travelling Salesman Problem can be reduced to this problem.
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Algorithm 11 Computing a subpatrol of cluster C from entry T to exit T ′.

Require: Cluster C, transit node T (entry), transit node T ′ and budget B
Ensure: A patrol PT,C,T ′ of C from T to T ′ with cost c(PT,C,T ′) < B

Sort vertices on their greedy observation value:
1: sG ← ()
2: while C \ sG 6= ∅ do
3: Let Ov be the observations made at v, and O =

⋃
v∈sG

Ov.
4: sG ← sG|| argmax

v∈C\sG

f(O ∪Ov)− f(O)

5: end while
Find the maximum n such that the cost of the subpatrol that visits the first n elements of sG
does not exceed B:

6: n← 0
7: P ′ ← (T, T ′)
8: repeat
9: n← n+ 1

10: PT,C,T ′ ← P ′

11: snG ← prefix(sG, n) {Select first n elements of sG}
12: P ′ ← TSP (T, snG, T

′)
13: until c(P ′) > B
14: return PT,C,T ′

• s′ = δ(s, a) is the state obtained from performing action (subpatrol) a in state s.

Thus, δ is a deterministic transition function.

• R(s, a) is the observation value received by performing action (subpatrol) a in

state s.

In what follows, we discuss each element in more detail.

State Space The state space S consists of states of the form (T,λ) that record the

current position of the agent as well as the number of elapsed time steps since each

cluster was last patrolled. The first element, the agents’ position, is one of the transfer

nodes T ∈ T, because the agent exits to an adjacent transfer node, each time it patrols

a cluster. The second element is a vector λ = [λC1 , . . . , λC|C|
], each element of which

never exceeds τ time steps, since observations made longer than τ time steps ago are

independent of new observations made within that cluster (through the temporality

property). Now, keeping track of the exact number of time steps since a cluster was last

visited yields τ |C| distinct possible states, causing the problem to become intractable for

even a very small number of clusters or τ . However, by exploiting the knowledge that an

agent takes B time steps to patrol a cluster, and if we furthermore choose B as divisor

of τ , we can ensure that λC ∈ {0, τ
B
, 2τ
B
, . . . , τ}. This drastically reduces the number of

distinct possible visitation states of a single cluster from τ +1 to τ
B
+1. Combining this

with the possible positions of the agent, the state space contains at most |T|( τ
B
+ 1)|C|

states.
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Action Space The action space A(s) in state s consists of all subpatrols that can

start from the agent’s current position. Thus, in state s = (T,λ), A(s) contains all

sequences (T,C, T ′) (corresponding to subpatrol PT,C,T ′) where C is an adjacent cluster

of transfer node T , and, in turn, T ′ is an adjacent transfer node of cluster C.

Example 7.3. The valid actions in the graph shown in Figure 7.1 for state s = (T1, ·)
are A(s) = {(T1, C1, T1), (T1, C1, T3), (T1, C2, T1), (T1, C2, T2), (T1, C2, T4), (T1, C2, T6)}.

Reward Function The reward received for performing action (T,C, T ′) in state s =

(T, [λC1 , . . . , λC|C|
]) is the value of the observations made along subpatrol PT,C,T ′ , given

that cluster C was visited λC time steps ago. Since it is unknown which subpatrol was

previously used to visit C, we assume that all vertices of C were visited simultaneously

λC time steps ago, at which point a set of observations O−λC

C was made. Thus, the

incremental value of the observations made along PT,C,T ′ with respect to O−λC

C yields a

conservative estimate (i.e. lower bound) on the true reward for action (T,C, T ′).

More formally, the reward R(s, a) of performing a = (T,C, T ′) in state s = (T, [λC1 , . . . ,

λC|C|
]) is the sum of incremental values of observations made along subpatrol PT,C,T ′ =

(T, v(1), . . . , v(n), T ′). Note that R(s, a) depends solely on the visitation state λCi
of

cluster Ci and the entry T and exit T ′; the visitation states of the clusters other than

C are irrelevant for computing the action’s reward. Thus, we can define a function

I(C, λC , T, T
′) that computes the value of a subpatrol, such that:

R(s, a) = I(C, λC , T, T
′)

I(C, λC , T, T
′) =

n∑

i=1

γti · ρO
v(i)




i−1⋃

j=1

Ov(j) ∪O−λC

C


 (7.3)

Here, O−λC

C denotes the set of observations made λC time steps ago at each vertex of C,

the set Ov denotes the observations made at v (as before), and ti is the time at which

v(i) is visited, which is the time it takes to arrive at v(i) traversing subpatrol PT,C,T ′ :6

ti =

i−1∑

j=1

dG

(
v(j), v(j+1)

)

Transition Function The transition function formalises how the MDP transitions

under a given action a. When an agent patrols a cluster Ci by performing action

a = (T,C, T ′), the process transitions to state s′, in which the agent is positioned at T ′

and the visitation time of the cluster λC is reset to 0. Furthermore, since the agent takes

B time steps to patrol a cluster, the visitation times of clusters Cj (j 6= i) is incremented

6Recall from Chapter 3 that dG(v, v
′) is the length of the shortest path in G from v to v′.



Chapter 7 Non-Myopic Control of Mobile Agents with Performance Guarantees 167

by B, if not already equal to τ . Deterministic function δ(s, a) = s′ formalises the

transition from state s = (T, [λC1 , . . . , λC|C|
]) under action a = (T,Ci, T

′):

δ(s, a) = (T ′, [λ̂C1 , . . . , λ̂Ci−1 , 0, λ̂Ci+1 , . . . , λ̂C|C|
])

where λ̂C1 = min(λC1 +
τ
B
, τ).

This transition function enables us to reduce the size of the state space defined earlier, by

only considering the states that are reachable from a given initial state s = (T, [τ, . . . , τ ])

in which none of the states have been visited yet. For example, an unreachable state

in the setting of Figure 7.1 is (T1, [τ, τ, 0, τ, τ, τ ]) that encodes that cluster C3 was just

patrolled by the agent which subsequently moved to a transit node that is inaccessible

from C3. We define the set of reachable states Sr(s) from state s as:

Sr(s) = {s} ∪
⋃

a∈A(s)

Sr(δ(s, a)) (7.4)

Solving the MDP A solution to the MDP (S,A, δ(·, ·), R(·, ·)) defined above is a

policy of the form π(s) = a that, for every possible state s ∈ S, yields action a that

maximises the expected discounted reward. This policy is characterised by the following

equations:

π(s) = argmax
a
{R(s, a) + γ̂V (δ(s, a))} (7.5)

V (s) = R(s, π(s)) + γ̂V (δ(s, a)) (7.6)

Here, V (s) is referred to as the state value of s under policy π, which equals the dis-

counted sum of rewards to be received by following policy π from state s. Many al-

gorithms can be used to compute policy π, such as policy iteration (Howard 1960),

modified policy iteration (Puterman & Shin 1978), and prioritised sweeping (Moore &

Atkeson 1993). However, one of the simplest is value iteration (Puterman 1994). This

algorithm repeatedly applies following update rule:

V (s) = max
a
{R(s, a) + γ̂V (δ(s, a))} (7.7)

until the maximum difference between two successive state value falls below a predefined

threshold ǫ > 0. After termination, the value of each state under policy π is within ǫ of

the optimal value.
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7.2.2 The Multi-Agent Algorithm

We now show how to adapt the single-agent algorithm to compute policies for the multi-

agent problem.

A straightforward way of doing this is to extend the MDP constructed in the single-

agent algorithm to multiple agents. The state space of this multi-agent MDP contains

the position of each agent, and its action space is defined as the Cartesian product of the

action spaces of the single agents. However, in so doing, the size of the state and action

space grow exponentially with the number of agents M , allowing only the smallest of

problem instances to be solved. Instead, our approach computes a (nearly) optimal joint

policy for a team of agents, by computing a single-agent policy for each Ai, conditioned

on the previously computed policies of agents A−i = {A1, . . . ,Ai−1}.

This method is equivalent to sequential allocation of multiple agents proposed by Singh

et al. (2007). However, the problem they address is to compute finitely long paths for

each agent, instead of policies. Under this assumption, it is possible to define a new

observation value function f ′ that assigns value to observations Oi made by agent Ai

conditioned on observations made by agents A−i, i.e.:

f ′(Oi) = ρOi




i−1⋃

j=1

Oj




However, this implicitly assumes there exists an order in which the agents make obser-

vations: agent A1 traverses the environment first, A2 second, etcetera. Unfortunately,

no such ordering is possible with paths of infinite length (i.e. the policies computed by

the single-agent algorithm). Thus, we need to make non-trivial modifications to the

algorithm developed in the previous section in order to achieve the same effect.

To do this, we modify the MDP defined in Section 7.2.1.3, such that the goal of agent

Ai becomes to collect the observation value left behind by agents A−i. To accomplish

this, we make its transition function dependent on the policies of agents A−i. In turn,

these agents are unaware of the existence of agent Ai, meaning that their beliefs (i.e.

state) about the world are unaffected by agent Ai’s actions.

The new MDP is obtained from the single-agent MDP discussed in the previous section

by making the following modifications:

State Space Agent Ai now takes into account the policies of agents A−i (but not vice

versa). Since these these policies operate on the states of these agents, we need to

include the states of A−i into the state of agent Ai. States thus become composite

(or recursive).
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Figure 7.4: The recursive state space of agent Ai.

Transition Function The transition function now reflects the effect of agent Ai’s ac-

tions, as well as those of agents A−i.

Reward Function The reward function now rewards agent Ai only for the observation

value left behind by agents A−i.

The relations between states, policies and transition functions in this modified MDP are

shown in Figure 7.4. In the remainder of this section we shall discuss each modification

in more detail.

State Space The new MDP takes into account the effect of agent Ai’s actions, as well

as those of agents A−i who are executing their policies beyond agent Ai’s control. In

order to determine these actions, the MDP needs to include knowledge of the policies of

agents A−i, as well as their current states.

Thus, we define composite states, which combines the atomic state—the states of the

single-agent MDP defined in Section 7.2.1.3—of Ai with the composite state of Aj . Let

s̃ denote the atomic states of the form (T,λ) as in Section 7.2.1.3. The state of agent

Ai is given by the following recursive relation:

s1 = s̃1

s2 = (s̃2, s1)

...

si = (s̃i, si−1)

Transition Function To determine the successor state s′i obtained by applying action

ai of agent Ai, the transition function first determines the state s′i−1 that results from

the actions of agents A−i. State s′i is then obtained by applying action ai to s′i−1.
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With this in mind, we define the transition function δi for agent Ai as follows:

s′1 = δ1(s1, a1)

s′2 = δ2(s2, π1(s1), a2)

...

s′i = δi(si, π1(s1), π2(s2), . . . , ai)

The following example demonstrates the new state space and transition function.

Example 7.4. Consider the environment in Figure 7.1 and bipartite graph G[C] in

Figure 7.2 with two agents. At time step t, the atomic states s̃ of these agents are

s̃1 = (T7, [τ, τ, τ, τ, τ, 0]) and s̃2 = (T6, [τ, τ, 0, τ, τ, 0]) (and the composite state of A2 is

s2 = (s̃2, s1)). Thus, agent A1 has just patrolled cluster C6 and is now positioned at T7.

Similarly, agent A2 has just patrolled cluster C3 and is now positioned at T6. Note that

agent A2 is aware of the fact that agent A1 patrolled C6, but agent A1—being unaware

of the existence of agent A2—does not know about the new state of cluster C7.

Reward Function The modifications that need to be made to the reward function

can best be explained by demonstrating what happens when we use the reward function

from Section 7.2.1.3 in its current form. The effect of this is twofold. First, it results

in synchronous double counting, which occurs when two agents patrol the same cluster

within the same time step. In this case the reward for patrolling the cluster is received

twice. The second effect, asynchronous double counting, is a little more subtle. For ease

of exposition, we will illustrate this with an example.

Example 7.5. (Continued from Example 7.4) At time step t, agent A1 patrols C3 by

choosing action (T7, C3, T2) and transitions to (T3, [τ, τ, 0, τ, τ, 0]). The reward for this

transition is equal to the observation value obtained from patrolling cluster C3 in state τ .

In reality, however, much less value is obtained, since agent A2 patrolled C3, and reset

its visitation time λ3 to 0. In a way, agent A2 “stole” agent A1’s reward for patrolling

C3.

In general, asynchronous double counting occurs whenever an agent Ai patrols a cluster

C before agent Aj (j < i), such that Aj ’s belief of λC at the moment of patrolling C is

less than its true value.

To prevent double counting—both synchronous and asynchronous—we introduce a penalty

P for agent Ai that compensates for the reduction of reward of the agent Aj (j < i)

that patrols C next, as follows:

Ri(s, (T,C, T
′)) = R(s, (T,C, T ′))− P (7.8)
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Actual Reward Marginal Contribution

Time step A1 A2 A1 A2

t0 1 1
t3 0.4γ3 0.4γ3− 0.6γ6

t6 0.4γ6 γ6

Total 1 + 0.4γ3 + 0.4γ6 1 + 0.4γ3 + 0.4γ6

Table 7.2: The actual and marginal rewards received by the agents in Example 7.6.

Here, R(·, ·) is the reward function defined in Section 7.2.1.3, and P is the loss incurred

by agent Aj (j < i) that will patrol cluster C next. This is the (discounted) difference

between the expected reward (which agent Aj would have received in the absence of

agent Ai) and its actual reward, discounted by the number of time steps tn that will

elapse before agent Aj patrols C:

P = γtn(Rexpected −Ractual) (7.9)

The rewards Rexpected and Ractual are defined as:

Rexpected = I(C,min(τ, λ̂C + tn), T̂start, T̂end) (7.10)

Ractual = I(C, tn −B, T̂start, T̂end) (7.11)

where I(C, λC , T, T
′) is the value of a subpatrol (Equation 7.3), λ̂C is the last visitation

time of cluster C in agent Aj ’s current state; T̂start and T̂end are the entry and exit

transfer nodes chosen by agent Aj for its next visit to C.

The following example illustrates the behaviour of the new reward function.

Example 7.6. Consider a scenario with two agents and a single cluster C. Agent A1

patrols this cluster at t = 0 and t = 6, and agent A2 at t = 3. Furthermore, suppose that

the maximum reward for patrolling C is 1, that τ = 6 and that the reward increases 0.2

every time step the cluster is not patrolled. Figure 7.5 shows the function of potential

reward as a function of time for this scenario, which is realised only when the cluster

is patrolled. The two lines in Figure 7.5 represent the beliefs agents A1 and A2 have of

this reward.

The rewards received by the agents are as follows (see Table 7.2). First, agent A1 patrols

C at t = 0 and receives a reward of 1. Second, agent A2 patrols the cluster at t = 3 and

receives a reward of 0.4. At this point, the beliefs of the agents diverge, because agent

A1 is not aware of agent A2’s actions. Finally, agent A1 patrols the cluster at t = 6.

Contrary to its beliefs, it receives a reward of 0.4 instead of 1. In total the team receives

a (discounted) reward of 1 + 0.4γ3 + 0.4γ6.
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Figure 7.5: The potential reward for patrolling cluster C in the scenario of Example
7.6.

Now, consider the marginal contributions of the agents, i.e. the additional observation

value received by adding an agent. To compute these for agent A1, we need only consider

the beliefs of agent A1. It patrols the cluster twice when the reward equals 1, so its

contribution is 1 + γ6. For agent A2, we need to consider its reward for patrolling

the cluster at time step 3, but also the loss of reward of agent A1 at time step 6 it is

responsible for. This loss is 0.6γ6, which makes its contribution 0.4γ3−0.6γ6. Note that

the sum of marginal contributions is equal to the sum of actually received rewards, as

desired.

This concludes the definition of the MDP for multiple agents. Using value iteration to

solve this MDP (as before), we obtain a single policy for each agent. These policies are

not optimal, since the policy for agent Ai is computed in a greedy fashion with respect

to the policies of agents A−i. However, we can derive performance guarantees on their

observation value, as we show in the next section.

7.3 Theoretical Analysis

In this section, we will derive bounds on both the solution quality of the algorithm

presented in the previous section, as well as its computation overhead.
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7.3.1 Solution Quality

We will first derive a lower bound on the solution quality of the single-agent algorithm,

by proving the following lemma:

Lemma 7.1. If diam(C) ≤ D = 2
3B

(√
πk
2 +O(1)

)−1

, Algorithm 11 computes a subpa-

trol PT,C,T ′ with an observation value I(C, λC , T, T
′) of at least γB

(
1−

(
k−1
k

)k)
f(O∗).

Here, f(O∗) is the value of the optimal set of observations made at k vertices of C,

ignoring the movement constraints of G.

Proof. The proof consists of two steps. In the first step, we use a result by Moran (1984)

to prove that any TSP in a graph with k vertices with diameter D has a cost less than

B. Moran (1984) proved a bound on the length L of the TSP of an arbitrary graph with

k vertices. Specifically, for a graph G embedded in two-dimensional Euclidian space, the

following relation holds:

L ≤
(√

πk

2
+O(1)

)
diam(G)

By applying this relation to line 11 of Algorithm 11, we know that n ≥ k holds when this

algorithm terminates. The extra cost of including T and T ′ (which are contained in C)

into the TSP is compensated by the fact that we set the cost of moving between T and

T ′ to 0 (since we require a path from T to T ′, not a cycle). As mentioned earlier, instead

of solving the TSP optimally (which is an NP-hard problem), we use the approximation

algorithm by Christofides (1976). This algorithm has an approximation ratio of 3
2 , which

accounts for the factor of 2
3 on bound of the diam(C).

In the second step of this proof, we apply Theorem 2.6 (see Section 2.5.1) proved by

Nemhauser & Wolsey (1978) for obtaining a bound on the value of the greedily selected

vertices (lines 2–5). This theorem states that the ratio between the value of the first k

greedily selected elements and the value of the optimal k elements is at least 1−
(
k−1
k

)k
.

The factor of γB stems from the fact that it is unknown in which order these k elements

are visited by the TSP. However, it is known that these elements are visited within B

time steps. Thus, we discount the incremental values obtained at these k elements by

B time steps, which completes the proof.

Step three of the algorithm (Section 7.2.1.3) uses these subpatrols and concatenates

them into a single overarching patrol. The problem of finding an optimal sequence

of subpatrols is represented as an MDP, which is optimally solved by value iteration.

Consequently, the following holds for the value of the initial state s, which is equal to

the discounted observation value received by the agent by following policy π (Equation

7.6):

Vπ(s) ≥
γB

1− γB

(
1−

(
k − 1

k

)k
)
fmin(O

∗) (7.12)
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where fmin(O
∗) is the minimum value of fmin(O

∗) over all clusters C.

To prove a bound on the solution quality of the multi-agent algorithm, we prove that

the observation value of a set of policies is submodular. To do this, we define a set

function g over a set of single-agent policies [π1, . . . , πM ], that computes the discounted

observation value of a set of policies:

g(π1, . . . , πM ) =
M∑

i=1

Vπ̂i
(si)

Here, π̂i is a policy for Ai of the form discussed in Section 7.2.2), which behaves identi-

cally in the presence of agents A1, . . . ,Ai−1 as policy πi does in isolation. Thus, policy

π̂i visits the same clusters as πi, and in the same order. Since the discounted marginal

observation value of a single policy π̂i received from initial state s is equal to Vπ̂i
(s),

function g computes the discounted observation value of a team of agents A1, . . . ,AM .

We can now state the following result:

Lemma 7.2. Function g is a non-decreasing submodular set function.

Proof. The non-decreasing property follows trivially from the fact that adding more

agents never reduces the observation value they receive as a team. To prove submod-

ularity, we need to show that, for every set of policies π′ ⊆ π and policy π 6∈ π′ the

following holds:

g({π} ∪ π′)− g(π′) ≥ g({π} ∪ π)− g(π)

To prove that this holds, we just need to prove that adding a policy π to a set of policies

π instead of π′ ⊆ π reduces reward and increases penalty (Equation 7.8). To prove

the former, observe that Ai’s belief of the last visitation time λi
C of cluster C is non-

increasing in i, and Equation 7.3 is non-increasing in λi
C . Thus, adding predecessors to

Ai reduces its reward for any subpatrol in any cluster. To prove the latter, observe that,

with additional predecessors, the number of time steps tn before any predecessor visits

the same cluster C decreases or stays the same. Since penalty P is a strictly increasing

function of tn (see Equations 7.9, 7.10, and 7.11), adding π to π instead of ⊆ π indeed

increases the penalty.

Since the multi-agent algorithm maximises the incremental value of g by greedily com-

puting a policy of agent Ai with respect to the policies of A1, . . . ,Ai−1, Theorem 2.6 by

Nemhauser & Wolsey (1978) can be directly applied to obtain the following result:

Corollary 7.3. For M agents, the policies computed by the multi-agent algorithm are

at least
(
1−

(
M−1
M

)M)
as valuable as the optimal M policies.
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7.3.2 Computational Complexity

The computational complexity of the algorithm can be decomposed into the complexity

of its three steps:

• The computational complexity of phase 1 is determined by the complexity of the

subroutine Cluster(G,D) (line 1 in Algorithm 10), which partitions G into |C|
clusters such that each of these has a diameter at of most D. Unfortunately,

the problem of finding such a partitioning that minimises |C| is a known NP-

hard problem (Schaeffer 2007). To ensure computational efficiency, we choose an

approximation algorithm that requires more than the optimum number of clusters

to satisfy the maximum diameter requirement. In particular, as mentioned in

Section 7.2.1.1, we select the algorithm proposed Edachery et al. (1999), which

finds a partitioning in time O(|V |3).

• The majority of the computation required in step 2 is attributable to computing the

TSP in line 12 in Algorithm 11. As mentioned earlier, the complexity of computing

an optimal TSP is exponential in |V | (assuming P 6= NP). However, if we use

the heuristic proposed by Christofides (1976), which has the most competitive

performance bounds, this is reduced to O(|V |3).

• Lastly, in step 3, to solve the MDP using value iteration, requires a number of iter-

ations that is polynomial in 1/(1−γ), 1/ǫ, and the magnitude of the largest reward

(Littman et al. 1995). Moreover, a single iteration of value iteration (Equation 7.7)

can be performed in O(|A||S|) steps.7

For the single-agent case, |S| = |T|( τ
B

+ 1)|C|. The size of the action space |A|
depends on the connectedness of the bipartite graph GC , which is polynomial in

the number of clusters. For the multi-agent case, for agent Ai, |S| = |T|i( τ
B
+1)|C|.

Its action space is identical to that of the single-agent MDP.

Thus, in both the single-agent and the multi-agent case, step 3 dominates the complexity

of the algorithm; its computational complexity is exponential in the number of agents,

as well as the number of clusters. This is in contrast with the algorithm proposed by

Singh et al. (2009), which has polynomial complexity. It is interesting to investigate

whether this difference stems from the fact that we compute infinite patrols, instead of

finite ones. We intend to address this question in future work.

However, at this point it is worth mentioning that we can make considerable savings

by disregarding states that are unreachable from initial state s, as discussed in Section

7.2.1.3. We will empirically quantify these savings in Section 7.5. First, however, we

study the use of online decentralised coordination to improve the multi-agent policy.

7For non-deterministic transition functions, value iteration needs O(|A||S|2) steps.
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7.4 Improving the Multi-Agent Policy through Online Co-

ordination

As mentioned earlier, the multi-agent policy that results from sequentially allocating

agents is near-optimal. In this section, we investigate the use of two decentralised

coordination techniques to ascertain whether it is possible to improve on these policies

in an online phase. Using these coordination techniques, agents attempt to determine

whether it pays off to deviate from their policies. In more detail, while being in states

s1, . . . , sM agents attempt to find a joint action a = [a1, . . . , aM ] that yields a higher

discounted reward than following policies π1, . . . , πM :

M∑

i=1

R(si, ai)+γBVπi
(δ(si, a1, . . . , ai)) >

M∑

i=1

R(si, π(si))+γBVπi
(δ(si, π1(s1), . . . , πi(si)))

(7.13)

Computing a joint action that satisfies this equation raises a number of challenges.

Firstly, the value functions Vi have been computed only for those states Sr(s) that are

reachable from the initial state s (Equation 7.4), given that policies of agents A−i are

fixed. Thus, joint action a that deviates from these policies might cause several agents

(with the notable exception of agent A1) to end up in a state ŝ 6∈ Sr(s). Secondly,

finding an action a that satisfies Equation 7.13 requires the evaluation of possibly many

joint actions. As a result, evaluating Equation 7.13 for each of these actions can be very

expensive.

To address the first challenge, we extend the state space Sr(s) with the set Sr(ŝ) of

those states that are reachable from the previously unreachable state ŝ. To compute the

state values for each s ∈ Sr(ŝ) \ Sr(s), we need to rerun the value iteration algorithm

on these states only; the values of states Sr(s) remain unaffected. This is because the

value of a state depends on values of successors only (Equation 7.6), and states Sr(ŝ)

are not successors of states Sr(s) by definition.

To address the second challenge—minimising the computation overhead of finding a

joint action that satisfies Equation 7.13—we investigate the use of two decentralised

coordination approaches.

The first approach uses a more efficiently computable heuristic functionH that estimates

the true value of a joint action a in state s = {s1, . . . , sM}. To goal then becomes to

compute the action â that maximises this function H:

â = argmax
a

H(s,a) (7.14)

Since H is an approximation of the value of an action, after computing â agents need

to determine whether it satisfies Equation 7.13, to ensure it improves the joint policy.
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If it does, the action is chosen, if not, â is discarded and the agents follow their original

policies. To facilitate decentralised evaluation of the heuristic, we choose H so it is

decomposable into a sum of functions Hi(si, ai,a−i)—one for each agent—that depend

on a (small) subset of a−i. We can then directly apply the max-sum algorithm to find

â in Equation 7.14 in a decentralised fashion.

In our empirical evaluation, we choose H(s,a) to be the immediate reward received by

performing action a. This reward depends only on the actions of those agents that can

patrol C simultaneously, and is therefore easily decomposable. The following example

illustrates this:

Example 7.7. Let agents A1, A2, and A3 be located at transfer nodes T1, T6 and T7 in

Figure 7.2 respectively. In this case, heuristic function H can be decomposed into three

factors:

H(a, s) = H1(s1, a1) +H2(s2, a1, a2) +H3(s3, a2, a3)

This is because the immediate reward for agent A1 can not be affected by the other two

agents, since it is not aware of their existence. In contrast, the reward for agent A2

can be affected by the actions of agent A1, if and only if agent 1 decides to patrol C2.

Similarly, the reward obtained by agent A3 is affected by agent A2 if the latter patrols

C6.

The second approach involves the use of the Distributed Stochastic Algorithm (DSA) (see

Section 2.6.1). The reason for choosing this algorithm is that it has a low computational

complexity; the computation an agent needs to perform at each iteration is linear in the

size of its action space. This is in contrast to max-sum, which has a complexity that

is exponential in the number of neighbours. However, as mentioned in Section 2.6.1,

DSA is also known to converge to poorer solutions than max-sum. Nevertheless, due

to the inherent complexity of finding an action that satisfies Equation 7.13, a lesser

computational demand is of decisive importance.

DSA works as follows. First, agents randomly initialise their actions [a1, . . . , aM ]. Then,

in each iteration of the algorithm, Ai selects action a∗i as follows:

a∗i = argmax
ai∈A(s)

[
R(si, ai) + γBVπi

(δ(si, a1, . . . , ai))
]

(7.15)

with respect to actions a1, . . . , ai−1 being fixed. This continues for a fixed number of iter-

ations (as in our empirical evaluation) or until convergence. While this algorithm is not

guaranteed to yield an optimal solution, or even a solution that satisfies Equation 7.13,

its main advantage is that it operates directly on the objective function in Equation 7.13,

instead of a heuristic function. However, the main disadvantage is that it requires agent

Ai to communicate with all agents A−i. This is due to the fact that—unlike the heuris-

tic function used in the first approach—Equation 7.13 is not decomposable (which thus
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Figure 7.6: Intra-visit time over 1000 time steps. Thick lines correspond to the
non-myopic algorithm. Thin lines correspond to the RHS algorithm from the previous

chapter.

immediately precludes the use of max-sum), because of the intricate interdependencies

between the agents’ future rewards expressed by value function Vπi
.

In the next section we empirically evaluate these two decentralised coordination algo-

rithms, as well as the algorithm developed in Section 7.2.

7.5 Empirical Evaluation

We present two sets of experiments. In the first set, the agents’ goal is to minimise the

time between observing each vertex of the layout graph. In the second set, the agents

are tasked with monitoring a spatial phenomenon modelled by a GP as in Section 6.3.1.

In both experiments, we measure the average solution quality (i.e. average last visit time,

or average RMSE), as well as the worst-case solution quality (i.e. maximum last visit

time, and maximum RMSE). The latter metric is of key importance in safety-critical

applications commonly found in disaster management and security domains, since it is a

measure of the maximum risk involved in relying on the situational awareness the agents

provide.

We benchmark the non-myopic algorithm against the receding horizon control algorithm

developed in the previous chapter (which hereafter shall be referred to as the RHC

algorithm).

7.5.1 Experiment 1: Minimising Intra-Visit Time

The first experiment is set in the IAM lab from Figure 7.1. We consider a scenario

in which the value of observing a vertex is equal to the number of time steps that
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has elapsed since it has last been observed, with a maximum of τ (clearly, this makes

observations older than τ independent from observations made at the current time step).

Thus, the agent’s goal is to minimise the time between two successive observations of

each vertex.

The agents have a circular observation area ©i with diameter 1.5m.8

After initial calibration, we found that a budget B of 50 leads to a partitioning of

the graph in six clusters, such that agents are capable of observing all vertices within

the allotted time of B. Step 1 of the algorithm identified the six clusters and seven

transfer nodes shown in Figure 7.1. Vertices within a distance of 1/2ρ = .75 (i.e. half

the agents’ observation radius) of vertices in different clusters were stripped away (not

shown in Figure 7.1). We then applied the non-myopic algorithm with a varying number

of agents.

First, we analysed solution quality in terms of the average and maximum intra-visit

time. To this end, we varied the temporal parameter τ ; the smaller this parameter, the

quicker observations become stale, and the greater the need for an increased number of

agents to accurately monitor the quicker changing environment. Results are shown in

Figure 7.6 for 1000 time steps. From Figure 7.6(a), we can conclude that the average

performance of our algorithm is comparable to that of the RHC algorithm, and that

the incremental improvement of adding additional agents seems to flatten off more for

our algorithm, specifically for higher values of τ . The explanation for this is that the

non-myopic algorithm patrols the graph in a more regular fashion, such that all clusters

(and therefore all vertices) are visited in fixed intervals, while the RHC algorithm moves

on immediately after the majority of value has been obtained. In terms of minimising

the maximum intra-visit time, however, this behaviour is very effective, since the non-

myopic algorithm reduces this time by approximately 30% for 6 agents compared to the

RHC algorithm.

Second, we assessed the computational overhead of our algorithm. Figure 7.7(a) shows

the number of states that were searched. This number is proportional to the running

time of the value iteration algorithm (see Section 7.2.1.3), which represents the bulk of

the total running time of our algorithm. This figure confirms that the number of states

grows exponential in τ , as expected. Furthermore, we found that the number of states

is roughly linear in the number of agents, indicating that only a very small fraction of

the exponentially large state space is reachable from the initial state. This is confirmed

by Figure 7.7(b), which shows the size of the reachable state space Sr(s) as a fraction

of the |T|M ( τ
B
+ 1)|C| states (see Section 7.3.2). For six agents and τ = 300 only one in

106 states is reachable, and needs to be searched.

8Since the graph consists of lattice graphs in which the distance between adjacent vertices is 1m
(Figure 7.3), an agent is capable of observing around 9 vertices simultaneously.
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(b) Reachable states as a fraction of all states.

Figure 7.7: The number of reachable states searched by the non-myopic algorithm.
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Figure 7.8: Fractional increase of the number of searched states using DSA.
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Figure 7.9: The ship layout graph used in Experiment 2.

Finally, we determined how much the computed policies can be improved by applying the

two online coordination techniques discussed in Section 7.4. The first approach, based on

maximising immediate reward, did not result in a statistically significant improvement

of the joint policy (< 1%). We can conclude from this that joint actions that maximise

immediate reward are unlikely to maximise the sum of discounted rewards received by

the agents, which means that the joint policy yields better results than a purely greedy

policy. The second approach, which uses DSA, yielded an average improvement of 5%.

Unfortunately, this improvement comes at a great cost. As discussed in Section 7.4,

deviating from the policy leads to an increase in the number of states that need to be

searched. Figure 7.8 shows the ratio between the states that were searched with and

without coordination. From this figure, we can conclude that the size of the searched

state space increases by two orders of magnitude to achieve this moderate improvement.

Despite these negative results, we can consider the relative lack of effectiveness of both

optimisation techniques as corroborating Lemma 7.2, which states that the policies

computed by the sequential allocation method are close to optimal.

7.5.2 Experiment 2: Monitoring Environmental Phenomena

In this second experiment, the agents are tasked to patrol a ship (Figure 7.9) while mon-

itoring an environmental phenomena. Thus, this experiment is similar to that described

in Section 6.3.1. We used a GP to model this spatial phenomenon, which has a spatial

length-scale of 5 and a temporal length-scale of 50. This corresponds to ρ = 10 (with

ǫ < 0.01) and τ = 100 (with δ < 0.01). These parameters were chosen to generate

difficult problem instances. In these problem instances, the spatial phenomenon has a

strong correlation along the temporal dimension (i.e. it varies slowly over time), and

relatively weak correlations along the spatial dimension (i.e. it varies quickly in space).

As a result, the agents’ priority is to explore the space quickly, before settling into a

patrolling routine that revisits vertices regularly.

The results in terms of average-case and worst-case RMSE are shown in Figure 7.10. The

pattern observed here is similar to that of the first experiment: the non-myopic algorithm

performs comparably to the RHC algorithm in terms of average-case performance, but

outperforms it in terms of worst-case performance: the non-myopic algorithm reduces

maximum RMSE by approximately 10% for 6 agents compared to the RHC algorithm.
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Figure 7.10: RMSE over 1000 time steps.

Moreover, while the marginal performance increase exhibited by the non-myopic algo-

rithm is guaranteed to be positive (adding agents never hurts), the performance of the

RHC algorithm starts to decline after adding the fourth agent.9

In summary, the empirical results show that our algorithm performs comparably to the

receding horizon control algorithm developed in the previous chapter (which does not

give performance guarantees, but has lower computational complexity) in terms of aver-

age performance, and significantly better in the worst-case. Furthermore, we found that

improving upon the policies computed by this algorithm using online coordination is

possible, but comes at a computational cost that is too high for the moderate improve-

ment it yields. On the positive side, we consider this as evidence of the near-optimality

of the joint policy as proved in Lemma 7.2.

7.6 Summary

In this chapter, we developed a non-myopic algorithm for computing infinitely long pa-

trols for multiple mobile agents. This algorithm follows a similar three-step computation

as the algorithm by Singh et al. (2009), i.e., decompose the environment into clusters,

compute subpatrols within each cluster, and concatenate these subpatrols to form the de-

sired patrol. However, unlike Singh et al. (2009), we consider environments that exhibit

the property of temporality, which models a continuous rate of change. As a consequence,

the algorithm proposed by Singh et al. (2009) computes finitely long paths, which tend

not to return to previously visited locations, since no additional information (or value)

can be obtained from doing so. In contrast, the patrols computed by our algorithm are

9This is caused by the max-sum algorithm that lies at the foundation of the RHS algorithm; as
coordination between the agents becomes denser (i.e. agents need to coordinate with increasingly many
neighbours), the factor graph contains more cycles causing max-sum to output increasingly less optimal
solutions (Farinelli, Rogers, Petcu & Jennings 2008).
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designed to monitor continuously changing environments, and thus periodically (and

infinitely often) return to the same location to provide up-to-date situational awareness.

Just as with the algorithm developed in the previous chapter, this non-myopic algorithm

operates on the generic problem definition in Chapter 3 and is thus applicable to a

wide range of information gathering domains. We demonstrated this by analysing its

performance in two distinct domains, and concluded that it performs comparably to the

receding horizon control algorithm from the previous chapter (which has no performance

guarantees, but lower computational complexity) in the average-case, but outperforms

it in the worst-case.

Furthermore, we investigated the use of two decentralised coordination algorithms for im-

proving the near-optimal multi-agent policy. Unfortunately, empirical evidence showed

that neither technique is effective: the first has a low computational overhead, but

yielded no discernible improvement, while the second moderately improves the solution

(5%) at an unacceptably high computational cost. Despite this, we think it is unwise

at this point to discard decentralised coordination as a means for improving policies

computed by sequential allocation, and believe deeper study is required to unify these

two valuable techniques. We come back to this issue in Section 8.2 where we discuss

future work.

Now, in terms of the design requirements stated at the start of this thesis, we can

conclude the following:

Quality: The empirical results from Section 7.5 show that it performs comparably to

the receding horizon control algorithm developed in the previous chapter in terms

of average-case solution quality, and > 10% better in terms of worst-case solution

quality. We can therefore conclude that it is comparatively better able to provide

situational awareness.

Adaptiveness: The policies computed by the non-myopic algorithm are not inherently

adaptive. The occurrence of unexpected events that change observation value

function f therefore requires recomputation of these policies.

Robustness: The robustness of the algorithm depends on how policies are computed.

This can be done in two ways: by a centralised controller or by the agents them-

selves. In the latter case, the sequential allocation method requires that agent

Ai waits until agent Ai−1 has computed its policy and transferred it to Ai, thus

creating a chain of computation. While this latter method is slightly more robust

than a centralised controller (which is a single point of failure), it depends heavily

on the existence of reliable communication channels. Thus, the non-myopic algo-

rithm is less robust than the algorithm developed in the previous chapter, which

is much less sensitive to unreliable communication.
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Autonomy: Similar to robustness, the level of autonomy of the agents depends on the

method of computation. The agents are not autonomous if a centralised controller

is used to compute the policies. However, if policies are computed using the afore-

mentioned computation chain, the algorithm allows agents to respond optimally

to the policies of their predecessors, thus giving them autonomy over their actions.

Scalability: As discussed in Section 7.3.2, the complexity of both the single-agent and

the multi-agent algorithm is exponential in the number of clusters, as well as the

number of agents. This is in contrast with the algorithm developed by Singh

et al. (2009), which has polynomial complexity. Further investigation is needed to

ascertain whether this is inherent in the patrolling problem we considered in this

chapter, and thus, whether performance guarantees and scalability are mutually

exclusive for this problem.

Modularity: The same considerations as in Chapter 6 apply here, i.e. it is possible

to define the action space of agents in such a way as to reflect their different

capabilities, by having multiple different layout graphs G for each type of agent.

Performance Guarantees: The algorithm developed in this chapter gives strong per-

formance guarantees; in Section 7.3.1 we derived bounds on the observation value

achieved by the single agent algorithm, as well as for the multi-agent algorithm.



Chapter 8

Conclusions and Future Work

In this chapter, we present an overview of the contributions of this thesis towards the

research aim of decentralised coordination of teams of information gathering agents.

First, in Section 8.1, we summarise the research carried out within each chapter. In so

doing, we also ascertain the extend to which each contribution has satisfied the design

requirements laid down at the beginning of the thesis. Then, in Section 8.2, we identify

fruitful directions for future work that arise from our work.

8.1 Summary of Results

Unmanned sensors are rapidly becoming the de facto means of achieving situational

awareness—the ability to make sense of and to predict what is happening in an environ-

ment—in disaster management, military reconnaissance, space exploration, and climate

research. In these domains, and many others besides, their use reduces the need for

exposing humans to hostile, impassable or polluted environments. Whilst these sensors

are often currently pre-programmed or remotely controlled by human operators, there

is a clear trend toward making these sensors fully autonomous, thus enabling them to

make decisions without human intervention.

Full autonomy has two clear benefits over pre-programming and human remote control.

First, in contrast to sensors with pre-programmed motion paths, autonomous sensors

are better able to adapt to their environment, and react to a priori unknown external

events or hardware failure. Second, autonomous sensors can operate in large teams that

would otherwise be too complex to control by human operators. The key benefit of this

is that a team of cheap, small sensors can achieve through cooperation the same results

as individual large, expensive sensors—with more flexibility and robustness.

In light of the importance of autonomy and cooperation, we adopted an agent-based

perspective on the operation of the sensors. Within this perspective, each sensor becomes

185
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an information gathering agent. As a team, these agents can then direct their collective

activity towards collecting information from their environment with the aim of providing

accurate and up-to-date situational awareness.

Against this background, the central problem we addressed in this thesis is that of

achieving accurate situational awareness through coordination of multiple information

gathering agents. To achieve general and principled solutions to this problem, we formu-

lated a generic problem definition, which captures the essential properties of dynamic

environments. Specific instantiations of this generic problem span a broad spectrum of

concrete application domains, of which we studied three canonical examples: monitoring

environmental phenomena, wide area surveillance, and search and patrol.

The four main contributions of this thesis solve this general problem with additional

constraints and requirements. First, in Chapters 4 and 5, we developed two decentralised

coordination algorithms for settings with fixed agents that execute during the deployment

(Chapter 3) and operation (Chapter 4) phase of the agents’ life cycles. Then in Chapter

6 and 7, we developed two decentralised coordination algorithms for mobile agents: a

scalable receding horizon control algorithm, and a non-myopic algorithm that provides

performance guarantees on the quality of the achieved situational awareness.

In more detail, in Chapter 4, we studied the problem of maximising observation value,

while simultaneously constructing a reliable communication network between the agents.

Specifically, we considered the frequency allocation problem, which is equivalent to

the NP-hard problem of graph colouring, and presented a novel approach that, rather

than solving the graph colouring problem in the original network, deactivates certain

agents, such that the communication graph that exists between the remaining agents

is triangle-free, hence allowing the use of a simple decentralised graph colouring algo-

rithm. We showed that this modified problem—maximising observation value subject to

the communication graph being triangle-free—is also an NP-hard problem. We derived

a centralised greedy and decentralised greedy approximation algorithm, and proved a 1
7

approximation bound on the former. Empirical evidence showed that both algorithms

perform close to optimal (> 90%) and provide more than 250% more observation value

over time compared to activating all agents simultaneously.

The second topic of investigation was decentralised coordination of fixed agents during

the operational phase of their life cycle, and was described in Chapter 5. Specifically,

we addressed the challenge of coordinating these agents under the assumption that their

control parameters are continuous. In doing so, we developed two algorithms that ex-

tend the max-sum algorithm to continuous variables. The first algorithm, CPLF-MS,

used techniques from computational geometry to derive exact algorithmic solutions for

performing the two key mathematical operations required by max-sum for continuous

piecewise linear functions. We benchmarked CPLF-MS against the standard max-sum
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algorithm and a centralised simulated annealing algorithm, and found that it outper-

forms the former by up to 10%, and yields solutions close to the optimal solution com-

puted by the latter. However, we also found that the complexity inherent in using

simplexes to represent the utility functions tends to scale unfavourably with the number

of neighbouring agents. The second algorithm, HCMS, avoids these problems. It uses

non-linear optimisation techniques to evolve the variable domains used by the standard

max-sum algorithm in settings with non-linear utility functions. We proved that the

HCMS algorithm outperforms the standard max-sum algorithm, and, for sufficiently

fine discretisations, the HCMS algorithm converges to a near optimal solution. Fur-

thermore, empirical evidence shows that HCMS increases solution quality by up to 30%

compared to the standard max-sum algorithm, at the cost of an at most threefold in-

crease in the size of the messages. Moreover, with a sufficient number of iterations, it

performs comparably to the near-optimal centralised simulated annealing algorithm.

Having dealt with fixed agents in Chapters 4 and 5, the second part of this thesis

(Chapters 6 and 7) considered mobile agents, whose movements are restricted by their

environment. In Chapter 6, we first developed an efficient receding-horizon algorithm,

which coordinates the agents’ movements so as to maximise the collective observation

value received over a finite number of time steps in the future. To implement reced-

ing horizon control in a decentralised fashion, we again opted for the max-sum algo-

rithm. However, due to the potentially very large action spaces of individual agents,

the straightforward application of the max-sum algorithm to this problem was shown

to be infeasible. Therefore, we made three augmentations to improve the scalability of

our solution; all of which aim to reduce the action space that needs to be searched by

the agents running the max-sum algorithm. The first exploits the property of locality

of the observation value function to reduce the number of dependencies between agents,

which results in an exponential reduction of the joint action space agents need to search.

The second augmentation involves two heuristics for defining an individual agent’s ac-

tion space to reduce its action space. Both reduce an exponentially large set of possible

paths to a small selection of paths that are likely to lead to good performance. The

third augmentation involves two pruning techniques designed to speed up the max-sum

algorithm itself. These techniques are general in the context of max-sum, and their

application is thus not limited to the multi-agent information gathering problem we

addressed in this thesis. We empirically evaluated the decentralised receding horizon

algorithm in three different information gathering domains—environmental monitoring,

pursuit-evasion and patrolling—and showed that it outperforms the state of the art by

at least 30%. Most importantly, this algorithm is the first online decentralised algorithm

for these these domains.

Following this, in Chapter 7, we developed a coordination algorithm for mobile agents

with performance guarantees. Specifically, we developed a non-myopic algorithm for
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computing a patrol—an infinitely long path for a single mobile agent designed to continu-

ously monitor rapidly changing environments. This algorithm follows a similar three-step

computation as the algorithm by Singh et al. (2009), i.e., decompose the environment

into clusters, compute subpatrols within each cluster, and concatenate these subpatrols

to form the desired patrol. However, the novelty of this algorithm lies in the fact that,

unlike Singh et al., it considers environments that exhibit the property of temporality,

which models a continuous rate of change. As a consequence, the algorithm proposed by

Singh et al. computes finitely long paths, which tend not to return to previously visited

locations, since no additional information (or value) can be obtained from doing so. In

contrast, the patrols computed by our algorithm are designed to monitor continuously

changing environments, and thus periodically (and infinitely often) return to the same

location to provide up-to-date situational awareness. We subsequently extended this

single-agent algorithm to the multi-agent case based on the method of sequential alloca-

tion. This method computes a near-optimal joint policy for a set of agents, by greedily

computing single-agent policies conditioned on previously computed policies. We empir-

ically evaluated both single-agent and multi-agent algorithms in two distinct domains,

and concluded that it performs comparably to the receding horizon control algorithm

from the previous chapter in the average-case, but outperforms it in the worst-case

by > 10%. Furthermore, we investigated the use of two decentralised coordination al-

gorithms for improving the near-optimal multi-agent policy. Unfortunately, empirical

evidence showed that neither technique is effective. The first has a low computational

overhead, but yielded no discernible improvement, while the second moderately improves

the solution (5%) at an unacceptably high computational cost. Despite this, we think it

is unwise to discard decentralised coordination as a means for improving policies com-

puted by sequential allocation, and believe deeper study is required to unify these two

valuable techniques. We come back to this issue in Section 8.2 where we discuss future

work.

More specifically, looking back at the design requirements identified at the start of this

thesis, we can conclude that we successfully addressed each of them:

Quality: For each algorithm developed in this thesis, we have given extensive empirical

evidence of the achieved quality of situational awareness, either by comparing them

against the state of the art, or against optimal (centralised) algorithms.

Adaptiveness: The online coordination algorithms for fixed agents (Chapter 5) and

the receding horizon control algorithm for mobile agents (Chapter 6) can run

continuously during the operation of the agents, and are thus capable of adapt-

ing to changes in their environment. In contrast, the coordination algorithms

for deploying fixed agents (Chapter 5) and the non-myopic algorithm for mobile

agents (Chapter 7) both have an offline computation phase. While it is possible

to revise solutions after the occurrence of a priori unknown events, this requires
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re-computation of the solution. In case of the former algorithm, the cost associ-

ated with doing this is limited (since its computational complexity is polynomial).

However, in case of the latter, agents have to compute new policies, which takes an

exponential number of computation steps (as a function of the number of agents)

in the worst case. Thus, while the algorithm from Chapter 5 can be regarded as

adaptive if run periodically, the non-myopic algorithm from Chapter 7 cannot.

Robustness: All algorithms in this thesis, with the exception of the non-myopic al-

gorithm for mobile agents (Chapter 7), are true multi-agent solutions. As such,

control is divided over multiple agents, and thus no central point of failure exists.

This is somewhat in contrast to the non-myopic algorithm for multiple agents,

which creates a chain of computation. This means that agent Ai has to wait until

agent Ai−1 has computed its policy and transferred it to Ai. Thus, this algorithm

is merely as robust as the weakest link in this chain.

Autonomy: All algorithms enable the agents to make decisions without the interven-

tion of a human operator or a central controller. So, we can conclude that the

agents operate autonomously.

Scalability: All algorithms in this thesis, except for the non-myopic algorithm for mo-

bile agents (Chapter 7), exhibit a computational overhead that scales with the

number of neighbours only—not with the size of the team. The decentralised al-

gorithm for deploying fixed agents (Chapters 4) was shown to be very scalable,

since the computation performed by a single agent increases polynomially with the

number of neighbours, which is much less than the number of agents in the system

as a whole. Similarly, the algorithms for coordinating fixed agents (Chapter 5)

and receding horizon control of mobile agents (Chapter 5) have a computational

overhead that scales with the number of neighbours (albeit exponentially).

Modularity: Using the central problem formulation in Chapter 3, we demonstrated

that it is possible to model agents with heterogeneous sensing capabilities (e.g.

in terms of sensing accuracy or observation area), and movement capabilities and

constraints (e.g. speed, ground based or airborne). Since the algorithms developed

in this thesis operate directly on this problem formulation, they support teams

of heterogeneous agents by design, and as such, do not impose constraints on

the implementation of the sensing platforms in which these agents are embedded.

Moreover, the CPLF-MS and HCMS algorithms for continuous decentralised coor-

dination problems developed in Chapter 5 further increase modularity, by allowing

agents whose controls are inherently continuous to inter-operate, without the need

for artificial discretisation of their control variables.

Performance Guarantees: Both the centralised greedy algorithm for deploying fixed

agents from Chapter 4, and the non-myopic multi-agent patrolling algorithm from

Chapter 7 give performance guarantees.
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Thus, when taken together, the contributions presented in this thesis represent a sig-

nificant advance in the state of the art of decentralised coordination of information

gathering agents. However, many open problems remain.

8.2 Future Work

Despite these accomplishments, there are still a number of open issues to be addressed.

Whilst the contributions were successful in addressing all of the design requirements laid

down at the beginning of this thesis, taken individually they satisfy (strict) subsets of

these requirements. Specifically, our contributions seem to suggest a trade-off between

performance guarantees on the one hand, and scalability, adaptivity, and robustness on

the other hand (see Table 1.2). Thus, we identify a need to combine different aspects of

these algorithms to simultaneously satisfy all requirements.

To this end, we believe further investigation is needed to simultaneously achieve the

performance guarantees of the non-myopic algorithm in Chapter 7 and the scalability,

robustness and adaptivity of the receding horizon algorithm in Chapter 6. In more

detail, we are particularly interested in combining decentralised coordination with non-

myopic online performance guarantees. The use of decentralised coordination to improve

on the near-optimal multi-agent policy in Chapter 7 can be considered as an initial

attempt to achieve this. Here, the coordination process was guided by the non-myopic

state values resulting in high-quality long term solutions (albeit against an unacceptably

high computational overhead). Thus, future work should concentrate on addressing this

issue. One promising direction of investigation could focus on replacing the (intrinsically

less-scalable) MDP formulated in Chapter 7 by the efficient (i.e. polynomial) modular

orienteering algorithm by Checkuri & Pal (2008). This algorithm lies at the foundation

of the algorithm proposed by Singh et al. (2009) for computing finitely long paths of

high value, and solves a special case of the problem we formulated in chapter 3, in which

all observations are independent. However, to suit our purposes, this algorithm must be

extended to compute cycles instead of walks, and support the property of temporality.

Beyond this topic for future research that stems directly from the work presented in this

thesis, we further identify three specific lines of investigation to extend the scope and

applicability of our work:

Multi-Objective Information Gathering The central problem formulation in Chap-

ter 1 states that agents should seek to maximise the quality of their situational

awareness through coordination. No mention is made of whether this pertains to

single or multiple phenomena of interest. More specifically, in this thesis we have

addressed the challenge of maximising situational awareness for a single feature, be

this the value of an environmental phenomenon, the location of evader, or the class
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of a target. However it is conceivable, and even likely, that there exist multiple

features that need to be monitored or found simultaneously (e.g. fire, poisonous

gas, wounded civilians, etc.). Moreover, these features might require the agents to

perform different, mutually exclusive actions (e.g. civilians are located in one part

of a building, while a fire is raging in another). Simply weighing these objectives

can lead to situations in which one feature is being monitored with high quality,

while others are being ignored.

One area to look for potential insights to avoid such situations is multi-objective

optimisation, which seeks to simultaneously optimise two or more conflicting ob-

jectives (Steuer 1986). The solution to a multi-objective problem is a set of Pareto-

optimal solutions—solutions in which it is impossible to further satisfy one objec-

tive without reducing the solution quality of others. Within this set, a solution

can be chosen that satisfies certain constraints, such as maximising the quality of

situational awareness for one feature, subject to a minimum quality for another.

At the moment of this writing, a decentralised algorithm for multi-objective opti-

misation is under development in our lab. This algorithm is based on max-sum,

which has been shown throughout this thesis to be very suited to the coordination

of information gathering agents, and is thus an obvious point of departure.

Adversarial Domains In this thesis, we have considered environments that are non-

strategic, i.e. these environments do not behave so as to further their interest, since

they simply had none, or were assumed to have none. However, there are two

reasons why this assumption should be dropped for some classes of applications.

Firstly, some scenarios are clearly intrinsically strategic, such as those found in

the pursuit evasion and patrolling domain. In Chapter 6 these scenarios were

characterised by attackers with a probabilistic behaviour model, rather than an

adversarial strategic one, and thus they did not behave in such a way so as to

minimise the probability of their capture. Secondly, assuming the environment

behaves strategically—even when it does not—is equivalent to being fully risk

averse, in the sense that good solutions to this problem seek to minimise the

maximum risk the agents (and their owners) are exposed to. In safety-critical and

hostile scenarios, this is clearly a desirable trait.

Krause et al. (2008) have studied the related problem of minimising the maximum

vulnerability of a water distribution network to attacks with contaminants by

placing sensors at key locations, and demonstrated that this metric is submodular.

Thus, modifying the problem definition in Chapter 3 to strategic environments

should be straightforward, although further investigation is required to determine

whether patrolling in the presence of moving strategic intruders (Agmon, Kraus &

Kaminka 2008) can also be captured in this framework. This modification makes

it possible to apply all of the algorithms in this thesis in their existing form, with

one exception. With these aforementioned ‘mini-max’ submodular functions, the
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receding-horizon control algorithm from Chapter 6 might not be able to distinguish

between good and bad actions, since many paths of finite length are equivalent in

their ability to reduce maximum risk. This is because the (relatively) short paths

over which the agents coordinate are not likely arrive at those locations where this

risk is currently maximal. Note that the non-myopic algorithm from Chapter 7

avoids this problem because it considers infinitely long paths, but this approach

scales unfavourably with the number of agents. Thus, this strand of research

has some overlap with the aforementioned investigation into efficient hybrid non-

myopic/decentralised coordination solutions.

Anytime Algorithms: One of the common properties of the algorithms developed in

this thesis is that action planning and execution take place in distinct phases.

In the first phase, agents coordinate to maximise observation value received as

a team, after which the resulting coordinated plan is implemented in the second

phase. However, in some cases, time constraints require one or more agents to

terminate the coordination algorithm prior to completion. For instance, a sudden

unexpected event might require an immediate response, or an uneven distribution

of the computational workload might cause agents to time-out waiting for a re-

sponse from a neighbour.1 In such cases, it is imperative that the agents are not

left without a solution—a situation which can have detrimental effects, such as

the failure of one or more agents, or a severe reduction in situational awareness.

To this end, an investigation into anytime coordination algorithms could improve

both the quality of situational awareness as well as the adaptiveness of a team

of information gathering agents. The key property of an anytime algorithm is its

capability to compute partial solutions, the quality of which is non-decreasing in

the amount of computation the algorithm was able to perform before termination.

One interesting line of research in this area could seek to extend the max-sum

algorithm. This, however, creates a non-trivial challenge, for the max-sum al-

gorithm (and, indeed, decentralised computation in general) is asynchronous by

nature. As a result, computation can have been progressed further in agents that

are assigned a small workload, than in those that are burdened by a larger one.

Thus, when termination is triggered by one of the agents, the impartial solution

computed by the algorithm is likely to be out-of-sync, leading to uncoordinated

(and thus poor) behaviour. This problem adds additional difficulty to the fact

that, before the max-sum algorithm has converged, it can yield arbitrarily poor

solutions. Nevertheless, a modification to the max-sum algorithm that allows it to

compute increasingly better solutions over time could be a significant contribution

to the field of decentralised coordination in general, and decentralised coordination

of information gathering agents in particular.

1In general, an agent whose utility depends on many neighbours needs to perform more computation
than an agent with few neighbours. For example, in the max-sum algorithm, the amount of computation
an agent needs to perform scales exponentially with the number of neighbours.
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By meeting these challenges, the practical applicability of decentralised coordination

algorithms developed in this thesis can be further increased, which will bring the true

autonomous control of unmanned sensors one step closer.
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