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Optimizations involving high fidelity simulations can become prohibitively ex-
pensive when an exhaustive search is employed. To remove this expense a
surrogate model is often constructed. One of the most popular techniques for
the construction of such a surrogate model is that of kriging. However, the
construction of a kriging model requires the optimization of a multi-model
likelihood function, the cost of which, can approach that of the high fidelity
simulations upon which the model is based. The following paper describes the
development of a hybridized particle swarm algorithm which aims to reduce
the cost of this likelihood optimization by drawing on an efficient adjoint of
the likelihood. This hybridized tuning strategy is compared to a number of
other strategies with respect to the inverse design of an airfoil as well as the
optimization of an airfoil for minimum drag at a fixed lift.
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Nomenclature

R Correlation matrix
V Particle velocity vector
xGbest Current global best position found by swarm
xPbest Individual best position found by a particle
c1 Particle swarm cognitive parameter
c2 Particle swarm social parameter
d No. of dimensions
K Particle swarm constriction factor
n No. of sample points
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p Hyperparameter determining smoothness
w Inertial weight
x Design variable
y Objective function value
λ Regression constant
µ Mean
ϕ Concentrated log-likelihood
σ Standard deviation
θ Hyperparameter determining correlation decrease

1. Introduction

Kriging was first used by Krige (1951) to estimate mineral concentrations within a par-
ticular region, and has since been adapted for use in the creation of surrogate models of
deterministic computational experiments; a process popularized by Sacks et al. (1989). Of
the numerous types of response surface models, kriging is perhaps one of the most effec-
tive due to its ability to model complicated responses through interpolation or regression
whilst also providing an error estimate of the predictor. Since its initial application to
surrogate modelling, kriging has been applied to a variety of engineering problems in-
cluding, aerodynamic (Hoyle et al. (2006) and Forrester et al. (2006)), structural, Sakata
et al. (2003), and multi-objective design problems by D’Angelo and Minisci (2005) and
Keane (2006).
A typical response surface based optimization commences with an initial sampling of

the design space using an expensive simulation. A surrogate model, in this case a kriging
model, is then constructed which models the response of the objective function to changes
in the magnitude of the design variables. This model can then be searched using a suitable
global optimizer and updated in regions of interest indicated by the models prediction
of the objective function or some other metric such as the expected improvement, Jones
(2001). This process is repeated until an appropriate termination criterion is met, for
example, a fixed budget of full simulations has been exhausted. Comprehensive reviews
of the state of the art in surrogate modelling can be found in Simpson et al. (2001),
Queipo et al. (2005) and Wang and Shan (2007).
The construction of a kriging model requires the solution to a complex multi-modal

optimization problem in order to find a set of kriging hyperparameters which best relate
the krig to the sample data. The optimization of these hyperparameters via maximiza-
tion of the likelihood function requires an O(n3) factorization for each evaluation of the
likelihood, where n is the number of sample points upon which the model is constructed.
The cost of this optimization therefore increases dramatically as the number of sample
points increases. As the number of sample points is typically linked to the number of di-
mensions, d, in the underlying problem, for example 10d in the case of Jones et al. (1998)
or 3d in the case of Jin et al. (2001), the cost of evaluating the likelihood can quickly
become an issue at high dimensions. The number of hyperparameters is typically 2d and
this leads to a more complex hyperparameter optimization as the number of dimensions
increases.
Figure 1 helps to illustrate this increase in tuning cost by demonstrating the total
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Figure 1. An illustration of the total time spent tuning the modelling parameters of a krig over
the course of an optimization as problem dimensionality increases, Toal et al. (2009)

time spent tuning the hyperparameters over an entire optimization2. In this case a total
simulation budget of 15d is assumed with one third employed in the initial sampling plan
as per Sóbester et al. (2005) with the remainder used to update the model in batches of
ten. The hyperparameters are assumed to be tuned after every set of updates via a 5,000
evaluation genetic algorithm followed by a 5,000 evaluation dynamic hill climber, Toal
et al. (2008b). It can be observed from Figure 1 that the application of such a scheme
can result in the total hyperparameter tuning cost quickly exceeding the cost of the high
fidelity simulations which may have been used in the model’s construction.
To attempt to reduce the cost associated with hyperparameter tuning a number of

different strategies have been proposed in the literature. Toal et al. (2008b) demonstrated
that although the retuning of the hyperparameters throughout an optimization is a
necessity for the overall optimization to be effective, it may be possible to reduce the cost
by retuning the hyperparameters after every other set of updates with minimal impact.
Toal et al. (2008a) also demonstrated that by reparameterizing the original problem
to exclude poorly performing designs, the size of the kriging correlation matrix can be
reduced thereby significantly reducing the overall tuning cost.
The likelihood function used in the tuning process is a smooth differentiable function

and therefore lends itself to the application of gradient information in its optimization.
The literature includes a number of examples of the application of gradient information
in likelihood optimization. Park and Baek (2001) derived an analytical gradient of the
likelihood for use in a local quasi-Newton optimization. Zhang and Leithead (2005) took
this a step further and derived an analytical Hessian of the likelihood and employed this
in conjunction with a trust region search. Leithead and Zhang (2007) reduced the cost of
approximate likelihoods and derivatives to an O(n2) operation through an approximation
to the inverse of the covariance matrix via the BFGS, Broyden (1970), updating formula.
Each of these methods is a local optimization of the likelihood and as such will only

locate the global optimum if initialized in the region of that optimum or if an appro-
priate restart procedure is adopted. It should be noted however, that there are cases
when such a local optimizer may be effective in finding the optimal hyperparameters.

2Total tuning time on an Intel Core 2 processor running at 2.4Ghz with 1Gb of RAM
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Zhang and Leithead (2005) note that given a sufficiently large dataset upon which to
build the surrogate model the modality of the likelihood space is greatly reduced. Such
densely populated design spaces are, however, very rare in engineering design optimiza-
tions, especially when each objective function evaluation involves a costly high fidelity
simulation.
Whereas the methods of Park et al. and Zhang et al. exploit an exact analytical gradient

or Hessian, the approximation method of Leithead et al. still requires an initial exact
inverse of the correlation matrix and may require additional inversions as the optimization
progresses due to corruption of the approximation. When used in conjunction with an
engineering optimization problem, where there are few sample points and the likelihood is
multi-modal in nature, the computational effort spent in carrying out the initial starting
inversion and subsequent restart inversions, may be better spent in performing a global
exploration of the likelihood. To this end we consider here the development of a hybridized
particle swarm algorithm for the purposes of likelihood optimization which employs an
efficient adjoint1 of the likelihood. The resulting optimization algorithm aims to facilitate
both a global exploration of the likelihood space and rapid convergence to an optimum
through the utilization of the available cheap gradient information.
The following section first briefly describes both kriging and an efficient adjoint of the

likelihood derived using the linear algebra results collated by Giles (2008). The paper
then moves on to describe particle swarm optimization algorithms and reviews a number
of different hybridized swarms from the literature. The framework for a new hybrid
particle swarm is defined in Section 4 and then optimized specifically for the kriging
hyperparameter tuning problem in Section 5. The performance of the final swarm is then
compared to a number of other tuning strategies with regard to an airfoil inverse design
problem, Section 6, and the optimization of an airfoil for minimum drag at a fixed lift,
Section 7.

2. An Overview of Kriging

Given a pair of objective function values, y(xi) and y(xj) which are given by a function
of the vectors of design variables xi and xj , of length d, the objective function values
will generally be similar if xi and xj are close together within a design space. This can
be modelled statistically by assuming that the correlation between two sets of random
variables Y (xi) and Y (xj) is given by,

Corr [Y (xi), Y (xj)] = exp

(
−

d∑
l=1

10θl∥xil − xjl∥pl

)
. (1)

Here the hyperparameters θl and pl determine the rate at which the correlation de-
creases and the degree of smoothness in the lth coordinate direction, respectively. Con-
sider now a vector y consisting of n objective function values,

y = [y(x1), . . . , y(xn)]
T , (2)

1An adjoint model computes the sensitivities of an output with respect to the output’s inter-
mediate variables. Such a model can compute the partial derivatives of outputs with respect to
thousands of inputs at a cost of no more than a few function evaluations, Griewank (2000).
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where the mean is 1µ̂, and 1 is an n by 1 vector of ones. The covariance of y may then
be written as

Cov(y) = σ2R, (3)

where σ2 is the variance and the elements of the matrix R, the correlation matrix, are
given by Equation 1. Values of θl and pl (the hyperparameters), are then chosen to
maximize the likelihood on the observed data set y. This maximum likelihood function
is defined as:

1

(2n)
n

2 (σ2)
n

2 |R|
1

2

exp

[
−(y − 1µ̂)TR−1(y − 1µ̂)

2σ2

]
, (4)

or after taking natural logarithms of the function,

−n

2
ln(σ2)− 1

2
ln(|R|)− (y − 1µ̂)TR−1(y − 1µ̂)

2σ2
. (5)

Expressions for the optimal values of the mean

µ̂ =
1TR−1y

1TR−11
(6)

and variance

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂) (7)

can be found by taking partial derivatives of the log likelihood and equating them to zero.
A concentrated likelihood function, Jones (2001), can then be derived by substituting
the expressions for the optimal mean and variance into the log likelihood function and
neglecting the constant −n/2,

ϕ = −n

2
ln(σ̂2)− 1

2
ln(|R|). (8)

The concentrated likelihood function is dependant only on the correlation matrix and
hence on the hyperparameters which are tuned in an attempt to maximize the function.
As previously demonstrated the selection, or tuning, of these hyperparameters is an

optimization problem in its own right and can be expensive and complex, with the overall
cost dependent on both the dimensionality of the optimization problem and the number
of sample points.
Recently Toal et al. (2009) demonstrated the application of algorithmic differentiation

to the calculation of derivatives of the concentrated likelihood function. The resulting
gradient calculations were demonstrated to be more efficient than the traditional analyt-
ical method presented by Park and Baek (2001). The method was less sensitive to both
increases in the number of variables and in the number of sample points. However, this
method relied upon the application of a reversely differentiated Cholesky factorization
and reverse differentiations of both the forward and backward substitution algorithms.
The adjoint can be made both more efficient and easier to code through the consideration
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of the linear algebra results presented by Giles (2008) which draws on the previous work
of Dwyer and M.S. (1948).
Using the notation of Griewank (2000), given an initial seeding for the adjoint of

the concentrated likelihood of ϕ̄ = 1 and using reverse algorithmic differentiation, from
Equation 8 the adjoint of both the variance and the determinant of the correlation matrix
can be found to be,

σ̄2 = − n

2σ̂2
(9)

and

|R| = − 1

2|R|
, (10)

where the bar denotes the adjoint of the intermediate variable. From the results presented
by Giles (2008), the adjoint of the second quadratic matrix product,

C = BTA−1B (11)

is given by,

Ā = −A−TBC̄BTA−T , (12)

where −T denotes the transpose of the inverse matrix. Using this result in conjunction
with the equation for the variance, which is of a similar form, and substituting A for R,
B for (y − 1µ̂) and C̄ for Equation 9, the component of the adjoint of the correlation
matrix due to the variance can be calculated to be,

1

2σ̂2
R−T (y − 1µ̂)T (y − 1µ̂)TR−T . (13)

Giles (2008) also notes that if,

C = detA (14)

then the adjoint of the matrix A is,

Ā = C̄CA−T . (15)

Using this result and replacing C̄ with Equation 10, C with |R| and A with R the
component of the adjoint of the correlation matrix due to the log of the determinant of
the correlation matrix is,

−1

2
R−T . (16)

Combining both Equations 13 and 16 results in an analytical expression for the adjoint
of the correlation matrix,

R̄ =
1

2σ̂2
R−T (y − 1µ̂)T (y − 1µ̂)TR−T − 1

2
R−T . (17)
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As mentioned previously this formulation has no need for a bespoke reverse differentiation
of the Choleksy factorization, or the back and forward substitution algorithms (Toal et al.
(2009)) and can therefore be implemented with ease using the standard libraries for
matrix and vector operations. Using this formulation the calculation of R̄ can also take
advantage of the fact that the correlation matrix is symmetric and therefore R−T (y −
1µ̂)T and (y − 1µ̂)TR−T have already been calculated during the initial calculation of
the variance, Equation 7. This reduces the calculation of R̄ to essentially a vector-vector
multiplication followed by a matrix addition, which is more efficient than the reversely
differentiated formulation presented previously by Toal et al. (2009).
The final calculation of the derivatives of the likelihood with respect to each of the

hyperparameters follows the remainder of the formulation of Toal et al. (2009). The
derivative of the likelihood with respect to the lth, θ hyperparameter is therefore,

∂ϕ

∂θl
= ln 10

∑
ij

−10θl ||xil − xjl ||plRijR̄ij (18)

and the derivative with respect to the lth, p hyperparameter is

∂ϕ

∂pl
=
∑
ij

−10θl ||xil − xjl ||pl ln ||xil − xjl ||RijR̄ij . (19)

These derivative calculations can be made more efficient by noting that the calculation
of RijR̄ij is common to all cases and therefore needs to be calculated only once. The
derivative of the likelihood with respect to a regression constant λ can be easily calculated
from R̄,

∂ϕ

∂λ
= 10λ ln 10

∑
i

R̄ii, (20)

assuming that 10λ has been added to the diagonal of the correlation matrix.
The interested reader may wish to consult Giles (2008) for the complete details of

the derivation of the linear algebra results employed in the derivation of the likelihood
adjoint and the excellant book by Griewank (2000) for more information on the process
of algorithmic differentiation and its applications.
Assuming that an appropriate set of hyperparameters have been found it is necessary

to ‘search’ the resulting surrogate for a set of update points which are to be evaluated
using the true objective function evaluation. To make a prediction at a new point, x∗,
this point is added to the existing data as the (n+1)th observation. Using the previously
defined hyperparameters an augmented likelihood, Jones (2001), can be calculated. The
surrogates prediction of y(x∗) is therefore the value which maximises this likelihood
giving,

y(x∗) = µ̂+ rTR−1(y − 1µ̂). (21)

More information on the derivation of the predictor and the other infill criterion such as
expected improvement can be found in Jones (2001).
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3. Particle Swarm Optimization

3.1. The Basic Particle Swarm

The particle swarm is one of the most recent stochastic optimization methods, and also
one of the simplest. It was originally developed by Eberhart and Kennedy (1995) after
they adopted simulations of simple social behavior for use in optimization.
Like genetic algorithms the particle swarm is inspired by nature, though instead of

modelling evolutionary processes, the particle swarm endeavors to model the social be-
havior of a population of animals. Initial simulations of social behavior by Eberhart et
al. drew on the previous work of Heppner and Grenander (1990), where a flock of birds
flew around searching for a cornfield before landing. In these simulations every member
of the population could remember its previous best position, in this case how far it was
from the cornfield, and each member could ‘see’ the global best position that another
member of the population had found. By permitting each bird to remember a previous
best position, birds that overflew a good position were pulled back to that position.
Allowing the birds to see the current global best position, in social terms, provides the
group with a standard which the other group members attempt to attain.
The extension of this social behavior model to the field of optimization resulted in a

very simple equation which updates the velocity of each swarm member. Given a velocity,
V i, at the ith iteration, and information on the current global best position, xGbest and
the best position that an individual has found, xPbest, the velocity of the particle at the
next iteration can be found by,

V i+1 = wV i + c1r1(xPbest − xi) + c2r2(xGbest − xi), (22)

where r1 and r2 are vectors of random numbers in the range [0,1] and w, c1, and c2 are
the inertial weight, the cognitive parameter and social parameter, respectively, Blasi and
Del Core (2007). With the new velocity of a particle calculated, the position of a particle
at the next iteration can be easily found,

xi+1 = xi + V i+1. (23)

The updated velocity given by Equation 22 has three main components. The first compo-
nent is the velocity that the particle is currently travelling at; this is termed the inertial
component. The second component of the velocity calculation tends to return the parti-
cle to a previous best point, this is sometimes referred to as ‘simple nostalgia’, Kennedy
and Eberhart (1995). The final component of the velocity calculation tends to move the
particle towards the location of the best point found so far in the optimization.
The two learning parameters, c1 and c2, in Equation 22 balance the local exploitation

and global exploration of the algorithm. A large c1 relative to c2 forces each particle
to return to the best positions that they, themselves, have found, largely ignoring the
global best point. A large c2 relative to c1 results in each particle moving rapidly towards
the global best position with little exploitation of any local minima found. A balance is
therefore required between these two factors to ensure the algorithm moves to a global
optimum, but in doing so exploits any locally optimal regions it encounters. For this
reason in Eberhart and Kennedy’s original algorithm, both c1 and c2, equal 2.
The inertial weight was an addition to the original formulation by Shi and Eberhart

(1998) which improved the performance of the algorithm. Typically this inertial weight
decreases linearly with each iteration of the algorithm. Eberhart and Shi (2000) found
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however that modifying Equation 22 to use a constriction factor, K and restricting the
velocity of each particle to V max negates the need for a gradual reduction in inertial
weight, and results in a performance increase. Equation 22 therefore becomes,

V i+1 = K[V i + c1r1(xPbest − xi) + c2r2(xGbest − xi)] (24)

subject to

V i+1 ≤ V max (25)

where

K =
2

|2− γ −
√

γ2 − 4γ|
, γ = c1 + c2 and γ > 4. (26)

The constriction factor is in effect a special implementation of the traditional particle
swarm equation, only instead of the inertial weight reducing with each iteration it remains
constant and is a function of the learning factors. The starting magnitude of the inertial
weight and the rate at which it decays no longer need to be specified a priori.
The restriction in the velocity applied to each particle tends to prevent them from

leaving the design space and also simulates an incremental learning process. The selection
of this parameter has an impact on the performance of the optimization. Reducing this
parameter prevents the particles from overshooting interesting regions but reduces the
convergence rate of the algorithm. Setting this parameter too small however prevents
the particle escaping from local minima. Typically V max is defined as a fraction of the
difference between the upper and lower bounds of the design space, Liu et al. (2006).
A typical particle swarm algorithm begins with the sampling of the design space at a

number of points to construct the initial population. Each member of the swarm has its
corresponding objective function calculated and is given a random initial velocity within
the limits of V max. The global best point is recorded and the previous best point for each
particle is initialized to the current position. The velocity is then updated using either
Equations 22 or 24 and from this velocity the particle’s new position is calculated. The
objective function is then calculated at this new position and the global and previous best
points are updated as necessary. The process then continues until a specified stopping
criterion is reached.
Particle swarms have grown in popularity since their inception by Eberhart and

Kennedy. They have been applied in the conceptual design of aircraft, Blasi and Del Core
(2007), and compared favorably to genetic algorithms and simulated annealing in the
optimization of airfoils, Ray and Tsai (2004), and analytical functions, see for example,
Angeline (1998), Brandstatter and Baumgartner (2002) and Venter and Sobieszcaznski-
Sobieski (2003).
Particle swarms do however suffer from the same exploitative deficiencies as genetic

algorithms, that is, they are capable of finding the region of an optimal design but not
the precise answer. As with genetic algorithms some effort has gone into improving the
performance of particle swarms in this area, with the introduction of both hybrid particle
swarms which employ a local search, Shu-Kai et al. (2004), or those which make specific
use of gradient information in the velocity update equation, Noewl and Jannett (2004)
and Ninomiya and Zhang (2008).
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3.2. Existing Hybridized Particle Swarms

The utilization of a local search within a particle swarm aims to improve the overall
convergence of the swarm to an optimum. Without this addition to the algorithm the
particles tend to oscillate around the region of an optimum but make relatively little
headway towards finding an exact solution. Local search algorithms typically involve
some form of gradient descent and proceed quickly from an initial starting point to a
precise minimum. However they cannot escape from a local minimum unless a restart
procedure is employed. Combining the global exploration abilities of the particle swarm
with the exploitation abilities of a local search therefore makes perfect sense.
There exists within the literature a number of different methods of combining a local

search within a particle swarm, each with their own advantages and disadvantages. Lo-
cal searches can be commenced from the xGbest point of a generation and carried out
until convergence, Victoire and Jayakumar (2004) and Guo et al. (2006), but this can
hamper the swarm’s global exploration as particles are drawn to a xGbest point which
may not change for a number of generations. This can be countered by the introduction
of a diversity metric and particle repulsion, Riget and Vesterstrø (2002), or through the
generation of random particles to increase diversity.
After completing a local search Liu et al. (2005) retains a subset of the population in

the next generation with the remaining population members randomly generated. Where
the random generation of particles maintains population diversity, the method proposed
by Liu et al. has no control over where these points are generated and as such new points
may be generated in regions of the design space previously visited and subsequently
discarded.
An alternative approach is to split the total population into two subsets one utilizing

a pure particle swarm approach while the other has each point optimized locally until
convergence, Izui et al. (2007). Whilst this strategy effectively uses sensitivity information
one could argue that given a fixed evaluation budget for each generation the convergence
of a large number of such local searches reduces the number of available evaluations for
any global exploration.
Rather than use a local search strategy, Noewl and Jannett (2004) modified the particle

swarm update equation to make use of any available gradient information by adopting
a gradient descent term instead of a nostalgia term. The components of the updated
velocity were therefore due to the inertia of each particle, the location of the global best
point and a step in the steepest descent direction.
While this approach appears attractive by simultaneously exploiting a particle’s local

gradient and the global best point, its effectiveness is closely dependant on the cost of
the gradient. If the cost per optimization is to be maintained when using this strategy,
the population size or number of generations must be reduced accordingly. This reduces
either the exploration ability of the algorithm or the convergence. One could also argue
that just taking a step in the direction of steepest descent is not as efficient as a quasi-
Newton based optimization when it comes to an effective terminal search.
Rather than using raw gradient information in the velocity update, Ninomiya and

Zhang (2008), employed a step in the direction of a BFGS search. This step then influ-
enced the velocity of a particle’s six neighbors through a modified fully informed particle
swarm (FIPS) equation, Mendes et al. (2004). Ninomiya and Zhang realized that calcu-
lating the gradient and subsequent BFGS step for each particle at every iteration would
be prohibitively expensive and therefore restricted the local step to only the global best
point. Employing a FIPS based swarm with a reduced neighborhood maintains popu-
lation diversity to a better extent than the simpler ‘gbest’ neighborhood topology of
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Table 1. Pseudo code of the proposed hybrid particle swarm optimization algorithm.

Step

1 Initialize the population members using a random Latin Hypercube
2 Initialize the particle velocities
3 Evaluate the objective function (concentrated likelihood)
4 Select a population member for refinement via a local optimization
5 Initialize xPbest and xGbest

6 Update each particle’s velocity and position
7 Reinitialize a proportion of the population to unexplored regions if required
8 Evaluate the objective function
9 Select a population member for refinement via a local search
10 Update xPbest and xGbest

11 Return to step 6 unless the required number of generations has been reached
12 Terminal local search commencing from xGbest

Kennedy and Eberhart’s original swarm algorithm. Although the hybrid swarm of Ni-
nomiya and Zhang does not suffer the same premature convergence problems of other
hybrid swarms the absence of a terminal local search and the application of a random
neighborhood topology, where the neighbors influenced by the global best point are in
completely different areas of the design space, could be considered questionable.

4. The Proposed Hybridized Particle Swarm

Reviewing the advantages and disadvantages of a number of hybrid swarms from the
literature provides a solid basis upon which to develop an algorithm for the purposes of
hyperparameter optimization. From the above review a number of important features of
a final strategy are apparent. A local search must be incorporated into the swarm which
uses gradient information in an efficient and effective manner. Precautions must also be
taken to prevent premature convergence by maintaining diversity in the population when
the results of any local optimization are fed back into the swarm.
To this end a hybrid particle swarm has been developed which uses features from the

literature and introduces new features similar to those used in the creation of sampling
plans for computational experiments. The proposed algorithm, the pseudo code of which
is presented in Table 1, begins with the initialization of every particle’s position and
velocity. Unlike the majority of particle swarms the initial position of each particle is
defined by sampling the space using a random latin hypercube. Latin hypercubes, pro-
posed by McKay et al. (1979) as an alternative to Monte Carlo sampling, partition each
dimension of the design space into a series of n ‘bins’ of equal probability. A sample plan
is then generated via a random permutation such that no two points lie within the same
bin. A random perturbation is then applied to each point thus preventing it lying at the
center of each bin. Utilizing a random Latin hypercube distributes the particles more
evenly throughout the space when compared to a more traditional random initialization
of points. With particle positions initialized each particle is then given a random velocity
within the limits of V max.
The objective function of each particle is next evaluated as normal but based on this

objective function a member of the population is selected for refinement via a local
optimization, in this case Sequential Quadratic Programming (SQP). Unlike other hybrid
swarms the xGbest member is not automatically selected for local improvement, instead
the previously calculated objective function is used in a rank selection scheme, similar
to that used by a genetic algorithm for the purposes of generating a mating pool.
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The use of such a scheme results in a chance that some measure of local improvement
is applied to any member of the swarm and not just the global best point. This adds an
additional measure of local exploration to the population without the expense of a large
number of local searches in each generation. Moreover, this local optimization is also not
carried out to convergence. Instead a small proportion of the total budget of function
evaluations available for each generation is reserved for local improvement. Depending on
the magnitude of this proportion the local improvement may be anything from a single
to multiple steps towards a local optimum. A similar scheme was employed by Fan et al.
(2004) where a Nelder-Mead simplex update was used to replace a single swarm member.
The combination of the rank based selection and partial convergence of a local opti-

mization also helps to preserve a level of diversity within the population as the optimiza-
tion progresses. As previously mentioned complete convergence of the global best point
after the initial generation is counter-productive, as subsequent swarm generations tend
to move towards that point rather than exploring the space effectively. Here, the view
is taken that the effort of a completely converged local optimization should be spread
throughout each swarm generation to boost the local exploitation of the whole population
and not just the best point.
Once local improvement steps have been taken, the xPbest for each particle and overall

xGbest can be calculated and used to update the velocity of each swarm member. Here,
the constriction factor method of Eberhart and Shi (2000) is utilized with the resulting
velocity restricted to V max. The position of each particle can then be updated as normal
using Equation 23.
Provision is made to prevent particles moving beyond the permitted variable bounds. If

the updated position of the particle falls outside the bounds of a variable then the position
of that particle is adjusted so the particle lies on the boundary. The corresponding velocity
of the particle is then reversed so the inertial component of the velocity update in the
next iteration tends to move the particle back from the boundary. A similar approach
was used by Huang and Mohan (2005).
A reinitialization of a proportion of the swarm is carried out before the calculation

of the objective function of each particle. This reinitialization attempts to increase the
diversity of the swarm population but unlike the reinitialization procedure of Wang et al.
(2006) the position of any new particle is not random but selected in order to explore
regions of the space not previously visited by the swarm or embedded local search. This
is achieved through a maximization of the minimum distance of a proposed restart point
to those points previously evaluated, a similar metric to that used by Morris and Mitchell
(1995) to calculate optimal space filling Latin hypercubes.
A 2,000 point Latin hypercube sampling plan of potential new swarm members is

generated upon each reinitialization and compared to the whole optimization history.
The Euclidian distance between each point is calculated and the point with the max-
imum minimum distance selected as the new population member. It should be noted
that it is not the goal of this reinitialization procedure to find a globally optimal point
which maximises the minimum Euclidean distance but rather to locate an approximate
region within the design space which has not been previously explored. An actual sub-
optimization could be utilized in the reinitialization process but dependant on the method
employed this may incur an additional overhead. Although not considered here, the size
of the Latin hypercube could be adjusted to reflect the dimensionality of the problem
considered, thereby increasing efficiency at lower dimensions.
The alternative option to a particle reinitialization procedure is a particle repulsion

scheme such as that used by Riget and Vesterstrø (2002). In such a strategy when the
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diversity of the population reaches a predefined minimum the velocity update equation is
altered and particles move away from each other in subsequent iterations until diversity
has been improved. However, such a repulsion technique offers no guarantees that previ-
ously unexplored regions will be searched by the swarm, rather the swarm may expand
and contract again within a region of the space which may have been explored during
the initial contraction. The repulsion process itself can take a number of generations and
may therefore waste objective function evaluations. The strategy proposed here forces
the exploration of unexplored regions of the space immediately.
After reinitialization the objective function of each particle is evaluated and a particle

is selected for local improvement as before. The global and personal best locations can
then be updated to calculate a particles velocity in the next generation. This process
is repeated until the total number of generations is reached after which the global best
point is used as the starting point for a terminal local search. The final local optimization
is carried out with the aim of exploiting fully the best point found throughout all of the
previous generations of the swarm.
While the proposed hybrid particle swarm can make effective use of available gradient

information a capacity to deal with constraints and multi-objective problems has not
been explicitly developed. Although the embedded local SQP optimization can effectively
deal with linear and nonlinear equalities and inequalities, there is no provision for such
problems within the explorative swarm. Penalty functions could be employed to aid
with constraints or indeed an information sharing strategy relying on Pareto methods to
handle constraints could be employed, Ray and Saini (2002). Such a method can be easily
expanded to deal with multi-objective optimisation problems, Ray and Tsai (2004). The
apparent drawbacks of the proposed algorithm are not a major issue as the likelihood
optimization problem to which it is applied is a single objective optimisation problem
with no such complex constraints.

5. Optimization of the Swarm Parameters

Having defined the basic hybrid hyperparameter optimization strategy, questions still
remain concerning the appropriate settings for the hybrid swarm parameters in order to
achieve optimal performance. The total number of generations, the size of the population,
the point at which the local search should start to improve members of the population,
the increase in the degree of local improvement with subsequent generations, the num-
ber of evaluations reserved for a terminal local search and the number of points being
reinitialized, all require consideration.
One way of addressing all of these issues is to cast them in the form of an optimiza-

tion problem. To this end the basic hybrid particle swarm strategy described previously
has been parameterized using ten variables which adjust the overall structure of the
swarm. These variables can then be adjusted over the course of an optimization with
the objective of improving the hyperparameter tuning performance of the algorithm. A
similar procedure was carried out by Keane (1995) when the optimization of the control
parameters of a genetic algorithm were considered in order to improve performance on
multi-modal problems.
Each of the ten swarm control parameters considered, (shown in Table 2) varies greatly

in its effect on the particle swarm; the first five control the complete nature of the
optimizer while the rest control more subtle features.
Given a predefined budget of likelihood evaluations, the first control parameter governs
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Table 2. Hybrid particle swarm control parameters to be optimized.

No. Parameter description Lower limit Upper limit

1 Fraction of total evaluation budget for terminal local opti-
mization

0 1

2 No. of evaluations per generation 10 100
3 Generation swarm becomes hybridized 1st Final
4 Initial no. of local search evaluations (fraction of total eval-

uations)
0 0.5

5 Final swarm size (fraction of evaluations reserved for swarm) 0.1 1
6 Magnitude of V max 0 1
7 Initial probability of particle reinitialization 0 1
8 Final probability of particle reinitialization 0 1
9 Initial fraction of population reinitialized 0 1
10 Final fraction of population reinitialized 0 1
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Figure 2. A graphical representation of the allocation of resources between the particle swarm
and local search within the proposed hybrid optimization strategy

the fraction of this budget reserved for the terminal search. The second control parameter
defines the size of the swarm population and therefore the total number of generations.
The third control parameter governs the generation at which the swarm is hybridized,
in essence, the generation at which a local search is first employed to improve a member
of the population. The fourth and fifth parameters define how the number of evaluations
per generation used in this local improvement changes as the optimization progresses.
The effect of these five parameters can be visualized using Figure 2. One can observe

that adjusting the generation at which local improvement is utilized within the swarm
converts the optimizer from the ‘pure’ swarm of Eberhart and Shi (2000) to a hybridized
swarm. Likewise, adjusting the proportion of the total evaluation budget used in the
terminal local search changes the optimizer from a purely global search to a purely local
search from the best point of an initial design of experiments.
The fraction of a population’s evaluation budget utilized in a local improvement al-

ters linearly as the optimization progresses according to parameters four and five. The
hybrid optimization can therefore move from one employing a small local improvement
at each generation to one employing an increasing degree of local improvement as the
optimization progresses. This therefore moves the optimization from a global exploration
to a more localized exploitation.
The remaining five parameters control the particle swarm itself. The magnitude of

V max controls the incremental nature of the swarm and a particle’s ability to escape
from local optima. A large V max causes all of the particles to move quickly around the
space but perhaps overshooting regions of interest. A small V max helps each particle to
exploit regions of interest but may prevent them escaping local minima.
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Table 3. Controlling parameters of the proposed hybrid particle swarm.

Local Min. Min. Prob of No. of Points
Pop. No. Search Local Swarm Reinitialization Reinitialized
Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final)

20 80 0.075 30 6 3 0.7 0.2 0.75 0.1

Parameters seven and eight control the probability that a particle reinitialization will
occur as the optimization progresses. A random number is generated in each generation
and compared to this probability: if this number is less than the probability then a
reinitialization occurs. A large initial probability relative to final probability will therefore
result in an intense exploration of the space, moving towards a more focused exploitation.
A small initial probability on the other hand will result in the swarm progressing towards
a more intense exploration in the final generations.
The remaining swarm control parameters control the fraction of the swarm population

reinitialized as the optimization progresses. An optimization can therefore have no points
reinitialized or indeed the whole population. Such an optimization strategy is an interest-
ing prospect, as when coupled with a terminal local search, this essentially amounts to a
space filling sampling of the likelihood space followed by a local optimization commenced
from the best point found.
Before commencing any optimization of the swarm parameters it is necessary to first

define a metric by which the performance of each potential hybrid swarm can be evalu-
ated. The mean improvement in likelihood is here based on the difference in likelihood
attained by the swarm tuning strategy to that attained by the Options MATLAB genetic
algorithm, Keane (2003). For a given dimensionality the airfoil inverse design problem1

outlined in Toal et al. (2008b) is sampled using a total of 50 different Latin hypercubes.
Each sampling of the objective function is then used to construct a kriging model via
an optimization of the likelihood. The likelihood achieved by a potential strategy is sub-
tracted by that achieved by the baseline genetic algorithm, (given the same sampling
plan and a budget of 5,000 likelihood evaluations), and the mean taken,

1

50

50∑
i=1

(ϕi − ϕGAi
). (27)

As a likelihood optimization typically involves the minimization of the negative of the
concentrated likelihood function, a negative value from the above equation indicates a
better performing tuning strategy.
Using the mean improvement in likelihood as the objective function, a series of op-

timizations of the particle swarm parameters were carried out for a variety of problem
complexities and for a range of likelihood evaluation budgets. Details of these optimiza-
tions are presented in Appendix A. Analysis of the results of the optimizations lead to
the parameters presented in Table 3 being selected for the proposed hybridized particle
swarm employing an equivalent of 2,000 likelihood evaluations.
The presented swarm control parameters result in a particle swarm which is skewed

1A NACA 0012 airfoil is modified through the addition of a series of Hicks-Henne bump functions
to the upper and lower surface with the aim of recreating the pressure profile of the RAE-2822
airfoil at Mach 0.725 and at an angle of attack of 2◦
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Table 4. Description of the six hyperparameter optimizers used for comparison.

Description

Heavy A 5000 evaluation genetic algorithm followed by a 5000 evaluation
dynamic hill climb

GA-DHC A 2500 evaluation genetic algorithm followed by a 2500 evaluation
dynamic hill climb

SA A 5000 evaluation simulated annealing
DHC A 5000 evaluation dynamic hill climb
PSO A 5000 evaluation particle swarm optimization
SQP A single sequential quadratic programming optimization commencing

from a random starting point and running to convergence

towards an initial extensive exploration of the likelihood space with a high probability of
reinitialization and high fraction of the population reinitialized to regions not previously
explored. The local optimization commences once this exploration has reduced, after
30 generations, and begins with an initial effort equivalent to six likelihood function
evaluations. A substantial fraction of the overall number of evaluations, 20%, is reserved
for a terminal local search.
Essentially this results in a strategy somewhat similar to the dynamic hill climber of

Yuret and Maza (1993). A local search is used to exploit regions of interest with explo-
ration simultaneously occurring of previously unexplored regions via the reinitialization
procedure and the particle swarm update process.

6. Performance of the Proposed Tuning Strategy

We next compare the performance of the optimized hybrid particle swarm algorithm
to a selection of other methods, again using the likelihood metric and test problem
described above. To do this we consider the performance of six other hyperparameter
tuning strategies defined in Table 4. Three basic global optimizers, a basic particle swarm
(PSO), a dynamic hill climber (DHC) and simulated annealing (SA), Kirkpatrick et al.
(1983), are considered along with the ‘Heavy’ tuning strategy employed so successfully
in the literature, (see Hoyle et al. (2006), Keane (2006) and Toal et al. (2008b)), a
reduced cost variant of this and a simple sequential quadratic programming (SQP) search
commenced from a random starting point.
The baseline genetic algorithm, basic particle swarm and simulated annealing algo-

rithms all employ a population of 50 members for 100 generations. As the baseline genetic
algorithm is restricted to a total of 5,000 likelihood evaluations so too are the particle
swarm, dynamic hill climber and simulated annealing. The Heavy strategy however uses
a total of 10,000 function evaluations, split evenly between the genetic algorithm and
hill climber, and as such enjoys somewhat of an advantage over the other algorithms
being tested. Hence, a second version of this strategy, denoted as ‘GA-DHC’ in Table
4, employing a total of 5,000 likelihood evaluations is also evaluated. The final tuning
strategy considered involves a simple local search using a SQP algorithm commenced
from a random starting point. This strategy is included as a contrast to the global opti-
mizers with the intention of demonstrating the importance of the global optimization of
the hyperparameters.
The mean improvement in likelihood of each of the methods is presented in Table 5

for each tuning strategy with the standard deviations of the improvement in likelihood
presented in Table 6. In terms of the mean improvement in likelihood, the hybridized
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Table 5. Comparison of the mean improvement in likelihood function for the
hybridized swarm and six different hyperparameter optimizers over a range of
problem sizes.

No. of
Heavy GA-DHC SA DHC PSO SQP

Hybrid
Variables PSO

2 -0.785 -0.509 -0.056 -0.929 -0.037 1.452 -0.0404
5 -1.734 -1.442 -0.347 -1.804 -0.789 5.319 -0.787
10 -3.685 -2.549 -0.860 -2.963 -0.656 5.448 -2.675
15 -3.169 -2.515 -0.090 -3.716 -1.558 4.925 -3.667
25 -5.452 -2.885 2.731 -2.639 -0.465 9.941 -6.911

Table 6. Comparison of the standard deviation of the improvement in like-
lihood function for the hybridized swarm and six different hyperparameter
optimizers over a range of problem sizes.

No. of
Heavy GA-DHC SA DHC PSO SQP

Hybrid
Variables PSO

2 0.860 0.518 0.232 1.096 0.0953 1.388 0.087
5 1.848 1.777 1.113 2.087 1.992 4.084 1.933
10 3.329 2.905 3.750 3.558 3.784 4.350 3.366
15 2.641 2.639 3.228 3.321 4.160 4.440 4.031
25 3.388 2.478 4.655 5.763 5.316 6.960 4.497

particle swarm outperforms simulated annealing on the 5, 10, 15 and 25 variable problems
and the particle swarm and GA-DHC strategy on the 10, 15 and 25 variable problem. The
strategy even outperforms the Heavy strategy on the 15 and 25 variable problems which
is particularly significant given that the hybridized particle swarm uses the equivalent of
only 2,000 likelihood evaluations.
In terms of the standard deviation of the improvement in likelihood, the hybridized

particle swarm is more consistent than the basic particle swarm upon which it is based,
especially at higher dimensions. However, on the problems considered the hybrid swarm
does not approach the consistency in likelihood achieved by the ‘Heavy’ strategy. This is
perhaps rather unsurprising given the ‘Heavy’ strategy’s much larger evaluation budget.
Compared to the other global tuning strategies the hybridized particle swarm performs
very well at high dimensions but for a significant reduction in the number of likelihood
evaluations, 40% of those used by the GA-DHC, PSO and SA strategies and 20% of those
used by the ‘Heavy’ strategy.
Note also that the simple SQP hyperparameter optimization performs consistently

badly on all cases, with the performance reducing rapidly as problem dimensionality
increases. This provides a clear demonstration of the advantages of a global strategy
when attempting to optimize the likelihood.
Although Table 5 compares the actual minimum likelihood found by each algorithm

it is the relationship of the corresponding hyperparameters to the quality of an overall
optimization process which is of most interest. In other words, does a better likelihood
equate to a better final design? We now consider a second metric by which to measure
the performance of the hybrid particle swarm tuning strategy. The inverse design op-
timization of Toal et al. (2008b) is adopted once again but with the optimization now
completed using a predefined budget of design function evaluations.
Unlike the similar comparisons of Toal et al. (2008b), where a fixed budget was applied

to a series of problems of increasing dimensionality, here each optimization employs a
total of 15× d evaluations. An inverse design problem of 15 variables will therefore have
a total budget of 225 evaluations. This removes the problems associated with a fixed
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Figure 3. The effect of the ‘Heavy’ (a), Hybrid PSO (b), 2000 evaluation GA-DHC (c) and SQP
(d) tuning strategies on a complete kriging based optimization.

0 2 4 6 8 10 12 14 16 18 20
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

No. Variables

∆ 
C

p E
rr

or

(a)

0 2 4 6 8 10 12 14 16 18 20
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

No. Variables

∆ 
C

p E
rr

or

(b)

Figure 4. Bootstrapped mean and 95% confidence intervals for the Hybrid PSO (a) and 2000
evaluation GA-DHC (b) showing the improvement in root mean squared error obtained by a
kriging based optimization to that obtained when employing the baseline ‘Heavy’ strategy.

simulation budget and an increasing dimensionality and provides a clearer indication of
the effect of the tuning strategy. Of the total evaluation budget, one third is used in the
initial design of experiments.
Figure 3 displays the average RMS error in pressure obtained by the final airfoil of

the inverse design test problem when the hyperparameters are tuned via one of four
strategies, the ‘Heavy’ strategy, the hybridized particle swarm a reduced cost GA-DHC
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strategy employing 2,000 likelihood evaluations and the SQP strategy. As with the cal-
culation of the mean improvement in likelihood, each optimization is carried out a total
of 50 times and the average taken.
Each of the optimizations of Figure 3 commence from a series of identical design of

experiments. The results of each optimization can therefore be directly compared to the
corresponding optimization employing the ‘Heavy’ tuning strategy. Figure 4(a), for ex-
ample, presents the mean difference between the best RMS error found using Hybrid PSO
and the ‘Heavy’ strategies. Each of the presented means and 95% confidence intervals
have been calculated via bootstrapping. Negative values indicate that a strategy obtains
better airfoil designs as the best RMS error found by the ‘Heavy’ strategy is subtracted
from that obtained by the other strategies. The data used in the construction of Figures
3 and 4 is presented in Appendix B.
The results presented in Figures 3 and 4 indicate that the performance of the hybridized

particle swarm tuning strategy is comparable to that of the ‘Heavy’ tuning strategy and
is capable of achieving similar final designs but for a considerable reduction in overall
tuning cost. The 2,000 evaluation GA-DHC strategy is included in Figures 3(c) and 4(b)
as a direct comparison to the hybridized particle swarm in terms of the total number
of likelihood evaluations. This strategy is the equivalent of the ‘Light’ tuning strategy
presented by Toal et al. (2008b) and employs an initial 1,000 evaluation genetic algorithm
followed by a 1,000 evaluation dynamic hill climber. As supported by the results of Toal
et al. (2008b) this strategy results in optimizations of broadly similar performance to that
of the Heavy strategy until higher dimensional problems are encountered. The results for
the 18 variable problem indicate a reduction in the quality of the final designs. The
hybridized swarm on the other hand performs slightly better at higher dimensions as
indicated in 4(a). Based on the presented results the hybrid swarm could be considered
to make more efficient use of the available budget of concentrated likelihood evaluations
than the equivalent cost GA-DHC strategy.
The results presented in Figure 3(d) for the SQP strategy indicate that a poorly opti-

mized set of hyperparameters translates to a drop in overall optimization performance.
Commencing a local search from a random point in the likelihood space can lead to the
optimization being trapped in a plateau or converging to unrealistic hyperparameters.
Often the ‘optimum’ hyperparameters returned by the SQP search contain a vector of
p values equal to one, a vector of θ values equal to 3 or a regression constant of 3.
Such values lead to completely unrealistic response surfaces and the poor optimization
performance observed in Figure 3(d).

7. Airfoil Optimization

Finally, we consider the application of the proposed hybrid tuning strategy to an op-
timization completely unrelated to the inverse design problem considered so far in this
paper. The RAE-2822 airfoil is optimized for minimum drag at a fixed lift coefficient of
0.3 at Mach 0.65 and a Reynolds number of 6× 106. The airfoil is parameterized via two
non-uniform rational B-splines (NURBS) curves, one representing the upper and one the
lower surface, as shown in Figure 5. Fourteen control points are permitted to vary in
both the x and y directions while the control points on the leading edge are fixed in the
x direction resulting in a total of 30 variables.
The optimization is permitted a total of 450 objective function evaluations, of which

150 form the initial design of experiments (DOE). A typical function evaluation requires
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Figure 5. Thirty variable NURBS parameterization of the RAE-2822 airfoil.
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Figure 6. Optimization search histories resulting from a minimization of drag for fixed lift using
the Hybrid (a) and the reduced cost GA-DHC (b) tuning strategies.

Table 7. Comparison of the quality of the designs resulting
from the optimization of the RAE-2822 using two different tun-
ing strategies.

Tuning Average Standard % Improvement
Strategy CD Deviation CD Over RAE-2822

Hybrid 7.53× 10−3 2.88× 10−5 8.29%
GA-DHC 7.54× 10−3 2.04× 10−5 8.13%

between three and four Viscous Garabedian and Korn (VGK) simulations at different
angles of attack to achieve the required coefficient of lift, usually to within ±0.005. A total
of 30 batches of 10 updates are added to the model as the optimization progresses with
the hyperparameters tuned after every update using either the hybrid particle swarm
or the reduced cost GA-DHC strategy. An identical DOE is used in each case thereby
providing a meaningful comparison between the final results. A total of 50 optimizations
have been carried out for each case with the DOE varying each time, the optimization
histories for which are presented in Figure 6 with the average drag of the final best
designs presented in Table 7.
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Figure 7. Average convergence of the kriging based optimizations based on the hybrid and re-
duced cost GA-DHC tuning strategies.

The results of Table 7 indicate that there is little to choose between the two strategies in
terms of the quality of the final airfoil designs. Both the GA-DHC and the hybrid strategy
achieve designs with an average drag coefficient of just over 7.5×10−3. The results indicate
that the hybrid strategy performs slightly better but this could be due to the effect of
the two outlying designs observed in Figure 6(a) on the overall averages. Likewise the
standard deviation associated with this strategy is elevated due to these designs. Both
outlying designs exhibit a rapid and non-physical pressure oscillation close to the leading
edge on the upper surface. This suggests that the simulation may be inaccurate and that
the resulting drag coefficient cannot be relied upon. These optimizations have therefore
exploited a weakness in the computational simulation and in doing so have achieved a
false optimum. This represents a significant danger when any complex computer code is
blindly relied upon during an optimization.
Removing these outlying designs leads to the hybrid strategy achieving designs with

an average CD of 7.535×10−4 and a standard deviation of 7.71×10−6. The reduced cost
GA-DHC obtains a slightly higher average drag of 7.545× 10−4 and standard deviation
of 1.22 × 10−5. Onc e again both optimizations obtain broadly similar designs with
the hybrid strategy achieving very slightly better and more consistent designs than the
reduced cost GA-DHC strategy.
This can be explained somewhat upon comparison of the optimization histories of

Figure 6 and the average convergence histories of Figure 7. Here one can observe a
more rapid reduction in the magnitude of the objective function following the DOE
when the hyperparameters are tuned via the hybrid strategy. The optimization therefore
converges more quickly to the approximate region of an optimal design. Subsequent
updates to the model are therefore spent fine tuning the optimal solution resulting in the
reduction in the variance between final designs. For this particular optimization problem
the hybrid strategy achieves the average drag coefficient of the GA-DHC strategy after
approximately 350 objective function evaluations. Although this optimization utilized
relatively fast VGK simulations in the evaluation of the objective function, a reduction
of approximately 100 simulations is still quite significant.
While demonstrated in isolation within this paper, the presented hybridised particle

swarm algorithm could be easily combined with other tuning strategies, such as tuning
after alternative updates to the model and geometric filtration, Toal (2009).
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8. Conclusions

A hybrid particle swarm optimization algorithm has been developed which effectively
utilizes an efficient adjoint of the kriging likelihood function. The final algorithm combines
a basic particle swarm with an SQP search and a particle reinitialization procedure.
The final structure of the hybridized swarm was defined through a series of optimiza-

tions of the swarm’s control parameters with the aim of maximizing the algorithm’s per-
formance with respect to likelihood optimization. The swarm parameters were optimized
for problems of differing complexity and for different budgets of likelihood evaluations.
The results of these optimizations demonstrate, not only how the performance of the al-
gorithm changes as more effort is applied, but also how the very nature of the algorithm
alters in order to make effective use of the available budget.
These optimizations lead to an algorithm which intensely explores the likelihood space

at the beginning of the optimization and then commences short local exploitations of
promising regions after a number of generations. This local exploitation increases with
each generation and concludes with a terminal search. In essence the algorithm is similar
in its operation to dynamic hill climbing but makes effective use of the available gradient
information.
The hybrid strategy was demonstrated to perform well with respect to likelihood op-

timization compared to a genetic algorithm, simulated annealing, a traditional particle
swarm optimization algorithm and two GA-DHC based strategies even though the hybrid
swarm employed considerably fewer function evaluations.
A final 30 variable optimization, unrelated to the inverse design problem used in the

development of the strategy, demonstrated both an improvement in the quality and
consistency of the final designs obtained over a GA-DHC strategy of equivalent cost.
The hybrid strategy also demonstrated a useful acceleration in the convergence of the
optimization, achieving the final design of the reduced cost GA-DHC strategy with 100
function evaluations to spare.
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Appendix A. Swarm Parameter Optimization

Each of the swarm control parameters, previously described in Table 2, were optimized
using the classic response surface method. A kriging model was constructed from an
initial 100 point DOE of the ten parameters. Twenty batches of up to twenty updates
were then evaluated and added to the model. Throughout the course of the optimization
the Heavy tuning strategy was employed in tuning the hyperparameters with the updates
based on a search of the kriging models prediction of the performance of the swarm using
a genetic algorithm.
A series of optimizations were carried out for different likelihood evaluation budgets and

for underlying optimization problems of different complexities. A total of five different
levels of complexity of the inverse design problem were considered from two to 25 variable
problems. Naturally the number of hyperparameters that each potential swarm evaluates
is double this. For each problem a number of different likelihood evaluation budgets were
considered from 100 up to 2000 evaluations. These optimizations produce a Pareto front,
Figure A1, demonstrating the performance of the hybrid strategy as more effort is applied
to each optimization. Analyzing the results of each optimization therefore provides an
interesting indication as to how the nature of the optimization should change as one
moves from a quick to a slower more exhaustive search.
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Sampling of likelihood
space and a short SQP
search from the best
point

Intensive exploration
of the likelihood and
multiple short SQP
searches culminating
in a terminal SQP
search

Figure A1. A Pareto front showing the change in performance and the nature of the optimization
as the magnitude of the likelihood evaluation budget increases for the 25 variable optimization

Table A1. Parameters for the best performing hybrid
swarm given a range of problem dimensionalities and
a fixed budget of 100 evaluations.

No. of Population No. of Objective
Variables Size Generations Function

2 90 1 0.048
5 98 1 0.126
10 89 1 0.402
15 98 1 0.491
25 89 1 3.968

We consider first the results obtained by the swarm control parameter optimization
when the likelihood evaluation budget is small. Table A1 presents the swarm control
parameters for the best performing swarms on the five optimization problems considered.
On all problems the optimization favors only a single generation of the swarm followed
by a single SQP search, all of the remaining swarm parameters are irrelevant in such a
case and are therefore not presented.
The results of Table A1 indicate that the optimization favors an initial sampling of the

likelihood space using quite a large proportion of the available evaluation budget. This
leaves a relatively small number of evaluations for a terminal SQP search commencing
from the best point found in this initial sampling. The performance results presented in
Table A1 do not compare favorably to those of the baseline genetic algorithm but fare
much better than the SQP strategy of Table 5. This indicates that, in terms of likelihood
optimization, the starting point of the local search is much more important than the
effort applied to that local search.
Table A2 defines the best swarm parameters when a total of 2000 likelihood evalua-

tions are employed in the hyperparameter optimization. Figure A1 demonstrates that
after 1500 evaluations there is only a slight improvement in the magnitude of the likeli-
hood compared to when 2000 evaluations are employed, we therefore assume that there
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Table A2. Parameters for the best performing hybrid swarm given a range of problem dimensionalities and a
fixed budget of 2000 evaluations.

No. Local Min. Min. Prob of No. of Points
of Pop. No. Search Local Swarm Reinitialization Reinitialized Obj.
Vars. Size Gens Vmax Gen. Evals. Size (Initial) (Final) (Initial) (Final) Func.

2 32 50 0.810 39 3 17 0.05 0.50 0.80 0.52 -0.090
5 61 29 0.092 29 6 7 0.58 0.59 0.10 0.36 -1.115
10 63 25 0.045 15 1 50 0.44 0.63 0.84 0.005 -3.149
15 20 87 0.073 56 6 3 0.52 0.19 0.86 0.56 -4.038
25 15 87 0.064 22 6 3 0.82 0.27 0.43 0.11 -8.075

is no advantage to employing more than 2000 evaluations. The results of the these opti-
mizations will therefore form the basis of a more general hybrid strategy.
Increasing the budget of available likelihood evaluations results in a significantly differ-

ent optimization involving considerably more global exploration of the likelihood space.
Table A2 demonstrates a much more effective use of the particle swarm with a consider-
able number of generations employed throughout the optimization.
Observe that the SQP search is not employed within the first generation but rather

at some point in the middle of the optimization. This suggests that an initial search
of the likelihood space via a particle swarm before hybridization is much more effective
than employing a hybridized search from the start. The local search is therefore wasted
if applied too soon before the swarm has found a promising region. This corresponds
with the results of the SQP search of Figure 3(d) where the optimization frequently
stalled on plateaus in the likelihood space. As a particle is selected for local improvement
in the hybrid strategy via a rank based scheme, a poor particle may be selected and
the same stalling may be observed at the beginning of the optimization. Commencing
local searches part way through the optimization therefore reduces the chances of the
optimization stalling and wasting valuable likelihood evaluations.
The results of the parameter optimizations indicate that an initial local search of

approximately six likelihood evaluations is favorable. This makes perfect sense when one
considers the cost of calculating the likelihood and its gradients is approximately twice
that of a single likelihood evaluation. A minimum budget of six evaluations for the SQP
search should therefore result in at least one step towards a local optimum.
The presented results also indicate a gradual increase in the level of effort expended

in the local improvement of particles as the optimization progresses. Each optimization
also concludes with a significant terminal search from the best point found so far by the
optimization.
Reinitialization of points takes place throughout the course of all of the best perform-

ing optimizations. The results of Table A2 indicate that reinitialization tends to occur
towards the start of the optimization with more points and the probability of reinitial-
ization generally higher. This corresponds with the commencement of the local searches
midway through the optimization. Once again the optimizer is attempting to rapidly ex-
plore the likelihood space before applying a local search. One must also note that 100% of
the population is never reinitialized, this leaves some of the particles to gravitate towards
the best current design point in the manner of a traditional particle swarm.
The results of Table A2, while indicating the general form that the final hybrid strat-

egy should take, are quite different depending on the dimensionality of the underlying
problem. The optimum hybrid swarm for the two variable problem is different to that for
the 25 variable problem. A set of controlling swarm parameters which is optimal over all
cases is therefore difficult to achieve. Instead emphasis is given to the more difficult cases,
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namely the 15 and 25 variable problems. Based on the top ten performing strategies for
both of these cases, the data for which can be found in Toal (2009), the hybrid strategy
defined in Table 3 was selected.

Appendix B. Comparison of Optimization Results

Table B1. Details of the quality of the final designs resulting from the standard ‘Heavy’
tuning strategy and the SQP tuning strategy.

Heavy Tuning Strategy SQP Tuning Strategy

No. of Mean Standard Tuning Mean Standard Tuning
Variables Obj. Deviation Time (hrs) Obj. Deviation Time (hrs)

3 0.171 0.006 0.028 0.179 0.009 1.5× 10−4

6 0.141 0.015 0.298 0.157 0.011 0.003
9 0.122 0.024 1.246 0.147 0.022 0.031
12 0.130 0.029 3.366 0.153 0.019 0.11
18 0.132 0.031 14.054 0.145 0.021 0.69

Table B2. Details of the quality of the final designs resulting from the developed
hybrid particle swarm tuning strategy.

GA-DHC (2000 Evaluations) Hybrid Swarm Tuning Strategy

No. of Mean Standard Tuning Mean Standard Tuning
Variables Obj. Deviation Time (hrs) Obj. Deviation Time (hrs)

3 0.1725 0.0050 0.005 0.1710 0.0060 0.005
6 0.1429 0.0144 0.060 0.1480 0.0171 0.060
9 0.1242 0.0293 0.249 0.1202 0.0271 0.249
12 0.1268 0.0253 0.673 0.1313 0.0281 0.673
18 0.1395 0.0306 2.811 0.1358 0.0276 2.811

Table B3. Bootstrapped means and 95% confidence limits for the improvement in design over the baseline
‘Heavy’ tuning strategy.

GA-DHC (2000 Evaluations) Hybrid Swarm Tuning Strategy

No. of Mean Upper 95% Lower 95% Mean Upper 95% Lower 95%
Vars ∆Cp Limit Limit ∆Cp Limit Limit

3 1.13× 10−3 2.37× 10−3 −2.40× 10−4 −2.60× 10−4 1.32× 10−3 −1.86× 10−3

6 1.61× 10−3 6.55× 10−3 −4.02× 10−3 6.51× 10−3 1.17× 10−2 1.32× 10−3

9 2.42× 10−3 1.24× 10−2 −5.71× 10−3 −1.83× 10−3 7.18× 10−3 −8.79× 10−3

12 −2.85× 10−3 6.40× 10−3 −1.18× 10−2 1.70× 10−3 1.07× 10−2 −9.70× 10−3

18 7.05× 10−3 1.96× 10−2 −2.54× 10−3 3.36× 10−3 1.44× 10−2 −9.63× 10−3


